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Preface

We are pleased to present this LNCS volume, the Proceedings of the 22nd Aus-
tralasian Joint Conference on Artificial Intelligence (AI 2009), held in Melbourne,
Australia, December 1–4, 2009. This long established annual regional conference
is a forum both for the presentation of research advances in artificial intelligence
and for scientific interchange amongst researchers and practitioners in the field
of artificial intelligence. Conference attendees were also able to enjoy AI 2009
being co-located with the Australasian Data Mining Conference (AusDM 2009)
and the 4th Australian Conference on Artificial Life (ACAL 2009).

This year AI 2009 received 174 submissions, from authors of 30 different
countries. After an extensive peer review process where each submitted paper
was rigorously reviewed by at least 2 (and in most cases 3) independent review-
ers, the best 68 papers were selected by the senior Program Committee for oral
presentation at the conference and included in this volume, resulting in an ac-
ceptance rate of 39%. The papers included in this volume cover a wide range of
topics in artificial intelligence: from machine learning to natural language sys-
tems, from knowledge representation to soft computing, from theoretical issues
to real-world applications.

AI 2009 also included 11 tutorials, available through the First Australian
Computational Intelligence Summer School (ACISS 2009). These tutorials –
some introductory, some advanced – covered a wide range of research topics
within artificial intelligence, including data mining, games, evolutionary com-
putation, swarm optimization, intelligent agents, Bayesian and belief networks.
There were also four workshops run as part of AI 2009: the 5th Australasian
Ontology Workshop (AOW), the Australasian Workshop on Computational Cre-
ativity, and the International Workshop on Collaborative Agents – REsearch and
Development (CARE), and the First International Workshop on Fictional Pro-
totyping as a Design Tool for Intelligent Environments (FPIE). These tutorials
and workshops together provided an excellent start to the week.

The conference featured four distinguished keynote speakers, Ian Witten
(University of Waikato, New Zealand), Mark Bedau (Reed College, USA), Ea-
monn Keogh (University of California - Riverside, USA), and Andries P. Engel-
brecht (University of Pretoria, South Africa). Their talks were well received by
the attendees.

As with all conferences, the success of AI 2009 depended on its authors,
reviewers and organizers. We are very grateful to all the authors for their pa-
per submissions, to all the reviewers for their outstanding work in refereeing
the papers within a very tight schedule, and to the senior Program Committee
members for their assistance in the paper selection process.

AI 2009 was organized by Clayton School of Information Technology, Monash
University, which provided generous financial and organizational support. In
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particular, we want to thank the conference General Chairs, Damminda Ala-
hakoon and Xinghuo Yu, Advisory Committee Chair, Geoff Webb, Finance
Chair, David Albrecht, Workshop Chair, Christian Guttmann, and Publicity
Chair, Junbin Gao, for their dedicated efforts that made AI 2009 such a success.
We are grateful to the conference coordinator Dianne Nguyen who played such a
critical role in managing the conference. Last but not least, AI 2009 relied heav-
ily upon a team of volunteers to keep the conference running smoothly. They
were the true heroes working behind the scenes. We are most grateful for their
great efforts and contributions.

We would also like to thank our sponsors for their support and financial assis-
tance, including the Centre for Research in Intelligent Systems (CRIS), Monash
University, and Platform Technologies Research Institute (PTRI), RMIT
University.

September 2009 Ann Nicholson
Xiaodong Li
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Ruÿ, Georg
Singh, Hemant
Qiu, Huining
Varzinczak, Ivan
Deng, Jeremiah

Veness, Joel
Lizier, Joseph
Taylor, Julia
Sung, Ken
Waugh, Kevin
Pipanmaekaporn, Luepol
Newton, M.A. Hakim
Slota, Martin
Knorr, Matthias
Steinbrecher, Matthias
Ptaszynski, Michal
Narodytska, Nina
Obst, Oliver
Ye, Patrick

Dybala, Pawel
Tischer, Peter
Pozos-Parra, Pilar
Li, Ron
Halim, Steven
Patoglu, Volkan
Jin, Warren
Wong, Wilson
Kong, Xiang-Nan
Wang, X. Rosalind
Luo, Xudong
Yu, Yang
Kudo, Yasuo



Table of Contents

Agents

Experimental Market Mechanism Design for Double Auction . . . . . . . . . . 1
Masabumi Furuhata, Laurent Perrussel, Jean-Marc Thévenin, and
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Experimental Market Mechanism Design
for Double Auction�

Masabumi Furuhata1,2, Laurent Perrussel2, Jean-Marc Thévenin2,
and Dongmo Zhang1

1 Intelligent Systems Laboratory, University of Western Sydney, Australia
2 IRIT, Université de Toulouse, France

Abstract. In this paper, we introduce an experimental approach to the design,
analysis and implementation of market mechanisms based on double auction. We
define a formal market model that specifies the market policies in a double auc-
tion market. Based on this model, we introduce a set of criteria for the evaluation
of market mechanisms. We design and implement a set of market policies and
test them with different experimental settings. The results of experiments pro-
vide us a better understanding of the interrelationship among market policies and
also show that an experimental approach can greatly improve the efficiency and
effectiveness of market mechanism design.

1 Introduction

Auction has been used for many years as the major trading mechanism for financial
markets and electronic markets. The existing researches on auction mostly focus on
the theoretical aspects of a market mechanism, such as incentive compatibility, profit
optimization, price formation, and so on [1,2,3,4]. From the implementation and market
design point of view, “market participants and policy makers would like to know which
institution or variant or combination is most efficient, but theoretical and empirical work
to date provides little guidance”, as Friedman pointed out in [5].

In this paper, we introduce a general approach for the design, analysis, and testing
of market mechanisms. The design of a market mechanism involves the development
of market policies and evaluation criteria. Different from most existing work in experi-
mental economics, we do not restrict ourselves on specific market policies. Rather, we
specify a range of general market policies under the certain trading structure, such as
double auction, investigate the properties of market mechanisms with different combi-
nations of market policies. In such a way, we can design a variety of market mechanisms
and test them for different purposes.

This paper is organised as follows. Section 2 introduces a market model and spec-
ifies the market policies that compose a market mechanism. Section 3 presents a set
of evaluation criteria for market mechanism design and testing. Section 4 describes the

� This research was partially supported by the Australian Research Council through Discovery
Project DP0988750 and UWS Research Grants Scheme. Also, the work presented in this ar-
ticle is supported by the French Agence Nationale de la Recherche in the framework of the
ForTrust (http://www.irit.fr/ForTrust/) project (ANR-06-SETI-006). We thank
the anonymous reviewers for their constructive comments.

A. Nicholson and X. Li (Eds.): AI 2009, LNAI 5866, pp. 1–10, 2009.
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implementation of market policies. Section 5 presents our experimental results. Finally,
we conclude the paper with related work.

2 The Market Model

In this section, we introduce a formal model of market based on double auction market
structure. Double auction is a typical market structure in which a set of sellers and
buyers trade together for the exchange of certain commodities. Figure 1 illustrates the
general structure of double auction markets.

Sellers

Market Institution

Buyers

Legend Seller, Buyer, or
Market Institution

Accepting Policy

Matching Policy

Clearing Policy

Pricing Policy

Market Policy Order (bid or ask)

Order Flow Control Flow

Fig. 1. Structure of Market Institution with Double Auction

In a double auction market, there are three sorts of actors: sellers, buyers and the mar-
ket maker. The sellers and buyers are called traders. The market maker, who represents
the market institution, coordinates the market. During a trading period, the sellers and
buyers submit ask orders (sell orders) and bid orders (buy orders) to the market maker
of the market institution, respectively. The market maker finds feasible pairs from these
incoming orders according to certain market policies, such as accepting policies, match-
ing policies, clearing policies and pricing policies. An accepting policy sets criteria for
either accepting or rejecting an incoming order. A matching policy determines which
ask orders match which bid orders. The time for the matched orders to be executed is
determined by a clearing policy. Meanwhile, the price of the transaction price is de-
termined by a pricing policy. According to the structure of double auction markets,
the design of market mechanism for a double auction market is to specify each market
policy that are to be implemented in the market.

2.1 Market Setting

We consider a double auction market of a single commodity. Let I = S ∪B be a set of
traders, where S is the set of sellers; B is the set of buyers. We assume that S∩B = ∅1.

1 In practice, a trader can be both a seller and a buyer for the same commodity. In such a case, we
model it as two different roles because the decision making for selling and buying is different.
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Each trader i ∈ I has a fixed valuation for the commodity, which is private informa-
tion of the trader, denoted by vi. Let X be the set of incoming orders. An order x ∈ X
consists of two components: the owner of the order, denoted by I(x) ∈ I , and the price
of the order, denoted by p(x). For any H ⊆ X , we write Hask = {x ∈ H : I(x) ∈ S}
and Hbid = {x ∈ H : I(x) ∈ B}. Notice that the meaning of the order prices for sell-
ers and buyers are different. For a seller, sn asking price means that the commodity can
be sold with a price no less than this price. For a buyer, a bidding price means that the
commodity can be bought with a price no higher than this price.

2.2 Market Policies

Based on the market setting we describe above, we now define the market policies to
govern a double auction market.

An accepting policy is a function A : X → {1, 0} that assigns to each incoming
order a value either 1(accepted) or 0 (rejected). Let A = {x ∈ X : A(x) = 1} be the
set of all the orders that are accepted under the accepting policy A.

A matching policy is a function M : 2X → 2X×X such that for any H ⊆ X ,

1. if (x, y) ∈ M(H), then x ∈ Hask , y ∈ Hbid and p(x) ≤ p(y),
2. if (x1, y1) and (x2, y2) ∈ M(H), then x1 = x2 if and only if y1 = y2.

The first condition sets the feasible condition for a match: the ask price should be less
or equal to the bid price. The second condition specifies that an order can only be
matched once. LetM be a set of matched pairs obtained from the accepting policy, that
is, M = M(A). We use |M | to denote the number of matched pairs in M .

A pricing policy onM is a function P : M → � that assigns a positive real number,
interpreted as the clearing price, to a pair of ask order and bid order such that for any
(x, y) ∈M , p(x) ≤ P(x, y) ≤ p(y).

Note that any pricing policy is implemented on top of certain accepting policy and
matching policy. Without having matched orders, no transactions can be executed.

A clearing policy determines when to clear a matched pair. Formally, let T be the set
of time points of a trading period. A clearing policy is a function C : T ×M → {1, 0}
such that for any t ∈ T and (x, y) ∈ M , if C(t, (x, y)) = 1, then C(t′, (x, y)) = 1
whenever t′ ∈ T and t′ > t, which means that once a matched pair is cleared, it can
never come back.

With the implementation of all the above policies, a market maker can determine
what, when and how the incoming orders being transacted. Briefly speaking, given a
set of incoming orders, the accepting policy determines what orders are to be accepted.
Among all accepted orders, the matching policy determines whose good can be sold
to whom. The pricing policy determines the actual transaction prices and the clearing
policy specifies when the transactions should be executed.

3 Evaluation Criteria of Market Mechanisms

In this section, we propose a set of evaluation criteria for the design and evaluation
of market mechanisms. We introduce four indicators to measure profiting efficiency,
matching efficiency, transaction volume and converging speed, respectively.
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Transaction profit (PR) measures the total revenue of the market institution from all
transactions that are executed in a given trading period:

PR =
∑

(x,y)∈M

[cs(P(x, y)− p(x)) + cb(p(y)−P(x, y))]

where cs and cb is the charging rate of the market institution to a seller and a buyer,
respectively. The charging rates represent the percentage of profit that a trader has to
pay to the market institution for each transaction.

Allocation efficiency (AE) measures the efficiency of matching policies. Matching a
given set of orders is usually referred to as allocation. A set M̂ ⊆ X×X is called a po-
tential matching on X if (x, y) ∈ M̂ implies x ∈ Xask, y ∈ Xbid and vI(x) ≤ vI(y).
LetM be the set of all potential matchings on X . Then the indicator AE measures the
rate of the total profit that is made by the current matching policy (resulting the matched
set M ) against the total surplus between buyers’ valuation and sellers’ valuation given
by the optimal matching on all the incoming orders.

AE =

∑
(x,y)∈M

(p(y)− p(x))

max
M̂∈M

∑
(x,y)∈M̂

(vI(y) − vI(x))

Note that the value of the denominator is independent to the currently matching pol-
icy while the numerator is determined by the current matching policy. Therefore AE
measures the quality of a matching policy.

In many situations, the number of transactions indicates the successfulness of a mar-
ket. We use the transaction volume (TV), i.e., the number of transactions |M |, to mea-
sure the liquidity of a market.

Finally we use convergence coefficient (CC), introduced by Smith [6], to measure
the efficiency of a clearing policy. Let

CC =
100
p̄

√√√√ (
∑

(x,y)∈M

(p(x, y)− p̄))2

n

where p̄ is the average market clearing price. Convergence coefficient is the ratio of
standard deviation of transaction prices, which measures the spreads of clearing prices.

4 Implementation of Market Policies

In this section, we briefly describe the approaches we have used for the implementation
of each market policy we have introduced in Section 2.2.

4.1 Accepting Policy

An accepting policy defines how incoming orders are accepted by the market maker. A
widely used accepting policy is quote-beating accepting policy (QBA) under which the
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market maker accepts an incoming order if it surpasses the current best price among the
unmatched orders. Let xask

out and xbid
out be the best prices among the current unmatched

ask orders and bid orders, respectively. For any incoming order x, the QBA satisfies the
following accepting rule:

A(x) =

{
1, if

(
I(x) ∈ S and p(x) < p(xask

out )
)

or
(
I(x) ∈ B and p(x) > p(xbid

out)
)

0, otherwise.

The QBA accepts an order if it is better than the best prices in the current unmatched
orders. This rule is known as New York Stock Exchange (NYSE) rule [7].

The QBA above frequently fails to reduce the fluctuation of clearing prices as pointed
by Niu et al. [7]. In order to reduce the fluctuation, they propose equilibrium-beating
accepting policy (EBA). Let p̃ be the price of the expected competitive equilibrium
and δ be an adjustment parameter. For any incoming order x, the EBA makes a binary
decision based on the following condition:

A(x) =

{
1, if (I(x) ∈ S and p(x) ≤ p̃+ δ) or (I(x) ∈ B and p(x) ≥ p̃− δ)
0, otherwise.

Under the EBA, an incoming order is accepted if it exceeds a threshold which consists
of the expected competitive equilibrium p̃ and a slack δ. A key issue in the EBA is how
to determine the expected equilibrium price p̃ and the slack δ.

We propose a new accepting policy, namely learning-based accepting policy (LBA),
which requires less parameter tuning than EBA does. A key concept of LBA is to accept
an incoming order at higher chances if it is likely to be successfully transacted accord-
ing to the historical data. Similarly to linear reward-inaction algorithm developed by
Hilgard and Bower [8], an LBA policy updates the estimation of successful matches at
certain prices according to its history data. Let L : � → [0, 1] be a learning function
that assigns an expected matching success rate (a real number between 0 and 1) to an
order price. We use two types of learning functions, Lask(p) and Lbid(p), for ask and
bid orders, respectively. Let U = [0, 1] be a uniform distribution function. Let Pr(U)
be a probability which is randomly drawn from distribution U. For any incoming order
x, an LBA policy determines its acceptance according to the following rule:

A(x) =

⎧⎪⎨⎪⎩
1, if (I(x) ∈ S and Pr(U) ≤ Lask(p(x)))

or (I(x) ∈ B and Pr(U) ≤ Lbid(p(x)))
0, otherwise,

If a randomly drawn value Pr(U) is less than or equal to L(p), the market maker accepts
an incoming order. A significant part of LBA is how to update the learning function
L(p) from the history data. We set the following three types of update rules. Initially,
the learning function L(p) is initialised with a constant value α, where α ∈ [0, 1]. The
learning function then updates with generated history data. For each successful matched
order (x, y) ∈ M , L(p) is increased by a small value ε if 0 ≤ p ≤ p(x) or p(y) ≤ p.
For each unmatched order, x ∈ Xask

out or y ∈ Xbid
out, L(p) is decreased by ε if p(x) ≤ p

or 0 ≤ p ≤ p(y). In other cases, L(p) stays still.
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4.2 Matching Policy

Matching policies determine feasible matched pairs between sell orders and buy orders.
Since a matching policy is relevant to all the evaluation criteria we have proposed in
Section 3, the design of a matching policy is the most important part of market mech-
anism design. A well-known algorithm is 4-heap algorithm, proposed by Wurman et
al. in [9], which generates efficient and stable matches. The key idea of the 4-heap
algorithm is to make matches between the best prices. In other words, the 4-heap algo-
rithm makes matches from the largest bid-ask spreads. In our implementation of market
policies, we use 4-heap algorithm for all the experiments we have done.

4.3 Pricing Policy

A pricing policy rules how to set the clearing price for each feasible matched pair. We
have implemented three types of well-known pricing policies.

A mid-point pricing policy (MPP) is widely used in clearinghouses. The MPP is
a unified pricing under which all the matched pairs are transacted at the same price.
Among all the matched orders in M , let xask

in,l be the highest matched ask price
and xbid

in,l the lowest matched bid price. The MPP sets a unified price P(x, y) =(
p(xask

in,l) + p(xbid
in,l)
)
/2 for all (x, y) ∈ M . This pricing is the median of all prices

in a given matched set.
In contrast to the MPP, k-pricing policy (k-PP) discriminates prices between differ-

ent matched pairs. Under k-PP, the clearing price is a weighted average of the bid price
and the ask price of the pair. The k-PP sets a clearing price P(x, y) = k · p(x) + (1 −
k) · p(y), where k is a weight parameter ranges in [0, 1].

Similarly to k-PP, N -pricing policy (N -PP) is a pricing policy, proposed by Niu et
al. in [7]. Let M ′ ⊆ M be all the transacted matched pairs. The N -PP determines a
clearing price according to the average prices of the matched pairs in M ′: P(x, y) =∑
(x′,y′)∈M ′

(p(x′)+p(y′))/2
|M ′| for all (x, y) ∈M .

In addition, we use a pricing policy which always clears at the competitive equilib-
rium, denoted by CEPP, for benchmarking purpose.

4.4 Clearing Policy

In general, there are two types of double auction markets classified by clearing timing:
continuous clearing and periodic clearing. The former clears all matched pairs imme-
diately and the later clears the matched pairs periodically. We implement two types of
clearing policies: continuous clearing and round clearing, where round is the time unit
that the traders submit orders in our experiment as we will explain later.

5 Experimental Analysis

We have implemented all the above mentioned market policies on the JCAT platform
[10]. The platform has been used as a game server in the Trading Agent Competition in
Market Design (TAC-MD) or known as the CAT competition. We have conducted a set
of experiments to test the efficiency of each market policy and their combinations.



Experimental Market Mechanism Design for Double Auction 7

Our analysis includes identifying the effects of different types of bidding strategies of
trading agents. We evaluate the performance of the market mechanisms by considering
three types of bidding strategies implemented in the JCAT platform: zero-intelligence
with constraint (ZI-C), which sets its price randomly, zero intelligence plus (ZIP), which
is equipped with a learning-based strategy with reactive to market information, and Roth
and Erev (RE), which is devised by a reinforcement learning strategy to mimic human-
like behaviour.

Our experimental settings are described as follows. Each game consists of 20 trading
days with several rounds (either 3 or 5 rounds per day) to give learning time for learning-
based bidding strategies. Each trader is able to submit a single order in each round;
their demand is up to one order in each day. There are 20 sellers and buyers with fixed
valuations assigned as follows: {$50, $55, . . . , $145}, respectively. Hence, we have the
competitive equilibrium at $97.5 and 10 intra-marginal sellers and buyers. Notice that
they are the base values for evaluations of market mechanisms. For all experiments,
we use the 4-heap algorithm as a matching policy and 10% for the profit fee. For each
type of experiments, we run 10 games with the same settings and we evaluate market
performances based on the daily average of the evaluation criteria specified in Section 3.

5.1 Pricing Policy Effect

To test market performance under different pricing policies, we fix accept policy to be
AAP, matching policy to be 4-heap and clearing policy to be round-based but vary the
pricing policies among MPP, k-PP (with k = 0.5) and N -PP (with N = 20). The
experimental results of these three pricing policies are presented in Table 1.

Table 1. Pricing Effects

ZI-C ZIP RE
Pricing Policy PR AE CC TV PR AE CC TV PR AE CC TV

MPP 15.75 66.08 3.52 4.92 4.64 64.33 15.09 6.01 8.06 34.13 7.90 2.60
k-PP 16.50 67.18 5.21 5.06 4.61 64.79 15.52 6.09 8.16 33.69 7.56 2.56
N -PP 16.50 67.35 1.84 5.06 4.57 63.70 12.72 6.03 7.25 32.38 4.69 2.45

A key result is that pricing policies have a significant impact on the performance of
CC but not for the other indicators for all three types of traders. This result suggests us
to focus on CC for the design of pricing policies.

A second observation is thatN -PP has smaller CC compared to other two policies for
all three types of bidding strategies. This can be explained by the volume of historical
data required to determine clearing prices. A higher volume helps to improve CC ratio.
We use 20 pairs forN -PP, 1 pair for k-PP, and a few pairs for MPP.

Even though ZI-C traders randomly set their bidding prices, the market performance
for ZI-C traders is better than the other two market reactive traders. This is particularly
true w.r.t. PR and CC for ZIP traders; PR, AE and CC for RE traders. Therefore, it
is interesting whether it is possible to improve these indicators by setting appropriate
market policies.
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5.2 Accepting Policy Effect

In this experiment, we investigate how accepting policies improve market performance.
We compare LBA policy with other three benchmarking accepting policies: AAP, QBA
and EBA. We use CEPP for pricing policy, which always clears the market at the middle
point of overall traders’ valuations. We use continuous clearing for clearing policy. For
the LBA policy, we set α = 1.0 and dynamically change ε in the range between 0.005
and 0.2. We set 3 rounds/day. Table 2 gives the result of our experiments.

Table 2. Accepting Policy Effects

ZI-C ZIP RE
Accepting Policy PR AE CC TV PR AE CC TV PR AE CC TV

LBA 14.80 91.99 13.23 8.75 11.39 75.00 14.09 6.75 11.06 74.36 14.46 6.74
AAP 13.78 92.14 8.86 8.77 10.80 73.45 10.27 6.72 10.75 72.99 10.34 6.71
QBA 14.76 92.07 8.79 8.78 10.41 72.43 9.77 6.57 10.98 74.59 10.12 6.69
EBA 21.92 84.95 0.44 6.84 15.81 60.15 0.49 4.70 16.10 61.67 0.28 4.80

A key observation is that LBA has better performances than AAP and QBA w.r.t. PR,
AE and TV for the market reactive traders (ZIP and RE). This means that LBA signals
the market reactive traders in an appropriate way: to accept the orders from the intra-
marginal traders and to reject the orders from the extra-marginal traders. This means
that LBA can learn the expected matching from history data efficiently. To compare
with the results in the previous section, LBA significantly improves AE and TV for all
three types of traders. These two indicators are preferable for the traders. However, a
disadvantage of LBA is fluctuations of clearing prices as CC indicates.

As a benchmarking accepting policy, we made a set of experiments using EBA pol-
icy. We assign the competitive price for the accepting threshold. As a result, the EBA
has significant performances on PR and CC. It implies that an EBA policy accepts the
intra-marginal traders properly. However, this policy has lower performance on AE and
TV, compared to LBA policies. It indicates that there are some unaccepted incoming
orders from intra-marginal traders. Hence, the setting of the accepting threshold is too
strict for some intra-marginal traders. We detail this point in the next experiment.

In this experiment, we have used a CEPP as pricing policy. In practice, the market
institution is not able to obtain the competitive equilibrium. Thus, we consider a case
where the market institution uses other pricing policies in the following experiments.

5.3 Robustness of Accepting Policies

Finally, we investigate robustness of accepting policies in a practical setting. We set all
the parameters the same as the previous experiment except for the pricing policy. We
use N -PP as pricing policy, which has been observed as a well-performing policy in
the experiments described in Section 5.1. Notice that N -PP has some fluctuations with
clearing prices. Therefore, our aim in this experiment is to investigate the robustness of
accepting policies w.r.t. price fluctuation. In other words, we investigate market mecha-
nisms that are trustable w.r.t. different market environmnets. In addition to the accepting
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policies used in the previous experiment, we use an EBA policy with slack 5, denoted
by EBA(5). The reason for using the slack is to relax the rejection range of incoming
orders. The results of the experiment is presented in Table 3.

Table 3. Robustness of Accepting Policies

ZI-C ZIP RE
Accepting Policy PR AE CC TV PR AE CC TV PR AE CC TV

LBA 15.12 92.67 7.89 8.68 2.42 93.82 2.40 9.36 11.27 74.38 9.22 6.64
AAP 14.40 92.31 8.94 8.89 5.92 84.84 6.60 8.49 10.59 73.38 10.08 6.64
QBA 14.09 91.63 9.08 8.78 2.34 92.27 2.95 9.24 10.49 72.79 10.43 6.67
EBA 22.13 85.66 1.33 6.93 1.24 7.84 4.14 0.70 15.80 61.60 1.45 4.77

EBA(5) 20.15 90.85 1.99 7.91 2.33 90.05 2.30 8.99 15.28 67.58 2.24 5.45

According to this result, the LBA policy improves all the market performances for all
three bidding strategies compared to AAP and QBA policies. Therefore, the LBA policy
is more robust for the volatility of clearing prices relative to other compared accepting
policies. This may be because a LBA policy is adaptive to the market situations.

An interesting observation is that EBA is no longer high-performing mechanism for
ZIP traders if clearing prices are fluctuated. The failure occurs when the clearing price
is unbalanced from the competitive equilibrium. In such a case, the strict rejection and
the unbalance of the pricing policy make the trader of one-side stop submitting orders,
since there is no way to improve for ZIP traders. We also present a case where the
rejection range has $5 slack from the competitive equilibrium. The slack improves all
the indicators. However, the issues of EBA are how to determine a proper slack and
how to estimate the competitive equilibrium.

6 Conclusions and Related Works

In this paper, we have introduced an experimental approach to the design, analysis, and
testing of market mechanisms based on double auction. Firstly, we have defined a for-
mal market model that specifies the market policies in a double auction market. Based
on this model, we have introduced a set of criteria for the evaluation of market mecha-
nisms. We have designed and implemented a set of specific market policies, including
accepting policy, matching policy, clearing policy and pricing policy. A market mecha-
nism is a combination of these market policies. We have conducted a set of experiments
with autonomous trading agents to test the efficiency of different market policies.

There are two key findings from our experiments. First, we have observed that a pric-
ing policy has significant effect on the convergence coefficient but does not have similar
effect on the other indicators (Section 5.1). This observation suggests that a mechanism
designer should focus on the reduction of fluctuations of transaction prices. Second, an
LBA policy can help improving allocation efficiency if pricing policies lead fluctuated
clearing prices. This is because an LBA policy rejects orders properly according to the
historical data.
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The approach that decomposes an auction mechanism into a number of parameter-
ized market policies was introduced by Wurman et al. [11]. In this work, we give a
formal definition for each market policies and discussed their properties. Niu et al. [7]
presented a set of experimental results on the market mechanisms with double auction.
They proposed N -pricing policy that reduces convergence coefficient and the equilib-
rium beating accepting policy that increased allocation efficiency. However, their exper-
iments were based on only two simple criteria while our experiments have been based
on more comprehensive criteria.

Although the system we have used for the experiments has been developed based on
the JCAT platform, we have designed market mechanisms in a single market case to fo-
cus on the fundamental properties of market policies. This is a major difference from the
CAT competition [10] and its analysis [12,13,14], since they have dealt with competi-
tive markets. Nevertheless, the findings from the experiments have provided ideas for
us to improve market mechanisms for autonomous trading agents. Especially, some of
the ideas have been used in the implementation of our TAC Market Design game entry,
jackaroo, which is the champion of 2009 TAC Market Design (CAT) Tournament.

In competitive markets like the CAT competition, designing attractive mechanisms
for traders is a key issue. In such an environment, it is important for traders to choose the
most trustable market. Our aim is to consider these trust aspects to deal with competitive
market environments [10].
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Abstract. Model checking games are instances of Hintikka’s game semantics
for logic used for purposes of debugging systems verification models. Previous
work in the area has developed these games for branching time logic. The paper
develops an extension to a logic that adds epistemic operators, and interprets the
branching time operators with respect to fairness constraints. The implementation
of the extended games in the epistemic model checker MCK is described.

1 Introduction

Model checking is a technique used in computer science for the verification of systems
designs. Traditionally, model checkers deal with specifications expressed in a variant
of temporal logic — this class of model checkers is now widely applied to the verifica-
tion of computer hardware and computer network communications protocols. In recent
years, a number of model checkers have been developed that are based on modal log-
ics that combine temporal and epistemic modalities [1,2,3,4]. These enable the analysis
of systems from the perspective of information theoretic properties, and have been ap-
plied to problems such as the verification of security protocols [5] and the verification
of knowledge-based programs [1,6]. In the context of Artificial Intelligence, epistemic
logic has been the focus of a line of work in the multi-agent systems literature, [7,8],
where it is used for reasoning about systems of communicating agents.

One of the reasons for the success of model checking technology is that, at least in
the case of linear-time temporal logic specifications, it is possible for a model checker to
return to the user a counter-example, in the form of an “error-trace” which illustrates a
possible execution of the system on which the specification fails. This provides concrete
information that helps the user to diagnose the source of the error.

For branching-time temporal logics, the situation is somewhat more complex: while
counter-examples can be defined [9], in general, they have a structure that is neither eas-
ily presented to the user nor easily comprehended, since, rather than a single execution
of the system, one needs to deal with multiple executions, in a complicated branch-
ing structure. Once one considers temporal and epistemic logics, it becomes even less
clear how to make counter-examples comprehensible, since epistemic operators require
even greater flexibility to move between different points of different executions of the
system.
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In the setting of branching-time temporal logic, the complexity of counter-examples
has motivated the application of ideas based on Hintikka’s game theoretical semantics
for logic [10] as an interactive debugging tool. Game theoretical semantics character-
izes the truth of a formula in a model in terms of the existence of a winning strategy
in a game constructed from the formula and model. In Hintikka games, there are two
players: a verifier, whose objective in the game is to justify that the formula holds in the
model, and a refuter, whose objective is to show that the formula is false. The rules of
the game are constructed so that steps of the game proceed from a formula to its subfor-
mulas, with moves corresponding to cases of the recursive semantics of the logic, with
players taking turns depending on the structure of the subformula under consideration.
If there exists a winning strategy for verifier, then the assertion holds, otherwise refuter
has a winning strategy, and the assertion fails. Playing such a game forces the player to
focus on particular subformulas of the specification, and particular states of the model.
This provides a useful discipline for helping the user to understand the structure of both,
while keeping each step of the process simple enough to be easily comprehended.

Originally developed for simpler logics, Hintikka Games have been adapted to the
area of temporal logic model checking [11,12,13,14,15] where they are called model
checking games. Our contribution in this paper is to further adapt model checking
games to the richer setting of temporal epistemic model checking. We extend previ-
ous work on model checking games in two directions. First, we deal with epistemic
operators as well as branching-time temporal logic operators. Second, we deal with
systems that are subject to fairness constraints, which express properties of infinite exe-
cutions, such as “every action that is always enabled is eventually executed”. These are
more commonly considered in linear-time temporal logic, but have also been consid-
ered in a branching time setting. Fair CTL [16] extends CTL (Computational Tree Logic
[17]) models with fairness constraints and thus is strictly more expressive. In this paper,
we deal with a language combining Fair CTL and epistemic logic with observational
semantics.

The structure of the paper is as follows. Section 2 gives the syntax and semantics
of a fair branching time epistemic logic CTLKn. In Section 3, we present a number
of variants of the model checking game for this logic. We state the main theoretical
results concerning the connection between the semantics and strategies in the game in
Section 4. In Section 5 we briefly describe our implementation of the game in the model
checker MCK [1]. We make some concluding remarks in Section 6.

2 Syntax and Semantics

We work with a logic CTLKn that combines CTL and the logic of knowledge and com-
mon knowledge for n agents. It will be interpreted with respect to structures represent-
ing fairness constraints. Let Prop be a set of atomic propositions and Ags = {1, . . . , n}
be a set of n agents. The syntax of CTLKn is given by the following grammar:

φ :== p | ¬φ | φ1 ∨ φ2 | EXφ | E[φ1Uφ2] | EGφ | Kiφ | CGφ (1)

where p ∈ Prop and i ∈ Ags and G ∈ P(Ags) \ {∅}.
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The formula Kiφ says that agent i knows φ, and CGφ says that φ is common knowl-
edge to the group of agents G. The operators EX, EU and EG are from the logic CTL,
and refer to the branching structure of time. EXφ says that in some possible future, φ
will hold at the next moment of time, E[φ1Uφ2] says that in some possible future, φ1

holds until φ2 does, and EGφ says that in some possible future, φ holds at all future
times. The logic CTL contains other operators, but these can be treated as defined. For
example, EFφ = E[TrueUφ], AXφ = ¬EX¬φ, AFφ = ¬EG¬φ, etc.

We use a semantics for CTLKn that is based on a variant of the interpreted systems
model for the logic of knowledge [18]. Let S be a set, which we call the set of global
states. A run over S is a function r : N → S . An interpreted system for n agents is a
tuple I = (R,∼1, . . . ,∼n, π), where R is a set of runs over S , each ∼i is an equivalence
relation on S , and π : S → P(Prop) is an interpretation function.

A point of I is a pair (r,m) where r ∈ R and m ∈ N. We say that a run r′ is equivalent
to a run r up to time m ∈ N if r′(k) = r(k) for 0 ≤ k ≤ m. We define the semantics of
CTLKn by means of a relation I, (r,m) |= φ, where I is an intepreted system, (r,m) is a
point of I and φ is a formula. This relation is defined inductively as follows:

– I, (r,m) |= p if p ∈ π(r(m)),
– I, (r,m) |= ¬φ if not I, (r,m) |= φ
– I, (r,m) |= φ1 ∨ φ2 if I, (r,m) |= φ1 or I, (r,m) |= φ2

– I, (r,m) |= EXφ if there exists a run r′ ∈ R equivalent to r up to time m such that
I, (r′,m + 1) |= φ

– I, (r,m) |= E[φ1Uφ2] if there exists a run r′ ∈ R equivalent to r up to time m and
m′ ≥ m such that I, (r′,m′) |= φ2, and I, (r′, k) |= φ1 for m ≤ k < m′.

– I, (r,m) |= EGφ if there exists a run r′ ∈ R equivalent to r up to time m such that
I, (r, k) |= φ for all k ≥ m

– I, (r,m) |= Kiφ if for all points (r′,m′) of I such that r(m) ∼i r′(m′) we have
I, (r′,m′) |= φ

– I, (r,m) |= CGφ if for all sequences of points (r,m) = (r0,m0), (r1,m1), . . . (rk,mk)
of I, such that for each j = 0 . . . k − 1, there exists i ∈ G such that r j(m j) ∼i

r j+1(m j+1), we have I, (rk,mk) |= φ.
For the knowledge operators, this semantics is essentially the same as the usual inter-
preted systems semantics. For the temporal operators, it corresponds to a semantics for
branching time known as the bundle semantics [19,20].

While they give a clean and coherent semantics to the logic, interpreted systems are
not suitable as inputs for a model checking program, since they are infinite structures.
We therefore also work with an alternate semantic representation based on transition
systems with epistemic indistinguishability relations and fairness constraints. A (finite)
system is a tuple M = (S , I,→,∼1, . . . ,∼n, π, α) where S is a (finite) set of global states,
I ⊆ S is the set of initial states, →⊆ S × S is a serial temporal transition relation,
each ∼i is an equivalence relation representing epistemic accessibility for agent i ∈ Ags,
π : S → P(Prop) is a propositional interpretation, and α is a set of subsets of S ,
representing a (generalised Büchi) fairness condition. The fairness condition is used
to semantically represent constraints such as ‘whenever A occurs, B occurs at some
later time,’ or ‘A occurs infinitely often,’ that refer to infinite temporal evolutions of the
system.
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Given a system M over global states S , we may construct an interpreted system
I(M) = (R,∼1, . . . ,∼n, π) over global states S , as follows. The components ∼i and π
are identical to those in M. The set of runs is defined as follows. We say that a fullpath
from a state s is an infinite sequence of states s0 s1... such that s0 = s and si → si+1 for
all i ≥ 0. We use Path(s) to denote the set of all fullpaths from state s, and FinPath(s) for
the set of finite prefixes of fullpaths in Path(s). The fairness condition is used to place
an additional constraint on paths. A fullpath s0s1 . . . is said to be fair if for all Q ∈ α,
there exists a state s ∈ Q such that s = si for infinitely many i. We write PathF(s) for the
set of all fair fullpaths from s. A run of the system is a fair fullpath s0 s1 . . . with s0 ∈ I.
We define R to be the set of runs of M. A formula is said to hold in M, written M |= φ,
if I(M), (r, 0) |= φ for all r ∈ R.

We say that a state s is fair if it is the initial state of some fair fullpath, otherwise the
state is unfair. We write F(M) for the set of fair states of M. A state s is reachable if
there exists a sequence s0 → s1 → . . . sk = s where s0 ∈ I. A state is fair and reachable
iff it occurs in some run. We write FR(M) for the set of fair and reachable states of M.

3 Game Semantics for CTLKn

We now reformulate the semantics of CTLKn on structures M in the form of a Hintikka
game. In such a game, there are two players, namely system (Sys) and user (Usr). If p is
a player, we write opp(p) for the opponent of p; thus, opp(Sys) = Usr and opp(Usr) =
Sys. In addition to the two players, we have two roles, verifier (V) and refuter (R).
At each game state each player will be in some role, and the opponent will be in the
opposite role. Intuitively, a player is in the verifier’s (refuter’s) role when she believes
that the specific formula holds (resp., fails) in current state.

One of the main novelties in our game is that we need to deal with fairness and reach-
ability. In principle, one could avoid this by first restricting systems to the fair reachable
states, which would not change the semantics of validity. However, in practice, the ex-
istence of unfair reachable states is typically an error that the user will want to be able
to diagnose. For this reason, we include unfair and unreachable states in the game, and
introduce new propositional constants Fair,Reach and Init to represent that a state is
fair (resp., reachable, initial).

Each pair (M, φ) consisting of a system M and a formula φ determines a game. We
assume a fixed system M in what follows, and focus on the role of the formula φ (and
its subformulas) in determining the states of this game. We call the states of the game
configurations. There are three types of configuration:

1. Initial configuration: there is a unique initial configuration of the game, denoted
Usr :φ. Intuitively, this corresponds to the user taking the role of the verifier V, and
claiming that the formula φ is valid in M.

2. Intermediate configurations: these have the form p : {(s1, φ1), ..., (sm, φm)} where
p ∈ {S ys,Usr} is a player and {(s1, φ1), ..., (sm, φm)} is a set of pairs, where each sk is
a state in S and each φk is either a formula or one of the constants Fair,Reach, Init.
Intuitively, such a configuration corrresponds to the player p taking the role of the
verifier V, and claiming that the assertion represented by all of the pairs (sk, φk) is
true of the system M. If φk is a formula then pair (sk, φk) asserts that M, sk |= φk. If
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φk = Fair (Reach, Init) then pair (sk, φk) means sk is a fair (resp. reachable, initial)
state.

3. Final configuration. Configurations “p wins”, where p ∈ {S ys,Usr}, are used to
denote the completion of play. Intuitively, this means that player p has won the
game and opp(p) has lost the game.

Note that each initial and intermediate configuration has the form p : x, implying that
player p is in the role of verifier and player opp(p) is in the role of the refuter. We
write intermediate representations p : {(s1, φ1)} with a singleton set of pairs simply as
p : (s1, φ1).

At each round of the game, it is the turn of one of the players to make a move, de-
pending on the configuration. Players’ roles may exchange during the game. In Table 1,
we list the rules of the game. Each rule is in the form

CurrentConfiguration
NextConfiguration

Role (Condition) (2)

representing that “if the game is in the CurrentConfiguration and the Condition holds,
then it is the turn of the player in role Role to move, and one of the choices available
to this player is to move the game into configuration NextConfiguration.” In the rules,
Condition and Role may not be present. If Condition is not present, the move can be
made unconditionally. If Role is not present, there is only one possibility for the next
configuration of the game, and the move can be made automatically without any player
making a choice. We assume that M = (S , I,→,∼1, . . . ,∼n, π, α) and that the fairness
condition α has been presented as a set of propositional logic formulas {χ1, . . . , χN },
where each χk represents the set of states {s | M, s |= χk}. The rule for the common
knowledge operator uses the set Kchain(G, s), where G is a set of agents and s is a
state, defined to be the set of finite sequences of states s = s1 . . . sm such that for all
k = 1 . . .m − 1 we have sk ∼ j sk+1 for some j ∈ G.

Note the use of the propositions Fair and Reach in the cases for the epistemic oper-
ators. For example, to refute a claim that Kiφ holds at a state s, we need not just a state
t ∼i s where ¬φ holds, but we also need to assure that this state is in fact fair and reach-
able. We remark that in the rule for E[φ1Uφ2], of the tuples (sk,Fair) it would suffice to
include only the last (sm,Fair). However, inclusion of the earlier such tuples allows the
refuter at the next move to select the earliest stage in the path at which a transition to an
unfair state is made: this is more informative for the user in debugging the system.

In the rules for EGφ and Fair, we make use of a fact concerning generalized Büchi
automata, viz., that there exists a fair fullpath from s (satisfying φ at every state) iff
there exists a cyclic finite path (satisfying φ at every state) such that each of the fairness
conditions are satisfied on the loop. More precisely, there exists a finite path s = s0 →
s1 → . . . → sm such that sm = si for some i < m, and for each fairness constraint χk,
there exists an index lk in the loop (i.e.. i ≤ lk < m), such that M, s |= χk. In the case
of EGφ we also need that M, sk |= φ for all k = 0 . . .m − 1. Note that, whereas rules
typically include pairs of the form (s,Fair) to represent that only fair states are used in
the semantics, we do not need to do this in the case of the rules for EG and Fair since
these rules already imply fairness of the states introduced.
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Table 1. Game Semantics for Fair CTLKn

Initial: Usr : φ
Usr : (s, φ) R (s ∈ I)

AP: p : (s, q)
p wins (q ∈ Prop ∧ q ∈ π(s))

p : (s, q)
opp(p) wins (q ∈ Prop ∧ q � π(s))

φ1 ∨ φ2: p : (s, φ1 ∨ φ2)
p : (s, φk) V (k ∈ {1, 2})

¬φ: p : (s,¬φ)
opp(p) : (s, φ)

EXφ: p : (s,EXφ)
p : {(t, φ), (t,Fair)} V (s→ t)

E[φ1Uφ2]: p : (s, E[φ1Uφ2])
p : {(s1, φ1), ..., (sm−1, φ1), (sm, φ2), (s1,Fair), ..., (sm,Fair)} V

(s1...sm ∈ FinPath(s))

EGφ: p : (s,EGφ)
p : {(s1, φ), ..., (sm−1, φ), (sl1 , χ1), ..., (slN , χN )} V

(s1...sm ∈ FinPath(s), sm = si, i ≤ l1, ..., lN < m)

Kiφ:
p : (s,Kiφ)

opp(p) : {(t,¬φ), (t,Fair), (t,Reach)} R (t ∈ S , s ∼i t)

CGφ:
p : (s,CGφ)

opp(p) : {(sm,¬φ), (s1,Fair), (s1,Reach), ..., (sm,Fair), (sm,Reach)} R

(s1...sm ∈ Kchain(G, s))

(s1, φ1), ..., (sm, φm): p : {(s1, φ1), ..., (sm, φm)}
p : {(sk, φk)} R (1 ≤ k ≤ m)

Fair: p : (s,Fair)
p : {(sl1 , χ1), ..., (slN , χN ))} V

(s1...sm ∈ FinPath(s), sm = sk, k ≤ l1, ..., lN < m)

Reach: p : (s,Reach)
p : (s1, Init) V (s1...sm ∈ FinPath(s1), sm = s)

Init: p : (s, Init)
p wins (s ∈ I)

p : (s, Init)
opp(p) wins (s � I)
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4 Main Result

We can now state the main theoretical result of the paper, which is the equivalence of
the model checking problem given above with the existence of a winning strategy in the
associated game.

A strategy of a player is a function mapping the set of configurations in which it
is the players’ turn, to the set of possible next configurations according to the rules in
Table 1.

A play of the game for (M, φ) according to a pair of strategies (σUsr, σSys) for the user
and system, respectively, is a sequence of configurations C0C1 . . . such that C0 is the
initial configuration Usr : φ, and at each step k, if it is player p’s turn on configuration
Ck, then there is a successor Ck+1 in the play, and Ck+1 = σp(Ck). Note that it is no
player’s turn on a final configuration. Thus, a play is either infinite, or ends in a final
configuration. In fact, we can show that all plays are finite.

Proposition 1. If M is a finite state system and φ is any CTLKn formula, then all plays
of the game for (M, φ) are finite.

A winning strategy for player p is a strategy σp, such that for all strategies σopp(p) for
the opponent, all plays of the game according to (σp, σopp(p)) are finite and end in the
configuration “p wins”.

Theorem 1. For all finite state systems M and formulas φ of CTLKn, we have M �|= φ
iff there exists a winning strategy for Sys in the game for (M, φ).

This theorem forms the basis for our game-based debugging approach. Suppose the
user has written a specification φ for a system M, and this specification fails to hold
in the system. If the user takes the role Usr in the game for (M, φ), and plays against
a winning strategy for Sys, then the user will lose the game, however they play. In the
process of playing the game, and trying different strategies, the user’s attention will be
drawn to particular states and subformulas. This may help the user to diagnose why their
intuitions (concerning either the systems or the specification φ) are not in accordance
with the facts.

While the game as defined above guarantees termination of any play of the game, it
does so at the cost of including rules that involve the construction of rather large game
states: viz., the rules for E[φ1Uφ2], EGφ, CGφ and Reach, which involve construction
of possibly lengthy paths. This creates a cognitive burden for the human player. It is
possible to alleviate this in some cases by using more incremental versions of the rules,
provided we weaken the correspondence between satisfaction and strategies.

Define the recursive variant of the game by replacing the rules for E[φ1Uφ2], CGφ
and Reach by the rules in Table 2. The recursive variant admits non-terminating plays.
E.g., if s → s then Usr : (s,Reach),Usr : (s,Reach), . . . is an infinite play. Thus,
Theorem 1 no longer holds for this variant. However, we can recover the result with a
slightly different notion of strategy.

Say that a non-losing strategy is a strategy σp, such that for all strategies σopp(p) for
the opponent, all finite plays of the game according to (σp, σopp(p)) end in the configu-
ration “p wins”.
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Table 2. Recursive Game Semantics for Fair CTLKn

E[φ1Uφ2]: p : (s, E[φ1Uφ2])
p : {(s, φ2 ∨ (φ1 ∧ EX(E[φ1Uφ2]))}

CGφ:
p : (s,CGφ)

p : {(s,
∧

i∈G
Ki(φ ∧CGφ))}

Reach: p : (s,Reach)
p wins (s ∈ I)

p : (s,Reach)
p : (t,Reach) V (t → s)

Theorem 2. For all finite state systems M and formulas φ of CTLKn, we have M �|= φ iff
there exists a non-losing strategy for Sys in the recursive variant of the game for (M, φ).

The recursive version of the game is equally useful for debugging purposes: it enables
the user to diagnose the error based on seeing that they cannot win the game, rather than
based on seeing that they always lose the game. The key feature that they may explore
the most relevant states and subformulas while playing is retained.

Further variants of the game could be constructed: the recursive variant retains the
path constructing rules for EGφ, but we could also make this more incremental by
recording in the configuration, the state on which we claim the path under construc-
tion loops, as well as the fairness constraints already claimed to have been satisfied on
previous states in the loop. We could furthermore revise the recursive variant to make
it terminating by adding to configurations sufficient information to detect when a play
revisits a previously visited configuration (at the cost of admitting very large configura-
tions). We leave the development of such variants to the reader.

5 Implementation

We have implemented the game to provide a debugging facility for the epistemic model
checker MCK [1]. MCK provides the ability to model check specifications in both lin-
ear and branching time, using a variety of model checking algorithms, depending on the
formula in question and a choice of semantics for knowledge: this can be the observa-
tional semantics (as in the present paper), a semantics in which local states consist of the
current observation plus a clock value, and a synchrononous perfect recall semantics.

Older versions of MCK have been based on algorithms that use symbolic techniques
(binary decision diagrams) [21] to do model checking. The implementation of the game
adds to MCK a new explicit-state model checking facility: this is an algorithm that
performs model checking by means of an explicit construction of the reachable states
of the system. The approach is essentially an extension of standard explicit-state algo-
rithms for CTL [21] to include epistemic operators. Explicit-state model checking is
only feasible for systems with a small state space, but its benefit for our present pur-
poses is that the explicit-state model checking algorithm can be extended to construct
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during model checking a winning/non-losing strategy for the system. This strategy is
then used by the system to play the game against the user in case the debugging game
is invoked. An additional benefit of explicit construction of the (reachable) state space
is that this allows the state space to be displayed using a graph visualization tool. Our
implementation allows the Graphviz tools to be used for this purpose.

The implementation is based on a version of the game that employs the recursive
rules of Table 2 only when it is the turn of the user; at system moves the rules of Table 1
are used. In case unfair reachable states exist in the system, the user is offered the choice
of playing the game on the system as given (for diagnosing the reason for such states)
or a variant of the system in which such states are removed (in case the existence of
such states is what the user actually intended).

6 Conclusion and Future Work

We have presented a model checking game for a fair branching time epistemic logic
and its implementation in the model checker MCK. Playing the game can help a user to
diagnose errors in MCK models.

In future work, we intend to strengthen our tool in two directions: The first is to
enable the system to play the game using symbolic model checking algorithms: this
will allow the game to be played on models with much larger statespaces. The second is
to make the logic supported by the game more expressive: we are presently developing
an extension of the game to include μ-calculus operators (these are already supported
in the symbolic model checking algorithms in MCK). This will enable notions such as
eventual common knowledge [18] to be handled.

Acknowledgements. An initial implementation of the game and explicit state model
checking facility for MCK was done by Jeremy Lee; the current implementation is a
significant revision by the authors. Cheng Luo has conducted some maintenance on the
system.
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Abstract. In this paper we model the negotiation process as a multi-
stage fuzzy decision problem where the agents preferences are represented
by a fuzzy goal and fuzzy constraints. The opponent is represented by
a fuzzy Markov decision process in the form of offer-response patterns
which enables utilization of limited and uncertain information, e.g. the
characteristics of the concession behaviour. We show that we can obtain
adaptive negotiation strategies by only using the negotiation threads of
two past cases to create and update the fuzzy transition matrix. The
experimental evaluation demonstrates that our approach is adaptive to-
wards different negotiation behaviours and that the fuzzy representation
of the preferences and the transition matrix allows for application in
many scenarios where the available information, preferences and con-
straints are soft or imprecise.

Keywords: negotiation, multistage, fuzzy, decision, agents, constraints.

1 Introduction

Negotiation is a multistage decision process where each party seeks to find the
best course of actions that leads to an agreement which satisfies the requirements
of all agents under the presence of conflicting goals and preferences [1]. The de-
cision process is decentralized in the sense that each negotiation partner has its
own apparatus for decision making and common knowledge is limited. The in-
terest in automatically resolving conflicts between autonomous software agents
has drawn attention to artificial intelligence research, which has the potential
to support and automate negotiation in many real world applications including
e-commerce, resource allocation and service-oriented computing [2]. The major
challenge is the dynamic and distributed environment in which the agents have
limited and uncertain information about other agents and the state of the entire
system. With the aim to adapt to changes of other agent’s behaviours various
models for automated negotiation have been proposed ranging from simple If-
then rules, heuristic tactics to more advanced learning and reasoning techniques
[1]. The agents may explore their environment and the behaviour of other agents
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to gain experience, use pre-existing information from past interactions or may
have explicit beliefs about other agents parameters, constraints or the underly-
ing decision models. However, many of these assumptions appear to be difficult
to fulfil in many scenarios. In this paper, we propose to model the negotiation
process as an optimization problem using a multistage fuzzy decision approach
where the agent preferences are expressed via a fuzzy goal and fuzzy constraints.
The dynamics of the negotiation in the form of offer-response patterns are mod-
elled as a possibilistic Markov decision process which uses fuzzy (possibilistic)
state transitions to represent the uncertain knowledge or beliefs about the op-
ponent. The solution is obtained in form of state-action policies by the method
of fuzzy dynamic programming by using two reference cases from past interac-
tions. The experimental evaluation demonstrates that we can obtain negotiation
strategies that are able to adapt to different negotiation behaviours given the
uncertain knowledge about the opponent. The proposed approach is novel in
the sense that automated negotiation has not been modelled and solved as a
multistage fuzzy decision problem before.

The paper is organized as follows. In Section 2, we present concepts of fuzzy
theory and multistage fuzzy decision making. Section 3 presents the negotiation
process and the modelling approach. The experimental evaluation in Section 4
demonstrates the improvement compared to heuristic-based negotiation tactics.
Section 5 discusses related work, and finally, Section 6 concludes the paper.

2 Multistage Fuzzy Decision Making

This section briefly recalls concepts and notations of multistage fuzzy decision
making [3,4]. We assume that the reader is familiar with basic concepts of fuzzy
set theory and refer to [4] for a detailed introduction. A fuzzy set A is a set of
pairs A = {(μA(x), x)} with μA : X → [0, 1] being the membership function
of elements x in the universe of discourse X . A fuzzy relation R between two
non-fuzzy sets X and Y is defined in the Cartesian product space X × Y : R =
{(μR(x, y), (x, y))} for each (x, y) ∈ X × Y and μR(x, y) : X × Y → [0, 1]. A
binary fuzzy relation is hence a fuzzy set specifying the fuzzy membership of
elements in the relation between two non-fuzzy sets. Similarly, any n-ary fuzzy
relation is then defined in X1× . . .×Xn. This allows the formulation of max-min
and max-product compositions of two fuzzy relations R in X×Y and S in Y ×Z
written R ◦ S with

μR◦max−minS(x, z) = max
y∈Y

[μR(x, y) ∧ μS(y, z)] (1)

μR◦max−prodS(x, z) = max
y∈Y

[μR(x, y) · μS(y, z)] (2)

for each x ∈ X, z ∈ Z. Suppose we have a system under control which dynamics
are determined by the transition function f(xt+1|xt, ut) where xt, xt+1 ∈ X =
{σ1, . . . , σn} are the states and ut ∈ U = {α1, . . . , αm} are the controls of the
system at stages t, respectively, t + 1 with t = 0, 1, . . . , N − 1. Then, according
to [3,4] a multistage fuzzy decision problem for the system under control can be
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defined as μD(x0) = μC0 ∧ . . . ∧ μCN−1 ∧ μGN where Ct is a fuzzy constraint
at stage t, GN is the fuzzy goal imposed at the final stage, and D is the fuzzy
decision given the initial state x0. It should be noted that the min-operation
(∧) is used as the aggregation operator throughout the paper, but clearly any
other t-norm can be employed. The optimal decision x∗ ∈ X then satisfies all
constraints and goals such that D is maximized with μD(x∗) = maxx∈X μD(x).
In this paper, we consider a system with fuzzy state transitions defined by a
conditional fuzzy relation μ(xt+1|xt, ut) with μ : X × U ×X → [0, 1], assigning
for each xt ∈ X and ut ∈ U a fuzzy value to the consecutive state xt+1 ∈ X . The
dynamics of the system can be interpreted as a fuzzy Markov decision process or,
from the viewpoint of possibility theory, as assigning a possibility degree to each
state transition which determines how plausible the attainment of a succeeding
state is [5]. The problem of finding the optimal sequence of controls (or actions)
u∗0, . . . , u

∗
N−1 for a given intial state x0 that maximizes the fuzzy decision D can

then be written as

μD(u∗0, . . . , u
∗
N−1|x0) = max

u0,...,uN−1
[μC0(u0) ∧ . . . ∧ μCN−1(uN−1) ∧EμGN (xN )],

(3)
where EμGN (xN ) is the expected goal giving the maximum expected possibility
over all next states xN for controls uN−1 and states xN−1 with

EμGN (xN ) = max
xN∈X

[μ(xN |xN−1, uN−1) ∧ μGN (xN )]. (4)

Using the fuzzy transition matrix μ(xN |xN−1, uN−1) and the expected goal1 a
dynamic programming solution is given by the recurrence equations [4,3]:

μGN−i(xN−i) = maxuN−i [μCN−i(uN−i) ∧ EμGN−i+1(xN−i+1)] (5)
EμGN−i+1(xN−i+1) = max

xN−i+1∈X
[μ(xN−i+1|xN−i, uN−i) ∧ μGN−i+1(xN−i+1)],

(6)

for i = 1, . . . , N . Any other s-t norm composition such as the above max-product
composition can be used [4]. The optimal solution for Eq. (5,6) for (3,4) is
expressed in terms of a policy function with a∗t : X → U being the optimal
policy at stages t = 0, 1, ..., N−1 and u∗t = a∗t (xt). The set A∗ = {a∗0, . . . , a∗N−1}
then forms the optimal control strategy.

3 Modelling Approach

3.1 Negotiation Model

In this paper we model a bilateral negotiation based on the service-oriented
negotiation model by Faratin et al [2] where two agents a and b propose offers
1 Since the expected goal represents a fuzzy relation between states and actions at

stage N − i the correct notation for the expected goal is EμGN−i+1(xN−i, uN−i). In
this paper, however, we use the simplified notation introduced by Kacprzyk [4].
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okn
a and counteroffers okn+1

b at discrete time points kn and kn+1 on a continuous
real-valued issue such as price or delivery time. Each agent has a negotiation
interval [mina,maxa] for the issue j under negotiation defined by the initial
value and reservation value of each agent. If the negotiation intervals of both
partners overlap an agreement is generally possible. The sequence of all offers
exchanged until a time kn is denoted by the negotiation thread

NTkn = (ok1
a , o

k2
b , o

k3
a , o

k4
b , . . . , o

kn

b ) (7)

with n ∈ N and okn

b being the last offer of the negotiation thread at time step
kn. Each negotiating agent has a scoring function Vaj : [minaj ,maxaj ] → [0, 1]
associated to issue j which assigns a score to the current value of the issue within
its acceptable interval. The additive scoring function for all issues is Va(o) =∑

1≤j≤pwaj ∗ Vaj(o) where the weight wa represents the relative importance of
issue j for agent a with

∑
j waj = 1. The additive scoring function is either

monotonically increasing or decreasing. Utility functions typically correspond to
such scoring functions and may include discounts or negotiation costs. Offers
are exchanged alternatively during the negotiation until one agent accepts or
withdraw from the encounter. An agent’s response can hence be defined as

responsea(kn+1, o
kn

b ) =

⎧⎪⎨⎪⎩
withdraw if kn+1 > ka

max

accept(okn

b ) if Va(okn

b ) ≥ Va(okn+1
a )

offer(okn+1
a ) otherwise,

where okn+1
a is the counterproposal of agent a given agent b’s offer okn

b at time
step kn. For simplicity, in this paper we consider single-issue negotiation only
(p = 1). Using this model the agents can have different decision models or
negotiation tactics to propose offers and counteroffers [2]. In the next sections we
demonstrate how the agents’ offers can be used to model negotiation strategies
by a multistage fuzzy decision process.

3.2 Negotiation as a Multistage Fuzzy Decision Process

States and Actions. A negotiation according to the model described in above
can be modelled using the approach for multistage fuzzy decision making. In the
following we refer to actions instead of controls due to the autonomous behaviour
of negotiation partners and the limited and uncertain information available. The
state space X is created by discretizing the negotiation range, which is generated
with the first offer proposals of both agents:

X =

{
|ok1

a −ok2
b |

n− 1
∗ (l − 1) + min(ok1

a , o
k2
b )|l = 1, . . . , n

}
. (8)

An agent’s a action is modelled as its response rate to the proposed offer of the
opponent agent b and is defined by the relative first order difference,

rkn+1
a =

Δ1o
kn+1
a

Δ1okn

b

, (9)
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where Δ1o
kn+1
a and Δ1okn

b are the previous concessions of agent a and b respec-
tively and rkn+1

a ∈ R : Min(ra) ≤ rkn+1
a ≤Max(ra) with Max(ra) and Min(ra)

defining the range of acceptable response rates for agent a. The response rate
hence specifies the change of the agent’s behaviour in relation to the change
of the behaviour of the modelled agent [6]. This ensures a monotonic series of
offers and at the same time avoids repeated proposals of concessions when the
opponent remains in the same state. The action space U is then given by

U=
{
Max(ra)−Min(ra)

m− 1
∗ (v−1)+Min(ra)|v = 1,. . . ,m

}
, (10)

where a can be a buyer or seller agent. Since the notation of time differs for the
negotiation model in 3.1 and the multistage decision model in 2 the alternating
sequence of offers in the negotiation thread is mapped to the state-action form
where an offer and counteroffer at time ki and ki+1 corresponds to stage t. If,
for example, agent a applies this model and agent b proposes the first offer the
trajectory TRt of states xi and actions ui until stage t is given by the negotiation
thread NTkn such that TRt is written as

(x0, u0, x1, u1, . . . , xt−1, ut−1, xt)≡(ok1
b , o

k2
a , o

k3
b , r

k4
a , . . . , o

kn−2
b , rkn−1

a , okn

b ) (11)

The optimal response rate rkn+1
a is the action ut sought by agent a given the state

xt (i.e. offer okn

b ). The offers in the continuous space of the issue under negotiation
are mapped to the discrete action and state spaces with xt = argminσ∈X |okn

b −σ|
and ut = argminα∈U |r

kn+1
a − α|, where σ and α denote states and actions,

respectively. According to Eq. (9) agent a can generate the next counteroffer

okn+1
a = okn−1

a + rkn+1
a (okn

b − okn−2
b ). (12)

The agent needs at least two opponent’s offers in order to apply the algorithm.
The course of actions proposed by the decision policy can be regarded as a
dynamic tit-for-tat strategy where the algorithm adapts the response rate of the
agent to the fuzzy preferences given the fuzzy transition matrix.

Transition Matrix Creation. The fuzzy transition matrix represents the
agent’s beliefs or uncertain knowledge about the opponent’s concession behaviour
and the agent’s responses that may lead to an agreement. The matrix therefore
contains the fuzzy state transitions for the range of opponent’s offers (states) and
possbile response rates (actions) of the agent. In order to obtain the fuzzy tran-
sition matrix a small number of reference cases might be used, e.g. in the form
of past negotiations. In this paper we focus on the scenario where only a few ref-
erence cases are available and their similarity is used to create and update the
transition matrix. Let NT [h] be the negotiation thread of reference case h from
the set of all cases and kmax[h] the negotiation length of h, then the thread can be
transformed into the state-action form according to Eq. (14) obtaining the trajec-
tory TR[h] with the number of stages tmax[h]. The sets of all states and actions of
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case h are denoted as X [h] and U [h] respectively, where xi[h] and ui[h] is a state
and action at stage i. The similarity of the current negotiation trajectory TRcurr

at time t with the reference case h is then defined by

simt(TR[h], TRcurr) =
1

t+ 1

t∑
i=0

1− |xi[h]− xi|
(maxh∈H(xi[h])−minh∈H(xi[h])

(13)

for i ≤ tmax[h]. The similarity values provide the necessary fuzzy transitions for
states xi in each case in comparison to the current negotiation. If at the current
stage the state exceeds the last offer from a particular case the last similarity
value is kept. For each case we can create a state set X ′

i[h] for stage i which
consists of all states between two consecutive states in the trajectory:

X ′
i[h] =

⎧⎪⎨⎪⎩
{σl|xi[h] ≤ σl ≤ σn} for i = 0
{σl|xi−1[h] < σl ≤ xi[h]} for 0 < i < tmax[h]− 1
{σl|σ1 < σl ≤ xi[h]} for i= tmax[h]− 1,

(14)

where σl is a state in the state space X with l = 1, . . . , n. Based on an initial
zero transition matrix μ(xt+1, xt, ut) = 0n,m,n for all m actions and n states,
the similarity values are created for all cases at each stage to update the fuzzy
transition matrix, such that μ(xi+1[h], x′i[h], ui[h]) = simt(TR[h], TRcurr) for
all x′i[h] ∈ X ′

i[h], xi[h] ∈ X [h] and ui[h] ∈ U [h] with i = 0, 1, . . . , tmax[h] − 1.
In order to enable fuzzy reasoning over the complete action and state space in
the expected goal, we can interpolate over all actions that are zero by using all
nonzero state-action pairs. We obtain a fuzzy set over the actions given by

EμGt+1(xt+1|σl, αv) =
EμGt+1(σl, αv2)− EμGt+1(σl, αv1)

v2 − v1
∗ (v−v1)+αv1 , (15)

with v, v1, v2 ∈ {1, . . . ,m}, l = 1, . . . , n under the condition that v1 < v < v2 and
EμGt+1(σl, αv1) and EμGt+1(σl, αv2) are greater than zero. In the scenario where
the expected goal for actions α1 and αm is zero a membership value ε with ε > 0
and ε� minv|EμGt+1 (σl,αv)>0(EμGt+1(σl, αv)) is chosen before the interpolation
method is applied. The rationale behind is that a limited number of cases is
sufficient to estimate an agent’s response to the trajectory of offers from the
negotiation partner. Since all values in the expected goal are greater than zero for
all states and actions after the interpolation, the model can also propose actions
not covered by any of the reference cases. Therefore, this approach provides a
great flexibility towards the creation of adaptive negotiation strategies.

Fuzzy Goal and Constraints. In the context of negotiation the fuzzy goal
and the fuzzy constraints represent the preferences over the opponent’s offers
(states) and the response rates (actions) of the modelling agent. The degree
of membership in the fuzzy goal increases for states closer to the initial value
of the agent as they are more preferable to states close to the initial offer of
the opponent. Thus, the membership degrees for all states in the fuzzy goal
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have to be non-zero. Otherwise a state might never be reached as a final or
intermediate state. The influence of the (normalized) fuzzy constraint’s on the
actions depends on the shape and the support of the fuzzy constraints and on the
fuzzy set (possibility distribution) over all actions for each state in the expected
goal matrix. However, the effect can be increased by normalizing the expected
goal distribution for each particular state before the constraint is applied with

Eμ̂Gt(xt|xt−1, ut−1) =
EμGt(xt|xt−1, ut−1)

max
ut−1∈U

EμGt(xt|xt−1, ut−1) (16)

for each ut−1 ∈ U and xt−1 ∈ X . As the preference order over all states has
to be preserved for all stages N − i, the resulting expected goal distribution for
each state is scaled back to the height of the subnormal distribution from before
the intersection.

4 Evaluation

We evaluate our approach against static mixed strategies in a bilateral, single-
issue negotiation environment proposed in [6] and [2] in different deadline sce-
narios with partial overlap of negotiation intervals. The tactics employed by
the mixed strategies are the time- and behaviour-dependent tactics introduced
in [2]. The time-dependent tactics use the polynomial decision function with 3
different types of negotiation behaviour: boulware (B), linear (L) and conceder
(C) with following settings: B = {β|β ∈ {0.1, 0.3, 0.5}}, L = {β|β ∈ {1}},
C = {β|β ∈ {4, 6, 8}}. Behaviour-dependent tactics are absolute (a) and rel-
ative (r) tit-for-tat with δ = 1 and R(M) = 0. Weights are classified into 3
groups of small (S), medium (M) and large (L) with S = {γ|γ ∈ {0.1, 0.2, 0.3},
M = {γ|γ ∈ {0.4, 0.5, 0.6} and L = {γ|γ ∈ {0.7, 0.8, 0.9}. The set of all possible
strategies is constructed with ST = (C ∪ L ∪ B) × {a, r} × (S ∪M ∪ L). We
compare our multistage fuzzy decision strategy with a random selected strat-
egy of the set ST from the viewpoint of a buyer agent b while the opponent
(seller s) plays a particular subset of static mixed strategies. In that sense the
buyer with the random selected strategy plays all strategies ST against one
subset of ST (seller) where the average gained utility is compared with the
utility of the buyer agent using our adaptive strategy. We use 3 different dead-
line scenarios where the seller has a shorter, equal or larger deadline than the
buyer with kb

max = 20 and ks
max ∈ {15, 20, 25}. Negotiation intervals of both

agents have partial overlap with minb = 10, maxb = 25 and mins = 15 and
maxs = 30. Scoring functions are assumed to be linear and result in a value
of 0.1 at the reservation value. Thus, successful negotiations are scored higher
as failed negotiations. We use the cost-adjusted utility given by the scoring and
cost function cost(t) = tanh(t ∗ c) with a small communication cost of c = 0.01.
In order to create a scenario where limited information about the opponent
is available we use two reference cases. Figure 1 shows the chosen cases as
well as the fuzzy goal and an example of a fuzzy constraint. All fuzzy con-
straints are specified by an isosceles triangle membership function where the
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following set of response rates defines the maximum constraints membership
value arg maxut∈U (ut) = {0.4, 0.4, 0.5, 0.5, 0.6, 0.6, 0.8, 0.8, 0.9, 0.9, 1, 1, 1, 1, 1, 1,
1, 1, 1.5, 2}. The experimental results without and with communication costs are
shown in Figure 2. The light bars represent an average value of utility of a ne-
gotiation agent using the random selected strategy from the set of static mixed
strategies and the opponent playing a particular strategy group (e.g. CaS). The
dark (red) bar demonstrates the gain in utility of the agent using the multistage
fuzzy decision approach. As we can see our adaptive strategy performs better
than the random strategy selection in almost all scenarios, whereas the improve-
ment is significant when the seller chooses linear or boulware mixed strategies.
The reason for that is that the multistage fuzzy decision strategy is able to adapt
to the behaviour of the opponent over time whereas the behaviour-dependent
part of the static mixed strategy depends on the weight and the pre-defined imi-
tative tactic without considering the opponent’s behaviour during the encounter.
Hence, boulware and linear tactics often miss the trajectory of opponent’s of-
fers in situations where deadlines differ and negotiation intervals overlap only to
some degree. It should be noted that the gain in utility depends to a high degree
on the choice of the reference cases as they constitute the course of actions that
can possibly lead to an agreement. The main advantage is that the agents can
adjust or add new negotiation patterns and constraints in future negotiations in
order to increase their utility gain or the number of agreements.
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5 Related Work

The aim to create negotiation strategies that can adapt to negotiation behaviours
of opponents has been a subject of many fields in artificial intelligence. However,
many learning and reasoning models require the agents to explore the behaviour
of partners, or assume that they have explicit prior knowledge or beliefs about
the partner’s parameters or underlying decision models [1]. In case-based rea-
soning, for example, past successful interactions are used to negotiate similar
agreements. Matos and Sierra [7] applied case-based reasoning to adjust param-
eters of combined decision functions. Alongside the negotiation thread of each
case the parameter values of the applied strategies are required, which inhibits
the use of cases by agents using different decision models. Similiar to our ap-
proach Wong et al [8] uses concessions to capture past cases and applies filters
to find the best matching case. The major difference to our approach in both
methods is that there is no inference on, and interpolation between the cases and
the preferences of the agent. The idea of using possibility theory in negotiation
has been applied in [9] where potentially good negotiation partners are selected
based on the expected qualitative utility. However, the negotiation process is not
modelled directly using a fuzzy (or possibilistic) Markov decision process given
the limited and uncertain knowledge about the opponent. Relatively few efforts
have been reported about using Markov decision processes for modelling nego-
tiation strategies. Narayanan and Jennings [10] model the agent’s behaviour by
defining the states in terms of resource availability, deadlines and reservation val-
ues where counteroffers are proposed based on the opponent’s offers and changes
in those three realms. The authors show that agreements can be achieved much
faster when both agents use this algorithm, but provide no results for cases where
only one agent uses this strategy. Similar to our method, Teuteberg [11] models
the behaviour of the opponent, but uses a probabilistic approach to generate
the transition matrix based on a predefined set of opponent tactics. The major
disadvantage is the a large number of negotiations needed to obtain sufficient
empirical data for reliable state transitions. Negotiation has also been modelled
as a fuzzy constraint satisfaction problem [12] where constraints, preferences and
objectives are represented uniformly as fuzzy sets which are distributed among
the agents and iteratively relaxed during the exchange of offers [1]. The search
process is guided by ordering and pruning the search space but still requires
negotiation strategies for proposing offers [13]. Based on the seminal paper of
Bellmann and Zadeh [3] decision making in fuzzy environments has been stud-
ied and extended by many researchers, such as Kacprzyk [4], Iwamoto [14] and
Dubois et al [5], and has been applied in many areas including resource allo-
cation, planning or scheduling [4]. To our knowledge multistage fuzzy decision
making has not been used to model agent-based negotiation strategies before.

6 Conclusion

In this paper we have modelled the negotiation process as a multistage fuzzy
decision problem where the agents preferences are expressed by a fuzzy goal and
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fuzzy constraints. A fuzzy Markov decision process represents the uncertain and
limited knowledge about the opponent in the form of offer-response patterns
whereas two reference cases has been used to create and update the transition
matrix. The experimental evaluation has demonstrated that the mechanism is
able to adapt to different negotiation behaviours of the opponent and achieves
on average higher utilities than the heuristic based negotiation strategies, also in
scenarios with different deadlines. In future work we will investigate multistage
fuzzy decision models with fuzzy or implicitly specified termination times.
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Abstract. We extend a recent approach to integrate action formalisms
and non-monotonic reasoning. The resulting framework allows an agent
employing an action theory as internal world model to make useful de-
fault assumptions. While the previous approach only allowed for model-
ing static defaults, that are independent of state properties, our extension
allows for the expression of dynamic defaults. Problems that arise due
to the interaction of defaults with the solution of the frame problem are
dealt with accordingly: we devise a general method of integrating de-
faults into the formal representation of action effects and show that the
method prevents counter-intuitive conclusions.

1 Introduction

Recently, [1] proposed a framework for non-monotonic reasoning in theories of
actions and change by embedding them into Raymond Reiter’s default logic
[2]. The approach presented there used atomic, normal default rules without
prerequisites to express static world properties. These properties are assumed
once if consistent and then persist over time until supported or refuted by a
definite action effect.

In this paper, we extend that mechanism to atomic, normal default rules
with prerequisites. They allow us to specify dynamic defaults, that is, default
properties that arise and elapse with changing world features. This is, as we shall
argue, most important to capture the fluctuating nature of dynamic worlds that
an intelligent agent might encounter.

As a motivating scenario (and running example of the paper), consider a
very simple domain with an action Fold(x) that turns a sheet of paper x into
a paper airplane. From experience, we might be able to say that in general,
paper airplanes fly. Yet, we don’t want to encode this ability to fly as a definite
action effect or general law; we want to retain the possibility of exceptions : if
the obtained paper airplane is observed to be unable to fly, we do not want to
get a contradiction. The extension we present here will allow us to use this kind
of defeasible reasoning in theories of actions and change. We show, by means of
an example, that a straightforward generalization of the approach presented in
[1] to normal default rules allows for unintended default conclusions and then
introduce a general, automatic method that is proven to render such conclusions
impossible. Finally, we show how the idea behind this method can also be used
to specify default effects of non-deterministic actions.
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2 Background

This section presents the formal preliminaries of the paper. In the first sub-
section we familiarize the reader with a unifying action calculus that we use
to logically formalize action domains, and in the second subsection we recall
Raymond Reiter’s default logic [2].

2.1 The Unifying Action Calculus

The action Fold of our motivating example is characterized by two sets denot-
ing its positive and negative effects, respectively. This is the general method of
specifying actions we pursue here: the stated action effects are compiled into an
effect axiom that incorporates a solution to the frame problem (similar to that of
[3,4]). These effect axioms and action precondition axioms will be formulated in
a unifying action calculus (UAC) that was proposed in [5] to provide a universal
framework for research in reasoning about actions.

The most notable generalization established by the UAC is its abstraction
from the underlying time structure: it can be instantiated with formalisms using
the time structure of situations (as the Situation Calculus [6] or the Fluent
Calculus [4]), as well as with formalisms using a linear time structure (like the
Event Calculus [7]).

The UAC is a sorted logic language which is based on the sorts fluent,
action, and time along with the predicates < : time× time (denoting an or-
dering of time points), Holds : fluent×time (stating whether a fluent evaluates
to true at a given time point), and Poss : action × time × time (indicating
whether an action is applicable for particular starting and ending time points).
In this work, we assume a finite number of functions into sorts fluent and
action and uniqueness-of-names for all of them.

The following definition introduces the most important types of formulas of
the unifying action calculus: they allow to express properties of states and ap-
plicability conditions and effects of actions.

Definition 1. Let s be a sequence of variables of sort time.

– A state formula Φ[s] in s is a first-order formula with free variables s where
• for each occurrence of Holds(ϕ, s) in Φ[s] we have s ∈ s and
• predicate Poss does not occur.

Let s, t be variables of sort time and A be a function into sort action.

– A precondition axiom is of the form

Poss(A(x), s, t) ≡ πA[s] (1)

where πA[s] is a state formula in s with free variables among s, t,x.
– An effect axiom is of the form

Poss(A(x), s, t) ⊃ (∀f)(Holds(f, t) ≡ (γ+
A ∨ (Holds(f, s) ∧ ¬γ−A ))) (2)
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where

γ+
A =

∨
ϕ∈Γ+

A

f = ϕ and γ−A =
∨

ψ∈Γ−
A

f = ψ

and Γ+
A and Γ−

A are sets of terms of sort fluent with free variables among
x that denote the positive and negative effects of action A(x).

This definition of effect axioms is a restricted version of the original definition
of [5]—it only allows for deterministic actions with unconditional effects. Ex-
tending the binary Poss predicate of the Situation Calculus, our ternary version
Poss(a, s, t) is to be read as “action a is possible starting at time s and ending
at time t”.

Definition 2. A (UAC) domain axiomatization consists of a finite set of foun-
dational axioms Ω (that define the underlying time structure and do not mention
the predicates Holds and Poss), a set Π of precondition axioms (1), and a set
Υ of effect axioms (2); the latter two for all functions into sort action.

The domain axiomatizations used here will usually also contain a set Σ0 of state
formulas that characterize the state of the world at the initial time point.

We illustrate these definitions with the implementation of the action part of
our running example.

Example 3. Consider the domain axiomatization Σ = Ωsit ∪Π ∪ Υ ∪Σ0, where
Ωsit contains the foundational axioms for situations from [8], Π contains the
precondition axiom Poss(Fold(x), s, t) ≡ t = Do(Fold(x), s), Υ contains ef-
fect axiom (2) characterized by Γ+

Fold(x) = {PaperAirplane(x)} and Γ−
Fold(x) =

{SheetOfPaper(x)}, and the initial state is Σ0 = {Holds(SheetOfPaper(P), S0)}.
Using the abbreviation S1 = Do(Fold(P), S0) we can now employ logical entail-
ment to infer that after folding, the object P is no longer a sheet of paper but a
paper airplane:

Σ |= Holds(PaperAirplane(P), S1) ∧ ¬Holds(SheetOfPaper(P), S1)

The next definition introduces reachability of a time point as existence of an
action sequence leading to the time point. A second order formula expresses
this intuition via defining the predicate Reach as the least set containing the
minimal elements of sort time (the initial time points Init) and being closed
under possible action application (via Poss).

Definition 4. Let Σ be a domain axiomatization and σ be a time point.

Reach(r) def= (∀R)(((∀s)(Init(s) ⊃ R(s))
∧ (∀a, s, t)(R(s) ∧ Poss(a, s, t) ⊃ R(t))) ⊃ R(r))

Init(t) def= ¬(∃s)s < t

We say σ is finitely reachable in Σ if Σ |= Reach(σ).
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2.2 Default Logic

Introduced in the seminal work by Reiter [2], default logic has become one of the
most important formalisms for non-monotonic reasoning. Its fundamental notion
is that of default rules, that specify how to extend an incomplete knowledge base
with vague, uncertain knowledge.

Definition 5. A normal default rule (or normal default) is of the form α[s]/β[s]
where α[s] and β[s] are state formulas in s : time.

A default rule is called prerequisite-free or supernormal iff α = �.

Default rules with free (non-time) variables are semantically taken to represent
their ground instances. By D[σ] we denote the set of defaults in D[s] where s
has been instantiated by the term σ.

Example 3 (continued). The statement “in general, paper airplanes fly” from
Section 1 can easily be modeled by the default rule

Holds(PaperAirplane(y), s)/Holds(Flies(y), s) (3)

Definition 6. A default theory is a pair (W,D) where W is a set of closed
formulas and D a set of default rules.

The set W of a default theory is the set of indefeasible knowledge that we are
unwilling to give up under any circumstances.

The semantics of default logic is defined through extensions: they can be seen
as a way of applying to W as many default rules from D as consistently possible.

Definition 7. Let (W,D) be a default theory. For any set of closed formulas S,
define Γ (S) as the smallest set such that:

– W ⊆ Γ (S),
– Th(Γ (S)) = Γ (S)1, and
– for all α/β ∈ D, if α ∈ Γ (S) and ¬β /∈ S, then β ∈ Γ (S).

A set of closed formulas E is called an extension for (W,D) iff Γ (E) = E, that
is, E is a fixpoint of Γ .

The set of generating defaults of an extension E for (W,D) is

gd(E) def= {α/β ∈ D | α ∈ E,¬β /∈ E}

We denote the set of all extensions for a default theory by Ex(W,D).

By a result from [2], extensions are completely characterized by the consequents
of their generating defaults:

1 Th(F ) for a set of formulas F denotes the set of its logical consequences, i.e.
Th(F ) def= {ϕ | F |= ϕ}.
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Lemma 8 (Reiter). Let E be an extension for (W,D).

E = Th(W ∪ {β | α/β ∈ gd(E)})

Based on extensions, one can define skeptical and credulous conclusions for de-
fault theories: skeptical conclusions are formulas that are contained in every
extension, credulous conclusions are those that are contained in at least one
extension.

Definition 9. Let (W,D) be a normal default theory and Ψ be a formula.

W |≈skept
D Ψ

def≡ Ψ ∈
⋂

E∈Ex(W,D)

E, W |≈cred
D Ψ

def≡ Ψ ∈
⋃

E∈Ex(W,D)

E

Example 3 (continued). Taking the indefeasible knowledge

W = {Holds(PaperAirplane(P), S)}

for a time constant S and D[s] to contain the default rule (3), we can instantiate
the default with time point S and skeptically conclude that P flies:

W |≈skept
D[S] Holds(Flies(P), S)

2.3 Domain Axiomatizations with Supernormal Defaults

We recall the notion of a domain axiomatization with supernormal defaults2

from [1]. It is essentially a supernormal default theory where the set containing
the indefeasible knowledge is an action domain axiomatization.

Definition 10. A domain axiomatization with supernormal defaults is a pair
(Σ,D[s]), where Σ is a UAC domain axiomatization and D[s] is a set of default
rules of the form

�/(¬)Holds(ψ, s)

where ψ is a term of sort fluent.

3 Domain Axiomatizations with Normal Defaults

As mentioned before, we loosen the restriction to supernormal defaults and allow
default rules with prerequisites. The rest of the definition stays the same.

Definition 11. A domain axiomatization with (normal) defaults is a pair
(Σ,D[s]), where Σ is a UAC domain axiomatization and D[s] is a set of de-
fault rules of the form

(¬)Holds(ϕ, s)/(¬)Holds(ψ, s) or �/(¬)Holds(ψ, s)

where ϕ, ψ are terms of sort fluent.
2 The endorsement “supernormal” is only used in this work to distinguish the

approaches.
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For notational convenience, we identify Holds statements with the mentioned
fluent and indicate negation by overlining: the default Holds(ϕ, s)/¬Holds(ψ, s),
for example, will be written as ϕ/ψ. Generally, α = ¬α and ¬α = α. We fur-
thermore use |·| to extract the affirmative component of a fluent literal, that is,
|¬α| = |α| = α. Both notions generalize to sets of fluents in the obvious way.

We now show the straightforward implementation of our motivating example.

Example 3 (continued). Recall the domain axiomatization Σ from Section 2.1
and let the set of defaults D[s] contain the single default rule (3). We see that,
after applying the action Fold(P), we can indeed infer that P flies:

Σ |≈skept
D[S1]

Holds(Flies(P), S1)

Note that we need to instantiate the defaults with the resulting situation S1
(instantiating the defaults with S0 would not yield the desired result). Now
taking a closer look at effect axiom (2) and its incorporated solution to the
frame problem, we observe that also

Σ |≈skept
D[S1]

Holds(Flies(P), S0)

This is because Flies(P) was not a positive effect of the action—according to the
effect axiom it must have held beforehand. This second inference is unintended:
first of all, the conclusion “the sheet of paper already flew before it was folded”
does not correspond to our natural understanding of the example domain. The
second, more subtle, reason is that we used defaults about S1 = Do(Fold(P), S0)
to conclude something about S0 that could not be concluded with defaults about
S0. In practice, it would mean that to make all possible default conclusions about
a time point, we had to instantiate the defaults with all future time points (of
which there might be infinitely many), which is clearly infeasible.

4 Relaxing the Frame Assumption

We next extend our specification of actions—up to now only via positive and
negative effects—with another set of fluents, called occlusions (the term first
occurred in [9]; our usage of occlusions is inspired by this work). They do not fix
a truth value for the respective fluents in the resulting time point of the action
and thus allow them to fluctuate freely. In particular, it is then impossible to
determine an occluded fluent’s truth value at the starting time point employing
only information about the ending time point.

Definition 12. An effect axiom with unconditional effects and occlusions is of
the form

Poss(A(x), s, t) ⊃ (∀f)(γ?
A ∨ (Holds(f, t) ≡ (γ+

A ∨ (Holds(f, s) ∧ ¬γ−A )))) (4)

where

γ+
A =

∨
ϕ∈Γ+

A

f = ϕ, γ−A =
∨

ψ∈Γ−
A

f = ψ, γ?
A =

∨
χ∈Γ ?

A

f = χ,
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and Γ+
A , Γ−

A , and Γ ?
A are sets of terms of sort fluent with free variables among

x that denote the positive and negative effects and occlusions of action A(x).

It is easily seen that effect axiom (2) is a special case of the above effect axiom
with γ?

A = ⊥ (i.e. Γ ?
A = ∅).

4.1 ... to Prevent Default Reasoning Backwards in Time

Example 3 (continued). Set Γ ?
Fold(x) := {Flies(x)} and let Σ′ = Ωsit ∪Π∪Υ ′∪Σ0,

where Υ ′ contains effect axiom (4) for the action Fold(x). We see that the desired
conclusion is preserved, and the undesired one is now disabled:

Σ |≈skept
D[S1]

Holds(Flies(P), S1) and Σ �|≈skept
D[S1]

Holds(Flies(P), S0)

Specifying the occlusions for the action in the example was easy—there was
only one default rule, and we had a precise understanding of the desired and
undesired inferences. In general, however, defaults might interact and it might
become less obvious which of them to exclude from the frame assumption.

Algorithm 1 below implements a general method of identifying the fluents
that are to be occluded, taking into account given default rules. It takes as
input positive and negative effects Γ+

A and Γ−
A of an action A and a set D of

defaults and computes the set Γ ?D
A of default occlusions for A with respect to

D. The intuition behind it is simple: it iterates over a set S of fluents potentially
influenced by A. This set is initialized with the definite action effects and then
extended according to default rules until a fixpoint obtains.

Algorithm 1. Computing the default occlusions
Input: Γ+

A , Γ−
A , D

Output: Γ ?D
A

1: S := Γ+
A ∪

{
γ | γ ∈ Γ−

A

}
// initialization: literals stating the definite effects

2: while there is γ ∈ S, α/β ∈ D, a substitution θ with αθ = γ; and βθ /∈ S do
3: S := S ∪ {βθ} // βθ might become default effect of A
4: end while
5: return |S| \

(
Γ+

A ∪ Γ−
A

)
// exclude definite effects from occlusions

Note that prerequisite-free defaults do not contribute to the computation of
occlusions: the symbol � does not unify with any explicitly mentioned action
effect. This behavior is semantically perfectly all right: the intended reading of
prerequisite-free defaults is that of static world properties that are once assumed
(if consistent) and then persist over time until an action effect either refutes or
confirms them.

It is easily seen that Algorithm 1 applied to our running example creates the
exact set of occlusions that we figured out earlier “by hand”.
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For the following theoretical results of this paper, let (Σ,D[s]) be a domain
axiomatization with defaults where all effect axioms are of the form (2), and let
Σ′ denote the domain axiomatization with effect axioms (4) where the Γ ? are
constructed by applying Algorithm 1 to each action of Σ. It should be noted
that Σ′ is consistent whenever Σ is consistent: default occlusions only weaken
the restrictions on successor states, thus any model for Σ is a model for Σ′.

The first proposition shows that the default occlusions computed by
Algorithm 1 are sound with respect to default conclusions about starting time
points of actions: whenever defaults about a resulting time point can be utilized
to infer a state property of the starting time point, this state property can also
be inferred locally, that is, with defaults about the starting time point itself.

Lemma 13. Let α be a ground action and σ, τ be terms of sort time such that
Σ′ |= Poss(α, σ, τ), and let Ψ [s] be a state formula.

Σ′ |≈skept
D[τ ] Ψ [σ] implies Σ′ |≈skept

D[σ] Ψ [σ]

Proof (Sketch). We prove the contrapositive. Let Σ′ �|≈skept
D[σ] Ψ [σ]. Then there

exists an extension E for (Σ,D[σ]) with Ψ [σ] /∈ E. We construct an extension
F for (Σ,D[τ ]) as follows. By Lemma 8, E is characterized by the consequents
of its generating defaults (all of which are Holds literals in σ). We determine
F ’s characterizing set of default consequences by removing the ones that are
contradicted via action effects and adding consequents of newly applicable normal
defaults. All those new default conclusions are, due to the construction of Γ ?D

α

via Algorithm 1, backed by occlusions and do not influence σ. Thus Ψ [σ] /∈ F . ��

The absence of unintended inferences about time points connected via a single
action then immediately generalizes to time points connected via a sequence of
actions and trivially generalizes to disconnected time points. This is the main
result of the paper stating the impossibility of undesired default conclusions
about the past.

Theorem 14. Let σ, τ be time points such that σ is reachable and σ ≤ τ .

Σ′ |≈skept
D[τ ] Ψ [σ] implies Σ′ |≈skept

D[σ] Ψ [σ]

Another noteworthy property of the presented default reasoning mechanism is
the preservation of default conclusions: even if the prerequisite of a default rule
is invalidated due to a contradicting action effect, the associated consequent
(if not also contradicted) stays intact. This means the algorithm does not oc-
clude unnecessarily many fluents. It would be fairly easy to modify Algorithm
1 such that the resulting effect axioms also “forget” default conclusions whose
generating rules have become inapplicable—we would just have to replace all
occurrences of literals by their respective affirmative component.

4.2 ... to Model Default Effects of Actions

The usage of occlusions as advocated up to this point is of course not the only
way to make use of this concept. When they are specified by the user along with
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action effects as opposed to computed automatically, occlusions are an excellent
means of modeling default effects of non-deterministic actions:

Example 15 (Direct Default Effect). We model the action of tossing a coin via
excluding the fluent Heads (whose intention is to denote whether heads is showing
upwards after tossing the coin) from the action Toss’s frame axiom, that is,
Γ ?

Toss := {Heads}. However, the coin of this example is unbalanced and has a
strong tendency towards landing with heads facing upwards. This is modeled by
having a default that states the result Heads as “usual outcome”:

Holds(Heads, s) (5)

There is another action, Wait, that is always possible and does not change the
truth value of any fluent. All γ+/−/? not explicitly mentioned are thus to be taken
as the empty disjunction, i.e. false. Using the domain axiomatization Σ, that
contains the precondition axioms and effect axioms (4) stated above, situations
as time structure, and the observation ΣO = {¬Holds(Heads, Do(Toss, S0))} we
can draw the conclusion

Σ ∪ΣO |= ¬Holds(Heads, Do(Wait, Do(Toss, S0))) (6)

which shows that the observation “the outcome of tossing was tail” persists
during Wait, that is, the fluent Heads does not change its truth value dur-
ing an “irrelevant” action. Tossing the coin again (which results in situation
S3 = Do(Toss, Do(Wait, Do(Toss, S0)))), this time without an observation about
the outcome, rule (5) can be applied and yields the default result regardless of
previous observations:

Σ ∪ΣO |≈skept
D[S3]

Holds(Heads, S3)

Hence, Algorithm 1 can also be used to complete a user-specified set of occlusions
regarding potential default effects of actions. When trying to achieve the above
behavior without specifying the occlusions manually, that is, using a procedure in
the spirit of Algorithm 1 that takes as input only definite effects and default rules,
one is unlikely to succeed: automatically creating occlusions for all prerequisite-
free defaults will cause all these defaults to apply after every action. In the
example above, the coin would then magically flip its side (into the default state
Heads) after Wait in Do(Toss, S0) and we could not infer (6), which contradicts
our intuition that Wait has no effects.

5 Conclusions and Future Work

The paper presented a generalization of a recently proposed mechanism for de-
fault reasoning in theories of actions and change. Unlike the approach from [1],
our work used a logic that allows to express dynamic defaults in addition to static
ones. We observed undesired inferences that arose from the interplay of defaults
and the solution of the frame problem, and presented an automatic method of
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adjusting the action effect axioms to preclude the unintended conclusions. Un-
fortunately, there seems to be a price to pay for being able to express dynamic
defaults. The main result of [1] stated the sufficiency of default instantiation in
the least time point when restricted to atomic supernormal defaults. This does
not apply to our generalization: occlusions may make a previously inapplica-
ble default rule applicable after action execution, therefore defaults need to be
locally instantiated to yield a complete picture of the current state of the world.

It is somewhat clear that the syntax-based approach of Algorithm 1, when
generalized to formulas rather than single literals, is prone to occlude both too
many fluents (for example if the prerequisite is tautological but not �) and too
few fluents (for example if the prerequisite is not fulfilled by an action effect alone,
but requires some additional state property). In the future, we will therefore be
concerned with suitably generalizing the approach for a more expressive class of
defaults. The second direction of generalization will be in terms of considered
actions: up to now, we allowed only deterministic actions with unconditional
effects. Further research will be undertaken to incorporate nondeterminism and
conditional effects.
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Abstract. This paper explores the collective adaptive agent that adapts
to agroup in contrast with the individual adaptive agent that adapts to a
single user. For this purpose, this paper starts by defining the collective
adaptive situation through an analysis of the subject experiments in the
playing card game, Barnga, and investigates the factors that lead the
group to the collective adaptive situation. Intensive simulations using
Barnga agents have revealed the following implications: (1) the leader
who takes account of other players’ opinions contributes to guide players
to the collective adaptation situation, and (2) an appropriate role balance
among players (i.e., the leader, the claiming and quiet player, which
make the most and least number of corrections) is required to derive the
collective adaptive situation.

1 Introduction

Owing to the success of AIBO or PLEO, the researches on HAI (Human Agent
Interaction) [4] [6] [7] have attracted much attention [1]. The HAI, for example,
explores the agent that can adapt to a user through the interaction with a user
[2]. Most of these researches address the individual adaptation that enables an
agent to adapt to a single user but not the collective adaptation that enables an
agent to adapt multiple users. Considering the fact that our society consists of
a lot of people and is based on the complex interaction among them, the agent
has to integrate itself into the society. In particular, the group characteristics
cannot be described with the summation of the individual characteristics, which
suggests that the function of the collective adaptation is indispensable for the
agent in addition to that of the individual adaptation.

However, only a few researchers addressed the collective adaptation. Yamada
[5], for example, tried to define the collective adaptive situation as the balance
between adaptation (i.e., the change of one’s mind to others) and diversity (i.e.,
the recognition of difference from other’s mind). However, the result suggested
the appropriate balance was just in the middle of them, which can be regarded
as ambiguous. Omura, on the other hand, designed the adaptive agent which
tried to adapt the society by understanding the preference of all peoples [3],
but did not find any specific and numerical conditions that derive the collective
adaptation situation.
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To tackle the issue of the collective adaptive agent, this paper starts by defin-
ing the situation of collective adaptation through an analysis of the subject
experiments in the playing card game called Barnga [5].

This paper is organized as follows: Section 2 introduces the playing card game
Barnga. The collective adaptive situation is defined in Section 3 according to the
subject experiments on the Barnga. The Barnga agent is designed in Section 4,
and the results of two simulations on the Barnga are presented in the Section 5
and 6. Finally, Section 7 gives our conclusion of this research.

2 Barnga: Cross-Cultural Communication Game

Barnga is the playing card game to experience how the players behave when they
face the cross-cultural situation. Barnga is played as the following sequence: (1)
the players divided into the number of tables have several cards that range from
A to 7; (2) they put one card in turn, and decide the winner who puts the
strongest card. In the basic rule, the larger a number is, the stronger a card is.
Barnga has the trump card (i.e., heart or diamond) and ace-strong/weak rule
besides the rule. The trump card becomes the strongest when the card is put,
while the ace-strong/weak rule represents that the ace is the strongest/weakest
number. In the ace-strong rule, for example, ”A” is the strongest and ”2” is the
weakest; (3) a winner is determined among the players; This is a whole sequence
of Barnga and can be counted as one game.

Note that (i) each table has the slightly different rule (except for the basic
rule) as shown in the right side of Fig. 1, and (ii) every player does not know
such differences among the tables, which represent the cross-cultural situations.
Since some players are swapped every several times of the games, the players
meet other players who have different rules as shown in the left side of Fig. 1.
Plus, the conversation among the players is not allowed during the game, which
force the players to interact with non-verbal communication like body languages
to determine the winner. Under the circumstances, players are required to play
games by adapting the situations.

Fig. 1. The Image of Barnga Game
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3 Collective Adaptation in Barnga

We have conducted the subject experiments of Barnga game to define the col-
lective adaptive situation. This experiment was carried out in order to specify
the smooth game because the adaptive situation can be regarded as the results
of the transition from non-smooth to smooth game.

3.1 Subject Experiments

Subject experiments are explained briefly in this section. The examinees played
Barnga game the results were analyzed by finding something in common with
the answers by the players written in the questionnaire such as ”Do you think the
smooth games occurred (smooth or not smooth in general)?” or ”Why do you
think so?” Most of the examinees answered three important roles of the players
in the table (described in Section 3.2). The three group categorizations(described
in Section 3.3) can be made from the results, which help abstract the concept of
the collective adaptive situation to a theoretical level.

3.2 Roles in a Group

The subject experiments brought three important roles described for the smooth
games; (a) a leader who decided the winner to reach at consensus decision when
two or more different winners were nominated, (b) the claiming person who often
corrected the different opinions of other players, and (c) the quiet person who
rarely corrected them. In particular, the leader was selected from the players in
each table. Since the smooth games normally appeared in the collective adaptive
situation, the appropriate balance among players, (i.e., the leader, claiming,
and quiet players) is important to derive such smooth games. As a result of
roles’ being played, players changed their rules and shared a certain rule such as
diamond or heart with others. From the analysis of the subject experiments, it
can be concluded that the definition of the collective adaptive situation would
be (1) the proper role balance among the players and (2) the smooth game and
the rules being shared as a result of it.

3.3 Group Classification

In order to abstract the collective adaptation to a theoretic level, we start by clas-
sifying the groups obtained from the experiments into the following
categories.

1. Collective Adaptive Situation
As defined previously, most of the players change their rule (i.e., the trump
card and ace-strong/weak rules) and share other rules with each other. Such
situation derives the smooth games.

2. Non-collective Adaptive Situation
This situation is divided into the following situations.
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– Confused Situation: Because of the players who are puzzled with the
slightly different rules, the players change their rules when they are faced
with the rules which are doubtful.

– Value-Separated Situation: Players do not change their rules despite
of the ones completely different from each other, which results in the
non-smooth game.

– Persisted Situation: The player persists his rule, which is different
from others, in order to force other players to agree with the player for
the consensus among the players.

3. Intermediate Situation
This situation has the features of both the collective and non-collective
adaptive situation, and is divided into the following situations.

– Compromised Situation: The players change their rules but do not
share one certain rule with each other. This is different from the collec-
tive adaptive situation. Such a compromise can be regarded negatively
because all the players lose their rules, while this can be considered
positively because the players try to reach the agreement.

– Absorbed Situation: One player is absorbed by multiple players. Be-
cause of the fact that a rule is shared and a smooth game is played, it
seems this situation could be positively regarded as collective adaptive
situation. However, what makes the collective adaptation different is
there are not any corrections in this situation because the minority can-
not complain, which brought it being not satisfied with the rule. Thus,
it can be classified negatively as non-collective adaptive. This analysis
found out that the collective adaptive situation requires several number
of corrections. Otherwise, it can be regarded as Absorbed situation.

4 Agent Model for Barnga Game

This section describes Barnga agent, who corresponds to the player in our model,
considering the results of the subject experiments. The agent is composed of the
memory and action modules, each of which has several parameters and actions.

4.1 Memory Module

(1) Leader Aptitude L: L(X), which ranges from 0 to 100, shows how the
agent X is appropriate as the leader and is used to select the leader. If the
agent has the high value it means that it has high possibility to be elected.
L(X) is changed by +a or -b, according to the correction made as shown in
Eq.(1). When other agents stop to correct the leader’s decision, L(X) is reset
to the one before the game starts defined as preL(X). L(X) increases because
of no correction to the leader’s decision means that his action is accepted by
the other agents. In this equation, a, and b are coefficients, which are set to
5 and 1 in our simulation, respectively.

L(X) =
{
preL(X) + a (No correction)
L(X)− b (Correction to the leader′s decision) (1)
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(2) Opponent Reliability W: W(X,Y), which ranges from 0 to 100, shows
how much the agent X relies on the agent Y and is updated as shown in Eq.
(2). In this equation, R and α are the reward and learning rate respectively,
where R is set as shown in Eq.(3), and α is set to 0.2. The parameter n
describes the number of corrections to the leader’s decision.

W (X,Y ) = W (X,Y ) + α(R − n ∗ 10−W (X,Y )) (2)

R =
{

100(winner that agent thinks = winner selected by leader)
0(winner that agent thinks �= winner selected by leader) (3)

(3) Rule Strength S(X,r): S(X,r), which ranges from 0 to 100, indicates
the strength of the rule r that the agent X has (e.g., the heart trump or
ace-strong rule), in a sense of how the agent X thinks the rule r is correct.
S(X,r) decreases whenever the agent X corrects the leader’s decision. When
the game is over, S(X,r) is reset and is updated as shown in Eqs.(4) and (5),
where rNum is denoted for the number of rules. If the game ends according
to the heart trump and the ace-strong rule, for example, the heart trump
and ace-strong rule(described in SelectedRule ) are updated according to the
Eq. (4), while the diamond trump, the clover, the spade, and the ace-weak
rule (described in OtherRule) are updated according to Eq. (5).

S(X,Selectedrule) = S(X,SelectedRule)+α(R−S(X,SelectedRule)) (4)

S(X,Otherrule) = S(X,OtherRule) +�S(X,SelectedRule)/rNum (5)

4.2 Action Module

The action module of the agent consists of the following functions: (1) rule
selection, (2) winner nomination, (3) winner decision (only for the leader) and
(4) correction of the leader’s decision.

(1) Rule Selection: The agent X selects one rule (e.g., the heart trump or
ace-strong rule) according to S(X,r) by the roulette-selection.

(2) Winner Nomination: Each agent X personally decides the winner ac-
cording to the selected rule and determines if the decided winner should be
nominated according to S(X,r).

(3) Winner Decision: The leader decides the winner agent if two or more
agents are nominated as winners. To decide one winner, the following two
types of the leader are considered in our model: (a) Self-centered leader, who
determines the winner that the leader thinks as a winner, and (b) Other-
centered leader, who determines the winner according to W(leader, Y) where
Y is denoted for the agent that nominates a certain winner, in a sense that
a leader decides which player to rely on.

(4) Correction of the Leader’s Decision: According to S(X,r), the agent
X decides whether he corrects the leader’s decision.
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4.3 Simulation Sequence

The sequence of Barnga game on the computer simulation shown in Fig. 2 is
described as follows.

1: One of the players deals the cards.
2: Each player X puts one card in turn.
3: Each player X selects his own rule (e.g., the heart trump or ace-strong rule)

according to S(X,r).
4: Each player X decides the winner, who puts the strongest card, according

to the rules selected in 3. Note that the winner agent in this stage has not
been nominated yet.

5: The winner agent is nominated according to the value of S(X,r).
6: If the number of nominated agents is one, S(X,r) of the agent X is updated

in 6-1, and then go to 10-12.
7: Check whether a leader exists. If not, go to 8-2 to select, and back to 7.
8: Since more than two agents are nominated, the leader X selects one winner,

according to the probability of L(X). If X does not select the winner, go to
8-1 to update L(X), to 8-2 to select a new leader, then return to 7.

9: When the leader X decides the winner, the agent Y who think that another
agent is the winner corrects X’s decision with the probability of S(Y,r). If
an agent Y corrects to the leader’s decision, go to 9-1 to update S(Y,r)
temporarily by Eq. (4), proceeds to 8-1 to update L(X) by Eq. (1), and go
to 8-2 to select a leader again. If none of agents correct the leader’s decision,
go to 10-12.

10-12: Update W, L, and S individually according to Eq. (1) to (5) to go to 13.
13: One game ends, the agents are swapped whenever some numbers of games

are played, and then back to 1.

Fig. 2. A sequence of Barnga Simulation
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5 Simulation: Characteristic of a Leader

To analyze an effect of the leader, which is one of the potential roles for the
collective adaptive situation, the following two types of the agents are tested:
(i) self-centered and (ii) other-centered leader agent. The agents are swapped
between tables every 21 games and such a cycle is repeated the eight times.
(i.e., 8 times of swapping the agents) The results are compared in terms of (1)
the number of the collective adaptive situation and (2) the leader aptitude L.

5.1 Simulation Results

We have to mention that the followings are the typical results, although a random
seed is changed several times in order to obtain the invariant of the results.

(1) Group Classifications
Fig. 3 shows the result of the group classifications in the two different types of
the leaders. The black, gray, and light gray box indicates the collective adap-
tive situation, non-collective adaptive situation, and intermediate situation,
respectively. The horizontal axis indicates the agent types, while the vertical
axis indicates the number of the situations. From the simulation result, the
following implications have been revealed: (a) the self-centered leader hardly
derives the collective adaptive situations, while (b) the other-centered leader
agent causes the largest number of collective adaptive situations. According
to the definition, the collective adaptive situation requires the smooth games
and the shared rule by agents. From the computer point of view, the first
component corresponds to the low number of corrections (not 0), and the
second one is associated with the change of the value of a particular trump
card that results in being shared, which means agents have the same trump
card which value is nearly 100. We categorized all the cases into the three
types by using the results of correction timing, and the S(X,r) in Fig. 6.

(2) Leader Aptitude L. Fig. 4 and 5 show the change of the leader aptitude
L in the self-centered and the other-centered leaders. The horizontal axis
indicates the number of games, while the vertical axis indicates the leader
aptitude L. The dots in the figure represents the values of L that agents have.

Fig. 3. Group Classification in two types of agent
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Fig. 4. Distribution of L(self-centered) Fig. 5. Distribution of L(other-centered)

It is not really important because we focus on the overall distribution of the
points. Important is the different distribution of the marks between Fig. 4
and 5. The dots of the other-centered leader are distributed in the upper
area of the graph, which indicates agents with high values of L, while in the
self-centered leader, the points are mapped in the bottom, which suggest
that agents have lower values of L.

5.2 Discussion

A few of the collective adaptive situations are observed in the self-centered leader
as shown in Fig. 3 and the leader aptitude L decreases as the games proceeds as
shown in Fig. 4. These results suggest that the self-centered leader is not perfect
to derive the collective adaptive situation. In contrast to the leader, the largest
number of the collective adaptation are observed in the other-centered leader
agents as shown in Fig. 3 and the high leader aptitude L is kept in comparison
with the self-centered leader as shown in Fig. 4. From these points of view, the
other-centered leader agents have the great potential of deriving the collective
adaptive situation.

6 Simulation: Conditions toward a Collective Adaptive
Situation

We modify the leader aptitude L of the agent to find conditions that lead the
group from non-collective adaptive to collective adaptive. Since the results of
the previous simulation reveal that a leader facilitates the collective adaptive
situation, we modified the L (agent 4) from 40 to 80 in this simulation, which
corresponds to the situation, where an appropriate leader emerges.

6.1 Simulation Results

Fig. 6 shows the typical simulation results. The upper graphs show the change of
the leader aptitude L of each agent in one table like Fig. 4 and Fig. 5. Four types
of shapes represent four agents in one table. The middle graph indicates which
and when the agent corrects, where the horizontal axis indicates the agent, while
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the vertical axis describes the number of games. This situation can be regarded
as the one, where the game does not proceed smoothly because agent 2, 3, and
4 correct several times, while agent 1 makes few correction, meaning that the
situation has unbalanced corrections among the agents. The lower graphs show
the change of S(X,r) of the trump card during 21 games, where the each edge
of axis corresponds to the maximum value of each trump card. In this case, the
left side of the figure illustrates the confused situation because of the different
rules among the players. The right side of the figure, on the other hand, shows
the rule of each agent is moved toward the heart trump card by modifying their
values to share the heart trump card. From this point of view, it can be concluded
that these graphs suggest the change of L brings the collective adaptive situation
because the correction number decreases (but not 0) and all the agents become to
share one rule (the heart trump card), which has consistence with the definition
of the collective adaptation described in Section 3.

6.2 Discussion

For the purpose of revealing the specific condition of the collective adaptive
situation, all the 7 cases, which are classified as collective adaptive, and the
other 14 cases, which are not, are analyzed by (a) finding something in common
with them and (b) figuring out what differentiates between collective and non
collective adaptation. Although the simulations should be discussed more the-
oretically, a random seed is changed to obtain variety of results. Through the
analysis, following insights that satisfy (a) and (b) are obtained; (i) the leader
aptitude L has to be more than 60, and (ii) the ratio of the corrections is less
than 3:1 between the claiming and quiet agent. From the computer point of view
the claiming agent would be defined as the one who makes the most number of
corrections, while the quiet agent could be regarded as the one who corrects
the least. In the middle of the left figure agent 1 can be regarded as the quiet
agent and agent 4 can be considered as the claiming agent. This case cannot be
determined as the smooth game because of the unbalanced corrections, which
ratio is 5:1, in a sense that some agents corrects many times and others do not.
In the middle of the right figure, however, agent 4 corrects twice over a period
of 21 games, while other agents have three times corrections. Thus, the ratio
between them is less than 3:1. The following hypothesis can be made in this
circumstance; because of no leader, the quiet player has to follow the claiming
player, which makes the situation become non-collective adaptive. An appropri-
ate leader, however, tries to bring the opinions together, which results in the
decrease of the number of the total corrections and also causes the claiming
player to make less corrections, which means that the correction balance among
agents is fixed to fit the condition. From these analysis, it can be concluded
that the appropriate roles among agents (the leader, quiet and claiming agent)
promotes them to share the new rule (e.g., the heart becomes the trump card in
Fig. 6).

These results can be applied to a collective adaptive agent. Consider the situ-
ation, where humans and an agent play this game together. The agent perceives
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Fig. 6. Transition from non-collective adaptive situation to collective adaptive one

inputs like who the leader is, figures out the best solution by computing, and
makes an action such the agent becoming a leader, or a follower. Our project
has not revealed specific idea of the agent design. However, the contributions of
the project will help to consider modeling collective adaptive agent in the near
future.

7 Conclusion

This paper explored the collective adaptive agent that adapts to a group. For that
purpose, this research defined the collective adaptive situation as the smooth
games and the shared rule by players as a result of appropriate role balance
through the analysis of the subject experiments in Barnga. The other situations
are also classified into the several categories of collective adaptation, which could
not be clarified by other previous works. The simulations of Barnga revealed the
following insights for the collective adaptive situation: (1) the leader who takes
an account of other playersf decisions on the winner contributes to the collective
adaptive situation, and (2) the appropriate balance in roles is required, which are
the leader, the claiming agent, who makes corrections frequently and the quiet
agent who corrects the least times. In detail, the following specific conditions
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are found out to be indispensable for the collective adaptive situation: (a) the
emergence of the leader at least whose value of the Leader Aptitude is more
than 60 and (b) the ratio in the correction numbers between the claiming and
quiet agents is less than 3:1. Although we should generalize the above conditions
and apply it to a real society, an investigation of Barnga, in which both humans
and agents play together, a precise analysis of the conditions for leading the
collective adaptive situation should be done for the future works as well as (3)
the comparisons of the performance with other related works.

References

[1] Miyamoto, E., Lee, M., Okada, M.: Robots as Social Agents: Developing Relation-
ships Between Autistic Children and Robots. The Japanese Journal of Develop-
mental Psychology 18(1), 78–87 (2007) (in Japanese)

[2] Doi, H., Ishizuka, M.: Human-Agent Interaction with a Life-like Character Linked
with WWW. The Japanese Society for Artificial Intelligence 17, 693–700 (2002)
(in Japanese)

[3] Omura, H., Katagami, D., Nitta, K.: Design of Social Adaptive Agents in Simula-
tion Game of cross-cultural experience. In: Human-Agent Interaction symposium,
HAI 2008 (2008) (in Japanese)

[4] Lewis, M.: Designing for Human-Agent Interaction. AI Magazine 19(2), 67–78
(1998)

[5] Thiagarajan, S.: Barnga game: A Simulation Game on Cultural Clashes. Intercul-
tural Press, Inc. (2006)

[6] Yamada, S., Kakusho, K.: Human-Agent Interaction as Adaptation. The Japanese
Society for Artificial Intelligence 17, 658–664 (2002) (in Japanese)

[7] Nishida, T.: HAI in Community. The Japanese Society for Artificial Intelligence 17,
665–671 (2002) (in Japanese)

[8] Yamada, Y., Takadama, K.: Exploring Evaluation Criteria for Adaptation of Agents
to Groups-Investigation of Correction Behaviors of Agents in BARNGA Game. In:
SICE Symposium on Systems and Information (SSI 2004), pp. 19–24 (2004) (in
Japanese)



Classification of EEG for Affect Recognition:
An Adaptive Approach

Omar AlZoubi1, Rafael A. Calvo1, and Ronald H. Stevens2

1 School of Electrical and Information Engineering
The University of Sydney, Australia
http://www.weg.ee.usyd.edu.au

2 IMMEX Project - University of California Los Angeles

Abstract. Research on affective computing is growing rapidly and new
applications are being developed more frequently. They use information
about the affective/mental states of users to adapt their interfaces or
add new functionalities. Face activity, voice, text physiology and other
information about the user are used as input to affect recognition mod-
ules, which are built as classification algorithms. Brain EEG signals have
rarely been used to build such classifiers due to the lack of a clear theo-
retical framework. We present here an evaluation of three different clas-
sification techniques and their adaptive variations of a 10-class emotion
recognition experiment. Our results show that affect recognition from
EEG signals might be possible and an adaptive algorithm improves the
performance of the classification task.

Keywords: Affective computing, EEG, Classification, Adaptive.

1 Introduction

New brain imaging technologies are opening the windows to new ways of looking
at emotions and other affective states (i.e. affects). One of the longstanding
psychological debates has been between categorical and dimensional models. In
the former the assumption is that a discrete number of affects (e.g. ’anger’) can
be recognized through behavioral (e.g. facial actions or physiological measures)
[1]. The latter assumes an underlying set of variables, often two, called valence
(going from very positive feelings, to very negative) and arousal (also called
activation, going from states like sleepy to excited).

In the studies that use EEG (recently reviewed by Olofsson [2]), most of the
focus has been on Event Related Potentials (ERPs). Signal processing [3] and
classification algorithms [4] for EEG have been developed in the context of build-
ing Brain Computer Interfaces (BCI), and we are seeking ways for developing
similar approaches to recognizing affective states from EEG and other physio-
logical signals. Very few of the affect recognition studies based on physiological
data use EEG, most use EKG, EMG and skin conductivity [1,5].

These studies used traditional offline classification techniques, compared the
performance of different classification algorithms, and evaluated different com-
binations of feature sets. The ultimate aim is to find an optimal combination of
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classifiers and feature sets that could deliver an optimal performance. In addi-
tion; offline classification is also useful in evaluating subject’s specific features.
However, real time affect recognition systems require a real time adaptive clas-
sification system that is necessary to cope with non-stationarities of EEG and
other physiological data.

Non-stationarities are ubiquitous in EEG signals [6], occurring due to many
factors such as 1) user fatigue, 2) electrode drift, 3) changes in the impedance of
the electrodes, 4) user cognitive states modulation, such as attention, motivation,
and vigilance.

This study provides new data on EEG based affect recognition, and prese-
nts a performance comparison of K-Nearest Neighbor (KNN), Support Vector
Machines (SVM), and NaiveBayes using an adaptive classification technique.
Section 2 discusses some of the literature on classification of EEG signals for
affect recognition, and section 3 discusses the need for real time adaptive al-
gorithms for non stationary data. Section 4 discusses the protocol, equipment
and subjects used in our data collection. Section 5 presents the performance for
both static and adaptive versions of KNN, SVM, and NaiveBayes, and section 6
presents our conclusions.

2 Background

It is hard to compare the results from different studies of affect recognition
systems because researchers often use different experimental setups and data
preprocessing techniques. Some of these studies [7,8] used a combination of EEG
and other physiological signals for this task, while others [9] used EEG solely for
affect detection.

In a study to detect the level of arousal from EEG and other physiological
signals, Chanel et al [7] formulated this as a classification problem with two
classes corresponding to 2 or 3 degree levels of arousal. The performance of two
classification methods, NaiveBayes classifier and Fisher Discriminant Analysis
(FDA) were evaluated on each EEG and physiological signal separately, and
on combination of both. The study used the IAPS protocol for elicitation, 4
subjects, and the EEG was recorded from 64 electrodes with a sampling rate of
1024 Hz.

The EEG was then bandpass filtered between 4-45 Hz, artifacts such as eye
blinks were identified and removed from the signals. Using a 6s epoch length, the
bandpower at six frequency bands were computed, yielding 6 features from the
EEG. According to the authors, most of the EEG features involve the Occipital
(O) lobe, since this lobe corresponds to visual cortex and subjects are stimu-
lated with pictures. Using only EEG features and the one leave-out method, a
classification accuracy of 72% for NaiveBayes was achieved and 70% for FDA
for one subject. Their results suggested that EEG could be used to assess the
arousal level of human affects.

In a similar study Khalili et al [8] used EEG recorded from the scalp together
with other physiological signals, which was then used to assess subject’s arousal



54 O. AlZoubi, R.A. Calvo, and R.H. Stevens

and valance levels. Three classes were assessed, Calm (C), Positively Excited
(PE), and Negatively Excited (NE). The stimuli to elicit the target affects were
IAPS images; each stimulus consists of a block of 5 pictures which assured sta-
bility of the emotion over time. Each picture was displayed for 2.5 seconds for a
total of 12.5 seconds for each block of pictures. The data was acquired from 5
subjects, with 3 sessions of 30 trials per session from each subject. EEG recorded
from 64 electrodes at 1024 sampling rate.

The preprocessing and feature extraction first involved segmenting EEG data
into 40s frames. EEG was bandpass filtered between 4-45 HZ, and then applying
a local laplacian filter to obtain a better localization of brain activity. The study
used a set of features such as, mean, STD, Skewness, Kurtosis, mean of the ab-
solute values of the first difference of raw signals, Mean of the absolute values
of the first difference of normalized signal. These six features were computed for
each electrode of the 64 electrodes yielding 6*64 = 380 features. This dimen-
sion was reduced using genetic algorithms (GA), and classification using KNN
and Linear Discriminant analysis (LDA) by applying a leave-one out method.
The investigators achieved a classification accuracy of 40% for LDA and 51% for
KNN for 3 classes. For a two classes discrimination of PE, and NE they achieved
a better results of 50% for LDA and 65% for KNN. However the best classifica-
tion accuracy according to the authors was achieved using EEG time-frequency
features of 70% for KNN.

Horlings et al [9] used EEG alone for classifying affective states into 5 classes
on two affective dimensions: valance and arousal. They used the database of
the Enterface project [10], and extended it with their own data. 10 subjects
were chosen for the task of EEG acquisition using a Truescan32 system; emotion
elicitation performed by using the IAPS protocol. The SAM Self-Assessment
was also applied where subjects rate their level of emotion on a 2D arousal and
valance scale. They performed two recording sessions consisted of 25-35 trials
each, with a pause of 5 minutes in between, each trial consists of 5 pictures, and
each picture is shown for 2.5 seconds.

The EEG data was then filtered between 2-30 Hz to remove noise and ar-
tifacts from the signal. The baseline value was also removed from each EEG
signal. Feature extraction involved computing EEG frequency bandpower, Cross-
correlation between EEG bandpower, Peak frequency in alpha band and Hjorth
parameters, this resulted in 114 features. The best 40 features were selected for
each of the valance and arousal dimensions based on the max relevance min
redundancy (mRMR) algorithm [11]. Two classifiers were trained on this fea-
ture set, one classifier for arousal dimension, and another classifier for valance
dimension. According to the authors, each classifier can use different features to
obtain optimal performance; using an SVM classifier with 3-fold cross validation
performed the best with 32% for the valance and 37% for the arousal dimension.

Most of these studies used offline non-adaptive classifiers, and to our knowl-
edge this is the first time adaptive algorithms are evaluated in this context. The
next section discusses the need for classifier adaptation, especially if the data
source is non-stationary in nature.
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3 Online Learning and Adaptation

Most classification methods are based on the hypothesis that data comes from a
stationary distribution, this is not particularly true in real life situations, where
the underlying concepts of stationarity are violated, by what is known as con-
cept drift in the data mining community [12]. This is particularly the case in
EEG signals, where it always changes its nature with time. A stationary signal
on the other hand maintains its statistical properties all the time, or over the
observation time.

This non-stationary nature of the signals means that a classification model
built earlier using a particular set of physiological data is not going to reflect
the changes that have already taken place to the signals. Consequently the clas-
sification accuracy will degrade with time, unless an update to the classification
model is made, or in other words the model is adapted to reflect pattern changes
in physiological signals.

The non-stationarity of EEG signals can be seen as a shift in feature space
as described by Shenoy et al [6]. The distinguishing patterns of interest of the
physiological data are still there, what is really needed is to update or adapt
the classification model in real-time to reflect the changes of data distribution.
This type of change in the probability distribution of the data is also known as
virtual concept drift [13], where the current model error rate is not any more
acceptable given the new data distribution.

Online classifier learning and adaptation is particularly important in real time
systems based on non stationary data sources in order tomaintain the classification
accuracy and overall performance of the system. Traditional classification systems
learn inefficient models when they assume erroneously that the underlying concept
is stationary while in fact it is drifting [14].

One possible solution to the problem is to repeatedly apply a traditional
classifier to a fixed sliding window of examples. In this approach a similar number
of examples are removed from the end of the window, and the learner is retrained,
making sure the classifier is up to date with the most recent examples [15]. Other
approaches apply a dynamic training window size strategy, by increasing the
window size whenever the concept drift is not detected, and shrinking the window
size whenever a concept drift is detected [12]. However, this is a challenging task,
especially considering real time systems where memory requirements -especially
if the window size is sufficiently large-, and speed/response time are issues [12].
Computationally expensive algorithms are not desired as it might slow the overall
performance of the system. Other challenges may exist such as the availability
of sufficient real time data as well as the lack of supervised data in actual real
life applications. The next section discusses the experimental protocol used here
for EEG acquisition.

4 Data and Methods

The system used in the recording was a wireless sensor headset developed by Ad-
vanced Brain Monitoring, Inc (Carlsbad, CA). It utilizes an integrated hardware
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and software solution for acquisition and real-time analysis of the EEG, and it
has demonstrated feasibility for acquiring high quality EEG in real-world envi-
ronments including workplace, classroom and military operational settings. It in-
cludes an easily-applied wireless EEG system that includes intelligent software
designed to identify and eliminate multiple sources of biological and environmental
contamination.

Data was recorded at 256 Hz sampling rate from multiple EEG scalp bi-polar
sensor sites: F3-F4, C3-C4, Cz-PO, F3-Cz, Fz-C3, Fz-PO. Bi-polar recordings
were selected in order to reduce the potential for movement artifacts that can be
problematic for applications that require ambulatory conditions in operational
environments. Limiting the sensors (seven) and channels (six) ensures the sensor
headset can be applied within 10 minutes, making the tool more feasible in
practical scenarios. Further exploratory studies should probably be performed
with equipment that allows high density EEG.

Three subjects were asked to self-elicit a sequence of emotions and where
recommended to use recollections of real-life incidents. Numerous studies support
the notion that this can serve as a sufficient condition for emotion elicitation [16].
Each emotion trial lasted for 3 minutes with a 1 minute rest in between. The
power spectral density (PSD) values in each of the 1-Hz bins (from 1 Hz 40 Hz)
were calculated from each 1 second epoch. The first and second frequency bins
are not considered since they are mostly contaminated by EEG artifacts, which
mostly occur at low frequencies.

The end dataset therefore will have (38 frequency bins * 6 EEG Channels)
228 features, and (180 rows * 10 emotions) 1800 instances for each of the three
subjects. Based on these datasets, a number of classification techniques were
compared, together with an online simulation experiment that incorporated an
adaptive classification technique. The next section discusses the classifiers and
the results of the two experiments.

5 Results and Discussion

5.1 Offline Analysis

The offline analysis was done using Weka [17], Table 1 lists the classifiers used and
their description. The performance of the three classifiers compared in Table 2 are
based on 10-fold cross validation. All classifiers are set to their default parameter
values as implemented in Weka. The ZeroR classifier represents the baseline
accuracy that the 10 affects studied which was 10% (the difference is based
on some session being less than the default 3 minutes). The best classification
accuracy was achieved using a KNN classifier with k=3 and Euclidian distance
measure, and this was nearly uniform across all subjects. An SVM classifier with
a linear kernel, which is based on John Platt’s sequential minimal optimization
algorithm for training a support vector machines classifier [18] was less accurate
than KNN; however its performance was comparably better than that of the
NaiveBayes classifier. An explanation for the performance of KNN comes from
the work done by Cieslak et al [19], where they found that KNN is less sensitive
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Table 1. A description of the classifiers used in this study and their parameters

Classifier Description and Parameters

ZeroR (baseline) Predicts the majority class in the training data; used as
a baseline.

NaiveBayes A standard probabilistic classifier, the classifier assigns
a pattern to the class that has the maximum estimated
posterior probability.

KNN A classical instance-based algorithm; uses normalized Eu-
clidean distance with k=3. KNN assigns the class label
by majority voting among nearest neighbors.

SVM It combines a maximal margin strategy with a kernel
method to find an optimal boundary in the feature space,
this process is called a kernel machine. The machine
is trained according to the structural risk minimization
(SRM) criterion [20]. We used Weka’s [17] SMO with lin-
ear kernel for the offline analysis. The online analysis used
a SVM with linear kernel as implemented in PRTools 4.0.
[21] Default parameters are used for both methods.

Table 2. Classification accuracy of EEG data using 10-fold cross validation for three
subjects A,B,C

Classifier/Subject A B C

ZeroR (baseline) 9.96% 9.93% 9.94%
NaiveBayes 42.83% 28.16% 33.48%
KNN(3) 66.74% 39.97% 57.73%
SVM 54.57% 40.80% 33.48%

to non-stationarities than SVM and NaiveBayes. Subject A data showed good
separation tendency across all classification methods compared to the other two
subjects B,C. The classification performance on subject C data achieved the
second best classification accuracy across classifiers except in the case of SVM
where subject B data achieved a 40.8% performance compared to 33.48% for
subject C. These results suggest that accuracy can change considerably between
subjects.

5.2 Online Simulation

This experiment involved comparing the performance of a basic adaptive algo-
rithm [15] in combination with a KNN classifier with k=3 and Euclidian distance
measure, SVM with a linear Kernel, and NaiveBayes classifiers as implemented
in PRTools 4.0 [21], the classifiers were used with their default parameters. A
description of the algorithm is listed in Table 3.

The algorithm was applied with three different training window sizes to com-
pare the effect of window size on classification performance. The static versions
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Table 3. Listing of the adaptive algorithm

1. Choose an initial fixed training window size
2. Train a classifier w on the examples of the training window
3. On the arrival of new examples, update the training window by:

a. Inserting the new examples into the training window
b. Deleting an equal number of examples from the end of the

training window.
4. Train the classifier on the new training window

Table 4. Average error rate and standard deviation for the different classifiers, static
and adaptive classifiers over the training sessions, with different window size

Method Static Adaptive

Classifier/window size AvgErrorRate STD AvgErrorRate STD

Knn/250 0.710 0.140 0.207 0.134

Knn/450 0.714 0.143 0.247 .145
Knn/900 0.662 0.158 0.288 0.155
NaiveBayes/250 0.694 0.132 0.464 0.153
NaiveBayes/450 0.660 0.124 0.492 0.141
NaiveBayes/900 0.616 0.131 0.507 0.142
SVM/250 0.716 0.129 0.437 0.147
SVM/450 0.704 0.138 0.493 0.159
SVM/900 0.707 0.144 0.542 0.156

of the classifiers were also evaluated with the same window sizes. Static classi-
fiers are those which initially trained on the first training window of examples,
but are not updated later on. Training window sizes of 250, 450, and 900 were
chosen, which account for 0.15, 0.25, and 0.5 of total dataset size. The training
window was updated every 10 examples as it would be inefficient to update the
training window and retrain the classifiers on the arrival of every example; 10
is also the number of classes in our dataset. The experiment was done on one
subject’s data (subject A), and is meant as a demonstration for the need for an
adaptive classification technique for real time affect recognition systems, where
the physiological data are continuously changing its behavior with time.

Table 4 shows the average error rate and standard deviation over the training
sessions of both static and adaptive classifiers, with different window sizes 250,
450, and 900. It can be seen that the adaptive KNN classifier with a window size
of 250 samples has the lowest average error rate overall, and the lowest stan-
dard deviation among the adaptive classifiers which indicates that the classifier
maintained a subtle performance over the training sessions. This can be also
inferred from Figure 1 which shows the performance of the KNN classifier with
a window size of 250; clearly the adaptive version of the classifier outperforms
the static one by nearly 50%. KNN proves to outperform SVM and NaiveBayes
with non-stationarity data, and this comes from the way KNN works by voting
amongst nearest examples.
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Fig. 1. Adaptive vs. static KNN classifier with a window size of 250 examples, the two
solid lines in the middle show linear trend lines

The effect of window size on classifier performance can be inferred from
Table 4, adaptive classifiers performance relatively enhanced with a smaller win-
dow size. An explanation for this comes particularly from the nature of the
non-stationarity data; the smaller the window size, the more is the chance to
build a model that can best classify unforeseen examples that are close enough
in time, and get more localized information in time from the data, given that
the data changes its behavior with time. On the other hand the performance of
the adaptive classifiers is degraded with a larger window size, and this is due
to the non-stationarity problem mentioned earlier, training the classifiers on a
larger window size fails to build an efficient model for the fast changing data.

The average static classification performance was relatively improved with a
larger window size, which was not surprising, given the dataset size, and this
shouldn’t be confused with the earlier discussion as the training and testing was
done at different windows in time than the adaptive versions. However, a closer
examination of Figure 1 shows the upward trend of the static classifier. That
is, as time goes on the error rate goes upwards as well, and the classification
performance degrades with time.

It is worth mentioning that the training time for each classifier varied greatly,
while NaiveBayes, and KNN training time were relatively small especially if
the window size is small, the training time for SVM was considerably higher
since the classification task was a multiclass problem. This should be taken in
consideration if it is going to affect the response time of the affect recognition
system. On the other hand, if the window size is large, the memory requirements
for KNN for example becomes larger, since it needs to store its distance matrix
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in memory, and classify instances as they arrive to their nearest neighbors; these
are some of the design considerations that require attention.

6 Conclusions and Future Work

Despite the lack of strong neuroscientific evidence for correlates of brain activ-
ity at the cortical level with affective events, our recordings indicate that affect
recognition from EEG might be possible. Rather this study did not focus on the
neuroscience behind affects so we do not intend to speculate about its implica-
tions. Rather the study focused on the automatic classification techniques that
could be used for EEG data, and they showed that accuracies well above the
baseline are possible. We also evaluated an adaptive version of the algorithms
showing that the error rate for the static versions of each algorithm was higher
than that of the adaptive version. Future work would look at using a dynamic
appraoch for updating the training window size.

Despite the experimental protocol we used is common in the literature, the
analysis of the confusion matrix produced by most of the classification algo-
rithms studied showed that fixing the order of the sequence of affects elicitation
might be having an effect on their accuracy. Future work should consider using
counterbalanced order for the affects elicited, these type of methodological issues
can only be solved in larger studies.
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Abstract. Reliable classification of an individual’s affective state through 
processing of physiological response requires the use of appropriate machine 
learning techniques, and the analysis of how experimental factors influence the 
data recorded. While many studies have been conducted in this field, the effect 
of many of these factors is yet to be properly investigated and understood. This 
study investigates the relative effects of number of subjects, number of 
recording sessions, sampling rate and a variety of different classification 
approaches. Results of this study demonstrate accurate classification is possible 
in isolated sessions and that variation between sessions and subjects has a 
significant effect on classifier success. The effect of sampling rate is also shown 
to impact on classifier success. The results also indicate that affective space is 
likely to be continuous and that developing an understanding of the dimensions 
of this space may offer a reliable way of comparing results between subjects 
and studies.  

Keywords: Emotion recognition, physiological signal processing, data mining, 
affective computing, human-machine interaction. 

1   Introduction 

It has been proposed that the next big step in improving the way computers 
communicate with humans is to adopt an interaction paradigm that imitates aspects of 
human-human communication [1]; namely, an awareness of a user’s affective states 
(a combination of emotional and other mental states such as boredom or fatigue), so 
that the system is able to react to these states. Research into affective computing 
investigates how computers can interpret and simulate emotions to achieve more 
sophisticated human-computer interaction.  

There have been several approaches proposed for determining the affective states 
of subjects. Some of the more prevalent research techniques are based on the 
classification and analysis of facial patterns, gestures, speech and posture, as well as 
studies linking physiological response to emotional state. Each technique has its own 
challenges. Often, somatic motor expressions of emotion are heavily dependent upon 
the individual, making any global recognition system impossible. It is hoped that the 
affective–physiological connection is so rudimentary that strong similarities will be 
observable independent of the subject.  
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The great challenge of physiological signals is the abundance of available data. 
Hundreds of features can be extracted by considering all the physiological responses. 
Heart and muscle activity, brain activity, blood pressure, skin temperature, 
respiration, and sweat production are all rich sources of information concerning the 
physiological responses of the human body. Machine learning techniques for 
processing this data likely hold the key to understanding which responses are 
correlated to changes in mental and affective state.  

This paper contributes a comparison of eight classification techniques and an 
analysis of the relative effect of a number of experimental factors on the success rate 
of affect classification. These factors include: number of sessions, number of subjects, 
sampling rates and classification algorithms used. Affective state is a rich source of 
information within human communication and learning as it helps clarify both the 
content and context of the exchange. Indeed, research has shown that along with 
cognitive processes, affective processes are essential for healthy human functioning 
[2]. Affect recognition, therefore, is one of the fundamental goals to be achieved in 
order to develop more effective computer systems. While the primary research focus 
is to investigate affective systems, research in this area has the potential to strongly 
benefit associated fields such as psychology and teaching by offering quantitative 
alternatives to affective measures that have traditionally been restricted to qualitative 
assessment. 

Section 2 reviews the literature, focusing on psychophysiological techniques which 
use the subject’s physiological signals as input to a classification algorithm. Section 3 
presents an experimental session, and describes the protocol followed for recording 
physiological signals from three subjects while they elicited a sequence of emotions. 
The tools used to record and then process the signals for this session are also 
described. Section 4 provides some details about the eight classification techniques 
evaluated and some of the many research questions that arise on how different 
humans elicit emotions. The basic tenet of these open research questions is that the 
accuracy of the classifiers provides an indication of how complex the emotion 
identification in a given data set is, and that this complexity is at least partially due to 
way humans elicit emotions. Section 5 looks at the results obtained for the different 
classification techniques discussing their accuracy and training time in different 
situations. Conclusions are presented in Section 6. 

2   Background 

In recent years several studies started investigating the potential for using biometric 
data for the classification of affective state [3-7]. Despite a longstanding debate 
amongst psychologists on the so called ‘autonomic specificity’, or the possibility of 
using autonomic nervous system (ANS) recordings to recognize affective state, these 
recent studies provide some evidence that the discrimination among some affective 
states is possible. 

Emotion recognition is inherently multi-disciplinary, and draws on the fields from 
psychology, physiology, engineering and computer science. It is not at all surprising, 
then, that the approaches taken to study in this field also have a tendency to vary 
greatly. While the research goals of each study overlap there is wide variety in 
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equipment used, signals measured, features extracted, evaluations used and in the 
format of presented results. These studies have had different levels of success (e.g. 
Picard, 81%, Kim, 78.4%), and with different limitations. In this volume [8] studies 
the feasibility of using EEG signals. 

Picard [4] built automatic classifiers for the recognition of emotion and showed the 
relationship physiology and the elicitation of emotions, and that it is consistent within 
an individual, but it provides no insight as to whether there is any consistency 
between individuals. The study by Kim [6] uses a large number of subjects (young 
children, 5-8yrs). Their recognition accuracy was much lower, however this maybe 
due to the lack of consistency in their sample population. This study also addressed 
the issue of the inherent subjectivity of the subject-elicited technique (individual 
understanding of what emotive nouns refer to), by using an immersive, multi-modal 
environment to trigger the emotion. However it is difficult to create a multi-modal 
environment where each of the modes is coherently and constructively presented with 
each other. In cases where this is not achieved, the lack of coherency between 
triggering stimuli has been shown to heavily reduce the effectiveness and believability 
of the environment [8], which in turn will influence the clarity and quality of 
emotions elicited.  

This paper investigates some of the effects in classification results by variations in 
factors such as: number of sessions, number of subjects, sampling rates, and 
algorithms used for classification. The study also considers the subjective evaluation 
of each affective elicitation in the three dimensions of arousal, valence and 
dominance. Until the effects of individual decisions made in the formulation, 
processing and analysing of the different papers mentioned is properly understood it 
is hard to see how the results of each study can be effectively viewed together.  

3   Subjects and Methods 

The signals chosen for this study were the electrocardiograph (ECG), 
electromyograph (EMG) and galvanic skin response (GSR). The ECG measures the 
voltage change across the chest due to the electrical activity of the heart. In this case 
the signal was measured between the wrists and used an electrode connected to the 
inside of one ankle as a reference node. The EMG measures the electrical impulses 
across muscle groups that are generated by activation of that muscle group. Electrodes 
were placed on either end of the masseter muscle group and a reference electrode was 
placed on the inside of one of the ankles. The masseter muscle group has been used in 
previous studies [9], [5] and was chosen due to its reliability and ease of 
measurement. GSR can refer to many different readings; in this study variation in skin 
conductance was measured. Skin conductance is directly related to sweat production 
and therefore has been used to measure anxiety levels, however in this study the 
features extracted from GSR are treated numerically. GSR was measured by subjects 
placing their index and middle fingers on each of two electrodes in a plastic bar. 
Subjects were asked to maintain a constant pressure on the electrodes as a variation in 
pressure affects the results. The equipment used for recording the signals was a 
Biopac M150 base unit with the appropriate modules for ECG, EMG and GSR. 
Signals were recorded to a HP Tablet PC using the AcqKnowledge 3.8.2 Software 
supplied with the equipment. 
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Following previous studies, here the combination of factors used were: subject-
elicited, lab setting, feeling, open-recording and emotion-purpose [4]. A modified 
version of the Clynes protocol for eliciting emotion [10] was chosen for generating 
the subject emotion. The Clynes protocol was used in an earlier study by Picard [4] 
and asks subjects to elicit eight distinct emotions, (no emotion, anger, hate, grief, 
platonic love, romantic love, joy, and reverence). The Clynes protocol typically uses 
physical expression to give somatosensory feedback, given that the correct equipment 
was not available, subjects were offered a stress ball to hold in their free hand to use 
as an object of physical expression. Each emotion was elicited for a three minute 
period, separated by a period of rest. After subjects were prepared for the study the 
emotions were elicited in order. In this study subjects were not told exactly what was 
meant by each emotion (other than its name) allowing individual, subjective, 
interpretations of each affective label. After each emotion was elicited, subjects were 
asked to rate the emotion in each terms of Arousal, Valence and Dominance on the 
Self Assessment Manikin pictorial scale [9]. Three subjects (Male 60, Male 40, 
Female 30 yrs old) Three sessions were recorded for each subject on different days. 
The sessions with Subject 1 were recorded at 40Hz, while the sessions of Subjects 2 
and 3 were recorded at 1000Hz, after deciding to see the effect of a higher sampling 
rate on the ability to classify the data. Although the number of subjects is small, the 
aggregate data is very large. Each of the three sessions for each three subjects 
contains 24 minute of recordings, for 3 physiological signals at 1000 samples per 
second. 

The raw data was preprocessed using Matlab. The signal data was organised into 
thirty overlapping 30 second windows for each emotion recording in each session. 
120 features were extracted for each 30 second window using the Augsburg Biosignal 
Toolbox [12]. The features extracted were primarily the mean, median, standard 
deviation, maxima and minima of several characteristics in each signal. The data was 
then processed by WEKA, a machine learning toolbox [10].  

4   Classification 

Eight classification algorithms were evaluated using 10-fold cross validation:  

1. ZeroR: predicts the majority class in the training data; used as a baseline. 
2. OneR: uses the minimum-error attribute for prediction [11]. 
3. Function Trees (FT): classification trees that could have logistic regression 

functions at the inner nodes and/or leaves. 
4. Naïve Bayes: A standard probabilistic classifier using estimator classes. 

Numeric estimator precision values are chosen based on analysis of the 
training data [10]. 

5. Bayesian Network: using a hill climbing algorithm restricted by sequential 
order on the variables, and using Bayes as optimisation criteria. 

6. Multilayer Perceptron (MLP): using one hidden layer with 64 hidden units. 
7. Linear Logistic Regression (LLR) using boosting. 
8. Support Vector Machines: Finds the maximum margin hyperplane between 2 

classes. Weka’s SMO with polynomial kernel was used [12] with c=1.0, 
epsilon=1e-12.   
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An underlying hypothesis of this study is that different emotions manifest themselves 
in distinct physiological states. Another hypothesis is that the classifiers’ performance 
gives an indication of an internal ‘consistency’ of the data. If the performance is bad 
for all algorithms, the data is harder to model. A number of specific problems arise 
when the classifier performance is used to make other inferences, including: 

1. Intra-Subject, Single Session 
Subjects might not elicit emotions in the same way on different days. To build a 
classifier and to test it on data from a single session means excluding the factors of 
inter-session variation Even for classifiers ’custom’ built for a single subject, most 
applications would require high multisession accuracy.  

2. Intra-Subject, All Sessions 
A subject specific classifier can be trained and tested by combining data from a 
number of sessions. By combining the windows from the three sessions for each 
subject into a single data set, the classifiers’ accuracy indicates how variation in 
affective elicitation deteriorates the accuracy. This is probably caused by differences 
in the appraisal of emotion, intensity and quality of the elicitation (how close to the 
emotion the subject was able to elicit).  

3. Inter-Subject 
The ‘universality’ of emotions –the assumption that different people elicit emotions in 
a similar way- has been disputed. Depending on the application, it might be necessary 
to build a classifier based on data recorded from another subject. For this evaluation, 
data included both the day-to-day baseline variation in emotion and also the variation 
in subject interpretation of affective labels. Consequently seeing how the inter-subject 
data set classification compares to the combined and individual sessions will give 
insight into how much variation exists between subjects. 

5   Results 

Table 1 shows the classifiers’ accuracy and training time on a PC with an Intel Core 2 
Duo Processor (1.83GHz) and 2GB DDR2 RAM. MLP had the highest percentage of 
correctly classified samples, however data sets take a long time to process (36 
minutes to process 9 minutes of recorded signals), making it unsuitable for real time 
applications. SVM, LLR and Functional Tree (FT) algorithms are faster, and give 
high accuracy. Of these methods the SVM algorithm gives the most consistent results 
for the shortest processing time. The FT algorithm also demonstrated unsuitability by 
failing to be compatible with all data sets. Though often quicker, the remaining 
algorithms give significantly lower or less consistent results than the SVM algorithm. 
Hence the SVM algorithm was used as the primary algorithm for comparing the 
confusion matrices and misclassified sample analysis. Table 1 also shows the 
processing time of each algorithm for a 3min recording data set. 

There is a noticeable decay in classifier accuracy as the data sets become more 
complex, however even the most complicated data still gives 42% success using the 
chosen SVM algorithm. This remains three times higher than chance classification. 
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Table 1. Results of the different classification algorithms used for each data set. S#D# refers to 
the subject number and session (day) number. 40/1K refers to the sampling rate, (Hz). 

 ZeroR OneR FT Naïve 
Bayes 

Bayes 
Net 

MLP LLR SVM 

S2D1– 40 12.5% 50.4% 89.2% 66.3% 81.3% 92.9% 90% 94.6% 
S2D1–1K 12.5% 48.3% 96.7% 61.7% N/A 97.1% 97.5% 95.8% 
S2DA–40 12.5% 55.3% 76.7% 43.6% 64.3% 90.8% 72.6% 74.7% 
S2DA-1K 12.5% 59.2% 88.9% 38.6% N/A 97.8% 86.9% 85.7% 

Time to Process 0 s 1 s 1.5min 2 s N/A 36min 8min 41 s 
SADA- 40Hz 12.5% 55.4% N/A 22.8% 59.3% 70.6% 41.8% 42.2% 

5.1   Variation of Results across Different Sample Rates 

Table 2 gives a summary of the classifier success for each of the different data sets. 
Individual sessions displayed strong classifier success across all data sets. For 
individual sessions the difference in sample rate is fairly small, with classifier success 
varying by only a few percent in any case. In all but one case the accuracy for 1000Hz 
is better than the 40Hz equivalent. This is not shown to be true of other algorithms, 
and is most profoundly noticed where BayesNet failed to process the higher sample 
rate data set. The results show a progressively increasing difference between the 
success rates of classification for high and low sample rates as the data sets become 
more complicated. Although this evidence is far from conclusive it does suggest that 
the sample rate is a factor to be considered when making physiological recordings.  

The different accuracy for the 40Hz and the 1000Hz data sets is not restricted to 
the SVM classifier. It should also be noted that the effect of sample rate variation was 
more pronounced in some, but not all techniques. The BayesNet technique for 
example showed a tendency to fail at higher sample rates, as did the Functional Tree 
approach. The more consistently correct classifiers, MLP, LLR and SVM, however, 
all showed classification improvement at higher sample rates. More detailed studies 
will provide a more complete picture of the effect sample rate has on emotion 
identification. 

Table 2. Percentage of samples correctly classified for data sets using the SVM Algorithm 

Subject 1 2 3 Combined Sessions 
1 – 40Hz 96.3% 92.1% 95.4% 80.4% 
2 – 40Hz 94.2% 97.5% 95.8% 74.7% 
2 – 1000Hz 95.8% 97.1% 98.8% 85.7% 
3 – 40Hz 90.5% 95% 92.1% 68.1% 
3 – 1000Hz 99.2% 99.6% 96.3% 79% 
All Subjects (40Hz) N/A N/A N/A 42.2% 

5.2   Variation of Results across Different Sessions and Subjects 

Comparing the results of the individual sessions, some emotions were consistently 
poorly classified, others consistently well classified, and others varied from session to 
session. Platonic love and romantic love stand out as emotions that are often 
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misclassified, while anger and the no emotion baseline were consistently well 
classified. Table 3 shows percentages of emotions misclassified as other types. For 
example, Subject 1’s romantic love samples are 4% misclassified as ‘No emotion’ and 
3% misclassified as ‘Hate’.   

The consistency of emotion elicited is better identified from the combined data set 
of all of a subject’s sessions. Subject 3, for example, shows very high classification 
success in each session individually, but displays the lowest classification success in 
the combined data set. This suggests that for each individual session, the consistency 
of emotion elicited for each 3-minute block was very good, but that the character of 
emotion elicited from session to session was not as consistent. Subject 1, in contrast, 
shows greater variation in the individual sessions, but better consistency across the 
three sessions.   

In the intra-subject data sets, all three subjects displayed relatively high 
misclassification in romantic love. The confusion matrices for the three subjects 
showed one subject with high misclassification towards hate, one with high 
misclassification towards platonic love and the other with a misclassification split 
between anger, joy and platonic love. These variations are subject dependent and are 
likely caused by developed associations as well as variations in mood, concentration 
and interpretation of the meaning of affective labels.  

Table 3. Misclassification results for all data sets 

Data 
Set

Worst  
Classified 

Best Classified Emotion Most Commonly Misclassified

1 2 3 1 2 3
S1– 40 J, Re Re, 

Ro
P, 
Ro

A, G, 
N, P

G A, G, J, 
N, Re

Romantic(4%N, 3%H), Reverence(5%J, 3%N), 
Hate(2%A), Platonic(3%Ro, 2%H)

S2 – 40 J, H, 
Ro

P G A, N, 
Re

A, H, J, 
No, Re

H, J Platonic (3%G, 3%J), Grief (4% P)

S2 – 1K G, 
H, J

P, J - P A, H, N, 
Re, Ro

All Platonic(4%J), Joy(4%P), Hate(2%G), 
Grief(2%H, 2%A)

S3 – 40 A, 
H, 
Ro

P, G Re, 
Ro

Re A, H, N G, N, P Romantic(8%J, 2%Re), Reverence(7%Ro), 
Platonic(3%G, 2%J), Hate(4%A, 3%G)

S3 – 1K - - Re, 
Ro

All All A, G, H, 
N, P

Reverence(4%Ro, 1%A),
Romantic(4%Re)

S1DA –
40

Ro, H, J A, No, P Romantic(10%H, 6%N, 5%J,5%G), Hate(12%A, 
5%Re, 4%J),

Joy(16%Re, 8%Ro)
S2DA –

40
N, G, P Re, A No Emotion(14%J, 10%P, 7%Ro, 5%G), 

Grief(8%J, 8%N, 4%H, 4%P, 4%Ro),
Platonic(13%Ro, 7%J, 7%N)

S2DA –
1k

P, G A, Re Platonic(14%Ro, 9%J, 6%N),
Grief(10%N, 6%H)

S3DA –
40

Ro, P, Re, G A, H, N Romantic(17%J,14%A, 13%P, 7%Re), 
Platonic(9%Ro, 9%J, 8%G, 7%Re), 

Reverence(8%G, 6%J, 6%A), 
Grief(8%P, 6%Re, 6%A)

S3DA –
1k

P, H, Re N Plat(19%G, 8%A, 8%J), Hate(12%A, 8%Re), 
Reverence(4%H,4%N, 4%P, 4%Ro)

SADA Ro, H, P A, Re, J Rom(14%P, 12%A), 
Hate(18%A, 13%N, 12%Re), Plat(15%Ro, 12%A, 

10%N), Grief(11%A, 11%P), 
No Em(11%J, 11%P), Joy(13%Re, 9%Ro), 
Rev(12%N, 11%A), Anger(10%H, 8%P)  
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In the inter-subject data set, romantic love, hate and platonic love showed the worst 
results for classification, while anger, reverence and joy showed the best classification 
results. Anger is correctly identified but other emotions tend to be misclassified as 
anger. 

6   Conclusions 

The method used in this study utilised a subject-elicited, lab setting, feeling, open-
recording and emotion-purpose framework. This particular choice of factors 
highlighted the individual variation in subject’s interpretation of emotive labels. As a 
consequence, future studies will utilise a detailed description of the emotion to be 
elicited, or use the induced-emotion approach. Subjects also had preferred techniques 
for eliciting the emotions, some preferred to visually focus on something, while 
another preferred to elicit with closed eyes. For this study, the process had the luxury 
of being flexible and each subject was able to find a way to elicit emotions that they 
found comfortable.  

The strong consistency of classifier success (> 90%) across the nine primary data 
sets (Table 2) supports the hypothesis of correlation between emotion state and 
physiological state. Although there is no guarantee that the emotion elicited is an 
accurate portrayal of the affective label requested, the high success in classification 
does show that the physiological manifestation caused by each of the eight categories 
was sufficiently distinct to allow discrimination and classification against the 7 other 
categories. If further data sets continue to show good discrimination, they will add to 
the mounting case in support the hypothesis of correlation.  

A noteworthy result was the consistency of misclassification within a subject’s 
data sets. Subject 3’s romantic love samples were often misclassified as joy, and all 
subjects showed some misclassification between the negative emotions; anger, hatred 
and grief. Subjects also showed variation between sessions of which emotions were 
well classified, and which were relatively poorly classified, this may point to 
influence from the variation in day-to-day baseline as noted by Picard [2]. It is likely, 
for example, that on a day where a subject is feeling sad, that many samples might be 
misclassified as grief, while emotions which are sufficiently distinct, such as joy, 
might show strong classification success in contrast. 

Further studies will continue to use the SAM diagrammatic survey for subject self 
assessment, but this will be supplemented with a quality assessment rating, (“How 
well did you feel you elicited the required emotion?”). This rating will help give an 
understanding of why misclassifications occur within sessions, and whether these 
misclassifications are predictable.  

This study was successful in demonstrating that key factors such as number of 
sessions, number of subjects, sampling rates, and algorithms used for classification, 
all play a role in the success of classification. This study also supports the hypothesis 
that emotions lie in a continuous space. A future challenge will be to identify the axes 
of this space and determine an appropriate transform from physiological signals into 
these metrics.  

While this study gives an important foundation for recognising the importance of 
these factors a complete understanding of the ways in which these factors do affect 
the results can only be properly obtained through more detailed studies.   
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Abstract. Phylogenetic analyses of species based on single genes or
parts of the genomes are often inconsistent because of factors such as
variable rates of evolution and horizontal gene transfer. The availabil-
ity of more and more sequenced genomes allows phylogeny construction
from complete genomes that is less sensitive to such inconsistency. For
such long sequences, construction methods like maximum parsimony and
maximum likelihood are often not possible due to their intensive compu-
tational requirement. Another class of tree construction methods, namely
distance-based methods, require a measure of distances between any two
genomes. Some measures such as evolutionary edit distance of gene or-
der and gene content are computational expensive or do not perform well
when the gene content of the organisms are similar. This study presents
an information theoretic measure of genetic distances between genomes
based on the biological compression algorithm expert model. We demon-
strate that our distance measure can be applied to reconstruct the con-
sensus phylogenetic tree of a number of Plasmodium parasites from their
genomes, the statistical bias of which would mislead conventional analysis
methods. Our approach is also used to successfully construct a plausi-
ble evolutionary tree for the γ-Proteobacteria group whose genomes are
known to contain many horizontally transferred genes.

1 Introduction

The goal of molecular phylogenetics is to assemble an evolutionary relationship
among a set of species from some genetic data such as DNA, RNA or protein se-
quences. Traditionally, each species is represented by a small molecule sequence
such as a gene or a ribosomal RNA, which carries some information of evolu-
tionary history in sequence variations. Closely related organisms generally have
a high degree of agreement in these sequences, while the molecules of organisms
distantly related usually show patterns of greater dissimilarity. Similar sequences
are placed close to each other in the phylogenetic tree to show a probable ancestry
relationship of the species. Inferring a phylogenetic tree is a kind of hierarchical
clustering of the sequences.

A. Nicholson and X. Li (Eds.): AI 2009, LNAI 5866, pp. 71–80, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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The two main classes of phylogenetic tree construction methods are (a) pre-
dicting the tree that optimises some criteria such as maximum parsimony [1]
or maximum likelihood [2], and (b) building the tree from a matrix of distances
between any pair of sequences. Methods in the former class generally search in
the tree space for the best tree and thus can only be applied when the number
of sequences is relatively small. Besides, their requirement of multiple alignment
of sequences restricts their use to data containing short sequences such as single
genes. For data with long sequences or with a large number of species, distance
methods such as neighbour joining[3] are the methods of choice.

It is well known that phylogenetic analyses of species based on single genes or
parts of the genomes are often inconsistent. Many parts of the genomes may have
arisen through some forms other than inheritance, for example by viral insertion,
DNA transformation, symbiosis or some other methods of horizontal transfer.
Furthermore, it can be argued that a single gene hardly possesses enough evolu-
tionary information as some genes may have evolved faster than others [4]. Some
genes may even have been deleted from or inserted into the genomes after the
separation of species. The availability of more and more sequenced genomes al-
lows phylogeny construction from complete genomes that is less sensitive to such
inconsistency because all information is used rather than selective information.

For such long sequences, phylogenetic tree construction methods like max-
imum parsimony and maximum likelihood are often not possible due to their
intensive computational requirement. The distance methods require a measure
of distances between any two genomes. Traditional methods for computing dis-
tances based on sequence alignment are also not possible. Some measures such
as evolutionary edit distance of gene order [5] and gene content [6] are also
computational expensive or do not perform well when the gene content of the
organisms are similar.

This paper presents a measure of genetic distances between genomes based on
information theory [7,8]. Instead of selecting a gene or an rRNA, the method can
use whole genomes. The method does not require sequence alignment, genome
annotation and even genome mapping. We apply our distance measure to build
the phylogenetic trees for two difficult cases: Plasmodium parasite genomes with
quite varied AT composition, and a set of bacteria in the γ-Proteobacteria group
for which horizontal gene transfer is common.

2 Background

Traditionally, the first step of phylogenetic analysis is to perform a multiple
alignment of the sequences involved. The aligned symbol for each sequence is
shown in a column for each position. From the alignment, one of tree construc-
tion methods is then applied. The maximum parsimony method [1] predicts the
phylogenetic tree that minimises the number of steps needed to generate the
observed sequences from an ancestral sequence. The method treats all muta-
tions equally whereas in practice, mutation rates are different from positions to
positions, and transitions (such as changing A to G) happen more often than
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transversions (changing A to C or T). As a result, parsimony method may pro-
duce misleading information. The problem is overcome by the maximum likeli-
hood method [2], which requires a substitution model to assess the probability
of particular mutations, and predicts the most likely tree given the observed
data. Both methods require searching the tree space for an optimal tree and
apply the criteria on every position of the aligned sequences. They are therefore
computationally expensive when applying to data with long sequences or with
many sequences.

Distance methods, which are derived from clustering algorithms, are better
suited to large data sets. These methods are based on the genetic distances be-
tween sequence pairs in the set of sequences. Notable examples of this class are
the neighbour joining method [3] and the UPGMA method [9]. These meth-
ods consider sequence pairs that have the smallest distances as “neighbours”
and place them under a common ancestor. The goal of distance methods is to
find a tree where the sum of the branch lengths between any two nodes closely
approximates the distance measurement between the represented sequence pair.

The distances between sequence pairs can be computed from their align-
ment. Multiple alignment of sequences can only be applied for short, homologous
molecules such as genes or ribosomal RNA. However, due to the variation of evo-
lution rates among genes, phylogenetic analysis using different genes may result
in different trees [10]. Some genes may even have arisen from means other than
inheritance from ancestors and thus are not available in all specices involved.
Such inconsistencies raise the question of reliability of the methods.

Since the genomes contain all genetic information of the organisms, it is sug-
gested that phylogenetic analysis using whole genomes would overcome the in-
consistency. However, performing alignment of genomes is often impossible due
to many factors such as genome rearrangement and DNA transposition. Fur-
thermore, due to their large sizes, genomes cannot be reliably and practically
aligned. Early approaches for genome phylogenetics rely on identification of ho-
mologies to measure distances. Work by [5] proposes using the number of events
needed to rearrange genes in genomes as a measure of genetic dissimilarity. Gene
content is considered in [6] to measure genome distances. The similarity of two
genomes is defined as the number of genes they share.

Recent years have seen an increasing number of alignment-free methods for
sequence analysis. These methods are broadly categorised into two main groups,
word based and information based [11]. Those in the former group map a se-
quence to a vector defined by the counts of each k-mer, and measure genome
distances by some linear algebraic and statistical measures such as the Euclidean
distance [12] or covariance distance [13]. These methods are still loosely depen-
dent on local alignment as the comparisons are made for fixed word length.
Furthermore, these methods would easily be misled as DNA homologies contain
many mutations and indels, and certain genomes show statistical bias toward
some skewed composition distributions.

The second group of alignment-free algorithms are founded on information
theory [7] and Kolmogorov complexity theory. The advantages of these methods
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are that they are more elegant and do not require an evolutionary model. These
methods are based on the premise that two related sequences would share some
information and thus the amount of information in two sequences together would
be less than the sum of the amount of information of each sequence. There is
no absolute measure of information content in this case. However, information
content can be estimated by using a lossless compression algorithm. The bet-
ter the compression algorithm performs, the closer it can estimate information
content of sequences. Nevertheless, compression of biological sequences is very
challenging. General text compression algorithms such as Lempel-Ziv [14] and
PPM [15] typically fail to compress genomes better than the 2-bits per symbol
baseline. A number of biological compression algorithms such as BioCompress
[16] and GenCompress [17] have been developed during the last decade but most
of them are too expensive to apply to sequences of size over a million of bases.
The GenCompress algorithm, which is used to measure sequence distances in
[18], takes about one day to compress the human chromosome 22 of 34 million
bases and achieves just 12% compression. In [19], an information measure is
developed based on Lempel-Ziv complexity [20], which relates the number of
steps in production process of sequence to its complexity. How well the method
estimates the complexity is in fact not reported.

To the best of our knowledge, none of the existing methods are sufficiently
robust to perform phylogenetics analysis on genome-size sequences. The infor-
mation theoretic approaches appear to scale well to a large data set, but the
existing underlying compression algorithms are either too computationally ex-
pensive or do not perform well. To fill in this gap, we introduce here another
information theoretic approach to measure genome distances. The method is
based on the compression algorithm expert model [21], which has been shown to
be superior than others in terms of both compression performance and speed.
As a rough comparison against GenCompress, the expert model running on a
desktop computer can compress the whole human genome of nearly 3 billion
bases in about one day and saves about 20%.

3 Genome Distance Measure

Information theory [7] directly relates entropy to the transmission of a sequence
under a statistical model of compression. Suppose a sequence X is to be effi-
ciently transmitted over a reliable channel. The sender first compresses X using
a compression model and transmits the encoded message to the receiver, who
decodes the compressed stream using the same model to recover the original mes-
sage. The information content IX of X is the amount of information actually
transmitted, i.e. the length of the encoded message.

Suppose a sequence Y related to X is available to both parties. The sender
needs to transmit only the information of X that is not contained in Y and
indicate what was shared. Since the receiver also knows Y , it can recover X
correctly. The amount of information actually transmitted in this case is called
conditional information content of X given Y , denoted as IX|Y . The more re-
lated the two sequences are, the more information the two sequences share, and
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hence the shorter message is transmitted. The shared information of X and Y
is called the mutual information of X and Y and can be computed as the differ-
ence between the information content and the conditional information content:
IX,Y = IX − IX|Y .

In this work, we propose using the mutual information of two genomes as
an estimation of the genetic similarity between two species. The information
content of X is estimated as the message length obtained by compressing X
using a lossless compression algorithm. We then concatenate Y andX to have the
sequence Y X and compress the concatenated sequence to obtain the information
content of both sequences together. The conditional information content of X
given Y is then computed by taking the difference of the information content of
Y X and the information content of Y : IX|Y = IXY − IY .

We use the expert model compression algorithm [21] for estimation of infor-
mation content because it provides many interesting features. Firstly, the expert
model package provides an option to compress one sequence on the background
knowledge of the other. Secondly, the expert model has the best performance
among the existing biological compression algorithms. Since lossless compression
provides an upper bound estimation of the entropy, a better compression gives
a better approximation of the information content of sequences. Finally, the ex-
pert model runs very quickly on long sequences, and can be used for analysing
genome size sequences in practice.

In theory, IX,Y should be equal to IY,X as they both represent the shared
information of the two sequences. However, this is not always the case in practice
due to arithmetic rounding in compression. We therefore take the average of
the two as the similarity measure of the two sequences. Since the two genomes
may have different lengths, and they may have nucleotide composition bias, we
normalise the similarity measure by a factor of IX + IY :

SX,Y =
IX − IX|Y + IY − IY |X

IX + IY

= 1−
IX|Y + IY |X
IX + IY

(1)

Instead of using the similarity measure, we use the distance measure, which is
defined as:

DX,Y = 1− SX,Y =
IX|Y + IY |X
IX + IY

(2)

4 Experimental Results

We present experimental results for our method on two sets of data. The first
data set contains the genomes of 8 malaria parasites and the other contains 13
bacteria genomes. We first applied the expert model to obtain pairwise distances
between each pair of genomes in a data set. The phylogenetic trees are then
constructed using the neighbour joining[3] method from the PHYLIP package
[22]. The experiments were carried out on a desktop with Pentium Duo core 2
2.33Ghz CPU and 8GB of memory, running Linux Ubuntu 8.10.
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4.1 Plasmodium Phylogeny

Plasmodium species are the parasites that cause malaria in many vertebrates
including human. In stages of their life-cycle, Plasmodium species interact with
a mosquito vector and a vertebrate host. In order to adapt to the environ-
ment in the host blood, certain Plasmodium genes are under more evolutionary
pressure than others, which leads to the variation of evolutionary rates among
genes. Most Plasmodium species co-evolve with their hosts, and their evolu-
tion depends largely on hosts and geographic distributions. Certain species are
thought to have emerged as a result of host switches. For example, the human
malaria Plasmodium falciparum is speculated to have diverted from the chim-
panzee malaria Plasmodium reichenowi recently and thus is more closely related
to Plasmodium reichenowi than to other human malaria parasites.

As a result, the study of malaria phylogenetics faces the difficulty of selecting
genes or rRNA for analysis. Small subunit rRNA and circumsporozoite protein
have been used in many Plasmodium phylogenetics analyses [23,24]. However,
recent study indicates that these loci are not appropriate for evolutionary studies
because Plasmodium species possess separate genes, each expressed at a different
time in the life cycle[25]. Likewise, the circumsporozoite protein may be prob-
lematic as the gene codes for a surface protein is under strong selective pressure
from the vertebrate immune system. Indeed, recent phylogeny analyses [26] using
these molecules show results that are inconsistent with those of other loci.

We applied our distance measure to construct the phylogenetic tree of eight
malaria parasites, namely P. berghei, P. yoelii, P. chabaudi (rodent malaria), P.
falciparum, P. vivax, P. knowlesi, P. reichenowi (primate malaria) and P. galli-
naceum (bird malaria). Their genomes were obtained from PlasmoDB release 5.5
(http://www.plasmodb.org/common/downloads/release-5.5/). The genome
of P. reichenowi has not been completed, only 7.8 megabases out of the esti-
mated 25 megabases are available. The genomes of P. berghei, P. chabaudi, P.
gallinaceum and P. vivax were completely sequenced, but they have not been
fully assembled, each genome consists of several thousand contigs. Only the
genomes of three species, P. falciparum, P. knowlesi and P. yeolii have been
completely assembled into 14 chromosomes each. Prior to performing analysis,
we removed wildcards from the sequences. The characteristics of the genomes
are presented in table 1.

Statistical analysis of these Plasmodium genomes is very challenging. The
composition distributions of these genomes are greatly different. AT content of
the P. falciparum genome is very high (80% of the genome are A and T) whereas
the distribution for the P. vivax is more uniform even though both species are
human malaria parasites. Conventional analysis tools would be misled by such
statistical bias [27]. Because many of the genomes have not been fully assembled,
methods taking advantage of gene order or genome rearrangement such as [12,13]
cannot be used. Furthermore, due to the size of the dataset, it is not practical
to use methods such as [18,19].

Our method took just under 8 hours to process the 150 megabase data set and
generate the pairwise distance matrix of the sequences. The neighbour joining
method was then applied to produce an unrooted tree. To make the tree rooted,

http://www.plasmodb.org/common/downloads/release-5.5/
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Table 1. Plasmodium genomes characteristics

Species Host - Geographic Dist. Genome Size %AT Status
P. berghei Rodent - Africa 18.0 Mb 76.27% Partly Assembled
P. chabaudi Rodent - Africa 16.9 Mb 75.66% Partly Assembled
P. falciparum Human - Subtropical 23.3 Mb 80.64% Fully Assembled
P. gallinaceum Bird - Southeast Asia 16.9 Mb 79.37% Partly Assembled
P. knowlesi Macaque - Southeast Asia 22.7 Mb 61.17% Fully Assembled
P. reichenowi Chimpanzee - Africa 7.4 Mb 77.81% Partly Available
P. vivax Human - Subtropical 27.0 Mb 57.72% Partly Assembled
P. yoelii Rodent- Africa 20.2 Mb 77.38% Fully Assembled

P.gallinaceum

P.falciparum

P.reichenowi

P.chabaudi

P.yoelii

P.berghei

P.knowlesi

P.vivax

Fig. 1. The generated phylogenetic tree of the Plasmodium genus

we selected the P. gallinaceum as the outgroup because P. gallinaceum is bird
malaria, whereas the others are mammal parasites. The tree produced is shown
in Fig. 1. The tree is consistent with the majority of the earlier work [26,28].
In particular, it supports the speculation that the species closest to the human
malaria parasite P. falciparum is in fact the chimpanzee malaria P. reichenowi.

4.2 Bacteria Phylogeny

Horizontal gene transfer is found extensively in bacteria genomes. This prevents
the establishment of organism relationships based on individual gene phylogenies
[10]. In order to perform phylogenetic analysis of such species, typically a number
of likely gene orthologs are selected. Resulting phylogenetic hypotheses from
these loci are often inconsistent with each other.
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X.campestris

X.axonopodis

X.fastidiosa

P.aeruginosa

V.cholerae

H.influenzae

P.multocida

E.coli

S.typhimurium

Y.pestis_CO

Y.pestis_KIM

B.aphidicola

W.glossinidia

Fig. 2. The generated phylogenetic tree of the γ-Proteobacteria group

We performed a whole-genome phylogenetic analysis on the γ-Proteobacteria
group for which horizontal gene transfer is frequently documented. We down-
loaded from the Genebank database the genomes of 13 species, namely Es-
cherichia coli K12 (accession number NC 000913), Buchnera aphidicola APS
(NC 002528), Haemophilus influenzae Rd (NC 000907), Pasteurella multocida
Pm70 (NC 002663), Salmonella typhimurium LT2 (NC 003197), Yersinia pestis
CO 92 (NC 003143), Yersinia pestis KIM5 P12 (NC 004088), Vibrio
cholerae (NC 002505 and NC 002506), Xanthomonas axonopodis pv. citri 306
(NC 003919), Xanthomonas campestris (NC 003902), Xylella fastidiosa 9a5c
(NC 002488), Pseudomonas aeruginosa PA01 (NC 002516), and Wiggleswor-
thia glossinidia brevipalpis (NC 004344). The sizes of the genomes range from
1.8 megabases to about 7 megabases, and the total size of the data set is 44
megabases.

An earlier phylogenetic analysis of the 13 specices found an inconsistency; the
use of different genes resulted in different evolutionary trees. There are 14,158
gene families found on these genomes. The majority of these families contain only
one gene. Only 275 families are represented in all 13 species, and 205 families
contain exactly one gene per species [10]. The analysis used the alignments of
these 205 families and found that the resulting 205 trees are in 13 different
topologies. The likelihood tests of 13 topologies reported that four most probable
topologies are in agreement with over 180 gene families and that the consensus
topology is in agreement with 203 alignments. These four trees differ in regard
to the positions of three species, Wigglesworthia, Buchnera and Vibrio.

The tree generated by our method is presented in Fig. 2. Except for the three
species, the tree agrees with the four most likely topologies in [10]. Similar to the
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consensus tree, it also supports the hypothesis that Wigglesworthia and Buchn-
era are sister species. It only differs from the consensus tree in positions of the
branches involving (Buchnera,Wigglesworthia) and (Haemophilus, Pasteurella).
A close examination of the tree shows that, the distances from these groups to
their parent, and the distance between the most recent ancestor of Vibrio to its
parent are very small. This suggests that, these species split from each other at
very similar times. This explains the inconsistency among the four most probable
trees generated by [10] and the tree inferred by our approach.

5 Conclusions

We have presented an information theoretic approach to measure genetic distances
between genomes for phylogenetic analysis. It is based on the proven expert model
compression algorithm to estimate mutual information of two genomes which is
used as the measure of genetic similarity between the two species. Unlike conven-
tional phylogenetic methods, it does not require alignment and annotation of se-
quences. In addition, it does not rely on an evolutionary model. Furthermore, the
method is able to handle data with considerable bias in genetic composition, which
classical statistical analysis approaches often fail to deal with.

We applied our method to generate the phylogenetic trees from the whole
genomes of eight Plasmodium species, and of 13 species of the γ-Proteobacteria
group. The genomes in both data sets are known to contain abundance of horizon-
tal transfer genes. Previous analysis of these species using small molecules showed
inconsistencies among the trees inferred from different genes. The trees generated
by our approach are largely consistentwith the consensus trees from previouswork.

As information is the universal measure, the method can be potentially ex-
tended for other types of data. Such distance measure can be useful in other
data mining applications such as clustering and classification. To the best of
our knowledge, our approach is the first to be able to infer reliable phylogenetic
trees from whole genomes of eukaryote species, with modest requirements of
computation power. Such a tool would be very useful for knowledge discovery
from the exponentially increasing databases of genomes resulting from the latest
sequencing technology.
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Abstract. In this paper, we have presented a new approach to predict pattern of 
the financial time series in stock market for next 10 days and compared it with 
the existing method of exact value prediction [2, 3, and 4]. The proposed 
pattern prediction technique performs better than value prediction. It has been 
shown that the average for pattern prediction is 58.7% while that for value 
prediction is 51.3%. Similarly, maximum for pattern and value prediction are 
100% and 88.9% respectively. It is of more practical significance if one can 
predict an approximate pattern that can be expected in the financial time series 
in the near future rather than the exact value. This way one can know the 
periods when the stock will be at a high or at a low and use the information to 
buy or sell accordingly. We have used Support Vector Machine based 
prediction system as a basis for predicting pattern. MATLAB has been used for 
implementation.  

Keywords: Support Vector Machine, Pattern, Trend, Stock, Prediction, 
Finance. 

1   Introduction 

Mining stock market tendency is regarded as a challenging task due to its high 
volatility and noisy environment. Prediction of accurate stock prices is a problem of 
huge practical importance. There are two components to prediction. Firstly, historic 
data of the firm in consideration needs to be preprocessed using various techniques to 
create a feature set. This feature set is then used to train and test the performance of 
the prediction system.  

During literature survey we found that in the past, work has been done on the 
markets around the globe using various preprocessing techniques such as those based 
on financial indicators, genetic algorithms, principal component analysis and 
variations of time series models. The better prediction systems are based on Artificial 
Intelligence techniques such as Artificial Neural Networks [3] and Support Vector 
Machines (SVM) [2]. More recent work has even tried to come up with hybrid 
systems [6]. Overall, techniques based on Support Vector Machines and Artificial 
Neural Networks have performed better than other statistical methods for prediction 
[1, 2].  
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In all the literature, the emphasis is prediction of the exact value of the stock on the 
next day using the data of previous N days. We have extended the concept to predict 
pattern for next M days using the data of previous N days. If we try to predict the 
actual values of the next M days using the previous N days, the performance is not 
good. So, we propose a new concept of pattern prediction. The motivation of such an 
approach is to know the periods of relative highs and lows to be expected rather than 
knowing the exact values. Here, M and N are the number of days. We analyzed the 
three cases i.e. when M>N, M=N and M<N. Best results were obtained for M=N.  

The data set being considered for the study is based on the real time financial time 
series of the Reliance Industries of the National Stock Exchange, India. We obtain 
historic data of the Reliance Industries for the last 8 years from the NSE [9] which 
contains day-wise closing, high and low prices. Prediction System uses Least Square 
Support Vector Regression (LS-SVR) based on Support Vector Machines [10]. In the 
next section we discuss the concepts of LS-SVR followed by implementation, results 
and observations. 

2   Prediction Methods 

In attempt to predict the stock markets behavior, study has been done on many 
prediction methods such as Support Vector Machines and Artificial Neural Networks 
etc [1,2,7,8]. In our research, we have used SVM based technique and have come up 
with unique approach to train SVM for prediction. The SVM used in the proposed 
work is the Least Square Support Vector Regression which is an extension of the 
Support vector classification proposed by V. Vapnik [1]. 

2.1   Support Vector Regression 

The basic idea of SVM is to use linear model to implement nonlinear class boundaries 
through some nonlinear mapping of input vector into the high dimensional feature 
space. A linear model constructed in the new space can represent a nonlinear decision 
boundary in the original space. In the new space, an optimal separating hyper-plane is 
constructed. Thus SVM is known as the algorithm that finds a special kind of linear 
model, the maximum margin hyper-plane. The maximum margin hyper-plane gives 
the maximum separation between the decision classes. The training examples that are 
closest to the maximum margin hyper-plane are called support vectors. All other 
training examples are irrelevant for defining the binary class boundaries. 
Implementation of SVM is done using Support Vector Regression to predict the 
output values. Given a set of data points, 1, 1{( ),.., ( , )}l lx z x z , such that n

ix R∈  is an 

input and 1
iz R∈  is a target output, the standard form of a support vector regression 

[10] is given below.  
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subject to,  
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The approximate value function is given by the following equation. 
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Here w is the weight vector, ,ε∈ , etc are the standard variables used in optimizations, 

K is the kernel matrix, ϕ is the kernel function and *,i iα α are the SVM coefficients. 

From now on let us denote SVM coefficients by *( )i i iα α α= − + with no restriction on 

iα being greater that zero.  

3   Feature Set Modeling  

In this section, we will discuss the feature set modeling for pattern prediction and 
value prediction [2] and subsequently, the performance of both the methods will be 
compared.  

3.1   Value Prediction 

The basic concept of value prediction is to use previous N days to predict the value of 
next day [5, 6, 7]. We extend this concept to use values of previous N days to predict 
the values of next M days. We have analyzed the cases where N > M, N = M and N < 
M and found that the result comes out to be best if N = M. A total of M SVMs are 
required to implement the proposed prediction technique.  
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Let us consider closing price, say, ix of thi day. Since one SVM is used to predict 

one day, we have used M SVMs to predict next M days prices { 1 2,, ...,i i i Mx x x+ + + } 

from previous N days prices { 1 2,, ...,i N i N ix x x− + − + }. 

3.2   Pattern Prediction 

In the proposed technique for pattern prediction, first we learn all the patterns in the 
time series then learn to predict a pattern for next M days using closing price of 
previous N days from training data set and finally predict a pattern on test data.  

Learn a Pattern in the Time Series. The pattern is represented as a vector of the 
coefficients generated by SVM as represented in equation (5). Since we want to 
predict the pattern for the next M days, first we learn all patterns of size M using same 
size sliding window in the entire time series. To learn one pattern, we create a training 
sample consisting of (Day, Price) pair in the current window.  Each Day in the current 
window is represented by index from 1 to M and Price is represented by ix , the 

closing price of thi day (in reference to the complete time series).  So to learn a 
pattern, there are M training pairs required as follows:  

1 2((1, ), (2, ),..., ( , )),i i i Mx x M x i TrainingSet+ + + ∈ . (4) 

We train one SVM corresponding to each pattern in the training set of time series. 
Once each SVM is trained, we obtain SVM coefficients corresponding to each 

pattern. Let us represent the coefficients of thi  SVM, say, iSVM  by 

1( , ,..., )i i i Mα α α+ +  and the thi pattern in the time series by coefficients of iSVM  as 

given below. 

1 2{ , ,..., }i i i i Mα α α α+ + += . (5) 

Learn to Predict a Pattern. After we have learnt all the patterns in training set, we 
will learn to predict the pattern of next M days { 1 2,, ...,i i i Mα α α+ + + } using the closing 

price of previous N days { 1 2,, ...,i N i N ix x x− + − + } from the training data set. For this, a 

total of M new SVMs are required. These SVMs have nothing to do with the SVMs 
that were used to learn the patterns above.  

Prediction of a Pattern. For the test set, we compute the coefficients for thj test 

sample and is represented as follows: 

1 2{ , ,..., }j j j j Mβ β β β+ + += . (6) 

To obtain the pattern for thj test sample, we compute the least squared error between 

jβ and iα ’s, ∀ i∈ TrainingSet and j ∈ TestSet. We consider the predicted pattern of 
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thj  day as the learned pattern of thi day for which least squared error between iα  

and jβ  is minimum that is computed as follows. 

2
min

1

( )
M

i k j k
k

error α β+ +
=

= −∑ . (7) 

where i∈ TrainingSet and j ∈ TestSet.  

4   Implementation and Analysis of Results 

The financial time series considered is of the Reliance Industries Ltd is its row data is 
obtained from NSE website [9].  

4.1   Implementation 

Data consists of closing price, the highest price and the lowest price of the trading day 
for last 8 years. The latest 1500 values are selected and used for experiment, where 
1300 values are used for training and the rest 200 values are used for testing 
prediction accuracy. We have taken closing price as the feature set for SVM as in 
general, the prediction is created using the closing price only.  

It is assumed the initial training set is large enough sample to represent a complete 
set of patterns and the process of learning pattern is not repeated when we perform 
prediction for the same time series.  

LS-SVM package [10] is used for implementing Support Vector Machine. For 
each learning and prediction, first the parameters of the SVM are optimized and then 
parameters of the features are optimized to obtain the best possible prediction 
accuracy. During the optimization of the parameters of the feature set, the best 
results were obtained when N=M and N=10 [8]. Implementation is done using 
MATLAB.  

4.2   Analysis of Results  

As already mentioned earlier, the best results for predicting next M days value from 
previous N days value is obtained when N = M [8], the simulations were done for N = 
7,10,14,21. Out of this the best values were obtained for N = 10.  

Value Prediction. The graphs are plotted for the actual closing price and the 
predicted closing price for all the days that form the test set values for the next day 
and 10th day using value prediction method as discussed in Section 3.1. Values on the 
Y-axis are the actual closing price of stock in consideration in INR (Indian National 
Rupee) X-axis goes from 0 to 200 representing each day of the test set. Plot in blue is 
the predicted price while plot in green is the actual closing price.  
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Fig. 1. Actual and predicted closing price for next day 

 

Fig. 2. Actual and predicted closing price for next 10th day 

It can be seen that value prediction is good for predicting the next day price. Its 
performance deteriorates as we predict for more days in the future as shown in Figs 1 
and 2.  

Pattern Prediction. Now we show the graphs obtained using the proposed technique 
of pattern prediction. They have been directly compared to the corresponding value 
prediction plots. Pattern prediction graphs are plotted using the values corresponding 
to the pattern predicted and the actual values. Learning data and test data is same as 
above.  
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Fig. 3. Pattern Prediction vs Value Prediction at j = 55 

            

Fig. 4. Pattern Prediction vs Value Prediction at j = 82 

We know that iα  where i=1,2,…,1300 is learned pattern at the close of thi day and 

jβ  where j=1,2,…,200, the predicted coefficients at the close of thj day.  Consider 

such i and j for which error between iα and jβ  is minimum. The pattern to be 

expected for the next M days at thj day will be similar to the pattern at thi day (refer 

subsection 3.2). The graph is plotted between 1 2{ , ,..., }i i i Mx x x+ + +  and 

1 2{ , ,..., }j j j Mx x x+ + + where i∈ TrainingSet and j ∈ TestSet. Graph for the value 

prediction is the plotted between value predicted by the SVM and the actual value.   
The pattern prediction and value prediction graphs shown in the following figures 

have been compared. Pattern prediction graphs are on the left while value prediction 
graphs are on the right. Prediction is done for the next M (=10) days following the 
close of each day of the test set. Out of the total test set of 200 values only a few 
graphs are shown. Plot in blue is the predicted value while plot in green is the actual 
closing price.  

We can conclude from these graphs that pattern prediction is able to predict the 
highs and lows that can be expected in the near future more accurately as compared to 
the approach of prediction based on actual values. In the next section, we compare the 
results quantitatively.  

 



88 S. Kaushik and N. Singhal 

 
Fig. 5. Pattern Prediction vs Value Prediction at j = 119 

 

Fig. 6. Pattern Prediction vs Value Prediction at j = 147 

 

Fig. 7. Pattern Prediction vs Value Prediction at j = 179 

4.3   Prediction Accuracy 

Prediction accuracy is computed in percentage. For each test sample j, we predict for 
next M days, where j = 1,..,200. Let us denote the predicted value by p(k), and 
corresponding actual values by a(k), where k = 1,…,M. The following formula is used 
to compute the prediction accuracy in %age. 

Table 1. Performance of Pattern prediction vs Value prediction 

Accuracy Mean  Min Max 

Value prediction 51.3% 0% 88.9% 

Pattern prediction 58.7% 11.1% 100% 
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The table1 shows the performance of both the methods quantitatively using above 
formula. Here we have shown the minimum, maximum and the average prediction 
accuracy obtained over the complete test set. We can clearly see that the pattern 
prediction performs better than value prediction. The average for pattern prediction is 
58.7% while that for value prediction is 51.3%. Similarly, maximum for the pattern 
and value prediction is 100% and 88.9% respectively whereas the minimum is 11.1% 
and 0% respectively.  

5   Conclusion 

Value prediction is a good technique for predicting next day price. However, if we 
want to predict the price for next 10-15 days, we do not get good results by predicting 
actual value. To tackle such a scenario, we have proposed technique of pattern 
prediction. Although, it does not attempt to predict the exact value but it predicts the 
expected trend of the prices for the next 10 days. Pattern-prediction gives better 
results in prediction of patterns for longer duration.  

In the proposed work, we learnt all the patterns present in the time series. Due to 
this the SVM coefficients corresponding to the patterns obtained while learning are 
very noisy. As a future study, performance of the pattern prediction can be improved 
by processing of patterns and using a finite set of patterns rather than all the possible 
patterns found in the financial time series. To come up with further improved 
performance of the predicted pattern, we can apply some statistical algorithm between 
the SVM coefficients and learned pattern coefficients as well.  
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Abstract. In this paper, we study a project assignment problem. Specif-
ically, a set of projects, each of which needs to be finished over a project
development cycle, are to be assigned to a group of identical engineers
over a discrete planning horizon. The workload of the projects is different
and fluctuates over their development cycles. In any period, an engineer
has a maximum allowed workload. The objective of the problem is to
assign the projects to engineers with the objective of balancing the total
workload among the engineers; the load balance is measured by the dif-
ference between the maximum and the minimum total workload. Such
a problem is new to the literature. The problem is strongly NP-hard.
Therefore, we propose a two-stage heuristic approach to solve it. Exten-
sive numerical experiments show that the proposed approach can achieve
optimal or nearly optimal solutions for all test cases; such performance
is much better than what can be obtained from an IP model solved with
ILOG CPLEX11.

1 Introduction

We study a project assignment problem arising from practices followed by the
R&D department of a toys firm. The firm owns its own brand and is head-
quartered in the U.S. It develops all its products in Hong Kong, and outsources
manufacturing to OEM factories in mainland China. Finished products are then
shipped to customers around the world; the firm sells over one thousand different
types of toys globally every year.

The R&D department is responsible for developing all the firm’s products.
In the following, we use the term “project” to denote a product that needs to
be designed, produced, and delivered by the department. A project typically
consists of multiple stages, and lasts from six to thirteen weeks. The workload in
each week (stage) is different. The workload also varies with projects, depending
on whether a product is totally new, an adapted version from existing products,
or an old one. A project is to be assigned to and finished by a single engineer.
Considering each year there are over one thousand products to be developed,
the R&D department faces a difficult problem in assigning projects to engineers.
The current practice is not satisfactory. There are mainly two issues. One is that
the workload among engineers is not fairly distributed. Some are loaded much
more than others. Engineers who are highly loaded in one round of project
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assignments have to be compensated in the next round. The other is that the
engineers’ workload fluctuates too much over time. An engineer could be very
busy during some weeks, and may need to work overtime frequently, while he/she
is almost idle during some other weeks. These issues result in the engineers
having many complaints and much dissatisfaction. What makes the firm much
more concerned, however, is that when an engineer is overloaded, he/she may
not be able to finish the project very well, since he/she does not have the time
and energy to monitor the project very closely. Sometimes delivery gets delayed,
causing a loss of revenue or a penalty cost. Sometimes the finished product may
have quality problems, and later on may have to be recalled, which too leads to
great loss to the firm.

The problem faced by the firm is by no means unique. Most R&D projects,
or generally speaking, most projects, last for different durations of time and
the workload fluctuates in different stages. Different projects may have different
starting times. In such situations, project assignment has to be done properly,
in order to distribute workload fairly among project teams or project managers.

The project assignment problem studied in this paper is new to the literature.
It is closely related to, but distinct from, three types of assignment problems.
The first type is the generalized assignment problem(GAP) [1]. Our project
assignment problem is different from the GAP in two aspects: (1) projects in
our setting span over a long time duration, and the required workload fluctuates
over time; and (2) the objective of our problem is to balance the workload
among the engineers, instead of minimizing cost. The second type of related
assignment problems considers the objective of load balancing in the setting of
the classical assignment problem, i.e, when agents do not have defined capacities.
[4] and [2] studied the problem of balancing load among agents, with the objective
to minimize the difference between the maximum workload and the minimum
workload of individual agents; they also stipulated that each agent could at
the most be assigned one task. The third type of revelant assignment problems
studies assignment over a time horizon. [3] considered an assignment problem
with time-variant workloads. However, in their setting, a task only lasts one
period, whereas in our setting, a task with nonstationary workload lasts multiple
periods. An extensive survey of assignment problems can be found in [5].

2 Problem Definition and Formulation

We formally define our problem as follows. A firm has K projects, to be assigned
to I engineers, over a planning horizon of T periods. Each project spans over
several consecutive periods, and the workload in different periods is different.
Each engineer is qualified to work on any project. However, once a project is
assigned to an engineer, the engineer needs to work on the project until it is
finished, i.e. projects cannot be reassigned while being processed. To ensure
quality, and also considering engineers’ job satisfaction, it is preferred that the
workload of an engineer in any period is restricted to a certain level. Given that
all the engineers’ period workload has been reasonably confined, the objective of
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the firm is to assign projects to engineers such that over the planning horizon,
the total workload of engineers is balanced. The total workload is considered
balanced if the difference between the maximum and minimum total workload
of all engineers is minimized. The maximum workload of an engineer in a given
period is restricted by certain legal regulations. However, the firm may want
to further confine it in order to improve engineers’ job satisfaction. Therefore,
the firm is interested in finding out the best workload balancing at different
levels of maximum period workload, and the final decision about the project
assignment is then made with a tradeoff between load balancing and maximum
period workload.

We now define some notations:

t: index for period, t = 1, .., T
i: index for engineer, i = 1, .., I
k: index for project, k = 1, ..,K
ckt: workload of project k in period t, k = 1, ..,K, t = 1, .., T . For a project k

which spans over period a to b, ckt = 0, t = 1, 2, .., a− 1, b+ 1, .., T
C: maximum allowed period workload for any engineer

Decision Variable
xik: 1 if project k is assigned to engineer i, i = 1, .., I, k = 1, ..,K
U : the maximum total workload of all engineers over the planning horizon
L: the minimum total workload of all engineers over the planning horizon
We can then formulate the problem into the following IP model:

min U − L (1)

s.t.
∑I

i=1 xik = 1, k = 1, ..,K (2)∑K
k=1 cktxik ≤ C, i = 1, .., I; t = 1, .., T (3)∑T

t=1
∑K

k=1 cktxik ≤ U, i = 1, .., I (4)∑T
t=1
∑K

k=1 cktxik ≥ L, i = 1, .., I (5)
U,L ≥ 0, xik ∈ {0, 1}, i = 1, .., I; k = 1, ..,K (6)

In the above, Constraint (2) makes sure that a project is assigned to one and
only one engineer. Constraint (3) ensures period workload of all engineers is
upper bounded. Constraints (4) and (5) are used to define the maximum and
minimum total workload; due to the objective function, U and L will be exactly
equal to the maximum and minimum total workload.

The project assignment problem is strongly NP-hard, which can be proved
by showing that the well-known 3-partition problem is its special case. In fact,
even to find a feasible solution for the project assignment problem is NP-hard.
We omit the proof, which is rather routine, due to page limit.

3 A Two-Stage Solution Approach

To solve the project assignment problem, we propose a two-stage approach. In
the first stage, we focus on finding feasible solutions, where feasibility mainly
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refers to the constraint that period workload is bounded. In the second stage,
we focus on improving load balancing while keeping solutions feasible. This two-
stage procedure is repeated many times because the initial solutions generated
in the first stage have some randomness. As we said earlier, the final project
assignment decision is made with a tradeoff between load balancing and maxi-
mum period workload. Therefore, we are interested in load balancing at different
levels of maximum period workload. For this purpose, we first propose a lower
bound for the maximum allowed period workload. We then examine the load
balancing as we gradually increase the maximum allowed period workload.

3.1 A Lower Bound for the Maximum Allowed Period Workload

A lower bound can be obtained if we relax the problem by allowing projects to be
reassigned during the project development cycle. With this relaxation, for each
period t, we can compute a lower bound, Ct, for the maximum allowed workload.
A lower bound for the original problem, C, would then be the maximum of all
the period lower bounds, C = max{Ct, t = 1, .., T }.

For any period t, a lower bound Ct can be obtained for period workload, as
follows: Ct = �

∑
k=1,..,K ckt/I� Although this may seem to be an obvious lower

bound, and may be quite loose for a specific t, the lower bound for the original
problem, C, after taking the maximum of all the Ct, tends to be very tight, as
shown by experiments.

3.2 Constructing Feasible Solutions

The problem of finding a feasible project assignment, for a given maximum
allowed period workload C, can be a challenging task, as it is strongly NP-hard.
Therefore, a great deal of effort has been made to construct feasible solutions.

We adopt a two-step procedure. In the first step, we shuffle the projects ran-
domly and then assign them one by one to engineers, following a first-fit or
best-fit rule. If we do not end up with a feasible solution in the first step, then,
in the second step, we apply branch and bound to subproblems with two engi-
neers, and then, if still infeasible, three engineers. Note that we do not consider
performance of solutions in this stage; feasibility is the only concern.

The first step is detailed as follows. First, we randomly permutate projects into
a list. Since the two-stage procedure will be repeated many times, such random
shuffles are expected to result in different initial solutions. We then assign the
projects one by one to engineers, and remove projects from the list as they are
assigned. Each time we take the first project from the remaining projects, and
try to assign it according to the first-fit rule or the best-fit rule. First-fit rule
means the project is to be assigned to the first engineer whose period workload,
after taking the current project, will not exceed the maximum allowed period
workload C. Best-fit rule means the project is to be assigned to an engineer who,
after taking the current project, incurs the minimum penalty; the penalty for
engineer i, σi, i = 1, .., I, is calculated as:

σi =
T∑

t=1

δ{Wit−C>0}(Wit − C)
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Algorithm 1. B&B for Subproblems of Searching for Feasible Solutions
Initialization:

a set of projects to be assigned, P̂0;
a set of projects assigned to engineer 1, P̂1;
a set of projects assigned to engineer 2, P̂2; P̂1 = P̂2 := ∅;
a first-in-last-out queue for B&B nodes, Q, Q := {(P̂0, P̂1, P̂2)};

while Q �= ∅ do
Take a node from Q, denoted as (P0, P1, P2);
Q := Q − {(P0, P1, P2)};
Take a project i out of P0, P0 := P0 − {i};
if P1 ∪ {i} keeps engineer 1 feasible then

if P0 = ∅ then
We stop with a feasible solution (P1 ∪ {i}, P2); ;

else
Q := Q ∪ {(P0, P1 ∪ {i}, P2)}

end if
end if
if P2 ∪ {i} keeps engineer 2 feasible then

if P0 = ∅ then
We stop with a feasible solution (P1, P2 ∪ {i});

else
Q := Q ∪ {(P0, P1, P2 ∪ {i})};

end if
end if

end while

where δ{x} is an indicator function, δ{x} = 1, iff x = true; Wit is the workload
of engineer i in period t after taking the current project. The second step is
invoked only if the first step does not result in a feasible solution. In the second
step, we first sort the engineers in descending order of penalty. Remember that
engineers with positive penalty have period workload exceeding C. Our target,
then, is to turn these “infeasible” engineers into feasible ones. This is achieved
by solving a series of subproblems, each of which takes care of one infeasible
engineer. Specifically, we consolidate projects of the engineer with the largest
penalty, and the projects of a feasible engineer, and try to reassign the projects
such that both engineers get feasible assignments. Given the small scale of the
subproblems (only two engineers and a limited number of projects are involved),
we apply a branch and bound procedure for reassignment. We formally describe
the procedure as follows, in Algorithm 1.

If Algorithm 1, applied to two-engineer subproblems, turns the infeasible en-
gineer feasible, then we continue to apply the algorithm to other infeasible en-
gineers. If Algorithm 1 fails, we try to consolidate the infeasible engineer with
a feasible engineer. If this fails, we take up three-engineers subproblems, i.e.
pooling the infeasible engineer with two feasible engineers for reassignment. A
three-engineers branch and bound procedure is similar to Algorithm 1, but now
the number of nodes to be explored will increase dramatically. In the experiment,
however, we find that if a feasible solution can be found, it is often found in the
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early stage of the branch and bound procedure. In view of this, we impose a
limit to the number of nodes to be explored in the procedure, so as to save some
computational effort, ensuring that we still retain the performance.

Though the branch and bound procedure works quite well in terms of reaching
feasible solutions, it often takes a very long time because very often the subprob-
lems do not end up with feasible solutions and therefore many subproblems have
to be solved. To address this issue, we use a simple heuristic to eliminate sub-
problems without a hope of feasibility.

The heuristic follows the same idea as in Section 3.1 for designing the lower
bound. For each period, we simply take the sum of workload of all projects, di-
vided by 2 (or 3, for three-engineers subproblems), and this gives a lower bound
for the period. We then take the maximum workload over all the periods. The
subproblem is infeasible if the maximum thus obtained is greater than the max-
imum allowed period workload, C. The experiment shows that the heuristic is
very effective. Over 80 percent of subproblems are directly shown to be infeasible,
eliminating the need of invoking the branch and bound procedure.

3.3 Improving Solution Quality

In the first stage, we pay attention to only feasibility; while in the second stage,
we focus on improving the performance of the initial solution. Observing that
the performance of a solution, i.e., an assignment, is only determined by the two
engineers with the maximum and the minimum total workload, we propose an it-
erative procedure. During each iteration, focusing on either of the two engineers,
we aim to either reduce the maximum workload or to enlarge the minimum total
workload.

Specifically, we first sort the engineers in descending order of total workload.
We then take the engineer with the maximum total workload, and try to con-
solidate with another engineer with a lower total workload, starting with the
one with the minimum total workload. Denote the maximum total workload
as U , and the one used for consolidation, L. The best result would be when
reassigning projects between the two engineers, the smaller total workload of
the two engineers becomes �(U + L)/2� (the bigger one would be �(U + L)/2�);
and the next best is �(U + L)/2� − 1, followed by �(U + L)/2� − 2, .., L. If the
smaller total workload equals L, it means there is no improvement. If there is
improvement, we sort the engineers again for the improved solution, and repeat
the procedure. Otherwise, we try to consolidate the engineer with the maximum
total workload with the engineer with the second lowest total workload. If this
does not work, then we continue to choose the engineer with the third lowest, the
fourth lowest,.., total workload until we achieve an improvement. With all the
above, we attempt to reduce the maximum total workload U . If the maximum
total workload cannot be reduced further, we turn to enlarging the minimum
total workload. We first consolidate the engineer with the minimum total work-
load with the one whose total workload is the second largest(since the one with
the maximum total workload has been considered before). If there is improve-
ment, we sort the engineers again to continue consolidating engineers with lower
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Algorithm 2. Dynamic Programming for Second-stage Subproblems
Initialization:

a set of n projects to be assigned, each with total workload ck =
∑T

t=1 ckt, k =
1, .., n;

an integer array f of length �(U + L)/2�;
f [0] := 0; f [j] = −1, for j = 1, 2, .., �(U + L)/2�;{a value of -1 is used to denote

infeasibility}
for k = 1 to n do

for j = �(U + L)/2� to 1 do
if j − ck > 0 then

if f [j − ck] ≥ 0 then
f [j] := k;{k means that j is achievable by assigning project k to the less
loaded engineer};

end if
end if

end for
end for

minimum total workloads with engineers with maximum total workloads, i.e.
drawing engineers from the top and bottom of the list; if there is no improve-
ment, we then consolidate with the engineer whose total workload is the third
largest, the forth largest, .., etc. The procedure is repeated until we find that no
improvement can be made for the minimum total workload. We then start to
reduce the maximum total workload again, followed by enlarging the minimum
total workload. The second stage stops when no further improvement can be
achieved. In the following, we explain the way we consolidate the total work-
load of two selected engineers. Following notations in the previous paragraph,
we denote the larger total workload as U , and the smaller as L. Two approaches
are proposed for this subproblem. The first one is a dynamic programming al-
gorithm. As we analyzed earlier, if the two-engineers subproblem can lead to an
improvement, the smaller total workload in the new assignment has to be within
the range L+1, .., �(U+L)/2�. The dynamic programming, therefore, is to check
whether this is possible. The dynamic programming is given in Algorithm 2.

To recover a solution with a smaller workload equal to j, we just need to follow
f [j]: taking the project f [j], and then project f [j − cf [j]], etc. The proposed
dynamic programming, however, does not consider feasibility. Therefore, even
though the result of Algorithm 2 may say that a value of j, j = L+ 1, .., �(U +
L)/2�, is achievable, the resultant solution may be infeasible. So we need to check
backward from �(U+L)/2� to L+1 to find out the best possibility. On the other
hand, we also need to note that there may exist potential improvements which
Algorithm 2 cannot detect because, as shown in Algorithm 2, we only record
one path to each state, though there may be multiple paths to the same state.
Although there are these limitations to the dynamic programming algorithm,
it is still worth applying it because of its simplicity, compared with the next
approach.
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Algorithm 3. B&B for Second-Stage Subproblems
Initialization:

a set of projects to be assigned, P̂0;
a set of projects assigned to engineer 1, P̂1;
a set of project assigned to engineer 2, P̂2; P̂1 = P̂2 := ∅;
a first-in-last-out queue for B&B nodes, Q, Q := {(P̂0, P̂1, P̂2)}
a current maximum total workload, Umax;
the original total workload for the two engineers, U and L;

while Q �= ∅ do
Take a node from Q, denoted as (P0, P1, P2);
Q := Q − {(P0, P1, P2)};
Take a project i out of P0, P0 := P0 − {i};
if P1 ∪ {i} keeps engineer 1 feasible && the total workload of engineer 1 ≤ �(U +
L)/2� then

if P0 = ∅ then
if The total workload of engineer 1> L then

We stop with an improved assignment (P1 ∪ {i}, P2);
end if

else
Q := Q ∪ {(P0, P1 ∪ {i}, P2)}

end if
end if
if P2 ∪ {i} keeps engineer 2 feasible && the total workload of engineer 2 < Umax

then
if P0 = ∅ then

if The total workload of engineer 1 > L then
We stop with an improved assignment (P1, P2 ∪ {i});

end if
else

Q := Q ∪ {(P0, P1, P2 ∪ {i})};
end if

end if
end while

The second approach is a branch and bound algorithm, which is formally
described in Algorithm 3. It follows a framework similar to the one used in the
first stage. Because the two engineers have the same capability, to reduce the
solution space, we have forced a smaller workload on Engineer 1 in Algorithm 3.
Note that we apply Algorithm 2 before applying Algorithm 3. This narrows the
difference between the maximum and the minimum total workload, compared
with the initial solution; Umax, which is used in Algorithm 3 as an upper bound,
is also smaller than in the initial solution.

4 Experiment

To test the performance of the proposed algorithm, we have generated two sets
of test data. One is a “real” data set, generated according to the characteris-
tics of the problem faced by the toys firm which has motivated this study. The



Balancing Workload in Project Assignment 99

Table 1. Results from the random data set. Time is reported in seconds. K denotes
the number of projects; I denotes the number of engineers; and T denotes the length
of the planning horizon. “-” denotes that no feasible solution is found.

+

Heuristic Cplex Heuristic Cplex
T K I C U-L time U-L K I C U-L time U-L

12 1 5 11 13 1.33 41 -
20 60 10 13 1 0 2 180 30 14 1 0 19

14 1 0 1 15 1 0 6
17 1 0 15 17 - 63 -

30 90 10 18 1 0 2 270 30 18 2 81 -
19 1 0 1 19 1 0 -
23 1 0 4 21 1 8 -

40 120 10 24 1 0 1 360 30 22 1 0 -
25 1 0 1 23 1 0 237
12 1 30 - 12 2.33 93 -

20 120 20 13 1 0 8 240 40 13 1 0 -
14 1 0 3 14 1 0 10
17 1 42 - 17 2.67 88 -

30 180 20 18 1 0 - 360 40 18 1 0 -
19 1 0 6 19 1 0 50
22 1 1 - 22 1.67 142 -

40 240 20 23 1 0 - 480 40 23 1 0 -
24 1 0 12 24 1 0 652

other is a “random” data set, aimed to test the robustness of the algorithm. We
show only the results from the random data set, which seems more difficult to
solve, due to page limit. Remember that our objective is to find the best load
balancing at different levels of C, the maximum allowed period workload. Since
there is no C given before hand, we have used our lower bound, C, as defined in
Section 3.1. We test three levels of C, i.e., C, C + 1, and C + 2. Perhaps sur-
prisingly, our algorithm can already find feasible, or even optimal, solutions at
these three levels.

The experiments ware conducted on a PC with an 2.66GHz CPU and 2GB
memory. Our algorithm is coded in C++. For comparison, we have also tried to
solve the test cases with ILOG CPLEX 11.0. Table 1 show the results for the
random data set. For each test case, we have run our heuristic three times to test
its robustness. Three levels of C are shown in the table, starting from the lower
bound C. CPLEX is allowed to run for at the most three hours. Because we find
it is difficult for CPLEX to find a feasible solution, we have set the parameter
to let CPLEX focus on feasibility.

As shown by Table 1, our approach has achieved much better performance in
a much shorter time. For most cases, our approach can find optimal solutions,
even when C = C. Note that a value of 1 for U − L means that an optimal
solution has been found; for such a test case, we can never make U − L equal
0. If an optimum has been found for a smaller C, there is no need to compute
for a C larger than that; therefore, in the table, the time required for a larger C
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has been set as 0. The results also imply that the lower bound we have proposed
tends to be very tight. CPLEX, however, often cannot find feasible solutions
within three hours; for test cases for which feasible solutions have been found,
the objective function value can be very large. Please see the last test case in
Table 1, for example.
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Abstract. Traditional link-based schemes for identification of web commu- 
nities focus on partitioning the web graph more sophisticatedly, without 
concerning the topical information inherently held by web pages. In this paper, 
we give a novel method of measuring the topicality of a hyperlink according to 
its context. Based on this, we propose a topical maxflow-mincut algorithm 
which incorporates topical information into the traditional maxflow-mincut 
algorithm. Experiments show that our algorithm outperforms the traditional 
algorithm in identifying high-quality web communities.  

Keywords: Link Analysis, Topical Analysis, Web Community, Web Structure 
Mining. 

1   Introduction 

The vast amount of information pertaining to various topics causes difficulties to web 
users in finding useful web pages while surfing on the net. To solve such a problem, 
researchers have been trying to reorganize the web in the form of communities, each 
of which is related with a single or several related topics. However, it is not an easy 
task to discover communities on the World Wide Web. Some link analysis based 
approaches to identification of web communities have been proved to be effective in 
some cases, one of the most well-known is the maxflow-mincut algorithm proposed in 
[12]. However, this “links-only” method still has its defects because it only utilizes 
link information and ignores contents of web pages.  

In recent years, much attention has been paid to combination of link analysis with 
topical information. K. Bharat [7] regulated hub and authority scores calculated by 
HITS [1] using relevance between pages and topics. S. Chakrabarti gave each 
hyperlink in HITS a weight determined by the similarity of its anchor text with the 
topic. Topic-Sensitive PageRank [6] and Topical PageRank [3] improved PageRank 
from a topical perspective and obtained better rank results. However, none of these 
methods have attempted to combine topical analysis with identification of web 
communities. 

In this paper, we suggest that the weight of a link should embody its topical 
context. Topical information is incorporated into the traditional method through 
Topical Weight and a topical maxflow-mincut algorithm is proposed. Experimental 
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results show that significant improvements are achieved when using our proposed 
topical maxflow-mincut algorithm. 

The remainder of this paper is organized as follows. Related work is introduced in 
Section 2. The traditional maxflow-mincut algorithm is described in Section 3. We 
present the topical maxflow-mincut algorithm in Section 4. In Section 5 the 
experiment and performance evaluation will be given. We have the concluding 
remarks and future work in Section 6. 

2   Related Work 

2.1   Hyperlink Weight 

In the early literatures about HITS [1] and PageRank [2], the weight of each link was 
assumed to be 1 and all the links were treated uniformly. A new metric called 
average-click [5] was then introduced on the basic intuition that users would make a 
greater effort to find and follow a link among a large number of links than a link 
among only a couple of links. The weight of a link pointing from p to q was defined 
to be the probability for a “random surfer” to reach q from p, and therefore was 
determined by the number of outgoing links of p. 

In [4], Chakrabarti et al pointed out that a hyperlink would be more important to 
the web surfer if the page it pointed to was relevant to this surfer’s topic. In order to 
measure a hyperlink according to a specific topic, they examined the anchor text of a 
hyperlink and calculated its similarity to the descriptions of the topic. This text 
similarity was considered as the topical weight for this link. 

2.2   Incorporating Topicality in Link Analysis 

Bharat et al [7] defined a relevance weight for each web graph node as the similarity 
of its document to the query topic. Then this weight was used to regulate each node’s 
hub and authority scores computed by HITS. Their experiments showed that adding 
content analysis could provide appreciable improvements over the basic HITS. 

In Havaliwala’s Topic-Sensitive PageRank [6], some topics were selected from 
predefined categories. For each topic, a PageRank vector was computed. A topic-
sensitive PageRank score for each page was finally computed by summing up 
elements of all the PageRank vectors pertaining to various topics. By adopting these 
topical analysis methods, they captured more accurately the importance of each page 
with respect to topics. 

Nie et al [3] presented a more sophisticated method for incorporating topical 
information to both HITS and PageRank. For each page, they calculated a score 
vector to distinguish the contribution from different topics. Using a random walk 
model, they probabilistically combined page topic distribution with link structure. 

Experiments showed that their method outperformed other approaches. 

2.3   Identification of Web Communities 

Identifying communities on the web is a traditional task for web mining, knowledge 
discovery, graph theory and so on. Gibson et al [9] defined web communities as a 
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core of central authoritative pages interconnected by hub pages and HITS was used to 
identify the authorities and hubs which formed a tightly knit community. 

Kumar [10] represented web communities with community cores, which were 
identified through a systematic process called Trawling during a web crawl. Also with 
the HITS approach, these cores were used to identify relevant communities 
iteratively. 

Flake et al [12] defined a web community as a set of sites that have more links (in 
either direction) to members of the community than to non-members. They proposed 
a maxflow-mincut method for identifying web communities. More details about this 
method will be discussed further in Section 3. 

Ino et al [11] introduced a stricter community definition and defined the 
equivalence relation between web pages. After all the equivalence relations have been 
determined, the web graph can be partitioned into groups using a hierarchical process. 

Lee et al [16] proposed to use content similarity between pages to give nodes 
weights and build new implicit links between nodes in the graph. However, their work 
focused mainly on viral communities and failed to take topical information and 
analysis into consideration.  

3   Maxflow-Mincut Framework 

Flake et al [12] proposed an algorithm for community identification on the World 
Wide Web. Since our topical approach is mainly based on this method, in this section 
we elaborate this method and examine its procedures in detail. 

The web can be modeled as a graph in which web pages are vertices and hyperlinks 
are edges. Flake et al defined a web community as a set of websites that have more 
links to members of the community than to non-members. Also, they devised an 
iterative algorithm to find web communities. In each iteration, four steps are taken as 
follows. 

First, starting from a set of seed pages, a focus crawler initially proposed in [8] is 
used to get a number of web pages through a crawl of fixed depth. 

Then, a web graph is constructed using these web pages as well as relationships 
between them. In common cases, these relationships are represented by an adjacency 
matrix. 

In the third step, one of the simplest maximum flow algorithms, i.e., the shortest 
augmentation path algorithm is run on the web graph and the minimum cut is 
identified. 

The final step involves removing all the edges on the minimum cut found in the 
third step. All the web vertices which are still reachable from the source form a web 
community. In the community, all the pages are ranked by the number of links each 
one has and the highest ranked non-seed web page is added to the seed set. 

These four procedures iterate until the desired iteration number is reached. In this 
paper, we call this algorithm basic maxflow-mincut. An example for basic maxflow-
mincut is shown in Fig. 2(a). The web graph is composed of 10 nodes, each of which 
is marked by an integer. The seed nodes are 1 and 2. For the limit of space, we do not 
show the source and sink nodes. 
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4   Topical Identification of Web Communities 

In the following parts, we first define Topical Weight (abbreviated as TW) to measure 
the topicality of hyperlinks. Based on this weight metric, we improve the basic 
algorithm and propose a topical maxflow-mincut algorithm. 

4.1   Topical Weight for Hyperlinks 

Commonly, several seed pages are used for crawling the web for pages used in 
identification of web communities. We use the TextRank [15] method to 
automatically extract some keywords from these seed pages. Some noisy contents, 
like anchor texts and advertisements, are filtered from these seeds manually. All the 
lexical units, i.e., words in our application, are regarded as vertices in the graph and 
an edge between two words is assumed to exist in the graph if these two words co-
occur in one sentence. The salience score for each word can be calculated through 
iterative computations similar with PageRank [2]. Using a score threshold, some most 
important keywords can be selected to form a set, which is denoted as W. 

Let’s assume that a surfer is browsing page i which has a set of outgoing links O(i). 
A link link(i, j) is point from page i to page j. The more interesting page j is to the 
surfer, the more likely he or she is to follow link(i, j) for the next move. So the weight 
of a hyperlink can be measured by the interestingness of the page it is pointing to. 

Since W can be viewed as a representative description of the topic, the 
interestingness of a page P can be measured by the number of keywords appearing in 
P. So the topical weight of the hyperlink pointing from page i to page j, denoted as 
TW(i, j), can be formally formulated as 

TW(i, j) = α Count(W, j), (1) 

where Count(W, j) is the counting number of keywords appearing in page j and α is a 
regulating factor. For simplification, we set α as 1. 

4.2   Topical Maxflow-Mincut 

As discussed above, basic maxflow-mincut treats every link between nodes equally. 
We define Topical Weight for links and also give a feasible method for calculating a 
hyperlink’s Topical Weight. Therefore, if we have an edge between vertices u and v in 
the web graph G=(V,E), where both u and v are neither the source s nor the sink t, we 
can use TW(u, v) as the weight for this edge. The topical maxflow-mincut algorithm is 
shown in Fig. 1. 

A subtle problem with this algorithm is that TW(u, v), the keyword number, may 
have a very broad value spectrum. So we consider normalizing Topical Weight to a 
value in [1.0, β]. We set the lower bound of this normalization interval to be 1.0 
because Topical Weight is required to be larger than the weight of links pointing from 
non-source and non-seed vertices to the sink. Suppose we have TW in an interval [A, 
B]. Using this normalization strategy, TW will be mapped to a value in [1.0, β] as  

)0.1(0.1)TW( −×
−
−+= β
AB

ATW
normalized . (2) 
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Fig. 1. Topical maxflow-mincut algorithm 

     

                                      (a)                                                              (b) 

Fig. 2. Examples for both basic and topical maxflow-mincut algorithm. (a) An example for 
basic maxflow-mincut algorithm. (b) An example for topical maxflow-mincut algorithm. 

We adopt this normalization operation and use normalized Topical Weight as the 
weight for hyperlinks. The upper bound β is a vital factor for our algorithm and this 
parameter will be tuned systematically to make the algorithm achieve its best 
performance. 

In Fig. 2(b), the nodes are given different weights showing their varied relevance 
to the topic. These weights have a range [1.0, 2.0], where 1.0 means “totally 
irrelevant” and 2.0 means “perfectly relevant”. So each edge in the graph also obtains 
accordingly a weight equal to the weight of the node it is pointing to. We identify a 
community with topical maxflow-mincut algorithm on this web graph. 
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Similarly, the minimum cut is marked with the dashed curve and the edges in blue 
are removed. Compared with Fig. 2(a), a community consisting of three members, 1, 
2, 4, is identified, excluding two totally irrelevant nodes, 8 and 9. This illustrates the 
superiority of our algorithm: by utilizing additional topical information, the algorithm 
can eliminate irrelevant or noise nodes and generate more desirable communities. 

5   Experiment and Evaluation 

5.1   Metrics for Measuring Web Communities 

In order to make our evaluation at a quantitative level, we define some metrics for 
measuring the quality of web communities. Here are several page sets: 

 W：the set of all the pages generated through crawling 
 C：the set of pages in the community generated on W 
 R：the set of pages which are included in W but excluded from C 

So these three page sets have such properties: 

C∈W     R∈W    R=W-C. (3) 

We examine both C and R, and record the number of relevant and irrelevant pages. 
Suppose after manually counting, we discover a relevant pages and b irrelevant pages 
in C. Similarly, c relevant pages and d irrelevant pages are discovered in R. We define 
Purity as the proportion of relevant pages in C to the total number of pages in C and 
Coverage as the proportion of relevant pages in C to the total number of relevant 
pages in W. Formally, Purity and Coverage can be defined as 

Purity(C) = a /(a+b)   Coverage(C) = a /(a+c). (4) 

Purity measures how pure a community is and Coverage evaluates how much the 
community can cover the relevant pages in the whole page set W. From their 
definitions, we can see that either Purity or Coverage just shows one aspect of a 
community. In order to avoid our evaluation being biased towards a single aspect, we 
combine Purity and Coverage, and define F-measure in a usual way 

)()(

)()(2

CCoverageCPurity

CCoverageCPurity
measureF

+
××=−  (5) 

5.2   Data Set 

We select the “data mining conferences” community as our testing case. Our seed set 
consists of three URLs: 

http://www.kdnuggets.com/meetings/ 
http://www.sigkdd.org/kdd2009/ 
http://www.kmining.com/info_conferences.html 

From the contents of these three pages, we extract 39 keywords, which will be used to 
calculate Topical Weight for edges in the web graph. These keywords include 
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terminologies on data mining, names of academic organizations, well-known data 
mining conferences, different types of conferences like “workshop”, “symposium”, 
“conference”, etc., as well as terms frequently used for conference affairs like 
“registration”, “acceptance” and “notification”, etc. 

After crawling, we totally get 389 distinct pages as the data set. Similar to [3], we 
rate manually each page as quite relevant, relevant, not relevant, and totally irrelevant, 
which is assigned the scores of 4, 3, 2 and 1, respectively. We mark pages with scores 
of 4 or 3 as relevant and pages with scores of 2 or 1 as irrelevant. One point which 
should be noted is that we are especially interested in a methodology. Therefore, we 
use a much smaller dataset in our experiment, which makes it feasible for manual 
rating and close examination of score distributions. 

5.3   Parameter Tuning 

The parameter β is the upper bound of the normalization interval [1.0, β]. We tune β 
with values from 2.0 to 10.0 with a step of 0.5. For each value of β, we run topical 
maxflow-mincut algorithm and generate a web community Cβ. For Cβ we calculate its 
Purity, Coverage and F-measure according to their definitions. Fig. 3 shows the 
values of these metrics with different settings of β. We depict the value level of basic 
maxflow-mincut with the dashed line. 

      

                                   (a)                                                                        (b) 
 

 

                                                                       (c) 

Fig. 3. Values of metrics as β is varied. (a) Community Purity as β changes from 2.0 to 
10.0. (b) Community Coverage as β changes from 2.0 to 10.0. (c) Community F-measure as 
β changes from 2.0 to 10.0. 
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Fig. 3(a) demonstrates that with β=4.0, Purity can get its largest value, which 
approximately is 0.62 and gains 15% improvements against the basic algorithm. From 
Fig. 3(c) we can see that when β equals 6.0, the F-measure curve reaches its highest 
point. When β is larger than 6.0, F-measure stays unchanged, confirming that 
increasing β continuously cannot boost the performance anymore. Fig. 3(a) and  
Fig. 3(b) show that when β is 6.0, both Purity and Coverage are larger than that of the 
basic algorithm, though for Purity the improvements are not significant. With β=6.0, 
we get an community containing 66 members, an appropriate size considering the 
total number of the pages in the data set is 389. 

As β varies, Purity displays an opposite changing tendency to that of Coverage. 
For a specific application, it is almost impossible to optimize these two competing 
metrics simultaneously. This demonstrates that both Purity and Coverage are partial 
in measuring a community. Therefore it is more reasonable to use F-measure as our 
major evaluation metric. 

5.4   Performance Evaluation 

Table 1 shows performance comparisons between topical and basic maxflow-mincut 
algorithms. Since F-measure should be our major evaluation metric, we can conclude 
that topical maxflow-mincut improves the performance of basic maxflow-mincut by 
23.041%. However an observation from Table 1 is that topical maxflow-mincut 
improves Purity by less than 0.1%. Since F-measure is a combination of Purity with 
Coverage, the appreciable improvements on F-measure mainly come from Coverage. 
It appears that topical maxflow-mincut improves basic maxflow-mincut only by 
expanding the community and as a result increasing the value of Coverage. Next we 
will prove that besides enlarging the size of the identified community, our algorithm 
indeed improves the topicality quality of the community. 

Table 1. Performance comparison with β=6.0 

Metric Topical Basic Improvement 
Purity 0.5523 0.5400 0.023% 
Coverage 0.3738 0.2727 37.074% 
F-measure 0.4459 0.3624 23.041% 
    

 
We have manually rated all the pages with scores ranging from 1 to 4. In order to 

provide an insight into the score distribution among the community members, we rank 
them into a list and calculate the overall average score. In [12], each page in the 
community was assigned a score equal to the sum of the number of its inbound and 
outbound links and all the pages were ranked according to their scores. For basic 
maxflow-mincut, we take the same ranking scheme. But for topical maxflow-mincut, 
the score of each page is the sum of topical weight of its inbound and outbound links. 
We define S@n as the average score of the first n pages in the ranking result. As the 
size of the community formed by basic maxflow-mincut is 49, we set n to be 5, 10, 15, 
20, 25, 30, 35, 40, 45, 49, and for each value we calculate S@n correspondingly for 
both topical and basic maxflow-mincut. A comparison is made in Fig. 4. For most 
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Fig. 4. Comparison of average score as n is varied 

values of n, S@n of topical maxflow-mincut is higher than that of basic maxflow-
mincut. This superiority is retained until the last member of the basic community. 
So we can conclude that besides expanding the community to improve F-measure, 
topical maxflow-mincut pulls more high-quality and authoritative pages into the 
community as well. Also Fig. 4 shows that another advantage of Topical Weight  
is that it can be used as a more effective metric in ranking members of  
a web community as it can give relevant pages higher positions on the ranking  
list. 

6   Conclusion and Future Work 

In this paper, we make a preliminary attempt to incorporate topical analysis into 
identification of web communities. We use Topical Weight to measure the topicality 
of hyperlinks. By combining Topical Weight with the traditional basic maxflow-
mincut algorithm, we propose topical maxflow-mincut, which is an improved 
algorithm for identification of web communities. Also we define some metrics for 
measuring the quality of web communities. Experimental results show that our 
algorithm achieves improvements over basic maxflow-mincut and is more capable of 
finding high-quality web communities. 

In our future work, we expect to capture the topicality of hyperlinks more 
accurately using other methods like TF-IDF or Topic Signature. We would also 
consider incorporating other types of information, like opinions expressed in the 
contents of web pages, to the analysis of web communities, which may make it 
possible for us to identify communities with sentiment characteristics. 
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Abstract. Research trends in existing event detection schemes using
Wireless Sensor Network (WSN) have mainly focused on routing and
localisation of nodes for optimum coordination when retrieving sensory
information. Efforts have also been put in place to create schemes that
are able to provide learning mechanisms for event detection using classi-
fication or clustering approaches. These schemes entail substantial com-
munication and computational overheads owing to the event-oblivious
nature of data transmissions. In this paper, we present an event detec-
tion scheme that has the ability to distribute detection processes over
the resource-constrained wireless sensor nodes and is suitable for events
with spatio-temporal characteristics. We adopt a pattern recognition
algorithm known as Distributed Hierarchical Graph Neuron (DHGN)
with collaborative-comparison learning for detecting critical events in
WSN. The scheme demonstrates good accuracy for binary classification
and offers low-complexity and high-scalability in terms of its processing
requirements.

Keywords: Event detection, distributed pattern recognition, single-cycle
learning, Distributed Hierarchical Graph Neuron (DHGN), associative
memory.

1 Introduction

Event detection schemes using WSN are being mainly developed with a focus on
routing and localisation of sensory data for achieving event sensing and tracking
capabilities. Existing event detection infrastructure is mostly reliant on single-
processing approach, i.e. CPU-centric, where overall analysis of the sensory data
is carried out at one point i.e. the base station. This architecture introduces two
major problems. Firstly, the communication latency between sensor nodes and
the base station creates substantial communication overhead due to constant
flow of data, re-routing procedures, and relocation of sensor nodes that often oc-
curs in real-time applications. Furthermore, data transmission error is inevitable
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in this approach. Secondly, single-processing approach at the base station can
add significant delays in detecting critical events owing to the computational
bottleneck. It is important for a sensor network that has been equipped with
preventive tools such as mobile fire extinguishers to respond in real-time. Fur-
thermore, with the stochastic nature of events, rapid response time is required
for critical events. This can only be achieved through on-site detection using
some form of distributed processing.

Existing event detection schemes that have been deployed over WSN also
suffer from complexity and scalability issues. These schemes mainly apply con-
ventional neural networks or machine learning algorithms. Although these algo-
rithms provide learning mechanisms for event detection, they require extensive
retraining as well as large amount of training datasets for generalisation. Hence,
this limits the scalability of the scheme for massive sensory data processing.

In this paper, we propose a spatio-temporal event detection scheme using
a distributed single-cycle learning pattern recognition algorithm known as Dis-
tributed Hierarchical Graph Neuron (DHGN) [1,2] that is deployable in resource-
constrained networks such as WSN. Our proposed learning approach works on
the principle of collaborative-comparison learning, where adjacency comparison
technique is applied within a collaborative learning network. We intend to har-
ness the capability of sensor nodes to perform event detection in situ and provide
instantaneous response only when an event of interest occurs. It therefore elimi-
nates the need for sensor nodes to transmit unnecessary sensory readings to base
station and hence reduces the possibility of network congestion.

This paper is structured as follows. Section 2 discusses some of the related works
to event detection schemes and distributed associative memory algorithms.
Section 3 introduces our proposed spatio-temporal recognition scheme with
collaborative-comparison learning for distributed event detection. Section 4 de-
scribes the simulation that has been conducted for event detection using DHGN
and SVM. Finally, section 5 concludes the paper.

2 Event Detection and Distributed Pattern Recognition

Existing research trends show the tendency to apply classification schemes for
event detection by using either artificial neural networks (ANNs) or machine
learning approaches. Kulakov and Davcev [3] proposed the implementation of
Adaptive Resonance Theory (ART) neural network for event classification and
tracking. The scheme reduces the communication overhead by allowing only
cluster labels to be sent to the base station. However, the implementation incurs
excessive learning cycles to obtain optimum cluster/class matches. Catterall et
al. [4] have proposed an implementation of Kohonen Self-Organising Map (SOM)
in sensory data clustering for distributed event classification within WSN. SOM
implementation provides an avenue for each sensor node to pre-process its read-
ings. Nevertheless, this pre-processing would sometimes incur massive iteration
process to obtain an optimum result. Radial-Basis Function (RBF) neural net-
work has been proposed for dynamic energy management within WSN network
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for particle filter prediction by Wang et al. [5]. RBF has been proven to offer fast
learning scheme for neural networks. However, its learning complexity and accu-
racy is heavily affected by the training method and network generation method
being used, e.g. K-means clustering or evolutionary algorithms.

In distributed recognition perspective, Guoqing et al. [6] have proposed a mul-
tilayer parallel distributed pattern recognition model using sparse RAM nets.
Their scheme performed accurately for non-deterministic patterns. However, the
implementation suffered from large memory space allocation. The works of Ikeda
et al. [7] and Mu et al. [8] have demonstrated a two-level decoupled Hamming as-
sociative memory for recognising binary patterns. Their findings have shown high
recall accuracy for noisy pattern recognition. However, the algorithm incurs high
complexity due to sequential comparison of input patterns. On machine learn-
ing implementation, Cheng et al. [9] have introduced Distributed Support Vector
Machines (DSVMs) in their work on chaotic time series prediction. Their work
demonstrated SVM implementation as a combination of submodels that could
be combined to provide high accuracy outputs. However, this approach has cre-
ated an expensive computational model to be deployed in resource-constrained
networks such as WSN.

3 DHGN Classifier for Event Detection

This section describes the overall structure of DHGN classifier that has been
proposed for the spatio-temporal event detection scheme.

3.1 DHGN Network Architecture

DHGN architecture consists of two main components namely DHGN subnets and
the Stimulator/Interpreter (SI) Module, as shown in Fig. 1. SI module acts as a
network coordinator/manager for DHGN subnets, while each subnet comprises
a collection of processing neurons (PNs) within a hierarchical structure [1].

DHGN recognition algorithm works through divide-and-distribute approach.
It divides each pattern into smaller subpattern decompositions. These subpat-
terns are sent to available subnets for recognition process. Given a pattern
p with length m and number of possible value v, the number of processing
neurons (PNs), Pn required is obtained from (1).

Pn = dnv

( m
dn

+ 1
2

)2

. (1)

dn represents the number of DHGN subnets allocated within the network. Sub-
sequently, for a given number of PNs within the network, the maximum input
size m is derived from the following equation:

m = dn

(
2
√
Pn

dnv
− 1

)
. (2)
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Fig. 1. DHGN network architecture comprises two main components namely DHGN
subnets and the SI module. Decomposition of a pattern into subpatterns is done
through the SI Module to simulate sensory pattern input operation of a real WSN.

The PNs within DHGN subnets are structured in a hierarchical manner, similar
to the Hierarchical Graph Neuron (HGN) [10] approach. Each layer within the
DHGN subnet is populated with PNs. The number of layers, Ln, required within
each subnet is given by (3):

Ln =
m
dn

+ 1

2
. (3)

3.2 DHGN Pattern Representation

DHGN adopts pattern representation approach proposed by Nasution and Khan
[10]. Each pattern is represented using a two-dimensional (value, position) rep-
resentation. Consider binary patterns given in a memory set {p1, p2, ..., pm},
where each pi pattern is an N -bit binary vector, i.e. pi ∈ {0, 1}N , i = 1, 2, ...,m.
Each pattern pi is in the form of {(v1, l1), (v2, l2), ..., (vN , lN )} for N -bit pattern,
where v and l represent value and position respectively. Each processing neuron
handles a specific value and position pair for a given pattern.

Pattern storage scheme for DHGN involves abstract data structure known as
bias array. This data structure is located on each processing neuron within the
DHGN architecture. It stores the information on the unique relationship between
the neuron’s adjacent neighbours, i.e. a unique composition of all values ob-
tained from its adjacent neurons. These values are retrieved using collaborative-
comparison learning approach. For each processing neuron n, its bias array is
in the form of vector {(i1, v1v2...vm), (i2, v1v2...vm), ..., (ik, v1v2...vm)}, where
i represents the bias index for each entry (ia, v1v2...vm), a = 1, 2, ..., k. Each
bias entry v1v2...vm represents unique v value composition from m adjacent
neurons.
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3.3 Collaborative-Comparison Single-Cycle Learning

We adopt an adjacency comparison approach in our learning scheme using simple
signal/data comparisons. Each PN holds a segment of the overall subpattern.
Collectively, these neurons will have an ability to represent the entire subpattern.
Consider the following base-level DHGN subnet structure as shown in Fig. 2. The
five PNs, where each is responsible to capture its adjacent neurons’ values, will
be able to store the entire pattern “ABCDE”. If we link up these neurons in
a one-dimensional structure, we are able to determine collaborative PNs that
contain a memory of pattern “ABCDE”. We call this approach as collaborative-
comparison learning.

Our collaborative-comparison learning approach compares external signal from
surroundings against the stored entries within each PN’s bias array, which is a
local data structure containing history of adjacent node activation. In this con-
text, each PN learns through comparisons among the signals from its adjacent
neighbours and the recorded entries within its memory i.e. the bias array. Con-
sider a bias array S = (s1, s2, ..., sx) which consists of signal entries s with index
x. If external signal sext matches any of the stored entries, i.e. sext ∈ S, then the
respective bias index i of the matched si entry will be recalled. Otherwise, the
signal will be added into the memory as sx+1. There are two-fold advantages us-
ing this approach. Firstly, it minimises data storage requirement. Secondly, the
proposed approach accepts all kinds of data. For instance, the signal could be
in the form of data vectors or frequency signals, allowing spatial and temporal
data to be accommodated. In addition, our proposed learning technique does
not require synaptic plasticity rule used by other learning mechanisms, such as
the Hebbian learning [11] and incremental learning [12] approaches. Thus new
patterns can be learnt without affecting previously stored information.

Fig. 2. Collaborative-comparison learning approach for one-dimensional pattern
“ABCDE”. Each activated processing neuron (PN) stores the signals received by its
adjacent neurons.
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3.4 DHGN for Event Detection within WSN

In this subsection, we explore the capability of DHGN classifier for event detec-
tion within WSN. Our implementation involves matching each DHGN subnet
into each sensor node for on-site recognition, while SI Module is allocated at the
base station.

DHGN Event Recognition. Our scheme only requires binary input patterns.
We consider multiple sensory readings that are used to detect the occurrence
of critical events. Given a set of x sensory readings {r1, r2, ..., rx} where ri ∈ R

and i = 1, 2, ..., x, we perform a dimensionality-reduction technique known as
threshold-signature that converts each reading value to its respective binary
signature. The threshold-signature technique utilises the threshold classes to
represent a single data range into a binary format. Given a sensory reading ri
where i = 1, 2, ..., x and H-threshold class, the equivalent binary signature that
implies bi → ri is in the form of bi ∈ {0, 1}H . Therefore, for x-set sensory readings
{r1, r2, ..., rx} will be converted into a set of binary signatures {b1, b2, ..., bx}. The
following data in Table 1 shows samples of temperature threshold range with its
equivalent binary signature.

If the output index from DHGN subnet matches the stored pattern for the
critical event, then a signal is transmitted to the base station in the form of data
packet (node id, timestamp, class id). The class id parameter is the identifica-
tion for class of event that has been detected. At a given time t, the base station
might receive a number of signals from the network.

Table 1. Temperature threshold ranges with respective binary signatures

Temperature Threshold Range (◦C) Binary Signature
0 - 20 10000
21-40 01000
41-60 00100

Fig. 3. Spatio-temporal analysis of event data received by base station. Note that the
distribution and frequency of critical event detected could be determined through the
signals sent by each sensor nodes. The dashed arrow shows the direction in time as
the event occurs within the network.
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Spatio-temporal Analysis of Event Data. The spatio-temporal analysis
involves a process of observing the frequency and distribution of triggered events
within WSN network. This process is conducted at base station, since it has a
bird’s eye view of the overall network. Fig. 3 shows a scenario of spatio-temporal
analysis within our proposed scheme.

4 Simulation and Results

In this section, we present the simulation results of an event detection scheme
within WSN using our proposed classification approach on the sensory data

Table 2. Threshold classes with respective value range used in the tests

Threshold Range Class
Noise Level ≥ 25 Event

Light Exposure Level ≥ 100
Noise Level < 25

Non-event
Light Exposure Level < 100

(a) Smart-It 1 (b) Smart-It 2

(c) Smart-It 5

Fig. 4. DHGN event detection results for test using 1690 sensor datasets (x-axis) for
Smart-It 1, 2, and 5. Note that Smart-It 3 and Smart-It 4 were not included, since they
produced non-events with noise and light exposure readings well below the threshold
values (T-Light and T-Noise).
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(a) Smart-It 1 (b) Smart-It 2

(c) Smart-It 5

Fig. 5. Comparison between DHGN and SVM recall accuracy using ROC analysis

taken from Catterall et al. [4]. The data relates to the readings of five Smart-It
wireless sensor nodes that detect various environmental conditions such as light,
sound intensity, temperature, and pressure. We performed a test to detect the
occurrences of light and sound simultaneously. The simulation involves assigning
a DHGN subnet to each Smart-It sensor data. We have performed recognition
tests over 1690 datasets. For comparison, we have also conducted similar tests
using support vector machine (SVM) implementation. We have used SVMLight
[13] implementation with both linear-type and 2-degree polynomial kernels.

Our simulation runs under parallel and distributed environment using our
own parallel DHGN code with MPICH-2 message-passing scheme on High Per-
formance Computing (HPC) cluster. DHGN retrieves sensory readings in the
form of binary representation using the threshold-signature technique discussed
in Section 3. Table 2 shows our adopted threshold classes.

Fig. 4 shows the results of the recognition test that we have conducted on
this sensor dataset (for Smart-It 1, 2, and 5). We have performed a Receiver
Operating Characteristic (ROC) analysis on both DHGN and SVM classifiers.
ROC analysis focuses on finding the optimum classification scheme for a given
problem, based on the trade-off between true positive results (TPRs) and false
positive results (FPRs). Fig. 5 shows comparisons between the ROC curves of
DHGN and SVM respectively for sensory data from Smart-It 1, 2, and 5 (TPR vs
FPR). SVM classifiers use a set of six readings, while DHGN only uses datasets
with two entries.
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Fig. 6. Changes in the event status detected by SI module with a spatio-temporal
perspective. Each node with its spatial coordinates is shown. The highlighted symbols
represent the triggered nodes.

From these results, we can see that polynomial SVM produces slightly better
results than the linear approach (for Smart-It 1, 2, and 5). This shows that
SVM approach depends heavily on the types of kernel being implemented and
the nature of data used. This data dependency problem limits the flexibility of
SVM for event detection within WSN. DHGN on the other hand, offers efficient
dimensionality reduction using our simple threshold-signature technique.

We later extended our simulation to include the proposed spatio-temporal
recognition process. Fig. 6 shows some snapshots of the Smart-It network con-
dition for a predefined times. Note the occurrence of events within this network.
For instance, at time t3, only sensor node 2 has sent a signal to the base station,
denoting an occurrence of event while at t336, the event has spread out to node 1
and 5. This form of spatio-temporal recognition is still at its preliminary stage.

5 Conclusion

The dual-layer spatio-temporal recognition scheme for distributed event detec-
tion has been presented in this paper by utilising DHGN as the single-cycle learn-
ing algorithm for event detection within WSN networks. DHGN collaborative-
comparison learning approach minimises the need for complex learning and hence
it is suitable for lightweight devices such as wireless sensor nodes. We have also
shown that DHGN performs better recognition accuracy than SVM for WSN.
We presented a preliminary approach for spatio-temporal recognition, which can
be further developed for the WSN using the DHGN framework.
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Square Root Unscented Particle Filtering for
Grid Mapping

Simone Zandara and Ann Nicholson

Monash University, Clayton 3800, VIC

Abstract. In robotics, a key problem is for a robot to explore its envi-
ronment and use the information gathered by its sensors to jointly pro-
duce a map of its environment, together with an estimate of its position:
so-called SLAM (Simultaneous Localization and Mapping) [12]. Various
filtering methods – Particle Filtering, and derived Kalman Filter meth-
ods (Extended, Unscented) – have been applied successfully to SLAM.
We present a new algorithm that adapts the Square Root Unscented
Transformation [13], previously only applied to feature based maps [5],
to grid mapping. We also present a new method for the so-called pose-
correction step in the algorithm. Experimental results show improved
computational performance on more complex grid maps compared to an
existing grid based particle filtering algorithm.

1 Introduction

This paper addresses the classical robotics problem of a robot needing to ex-
plore its environment and use the information gathered by its sensors to jointly
produce a map of its environment together with an estimate of its position:
so-called SLAM (Simultaneous Localization and Mapping) [12]. SLAM is an in-
herently sequential problem, which suggested the use of Bayesian Filters. Early
path tracking methods such as the Kalman Filter (KF) [12] are based on the
idea that, given knowledge about the position and heading of a moving object,
observed data can be used to track that object; the problem becomes more dif-
ficult when the sensors are mounted on the moving object itself. The Extended
KF (EKF) [12] is a successful method for modeling the uncertainty of a robot’s
noisy measurements (e.g. encoders, range finders), however it is unstable and im-
precise because of linearization[1]; the Unscented KF (UKF) [8,15] avoids such
approximation.

Particle filtering is a popular sequential estimation technique based on the
generation of multiple samples from the distribution that is believed to approxi-
mate the true distribution. Studies have shown that particle filtering can better
approximate a robot’s real position than KF techniques, but the method is com-
putationally intense because every particle is updated through a lightweight KF
derived technique. Particle filtering has been used successfully to solve SLAM for
both grid and feature based maps [12]. Grid maps generate a representation of
the surrounding (usually closed) environment through a grid of cells, using raw
sensor data for precisation. In contrast, feature based maps describe a (typically
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open) environment through a set of observed features, usually sensor readings
(e.g. range and bearing).

Unscented Particle Filtering [13] for SLAM [7] has been successfully applied
to feature based mapping. It mixes Particle Filtering and UKF by updating
particles using an unscented transformation, rather than updating the uncer-
tainty through Taylor linearisation of the update functions. Our research draws
from this wide spectrum of KF and particle filtering algorithms; in Section 2 we
provide a brief introduction (see [16] for more details). We present a new algo-
rithm (Section 3) which we call SRUPF-GM (Square Root Unscented Particle
Filtering for Grid Mapping) to adapt Unscented Particle Filtering to grid based
maps. We also present a new method for the so-called pose-correction step in
the algorithm. In Section 4 we present experiments comparing its performance
to the well-known GMapping algorithm [2], on three grid environments. Our re-
sults show that while SRUPF-GM is slower on simpler maps, it is faster on more
complex maps, and its performance does not degrade as quickly as GMapping
as the number of particles increases.

2 Background

2.1 Particle Filtering for SLAM Problem

The main idea behind Particle Filtering applied to SLAM [11] is to estimate
sequentially the joint posterior p(xt,m|xt−1, zt, ut) for the robot’s state x (which
is usually its position X , Y and bearing θ), and the map of the environment m.
This is done using its previous state (x at time t − 1), odometry information
(u at time t), that is, the robot’s own measurements of its movements from its
wheels, and the measurements from sensors (z at time t), e.g. lasers, sonars, etc.
p(xt,m|xt−1, zt, ut) has no closed solution. In Particle Filtering, its estimation

can be decomposed by maintaining a set of n poses, S, that make up a region of
uncertainty (a Monte Carlo method); these poses are called particles [10]. Each
particle has its own position, map and uncertainty; the latter is represented by a
Gaussian defined by its position μ (mean) and covarianceΣ. The generated distri-
bution is called the proposal. The proposal is meant to represent the movement of
the robot and is usually derived from u and z. It is proven that to solve SLAM the
noise that is inherent in the odometry and sensor readings must be modeled; all
SLAM algorithms add a certain amount of noise to do this. The final set of parti-
cles becomes the robot’s final pose uncertainty ellipse. Another key characteristic
of Particle Filtering is resampling, which aims to eliminate those particles which
are believed to poorly represent the true value. This resampling is done using a
weighting mechanism, where each particle has an associated weight. A high-level
description of the particle filtering algorithm is given in Algorithm 1.

2.2 Unscented Transformation

The odometry update in particle filtering can be implemented in different ways;
thus far the most well-known technique is based on an EKF update, which
unfortunately introduces unwanted complexity and error [1]. The Unscented
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Algorithm 1. Particle filtering algorithm
while Robot received data from sensors do

for all xi in S do
Apply odometry to update robots position(xi,ut)
Apply sensor measurement to correct pose(xi,zt)
Generate Map(xi,zt)
xi updated by sampling new pose
Update Weight(xi)

end for
S = resample();

end while

Transformation (UT) [15] aims to avoid Jacobian calculations and has been proved
to better approximate the true values. Instead of linearizing odometry and mea-
surement functions, the UT generates a better approximated Gaussian that repre-
sents the true distribution through a set of so-called Sigma points. It has been used
to generate feature based maps using laser or visual sensors [8,5]. Sigma points are
generated deterministically using the previous mean and added noise.

Known Problems. The Unscented Transformation is proven to be more accu-
rate than EKF, but its calculation is difficult. During the selection of the Sigma
points one needs to calculate the square root of the augmented covariance ma-
trix; this is usually done through a Cholesky Factorization. However, this method
needs the matrix to be positive-defined, otherwise the method dramatically fails.
Unfortunately, after several updates, the matrix may become non-positive [4].
Different solutions have been proposed; here, we look at one such solution, the
Square Root Unscented Transformation method [14]. In this method, the square
root of the covariance matrix is propagated during the updating sequence; this
requires a number of other changes in the updating algorithm. Complexity is
also reduced from O(N3) to O(N2) for N Sigma points.

3 The New Algorithm: SRUPF-GM

The Unscented Particle Filter (UPF) as described in [7,5] is an algorithm for
feature based maps. Here we combine elements of the UPF with aspects of
the GMapping Particle Filtering algorithm [2] to give an improved algorithm,
SRUPF-GM (see Algorithm 2), for SLAM with grid based maps.

3.1 Updating Robot’s State Using Odometry Information

All SLAM filters add noise when updating the state using the robot’s odometry
information. While investigating the most recent GMapping implementation [3],
we found differences from the method reported in [2]. For example, rather than
updating using a KF method, they approximate it, generating the noise around
four independent pre-defined zero-mean Gaussians. While fast, this does not
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Algorithm 2. SRUPF-GM Update Step Algorithm
Input: previous state set S =< x[t−1,0], ..., x[t−1,n] >, sensor zt and odometry ut data
at time t;
{Cycle through all particles}
for all xi in S do

{Sigma Point Generation}
xaug = [xi 0 0]
covaug = [covi Cholesky(Q)]
SP = [xaug xaug + γ(covaug)i xaug − γ(covaug)i−n] for i=0 to 2n
{Odometry Update Step, function f}
for all xj in SP do

< v, δ > = ut

V = v + xj [3]
G = δ + xj [4]

xj =

⎛⎝Xxj + V × cos(G + θxj )
Yxj + V × sin(G + θxj )

θxj + G

⎞⎠
add(ST,xj)

end for
xi =

∑2n
i=0 ωcxj for all xj in ST

covi = QRDecomposition(< xj − xi >) for j = 1 to 2n
covi = CholeskyUpdate(covi, x0 − xi, w0)
{Measurement Update Step, Map Generation and Weight Update}
if measurementoccurs then

< xi, covi > = scanmatch(xi, zt)
Generate Map(xi,zt)
Update Weight(xi)

end if
xi = sample new pose(xi, cov′

i × covi) {Final Update Step}
end for
if variance of particle weight is above threshold then

S = resample() {Resampling Step}
end if

provide the mean and covariance information we need. Instead, we replace the
GMapping odometry update step with a more accurate Square Root Unscented
Transformation update step. We augment the mean and the covariance, which
are then used to compute the Sigma points (SPs):

μaug =
[
μt−1

0

]
, Σaug =

[
Σt−1 0

0
√
Q

]
(1)

where Q is the added noise matrix and is constant for every update step. SPs
spi are then calculated using the augmented covariance matrix:

sp0 = μaug (2)
spi = sp0 + (γΣaug)i i = 1, ...., n (3)

spi = sp0 − (γΣaug)i−n i = n+ 1, ...., 2n (4)
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γ controls how fast uncertainty increases. The SPs are passed through the odom-
etry function f that incorporates the noise and odometry information to generate
vectors spi of size 3 (X,Y, θ).

spi = f(spi, ut) i = 0, ..., 2n (5)

The new mean is calculated from the set of SPs. The covariance is calculated
with a QR Decomposition of the weighted deltas between the SPs and the new
mean.

μ =
2n∑
i=0

ωgspi (6)

Σ = QRDecomposition
[√
|ωc|(spi − μ)

]
i = 1, ...2n (7)

Σ = CholeskyUpdate (Σ, sp0 − μ, ω0) (8)

where ωg and ωc are weights on the SPs;1 our weight system follows [5]. Finally,
we add randomness; the particle’s new pose is sampled around the Gaussian
generated by:

xi ∼ N (μ,ΣtΣ) (9)

3.2 Measurement Update

Gmapping’s measurement update step uses laser information both to correct
the robot’s pose and to generate the map. While we keep the map generation
unchanged, we changed the measurement update step. Our method uses the
usual UT measurement update step but with a different pose correction method.

Uncertainty Decrement. SPs are passed to the measurement update function
h, which acts as a lightweight pose corrector and returns the best SP ν.

ν = h(spi, zt) (10)

Σμ,ν =
2n∑
i=0

√
ωc(spi − μ)(spi − ν)t (11)

Σν = QRDecomposition
[√
|ωc|(spi − ν)

]
i = 1, ...2n (12)

Σν = CholeskyUpdate (Σν , sp0 − ν, ω0) (13)

Σμ,ν is the cross covariance between the newly calculated mean and the previ-
ously calculated mean (with odometry). The last step is then to calculate the
final mean and covariance:

K = Σμ,ν [ΣνΣ
t
ν ]−1 (14)
μ = ν (15)

Σ = CholeskyUpdate
(
Σ,KΣt

ν,−1
)

(16)
1 Not to be confused with the particle weights.
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(a) (b)

Fig. 1. (a) GMapping pose correction, initial step. Δ is divided by two until a better
pose is found. (b) SRUPF-GM pose correction delta uses uncertainty ellipse.

where K is the Kalman Gain. We do not want to perturbate the final mean, as
the scan matcher returns the best pose, so μ is just the best Sigma point. The
finalΣ is decreased withM successive Cholesky updates using all theM columns
of the resulting matrix KΣt. No sampling is done after the scan-matching step.

Pose Correction. One reason GMapping works quite well is due to its accu-
rate pose-correction step. The pose corrector generates a number of deterministic
samples around a particle’s mean and tries to find the best pose within a given δ.
Pose correction checks, for every measurement update, if the particle is generat-
ing a consistent map. It uses the scan-matching method that incorporates a new
scan into particle’s existing map to generate a weight. This value is also used
to weight the particle. Our square root unscented particle approach works quite
well with no accurate pose correction (function h) on simple maps, however more
challenging maps do require a pose-correction step. Thus SPs are no longer used
to search for the best pose, instead their mean is taken as the starting point.

Our pose correction follows GMapping’s with the difference that the δ on
which the deterministic samples are generated depends on the covariance covt

generated during the odometry update. This makes the computation faster than
the original GMapping pose-correction, because it searches for the best pose
inside the covariance ellipsis, whereas Gmapping version searches over a user
pre-defined δ that would eventually include a huge number of improbable poses.
Note that (10) in this case is omitted. Figure 1 illustrates the intuition behind
our pose-correction approach compared to GMapping pose-correction.

4 Experiments

We tested two versions of the new SRUPF-GM algorithm – with and without
pose correction – against the original GMapping implementation. Each algorithm
was tested on three different grid-map SLAM problems provided by the Radish
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Repository [6] in CARMEN [9] format. Each problem consists of a dataset gen-
erated by the sensors of a robot driven around by a human controller, inside a
building. The dataset consists of odometry and laser scan readings.

The Radish Repository does not provide a real map neither in an image
format nor in an accurate sensor form. Hence it was not possible to compare the
algorithms in terms of the quality of the map (for example by generating an error
measure). Therefore, we compare the algorithms firstly by whether they achieve
the main goal of generating a consistent map. The consistency test assessed
whether the overall shape of the map follows the real map, by visually inspecting
an image of the results. Secondly, we compared the computation time of the
algorithms. Each result reported for the following experiments is the mean of the
computational time calculated for 10 runs. To explore the relative computational
performance of the algorithms, we also varied two important parameters: (1) the
number of particles, and (2) the amount of added noise.

4.1 Experiment 1

The first test was done on a very simple map, generally squared with one single
loop and no rooms, as shown in Figure 2(a). For this experiment, we used 30 parti-
cles, and the noise parameters were linear 0.1, angular 0.2. (The noise parameters
were chosen through preliminary investigations which showed, coincidentally, that
these were the best values for all three algorithms.) Table 1 shows the difference
in computational time. As one can see, on this simple map, Gmapping is quite
fast even using its pose-correction method. SRUPF-GM without pose correction
is faster than GMapping, while SRUPF-GM with pose correction is slower, as ex-
pected, due to the complexity introduced by the QR and Cholesky computations.

(a) (b) (c)

Fig. 2. (a) NSH Building, (b) Cartesium Building, (c) MIT CSAIL



128 S. Zandara and A. Nicholson

Table 1. Expt 1: Computation time (30 particles, 10 runs)

Algorithm Average Computation Time (sec) Std. Deviation
SRUPF-GM without pose correction 17.3140 0.2340

GMapping 21.7994 0.3635
SRUPF-GM with pose correction 27.2739 0.5679

(a) (b)

Fig. 3. Expt 2 (above) and Expt 3 (below) comparing SRUPF-GM with and without
pose correction (pc/npc) to GMapping, increasing (a) no. of particles (b) added noise

4.2 Experiment 2

In the second experiment the same algorithms were applied to a dataset of
medium difficulty, shown in Fig. 2(b). This map increases the difficulty due to the
robot’s path, which generates a number of loops; closing a loop in the right way
is not a simple task. We minimized the error and the number of particles for each
algorithm for which it was always successful (generating a consistent accurate
map). In this experiment, we varied the noise parameters and the number of
particles to explore the resultant changes in computational time.

Figure 3(a)(above) shows that the computation time for all the algorithms
increases linearly in the number of particles, however GMapping’s results have
the largest gradient. Increasing the number of particles is necessary to increase
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precision. Figure 3 (b)(above) shows the variation of time when increasing the
odometry noise. Note that we had to use different minimum added noise for
each algorithm; the added noise is algorithm-specific as it depends on how the
odometry incorporates this noise into the model function. As the noise is in-
creased, SRUPF-GM with no pose correction shows no significant difference, the
computation time for GMapping increases, while the time for SRUPF-GM with
pose correction decreases. The explanation for this is found in the pose correction
function: by searching inside the uncertainty ellipse SRUPF-GM avoids checking
improbable pose. On the other hand, if the ellipse is too small SRUPF-GM may
search in vain, hence SRUPF-GM always requires added noise that is not too
low. For all the algorithms, increasing the added noise across these values did
not decrease accuracy. Of course if the added noise is too high, all the algorithms
may no longer find a solution; this ‘too high’ noise value depends on both the
algorithm and the map.

4.3 Experiment 3

In this last experiment, a relatively complicated map was used, still relatively
small in area but with an irregular shape and numerous loops in the path. This
dataset was taken in the MIT CSAIL building (see Figure 2(c)). On this dataset
SRUPF-GM with no pose correction always failed to generate a consistent map
(regardless of the number of particles and the amount of noise). Hence it is clear
that pose correction is actually needed to generate more difficult maps. This fact
of course makes SRUPF-GM without pose correction unusable unless the map
complexity is known a priori (a rare case). Results are shown in Fig. 3(below).
The difference in the computational time is even more pronounced than for the
simpler maps, with the computation time again increasing linearly as the number
of particles is increased. And again, SRUPF-GM performs better as the noise
increases, while GMapping takes longer.

5 Conclusions and Future Works

In this paper, we have presented an improved particle filtering algorithm for
solving SLAM on grid based maps. We used as our starting point the GMapping
particle algorithm which has been shown (as we confirmed), to generate very
accurate maps even for large scale environments. To improve this algorithm,
we took aspects from the square root Unscented particle filtering algorithms,
previously only applied to feature based maps. We adapted this as required for
grid based mapping, increasing the precision during the odometry update as well
as decreasing the computation time required for pose correction. One obvious
future step is to obtain suitable test datasets that give the real map in a form
that allows accurate error measurements to be computed, which will allow us to
compare the quality of the resultant maps more accurately. We expect to be able
to improve the computation time of SRUPF-GM’s pose correction and further
optimize the overall algorithm. We envisage these improvements being based on
topological hierarchical methods that should decrease the computation time by
focusing the accuracy on smaller submaps.
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Abstract. Image analysis is being adopted extensively in many applications 
such as digital forensics, medical treatment, industrial inspection, etc. primarily 
for diagnostic purposes. Hence, there is a growing interest among researches in 
developing new segmentation techniques to aid the diagnosis process.  Manual 
segmentation of images is labour intensive, extremely time consuming and 
prone to human errors and hence an automated real-time technique is warranted 
in such applications. There is no universally applicable automated segmentation 
technique that will work for all images as the image segmentation is quite 
complex and unique depending upon the domain application. Hence, to fill the 
gap, this paper presents an efficient segmentation algorithm that can segment a 
digital image of interest into a more meaningful arrangement of regions and 
objects.  Our algorithm combines region growing approach with optimised 
elimination of false boundaries to arrive at more meaningful segments 
automatically. We demonstrate this using X-ray teeth images that were taken 
for real-life dental diagnosis.   

Keywords: Image segmentation, Region growing, False boundary, Automatic 
diagnosis, Digital forensic. 

1   Introduction 

A segmentation algorithm partitions a digital image into sets of pixels or segments 
(objects) and it has wide applications where certain objects in an image are required 
to be identified and analysed. Hence, several general-purpose image segmentation 
algorithms have been developed and there is a growing interest in this research area 
[1]. However, none of these general-purpose techniques could be adopted to any 
application effectively without modifying it to suit the domain area [2]. In medical 
diagnosis, factors of image modalities such as noise, bad illumination, low contrast, 
uneven exposure and complicated 3D structures call for an automated image 
segmentation that would serve as a significant aid to make real-time decisions quickly 
and accurately [3]. Even today, X-rays are being used extensively in medical 
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diagnostics as a safe and affordable imaging technique.  Hence, in this study, we 
concentrate on developing an efficient algorithm for image segmentation in X-ray 
images for one such application, namely, dental diagnosis. 

In dental diagnosis, an image contains several objects and each object contains 
several regions corresponding to different parts of an object [4]. Hence, it is essential to 
separate objects of interest from the rest and further, to identify regions of interest (ROI) 
in each object [5]. With an increasing requirement of diagnosing many dental anomalies 
that are not seen during visual examination, automatic segmentation of teeth X-ray 
images would be highly desirable. However, automatic segmentation is quite challenging 
since there is ambiguities in defining ROI in dental images due to factors such as weak 
edges and varied non-standard [6]. In this paper, we present a novel segmentation 
algorithm that combines region-growing method along with optimised elimination of 
false boundaries using texture features to solve the image segmentation problem in X-
ray images of teeth. The proposed algorithm results in meaningful segments that are 
generated automatically and efficiently to support timely dental diagnosis. The 
working of the algorithm is demonstrated using X-ray teeth images that were taken 
for real-life dental diagnosis. The algorithm being generic in nature could be applied 
for other types of diagnostic applications. For example, in digital forensics, image 
analysis of teeth structures could be used for identifying a person uniquely. Moreover, 
since a database of textures is developed automatically for the domain application 
while performing the iterations of the region-growing process, our proposed generic 
algorithm could be applied for other domain areas as well.   

2   Significance of the Study 

In modern dentistry, X-rays are able to show problems that exist below the surface of 
a tooth and hence X-rays are very essential in doing a complete and thorough dental 
examination. They are especially important in diagnosing serious conditions early to 
allow for effective treatment. X-rays show bone anatomy and density, impacted teeth, 
decay between the teeth, how extensive the decay is or whether an abscess is present.  
Hence, in digital X-ray images of teeth the most important problem is to find these 
regions of interest (ROI) that are meaningful arrangements within the objects. 

Existing segmentation algorithms for X-ray teeth images predominantly 
concentrate on applications such as forensics and human identification problems 
where the ROI are the teeth and their arrangement [5], [7], [8] However, these 
approaches do not suit the aforementioned problem of dental diagnosis, since they 
segment only the teeth and not parts of teeth that are decayed or gums with lesions, 
and even any ROI between teeth or bones that may require dentist’s attention. Some 
recent research have proposed semi-automatic framework for detecting lesions as ROI 
in X-day teeth images [9], [6]. Such methods require manual interventions as they use 
a series of filtering operations where the expert inputs the training parameters to 
introduce some intelligence into the model, and hence could be laborious. 

In the segmentation of X-ray teeth images for aiding in dental diagnosis, arriving at 
a fully automated algorithm is challenging due to the following major inherent 
problems: 
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Fig. 1. X-ray image showing different structures of healthy teeth 

i) teeth structures (Figure 1) are complicated and hence we cannot have standard 
set of objects to be matched unlike in other applications, 

ii) low contrast and uneven exposure in teeth X-ray images result in the intensities 
of gums, bones and teeth to be very close and 

iii) any noise in data  affects the algorithm in identifying the edges between teeth, 
bones and gums. 

To address these problems, we propose a fully automated algorithm that understands 
how homogeneous regions are formed for identifying meaningful ROI in X-ray teeth 
images for dental diagnosis. Our algorithm is effective in separating the gum lines, 
crown and root parts of the teeth and lesions or decay in these regions automatically. 
We believe that our improved image segmentation algorithm would be a significant 
contribution in this area of dental diagnosis and other applications that require 
identification of ROI automatically.  

3   Related Works 

From literature survey, we observe that traditional image segmentation algorithms fall 
under three main categories as follows: 

• Histogram thresholding - assumes that images are composed of regions with 
different gray ranges, and separates it into a number of peaks, each 
corresponding to one region. In most cases the threshold is chosen from the 
brightness histogram of the region or image that we wish to segment and in 
some cases a fixed threshold of 128 on a scale of 0 to 255 might be sufficiently 
accurate for high-contrast images [10].   

• Edge-based technique - uses edge detection filters such as Sobel and Canny 
[11]. Resulting regions may not be connected, and hence edges need to be 
joined.  
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• Region-based approach - considers similarity of regional image data. Some 
of the more widely used approaches in this category are: thresholding, 
clustering, region growing, splitting and merging [12].  

We conducted an experimental study on the ability of these algorithms (implemented 
in Matlab Version 7.0 [13]) to detect meaningful regions and objects in X-ray teeth 
images. We limit the scope of this paper by providing here only the summary of 
observations that have led us towards our proposed algorithm. In X-ray teeth 
segmentation, histogram thresholding could be mainly used to separate foreground 
from background as we are unable to find many regions of interest due to single 
peaks. The Canny method of edge-based detection is quite effective in identifying 
edges, but does not provide all the meaningful objects of X-ray teeth images for 
aiding in dental diagnosis. The region growing methods are quite effective in 
grouping pixels that have similar properties as regions, but finding the appropriate 
seed and properties of objects in X-ray teeth images are quite difficult. Further, 
different choices of seed may give different segmentation results and if the seed lies 
on an edge, ambiguities arise in the growth process. 

There is much research work conducted on hybrid algorithms that combine more 
than one image segmentation technique to bridge the inherent weaknesses of either 
technique when used separately. In algorithms that combine histogram thresholding 
and region-based approaches, there is scope for an improved and effective 
segmentation by introducing textural features as well. Some effective algorithms that 
adopt boundary relaxation approach on coarsely segmented image using experimental 
thresholding along with region growing are tailored mainly for colour pixels. Hence, 
the existing hybrid algorithms that make use of histogram thresholding for region 
growing are not suitable for X-ray teeth images. Similarly, hybrid algorithms that 
combine region growing methods with edge-detection techniques are either 
computationally expensive or suitable more for colour models [14].   

To overcome the above mentioned problems, hybrid algorithms are being designed 
recently, to be semi-automatic with expert intervention for enhancing the filtering 
process [6], [9]. However, if such algorithms are applied to automatically detect ROI 
of dental problems, they take long processing time and arrive at results with confusing 
ROI. Figure 2 shows the X-ray teeth image indicating ROI required for dental 
diagnosis and Figure 3 shows how the existing semi-automatic algorithms (edge 
based detection – Figure 3a or region growing based algorithms – Figure 3b) arrive at 
segmenting the image to different ROI.  Hence, they are not effective in detecting 
dental problems such as tooth decay. 

 
Fig. 2. X-ray image showing ROI 
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(a) Edge-based technique   (b) Region-based approach 

Fig. 3. Results of existing segmentation algorithms  

The summary of results from these experiments conducted on X-ray teeth images 
have highlighted the weaknesses and drawbacks present in existing image 
segmentation algorithms that are based on histogram thresholding, edge-detection, 
region-based methods and even hybrid approaches. Hence, to fill this gap, we propose 
an efficient algorithm that automatically segments X-ray teeth images effectively into 
meaningful regions that are essential for dental diagnosis. 

4   Proposed Image Segmentation Algorithm 

The first and foremost problem in dental X-ray images is that the teeth structures are 
complicated and there are no standard objects to match with. However, our proposed 
algorithm could build database of objects or textures with intensity ranges for teeth, 
gums, bones, etc. The second problem of low contrast and uneven exposure in teeth 
X-ray images that result in very close intensities of gums, bones and teeth could be 
solved through our algorithm as it adopts morphological enhancement of the contrast 
in the image to increase texture differentiation among these teeth structures. Finally, 
any noise in data that could affect in identifying the edges of teeth, bones and gums 
are overcome in our algorithm as it uses a region growing method based on an 
adaptive homogeneity measurement rather than a fixed thresholding and further, the 
region growing is optimised by the elimination of false boundaries. We develop a flag 
matrix that holds the same value for pixels in one ROI and differs in flag-value from 
any other ROI. We calculate the horizontal variance and vertical variance of 
intensities to determine the homogeneity measure within a 4-connected 
neighbourhood. This homogeneity measure is used in the region growing method 
where we adopt horizontal and vertical directions of search to find a close region 
(neighbourhood object). In other words the minimum of the variance is considered for 
region growing direction with satisfying conditions on the flag property and the 
homogeneity measure. We also refine the region’s boundary using a measure of the 
texture features and quad tree data structures found along the boundary and its 
neighbourhood.   
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In our proposed algorithm, we adopt the following three steps: 

Step 1: Contrast Enhancement 
 
Contrast enhancement not only helps in separating the foreground and the 
background but also solves the problem of low quality dental radiographs where it 
is difficult to discriminate among the teeth structures such as, bones, gums, crown 
and root. It also leads to good variability of the intensity degrees among regions 
for better segmentation. This is because the intensity is enhanced towards the 
edges and evened out with average values around noisy regions or uneven 
exposures [15]. We perform a transformation of I (x,y), a given gray-scale image 
to an enhanced image I’(x,y).of gray-scale range 0 to 255 as follows: 

i) I’min  (x,y) = 0 and I’max  (x,y) = 255 (indicating white and black as extreme 
contrasts). 

ii) I’(i,j) > a such that i ∈  [i-d, i+d] and j ∈  [j-d, j+d] (to map grey-scale in the 
neighbourhood of (i,j) of radius d with same homogeneity measure of value a). 

iii) Sum of Histograms of transformed image < Sum of Histograms of original 
image  (guarantees that the contribution of the range of gray scales around (i,j) 
decreases after enhancement). 

 
Step 2: Region Growing  
 
For region growing, we use the method of arriving at regions by choosing a seed 
(one or more pixels) as the starting point for a region and, iteratively merging 
small neighbouring areas of the image that satisfy homogeneity criteria. When the 
growth of one region stops, the flag matrix and database matrix get updated and 
another seed that does not yet belong to any region is chosen and the merging 
iteration starts again. In each iteration, we check if there is any match of any 
region with the database objects or textures. This whole process is continued until 
all pixels of the image belong to some region or the other.  

We start with a seed as a single pixel and merge regions if the properties 
(homogeneity measure) of neighbouring pixels are preserved. This is done by 
exploring the intensity variance horizontally and vertically in the transformed 
image. Let us denote the gray-scale matrix of the transformed X-ray teeth image 
by I’(i, j) ∈  [0, 255] where (i, j) ∈  [1,m] × [1,n] (with m and n being height and 
width of the image). Horizontal variance is calculated as |I’(i,j) – I’(i,j+1)| and the 
vertical variance is computed as |I’(i,j) – I’(i+1,j)|. Then the difference between 
horizontal and vertical variances is calculated to find the minimum variance. Two 
matrices called, the flag matrix, F(x,y) with minimum variances in a 
neighbourhood and the database matrix, D(x,y) with different textures are 
developed as the algorithm goes through the iterations. The flag matrix, F(x,y) 
stores same flag value (homogeneity measure) for all the pixels in a region. The 
flag values are calculated by first taking the homogeneity measure of the seed 
pixel as the starting value. Subsequently, the flag value gets refined as the iteration 
progresses by averaging it with that of the neighbouring pixel arrived at. The 
neighbouring pixel is determined by finding the minimum variance in the 
horizontal and vertical neighbourhood (as described above). The database matrix, 
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D(x,y) gets updated and grows from one iteration to the next to contain the 
segmentation textures of the different teeth structures. Once such a database is 
developed as a lookup catalog, it becomes very useful in improving the processing 
time for segmenting X-ray teeth images by matching textures from the database. 
 
Step 3: Optimised Elimination of False Boundaries 
 
Since region growing methods are susceptible to generation of false boundaries 
that tend to consist of long horizontal and vertical pixels, we adopt a boundary 
refinement procedure to optimise the iterations in the region growing process of 
step 2. This is achieved by calculating a measure of textures (α) and a measure of 
quad tree structures (β) along the boundary (B) as given below: 
 
    α = ( ∑ Texture Features along B ) / ( Length of B ) 
  
   β = ( # More than one Pixel across B and in direction of B ) / ( Length of B) 
 
A merit function is calculated as α + w β, where w is the relative weight associated 
with these two measures. Boundaries that have small merit function values are 
discarded as false boundaries. This step optimises the iterations by the elimination 
of false boundaries.  Note that an appropriate weight w is determined through pilot 
test cases. 

5   Experimental Results of Proposed Algorithm 

A three-step procedure of our proposed algorithm described above was adopted to 
conduct an experimental study on 20 X-ray teeth images that had various lesions and 
dental caries that could be difficult to diagnose such as occlusal caries (decay on 
upper surface), interproximal caries (decay between teeth), lingual caries (decay of 
the surface of lower teeth), palatal caries (decay of the inside surface of upper teeth), 
cementum caries (pulp decay) and recurrent (secondary) caries. As a first step, the 
contrast enhancement of these images helped in accentuating the texture contrast 
among dental structures such as teeth, gums and bones and the edges between them. 
Figure 4a shows the transformed image as a sample X-ray teeth image.   

In step 2, the transformed X-ray teeth images went through the region growing 
iterative algorithm for separating the ROI in the image. The flag and database 
matrices were used to provide different colour schemes for the various segmented 
regions in the teeth structures as the final result. Mainly, all normal teeth structures 
were given shades of blue colour and decayed regions were given red colour.  
Figure 4b shows the final segmented output of the sample X-ray teeth image 
indicating the decayed region in red colour. The result demonstrates that our proposed 
algorithm has automatically and effectively segmented the ROI that are essential for 
dental diagnosis as these were verified by dentists as well. 
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(a) Contrast enhancement (b) Segmented image showing decay 

Fig. 4. Results of our proposed segmentation algorithm 

6   Conclusions and Future Work 

Image segmentation plays an important role in various diagnostic situations. 
However, with the increasing number of images to be processed in real-life 
applications such as digital forensics or medical diagnosis, an automated 
segmentation of images would aid experts in identifying the problems accurately and 
quickly to take follow-up actions effectively. This research has taken the first step 
towards addressing this automatic segmentation problem. In this paper, we have 
proposed a fully-automatic segmentation using region growing approach with 
optimised elimination of false boundaries. We conducted an experimental study of 
our algorithm using dental X-ray images as they provide complex and varied 
structures with no well-defined contours of teeth problems. The results of the study 
have demonstrated that our proposed algorithm have automatically segmented X-ray 
teeth images effectively. 

Through the experimental pilot study on X-ray teeth images, we observe that our 
algorithm was performing better when more images were tested. This is because, the 
database of textures that was automatically developed during the process had aided in 
improving the speed of the segmentation process later on. The database of textures 
formed could serve as a useful lookup table to reduce the processing time 
significantly.   

Our future work would be to analyse the performance of our algorithm on large 
sample sizes and to ascertain its real-time capability and effectiveness in segmenting 
all types of teeth defects and even fillings and other types of teeth structures. We also 
plan to determine its suitability and effectiveness in other areas of medical diagnosis 
and more importantly in digital forensics, where individual identity could be based on 
biometric features such as teeth structures. 
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Abstract. We describe an approach to finding regions of a texture of
interest in arbitrary images. Our texture detectors are trained only on
positive examples and are implemented as autoassociative neural net-
works trained by backward error propagation. If a detector for texture
T can reproduce an n × n window of an image with a small enough
error then the window is classified as T. We have tested our detectors
on a range of classification and segmentation problems using 12 textures
selected from the Brodatz album. Some of the detectors are very accu-
rate, a small number are poor. The segmentations are competitive with
those using classifiers trained with both positive and negative examples.
We conclude that the method could be used for finding some textured
regions in arbitrary images.

1 Introduction

As digital cameras, mobile phones and computers become more common, more
and more people are taking and storing digital images. The problem of finding
a particular stored image is becoming more and more difficult. Content Based
Image Retrieval (CBIR) systems [1] are attempting to solve this problem using
a wide variety of image features. Many images contain textured regions, for
example, surf breaking on a beach, a waterfall, a brick building, grass on a
sports field and trees in a forest. We are interested in whether using texture can
increase the accuracy of retrieval for queries like “Find the picture of the family
in front of the waterfall that we took on our holiday a few years ago” or “Find
that photo of our son playing hockey when he was in primary school”. While
some CBIR systems include some texture features in the hundreds of features
they use, there is little evidence that the texture features are particularly useful.

Our use of texture will be quite different to the way it is used in CBIR systems.
Such systems typically compute a number of Gabor or Wavelet features [2] on
the whole image (sometimes image segments) and use feature values in finding
a matching database image to the query image. Our approach will be to learn a
classifier for a small window of the texture of interest (T ), to apply the classifier
as a moving window to a database image and report that an image in the data
base contains T only if a large enough region of T is detected.

A. Nicholson and X. Li (Eds.): AI 2009, LNAI 5866, pp. 140–149, 2009.
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(a) D21 (b) D24 (c) D34 (d) D57
French Canvas Pressed calf leather Netting Straw Matting

Fig. 1. Four Brodatz textures. These were used in [4].

There is no generally agreed definition of texture. For our purposes we consider
a texture to be an image, or a region in an image, in which a basic visual unit
is repeated. In synthetic textures the repeating unit is replicated exactly, for
example a checkerboard. In a natural texture the repeating unit is repeated with
some variation, for example, blades of grass or pebbles. A considerable amount
of work on texture is done with the Brodatz album [3]. The album contains a
large variety of natural textures, some highly regular, some very irregular. We
have chosen a number of the more regular textures. Some of these are shown in
Figure 1.

Most work on learning a classifier requires examples of the class of interest
and examples that are not in the class of interest. The learnt classifier is required
to distinguish the two classes. A number of texture classification systems of this
kind have been built, for example, [2,5]. There is a major problem in using this
approach to find a texture T in an arbitrary image since there are many more
examples in the non T class. This leads to unbalanced training sets and increased
classification error as many of the test/unseen examples are nothing like the ones
in the training set. Our goal is to solve these kinds of problems with classifiers
by using only examples of the texture of interest in the training data.

1.1 Research Questions

Our overall goal is to determine whether a texture detector for a texture T ,
trained on only examples of T , is able to find regions of T in arbitrary images,
as in Figure 3, for example. In particular, we will address the following research
questions:

1. How can a neural network be used to recognize a texture using only examples
of the class of interest? What is a suitable neural network architecture?

2. How accurately can the texture of interest be located in a mosaic of other
textures? How does this accuracy compare with classifiers that have been
trained with examples of all textures?

3. How accurately can the texture of interest be located in arbitrary images?
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2 Related Work

2.1 Texture Classification and Detection

Texture classification is the task of taking an image and determining which one
of a set of textures it belongs to, for example, distinguishing the 4 classes rep-
resented in Figure 1. Texture segmentation is the more difficult task of finding
regions of a texture in an arbitrary image, as in Figure 3. There are literally
hundreds of publications addressing these tasks. Most of the approaches rely
on first computing a set of features such as grey level co-occurrence matrices,
Gabor features and wavelet features. Wagner [2] has compared 15 different fea-
ture sets on a subset of the Brodatz textures. Recent work that uses features in
conjunction with a neural network classifier is described in [6,7,8].

2.2 Learning from Examples of One Class

In recent years there has been increasing interest in learning classifiers from
examples of only one class. In the web area, for example, in learning what kinds
of pages are of interest to a user, it is very easy to collect positive examples,
but there are billions of negative examples. How should they be selected to learn
an accurate classifier? Similar problems arise in intrusion detection, document
classification and finding objects in images.

In a situation where all the data are numeric, learning a classifier is equivalent
to delineating one or more regions in multi-dimensional space. Data points within
these regions will be classified as positive and data points outside these regions
will be classified as negative. The difficulty with learning from positive only
examples is over-generalization, that is, having regions that are too big. This
happens because there are no negative examples to clearly mark the boundaries.
Neural network classifiers, as they are normally used, need both positive and
negative examples.

A variety of approaches have been tried for learning from examples of one
class. There is a stream of work using one class support vector machines based
on a method originally presented in [9], for example [10]. In [11], this method
is applied to a simple texture classification problem. In [12] a co-evolutionary
approach is described, one population evolving positive examples, the other neg-
ative examples in an attempt to define the boundaries more precisely. A approach
in which potential positive and negative examples are evolved a multi-objective
algorithm which maximizes separation of clusters and minimizes overlap of
clusters is described in [13].

3 Learning a Texture Classifier

Our basic idea is to use a multi-layer neural network, trained by backward er-
ror propagation, as an auto associative network (Figure 2b). The input patterns
will be n× n windows of the texture of interest. The desired output is the same
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(a) Patterns are n × n (b) Network Architecture

Fig. 2. Training Patterns and Network Archiecture

as the input. We expect that a network trained for texture T will be able to
reproduce unseen examples of T with a small error and that this will not be
possible for examples that are not from T . The process of classifying an unseen
example E will be to pass E, though the network. If the reproduction error is
less than a threshold, thresT then E is classified as an example of T , otherwise
it is classified as ‘other’.

3.1 Data Preparation

As noted above, the training examples consist of n × n windows cut out at
random from a large image of the texture of interest, as shown in Figure 2a. A
training example is constructed by representing the pixels in the window as a
vector, scaling to the range [0, 1] and duplicating the inputs as the outputs. For
example, for a window size of 10 × 10 a training pattern will have 100 inputs
and 100 outputs. These training examples need to be generated for all textures
of interest.

Clearly the performance of the detector will depend on the value chosen for
n. If n is too small, not enough of the variability of the texture will be captured
for accurate classification. If n is too big it will not be possible to find a region of
this texture in an image unless the region is at least n×n. Furthermore, training
and detection times will increase.

3.2 The Training Algorithm

Generating a detector for texture T involves training a neural network in the
standard way and then finding a suitable threshold. The methodology is:

1. Generate a training data set of N examples, as described in the previous
section.

2. Generate a validation data set of M examples.



144 V. Ciesielski and V.P. Ha

3. Choose the number of hidden layers and the number of nodes in each layer.
Generate a network with random initial weights.

4. Choose values for learning rate and momentum. Use backward error propa-
gation to train the network. Stop when the error on the validation set begins
to rise.

5. Determine the threshold. Compute the error for each example in the valida-
tion set, sort the errors, find the value 95% of the way down the list. This is
the threshold.

In practice using the validation set was inconvenient and we simply stopped
training at a maximum number of epochs.

Choosing a threshold value requires a decision on the tradeoff between true
positive and false positive rates. We considered a number of options for choosing
the threshold: (1) The largest error on a training example when training stopped.
(2) The largest error on a validation example. (3) The average error on the train-
ing/validation data. (4) The value which will give true positive rate of 95% and
a corresponding false positive rate of 5% on the validation set. We chose option
(4) as a reasonable overall compromise. However, further work on optimizing the
choice of threshold could improve subsequent detection performance.

4 Segmentation by Texture

A classifier trained by the above algorithm will be a useful detector if it can
locate areas of the texture of interest in arbitrary images. We use the following
algorithm to generate a segmentation. The segmentation is represented as a
binary image in which black pixels represent the texture of interest and white
pixels represent other. An example is shown in Figure 3c. Our algorithm to find
regions of texture T in image I:

1. For each pixel (except edge pixels) in I
(a) Centre an n× n window on this pixel.
(b) Scale each pixel to [0, 1] and pass to the detector for T .
(c) Compute error
(d) If error is less than the threshold for T label this pixel black, else label

it white.
2. [Optional] Blob analysis to remove tiny regions.
3. Write the binary image.

More sophisticated strategies are possible to improve the segmentation, for ex-
ample, removing singletons and very small regions which are most likely false
positives, or the kinds voting strategies as used in [4]. We use the above segmen-
tation algorithm because we are primarily interested in detecting the presence
of a texture rather than an accurate segmentation.
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5 Experiments and Results

In this section we describe a series of experiments to determine a suitable network
architecture, to determine whether classifiers trained for one texture can reject
examples of other textures, and to determine whether a texture can be detected
in an arbitrary image.

For this work we chose twelve textures from the Brodatz album [3]. The full
set of electronic images and descriptions can be found in [14]. Selection criteria
included a reasonably regular repeating unit and potential to compare with
previous work on texture detection/segmentation. All of our experiments used
the SNNS system [15].

5.1 Network Architecture

Our goal in this part of the work is to determine a suitable neural network
architecture and training strategy (research question 1). We experimented with a
wide range hidden layers and different numbers of hidden nodes in the layers. For
this set of experiments the window size was 10× 10, training set size was 1,600,
test set size was 900, the learning rate was 0.4, momentum was not used and
training was stopped at 10,000 epochs. Table 1 shows the results for a number
of different architectures. Somewhat surprisingly we found that one hidden layer
always gave the smallest training and test errors. The number of units in the
hidden layer gave varied accuracies; generally choosing approximately the same
number of hidden nodes as the number of inputs gave a good trade off between
accuracy and training time.

5.2 Discriminating between Different Textures

Our goal in this part of the work is to determine how well our generated clas-
sifiers can discriminate different textures (research question 2). For this set of

Table 1. Determining the number of hidden layers and nodes

D1 D6 D22 D49 D65 D77 D82 D101
100-100-100

Training MSE 0.01 0.01 0.05 0.02 0.02 0.02 0.04 0.02
Test MSE 0.06 0.07 0.1 0.09 0.04 0.05 0.05 0.03

100-50-40-100
Training MSE 0.03 0.11 0.31 0.02 0.06 0.31 0.33 0.11

Test MSE 0.14 0.16 0.5 0.3 0.15 0.25 0.42 0.17
100-60-60-100
Training MSE 0.02 0.05 0.19 0.03 0.04 0.15 0.17 0.07

Test MSE 0.12 0.16 0.36 0.24 0.1 0.17 0.27 0.1
100-60-30-60-100
Training MSE 0.04 0.17 0.31 0.02 0.08 0.31 0.35 0.12

Test MSE 0.21 0.26 0.9 0.42 0.25 0.38 0.6 0.42
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Table 2. Detection rates (in percentages) for 12 detectors trained on 12 textures

D1 D6 D21 D22 D24 D34 D49 D57 D65 D77 D82 D101
Thres 2.0 1.23 2.0 7.1 1.595 0.74 2.3 1.9 0.56 1.48 3.9 5.1
D1 96.13 0 3.29 94.30 32.95 0 4.91 82.30 0.41 0 28.93 5.52
D6 0 96.14 0 0.01 0.03 0 0 0 0 15.46 0 0
D21 0 0 95.94 0 0 0 0 10.52 0 0 0 0
D22 0 0 0 95.56 0.09 0 0 0.34 0 0 0 0
D24 0 0 0 99.97 95.92 0 0 0.07 0 0 99.39 0
D34 1.53 0 3.96 20.91 0.03 96.25 17.62 99.9 4.23 0 0 0
D49 0.04 0 3.89 2.3 0 0 95.08 60.7 0 0 0 0.56
D57 0 0 0 38.47 0.15 0 0 94.6 0 0 0 0
D65 43.32 0 10.61 97.33 71.79 0 53.3 99.9 96.35 0 2.86 11.28
D77 0 0 0 2.86 0.55 0 0 0 0 95.92 0 0
D82 0 0 0 97.72 11.49 0 0 6.25 0 0 96.04 0
D101 0 0 0 0 0 0 0 0.01 0 0 0 96.04

experiments the window size was 15× 15, training set size was 1,225, validation
set size was 2000, test set size was 10,000, the learning rate was 0.4, momentum
was not used and training was stopped at 10,000 epochs. Table 2 shows the
results of applying the detectors to a new set of test data, generated indepen-
dently from the training and validation data. Each row shows the performance
of a classifier on a test data set. For example, applying the D1 classifier to the
D1 test data gives a detection rate of 96.13%. This is expected due the method
of setting the threshold described in section 3.2. Applying the D1 classifier to
the D6 test data gives a detection rate of 0%. This is a perfect result, none of
the D6 examples has been misclassified as D1. Applying the D1 classifier to the
D22 test data gives a detection rate of 94.3%. This is a very poor result as most
of the D22 examples are being accepted as D1. Interestingly the D22 detector
applied to D1 test data is perfect, there are no errors. Overall the picture painted
by Table 2 is very promising. All of the diagonal elements are around 95% as
expected. Off the diagonal there are many zeros and small percentages indicat-
ing accurate rejection of foreign textures by a classifier. However, there are some
bad spots. Texture D22, reptile skin, appears to be particularly difficult. While
the D22 detector itself is very accurate (horizontal row) many other classifiers
falsely accept D22 as their texture. The situation with D57 is somewhat similar.
Possibly a larger window size is needed for these textures.

Figure 3 shows a direct comparison between our examples-of-one-class ap-
proach (column c) and prior work which used classifiers trained only on examples
of the two textures involved (column b) [4] on a texture segmentation problem
with irregular boundaries (column a). Our method has captured the texture re-
gions as accurately as [4], however the region boundaries are not as accurate due
to our simple approach to segmentation. It is important to note the this is a
significant achievement as the method of[4] used a specific classifier trained only
to distinguish the two textures of interest. Our method uses a classifier trained
to distinguish its own texture from any other image.

The results of this section indicate that our one class method can be compet-
itive with two/multiple class methods.
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(a) Input (b) Output of [4] (c) Our output

Fig. 3. Segmentation of texture in different shapes - comparison with Song’s work

5.3 Texture Detection in Arbitrary Images

In this paper we use the Corel Volume 12 image data set. This is a collection
of about 2,500 images. They are the kinds of photographs a tourist might take
while on holiday in another country. There are images from a number of countries
including Nepal, France, Sweden and the USA. The image size is 384×256 pixels.

Our goal in this part of the work is to determine how well our generated
classifiers can find regions of their texture in arbitrary images (research question
3). We did this in 2 ways: (1) Classification of image windows cut from randomly
selected images, and (2) Segmentation of randomly selected images into which
a region of the texture of interest had been pasted.

In the case of (1) we used the Corel Volume 12 image data set [16]. This is
a collection of about 2,500 images. They are the kinds of photographs a tourist
might take while on holiday in another country. There are images from a number
of countries including Nepal, France, Sweden and the USA. The image size is
384× 256 pixels. We randomly cut 4 windows from each of these images giving
a test set of size 10,000. The false detection rates for each of the 12 texture
detectors descibed in the previous section are shown in Table 3. This gives us
an indication of the kinds of false positive rates that could arise in searching for
these textures in arbitrary images. While some of these rates appear high, many

Table 3. False detection rates (in percentages) for detectors on random images

D1 D6 D21 D22 D24 D34 D49 D57 D65 D77 D82 D101
15.25 14.97 3.13 53.68 48.21 0.89 5.5 25.52 7.39 44.46 26.12 5.30
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(a) Input image (b) Output image

Fig. 4. Very good performance in finding a region of texture D24 in a complex image

of these will be eliminated by step 2 of the segmentation algorithm described in
Section 4.

In the case of (2) we randomly pasted arbitrary shaped regions of the 12 tex-
tures into a number of arbitrarily selected images and then ran the segmentation
agorithm. Figure 4 shows one of the outcomes. While we only used a small num-
ber of images of this kind, the results suggest that our expectation that many
of these false detections would be discarded as singletons or a very small regions
by a more sophisticated segmentation algorithm, is a reasonable one.

6 Conclusions

We have shown that it is possible to find regions of a specific texture in arbi-
trary images, using detectors trained only on positive examples of the texture of
interest. The detectors are 3 layer auto associative neural networks, trained by
backward error propagation. If a network reproduces an input texture window
with a small enough error, the window is classified as a positive example. Texture
detectors trained in this way have achieved high accuracy on texture segmenta-
tion tasks involving a mosaic of textured regions. The accuracy is competitive
with classifiers trained with positive and negative examples. The texture detec-
tors have achieved good performance in detecting the texture class they have
been trained for in arbitrary images.

Further work is needed to determine whether better thresholds can be found
for the detectors and whether a more sophisticated segmentation algorithm will
give better segmentation performance. Our results suggest that learning textures
from images selected from data bases such as Google images and Flickr and using
the detectors in image retrieval is worth exploring. Also, it is worth exploring
whether the method could be used to find objects in images, rather than textures.
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Abstract. Quickly learning and recognising familiar objects seems al-
most automatic for humans, yet it remains a challenge for machines. This
paper describes an integrated object recognition system including several
novel algorithmic contributions using a SIFT feature appearance-based
approach to rapidly learn incremental 3D representations of objects as
aspect-graphs. A fast recognition scheme applying geometric and tempo-
ral constraints localizes and identifies the pose of 3D objects in a video
sequence. The system is robust to significant variation in scale, orienta-
tion, illumination, partial deformation, occlusion, focal blur and clutter
and recognises objects at near real-time video rates.

1 Introduction

The problem of object recognition is a long standing challenge. Changes in scale,
illumination, orientation and occlusions can significantly alter the appearance of
objects in a scene. Humans easily deal with these subtle variations but machines
notice these changes as significant alterations to the matrix of pixels representing
the object.

There are two broad approaches to 3D object representation: object-based -
3D geometric modeling, and view-based - representing objects using multiple 2D
views. In this paper we report on the development and evaluation of a system
that can rapidly learn a robust representation for initially unknown 3D objects
and recognise them at interactive frame rates. We have chosen a view-based
approach and identified the Scale Invariant Feature Transform (SIFT) [1] as a
robust local feature detector, which is used as the computer vision primitive in
the object recognition system. In the learning phase a video camera is used to
record footage of an isolated object. Objects are learnt as a graph of clustered
‘characteristic’ views, known as an aspect-graph.

Our contribution is an integrated vision system capable of performing generic
3D object recognition in near real-time. We have developed a fast graphics pro-
cessing unit (GPU) implementation of SIFT for both building a view-based
object representation and later for rapidly recognising learnt objects in images.
The system uses an approximate kd-tree search technique, Best-Bin-First (BBF)
[2], to significantly speed up feature matching. Additional innovations include: a
method to aggregate similar SIFT descriptors based on both a Euclidean distance

A. Nicholson and X. Li (Eds.): AI 2009, LNAI 5866, pp. 150–159, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 1. Ten sample objects (left). Part of the ‘Mighty-Duck’ circular aspect-graph
(right).

threshold and a reduced nearest-neighbour ratio; a view clustering algorithm ca-
pable of forming rich object representations as aspect-graphs of temporally and
geometrically adjacent characteristic views; and an improved view clustering
technique using bounding boxes during the learning phase.

The system was evaluated using one to ten objects, each generating about
35 views. Figure 1 shows the ten objects used in our experiments and some of
the adjacent views of the generated aspect-graph for the Mighty-Duck object.
Recognition speed measurements demonstrate excellent scaling. Our evaluation
found the system robust to object occlusion, background clutter, illumination
changes, object rotation, scale changes, focal blur and partial deformation.

2 Background and Related Work

Many approaches to 3D object recognition can be found in research literature.
A recent survey [3] has concluded that there are as many approaches as there
are applications. We only discuss a small subset relevant to our approach.

Local image features usually comprise an interest-point detector and a feature
descriptor. One such highly discriminatory feature is the Scale-Invariant Feature
Transform (SIFT) [4]. SIFT features are widely adopted because of their ability
to robustly detect and invariantly define local patches of an image. Their limi-
tations are that they cannot adequately describe plain untextured objects, their
speed of extraction is slow, and their high dimensionality makes the matching
process slow. Nevertheless, SIFT is a successful multi-scale detector and invari-
ant descriptor combination. It has been used in object recognition with severe
occlusions, detecting multiple deformable objects, panorama stitching and 3D
reconstruction.

View-clustering is the process of aggregating similar views into clusters repre-
senting the characteristic views of the object. Lowe [5] performs view clustering
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using SIFT features and unlike 2D object recognition, features vote for their ob-
ject view as well as their neighbour views. There are several limitations to this
solution. New features are continually added, potentially creating a scalability
problem. The unsupervised clustering cannot recover the orientation of the ob-
ject. The approach assumes that input object images are a random sequence of
images, disregarding any possible temporal link between consecutive frames.

In contrast to view-clustering, view-interpolation explicitly attempts to inter-
polate the geometric changes caused by changes in the viewing direction. Revaud,
et al. [6] apply linear combination theory to the framework of local invariant fea-
tures. Their model is constructed by forming a homography of features from two
nearby object views. On a modest PC, recognition of objects in 800×600 images
can be achieved in under half a second. In comparison, the system described here
can recognise objects at 12 frames per second using 640× 480 images.

The characteristic views of a 3D object can be related using an aspect-graph.
An aspect-graph is a collection of nodes representing views, connected by edges
representing small object rotations. Aspect-graphs can be used to cluster sil-
houette views of 3D models based on their shape similarity [7]. This method
cannot be directly applied to general 3D object recognition as real objects dis-
play much more information than just their boundary contours. Possibly closest
to our approach is Noor et al.’s [8] aspect-graph for 3D object recognition based
on feature matching and temporal adjacency between views.

3 System Description/Implementation

The goal is to rapidly learn the representation of 3D objects with a few training
examples, and rapidly recognise the objects and their orientation from unseen
test images. The assumptions are that: objects have some texture; images are
available for each object without occlusion or background clutter in the training
phase; and the camera and objects move slowly relative to each other to produce
crisp images. We limit the scope to ten real objects as shown in Figure 1 and
view objects around a single plane.

The learning process in the vision system allows for the incremental formation
of object representations. The learning algorithm is iterated over all frames in
the video stream so that a multi-view object representation can be formed for
a single object. This process is repeated for each object to be learnt. Figure 2
depicts the stages of the learning algorithm applied to each training frame.

Capture Frame. A rotating platform captures views of the object at 15 frames
per second, producing an image every half-degree of rotation.

Segment Object. Determines a bounding box around the object within the
entire image frame by colour separating the distinct fluoro background. This
step ensures that the system learns the object within the image frame and
not the entire frame itself.

Extract Features. Applies SIFT to identify and describe local key-points in
the object image. A SIFT feature is composed of a key-point (x, y, σ, θ) and
a 128-dimensional descriptor.
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Capture
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Form View
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SIFT
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Image Bounding Box SIFT FeaturesScene

Fig. 2. The stages of the object learning algorithm illustrated with the ‘dino’ object

Form View Representation. Stores a collection of the extracted features. The
(x, y) co-ordinates of the features are recorded relative to the segmentation
bounding box.

Update Object Representation. Stores the view and associated features
in the object database. If the newly formed view significantly matches an
existing learnt view, it will be discarded.

The recognition process involves the steps depicted in Figure 3:

Capture Frame. Captures an image from the camera or video.
Extract Features. Finds SIFT features in the entire frame.
Determine View Matches. Matches extracted features to features in the

object database. Matches are grouped by views of the object that they are
likely to represent. The implementation parameterises affine, perspective and
similarity transforms, mapping key-points in a model-view to a test-view.
Geometric verification is applied to each of the view-groups to identify the

Capture
Frame

Extract
FeaturesImage

Determine
View Matches

SIFT
Features

Apply
Adjacency
Constraints

View
Bounding
Boxes

Output
Recognition

View
Bounding
Boxes

Image SIFT Features View Bounding Box

Fig. 3. The stages of the object recognition algorithm, illustrated with the ‘dino’ object
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transformation that maps key-points in the stored view to key-points in
the test frame. The transformation-model is used to place a bounding-box
around the view of the object in the test-frame.

Apply Adjacency Constraints. Determines whether a change in the view
of an object in the test frame is permissible using the aspect-graph. If the
detected views over time do not correspond to a traversal of the aspect-graph,
the views are rejected.

Output Recognition. The final results of the recognition correspond to
bounding-boxes around the successfully detected objects.

We have developed a GPU implementation of SIFT that is 13 times faster (24
frames per second) and 94% accurate compared to the OpenCV implementation.
It is almost twice as fast as the leading publicly available GPU implementation
[9] when run on the same hardware. A full account of the GPU implementation
of SIFT is beyond the scope of this paper.

A SIFT feature is said to correspond to or match another feature if the two
descriptors are similar. We use the nearest-neighbour ratio strategy [1] that
rejects matches if the ratio of the distance between a feature’s nearest-neighbour
and second nearest-neighbour is high. We also use a Euclidean distance metric
to stop distant features from ‘matching’ during the initial construction of the
feature database. To avoid this method from rejecting valid matches to similar
SIFT features in different views we store unique view-keypoint pairs in our object
model database.

Finding the two nearest neighbours of the test descriptor in the collection
of descriptors stored in the database is O(n) and hence prohibitively expensive.
We have implemented an approximate kd-tree, Best-Bin-First (BBF) search. The
accuracy varies with the number of bins searched, typically 200 [1,4]. We exper-
imentally found a hyperbolic relationship between the accuracy of the search
and the maximum number of bins searched, m (Figure 4(a)). By comparing the
accuracy results to the speed results (Figure 5 (b)), we trade-off a 200% speed
improvement with a 5% loss in accuracy by reducing m from 200 to 50. This
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Fig. 4. Left: The accuracy of BBF increases with the number of bins searched. Right:
the reduction in accuracy with increased feature numbers.
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Fig. 5. Left: BBF search speed is almost constant whereas the full nearest-neighbour
search is proportional to the number of features. Right: BBF searching 50 bins is
significantly faster than searching 200 bins. Error bars are not shown as the standard
errors are an order of magnitude smaller than the timing value.

approach is approximately 90% as accurate as linear searching but over 100 times
faster for datasets as large as 20,000 features (Figure 5 (a)).

The major difference between our view-clusering approach from [5] is the use
of RANSAC [10] to simultaneously develop a geometric model and reject outliers.
We cluster views based on how closely they are related by a geometric transform
and record view clusters that are geometrically adjacent - related by a geometric
transform, and temporally adjacent - consecutive views in the training video-clip.
A view is considered geometrically identical to another if it is possible to build
a similarity transform to map corresponding key-points using an error tolerance
of εidentical pixels. If the error tolerance in pixels is greater than εidentical but
less than εadjacent then the view is part of a geometrically adjacent cluster.

Two views can have many features in common yet not be similar, for exam-
ple when an object has the same motif on two sides. To avoid clustering these
views we use a bounding box matching technique. The error in the view match-
ing bounding box relative to the segmentation bounding box can be measured
by considering the distance between each corner of the match-box to the cor-
responding corner of the segmentation-box. We require each match-box corner
to lie within β% of the corresponding segmentation-box corner. This ensures
that the tolerance for bounding box matching is proportional to the size of the
bounding box. If a view does not sufficiently match the segmentation bounding
box it is not clustered and is stored as a new characteristic view.

As recognition is performed on a continuous stream of frames, it is possible
to assume that the location and pose of an object through time will remain
temporally consistent and there are no rapid changes in the location or pose of
the object through time. Restrictions can be imposed to eliminate random view
matches which are not temporally consistent. Rather than develop explicit tem-
poral features, temporal consistency is enforced by ensuring consecutive frames
from a test video sequence of an object are consistent with the aspect-graph.
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4 Evaluation

While there are many image databases available, such as the COIL-100 image
library [11], they generally do not expose any variability in the object images. All
images are taken by a uniform camera under uniform lighting with no occlusions
or clutter. Instead, we examine the ability of our system to recognise objects in
live data from a web-cam. Our system performs with 100% accuracy with unseen
video under training conditions and this allows us to measure the accuracy of
the system under variations such as clutter and occlusion, etc.

Our first experiment involves learning a representation for each of the sample
objects. An object from the sample set is first selected and placed on the centre
of the rotating platform. The camera is positioned such that the centre of the
rotating platform is 20cm from the plane of the camera. A fluorescent light source
shines light toward the object from the left of the camera. The ‘slow’ speed
on the rotating platform is used to rotate the object in an automated manner
and a video clip of the viewing circle of the object is recorded. The recording
commences when the front of the object is facing the camera and ceases after
the object has completed a full 360◦ revolution. Each clip is approximately 60-65
seconds and the entire set of object clips amounts to 5.13GB of loss-less video.
We apply the aspect-graph clustering algorithm to each of the training video
clips.

Speed of Learning and Recognition. The system is able to construct a
representation for an object at 7-9 frames per second. This speed is suitable
for learning from live video. Object recognition speed is 11-15 fps in a largely
featureless background. In highly cluttered, feature-rich scenes, the recognition
speed reduces to 7-10 fps due to the computational cost of feature extraction
and matching. This speed is suitable for performing recognition on a live video
stream.

Model Size. The view clustering algorithm is able to compress the viewing
circle of the sample objects into 20-57 characteristic views (Figure 6). On average,
each view consists of 120 features. The more textured and detailed the object,
the more features are required to represent it.

Accuracy and Robustness. The recognition system is able to accurately
classify, localise and identify the pose of the objects in video streams under
considerable variation (Figure 7). The accuracy is 100% for the training clips
and diminishes as more variations are introduced. As clutter is added to the
background, the accuracy reduces by various amounts for the different objects.
Objects that generate more SIFT features, especially features within the body
of the object as opposed to the boundary, fare better under heavy clutter.

Most objects can withstand a scale change between −10cm to +15cm. As
the resolution of the object decreases with scale change, the accuracy of object
recognition rapidly diminishes. Scales changes could be explicitly accommodated
in the aspect graph by modelling zooming as well as rotation transitions.
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Fig. 6. Learning ten 3D objects. (a) the number of frames in the video sequence, (b)
the number of view clusters formed, (c) varying epsilon, (d) varying β.

Fig. 7. (a) recognition of significantly occluded objects, (b) object with background
clutter, (c) recognition of deformable object, (d-e) examples of scale change, (f) lighting
variations, (g) misaligned bounding box with scarcity of cup-handle features, (h-i) blur

Lighting variation can severely affect recognition if the object exhibits few
features or a majority of the features are formed as a result of shadows. Objects
that are highly textured due to printed or drawn patterns fare better than those
that are sculpted.

The recognition system is very robust to partial occlusions. Only 4-5 feature
matches are required for accurate recognition. Feature-rich objects can be accu-
rately classified even when the object is more than 80% occluded. The system is
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Fig. 8. Accuracy and speed results for the recognition of various objects under severe
clutter using a single object model and a 10-object model

able to recognise objects exhibiting minor deformations or can explicitly model
the deformations during the learning phase.

The recognition system is able to cope with severe focal blur but is unsuitable
to recognise objects in frames which exhibit significant motion blur.

The accuracy of the standard system, without using temporal properties,
produces an extremely low false positive rate (FPR < 1%). Temporal constraints
can be used to reduce the FPR to near-zero. The system is able to perform more
accurate object recognition using objects that are feature-rich. Objects that are
highly textured exhibit true positive rate (TPR) accuracy rates above 90% under
severe clutter; whereas plain objects exhibit TPR accuracy rates above 67%. The
TPR rates can be brought above 80%, for all objects, by exploiting the temporal
properties of video and aggregating SIFT features from contiguous frames at the
expense of increasing the near-zero FPR to 4%. The recognition system is able to
recognise objects with non-reflective surfaces and non-sculpted textures under a
considerable amount of environmental variation. Objects that are self-similar can
cause the system to confuse similar views during the pose identification process.

Scalability. The recognition system is capable of loading 10 object models into
memory and performing recognition at above 7 fps in heavy clutter. Increasing
the model size from 1 object to 10 objects does not significantly impact the
accuracy of the recognition process (see Figure 8) suggesting that the system
should be able to scale to more objects. The system is capable of simultaneous
multiple object recognition without showing significant degradation in speed or
accuracy, but cannot currently recognize multiple identical objects.

5 Conclusion

The 3D object learning and recognition system described entails several inno-
vations to achieve both speed and high accuracy under varying conditions of
occlusion, clutter, lighting, and scale. They include using both geometric and
temporal consistency checks from the aspect-graph, comparing estimated bound-
ing boxes between training and test images, and a tuned BBF kd-tree nearest



Learning and Recognition of 3D Visual Objects in Real-Time 159

neighbor search. Future work could see the the system benefit from GPU feature
matching, active vision, and feature tracking. The system is able to identify ob-
ject orientation which could be exploited in the robotic manipulation of objects,
visual SLAM, and intelligent surveillance applications.
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Abstract. Motion detection in videos is a challenging problem that is
essential in video surveillance, traffic monitoring and robot vision sys-
tems. In this paper, we present a learning method based on Genetic
Programming(GP) to evolve motion detection programs. This method
eliminates the need for pre-processing of input data and minimizes the
need for human expertise, which are usually critical in traditional ap-
proaches. The applicability of the GP-based method is demonstrated on
different scenarios from real world environments. The evolved programs
can not only locate moving objects but are also able to differentiate
between interesting and uninteresting motion. Furthermore, it is able
to handle variations like moving camera platforms, lighting condition
changes, and cross-domain applications.

Keywords: Genetic Programming, Motion Detection.

1 Introduction

Motion Detection is an important problem in the field of vision systems such as
video surveillance, traffic monitoring and robotic vision systems. Traditionally,
motion detection algorithms involve temporal difference based threshold meth-
ods, statistical background modeling and optical flow techniques. For example,
Lipton et al developed a temporal difference based technique, which used a con-
nected component analysis to combine detected pixels into regions of motion[6].
Stauffer et al used the background modeling approach, which represents pixels
in background model by a mixture of Gaussians[10]. By this approach they were
able to handle the “uninteresting” variations of pixels in regions such as swaying
branches of trees and ripples in water. Haritaoglu et al developed a people track-
ing algorithm, called W4 [3], in which each pixel in background is represented
by its minimum, maximum and the maximum inter-frame difference observed
over a training period.

These traditional motion detection methods, including many methods not
listed here, are often computationally expensive or require intensive develop-
ment. More critically, they are often highly coupled with domain specific details
and rely on “models” designed by machine vision experts. The performance
of such methods are in turn dependent on fine tuning of parameters in those
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models. As a result, these methods are more restrictive. Also variations in en-
vironments and changes in task domains will limit the general applicability of
these methods. Moreover, real world motion detection problems often contain
“uninteresting” motion in given scenes. To address the above issues, a learning
method is presented in this study. Motion detection programs are evolved by
Genetic Programming (GP)[5] rather than being manually programmed. This
method relies less on domain knowledge and human expertise.

GP is a learning paradigm influenced by Darwin’s concept of survival of the
fittest. It performs a stochastic search to construct a population of computer
programs, which are represented as LISP-type of program trees. The leaf nodes
on a tree are called terminals which usually act like input or parameters of
the program, while the internal nodes are called functions which usually act
like operators. The search is guided by fitness : the performance of a program
in solving a certain problem. The search starts from a population of randomly
generated programs. The programs that have better fitness are more likely to be
selected to create new programs for next generation. The fitter programs in the
new generation are then used to produce their own offspring. This is an iterative
process, by which the best program could improve generation by generation until
the solution program is found or a maximum generation is reached.

As a unique machine learning technique, GP has been used on a variety of
problems, including image-related areas, such as to detect blood vessels in X-ray
coronarograms, and to segment Magnetic Resonance images[8],to detect haemor-
rhages and micro aneurisms in retina images [12], and to identify regions of field,
road or lake in synthetic aperture radar images[1]. GP has also been adapted to
detect vehicles on Infrared Line Scan images[4] and to detect interest points in
images[11]. All these work show that GP is a powerful learning method. Here
we extend GP to learn for motion detection, another important area of machine
vision.

The following sections present the GP-based methodology, the real-world sce-
narios used for testing, the results, discussion and finally, the conclusion.

2 Methodology

The GP-based methodology, initiated in Fang et al[9], can be roughly divided
into two phases: the evolution phase and the application phase. The first phase
generates a motion detection program based on training samples, while in the
application phase this evolved detector is applied on real-time video streams.
Both phases use an identical representation, which is discussed below prior to
the discussion of the two phases.

2.1 Representation

Video frames in our approach are represented in a multi-frame representation,
which is similar to the temporal difference used traditionally in motion detection.
This representation is named Multi-frame Accumulate (MF-A) as the motion is



162 B. Pinto and A. Song

accumulated over ‘n’ number of frames. Each pixel p in MF-A is calculated as
in Formula 1.

M(p) =
n−1∑
i=0

(|pi − pi+1|) (1)

Each pixel p, is the accumulated difference between the intensities at pixel posi-
tion p for n previous frames. In the formula, pi refers to pixel p in frame i, i = 0
refers to the current frame, i = 1 refers to the previous frame and so on. The
variation from the n’th previous frame is as relevant as that in the most recent
frame since there is no different weight related to n. The value n is set as 3 in
this study.

The GP function set, the set of function nodes, in this method is the arithmetic
operators (+,−,×, /) and logic operators (>,<,==). The division is protected
division, in which a division by zero results in zero. An if function is also used,
which expects three arguments. If the first argument is true the second argument
is returned else the third argument is returned.

Additionally Average, Minimum and Maximum functions are used to
calculate the average, minimum and maximum pixel values of a sub-window in
a input image. They expect four arguments, which are the x, y coordinates of
the top left and the bottom right corners of the sub-window.

Only two type of terminals are used: a random real number between 0 and 1,
and pixel values at position p on the input image (the input image is 20× 20 in
this study). Note a two-dimensional image is represented as a one-dimensional
array here. The actual (x, y) coordinate of that pixel p is (p%width, p/width).

2.2 Evolving Motion Detectors

Evolving a motion detector is effectively learning a classifier, which can differ-
entiate “motion” vs. “no-motion”( or “interesting motion” vs. “anything else”).
The performance of a motion detector is measured by how reliably the program
can classify the positives from negatives. Therefore, the guide of our search, the
fitness function, is the classification accuracy as shown in Formula 2:

Fitness =
TP + TN

TOTAL
× 100 (2)

Here, TP and TN , refers to the number of true positives and true negatives
in classifying “motion” vs. “no-motion”, and TOTAL is the total number of
classified cases. Note that the fitness function is the classification accuracy, hence,
higher the fitness better the program is.

Samples of “motion” and “no-motion” need to be provided as a training set
during evolution. Each sample is in the MF-A representation, and is 20×20 pixels
in size. These samples are labeled manually as positives, ”containing interesting
motion” or negatives, as supervising learning is used here. Once the dataset is
created, it is divided into a training set and a test set. The fitness, in other words
the training accuracy, is the performance of a GP program on the training set.
The test set is to evaluate the evolved classifiers. The best performing classifier
on the test set is then used in the application phase which is described next.
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Fig. 1. Application Overview

2.3 Application of Evolved Motion Detectors

The method of applying the best evolved program, the motion detector, is illus-
trated in Figure 1. The basic steps are 1) retrieving a series of frames from a
given video stream. 2) converting them into the MF-A representation. 3) using
a sliding window to sample sub-images from the top-left to the bottom-right. 4)
Each sub-image, from the frame, is given as the input to the evolved detectors. 5)
The detector then classifies the window as either positive or negative. 6) As the
sliding windows overlap, pixels are likely to be classified multiple times. Hence,
a vote count is maintained to count the number of positive/negative classifica-
tions for each pixel. 7) Once all the windows in a frame are classified, each pixel,
that has more positive than negative classification votes, is marked as a pixel
containing motion.

The size of the sliding window is always at 20× 20 pixels, which is consistent
with the window size in training samples, so the trained program can directly
take them as input. Note the overlap between adjacent window positions can be
adjusted according to an application. A larger overlap will result faster execu-
tion but coarser boundaries. Similarly, a smaller overlap will generate smoother
boundaries but requires more time to process each frame. In this study this
overlap is always 8 pixels.

3 Test Scenarios

To evaluate the applicability of this GP-based method, described in Section 2,
experiments were set up on three different scenarios of increasing complexity.
They are described below:

1. Moving Vehicle Detection with Steady Background. This scenario
involves detecting moving cars on streets in an outdoor environment with
steady background. The scenes contain small amounts of uninteresting mo-
tion such as pedestrians walking across the street and swaying trees.
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2. Moving Boat Detection. This scenario is similar to the above vehicle
detection task but involves more complex uninteresting motion in the back-
ground. It is to detect moving boats on a river where the complex movement
of the water surface should be ignored.

3. Moving Vehicle Detection on a Moving Platform. This scenario in-
volves detecting moving objects while the camera itself is in constant motion.
The movement of the camera not only introduces motion at all pixel positions
but also adds new backgrounds to the scene and varies the illumination con-
ditions significantly. This environment also includes uninteresting movement
of pedestrians and swaying trees.

4 Experiments and Results

This section, firstly, describes the experiment settings. It then reports on the
training and test results achieved in three different scenarios. We also present the
results achieved on applying evolved GP motion detection programs on unseen
videos of each different scenarios.

4.1 Evolving Motion Detectors

For each scenario, a total of 900 positive and 1800 negative samples were created.
Among those samples, 300 positives and 300 negatives were used for training and
the remaining were used for test. Note that these positives were marked by us
and only contain “interesting motion”. For example, in the scenario of detect-
ing moving vehicles, only samples containing moving vehicles are positives. The
rest are marked as negatives, which might contain no motion or “uninteresting”
motion such as swaying trees. Also these samples were created only from a small
portion of the input video. They do not represent the entire video sequence.

The experimental parameters were set as such. The population size, number of
programs in each generation, is set to 30. The minimum and the maximum depth
of an individual GP program were set at 2 and 12 respectively. The mutation
rate was set at 5%, the crossover rate at 85% and the elitism strategy was
10%. In other words, the percentages of new programs generated from mutating
programs from parent generation, recombining parent programs and copying
parent programs are 5%, 85% and 10% respectively. The low mutation rate, is
consistent with the setting in other image related GP studies. The evolution is
terminated on either finding a perfect program (100% accuracy) or reaching the
maximum number of generations, set at 300.

4.2 Evolution Results

Figure 2 shows both the training accuracies (the fitness) and the test accuracies
of the best programs over 300 generations, averaged across 10 runs of training
on each of the above mentioned three scenarios. It can be seen that GP can
find programs performing well both in training and test for all three scenarios.
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Fig. 2. Training and Test Accuracies During the Evolution On Three Scenarios

Program performance is lower in the moving boat detection scenario than in
the other two scenarios. This indicates to the relative difficulty of the problem.
Although the moving platform scenario is considered to be more complex than
the others, high fitness values similar to that in moving vehicle detection were
achieved.

Table 1. Training and Test Accuracies of the Best Detector Evolved for Each Scenario

Scenario Accuracy(%) True Positives(%) True Negatives(%)
Training Test Training Test Training Test

Vehicle Detection 100 99.18 100 99.67 100 98.69
Boat Detection 99.67 96.23 99.67 98.23 96.68 94.24

Moving Platform 100 99.88 100 100 100 99.76

Table 1 presents the training and test accuracies of the best program evolved
for each scenario. Each column is divided into two sub-columns, the left showing
the training results while the right column showing the test results. The small
differences in training and test accuracies indicate the consistency in performance
and the absence of over-fitting.

4.3 Application of Evolved GP Programs

The best programs obtained in evolution were used in application phase on videos
not seen in training, using the method we described in Section 2. The frames
shown in the following figures are the direct output from the programs. They
are not modified. Only the white dashed circles/ellipses were added manually to
highlight a few points and to aid with the discussion.

Figure 3 shows the output of a program trained for moving vehicle with steady
background scenarios. This detector was trained on a completely different video
of moving vehicle detection with steady background. The training video was ob-
tained at a higher illumination condition and was situated above a freeway from
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Fig. 3. Moving Vehicle Detector on an Unseen Scenario with Steady Background

a) By a Detector Trained b) By a Detector Trained
for Moving Boat Scenario for Moving Vehicle Scenario

Fig. 4. Output Frames from the Moving Boat Detection Task

a different city. Despite these unseen factors, the detector performed consistently
and was able to ignore uninteresting motions, such as the pedestrians.

Figure 4 presents two output frames from the moving boat detection task.
The left frame was generated by a detector trained specifically for this boat
detection scenario, whereas the right image was the output of a detector which
was trained for the vehicle detection task and used in Figure 3. Both programs
were able to locate the moving boats and were able to ignore the motion from
water surface, although one is not trained for this task. However the detector
trained for vehicle detection was not able to mark the moving boats thoroughly.

Figure 5 shows the output frames achieved by a detector on a video taken
from a moving platform. The detector was trained for detecting vehicles in such
a scenario. As camera moves steadily the illumination conditions change signif-
icantly. This is noticeable in Figure 5, the frame on the right is brighter than
the frame on the left. Despite these challenges consistent detection was achieved
and movement of pedestrians was also ignored successfully.
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Fig. 5. Output Frames from the Moving Platform Scenario

On applying the detector used in Figure 3, which was trained for steady
background, the results were poor with a large number of false positives. This
suggests that although the GP classifiers can be applied on different environ-
ments, some similarities between these environments are expected, in this case,
classifiers trained on a fixed camera are expected to perform only on fixed camera
environments.

5 Discussion

To compare the performance of the GP-based method we test it against a thresh-
old based method. The threshold is applied on the MF-A representation to find
the moving pixels. Figure 6 shows the result achieved on applying a manually
optimized threshold . Figure 7 shows the output frames achieved on applying the
threshold method on the moving boat detection scenario. The frame on the left
uses the same threshold as optimized on the moving vehicle detection scenario,
the frame on the right uses a manually optimized threshold for the moving boat
detection scenario.

Figures 6 and 7 illustrate the problems of threshold as a motion detection
method: 1) The threshold must be manually optimized for each different en-
vironment. In Figure 7 an un-optimized threshold was not able to attain any
significant detection. In contrast, detector evolved by GP can perform reliably
on unseen environments as shown in the previous section. 2) The detection is
point by point, resulting in partial detection of objects. Further post-processing
is necessary to identify whether two separate clusters of detected pixels belong to
the same object. Using our method, this process is not often needed. 3) Thresh-
old based detection relies on speed of the movement. As shown in Figure 6, the
slow-moving car circled in dashed lines was ignored by threshold but detected
by our GP program (see Figure 3).
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Fig. 6. Threshold Function on Vehicle Detection with Steady Background

(a) Un-optimized Threshold (b) Optimized Threshold

Fig. 7. Threshold function on Boat Detection

Similar to thresholds, other traditional approaches usually are also domain
specific. For example, a background modeling method designed to be applied on
a fixed camera domain would need considerable amount of modifications on the
underlying algorithm to be applied on a moving camera domain. Moreover the
performance on unseen environments is not readily attained, i.e. parameters need
to be optimized again. Additionally, some methods such as background modeling
are computationally expensive. On the other hand, the GP-based methodology
is readily applicable across different domains. No changes are needed on the
methodology itself, but just the new samples for training need to be created.
Moreover the evolved motion detectors are small in size and fast in execution.
The speed issue will be discussed separately. Additionally this work will be com-
pared with existing traditional approaches separately such as [2] and [7].

6 Conclusion

A general method for learning motion detectors is presented in this paper. This
method does not require manual construction of motion detection algorithms
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and is applicable for producing detection programs on varying scenarios. It can
evolve detectors specific for one type of motion while ignore other motions such
as ripples, swaying trees, pedestrians and even camera movements. The evolved
detectors can perform consistently across different environments without requir-
ing pre-processing of input videos.
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Abstract. The minimum message length (MML) principle for inductive
inference has been successfully applied to image segmentation where the
images are modelled by Markov random fields (MRF). We have extended
this work to be capable of simultaneously reconstructing and segmenting
images that have been observed only through noisy projections. The noise
added to each projection depends on the classes of the pixels (material)
that it passes through. The intended application is in low-dose (low-flux)
X-ray computed tomography (CT) where irregular projections are used.

1 Introduction

When the members of an observed set of data points each belong to a class from
a finite set of classes, the task of inferring those classes is known as classification.
When the number of the classes and their properties are not known, this is called
clustering (or mixture modelling). If the data points have spatial components,
as with images and tomograms, the word segmentation is often used.

This article focuses on segmentation where the pixels are located on a lattice
(as with discrete images and tomograms) and the class of each pixel is positively
correlated with the classes of its closest neighbours. The pixels are not observed
directly but rather noisy projections (summations over subsets of pixels) have
been observed.

An example of such a problem is low dose X-ray computed tomography. The
pixel intensities are the absorption values at different locations, the classes are
the materials (or like regions) and the projections are the sums of the pixel
intensities along beams following some path through the object plus noise.

In section 4 we describe what future extensions must be done before a com-
parison with existing computed tomography (CT) methods can be made.

MML inductive inference has been successfully applied to clustering spatially-
correlated data (including image segmentation) in [17], where the images are
modelled by Markov random fields (MRF). That work has been extended in [14]
to select between different MRF models. Our aim is to extend that work to the
image reconstruction problem described above.

One of the advantages of MML inference in image segmentation is that it can
infer the number of classes present and the parameters defining those classes.
While these two features have not yet been implemented in this work we will
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describe how they can be implemented in section 4. For more details on the
advantages of MML in classification and clustering see [5, 18, 20, 22].

Our models have been designed for problems where there is a lot of noise
present in the observations (as with low-flux X-ray tomography). We will discuss
how this work can be extended to infer the nature and degree of the noise from
the observed data. For the case where there is little noise, non-probabilistic
approaches (such as [13] and [6]) are preferable.

1.1 Minimum Message Length

Minimum message length (MML) [18, 19] is a Bayesian inference method with
an information-theoretic interpretation. The minimum message length principle
states that the best hypothesis is the one that gives the shortest explanation of
the observed data using an optimal two-part encoding scheme.

By minimising the length of a two-part message of Hypothesis (H) followed
by Data given Hypothesis (D|H), we seek a quantitative trade-off between the
desiderata of model simplicity and goodness-of-fit to the data. This can be
thought of as a quantitative version of Ockham’s razor [10] and is compared
to Kolmogorov complexity and algorithmic complexity [2, 9, 12] in [21]. For fur-
ther discussions of these issues and for contrast with the much later minimum
description length (MDL) principle [11], see other articles in that 1999 special
issue of the Computer Journal, [3, sec. 11.4] and [18, chap. 10].

For our problem the hypothesis H would be some inferred value of x (the class
assignments) and y (the pixel intensities) while the detail D is the observed noisy
projection values s.

An earlier application of MML to image reconstruction from noisy projections
was presented in [4]. While our methods are somewhat different, our aims are
similar.

2 Model and Solution

2.1 Image Reconstruction Model

This subsection describes the probabilistic model used. Let y = (y1, y2, ...yN) be
a set of pixel intensities, indexed by N locations, with xi ∈ {1, 2, ..., C} being
the class of pixel yi ∈ {0, 1, ..., B}. Here B + 1 is the number of intensity values
that a pixel can have and C is the number of classes that a pixel can be assigned
to. The sequence of projections is q = (q1, q2, ..., qM ) where each projection
qi ⊆ {1, 2, ..., N} represents a group of locations. For X-ray tomography these
groups would be paths followed by the X-ray beams.

The members of x are arranged on a lattice and the a priori distribution over
x (P (x)) forms a Markov random field (MRF) for a neighbourhood structure
defined over the members of x. The neighbourhood structure is defined by a set
of neighbours ni ⊂ {1, 2, .., N} for each location i ∈ {1, 2, .., N}. If i ∈ nk then
k ∈ ni. For P (x) to be a MRF it is required that ∀x, P (x) > 0 and that,

P (xi|x∀j 	=i) = P (xi|x∀j∈ni ) . (1)
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The second condition (expressed in equation 1) states that the class of a point is
conditionally independent of all other points given the classes of its neighbours.
We assume that the parameters defining the right hand side of equation (1) are
known.

A variety of MRF models that can be used exist in the image segmentation
literature, following [17] we will use the auto-logistic model on a toroidal square
lattice (see section 2.2).

For now we assume that it is known a priori what the class distributions
(defined by P (yi|xi)) are. For all work presented in this article the classes are
defined as Poisson distributions, P (yi|xi) = e−λxiλyi

xi
/yi!. Here xi is the class that

location i is assigned to, so λxi is the mean associated with class xi ∈ {1, 2, ..., C}.
The values of the data points yi are given an upper limit and the probabili-

ties for all values greater than B are added to P (yi = B). The vector of class
parameters λ is also assumed to be known.

Our task is to infer values for x and y given a set s = {s1, s2, ..., sM} of noisy
summations over the projections q.

sj =
∑
r∈qj

(yr + zj,r) (2)

Here sj is a summation over qj and zj,r is the noise in sj contributed by location
r. The noise zj,r is assumed to be normally distributed with zero mean and a
standard deviation that depends on the class xr of location r, denoted by σxr .

P (zj,r|xr) =
1

σxr

√
2π

exp {−
z2

j,r

2σ2
xr

} (3)

The standard deviation σk of each class k ∈ {1, 2, ..., C} is for now assumed
known. Let zj be the sum of noise terms for qj ,

zj =
∑
r∈qj

zj,r . (4)

2.2 Auto-logistic Model

We have used in our tests the auto-logistic model to express the spatial relations
between members of x (the class assignments). The auto-logistic model reduces
to the well-known Ising model when the number of classes is equal to two (C = 2).
When expressed as a Gibbs random field, the prior over x takes the form,

P (x) =
1
U

exp [
N∑

i=1

logαxi − wβ] (5)

where w is the number of neighbour pairs (over the entire lattice) that do not
have the same class values. Remember that each location has a set of neighbour-
ing locations. For our tests the locations are arranged on a toroidal square-lattice
so that each location has four neighbours (left, right, above and below).
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The parameters α = (α1, α2, ..., αC) and β are assumed to be known. The
vector α is analogous to mixing proportions of the C classes while β determines
the degree to which neighbouring classes agree. For example if xi = 2 then αxi =
α2 is the value associated with class 2. Note that the values αi are equivalent to
mixing proportions only when β = 0. Higher values of β lead to neighbouring
class assignments being more likely to have the same value while β = 0 makes
the members of x independent of each other. With wi defined as the number of
neighbours of location i that do not have the same class value as xi it can be
shown that,

P (xi|x∀j 	=i) = P (xi|x∀j∈ni) ∝ exp [logαxi − wiβ] . (6)

2.3 The Message Length

This section describes our MML solution to the problem described in section
2.1. All message lengths in this article are measured in nits where 1 bit is equal
to loge (2) nits.

Given the set of noisy summations s, estimates x (for the class assignments)
and y (for the data points) are to be inferred. The optimal estimate is the one
that leads to the shortest message length as described in section 1.1. For a given
point estimate (a pair (x̂, ŷ)) this code is,

1a. an encoding of x̂
1b. an encoding of ŷ given x̂
2. an encoding of the observed s given x̂ and ŷ

Here the encoding of parts 1a and 1b is known as the assertion and part 2 is
known as the detail. The objective function which we try to minimise is the
message length, which is equal to the length of assertion plus the length of the
detail.

We approximate this message length L as follows,

L = T1 + T2 + T3 − T4 (7)

where,

1. T1 is the length for encoding x̂ precisely
2. T2 is the length for encoding ŷ precisely given x̂
3. T3 is the length for encoding s given ŷ and x̂
4. T4 is the entropy of the pair (ŷ, x̂) given s

The first term is equal to the negative log likelihood of x̂,

T1 = − logP (x̂) . (8)

We describe in section 2.6 how this can be approximated following [17]. The
second term is,

T2 = −
N∑

i=1

logP (ŷi|x̂i) . (9)
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To encode sj given ŷ and x̂ we need only specify the noise term zj (see
subsection 2.1). These noise terms are normally distributed with mean zero and
standard deviation σj . The standard deviations depend on x̂ and are,

σ2
j =

∑
i∈qj

σ2
x̂i

. (10)

T3 is then the sum of the negative log likelihoods of the noise terms zj, using
the above values for σj .

Finally, in an optimal code, ŷ and x̂ do not need to be stated precisely. The
number of alternatives that could have been used giving a similar value for
T1 +T2 +T3 can be approximated by e−T4 . This means that if the pair (ŷ, x̂) was
stated imprecisely it would have cost approximately T4 nits less. This bits-back
approach to calculating the message length was introduced in [15]. The next
subsection describes how T4 can be approximated.

2.4 The Precision of ŷ and x̂

The entropy of (y, x) given s is defined as,

T4 = −
∑

∀(y,x)

P (y, x|s) logP (y, x|s) (11)

Performing the summation over all possible values of y and x is impractical so a
numerical approximation for T4 is used. To explain this approximation we must
first express the distribution P (y, x|s) as a Gibbs random field (GRF). First note
that applying Bayes’s rule,

P (y, x|s) ∝ P (s|x, y)P (x, y) = P (s|x, y)P (y|x)P (x) . (12)

Define the energy V of (y, x) given s as,

V (y, x|s) = − log [P (s|x, y)P (y|x)P (x)U ]
= − logP (x)U −

∑N
i=1 logP (yi|x) −

∑M
j=1 logP (sj |y, x)

= − logP (x)U −
∑N

i=1 logP (yi|xi)−
∑M

j=1 logP (zj |x)
= −[

∑N
i=1 logαxi − wβ]−

∑N
i=1 logP (yi|xi)−

∑M
j=1 logP (zj|x) .

(13)

Note that given y, x and s this energy V (y, x|s) can be easily calculated. We
can now rewrite P (y, x|s) as a GRF,

P (y, x|s) = elog P (y,x|s) =
1
Z
e−V (y,x|s) (14)

where Z is called the partition function and is independent of x and y. Next
define,

PT (y, x|s) =
1
ZT

e−V (y,x|s)/T (15)
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as the distribution (over x and y given s) at temperature T . As T increases
this distribution reaches its maximum possible entropy. Note that at T = 1 this
distribution is equivalent to the original distribution P1(y, x|s) = P (y, x|s). The
entropy of this distribution at temperature T is,

HT (y, x|s) = −
∑

∀(x,y)

PT (x, y|s) logPT (x, y|s) . (16)

The expected energy at temperature T is,

QT =
∑

∀(x,y)

PT (x, y|s)V (y, x|s) . (17)

It can be shown that dHT

dT = dQT

dT /T (hence dHT = dQT /T ). Gibbs sampling can
be used to sample random states of (y, x) given T and s, and hence QT can be
approximated at any temperature by averaging the energies of those samples.

At T = ∞ the entropy HT attains its maximum value, which is N log (CB).
The entropy of the distribution at temperature T = 1 can be calculated as
follows. Starting at T = 1 and slowly incrementing T up to some value high
enough to give a distribution similar to that attained at T = ∞, calculate QT at
each temperature increment. By subtracting the term dQT /T at each increment
from the maximum entropy, we end with a good estimate of H1 = T4.

Note that using Gibbs samples from the distribution at each temperature
is computationally expensive and to get a good estimate requires that small
increments be used [17, Sec. 5.6]. The Gibbs sampling process is discussed in the
following subsection.
Q∞ can be approximated by sampling from the maximum entropy distribution

over x and y. It is simple to show then that the error (in calculating H1) caused
by terminating at temperature T = t instead of T = ∞ is no greater than
(Q∞ −Qt)/t. This can be used to determine when to terminate the algorithm.

2.5 Estimating ŷ and x̂ to Optimise the Message Length

For high-dimensional vectors of discrete parameters (such as the one defined by
a pair (x, y)) a random selection from the posterior distribution P (y, x|s) can
be used as the MML estimate. This type of estimate is discussed in [16] and is
also used in [17, sec. 5.1] and [14].

To create such samples we use the Gibbs sampler. This works by repeatedly
choosing a random member of (x, y) and changing its value according to its
probability distribution given all other values. For example, if xi is selected then
it is re-assigned according to P (xi|y, s, x∀k 	=i). If this process is repeated for long
enough the resulting pair (x, y) can be considered a pseudo-random sample from
P (y, x|s).

The same process can be used to sample from PT (y, x|s) (equation 15) to
calculate the approximation for T4 (equation 11) described in subsection 2.4.

When there is very little noise in the observations s, sampling at temperatures
close to T = 1 can be difficult due to there being many local minima for the
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Gibbs sampler to fall into. This problem can be addressed by using a variation
of simulated annealing. In fact, by using simulated annealing the task of finding
an estimate (x̂, ŷ), and the calculation of T4 (section 2.4), can be done in one
step. This is achieved by starting sampling at a high temperature (as described
in the last paragraph of section 2.4) and gradually lowering the temperature to
T = 1. The changes in QT are recorded at each decrement and used to calculate
T4 while the final state of (x, y) is used as our MML estimate.

Note that the estimates can be obtained without calculating the message
length. There are two uses for calculating the message lengths in our problem.
The first is that in some cases multiple runs of the estimation algorithm described
above will settle in separate local minima. The message length is a measure of
the explanatory value of a hypothesis and can select between these. The second
use is for determining the number of classes that can be justified by the data
(section 4) [17, 18, 20, 22].

2.6 The Length for Encoding x̂

As in section 2.4 equation (15), we define PT (x) as the distribution over x at
temperature T . Since P (x) is a Markov random field (MRF) it can be restated
as a Gibbs random field (GRF). This is guaranteed by the Hammersley-Clifford
theorem, proven in [1, 7, 8].

This allows us to approximate H1(x) (the entropy of x at temperature T = 1)
using the method described in section 2.4. The negative log likelihood of our
estimate for x̂ is then calculated using,

− logP (x̂) = H1(x) + V (x̂)−Q(x) (18)

where V (x̂) is the energy of our estimate x̂ and Q(x) is the expected energy for
the GRF over x. This type of calculation has also been used to calculate the
message lengths for other image models in [17] and [14] and is discussed there
in more detail.

3 Test on Artificial Data

For this test there are three classes C = 3. The auto-logistic model is used to
define the prior P (x) with parameters α = (1/3, 1/3, 1/3) and β = 0.7.

Similarly the vector of class parameters (class means) is λ = (λ1, λ2, λ3) =
(5, 20, 35) and the noise parameters (standard deviations) for the three classes
are σ = (σ1, σ2, σ3) = (1, 2, 3).

From this model, instances of x, y and s were generated with N = 225 loca-
tions arranged on a 15× 15 toroidal square-lattice. The use of a toroidal square-
lattice is simply for programming reasons and is not required by our method.
The number of projections is M = 225 each containing 15 locations. The algo-
rithm was run given s to infer estimates ŷ and x̂. The true x and inferred x̂ class
assignments are shown in figure 1. The true y and inferred ŷ data point values
are also shown in figure 1.
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Fig. 1. Far left is the true class assignment vector x with class 1 (λ2 = 5) as black,
class 2 (λ2 = 20) as grey and class 3 (λ3 = 35) as white. Centre left is the inferred set
of class assignments x̂. Centre right is the true value of y and on the far right is the
inferred estimate ŷ. The intensities range from white yi = 60 to black yi = 0 as shown
by the bars to the right of the two rightmost images.

The message length calculated as L = T1 + T2 + T3 − T4 was L = 1740 with
the individual terms being T1 = 228, T2 = 664 T3 = 1387 and T4 = 540. The
value of T4 tells us that there are roughly e540 different solutions for the pair
(x, y) that are reasonable estimates and gives us some measure of the amount of
noise present.

For comparisons to other work to be meaningful our work will have to be
developed further. This paper is intended to show how the MML approach to
intrinsic classification of spatially correlated data introduced by Wallace [17] can
be applied to image reconstruction. The next section discusses what extensions
are necessary and how they can be implemented.

4 Further Work

The first problem is with computational expensiveness. Our current implementa-
tion is in Java (not a performance language) and little effort was made to make it
fast. This Gibbs sampling algorithm is highly parallelisable and specialised hard-
ware is often used in image processing. Before we optimise our implementation
we wish to first improve it in other respects.

The earliest applications of the minimum message length principle is in mix-
ture modelling (clustering) [17, 19, 20, 22]. A strong point of MML in this area
is the ability to estimate both the class parameters and the number of classes.
The next step for our work would be to add those abilities. It should be possible
to achieved this using the EM algorithm,

1. initialise all parameters
2. re-estimate x and y using the Gibbs sampler
3. re-estimate the parameters defining the class distributions λ
4. re-estimate the parameters defining P (x)
5. re-estimate the projection noise parameters σ
6. if the estimate is stable then stop, else return to step 2

This algorithm should gradually move towards a local minimum in the message
length as each individual step reduces it.
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To estimate the number of classes, the algorithm above is run several times
assuming a different number of classes each time. The number of classes that
leads to the shortest message length is preferred.

5 Conclusion

We have shown how Minimum Message Length (MML) can be used to recon-
struct and classify (or segment) data sets (images/tomograms) that have been
observed only through noisy projections. As a quantitative version of Ockham’s
razor [10], MML separates noise and pattern information using prior (domain
specific) knowledge and it is capable of performing well on noisy data, while
being resistant to overfitting. For this reason, applications of MML to low-dose
computed tomography are worth exploring.

We have demonstrated how the classification, reconstruction and message
length calculations can be done following the approach of [17]. The next step
will be to add the ability to infer the class parameters, the noise parameters and
the number of classes.
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Abstract. Disparity map generation is a significant component of vision-based
driver assistance systems. This paper describes an efficient implementation of a
belief propagation algorithm on a graphics card (GPU) using CUDA (Compute
Uniform Device Architecture) that can be used to speed up stereo image
processing by between 30 and 250 times. For evaluation purposes, different
kinds of images have been used: reference images from the Middlebury stereo
website, and real-world stereo sequences, self-recorded with the research vehicle
of the .enpeda.. project at The University of Auckland. This paper provides
implementation details, primarily concerned with the inequality constraints,
involving the threads and shared memory, required for efficient programming on
a GPU.

1 Introduction

The generation of accurate disparity maps for pairs of stereo images is a well-studied
subject in computer vision, and is also a major subject in vision-based driver assistance
systems (DAS). Within the .enpeda.. project, stereo analysis is used to ensure a proper
understanding of distances to potential obstacles (e.g., other cars, people, or road
barriers). Recent advances in stereo algorithms involve the use of Markov random field
(MRF) models; however, this leads to NP-hard energy minimization problems. Using
graph cut (GC) or belief propagation (BP) techniques allows us to generate approximate
solutions with reasonable computational costs [5].

Implementations of (potentially) global methods such as GC or BP often generate
disparity maps that are closer to (if available) the ground truth than implementations
of local methods (e.g., correlation-based algorithms). Obviously, global methods take
more time for generating the stereo results [13]. Ideally, one wants to combine the
accuracy achieved via global methods with the running time of local methods. One
option toward achieving this goal is to speed up, for example, a BP implementation
without losing accuracy, by taking advantage of the high performance capabilities of
Graphic Processing Units (GPUs); available on most personal computing platforms
today.

This report describes a General Purpose GPU (GPGPU) implementation of a
BP algorithm using the NVIDIA Compute Uniform Device Architecture (CUDA)
language environment [1]. The contemporary graphics processor unit (GPU) has huge
computation power and can be very efficient for performing data-parallel tasks [7].
GPUs have recently also been used for many non-graphical applications [8] such

A. Nicholson and X. Li (Eds.): AI 2009, LNAI 5866, pp. 180–189, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Belief Propagation Implementation Using CUDA on an NVIDIA GTX 280 181

as in Computer Vision. OpenVIDIA [6] is an open source package that implements
different computer vision algorithms on GPUs using OpenGL and Cg. Sinha et al [14]
implemented a feature based tracker on the GPU. Recently, Vineet [15] implemented
a fast graph cut algorithm on the GPU. The GPU, however, follows a difficult
programming model that applies a traditional graphics pipeline. This makes it difficult
to implement general graph algorithms on a GPU.

[9] reports about BP on CUDA. However, that paper does not mention any details
about their implementation of BP on CUDA. This paper explains the implementation
details clearly. We then go on to detail important pre-processing steps, namely Sobel
edge operator (as performed in [10]) and residual images (as performed in [16]), that
can be done to improve results on real-world data (with real-world noise).

This paper is structured as follows. Section 2 specifies the used processors and test
data. Section 3 describes the CUDA implementation of the BP algorithm. Section 4
presents the experimental results. Some concluding remarks and directions for future
work are given in Section 5.

2 Processors and Test Data

For comparison, in our tests we use a normal PC (Intel Core 2 Duo CPU running at
2.13 GHz and 3 GB memory) or a GPU nVidia GTX 280. GPUs are rapidly advancing
from being specialized fixed-function modules to highly programmable and parallel
computing devices. With the introduction of the Compute Unified Device Architecture
(CUDA), GPUs are no longer exclusively programmed using graphics APIs. In CUDA,
a GPU can be exposed to the programmer as a set of general-purpose shared-memory
Single Instruction Multiple Data (SIMD) multi-core processors, which have been
studied since the early 1980s; see [11]. The number of threads, that can be executed in
parallel on such devices, is currently in the order of hundreds and is expected to multiply
soon. Many applications that are not yet able to achieve satisfactory performance on
CPUs may have benefit from the massive parallelism provided by such devices.

2.1 Compute Unified Device Architecture

Compute Unified Device Architecture (CUDA) is a general purpose parallel computing
architecture, with a new parallel programming model and instruction set architecture.
It leverages the parallel compute engine in NVIDIA GPUs to solve many complex
computational problems in a more efficient (parallel) way than on a CPU [12]. CUDA
comes with a software environment that allows developers to use C as a high-level
programming language. A complier named NVCC generates executable code for GPUs.

CUDA Hardware Model. At the hardware level, the GPU is a collection of
multiprocessors (MPs). A multiprocessor consists of eight Scalar Processor (SP) cores,
two special function units for transcendentals, a multithreaded instruction unit, and
on-chip shared memory, see left of Figure 1 [12]. When a CUDA program on the
host CPU invokes a kernel grid, the blocks of the grid are enumerated and distributed
to multiprocessors with available execution capacity. The threads of a thread block
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Fig. 1. NVIDIA GeForce GTX 280 CUDA hardware (left) and programming (right) models

Fig. 2. Test data. Left: Tsukuba stereo pair [13]. Right: real image pair captured by HAKA1.

execute concurrently on one multiprocessor. As thread blocks terminate, new blocks are
launched on the vacated multiprocessors. SP cores in a multiprocessor execute the same
instruction at a given cycle. Each SP can operate on its own data, which identifies each
multiprocessor to be of SIMD architecture. Communication between multiprocessors
is only through the device memory, which is available to all the SP cores of all the
multiprocessors. The SP cores of a multiprocessor can synchronize with one another,
but there is no direct synchronization mechanism between the multiprocessors. The
GTX 280, used in this paper, has 30 MPs, i.e., 240 SPs. The NVIDIA GeForce GTX
280 graphics card has 1 GB of device memory, and each MP has 16 KB of shared
memory (shared amongst all SPs).

CUDA Programming Model. To a programmer, parallel portions of an application are
executed on the device as kernels. One kernel is executed at a time, with many thread
blocks in each kernel, which is called a grid (see right of Figure 1). A thread block
is a batch of threads running in parallel and can cooperate with each other by sharing
data through shared memory and synchronizing their execution [12]. For the GTX 280,
the maximum number Tmax of threads equals 512. A warp is a collection of threads
that are scheduled for execution simultaneously on a multiprocessor. The warp size is
fixed for a specific GPU. If the number of threads, that will be executed, is more than
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the warp size, they are time-shared internally on the multiprocessor. Each thread and
block is given a unique ID that can be accessed within the thread during its execution.
Using the thread and block IDs, each thread can perform the kernel task on different
data. Since the device memory is available to all the threads, it can access any memory
location [15].

2.2 Used Test Data

To evaluate our accelerated BP algorithm, different kinds of images have been used:
a stereo pair of Tsukuba from the Middlebury Stereo website [13], and real-world
stereo sequences, which are captured with HAKA1 (Figure 2), a research vehicle of
the .enpeda.. project at The University of Auckland [4].

3 Implementation of Belief Propagation

Our GPU implementation is based on the “multiscale” BP algorithm presented by
Felzenszwalb and Huttenlocher [5]. If run on the original stereo images, it produces
a promising result on high-contrast images such as Tsukuba, but the effect is not very
satisfying for real-world stereo pairs; [10] shows a way (i.e., Sobel preprocessing) how
to improve in the latter case, and [16] provides a general study (i.e., for the use of
residual input images) for improving results in correspondence algorithms.

3.1 Belief Propagation Algorithm

Solving the stereo analysis problem is basically achieved by pixel labeling: The input is
a set P of pixels (of an image) and a set L of labels. We need to find a labeling f : P → L
(possibly only for a subset of P). Labels are, or correspond to disparities which we
want to calculate at pixel positions. It is general assumption that labels should vary
only smoothly within an image, except at some region borders. A standard form of an
energy function, used for characterizing the labeling function f, is (see [2]) as follows:

E(f) =
∑
p∈P

⎛⎝Dp(fp) +
∑

(p,q)∈A

V (fp − fq)

⎞⎠ (1)

Dp(fp) is the cost of assigning label fp to pixel p ∈ Ω, where Ω is an M (rows) ×N
(columns) pixel grid; the discontinuity term V (fp − fq) is the cost of assigning labels
fp and fq to adjacent pixels p and q. Full details of this equation are found in [5].

As a global stereo algorithm, BP always produces good results (in relation to input
data !) when generating disparity images, but also has a higher computational time than
local stereo methods. Sometimes we require many iterations to ensure convergence
of the message values, and each iteration takes O(n2) running time to generate each
message where n corresponds to the number of possible disparity values (labels). In
[5], Felzenszwalb and Huttenlocher present the following methods to speed up the BP
calculations.
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Fig. 3. Example output on test data (see Figure 2 for original images). Top: disparity (colour
encoding: dark = far, light = close) for Tsukuba. Bottom: disparity results for a HAKA1 sequence
(left to right): on original pair, after applying a Sobel operator, and after mean residual processing.

First, a red-black method is provided. Pixels are divided in being either black or
red, at iteration t, messages are sent from black pixels to adjacent red pixels; based on
received messages, red pixels sent at iteration t + 1 messages to black pixels, and thus
the message passing scheme adopts a red-black method, which allows us that only half
of all messages are updated at a time.

The coarse-to-fine algorithm provides a second method for speeding up BP, and is
useful to achieve more reliable results. In the coarse-to-fine method, a Gaussian pyramid
is used having L levels (where L = 0 is the original image size). Using such a pyramid,
long distances between pixels are shortened, this makes message propagation more
efficient. This increases the reliability of calculated disparities and reduces computation
time without decreasing the disparity search range.

3.2 Belief Propagation on CUDA

BP algorithms have been implemented on the GPU in the past several years: [3]
and [17] describe GPU implementations of BP on a set of stereo images. However,
each of these implementations uses a graphics API rather than CUDA. Grauer-Gray
[9] had implemented BP using CUDA, but did not discuss possible improvements
for real-world stereo pairs which always accompany various types of noise, such as
different illumination in left and right image, which causes BP to fail.

In our CUDA BP implementation, we define four kernel functions on the GPU,
plus the mandatory memory allocation, loading images to GPU global memory, and
retrieving the disparity image from the GPU global memory.

1. Allocate GPU global memory
2. Load original images (left and right) to GPU global memory
3. (If real-world image) Pre-process images with Sobel / Residual
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4. Calculate data cost
5. Calculate the data (Gaussian) pyramid
6. Message passing using created pyramid
7. Compute disparity map from messages and data-cost
8. Retrieve disparity map to local (host) memory

For the case of image sequences (as for driver assistance applications), Step 1 only
needs to be done once. After this, all images can be processed using this memory
allocation, thus start at Step 2 (saving computational time). These details are elaborated
below. Example output of the algorithm described above can be seen in Figure 3.

The important limitations on the GPU alter the BP GPU kernels. These are the
maximum thread limit Tmax (= 512 on the GTX 280), and the shared memory S (= 16
KB of memory, which is 4096 single precision 32-bit float data). Keeping functions
within the shared memory limit is what makes CUDA programming fast, so we try to
keep to these limitations.

The final point to note is that with CUDA programming, you need to divide the
threads into j (rows) by k (columns) blocks (omitting the 3rd dimension of 1). You also
need to define the q (rows) by r (columns) grid. This defines how the images (M rows
by N columns), within each kernel, are processed.

Allocate Global Memory. Memory is allocated and set to zero as follows (all data is
single precision, i.e. 32-bit float):

– Left and right image: 2×MN
– Preprocessed left and right images: 2×MN
– Data Pyramid for message passing (central pixel plus: left, right, up and down):

2× 5× nMN , where the “2×” part is the upper bound (sum to infinity)
– Disparity image: 1×MN

From this it can be seen that the memory allocation used is (5 + 10n)MN float values.
Note: This provides an upper bound on memory allocation dependent on M , N , and
n. The limitations of the GTX 280 is 1 GB memory, so we can handle up to around
M = 600, N = 800, and n = 50, which is larger than the general resolution in DAS
(usually VGA M = 480, N = 640, and n = 70). Since all data is floating point,
S = 4096 for the remainder of this section (based on the GTX 280).

Load Images to Global Memory. Load the left and right images to allocated memory
and smooth with a Gaussian filter of σ = 0.7 before computing the data costs.

Pre-Processing of Images. The images are pre-processed using either Sobel (as done
in [10]) or residual images [16]. This is simply done by splitting the image into j × k
overlapping windows. j and k are equal to the height and width (respectively) of the
window used in each process. This allows massive parallel windows to be used. The
typical window size is j = 3 and k = 3 (for both Sobel and residual) and only the
input, output and two sets of working data are required for both Sobel (gradient in both
directions) and one set for residual (smoothed image). This means that we are well
within the limits of threads and shared memory, 4jk ≤ Tmax ≤ S.
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Calculate Data Cost. This part calculates the data cost for the image; this is a function
to calculate the data cost at level L = 0 (i.e., D0). Since we are dealing with only

scanline specific information, the image is divided into a grid of r =
⌈

N
Tmax+n

⌉
(need

to store the maximum disparity and the scanline) times q = M . Each block will be
j = 1 times k =

⌈
N
r

⌉
+ n large, which is under the Tmax limit. This means that the

total number of blocks is rM . Furthermore, only three data are used (left image, right
image, and data-cost image), so 3k ≤ 3Tmax ≤ S (in the GTX 280). This means that
the shared memory is exploited for fast computation. Comparing this to a conventional
CPU, the number of cycles drops from nMN to effectively nrM .

Calculate Gaussian Pyramid. Here we calculate the data pyramid (using the data cost
calculated above) in parallel. We employ L levels in the data pyramid to compute the
messages and obtain D1 to DL. This is done by splitting the image at level l ∈ L
such that the jk ≤ Tmax limit is satisfied. Only the data from level l and l + 1 is
needed, so the memory requirement is 2jk, which is always in the shared memory limit
2jk ≤ 2Tmax ≤ S. As long as the above limit is kept, any jk can be chosen. A number
is ideal that exploits the size of the image (splitting it into even sized blocks) to not
waste any threads (i.e., q, r, j, and k are all integers without overlap).

Message Passing. The implementation of the BP algorithm from coarse to fine in L
levels is processed here. Here we divide the data cost Dl to a series of tiles whose size
is j × k; this is shown in Figure 4. These tiles are overlapping, and the image apron
(image plus padding from this overlap) is formed. Since both j and k need to have
to be odd, we define j = (2ĵ + 1) and k = (2k̂ + 1), respectively, to represent this.
Obviously, one requirement is jk ≤ Tmax ⇒ (2ĵ + 1)(2k̂ + 1) ≤ Tmax. Since the
message passing requires five data pyramids (centre, left, right, up and down pixel)
at each disparity, the amount of memory needed is 5jkn. If we want to exploit the shared

Fig. 4. Image apron. This shows how the image is segmented for message passing. Overlapping
windows are required, and thus a padding is required to form the apron.
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memory, the second requirement is: 5jkn ≤ S ⇒ 5n(2ĵ + 1)(2k̂ + 1) ≤ S. One last
requirement is that j, k ≥ 3 ⇒ ĵ, k̂ ≥ 1. Summarising these requirements:

(2ĵ + 1)(2k̂ + 1) ≤ Tmax (2)

5n(2ĵ + 1)(2k̂ + 1) ≤ S (3)

1 ≤ ĵ, k̂ ∈ Z (4)

Limit (3) suggests that the maximum disparity calculation is in fact n ≤ S
45 , thus the

maximum disparity on the GTX 280 is n = 91. If the disparity is above this, then shared
memory is not used, thus Limit (3) is no longer enforced.

The grid requires overlap, thus q =
⌈

Ml

j−2

⌉
and r =

⌈
N l

k−2

⌉
, where M l and N l are

the rows and columns, respectively, of the data at level l ∈ L.

Compute Disparity Map. Retrieve the estimated disparity map by finding, for each
pixel in a block, the disparity that minimizes the sum of the data costs and message
values. This process has the same limitations as the message passing for defining
the block and grid sizes. However, there is one more piece of memory required (the
disparity map), thus Limit (3) becomes (5n + 1)(2ĵ + 1)(2k̂ + 1) ≤ S. This reduces
the maximum disparity to n = 90.

Retrieve Disparity Map. Transport the disparities from the GPU back to the host.

4 Experimental Results

In our experiments we compare high-contrast indoor images (Tsukuba), to real-world
images (from HAKA1) which contain various types of noise, such as changes in
lighting, out-of-focus lenses, differing exposures, and so forth. So we take two
alternative measures to remove this low frequency noise, the first one is using the
Sobel edge operator before BP [10], and another method is using the concept of
residuals, which is the difference between an image and a smoothed version of itself
[16]. Examples of both the Sobel and residual images for real-world images are shown
in Figure 5. We use the BP algorithm outlined above with five levels (i.e., L = 4) in the
Gaussian pyramid, and seven iterations per level.

For the Tsukuba stereo image pair, we have M = 288 and N = 384; the BP
algorithm was run using a data cost of Tdata = 15.0, discontinuity cost of Tdisc = 1.7,
and smoothness parameter of λ = 0.07, and the disparity space runs from 0 to 15 (i.e.,
n = 16). The only other parameters that need to be set explicitly are ĵ, k̂ = 3 (to fit into
the shared memory). Figure 3 shows the results of running the implementation on two
stereo pairs of images.

The real-world images recorded with HAKA1 are 640 × 480 (N × M ) with an
assumed maximum disparity of 32 pixels (i.e., n = 33). We use ĵ, k̂ = 2 to fit into
shared memory. The BP parameters are Tdata = 30.0, Tdisc = 11.0, and λ = 0.033.
Example results for the HAKA1 sequences, with and without pre-processing, are shown
in Figures 3, 5, and 6.
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Fig. 5. Top row shows the images (left to right): original, after Sobel processing, mean-residual
image. Bottom row shows the disparity results on the images in the top row.

Fig. 6. Left to right: original image and disparity results, first on original images, then Sobel, and
finally on residual images

We tested the speed of BP on the NVIDIA Geforce GTX 280 with CUDA compared
to the normal PC (outlined in Section 2). The normal CPU implementation runs at
32.42 seconds for the Tsukuba stereo pair, while the running time using CUDA is 0.127
seconds, a speed up by a factor of over 250! The time of BP for real-world images,
when running on the normal PC, is 93.98 seconds, compared to 2.75 seconds using the
CUDA implementation, and this is (only) a speed improvement by factor 34.

5 Conclusions

We have implemented the belief propagation algorithm (applied to stereo vision) on
programmable graphics hardware, which produces fast and accurate results. We have
included full details on how to run and implement belief propagation on CUDA. We
divided the stereo pairs to a lattice in order to suit the architecture of a GPU. Results for
real images are not satisfying as on high-contrast indoor images without pre-processing.
Resulting disparity images improve by using either the Sobel edge operator or residual
images as input, as suggested in prior work. We have also defined the limitations of this
type of BP implementation using limiting inequalities and suggestions for appropriate
numbers.
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Future work will aim at better speed improvement by exploiting the texture memory.
Other ideas for speed improvement are to initialise the BP algorithm with Dynamic
Programming Stereo on CUDA, thus speeding up convergence. Finally, the inequalities
specified in this paper are ideal for implementation into a linear (quadratic integer)
programming optimisation scheme to choose the optimal parameters according to
image size.
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Abstract. This paper investigates face image enhancement based on the 
principal component analysis (PCA). We first construct two types of training 
samples: one consists of some high-resolution face images, and the other 
includes the low resolution images obtained via smoothed and down-sampling 
process from the first set. These two corresponding sets form two different image 
spaces with different resolutions. Second, utilizing the PCA, we obtain two 
eigenvector sets which form the vector basis for the high resolution space and the 
low resolution space, and a unique relationship between them is revealed. We 
propose the algorithm as follows: first project the low resolution inquiry image 
onto the low resolution image space and produce a coefficient vector, then a 
super-resolution image is reconstructed via utilizing the basis vector of 
high-resolution image space with the obtained coefficients. This method 
improves the visual effect significantly; the corresponding PSNR is much larger 
than other existing  methods. 

Keywords: Image enhancement, Principal component analysis (PCA), 
Hallucinating face. 

1   Introduction 

Image enhancement has many applications in computer vision, such as blurred image 
restoration, and the enhancement of low resolution images.  Though many techniques 
for face enhancement have been proposed, many realistic related problems have not 
been solved satisfactorily. When a digital picture is enlarged many times, blur and the 
mosaic phenomena often exist; In case of wireless/remote surveillance, the resolution 
of obtained video is usually quite low due to limited bandwidth requirement in 
transmission or large data real time transmission, and thus details for the people or 
object are not clear. In order to solve these problems, as early as 1960s, some 
researchers proposed some techniques for super-resolution reconstruction. The idea of 
image super-resolution reconstruction is to reconstruct high-resolution (HR) images 
from a group of single or multi-frame low-resolution (LR) images. In terms of pixels, 
the size of HR image is larger than LR image, and the enhance techniques can magnify 
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image and increase image details, making the magnified image close to the origin HR 
image. This is an important problem in image processing domain, and it has become a 
popular research topic due to its broad applications in face recognition and surveillance.   

The enhancement can be done through interpolation, such as neighbor interpolation, 
Cubic interpolation etc [1], but its effect is very limited. In order to improve the 
enhancement effect, many algorithms have been proposed. For example, Schultz et al. 
proposed the Bayesian method [2], Freeman proposed the Markov network method [3], 
and the method based on neural networks [4]. Inspired by some techniques in machine 
learning, some techniques based on training samples are proposed recently. In [5] and 
[6], researchers proposed the famous hallucinating face algorithm. However, this 
hallucinating face algorithm is only suitable to a single human face image 
super-resolution reconstruction, in which the training samples include a group of HR 
face images and their corresponding down-sampling LR images, and in contrast, the 
candidate face image use the LR samples feature set, the LR sample regions and their 
corresponding HR sample region’s high-frequency information with the smallest 
feature distance LR sample region to reconstruct the super-resolution face image. Later, 
researchers proposed a series of algorithms to improve the hallucinating face algorithm 
based on Baker’s theory [7] [8] [9]. A review is conducted in [13]. Most of these 
algorithms are based on statistical models with local model parameters, and they only 
improve the quality of high resolution image in a limited extent. The reconstruction 
effect is not significant when the relationship among the test sample and training 
samples is not well described. Also the down-sampling function of training images is 
only by virtue of experience and difficult to identify in practical applications. The 
proposed algorithms generally require a larger number of training samples, and thus the 
speed of reconstruction is slow relatively. These human faces constitute a vector space 
with a certain law after positioning and normalization by taking the similarity of facial 
structure and appearance into consideration. It is assumed that images with the same 
resolution in the same vector space, thus, HR and LR samples databases constitute two 
different vector spaces.  

In this paper we design two training image databases by two different resolution face 
image respectively, one is composed of high resolution face image, known as the HR 
sample database; the other is called LR sample database, obtained by samples from HR 
after smoothing and down-sampling. Images in these two libraries have one-to-one 
relationship based on PCA. We make PCA transform to HR space and LR respectively, 
to obtain two sets of different orthogonal base vectors, because images in the two 
spaces have one-one relationship, and it is natural to assume that their basis vectors also 
have one-one relationship. Projecting the low resolution candidate face image in LR 
space basis, we can obtain a set of expansion coefficients. By using these coefficients, 
one can obtain the high resolution face obtained by linear combination of base vectors 
in HR space. 

The rest of this paper is organized as follows. Section 2 presents the theoretical 
analysis. Section 3 describes the super-resolution reconstruction algorithm based on 
Principal Component Analysis transform in detail. Experimental results and discussion 
are drawn in section 4. 
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2   Theoretical Analysis 

Some researchers proved that the relation between intensity distribution and location of 
human face image satisfies Markov random fields (MRFs) [3], and the pixel value 
depends on its neighboring pixels. The literature [5] [6] and related image 
multi-resolution theory suggest that, HR images and their corresponding LR images are 
closely related, and HR images can be obtained by LR images. Also every LR image 
has its corresponding HR image. Studies have shown that human faces with the same 
resolution have a super high-dimensional image subspace [10] after location and 
normalization, when image samples are up to a certain amount, Extremely most human 
faces can be expressed by their generating basis of the corresponding vector space. 
Penev and Sirovich's study found that human face can obtain high quality 
reconstruction by using PCA method. Different resolution face images are in different 
image space [11] [12], making PCA transform to one resolution face images is 
equivalent to look for a set of standard orthogonal basis, which can express all images 
in this space. Though image features expressed by these basis vectors are irrelevant to 
each other, the information they contained relates to their corresponding characteristic 
value. Based on these observations, the PCA projection coefficients can be obtained 
through projecting image on the basis, and then they can be used for high resolution 
image reconstruction. In fact, the procedure of down sampling is as follows. 

 

                                                     (1) 
 

                                 
(2) 

 

In this paper we adapt equation (1) and (2) to acquire LR training sample images, where 
H represents high-resolution images, and L represents low-resolution images obtained 
by H, operator C is formed by smoothing and down-sampling to H. We use (2) to do 
down-sampling; a new pixel value will be inferred using mean of its 3 × 3 
neighborhood. Further we can also use the overlapped down-sampling to obtain a 
smoother LR image. 

It is noted that each orthogonal basis vector in human face image space obtained by 
PCA transform expresses an image feature. The basis vector is also called “feature 
face”, which represents face information in certain frequency band. According to 
multi-resolution analysis theory, there should be the same low-frequency information 
between HR image and its corresponding LR image [13] and this motivates us to use 
the projection coefficient to represent the relationship in HR and LR face space. 
Experiments also indicate that the PCA projection coefficients for the high-frequency 
image in HR space are nearly the same to the PCA projection coefficients for the 
down-sampled low-frequency image.  

With the above analysis, the images based on two image space have one-to-one 
relationship. Assume that their feature vectors also have one-to-one relationship, a 
feature vector in HR space is corresponding to one in LR space, and both of them 
contain more low-frequency information. But the feature vectors in HR space contain 
more high-frequency information, so the details of facial characteristic are clearer.  We 
use the mentioned idea to design a new image enhance technique in next section. 

∑ ∑
−= −=

+∗+∗=
1

1

1

1

)2,2(
9

1
),)((

i j

jyixHyxHC



 Face Image Enhancement via Principal Component Analysis 193 

3   The Proposed Face Enhancement Algorithm 

In order to describe the algorithm explicitly, we define the following notations. Assume 
that M represents the number of training samples, Hi（ ） is the column 
vector for a high resolution human face image i, and the column vector of its 

corresponding low-resolution face images is represented by Li. Let and  

represent the mean value of HR image and LR image respectively. Also let  

represent low resolution candidate image, and  represent reconstructed high 

resolution image. 
In LR image space, we take the column vector of each face image as a random vector 

Li, the algorithm for enhancement using PCA method is organized as follows. First, we 
calculate the mean value of image vector for LR images: 

 ∑                                                   (3) 

 
Let L represent the difference set, which is the difference between each image column 
vector and the mean vector. 

 , ,     ì                                (4) 
 
The covariance matrix S is constructed as follows: 
 ∑ ì ì                          (5) 

 
The dimension of this matrix is generally very large. If the size of image is N×N, then 
the dimensions of L and S are N2×M and N2×N2  respectively. In practice, it is difficult 
to calculate their eigen-values and eigenvectors directly. Instead we use the singular 
value decomposition approach to calculate these values. Then we construct a matrix R 
as follows:    

 

                                               (6) 
 

The dimension of R is M x M, and in general M is much smaller than N. It is much easy 

to calculate the eigen-values and eigenvectors for R. let  and  (i=1,2 ,…,M) 

represent its eigen-value and eigenvector after orthogonal normalization. In this case, 
the orthogonal normalized eigenvector of the scatter matrix S can be calculated by 
equation (7): 
 

ë , 1,2, …                                      (7) 

 
Let each orthogonal normalized eigenvector be a basis vector in LR feature subspace, 

and,  will be the feature space. 
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Assume that a set of face samples with same resolution constitute a subspace space 
and such subspace will represent all face samples if the number of samples is large 
enough and should include feature details of each face. Finding a set of basis for such 
subspace and then we expect that all of the faces could be expressed by linear 
combination of such basis vectors. In this paper we use the PCA to obtain a set of basis 
vectors for such face space. Such basis vector should also represent a coordinate vector 
of face in high-dimensional space, because the eigenvector obtained by the PCA 
transform is orthogonal, these basis vectors are irrelevant to each other in 
high-dimensional space. Further, each basis vector represents an aspect characteristic 
of face image; the corresponding coordinate coefficients can be obtained by projecting 
face on the set of basis vectors.  

Next we project the low resolution candidate face  image on the subspace : 

 

                                                  (8) 
 

We define , where ( i=1,2, … ,M) is a set of projection 

coefficients from (8). The value of  represents the weighting of input image  on 

basis , i.e., image includes characteristics ratio expressed by . The reconstructed 

image could be derived from (9) by using these coefficients in LR image subspace. 
 ì                                             (9) 
 

where W is coordinate coefficient of input image obtained by projection in LR space, 

and  is the mean of all faces in LR space. However, represent personality 

characteristic of image. Face image reconstructed using this method is consisting of 

faces in common in terms  and personality characteristic in terms of . 

The images reconstructed using equation (9) have the same resolution with images 
in LR space, They are actually without resolution enhancement, and are another 
expression of images in LR space. Considering the preceding analysis, we noted that 
the samples in LR space are obtained by smoothing and down-sampling from high 
resolution images in HR sample space, and there is one-to-one relationship between 
them. Therefore, their basis vectors also have one-to-one relationship. Actually that the 
corresponding images in two sample space have similar projection coefficients. In this 
case, we can use the basis vectors in HR space to substitute the corresponding basis 
vector in LR space, and use the mean vector in HR space to substitute the mean vector 
in LR space. Then, we can reconstruct the high-resolution image. Both of basis vectors 
and the mean vectors in HR space contain more high-frequency information, and more 

characteristic details of face, so that we can obtain the high-frequency image  

reconstructed through low resolution input images  in high-resolution space. 

 ì                                       (10) 
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where the feature subspace  is formed by basis vectors in HR space, we define 

, and  represents the mean of HR images. Now the proposed 

algorithm can be summarized as follows: 

Step 1: Smooth and down-sample the images in HR sample space using equation (1) 
(2), to obtain LR samples. 

Step 2: Do PCA transform on LR sample set, and obtain a set of orthogonal basis 
vectors for LR feature space, which constitute the characteristics subspace of LR space. 

Step 3: Project input image  on the characteristics subspace of LR space , and 

obtain the projection coefficients of this image in the low-frequency characteristics 
subspace. 

Step 4: Do PCA transform for the HP sample set, and obtain a set of orthogonal basis 
vectors for HR space, which constitute the characteristics subspace of HR space. 

Step 5: Use the projection coefficients obtained in Step 3 and the feature basis vectors 
for HR space to reconstruct the high resolution image for the input image via equation 
(10). 

Next we will do some experiments to show the effectiveness of the proposed algorithm. 

4   Experimental Results and Analysis 

In this section, we conduct experiments using the face database in the high-speed image 
processing lab in Department of Electronic Engineering at Tsinghua University. In 
such database, there are more than 1000 face images of different age, illumination 
conditions and facial expressions. The HR samples consist of high-resolution face 
images with size 96×128. The corresponding LR sample databases are generated by 
smoothing and down-sampling using formula (1) and (2), with the reduced size of LR 
image being 24×32. Two experimental results will be discussed as follows: 

In order to compare the performances of different algorithms, we choose the 
neighbor interpolation algorithm, the cubic interpolation approach, the Baker 
Hallucinating face approach, and the proposed method in this paper respectively. Some 
enhanced images are shown in Figure 1. The neighbor interpolation and cubic 
interpolation algorithms are relatively stable since they do not need any training 
samples, and do optimal interpolations directly on the input image. They are also faster 
in implementation, but have very limited effect. Baker proposed the hallucinating 
algorithm in [6], in which he compares the image features directly and use the typical 
patch for enhancement. The reconstruction result is closely related to training samples, 
and the final quality is also related to the down-sampling function on some extent. 

In the experiments, 600 images are used as training samples, while the remaining 
400 are used for testing. The 600 high-resolution images and the corresponding 
low-resolution images are composed of HR samples space and LR samples space 
respectively. We will reconstruct 400 high resolution images for their low resolution 
images using the proposed algorithm in this paper. 
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methods, such as the neighbor interpolation, the Cubic interpolation and the Baker 
Hallucinating face.  

Experimental results show significant improvement both visually and numerically.  
Also the impact of the number of training samples on the performance is also 
investigated. In the future, we will use the proposed approach for low resolution face 
recognition and wireless surveillance.   
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Abstract. We present a strategy by which a Self-Organizing Map (SOM)
with an underlying Binary Search Tree (BST) structure can be adap-
tively re-structured using conditional rotations. These rotations on the
nodes of the tree are local and are performed in constant time, guarantee-
ing a decrease in the Weighted Path Length (WPL) of the entire tree. As
a result, the algorithm, referred to as the Tree-based Topology-Oriented
SOM with Conditional Rotations (TTO-CONROT), converges in such a
manner that the neurons are ultimately placed in the input space so as to
represent its stochastic distribution, and additionally, the neighborhood
properties of the neurons suit the best BST that represents the data.

1 Introduction

Even though numerous researchers have focused on deriving variants of the orig-
inal Self-Organizing Map (SOM) strategy, few of the reported results possess
the ability of modifying the underlying topology, leading to a dynamic modifica-
tion of the structure of the network by adding and/or deleting nodes and their
inter-connections. Moreover, only a small set of strategies use a tree as their
underlying data structure [1,2,3,4]. From our perspective, we believe that it is
also possible to gain a better understanding of the unknown data distribution
by performing structural tree-based modifications on the tree, by rotating the
nodes within the Binary Search Tree (BST) that holds the whole structure of
neurons. Thus, we attempt to use rotations, tree-based neighbors and the feature
space as an effort to enhance the capabilities of the SOM by representing the
underlying data distribution and its structure more accurately. Furthermore, as
a long term ambition, this might be useful for the design of faster methods for
locating the Best Matching Unit (BMU).

One of the primary goals of Adaptive Data Structures (ADS) is to seek an
optimal arrangement of the elements, by automatically reorganizing the struc-
ture itself so as to reduce the average access time. The solution to obtain the
optimal BST is well known when the access probabilities of the nodes are known
beforehand [5]. However, our research concentrates on the case when these access
probabilities are not known a priori. In this setting, the most effective solution
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is due to Cheetham et al. and uses the concept of conditional rotations [6]. The
latter paper proposed a philosophy where an accessed element is rotated towards
the root if and only if the overall Weighted Path Length (WPL) of the resulting
BST decreases.

The strategy that we are presently proposing, namely the Tree-based Topology-
Oriented SOM with Conditional Rotations (TTO-CONROT), has a set of neu-
rons, which, like all SOM-based methods, represents the data space in a condensed
manner. Secondly, it possesses a connection between the neurons, where the neigh-
bors are based on a learned nearness measure that is tree-based. Similar to the
reported families of SOMs, a subset of neurons closest to the BMU are moved to-
wards the sample point using a vector-quantization (VQ) rule. However, unlike
most of the reported families of SOMs, the identity of the neurons that are moved
is based on the tree-based proximity (and not on the feature-space proximity). Fi-
nally, the TTO-CONROT incorporates tree-based mutating operations, namely
the above-mentioned conditional rotations.

Our proposed strategy is adaptive, with regard to the migration of the points
and with regard to the identity of the neurons moved. Additionally, the distri-
bution of the neurons in the feature space mimics the distribution of the sample
points. Lastly, by virtue of the conditional rotations, it turns out that the en-
tire tree of neurons is optimized with regard to the overall accesses, which is a
unique phenomenon (when compared to the reported family of SOMs) as far as
we know.

The contributions of the paper can be summarized as follows. First, we present
an integration of the fields of SOMs and ADS. Secondly, the neurons of the SOM
are linked together using an underlying tree-based data structure, and they are
governed by the laws of the Tree-based Topology-Oriented SOM (TTOSOM)
paradigm, and simultaneously by the restructuring adaptation provided by con-
ditional rotations (CONROT). Third, the adaptive nature of TTO-CONROT
is unique because adaptation is perceived in two forms: The migration of the
codebook vectors in the feature space is a consequence of the SOM update rule,
and the rearrangement of the neurons within the tree as a result of the rota-
tions. Finally, we explain how the set of neurons in the proximity of the BMU
is affected as a result of applying the rotations on the BST.

The rest of the paper is organized as follows. The next section surveys the rel-
evant literature, which involves both the field of SOMs including their tree-based
instantiations, and the respective field of BSTs with conditional rotations. After
that, in Section 3, we provide an in-depth explanation of the TTO-CONROT
philosophy, which is our primary contribution. The subsequent section shows
the capabilities of the approach through a series of experiments, and finally,
Section 5 concludes the paper.

2 Literature Review

A number of variants of the original SOM [7] have been presented through the
years, attempting to render the topology more flexible, so as to represent com-
plicated data distributions in a better way and/or to make the process faster by,
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for instance, speeding up the search of the BMU. We focus our attention on a
specific family of enhancements in which the neurons are inter-connected using a
tree topology [1,2,3,4]. In [1] the authors presented a tree-based SOM called the
Growing Hierarchical SOM (GHSOM), in which each node corresponds to an
independent SOM, and where dynamic behavior is manifested by adding rows
or columns to each SOM depending on a suitable criterion. The authors of [2]
have studied a variant of the SOM called the Self-Organizing Tree Map (SOTM),
which also utilizes a tree-based arrangement of the neurons, and which uses the
distance in the feature space to determine the BMU. In [3] the authors proposed
a tree-structured neural network called the evolving tree (ET), which takes ad-
vantage of a sub-optimal procedure to determine the BMU in O(log |V |) time,
where V is the set of neurons. The ET adds neurons dynamically, and incorpo-
rates the concept of a “frozen” neuron, which is a non-leaf node that does not
participate in the training process, and which is thus removed from the Bubble
of Activity (BoA).

Here, we focus on the TTOSOM [4]. The TTOSOM incorporates the SOM
with a tree which has an arbitrary number of children. Furthermore, it is assumed
that the user has the ability to describe such a tree, reflecting the a priori knowl-
edge about the structure of the data distribution1. The TTOSOM also possesses
a BoA with particular properties, considering the distance in the tree space,
where leaves and non-leaf nodes are part of this neighborhood. Another inter-
esting property displayed by the TTOSOM is its ability to reproduce the results
obtained by Kohonen [7], when the nodes of the SOM are arranged linearly, i.e.,
in a list. In this case, the TTOSOM is able to adapt this 1-dimensional grid
to a 2-dimensional (or multi-dimensional) object in the same way as the SOM
algorithm did [4]. Additionally, if the original topology of the tree followed the
overall shape of the data distribution, the results reported in [4] showed that it
is also possible to obtain a symmetric topology for the codebook vectors.

We shall now proceed to describe the corresponding relevant work in the field
of the tree-based ADS. A BST may be used to store records whose keys are
members of an ordered set. In this paper, we are in the domain where the access
probability vector is not known a priori. We seek a scheme which dynamically
rearranges itself and asymptotically generates a tree which minimizes the access
cost of the keys.

The primitive tree restructuring operation used in most BST schemes is the well
known operation of Rotation [8]. A few memory-less tree reorganizing schemes2

which use this operation have been presented in the literature. In the Move-to-
Root Heuristic [12], each time a record is accessed, rotations are performed on it
in an upwards direction until it becomes the root of the tree. On the other hand,
the simple Exchange rule [12] rotates the accessed element one level towards the
root. Sleator and Tarjan [13] introduced a technique, which also moves the ac-
cessed record up to the root of the tree using a restructuring operation. Their

1 The beauty of such an arrangement is that the data can be represented in multiple
ways depending on the specific perspective of the user.

2 This review is necessary brief. A more detailed version is found in [9,10,11].
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structure, called the Splay Tree, was shown to have an amortized time complexity
of O(logN) for a complete set of tree operations. The literature also records vari-
ous schemes which adaptively restructure the tree with the aid of additional mem-
ory locations. Prominent among them is the Monotonic Tree [14] and Mehlhorn’s
D-Tree [15]. In spite of all their advantages, all of the schemes mentioned above
have drawbacks, some of which are more serious than others.

This paper focuses on a particular heuristic, namely, the Conditional Rota-
tions (CONROT-BST) [6], which has been shown to reorganize a BST so as
to asymptotically arrive at an optimal form. CONROT-BST only requires the
maintenance and processing of the values stored at a specific node and its direct
neighbors, i.e. its parent and both children, if they exist. Algorithm 1, formally
given below, describes the process of the Conditional Rotation for a BST. The
algorithm receives two parameters, the first of which corresponds to a pointer to
the root of the tree, and the second which corresponds to the key to be searched
(assumed to be present in the tree).

Algorithm 1. CONROT-BST(j,ki)
Input:
i) j, A pointer to the root of a binary search tree T
ii) ki, A search key, assumed to be in T
Output:
i) The restructured tree T ′

ii) A pointer to the record i containing ki

Method:
1: τj ← τj + 1
2: if ki = kj then
3: if is-left-child(j) = TRUE then
4: Ψj ← 2τj − τjR − τP (j)
5: else
6: Ψj ← 2τj − τjL − τP (j)
7: end if
8: if Ψj > 0 then
9: rotate-upwards(j)

10: recalculate-tau(j)
11: recalculate-tau(P (j))
12: end if
13: return record j
14: else
15: if ki < kj then
16: CONROT-BST( left-child(j) , ki )
17: else
18: CONROT-BST( right-child(j) , ki )
19: end if
20: end if
End Algorithm
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We define τi(n) as the total number of accesses to the subtree rooted at
node i. CONROT-BST computes the following equation to determine the value
of a quantity referred to as Ψj, for a particular node j, where:

Ψj =
{

2τj − τjR − τP (j) if j is a left child of P (j)
2τj − τjL − τP (j) if j is a right child of P (j) (1)

When Ψj is less than zero, an upward rotation is performed. The authors of [6]
have shown that this single rotation yields to a decrease in the WPL of the entire
tree. Once the rotation takes place, it is necessary to update the corresponding
counters, τ . Fortunately this task only involve the updating of τi, for the rotated
node, and the counter of its parent, τP (i). The reader will observe that all the
tasks invoked in the algorithm are performed in constant time, and in the worst
case, the recursive call is done from the root down to the leaves, leading to a
O(h) running complexity, where h is the height of the tree.

3 Merging ADS and TTOSOM

This section concentrates on the details of the integration between the fields of
ADS and the SOM. More specifically we shall concentrate on the integration
of the CONROT-BST heuristic [6] into a TTOSOM [4], both of which were
explained in the previous section. We thus obtain a new species of tree-based
SOMs which is self-arranged by performing rotations conditionally, locally
and in a constant number of steps.

As in the case of the TTOSOM [4], the Neural Distance, dN , between two
neurons is defined as the minimum number of edges required to go from one to
the other. Note however, that in the case of the TTOSOM, since the tree itself
was static, the inter-node distances can be pre-computed a priori, simplifying the
computational process. The TTO-CONROT employs a tree which is dynamically
modified, where the structure of the tree itself could change, implying that nodes
that were neighbors at any time instant may not continue to be neighbors at
the next. This renders the resultant SOM to be unique and distinct from the
state-of-the-art.

Fig. 1 presents the scenario when the node accessed is B. Observe that the
distances are depicted with dotted arrows, with an adjacent numeric index spec-
ifying the current distance from node B. Fig. 1a illustrates the situation prior
to an access, where nodes H , C and E are all at a distance of 2 from node B,
even though they are at different levels in the tree. Secondly, Fig. 1b depicts the
configuration of the tree after the rotation is performed. At this time instant, C
and E are both at distance of 3 from B, which means that they have increased
their distance to B by unity. Moreover, although node H has changed its po-
sition, its distance to B remains unmodified. Clearly, the original distances are
not necessarily preserved as a consequence of the rotation.
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(a) (b)

Fig. 1. Example of the Neural Distance before and after a rotation

A concept closely related to the neural distance, is the one referred to as the
“Bubble of Activity” (BoA) which is the subset of nodes within a distance of r
away from the node currently examined. The BoA can be formally defined as [4]

B(vi;T, r) = {v|dN (vi, v;T ) ≤ r}, (2)

where vi is the node currently being examined, and v is an arbitrary node in the
tree T , whose nodes are V .

Fig. 2 depicts how the BoA differs from the one defined by the TTOSOM
as a result of applying a rotation. Fig. 2a shows the BoA around the node B,
using the same configuration of the tree as in Fig. 1a, i.e., before the rotation
takes place. Here, the BoA when r = 1 involves the nodes {B,A,D, F}, and
when r = 2 the nodes contained in the bubble are {B,A,D, F,C,E,H}. Subse-
quently, considering a radius equal to 3, the resulting BoA contains the nodes
{B,A,D, F,C,E,H,G, I}. Finally, the r = 4 case leads to a BoA which includes
the whole set of nodes. Now, observe the case presented in Fig. 2b, which corre-
sponds to the BoA around B after the rotation upwards has been effected, i.e.
the same configuration of the tree used in Fig. 1b. In this case, when the radius
is unity, nodes {B,A, F} are the only nodes within the bubble, which is different
from the corresponding bubble before the rotation is invoked. Similarly, when
r = 2, we obtain a set different from the analogous pre-rotation case, which in

(a) (b)

Fig. 2. Example of BoA before and after a rotation is invoked at node B
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this case is {B,A, F,D,H}. Note that coincidentally, for the case of a radius
equal to 3, the bubbles are identical before and after the rotation, i.e., they in-
voke the nodes {B,A,D, F,G, I}. Trivially, again, when r = 4, the BoA invokes
the entire tree.

The CONROT-BST heuristic [6] requires that the tree should possess the
BST property:

Let x be a node in a BST. If y is a node in the left subtree of x, then key[y] ≤
key[x]. Further, if y is a node in the right subtree of x, then key[x] ≤ key[y].

To satisfy the BST property, first of all we see that, the tree must be binary3.
The tree trained by the TTOSOM is restricted to contain at most two children
per node and a comparison operator between the two children is considered.
This comparison can be achieved by defining a unique key that must be main-
tained for each node in the tree, and which will, in turn, allow a lexicographical
arrangement of the nodes.

It happens that the concept of the “just accessed” node in the CONROT-BST
is compatible with the corresponding BMU defined for the Competitive Learning
(CL) model. During the training phase, when a neuron is a frequent winner of
the CL, it gains prominence in the sense that it can represent more points from
the original data set. We propose that during the training phase, we can verify
if it is worth modifying the configuration of the tree by moving this neuron one
level up towards the root as per the CONROT-BST algorithm, and consequently
explicitly recording the relevant role of the particular node with respect to its
nearby neurons. CONROT-BST achieves this by performing a local movement
of the node, where only its direct parent and children are aware of the neuron
promotion.

Neural Promotion is the process by which a neuron is relocated in a more
privileged position4 in the network with respect to the other neurons in the
neural network. Thus, while “all neurons are born equal”, their importance in
the society of neurons is determined by what they represent. This is achieved,
by an explicit advancement of its rank or position.

Initialization, in the case of the BST-based TTOSOM, is accomplished in
two main steps which involve defining the initial value of each neuron and the
connections among them. The neurons can assume a starting value arbitrarily,
for instance, by placing them on randomly selected input samples. On the other
hand, a major enhancement with respect to the basic TTOSOM lays in the
way the neurons are linked together. The inclusion of the rotations renders this
dynamic.

In our proposed approach, the codebooks of the SOM correspond to the nodes
of a BST. Apart from the information regarding the codebooks themselves, each
neuron requires the maintenance of additional fields to achieve the adaptation.

3 Of course, this is a severe constraint. But we are forced to require this, because the
phenomenon of achieving conditional rotations for arbitrary k-ary trees is unsolved.
This research, however, is currently being undertaken.

4 As far as we know, we are not aware of any research which deals with the issue of
Neural Promotion. Thus, we believe that this concept, itself, is pioneering.
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Also, besides the codebook vectors, each node inherits the properties of a BST
Node, and it thus includes a pointer to the left and right children, as well as (to
make the implementation easier), a pointer to its parent. Each node also contains
a label which is able to uniquely identify the neuron when it is in the “company”
of other neurons. This identification index constitutes the lexicographical key
used to sort the nodes of the tree and remains static as time proceeds.

The training module of the TTO-CONROT is responsible for determining the
BMU, performing restructuring, calculating the BoA and migrating the neurons
within the BoA. Basically, what it achieves, is to integrate the CONROT algo-
rithm in the sequence of steps of the Training phase defined by the TTOSOM.
Algorithm 2 describes the details of how this integration is fulfilled. Algorithm 2
receives as input a sample point, x, and the pointer to the root of the tree, p.
Line No. 1, performs the first task of the algorithm, which involves the determi-
nation of the BMU. After that, line No. 2, deals with the call to the CONROT
algorithm. The reason why we follow this sequence of steps is that the parame-
ters needed to perform the conditional rotation, as specified in [6], includes the
key of the element queried, which, in the present context, corresponds to the key
of the BMU. At this stage of the algorithm, the BMU may be rotated or not,
and the BoA is determined after this restructuring process, which is performed
in lines No. 3 and 4 of the algorithm. Finally, lines No. 5 to 7, are responsible
for the neural migration, involving the movement of the neurons within the BoA
towards the input sample.

Algorithm 2. TTO-CONROT-BST train(x,p)
Input:
i) x, a sample signal.
ii) p, the pointer to the tree.
Method:
1: v ← TTOSOM Find BMU(p,x,p)
2: cond-rot-bst(p,v.getID())
3: B ← {v}
4: TTOSOM Calculate Neighborhood(B,v,radius)
5: for all b ∈ B do
6: update rule(b.getCodebook(),x)
7: end for

End Algorithm

Even though, we have used the advantages of the CONROT algorithm, the
architecture that we are proposing allows us to to utilize an alternative restruc-
turing module. Candidates which can be used to perform the adaptation are
the ones mentioned in Section 2, and include the splay and the monotonic-tree
algorithms, among others [11].
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4 Experimental Results

To illustrate the capabilities of our method, the experiments reported in the
present work are limited to the two-dimensional feature space. However, it is
important to remark that the algorithm is also capable of solving problems
in higher dimensions, though a graphical representation of the results is not
as illustrative. As per the results obtained in [4], the TTOSOM is capable of
inferring the distribution and structure of the data. In our present work, we are
interested in knowing the effects of applying the neural rotation as part of the
training process. The experiments briefly presented in this section use the same
schedule for the learning rate and radius, i.e., no particular refinement of the
parameters has been done to each particular data set.

First, we consider the data generated from a triangular-spaced distribution, as
shown in Figs. 3a-3d. In this case, the initial tree topology is unidirectional. For
the initialization phase a 1-ary tree (i.e., a list) is employed as the special case
of the structure, and the respective keys are assigned in an increasing order. At
the beginning, the prototype vectors are randomly placed. In the first iteration,
the linear topology is lost, which is attributable to the randomness of the data
points. As the prototypes are migrated and reallocated (see Figs. 3b and 3c), the
1-ary tree is modified as a consequence of the rotations. Finally, Fig. 3d depicts
the case after convergence has taken place. Here, the tree nodes are uniformly
distributed over the whole triangular shape. The BST property is still preserved,
and further rotations are still possible. This experiment serves as an excellent
example to show the differences with respect to the original TTOSOM algorithm
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Fig. 3. A 1-ary tree, i.e. a list topology, learns different distributions using the TTO-
CONROT algorithm after utilizing the same set of parameters
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[4], where a similar data set was utilized. In the case of the TTO-CONROT
the points effectively represent the whole data set. Here, no particular a priori
information about the structure of the data distribution is necessary; rather,
this is learnt during the training process, as shown in Fig. 3d. In this manner,
the specification of the initial tree topology required by the TTOSOM is no
longer needed, and an alternative specification, which only requires the number
of nodes in the initial 1-ary tree, is sufficient.

Another experiment is the one shown in Figs. 3e-3h, which entails a data set
generated from 3 circular-shaped clouds where the circles possess a different size
and density. In this experiment, again, in the first iteration, the original structure
of 1-ary tree is lost because of the random selection of the codebook vectors.
Interestingly, after convergence, and as depicted in Fig. 3h, the algorithm places
a proportional number of codebook vectors in each of the three circles according
to the density of their data points.

Lastly, Figs. 3i-3l demonstrate the power of the scheme for a linear curve.

5 Conclusions

In this paper, we have proposed a novel integration between the areas of ADS
and the SOM. In particular, we have shown how a tree-based SOM can be
adaptively transformed by the employment of an underlying BST structure and
subsequently, re-structured using rotations that are performed conditionally. Our
proposed method is able to infer the topological properties of the stochastic dis-
tribution, and at the same time, attempts to build the best BST that represents
the data set.
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Abstract. We propose a novel algorithm called Popularity&InfluenceCalculator 
(PIC) to get the most popular web pages and influent websites under certain 
keywords. We assume that the influence of a website is composed of its own 
significance and the effects of its pages, while the popularity of a web page is 
related with the websites and all the other pages. After that, we design a novel 
algorithm which iteratively computes importance of both websites and web 
pages. The empirical results show that the PIC algorithm can rank the pages in 
famous websites and pages with descriptive facts higher. We also find out that 
those pages contain more popular contents, which is accordant with our 
previous description of popularity. Our system can help users to find the most 
important news first, under certain keywords. 

Keywords: Popularity of web pages, Influence of websites, Computing model, 
Topic search. 

1   Introduction 

The Internet is playing an important role in daily life, with the prevalence of personal 
computer. There are millions of news and reports propagating over the whole web. 
Even under a specific topic, users can still find lots of related web pages and 
corresponding websites. Among those results generated through search engines, it is 
usually time-consuming for people to find more important news, which is a common 
but need-to-be-solved problem in the era of information explosion, as well. 

According to some researches, most users will only examine the first couple of 
pages of results returned by any search engine [12]. Under that circumstance, finding 
important news and related websites which often post such news is becoming more 
and more essential for users. Actually, it will be beneficial for both personal and 
enterprise use. For personal use, this technique can save time and make users focus on 
their original interests. For enterprise use, users can find the negative news or rumors 
about them, in order to take risk-reduction actions and inspect the websites which 
have high willingness of posting such important reports or articles. 

There have been some currently existing researches on finding out the importance 
of websites and web pages over the Internet. HITS algorithm [1] is one well-known 
method to find the hubs and authoritative web pages. It defines two values for each 
web page: authority and hub property. Hub is a kind of web page pointing to lots of 
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other pages. In HITS, a good hub page is the one connecting with numerous good 
authoritative pages, and vice versa. In the following years, some people have made 
some efforts to improve the HITS algorithm. Bharat and Henzinger tried to solve the 
problems caused by the mutually reinforcing relationships between hosts [6]. 
Assigning weights is a simple but effective way to improve the original HITS 
algorithm, as well. Chang considered the user interests of specific document and add 
more weights to the corresponding web pages [10]. Some people also suggested 
assigning appropriate weights to in-links of root documents and combining some 
relevance scoring methods, such as Vector Space Model (VSM) and Okapi, with the 
original HITS algorithm [9]. According to the web log, the number of users visiting a 
certain web page can also be used as weights [11]. Lempel and Moran proposed 
another kind of query-dependent ranking algorithm based on links called SALSA [7, 
13], which is inspired by the HITS and PageRank algorithms. SALSA can isolate a 
particular topological phenomenon called the Tightly Knit Community (TKC) Effect. 
According to some comparative studies, SALSA is very effective at scoring general 
queries, but it still exhibits the “sampling anomaly” phenomenon [14]. In addition, 
some people also proposed to use media focus and user attention information to rank 
the news topic within a certain news story [15]. 

However, HITS and these improved algorithms are all based on the link analysis 
among all the web pages, while major focus of topic ranking research is on web links 
[4] as well. If the pages are not connected with each other, the results cannot be 
achieved. Fernandes proposed to use block information in web pages to get a better 
rank result, which requires some division methods to separate a single page into 
different blocks [8]. In this paper, we want to eliminate such division process and link 
information. 

The major aim of ranking web pages and websites is to determine which one has 
more influences on that specific topic. However, this problem is lack of general and 
efficient solutions. But, there are some similar systems whose major ideas have great 
value on our problem. Yin and Han proposed an approach to determine the level of 
trustworthiness of both websites and web pages for a given object [2, 3], which also 
iteratively calculates the trustworthiness among websites and pages. 

In this paper, we define the popularity of a web page as popularity of its contents, 
as well as design an iteration algorithm called Popularity&InfluenceCalculator (PIC), 
to compute the influence of websites and popularity of web pages. The general 
thought is that the website which has more popular pages will have more influence 
correspondingly; while the page which exists on more influent websites will have 
more popularity, as well. We use two cases to examine the effects of our method and 
achieve satisfactory ranking results based on values of websites and pages. Our 
ranking algorithm will not require the existence of web-links among pages and 
websites. Besides, we are focusing not only on web pages, but also on the websites 
which have higher possibility to report similar news. 

The rest of the paper is organized as follows. The problem description and our 
proposed model are presented in Section 2. The results of two cases of our algorithm 
are discussed in Section 3. Finally, we conclude our proposed method in Section 4. 
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2   Computing Model and PIC Algorithm 

2.1   Problem Description 

First, we should consider what kind of web pages and websites show higher 
popularity and influence. In this paper, a certain web page can consist of one or more 
contents. If a specific content is also mentioned in more web pages, it means that such 
content does attract more attention from people, which will make it more important. 
In that case, if a web page contains more important contents, it will become more 
significant, too. Such definition is meaningful, because in common sense, if a web 
page is discussed and browsed by more people, it will have greater impacts on the 
object it discusses, such as a company. Similarly, an important website should contain 
more web pages which have higher importance. Meanwhile, the web pages published 
on such a website will have higher possibility to be important in the future as well. 
The detailed descriptions are as follows. 

Importance of contents: The importance of a piece of content represents its 
appearance in web pages. If a certain piece of content appears on more web pages, it 
will have higher importance.  

Popularity of a web page: The popularity of a web page equals to its contents’ 
importance. If a web page contains more important contents, it will have more 
popularity. The popularity means the importance of a web page on a certain topic.  

Influence of a website: The influence of a website means the average popularities of 
its pages. If the pages within a website normally have higher popularity, such website 
will show more influence on a certain topic. Hence, the influence of a website is its 
importance for a certain topic.  

Hence, the aim of our algorithm is to find the web pages having higher popularities 
and websites showing higher influences under given keywords. The input of the 
system is the set of all web pages returned through a search engine, while the outputs 
are the popularities and influences of those web pages and their corresponding 
websites, which are sorted by the value of their importance, respectively. 

2.2   Framework of PIC Algorithm 

The major idea of this model is to use an iteration algorithm to compute the 
importance of websites and pages. In other words, the pages in more influent websites 
will have more popularity; while the websites which have more pages having high 
popularity will show higher influence. Before describing the details of the computing 
model, some variables must be defined first. 

P is a set composed of all the pages found in searching step. The size of P is m, 
which means P has m elements P1, …, Pm. 

W is a set composed of all the websites we found. The size of W is n, which means 
W has n elements W1, …, Wn. 

Pop is a vector with length of m. Popi records the popularity of page Pi. 
Inf is a vector with length of n. Infi records the influence of website Wi. 
Besides, there are also two assumptions about the influence of websites and 

popularity of web pages in our model. 
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Assumption 1. The influence of a website can be divided into two parts, its own 
significance and the popularity of its pages. The own significance of a website can be 
calculated through several factors, such as the daily visit number, its sensibility to 
specific domain of news, and so on.  

Assumption 2. The popularity of a page can be divided into two parts, influence of 
the websites it is on and the effects of other pages. 

In PIC algorithm, the influence of websites will be initialized as their own 
significance. Then, those values will be used to calculate the popularity of web pages. 
Meanwhile, the influences among all the pages will also be taken into consideration. 
Afterwards, the websites’ influence will be computed again through their own 
significance and their pages. The calculation will continue until the convergence of all 
the importance of both pages and websites. The general computing framework is 
shown in Fig. 1. 

 

Fig. 1. Computing framework of PIC algorithm 

2.3   Computing Process of PIC Algorithm 

The computation will start from the websites. In this step, we only consider the 
inherent significance of a website, such as daily visit number or the popularity in a 
certain domain. Some people pointed out that there are some common and specific 
features of websites in different domains [5]. Hence, we believe that there should be 
some common parameters to determine the inherent importance of the websites. We 
use Sigi to represent the significance of Wi. 

Impi = Sigi .                                                  (1) 

Here, we suppose all the websites have the same significance. 

2.3.1   Computing Algorithm for Pages’ Popularity 
The pages’ popularity can be divided into two parts: influence of websites and 
influence of other pages. First, the influence of websites should be calculated. 
Suppose the current page Pi exists on r websites, from W1 to Wr. Then, the first part of 
the importance of Pi will be the average importance of r websites. 
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Second, the effects of other pages should be considered. Except the current page Pi, 
there still are m-1 pages. In that case, the second part of the popularity of Pi can be 
achieved through the following equation. 
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Relj means the relevance between page Pj and input keywords; simi, j represents the 
similarity between Pi and Pj, which describes how many contents of those two pages 
are similar. The detailed method of calculating similarity can be found in later section. 
Popj is the popularity of page Pj calculated in the last iteration. This equation means 
that if two pages Pi and Pj are more similar, and Pj is more relevant with the input 
keywords, then Pj will have more effects on Pi under the current keywords. The first 
reli is to make sure any two pages will have similar effects on each other. 

The relj can be got through the rank of pages in focus search step, such as 
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Then, the above two parts are added to get the total Pop, in which b is a regulating 
factor, ranging from 0 to 1. 

'i i iPop Pop b Popδ= + ×                                                  (5) 

Finally, in order to normalize the Pop, a transforming should be done as follows. 

'1 iPop
iPop e−= −                                                      (6) 

2.3.2   Computing Algorithm for Websites’ Influence 
This step is similar as the above one. The influence of website Wi can also be divided 
into two parts: the own significance and the effects of its pages. The first part is 
computed in the last iteration, while the second part is the effects of its pages, which 
is the average popularity of all the pages on current website. 
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Then, sum the two parts to get the total Inf, in which a is also a regulation factor, 
ranging from 0 to 1. 

'i i iInf Inf a Infδ= + ×                                             
 (8) 
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Finally, through the normalization, the final Inf can be achieved. 

'1 iInf
iInf e−= −                                                  (9) 

Then the calculation will iterate until the vector of Pop and Inf both converge. Finally, 
the importance of all pages and websites will be obtained, as well as the rank of them 
according to their values. 

3   Experiments and Evaluation 

3.1   Data Collection 

Case 1: Suicide case in a company 
There was an employee of a company jumped from the fourth floor several years ago. 
Some people near that building posted pictures and briefly described the event on 
several BBSs only after about half an hour. During the following days, this suicide 
event was spread all over the internet. 

For this case, we crawl 250 pages given by Google. Also, we find out all the 
websites these pages “reside” on. This way, we get a dataset composed of 250 web 
pages and the corresponding 195 websites, together with relationships between them. 

Case 2: Event of “South China Tiger” 
South China Tiger is a commonly-thought-to-be extinct species, since for decades 
they haven’t been spotted in the wild. On Oct 13, 2007, a local hunter in one province 
of China claimed that he had managed to take photos of a wild South China Tiger, the 
evidences of this species’ existence. Shortly, a blogger suspected that these photos 
were likely to be faked and caused a more and more fierce and attention-drawing 
discussion about the authenticity of these photos to spread over the whole web. 

Similarly, for this case, we use Google with a query, “South China Tiger Event”, 
and got 275 pages and 230 websites. In order to accurately measure the similarity 
between web pages, we process these pages in both cases using html parsing 
techniques and get the main content of them. 

3.2   Results and Analysis 

3.2.1   Two Extreme Situations 
We run our algorithm on these two datasets and output influence score for each 
website and popularity score of pages. For each dataset, we rank websites and pages 
using their values respectively. In order to validate our computational framework, we 
investigate top-ranked and bottom-ranked websites and pages. 

Fig. 2 plots rankings of the 20 most highly ranked websites denoted by the 
horizontal axis and rankings of web pages these websites correspondingly contain, 
denoted by the vertical axis. As can be seen, high-ranked websites tend to hold more 
than one, sometimes four or five pages which generally have relatively competitive 
positions on the page rank list. The results show that website rankings and page 
rankings change closely with each other. 
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(a) Case 1                                (b)   Case 2 

Fig. 2. Rankings of high-ranked websites and pages 

Another observation emerges from the ranking lists of pages for both data sets. 
That is, if pages contain more descriptive and factual information about the events, 
they will be given larger scores and higher rankings, while some critical articles with 
little impact on the spreading of the news will be ranked lowly, such as the ones only 
discussed by one person or few people. This is accordant with our previous definition 
of popularity in Section 3, in the sense that one descriptive and factual page is 
intended to cover objective details of a specific event and can easily find similar 
pages, whereas critical articles are quite more subjective and individual-dependent, 
and therefore have few similar ones. 

In order to further formulate how websites and pages become high-ranked and low-
ranked, we discuss the relationships between websites and pages with two simplified 
modes. High-ranked websites and pages generally display one-contain-several mode. 
In this case, because of the process of mutual reinforcement, the website on the left 
conveys its impact score to the three pages it contains on the right. In return, the three 
pages convey their popularity to their website, in fact through a summing operation, 
giving a boost to their website’s influence score. Most low-ranked websites and their 
pages exhibit one-contain-one mode, which makes mutual reinforcement less 
meaningful. Therefore, the ranking of the single website is mainly and directly 
determined by its single page and vice versa. 

3.2.2   One Moderate Situation 
In Section 3.2.1, we have analyzed the results of the most highly and lowly ranked 
websites and pages. In order to completely evaluate the results and check not-so-
extreme situations, we examine supplemental websites and pages at the middle 
positions on the ranking list. 

In Fig. 3, for both case 1 and case 2, we show the websites ranked from 111 to 120 
and rankings of all the pages each website contains. Generally, these websites and 
pages display one-contain-one mode which makes rankings of these websites and 
their pages highly, and almost linearly, correlated. These results comply with 
heuristics suggested by our computational algorithm and are consistent with our 
analysis above. 
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                                     (a)    Case 1                           (b)    Case 2 

Fig. 3. Rankings of middle-ranked websites and pages 

3.3   Discussion 

As elaborated in Section 2, we get each page’s popularity score by calculating an 
arithmetic mean of the influence scores of all the websites this page belongs to. 
However, an problematic aspect of this procedure is that in practice, as can be seen 
from the two real data sets in Section 3.1, the mode that one web page resides on 
several distinct websites rarely exists. One possible way to deal with that is to 
combine the pages whose similarity is higher than a certain threshold.  

3.4   Additional Subtlety 

In this section, we start out to handle a subtle problem. As analogously addressed by 
Bharat and Henzinger in 1998 [6], because of mutual reinforcement, the “cabal” of 
the websites and pages in Figure 3(a) “conspire” to boost each other and predominate 
the resulting lists. In order to abbreviate this effect, instead of the straightforward 
arithmetic-mean method, we divide each importance score evenly among its degree. 
By summing up all the influence scores endowed by websites containing it, we can 
get a normalized popularity score of a page. Under such a circumstance, Formula (2) 
can be formulated as follows: 
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where degreej is the number of pages on website Wj. 
Similarly, the popularity of a page can also be equally divided into several parts, 

according to the websites it appears on, just as above. 
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In order to examine the effectiveness of this calculation method, we run the modified 
algorithm on the data set of Case 1 and compare acquired results with previous ones. 
Fig. 4 shows how the number of pages “nesting” on a website changes with this 
website’s rankings for both the original and modified algorithms. The horizontal axis 
denotes the top 20 websites and the vertical axis denotes the number of pages each 
website contains. From this comparison, we can reach the conclusion that when using 
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Normalized method, as websites get lower ranks, the numbers of their pages decrease 
accordingly, a tendency which cannot be observed in Fig. 4(a). 

Table 1 shows the value ranges of both website influence scores and web page 
popularity scores for Arithmetic-mean and Normalized method. An observable 
difference is that Normalized method generates weights with a broader spectrum and 
wider range. From this point, Normalized method’s results are more desirable and 
reasonable in the sense that they have greater discriminative power. 

 

(a) Arithmetic-mean          (b)   Normalized method 

Fig. 4. Two calculating methods 

Table 1. Comparison of value ranges 

Method Rang of website influence Rang of web page popularity 
Arithmetic-mean method 0.75089  ~  0.7004 0.7533  ~  0.5040 
Normalized method 0.8890  ~  0.7000 0.5539  ~  0.1665 

4   Conclusion and Future Work 

In this paper, we proposed a novel PIC algorithm to get the most popular web pages 
and the most influent websites under certain keywords. We first define the importance 
of content, the popularity of web pages and the influence of websites, respectively. 
Then, we assume that the influence of a website is composed of its own significance 
and the effects of its pages, while the popularity of a web page is related with the 
websites and all the other pages’ popularity. In that case, we design the iterative 
algorithm to calculate the value of both websites and web pages, until they converge. 
Two cases are collected manually as the experiment data. The results show that PIC 
algorithm can rank the pages in famous websites and pages with descriptive facts 
higher.  

However, there still are some problems. For instance, how to evaluate the inherent 
significance of a certain website needs thorough consideration. Besides, we also plan 
to change the current similarity calculation method based on semi-automatic keyword 
selection into the automatic whole passage comparison method.  
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Abstract. Real-world data are often stored as relational database sys-
tems with different numbers of significant attributes. Unfortunately, most
classification techniques are proposed for learning from balanced non-
relational data and mainly for classifying one single attribute. In this
paper, we propose an approach for learning from relational data with
the specific goal of classifying multiple imbalanced attributes. In our ap-
proach, we extend a relational modelling technique (PRMs-IM) designed
for imbalanced relational learning to deal with multiple imbalanced at-
tributes classification. We address the problem of classifying multiple
imbalanced attributes by enriching the PRMs-IM with the “Bagging”
classification ensemble. We evaluate our approach on real-world imbal-
anced student relational data and demonstrate its effectiveness in pre-
dicting student performance.

1 Introduction

Classification is a critical task in many real-world systems, and is a research
field in which extensive studies and experiments are conducted to improve the
classification results. A wide range of classification techniques, such as Bayesian
networks (BNs), decision trees and Support Vector Machines (SVMs), have been
successfully employed in many applications to classify various types of objects.

However, most of these classification techniques are usually proposed with
specific assumptions, which may not hold in many real-world domains. The clas-
sification of a single attribute from flat data files that have balanced data dis-
tribution, represent one of these assumptions. However, in many applications,
the collected data are stored in relational database systems with highly imbal-
anced data distribution, where one class of data has a large number of samples
as compared with the other classes. Moreover, in many applications, it is often
of interest to classify/predict several attributes rather than a single attribute.
An example of such a situation is learning from a student relational database to
predict the unit results of a second-year undergraduate student given the results
of the first-year, in which the unit results are greatly imbalanced.

Studies have shown that learning from imbalanced data usually hinders the
performance of the traditional learning techniques [1,2]. This performance degra-
dation is a result of producing more and stronger rules to classify the samples
of the majority class in comparison to that of the minority class, and hence
incorrectly classify most of the minority samples to be of the majority class.
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Several methods have been proposed to handle the general imbalanced class
problem [3, 4, 5, 6], and a few attempts have been made to handle the problem
particularly in relational data [7,8,9,10]. PRMs-IM [10] has been recently intro-
duced as an extension of a relational learning technique: Probabilistic Relational
Models (PRMs) [11, 12], to handle the two-class classification of a single imbal-
anced attribute in relational domains. The idea behind PRMs-IM is to build an
ensemble of PRMs on balanced subsets from the original data, in which each sub-
set has an equal number of the minority and majority samples of the imbalanced
attribute.

Although the imbalanced class problem is relatively well investigated in both
relational and non-relational domains, the classification of several imbalanced
attributes in relational domains has not been well addressed. Attempts have
been proposed for the special case of classifying two attributes [13,14]. However,
these methods did not tackle the imbalanced problem or the relational learning
for classifying several attributes.

Therefore, special classification techniques are required to handle the problem
of classifying multiple imbalanced attributes in relational domains. In this paper
we investigate this problem and review the different proposed approaches. Based
on this research, we present a new approach (PRMs-IM2) to handle the problem
of classifying multiple imbalanced attributes in relational data. In our approach,
we address this problem by combining the balancing concept of PRMs-IM with
the “Bagging” classification ensemble [15]. PRMs-IM2 is presented as a Bagging
ensemble approach that consists of a set of independent classifiers trained on
balanced subsets of the imbalanced data. The subsets are generated using the
balancing concept of PRMs-IM for each of the imbalanced attributes. We eval-
uate our approach on a student relational database with multiple imbalanced
attributes, and show the effectiveness of our approach in predicting student
results in second semester units.

This paper is organized as follows: section 2 presents a review of the related
work. Our methodology is presented in section 3, followed by the experimental
results in section 4. Finally, section 5 concludes the paper.

2 Related Work

2.1 Imbalanced Class Problem in Relational Data

Classification techniques such as BNs, decisions trees and SVMs have been shown
to perform extremely well in several applications of different domains. However,
research has shown that the performance of these techniques is hindered when
applied to imbalanced data [1, 2], as they get biased to the majority class and
hence misclassify most of the minority samples.

Methods proposed to handle the imbalanced class problem can be categorized
into three groups [16, 17]:

– Re-sampling: by either down-sampling the majority class or/and over-
sampling the minority class until the two classes have approximately equal
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numbers of samples. A study of a number of down- and over-sampling meth-
ods and their performances is presented by Batista et al. [3].

– Cost-Sensitive learning: by assigning a distinct misclassification cost for
each class, and particularly increasing that of the minority class [4].

– Insensitive learning: by modifying the learning algorithm internally to
pay more attention to minority class data, as in building a goal oriented
BN [5] and exploring the optimum intervals for the majority and minority
classes [6].

However, most of these methods are mainly developed for flat datasets, where
all data must be presented in one single file. Therefore, in order to learn from
a rich relational database, the data must be first converted into a single file
that consists of a fixed set of attributes and the corresponding values. This
conversion could result in redundant data and inconsistency. Techniques have
been proposed to handle the imbalanced class problem in multi-relational data,
including: implementing cost-sensitive learning in structured data [7], combining
the classification of multiple flat views of the database [8] and using the G-mean
in decision trees [9].

In addition to these methods, PRMs-IM [10] has been recently introduced to
handle the imbalanced class problem in relational data. PRMs-IM was intro-
duced as an extension of the relational learning algorithm: Probabilistic Re-
lational Models (PRMs) [11, 12]. PRMs were introduced as an extension of
Bayesian Networks (BNs) to satisfy relational learning and inference. PRMs
specify a model for probability distribution over the relational domains. The
model includes the relational representation of the domain and the probabilistic
schema describing the dependencies in the domain. The PRM model learned
from the relational data provides a statistical model that can be used to answer
many interesting inference queries about any aspect of the domain given the
current status and relationships in the database.

Therefore, to handle the imbalanced class problem in relational data, PRMs-
IM was presented as an ensemble of independent PRM models built on balanced
subsets extracted from the imbalanced training dataset. Each subset is con-
structed to include all the samples of the minority class and an equal number
of randomly selected samples from the majority class. The number of balanced
subsets depends on the statistical distribution of the data. Thus, if the number of
samples in the majority class is double that of the minority, then two subsets are
created. The PRM models of PRMs-IM are then combined using the weighted
voting strategy [10], and hence new samples are assigned to the class with the
highest weighted score.

2.2 Classifying Multiple Attributes

Most existing pattern classification techniques handle the classification of a sin-
gle attribute. However, in many real-world applications, it is often the case of
being interested in classifying more than one attribute, such as classifying both
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the activity and location in location-based activity recognition systems. The
basic solutions for classifying multiple attributes (A = {A1, A2, A3, . . .}) can be
classified as follows [14, 13]:

– The combined method: by considering A as one complex attribute and hence
construct one classifier. In this method, advanced techniques are required to
work with the multi-class classification.

– The hierarchal method: in a similar approach to decision trees, by construct-
ing a classifier for a given attributes Ai, and then for each class of Ai con-
struct a specialized classifier for Aj . The performance of this method is
hindered by the accuracy of the classifiers at the top of the hierarchy, as any
misclassification by the top classifiers can not be corrected later. Moreover,
in this method, the top attributes can help to reach conclusions about the
lower attributes but not vise versa. In addition, the structure grows rapidly
as the number of attributes and classes increases.

– The independent method: for each attribute Ai, construct an independent
classifier. This method is based on dealing with each attribute separately, and
hence it requires more training and testing phases than the other methods.

In addition to these näıve solutions, other methods were proposed but mostly
for the special case of classifying two attributes. One method includes using a
bilinear model for solving two-factor tasks [14]. This approach mostly acts as a
regression analysis and hence does not provide a graphical model for interpret-
ing the interactions between the attributes in the domain as provided in other
classification techniques, such as BNs.

Another method uses the mutual suggestions between a pair of classifiers [13],
in which a single classifier is trained for each attribute, and then at the inference
phase, the results of each classifier are used as a hint to reach a conclusion
in the other classifier. The learning in this approach is similar to that of the
independent approach, but differs in obtaining the final classification results in
the inference phase, where the hints between the classifiers are used to reach a
better result.

3 Methodology

In this paper we aim to develop a classification technique that could handle the
problem of classifying multiple imbalanced attributes in relational data by us-
ing the concepts of PRMs-IM [10] and the “Bagging” ensemble approach [15].
PRMs-IM are designed specifically to learn from imbalanced relational databases
for a single imbalanced attribute. Thus, for classifying N imbalanced attributes,
N independent PRMs-IM models must be performed, one model for each at-
tribute. In PRMs-IM2 we aim to extend PRMs-IM to classify the N imbalanced
attributes in a single model.

In order to to obtain a single model, we use the idea of the “Bagging” ensemble
approach. The Bagging approach uses an ensemble of K classifiers. Each classifier
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is trained on a different subset randomly sampled, with replacements, from the
original data. To classify a new sample, the classification decisions of the K
classifiers are combined to reach a final conclusion about the class of the sample.
A simple combination technique is to use majority voting, in which the sample
is assigned to the class with the largest number of votes.

Our approach relies on the idea of building an ensemble of classifiers, where
each classifier is trained on a different relational subset that includes a balanced
representation of all the imbalanced attributes. This aim is achieved in PRMs-
IM2 by firstly applying the balancing concept of PRMs-IM to build balanced
relational subsets for each imbalanced attribute. This results in a separate set
of balanced subsets for each imbalanced attribute.

However, to achieve the goal of generating subsets that include all the imbal-
anced attributes, PRMs-IM2 employs the Bagging concept to further sample the
balanced subsets into L datasets. Each of the L datasets is formed by randomly
selecting one balanced subset from each imbalanced attribute. At the end of this
procedure, L balanced subsets will be generated, each subset including balanced
data for each of the imbalanced target attributes. Note that in this paper, we use
the same notations to describe the imbalanced situation as those used in [10].

To illustrate our approach, consider a relational dataset S that consists of
a set of attributes (X1, X2, ..., XM , Y1, Y2, .., YN ) organized into tables and re-
lationships, where (Y1, Y2, .., YN ) represents the set of the domain imbalanced
attributes that we want to classify. Each Yi has a majority class Yimj and a
minority class Yimr . In addition, ni(mr) represents the number of samples of the
minority class of Yi. The subsets of PRMs-IM2 are constructed as follows:

– For each imbalanced attribute Yi of the N imbalanced attributes:
• Compute ni as the difference between the number of samples of Yimj and

that of Yimr , where ni is the number of balanced subsets required for Yi.
• For each of the ni iterations, construct a subset Yisi, such that it includes:

∗ All the ni(mr) samples from Yimr .
∗ ni(mr) randomly selected samples with replacements from Yimj .
∗ The data of (X1, X2, ..., XM ) according to the selected records of Yi.

– Compute L = maxi=1..N (ni), where L is the number of datasets required for
the bagging approach.

– For L iterations:
• Construct a database Si that has the same structure as S.
• For each Yj , randomly allocate a subset Yjsk from Yj subsets to Si.

It is important to note, that when creating the balanced subsets of an imbal-
anced attribute Yi, the subsets should include only the data of (X1, X2, ..., XM )
and of Yi. In other words, the data of the other imbalanced attributes rather
than Yi are excluded. This is necessary for creating balanced K databases of all
the attributes at the sampling phase. Otherwise, consider the case if Yi subsets
include the related records of Yj . Then, at the sampling phase, a subset Sk could
be generated, such that it includes the random subsets: Yisl and Yjsh from Yi
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Fig. 1. An illustration of PRMs-IM2 approach for classifying multiple imbalanced
attributes

and Yj , respectively. In this case, the data records of Yj in Sk will include data
from Yjsh, which are balanced data, and the Yj records from Yisl, which are not
balanced.

Having the balanced L relational subsets, an independent PRM model can be
learned from each relational subset Li using the learning techniques described
in [12]. Then, these models are combined using the weighted voting strategy as
in [10]. In this combination strategy, each PRM model Pi has a different weight
PiwYi for each attribute Yi to be used for the final prediction. The PiwYi is
calculated as the average performance accuracy of Pi for classifying Yi over the
training subsets other than the data subset corresponding to Pi. Fig. 1 illustrates
the concept of PRMs-IM2.

For a new testing sample x, each Pi outputs the probabilities of each of the
imbalanced attributes (Y1, Y2, .., YN ) given the values of (X1, X2, ..., XM ). Thus,
for each Yi, each Pi outputs the probabilities (Pi(x)Yimj , Pi(x)Yimr ) for assigning
x to Yimj and Yimr , respectively. Then, for each Yi, the score of each class equals
the summation of the weighted probabilities of the PRM models and hence x is
classified to be of the class with the largest weighted score. For example, for Yi

the classification of x is calculated as:

F (x) = argmaxm∈(Yimj
,Yimr )(

∑
∀Pi

Pi(x)Yim ∗ PiwYi) (1)
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4 Experiments

4.1 Dataset

We use the same Curtin University Student database as used in PRMs-IM [10].
This dataset represents the set of undergraduate students of the Bachelor of
Computer Science (BCS) and the Bachelor of Commerce (BCom). The curricu-
lum of the BCS includes: first semester units {ST151, Maths101, FCS151, and
English101} and second semester units {ST152 (prerequisite:ST151), FCS152
(prerequisite:FCS151) and IPE151}. The curriculum of the BCom includes: first
semester units {BIS100, ACCT100, LFW100 and ECON100} and second
semester {MGT100 and MKT100}.

The database includes a set of tables and relationships representing the stu-
dents’ personal information and their performances in first and second semesters
of first year. The database is organized as follows:

– The Personal Info table: which consists of: age, gender, is international, and
is English home language attributes, which each takes values of: {16-19, 20-
29, 30-40}, {Male, Female}, {Yes, No}, {Yes, No}, respectively.

– The Academic Info table: which includes: Preference no that takes values
of: {1, 2, 3, 4}, to indicate the student’s preferred course of study.

– Semester I units tables: each includes: grade of values: {F, 5, 6, 7, 8, 9}
representing the marks: {0-49, 50-59, 60-69, 70-79, 80-89, 90-100}.

– Semester II units tables: including the status attribute taking values of {Pass,
Fail}.

In this dataset, for each of the BCom and BCS degrees, we are interested in
predicting a given student’s performance in second second semester units based
on the personal information and performances in first semester units. However,
each of the second semester units represents an imbalanced attribute, in which
mot of the data belongs to the majority ‘Pass’ class compared to few samples
belonging to the minority ‘Fail’ class. Table 1 depicts the data distribution of
the training data. For each degree, we perform 5-fold cross validation using the
training data for the students enrolled in the period 1999-2005. In addition to
the cross validation, we use the data of year 2006 as a separate testing set.

4.2 Experimental Setup

The results of PRMs-IM2 are presented in comparison to the independent and
hierarchal approaches discussed earlier in section 2. In this paper, the combined

Table 1. Data distribution of (a) the BCS (b) the BCom training dataset

Unit |Fail| |Pass|
ST152 12 58
FCS152 11 59
IPE151 7 63

(a)

Unit |Fail| |Pass|
MGT100 159 1556
MKT100 88 1627

(b)
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approach is not evaluated, as it represents a multi-class problem, in which special
multi-class algorithms are required. The PRM is used as the learning technique
in all the experiments as a result of the relational format of the dataset and the
effectiveness of PRMs in relational learning.

For evaluation, we use Receiver Operating Characteristics (ROC) curves and
the Area under ROC (AUC) [18], which are often used as a measure for imbal-
anced classification problems. ROC curves show the trade off between the false
positive rate and the true positive rate. The AUC is used to compare several
models using the ROC curves, to get a single value of the classifier performance.
The closer the AUC value is to the value ‘1’, the better the classifier.

The independent method is represented as the results of PRMs-IM, in which
each independent experiment is evaluated for each imbalanced attribute. In the
hierarchal method, the imbalanced attributes are first ordered in descending
order (Y1, Y2, .., Yn) based on the AUC value of each attribute obtained in PRMs-
IM. Thus, the attributes with higher AUCs are listed first. This order is chosen
so as to have the most accurate classifiers at the top of the hierarchy to minimize
propagating the classification errors to the lower levels. Moreover, to avoid the
problem of the imbalanced class problem, each classifier in the hierarchy is build
as a PRMs-IM, thus the classifier of Yi is a PRMs-IM on balanced subsets of Yi.

4.3 Experimental Results

In this section we present the results obtained from each experiment in terms of:
the prediction accuracy in the AUC results and the number of models used for
training and inference in each algorithm, as shown in Tables 2 and 3, respectively.
For each dataset, the best result is shown in bold. Table 3 presents the normalized
number of models of each algorithm for training and inference. The normalized
number is the number of models required by each algorithm for a particular
dataset divided by the corresponding number of models of PRMs-IM2. Average
normalized values greater than one correspond to an algorithm requiring more
models than PRMs-IM2.

In terms of the prediction accuracy, the results show that PRMs-IM2 was
able to outperform all the other methods except for the IPE dataset in the
cross validation. In the hierarchal approach, the results are hindered by the
misclassification results of the top classifiers in the hierarchy. In the independent
method, the models are built independently for each imbalanced attribute and
hence the value of one attribute cannot be used to reach any conclusion about
the others. However, in real-world applications, usually the information about
one attribute can help to reach better understanding about others. Therefore, a
model that includes all the attributes can use the different interactions between
them to reach better results. This principle could not be achieved using the
independent model, as each attribute needs to be modeled separately, and neither
can be accomplished in the hierarchical method, as only the top attributes help
to reach a conclusion about the lower attributes but not the other way around.
Moreover, the combined approach will treat the targeted attributes as one single
attribute and thus would not show us the interactions of each attribute by itself.
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Table 2. The AUC results (a) Cross validation (b) 2006 testing data

Method
BCom BCS

MGT100 MKT100 ST152 FCS152 IPE151

PRMs-IM 0.914 0.786 0.839 0.901 0.913
PRMs-IM2 0.922 0.893 0.950 0.923 0.892
Hierarchal 0.914 0.756 0.811 0.897 0.913

(a)

Method BCom BCS
MGT100 MKT100 ST152 FCS152 IPE151

PRMs-IM 0.921 0.788 0.875 0.927 0.954
PRMs-IM2 0.921 0.840 0.984 0.968 0.993
Hierarchal 0.921 0.787 0.785 0.887 0.954

(b)

Table 3. Normalized number of models used for (a) Training (b) Inference

Method
Dataset (DS) Average
BCom BCS over DS

PRMs-IM 1.53 2.11 1.82
PRMs-IM2 1.00 1.00 1.00
Hierarchal 2.32 5.56 3.94

(a)

Method
Dataset (DS) Average
BCom BCS over DS

PRMs-IM 1.53 2.11 1.82
PRMs-IM2 1.00 1.00 1.00
Hierarchal 2.11 3.67 2.89

(b)

This interaction is achieved in PRMs-IM2, as the final model includes all the
attributes and presents all the interactions in the domain. Therefore, PRMs-IM2
offers the opportunity for the imbalanced attributes to be related to each other,
and hence the value of one of the imbalanced attributes could strengthen the
conclusion of the others. Moreover, PRMs-IM2 could model all the significant
imbalanced attributes at once and show the different interactions between the
attributes, which can not be achieved by the mutual suggestions approach [13]
that learns a separate classifier for each imbalanced attribute, or the bilinear
model [14] that uses a linear model.

In terms of the number of models used for training and inference, the results
show that PRMs-IM2 requires the least number of models for both training and
inference. For example in training, the number of models for PRMs-IM and the
hierarchy are about twice and four times, respectively, the number of models of
PRMs-IM2, and in inference the number of models are about twice and triple,
respectively, those of PRMs-IM.

5 Conclusion

This paper has discussed the problem of classifying multiple imbalanced at-
tributes in relational domains and proposed a technique (PRMs-IM2) to handle
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this problem. PRMs-IM2 combines the concepts of the relational imbalanced
technique (PRMs-IM) and the Bagging ensemble approach. In PRMs-IM2, all
the significant imbalanced attributes are modelled in a single model showing the
different interactions between the attributes, which can not be achieved by other
methods. PRMs-IM2 was evaluated on a student relational database to classify
the results of different imbalanced units in semester II. The results show that
PRMs-IM2 was able to generally improve over the other näıve methods, while
maintaining the least number of models for training and testing.
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Abstract. Geometric interpretations of Support Vector Machines
(SVMs) have introduced the concept of a reduced convex hull. A re-
duced convex hull is the set of all convex combinations of a set of points
where the weight any single point can be assigned is bounded from above
by a constant. This paper decouples reduced convex hulls from their ori-
gins in SVMs and allows them to be constructed independently. Two
algorithms for the computation of reduced convex hulls are presented –
a simple recursive algorithm for points in the plane and an algorithm for
points in an arbitrary dimensional space. Upper bounds on the number
of vertices and facets in a reduced convex hull are used to analyze the
worst-case complexity of the algorithms.

1 Introduction

Reduced convex hulls have been introduced by considering a geometric interpre-
tation of Support Vector Machines (SVMs) [1,2]. Reduced convex hulls provide
a method of non-uniformly shrinking a convex hull in order to compensate for
noise or outlying points, or to increase the margin between two classes in clas-
sification problems. The concept is employed by SVMs to ensure that a pair of
hulls does not overlap and can therefore be separated using a hyperplane.

Although reduced convex hulls have been well defined, algorithms which com-
pute them in their entirety are rarely considered. Authors who address the topic
of reduced convex hulls generally do so in order to train or understand SVMs
[1,2,3,4,5]. By contrast, convex hulls have been applied to problems in many
domains such as image processing and pattern classification [6,7] and a range of
algorithms for their construction have been proposed. There are also a number
of problems such as Delaunay triangulation or Voronoi tessellation which can be
either reduced to or interpreted as a convex hull problem [8].

The main contributions of this paper are two algorithms for the construction
of reduced convex hulls: a simple divide and conquer algorithm for points in
the plane and an algorithm for points in an arbitrary dimensional space. These
algorithms are generalizations of the Quickhull [9,10,11,8] and Beneath-Beyond
[12,8] algorithms for standard convex hulls. The worst-case complexity of the
algorithms is considered by introducing upper bounds on the number of facets
and vertices in a reduced convex hull.
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2 Reduced Convex Hulls (RCHs)

The μ-reduced convex hull of a set of points P = {x1,x2, . . . ,xn} is defined as
[2,1]

RCH(P, μ) =

{
n∑
i

αixi

∣∣∣∣∣
n∑
i

αi = 1, 0 ≤ αi ≤ μ
}

. (1)

The difference between reduced convex hulls and convex hulls is that reduced
convex hulls introduce an upper bound 0 < μ ≤ 1 on αi values. For μ = 1, the
reduced convex hull and the convex hull are identical.

The effect of the upper bound μ is that the impact any single point can
have on the hull is limited. Consequently, the convex hull is reduced towards
the centroid by an amount controlled by the parameter μ. As μ is decreased,
the reduced convex hull shrinks (non-uniformly) towards the centroid and more
points will be forced outside the hull. At μ = 1/n, the reduced convex hull
contains only the centroid, and for smaller μ the reduced convex hull is
empty [2].

The concept of reduced convex hulls arose from geometric interpretations of
SVM classifiers. Bennett and Bredensteiner [1] and Crisp and Burges [2] showed
that training an SVM classifier on a two-class dataset is equivalent to finding
the perpendicular bisector of the line joining the nearest points in the reduced
convex hulls of two classes (Figure 1). In this context the amount of reduction
in the convex hulls determines the tradeoff between the margin of the classifier
and the number of margin errors.

Fig. 1. Convex hulls (dotted lines) are inseparable, whereas the reduced convex hulls
(solid lines) are clearly separable. The SVM is the line bisecting the nearest two points
of the reduced convex hulls.
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3 Theoretical Properties of Reduced Convex Hulls

Like convex hulls, reduced convex hulls form a solid region, the border of which is
a convex polytope [3]. Reduced convex hulls can therefore be described in terms
of the convex hull of some set of vertices. This suggests that existing convex hull
algorithms can be adapted to construct reduced convex hulls, provided there
exists a simple means of locating the vertices of a reduced convex hull.

At a glance, locating a vertex of RCH(P, μ) appears to be a difficult opti-
mization problem, necessitating a search through many possible combinations
of weights given to points in P . However, there exists a simple theorem for find-
ing a vertex of RCH(P, μ) in a particular direction (Theorem 1). This theorem
becomes an important part of our reduced convex hull algorithms.

Definition 1. The scalar projection of b onto a is given by a·b
|a| .

Theorem 1. (Bern and Eppstein [3], Mavroforakis and Theodoridis [5]). For
direction v, a vertex p ∈ RCH(P, μ) which maximizes v · p satisfies

p =
m−1∑
i=1

μzi + (1 − (m− 1)μ)zm, m = �1/μ�, (2)

where P = {z1, z2, . . . , zn} and points are ordered in terms of scalar projection
onto v such that zi · v > zj · v ⇒ i < j with ties broken arbitrarily.

The process of finding a vertex of the reduced convex hull can be visualized in
terms of a plane being ‘pushed’ into a set of points. If the plane can separate
�1/μ� points from the set, there is a convex combination of these points (given
by Theorem 1) which forms a vertex of the μ-reduced convex hull.

Definition 2. The �1/μ� points which define a vertex of a μ-reduced convex hull
are referred to as the support points of that vertex.

Definition 3. A set of points P ⊂ R
d are in general position if there exist no

d+ 1 points lying in a (d− 1)-dimensional plane.

If the vertices of a convex hull (or reduced convex hull) are in general position,
they form a simplicial polytope. It is common practice in convex hull algorithms
to assume that vertices are in general position [6]. This means that in R

d the
facets of the polytope are all (d−1)-simplices and can each be represented using
an identical number of vertices. For example, in two dimensions, facets are 1-
simplices (lines) joining the vertices of the convex hull. In three dimensions, facets
are 2-simplices (triangles). Our algorithms adopt the convention of constructing
convex hulls as simplicial polytopes. The drawback is that when vertices are
not in general position, the number of facets used to represent the hull will be
sub-optimal. For example, for points in R

3 not in general position, square facets
must be represented using several triangles.

For a simplicial polytope in R
d, each facet is itself a (d−1)-simplicial polytope

with a number of (d− 2)-simplicial subfacets or ridges. Each ridge is shared by
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two adjoining facets. This recursion continues down to 1-simplices and finally
0-simplices, which are generally referred to as edges and vertices respectively,
regardless of the dimensionality of the polytope.

4 An RCH Algorithm for Points in the Plane

Reduced convex hulls are simplest to construct for two-dimensional point sets.
For this case our algorithm takes as input a set of points P , a reduction coefficient
μ and two initial vertices of the reduced convex hull l and r. Starting vertices
can be found using Theorem 1 in conjunction with any direction. The output is
an ordered list of vertices V of the reduced convex hull which serves as both a
facet list and an adjacency list. Any two consecutive points in V form a facet.

The algorithm itself (Algorithm 1) is a generalization of the Quickhull algo-
rithm for standard convex hulls [9,10,11,8]. The two initial vertices given to the
algorithm form a line segment which is treated as two initial facets with opposing
normals. Facets are then recursively split into two by using the normal vector of
a facet and Theorem 1 to discover new vertices. For the algorithm to function
properly, facet normals should be taken to point away from the interior of the
hull. Once no new facets can be formed, the reduced convex hull is complete.

Algorithm 1. Quickhull for reduced convex hulls
function V = RQH(P,μ, l, r)
h := a vertex with maximal scalar projection onto the normal vector of the line lr
(computed using Theorem 1)
if h = l or h = r then

return (l, r)
else

A := all points in P with a scalar projection onto the normal vector of the line lh
greater than or equal to that of any of the support points of l and h.
B := all points in P with a scalar projection onto the normal vector of the line
hr greater than or equal to that of any the support points of h and r.
return RQH(A,μ, l, h) ∪ RQH(B,μ, h, r)

end if

The subsets A and B are formed to discard points which can no longer con-
tribute to future iterations of the algorithm (since they are not ‘extreme’ enough
with respect to the current facet being considered). Because the vertices of a re-
duced convex hull can share multiple support points, A and B are generally not
disjoint partitions as they are in the original Quickhull algorithm. The exception
is when μ = 1, in which case both algorithms are identical.

5 An RCH Algorithm for Points in an Arbitrary
Dimensional Space

For points in an arbitrary dimensional space, reduced convex hulls are more
difficult to represent and construct. For d dimensions, hulls consist of a number
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of d-simplicial facets, each with d neighboring facets. This means that an efficient
representation will generally consist of both a facet list and an adjacency list.

The algorithm presented here is a generalization of the Beneath-Beyond al-
gorithm for standard convex hulls [12,8]. The Beneath-Beyond algorithm [12,8]
addresses the issue of convex hulls in higher dimensions by starting with a hull
containing only a minimal number of points. It then uses Theorem 2 to iteratively
update the hull until it contains all points.

Theorem 2 (Barber et al. [6]). Let H be a convex hull in R
d, and let p be a

point in R
d −H. Then F is a facet of the convex hull of p ∪H if and only if

(a) F is a facet of H and p is below F ; or
(b) F is not a facet of H and its vertices are p and the vertices of a sub-facet of

H with one incident facet below p and the other incident facet above p.

A point is said to be above a facet if it has a scalar projection onto that facet’s
normal which is greater than that of the facet’s vertices. Conversely a point is
below a facet if it has a scalar projection onto that facet’s normal which is less
than that of the facet’s vertices. Points which are neither below nor above a facet
lie on the facet. As in the case of the previous algorithm, facet normals should
always be chosen to point away from the inside of the hull.

Theorem 2 implies that a convex hull H can be updated to include a new
point p as follows. If p lies inside the hull (i.e. it is below all facets of H), no
change is required. If p lies outside the hull (i.e. it is above at least one facet of
H), any facets of H which are visible from p should be replaced with a cone of
new facets (Figure 2) [6,8].

Input to our reduced convex hull algorithm (Algorithm 2) is a set of points P
and a reduction coefficient μ. Output consists of:

– A list of vertices V . For d-dimensional input, each vertex is a d-dimensional
point.
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Fig. 2. Updating a convex hull using the Beneath-Beyond Theorem
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– A list of facets F . For d-dimensional input, each facet is represented as d
indices corresponding to the facet’s vertices from V .

– An adjacency list A. Each entry in F has a corresponding entry in A which
specifies the indices of neighboring facets.

The starting point for the algorithm (for a d-dimensional point set) is to find any
d unique vertices of the reduced convex hull (using Theorem 1 in conjunction
with several arbitrary directions). These vertices are used to form two initial
facets with opposing normals. For each facet, the algorithm finds a new vertex
farthest in the direction the facet’s normal vector.1 The new vertex is added to
the hull by ‘paving over’ any visible facets and removing them as described in
the Beneath-Beyond theorem. This process is repeated over all facets until no
new vertices can be found.

Algorithm 2. General dimension reduced convex hull algorithm
function [V,F,A] = RH(P,μ)
V = any d vertices of the μ-reduced convex hull (where d is the dimensionality of
the points in P )
F = two facets consisting of the vertices in V with opposing normals
for all facets f in F do

v := normal vector of f
use Theorem 1 to find a vertex p of the RCH with maximal scalar projection onto
v
if p is a new vertex then

X := list of all facets in F which are visible from p (use adjacency list to search
facets surrounding f)
for all edges e along the boundary of X do

g := facet consisting of the vertices in e and p
add g to F
update adjacency list

end for
remove the facets in X from F

end if
end for

6 Complexity of the Algorithms

There are two main sources of additional complexity in a reduced convex hull as
compared to a convex hull. Firstly, a much greater number of vertices and facets
can be formed in a reduced convex hull, forcing more iterations of the algorithm.
Secondly, support points are shared between multiple vertices, precluding the
partitioning methods used in the more efficient convex hull algorithms.

1 In R
d, the normal vector of a d-simplex with vertices p1, p2, . . . , pd can be calculated

by solving the system of linear equations p1 · v = p2 · v = . . . = pd · v = const.
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These additional sources of complexity can be shown by examining the maxi-
mum number of facets which can be present in a reduced convex hull. Preparata
and Shamos [8] give an upper bound (attributed to Klee [13]) Fn on the number
of facets in a standard convex hull of n points in d dimensions as:

Fn =

⎧⎨⎩
2n
d

(n− d
2−1

d
2−1

)
, for d even

2
(n−� d

2 �−1
� d

2 �
)
, for d odd.

(3)

This bound corresponds to the case where all of the n points form vertices in
the convex hull.

Klee’s [13] upper bound can be extended to cover the case of reduced convex
hulls by further considering an upper bound on the number of vertices in a
reduced convex hull Vn. Letting m = �1/μ� and for n points in an arbitrary
dimensional space, we can write this bound as

Vn =

{(
n
m

)
, if 1

μ is an integer(
n
m

)
m, otherwise.

(4)

Equation 4 follows from Theorem 1, which implies that any vertex of a reduced
convex hull is a convex combination of exactly �1/μ� points. For cases where 1/μ
is an integer, the bound Vn is reached if, for all subsets containing 1/μ points,
there exists some plane which separates the subset from the rest of the n− 1/μ
points. This can occur, for example, when n = d+1. Notice that for cases where
1/μ is not an integer, there are potentially a much larger number of vertices. This
is due to the fact that one of the �1/μ� support points must receive a smaller
weighting than the others, increasing the upper bound by a factor of �1/μ�.

Combining equations (3) and (4) yields an upper bound Rn = FVn on the
total number of facets in a reduced convex hull of n points in d dimensions. This
means that, compared to convex hulls, reduced convex hulls have potentially a
much greater number of facets, depending on the value of μ.

For the two dimensional algorithm, the worst case complexity is O(Vnn), or
O(nm+1/(m−1)!). This occurs when partitions are highly overlapping and each
iteration requires the calculation of dot products for all n points. There is a max-
imum of Vn iterations since in two dimensions the maximum number of facets is
equal to the number of vertices. If μ < 1, this is worse than the Quickhull algo-
rithm, which achieves an O(n log n) worst case complexity assuming partitions
are approximately balanced in each iteration, or O(n2) otherwise [14].

For the case of points in an arbitrary dimensional space, there are several
factors which contribute to the complexity of the algorithm. Again considering
the worst case, by far the dominant cost is that of finding the scalar projection
of all points onto the normal vectors of all facets, an O(Rnn) operation. There
are additional costs such as: finding Vn vertices (O(Vnn)); calculating the nor-
mal vectors of new facets each time a vertex is added; and iteratively adding Vn
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vertices to the hull. However, all such costs are eclipsed by the original cost of
O(Rnn), or O((

(
n
m

)
m)�d/2�n/�d/2�!).

This complexity compares unfavorably to the O(Fn) worst case complexity of
efficient convex hull algorithms [6,15]. The introduction of the larger Rn bound
instead of Fn is caused by the increased number of facets in a reduced convex
hull, whereas the increase by a factor of n is caused by the omission of the
‘outside’ sets of Barber et al. [6], which cannot be maintained in the reduced
case due to vertices sharing support points.

7 Discussion

Reduced convex hulls provide a desirable method of reducing a convex hull be-
cause they take into account the density of points. Sparse outlying points are
reduced over much more rapidly as μ decreases than dense clusters of points
(Figure 3). This is a likely contributor to the high accuracy of SVMs in classi-
fication problems, where reduced convex hulls are used to lessen the impact of
outlying points and increase the margin between two classes.

The bounds on both the number of vertices and number of facets in a re-
duced convex hull are at a maximum when 1/μ ≈ n/2, which highlights an
interesting relationship between the cases of μ = 1/k and μ = 1/(n − k), for
0 < k < n. These cases produce reduced convex hulls with an identical number
of vertices (Figure 4). This property occurs since a plane separating (n − k) of
n points will separate the remaining k points if the orientation of the plane is
reversed.

It is also apparent from Figure 4 that reduced convex hulls with μ in a specific
range (1/k, 1/(k− 1)) contain an identical number of vertices and facets. This is
because �1/μ� has an identical value for all μ values in this range, meaning each
vertex has the same number of support points. Notice also the large number of
facets which occur in these ranges (much larger than when 1/μ is an integer),
as consistent with the bounds given in the previous section.

Fig. 3. Reduced convex hulls for μ = 1, 1
10

, 1
20

, 1
50

, 1
100

. Points are normally distributed
across the y-axis and exponentially distributed across the x-axis.
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Fig. 4. 1/μ plotted against total number of facets for the reduced convex hull of a set
of 30 uniformly distributed random points in R
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8 Conclusion

To summarize, this paper has decoupled reduced convex hulls from their origins
in SVMs. Two reduced convex hull algorithms have been presented: a recursive
two-dimensional algorithm for points in the plane and an algorithm for points
of arbitrary dimensionality. In future work we hope that applications in which
convex hulls act poorly due to noise or outlying points can be identified and
improved via the introduction of reduced convex hulls. The high accuracy of
SVM classifiers employing the concept of reduced convex hulls suggests that
other machine learning tasks could likely also benefit from their use.

Future work could also aim to increase the efficiency of reduced convex hull al-
gorithms. There is a significant gap in efficiency between the reduced convex hull
algorithms presented in this paper and state-of-the-art convex hull algorithms.
This is partially due to the inherently larger number of vertices and facets in
reduced convex hulls. However, it is likely that some improvement could be made
by developing methods of intelligently identifying and excluding from calcula-
tions any points which are not relevant in the computation of a particular section
of a hull.
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Abstract. In this paper, we proposed a new nonlinear dimensionality
reduction algorithm called regularized Kernel Local Linear Embedding
(rKLLE) for highly structured data. It is built on the original LLE by
introducing kernel alignment type of constraint to effectively reduce the
solution space and find out the embeddings reflecting the prior knowl-
edge. To enable the non-vectorial data applicability of the algorithm, a
kernelized LLE is used to get the reconstruction weights. Our experi-
ments on typical non-vectorial data show that rKLLE greatly improves
the results of KLLE.

1 Introduction

In recent years it has been undergoing a large increase in studies on dimension-
ality reduction (DR). The purpose of DR is mainly to find the corresponding
counterparts (or embeddings) of the input data of dimension D in a much lower
dimensional space (so-called latent space, usually Euclidean) of dimension d
and d � D without incurring significant information loss. A number of new
algorithms which are specially designed for nonlinear dimensionality reduction
(NLDR) have been proposed such as Local Linear Embedding (LLE) [1], Lapa-
cian Eigenmaps (LE) [2], Isometric mapping (Isomap) [3], Local Tangent Space
Alignment (LTSA) [4], Gaussian Process Latent Variable Model (GPLVM) [5]
etc. to replace the simple linear methods such as Principal Component Analysis
(PCA) [6], Linear Discriminant Analysis (LDA) [7] in which the assumption of
linearity is essential.

Among these NLDR methods, it is worth mentioning those which can handle
highly structured or so-called non-vectorial data [8] (for example video sequences,
proteins etc which are not readily converted to vectors) directly without vector-
ization. This category includes the “kernelized” linear methods. Typical methods
� Corresponding author.
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are Kernel PCA (KPCA) [9], Generalized Discriminant Analysis (GDA or KLDA)
[10]. The application of the kernel function not only introduces certain nonlin-
earity implied by the feature mapping associated with the kernel which enables
the algorithms to capture the nonlinear features, but also embraces much broader
types of data including the aforementioned non-vectorial data. Meanwhile, kernels
can also be regarded as a kind of similarity measurements which can be used in
measurement matching algorithms like Multi-Dimensional Scaling (MDS) [11]. A
typical example is Kernel Laplacian Eigenmaps (KLE) [12]. Because these meth-
ods can directly use the structured data through kernel functions and hence bypass
the vectorization procedure which might be a source of bias, they are widely used
in complex input patterns like proteins, fingerprints etc.

Because of its simplicity and elegant incarnation of nonlinearity from local
linear patches, LLE has attracted a lot of attention. However, it has two obvious
drawbacks. Firstly, it can only take vectorial data as input. Secondly, it does
not exploit the prior knowledge of input data which is reflected by its somewhat
arbitrary constraints on embeddings. As more and more non-vectorial data ap-
plications are emerging quickly in machine learning society, it is very desirable to
endow LLE the ability to process this type of data. Fortunately, it is not difficult
since only inner product is involved in LLE formulation. The “kernel trick ” [13]
provides an elegant solution to this problem. By introducing kernel functions,
LLE can accept non-vectorial data which can be called KLLE. Moreover, another
benefit from kernel approaches is its similarity measure interpretation which can
be seen as a prior knowledge. We will utilize this understanding to restrict the
embeddings and hence provide a solution to the second problem. This is done
by incorporating kernel alignment into the current LLE as a regularizer of the
embeddings which enforces the similarity contained in kernel function to be du-
plicated in lower dimensional space. It is equivalent to imposing a preference on
the embeddings which favors such configuration that shares the same similarity
relation (reflected by kernel function) as that among original input data. We
conclude it as a new algorithm called regularized KLLE (rKLLE) as the main
contribution of this paper. Our experiments on some typical non-vectorial data
show that rKLLE greatly improves the results of KLLE.

This paper is organized as follows. Next section gives a brief introduction to
LLE and we deduce the formulation of KLLE in sequel. rKLLE is developed in
Section 4, followed by experimental results to show its effectiveness. Finally we
conclude this paper in last section with highlight of future research.

2 Local Linear Embedding

We use following notations throughout the paper. yi and xi are the i-th input
datum and its corresponding low-dimensional embedding, and Y and X the
collection of input data and embeddings respectively. Generally, X is a matrix
with data in rows.

Locally Linear Embedding (LLE) preserves the local linear relations in the
input data which is encapsulated in a weight matrix W. The algorithm starts
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with constructing a neighborhood graph by n nearest neighboring and then W
([W]ij = wij) is obtained by

W = argmin
W

N∑
i=1

‖yi −
n∑

j=1

wijyij‖2 (1)

subject to
∑

j wij = 1 and wij = 0 if there is no edge between yi and yj in the
neighborhood graph. yij is the j-th neighbor of yi.

Finally, the lower-dimensional embeddings are estimated by minimizing∑
i

‖xi −
∑

j

wijxj‖2. (2)

with respect to xi’s under the constraints
∑

i xi = 0 and 1
N

∑
i xix

i = I to
remove arbitrary translations of the embeddings and avoid degenerate solutions.
By doing this, the local linearity is reproduced in latent space.

3 Kernelized LLE

Actually, because of the quadratic form (1), wij ’s are solved for each yi separately
in LLE. So we minimize ||yi −

∑
j wijyij ||2 with respect to wij ’s which is∑

j

∑
k

wij(yik
− yi)(yij − yi)wik = w

i Kiwi (3)

subject to ewi = 1 where e is all 1 column vector. wi is the vector of the recon-
struction weights of xi, i.e. wi = [wi1, . . . , win] and Ki is the local correlation
matrix whose jk-th element is (yik

− yi)(yij − yi).
Apparently, only inner product of input data is involved in (3). By using

the “kernel trick” [13], the inner product can be replaced by any other positive
definite kernel functions. Hence we substitute every inner product by a kernel
ky(·, ·) in the formation of Ki and have

[Ki]jk = ky(yik
,yij )− ky(yik

,yi)− ky(yij ,yi) + ky(yi,yi).

Because the kernel function implies a mapping function φ from input data space
to feature space and ky(yi,yj) = φ(yi)φ(yj), we are actually evaluating the
reconstruction weights in feature space. After we get the reconstruction weights,
we can go further to solve (2) to obtain the embeddings in latent space.

We proceed to minimize (3) with equality constraint using Lagrange multiplier
(we ignore the subscript i for simplicity):

J = wKw − λ(we− 1)

in which stationary point is the solution. ∂J
∂w = 2Kw − λe = 0 leads to w =

1
2λK

−1e. With we = 1, we have λ = 2
e�K−�e . What follows is

w =
K−1e

eK−e
.



Regularized Kernel LLE on Dimensionality Reduction for Non-vectorial Data 243

The last thing is the construction of the neighborhood graph. It is quite straight-
forward in fact. Since kernel function represents similarity, we can just simply
choose n most similar input data around yi. This corresponds to searching n
nearest neighbors of φ(yi) in feature space because distance can be converted to
inner product easily.

4 Regularized KLLE

Because of introducing kernel functions, not only can we process non-vectorial
data in LLE, but also we are provided similarity information among input data
which can be further exploited. The constraints used in the KLLE force the
embeddings to have standard deviation. Apparently, this preference is imposed
artificially on the embeddings which may not reflect the ground truth. This
raises a question: can we use something more “natural” instead? Combining
these points gives rise to the idea of replacing current constraint in KLLE by
similarity matching.

The idea is implemented in following steps. Firstly, we pick up a similarity
measure (kx(·, ·), another kernel) in latent space which is matched to its counter-
part in input space i.e. ky(·, ·). Secondly, the similarity matching is implemented
by kernel alignment. Thirdly, we turn the constrained optimization problem to
regularization and therefore, the new regularized KLLE (rKLLE) minimizes the
following objective function:

L =
∑

i

||xi −
∑

j

wijxij ||2 − α
∑
ij

kx(xi,xj)ky(yi,yj) (4)

+ β
∑
ij

k2
x(xi,xj).

The second and third regularization terms are from similarity matching1. α and
β are positive coefficients which control the strength of the regularization. What
is expressed in (4) is that the embedded data will retain the same local linear
relationships as input data under the constraint that they should also exhibit
the same similarity structure as that in input space.

In rKLLE, the prior knowledge provided by ky(·, ·) is fully used in latent space
and hence avoids from introducing other “rigid” assumptions which may be far
away from the truth. There is also much room to accommodate additional pri-
ors due to its flexible algorithmic structure. For example if we know that the
embeddings are from Gaussian distribution, we can add another regularizer on
X (e.g.

∑
i x


i xi) at the end to incorporate this. An important issue related to

the similarity match is the selection of the kx(·, ·). In practice, we can choose
RBF kernel, kx(xi,xj) = γ exp(−σ||xi−xj ||2), because it has strong connection
with Euclidean distance and this connection can be fine tuned by choosing ap-
propriate hyper-parameters. Fortunately, the optimization of hyper-parameters
can be done automatically as shown below.
1 The second term is kernel alignment and last term is designed to avoid trivial solution

such as infinity.



244 Y. Guo, J. Gao, and P.W. Kwan

The computational cost of rKLLE is higher than KLLE since (4) does not
have close form solution. The above objective function can be written in simpler
matrix form

L = tr[(X−WX)(X−WX)]− αtr[K
XKY ] + βtr[K

XKX ]

= tr[(XMX)]− αtr[K
XKY ] + βtr[K

XKX ]

where KX and KY are the kernel Gram matrices of kx(·, ·) and ky(·, ·) respec-
tively, M = (I−W)(I−W) and I is the identity matrix. We have to employ
gradient descent based solver here. For the derivative, we first obtain

∂L2,3

∂KX
= −2αKY + 2βKX ,

where L2,3 is the second and third term of L. Then we get ∂L2,3
∂X by chain rule

(it depends on the form of kx). The derivative of the first term of L is 2MX.
By putting them together, we can obtain ∂L

∂X . The derivative of L with respect
to hyper-parameters of kx, denoted by Θ, can be calculated in the same way.
Once we have the current version of X, the gradient can be evaluated. Therefore,
optimization process can be initialized by a guess of X and Θ. The initial Θ
can be arbitrary while starting X can be provided by other DR methods as long
as non-vectorial data are applicable. From the candidates of gradient descent
solvers, we choose SCG (scaled conjugate gradient) [14] because of its fast speed.

5 Experimental Results

To demonstrate the effectiveness of the proposed rKLLE algorithm, the exper-
iments of visualizing non-vectorial data (the target latent space is a normal
2-D plane) were conducted on images (MNIST handwritten digits2 and Frey
faces3) and proteins (from SCOP database, Structural Classification Of Pro-
tein4). Proteins are recognized as typical highly structured data. The results of
other algorithms are also shown for comparison.

5.1 Parameters Setting

rKLLE has some parameters to be determined beforehand. Through empirical
analysis (performing batches of experiments on different data sets varying only
the parameters), we found the proposed algorithm is not sensitive to the choice
of the parameters, as long as the conjugate gradient optimization can be carried
out without immature early stop. So we use the following parameters throughout
the experiments which are determined by experiments: α = 1e−3 and β = 5e−5
and n = 6 in rKLLE neighborhood graph construction. The minimization will
stop after 1000 iterations or when consecutive update of the objective function
is less than 10−7. kx(·, ·) is RBF kernel and initialization is done by KPCA5.
2 MNIST digits are available at http://yann.lecun.com/exdb/mnist/
3 Available at http://www.cs.toronto.edu/∼roweis/data/
4 SCOP data is available at http://scop.mrc-lmb.cam.ac.uk/scop/
5 We choose KPCA instead of KLLE because this configuration yields better results

in terms of leave-one-out 1NN classification errors.
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Table 1. Comparison of leave-one-out 1NN classification errors of different algorithms

Algorithm rKLLE KLLE KLE KPCA Isomap LTSA
error 110 171 157 333 222 232

5.2 Handwritten Digits

A subset of handwritten digits images is extracted from the MNIST database.
The data set consists of 500 images with 50 images per digit. All images are
in grayscale and have a uniform size of 28 × 28 pixels. It is easy to convert
them to vectors. So we can also present the results of other DR algorithms for
comparison. However, in rKLLE, they were treated as non-vectorial data as bags
of pixels [15] and use the shape context based IGV (SCIGV) kernel [16] which is
specially designed for shapes in images and robust to the translation of shapes
in images.

The experimental results are presented in Figure 1 and legend is in panel (c).
Visually, the result of rKLLE is much better than others. The 2D representations
of rKLLE reveal clearer clusters of digits than others. To give a quantitative
analysis on the quality of the clusters, we use the leave-one-out 1 nearest neighbor
(1NN) classification errors as in [5]. The smaller the number of errors, the better
the method. The 1NN classification errors of different methods are collected in
Table 1 and the result of each method is the best it can achieve by choosing
the optimal parameters of the method (as shown in Figure 1) according to this
standard. It is interesting to observe that rKLLE is the best regarding this
standard. It shows clearly that rKLLE improves the result of KLLE both visually
and quantitatively.

5.3 Proteins

Another promising application of DR is in bioinformatics. Experiments were
conducted on the SCOP database. This database provides a detailed and com-
prehensive description of the structural and evolutionary relationships of the
proteins of known structure. 292 proteins from different superfamilies and fam-
ilies are extracted for the test. The kernel for proteins is MAMMOTH kernel
which is from the family of the so-called alignment kernels whose thorough anal-
ysis can be found in [17]. The corresponding kernel Gram matrices are available
on the website of the paper and were used directly in our experiments.

Visualizing proteins on the 2D plane is of great importance to facilitate re-
searchers to understand the biological meaning. The representation of proteins
on the 2D plane should reflect the relational structure among proteins, that
is, proteins having similar structures should be close while those with different
structures should be far away.

The results are plotted in Figure 2. The results of other non-vectorial data
applicable algorithms are also presented for comparison. Each point (denoted as a
shape in the figure) represents a protein. The same shapes with the the same color
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Fig. 1. The result of different algorithms on MNIST handwritten digits database. The
parameters of algorithms are chosen to achieve lowest 1NN classification errors.
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(a) rKLLE (b) KLLE (n = 6)

(c) KLE (n = 6) (d) KPCA

Fig. 2. The results of different algorithms with MAMOTH kernel. The parameters of
algorithms are chosen to achieve lowest 1NN classification errors.

are the proteins from same families while the same shapes with different colors
represent the proteins from different families but from the same superfamilies.

rKLLE reveals the fact that proteins from the same families congregate to-
gether as tight clusters and hence gains better interpretability. Interestingly, it
also reveals the truth that the proteins from the same superfamily but different
families are similar in structure, which is reflected by the fact that the corre-
sponding groups (families) are close if they are in the same superfamily (same
shape). Others fail to uncover these.

5.4 rKLLE on Image Manifold Learning

Lastly, we present the result of rKLLE on image manifold learning. The objects
are 1965 images (each image is 20 × 28 grayscale) of a single person’s face ex-
tracted from a digital movie which are also used in [1]. Since the images are well
aligned, we simply use the linear kernel as ky(·, ·) in this case.

Two facts can be observed from the result shown in Figure 3. First, it demon-
strates group property of the faces. The faces with similar expressions and poses
congregated as clusters. Second, The embeddings of the faces in 2D latent space
indicate the possible intrinsic dimensionality of the images: expression and pose.
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Fig. 3. The embeddings of faces in 2D latent space estimated by rKLLE

From left to right and top to bottom, we can read the natural transition of the
expression and pose. Therefore we can conjure that the horizontal axis might
roughly correspond to the poses and vertical one to expressions and highly non-
linearity is apparently coupled in the axes. However, the real parametric space
underpinning those faces images still needs further investigation.

6 Conclusion

In this paper, we proposed the regularized KLLE in which the original constraint
of embeddings is replaced by a more natural similarity matching. It exploits the
given information of the input data through regularization. It is a showcase of in-
corporating prior knowledge into dimensionality reduction process. Although the
computational cost is higher than KLLE or LLE, the improvement is significant
from the results of experiments on typical non-vectorial data.

Due to the flexible structure of rKLLE, it is possible to handle other prior
knowledge like class information. So it is likely to extend it to supervised or
semisupervised learning setting. This will be our future research.
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Abstract. In this paper, we present and use a method for e-mail categorization
based on simple term statistics updated incrementally. We apply simple term
statistics to two different tasks. The first task is to predict folders for classification
of e-mails when large numbers of messages are required to remain unclassified.
The second task is to support users who define rule bases for the same classifi-
cation task, by suggesting suitable keywords for constructing Ripple Down Rule
bases in this scenario. For both tasks, the results are compared with a number
of standard machine learning algorithms. The comparison shows that the simple
term statistics method achieves a higher level of accuracy than other machine
learning methods when taking computation time into account.

1 Introduction

Incremental, accurate and fast automatic e-mail classification methods are important to
assist users in everyday e-mail management. In this paper, we propose a solution to an
e-mail classification problem in a specific organisational scenario. In this context, users
are expected to classify some, but only some, of their messages into one of the fold-
ers following a consistent organisational policy, while the rest of the messages remain
unclassified and may be deleted or placed in general or private folders. Because of the
large volume and flow of messages, any solution must meet stringent computational
requirements. Firstly, message categorization must be computed in near real time, typ-
ically less than a couple of seconds, so as to avoid delays in the receipt of messages.
Secondly, classification must be sufficiently accurate to maintain the consistency of the
classification scheme and to reduce the effort required by the user to select the correct
category from a number presented, or to decide whether a message should be classified
at all. An acceptable level of user interaction can be achieved by flexible selection of
accuracy and coverage, in other words, the categorizer must either provide a fairly ac-
curate suggestion or no suggestion at all. The categorizer must be able to distinguish
between messages that need to classified and those that do not need to be classified.
This makes the classifier’s task harder because, apart from predicting the correct class
for the classified messages, it also needs to decide which messages are supposed to be
classified.

A common way to handle non-classified messages is to treat them as a separate
class and to learn a classifier for this class. The problem with this approach is that the
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unclassified group of e-mails may cover many different topics and, when treated as a
single class, may become highly inconsistent. We found that it is better to separate clas-
sified from unclassified messages by using a threshold technique, similar to Yang [6],
with the difference that in our work the threshold itself is learned in the process of
classification.

In order to test classifiers in the above scenario, we use a set of e-mails from an
Australian government organisation, consisting of about 17 000 messages, out of which
only 48% are are intended to be classified into 45 categories of interest. Since we did
not have access to all messages in users’ mailboxes, the messages not to be classified
were those messages pre-classified in around 150 other categories and also included a
number of messages that were not intended to be classified into any folder. This set,
described in more detail in Wobcke, Krzywicki and Chan [5], is referred to as the gov
data set in this paper.

A second problem we address is the suggestion of keywords from each e-mail in
order to construct conditions for rules in a Ripple Down Rule base used to classify
e-mails. In previous work (Ho et al. [4]), a Ripple Down Rule system (Compton and
Jansen [2]) was used to manage e-mail foldering in the E-Mail Management Assistant
(EMMA). One aspect to using a Ripple Down Rule system is to provide support to users
in defining rules. In the e-mail classification domain, this means finding the most useful
keywords in a given e-mail that enable the correct classification of the e-mail into its
folder and which also can be applied to future e-mails.

In this paper, we introduce a method based on simple term statistics (STS) that ad-
dresses the computational requirements for e-mail classification. We show that this sim-
ple method gives a relatively high accuracy for a fraction of the processing cost, when
used to predict a folder in an e-mail set, where only a part of the messages are meant to
be classified. We also show that the STS method can be applied to keyword generation
for e-mail classification rules.

The rest of the paper is structured as follows. In the next section, we briefly de-
scribe and discuss other selected research on document categorization. In Section 3 we
present definitions of the Simple Term Statistics methods and a description of the STS
algorithm. Sections 4 and 5 contain the description of experiments used to evaluate the
proposed method on the e-mail classification and term rating tasks respectively. Finally,
section 6 summarises and concludes the paper.

2 Related Work

A variety of methods have been researched for document categorization in general and
e-mail foldering in particular. Bekkerman et al. [1] evaluate a number of machine learn-
ing methods on the Enron e-mail data set. In these experiments, methods are evaluated
separately for 7 users over all major folders for those users. Messages are processed in
batches of 100. For each batch, a model built from all previous messages is tested on the
current batch of 100 messages. The overall most accurate SVM method took about half
an hour to process about 3000 e-mails. Despite a reasonably high accuracy, the long
processing time makes SVM and MaxEnt unsuitable for online applications, especially
with larger sets, such as the gov data set used in our experiments. Another important
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difference from our work is that in the Enron e-mail set all e-mails are meant to be
classified, whereas in the e-mail set we used only about 48% of messages are supposed
to be classification.

Dredze et al. [3], use TF-IDF, latent semantic analysis (LSA) and latent Dirichlet
allocation (LDA) to pre-select 9 keywords from each message for further use in clas-
sification by a perceptron algorithm. Evaluation of the methods was done in batch as
well as online modes. Even though the percentage of test messages to training messages
was much lower for online training, the results for online evaluation were much lower
(about 75% in batch mode compared to about 62% in online mode). As indicated in
the paper, this was due to the fact that in online mode only one training iteration was
done, presumably because of the long computation time to train the perceptron at each
incremental step. In contrast, the STS method does not require multiple iterations as the
word statistics calculations are done incrementally.

The above evaluations were done with all e-mails in training and test sets classified
into folders. Yang [6] reports a study of text classification algorithms on the Reuters-
21450 data set, which includes a number of unlabelled documents, at least some of
which should be classified, more similar to our scenario: in this evaluation, k-Nearest
Neighbour (k-NN) was shown to perform well. The decision of whether a document
needs to be classified or not was made by setting a threshold on an array of values rep-
resenting learned weights for each document-category pair. A document is classified by
the system if the weight is above the threshold, otherwise it is not classified by the sys-
tem. An optimal threshold is calculated on the training set and used on test documents in
a typical batch fashion. We also use the threshold strategy for separating the messages
into classified and unclassified, but the threshold is adjusted dynamically in the process
of incremental classification, allowing for optimal coverage of classified messages.

3 Simple Term Statistics (STS)

In this section, we present a method of document categorization based on a collection
of simple term statistics (STS).

3.1 Method

The STS algorithm maintains an array of weights, one weight for each term-folder pair.
Each weight is a product of two numbers: a term ratio and its distribution over folders
(for consistency with e-mail classification, we use the term folder for the document
categories). The prediction of a folder f , given a document d, which is considered
to be a set of terms, is made as follows. Each (distinct) term in the document has a
weighted “vote” indicating the relevance of the term to a given folder, which in turn,
is the product of the term ratio (a “distinctiveness” of term t over the document set,
independent of folder-specific measures), and the term distribution (an “importance”
of term t for a particular folder). This weighting is analogous to the standard TF-IDF
measure, extended to cover multiple folders, and with different types of statistics used.
The weighted votes for all terms in a document are simply summed to determine the
predicted folder (that with the largest value for the sum).

Term ratios are calculated using the formulas shown in Table 1.
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Table 1. Term statistics methods

Term
Ratio

Ma = 1
Ndt

Mb = 1
Nft

Mc = Ct
Ndt∗CT

Md = 1
(Nft )

2

Term
Distributions

M1 = Ctf

CT
M2 = Ndtf

Ndt
M3 = Ndtf

Ndf
M4 = Ndtf

Nd

M5 = NTf

NT
M6 = NTf

Nd
M7 = CTf

CT
M8 = Ctf

CTf

Nd: number of documents in training set
CT : count of all terms in training set
NT : number of distinct terms in training set
Ndt : number of documents in training set containing term t
Ct: count of term t in training set
Ndf : number of documents in folder f
CTf : count of all terms in folder f
NTf : number of distinct terms in folder f
Nft : number of folders where term t occurs
Ctf : count of term t in folder f
Ndtf : number of documents containing term t in folder f

Since the constant function 1, denotedM0, is both a term ratio and term distribution
function, there are 45 STS methods obtained by combining one of the 5 term ratio
functions and one of the 9 term distribution functions.

A term-folder weight wt,f for a term t and a folder f is calculated using the product
of a term ratio and term distribution, for example:

Mc3 = Mc ∗M3 =
Ct

Ndt ∗ CT
∗ Ndtf

Ndf
. (1)

In addition, if t does not occur in the training set, wt,f is defined to be 0. The predicted
category fp(d) for document d is defined as follows:

fp(d) = argmaxf (wf ), where wf =
∑
t∈d

wt,f . (2)

4 E-Mail Classification Using Simple Term Statistics

In this section, we present and discuss the results of testing the STS method on the gov
e-mail data set. The data set consists of 16 998 e-mails pre-classified into 45 folders.
Only 48% of all e-mails are classified and the distribution of classified messages over
folders is highly uneven.

The training/testing with STS methods was done incrementally, by updating statistics
and weights for all terms in the current message di, before testing on the next message
di+1. If di is unlabelled, no updates were done for its terms. In order to measure the
quality of the classification we use accuracy and coverage. Accuracy is the number
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of messages correctly classified by the learner divided by the number of all messages
classified by the learner.

Acc = Ncorrectlearner/Nlearner . (3)

Note that the accuracy calculation does not count unclassified e-mails. The learner’s
coverage is the number of messages classified by the learner into a category divided
by the number of all messages classified by the learner. The classifier’s task is to attain
high accuracy while keeping the coverage as close as possible to the target coverage.

Cov = Nclasslearner/Nlearner . (4)

In general terms, accuracy corresponds to precision and coverage to recall. In order to
separate classified from non-classified messages we extended the STS algorithm in two
ways. Firstly, the terms belonging to unclassified e-mails are not counted for statistics.
Secondly, a threshold is set on the folder weight in Equation 2. This way, by controlling
the threshold, we can flexibly control a tradeoff between the accuracy and coverage.
The threshold (denoted by θ) is selected initially on the first 1000 messages to make the
learner and the target coverage equal. After that, the threshold is automatically adjusted
every 100 messages to keep up with the target coverage. The linear adjustment factor
was calculated as follows.

θnew = θ ∗ Covlearner/Covtarget . (5)

In order to give an approximation on the accuracy of other algorithms, we also
obtained results for most accurate general machine learning methods available for ex-
perimentation using the Weka toolkit.1 For all machine learning methods, the top 9 key-
words for each of the 45 folders were selected using TF-IDF, thus making 405 attributes.
Since these keywords were selected from the whole data set, this somewhat favours the
machine learning methods compared to STS. Due to the fact that these methods could
not be used in an incremental fashion, we used a setup similar to Bekkerman et al. [1],
with training on N ∗ w messages and testing on the next w messages for a window w
of size 100, repeatedly until the end of the data set. For the k-Nearest Neighbour (k-
NN) algorithm, we selected k=1 to achieve the coverage close to the target coverage.
Initially, we selected w = 100 and observed that, despite good accuracy, the execution
times were far too long to be considered for online applications. By selectingw = 1000,
the execution times for some of these methods were comparable to STS.

Table 2 provides a summary of evaluating the STS and selected machine learning
methods on the gov message set. The runtimes do not include the time for selecting the
top 9 keywords for each folder and preparing the training set, which is needed for the
machine learning methods but not for STS. Out of the STS methods,Mb2 was the most
accurate, followed by M02 and Md2. All these formulas have a common term distri-
bution component Ndtf /Ndt , which is similar to TF-IDF applied to folders. Although
SVM and Boosted Decision Tree outperform the best STS method when run with a test
window of 100 messages, their long execution time is unacceptable for online e-mail

1 http://www.cs.waikato.ac.nz/ml/weka/index downloading.html
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Table 2. Simple Term Statistics accuracy for gov data set

Method Accuracy Coverage Threshold Running Time Window

M02 = 1 ∗ Ndtf

Ndt
0.606 0.460 0.122 2 min 34 sec 1

Mb2 = 1
Nft

∗ Ndtf

Ndt
0.686 0.456 0.071 2 min 34 sec 1

Mb8 = 1
Nft

∗ Ndtf

Ndt
0.509 0.446 0.014 2 min 34 sec 1

Md2 = 1
(Nft )

2 ∗ Ndtf

Ndt
0.604 0.456 0.0552 2 min 34 sec 1

Md3 = 1
(Nft )

2 ∗ Ndtf

Nd
0.536 0.456 0.0327 2 min 34 sec 1

Md8 = 1
(Nft )

2 ∗ Ctf

CTf
0.530 0.468 0.00068 2 min 34 sec 1

Decision Tree 0.663 0.505 N/A 39 min 24 sec 100
Decision Tree 0.568 0.535 N/A 3 min 20 sec 1000
SVM 0.725 0.480 N/A 5 hr 37 min 100
SVM 0.602 0.522 N/A 27 min 32 sec 1000
k-NN (k=1) 0.657 0.481 N/A 39 min 100
k-NN (k=1) 0.540 0.502 N/A 35 min 30 sec 1000
Boost DT 0.735 0.480 N/A 5 hr 57 min 100
Boost DT 0.613 0.510 N/A 37 min 12 sec 1000

categorizers. Even if the SVM or Boosted Decision Tree algorithms are implemented
as an off-line component executed overnight, its execution time would be still too long
and the window of 100 messages insufficient to handle the flow of messages in a large
organisation with a common e-mail foldering system. With the increment of 1000, the
Decision Tree runtime is comparable to that ofMb2, but the accuracy becomes lower.

k-NN deserves a separate comment, since of all the methods evaluated by Yang [6],
this one is the most efficient and scales best to larger data sets. However, one reason
this is the case is that the Reuters-21450 data set used by Yang is comparatively small
(21450 examples). The k-NN algorithm classifies by comparing each test document to
all previously stored cases, so this can be done effectively on the number of cases in
the Reuters-21450 data set. However, the classification time increases linearly with the
number of stored examples, meaning that the performance will degrade as the size of
the data set increases, as does the time for storing the previous cases. For the purpose of
suggesting folders in an e-mail management application, it may be important to make
fewer suggestions with higher accuracy. In order to do this, the threshold θ in the STS
algorithm can be modified to achieve a desired accuracy.

5 Suggesting Rule Keywords

In this section, we evaluate the accuracy of keyword suggestion for rules, based on
simulating the process used by an expert to define a rule base for classifying the gov
data set. The expert is assumed to know the correct folder and their task is to find the
best keywords in an e-mail to construct a rule. In the experiments reported here, we
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retrospectively test a number of learning algorithms to determine which of them could
have been used by the expert when defining the rules that were previously defined.

5.1 Methods

For the keyword selection task, five methods were selected: three Simple Term Statistics
(STS) methods as defined in Section 3.1, and the Naive Bayes and TF-IDF methods.
These methods were selected for the following reasons. STS method Md2 provided
best overall accuracy when tested on the classification task (Section 4), methods Mb8
and Md8 were selected experimentally for best keyword suggestions, Naive Bayes was
originally used in EMMA (Ho et al. [4]) for keyword and folder suggestion, and finally
TF-IDF was included as a base method commonly used in text mining.

For the purpose of this experiment, the Naive Bayes formula is that used in EMMA
defined as follows. For a given folder (which is assumed to be known to an expert),
the probability of the folder is calculated for all keywords in the e-mail, using Bayes
formula:

p(fc|w) = p(w|fc) ∗ p(fc)/p(w) (6)

where fc is the folder into which the e-mail should be classified, and w is a keyword
from the e-mail. Approximating probabilities with keyword statistics, we obtain the
formula used in EMMA to suggest terms for rules:

p(fc|w) = (Ctfc/CTfc ∗Ndfc/Nd)/
∑
i∈Nf

(Ctfi /CTfi ∗Ndfi/Nd) . (7)

where Ctf and Ndf are the counts of term t in a folder f and the number of messages
in the folder f respectively.

5.2 Experimental Setup

The experimental setup for keyword suggestion follows the process of defining rules
by an expert, described in Wobcke, Krzywicki and Chan [5], in which 368 rules were
defined to classify the 16 998 messages with a high degree of accuracy. E-mails were
presented to the expert in chronological order in batches of 50. The expert was able to
define new rules to correct the rule base, either by refining an existing rule or adding a
new rule. In these cases, the viewed message becomes a cornerstone case for the system.
In our experiments, e-mails are processed one-by-one in the same order and, whenever
a cornerstone case is encountered, a number of keywords are suggested and evaluated
against keywords used by the expert in the rule. STS methods provide a keyword rat-
ing by summing term-folder weights for each keyword (rather than folder, as in the
e-mail classification task) and selects the 9 best keywords for each e-mail as suggested
keywords.

The experiments are conducted with the number of suggested keywords chosen as
5, 10 and 15: any greater number of suggestions are likely to be disregarded by the
user. Each of these three options are tested in two variants. In the first variant keywords
are generated only by the methods described above. These keywords are called system
keywords and the option is referred to as the system only option. In the second variant,
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suggested keywords are selected from the set of expert keywords used previously in
rules, called expert keywords, supplemented, if required, with system keywords. This
option is called the expert+system option. For all options, a keyword is included in the
suggestion only if it actually occurs in the cornerstone case. The accuracy is calculated
as the number of suggested keywords that occur in the rule divided by the total number
of keywords occurring in the rule. In order to closely follow the expert selection strat-
egy, suggested keywords come from all parts of the e-mail, including sender, receiver,
date/time fields and e-mail addresses.

5.3 Results

Table 3 shows the results for 10 suggested keywords, using both system only and textit-
system+expert options. The first column of each option shows the accuracy calculated
as the number of accurately suggested expert keyword occurrences for all rules divided
by the total number of expert keyword occurrences in all rules. The second column for
each option is the percentage of rules that have at least one suggested keyword correct.

Comparing the results it is easy to notice that the STS method Md2, which was the
most accurate in the e-mail classification task (Section 3), is the least accurate for key-
word suggestions. The reason for this is that the classification task is very different from
the keyword rating task. In the case of prediction, individual weights of each keyword
are summed together to produce a weight for each folder. In this case each individ-
ual keyword is not important, as long as it contributes to an overall result indicating a
unique folder. This is different for the keyword rating task, where keywords “compete”
among themselves for the best description of a given folder.

Looking at the two most accurate STS methods, Mc8 and Md8, their two common
components, are 1/Ndt and Ctf /CTf , The first component is the inverse document
frequency (IDF), which is part of the TF-IDF method. The second component is part
of the Bayesian formula. It seems that the best results are obtained by combining these
two popular text mining methods.

Increasing the number of suggested keywords from 5 to 10 and 15 (Figure 1) causes
a less than proportional increase in accuracy, which suggests that some number of
keywords, for example 10, may be optimal.

Figure 2 shows the accuracy and average number of correctly suggested keywords
against the number of defined rules for Md8 and the expert+system option with 10

Table 3. Keyword suggestion for 10 generated keywords

Method Accuracy Rules Covered Accuracy Rules Covered
Mb2 0.179 38.4 0.693 87.3
Mb8 0.566 82.1 0.705 89.8
Md2 0.174 37.6 0.694 87.3
Md8 0.462 73.6 0.716 90.3
NB 0.217 43.7 0.692 87.6
TF-IDF 0.329 48 0.655 84
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Fig. 1. Keyword suggestion results for method Md8

Fig. 2. Accuracy of suggestions for method Md8 and Expert+System option

generated keywords. Generally, the accuracy increases with the number of defined rules
due to the fact that Md8 becomes more accurate as the number of messages and rules
increases, and also because the stored expert keywords cover more future rules. It is
noticeable that the number of suggested keywords from the “expert set” increases more
rapidly, while the number of keywords from the “system set” decreases. This is an
expected effect and can be explained by the fact that expert keywords are given priority
over system keywords. With the expert+system option, the system suggested keywords
are most helpful at the beginning, when fewer expert keywords are stored and, at any
other time, when no suitable stored keywords are available, for example at rule 200.

6 Conclusion

In this research, we presented a number of methods for document categorization and
keyword rating based on Simple Term Statistics (STS). We showed that these methods
can be viable alternatives to more complex and resource demanding machine learning
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methods commonly used in text categorization, such as Decision Tree, SVM and k-NN.
STS methods require processing of only the new terms occurring in each step, which
makes them truly incremental and sufficiently fast to support online applications. In
fact, we discovered that these methods are much faster, while performing well in terms
of accuracy, when compared to a range of other methods.

We tested the accuracy of keyword suggestions also using the STS algorithm in the
stand alone, system only option and in expert+system option, where previously used ex-
pert keywords were suggested first before system keywords. The suggestions are mostly
useful in the initial stage of defining rules, but also in some stages of rule definition
where previous expert keywords do not cover the current message sufficiently.

When testing the keyword suggestions, the underlying assumption was that the ex-
pert rules are always better than system generated keywords. It would be interesting
to test this assumption in a real user environment by presenting a mixture of previous
expert and suggested system keywords for the user to make an unbiased selection. The
research question to answer in this case would be if greater reliance of the user on
system keywords would make the categorization more consistent.
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Abstract. Profile Hidden Markov Models (PHMMs) have been widely
used as models for Multiple Sequence Alignments. By their nature, they
are generative one-class classifiers trained only on sequences belonging
to the target class they represent. Nevertheless, they are often used to
discriminate between classes. In this paper, we investigate the benefi-
cial effects of information from non-target classes in discriminative tasks.
Firstly, the traditional PHMM is extended to a new binary classifier. Sec-
ondly, we propose propositional representations of the original PHMM
that capture information from target and non-target sequences and can
be used with standard binary classifiers. Since PHMM training is time
intensive, we investigate whether our approach allows the training of the
PHMM to stop, before it is fully converged, without loss of predictive
power.

1 Introduction

Classification of proteins is an important and challenging task in Bioinformat-
ics [1]. It is characterised by imbalanced datasets. Typically, there is only a small
number of proteins belonging to the target class compared to a vast number of
non-target proteins. The target class is commonly referred to as the positive class
and all non-target proteins form the negative class. A solution is to use one-class
classification [2], which has been successfully applied in fields with no available
negative examples or only a small number of positive training examples [1].

Multiple Sequence Alignments (MSAs) are a standard technique to learn and
represent a specific class of proteins. They can be represented using a special
kind of Hidden Markov Model (HMM), called Profile Hidden Markov Models
(PHMMs) [3,4]. Our fundamental observation is that PHMMs are essentially
one-class classifiers. They are trained only on sequences belonging to the posi-
tive class and they output a similarity score for unknown test sequences. How-
ever, to discriminate between the positive and the negative class, it might be
advantageous to use negative information as well.

The advantages have been recognised in the literature, notably by Jaakkola
et al. [5] who extract a kernel description of HMMs. They implicitly train the

A. Nicholson and X. Li (Eds.): AI 2009, LNAI 5866, pp. 260–269, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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HMM as a one class classifier and introduce negative training information in the
subsequent Support Vector Machine classification step. However, this approach
is restricted to kernel methods. Additionally, Bánhalmi et al. [1] use one-class
classifiers for protein classification. However, they do not use HMMs and work
on pre-calculated similarity scores.

In this paper, we explicitly use the PHMM as a one-class classifier. In order
to introduce negative information into a subsequent learning step, we proposi-
tionalise PHMMs to get a fixed-length feature vector [6]. Propositionalisation is
not restricted to kernel approaches nor does it need the definition of an explicit
similarity measure as kernel methods do. However, in our research, negative in-
formation is not only introduced in a subsequent binary classification step. We
also change the original one-class classifier into a binary one and compare the
two approaches. Therefore, we propositionalise not only the original PHMM but
also the binary classifier.

Previously, results were presented for fully trained HMMs [6]. A further con-
tribution of the paper is to explore whether or not the introduction of negative
information can lead to a dramatic decrease in training time. The idea is that
propositionalisation of a not fully converged PHMM might compensate for a
potential loss of predictive power in the PHMM model.

2 One-Class Classification

An MSA represents a specific group or class of sequences. These can be classes
of common evolutionary relationship, function or localisation for example. From
a Machine Learning point of view a MSA is a one-class classifier. The MSA is
built only using the positively labelled sequences and computes a measure of
similarity s(X) for any test sequence X to the positive target class. A threshold
Θ on s(X) is used to decide class membership. Often these MSAs are built on a
small number of positive instances, whereas there is a huge number of proteins
belonging to other classes.

PHMMs represent MSAs. They can be trained from unaligned sequences us-
ing the Baum-Welch algorithm which is a special case of the EM (expectation-
maximisation) algorithm [4].

A PHMM is, therefore, a generative model of the positive class. We use
P (X |H) to denote the probability of an arbitrary sequence X under the PHMM
H . In the literature, this probability is often referred to as the forward prob-
ability. In the classification step, the log-odds score for P (X |H) measures the
similarity of the sequence X to the PHMM H . It is generally a difficult prob-
lem to decide on a threshold Θ for these scores. For this research we are not
interested in finding the perfect value for Θ, rather the ordering of sequences
based on their score. Therefore, Area Under the ROC (AUC) is used to evaluate
the performance of our models. This measure is independent of Θ. Later, we
will refer to the PHMMs used in the one-class classification setting as one-class
PHMMs.
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3 Binary Classification

In this paper, we are dealing with binary classification problems of amino acid
sequences. Therefore, the question is whether or not a specific amino acid se-
quence belongs to a class of proteins. As explained in the previous section, these
protein classes are represented essentially with a model of a one-class classifier,
a PHMM.

Our research focuses on improving these one-class classifiers by adding infor-
mation from negative training data. There are two starting points to integrate
negative information. Firstly, we can extend the original model to be a binary
classifier instead of a one-class classifier. Secondly, the negative information can
be introduced in a subsequent binary classification step on top of the existing
one-class model. In the following two sections, we will introduce our approaches
for both scenarios.

3.1 Binary Profile Hidden Markov Models

A binary PHMM consists of two one-class PHMMs: Hpos and Hneg. The PHMM
Hpos is trained exclusively on the positive instances, Hneg is trained on the
negative instances only. ThereforeHpos is the one-class classifier we introduced in
the previous sections, whereasHneg is a one-class classifier for the negative class.
To classify a test sequence X , we calculate the log-odds scores for P (X |Hpos)
and P (X |Hneg). We predict the class with the higher score. This is a very simple
combination of two PHMMs by using the maximum score.

The idea to build a binary PHMM out of two one-class PHMMs ensures that
the datasets’ imbalance does not negatively influence the binary classification.
It allows us to combine two generative one-class classifiers in a discriminative
way for binary classification problems. However, training a PHMM is slow and
therefore training on a vast amount of (negative) instances is time intensive. On
the other hand we expect the negative class to be more diverse. Due to this fact
Hneg should converge faster.

A binary PHMM calculates for each sequence X two logarithmic scores. These
can be easily normalised into probabilities. Thus, no logistic calibration is needed
in this setting.

3.2 Propositionalisation

Propositionalisation transforms complex, structured representations of data such
as PHMMs into a fixed length representation involving attribute-value pairs [8].
Therefore, it introduces a wide range of possible features to be constructed from
the more complex representation. Traditionally Machine Learning has focused
on propositional learners. Thus, they are highly optimised. Furthermore, a sub-
sequent propositionalisation step on top of a one-class classifier offers the pos-
sibility to make use of negative instances in a discriminative learning task. As
Jaakkola et al. [5] point out, discriminative tasks such as classification might
benefit from using negative examples. They extract a kernel description of a
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HMM and use this for classification by a Support Vector Machine. Feature ex-
traction from the PHMM through propositionalisation and subsequent training
of a propositional learner results in a discriminative model. This approach is not
restricted to kernel-based classifiers. Whereas Jaakkola et al. [5] only apply their
approach to one-class PHMMs, in this paper both one-class PHMMs as well as
binary PHMMs are propositionalised.

Mutter et al. [6] introduce the propositionalisation of PHMMs in detail. In this
paper, we use two different ways to propositionalise a one-class PHMM which can
be applied to general HMMs as well. Two numeric attributes represent scores
for one or more paths. The first one is the forward score of the sequence X .
We also use the score of the best path through the HMM. This best path is
known as the Viterbi path. Additionally, there is a numeric attribute for each
state in the HMM. It represents the score of the state given the sequence X . In
the remainder, we will refer to this propositionalisation as the logarithmic one.
The exponential propositional representation is based on the first one. Given
any logarithmic score z, the corresponding exponential score is calculated by ez.
The values of the state scores are then normalised into probabilities. In the case
of a binary PHMM there are two scores for the Viterbi and two scores for the
forward path. We normalise these values into real probabilities as well. Because
in a one-class PHMM there is only one score for the forward and one for the
Viterbi path, we do not normalise them.

In case of a binary PHMM, the propositionalisations for each one-class PHMM
are combined together. Therefore, propositionalising a binary PHMM leads to
twice as many attributes.

4 Experiments

In the experiments we use three amino acid sequence classification datatsets each
consisting of a sequence of amino acids represented as a string and a class label.
The first two are concerned with protein localisation and the last one classifies
enzymes. The protein localisation datasets are from Reinhardt and Hubbart [9].
They have also been used by other researchers [10,11,12]. The first dataset ad-
dresses protein localisation in prokaryotes (pro). It consists of 997 instances
belonging to three different classes. We transform this multiclass problem into
three binary classification tasks. In each binary setting, one class is used as the
positive class and all the remaining classes are combined into one negative class.
All other datasets are pre-processed in the same way. For the remainder of the
paper, we use the datatset name, followed by an index for the positive class,
e.g. pro 0 refers to the prokaryote dataset treating class with index 0 as positive
and all remaining instances as negative. The eukaryote dataset (euk) consists of
2427 sequences from four different classes, whereas the enzyme dataset has 2765
instances and 16 classes. It was introduced by Chou [13]. We use the protein IDs
given in the paper and the Uniprot database to retrieve the primary sequences.
We kept all sequences. The major difference between the protein localisation
datasets and the enzyme dataset is that the former ones have a high sequence
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Table 1. Overview of datasets and their respective size of the positive class. The
percentage numbers are rounded.

dataset positive instances dataset positive instances dataset positive instances
number percentage number percentage number percentage

enzyme 1 335 12% enzyme 9 262 9% pro 0 688 69%
enzyme 2 225 8% enzyme 10 92 3% pro 1 107 11%
enzyme 3 207 7% enzyme 11 158 6% pro 2 202 20%
enzyme 4 135 5% enzyme 12 97 4% euk 0 684 28%
enzyme 5 120 4% enzyme 13 259 9% euk 1 325 13%
enzyme 6 329 12% enzyme 14 166 6% euk 2 321 13%
enzyme 7 67 2% enzyme 15 85 3% euk 3 1097 45%
enzyme 8 66 2% enzyme 16 162 6%

similarity inside classes [14], whereas the latter is characterised by a low sequence
similarity inside a class [13]. Table 1 gives an overview of the classes and the
size of the positive class in the specific dataset. We learn one-class and binary
PHMMs from unaligned sequences using the Baum-Welch algorithm. The tran-
sition and emission probabilities in the PHMMs are initialised uniformly. The
convergence criterion is a sufficiently small change in the log-odds score relative
to a random model. This score is normalized by the number of residues in a
sequence1. Training a PHMM is time intense, therefore we constrain the model
length, by restricting the number of the so-called match states to 35. We do not
pre-process the sequences. For more information about the PHMM setup and
training we refer to Mutter et al. [6].

The propositional learners are a linear Support Vector Machine (SVM) [15],
Random Forests [16] and bagged, unpruned C4.5 decision trees [17]. The com-
plexity parameter for the linear Support Vector Machine and the number of
features used in the Random Forests are estimated using an internal 10-fold
cross-validation. All Random Forests consist of 100 trees. All experiments are
performed using WEKA [7] on 3 GHz Intel c© 64-bit machines with 2 GB of
memory. Models are evaluated using one 10-fold cross-validation. If not stated
explicitly, we report the results for the better way of propositionalising. In this
paper, we evaluate the PHMM models after each iteration of the Baum-Welch
algorithm. Like the PHMM itself, Bagging is evaluated after each iteration step
as well. For the Random Forest and the Support Vector Machine, we perform
an evaluation after the first and the final Baum-Welch iteration.

5 Results

Figure 1 shows the results for two datasets: enzyme 1 and enzyme 7. For en-
zyme 1 there is not a big difference in performance between the one-class PHMM
and the binary one. However, the binary PHMM performs better for enzyme 7
during the whole Baum-Welch training process. The figure shows that proposi-
tionalisation is able to outperform the pure PHMM based approaches, especially
at the start of training. For enzyme 7 the overall best AUC is achieved by propo-
sitionalising a one-class PHMM after the first iteration. Towards the end of the
1 The threshold of 0.0001 was proposed by A. Krogh in an e-mail communication.
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Fig. 1. AUC results for enzyme 1 (on the top) and the enzyme 7 (on the bottom)
dataset. The graphs on the left side show the results for a one-class PHMM and sub-
sequent Bagging, whereas the graphs on the right are based on binary PHMM models.
We use exponential propositionalisation.

Baum-Welch training the binary PHMM performs better than its proposition-
alisation.

Table 2 gives an overview of the AUCs for all datasets. We report the AUC for
the first and the last iteration. The best AUC for each dataset is printed in bold.
The fully trained binary PHMM performs better than the one-class PHMM on
all but one dataset. Only enzyme 5 has a slightly higher AUC in the one-class
setting after the last iteration. Thus, adding negative information has a positive
effect on AUC in our solely PHMM-based experiments. However, training and
testing is much more time consuming in the binary case as Table 3 shows. This
is the major drawback of methods based on binary PHMMs.

Another important observation is that there is not a big performance differ-
ence between propositionalisations based on one-class PHMMs and binary ones,
even though the respective PHMMs perform differently. In three cases the one-
class based propositionalisation even leads to the best results; all of them after
the first iteration. Propositionalising a binary PHMM after the first iteration
leads to the highest AUC in seven cases. These findings are important as they
reveal the potential of a propositionalisation approach after just one iteration
of the Baum-Welch algorithm. For both the one-class and the binary setting,
propositionalising after the first iteration leads to a big reduction in training
time and can sometimes even improve performance based on AUC.
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Table 2. AUC results for all datasets after the first and the last iteration of the Baum-
Welch algorithm. Bagging is used as propositional learner. The results show the pure
PHMM AUCs and the ones with a subsequent propositionalisation step.

dataset
AUC after first PHMM iteration AUC after last PHMM iteration

one-class PHMM binary PHMM one-class PHMM binary PHMM
PHMM Bagging PHMM Bagging PHMM Bagging PHMM Bagging

pro 0 0.570 0.843 0.920 0.944 0.590 0.859 0.956 0.961
pro 1 0.666 0.875 0.784 0.909 0.863 0.873 0.932 0.921
pro 2 0.569 0.842 0.711 0.861 0.802 0.861 0.881 0.903
euk 0 0.582 0.789 0.823 0.872 0.600 0.781 0.831 0.867
euk 1 0.603 0.934 0.750 0.956 0.878 0.931 0.971 0.964
euk 2 0.642 0.804 0.675 0.869 0.769 0.845 0.872 0.885
euk 3 0.555 0.848 0.774 0.925 0.773 0.855 0.888 0.910
enzyme 1 0.777 0.904 0.811 0.908 0.815 0.904 0.832 0.917
enzyme 2 0.787 0.884 0.896 0.909 0.863 0.920 0.892 0.928
enzyme 3 0.642 0.910 0.738 0.906 0.701 0.889 0.805 0.894
enzyme 4 0.631 0.930 0.736 0.956 0.805 0.939 0.885 0.942
enzyme 5 0.545 0.876 0.707 0.874 0.860 0.874 0.854 0.874
enzyme 6 0.589 0.946 0.809 0.959 0.837 0.938 0.877 0.942
enzyme 7 0.520 0.897 0.680 0.851 0.753 0.792 0.861 0.840
enzyme 8 0.742 0.854 0.752 0.873 0.892 0.916 0.932 0.918
enzyme 9 0.762 0.966 0.846 0.977 0.910 0.971 0.965 0.983
enzyme 10 0.467 0.938 0.705 0.960 0.728 0.912 0.917 0.917
enzyme 11 0.605 0.936 0.793 0.963 0.936 0.950 0.968 0.959
enzyme 12 0.541 0.869 0.686 0.893 0.675 0.799 0.846 0.858
enzyme 13 0.807 0.923 0.800 0.946 0.829 0.930 0.894 0.959
enzyme 14 0.987 0.985 0.958 0.997 0.988 0.986 0.999 0.987
enzyme 15 0.750 0.949 0.884 0.967 0.949 0.928 0.989 0.947
enzyme 16 0.736 0.938 0.866 0.952 0.842 0.929 0.927 0.950

Fig. 2. Comparison of AUCs with and without propositionalisation with a Random
Forest (RF). On top are the results for enzyme 1, on the bottom for enzyme 7. The
graphs on the left show the AUCs after the first Baum-Welch iteration of the PH-
MMs, whereas the right graphs show the ones after the final iteration. The graphs
on the left and the binary PHMM for enzyme 7 in the last iteration use logarithmic
propositionalisation. Otherwise we use exponential propositionalisation.
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Table 3. Execution times for training and evaluation. All learners are evaluated after
each Baum-Welch iteration. The execution time for Bagging comprises training and
testing time of the propositional step exclusive of the preceding PHMM training time.

dataset
execution time in h number of iterations

PHMM Bagging PHMM training
one-class binary one-class PHMM binary PHMM positive class negative class

enzyme 1 18 40 8 16 44 20
enzyme 7 42 107 7 17 63 20

Table 4. AUC results for all datasets after the first and the last iteration of the Baum-
Welch algorithm. Random Forests (RF) and linear Support Vector Machines (SVM)
are used as propositional learners. The results show the pure PHMM AUCs and the
ones with a subsequent propositionalisation step.

dataset
AUC after first PHMM iteration AUC after last PHMM iteration

one-class PHMM binary PHMM one-class PHMM binary PHMM
PHMM RF SVM PHMM RF SVM PHMM RF SVM PHMM RF SVM

pro 0 0.570 0.839 0.796 0.920 0.944 0.963 0.590 0.871 0.862 0.956 0.965 0.943
pro 1 0.666 0.866 0.862 0.784 0.906 0.932 0.863 0.914 0.867 0.932 0.931 0.917
pro 2 0.569 0.872 0.801 0.711 0.878 0.898 0.802 0.873 0.832 0.881 0.904 0.872
euk 0 0.582 0.815 0.734 0.823 0.885 0.875 0.600 0.807 0.691 0.831 0.883 0.849
euk 1 0.603 0.951 0.922 0.750 0.965 0.963 0.878 0.942 0.940 0.971 0.969 0.967
euk 2 0.642 0.821 0.812 0.675 0.885 0.909 0.769 0.853 0.851 0.872 0.891 0.889
euk 3 0.555 0.862 0.801 0.774 0.922 0.921 0.773 0.868 0.834 0.888 0.925 0.913
enzyme 1 0.777 0.931 0.862 0.811 0.932 0.881 0.815 0.923 0.837 0.832 0.935 0.867
enzyme 2 0.787 0.929 0.849 0.896 0.932 0.912 0.863 0.921 0.877 0.892 0.942 0.892
enzyme 3 0.642 0.929 0.721 0.738 0.925 0.846 0.701 0.909 0.781 0.805 0.904 0.828
enzyme 4 0.631 0.945 0.826 0.736 0.964 0.908 0.805 0.940 0.900 0.885 0.951 0.914
enzyme 5 0.545 0.902 0.856 0.707 0.899 0.880 0.860 0.851 0.837 0.854 0.888 0.844
enzyme 6 0.589 0.962 0.851 0.809 0.967 0.915 0.837 0.953 0.886 0.877 0.962 0.905
enzyme 7 0.520 0.914 0.808 0.680 0.929 0.858 0.753 0.805 0.794 0.861 0.829 0.820
enzyme 8 0.742 0.910 0.805 0.752 0.942 0.908 0.892 0.910 0.917 0.932 0.910 0.923
enzyme 9 0.762 0.979 0.946 0.846 0.984 0.969 0.910 0.978 0.964 0.965 0.984 0.977
enzyme 10 0.467 0.945 0.706 0.705 0.965 0.962 0.728 0.892 0.846 0.917 0.897 0.890
enzyme 11 0.605 0.954 0.879 0.793 0.967 0.968 0.936 0.954 0.958 0.968 0.966 0.961
enzyme 12 0.541 0.887 0.638 0.686 0.911 0.877 0.675 0.853 0.769 0.846 0.886 0.837
enzyme 13 0.807 0.950 0.863 0.800 0.960 0.909 0.829 0.932 0.856 0.894 0.966 0.897
enzyme 14 0.987 0.996 0.993 0.958 0.998 0.997 0.988 0.997 0.995 0.999 0.997 0.986
enzyme 15 0.750 0.959 0.971 0.884 0.970 0.995 0.949 0.934 0.929 0.989 0.952 0.944
enzyme 16 0.736 0.959 0.891 0.866 0.970 0.945 0.842 0.936 0.901 0.927 0.959 0.946

Random Forests usually outperform the Bagging results. Figure 2 illustrates
their performance for the enzyme 1 and enzyme 7 dataset. Again, there is not a
big difference between propositional approaches based on one-class and binary
PHMMs. For enzyme 1 the AUC of the Random Forests after the first iteration
is only slightly worse than after the last iteration. For enzyme 7 the best results
are achieved using a propositional learner after the first Baum-Welch iteration.

Table 4 provides an overview for all datasets. The PHMM results are of course
identical to the ones in Table 2 and reported again for a better overall view. For
the majority of datasets Random Forests achieve the highest AUC and outper-
form a purely PHMM-based approach or SVMs. In this setting there are only
four datasets for which a pure binary PHMM approach leads to the highest
AUC. For two of them the AUC equals the SVM’s AUC on a propositional
representation after one iteration.
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Table 4 shows that Random Forests and SVMs based on attributes from
binary PHMMs after the first iteration perform well. Together they achieve the
highest AUC in 13 cases. This indicates the strength of propositionalisation. In
addition, the table reveals that binary approaches lead to higher AUC. One-class
approaches are competitive when used in combination with propositionalisation
due to a faster training and test time. In two cases, a propositional one-class
approach after the first iteration results in the highest AUC.

6 Conclusions and Future Work

Our research shows that introducing negative information into a discrimina-
tive task improves performance. The binary PHMM outperforms the one-class
PHMM in almost all cases. However, it is an interesting finding that when propo-
sitionalisation is used, the differences between the performance of models built
from one-class PHMMs and binary ones is small. There are cases where propo-
sitionalisation of the one-class PHMM even outperforms the binary case. In ad-
dition the propositional training sets of the one-class PHMM have only half the
size. Additionally propositionalisation works extremely well at the start of the
training. In more than half of the cases the best AUC resulted from a proposi-
tional learner built on top of a one-class or binary PHMM after the first iteration.
This fact has the potential to dramatically improve training time for HMM based
protein classification tasks but will need further investigation.

In the future we plan to extend our framework in different ways. First of all,
we will consider a purely one-class classification approach.

A major strength of propositionalisation is its flexibility to create feature vec-
tors. Thus, secondly, future research will combine propositional representations
of different PHMMs in one dataset. These PHMMs can represent different kind
of sequences, e.g. primary and secondary structure of a protein.

Bánhalmi et al. [18] extend one-class classification with artificially created
negative training examples. This process leads to a binary classification task on
positive and artificially created negative instances. In the domain of proteomic
sequence classification there is usually an abundance of negative training ex-
amples compared to the positive ones. However, it is often not easy to decide
which negative training examples are most helpful in building a good decision
boundary. Therefore, the third direction of future research will use a PHMM as
a generative model, that can create new artificial sequences with a certain score.

Finally, binary approaches perform well in terms of AUC but need more time
for testing and especially training. Thus, we will investigate sampling strategies
for the negative class.
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S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp.
543–550. Springer, Heidelberg (2007)



Using Topic Models to Interpret MEDLINE’s
Medical Subject Headings

David Newman1,2, Sarvnaz Karimi1, and Lawrence Cavedon1

1 NICTA and The University of Melbourne, Victoria, Australia
2 University of California, Irvine, USA

{david.newman,sarvnaz.karimi,lawrence.cavedon}@nicta.com.au

Abstract. We consider the task of interpreting and understanding a
taxonomy of classification terms applied to documents in a collection. In
particular, we show how unsupervised topic models are useful for inter-
preting and understanding MeSH, the Medical Subject Headings applied
to articles in MEDLINE. We introduce the resampled author model,
which captures some of the advantages of both the topic model and the
author-topic model. We demonstrate how topic models complement and
add to the information conveyed in a traditional listing and description
of a subject heading hierarchy.

1 Introduction

Topic modeling is an unsupervised learning method to automatically discover
semantic topics in a collection of documents and allocate a small number of
topics to each individual document. But in many collections, documents are
already hand-categorised using a human-constructed taxonomy of classification
terms or subject headings. We report on a number of experiments that use topic
modeling to interpret the meaning of categories, and explain subtle distinctions
between related categories, by analysing their use over a document collection.
These experiments are performed in the context of the Medical Subject Headings
(MeSH) taxonomy.

MeSH are the subject headings used for tagging articles in MEDLINE, the
largest biomedical literature database in the world. PubMed – the interface for
searching MEDLINE – extensively uses these MeSH headings. Most PubMed
queries are mapped to queries that involve MeSH headings, e.g. the query “teen
drug use” is mapped to a longer query that searches for the MeSH headings
“Adolescent” and “Substance-Related Disorders” (this mapping is explained in
[1]). Therefore, it is critical for researchers and health-care professionals using
PubMed to understand what is meant by these MeSH headings, since MeSH
headings have a direct effect on search results.

One possible approach would be to attempt to understand MeSH headings
by analysing how MeSH headings are applied to documents. However, MeSH
tagging is a complex procedure performed by a team of expert catalogers at
the National Library of Medicine in the US1. These catalogers use a range of
1 MeSH tagging is described in detail at http://ii.nlm.nih.gov/mti.shtml

A. Nicholson and X. Li (Eds.): AI 2009, LNAI 5866, pp. 270–279, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Table 1. Most frequent MeSH headings, major MeSH headings, major qualifiers and
MeSH-qualifier combinations in articles published since 2000

MeSH heading Major MeSH heading Major qualifier MeSH-qualifier combination
Humans Brain metabolism Signal Transduction (physiology)
Female Breast Neoplasms physiology Antineoplastic Combined Chemotherapy

Protocols (therapeutic use)
Male Neoplasms genetics Magnetic Resonance Imaging (methods)
Animals Apoptosis methods Apoptosis (drug effects)
Adult HIV Infections chemistry Neurons (physiology)
Middle Aged Neurons pharmacology DNA-Binding Proteins (metabolism)
Aged Signal Transduction therapeutic use Transcription Factors (metabolism)
Adolescent Antineoplastic Agents pathology Antineoplastic Agents (therapeutic use)
Mice Magnetic Resonance Imaging immunology Anti-Bacterial Agents (pharmacology)
Child Anti-Bacterial Agents diagnosis Brain (metabolism)

techniques, leveraging various biomedical resources and ontologies, and apply-
ing machine learning tools that score and suggest MeSH categories for a given
document.

We take a statistical approach to this analysis, using topic models of large
sets of search results over MEDLINE, to provide a semantic interpretation of
MeSH headings. By analyzing large scale patterns of MeSH tagging, and pat-
terns of co-occurring words in titles and abstracts, we independently learn the
meaning of MeSH terms in a data-driven way. We argue that this leads to an
understanding of the way MeSH headings have been applied to the MEDLINE
collection, providing insight into distinctions between headings, and suggesting
MeSH terms that can be useful in document search. While this paper focuses on
MEDLINE and MeSH, the approach is more broadly useful for any collection of
text documents that is tagged with subject headings.

Background on MeSH Headings: MeSH headings are arranged in a large,
complex and continually evolving hierarchy. Currently there are over 25,000
MeSH terms arranged in a directed acyclic graph, which includes a root and
11 levels. On average there are 16 MeSH headings attached to a MEDLINE
article. All MeSH tags on a given article have an additional attribute Major-
TopicYN which can take on the value Y or N , indicating whether the MeSH
tag is the primary focus of the article. Furthermore, each application of a MeSH
tag on an article may be qualified using zero, one, or more qualifiers, e.g. one
could qualify the MeSH tag Methadone with the qualifier therapeutic use. There
are over 80 qualifiers, but only a specific subset of qualifiers may be used with
each MeSH heading. Qualifiers applied to articles also always have the attribute
MajorTopicYN.

To gain some familiarity with the usage of MeSH headings and qualifiers,
we provide lists of most frequent terms in Table 1. Rows in the table do not
correspond – the four columns are separate. The first column shows the most
frequent MeSH headings, irrespective of MajorTopicYN. We see headings that
act as “check tags” (e.g. Human), used to restrict search results to certain classes
of interest. The second column shows the most common major MeSH headings,
where the heading or one of its qualifiers has MajorTopicYN=Y. Here we see a
broad range of topics, covering both conditions/diseases (Neoplasms, HIV) and
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Table 2. PubMed queries run to produce query resuts sets for experiments. The num-
ber of results shown only count search results that contain abstracts.

Label PubMed query # results
burns Burns[MeSH Terms] AND Humans[MeSH Terms] 19,970
dopamine Dopamine[MeSH Terms] 33,223
drug Substance-Related Disorders[MeSH Terms] AND Adolescent[MeSH Terms] 22,361
imaging Imaging, Three-Dimensional[MeSH Terms] 21,858
p53 p53[All Fields] 47,327
smoking Smoking[MeSH Terms] 63,101

basic research (Neurons, Apoptosis, Signal Transduction). The most frequent
qualifiers also span a wide range, and finally we see the top MeSH heading-
qualifier combinations partly overlap with the most frequent major MeSH terms,
providing more detail about what is prevalent in the published literature. For
the rest of this paper, we only consider major MeSH headings (on average, 5 out
of 16 MeSH headings applied to an article are major, or have a major qualifier).

2 Interpreting MeSH Headings with Topic Models

2.1 Methods and Data

Topics – learned by topic models – provide a natural basis for representing and
understanding MeSH headings. Topic models (also known as Latent Dirichlet
Allocation models or Discrete PCA models) are a class of Bayesian graphical
models for text document collections represented by bag-of-words (see [2,3,4]).
In the standard topic model, each document in the collection of D documents
is modeled as a multinomial distribution over T topics, where each topic is
a multinomial distributions over W words, and both sets of multinomials are
sampled from a Dirichlet.

Rather than learn a single topic model of all of MEDLINE (an impractical
task, especially given that we would need to learn thousands of topics), we chose
to demonstrate our methodology using six query results sets shown in Table 2.
We created PubMed queries that returned a large number of articles (10,000
to 100,000 search results) in a broad area, thus allowing us to obtain a large
sample of MeSH tags used in that area. For topic modeling purposes, we only
used search results sets that contained abstracts (many pre-1980 MEDLINE
citations contain only title and author).

2.2 Topic Model and Author-Topic Model

We start with two topic models appropriate for our task: the standard topic
model , and the author-topic model ([3,5]). In the author-topic model, we use
MeSH headings as “authors” of the documents (using the obvious analogy that
like an author, a MeSH heading is responsible for generating words in the title
and abstract). To learn the model parameters we use Gibbs sampling: the Gibbs
sampling equations for the topic model and author-topic model are given by
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where zid = t and yid = m are the assignments of the ith word in document
d to topic t and author m respectively, and xid = w indicates that the current
observed word is word w. z¬id and y¬id are the vectors of all topic and author
assignments not including the current word, Nwt, Ntd and Ntm represent integer
count arrays (with the subscripts denoting what is counted), and α, β and γ are
Dirichlet priors. From the count arrays, we estimate the conditional distributions
using

p(w|t) =
Nwt + β∑

wNwt +Wβ
, p(t|d) =

Ntd + α∑
tNtd + Tα

, p(t|m) =
Ntm + γ∑
tNtm + Tγ

. (3)

We use a MeSH heading’s distribution over topics, p(t|m), as the canonical way
to represent a MeSH heading using learned topics. The author-topic model di-
rectly estimates this distribution over topics for each MeSH heading. In the
topic model, we estimate p(t|m) by summing over the documents using p(t|m) =∑

d p(t|d)p(d|m), where p(d|m) is the empirical distribution of observed appli-
cation of MeSH headings to documents.

For each of the six query results sets, we learned topic and author-topic models
and computed p(t|m) for all the major MeSH headings that occurred in at least
10 articles in the query results set. The following examples show distributions
over topics for three MeSH headings (with query set indicated with ’query=’):
Alcohol-Related-Disorders [query=”drug”]
(0.27) [t26] drinking alcohol alcohol-use problem alcohol-related drinker women alcohol-consumption heavy ...
(0.11) [t36] dependence use-disorder criteria dsm-iv symptom diagnostic interview treatment adolescent ...

Artificial-Intelligence [query=”imaging”]
(0.39) [t62] segmentation shape feature classification detection structure automatic analysis representation ...
(0.32) [t71] image algorithm model object proposed framework approach problem propose estimation ...
(0.17) [t110] approach surface application efficient problem demonstrate texture component computation ...

Tobacco-Smoke-Pollution [query=”smoking”]
(0.31) [t98] passive air tobacco-smoke ets pollution environmental exposure active home indoor ...
(0.10) [t129] smoking smoker tobacco smoke consumption tobacco-use daily smoked cigarette current ...
(0.09) [t70] exposure exposed effect level environmental chemical relationship evidence observed dose ...
(0.08) [t120] policies policy ban smoke-free workplace law public restaurant restriction smoking ...

Under each MeSH heading we list the most probable topics according to p(t|m).
We denote a topic by a topic ID (e.g. [t26]) which has no external meaning, then
the list of most likely words in that topic, followed by an ellipsis to indicate that
the cutoff for printing words is arbitrary. The number preceding the topic ID
is p(t|m) for that topic. Topics accounting for less than 0.05 probability mass
are not shown. This example shows that we learn sensible distributions over
topics for these three MeSH headings. Note that the topics learned, and the
association of topics with MeSH headings, is not completely independent of the



274 D. Newman, S. Karimi, and L. Cavedon

results set returned by the query. For example, the topics associated with the
MeSH heading Artificial-Intelligence are clearly oriented towards imaging.

When topic modeling, we want to learn “essential” topics, i.e. topics that are
robust (albeit latent) features present in the data, which are reliably and repeat-
ably found by a variety of techniques. However, even with the two closely-related
models, the topic model and the author-topic model, we learn topics that are
close, but clearly different. For example, for the burns query results set, we learn
the following topics relating to children:

(1.1%) [t11] children pediatric year child age burned parent month young childhood adult infant mother burn ...

(0.7%) [t25] children child abuse parent pediatric scald mother year age physical home month infant childhood ...

where [t11] is learned by the topic model and [t25] by the author-topic model.
While not shown, these topics are highly repeatable over different random ini-
tializations. The gist of these topics is clearly different (the different words are
bold), with the author-topic model learning an abuse variation of the topic.
There is also a difference in the prevalence of the two topics, with the first topic
accounting for 1.1% of all words, and the second topic accounting for 0.7% of all
words. One may be left wondering which is the better or more correct topic.

In practice, different topic models produce different topics and different statis-
tics, which may not be obvious from the model formulations, but may be revealed
by experiments. Figure 1 shows that the distribution of topic sizes for the topic
model is flatter than that from the author-topic model for our data sets.

2.3 Resampled Author Model

There may be several reasons for preferring topics learned by the standard topic
model. One could argue that the simpler model learns topics that are in some
way more fundamental to the collection. Furthermore, even with our MEDLINE
abstracts, we have ambiguity over authors: Are they the MeSH headings, or
actual authors of the articles? We also may prefer the flatter distribution of
topic sizes for better division and faceted searching of the collection.

Here we introduce the resampled author model . The resampled author model
is the author-topic model run with a fixed word-topic distribution previously
learned by the topic model:

p(yid = m|xid = w, zid = t, z¬id,y¬id) ∝ p(w|t) N¬id
tm + γ∑

tN
¬id
tm + Tγ

(4)

with p(w|t) given by (3). The idea behind the resampled author model is to keep
and use topics learned by the topic model, but learn a better association between
topics and authors (in our case MeSH headings) than the naive computation of
summing over documents. Indeed, our experimental results shown in Figure 2
show that the resampled author model does produce results that combines the
learned topics from the topic model, and the relatively low entropy of topic
distributions computed by the author-topic model.
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3 Analysis of MeSH Headings

Our topic representation of MeSH headings is useful for a broad array of tasks.
First they are a direct way of explaining or interpreting what is meant by a
MeSH heading. Second, topics provide a basis upon which we can compare MeSH
headings, and compute quantities related to the MeSH hierarchy. A simple task
is to explain differences in closely related MeSH headings. This is useful for
educating PubMed users as to the distinctions between MeSH headings, and
also suggesting other MeSH headings to use in searches. Below we list topics
related to three MeSH headings related to cocaine, and two MeSH headings
related to smoking:

Cocaine-Related-Disorders [query=”drug”]
(0.32) [t114] cocaine user crack drug dependence abuse urine reported day cocaine-dependent ...
(0.05) [t66] drug drug-use substance-use substance substance-abuse drug-abuse illicit-drug alcohol ...
(0.04) [t6] treatment outcome program client outpatient residential abuse-treatment follow-up ...
Cocaine[query=”drug”]
(0.39) [t114] cocaine user crack drug dependence abuse urine reported day cocaine-dependent ...
(0.04) [t9] urine concentration positive hair sample testing morphine specimen detection test ...
(0.04) [t77] group subject n= found male individual finding examined evaluated test clinical ...
Crack-Cocaine [query=”drug”]
(0.38) [t114] cocaine user crack drug dependence abuse urine reported day cocaine-dependent ...
(0.07) [t12] sample likely less characteristic multiple recent demographic risk report similar ...
(0.05) [t97] sexual sex partner condom sexually std female transmitted women intercourse risk ...

- - -
Smoking [query=”smoking”]
(0.23) [t54] smoker smoking cigarette cigarette-smoking effect nonsmoker non-smoker smoked ...
(0.16) [t129] smoking smoker tobacco smoke consumption tobacco-use daily smoked cigarette ...
(0.05) [t108] year age change period young aged pattern related relationship rate ...
Tobacco-Use-Disorder [query=”smoking”]
(0.17) [t139] dependence measure scale negative addiction questionnaire score positive ...
(0.12) [t129] smoking smoker tobacco smoke consumption tobacco-use daily smoked cigarette ...
(0.09) [t147] nicotine cigarette effect gum smoker patch nrt mg level replacement ...
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In all three cocaine-related headings, the most likely topic is [t114], captur-
ing clear content related to cocaine use. The topics that follow give a clue
to the distinction between these headings: Cocaine-Related-Disorders features
[t66] (substance abuse) and [t6] (treatment), Cocaine features [t9] (testing), and
Crack-Cocaine is further distinguished by its inclusion of [t97] (sex).

In the next example, Smoking includes a generic and shared tobacco smoking
topic [t129], whereas the Tobacco-Use-Disorder is distinguished by topics [t139]
(dependence/addiction) and (t147) nicotine. This usage of these two MeSH head-
ings is consistent with the Annotation and Scope Notes provided in the Descrip-
tor Data as shown in the MeSH browser2 which states: Smoking = Inhaling and
exhaling the smoke of tobacco; and Tobacco-Use-Disorder = Tobacco used to
the detriment of a person’s health.

3.1 Which MeSH Headings Are Similar?

Knowing topic distributions for MeSH headings allows us to compute distance be-
tween two headings using symmetric KL divergence, KL∗(p(t|m1)‖p(t|m2)). This
distance computation provides additional insight into the relationship between re-
latedMeSHheadings. For example, theMeSHbrowser page forSubstance-Related-
Disorders mentions Street-Drugs (under See Also), but does not mention Urban
Population or Psychotropic Drugs, which we computed as also being closely re-
lated to Substance-Related-Disorders. We display these connections in Figure 3,
which shows connections that exist in the MeSH hierarchy (solid and dashed lines),
as well as connections that are learned via topics (dotted lines). This type of visu-
alization can immediately convey to a user the actual relationships between MeSH
headings – possibly even surprising connections – as inferred from their pattern of
usage in MEDLINE articles.

3.2 Predicting Major MeSH Headings

We have described several ways in which our topic representation is useful for ex-
plaining, interpreting and understanding MeSH headings. But how well do they
perform on predictive tasks? We setup the following task: Given all the MeSH
tags (major and minor) applied to a test article, predict which tags are major.
For each unseen test article, we list by name all the MeSH tags, and indicate
the number of major MeSH tags. For example, the article entitled Effects of caf-
feine in overnight-withdrawn consumers and non-consumers has major MeSH
tags {Affect, Caffeine, Cognition} and minor MeSH tags {Adolescent, Adult,
Attention, Female, Humans, Male, Placebos, Reaction Time, Saliva, Substance
Withdrawal Syndrome}. Beyond some of the check-tags like ’Human’, it is not
immediately obvious (from just looking at the title) which tags would be ma-
jor. We used the three models to rank MeSH headings in order of p(m|d) =∑

t p(m|t)p(t|d). The results, shown in Figure 4, show that all models have clear
predictive ability that is better than random, with the author-topic model having
the best accuracy.
2 http://www.nlm.nih.gov/MeSH/MBrowser.html
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Fig. 3. The three unconnected graphs show the connectivity between selected closely-
related MeSH headings for p53, drugs and smoking query data sets (clockwise from
top). Solid (blue) lines show parent-child links in the MeSH hierarchy, and dashed (red)
lines show sibling links in the MeSH hierarchy. Dotted (black) lines show connections
that don’t exist in the MeSH hierarchy, but are indicated based on closeness of topic
distributions.
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Fig. 4. Accuracy of predicting which MeSH headings are major. Random performs
better than 50% because the number of major MeSH headings per document is used.

4 Discussion and Conclusions

In this paper we have shown examples of how topic modeling is useful for in-
terpreting and understanding MEDLINE’s MeSH subject headings. We start by
using the standard topic model and the author-topic model, then introduce the
resampled author model which is a hybrid of the two. Using these topic mod-
els we show how the learned distribution over topics for each MeSH heading is
a useful representation for comparing and contrasting MeSH headings. We ac-
knowledge that the learned topic interpretation of MeSH headings depends on
the query results set; however for sufficiently large query results sets we expect
to learn relatively consistent interpretations of MeSH headings.

Previous studies that analyzed PubMed/MEDLINE usage using PubMed
query logs analyzed statistics of PubMed users, their actions and their queries
([6,7]). An analysis of query expansion using MeSH was reported in [1]. Topic
models were applied to MEDLINE articles for the purpose of predicting MeSH
headings in [8], and a similar semantic analysis of the WordNet hierarchy was
conducted by [9]. The concept-topic models of [10] also relate learned topics to
existing concept hierarchies; however, that work focuses on tagging unseen doc-
uments using a mix of learned topics and existing concepts, in contrast to our
focus of interpreting and understanding the existing hierarchy.

The topic modeling approach presented here has some useful and flexible fea-
tures. While not explored in this paper, the topic models’ word-level annotation
of topics and authors (i.e. MeSH headings) could be valuable for annotating
which sections of longer documents are most relevant to each MeSH tag ap-
plied. More broadly, this framework is generally useful for any collection that
is tagged with subject headings. Extensions to this work could include devis-
ing topic models to validate subject heading hierarchies and creating a tool to
support ontology maintenance.
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Abstract. Data clustering is a difficult and challenging task, especially when 
the hidden clusters are of different shapes and non-linearly separable in the 
input space. This paper addresses this problem by proposing a new method that 
combines a path-based dissimilarity measure and multi-dimensional scaling to 
effectively identify these complex separable structures. We show that our 
algorithm is able to identify clearly separable clusters of any shape or structure. 
Thus showing that our algorithm produces model clusters; that follow the 
definition of a cluster. 

Keywords: Unsupervised learning, path-based clustering. 

1   Introduction  

Data clustering, or cluster analysis, is the process of finding a natural partition of a set 
of patterns, points or objects [1]. The clustering task plays a very important role in 
many areas such as exploratory data analysis, pattern recognition, computer vision, 
and information retrieval. Although cluster analysis has a long history, there are still 
many challenges, and the goal of designing a general purpose clustering algorithm 
remains a challenging task [2]. Intuitively, the clustering task can be stated as follows: 
given a set of n objects, a clustering algorithm tries to partition these objects into k 
groups so that objects within the same group are alike while objects in different 
groups are not alike. However, the definition of similarity is application dependent 
and sometimes unknown, which makes clustering an ill-posed problem.  

Despite many clustering algorithms being proposed, K-means is still widely used 
and is one of the most popular clustering algorithms [2]. This is because it is an 
efficient, simple algorithm and provides successful results in many practical 
applications. However, K-means is only good at clustering compact and Gaussian 
shaped clusters and fails in capturing elongated clusters, or clusters that are non-
linearly separable in the input space [3]. In order to tackle this problem, kernel K-
means was introduced [4]. This method maps the data into a higher dimensional 
feature space defined by a non-linear function (intrinsic in the kernel function) so that 
the possibility of separating the data linearly becomes feasible. However, the task of 
choosing a suitable kernel function and its parameters for a given dataset is difficult. 
Another emerging approach is to use a spectral clustering algorithm, which performs 
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the clustering on a set of eigenvectors of the affinity matrix derived from the data. It 
has been shown that results obtained by spectral clustering often outperform 
traditional clustering algorithms like K-means [5]. Although there are many different 
points of view to explain why spectral clustering works [6-8], it is still not completely 
understood yet. Moreover, spectral clustering leaves the users many choices and 
parameters to be set such as the similarity metric and its parameters, the type of graph 
Laplacian matrix, and the number of eigenvectors to be used [5]. Unfortunately, the 
success of spectral clustering depends heavily on these choices which make using 
spectral clustering a difficult task for the user. 

In this paper, we propose a new clustering method that is capable of capturing 
clusters with different shapes that are non-linearly separable in the input space. This is 
not a new problem and there are two main approaches that address this problem that 
can be found in the literature [9-12]. In [9-11], a new path-based dissimilarity 
measure was proposed to embed the connectedness information between objects and a 
cost function based on this new dissimilarity measure was introduced. Optimization 
techniques were then used to find a set of clusters that minimizes this cost function. 
However, finding an optimal partition that minimizes this new cost function is a 
computationally intensive task and many different optimization techniques have been 
considered to address this problem. Another approach to this problem [12] is to 
improve a spectral clustering algorithm by using a path-based similarity measure. 
Instead of performing the spectral analysis directly on the similarity matrix, they 
modify the similarity matrix to include the connectedness among the objects. 
However, this approach is based on spectral clustering, which has many 
disadvantages as mentioned above.      

We address the same problem but approach it differently. Instead of finding a new 
cost function like [9-11] or improve an existing algorithm like [12], we transform the 
original data into a new representation that takes into account the connection between 
objects so that the structures inherent in the data are well represented. This is achieved 
by a combination of the path-based dissimilarity measure and multi-dimensional 
scaling as described in Section 3. Compared with other methods, our method is much 
simpler yet produces very impressive results. The results prove that our new method 
is able to identify complex and elongated clusters in addition to the compact ones.  

2   Background 

In this section, we present the two main theories that are used by our algorithm. The 
first is the path-based dissimilarity measure, which gives a new way to identify the 
dissimilarity between two objects by taking into account the connection among 
objects. The second is the multi-dimensional scaling technique which is used to find a 
set of data points that exhibit the dissimilarities given by a dissimilarity matrix. 

2.1   Path-Based Dissimilarity Measure  

The path-based dissimilarity measure was first introduced in [9]. The intuitive idea 
behind this is that if two objects xi, xj are very far from each other (reflected by a large 
distance value dij with respect to metric m), but there is a path through them consisting 
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of other objects such that the distances between any two successive objects are small, 
then dij should be adjusted to a smaller value to reflect this connection. The 
adjustment of dij reflects the idea that no matter how far the distance between two 
objects may be, they should be considered as coming from one cluster if they are 
connected by a set of successive objects forming density regions. This is reasonable 
and reflects the characteristic of elongated clusters. 

The path-based dissimilarity measure can be described in a more formal way. 
Suppose that we are given a dataset of n objects X with each object xi consisting of m 
features, xi = (xi1, xi2,… xim) and  an n × n distance matrix D holding the pair-wise 
distances of all pairs of objects in X. The objects and their distance matrix D can be 
seen as a fully connected graph, where each vertex in this graph corresponds to an 
object and the edge weight between two vertices i and j is the distance between the 
corresponding objects xi and xj, or dij = dis(xi, xj). The path-based distance between xi 
and xj is then defined as follows. 

Suppose that Pij is the set of all possible paths from xi to xj in the graph, then for 
each path p ∈ Pij, the effective dissimilarity between xi and xj along p is the maximum 
of all edge weights belonging to this path. The path-based distance dij’ between xi and 
xj (pbdis(xi, xj)), is then the minimum of effective dissimilarities of all paths in Pij, or:  

'

1 | |
( , ) { ( ( [ ], [ 1]))}maxmin

ij

ij i j
p P h p

d pbdis x x dis p h p h
∈ ≤ <

= = +  
(1) 

where p[h] denotes the object at the hth position in the path p and |p| denotes the 
length of path p. 

2.2   Multi-dimensional Scaling 

Multi-dimensional scaling (MDS) is a technique that allows us to visually explore the 
data based on its dissimilarity information. In general, given a pair-wise distance 
matrix of a set of objects, the MDS algorithm finds a new data representation, or a 
configuration of points, that preserves the given pair-wise distances for a given metric 
as well as possible. Many MDS algorithms are available [13] and they can be divided 
into two main categories: metric MDS and non-metric MDS. For the sake of 
completeness, the theory behind classical multi-dimensional scaling is presented here 
to show how an MDS algorithm works. Classical multi-dimensional scaling is an 
attractive MDS method as it provides an analytical solution using an eigen-
decomposition.  

To start with, the process of deriving the matrix of squared pair-wise distances 
from a coordinate matrix (also known as data or pattern matrix) in terms of matrix 
operations is presented. Let X be an n × m coordinate matrix with each row i 
containing the coordinates of point xi on m dimensions (xi = [xi1 ,xi2,…, xim]) and 
D(2)(X) the squared distance matrix where each element at (i, j) is the squared distance 
between xi and xj. Suppose that Euclidean distance is used, then:  

2 2
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m

ij ik jk
k
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After some simple transformations, the squared distance matrix (2) ( )D X can be 

computed using a compact expression: 

(2) ( ) 1 1 2T T TD X c c XX= + −  (3) 

where c is a vector with the diagonal elements of XXT, and 1 is a vector of ones. 
Classical multi-dimensional scaling reverses this composition. It takes a 

dissimilarity matrix Δ (with each element δij the dissimilarity between two unknown 
objects xi and xj) as input and finds a set of points Z = {z1, z2,…, zn} so that each pair-
wise distance dij (the distance between zi and zj) is as close to δij as possible. This can 
be done using an eigen-decomposition. 

Suppose that Z is the n × m’ coordinate matrix that best matches Δ, then Z 
and Δ should be related by (3), or: 

(2) 1 1 2T T Tc c ZZΔ = + −   (4) 

where (2)Δ is the squared dissimilarity matrix, c  is now the vector with diagonal 
elements of ZZT. 

Because distances are invariant under translation, we assume that Z has column 
means equal to 0. Then multiplying the left and right sides of (4) by the centering 

matrix ( (1/ )11 )TJ J I n= −  and -1/2, and after some reductions, we have: 
(2)( 1/ 2)TB ZZ J J= = − Δ     (5) 

So the scalar product matrix B of Z can be derived from the dissimilarity matrix Δ as 
above. From the scalar product matrix B, the coordinate matrix Z is easily computed 
by using an eigen-decomposition. Let Q and Λ be the eigenvector and eigenvalue 
matrices of B respectively. Since B is a real and symmetric matrix (because of the 
symmetry of Δ), we have: 

TB Q Q= Λ  (6) 

If Δ is a Euclidean distance matrix, which means that it is constructed from the pair-
wise distances of a set of points, then Λ contains only positive and zero eigenvalues. 
Otherwise, there might be some negative eigenvalues, and classical scaling ignores 

them as error. Let +Λ  be the matrix of positive eigenvalues and Q+ the matrix of the 

corresponding eigenvectors, then the coordinate matrix Z is calculated as:  

1/ 2Z Q+ += Λ  (7) 

One point should be noted is if Λ contains only positive and zero eigenvalues, then Z 
will provide an exact reconstruction of Δ. Otherwise, the distance matrix Δ will be an 
approximation. Another point is that the relative magnitudes of those eigenvalues in Λ 
indicate the relative contribution of the corresponding columns of Z in reproducing 
the original distance matrix Δ. So, if k’ eigenvalues in Λ are much larger than the rest, 
then the distance matrix based on the k’ corresponding columns of Z nearly 
reproduces the original dissimilarity matrix Δ. In this sense, we can reduce the 
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number of dimensions of Z by choosing only the principle eigenvalues with only a 
small loss of information.  

3   A New Algorithm 

In this section, the details of our proposed algorithm are presented. With a good data 
representation, any simple clustering algorithm like K-means can be applied 
successfully. In order to achieve this goal, we first use the path-based dissimilarity 
measure to change the dissimilarities (or distances) between all pairs of objects. This 
transformation is performed once at the beginning on the whole dataset. As the path-
based dissimilarity measure takes into account the connection relationships among the 
objects, this transformation will embed the cluster structure information into the new 
dissimilarity matrix. We then find a set of objects, or a new data representation, that 
reflects these new pair-wise dissimilarities by using a multi-dimensional scaling 
algorithm. After that, K-means is employed to do the clustering on this new data 
representation.  

Algorithm. Path-based clustering using multi-dimensional scaling 

 

In step 2, the path-based distances between all pairs of objects are computed using 
an algorithm similar to the algorithm of Floyd [14]. In step 3, the classical multi-
dimensional scaling algorithm will return a configuration of points whose pair-wise 
distances approximate the new distance matrix D’. Because of this, the number of 
dimensions m’ of the MDS configuration Z may be very large. However, only some 
of them are important and the distance matrix can be reconstructed using only these 
principle dimensions with very small error. So the number of principle dimensions 
needs to be identified and only those important ones should be used to represent a 
new data matrix. This can easily be done by an analysis on the eigenvalues of the 
scalar product matrix which is also returned by classical multi-dimensional scaling 
algorithm. In our experiments, we choose the number of dimensions as the number of 
clusters minus one (as done in spectral clustering) and the results showed that this is a 
suitable setting.         

One of the advantages of our algorithm is that it operates based on the dissimilarity 
matrix which often arises naturally from a data matrix. A distance metric is used to 
calculate the dissimilarity between objects. Among many distance metrics available, 
 

• Input: n × m data matrix X, number of clusters k 
• Algorithm: 

1. Compute the n × n pair-wise distance matrix D from data matrix X 
2. Transform D into D’ using path-based dissimilarity measure 
3. Perform classical MDS on D’ to get a n × m’ new data matrix Z 
4. Identify k’ - the number of principle dimensions of Z. 

Let Y  the n × k’ matrix of k’ first columns of Z.  
5. Apply K-means on n rows yi of Y to get a partition C1, C2,…Ck 

• Output: Clusters A1,…Ak with Ai = {xj| yj∈ Ci } 
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                         (a)                                              (b)                                             (c) 

Fig. 1. Distance matrices of three-circle dataset: (a) input data; (b) original distance matrix;  
(c) transformed distance matrix 

Euclidean distance is a simple and popular metric that proves successful in many 
applications. Another advantage is that our algorithm is more efficient than the original 
path-based clustering algorithm [9-11] as it calculates the path-based distances of all 
pairs of objects only one time at the beginning. Moreover, the algorithm requires only 
one parameter from the user, the number of clusters. Finally, experimental results 
prove its strong ability to detect complex structures inherent in the data. 

To show the effectiveness of our algorithm, we analyze the clustering process on a 
commonly used three-circle synthetic dataset. Fig. 1 shows the original dataset in 
two-dimensional space and its distance matrices before and after the path-based 
transformation. The distance matrices are displayed on gray scale images with white 
for 0 and darker for higher values. To emphasize the utility of the path-based 
dissimilarity, the points in this example are ordered so that the points within each 
circle form a block of successive pixels on the image. It is shown that after the 
transformation, the distance matrix is nearly block-diagonal with each cluster 
corresponding to a block. This indicates that applying path-based dissimilarity 
transformation enhances the cluster structures on the distance matrix.  

After performing path-based dissimilarity transformation, the classical MDS is 
performed on the transformed distance matrix. The new data representation Y with 
two principle dimensions is obtained and plotted in Fig. 2(a). From this plot, we can 
see that the data points of the original dataset are transformed into this new space and 
form three very compact clusters, each of which represents a circle of the original 
dataset. With this new representation, simple clustering algorithm like K-means can 
easily detect and correctly identify the three circles as shown in Fig. 2(b).  

             

                                                 (a)                                             (b) 

Fig. 2. Results obtained on three-circle dataset: (a) new data representation on two-dimensional 
space; (b) K-means result on three-circle dataset 
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After the path-based transformation, the distance between data points within a 
cluster becomes very small compared to those of different clusters. This obeys the 
rule that the points belonging to the same cluster should be similar while points from 
different clusters should be dissimilar in the new space, which is clearly shown by the 
results in Fig. 2. 

4   Experiment Results  

In order to evaluate the performance of our algorithm, a number of experiments on 
both synthetic and real datasets were performed. In all these experiments, the results 
of our algorithm were compared with those of two popular clustering methods, K-
means and spectral clustering. With spectral clustering, we used Ncut normalization 
on the Laplacian. Also, to avoid manually setting the scaling parameter, we employed 
the local scaling setting proposed in [15] as it has been shown that this setting gives 
better results than a global scaling parameter. 

4.1   Results on Synthetic Datasets 

To demonstrate the power of our algorithm on separable data, the first comparison 
was performed on four synthetic datasets with different data structures: three-circle, 
face, two-moon, and two-spiral datasets. The results are presented in Fig. 3. We can 
see that K-means is unable to identify any of the clusters because the clusters are 
elongated in nature. Spectral clustering is able to identify the clusters in two of the 
data sets (three-circle and two-moon). Interestingly, our algorithm is able to identify 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 3. Results on 4 synthetic datasets: first row: results of K-means; second row: results of 

spectral clustering; third row: results of our algorithm 
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                         (a)                                             (b)                                            (c) 

Fig. 4. Results on a complex synthetic dataset: (a) result of K-means; (b) result of spectral 
clustering; (c) result of our algorithm 

each cluster in all of the data sets. To understand these results, we examined the path-
based data representation of each dataset and learned that each cluster in the original 
space forms a very compact cluster in the new space (similar to the case of three-
circle dataset explained above). With such good representation, the data space can 
easily be partitioned using K-means and produce correct results as presented. 

The second comparison was performed on a more complex synthetic dataset, 
which consists of six clusters: two circles, two spirals, a rectangular, and a Gaussian-
shaped cluster. The results obtained by K-means, spectral clustering and our 
algorithm are shown in Fig. 4, which indicate that neither K-means nor spectral 
clustering can correctly identify all clusters in this dataset. On the contrast, our 
algorithm detected all the clusters despite of their differences in shape and size. 

4.2   Results on Real Datasets 

In order to test the performance on real data, we performed a comparison on three 
commonly used datasets from UCI repository [16]: Iris, Breast-cancer, and Wine. The 
descriptions of these datasets are presented in Table 1. To measure the performance of 
each clustering algorithm, the accuracy metric [17] was used. The results are 
summarized and presented on the same table. 

We can see that K-means provides high accuracy on each of the data sets, implying 
that each of the data sets contain radial clusters. We can also see that our path-based 
algorithm provides high accuracy on the Breast-cancer data set implying that is has 
two distinct clusters. Our algorithm gave an accuracy of approximately 2/3 for the 
other two data sets, which leads us to believe that one cluster is distinct and the other 
two are overlapping. The overlapping would cause our method to place both clusters 
in to one, giving an accuracy of 2/3. This overlapping property can be easily seen 
when each data set is projected into a two-dimensional space.  

To deal with the case of overlapping clusters, we will examine a mixed clustering 
method. We define the new distance as a function of α (0≤α≤1), original distance, 
and path-based distance as (8). With α = 0, the result obtained is equal to the result of 
K-means while with α = 1, the result is of our original algorithm. The remaining 
values of α give a weighted combination of K-means and our algorithm. The 
accuracies obtained on three datasets when α changes from 0 to 1 are displayed in 
Fig. 5. 
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Table 1. UCI data descriptions and clustering results 

Descriptions Accuracy (%) 
Dataset # of 

instances 
# of 

attributes
# of 

classes 
K-means Spectral 

Our 
algorithm 

Iris 150 4 3 89.33 90.67 66.67 
Breast-cancer 683 9 2 96.04 69.25 96.34 

Wine 178 13 3 96.63 96.63 62.92 
 

 
 
 
 
 
 
                     (a)                                                (b)                                           (c) 

Fig. 5. Accuracies obtained on three datasets when α changes: (a) on Iris dataset; (b) on  
Breast-cancer dataset; (c) on Wine dataset 

( ) (1 ) ( , ) ( , )ij i j i jd dis x x pbdis x xα α α= − × + ×     (8) 

We can see that the mixing has increased the accuracy of our algorithm by allowing it 
to identify overlapped clusters. In two of the three data sets, we can see that the 
mixing has produced an increase over K-means as well, implying that K-means has 
also profited from our algorithm identifying the clearly separable clusters. 

By applying the mixed algorithm to the synthetic data in Fig. 3 we obtain the 
greatest accuracy at α = 1 (when using our algorithm only), with a descent in accuracy 
as α is reduced to 0. This result is obvious since our algorithm is suited for separable 
clusters, and each of the synthetic data sets is clearly separable in Euclidean space. 

5   Discussions 

As part of our analysis, we examine two cases where our algorithm cannot separate 
clusters, but K-means is able to provide high accuracy. The first case is when there 
are overlapping regions between clusters and the second is when separated clusters 
are connected by small bridges as shown in Fig. 6. 

In these cases, our algorithm will consider the data as one cluster since the 
distances between any two points in different clusters is small due to the path-based 
transformation. K-means identifies these clusters with only small error. However, 
these are difficult cases for the clustering task in general. If we removed the class 
information from the data (remove the color from Fig. 6), there is no reason why we 
should identify the two cases shown as two clusters. There is also no reason why the 
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                                               (a)                                                       (b) 

Fig. 6. Examples of two cases when the algorithm fails: (a) two Gaussian clusters with an 
overlapping region; (b) two separated clusters connected by a small bridge 

data could not contain one or three clusters. The beauty of our path-based clustering 
algorithm is that it identifies each clearly separable cluster (independent of shape and 
structure) and makes no assumptions about inseparable data. 

6   Conclusions 

In this paper, we have proposed a new clustering method that is capable of capturing 
complex structures in data. With the combination of the path-based dissimilarity 
measure and multi-dimensional scaling, we can produce a good data representation 
for any given dataset, which makes it possible to detect clusters of different shapes 
that are non-linearly separable in the input space.  

We showed that our path-based clustering method clearly identifies separable 
clusters. We also showed that our algorithm is unable to identify inseparable clusters, 
but also explained that identifying clusters in such data is in the eye of the beholder. 
This behavior makes our path-based clustering algorithm produce model clusters; that 
follow the definition of a cluster.  
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Abstract. Ensembles are often capable of greater prediction accuracy
than any of their individual members. As a consequence of the diver-
sity between individual base-learners, an ensemble will not suffer from
overfitting. On the other hand, in many cases we are dealing with imbal-
anced data and a classifier which was built using all data has tendency
to ignore minority class. As a solution to the problem, we propose to
consider a large number of relatively small and balanced subsets where
representatives from the larger pattern are to be selected randomly. As an
outcome, the system produces the matrix of linear regression coefficients
whose rows represent random subsets and columns represent features.
Based on the above matrix we make an assessment of how stable the
influence of the particular features is. It is proposed to keep in the model
only features with stable influence. The final model represents an average
of the base-learners, which are not necessarily a linear regression. Test
results against datasets of the PAKDD-2007 data-mining competition
are presented.

Keywords: ensemble classifier, gradient-based optimisation, boosting,
random forest, decision trees.

1 Introduction

Ensemble (including voting and averaged) classifiers are learning algorithms that
construct a set of many individual classifiers (called base-learners) and combine
them to classify test data points by sample average. It is now well-known that
ensembles are often much more accurate than the base-learners that make them
up [1], [2]. Tree ensemble called “random forest” was introduced in [3] and rep-
resents an example of successful classifier. Another example, bagging support
vector machine (SVM) [4] is very important because direct application of the
SVM to the whole data set may not be possible. In the case of SVM we are
interested to deal with limited sample size which is equal to the dimension of
the corresponding kernel matrix. The well known bagging technique [5] is rele-
vant here. According to this technique each base-learner used in the ensemble is
trained with data that are randomly selected from the training sample (without
replacement).
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Our approach was motivated by [5], and represents a compromise between
two major considerations. On the one hand, we would like to deal with balanced
data. On the other hand, we are interested to exploit all available information.
We consider a large number n of balanced subsets of available data where any
single subset includes two parts 1) all ‘positive’ instances (minority) and 2)
randomly selected ‘negative’ instances. The method of balanced random sets
(RS) is general and may be used in conjunction with different base-learners.

In the experimental section we report test-results against real-world data of
the PAKDD-2007 Data Mining Competition1, which were provided by a con-
sumer finance company with the aim of finding better solutions for a cross-selling
problem. The data are strongly imbalanced with significantly smaller proportion
of positive cases (1.49%), which have the following practical interpretation: a cus-
tomer opened a home loan with the company within 12 months after opening
the credit card [6].

Regularised linear regression (RLR) represents the most simple example of a
decision function. Combined with quadratic loss function it has an essential ad-
vantage: using gradient-based search procedure we can optimise the value of the
step size. Consequently, we will observe a rapid decline in the target function [7].

By definition, regression coefficients may be regarded as natural measurements
of influence of the corresponding features. In our case we have n vectors of
regression coefficients, and we can use them to investigate the stability of the
particular coefficients.

Proper feature selection may reduce overfitting significantly [8]. We remove
features with unstable coefficients, and recompute the classifiers. Note that sta-
bility of the coefficients may be measured using different methods. For example,
we can apply the t-statistic given by the ratio of the mean to the standard
deviation.

The proposed approach is flexible. We do not expect that a single algorithm
will work optimally on all conceivable applications and, therefore, an opportunity
of tuning and tailoring is a very essential.

Initial results obtained using RLR during PAKDD-2007 Data Mining Com-
petition were reported in [9]. In this paper, using tree-based LogitBoost [10] as
a base-learner we improved all results known to us.

This paper is organised as follows: Section 2 describes the method of random
sets and mean-variance filtering. Section 3 discusses general principals of the
AdaBoost and LogitBoost Algorithms. Section 4 explains the experimental pro-
cedure and the most important business insights. Finally, Section 5 concludes
the paper.

2 Modelling Technique

Let X = (xt, yt) , t = 1, . . . ,m, be a training sample of observations where xt ∈
R

 is a �-dimensional vector of features, and yt is a binary label: yt ∈ {−1, 1}.
1 http://lamda.nju.edu.cn/conf/pakdd07/dmc07/
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Boldface letters denote vector-columns, whose components are labelled using a
normal typeface.

In a practical situation the label yt may be hidden, and the task is to estimate
it using the vector of features. Let us consider the most simple linear decision
function

ut = u(xt) =
∑

j=0

wj · xtj , (1)

where xt0 is a constant term.
We can define a decision rule as a function of decision function and threshold

parameter

ft = f(ut, Δ) =
{

1 if ut ≥ Δ;
0, otherwise.

We used AUC as an evaluation criterion where AUC is the area under the receiver
operating curve (ROC). By definition, ROC is a graphical plot of True Positive
Rates (TPR) against False Positive Rates (FPR).

According to the proposed method we consider large number of classifiers
where any particular classifier is based on relatively balanced subset with all
‘positive’ and randomly selected (without replacement) ‘negative’ data. The
final decision function (d.f.) has a form of logistic average of single decision
functions.

Definition 1. We call above subsets as random sets RS(α, β, n), where α is a
number of positive cases, β is a number of negative cases, and n is the total
number of random sets.

This model includes two very important regulation parameters: 1) n and 2)
q = α

β ≤ 1 - the proportion of positive cases where n must be sufficiently large,
and q can not be too small.

We consider n subsets of X with α positive and β = k · α negative data-
instances, where k ≥ 1, q = 1

k . Using gradient-based optimization [11] we can
compute the matrix of linear regression coefficients:

W = {wij , i = 1, . . . , n, j = 0, . . . , �}.

The mean-variance filtering (MVF) technique was introduced in [11], and may
be efficient in order to reduce overfitting. Using the following ratios, we can
measure the consistency of contributions of the particular features by

rj =
|μj |
sj
, j = 1, . . . , �, (2)

where μj and sj are the mean and standard deviation corresponding to the
j-column of the matrix W .

A low value of rj indicates that the influence of the j-feature is not stable.
We conducted feature selection according to the condition:

rj ≥ γ > 0.



294 V. Nikulin, G.J. McLachlan, and S.K. Ng

The final decision function,

ft =
1
n

n∑
i=1

exp{τ · uti}
1 + exp{τ · uti}

, τ > 0, (3)

was calculated as a logistic average of single decision functions,

uti =
∑

j=0

wij · xtj ,

where regression coefficients w were re-computed after feature reduction.

Remark 1. It is demonstrated in the Section 4 that performance of the classifier
will be improved if we will use in (3) non-linear functions such as decision trees.

3 Boosting Algorithms

Boosting works by sequentially applying a classification algorithm to re-weighted
versions of the training data, and then taking a weighted majority vote of the
sequence of classifiers thus produced. For many classification algorithms, this
simple strategy results in dramatic improvements in performance.

3.1 AdaBoost Algorithm

Let us consider minimizing the criterion [10]

n∑
t=1

ξ(xt, yt) · e−ytu(xt), (4)

where the weight function is given below

ξ(xt, yt) := exp {−ytF (xt)}. (5)

We shall assume that the initial values of the ensemble d.f. F (xt) are set to zero.
Advantages of the exponential compared with squared loss function were dis-

cussed in [9]. Unfortunately, we can not optimize the step-size in the case of
exponential target function. We will need to maintain low value of the step-
size in order to ensure stability of the gradient-based optimisation algorithm.
As a consequence, the whole optimization process may be very slow and time-
consuming. The AdaBoost algorithm was introduced in [12] in order to facilitate
optimization process.

The following Taylor-approximation is valid under assumption that values of
u(xt) are small,

exp {−ytu(xt)} ≈
1
2
[
(yt − u(xt))2 + 1

]
. (6)
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Therefore, we can apply quadratic-minimisation (QM) model in order to mini-
mize (4). Then, we optimize value of the threshold parameter Δ for ut, and find
the corresponding decision rule ft ∈ {−1, 1}.

Next, we will return to (4),

n∑
t=1

ξ(xt, yt) · e−c·yt·f(xt), (7)

where the optimal value of the parameter c may be easily found

c =
1
2

log {A
B
}, (8)

and where
A =

∑
yt=f(xt)

ξ(xt, yt), B =
∑

yt 	=f(xt)

ξ(xt, yt).

Finally (for the current boosting iteration), we update the function F :

Fnew(xt) ← F (xt) + c · f(xt), (9)

and recompute weight coefficients ξ according to (5).

Remark 2. Considering test dataset (labels are not available), we will not be able
to optimize value of the threshold parameter Δ. We can use either an average
(predicted) value of Δ in order to transform decision function into decision rule,
or we can apply direct update:

Fnew(xt) ← F (xt) + c · u(xt), (10)

where the value of the parameter c ≤ 1 must be small enough in order to ensure
stability of the algorithm.

3.2 LogitBoost Algorithm

Let us parameterize the binomial probabilities by

p(xt) =
e2F (xt)

1 + e2F (xt)
.

The binomial log-likelihood is

y�
t log {p(xt)}+ (1 − y�

t ) log {1− p(xt)} = − log {1 + exp {−2ytF (xt)}}, (11)

where y� = (y + 1)/2.
The following relation is valid,

exp {−2ytF (xt)} = ξ(xt)z2
t , (12)
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where

zt =
y�

t − p(xt)
ξ(xt)

, ξ(xt) = p(xt)(1 − p(xt)).

We can maximize (11) using a method with Newton’s step, which is based on
the matrix of second derivatives [11]. As an alternative, we can consider the
standard weighted QM -model,

n∑
t=1

ξ(xt)(zt − ut)2. (13)

After the solution u(xt) was found, we update function p(xt) as,

p(xt) =

⎧⎨⎩
1 if ht ≥ 1;
ht if 0 < ht < 1;
0, otherwise,

where ht = p(xt)+ξ(xt)u(xt). Then, we recompute the weight coefficients ξ and
return to the minimization criterion (13).

Let us consider an update of the function F, assuming that 0 < ht < 1. By
definition,

Fnew(xt) =
1
2

log { ht

1− ht
} =

1
2

log { p(xt)
1− p(xt)

}

+
1
2

log {1 +
u(xt)

1− p(xt)u(xt)
} ≈ F (xt) + ν · u(xt), ν = 0.5. (14)

Remark 3. Boosting trick (similar to the well-known kernel trick): as an alter-
native to QM -solution, we can apply in (10) or (14) decision function, which
was produced by another method, for example, Näıve Bayes, decision trees or
random forest.

4 Experimental Results

4.1 Data Preparation

The given home-loan data includes two sets: 1) a training-set with 700 posi-
tive and 40000 negative instances, and 2) a test-set with 8000 instances. Any
data-instance represents a vector of 40 continuous or categorical features. Using
standard techniques, we reduced the categorical features to numerical (dummy)
values. Also, we normalized the continuous values to lie in the range [0, 1]. As
a result of the above transformation we created totally numerical dataset with
� = 101 features. As a result of MVF, the number of features was reduced from
101 to 44 (see Figure 1).
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Fig. 1. Mean-variance filtering: (a) means (μ); (b) - standard deviations (s), (c) ratios
r = |μ|/s (see Section 4 for more details)

Table 1. List of 6 the most significant features

N Feature μ r

1 Bureau Enquiries for Morgages last 6 month 0.729 4
2 Age -0.683 6.6
3 Bureau Enquiries for Loans last 12 month -0.516 4.8
4 Bureau Enquiries last 3 month 0.342 2.54
5 Number of dependants -0.322 3.82
6 Bureau Enquiries last month 0.299 1.92

4.2 Test Results

47 participants from various sources including academia, software vendors, and
consultancies submitted entries with range of results from 0.4778 to 0.701 in
terms of AUC. Our score was 0.688, which resulted in 9th place for us.

Note that the training AUC, which corresponds to the final submission was
0.7253. The difference between training and test results in the case of 44 features
appears to be a quite significant. Initial thought (after results were published)
was that there are problems with overfitting. We conducted series of experiments
with feature selection, but did not make any significant improvement (Table 2).
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Table 2. Numbers of the used features are given in the first column. Particular mean-
ings of the features (in the cases of 4 and 17 features) may be found in the Tables 1,
3 and 4.

N of features TestAUC Base-learner

44 0.7023 LogitBoost

44 0.688 RLR
30 0.689 RLR
17 0.688 RLR
4 0.6558 RLR

Table 3. Top 4 features

N Feature μ s r

1 N1 (see Table 1) 1.1454 0.1011 11.3294
2 N3 -0.6015 0.0663 -9.0751
3 N5 -0.1587 0.0778 -2.0395
4 AGE -0.6831 0.0806 -8.4794

As a next step, we decided to apply as a base-learner the ada-function in R.
The best test result AUC = 0.7023 was obtained using the following settings:
loss = e, ν = 0.3, type = gentle.

We used in our experiment 100 random balanced sets. In addition, we con-
ducted many experiments with up to 300 random sets, but we did not find any
improvement. Also, it is interesting to note that we did not make any changes
to the pre-processing technique, which was used before, and conducted our ex-
periments against the same data.

4.3 Discussion and Business Insights

The RS-method provides good opportunities to evaluate the significance of the
particular features. We can take into account 2 factors: 1) average values μ and
2) t-statistic r, which are defined in (2).

Based on the Tables 1 and 4, we can make a conclusion that younger people
(AGE: μ = −0.654) with smaller number of dependants (NBR OF DEPEN-
DANTS: μ = −0.3298) who made enquiries for mortgages during last 6 months
have higher probability to take up a home loan.

On the other hand, enquiries for loans represent a detrimental factor (μ =
−0.672).

Considering a general characteristic such as marital status, we can conclude
that “widowed” people are less interested (μ = −0.2754) to apply for home
loan.

Also, it is interesting to note that stable job (CURR EMPL MTHS: μ =
−0.0288) or long residence (CURR RES MTHS: μ = −0.0449) may be viewed
as negative factors. Possibly, these people have already one or more homes and
are reluctant to make further investments.
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Table 4. Top 17 features, which were selected using MVF

N Feature μ s r

1 MARITAL STATUS: married 0.0861 0.028 3.0723
2 MARITAL STATUS: single 0.0419 0.0236 1.7786
3 MARITAL STATUS: defacto 0.09 0.0438 2.0572
4 MARITAL STATUS: widowed -0.2754 0.0766 3.594
5 RENT BUY CODE: mortgage 0.0609 0.0191 3.1838
6 RENT BUY CODE: parents -0.1285 0.0341 3.7692
7 CURR RES MTHS -0.0449 0.0101 4.4555
8 CURR EMPL MTHS -0.0288 0.0111 2.586
9 NBR OF DEPENDANTS -0.3298 0.0807 4.085
10 Bureau Enquiries last month 0.3245 0.183 1.7736
11 Bureau Enquiries last 3 month 0.1296 0.1338 0.9691
12 Bureau Enquiries for Morgages last 6 month 0.8696 0.1359 6.3982
13 Bureau Enquiries for Loans last 12 month -0.6672 0.0795 8.3905
14 A DISTRICT APPLICANT=2 -0.1704 0.05 3.4067
15 A DISTRICT APPLICANT=8 -0.1216 0.0397 3.063
16 CUSTOMER SEGMENT=9 -0.0236 0.0317 0.7453
17 AGE -0.654 0.0962 6.8015

Remark 4. Experiments with ‘tree’ function (R-software, package ‘tree’) had
confirmed that the feature “Bureau enquiries for mortgages during last 6 month”
is the most important.

With this model, the company can develop a marketing program such as a direct
mail campaign to target customers with highest scores. For example, there are
350 positive cases in the independent test dataset with 8000 instances. We sorted
the 8000 customers in a decreasing order according to the decision function with
AUC = 0.7023 (see Table 2). As a result, we have found that 50%, 60% and 70%
of all positive customers are contained in the field of 1770, 2519 and 3436 top
scored customers.

4.4 Computation Time and Used Software

A Dell computer, Duo 2.6GHz, 3GB RAM, was used for computations. It took
about 4 hours time in order to complete 100 balanced random sets and produce
best reported solution.

5 Concluding Remarks and Further Developments

It is a well known fact that for various reasons it may not be possible to theoreti-
cally analyze a particular algorithm or to compute its performance in contrast to
another. The results of the proper experimental evaluation are very important as
these may provide the evidence that a method outperforms existing approaches.
Data mining competitions are very important.
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The proposed ensemble method is based on a large number of balanced ran-
dom sets and includes 2 main steps: 1) feature selection and 2) training. During
the PAKDD-2007 Data Mining Competition, we conducted both steps using
linear regression. The proposed method is general and may be implemented in
conjunction with different base-learners. In this paper we reported results which
were obtained using the ADA package in R. These results outperform all known
results.

Further improvement may be achieved as a result of more advanced pre-
processing technique. Also, it appears to be promising to apply random forest
as a single base-learner.
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Abstract. Spectral co-clustering is a generic method of computing co-
clusters of relational data, such as sets of documents and their terms.
Latent semantic analysis is a method of document and term smooth-
ing that can assist in the information retrieval process. In this article
we examine the process behind spectral clustering for documents and
terms, and compare it to Latent Semantic Analysis. We show that both
spectral co-clustering and LSA follow the same process, using different
normalisation schemes and metrics. By combining the properties of the
two co-clustering methods, we obtain an improved co-clustering method
for document-term relational data that provides an increase in the
cluster quality of 33.0%.

Keywords: co-clustering, spectral graph partitioning, latent semantic
analysis, document clustering.

1 Introduction

Spectral co-clustering [1] allows us to partition relational data such that parti-
tions contain more than one type of data. Document-term spectral co-clustering
is the application of spectral co-clustering to document-term relational data. It
allows us to provide partitions of not only documents, but also the terms that
are related to the documents. By using these terms, we can quickly obtain an
understanding of how the documents and terms are partitioned. For example,
if a set of documents and terms appeared in a partition where the terms were
words such as ‘Wiggles’, ‘Teletubbies’, and ‘Igglepiggle’, we would know that the
partition is related to children’s entertainment. Co-clustering is a useful tool for
domains such as information retrieval where many documents and terms can be
partitioned into smaller sets and processed by complex algorithms that would
have otherwise been infeasible to use.

Much research has gone into the distributions found within document-term
relational data [5]. Unfortunately, spectral co-clustering does not make use of
this information when applied to document-term relational data.

Latent semantic analysis (LSA) [3] is a method of document analysis for in-
formation retrieval that follows a similar process to spectral co-clustering. LSA

A. Nicholson and X. Li (Eds.): AI 2009, LNAI 5866, pp. 301–311, 2009.
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has been developed for use especially with document-term relational data, but
has only been used for dimension reduction and query term expansion.

In this article, we examine the similarities between using spectral co-clustering
for co-clustering documents and terms, and using latent semantic analysis for
establishing correlations between documents and terms during the informa-
tion retrieval process. By analysing the components of each method, we are
able to produce a spectral co-clustering algorithm that is tailored for use on
document-term relational data. The main contributions are:

– an analysis of the similarities between spectral co-clustering and latent
semantic analysis

– an outline of a framework for document-term co-clustering
– an improved method of co-clustering document-term relational data by

combining ideas from the mentioned co-clustering methods.

The article will proceed as follows: we begin by describing the spectral graph
multi-partitioning method in Section 2 and how to compute the spectral co-
clusters. We then describe Latent Semantic Analysis and its use for information
retrieval in Section 3. This is followed by a comparison of the two methods in
Section 4. Experiments are provided in Section 5 showing how each method
performs and how we can combine the two methods to improve the computed
partitions.

2 Co-clustering Using Spectral Graph Multi-partitioning

Spectral clustering [2] allows us to clearly identify any isolated subgraphs within
a graph. In the case where our graph is fully connected, spectral clustering is
able to identify subgraphs containing strongly connected components, with weak
connections between subgraphs.

In this section, we will examine co-clustering using spectral graph multi-
partitioning and examine how to cluster its spectrum.

2.1 Computing Spectral Co-clusters

Given a set of documents vectors A, where each row of A is a document vector
containing ad,t (the weight of term t in document d), spectral document clusters
are computed by first computing the graph as the document-document relational
matrix AAT . We then compute the graph spectrum, being the eigenvectors of the
weighted graph Laplacian matrix of AAT . The document clusters are obtained
by applying K-means to the graph spectrum [2]. If we consider AT to be a set
of term vectors, then to compute the set of term clusters, we perform the same
operations on the relational matrix ATA.

To compute the set of document-term co-clusters (rather than only the docu-
ment clusters or term clusters), we must first compute a common space in which
both the documents and terms appear. It has been shown [1] that the spectrum
obtained for each of the document and term clusterings are in fact the same
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Algorithm 1. The spectral co-clustering algorithm. Note that S(·) is de-
fined in equation 2, and Sd(·) and St(·) in equation 3.

Data: document-term relational matrix A
Result: documents and terms partitioned into clusters C
begin1

An ← S(A); // apply spectral normalisation2

[U, Σ, V ] ← svd(An) ; // perform SVD3

U2:n+1 ← U [:, 2 : n + 1] ; // select columns 2 to n + 14

V2:n+1 ← V [:, 2 : n + 1];5

Zd ← Sd(U2:n+1) ; // apply spectral weighting6

Zt ← St(V2:n+1);7

Z ← [Zd; Zt] ; // combine to form one matrix8

C ← K-means(Z) ; // compute clusters using K-means9

end10

space as presented above. Therefore, we are able to simply combine the spectra
of the documents and terms, and apply K-means to compute document-term
co-clusters.

Rather than computing the relational matrices for A and AT separately
and combining the spectra, a more efficient method [1] using singular value
decomposition (SVD) is presented.

Spectral graph multi-partitioning algorithm [1] is outlined in Algorithm 1. In
the algorithm, we have not defined the functions S(·), Sd(·) and St(·), and so we
will present them here. Given the matrix:

A =

⎡⎢⎢⎢⎣
ad1,t1 ad1,t2 . . . ad1,tT

ad2,t1 ad2,t2 . . . ad2,tT

...
...

. . .
...

adD,t1 adD,t2 . . . adD,tT

⎤⎥⎥⎥⎦ (1)

the algorithm consists of first normalising the data:

S(A) = R−1/2AC−1/2 (2)

where the matrices R and C are diagonal matrices containing the elements Rt =∑
d ad,t and Cd =

∑
t ad,t. Then applying the singular value decomposition,

giving An = UΣV T . Singular vectors ũi and ṽi are selected from the columns of
U and V and normalised using:

ẽti = Sd(ũi) = R−1/2ũi ẽdi = St(ṽi) = C−1/2ṽi (3)

giving ẽti and ẽdi , the eigenvectors of the graph Laplacian for the row and column
objects i respectively. The final step of the algorithm is to cluster the combined
graph Laplacian eigenvectors.

2.2 Clustering the Spectrum

Given a document-term relational matrix A, where each element at,d is non-
zero if term t appears in document d, it is unlikely that there will be any clear
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Fig. 1. The elements values of the second partition vector. From the change in element
values, we can see four partition of the associated objects (outlined by the gray boxes).

document clusters since each document will have similarity to every other doc-
ument (due to them containing common terms such as “the”), and it is unlikely
that there will be any clear term partitions since every term will be related to a
common term.

If there are no clear partitions, the first eigenvector of the Laplacian matrix
provides the trivial solution where all elements are equal and the corresponding
eigenvalue is zero, implying that the whole data set belongs to one cluster. There-
fore, to obtain the document-term co-clusters, we must select a set of partition
vectors from the remaining set of eigenvectors and apply K-means.

Figure 1 provides us with a plot of the element values within a partition vector
from a document collection containing four different topics. The plot shows the
vector elements sorted by topic, where the four topic clusters are visible due to
the differences in the element values.

Each element in a partition vector represents an object in the data set. If two
objects have similar values in many partition vectors, then it is likely that they
belong to the same cluster. It is due to this property that Euclidean K-means is
used to cluster the objects, based on their similarity in each partition vector.

3 Latent Semantic Analysis

Latent semantic analysis (LSA) is the process of computing the set of hidden
topics and their relationship to each of the terms and documents in the document
set. Once the relationships are obtained, we are able to represent each of the
terms and documents by their latent topics and compute correlations between
them.

A document-term index is a D × T matrix of the form given in equation
1, where D and T are the number of documents and terms in the document
collection respectively and ad,t is the count of term t in document d. We can
see from this matrix that it is a collection of document vectors, where each
document is represented by the set of terms as it features. We can also see that
it is a collection of term vectors, where each term is represented by the set
of documents as its features. Latent semantic analysis allows us to compute a
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Algorithm 2. The LSA co-clustering algorithm. Note that element-wise
L(·) is defined in equation 4, Ld(·) in equation 6, and Lt(·) in equation 7.

Data: document-term relational matrix A
Result: documents and terms partitioned into clusters C
begin1

An ← L(A); // apply LSA normalisation2

[U, Σ, V ] ← svd(An) ; // perform SVD3

U1:n ← U [:, 1 : n] ; // select columns 1 to n4

V1:n ← V [:, 1 : n];5

Zd ← Ld(U1:n) ; // apply LSA weighting6

Zt ← Lt(V1:n);7

Z ← [Zd; Zt] ; // combine to form one matrix8

C ← � K-means(Z) ; // compute clusters using angular K-means9

end10

mapping for each of the document and term vectors into the topic space, where
each document and term are represented by the set of latent topics as their
features.

To compute co-clusters in the topic space, we use the algorithm presented in
Algorithm 2. In this section we will present the reasoning behind each step and
present the functions L(·), Ld(·), and Lt(·) from Algorithm 2.

3.1 Document and Term Normalisation

When performing similarity comparisons of document and term vectors, we must
take into account any bias that exists in the data. When examining term fre-
quency counts, bias can exist due to term rarity and document length. For exam-
ple, when comparing two documents for similarity, they will both contain many
common terms such as ‘the’, ‘and’, ‘is’ and ‘a’. These terms are not very infor-
mative when computing similarity and therefore should not have much impact
on the similarity score. On the other hand, if the two documents both contain
rare terms, these rare terms should have a greater contribution to the similarity
score.

The TF-IDF weighting scheme [4] provides this term rarity normalisation by
using the following weights:

wd,t = ad,t log
(
D

at
+ 1
)

(4)

where at is the number of documents containing term t, and D is the number of
documents. These weights are used in the place of term frequencies to remove
the mentioned bias from any similarity computations. By weighting each element
of the matrix A, we obtain the normalised matrix L(A).
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3.2 Topic Normalisation

To compute the set of latent topics and their relationship to each document and
term, we use the singular value decomposition (SVD):

A = UΣV T (5)

where A contains the elements ad,t.
The SVD is a form of dimension reduction that provides the best n-dimensional

fit in the latent semantic space in terms of the l2 norm when the first n singular
values are chosen. The matrices U and V are document to topic space and term
to topic space mappings that map the term and document vectors into the latent
topic space. Therefore the set of document vectors in the latent topic is given as:

Ld(U) = AV = UΣV TV = UΣ (6)

and the set of word vectors in the latent topic space is given as:

Lt(V ) = ATU = V ΣUTU = V Σ (7)

By choosing the n greatest singular values, and hence the n associated columns
of UΣ and V Σ, we obtain the set of documents and terms in the n-dimensional
latent topic space. These document and term vectors allow us to easily compute
the correlation between each pair of terms, documents or terms and documents.

3.3 Clustering the Topics

Before we can cluster objects, we must define similarity between them. A simple
and effective measure of similarity for document vectors is the cosine measure:

sim(d̃i, d̃j) =
d̃T

i d̃j

‖d̃i‖2‖d̃j‖2
(8)

which is the inner product of the document vectors normalised by their vector
length. This measure is independent of the length of the document vectors and
therefore computes the similarity based only on the angle between the vectors. If
the document vectors point in the same direction, the similarity will be 1, if they
point in different directions, the similarity will be less than 1. If the vectors are
at right angles to each other (implying that they have no features in common),
the similarity will be 0.

Using this knowledge, we employ the use of angular K-means, where the angle
between two vectors is used to compute their dissimilarity, rather than Euclidean
distance.

4 Comparison of Spectral Co-clustering and LSA

After examining the spectral co-clustering and latent semantic analysis pro-
cesses, we can see that when applied to a document-term relational matrix,
both methods are very similar in that they follow the same generalised process
of:



Adapting Spectral Co-clustering to Documents and Terms Using LSA 307

2. Normalise the document-term relational matrix
3. Apply the SVD

4,5. Choose the top n singular vector with largest associated singular values.
6,7. Weight the selected vectors

9. Cluster the weighted vectors

By using the document index, containing term frequencies, as our relational
matrix, we apply the following normalisation when using spectral co-clustering:

wd,t =
ad,t√∑

t ad,t

∑
d ad,t

(9)

and the normalisation in equation 4 when using LSA, where wd,t is an element
of An.

Another difference can be seen in the weighting that is used after the SVD is
applied. When performing spectral co-clustering, we use the weighting in equa-
tion 3, while when using LSA, we use the weighting from equations 6 and 7.
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Fig. 2. A plot showing different views of the 2nd, 3rd and 4th spectral dimensions.
The different document sets are shown by different shades of gray. The solid horizontal
and vertical lines show the x, y axis and the position of (0,0).
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The last difference is the metric used with K-means (Euclidean distance vs.
vector angle). Given that these two methods are so similar, it seems odd that they
should both use different similarity metrics in the reduced space. Spectral co-
clustering uses K-means to identify co-clusters, which uses the Euclidean distance
as its metric. On the other hand, LSA uses K-means with the cosine measure to
compare vectors in the reduced space.

A plot of the 2nd, 3rd and 4th dimensions of the reduced space1 using the
spectral co-clustering normalisation and weighting is shown in Figure 2. The
data set consists of the combination of four document sets. Each point in the
plot corresponds to one document from the collection. From this set of plots,
we can see that each of the four document sets are clustered in a radial fashion
about the origin, giving support to the use of the cosine measure as the metric
over the Euclidean distance.

5 Experiments

We have seen that spectral co-clustering and LSA are very similar and that
they differ only in terms of their relational matrix normalisation, reduced space
vector weighting and the spectral metric used. In this section we will examine
how modifying these properties affect the quality of the co-clusters obtained.

We performed the clustering on a document collection containing 7,095 doc-
uments. The document collection was made by combining the MED (1,033 doc-
uments), CISI (1460 documents), CRAN (1398 documents) and CACM (3204
documents) document sets from the SMART document collection2. Note that in
previously reported results [1], the CACM document set was not used. We be-
lieve that this was due to it being difficult to cluster. Each experiment presents
a confusion matrix and an associated accuracy (computed as correctly clustered
objects/total objects). Note that even though we are co-clustering documents
and terms, we only have class information for the documents, so the term objects
will be left out of the evaluation.

When using spectral co-clustering on data that contains no clear partitions,
we ignore the trivial first eigenvector (as explained in section 2.2). Therefore,
we use the 2nd, 3rd, 4th and 5th eigenvectors when performing spectral co-
clustering, and we use the 1st, 2nd, 3rd and 4th eigenvectors when performing
LSA co-clustering.

Experiment 1: Original Spectral and LSA co-clustering To compare the effective-
ness of the clustering methods, we used each method to compute four clusters in
an attempt to separate the four document sets. The first two methods were those
of the spectral and LSA co-clustering. The confusion matrix for these methods
are shown in Table 1.

1 The first dimension is not shown since it contains the trivial eigenvector corresponding
to the eigenvalue of value zero.

2 ftp://ftp.cs.cornell.edu/pub/smart
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Table 1. The confusion matrix for spectral co-clustering (left) with 50.6% accuracy
and LSA co-clustering (right) with 69.5% accuracy

Cluster MED CISI CRAN CACM

1 551 0 0 0
2 240 1460 1398 1622
3 242 0 0 0
4 0 0 0 1582

Cluster MED CISI CRAN CACM

1 964 6 1 2
2 2 0 532 5
3 8 0 800 51
4 59 1454 65 3146

Table 2. The confusion matrix for LSA co-clustering, clustered on the 2nd, 3rd and
4th and 5th dimensions. The table on the left shows the clusters found using Euclidean
distance with accuracy of 53.6%, while the table on the right shows those found using
the cosine distance with accuracy 68.7%.

Cluster MED CISI CRAN CACM

1 418 0 0 1
2 16 964 7 976
3 0 0 191 0
4 599 496 1200 2227

Cluster MED CISI CRAN CACM

1 988 10 37 6
2 0 0 566 1
3 0 0 701 9
4 45 1450 94 3188

We can see from the left confusion matrix that the spectral multi-partitioning
method managed to compute two clusters containing only MED documents
(cluster 1 and 3) and a cluster containing only CACM documents (cluster 4),
and a cluster containing all documents types (cluster 2). We can see that this
method performed poorly as it was not able to discriminate the CISI and CRAN
documents at all.

From the LSA co-clusters shown in the right confusion matrix of Table 1, we
see that cluster 1 clearly contains MED documents and clusters 2 and 3 contain
CRAN documents, but cluster 4 contains CISI and CACM documents. So neither
the spectral nor LSA co-clustering methods were able to provide clusters centred
within each document set.

Experiment 2: LSA without 1st singular vector, using Euclidean and cosine dis-
tance Our second set of results show the effect of using LSA co-clustering, where
we have ignored the first singular vector, implying that we have used the 2nd,
3rd, 4th and 5th set of singular vectors as our data set (as done in spectral
multi-partitioning). The results can be seen in Table 2. From this table, we can
see that again the clusters produced are similar to those produced using LSA co-
clustering and are also unable to provide clusters that centre on each document
set.

Experiment 3: LSA co-clustering using Euclidean distance, Spectral co-clustering
using cosine distance Finally, we will examine the effect of switching the
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Table 3. The confusion matrix for LSA co-clustering using the Euclidean distance
metric (left) with 58.3% accuracy and spectral co-clustering using the cosine measure
(right) with 92.4% accuracy

Cluster MED CISI CRAN CACM

1 399 0 0 1
2 25 836 67 927
3 2 0 659 0
4 607 624 672 2276

Cluster MED CISI CRAN CACM

1 998 0 0 0
2 34 1457 12 476
3 1 1 1376 5
4 0 2 10 2723

K-means metric. Table 3 contains the confusion matrices for LSA co-clustering
using Euclidean distance and spectral co-clustering using the cosine measure.

By modifying the spectral co-clustering method to use LSA’s cosine measure
we have obtained an improvement over both LSA co-clustering and spectral
co-clustering. The right confusion matrix of Table 3 shows each of the clusters
containing most of the documents from one of the document sets.

From our analysis, we have produced a spectral co-clustering algorithm that
is tailored for use on document-term relational data. The results show that
by combining the weighting used with spectral co-clustering with the cosine
measure used in LSA co-clustering, we are able to increase the spectral co-
clustering accuracy from 69.5% to 92.4% (a 33.0% increase in accuracy) pro-
viding a co-clustering method that is more suited to document clustering. It
is also interesting to note that the LSA weighting, designed specifically for
document-term frequencies, was not as useful as the spectral co-clustering
weighting.

6 Conclusion

Co-clustering using spectral multi-partitioning is a generic method of computing
co-clusters with relational data. Latent semantic analysis (LSA) is a method of
document and term smoothing that follows a similar processes to spectral multi-
partitioning.

In this article, we showed that spectral multi-partitioning and LSA both follow
the same process but use different normalisation and weighting schemes, and a
different metric.

From our analysis, we have produced a spectral co-clustering algorithm that
is tailored for use on document-term relational data. By replacing properties
of spectral co-clustering with those from LSA, we were able to provide a co-
clustering method for documents and terms that provided a 33.0% increase in
cluster quality when compared to each method separately. Our results showed
that the best clusters were obtained by using the spectral multi-partitioning
weighting and normalisation with LSA’s similarity metric.
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Abstract. This paper derives two new information theoretic linear re-
gression criteria based on the minimum message length principle. Both
criteria are invariant to full rank affine transformations of the design ma-
trix and yield estimates that are minimax with respect to squared error
loss. The new criteria are compared against state of the art information
theoretic model selection criteria on both real and synthetic data and
show good performance in all cases.

1 Introduction

Consider the linear regression model for explaining data yn ∈ R
n

y = Xγβ + ε

where β ∈ R
p is the vector of linear regression coefficients, ε ∈ R

n are i.i.d. vari-
ates distributed as per ε ∼ Nn (0, τIn) (where Ik denotes the (k×k) identity ma-
trix), Xγ is the design matrix of regressors and γ ⊂ {1, . . . , q} is an index vector
determining which regressors comprise the design matrix. Let X = (x1, . . . ,xq)
be the complete matrix of regressors, where xi ∈ R

n and q is the maximum
number of candidate regressors. Given model structure index γ, the model
design matrix is defined as

Xγ = (xγ1 , . . . ,xγp)

Denote the full vector of continuous parameters by θ = (β, τ) ∈ Θ ⊂ R
p+1

where Θ is the parameter space. The parameters θ are considered unknown and
must be inferred from the data yn, along with the optimal regressor subset γ.

This paper considers information theoretic model selection criteria based on
Minimum Message Length (MML) [1] for inference of linear regression models.
The criteria derived here are: (1) invariant under all full rank affine transfor-
mations of the design matrix (2) yield estimates that are minimax with respect
to the squared error loss and, (3) require no user specified parameters. Most
previous MML criteria for linear regression [1,2,3] are based on ridge regression
style priors and none possess all of these attractive properties. In addition, one
of the new criteria allows for shrinkage of parameters and selection of relevant

A. Nicholson and X. Li (Eds.): AI 2009, LNAI 5866, pp. 312–321, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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regressors to be performed within a single framework. The resultant criteria are
closely related to the linear regression criterion derived using the Normalized
Maximum Likelihood (NML) [4] universal model.

2 Minimum Message Length (MML)

Within the MML framework [1,5,6] of inductive inference, the model that best
compresses the data resulting in the shortest message length is deemed optimal.
The hypothetical message consists of two parts: the assertion, I87(θ), which is
a statement of the chosen model, and the detail, I87(yn|θ), which denotes the
encoding of the data under the assumption that the model named in the assertion
is optimal. The Wallace-Freeman, or MML87 approximation [6], states that a
model θ ∈ Θ ⊂ R

k and data yn = (y1, . . . , yn) may be concisely transmitted
with a message approximately given by

I87(yn,θ) = − log π(θ) +
1
2

log |Jθ(θ)|+ k

2
log κk︸ ︷︷ ︸

I87(θ)

+
k

2
− log p(yn|θ)︸ ︷︷ ︸

I87(yn|θ)

(1)

where π(·) denotes a prior distribution over the parameter space Θ, Jθ(θ) is the
Fisher information matrix, and κk is the normalised second moment of an opti-
mal quantising lattice in k-dimensions. In this paper, the need to determine κk

for arbitrary dimension k is circumvented by using the approximation (pp. 237,
[1])

k

2
(log κk + 1) ≈ −k

2
log(2π) +

1
2

log(kπ) + ψ(1)

where ψ(·) is the digamma function. We define log as the natural logarithm, and
as such, all message lengths are measured in nits (nats), or base-e digits. The
MML principle advocates choosing the model θ̂87(yn) that minimises (1) as the
most a posteriori likely explanation of the data in the light of the chosen priors.

The original Wallace-Freeman approximation requires that the prior be com-
pletely specified. Recently, this requirement has been relaxed by the introduction
of a Wallace-Freeman like extension to hierarchical Bayes models in which the pa-
rameters and hyperparameters are jointly estimated from the data [7]. If πθ(·|α)
is the prior density over θ parametrised by hyperparameters α, and πα(·) is the
prior density over α, the joint message length of yn, θ and α is

I87(yn,θ,α) = − log p(yn|θ)− log πθ(θ|α)πα(α) +
1
2

log |Jθ(θ)||Jα(α)|+ const

(2)
where

Jα(α) = E

[
∂2I87(yn, θ̂87(yn|α)|α)

∂α∂α′

]
denotes the Fisher information for the hyperparameters α, the expectations
taken with respect to the marginal distribution r(yn|α) =

∫
p(yn|θ)πθ(θ|α)dθ.
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3 Linear Regression with a Uniform Prior

Dropping γ for brevity, the negative log-likelihood function for a linear regression
model given a set of parameters θ = (β, τ) ∈ R

p+1 is

− log p(yn|θ) =
n

2
log(2π) +

n

2
log τ +

1
2τ

(y −Xβ)′(y −Xβ) (3)

The Fisher information for the linear regression model is known to be

|Jθ(θ)| =
(

1
2τp+2

)
|X′X| (4)

To apply the MML87 formula (1) we require a suitable prior distribution π(θ) =
π(β)π(τ) for the regression parameters β and the noise variance τ . One aim of
the paper is to derive model selection criteria that do not require specification
of subjective priors which is often difficult in practice in the linear regression
setting. Ideally, one wishes to give each set of feasible regression coefficients
β ∈ R

p an equal prior probability. A possible method is to use the uniform prior
over each coefficient, which is of course improper and requires a bounding of the
parameter space to avoid the Jeffreys-Lindley paradox. The data yn are assumed
to be generated from the model

y = y∗ + ε

where ε ∼ Nn(0, τIn) and y∗ is the ‘true’ underlying regression curve. Noting
that E[ε′ε] = nτ and E[ε′y] = 0, it is clear that

E [y′y] = y′
∗y∗ + nτ (5)

For a given β, one can construct an estimate of y∗, say Xβ; since τ is unknown
and strictly positive, by (5), we expect this estimate to satisfy

y′y ≥ (Xβ)′ (Xβ) = β′ (X′X)β (6)

that is, we do not expect the estimate of y∗ to have greater energy than the
energy of the observed data y. From (6), the feasible parameter hyper-ellipsoid
Λ ⊂ R

p is then given by

Λ = {β : β ∈ R
p,β′ (X′X)β ≤ y′y}

A suitable prior for β is then a uniform prior over the feasible parameter set Λ

π(β) =
1

vol(Λ)
=

Γ(p/2 + 1)
√
|X′X|

(πy′y)(p/2) , β ∈ Λ (7)

The prior over τ is chosen to be the standard conjugate prior

π(τ) ∝ τ−ν (8)
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where ν is a suitably chosen hyperparameter. The impropriety of (8) is not
problematic as τ is a common parameter for all regression models. Using (3),
(7), (8) and (4) in (1) and minimising the resulting codelength yields

β̂87(yn) = (X′X)−1 X′y = β̂LS(yn) (9)

τ̂87(yn) =
y′y − ξ(yn)
n− p+ 2ν − 2

(10)

where ξ(yn) = β̂87(yn)′ (X′X) β̂87(yn) is the fitted sum of squares, and β̂LS(yn)
are the usual least squares estimates. The final complete message length, up to
a constant, evaluated at the MML estimates (9) and (10) is

Iu(yn|γ)=
(
n− p

2

)
log 2π+

(
n− p+ 2ν − 2

2

)
(log τ̂87(yn)+1)+

p

2
log (πy′y)

− logΓ
(p

2
+ 1
)

+
1
2

log(p+ 1) + const (11)

where Iu(yn|γ) ≡ Iu(yn, β̂87(yn), τ̂87(yn)|γ). The code (11) is henceforth re-
ferred to as the MMLu code. We note that as (11) depends on X only through
τ̂87(yn), the message length is invariant under all full rank affine transformations
of X. We also note that as the MML87 estmates β̂87(yn) under the uniform
prior coincide with the least-squares estimates they are minimax with respect to
squared error loss for all p > 0.

The criterion (11) handles the case p = 0 (i.e., no signal) gracefully, and is
of the same computational complexity as well known asymptotic information
criteria such as Akaike’s Information Criterion (AIC) [8] or the Bayesian Infor-
mation Criterion (BIC) [9]. This has the distinct advantage of making it feasible
in settings where the complete design matrix may have many thousands of re-
gressors; such problems are becoming increasingly common in bioinformatics,
e.g. microarray analysis and genome wide association studies. It remains to se-
lect ν; setting ν = 1 renders (10) the minimum variance unbiased estimator of
τ , and is therefore one sensible choice.

Remark 1: Coding. To construct the uniform code it has been assumed that the
observed signal power y′y is known by the receiver. Alternatively, one can de-
sign a preamble code to transmit this quantity to the receiver, making the entire
message decodable. As all regression models will require this preamble code it
may safely be ignored during model selection for moderate sample sizes.

Remark 2: Alternative Prior. An attempt at forming ‘uninformative’ priors for
linear regression models in the MML literature was made in [2]. Here, an additive
uniform prior density over the coefficients was chosen to reflect the belief that
the higher order coefficients will account for the remaining variance that is un-
explained by the already selected lower order coefficients. However, such a prior
is not uniform over the feasible set of the regression parameters and depends on
an arbritrary ordering of the coefficients.
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4 Linear Regression with the g-Prior

Instead of the uniform prior used in the MMLu criterion, we now consider a mul-
tivariate Gaussian prior over the regression coefficients. Dropping γ for brevity,
this results in the following hierarchy:

y ∼ Nn (Xβ, τIn) (12)

β ∼ Np

(
0p,m (X′X)−1

)
(13)

where both m > 0 and τ are hyperparameters that must be estimated from the
data. The type of prior considered here is known as Zellner’s g-prior [10]. Coding
of the assertion now proceeds by first transmitting estimates for α = (m, τ), and
then transmitting the regression parameters β given the hyperparameters. This
is further detailed in [7].

The negative log-likelihood of the data yn given the parameters (β, τ) is
given by (3). The Fisher information for β now requires a correction as the
hyperparameter m is estimated from the data, and may be arbitrarily small
leading to problems with the uncorrected MML87 approximation. Following the
procedure described in [1] (pp. 236–237), the corrected Fisher information is
formed by treating the prior πβ(β|m) as a posterior of some uninformative prior
π0(β) and p prior data samples all set to zero, with design matrix X0 satisfying
X′

0X0 = (τ/m)(X′X). The corrected Fisher information is

|Jβ(β|α)| =
(
τ +m

τm

)p

|X′X| (14)

Substituting (3), (13) and (14) into (1), and minimising the resultant codelength
for β yields the following MML87 estimates:

β̂87(yn|α) =
(

m

m+ τ

)
(X′X)−1 X′y =

(
m

m+ τ

)
β̂LS(yn) (15)

Using the procedure described in Section 2, the profile message length, say Iβ̂ ,
evaluated at β̂87(yn|α) up to constants not depending on α is

n

2
log τ +

p

2
log
(
τ +m

τ

)
+
(

1
2τ

)
y′y −

(
m

2τ(m+ τ)

)
ξ(yn)

where ξ(yn) = β̂LS(yn)′ (X′X) β̂LS(yn) is the fitted sum of squares. Noting that
E [y′y] = nτ+mp and E [ξ(yn)] = p(τ+m), the entries of the Fisher information
matrix for the hyperparameters α are

E

[
∂2Iβ̂
∂m2

]
= E

[
∂2Iβ̂
∂m∂τ

]
=

p

2(m+ τ)2
(16)

E

[
∂2Iβ̂
∂τ2

]
=

p

2(m+ τ)2
+
n− p
2τ2 (17)
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yielding the Fisher information

|Jα(α)| = (n− p)p
4τ2(m+ τ)2

(18)

The hyperparameters m and τ are given the uninformative prior

πα(α) ∝ τ−ν (19)

where ν is specified a priori. Substituting (3), (13), (14), (18) and (19) into (2)
and minimising the resultant codelength with respect to α yields

τ̂87(yn) =
y′y − ξ(yn)
n− p+ 2ν − 2

m̂87(yn) =
(
ξ(yn)
δ

− τ̂87(yn)
)

+

where δ = max(p−2, 1) and (·)+ = max(·, 0) as m may never be negative. When
m̂87(yn) > 0, the complete minimum message length for the data, parameters
and the hyperparameters is given by

Ig(yn|γ) =
(
n− p+ 2ν − 2

2

)
(log τ̂87(yn) + 1) +

p− 2
2

log
ξ(yn)
δ

+
1
2

log(n− p)p2 + const (20)

where Ig(yn|γ) ≡ Ig(yn, β̂87(yn|α̂), α̂87(yn)|γ). Alternatively, when m̂87(yn) =
0 or p = 0, we instead create a ‘no effects’ design matrix X comprising a single
regressor such that X′X = 0 which yields the codelength

Ig(yn|∅) =
(
n+ 2ν − 4

2

)
(log τ̂87(yn) + 1) +

1
2

log(n− 1) +
1
2

+ const (21)

for the ‘null’ model γ = ∅. The codes (20)–(21) are referred to as MMLg; as they
depend on the design matrix only through τ̂87(yn) and ξ(yn) they are invariant
under all full rank affine transformations of X. As in the case of MMLu, the
MMLg criterion is of the same computational complexity as AIC and BIC, and
is therefore also suitable for application to high dimensional problems.

Remark 3: Minimaxity. The MML87 estimators (15) are minimax with respect to
squared error loss for all p > 2, assuming the choice of ν = 2 [11]. Furthermore,
such estimators dominate the standard least squares estimators for all p > 2,
and generally outperform them even for p < 3.

Remark 4: Given that the least squares estimates are always minimax, it may
be preferable to use MMLu when p < 3 and MMLg otherwise. This requires
a calibration of the two codelengths involving a more efficient coding of the
hyperparameter in MMLu and is a topic for future work.
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5 Coding the Model Index

The previous criteria ignored the requirement for stating γ, which denotes the
regressors included in the model. However, in order to decode the message, a
receiver needs to know γ. In nested model selection, such as polynomial regres-
sion, a reasonable choice is to use a uniform prior over the maximum number of
regressors, q > 0, under consideration with codelength

I(γ) = log(q + 1) (22)

If one is instead considering the all subsets regression setting, a prior that treats
each combination of subsets of size p as equally likely may be chosen [12]. This
prior yields the codelength

I(γ) = log
(
q

p

)
+ log(q + 1) (23)

An alternative prior is to treat all combinations of regressors as equally likely;
this is equivalent to using a Bernoulli prior with probability of including a re-
gressor set to (1/2). However, it is not difficult to show that for moderate q,
such a prior results in codelengths that are longer than those obtained by (23)
for almost all combinations of regressors.

Once a suitable code for the model index is chosen, regressor selection is
performed by solving

γ̂ = arg min
γ
{I(yn|γ) + I(γ)}

where I(yn|γ) is the codelength of the regression model specified by γ; for
example, the MMLu (11) or the MMLg (20)–(21) codes.

6 Discussion and Results

The MMLu and MMLg criteria are now compared against two state of the
art MDL linear regression criteria, denoted NML [4] and gMDL [13], and the
KICc [14] method, on both synthetic and real data. The hyperparameter ν was
set to ν = 1 for the MMLu criterion, and to ν = 2 for the MMLg criterion. It
has been previously shown that NML, gMDL and KICc regularly outperform the
well known AIC and BIC (and allied criteria) and we therefore do not include
them in the tests. The NML criterion INML(yn) for p > 0, up to constants, is
given by:(

n− p
2

)
log

y′y − ξ(yn)
n

+
p

2
log

ξ(yn)
p

− log Γ
(
n− p

2

)
− log Γ

(p
2

)
(24)

The MMLu and MMLg criteria are clearly similar in form to (24); in fact, using
a Jeffrey’s prior over α yields a codelength that differs from (24) by (1/2) log p+
O(1). This is interesting given that the NML criterion is derived with the aim of
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Table 1. Polynomial order selected by the criteria (expressed as percentages) and
squared error in estimated coefficients

Criterion Sample Size

25 50 75 100 125 150 200 500

MMLu 15.67 1.64 0.09 0.00 0.00 0.00 0.00 0.00
MMLg 20.82 2.03 0.12 0.01 0.00 0.00 0.00 0.00

p̂ < p NML 15.62 0.87 0.03 0.00 0.00 0.00 0.00 0.00
gMDL 8.110 0.35 0.01 0.00 0.00 0.00 0.00 0.00
KICc 32.64 1.50 0.04 0.00 0.00 0.00 0.00 0.00

MMLu 62.27 86.07 91.24 93.10 94.25 94.90 95.78 97.70
MMLg 65.02 88.83 93.12 94.62 95.41 95.91 96.60 98.09

p̂ = p NML 63.38 84.68 89.27 91.26 92.53 93.38 94.53 96.97
gMDL 64.48 82.17 87.19 89.45 91.15 92.15 93.51 96.46
KICc 62.19 89.33 89.94 89.44 89.27 88.94 88.80 88.43

MMLu 22.07 12.30 8.674 6.896 5.755 5.100 4.219 2.301
MMLg 14.16 9.141 6.759 5.374 4.589 4.087 3.397 1.909

p̂ > p NML 21.00 14.46 10.70 8.741 7.474 6.621 5.468 3.026
gMDL 27.41 17.48 12.80 10.549 8.847 7.854 6.487 3.536
KICc 5.170 9.162 10.08 10.56 10.73 11.06 11.20 11.57

MMLu 113.8 10.38 3.932 2.286 1.625 1.242 0.852 0.294
MMLg 50.86 7.144 3.195 2.001 1.470 1.149 0.806 0.286

Error NML 95.38 12.34 4.914 2.871 2.026 1.472 0.957 0.309
gMDL 136.1 15.69 5.955 3.345 2.302 1.637 1.035 0.319
KICc 18.37 5.607 3.614 2.770 2.313 1.890 1.414 0.584

producing minimax regret codes rather than using a formal Bayesian argument.
The MMLu criterion may also be rendered even closer to NML by taking the
tighter bound ξ(yn) when constructing the feasible parameter set Λ. The gMDL
approach is derived from the Bayesian mixture code using the g-prior and is
thus also closely related to MMLg. The main differences lie in the coding of the
hyperparameters, and the fact that the explicit two-part nature of MMLg yields
invariant point estimates for β.

6.1 Polynomial Regression

An example application of the newly developed MML criteria is to the problem
of polynomial order selection. Following [14] and [4], the simple polynomial basis
xi for (i = 0, . . . , q) are used. Datasets of various sample sizes 25 ≤ n ≤ 500
were generated from the true model

y∗ = x3 − 0.5x2 − 5x− 1.5

with the design points uniformly generated in [−3, 3]. The variance τ was chosen
to yield a signal-to-noise ratio of one. For every dataset, each criterion was asked
to select a nested polynomial model up to maximum degree q = 10, and for each
sample size the experiment was repeated 105 times; the model p = 0 was not
considered in this test. As the problem is one of nested model selection, the prior
(22) was chosen to encode γ. The results are given in Table 1, where the error
is the squared �2 norm of the difference between estimated and true coefficients.
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In terms of order selection, MMLg is uniformly superior for all n, although for
large n the performance of all the MML/MDL criteria is similar. For small n,
the MMLg criterion achieves the best error of all the coding based approaches,
followed by MMLu; however, both are slightly inferior to KICc for n = 25 and
n = 50. This is due to the conservative nature of KICc. As the sample size
grows, KICc achieves significantly lower correct order selection scores – this
is not surprising as KICc is not consistent. Interestingly, even though KICc is
asymptotically efficient it still attains a larger error than MMLg at large sample
sizes. Of the two MDL criteria, the gMDL criterion appears more prone to
overfitting than NML and subsequently attains poorer order selection and error
scores for almost all sample sizes.

6.2 Real Datasets

Three real datasets (two from the UCI machine learning repository [15], and one
previously analysed in [16] among others) were used to assess the performance of
the new MML criteria. The datasets were: (1) the Boston housing data (q = 14,
n = 506), (2) the diabetes data (q = 10, n = 442) and (3) the concrete com-
pressive strength dataset (q = 9, n = 1030). Each dataset was randomly divided
into a training and testing sample, and the five criteria were asked to choose
a suitable subset (including the ‘no effects’ model) of the candidate regressors
from the training sample. The testing sample was subsequently used to assess
the predictive performance of the criteria, measured in terms of squared error.
Each test was repeated 103 times. As this was an all-subsets regression problem,
the prior (23) was used for all coding based methods, with q set appropriately
depending on the dataset used. The results are presented in Table 2.

Both MML criteria perform well for small sample sizes (n ≤ 25) and tend
to perform marginally worse than the MDL criteria for larger sample sizes. Of

Table 2. Squared prediction errors for three real datasets estimated by cross-validation

Training Sample Model Selection Criteria

MMLu MMLg NML gMDL KICc

25 71.509 61.922 69.602 74.842 66.111
50 36.635 36.340 36.918 37.075 36.460

Housing 100 29.383 29.624 29.332 29.135 29.053
200 26.162 26.424 26.031 25.907 26.025
400 24.299 24.304 24.315 24.330 24.217

25 4819.2 4445.0 4952.5 5136.6 4457.6
50 3843.8 3851.2 3945.0 3822.6 3684.0

Diabetes 100 3364.2 3385.3 3361.2 3339.3 3293.8
200 3173.3 3199.6 3166.7 3154.2 3085.7
400 3052.7 3052.8 3047.3 3045.2 3031.8

25 227.41 221.20 225.80 225.01 237.02
50 149.25 147.46 148.65 148.52 148.46

Concrete 100 123.65 122.90 123.82 123.92 123.04
200 114.50 114.37 114.56 114.62 114.33
400 111.64 111.59 111.67 111.67 111.62
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the two MML criteria, the MMLg criterion appears slightly superior to MMLu.
The KICc criterion is competitive which is not unexpected given that it is an
efficient criterion and is expected to perform well for prediction. An interesting
point to note is that when MMLg outperforms NML and gMDL, the difference in
performance can be relatively large; in contrast, when the MML criteria obtain
higher prediction errors than the MDL criteria, the difference in prediction is
minimal. The MMLg criterion thus appears to offer better protection against
overfitting when there is little signal available (i.e. small sample size or large
noise) while trading off little performance as the signal strength increases.
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Abstract. The paper introduces a novel dual-model classification method – 
Dual-Model Classification System (DMCS). The DMCS is a personalized or 
transductive system which is created for every new input vector and trained on 
a small number of data. These data are selected from the whole training data set 
and they are closest to the new vector in the input space. In the proposed 
DMCS, two transductive fuzzy inference models are taken as the structure 
functions and trained with different sub-training data sets. In this paper, DMCS 
is illustrated on a case study: a real medical decision support problem of 
estimating the survival of hemodialysis patients. This personalized modeling 
method can also be applied to solve other classification problems.   

Keywords: Dual-Model Systems, transductive fuzzy inference system, 
classification methods, medical decision support problems. 

1   Introduction 

1.1   Global, Local and Personalized Modeling  

Most of learning models and systems in either mathematics or artificial intelligence 
developed and implemented so far are of global (inductive) models. Such models are 
trained with all training data and subsequently applied on new data. The derivation of 
the model in this manner therefore may not optimally account for all of the specific 
information related to a given new vector in the test data. An error is measured to 
estimate how well the new data fits into the model. The inductive learning and 
inference approach is useful when a global model of the problem is needed. 

Local models are a type of model ensemble that partitions the problem space into a 
number of sub-spaces. These sub-spaces can be defined through clustering methods 
such as k-means, fuzzy c-means and hierarchical clustering. This type of model 
assumes that each cluster (sub-space) is a unique problem and a unique model is 
created on this cluster. One or several such model(s) can be used to solve a  
sub-problem with input vectors belong to the cluster. 

Personalized models [13, 14, 15] estimate the value of a potential model (function) 
only in a single point of the space (the new data vector) utilizing additional 
information related to this point. A personalized model is created for every new input 
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vector and this individual model is based on the closest data samples to the new 
samples taken from the training data set. 

Global models capture trends in data that are valid for the whole problem space, 
and local models capture local patterns, valid for clusters of data. Since a personalized 
model is made for a given new input vector only, the entire modeling process can be 
specially optimized for it without considering how the model will perform on the 
problem as a whole. 

1.2   Transductive Fuzzy Inference System  

Transductive fuzzy inference systems estimate the value of a potential model 
(function) only in a single point of the space (the new data vector) utilizing additional 
information related to this point. This approach seems to be more appropriate for 
clinical and medical applications of learning systems, where the focus is not on the 
model, but on the individual patient. Each individual data vector (e.g.: a patient in the 
medical area; a future time moment for predicting a time series; or a target day for 
predicting a stock index) may need an individual, local model that best fits the new 
data, rather than - a global model. In the latter case the new data is matched into a 
model without taking into account any specific information about this data.       

The transductive fuzzy inference system is concerned with the estimation of a 
model in a single point of the space only. For every new input vector that needs to be 
processed for a prognostic or classificatory task, a number of nearest neighbours, 
which form a sub-data set, are derived from the whole training data set.  

1.3   Dual-Model Systems 

Dual-model systems are a type of personalized models that differs from general 
learning systems.  For every new data, it creates two personalized models by use of 
both training data and the new data and then, the results of such two models on 
training data are compared to make a classification for the new data. A number of 
general classifiers can be used in a dual-model systems as structural functions such as 
linear regression, SVM, RBF and fuzzy inference systems. In our research, we use the 
transductive fuzzy inference models as structural functions to create a dual-model 
system for solving a classification problem.   

This paper is organized as follows: Section 2 presents the process flow and 
algorithm of the DMCS method. Section 3 illustrates the DMCS on a case study 
example. Conclusions are drawn in Section. 

2   Process Flow and Algorithm of DMCS  

The process flow diagram of a dual-model classification system is shown as Fig.1 and 
described as follows: 

1) Take one new data vector (without class label) and assign different class labels 
to it, e.g. 0 and 1, to structure two new training samples that have the same input 
vectors and different labels;   
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Fig. 1. Process flow diagram of a general dual-model classification system 

2) Add such two new training samples into the original training data set respectively 
to form two training data sets – training data set 1 and training data set 2; 

3) Learning with two training data set 1 and set 2, respectively to create two 
classification models; 

4) Apply such two models to the original training data respectively to obtain two 
classification results; 

5) Compare the results and the result with a higher accuracy corresponds with the 
correct assigned class label. 

A DMCS system uses the transductive technology for solving classification problems. 
The distance between vectors x and y is measured in DMCS in normalized Euclidean 
distance defined as follows (the values are between 0 and 1): 

 

 
(1) 

where:  x, y ∈ RP. 

Consider the classification problem has two classes and P variables, for each new 
data vector xq, the DMCS learning algorithm performs the following steps:      

1) Normalize the training data set and the new data (the values are between 0 and 1). 
2) Search in the training data set in the whole space to find a cluster Dq that 

includes Nq training samples closest to xq. The value of Nq can be pre-defined 
based on experience, or - optimized through the application of an optimization 
procedure. Here we assume the former approach. 
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3) If all training samples in Dq belong to the same class, the new data belongs to 
this class and the procedure ends. Otherwise,  

4) Assign one class label, e.g. 0, to xq to structure a new training sample and 
then, add this sample into Dq to form a training data set – Tq; 

5) Calculate the distances di, i = 1, 2, …, Nq +1,  between xq and each of data 
samples Tq and calculate the vector weights wi = 1 – (di – min(d)), here, i = 1, 
2, …, Nq +1,  min(d ) is the minimum value in the distance vector d, d = [d1, 
d2, … , dNq+1].  

6) Use a clustering algorithm to cluster and partition the input sub-space that 
consists of Nq+1 training samples. 

7) Create fuzzy rules and set their initial parameter values according to the 
clustering procedure results; for each cluster, the cluster centre is taken as the 
centre of a fuzzy membership function (Gaussian function) and the cluster 
radius is taken as the width. 

8) Apply the steepest descent method (back-propagation) to optimize the 
parameters of the fuzzy rules in the fuzzy inference model following Eq. (2 – 
12). 

9) Calculate the accuracy Ar1 of this fuzzy model on the training data Tq. 
10) Assign another class label, e.g. 1, to xq to structure another training sample, 

add such a sample into Dq to form a training data set – Tq, and repeat step 5 to 
9 to obtain the accuracy Ar2 on the training data.  

11) Compare results Ar1 and Ar2 and the accuracy with a higher value 
corresponds with the correct assigned class label.  

12) End of the procedure.  

The parameter optimization procedure is described as following (for both two fuzzy 
inference models): 

Consider the system having P inputs, one output and M fuzzy rules defined initially 
through a clustering procedure, the l-th rule has the form of: 

Rl : If x1 is Fl1 and x2 is Fl2 and … xP is FlP, then y is Gl . (2) 

Here, Flj are fuzzy sets defined by the following Gaussian type membership function: 

 (3) 

and Gl are of a similar type as Flj and are defined as:  

 (4) 

Using the Modified Centre Average defuzzification procedure the output value of the 
system can be calculated for an input vector xi = [x1, x2, …, xP] as  follows: 
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Suppose the fuzzy model is given a training input-output data pair [xi, ti], the system 
minimizes the following objective function (a weighted error function): 

                                       (wi are defined in step 5)               (6) 

The steepest descent algorithm is used then to obtain the formulas for the optimization 
of the parameters Gl, δl, αlj, mlj and σlj of  the fuzzy model such that the value of E 
from Eq. (6) is minimized: 

         
                        (7) 

 

                                                                                                                                 (8) 
 

                                                                                                                                 (9) 

                          (10)
              

                                                                                                                               (11) 
 

 
here,                               (12) 
 

 

where: Gη , δη , αη , mη and ση are learning rates for updating the parameters Gl, δl, 

αlj, mlj and σlj respectively.  
In the DMSC training algorithm, the following indexes are used: 

• Training data samples:  i = 1, 2, … , , Nq1 or Nq2; 
• Input variables:        j = 1, 2, … , P; 
• Fuzzy rules:         l = 1, 2, …, M; 
• Learning epochs:       k = 1, 2, …. 

3   Case Study Example of Applying the DMCS for a Medical 
Decision Support Problem 

A medical dataset is used here for experimental analysis. Data originate from the 
Dialysis Outcomes and Practice Patterns Study (DOPPS, www.dopps.org) [5]. The 
DOPPS is based upon the prospective collection of observational longitudinal data 
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from a stratified random sample of hemodialysis patients from the United Sates, 8 
European countries (United Kingdom, France, Germany, Italy, Spain, Belgium, 
Netherlands, and Sweden), Japan, Australia and New Zealand. There have been two 
phases of data collection since 1996, and a third phase is currently just beginning. To 
date, 27,880 incident and prevalent patients (approximately 33% and 66% 
respectively) have been enrolled in the study, which represents approximately 75% of 
the world’s hemodialysis patients. In this study, prevalent patients are defined as 
those patients who had received maintenance hemodialysis prior to the study period, 
while incident patients are those who had not previously received maintenance 
hemodialysis. 

The research plan of the DOPPS is to assess the relationship between hemodialysis 
treatment practices and patient outcomes. Detailed practice pattern data, 
demographics, cause of end-stage renal disease, medical and psychosocial history, 
and laboratory data are collected at enrollment and at regular intervals during the 
study period. Patient outcomes studied include mortality, frequency of hospitalisation, 
vascular access, and quality of life. The DOPPS aims to measure how a given practice 
changes patient outcomes, and also determine whether there is any relationship 
amongst these outcomes, for the eventual purpose of improving treatments and 
survival of patients on hemodialysis. 

The dataset for this case study contains 6100 samples from the DOPPS phase 1 in 
the United States, collected from 1996-1999. Each record includes 24 patient and 
treatment related variables (input): demographics (age, sex, race), psychosocial 
characteristics (mobility, summary physical and mental component scores (sMCS, 
sPCS) using the Kidney Disease Quality of Life (KD-QOL®) Instrument), co-morbid 
medical conditions (diabetes, angina, myocardial infarction, congestive heart failure, 
left ventricular hypertrophy, peripheral vascular disease, cerebrovascular disease, 
hypertension, body mass index), laboratory results (serum creatinine, calcium, 
phosphate, albumin, hemoglobin), hemodialysis treatment parameters (Kt/V, 
hemodialysis angioaccess type, hemodialyser flux), and vintage (years on 
hemodialysis at the commencement of the DOPPS). The output is survival at 2.5 
years from study enrollment (yes or no). All experimental results reported here are 
based on 10-cross validation experiments [7]. 

For comparison, several well-known methods of classification are applied to the 
same problem, such as Support Vector Machine (SVM) and transductive SVM [14], 
Evolving Classification Function (ECF) [7], Multi-Layer Perceptron (MLP) [12], 
Radial Basis Function (RBF) [11], and Multiple Linear Regression along with the 
proposed DMSC, and results are given in Table 1. 

The Kappa statistic, K, formally tests for agreement between two methods, raters, 
or observers, when the observations are measured on a categorical scale.  Both 
methods must rate, or classify, the same cases using the same categorical scale [1]. 
The degree of agreement is indicated by K, which can be roughly interpreted as 
follows: K < 0.20, agreement quality poor; 0.20 < K < 0.40, agreement quality fair; 
0.40 < K < 0.60, agreement quality moderate; 0.60 < K < 0.80, agreement quality 
good; K > 0.80, agreement quality very good. Confidence intervals for K were 
constructed using the goodness-of-fit approach of Donner & Eliasziw [2]. There is no 
universally agreed method for comparing K between multiple tests of agreement. In 
this study, K for different classification methods was compared using the permutation 
or Monte Carlo resampling routine of McKenzie [9,10]. 
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Table 1. Experimental Results on the DOPPS Data 

Model 
Kappa(95% Confidence 

Intervals)* 

 

P-value 

Agreement 

(%) 

Specificity 

(%) 

Sensitivity 

(%) 

RBF 
0.1675 

(0.1268 - 0.2026) 
<0.001 60.4 65.3 49.08 

ECF 
0.1862 

(0.1469 - 0.2224) 
<0.001 61.5 63.4 51.76 

MLP 
0.3833 

(0.3472 - 0.4182) 
<0.001 62.8 65.6 58.72 

Multiple 
Linear 

Regression 

0.4000 
(0.3651 - 0.4357) 

 
<0.001 

64.9 67.6 63.21 

SVM 
0.4240 

(0.3748 - 0.4449) 
<0.001 65.3 68.2 62.3 

TSVM 
0.4290 

(0.3792 - 0.4460) 
<0.001 57.2 61.2 52.9 

DMCS 
0.4612 

(0.4498- 0.492) 
Reference 76.5 77.0 76.7 

* Kappa values and confidence intervals ascertained with Stata Intercooled V 8.2 (StataCorp, 
College Station, TX), and P-values with KAPCOM [11]. 

 
Agreement refers to the quality of the information provided by the classification 

device and should be distinguished from the usefulness, or actual practical value, of 
the information. Agreement provides a pure index of accuracy by demonstrating  
the limits of a test's ability to discriminate between alternative states of health over the 
complete spectrum of operating conditions. To date, prognostic systems for the 
prediction of haemodialysis patient survival have published accuracy of 60-70%.  
The experimental results in Table 1 illustrate that the DMCS in this paper provide 
incrementally better results, towards a K of > 0.60 and a level of accuracy ~80%, 
which are generally regarded as thresholds for clinical utility. 

4   Conclusions  

This paper presents a dual-model classification system – DMCS. The DMCS 
performs a better local generalization over new data as it develops individual models 
for each data vector that takes the location of new input vector in the space into 
account. This approach seems to be more appropriate for clinical and medical 
applications, where the focus is not on the model, but on the individual patient. At the 
same time, it is an adaptive model, in the sense that data can be added to the data set 
continuously and immediately, and made available for DMCS models.  This type of 
modeling can be called “personalized”, and it is promising for medical decision 
support systems. The clinical plausibility of the approach and its results are 
satisfactory in this study. As the DMCS creates a unique model for each data sample, 
it usually needs more performing time than inductive models. Further directions for 
the research include: (1) DMCS system parameter optimization such as optimal 
number of nearest neighbors; and (2) applying the DMCS method to other decision 
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support systems, such as: cardio-vascular risk prognosis; biological processes 
modeling and classifications based on gene expression microarray data.  

References 

1. Altman, D.G.: Practical Statistics for Medical Research. Chapman and Hall, London 
(1991) 

2. Donner, A., Eliasziw, M.: A goodness-of-fit approach to inference procedures for the 
kappa statistic: confidence interval construction, significance-testing and sample size 
estimation. Statistics in Medicine 11, 1511–1519 (1992) 

3. Gammerman, A., Vovk, V., Vapnik, V.: Learning by transduction. In: Cooper, G.F., 
Moral, S. (eds.) Proc. of the 14th Conference on Uncertainty in Artificial Intelligence, 
Madison, Wisconsin, pp. 148–155. Morgan Kaufmann, San Francisco (1998) 

4. Golub, C.L., Van Loan, C.: Matrix computations. Jons Hopkins University Press, 
Baltimore 

5. Goodkin, D.A., Mapes, D.L., Held, P.J.: The dialysis outcomes and practice patterns study 
(DOPPS): how can we improve the care of hemodialysis patients? Seminars in 
Dialysis 14, 157–159 (2001) 

6. Hsia, T.C.: System Identification: Least-Squares Methods. D.C. Heath and Company 
(1977) 

7. Kukar, M.: Transductive reliability estimation for medical diagnosis. Artif. Intell. Med. 29, 
81–106 (2003) 

8. Marshall, M.R., Song, Q., Ma, T.M., MacDonell, S., Kasabov, N.: Evolving Connectionist 
System versus Algebraic Formulae for Prediction of Renal Function from Serum 
Creatinine. Kidney International 67, 1944–1954 (2005) 

9. McKenzie, D.P., Mackinnon, A.J., Peladeau, N., Onghena, P., Bruce, P.C., Clarke, D.M., 
Harrigan, S., McGorry, P.D.: Comparing correlated kappas by resampling: is one level of 
agreement significantly different from another? Journal of Psychiatric Research 30, 483–
492 (1996) 

10. McKenzie, D.P., Mackinnon, A.J., Clarke, D.M.: KAPCOM: a program for the 
comparison of kappa coefficients obtained from the same sample of observations. 
Perceptual and Motor Skills, 899–902 (1997) 

11. Neural Network Toolbox User’s Guide. The Math Works Inc., 3 Apple Hill Drive, 
Natrick, Massachusetts, Ver. 4 (2002) 

12. Oja, E.: A simplified neuron model as a principal component analyzer. Journal of 
Mathematical Biology 16, 267–273 (1982) 

13. Song, Q., Kasabov, N.: NFI: A Neuro-Fuzzy Inference Method for Transductive 
Reasoning. IEEE Trans. on Fuzzy Systems 13(6), 799–808 (2005) 

14. Song, Q., Kasabov, N.: TWNFI – Transductive Neuro-Fuzzy Inference System with 
Weighted Data Normalization for Personalized Modelling. Neural Networks 19, 1591–
1596 (2006) 

15. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995) 
16. Xu, L., Oja, E., Suen, C.Y.: Modified Hebbian Learning for Curve and Surface Fitting. 

Neural Networks 5, 441–457 (1992) 



A Graph Distance Based Structural Clustering
Approach for Networks

Xin Su and Chunping Li

Tsinghua National Laboratory for Information Science and Technology
School of Software, Tsinghua University, China

sux07@mails.tsinghua.edu.cn,
cli@tsinghua.edu.cn

Abstract. In the era of information explosion, structured data emerge
on a large scale. As a description of structured data, network has drawn
attention of researchers in many subjects. Network clustering, as an es-
sential part of this study area, focuses on detecting hidden sub-group
using structural features of networks. Much previous research covers mea-
suring network structure and discovering clusters. In this paper, a novel
structural metric “Graph Distance” and an effective clustering algorithm
GRACE are proposed. The graph distance integrates local density of
clusters with global structural properties to reflect the actual network
structure. The algorithm GRACE generalizes hierarchical and locality
clustering methods and outperforms some existing methods. An empir-
ical evaluation demonstrates the performance of our approach on both
synthetic data and real world networks.

Keywords: Graph Distance, Structural Clustering, Networks.

1 Introduction

Network is one of the best representations for many complex systems in real
world, such as the Internet, social community, and biological systems, etc. It is
helpful for people to analyze mass data, model systems and discover underlying
features. Many structural properties of real world networks have been revealed,
e.g. small world phenomena [17], power-law degree [1] and shrinking diameter
[12], etc.

Network clustering is the approach to detect densely connected groups of ver-
tices in a network, with few connections between groups. This issue has drawn a
considerable amount of attention in social network [16], physics [14], and bioin-
formatics [8], etc. Many previous methods [3,7,11,18] reveal that the general
process of network clustering has two steps: finding a metric to distinguish the
vertices or edges within clusters from those between clusters, and adopting some
partitioning or clustering algorithms to discover the clusters.

In this paper we propose a novel structural metric called graph distance. The
graph distance combines structural density and edge betweenness. It fixes the
length of edges and makes the distance of any pairs of nodes measurable. Then we

A. Nicholson and X. Li (Eds.): AI 2009, LNAI 5866, pp. 330–339, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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propose an algorithm GRACE (GRaph distAnce ClustEring) which guarantees
the quality of clustering from a global perspective of network structures. The
algorithm can be seen as a generalization of different previous network clustering
approaches, such as the partitioning-based and locality-based clustering.

This paper is organized as follows. We review the related works for network
clustering methods in Section 2. Then the concept of graph distance is proposed
in Section 3. In Section 4, we propose the algorithm GRACE and analyze its
computational complexity and generality properties. In Section 5, the experi-
mental results and evaluation of our method are given. Finally, we have the
concluding remarks in Section 6.

2 Related Works

The problem of network clustering has been studied for some decades. There is
a rich literature about it. Here we focus on undirected and unweighted graph
and review some details of recent works.

M. Girvan and M.E.J. Newman [7] introduce the concept of edge betweenness
to describe how “between” clusters the edges are. The edge betweenness of an
edge, which is derived from Freeman’s vertex betweenness [6], is defined as the
number of shortest paths between pairs of vertices that run along it. So the
inter-cluster edges have higher edge betweenness than the intra-cluster edges.
Then the algorithm removes the edges with the highest betweenness to identify
clusters. This method defines an important structural metric to discover the
edges between clusters.

Recently, W. Hwang et al. [11] propose a unique structural property called
bridging centrality. Comparing to edge betweenness, the bridging centrality com-
bines local graph properties called bridging coefficient to edge betweenness. The
bridging coefficient is derived from the concept of clustering coefficient [17]
which illustrates the local inter-connectivity of a vertex’s neighborhood. The
experiment shows the bridging centrality is an effective description for network
structure.

Both of the methods stated above adopt a cut-based algorithm, which can also
be seen as a hierarchical clustering algorithm. They remove the edges with the
highest edge betweenness or bridging centrality till no edge remains or isolated
modules are identified.

The SCAN [18] method proposed by X. Xu et al. applies the DBSCAN [4]
method in text clustering to networks. It finds structure-connected clusters in
a two-step approach. First, choose an arbitrary vertex from graph satisfying
the core condition as a seed. Second, retrieve all the vertices that are structure
reachable from the seed to obtain the cluster grown from the seed. The significant
advantage of SCAN is identifying hubs and outliers which play different roles
in networks, while the structural similarity based on the number of common
neighbors is incompetent to represent the complex structure of networks.
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3 Graph Distance

An undirected unweighted graph can be denoted as G = (V,E), V is a set of
nodes and E is a set of edges, E ⊆ V ×V , an edge e = (i, j) connects two nodes
i and j, i, j ∈ V , e ∈ E. The neighbors N (v) of node v are defined to be the set
of nodes that directly connect with node v. The degree deg (v) of node v is the
number of the neighbors of node v. A path P is defined as a sequence of nodes
(v1, v2, . . . , vn)in which there is an edge from each node to its successor.

Definition 1. Edge Betweenness

The edge betweenness of an edge is defined as the number of shortest paths
between pairs of vertices that run along it:

Φ (e) =
∑

s	=t∈V

σst (e)
σst

. (1)

where σst is the number of shortest paths between node s and t, and σst (e) is
the number of shortest paths passing through an edge e out of σst

Definition 2. Normalized Edge Betweenness

The normalized edge betweenness of an edge is the edge betweenness divided by
the sum of the edge betweenness from all edges of the graph:

ΦN (e) =

∑
s	=t∈V

σst(e)
σst∑

e∈E Φ (e)
. (2)

If a network contains clusters that are loosely connected by a few intergroup
edges, then all the shortest paths between different clusters must go along one
of these edges. Thus, the edges connecting clusters have high edge betweenness.

Definition 3. Structural Density

The structural density of an edge is the ratio of the number of edges between
the nodes in the direct neighborhood to the number of edges that could possibly
exist among them. The direct neighborhood of an edge is defined as the union
of the neighbors of both ends of the edge. We have:

Ce(v,w) =
2|
⋃

i,j∈(N(v)∪N(w)) e (i, j) |
|N (v) ∪N (w) | (|N (v) ∪N (w) | − 1)

. (3)

If there are many edges in the subgraph constructed by the neighbors of the two
ends of edge e (v, w), the value of the structural density is high. Further, if the
neighbors construct a complete graph, the structural density equals to 1.
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Definition 4. Local Structural Density

The local structural density of an edge is defined as the product of the structural
density and the number of common neighbors of the two ends of the edge.

Cw
e(v,w) =

2|
⋃

i,j∈(N(v)∪N(w)) e (i, j) |
|N (v) ∪N (w) | (|N (v) ∪N (w) | − 1)

(|N (v) ∪N (w) |+ 1) . (4)

To distinguish the edges in a local community with many common neighbors
from the bridges that connects many nodes with few common neighbors, we use
the number of common neighbors to weight the structural density.

Definition 5. Graph Distance of an Edge

The graph distance of an edge is defined as the normalized edge betweenness
divided by the local structural density of the edge:

Dis (e) =
ΦN (e)
Cw

e(v,w)
. (5)

Definition 6. Graph Distance of Arbitrary Pairs of Vertices

To any pairs of vertices in a network, the graph distance is the sum of the graph
distance of every edge that locates along the shortest path between the pairs
of vertices. Suppose that (i, j) is an arbitrary pair of vertices, the shortest path
from i to j is denoted as e1, e2, . . . , ek, . . . , en, thus:

Dis (i, j) =
n∑

k=1

Dis (ek) . (6)

The graph distance of all pairs of vertices in a network can be computed by
Floyd-Warshall algorithm [5] in the time of O

(
|V |3

)
.

4 Algorithm GRACE

4.1 Notions

Definition 7. The influence function of a vertex v ∈ V is defined as:

fv
B (w) = fB (w, v) . (7)

where fB (v, w) can be an arbitrary function of graph distance.

For example:

1. Square Wave Influence Function

fSquare (w, v) =
{

0 if Dis (w, v) > σ
1 otherwise . (8)

2. Gaussian Influence Function

fGaussian (w, v) = e−
Dis(w,v)2

2σ2 . (9)
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Definition 8. The density function is defined as the sum of the influence func-
tions of all vertices in a network:

fV
B (w) =

∑
v∈V

fv
B (w) . (10)

If the Gaussian influence function is chosen, the density function is:

fV
Gaussian (w) =

∑
v∈V

e−
Dis(w,v)2

2σ2 . (11)

Definition 9. A vertex v∗ ∈ V is called a density attractor for a given influence
function, iff v∗ is a local maximum of the density function fV

B . A vertex v ∈ V is
density attracted to a density attractor v∗, iff there is a path v0, v1, . . . , vi, . . . , vn,
where v = v0, v

∗ = vn and vi has the largest value of density function in the
neighborhood of vi−1 where Dis (vi, vi−1) < ε.

Definition 10. A center-defined cluster (wrt to σ, ξ) for a density attractor v∗

is a subset C ⊆ V , with v ∈ C being density attracted by v∗ and fV
B (v∗) ≥ ξ.

Vertices are called outliers if they are density attracted by a local maximum v∗0
with fV

B (v∗0) < ξ.

Definition 11. An arbitrary shape cluster (wrt to σ, ξ) for the set of density
attractors D is a subset C ⊆ V , where
1. ∀v ∈ C, ∃v∗ ∈ D : fV

B (v∗) ≥ ξ, v is density attracted to v∗ and
2. ∀v∗1 , v∗2 ∈ D : ∃ a path P from v∗1 to v∗2 with ∀v ∈ P : fV

B (v) ≥ ξ.

The basic idea of our algorithm, inspired by [9], is to use a function to describe
the impact of each vertex on the rest of the network. The overall structural
density of the network can be calculated as the sum of the influence function
of all vertices of the network. Clusters can then be determined by identifying
density-attractors which are local maxima of the overall density function.

4.2 Algorithm Description

Our algorithm finds the density-attractor of every unclassified vertex in the
direction of its neighbor with the greatest differences of density function and
put it into the cluster that its density-attractor belongs to.

As Fig. 1 shown, we search for the local maximum of density function for the
rear vertex of a queue and push it into the queue if found. Once a local maximum
satisfies the condition of density-attractors, the queue stores the “hill-climbing
path” in which the vertices should be in the same cluster. Thus, arbitrary shape
clusters can be found. The vertices attracted by no density-attractors can be
further classified as hubs or outliers.

Given a graph with n vertices and m edges, edge betweenness is computed
in O

(
nm+ n2 log n

)
[2]. The average computational time for local structural

density is O
(
n2 logn

)
because the average degree of vertices is approximately



A Graph Distance Based Structural Clustering Approach for Networks 335

Fig. 1. The Algorithm GRACE

equal to logn in real world networks. Floyd-Warshall algorithm takes O(n3) [5].
Finding clusters takes O(deg(v1)+deg(v2)+. . . , deg(vn)), which equals to O(m).
So the total time cost is bounded by O(n3).

Our approach can be seen as the generalization of both hierarchical clustering
and locality clustering methods. First, we discuss the locality-based clustering
algorithm SCAN. Derived from DBSCAN, SCAN has the parameters ε and μ
replace EPS and MinPts respectively. If we use a square wave influence function
with σ = ε and an outlier bound ξ = μ, the clustering results are the same
as SCAN, because in the case of square wave influence function, the vertex
v : fV

B (v) > ξ satisfies the core vertex condition and each non-core vertex v
which is directly density-reachable from a core v∗ is attracted by the density
attractor of v∗.

In the case of hierarchical clustering algorithm such as edge betweenness cut
and bridge cut algorithm, we adopt Gaussian influence function and use different
values for σ to generate a hierarchy of clusters. If we start with a very large value
for σ, all vertices in the network are in the same cluster. By decreasing the σ,
the cluster starts to divide by different density attractors and the dividing line is
through the edges with top largest graph distance. It is equivalent to removing
edges from network.
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5 Experiments and Evaluations

Firstly, we use a synthetic network to illustrate the effectiveness of graph dis-
tance. Figure 2 illustrates the comparison between the network with vertices and
edges randomly distributed and the network with fixed length of edges which are
computed by graph distance. We can easily identify the clusters of the network
from the latter one.

(a) (b)

Fig. 2. (a) A Synthetic Network with 150 Nodes and 169 Edges, (b) The Network
Redrawn with Graph Distance

In Fig. 3, we can see that only a few edges have high graph distance above
0.15 and the distances of most edges are under the level of 0.05. The eight edges
between clusters in Fig. 2 (b) are the very edges with top 8 graph distance values
of Fig. 3. Moreover, the edges within clusters always have low distance value,
which makes the clusters look compact.

Fig. 3. A Statistical Chart of the Graph Distance of all Edges in the Network

To evaluate the effectiveness of our algorithm, we use two real world networks
whose clusters are already known. Adjusted Rand Index (ARI) [10] is adopted
as a measure of the quality of clustering to compare our result to the reality.
The definition of ARI is:∑

i,j
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where ni,j is the number of vertices in both cluster xi and yj , ni. and n.j is the
number of vertices in cluster xi and yj respectively.

Political books. This network about books of US politics is compiled by Valdis
Kreb [15]. The vertices represent books sold by Amazon.com. The edges represent
frequent co-purchasing of books by the same buyers. The vertices have been
marked as “liberal”, “neutral”, or “conservative” by Mark Newman [13] based on
the descriptions and reviews of the books. The network is illustrated in Fig. 4 (a).
The “conservative”, “neutral” and “liberal” books are labeled as blue, gray and
red respectively.

(a) (b)

Fig. 4. (a) The Network of Books about US Politics, (b) The Result of GRACE on
the Network of Political Books

The result of GRACE is shown in Fig. 4 (b). Square, circle and triangle repre-
sent “conservative”, “neutral” and “liberal” books that our algorithm identifies
respectively. We set parameter σ = 10−2.5, ξ = 35 and ARI of the result is 0.678.
GRACE finds almost all correct members for “conservative” and “liberal” books,
while for “neutral” books, GRACE identifies some of them as hubs because of
the inter-connection with two major clusters.

US college football. The network in Fig. 5 (a) is a representation of the
schedule of Division I games for the 2000 season. The vertices represent football
teams and the edges represent regular-season games between the two teams
they connect. This dataset is compiled by M. Girvan and M. Newman [13].
In the network, the teams are divided into conferences containing around 5-13
teams each. There are totally 12 clusters in this network and we label them with
different colors.

Applying GRACE on this network, we surprisingly find that 7 clusters out of
12 completely correspond to the real network. Furthermore, it identifies a few
independent teams that do not belong to any conference as hubs because they
always play games with teams of different conferences. The parameter setting in
this case is that σ = 10−3, ξ = 8 and ARI of our result is 0.816. The clustering
result is labeled with different shapes in Fig. 5 (b).

Amazon.com
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(a) (b)

Fig. 5. (a) The Network of US College Football, (b) The Result of GRACE on the
Network of US College Football

Table 1. ARI Comparative Analysis

GD+GRACE GD+Cut EB+Cut GD+DB SCAN
Political Books 0.678 0.660 0.677 0.660 0.465
College Football 0.816 0.816 0.749 0.816 0.667

A comparative analysis is presented in Table 1. We adopt “cut” method and
DBSCAN method with graph distance (GD+Cut, GD+DB) to compare our
structural metric with that of edge betweenness cut (EB+Cut) and SCAN. The
results show that graph distance generally outperforms edge betweenness and
structural similarity proposed in SCAN [18]. Then we compare GRACE with
GD+Cut and GD+DB to evaluate our algorithm. The results demonstrate that
GRACE performs better than the other methods, espacially in the case of college
football, the clustering results are exactly the same as GD+Cut and GD+DB,
which validate the generality of our algorithm. All the experiments are conducted
in the same environment of our own.

6 Concluding Remarks

Network clustering is a promising topic in mining structured data. This pa-
per proposes a structural metric “Graph Distance” and a clustering algorithm
GRACE. The graph distance combines two structural metrics for networks and
improves the quality of clustering. The GRACE algorithm builds up the global
influence function of the entire network and finds clusters effectively. Experi-
mental results show that GRACE performs better than edge betweenness and
SCAN in some scenarios. Depending on the parameter settings, the algorithm
provides similar results as locality-based and hierarchical clustering algorithm.
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Abstract. Multiobjective reinforcement learning algorithms extend reinforcement 
learning techniques to problems with multiple conflicting objectives. This paper 
discusses the advantages gained from applying stochastic policies to multiobjective 
tasks and examines a particular form of stochastic policy known as a mixture 
policy. Two methods are proposed for deriving mixture policies for episodic 
multiobjective tasks from deterministic base policies found via scalarised 
reinforcement learning. It is shown that these approaches are an efficient means of 
identifying solutions which offer a superior match to the user’s preferences than 
can be achieved by methods based strictly on deterministic policies. 

Keywords: multiobjective, reinforcement learning, scalarisation, Pareto fronts. 

1   Introduction 

The vast majority of reinforcement learning (RL) algorithms deal with tasks involving 
maximising performance on a single objective, as encoded in the scalar reward 
received from the environment. Whilst many problems can naturally be described by 
this model, over recent years there has been growing recognition within the 
optimisation community that many real-world problems require the optimisation of 
multiple, often conflicting, objectives [1]. This observation is equally true for RL 
tasks – for example, [2] applied reinforcement learning to simultaneously manage the 
power consumption and performance of Web application servers. Recently there has 
been some interest in extending existing single-objective RL methods to handle 
multiobjective tasks. However one issue which has been largely overlooked in the 
extension of these approaches is the potential benefits to be gained in the multi-
objective domain by moving from deterministic to probabilistic policies.  

Section 2 of this paper briefly reviews existing approaches to multiobjective 
reinforcement learning (MORL). Section 3 discusses the relationship between 
multiobjective tasks and probabilistic policies, presenting an example to motivate 
further investigation.  Section 4 explores one specific type of probabilistic policy (the 
mixture policy), and Section 5 investigates means by which mixture policies can be 
generated from deterministic policies. Finally Section 6 offers suggestions for future 
directions for research in learning mixture policies for multiobjective tasks. 
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2   Multiobjective Reinforcement Learning 

Before reviewing existing approaches to MORL, it is instructive to examine some 
fundamental concepts underlying the analysis of multiobjective tasks. Inherently the 
task in any multiobjective situation is to identify solution(s) which represent a ‘good’ 
compromise amongst the objectives. This is often defined via Pareto dominance 
which allows comparison of a pair of solutions, as shown in Fig 11. A solution 
dominates another if it is superior on at least one objective, and at least equal on all 
other objectives. Two solutions are incomparable if each is superior to the other on at 
least one objective. Any dominated solution is of little value, as clearly the 
dominating solution is preferable. Therefore the best solutions in a set can be 
extracted by retaining only those which either dominate or are incomparable with 
every other member of the set. If this process is applied to the set of all solutions, the 
resulting set of non-dominated solutions is referred to as the Pareto optimal front (or 
the Pareto front), and represents the globally optimal set of compromise solutions (see 
Fig 2). Of course establishing the true front for any problem of significant size is 
generally impractical, and so the goal of many multiobjective problem-solvers is to 
produce an approximation to this front. A good approximate front should contain 
solutions which are accurate (close to the actual front) and well distributed along the 
front, with a similar extent to that of the actual front. 

 

 

objective 1 

A 

C 

B 

ob
je

ct
iv

e 
2 

 
Fig. 1. Solutions A and B dominate solution 
C; solutions A and B are incomparable to 
each other 
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Fig. 2. The black points indicate solutions 
which form the Pareto front; all grey solutions 
are dominated by at least one member of the 
Pareto front 

There are several advantages to searching for a set of compromise solutions rather 
than attempting to find a single ‘optimal’ solution. Methods which aim for a single 
solution require a priori decisions from the user about the desired nature of that 
solution (e.g. specifying weights or thresholds for objectives). This requires domain 
knowledge on the part of the user, and minor variations in these preferences may 
                                                           
1 In multiobjective optimisation, the task is generally to minimise each objective, so a lower 

value for an objective is superior to a higher value. In contrast in RL the task is to maximise 
the reward received, and so the notion of superiority is reversed. Given the expected audience 
for this paper, we chose to frame our discussion in terms of maximisation. 
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result in significant variations in the solution achieved, which can easily lead to the 
acceptance of an inferior solution. For example, a slightly higher threshold for one 
objective may prevent discovery of a solution which provides a significant 
improvement on all other objectives. Systems which produce sets of solutions allow a 
posteriori decisions about the solution to be accepted, which are easier and better 
informed as they are based on knowledge of the trade-offs available as encapsulated 
by the front. Also the presentation of the front to the user may provide better insight 
into the relationships between the objectives. The primary disadvantage of generating 
multiple solutions rather than a single solution is the increased computational cost. In 
addition in the case of on-line learning in a real environment, the losses incurred 
during the extended learning period may prohibit searching for the complete Pareto 
set of policies. 

The most straightforward and most common means of extending existing RL 
algorithms to multiobjective problems is to convert the problems into single-objective 
tasks. The key difference between single-objective and multiobjective RL is that in 
the former the reward is scalar, whereas in the latter it is a vector, with an element for 
each objective. Therefore a multiobjective task can be reduced to a single objective 
via the process of scalarisation, where a function is applied to the reward vector to 
produce a single, scalar reward. Most commonly this is a linear weighted sum of the 
individual objective rewards (e.g. [3, 4]). The choice of weights allows the user some 
control over the nature of the policy found by the system, by placing greater or lesser 
emphasis on each objective. Less frequently a more complex, non-linear function 
tuned to the problem domain may be used [2]. The primary advantage of linear 
scalarisation lies in its simplicity – it can readily be integrated into existing RL 
algorithms with very little modification. However linear scalarisation has a 
fundamental limitation, in that it can not find solutions which lie in concave or linear 
regions of the Pareto front. [5] demonstrated for a number of benchmark problems 
that the Pareto fronts contain a substantial number of solutions which can not be 
found via linear scalarisation.   

A small number of alternatives to scalarisation have been investigated. [6] used 
lexicographic ordering and thresholding of objectives for problems with constraints 
for certain objectives (e.g. a robot maintaining an energy level greater than zero whilst 
accomplishing some task). [7] and [8] describe algorithms where the goal of the agent 
is to achieve long-term average rewards which lie in an externally defined ‘target’ 
region in objective space. These algorithms produce non-stationary policies in which 
the actions taken by the agent at any point in time are determined both by the current 
state and by the position of the current average reward vector relative to the target set. 
[9] developed a policy-gradient MORL algorithm. The algorithm starts from a policy 
derived by applying RL independently to each objective. This policy is then improved 
by following gradients in the policy space which are non-negative with regards to all 
objectives. An approximate Pareto front is constructed by performing repeated 
searches with different weightings of the gradient directions.  

3   Multiobjective Tasks and Stochastic Policies 

With the exception of [9], the majority of MORL work has so far focused on finding 
deterministic policies (policies where the same action is always selected in any given 
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state, other than when an exploratory action is chosen during learning). This is not 
surprising as most of these techniques are grounded in single-objective RL 
algorithms, and in the single-objective case there is little reason to consider stochastic 
policies as “for any MDP, there exists a stationary, deterministic optimal policy” [9, 
p288]. However this property of stationary, deterministic policies does not hold true 
when we consider problems with more than one objective, as illustrated by the simple 
environment in Fig 3. This environment consists of a single state, with two actions.  
Both actions lead back to the same state, but their associated rewards correspond to 
different objectives. Clearly there are only two deterministic policies available: 
always choosing action a1 which will maximise the reward on objective 1 but 
minimise the reward for objective 2, or always choosing action a2 which will 
maximise the reward on objective 2 but minimise the reward for objective 1. In any 
task in which we are considering multiple objectives, inherently we are seeking a 
solution which is trade-off between these objectives, but in this case neither of these 
deterministic policies offers any degree of compromise between the two objectives. In 
contrast, consider a stochastic policy which selects between actions a1 and a2 with 
probabilities p1 and (1-p1) respectively. Clearly the average reward received by this 
policy will be (p1, 1-p1). By varying the probability with which each action is 
selected, a range of policies which offer different compromises between the two 
objectives can be achieved. For more complex problems usually deterministic policies 
will exist which do in fact offer a compromise between the different objectives. 
However these policies will represent discrete, possibly widely-spaced, points in 
objective-space whereas stochastic policies offer a continuous range of trade-offs 
between the different objectives. Therefore it likely that a policy which better matches 
the user’s preferences will be found if stochastic policies are considered. 

 
 

a2 
(0,1)

a1 
(1,0) 

S1 

 

Fig. 3. A single-state environment with 2 actions. Performing action a1 receives a vector reward 
of (1,0); performing action a2 receives a vector reward of (0,1). 

4   Mixture Policies for Multiobjective Tasks 

Having established the potential benefits of stochastic policies for multiobjective 
tasks, we need to consider how such policies may be found. As noted earlier, many 
single-objective RL methods (such as the widely used temporal difference approaches 
such as Q-learning) do not support stochastic policies. Methods such as policy 
gradient learning and learning automata can learn the probabilities with which each 
action should be selected in each state of a stochastic policy, and [9] has pioneered the 
use of policy gradient methods in finding stochastic multiobjective policies. 

Rather than considering more sophisticated approaches, this paper will examine 
means by which simple methods such as Q-learning and scalarisation can be used to 
find stochastic policies for episodic multiobjective tasks. [9, p59] describes a special 
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form of stochastic policy known as a mixture policy2, which is derived from two or 
more deterministic policies (which we will refer to as base policies). At the start of 
each episode the mixture policy stochastically selects one of its base policies, which is 
then followed for the remainder of that episode. Over a large number of episodes, the 
vector return achieved by this mixture policy will be the mean of that achieved by its 
base policies, weighted by the probability with which each base policy is selected3. In 
[9], the only base policies considered are those maximising each individual objective, 
and the mixture policies generated from these base policies are used as the starting 
point for policy gradient search. Here we consider a more general application of 
mixture policies in which any set of base policies may be used, and in which the 
mixture policies themselves are the final outcome of the system. 

Consider the generation of mixture policies from a set of deterministic policies.  
Fig 4 shows the complete set of Pareto optimal deterministic policies for the Deep Sea 
Treasure task [5]. The line joining policies A and B represents the mixture policies 
which are derived from that pair of base policies by varying the probability with 
which the policies are selected. It can be seen that any deterministic policy lying in a 
concave region of the Pareto front (e.g. policy C) will be dominated by one or more 
mixture policies derived from policies outside the concave region.  
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Fig. 4. The Deep Sea Treasure task’s objective-space. Points are Pareto-optimal deterministic 
policies. The line AB represents mixture policies derived from those base policies. 

The Deep Sea Treasure task is unusual in that only the extremal policies are not in 
a concave portion of the front. Fig 5 illustrates a more generally representative front – 
the line segments indicate possible mixture policies which can be generated from this 
front. It can be seen that as the mixture policies are formed via convex combinations4 

                                                           
2 Note that mixture policies are not fully stochastic policies in which actions are chosen 

stochastically at each state – rather they are a stochastic combination of deterministic 
policies. 

3 It is important to note that this is only true because the choice between policies A and B is 
made at the start of each episode. Switching between policies at other time-steps would likely 
result in erratic and sub-optimal behaviour. 

4 A convex combination is a linear combination of vectors, in which the weights sum to 1. 



 Constructing Stochastic Mixture Policies 345 

of the base policies, the non-dominated mixture policies constructed by this process 
will form the convex hull of the original base-policy points in objective space [11]. 
All points (deterministic policies) from the original front which are not on this hull 
will be dominated once the mixture policies are considered. Similarly mixture policies 
derived from policies which are not neighbouring members of the convex hull will 
also be dominated by at least one other mixture policy. 
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Fig. 5. A hypothetical Pareto front. Points indicate Pareto-optimal deterministic policies (black 
points indicate policies on the convex hull of the front). Lines indicate mixture policies 
generated from pairs of deterministic base policies (some combinations of base policies have 
been omitted for reasons of clarity). 

In summary mixture policies provide two potential benefits for episodic tasks when 
compared to deterministic policies. First they provide a continuous range of trade-offs 
between the objectives as opposed to the discrete set of trade-offs embodied by the 
deterministic policies. Hence they are likely to provide a more precise match to the 
preferences of the decision maker. Second for problems where the Pareto set of 
deterministic policies contains concave regions (which was shown to be the case for 
all benchmark problems examined by [5]) mixture policies exist which dominate (in 
some cases by a significant margin) some otherwise non-dominated deterministic 
policies.  

5   Selecting and Constructing Mixture Policies 

In light of the benefits outlined in Section 4, we propose the following general 
approach to finding suitable policies for episodic multiobjective tasks: 

• generate a set of Pareto-optimal deterministic policies 
• use these policies as base policies to derive a set of mixture policies 
• select a mixture policy which is appropriate to the preferences of the decision-

maker who is using this MORL system 

As evident in Fig 5, a mixture policy will be non-dominated if and only if it is formed 
from base policies which are neighbouring points on the convex hull of the Pareto 
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front. Therefore the set of base policies need consist only of Pareto-optimal policies 
which are not in concave regions of the Pareto front – any computation expended in 
finding policies in concavities is wasted as they will not be used by any non-
dominated mixture policy. Interestingly in this context the inability of scalarised 
MORL to discover policies other than those on the convex hull (see Section 2) may in 
fact make it more efficient than other methods which can find such policies. A simple 
approach to finding the set of base policies is to carry out repeated runs of a scalarised 
RL algorithm, varying the scalarising weights between runs. A more efficient 
approach is Convex Hull Value Iteration [12] which finds in parallel all deterministic 
policies lying on the convex hull without any need for an explicit search through the 
scalarising weight space.  

Once the base policies have been found, their neighbourhood relationships can be 
established through a range of algorithms (see [13] for a summary). This provides the 
information required to derive the complete set of Pareto-optimal mixture polices. 
This set is then displayed to the system’s user so they can select the single mixture 
policy which best fits their preferences. In the following two sub-sections we will 
describe two approaches to this process of selecting a mixture policy, depending on 
the number of objectives involved in the task. 

5.1   Convex Hull Visualisation and Barycentric Coefficients 

For problems with a low dimensionality (two or three objectives) the set of mixture 
policies can be directly displayed to the user via 2-dimensional, 3-dimensional or 
stereo graphics. This provides the user with a clear depiction of the relationships 
between the objectives, and allows them to make an informed choice of the best 
available policy for their needs. The choice of policy can be indicated by selecting a 
point anywhere on the surface of the hull. Once the user selects a point in objective-
space it is simply a matter of determining the probabilistic weightings of base policies 
required to construct a mixture policy to achieve that combination of rewards. This 
can be done by calculating the barycentric coordinates of the target point, and using 
these as the probability of selection for each base policy. Barycentric coordinates are 
coordinates defined in terms of the vertices of a simplex (in our case, the points in 
objective space corresponding to the base policies, which we will label as 
V1,V2,..,Vn). If V0 is the target point (the objective-space position of our desired 
mixture policy) and Vi,j denotes the value of a point Vi for objective j, then the 
barycentric coordinates are values b1..bn such that the following equality holds for all 
j=1,...,n: 

∑
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If V0 lies within the simplex defined by V1,...,Vn (which is always true in our case due 
to the manner in which V0 is specified by the user) then the following property holds, 
and therefore the barycentric coefficient bi can be directly interpreted as the 
probability with which base policy i will be selected at the start of each episode: 
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For a problem with two objectives, each mixture policy lies on the line-segment 
bounded by the base policy points V1 and V2, as shown in Fig 6. In this case the 
barycentric coefficients can easily be calculated from the ratios of the line-segments 
V1V0 and V2V0: 
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For a problem with three objectives, V0 will lie within the bounds of a planar triangle 
defined by V1, V2 and V3. In this case the value of the coefficient for each vertex can 
be calculated based on the percentage of the area of this triangle which is occupied by 
the sub-triangle formed by V0 and the other two vertices (see Fig 7). The area 
calculations can be efficiently implemented using vector cross-products and length 
operations as follows: 
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This barycentric approach to constructing mixture policies can be extended to higher 
dimensions. However as the number of objectives rises beyond three, direct 
visualisation of the front becomes problematic5 and the computational cost of 
establishing hull geometry and calculating the barycentric coefficients increases. 
Therefore Section 5.2 discusses an interactive approach which does not require 
visualisation of the hull. 

 
 

V2 

V1 

V0 

 

Fig. 6. For the two objective case, each 
mixture policy V0 lies on the line-
segment formed by the base policies V1 
and V2 
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Fig. 7. For the three objective case, each mixture 
policy V0 lies in the triangle formed by the base 
policies V1, V2 and V3, and the barycentric coefficients 
can be calculated from the relative areas of the sub-
triangles A1, A2 and A3 

                                                           
5 Although visualisation of high-dimensional Pareto fronts has been explored in the multiobjective 

optimisation community – see for example [14]. 
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5.2   Interactive Construction of a Mixture Policy 

Where direct selection of mixture policies from a visualisation of the hull is not 
practical (i.e. where the number of objectives exceeds three), an alternative approach 
is to allow the user to directly select the base policies and set their probabilities so as 
to form a suitable mixture policy. This can be achieved via the following process: 

1. A complete list of possible base policies is presented to the user textually, 
augmented by lower-dimensional visualisations. 

2. The user selects the base policy which most closely matches their preferences. 
3. If the number of selected policies is less than the number of objectives, remove 

from the list all policies which are not neighbours on the hull of all selected 
policies and return to Step 2. 

4. An initial mixture policy is constructed from an equal weighting of the 
selected base policies. The user manipulates the base policy probabilities using 
a linked set of sliders (as one probability is adjusted, the other sliders are 
adjusted in the opposite direction) whilst the reward vector for the current 
mixture policy is displayed. The user can explore the trade-offs available based 
on the currently selected base policies, before settling on a mixture policy, or 
returning to Step 1 to select a new set of base policies. 

6   Conclusions and Future Work 

This paper has demonstrated the utility of stochastic policies for multiobjective tasks. 
Stochastic policies offer a continuous range of solutions, as opposed to the discrete set 
of solutions offered by deterministic policies which may contain large gaps between 
neighbouring solutions. Hence it is more likely that a policy closely matching the 
user’s preferences will be discovered if stochastic policies are allowed. In addition it 
has been shown that for some problems stochastic policies can be superior (in the 
sense of Pareto dominance) to the best deterministic policies. We have shown that for 
episodic tasks, mixture policies offer an inexpensive means of gaining the benefits 
afforded by stochasticity. The base deterministic policies required to construct 
mixture policies can be found efficiently using Convex Hull Value Iteration, and 
mixture policies can then be derived with relatively little computational cost and no 
further interaction with the environment. Two approaches for constructing a suitable 
mixture policy have been proposed for problems with different numbers of objectives. 

It is important to note one fundamental limitation of the approaches described in 
this paper – mixture policies can only be applied in this manner to tasks which are 
known to be episodic. The start of a new episode is used as a trigger for stochastically 
selecting a base policy to follow – switching between base policies at any other time 
would likely lead to erratic, sub-optimal performance by the agent, such as oscillating 
between two locations. The benefits of stochastic policies still apply to non-episodic 
tasks however, and so an important direction for future research is to examine 
whether suitable switching states can be identified for mixture policies for such tasks. 
A second possible limitation is that for some tasks consistency of behaviour may itself 
be a desirable feature, and therefore stochastic policies may be unacceptable. To 
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handle these situations there is still a need for MORL systems which can identify all 
Pareto-optimal deterministic policies, not just those on the convex hull. 
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Abstract. In Minimum Message Length (MML) clustering (unsuper-
vised classification, mixture modelling) the aim is to infer a set of classes
that best explains the observed data items. There are cases where parts
of the observed data do not need to be explained by the inferred classes
but can be used to improve the inference and resulting predictions. Our
main contribution is to provide a simple and flexible way of using such
context data in MML clustering. This is done by replacing the traditional
mixing proportion vector with a new context matrix. We show how our
method can be used to give evidence regarding the presence of apparent
long-term trends in climate-related atmospheric pressure records. Akaike
Information Criterion (AIC) and Bayesian Information Criterion (BIC)
solutions for our model have also been implemented to compare with the
MML solution.

1 Introduction

1.1 Minimum Message Length

The Minimum Message Length (MML) [16, 17, 21] principle states that the best
explanation for observed data D is the one that minimises the optimal coding
length (according to information theory) of a two-part message. The first part
encodes the hypothesis H (this is known as the assertion) from Bayesian priors
while the second part encodes the data D given the H (this is known as the
detail). In practice, we do not actually construct any message but rather strive
to infer a hypothesis which minimises some approximation to that code length.

The MML principle can be thought of as a quantitative version of Ockham’s
razor [5, footnotes 18 and 181-182] and is compared to Kolmogorov complexity
and algorithmic complexity [2, 12, 15] in [19]. For a contrast with the much later
Minimum Description Length (MDL) principle [14], see [4, sec. 11.4] and [16,
chap. 10]. MML inference is statistically invariant (inference is preserved under
1-to-1 transformations of the parameter space) and is in general statistically
consistent [5, 6, 16]. Where many methods have been shown to be statistically
inconsistent on misspecified models [9], there is as yet no known example of
MML having this failing [9, sec. 7.1.5][5, sec. 0.2.5].

MML is capable of selecting between models with varying numbers of parame-
ters without overfitting [21, sec. 6], and outperforms Maximum Likelihood (ML)
even when aided by Akaike’s Information Criterion (AIC) [6].
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MML is a general model selection criterion and as such is intended to replace
traditional hypothesis tests and confidence intervals. Instead, message lengths
are compared for different hypotheses. Akaike’s Information Criterion (AIC)
and the Bayesian Information Criterion (BIC) are two comparable and popular
model selection criteria. We have implemented both AIC and BIC versions of
our method for comparison with the MML solution (section 3).

1.2 Clustering with Minimum Message Length

Given a set of observed items y = (y1, y2, ..., yN) the aim of clustering is to find
a set of C classes such that each item can be assigned to a class. The number,
C, is often assumed known and the properties of the classes are inferred from
the data. These inferred properties of a class describe its typical items.

MML clustering as described in [17, 18, 20] and [16, sec. 6.8] is an unsupervised
mixture modelling method which will also select the number of classes present.

The Expectation Maximisation (EM) algorithm is used to infer the class pa-
rameters for a fixed number of classes. This is repeated assuming different num-
bers of classes. For each such EM run a message length (section 1.1) is calculated.
The solution with the smallest message length is selected as the best.

Given an inferred hypothesis, the message length is calculated as the length
of an optimal code described as follows.

1. The Assertion encodes the hypothesis in the following order.
(a) The number of classes used, C.
(b) The relative frequencies of all classes.
(c) The inferred parameters defining each class.
(d) The partial assignments of items to classes.

2. The Detail encodes the data given the hypotheses.
(a) The observed attributes of each item.

1.3 Our Extension and Some Motivations

Since this work was developed with atmospheric time-series data in mind we will
use that as an example throughout this paper but our methods are intended to
be general purpose.

MML clustering attempts to capture all regularities that are present in the
data. This means that in practice as one adds more attributes to each data
item, the number of classes inferred tends to increase. As there is more data to
compress the first part of the message can become larger and more complex. Too
many classes can be hard to interpret - which in some cases may be undesirable.

In our data set each data item yi is a set of atmospheric pressure values from
several weather stations for a single day. These pressure values yi,j (where i
indices a day and j indexes a weather station) are the attributes that we wish
to cluster. There may be other attributes that can be associated with each day
(data item) which might help with the clustering but which we do not wish to
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model or explain with the classes inferred. Examples include seasons, extreme
weather conditions and global indexes such as those relating to the El Niño cycle.

It helps to notice that with clustering there are often two types of attributes.
One can think of them as target attributes and context (known) attributes. We
are not interested in discovering regularities in the context attributes and it
is not desirable that the number of classes and the complexity of the classes
increase to explain those regularities. On the other hand the inferred hypothesis
should mention these attributes if they help explain the target attributes.

Our aim is to explain the target attributes while using the context attributes
to discriminate and (this aim) is therefore similar to what Jebara [10] describes
as combining Discriminative and Generative learning.

Our work provides a simple yet flexible way of dealing with these context
attributes differently from target attributes while adhering to the well established
MML clustering framework of [17, 20] and [16, sec. 6.8]. By doing that our
method inherits the features of MML clustering which has made it successful
which includes the ability to select the number of classes without over-fitting.

2 Methods

2.1 A Clustering Model with Context Data

Let y be a set of observed items where yi,j is the value of attribute j for data
item i. Let x be the corresponding class assignments where xi ∈ {1, 2, ..., C} and
C is the number of classes. In our atmospheric time-series example yi,j is the
measurement on day i at weather station j.

There are other context attributes associated with each day that we can use
to improve the clustering but do not wish to model. For our climate example
this could include time of year (season) or global indices such as those relating to
the El Niño cycle. For this we introduce a context value zi,k where i indexes the
item (day) and k ∈ {1, 2, ...,K}. Here there are K different contexts. Each item i
belongs to each context to some degree zi,k. The context data z is given as prior
knowledge. Each context vector zi is used much like a fuzzy indicator, however,
we interpret them strictly as probability distributions, hence we require that for
all i,

∑k=K
k=1 zi,k = 1 and that all zi,k ≥ 0.

As an example we can divide the days of each year into four seasons, soK = 4.
A day in the middle of summer (context k = 1) can be assigned completely to
that season zi,1 = 1 while a day between summer and autumn can be assigned
partially to those two seasons zi,1 = 0.5, zi,2 = 0.5.

In our model we replace the mixing proportion parameter vector with a K×C
mixing proportion matrix S. Now the probability of item i belonging to class c
is defined as,

Pr(xi = c) =
K∑

k=1

zi,kSk,c. (1)

Each of the K rows of matrix S is a relative frequency vector associated with a
context. In our example Sk,c is the probability of day i belonging to class c if the
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season is zi,k = 1. It follows that
∑C

c=1 Sk,c = 1 and all Sk,c ≥ 0. This mixing
proportion matrix S will be inferred from the data. In our season example this
means that the effective mixing proportions will change gradually according to
time of year and we avoid having to use hard boundaries when specifying z.

The matrix S allows the context vector z to be used to provide information
about the class assignments x prior to seeing the data y. This means x can be
encoded more efficiently given S and z but only if that saving is not outweighed
by the cost of stating S, which increases with K and C. Effectively S allows z to
inform the classification and inferred model. We are not encoding z at all, one
could imagine a separate message fragment encoding z preceding the rest of the
message. This imaginary message fragment would be unaffected by y, x, S, C
and the class parameters. The idea is that how z is modelled or encoded does
not affect the rest of the message.

Each class defines a distribution Pr(yi|xi) for the data items assigned to it.
These distributions have parameters associated with them which must be in-
ferred. For our climate example we will consider each weather station to have
an independent Gaussian distribution. For details on how these parameters are
inferred with MML, for this and other distributions, see [16, 18, 20].

2.2 Coding Approximation and Optimisation Algorithm

In MML inference one usually creates an approximation to the message length
of the two-part code described in section 1.1, and then infers a hypothesis which
optimises that approximation. We first describe the form of the hypothetical
message, then how it is approximated and then the optimisation algorithm.
Given a hypothesis the message is made up of the same message fragments as in
the list given at the end of section 1.2. For our model part 1b of that list states
the matrix S instead of a single mixing proportion vector.

In accordance with MML convention our message lengths are calculated in
nits where 1 nit = log2 e bits. For item 1a we use the prior distribution 2−C over
the number of classes, this message fragment has a length of C loge 2 nits.

For part 1b the rows of matrix S can be stated using a standard MML multi-
state distribution solution (see [20]).

The code length for the class parameters (1c) can be approximated using
standard MML solutions for the distributions used (see [20]). Because the order
of the classes is arbitrary, loge C! nits can be subtracted from this length.

For part 1d the coding length for stating each class assignment xi precisely
is the negative logarithm of the conditional probability Pr(xi|zi, S). Since an
optimal code would not state these parameters (x) precisely, a coding trick (see
[16, sec. 6.8]) can be used to calculate the message length improvement that
can be achieved through imprecisely encoding x. The result of this is that one
can subtract form the above described message length the entropy of x given
everything else (z,y,S and the class parameters).

Finally the length of the detail (part 2) is simply the negative log likelihood
of y given the inferred assignments x and the inferred class parameters.
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Because of these imprecise encodings of x one can interpret their assignments
as partial (uncertain) and the expectations (over the partial assignments of x)
of the code length described above (parts 1b, 1c, 1d and 2) is used.

Now that we have an approximation to the code length for a given hypothesis
and data set, a search algorithm which finds an optimal hypothesis is needed.
The Expectation Maximisation (EM) algorithm is used.

1: initialise partial assignments for x;

2: initialise values for S;

while(not(some termination condition))

{

3: update class parameters to their optimal values given x and y;

4: update partial assignments of x given S and y;

5: update the matrix S given x and z;

}

Step 3 is done as with standard MML clustering, see [20] or [16, sec. 6.8]. In
step 4 the optimal degree of assignment of item i to class c is equal to its posterior
probability Pr(xi = c|S, z, y). This type of estimate for discrete parameters like x
is discussed in [16, sec. 6]. Step 5 uses the same multi-state distribution solution
used in standard MML clustering for the rows of S, however the contribution of
item i to the parameter row vector Sk is weighted according to,

wi,k =
zi,k

∑C
c=1 Sk,c Pr (yi|xi = c)∑K

t=1 zi,t

∑C
c=1 St,c Pr (yi|xi = c)

. (2)

These weights are also used in the message length calculations for S. The indi-
vidual reassignments (steps 3, 4 and 5) each decrease the overall message length
in every iteration and the result is that the solution as a whole moves to a local
optimum.

3 Data and Results

3.1 Tests on Artificially Generated Data

Because MML is a Bayesian method, our first claim is that if a true hypothesis is
generated from the assumed model then our method will on average tend to be
good at inferring back that true hypothesis. The hypotheses that were generated
for these tests were intended to roughly imitate those one would expect to infer
for our atmospheric pressure data.

For the first test the true model has 5 classes with 5 pressure values gener-
ated for each day over a 50 year period. The context variable z has been used to
divide the 50 years into 4 long term divisions. This simulates how the relative
frequencies of our 5 classes change over the long run. Each day is assigned par-
tially to two of these divisions so that the change in relative frequencies occurs
slowly and smoothly over time (as with the seasons example in section 2.1).

Data was generated from the assumed hypothesis as described above. Half the
attributes from this data were randomly removed as a validation set. From the
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training set our algorithm was used to infer the number of long term divisions
while knowing the true number of classes. This test was repeated for ten such
data sets. The results are summarised in figs. 1 and 2. Aside from the MML
criterion we have also optimised the Akaike’s Information Criterion (AIC) and
Bayesian Information Criterion (BIC) for all results. In Fig. 1 the lines titled
MML, AIC and BIC show the average resulting criterion values belonging to the
left vertical axis. Here we can see all three criteria have their average optimal
value at the correct number of divisions (K = 4). The predictive performance
is measured as the average negative log likelihood of the validation set given
the chosen hypotheses, divided by the validation set size. This measure is titled
score in Fig. 1 and belongs to the right vertical axis. It can be seen that the
predictive score reaches its optimal value for K = 4 and extra divisions do not
improve this.

In Fig. 2 we can see the number of data sets (out of ten) for which MML, AIC
and BIC preferred K divisions. The results show that MML and BIC tended to
be similarly conservative while AIC sometimes prefers more divisions than the
true number K = 4.

Fig. 1. Average MML, AIC and BIC values inferred for different values of K belong
to the left axis. The predictive performance score belongs to the right axis. The true
value is K = 4.

Fig. 2. The number of data sets (out of ten) for which MML, AIC and BIC preferred
K divisions, with the true value being K = 4
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In the next test we have generated data as with the first test but now the
algorithm knows the number of long-term divisions (K = 4) while the number
of classes (C = 5) must be inferred. For this test MML and BIC performed
similarly and well (preferring either C = 5 or C = 4) while AIC tended to
over-fit (preferring 6 ≤ C ≤ 8).

In the final artificial data test we have generated data using only one long
term division K = 1 (equivalent to no context variable). All three methods were
used to infer K as before. Here both MML and BIC chose the correct number
K = 1 all ten times while AIC chose K = 1 seven times but also made estimates
as high as K = 5.

Our conclusion from these three tests is that both MML and BIC can be
expected to either choose the true values for K and C or to choose more con-
servatively, while AIC will occasionally overestimate these values.

3.2 Atmospheric Time-Series Data and MML Clustering

The meteorological data was derived from historical sub-daily station mean sea
level air pressure observations digitised by the Australian Bureau of Meteorology.
The air pressure was observed in approximately 50 weather stations across Aus-
tralia with earliest observations dating back to 1859. The data has been quality
controlled. This processing included removal of errors in the observations by mis-
takes made when digitising observations or when observers incorrectly recorded
air pressure values.

Clustering such data both from real world observations or from climate model
output is valuable as it allows for large and complex data sets to be interpreted
more easily. This can then be used to look for variations in pattern frequencies
over time and to link these variations to other climate/weather related events.
Self Organising Maps (SOM) [11] have been successfully used for this purpose in
the past [1, 13]. The work we present in this paper is an early step in continuing
work aimed at providing alternative tools to SOM and k-means clustering specific
to atmospheric time-series data.

The existence of multiple atmospheric circulation regimes (classes) in the
extratropics is an important, but a controversial, hypothesis in meteorology [3].
Many conflicting results exist and are critically discussed in [3].

We hope that by refining our probabilistic models to fit this problem domain,
MML can with its resistance to overfitting provide important evidence regarding
this issue. In this paper for this data set our primary goal is to measure and anal-
yse the link between context information and the atmospheric data. Sections 3.3
and 3.4 demonstrate this.

3.3 Dividing the Year into Seasons

It is known that atmospheric pressure states are dependent on time of year
(seasons). We demonstrate how our method can be used to determine into how
many seasons each year can be divided. We test our method’s ability to choose
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the best predictive model by dividing the data into training and validation sets
and comparing predictive performance with the message lengths.

The data from 1865 to 1915 was used. Half the observed measurements were
randomly removed as a validation set. We have assumed here that the number
of classes is C = 20. The algorithm was used to infer the number of seasonal
divisions K. Each day is assigned partially to two seasonal divisions as described
in section 2.1. In this way we model how the relative frequencies of classes cycle
smoothly over time. Fig. 3 compares the resulting MML message lengths and
BIC and AIC values for different numbers of seasonal divisions K. For each value
of K MML, BIC and AIC inference were repeated 10 times and the solution for
which each criterion performed best was selected and is shown on Fig. 3.

For this test, both MML and BIC preferred 8 seasonal divisions while AIC
preferred 16. It can be seen that there is no significant improvement on the
validation set for more than 8 divisions.

Fig. 3. MML, BIC and AIC values for different numbers of seasonal divisions K belong
to the left axis. The score measures the performance of the validation set and belongs
to the right axis.

3.4 Identifying Long-Term Trends in Atmospheric Time-Series
Data

Finally we have used our method with the data from 1865 to 1965 to see how
many long-term trends can be justified when assuming C = 20 classes. Again
half the data was randomly removed as a validation set. The algorithm was used
to infer the correct number of long-term divisions K as defined in section 3.1.
For each value of K both MML and BIC inference were repeated 10 times and
the solution for which each criterion performed best was selected. MML had a
clear preference for 4 long term divisions while BIC preferred 7. Both the 4-term
and 7-term solutions had the same predictive performance.
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4 Conclusion and Further Work

In clustering there is often additional information that can be used to improve
the inference but which should not be included as target attributes (attributes
to be clustered). The context clustering method that we have presented provides
a flexible yet simple extension to standard MML clustering which achieves our
goal of using context data. Our results on artificial data show that we can detect
the presence of such context divisions and estimate their number if the assumed
model is correct. An implementation of our algorithm which uses BIC instead
of MML performs similarly while AIC tends to overfit. With the atmospheric
pressure time-series data we have demonstrated how our method can be used to
give evidence regarding the presence of apparent long term trends in atmospheric
pressure patterns and to determine the number of seasonal divisions that can be
justified.

It is known for this data set that the class of each day is highly dependant
on the class of the previous day and that this can be modelled using a hidden
Markov unit model as in [7]. We are currently working on combining our context
variable model with that hidden Markov unit model.

Instead of using the context variable for long term divisions or seasons one
could use it to try and link global weather indexes, like those measuring the
El Niño cycle, to atmospheric pressure patterns. This would require that the
context variable have two possible assignments, one for El Niño and one for La
Niña, where each day would be (partially) assigned to both with some degree
based on the Southern Oscillation Index (SOI).

Other uses for the context variable could include weather extremes such as
storms, unusual rainfall, cyclones and hurricanes. Another simple extension of
this work will be to allow multiple context variables to be use, this would allow
for example for both season and long term trend information to be used.

With clustering real world data the difference between model and reality can
lead to an excessive number of classes. One way to address this is to remove the
assumption that the attributes within each class can be modelled as independent
Gaussian distributions. It should be possible to allow for inter-attribute relations
such as latent factors, which have been used in MML clustering in [8].
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Abstract. Learning classifier systems (LCSs) are a machine learning
technique, which combine reinforcement learning and evolutionary algo-
rithms to evolve a set of classifiers (or rules) for pattern classification
tasks. Despite promising performance across a variety of data sets, the
performance of LCS is often degraded when data sets of high dimension-
ality and relatively few instances are encountered, a common occurrence
with gene expression data. In this paper, we propose a number of exten-
sions to XCS, a widely used accuracy-based LCS, to tackle such problems.
Our model, CoXCS, is a coevolutionary multi-population XCS. Isolated
sub-populations evolve a set of classifiers based on a partitioning of the
feature space in the data. Modifications to the base XCS framework are
introduced including an algorithm to create the match set and a special-
ized crossover operator. Experimental results show that the accuracy of
the proposed model is significantly better than other well-known classi-
fiers when the ratio of data features to samples is extremely large.

1 Introduction

Learning Classifier Systems (LCSs) are a genetic-based machine learning tech-
nique used to solve pattern classification problems [2, 8, 11, 13]. XCS, a well-known
Michigan-style model, evolves problem solutions represented by a population of
classifiers [19, 20]. Each classifier consists of a condition-action-prediction rule,
with a fitness value proportional to the accuracy of the prediction of the reward.
Evolutionary operators are used to discover better rules that may improve the
current population of classifiers. Consequently, XCS is generally able to cover the
state space more efficiently than other LCS.

Although there are many papers reporting high accuracy results across a wide
spectrum of classification tasks, large state spaces and relatively small sample
sizes (a common occurrence with gene expression data [22]) often lead to the
evolution of partly-overlapping rules resulting in lower XCS accuracy [15]. Butz
and co-workers [3] have shown that by introducing techniques that can efficiently
detect building blocks in the condition part of the classifier, it may be possible
to improve the performance of XCS. Specific evolutionary operators designed to
help avoid the over-generalization phenomena inherent in XCS have also been
demonstrated to be useful [14]. However, there is room to further extend these
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ideas and introduce modifications/enhancements enabling XCS-based models to
solve gene expression classification problems.

A natural way to tackle high dimensional search problems is to adopt a
“divide-and-conquer” strategy. To the best of our knowledge, decomposition ap-
proaches for XCS has been limited to the models proposed by Gershoff [7] and
Richter [17]. Significantly, both of these papers report improved performance
when the decomposition approach was used. A cooperative coevolutionary frame-
work [16] may also provide a suitable approach for classification tasks. Zhu and
Guan [22] report competitive performance results using a cooperative coevo-
lution LCS. However, if all features are used in the classification process, the
excessive computational cost reduces the efficiency/effectiveness of the model.
Feature selection provides an alternative approach to help deal with high dimen-
sional data. For gene expression data, techniques that rank genes according to
their differential expressions among phenotypes, or techniques based on infor-
mation gain ranking and principal component analysis can be used [21].

In this paper, we propose a number of extensions to the XCS to solve com-
plex classification tasks. Our model, CoXCS, is fundamentally a coevolutionary
model. Here, a number of isolated sub-populations are used to evolve classifiers
based on a partitioning of the feature (or attribute) space. A modified version of
XCS is used in each of the sub-populations. We introduce a specialization tech-
nique for reducing the number of attributes activate during the learning phase
and a specificity crossover operator. Detailed computational experiments using
a suite of benchmark data sets clearly shows that proposed model is compa-
rable with other classification techniques. Significantly, the performance of the
proposed model is better than other models when the ratio of data features to
samples is extremely large.

The remainder of this paper is organized as follows: In Section 2 we present
background material related to XCS and multi-population implementations. In
Section 3 our model is described in detail. This is followed by a list of the
experiments and results. We conclude the paper in Section 5 with a discussion
of the results and identify future research directions.

2 Background and Related Work

2.1 XCS Overview

XCS is widely accepted as one of the most reliable learning classifier system for
data mining. We provide a brief overview of XCS functionality in this subsec-
tion. Space constraints preclude us from providing a detailed discussion of XCS.
However, further details can be found in Wilson’s original paper [19] and related
papers (eg.[4, 15, 20]).

XCS maintains a population of classifiers (see Fig 1). Each classifier consists
of a condition-action-prediction rule, which maps input features to the output
signal (or class). A ternary representation of the form 0,1,# (where # is don’t
care) for the condition and 0,1 for the action can be used. In addition, real
encoding can also be used to accurately describe the environment states [20].
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Fig. 1. XCS model overview. The condition segment of the classifier consists of a vector
of features, each encoded using real or binary values. The output signal (prediction
class) is a binary value in this case. The classifier’s fitness value is proportional to the
accuracy of the prediction of the reward. See text for further explanation.

Input, in the form of data instances (a vector of features), is passed to the
XCS. A match set [M ] is created consisting of rules (classifiers) that can be
“triggered” by the given data instance. A covering operator is used to create
new matching classifiers when [M ] is empty. A prediction array is calculated
for [M ] that contains an estimation of the corresponding rewards for each of
the possible actions. Based on the values in the prediction array, an action, a
(the output signal), is selected. In response to a, the reinforcement mechanism
is invoked and the prediction, p, prediction error, ε, accuracy, k, and fitness, F ,
of the classifier is updated via the following equations:

p← p+ β(R− p) and ε← ε+ β(|R − p| − ε)

where β is the learning rate (0 < β < 1). The classifier accuracy is calculated
from the following equations:

k =
{

1 if ε < ε0
α( ε

ε0
)−ν otherwise and k

′
=

k∑
x∈[A]

kx

Finally, the classifier fitness, F , is updated using the relative accuracy value:

F ← F + β(k
′
− F )

It is important to note that the classifier fitness is updated based on the ac-
curacy of the actual reward prediction. This accuracy-based fitness provides a
mechanism for XCS to build a complete action map of the inputs space.

A key component of XCS, is the evolutionary computation module. During the
evolutionary process, fitness-proportionate selection is used to guide the selection
of parents (classifiers in the population), who generate new offspring via crossover
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and mutation. A bounded population size is typically used. Consequently a form
of niching is used to determine if the offspring is added to the population and/or
which of the old members of the population are deleted to make room for the
new classifier (offspring). The deletion of classifiers is biased towards those with
larger action set sizes and lower fitness.

2.2 Multi-population XCS Models

Dam et al., [6] proposed an XCS–based client/server distributed data mining
system. Each client had its own XCS, which evolved a set of classifiers using a
local data repository. The server then combined the models with its own XCS
and attempted to find a set of classifiers to help explain patterns incorrectly
classified locally by the clients. The performance of the model was evaluated
using benchmark problems, focussing on network load and communication costs.
The results suggested that the distributed XCS model was competitive as a
distributed data mining system, particularly when the epoch size increased.

In a similar study, a multi-population parallel XCS for classification of elec-
troencephalographic signals was introduced by Skinner et al., [18]. The specific
focus of that study was to investigate the effectiveness of migration strategies
between sub-populations mapped to ring topologies. They reported that the pa-
rameter setting of the multi-population model had a significant effect on the
resulting classifier accuracy.

An alternative approach for solving a classification task is to incorporate a de-
composition strategy into the model. For example, Gershoff et al., [7] attempted
to improve global XCS performance via a hierarchical partitioning scheme. An
agent in the model was assigned to each partition, which contained a collec-
tion of homogeneous XCS classifiers. The predicted output signal (class) was
then estimated using a voting mechanism. This output signal, with a confidence
score, was then passed up the hierarchy to a controlling agent. This agent then
decided the final output of the system based on the combined output from each
of the sub-populations it was responsible for. Gershoff et al., report results with
improved performance notes in the limited domain tested.

Richter [17] introduced an extended XCS model, where a series of lower level
problems were solved. These results were then combined into a global result for the
given problem. Improved performance was noted in a limited range of test problem
used in the study. In such an approach, different sub-problem formulations will
have a significant impact on the performance of the distributed system.

A recent model employing a cooperative coevolutionary classifier system was
introduced by Zhu and Guan [22]. In this fine-grained approach, individuals in
isolated sub-populations encoded if–then rules for each feature in the data set.
As such, the decomposition was taken to the extreme. Individuals were used to
classify the partially masked training data corresponding to the feature in focus.
However, this particular approach required a two-step process – a concurrent
global and local evolutionary process – in order to generate satisfactory accuracy
levels. For data sets with a large number of features (attributes) such fine-grain
modelling is computationally expensive.
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3 Model

CoXCS is fundamentally a coevolutionary parallel learning classifier based on
feature space partitioning. Fig. 2 provides a high-level schematic overview of the
system.

Within the CoXCS model, the features contained in the data set are parti-
tioned into a set of n sub-populations. The condition segment of each classifier
in a given sub-population is initialized using this fixed subset of the features
(of size λ) from the data set being processed. Importantly, the sub-populations
evolve separately, but with a common objective. As such, each isolated sup-
population accumulates and specializes its expertise across a subset of the input
space. Bounded sub-population sizes are used as per the standard XCS model.
When a new classifier is added to a sub-population, if the size limit is reached,
a randomly selected classifier (based on a niching technique) is deleted from the
sub-population.

Migration episodes are also used to exchange classifiers between sub popula-
tions. After a fixed number of iterations, randomly selected classifiers migrate to
a different sub-population based on a random migration topology. It is impor-
tant to note, that the mutation operator does not destroy the inherent building
blocks within the immigrant classifiers.

Two important modifications are proposed for the XCS model running in each
of the sub-populations:

Firstly, a new covering operator is used to create the match set [M ] (see
Algorithm 1). This operator builds single feature classifiers (the remaining fea-
tures are set to #) for each of the features present in the given partition. An
important distinction between our model and XCS is the fact that we create
λ classifiers, which are added to the bounded population of each partition. In
contrast, XCS would create only one classifier. This approach, allows the evo-
lutionary search to slowly build up more specialized classifiers via the genetic
operators and reinforcement learning mechanism.

Fig. 2. High level overview of the CoXCS model. Each isolated sub-population evolves
solutions based on a partitioning of the feature space (of size λ) using a separate
CoXCS. Randomly selected classifiers migrate between sub-populations.
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Algorithm 1. CreateMatchSet()
Require: input: a vector of features X ∈ {x0, x1, . . . , xnλ}

action: a value for the expected output/class (eg. 0 or 1)
s, e: array index addresses – start (eg. 0) and end (eg. λ)

1: initialize match set [M ]
2: for i = s to e do
3: create new classifier rule
4: rule.setCondition(i,input[i])
5: rule.setAction(action)
6: [M ].add(rule)
7: end for
8: return [M ]

Algorithm 2. SpecCrossover()
Require: p1, p2: two randomly selected parents (classifiers)

len: is the length of condition segment in parents (len = λ)
1: create new classifier child
2: for i = 0 to len do
3: if p1.hasCondition(i) AND ! p2.hasCondition(i) then
4: child.setCondition(i, p1.getCondition[i])
5: else if ! p1.hasCondition(i) AND p2.hasCondition(i) then
6: child.setCondition(i, p2.getCondition[i])
7: else if p1.hasCondition(i) AND p2.hasCondition(i) then
8: Δ ← p1.getCondition[i] ∩ p2.getCondition[i]
9: if Δ �= null then

10: child.setCondition(i, Δ)
11: end if
12: end if
13: end for
14: return child (the new classifier)

Secondly, we introduce a specialized crossover operator, which generates valid
offspring (classifiers) across the range of feature encodings used (see Algorithm 2).
In the case of nominal and binary features, if the feature appears in either parent,
the feature is copied to the child. For real value features, the center-spread and
range are examined. The corresponding common range of the feature in both
parents is then copied to the child. A standard mutation operator is then applied
to the child.

In our implementation, we use a variable length hybrid real-integer encoding
for each classifier. A sparse vector representation, indexed to the feature value,
is used. The # values are not stored. This approach is used to both speed up
computations and minimize memory use. In addition, this approach provides
a flexible means to concatenate classifiers generated from different populations
(initial partitions of the feature space) after migration episodes and crossover
operations. The predicted output class for the classification task is based on
majority voting among all CoXCS predictions.
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4 Experiments

A series of experiments were conducted to validate our approach. The underlying
hypothesis tested was that the classification using the CoXCS model would lead
to improved accuracy, particularly for high dimensional data sets.

4.1 Data Sets

A range of data sets displaying different characteristics were used for evaluation.
wbc (Breast Cancer Wisconsin - Original), wpbc (Breast Cancer Wisconsin
- Prognostic), wdbc (Breast Cancer Wisconsin - Diagnostic) and hepatitis
were taken from the UC Irvine Machine Learning Repository [1]. Two gene
expression datasets were also included: BRCA (sporadic breast cancer gene
profiles) [10, 12] and Prostate (prostate cancer gene profiles) [12].

4.2 Methodology

Model parameters. For all experiments, a hybrid feature encoding scheme was
used. The parameter settings for our modified XCS were based on the default
XCS settings recommended in [5]. The parameter values that were different
include: population sizes of 3000 (UCI data sets) or 5000 (gene expression data
sets); the exploration/exploitation rate was set to 0.3, and the reward value set
to 1000. The partitioning schemes used was a simply equal linear division of
the feature space. In this study, we have employed a simple rule: the number of
partitions (and thus sub-populations) n = �0.1× #Features� for a given data
set. The migration ratio was set to 10% of the population size. Five separate
migration stages were used, where the number of iterations between migration
episodes was fixed at 100.

Validation and performance measures. Ten-fold cross validation was used
for the data sets taken from the UCI Repository. The small number of instances
(samples) of the gene expression data sets restricted evaluation to two-fold cross
validation. In order to compare the performance of our model with other clas-
sifier systems, we report results based on the Area Under Curve (AUC) of the
Receiver Operating Characteristic (ROC), a widely used technique in machine
learning [9]. AUC values vary between 0 and 1, where 0.5 represents a random
classification and 1 represents the highest accuracy.

4.3 Results

Table 2 lists the AUC results for each of the data sets considered for a variety of
different classifiers. The non-XCS classifier results were generated using the Weka
package. The relative performance of the base-line XCS and the other classifiers
was very similar. It is interesting to note that accuracy levels were generally very
low for the gene expression data sets (BRCA and Prostate). The accuracy
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Table 1. Data set details. The gene expression data sets are characterized by a small
number of instances and a very large number of features. All data sets have two output
classes.

Data Set #Instance #Features %Majority %Missing

wbc 699 9 0.65 0.23
wpbc 198 33 0.76 0.06
wdbc 569 30 0.62 –
hepatits 155 19 0.85 5.30
BRCA 22 3226 0.68 –
Prostate 21 12600 0.61 –

Table 2. AUC results. Bold values indicate the the CoXCS model was significantly
better when compared to all of the other classifiers.

Classifier Mode wbc wdbc wpbc hepatitis BRCA Prostate

j48
Train 0.98 0.99 0.93 0.91 0.92 1.00
Test 0.95 0.93 0.59 0.70 0.35 0.42

NBTree
Train 0.99 0.99 0.79 0.97 1.00 1.00
Test 0.98 0.95 0.55 0.81 0.45 0.46

Random Forest Train 1.00 1.00 1.00 1.00 1.00 1.00
Test 0.98 0.98 0.63 0.84 0.29 0.33

Neural Networks Train 0.99 0.99 0.98 0.94 0.50 0.50
Test 0.98 0.99 0.68 0.81 0.50 0.50

Logistic Regression Train 0.99 1.00 0.94 0.94 1.00 0.50
Test 0.99 0.97 0.77 0.80 0.56 0.50

Naive Bayes Classifier Train 0.98 0.98 0.72 0.91 0.99 1.00
Test 0.98 0.98 0.64 0.83 0.50 0.35

SVM Train 0.97 0.93 0.50 0.54 1.00 1.00
Test 0.96 0.93 0.50 0.51 0.53 0.38

XCS Train 0.99 0.99 0.97 1.00 0.50 0.50
Test 0.97 0.93 0.70 0.72 0.50 0.50

CoXCS Train 0.99 1.00 1.00 0.97 1.00 1.00
Test 1.00 0.99 0.98 0.96 0.80 0.75

performance of the CoXCS was generally better than other classifiers across
data sets. CoXCS performance was significantly better (p < 0.01, 15 trials) for
problems where the ratio of the number of features to instance was extremely
large.

5 Discussion and Conclusion

There are many examples reported in the literature illustrating the effective-
ness of LCS, and the accuracy-based XCS in particular, for data mining task.
However, there are still many open questions related to improving classification
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accuracy when confronted with problems of high dimensionality, a small number
of data instances, noisy data and multiple classes.

In this paper, we have proposed enhancements for XCS to improve classifi-
cation accuracy for data sets where the ratio of data features to samples is ex-
tremely large in binary classification tasks. In CoXCS, isolated sub-populations
were used to evolve classifiers based on a initialization mechanism using a sub-
set of features. Two modifications were made to the base XCS model running in
each island: a new algorithm was used to create the match set and a specialized
crossover operator was used. This “divide-and-conquer” strategy encourages the
evolution of specialized classifiers and allows us to maximize the advantages of
the embedded reinforcement learning mechanism in XCS.

Detailed experimental studies show that CoXCS is comparable with, and out-
peforms other well-known classifiers in many cases, across the suite of benchmark
data sets used for evaluation. The results suggest that the decomposition strat-
egy plays an important role in guiding the trajectory of the evolving populations.
Here, we have limited the decomposition to a naive approach. In future work,
it would be interesting to examine alternative techniques to detect variable in-
teractions that exist in a problem, and subsequently make use of this “expert
knowledge” when partitioning the feature space. There is also scope to examine
the effectiveness of distributed deployment and alternative migration policies
using a suite of micro-array data classification problems.
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Abstract. Existing learning and search algorithms can suffer a learning bias
when dealing with unbalanced data sets. This paper proposes a Multi-Objective
Genetic Programming (MOGP) approach to evolve a Pareto front of classifiers
along the optimal trade-off surface representing minority and majority class ac-
curacy for binary class imbalance problems. A major advantage of the MOGP
approach is that by explicitly incorporating the learning bias into the search algo-
rithm, a good set of well-performing classifiers can be evolved in a single experi-
ment while canonical (single-solution) Genetic Programming (GP) requires some
objective preference be a priori built into a fitness function. Our results show that
a diverse set of solutions was found along the Pareto front which performed as
well or better than canonical GP on four class imbalance problems.

1 Introduction

Classification problems arise in a wide range of real world applications; medical di-
agnosis, fraud detection, and image recognition are just a few examples. Genetic Pro-
gramming (GP) is a machine learning and search technique based on the principles of
Darwinian evolution or natural selection which has been widely successful in solving
various classification problems [1]. Some real-world classification problems however,
such as working with unbalanced data [2], are difficult to solve. Data sets are unbal-
anced when they have an uneven distribution of class examples, that is, when at least
one class is represented by only a small number of examples (called the minority class)
while the other class(es) make up the rest (called the majority class). Various machine
learning approaches have shown that using an uneven distribution of class examples
in the learning process can leave the learning algorithm with a performance bias: high
accuracy on the majority class(es) but poor performance on the minority class(es) [3].

Addressing this learning bias to more accurately classify examples from both the
majority and minority class equally well has shown that these objectives are usually in
conflict – increasing the performance of one class results in a trade-off in performance
for the other [4]. As class-specific misclassification costs in real-world problems are
task-sensitive, objective preference must usually be a priori built into the learning sys-
tem. In many cases, subsequent changes to preference after a solution has been found
can require the search to begin afresh with new preference information.

Evolutionary multi-objective optimisation (EMO) is a fast growing area of research
which offers a promising solution to the problem of optimising multiple conflicting
objectives by simultaneously evolving a Pareto front of solutions along the trade-off
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surface in a single experiment [5]. Each objective is treated separately in EMO learning
systems allowing the performance trade-off to be incorporated into the learning process.
EMO approaches offer the end decision-maker both insights into the performance trade-
off for a particular problem and the ability to readily choose preferred solutions along
the evolved Pareto front after the search process.

EMO techniques have been successfully applied to a wide range of real world ap-
plications [6]. In GP and classification problems specifically, EMO methods have been
primarily used for bloat control [7], but research has also involved decomposing the
classification accuracy of each class as separate objectives to be optimised [8]. This pa-
per aims to extend this idea by developing a multi-objective GP (MOGP) approach to
the class imbalance problem using the classification accuracy of the minority and major-
ity class as separate conflicting objectives to be maximised. Using the MOGP approach,
this paper analyses the performance trade-off between these two conflicting objectives
along the approximated Pareto fronts for a number of unbalanced data sets with varying
levels of class imbalance, and examines the diversity of the Pareto fronts and the types
of Pareto-optimal solutions evolved. We also discuss some of the initial problems en-
countered in developing a multiple-objective approach and present an analysis into the
classification performance of the evolved Pareto fronts.

The rest of this paper is organised as follows. Section 2 describes the MOGP ap-
proach. Section 3 presents the unbalanced data sets used in our experiments and ex-
amines the initial MOGP results. Section 4 introduces a MOGP improvement, presents
these new results and analyses the classification performance of the Pareto fronts.
Section 5 concludes this paper and gives directions for future work.

2 Multi-Objective GP Approach

2.1 Evolutionary Search Algorithm

In traditional EMO, the evolutionary search is focussed on improving the set of non-
dominated solutions until they are Pareto Optimal. Our approach is based on the well
known EMO algorithm NSGA-II [9], where the parent and offspring populations are
merged together at every generation. This combined parent-child population is then
sorted by program fitness where the fittest individuals are copied into a new population,
called the Archive population. The Archive population then serves as the parent popu-
lation in the next generation. The offspring population at every generation is generated
using the traditional crossover and mutation genetic operators using binary tournament
selection. The Archive population is used to preserve elitism in the population over
generations. At the end of the evolutionary cycle, the output of the MOGP system cor-
responds to the set of evolved solutions along the approximated Pareto front.

2.2 Fitness

Every individual in the population has two hierarchical fitness attributes: non-
dominance rank and a “crowding” measure. The non-dominance rank is a measure of
how well the individual performs on both objectives with respect to every other mem-
ber in the population. Crowding distance is an estimate of the diversity of a solution
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with respect to the population. The non-dominance rank serves as the primary fitness
attribute – crowding distance is only used to resolve selection when the non-dominance
rank is equal between two or more individuals. In other words, between two solutions
with differing non-dominance ranks we prefer the solution with the better rank. Oth-
erwise, if both solution have the same rank then we prefer the solution with the better
crowding distance.

Non-dominance Rank: In multi-objective optimisation, a single solution dominates
another solution if it is at least as good as the other solution on all the objectives and
better on at least one [6]:

Si # Sj ←→ ∀m[(Si)m ≥ (Sj)m] ∧ ∃k[(Si)k > (Sj)k] (1)

In equation (1), if Si and Sj are two solutions in the population and (Si)m denotes the
performance of solution Si on the mth objective, then solution Si dominates solution
Sj if each component of Si is better than or equal to the corresponding component of Sj

and at least one component of Si is higher. The non-dominance rank for a solution is the
number of other solutions in the population that dominate that solution. A solution that
is not dominated by any other solution is a non-dominant solution and represents the
optimal rank (0). At every generation, all non-dominated individuals form the Pareto-
approximated front.

“Crowding” Distance: Crowding techniques use Euclidean distance between solutions
in objective-space as an estimate of solution diversity. Solutions from sparsely populated
regions of objective-space are usually favoured over solutions from densely populated re-
gions (solutions with similar performances across objectives) to promote diversity in the
population [6]. Our crowding measure differs from that used in NSGA-II. In NSGA-II,
crowding is estimated as the average distance between a given solution’s nearest neigh-
bours [9]. As this only takes into account the two immediate solutions surrounding a
given solution and not all other solutions in the region, it does not approximate the den-
sity of the entire region of solutions in objective-space. For this reason, we use a crowding
measure based on the total distance between a solution to all other solutions in objective-
space, penalising a solution with many close neighbours [10]:

dp =
n∑

j=1

dist(Sp, Sj) (2)

In equation (2), n is the size of the population and dist(Sp, Sj) is the distance in ob-
jective space between solutions Sp and Sj , that is, the sum of the differences (absolute-
value) between each component of performance vectors Sp and Sj . The smaller the
crowding distance dp (for solution Sp) the less desirable the solution as lower dis-
tances indicate densely populated regions of objective-space (many neighbours close
together). Equation (2) places equal weighting on all solutions in the population.

2.3 Evaluating Pareto Fronts

To evaluate the evolved Pareto-approximated fronts we calculated the front hyperarea
as a single measure of the convergence (or classification performance) of the front,
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and stored all evolved Pareto-front solutions from the series of experiments in a run-
persistent archive for later analysis. The run-persistent archive allows us to examine
trends such as the diversity of the evolved fronts or the kinds of Pareto-front solutions
evolved. The run-persistent archive can also be used to track the “global” Pareto front
of all evolved Pareto fronts across multiple experiments. The global Pareto front cor-
responds to the set of all non-dominated solutions with respect to the run-persistent
archive, that is, the Pareto-optimal front of all evolved Pareto-approximated fronts.

Front Hyperarea: Hyperarea is typically a measure of front convergence, correspond-
ing to the area under the Pareto front in objective-space [6]. In classification, hyperarea
can also represent the area of objective-space correctly classified by the Pareto front,
similar to the Area under a ROC curve (AUC) [11]. However, where the AUC repre-
sents the classification ability of single classifier at varying classification thresholds, the
front hyperarea represents the classification ability of a set of classifiers. The hyperarea
can be estimated using the sum of the areas of individual trapezoids fitted under each
solution in objective-space:

hyperarea =
f−1∑
i=1

1
2
× [(Si+1)min − (Si)min]× [(Si+1)maj + (Si)maj ] (3)

In equation (3), f is the number of solutions on the Pareto front, (Si)min and (Si)maj

represent the performance of Pareto front solution Si on the two objectives (minority
and majority class accuracy), and (Si+1) is the neighbouring solution to Si. Equation
(3) follows from the definition for calculating the area of a trapezoid1 where the minor-
ity and majority class objectives correspond to the width and height of the trapezoid,
respectively, in objective-space [11]. Hyperarea values range between 0–1 where 1 is
the optimal hyperarea.

2.4 MOGP Configuration

A tree-based structure was used to represent genetic programs [1]. The ramped half-
and-half method was used for generating programs in the initial population and for the
mutation operator. The population size was 500, crossover and mutation rates were 60%
and 40%, respectively, and the maximum program depth was 6 to restrict very large
programs in the population. The evolution ran for 50 generations. For the classifica-
tion strategy we translated the output of a genetic program (floating point number) into
two class labels using the division between positive (minority class) and non-positive
(majority class) numbers. We used feature terminals (example features) and constant
terminals (randomly generated floating point numbers) as the terminal set, and a func-
tion set comprising of the four standard arithmetic operators, +,−,%, and ×, and the
conditional operator if. The +,− and× operators have their usual meanings (addition,
subtraction and multiplication) while % is protected division (usual division except that
a divide by zero returns zero). Half of each data set was randomly chosen as the training
set and the other half as the test set, both preserving the original class imbalance ratio.

1 Trapezoid area is 1
2
×w×(h+h’) where w is width, and h and h′ are heights of the two sides.
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3 Results

3.1 Classification Data Sets

The experiments used three benchmark data sets all chosen based on their uneven dis-
tribution of class examples. SPECT and YEAST were from the UCI Repository of Ma-
chine Learning Databases [12], and FACE, an image data set comprising of a collection
of face and non-face images, was from the Center for Biological and Computational
Learning at the Massachusetts Institute of Technology [13].

SPECT Heart data: This data set contains 267 data instances (patients) derived from
cardiac Single Proton Emmision Computed Tomography (SPECT) images. This is a
binary classification task, where patient heart images are classified as normal or abnor-
mal. The data set has 55 instances of the “abnormal” class (20.6%) and 212 instances of
the “normal” class (79.4%), a class imbalance ratio of approximately 1:4. Each SPECT
image was processed to extract 44 continuous features, these were further pre-processed
to form 22 binary features (F1–F22) that make up the attributes for each instance [12].
There are no missing attributes.

YEAST data: This data set contains 1482 instances, larger than SPECT data set, gen-
erated for the automatic prediction of protein localisation sites in yeast cells. There are
eight numeric features calculated from properties of amino acid sequences (F1–F8), and
nine distinct classes of interest, each with a different degree of class imbalance, making
this a multi-class classification problem. For our purposes, we decomposed this data set
into binary classification problems with only one “main” (minority) class and every-
thing else as the majority class. We used two different “main” classes based on their
class imbalance ratios: Yeast1 is reasonably unbalanced with 244 examples (16%) and
an imbalance ratio of 1:5, and Yeast2 is highly unbalanced with 44 (3%) examples and
an imbalance ratio of approximately 1:35.

FACE image data: This data set contains 30,821 grey-scale PGM-format images of
faces and non-faces (background), the largest of the three data sets, each 19×19 pixels
in size. There are 2901 face (9.5%) and 28,121 (90.5%) non-face images, an imbalance
ratio of approximately 1:10. As image features we used 14 low level pixel statistics
F1–F14, corresponding to the mean and variance of the raw pixel values extracted at
eight specific rectilinear regions within each image. These features represent the overall
pixel brightness/intensity and the contrast of a given region. For details on the 14 pixel
statistical-based features refer to our previous work [4].

Fig. 1. Example face (left two) and non-face images (right two)

3.2 Initial Results

The initial MOGP experiment results are shown in Figure 2. These plots show all
evolved Pareto-front solutions generated over 30 experiments for each problem. In
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Fig. 2. All evolved Pareto fronts over 30 runs (note that the vertical axis scopes are different)

the plots each circle represents the test performance of a solution in the run-persistent
archive (i.e., every evolved Pareto-front solution over all experiments). The size of each
circle shows the density of solutions in the run-persistent archive, that is, how often a
Pareto-front solution with the same performance on both the objectives was evolved
across all experiments. The larger the circle, the higher the density (many solutions
with the same performance). In Figure 2 the x and y axis correspond to the minority
and majority class accuracy, respectively, where 1 indicates optimal accuracy (100%).

Figure 2 shows that a good Pareto front approximation was achieved for each prob-
lem as the performance trade-off is clearly visible in each case. Notice that the minority
accuracy objective is more sensitive to the performance trade-off than majority accu-
racy. For example, in all problems solutions with near-optimal majority accuracy (close
to 100%) have very poor performance on the minority class (close to 0%) but solutions
with near-optimal minority accuracy have some success on the majority class with ac-
curacy varying between 90% (Y east2), 40% (Spect), and 20% (Face and Y east1).

The density information in Figure 2 reveals that for some problems (Spect and
Face), there is an noticeably high proportion of solutions in the run-persistent archive
with the same sub-optimal performance, that is, 100% majority class accuracy and 0%
minority class accuracy, compared to the relatively even distribution of solutions along
the rest of Pareto fronts. These are represented by the large circles in the top-left corner
of the plots. A closer inspection of these results reveals that the percentage of these
sub-optimal or “one-sided” solutions with respect to all evolved solutions is 20% for
the Spect problem (675 solutions out of 3338 in the run-persistent archive) and 30%
for the Face problem (2457 out of 7934).

This indicates that the diversity of the Pareto fronts can be improved as the propor-
tion of solutions with the same sub-optimal performance should be relatively low for the
Pareto fronts to maintain a diverse set of solutions. In addition, as the goal of this MOGP
approach is to evolve a diverse set of solutions that generally perform well on both ob-
jectives, it is preferable that the evolved Pareto fronts should contain more solutions that
perform well on both objectives as apposed to large numbers of sub-optimal solutions.

4 Improving Front Diversity

4.1 New Dominance Constraint for Enforcing Diversity

The presence of large sub-optimal solution clusters on the evolved Pareto fronts can be
attributed to several factors, such as the method of non-dominance assignment, genetic



376 U. Bhowan, M. Zhang, and M. Johnston

drift in the population, and the parameter settings used in the experiments. In non-
dominance assignment, if multiple solutions with equivalent one-sided performance
meet the requirement for non-dominance, they are included on the Pareto front. In ge-
netic drift, as one-sided non-dominated performance is easy to achieve, newly generated
child programs of one-sided non-dominated parents are also likely to be one-sided and
non-dominated; as the evolutionary search is focussed on non-dominated individuals
this effect is repeated over generations [7]. Regarding parameter settings, if the maxi-
mum number of generations is too small, the solutions on the Pareto front are not given
the chance to spread out along the front using the crowding diversity measure; similarly
the crossover and mutation rates also effect how much of the Pareto front is explored [9].

Two potential approaches to limit the presence of one-sided solutions on the Pareto
fronts would be to discard such solutions as they are created [8], or keep these solutions
but assign them a relatively poor fitness to reduce selection probability. The second
approach is advantageous over the first in that it relies on the natural mechanism of se-
lection pressure over manual interference in the evolutionary algorithm, and still allows
for some one-sided solutions to be included in the learning process – this is generally
considered necessary for the diversity of the population [14]. For these reasons, we in-
troduced an additional constraint for non-dominance to reduce selection probability and
limit the inclusion of one-sided solutions onto the Pareto front. The new constraint as-
serts that a given solution is only non-dominant if that solution is not dominated by any
other solution and achieves at least a minimum performance of P on both objectives:

Si #P Sj ←→ Si # Sj ∧ ∀m[(Si)m ≥ P ) (4)

In equation (4), solution Si P-dominates solution Sj (Si #P Sj) if Si dominates Sj

and achieves at least P on each objective m, where P can be any value between 0
and 1. Under this new definition of non-dominance, one-sided solutions which would
otherwise be non-dominant are now assigned a poorer ranking. To avoid significant
reductions in the size of Pareto fronts evolved due to too stringent inclusion criteria
(high P thresholds), we tested five minimum performance thresholds between 0.05 –
0.2 and present an analysis on the effects of these different thresholds in the next section.

4.2 Results Using New Dominance Constraint

Figure 3 shows the evolved Pareto fronts for three P% thresholds (the remaining two
thresholds are omitted due to space constraints). In these new plots we see that there
are fewer and smaller solution clusters around the top-left corner of objective-space
as P increases compared to Figure 2. This indicates that the minimum performance
constraint was successful in reducing the number of equivalent “one-sided” solutions
on the evolved Pareto fronts. Specifically, there are fewer clusters for high thresholds
(greater than 10%) compared to low thresholds, but the spread of solutions along the
Pareto fronts, that is, the span of solutions along both x and y axis, becomes smaller
as P increases. A threshold with a reasonable compromise between the above trade-off
lies between 5–10% where the number of solutions clusters is reduced to a reasonable
level while still allowing a sufficient span of solutions on the Pareto front.
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Fig. 3. Evolved Pareto fronts using Minimum-Performance P% Constraints: 5% (top row), 10%
(middle row), and 20% (bottom row)

Diversity Analysis: As a measure of the diversity of the evolved Pareto fronts, we
compared the average number of distinctly performing Pareto front solutions from the
initial MOGP (no minimum performance constraint) and improved MOGP using the
five minimum performance constraints. These results are shown in Table 1 (the average
Pareto front sizes are included in parenthesis for comparison). From these results notice
that the front diversity is better (higher) in the improved MOGP using some minimum
performance constraint compared to the initial MOGP for all problems, even though
the average Pareto front sizes are smaller in the improved MOGP. This indicates that
the minimum performance constraint succeeded in its goal of improving front diversity
by reducing the number of “one-sided” solutions allowed to be non-dominant. In terms
of the effectiveness of the five different minimum performance thresholds, the best di-
versity given the size of the Pareto front was achieved using P% thresholds of 5% and
7.5%. Higher thresholds (greater than 10%) tended to reduce diversity.

Table 1. Average diversity (and size) of Pareto fronts for initial MOGP and improved MOGP

P% Spect Y east1 Face Y east2
Initial MOGP 0% 18.4 (133.5) 49.7 (239.6) 69.8 (330.6) 12.4 (27.4)

Improved MOGP

5% 22.9 (50.4) 46.8 (174.8) 80.9 (111.5) 11.9 (57.6)
7.5% 19.5 (25.9) 50.2 (171.4) 76.5 (106.3) 13.4 (40.7)
10% 18.9 (25.6) 50.2 (185.8) 70.8 (100.3) 12.5 (25.4)
15% 13.7 (17.1) 45.8 (203.8) 68.0 (112.2) 12.2 (39.6)
20% 13.3 (16.4) 45.9 (45.9) 57.7 (69.6) 11.1 (17.0)

Front Coverage: A comparison of the average front hyperarea using the initial MOGP
and improved MOGP with the five minimum performance thresholds is shown in
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Table 2. As we can see, there was little variation in the convergence or classification
performance of the initial MOGP with no minimum performance constraint and im-
proved MOGP with some minimum performance constraint, for all problems (except
Face where the improved MOGP achieved a better hyperarea). This suggests that the
minimum performance constraint did not negatively impact on the convergence of the
evolved Pareto fronts.

Table 2. Average Hyperarea of Pareto Fronts for initial MOGP and improved MOGP

P% Spect Y east1 Face Y east2
Initial MOGP 0% 0.72 0.77 0.73 0.97

Improved MOGP

5% 0.71 0.77 0.77 0.97
7.5% 0.71 0.77 0.78 0.97
10% 0.71 0.77 0.78 0.97
15% 0.72 0.78 0.77 0.97
20% 0.72 0.77 0.77 0.96

Classification performance of MOGP and canonical GP: For a comparison between
the classification performance of the evolved Pareto fronts and solutions evolved using
canonical GP, we plotted the global evolved Pareto front against the classification re-
sults from our previous work which explored the effects of different GP fitness func-
tions on class imbalance problems [4]. These results are shown in Figure 4. The two
fitness functions used in this comparison are the overall classification accuracy, and an
improved fitness function for class imbalance problems based on the average classi-
fication accuracy of the minority and majority classes (for details on these and other
new fitness functions see [4]). In Figure 4, the red and black lines in each plot corre-
spond to the global Pareto fronts of the initial MOGP and improved MOGP using the
optimal minimum performance constraint (5%), respectively, and the two dark shapes
correspond to the average performance of the fittest evolved GP solutions using the two
fitness functions.

In terms of maximising the performance of both objectives, the MOGP Pareto fronts
were shown to perform just as well as canonical GP using both fitness functions on
two problems (Y east1 and Face), and better than canonical GP on the remaining two
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problems (Spect and Y east2). Another major advantage of the MOGP approach is that
by explicitly incorporating the learning bias into the search algorithm, a good set of
well-performing solutions was evolved along the optimal trade-off surface in a single
experiment while canonical GP required this trade-off be a priori built into the fitness
function and produced a single solution in a single experiment.

5 Conclusions

The goals of this paper were to develop a multi-objective GP approach to the class im-
balance problem using the classification accuracy of the minority and majority class as
separate objectives, and examine trends in the evolved Pareto fronts such as the diver-
sity and the kinds of Pareto-optimal solutions evolved. These goals were achieved by
examining the evolved Pareto fronts corresponding to the optimal trade-off in objec-
tives for four class imbalance problems. We showed that a large proportion of evolved
solutions were optimal only on one objective, the majority class, and that by incorpo-
rating a new minimum-performance constraint on each objective into the definition of
non-dominance, we were able to increase the diversity of the Pareto fronts.

We also compared the classification performance of the Pareto fronts against canon-
ical GP approaches using different fitness functions for class imbalance problems, and
found that the evolved Pareto fronts performed just as well as the solutions evolved
using canonical GP on half the problems and better than canonical GP on the rest.

For future work we plan to investigate the effects of different niching schemes specif-
ically designed to penalise solutions in sub-optimal solution clusters and promote di-
versity. We also plan to develop criteria for extracting single solutions from the evolved
Pareto fronts to compare both the classification ability and run-time cost between
MOGP solutions and canonical GP solutions.
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Abstract. We describe a multi-objective evolutionary algorithm that
derives schedules for the National Hockey League according to three ob-
jectives: minimising the teams’ total travel, promoting equity in rest time
between games, and minimising long streaks of home or away games. Ex-
periments show that the system is able to derive schedules that beat the
2008–9 NHL schedule in all objectives simultaneously, and that it returns
a set of schedules that offer a range of trade-offs across the objectives.

Keywords: Sports scheduling, Multi-objective evolutionary algorithms.

1 Introduction

The National Hockey League (NHL) is the premier ice hockey league in the
world. It is one of the four major professional sports leagues in North America,
with record game attendance of 21.3 million in 2007–8, and revenues in excess
of US$2.6 billion and expected to grow further[1].

The current league has thirty teams that play 1,230 games over six months.
Teams play 1–5 games per week, with games happening virtually every day.
There is no round structure: at any point in the season, teams will usually have
played different numbers of games. Potential schedules are measured according to
several criteria, including minimising the travel burden that teams face; avoiding
situations where teams have short time periods and long travel between games;
and avoiding teams having long streaks of games at home or “on the road”.
These factors conspire to make fixture scheduling in the NHL a difficult task.

The principal contribution of this paper is the description and analysis of a
system that uses a multi-objective evolutionary algorithm to derive good sched-
ules for the NHL. Schedules are assessed on the above three objectives, as well
as on a constraint objective that prevents any team having to play multiple
games on one day. Experiments show that the system is able to derive schedules
that beat the 2008–9 NHL schedule in all objectives simultaneously, and that it
returns a set of schedules that offer a range of trade-offs across the objectives.

Section 2 describes some previous applications of evolutionary algorithms to
sports scheduling problems, and Section 3 gives some basics of multi-objective
optimisation. Section 4 gives the relevant details of the NHL structure. Section 5
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describes the details of our implementation, and Section 6 describes and analyses
some experiments using our system. Section 7 concludes the paper.

2 Evolutionary Approaches to Sports Scheduling

There have been several applications of evolutionary algorithms to sports schedul-
ing problems. Some examples follow.

Yang et al. derived good results for scheduling in Major League Baseball using
an evolutionary strategy[2]. Their basic aim was to minimise the travel required
(the MLB has 2,430 games!), and also to promote weekend games. They report
a significant improvement over the existing schedule.

Schönberger et al. used a memetic algorithm for scheduling a non-professional
table tennis tournament[3]. The principal interesting aspect is their use of a
repair function to promote feasibility: indeed with no repair function they were
unable to produce any feasible solutions.

Barone et al. used an evolutionary strategy to derive good schedules for the
Australian Football League[4]. They used the polygon construction method[5]
to seed their population, and they optimise against four objectives: minimising
interstate travel, maximising the expected revenue for “big games”, optimising
the geographical distribution of games on each weekend, and balancing the num-
ber of home games while minimising streaks of consecutive home games. They
were able to derive many solutions that dominate the 2006 AFL schedule.

While and Barone used a broadly similar approach to derive schedules for the
Super 14 rugby competition[6], with a fixture template instead of the polygon.
They minimised inter-regional travel and maximised the use of prime-time TV
slots, again deriving solutions that dominate the pre-existing schedules.

Costa used an evolutionary algorithm combined with tabu search to schedule
the NHL[7] (a different league structure was used in 1994, so no direct comparison
is possible). This approach proved to be superior to using tabu search alone.

3 Multi-objective Optimisation

In a multi-objective optimisation problem, potential solutions are assessed ac-
cording to two or more independent quantities. The characteristic of good solu-
tions is that improving in one objective can be achieved only by worsening in at
least one other objective. An algorithm for solving such problems returns a set
of solutions offering different trade-offs between the various objectives.

Consider a problem where the fitness function maps a solution x into a fitness
vector fx. A solution x dominates a solution y iff fx is at least as good as fy

in every objective, and is better in at least one objective. x is non-dominated
wrt a set of solutions X iff there is no solution in X that dominates x. X is a
non-dominated set iff every solution in X is non-dominated wrt X . The set of
fitness vectors corresponding to a non-dominated set is a non-dominated front.

A solution x is Pareto optimal iff x is non-dominated wrt the set of all possible
solutions. Such a solution is characterised by the fact that improvement in one
objective can come only at the expense of some other objective(s). The Pareto
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optimal set is the set of all Pareto optimal solutions. The goal in multi-objective
optimisation is to find (or approximate) this Pareto optimal set.

Having multiple objectives means there is only a partial order on solutions,
which causes problems for selection in an evolutionary algorithm. The usual
solution is to define a ranking on solutions: one popular scheme[8] defines the
rank of a solution x wrt a set X to be the number of solutions inX that dominate
x. Selection is then based on ranks: a lower rank implies a better solution.

Precise definitions of all these terms can be found in [9].

4 The National Hockey League

The NHL[10] features twenty-four teams from the USA and six from Canada,
divided between two conferences. Each conference is further divided on a regional
basis into three divisions of five teams each. The NHL regular season runs from
October to April, and each team plays 82 games:

– six games against each of the other four teams in its division;
– four games against each of the other ten teams in its conference;
– one game against each of the fifteen teams in the other conference, and three

extra wild-card games against teams (usually traditional rivals) from there.

Half of each set of games are played at home. Thus a season comprises 1,230
games in total. Other season structures have been used in the past[10].

Teams play 1–5 games per week, and games are scheduled virtually every day
in the regular season, except for two breaks: Xmas Eve and Xmas Day; and the
All Stars week, where the conferences play a game against each other, scheduled
approximately half-way through the season.

Thus the NHL schedule has no round structure: at any point teams will usually
have played different numbers of games. Coupled with the sheer size of the league,
this greatly increases the difficulty of generating good schedules.

5 Our Multi-objective Approach

The principal decisions in constructing a multi-objective evolutionary algorithm
are deciding how solutions will be represented; what objectives will be used,
and how they will be quantified; how solutions will be selected for survival and
reproduction; what crossover and mutation schemes will be used; and how the
initial population will be seeded.

5.1 Representation

Our representation of a solution comprises four arrays that describe how the
schedule varies from a template, normally one of the existing NHL schedules.

– The team array maps logical team IDs to actual teams.
– The game array maps logical game IDs to actual games.
– The game dates array stores the date for each game in the template.
– The home team array identifies the home team for each game.
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For example, consider a tournament where three teams play each other home
and away, and the following template is used:

T1 vs T2; T2 vs T3; T3 vs T1; T1 vs T3; T3 vs T2; T2 vs T1

Then the solution

{1,3,2}, {2,1,3,4,5,6}, {3,6,8,10,12,16}, {2,1,1,1,1,2}

would represent the schedule

Day 3: T3 vs T2; Day 6: T3 vs T1; Day 8: T2 vs T1
Day 10: T1 vs T2; Day 12: T2 vs T3; Day 16: T1 vs T3

The home team array is applied to the template first, followed by the game array
and the team array. Finally the game dates array delivers a concrete schedule.

Whilst this representation may not give access to the entire search space of
solutions (due to the use of the template), it allows us to efficiently represent dif-
ferences from a known schedule, and to define a mutation scheme that preserves
feasibility.

5.2 Objectives

We assess schedules against three main objectives: minimising travel, minimis-
ing inequity in individual games, and minimising long streaks of home or away
games. We also use a fourth objective to prevent teams having to play multi-
ple games on one day, but this acts as a so-called “constraint objective”: only
schedules with a value of zero for this objective are regarded as feasible.

Travel. Travel between game venues is both expensive and detrimental to play-
ers’ performance. We calculate the travel burden of each team separately by
summing the distances that they have to travel between consecutive games. As
is the norm, we assume that teams do not return home between games on the
road. Thus the travel objective is defined as

travel =
∑
t∈T

81∑
i=1

dist(vt,i, vt,i+1) (1)

where T is the set of all teams, vt,k is the venue of team t’s kth game, and
dist(v1, v2) returns the distance between venues v1 and v2.

Equity. Travel is of course inevitable, but one way to alleviate its effects is
to combine long journeys with long time periods between games. The travel
burden for a given team in a given game is then some balance between the
distance travelled and the number of days since their last game. We defined a
penalty function to quantify this burden:

P (t, i) =
dist(vt,i, vt,i−1)

0.5

(dt,i − dt,i−1)
0.75 (2)
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where dt,k is the day on which team t plays its kth game. The sub-linear expo-
nents used in P reflect the fact that the effect of each extra day or distance is
smaller than the last.

A problem arises for a game if one team is faced with a significant travel
burden while their opponent isn’t. The equity objective is thus defined as

equity =
∑
g∈G

|P (h, i)− P (a, j)| (3)

where G is the set of all games, and in each game team h is playing its ith game
and team a is playing its jth game.

Game Streaks. One way to minimise travel is to play sequences of games at
home, or to combine several visits to distant cities into a single “road trip”.
However, long sequences are regarded as a bad thing: fans like to have the op-
portunity to watch their team play live on a regular basis. Observing the recent
schedules lead us to conclude that game streaks up to length 3 are tolerated by
the NHL, but that longer streaks are avoided where possible. We thus defined
the streaks objective to increase non-linearly with sequence-lengths over 3:

streaks =
∑
t∈T

∑
s∈S

s∑
i=4

i− 3 (4)

where S is the multi-set of streaks in the schedule for team t. An additional
penalty is applied for streaks of identical games.

Feasibility. A schedule is infeasible if a team is required to play two games on
the same day. We could define our mutation operators to disallow this possibility,
but that could limit the search space available and have a negative impact on
results. Instead we define a feasibility objective as

feasibility =
∑
t∈T

81∑
i=1

f(dt,i+1 − dt,i) (5)

where f(0) = 1; f(x) = 0, x > 0, that counts how many times any team is asked
to play two games on one day. The system then optimises this objective in the
usual way, and at the end of the run we discard solutions that have a non-zero
value for this objective. This approach has been shown to produce good results
in previous systems[6, 11, 12].

5.3 Selection

We use a highly elitist approach to selection. In each generation, we allow n
parents to produce n children, then promote the best n of these to the next gen-
eration. Primary selection is based on a domination ranking[8]. Equally-ranked
solutions are separated first by promoting those with lower values in the con-
straint objective, then using crowding distance[13] to encourage diversity.
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5.4 Crossover and Mutation

Given that the representation of a solution has four components, we decided
to combine four parents to produce four children using crossover, with each
parent’s genotype being split between the children in a fixed pattern[15]. We use
probabilistic selection to decide which parents were combined.

Mutation is performed on exactly one of the child’s components, selected
uniformly randomly. The degree of the mutation is determined self-adaptively,
allowing for large mutations early in a run and smaller mutations later for fine-
tuning of solutions[14]. Mutation operates differently for the different compo-
nents of the representation. The constraints on the first and the last of these are
necessary to preserve feasibility.

– The team array is mutated by exchanging a pair of teams from the same
division.

– The game array is mutated by exchanging a pair of games.
– The game dates array is mutated by moving a game either one day forward

or one day back.
– The home team array is mutated by flipping the home and away teams in

two games H vs A and A vs H .

The adaptive component determines how many such operations are performed.

5.5 Population Seeding

We created our initial population with n mutated copies of the 2008–9 NHL
schedule. Given that this is a feasible solution and given the definition of our
mutation operators, we know that all solutions derived in the course of a run
are feasible, except with regard to the constraint objective from Section 5.2.

Seeding with other existing schedules produced similar results.

6 Experiments and Analysis

We performed a series of experiments to set basic parameters like population
size, and to determine which crossover mechanism performed best[15].

The single run of the final system described here had a population of 2,000
and ran for 20,000 generations. It was written using Java v1.6 under Windows
Vista: it ran overnight on an Intel 2.66GHz machine with 4GB of RAM.

6.1 Pareto Front Evolution

Figure 1 shows the developing Pareto front, plus the fitness of the 2008–9 NHL
schedule. Three objectives can be hard to visualise, so we show three separate
projections in each pair of objectives. Note that some solutions which are non-
dominated in three objectives may appear to be dominated in the projections.

The graphs show collectively that the system is able to improve all three ob-
jectives simultaneously and to quickly derive solutions that dominate the original
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Fig. 1. Front progression at various generation numbers for one run of our system. All
objectives are being minimised. Only feasible solutions which are non-dominated in the
relevant objectives are shown.

schedule, i.e. that beat it in all three objectives. All of the solutions in the final
population were feasible (i.e. the constraint objective was 0), a situation that
eventuates fairly early in the run, and it contained 729 solutions that dominate
the original. The width of the final front indicates that the system can derive a
set of solutions that offer a range of trade-offs across the objectives.

6.2 Comparison with Existing Schedule

Table 1 shows the fitness values of four selected schedules from Figure 1, plus the
2008–9 NHL schedule. We consider only schedules that dominate the original.

Table 1. Fitness values of four schedules from one run of our system, and comparison
with the 2008–9 NHL schedule

Travel (km) Equity Streaks
2008–9 1,909,224 16,555 506

Good Travel 1,698,069 13,042 399
Good Equity 1,883,880 11,452 249
Good Streaks 1,851,139 12,148 144

Balanced 1,799,133 12,110 217
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The “Good Travel” schedule has over 11% less travel than the 2008-9 schedule,
i.e. a reduction of 211,155km, combined with over 20% improvement in both
equity and streaks. Focusing on the other objectives, the potential gains are
even more impressive: 31% in equity and 72% in streaks. In the latter case, the
median of the individual teams’ streaks fitnesses goes from 15 down to only 3.

Whilst there is a clear trade-off between minimising travel and minimising
streaks, it appears to be difficult to improve the equity values beyond a certain
level. This probably reflects the reality of the geographical distribution of the
teams: the densely-populated north-east of the continent has many teams close
together, whereas the west has fewer teams, much further apart.

As Figure 1 suggests, if we also consider solutions that do not dominate the
original, we can get over 20% reduction in travel, although obviously at a cost
in the other objectives.

6.3 Comparison for Individual Teams

It is important to check that this overall fitness improvement does not come at
the expense of individual teams. With a stochastic process like an evolutionary
algorithm, even with a better schedule overall it is likely that some individual
teams will be worse off. Figure 2 shows how the individual fitnesses of the thirty
teams change from the corresponding values from the 2008–9 NHL schedule.

The graphs show the following for each objective.

Travel: in the “Good Travel” schedule, the biggest increase in travel is around
5,000km, which is small and applies to one of the teams that is doing well
originally. The occasional increases in travel in the other schedules should
be set against the fact that the teams average 64,000km travel in the 2008–9
NHL schedule.

Equity: in all four schedules, all teams are better off in equity.
Streaks: significantly worse streaks appear only in the “Good Travel” schedule:

in the other three schedules, with only one exception losses are small and
are confined to teams that were doing well in streaks originally.

Note that for all objectives in all derived schedules, the worst team does better
than the worst team in the 2008–9 NHL schedule, and only rarely does a team
do worse than its own worst previous schedule under the current NHL structure.

7 Conclusions

We have described a multi-objective evolutionary algorithm that generates fix-
ture schedules for the National Hockey League. Experiments show that the sys-
tem is able to derive schedules that beat the existing schedule in three objectives
simultaneously: minimising the teams’ total travel, promoting equity in rest time
between games, and minimising long streaks of home or away games. It does
this without unduly penalising any individual team. The system returns a set of
schedules that offer a range of trade-offs across the different objectives.

Future work could include refining the objectives further, and explicitly as-
sessing the changes for individual teams.
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Fig. 2. Histograms of the individual teams’ change in each fitness from the 2008–9
NHL schedule for four schedules from one run of our system. In each graph, the thirty
teams are ordered best-worst by their fitness in the 2008–9 schedule, and a positive
value for a team reflects an improved fitness.
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Abstract. Regressions has successfully been incorporated into memetic
algorithm (MA) to build surrogate models for the objective or constraint
landscape of optimization problems. This helps to alleviate the needs for
expensive fitness function evaluations by performing local refinements on
the approximated landscape. Classifications can alternatively be used to
assist MA on the choice of individuals that would experience refinements.
Support-vector-assisted MA were recently proposed to alleviate needs for
function evaluations in the inequality-constrained optimization problems
by distinguishing regions of feasible solutions from those of the infeasible
ones based on some past solutions such that search efforts can be focussed
on some potential regions only. For problems having equality constraints,
however, the feasible space would obviously be extremely small. It is thus
extremely difficult for the global search component of the MA to produce
feasible solutions. Hence, the classification of feasible and infeasible space
would become ineffective. In this paper, a novel strategy to overcome such
limitation is proposed, particularly for problems having one and only one
equality constraint. The raw constraint value of an individual, instead of
its feasibility class, is utilized in this work.

1 Introduction

Real-world optimization problems are often constrained. Generally, they can be
formulated as finding some vector x of n real-valued independent variables that
minimizes

f(x) (1)

subject to

g(x) ≤ 0 (2)
h(x) = 0 (3)

where x ∈ �n is often referred to as the solution, while f : �n → � the objective,
whereas g : �n → �ng and h : �n → �nh the inequality and equality constraints,
respectively. There may also be bound constraints of the form x ≤ x ≤ xu with
x being the lower and xu being the upper bound.

A. Nicholson and X. Li (Eds.): AI 2009, LNAI 5866, pp. 391–400, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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In addition, real-world problems often involve expensive computation of their
objective/constraint functions. Potential energy minimization in computational
molecular chemistry or biology, for example, demands minutes to hours in each
function evaluation depending on the size of the molecule as well as the fidelity
of the model being used. The number of function evaluations required to solve
problems in this category is therefore a significant issue.

One method to deal with the situation when only the inequality constraints
were present was proposed in [1][2]. The five problems experimented with in [1],
all of which have sufficiently reasonable ratio of the feasible to the whole search
space, were solved within less amount of function evaluations using the proposed
method. Dealing with the equality-constrained optimization problems, however,
extremely small ratio of the feasible to the whole search space poses challenges
to the global search algorithm to find a feasible solution, deeming the proposed
method that separates the regions of feasible from infeasible solutions unsuited.
In this paper, a novel strategy designed for the equality-constrained problems is
proposed with a primary focus on problems with single equality constraint only.

2 Literature Review

2.1 Deterministic Algorithms

Methods of feasible directions is a class of deterministic algorithms that proceed
from one feasible solution to another in order to solve constrained optimization
problems [3]. Zoutendijk algorithm [4] and sequential linear programming (SLP)
approaches [5][6][7] employ first-order approximation to both the objective and
the constraints and are consequently prone to slow convergence. By employing
second-order functional approximation, sequential quadratic programming (SQP)
technique [8] enjoys quadratic rate of convergence and is the state-of-the-art of
nonlinear programming solvers [9].

The following quadratic program is solved for direction d at the i-th major
iteration of the SQP.

f(x(i)) +∇f(x(i))T d +
1
2
dT∇2L(x(i))d (4)

subject to

gj(x(i)) +∇gj(x(i))T d ≤ 0 j = 1, . . . , ng (5)

hj(x(i)) +∇hj(x(i))T d = 0 j = 1, . . . , nh (6)

where

∇2L(x(i)) = ∇2f(x(i)) +
ng∑
i=1

μ
(i)
j ∇2gj(x(i)) +

nh∑
i=1

ν
(i)
j ∇2hj(x(i)) (7)

Throughout this work, the gradient vectors are assumed to be readily available
while the Hessian matrices are updated using the quasi-Newton approximation.
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Although quadratic rate of convergence is achievable, it is well known that
deterministic optimization algorithms may not converge to the global optimum.
Constrained optimization problems with nonlinear objective or constraints are
in general intractable. It is impossible to design a deterministic algorithm that
would outperform the exhaustive search in assuring global convergence [10].

2.2 Randomized Algorithms

Genetic algorithm (GA) [11] is a randomized algorithm with ability to overcome
the drawback of deterministic optimization algorithms. Belonging to the class of
evolutionary computing, GA is motivated by the natural inheritance of genes and
the natural selection in the course of biological evolution [12] with the crossover,
the mutation, and the survival-of-the-fittest being at its very heart. The simplest
form of the algorithm assumes only one population evolved from one generation
to the next. In dealing with constraints, the ranking scheme in [13] is often used.
Summarized in the following three points, it is employed throughout this work.

– The feasible solution is preferred to the infeasible one.
– Between two feasible solutions, the one having better objective is preferred.
– Between two infeasible solutions, the one having less amount of violation to

the constraints is preferred.

Research works on constrained evolutionary computing over the last decade in-
clude Homomorphous Mapping [14], Stochastic Ranking [15], the ASCHEA [16],
Simple Multimembered Evolution Strategy (SMES) [17] that is known to have
used the smallest number of fitness function evaluations (FFEs) so far, and some
others [18][19][20][21]. Even though specially-designed operators accelerate the
search for the global optimum to certain extent, it is a consensus that GA may
suffer from excessively slow convergence trying to locate the optimum with suf-
ficient precision because of its failure in exploiting local information [22].

2.3 Hybrid Algorithms

When hybridizing optimization methods, two central yet competing goals meet:
exploration and exploitation [23]. The exploration provides reliable estimates of
the global optimum by surveying the search space using global search methods,
which are accommodated by the randomized algorithms. The exploitation then
enhances each estimate by focussing the search efforts on its local neighborhood
in order to produce a sufficiently accurate global optimum. This is accomplished
using local search methods, which are facilitated by the deterministic algorithms.
Motivated by Dawkins’ notion of meme [24] (unit of cultural evolution capable of
local refinements), a memetic algorithm (MA) exhibits this particular behavior.
As the simplest variant, the simple MA simply interleaves global and local search
methods one after the other. When compared to its conventional counterparts,
the simple MA performs better by converging to a high quality global optimum
and searching more efficiently [22].
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Local refinements for each individual in the population, unfortunately, need
not necessarily be the most efficient strategy. Local refinements of solutions at
different locations may end with the same local optimum. Local search methods,
such as the SQP, are known to converge quickly only when initialized with an
approximate solution close enough to the optimal solution. Thus, the choice of
individuals that should undergo local refinements becomes a critical issue in MA.

3 Proposed Approach

3.1 The Global Optimum

The optimization problem constrained by one and only one equality constraint
always has global optimum situated at some particular location along the curve
defined by h(x) = 0. This curve is the feasible space of the problem. Illustrated
in Fig. 1 is the constraint space of benchmark problem g11—the objective and
constraint functions of which can be found in [25][26]. The solid curve represents
the feasible space and the dot the global optimum of the problem. For this type
of problems, the feasible space sets the solutions with positive constraint values
apart from those with negative ones.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x1

x
2

Fig. 1. Constraint Space of Benchmark Problem g11
◦: constraint space where h(x) < 0; +: constraint space where h(x) > 0

It is understood that local search methods, such as the SQP, converge quickly
to local optimum when they are initialized with an approximate solution that is
close enough to the optimal solution [3]. Because one of the possibly many local
optima must be the global optimum, focussing the search efforts on the regions
nearby the feasible space will definitely increase the odds of being more efficient
in locating the global optimum of the problem. This is achieved in this work by
utilizing one fact that the feasible space of an optimization problem with single
equality constraint is the zero-crossing of the constraint value.
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3.2 The Neighborhood

Similar to [1], neighborhood N of the individual x is defined as the collection of
k nearest solutions (to the individual) obtained from database of past solutions.
The Euclidean distance in (8) is used throughout as a sparsity measure between
any two n-dimensional solutions p and q.

dpq =

√√√√ n∑
i=1

(qi − pi)2 (8)

For the k neighbors are infallibly past solutions, no additional FFE is necessary
to know quantities associated with these solutions. Freely accessible information
include the constraint values based on which two classes can be derived. Should
a neighbor and its corresponding class be represented as xi and yi, respectively,
N = {(xi, yi) : i = 1, 2, . . . , k} = {(x1, y1), . . . , (xk, yk)} defines the information
contained within this neighborhood with

yi = sign(h(xi)) =

⎧⎨⎩+1 h(xi) > 0

−1 h(xi) < 0
(9)

Different from [1], the neighbors in this work are restricted to past solutions xi

for which h(xi) �= 0. This means all the neighbors shall be infeasible—which is
indeed desirable as the regions surrounding the feasible space must be infeasible.
By making use of the signs of the constraint values of an individual’s neighbors,
it is demanded that the individual relative position can be predicted such that
local search will only be executed if the individual is nearby the feasible space
of the optimization problem.

Mixed Neighborhood. This type of neighborhood consists of members having
positive and negative constraint values. Neighborhood of this type is absolutely
of significant interest and importance. A two-class classification subproblem can
be formulated out of this scenario. The decision boundary produced as the result
of solving the classification subproblem does not only distinguish the regions of
positive constraint values from those of the negative ones, but also approximates
the feasible space of the optimization problem locally. Support Vector Machine
(SVM) [27] will be described in the next subsection to serve this purpose.

Positive-only Neighborhood. A positive-only neighborhood, as indicated by
its name, consists of members having only positive constraint values. This is of
little or no importance as there is no clue about the feasible space of the problem
that can be deduced from this type of neighborhood.

Negative-only Neighborhood. A negative-only neighborhood, as revealed by
its name, consists of members having only negative constraint values. Similarly,
no clue about the feasible space of the problem can be mined from this type of
neighborhood, making it of little or no significance.
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3.3 The Support Vector Machine (SVM)

SVM is a machine-learning technique initially proposed as a two-class classifier.
It is well-known as being characterized by its ability to maximize the geometric
margin between the two classes, and simultaneously, minimize the classification
error. Upon provision of k training data instances (xi, yi) where yi ∈ {−1,+1}
for all i = 1, 2, . . . , k, the SVM needs to maximize the quadratic program below.

k∑
i=1

αi −
1
2

k∑
i=1

k∑
j=1

αiαjyiyj(xi · xj) (10)

subject to

k∑
i=1

yiαi = 0 (11)

∀i αi ≥ 0 (12)

Collection of training data instances having α > 0 defines the support vectors.
Every one of them is situated at the decision surface D(x) = +1 or D(x) = −1
depending on which class it belongs to. Weight vector w and bias w0 are hence
computed using (13) and (14) in which SV is the set of support vectors indices.

w =
k∑

i=1

αiyixi =
∑

i∈SV

αiyixi (13)

w0 =
1
|SV |

∑
i∈SV

⎛⎝yi −
k∑

j=1

αjyj(xj · xi)

⎞⎠ (14)

Upon encountering a mixed neighborhood, the SVM needs training based on
the k instances of N . Subsequently, the SVM can be used to predict the relative
position of the individual x with respect to neighborhood N , producing one of
the following three possible outcomes.

1. |D(x)| ≤ +1
The individual x has been estimated to be located nearby the feasible space.
With no neighbors found within this region, furthermore, local refinement is
obviously necessary to exploit this seemingly unexplored search space.

2. D(x) > +1
Depending on the actual value ofD(x), the individual x may be close enough
to the feasible space. With neighbors around, there may not be further need
to exploit this previously explored region of the search space.

3. D(x) < −1
Similar to case 2, the individual x may be located close to the feasible space
depending on the value of D(x). With neighbors around, no exploitation of
this previously explored search space would be necessary.
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3.4 The Complete Algorithm

Algorithm 1 presents the complete algorithm of the proposed approach in pseudo-
code form. An important point worth noting is that the size of the neighborhood
is recommended to be some multiple of the dimensionality of the problem be-
ing solved such that it would be large enough to capture important information
yet small enough to ensure locality and allow the SVM to perform reasonably
fast as its complexity depends largely on the number of training data instances.
While the cost of running the SVM may not be inexpensive, the efforts required
for evaluating the objective and constraint functions may be magnitudes greater
for many practical optimization problems. Thus, the additional budget incurred
by the SVM will become insignificant when dealing with some computationally-
expensive optimization problems.

Algorithm 1. Classification-assisted MA (CaMA)
Initialize a population
Evaluate the population
while no stopping criteria have been fulfilled do

for each individual x in the population do
if past solutions are of negative only or positive only constraint values then

Refine x using local search
else

if neighborhood N of x is a mixed neighborhood then
Train SVM based on N to obtain decision function D(·)
if |D(x)| ≤ 1 then

Refine x using local search
end if

end if
end if

end for
Evolve the population through crossover, mutation, and elitism
Evaluate the population

end while

4 Results and Discussions

Using GA as the global and SQP as the local search method, an empirical study
was carried out with a population size of 100 individuals and a maximum of 2n
fitness function evaluations (FFEs) for each individual refinement with n being
the dimensionality of the problem. Experimented with are benchmark problem
g03 for n = 2, . . . , 10 and g11, the objective and constraint functions of which
can be found in [25]. These are the only two benchmark problems having single
equality constraints among the 24 problems in [26]. When the proposed method
was used, a neighborhood size of 2n was assumed.

Table 1 tabulates the performance of 30 independent runs of the simple MA
(SMA) as well as the classification-assisted MA (CaMA) proposed in this paper.
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Table 1. Number of FFEs Required by SMA and CaMA to Locate the Global Optimum

Problem Statistics SMA CaMA Saving

best 284 124
g03 (n = 2) average 362 152 58.01%

worst 471 187

best 935 220
g03 (n = 3) average 1, 116 307 72.49%

worst 1, 244 411

best 1, 543 284
g03 (n = 4) average 1, 681 434 74.18%

worst 1, 812 552

best 1, 842 258
g03 (n = 5) average 2, 083 394 81.08%

worst 2, 258 536

best 2, 212 228
g03 (n = 6) average 2, 389 337 85.89%

worst 2, 639 642

best 2, 499 148
g03 (n = 7) average 2, 714 407 85.00%

worst 2, 955 2, 763

best 2, 763 180
g03 (n = 8) average 3, 572 1, 175 67.11%

worst 5, 747 3, 499

best 3, 001 157
g03 (n = 9) average 4, 330 2, 351 45.70%

worst 6, 257 4, 441

best 3, 429 401
g03 (n = 10) average 5, 539 2, 945 46.83%

worst 6, 477 5, 788

best 523 116
g11 (n = 2) average 606 154 74.59%

worst 712 225

As the simplest variant of MA, the simple MA simply interleaves the global with
the local search methods one after the other. In other words, each individual in
the population would experience local refinements in the context of simple MA.
The percentage of saving achievable by the CaMA with respect to the SMA on
the average is then calculated as follows.

saving =
#FFEs(SMA) −#FFEs(CaMA)

#FFEs(SMA)
× 100% (15)

It is clear from the table that the CaMA consistently outperforms the SMA in
the best, worst, and average cases. With average savings ranging from about
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45% to 85%, the CaMA shall undoubtedly bring great advantage when solving
computationally-expensive optimization problems. For this category of problems,
reductions of several hundreds to several thousands of FFEs as exhibited over
the benchmark problems could easily translate to savings of days to months of
computational time. All these are made possible as search efforts were focussed
around the regions that surround the feasible space of the optimization problems,
thanks to the classification algorithms, such as the SVM, that enable prediction
of local feasible space of the problems. As unnecessary refinements initiated with
solutions relatively far away from the feasible space are eliminated, less number
of FFEs are required in locating the global optimum of the problems.

5 Conclusion

Raw constraint values—rather than feasibility classes—are utilized in this work
to focus search efforts on the regions that surround the minute feasible space of
optimization problems with single equality constraint. Savings of up to 85% are
achievable in term of the number of fitness function evaluations needed to solve
benchmark problem g03 with dimensionality varied from 2 to 10 as well as g11.
In the optimization of computationally-expensive problems, such amount could
bring significant time reduction. Thus, generalization to problems with multiple
equality constraints and possibly some inequality constraints shall be addressed
in immediate future.
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Abstract. In this paper, we propose an algorithm for reducing the number of 
unknown words on blog documents by replacing peculiar expressions with formal 
expressions. Japanese blog documents contain many peculiar expressions 
regarded as unknown sequences by morphological analyzers. Reducing these 
unknown sequences improves the accuracy of morphological analysis for blog 
documents. Manual registration of peculiar expressions to the morphological 
dictionaries is a conventional solution, which is costly and requires specialized 
knowledge. In our algorithm, substitution candidates of peculiar expressions are 
automatically retrieved from formally written documents such as newspapers and 
stored as substitution rules. For the correct replacement, a substitution rule is 
selected based on three criteria; its appearance frequency in retrieval process, the 
edit distance between substituted sequences and the original text, and the 
estimated accuracy improvements of word segmentation after the substitution. 
Experimental results show our algorithm reduces the number of unknown words 
by 30.3%, maintaining the same segmentation accuracy as the conventional 
methods, which is twice the reduction rate of the conventional methods. 

1   Introduction 

Internet use becomes more widespread. Blogs are regarded as large linguistic 
resources where people express their feelings and thoughts. Topics such as news and 
technologies are also gain on blogs. Studies of blog analysis for information retrieval, 
topic extraction, blog ranking, and so forth, have attracted much attention in recent 
years [1, 2]. However, in Japanese blogs, people tend to use peculiar expressions, 
which greatly reduce the performance of linguistic analysis since morphological 
analyzers regard them as unknown sequences. Reducing these unknown sequences 
improves the accuracy of morphological analysis for blog documents. Although 
manual registration of peculiar expressions to morphological dictionaries is a 
common solution, registration of unknown words requires much effort and specialized 
knowledge. For example, information related to the word such as its part of speech 
and inflected form should be acquired. Compatibility of the dictionary should be 
maintained. From our experience, only 30,000 unknown words per month are 
manually registered by an experienced worker. On the other hand, in our pre-
examination by using popular Japanese morphological analyzer MeCab [3], 6,000,000 
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blog sentences contain about 650,000 kinds of unknown words, which shows the 
difficulty in the manual registration of unknown words.   

Most peculiar expressions seen in Japanese blogs are derived from formal 
expressions and categorized in some typical patterns based on their way of derivation. 
For example, visually-similar characters tend to be substituted, such as, “ ” 
instead of “ ” (“i @m” instead of “I am” in English), where “ ” is 
substituted by its small character “ ” and “ ” is substituted by its visually-similar 
symbol “ ”. In the same manner, “ ” (“cute”) can be substituted by “ ” 
(“ ”). In another example of derivation patterns, words are written to reflect their 
pronunciation in conversation. “ ” (“amazing”) normally pronounced “sugoi” is 
emphatically pronounced “sugooi” or “suggoi” in conversation. 

In blogs, people exactly describe these pronunciation and create various kinds of 
expressions, such as, “ ”, “ ”, “ ” (pronounced “sugooi”, 
“sugooi” and “suggoi” respectively), and so forth. Japanese is written with several 
different character types such as kanji, hiragana, katakana, romaji (Roman alphabet), 
and so forth. People intentionally spell words in different character types. For 
example, “ ” (“troublesome” written in hiragana format) sometimes appears in 
its katakana format “ ” in blogs. 

In order to improve the accuracy of morphological analysis of blog documents, we 
propose an algorithm for reducing the number of unknown words by automatically 
replacing peculiar expressions with formal expressions. In our algorithm, candidates 
for the substitution of peculiar expressions are automatically retrieved from formally 
written documents such as newspapers and stored as substitution rules. In order to 
replace a peculiar expression with the most suitable expression for the context, 
substitution rules are scored and selected based on three criteria; the appearance 
frequency in the retrieval process, the edit distance between substituted sequences and 
the original text, and the estimated accuracy improvements of word segmentation 
after the substitution. 

We implemented our algorithm and compared its performance to conventional two 
methods. In our experiments, we modified 100,000 blog sentences and evaluated the 
number of unknown words and the accuracy of word segmentation. Our evaluation 
shows our algorithm reduces 30.3% of unknown words in original blog documents, 
which is twice the reduction rate of the conventional methods, maintaining the same 
segmentation accuracy. We also evaluated the scalability of the proposed algorithm 
and the trade-off between the number of unknown words and the ratio of errors in 
substitution. 

2   Related Work 

To date, we have found no direct researches which involve automated text normalization 
for improving morphological analysis of blog documents. However, we have identified a 
similar work for improving morphological analysis towards casual expressions. For 
example, the “Dictionary Expansion” algorithm [4] focuses on accuracy improvement of 
morphological analysis for Japanese colloquial expressions in Web chat applications. The 
authors find out the rules that generate colloquial expressions from formal expressions 
registered on morphological dictionaries. For example, they define rules like “adjective 
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words tend to be inserted with a prolonged sound symbol” from the case seen in Web 
chat applications, where the formal adjective “ ” tend to be written as “ ”. 
Since this method relies heavily on the subjective view and skills of the operator, it is 
difficult to generate generic rules that can be usefully applied to many expressions. In [5], 
our experiments with 2,000,000 blogs show 37.2% of all the sentences affected by the 
algorithm of [4] increase errors in word segmentation. This suggests the algorithm 
proposed in [4] is not versatile enough to apply to any type of text data, including blogs. 

Linguistic analysis of colloquial expressions is reported in [6-8]. The approaches 
shown in these papers also use manually generated rules, which require specialized 
knowledge to generate. Considering research to reduce the number of unknown 
words, the method for fluctuations of words written in katakana format is offered in 
[9], while the algorithm in [10] automatically obtains new words from Web pages. 
The estimation algorithm for parts of speech of unknown words is offered in [11].The 
estimation algorithm for word segmentation in Japanese sentences is offered in [12]. 
These works are not focused on recognizing peculiar expressions on blogs. 

In our previous work [5], we propose the “Initial Rule Expansion” algorithm, 
which automatically creates highly accurate rules from manually given low-level 
rules based on the statistics. For example, given rules such as “ ”and “ ”will 
result in specific rules (a) “ ” and (b) “  ” 
(“X Y” means substitution of Y for X). Then, (a) “ ”is stored due to 
its statistically high correctness. Although this method is effective in reducing the 
number of unknown words of peculiar expression, only a limited number of sentences 
are modified by the rules. Due to the many kinds of peculiar expressions, it is almost 
impossible to manually cover all the initial rules. 

 

Fig. 1. Overview of the substitution algorithm 

3   Algorithm Design 

Fig. 1 shows an overview of our algorithm. Inputs of the algorithm are blog documents 
and formally written documents such as newspapers. Substitution candidates for a 
peculiar expression are listed up from formally written documents.  
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Substitution rules are generated from the peculiar expression and its substitution 
candidates. Substitution rules are scored based on the following three criteria; (1) the 
appearance frequency in the retrieval process, (2) the edit distance between 
substituted sequences and original text, and (3) the estimated accuracy improvements 
of word segmentation after the substitution. A substitution rule with the highest score 
is selected as the most suitable expression for the context.  

3.1   Generation of Substitution Rules 

The rule generation algorithm has four steps, (1) extraction of a peculiar expression, (2) 
generation of a query for substitution candidates of the peculiar expression, (3) retrieval 
of the substitution candidates, and (4) generation of rules. Fig. 2 shows an example of 
rule generation. The sentence “ ” (“I wonder whether it is 
possible.” in English) contains the peculiar expression “ ”and this expression should 
be substituted by the formal expression “ ”Most peculiar expressions are detected as 
unknown words in the morphological analysis because they are not listed in 
morphological dictionaries ((1) of Fig. 2 shows the peculiar expression “ ” is detected 
as an unknown word). Substitution candidates are retrieved from formally written 
documents. A query for substitution candidates is created by extracting the unknown 
word with its adjoining morphemes, and replacing the unknown word with the wild-
card symbol. ((2) of Fig. 2 shows the peculiar expression “ ”and its adjoining 
morphemes “ ”and “ ”are taken out, and “ ”is replaced with the wild-card 
symbol, “*”). As a result of the retrieval, substitution candidates are obtained ((3) of 
Fig. 2). Substitution rules are generated from the peculiar expression and the parts 
matched with the wild-card of the query ((4) of Fig. 2, where “X Y” means 
substitution of Y for X). The substitution rules obtained by the above algorithm are 
scored based on the criteria described in Section 3.2. 

 

 

Fig. 2. Generation of Substitution Rules 
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3.2   Scoring Substitution Rules 

Substitution rules are scored based on the following criteria. 

Scoring Rules Based on the Appearance Frequency. The expressions appearing in 
the similar contexts to the peculiar expressions are expected to be suitable substitution 
candidates. The amount of retrievals for each substituted expression represents its 
appearance frequency. Table 1 is a summary of the appearance frequency of each 
substitution candidate retrieved from (3) of Fig. 2. The candidate “ ”gains a high 
score because it often appears in a similar context to the peculiar expression “ヵゎ”. 
The appearance frequency is divided by the total number of retrievals for normalization 
so as not to depend on the number of retrievals. 

Scoring Rules Based on the Edit Distance Since. Most peculiar expressions are 
derived from formal expressions, rules which greatly change a peculiar expression are 
considered not to be the best substitution candidate. The edit distance such as the 
Levenshtein distance [13] is a criterion for measuring the amount of difference 
between two character strings. The edit distance between two strings is given by the 
minimum number of operations needed to transform one string into the other, where 
an operation is an insertion, deletion, or substitution of a single character. For 
example, the edit distance of the word “ ” (“forum”) and 
“ ”(“farm”) is 2 since the substitution of “ ”for “ ”and the deletion of “ ”is 
the minimum way to change the former into the latter. Table 2 is a summary of the 
edit distance in each substitution rule generated in the example of Fig. 2. Substitution 
rules with a large edit distance gain a low score such as, “ ”and 
“ ”. 

The weighted edit distance based on the way of derivation is expected to work 
effectively. For example, as previously stated, people intentionally write a word in 
katakana format on blogs, which is normally written in hiragana format on formal 
documents. Giving a small edit distance between katakana and hiragana characters is 
effective. The visual similarity of two characters and the similarity in the 
pronunciation of two words should also be reflected on the edit distance, which is our 
future work. 

Scoring Rules Based on the Estimated Accuracy Improvements of Word 
Segmentation. Mistakes in rule selection lead to the generation of ungrammatical 
sentences. In our algorithm, morphological analysis cost is used for evaluating the 
relative unnaturalness of sentences. Morphological analysis cost is calculated from the 
appearance probability of a word and the joint probability of each word [14]. The  

 
Table 1. Scoring Based on Appearance Frequency 
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Table 2. Scoring Based on Edit Distance 
 

 
 

validity of rule adoption is evaluated by comparing the morphological analysis costs 
of a sentence with peculiar expressions and substituted sentences. 

Fig. 3 shows morphological analysis costs of each substituted sentence obtained in 
Fig. 2. Each sentence is segmented by a morphological analyzer. Each segment is 
given a morphological analysis cost (accumulated cost from the beginning of each 
sentence). The morphological analysis cost at the end of each sentence is considered 
to show the grammatical correctness of the whole sentence. Morphological analysis 
cost around peculiar expressions such as “ ” become higher since appearance 
probabilities and joint probabilities of peculiar expressions are low compared to 
formal expressions. The score of a rule is defined as the difference of the 
morphological analysis cost between a substituted sentence and its original sentence. 
Although shorter sentences tend to get lower morphological analysis costs, rules 
deleting many characters get large edit distances. In the following section, we explain 
the calculation of integrated score of a rule based on the above criteria. 

Calculation of Integrated Score. The integrated score of a substitution rule score is 
generally defined as 

  score = f(freq) + g(dist) + h(cost)                               (1) 

where freq is the appearance frequency of the substituted expression, dist is the edit 
distance between the substituted expression and original peculiar expression, cost is 
the difference of the morphological analysis cost between the substituted sentence and 
the original one, and f; g; h are the functions for weighting each criterion. In this 
paper, function f; g; h is simply defined as constants α, β and γ as follows. 

score = α freq + β dist + γ cost                                     (2) 

As an example, Table 3 shows examples of substitution rules that appeared in the 
experiments in Section 4. The value of constants in Expression (2) is set as α= 1, β = -
16, γ = -0.005. According to the table, the peculiar expression “ ”should be 
substituted by “ ”based on its appearance frequency and morphological analysis 
cost. The expression “ ”retrieved as substitution candidates gets a lower 
score because of its large edit distance from its original expression. In the same 
manner, “ ”should be substituted by “ ”based on its appearance 
frequency and edit distance. “ ” (“no money”) should be substituted by 
“ ”based on its morphological analysis cost. In this case, however, “ ” 
(“no tax”) also gets a relatively high score due to its high appearance frequency and 
low edit distance. In Section 4, we evaluated the miss ratio of substitution, where the 
meaning of a sentence has changed. 
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Fig. 3. Scoring Based on Morphological Analysis Cost 

 
Table 3. Integrated Scores Based on Each Criterion (α = 1, β = –16, γ = –0.005) 

 
 

3.3   Adoption and Registration of Substitution Rules 

Adoption of a substitution rule is decided depending on whether its score is higher 
than a given threshold. The number of substitutions and its accuracy are in a trade-off 
relation. In Section 4, we evaluated the trade-off by monitoring the reduced number of 
unknown words and word segmentation accuracy on several thresholds. 

In our algorithm, rules with higher scores than the given threshold are registered  
on the database. When few substitution candidates are obtained from formally  
written documents, additional substitution rules are available from the database. 
When automatically created queries happen to be poor due to the neighbor characters 
of peculiar expressions, many unrelated expressions are retrieved. For example, a 
query generated from the sentence “ ” (“kids are ”) may be  
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Table 4. Categorization of Substitution Rules Based on their Effects on the Meanings 

 

“ ”(“kids are *”) which retrieves any kind of adjectives as substitution 
candidates. Calculation and comparison of many substitution candidates require much 
time, and substitution for them tends to result in errors. In this case, only the rules on 
the database are used because peculiar expressions are expected to be correctly 
substituted in other cases and correct rules are stored on the database. 

4   Performance Evaluation 

We implemented our algorithm and compared its performance with two conventional 
algorithms, (a) “Dictionary Expansion Algorithm (DEA)”[4] and (b). 

“Initial Rule Expansion Algorithm (IREA)”[5]. The problem with using DEA is the 
high error ratio on the word segmentation due to the over adoption of rules. The problem 
with using IREA is the lack of scalability, where only limited sentences are normalized 
by the manually given initial rule sets. Considering these problems, we evaluated the 
reduction of unknown words and the accuracy of word segmentation. We also evaluated 
the changes in the meanings of sentences because our substitution algorithm may greatly 
change the meanings of sentences due to their nature as an unsupervised algorithm. The 
trade-off relation of our algorithm is shown on several thresholds. 

4.1   Experimental Settings 

We executed morphological analysis of blog sentences by using DEA, IREA, and our 
algorithm and compared their performance based on the following four criteria; (1)  
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Fig. 4. Ratio of improvement and deterioration in word segmentation accuracy, ratio of change in 
the meaning of sentences, and ratio of unknown words on the threshold 0 to 80 in our algorithm 

Table 5. Performance Evaluation of Each Algorithm 

 
 
The ratio of sentences improving the word segmentation accuracy to the total modified 
sentences. (2) The ratio of sentences deteriorating the word segmentation accuracy to 
the total modified sentences. (3) The ratio of sentences changing its meaning to the total 
modified sentences. (4) The ratio of unknown words to the total morphs. 

The accuracy of word segmentation is defined in the same way as the conventional 
methods [4, 5, 15], where word segmentation is correct when it is divided in the same 
manner as that performed manually. The segmentation improvement of a sentence is 
defined as the case where the original sentence has word segmentation errors and the  
substituted sentence has no errors. The segmentation deterioration of a sentence is 
defined as the opposite of the improvement case. Changes in the meaning of 
sentences are defined in three types, (a) almost no change, (b) obviously changed or 
the meaning of a sentence cannot be understood, and (c) difficult to categorize in 
category (a) or (b). Table 4 shows examples of substitutions categorized in category 
(a), (b), and (c). Substitutions in category (a) correctly replace peculiar expressions 
with formal expressions. They may cause a slight change in the impression of 
sentences, but no change in the meaning and the facts. Substitutions in category (b) 
obviously change the facts of sentences or make them incomprehensible.  

Substitutions in category (c) do not change the facts of sentences, but their 
impressions are slightly different. We define that substitutions in category (b) and (c) 
change the meanings of sentences. In the following experiment, the ratio of improvement 
and deterioration in word segmentation and the meaning change ratio are manually 
evaluated by sampling 600 sentences modified in each algorithm. 
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As a Japanese morphological analyzer, we used MeCab [3]. We additionally 
registered 180,000 nouns or proper nouns, new words, and so forth since neither our 
substitution algorithm nor conventional algorithms focus on dealing with those words. 
The detail of experimental environments is as follows. 

 

・ Morphological Analyzer: MeCab version 0.97 
・ Morphological Dictionary: MeCab standard dictionary (IPADIC version 2.7.0) 

plus 180,000 nouns. 
・ Terminal Configuration: 8 CPUs of 2.33 GHz, 64GB RAM, Linux OS version 

2.6.24, gcc version 4.1.2. 
・ Blog Documents: 1,000,000 sentences for the machine learning in IREA and the 

other 100,000 sentences for the targets of modification. 
・ Formally Written Documents: 1,000,000 sentences from Japanese newspapers.  

4.2   Experimental Results 

In our algorithm, the adoption of a substitution rule is decided according to the threshold. 
First, we evaluated the trade-off relation between the substitution accuracy and the ratio 
of unknown words. Fig. 4 shows the ratio of improvement and deterioration in word 
segmentation, the ratio of meaning change in the sentences, and the ratio of unknown 
words when the threshold changes from 0 to 80. When the threshold is low, many 
unknown words are replaced and the ratio of unknown words is low. However, manual 
evaluation of the accuracy in word segmentation and the meaning change ratio shows 
that most substituted words are recognized in other meanings on morphological analyzer. 
As the threshold becomes higher, the ratio of unknown words increases, but the accuracy 
of word segmentation and the meaning change ratio improve. 

Table 5 shows the ratio of improvement and deterioration in word segmentation 
accuracy, the ratio of change in the meaning of sentences and the ratio of unknown 
words in each algorithm. We tuned the threshold of our algorithm to 60 in order to 
maintain the same level in word segmentation accuracy and the meaning change ratio as 
IREA. Our algorithm has higher word segmentation accuracy and smaller ratio of 
unknown words compared to those in DEA. The ratio of unknown words in our 
algorithm is 1.128%, where the reduction ratio is 30.3% from 1.619% of MeCab. The 
reduction ratio of unknown words in our algorithm is twice of that in IREA. This is 
because, in our algorithm, more substitution rules are obtained by the unsupervised 
algorithm, and the three criteria for accurate rule selection enable maintaining the word 
segmentation accuracy and the changes in the meaning of sentences in the same level as 
IREA. Considering scalability, the execution time of our algorithm was only 1 second to 
modify 1,000 blog sentences in the case of using 1,000,000 newspaper sentences. 

5   Conclusion 

In this paper, we proposed an algorithm for reducing the number of unknown words by 
replacing peculiar expressions seen in blog documents with formal expressions. In our 
algorithm, candidates for the substitution of peculiar expressions are automatically 
retrieved from formally written documents and stored as substitution rules. In order to 
replace a peculiar expression with the most suitable expression for the context, a 
substitution rule is selected based on three criteria; its appearance frequency in retrieval 
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process, the edit distance between substituted sequences and the original text, and the 
estimated accuracy improvements of word segmentation after the substitution. The 
experimental results show our algorithm reduces 30.3% of unknown words in original 
blog documents at the same segmentation accuracy as conventional ones. This reduction 
rate is higher than twice of the rate of the conventional algorithm. 
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Abstract. A novel Memetic Algorithm (MA) is proposed for investi-
gating the complex ab initio protein structure prediction problem. The
proposed MA has a new fitness function incorporating domain knowledge
in the form of two new measures (H-compliance and P-compliance) to
indicate hydrophobic and hydrophilic nature of a residue. It also includes
two novel techniques for dynamically preserving best fit schema and for
providing a guided search. The algorithm performance is investigated
with the aid of commonly studied 2D lattice hydrophobic polar (HP)
model for the benchmark as well as non-benchmark sequences. Compar-
ative studies with other search algorithms reveal superior performance
of the proposed technique.

Keywords: Memetic Algorithm, Pair-wise-interchange, Tabu Search,
Modified fitness function, Schema preservation, Guided search space.

1 Introduction

The protein folding problem has remained one of the grand challenges in com-
putational molecular biology. For PSP investigations, hydrophobic-polar (HP)
protein model [1] is most commonly applied. The model considers hydrophobic
(lacking affinity for water) and hydrophilic (water loving) interactions as the
two main dominant forces in protein folding process and amino acids are there-
fore represented as either hydrophobic (H) or hydrophilic (P). For 2D modeling,
these residues are located in square lattice ensuring a self-avoiding walk (SAW)
so that the two residues do not occupy same space position. The fitness function
measures the energy of the conformation which is obtained by evaluating the
topological contacts between two hydrophobic residues (H-H) as -1 (provided
they are not neighbors in given sequence) while topological contacts for other
possible pairs (H-P, P-H, and P-P) are evaluated as 0. The energy matrix ETN

of the HP model [2] is given by eqn. 1. Protein conformation can be encoded in
various ways such as absolute, relative and so on. In relative encoding, a con-
formation has three possible moves relative to current position, namely forward
(F), left (L) and right (R). The first move is always considered as forward (F).

Protein structure prediction (PSP), even in simplified hydrophobic-polar (HP)
model, is NP-complete [3]. Hence, not only GA [4,5,6] but a plethora of other
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evolutionary algorithms [7] including Ant Colony Optimization (ACO), Tabu
Search (TS), Monte Carlo (MC), Memetic Algorithm (MA) are being investi-
gated. Since the PSP problem has a large and complex search space, algorithms
which emphasis only on global optimization (e.g. GA) might not be able to per-
form properly. MA, a powerful combination of GA and local search (LS), due
to its ability to combine local search (LS) techniques refines individual popu-
lation and improves their fitness [8]. Usually, the flexible architecture of MA
allows it to include different approaches for local search, i.e. gradient descent,
pair wise interchange (PWI), tabu search (TS). In this paper, MA with pair
wise interchange is referred as pair-wise MA (PMA) and MA with Tabu search
is referred as tabu MA (TMA). Recent studies in various domains [9,10,11] show
that MA is both efficient (less computations) and effective (higher accuracy)
compared to other EAs. Comparisons between several EAs and MA with pair-
wise-interchange (PWI) show better performance for MA [12]. However, limited
work has been reported on its application to NP-complete PSP problem. Re-
cently, hybridization of GA with Tabu search on PSP [6] showed a satisfactory
performance. With changes in population size based on complexity of the protein
sequence, its application is, however, limited because it is not always possible
to know the complexity upfront. Krasnogor et al. [8,13,14,15] and Smith [16,17]
applied MA to solve PSP problem using techniques such as fuzzy logic, multi-
meme, co-evolution with limited improvement.

ETN =
n−1∑
j=1

n∑
k=j+1

Njk where,

Njk =
{
−1 if j and k are both H residues and topological neighbour;
0 otherwise.

(1)

An appropriate fitness function, capturing domain knowledge is very important
for enhancing fitness function and improving the accuracy of prediction. For ex-
ample, Radius of Gyration (RG), measuring radial distance from a given axis,
was applied [4] to capture the domain characteristics. In an effort to use the
characteristics of the amino acids, hydrophobic property was included in the fit-
ness function [5]. However, there has been no effort to use the equally significant
second hydrophilic (P) property of the residues. We propose a novel fitness func-
tion which not only maintains the significance of the existing fundamental fitness
parameters but also incorporates domain knowledge to bring H type amino acids
close to the H-core and pushing P type residues close to the boundary. This is
achieved by developing two new measures for H and P characteristics, namely
H-compliance and P-compliance. The proposed algorithm also includes a new
technique for dynamically preserving the fit schema based on domain knowl-
edge. Further, we also propose a novel approach to add interim individuals in a
guided manner (rather than randomly) and also maintain the necessary diversity
in population. Experiments are performed using the 2D HP lattice model and
using the bench mark as well as non benchmark sequences. Comparisons with
other techniques are also carried out which show a superior performance of the
proposed algorithm.
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2 Proposed Memetic Algorithm

In this section, we present the three novel aspects of the proposed MA which
enhances its potential for solving the complex PSP problem.

2.1 Modified Fitness Function

An ideal empirical energy function contains only a few energy terms, is com-
putationally efficient, which can be easily derived from experimental data [18].
Further, for PSP problem it should account for effects such as hydrophobic pack-
ing and include penalties for undesirable effects. We will address hydrophobic
packing as it can prove to be important in removing the limitations of the ex-
isting fitness function eqn. 1. This is done by including two new fitness terms
for capturing the H and P characteristics of the residues (i) H-compliance fac-
tor and (ii) P-compliance factor. The resulting new fitness function obtained by
including the two new fitness terms will be referred as ‘modified fitness function’.

H-compliance. As we mentioned earlier, the H residues lack affinity for water
and tend to be located within the protein fold. We define the H-compliance of a
H-type residue as a measure of how compactly (i.e. closely) a residue is located
to the H-core centre. It is measured as the radial distance of H residues from
H-core centre. The smaller the value of H-compliance, the closer the residue is
to the H-core centre. The sum of the distance of all the H-type residues in the
sequence gives the H-compliance of the conformation under consideration.

H-compliance of ith H type residue is denoted as hi. To calculate hi, we
determine the center of a hypothetical rectangle “enclosing” the residues forming
the H core as shown in Fig. 1(a). The coordinates (xrect, yrect) of the “center”
are obtained as: xrect = (xhmax− xhmin) /2, yrect = (yhmax− yhmin) /2.
Further, if coordinates of any ith hydrophobic residue are given as (xhi, yhi), the
overall H-compliance of the jth conformation can be obtained as Hj =

∑nh

i=1 hi.
That is

Hj =
nh∑
i=1

hi =
nh∑
i=1

(xrect − xhi)
2 + (yrect − yhi)

2 (2)

The H-compliance of jth conformation can be added as a fitness term
EH−compliance to the function of eqn. 1. EH−compliance is the average of the H-
compliance of the conformation where nh is the total number of H type residues
in the sequence.

EH−compliance = Hj/nh (3)

P-compliance. The P-compliance of a P type residue is a measure of how
close the P residue is to any of the sides (xpmin, xpmax, ypmin and ypmax)
of a P-boundary rectangle (Fig. 1(b)). P-compliance is defined with the help of
P-boundary rectangle rather than H-core because the P residues are located
close to the outer periphery of a conformation and it is not possible to measure
this from a H-core centre. The smaller the value of P-compliance, the closer it
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Fig. 1. Boundary rectangles for (a) H residues. (b) P residues.

is to the P-boundary rectangle. The sum of the P-compliance of all the P-type
residues gives the P-compliance of the conformation under consideration.

For measuring the P-compliance pi, we determine the minimum distance of an
ith P-type residue from P-boundary rectangle shown in Fig. 1(b).With coordi-
nates of ith P residue given as (xpi, ypi), the P-compliance of the jth conformation
is given as follows

Pj =
np∑
i=1

pi =
np∑
i=1

(min{|xpmin− xpi|, |xpmax− xpi|,

|ypmin− ypi|, |ypmax− ypi|})
(4)

Again, to determine the corresponding fitness term EP−compliance to be included
in eqn. 1, the average P-compliance of the conformation is used as given below.
The term np is the total number of P residues in the individual.

EP−compliance = Pj/np (5)

Finally, the ‘Modified Fitness Function (MFF)’ for the jth conformation which
is a total fitness is given below

Emff
j = aETN + EH−compliance + EP−compliance (6)

Here ETN is fitness for the jth confirmation computed from eqn. 1. The original
fitness function ETN is multiplied by high integer constant value a so aETN of
eqn. 6 will remain integer and the later parts of eqn. 6 will be in decimal and it
will ensure that the original fitness term ETN continues to have an influential
effect on the MFF.

2.2 Schema Preservation

A conformation in any configuration (2D lattice, FCC etc) can be represented
as a two dimensional matrix MCi. In general, if X is the set of all possible moves
and size|X | = n, then Xq ∈ X with q = 1, 2, · · · , n. For relative 2D encoding,
n = 3 and we have the set of possible moves as (X0 = F, X1 = L, X2 = R). If l is
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the length of the sequence (i.e. number of residues), then for 2D relative encoding
a conformation will have only (l − 2) moves [19], because the first move is always
F. Thus the size of matrix MCi will be (l − 2)×n. The matrix MCi is populated
as MCi = [arq]r=1,...,l−2,q=1,...,n. Now, if the rth position of a conformation Ci is
Xq , then arq = ε× F (Ci) otherwise arq = 0. The constant ε = −1 and F (Ci)
is the fitness of the ith conformation.

To find out the highly probable schema that is likely to occur in subsequent
generation, we obtain a matrix π =

∑N
i=1 MCi or the entire population, N . Mul-

tiplying π with a column vector [1 1 1]T , we obtain another column vector
Λ = π × [1 1 1]T = [ρ1 · · · ρl−2]T . The rth row of Λ presents the cumu-
lative weight, ρr of rth position of all conformations. To obtain the probability
of occurrence of each move at a given position, we multiply each row of matrix
π by (1/ρr) to obtain another matrix π′. This matrix π′ is important because
it contains the relevant information about the probability of occurrence of a
schema. To establish a move in a given position is highly probable, we define a
cut off value χ (= 0.8). If any element of matrix π′ has value greater than χ,
then that position is fixed for finite number (=50) of generations. However, if
the probability of this position changes after 50 iterations, we may get a new
schema. However, based on the Hollands schemata theorem which underpins the
working of MA, we note that the probability of changes in schema will reduce
as the solution converges. This novel technique of schema preservation enables
us to establish the highly probable moves in a conformation. By applying the
technique, if two moves (say, first and third move) are fixed as say F, then for a
sequence of length 10 the conformation would be FxFxxxxxx where x is a dont
care move. This fixing of schema significantly reduces the search space (hence
computational time) and restrict search to those individuals which contain highly
probable moves.

Fig. 2. (a) Conformation from the best individual set with fitness of -2, (b) Newly
generated random conformation with a fitness of 0, (c) Implementing move changes
(F to L) for the confirmation of (b), (d) Modified new individual conformation with a
high fitness of -2

2.3 Guided Search Space

Realizing that best individuals will preserve best schemas, rather than a purely
random generation of new interim individuals, we propose a guided search. For
this, a record is maintained of all those individuals having fitness equal to the
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current best fitness value. This set of best individuals is used as templates for
generating New Fit Individual (NFI). The strategy is best illustrated by consid-
ering an arbitrary toy sequence HPHPPHHPHP. As shown in Fig. 2(a), consider
a conformation FLFLLRRLR with fitness -2 from the current best individuals
set. Next, we consider a randomly generated conformation to be, say, FLFLFR-
FLL with fitness 0 (Fig. 2(b)). If the 5th move (i.e. F) of this conformation is
changed with the corresponding move (i.e. 5th move, L) of the best individual,
the resulting individual FLFLLRFLL can be seen to improve its fitness equal to
the fitness of the best individual (i.e. -2). The whole process is shown in Fig. 2(c)
and the conformation is shown in Fig. 2(d).

Simple GA (SGA) is essentially based on fitness function defined by eqn. 1 is
modified incorporating all of the above three features which we refer as enhanced
GA (EGA). Its fitness function is given by eqn. 6 and it incorporates the schema
preservation features of 2.2 and the guidance of 2.3.

Fig. 3. Effect of enhancement features on SGA applied to benchmark sequence b7

3 Results

For investigations, we consider a set of benchmark sequences (b1, b2, b3, b4,
b5, b6, b7) from [13,2] and also two non-benchmark sequences (n2, n3) from [2]
given in Appendix. We begin investigations of the performance of the algorithm
by selecting one bench sequence (i.e. sequence b7) from a set of benchmark
protein sequences. Sequence b7 is chosen as it is a reasonably long sequence with
85 residues possessing necessary level of complexity to discriminate between
various techniques.

i) Enhancements to SGA. For various enhancements to SGA under inves-
tigations, we compute the average fitness value of the best 10 conformations in
each generation. Fig. 3 shows the variation of average fitness value as a function
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Table 1. Comparison of SGA and simple MAs using two local search approaches, i.e.
SGA+PWI and SGA+TS

Test Run Avg. Iteration Success Rate
b1 n2 n3 b2 b3

SGA 11.4 34.2 29 16 84.2 86.20%
SGA+PWI 13 32.4 18 12.2 20.2 96.15%

SGA+TS 6.4 10.2 8.4 6.4 9 100%

of generation in different cases. We see that SGA (without any enhancement),
has a poor performance. The performance improves by progressively applying
improvements (i) modified fitness function (SGA+ MFF) (ii) preserved best
schema (SGA+MFF+PBS). (iii) Add New Fit Individuals (NFI) using the tech-
nique explained in sec 2.3 (SGA+MFF+PBS+NFI). Finally, for the sake of
comparison, instead of NFI we add New Random Individuals (NRI) to the pop-
ulation (SGA+MFF+PBS+NRI). We see that (SGA+MFF+PBS+NFI) has the
best performance.

ii) Effect of local search on simple MA. We will first study the effect
of local search on a simple GA and then compare its performance with the two
variants of simple MA (LS with PWI and TS). For investigating the performance
of the two variants of the proposed MA, i.e. PMA and TMA, we randomly
consider three benchmark sequences (b1, b2, b3) and two new sequences (n2, n3)
for experimentation. The results are shown in Table 1. Our aim is to obtain five
values of E* value for each of the sequences. Hence, for each of the 5 sequences,
number of simulation runs were carried out till we achieved 5 successful (which
results in E*) results. The number of iterations required for the successful runs
are averaged and shown in Table 1. For evaluating the algorithm performance
in another manner, we further define a new measure called SuccessRate =
((25÷totalnumberofattempts)×100). The constant 25 appears in the definition
because each of the 5 sequences are successful 5 times. But the total number of
attempts required to achieve this 25 successful runs are different for different
algorithms. In our studies, we found that SGA achieves a success rate of 86.2%
(25 optimum values in 30 attempts) whereas SGA+PWI had a success rate of
96.15% (25 optimum values in 26 attempts) and SGA+TS had 100% of success.
These results are tabulated in Table 1. It shows that although both variants of
simple MA perform better than SGA, simple MA with TS as local search has
best performance.

Enhancement to SGA showed that EGA incorporating: (i) modified fitness
function (ii) preserving schema and (iii) guided search performs better than the
simple GA. Hence we will consider this EGA for further investigations. Effect of
the two local search techniques, PWI and TS on EGA performance is studied
using several benchmark protein sequences given in Appendix. The results of the
studies are presented in Table 2.
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Table 2. Results for EGA, PMA and TMA (when an optimal is not reached the
number of iteration, each of the algorithms first time reached the suboptimal are given
in bracket)

EGA PMA TMA
Seq. Iteration Fitness Iteration Fitness Iteration Fitness

b1 11 -9 9 -9 4 -9
n2 8 -4 13 -4 2 -4
n3 7 -8 6 -8 1 -8
b2 6 -9 6 -9 3 -9
b3 19 -8 8 -8 2 -8
b4 36731 -13 3457 -14 10 -14
b5 17251 -21(2687) 14189 -21(1291) 1507 -23
b6 179 -21 441 -21 11 -21

From the Table, it can be observed that while in general, EGA and PMA
have a somewhat similar performance, TMA shows a significant improvement
over other techniques with regard to both, the optimum value and also the
number of iteration required in reaching that optimal value.

iii) Comparison of TMA with other approaches. Since the previous
experiments establish that TMA has the best performance, this approach is in-
vestigated further by comparing it with five other known approaches, i.e. guided
GA (GGA), guided Tabu search (GTB), expected Monte Carlo (EMC), simple
GA (SGA), and Monte Carlo (MC), which have been reported in literature. In
each of these simulations, for each run, 200 randomly generated individuals were
included. The algorithm is set to run up to a maximum of 6 hours if optimum
is not reached earlier. The time limit as a termination condition ensures that
that all algorithms irrespective of their complexity are compared for similar time
duration. Table 3 gives the comparisons. The best results obtained by TMA are
compared with the results given in [5,19]. It can be seen that for all smaller

Table 3. TMA compared with other search algorithms (number of iteration required
for GGA to reach the fitness are given in bracket and E* denotes optimal fitness value)

TMA
GGA GTB EMC GA MC

Seq. E* Iteration Fitness

b1 -9 4 -9 -9(2) -9 -9 -9 -9
b2 -9 3 -9 -9(83) -9 -9 -9 -9
b3 -8 2 -8 -8(124) -8 -8 -8 -8
b4 -14 10 -14 -14(814) -14 -14 -12 -13
b5 -23 1507 -23 -23(3876) -23 -23 -22 -20
b6 -21 11 -21 -21(720) -21 -21 -21 -21
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sequences, TMA outperforms GGA (Guided GA) which is the best result of
[5,19] for both, fitness and number of iterations required.

4 Conclusion

In this paper, we show that MA with superior local search proves very useful for
PSP prediction. To make MA suitable for the complex PSP problem, the global
search algorithm is enhanced by a novel fitness function which includes two new
measures: H-compliance and P-compliance for the H and P residues. The en-
hancements also include novel techniques for schema preservation and guided
search. Number of benchmark sequences and new sequences are used for investi-
gations. Comparison with other known search algorithms for PSP problem is also
reported. We observe that the enhanced global search (with the three features of
novel fitness function, schema preservation and guided search) and incorporating
tabu search for local optimization has a superior performance compared to other
known algorithms. Experiment with other complex sequences are in progress.
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Appendix

Benchmark sequences (b1, b2, b3, b4, b5, b6, b7) and non benchmark sequences
(n2, n3) (E* denotes optimal fitness value)

Inst. Size Sequence E* Ref

b1 20 2(hp)p2hph2php2hp2(ph) -9 [2,13]
b2 24 2h2ph2p5(h2p)2h -9 [2,13]
b3 25 2ph2p3(2h4p)2h -8 [2,13]
b4 36 3p2h2p2h5p7h2p2h4p2h2ph2p -14 [2,13]
b5 48 2ph2p2h2p2h5p10h6p2(2h2p)h2p5p -23 [2,13]
b6 50 2h3(ph)p4hp2(h3p)h4p2(h3p)hp4h3(ph)p2h -21 [2,13]
b7 85 4h4p12h6p12h3p12h3p12h3ph2p2h2p2h2phph -53 [2]
n2 18 2h5p2h3ph3php -4 [2,13]
n3 18 hphp3h3p4h2p2h -8 [2,13]
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Abstract. While association rule mining is one of the most popular data mining 
techniques, it usually results in many rules, some of which are not considered as 
interesting or significant for the application at hand.  In this paper, we conduct a 
systematic approach to ascertain the discovered rules and provide a rigorous 
statistical approach supporting this framework. The strategy proposed combines 
data mining and statistical measurement techniques, including redundancy 
analysis, sampling and multivariate statistical analysis, to discard the non 
significant rules. A real world dataset is used to demonstrate how the proposed 
unified framework can discard many of the redundant or non significant rules 
and still preserve high accuracy of the rule set as a whole.   

Keywords: data mining, interesting rules, statistical analysis. 

1   Introduction 

Various data mining techniques have been successfully employed in acquiring useful 
rules and patterns from data. The extracted rules offer a proper acknowledgement of 
potentially useful information that is easily understood by end users. They are 
considered interesting and useful if they are comprehensible, valid on tests and new 
data with some degree of certainty, potentially useful, actionable, and novel [1]. Many 
data mining techniques are available for the acquisition of hidden patterns and rules, 
and the differences are in terms of objectives, outcomes, and representation 
techniques. [2] claims that the majority of data mining/machine learning type patterns 
are rule based in nature with a well defined structure, such as rules derived from 
decision trees and association rules. The most common patterns that can be evaluated 
by interestingness measures include association rules, classification rules, and 
summaries [3]. Association rule mining is one of the most popular data mining 
techniques widely used to for discovering interesting associations and correlations 
between data elements in a diverse range of applications [4].  

The association rule mining first discovers all the frequent patterns and then 
constructs the rules from such patterns. Frequent pattern extraction plays an important 
part in generating good and interesting rules, and is considered the most difficult task. 
While association rule mining techniques have been successfully used in many 
applications, in many cases certain aspects of domain knowledge will not be 
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completely captured by the extracted rules [4]. Another problem is that the rule sets 
are often too large and complex making it impractical or impossible for a domain 
expert to analyze them in an efficient manner [5]. Different criteria have been used to 
limit the nature of rules extracted, such as support and confidence [6], collective 
strength [7], lift/interest [8], chi-squared test [9], correlation coefficient [10],  three 
alternative interest measure that is; any-confidence, all confidence, and bond [11], log 
linear analysis [10], leverage [12, 13], and empirical bayes correlation [10]. 

Several researchers have also anticipated an assessment on pattern discovery by 
applying a statistical significance test before accepting the patterns. For example, in 
[9] correlation of rules is used, [14] proposed a pruning and summarizing approach, 
[15] applies a statistical test with a correction for multiple comparison by using a 
Bonferroni adjustment, [16] proposed an alternative approach of encountering a rules 
by change and applying hypothesis testing, [4] contributes to significant statistical 
quantitative rules and recently [12, 17] summarizes holdout evaluation techniques. 
While [12] has overviewed the latest development in significance of rules discovery, 
some areas worth further exploration involve: issues concerning the optimal split 
between the subset of data used for learning and evaluation, selection of a suitable 
statistical test and assessment of the rules with more than one itemset in the 
consequent.      

Despite the fact that interesting association rules may be found from a database, by 
satisfying the various interestingness measures, a problem that remains is that they 
may only reflect aspects of the database being observed. [12] emphasizes that each 
assessment of whether a given rule satisfies a certain constraint is accompanied by a 
risk that the rules will satisfy the constraints with respect to the sample data but not 
with respect to the whole data distribution. They do not reflect the “real” association 
rules between the underlying attributes. Even when the rules found pass appropriate 
statistical tests, it can still be the case that this is caused purely by a statistical 
coincidence [18]. Since the nature of data mining techniques is data driven, the 
hypotheses generated by these algorithms must be validated by a statistical 
methodology for them to be useful in practice [19].  

The focus of work presented in this paper, is on developing systematic ways to 
verify the usefulness of rules obtained from association rules mining using statistical 
analysis. Some initial ideas and preliminary results using a simple dataset were 
presented earlier in [20]. This paper presents extensions and refinements for 
applications to more realistic datasets. A unified framework is proposed, that 
combines several techniques to access the quality of rules, and remove any redundant 
and unnecessary rules. In the next section, we explain the problem of ascertaining the 
discovered rules. In Section 3, we describe our proposed framework. The framework 
is evaluated using a real world dataset and some experimental findings are given in 
Section 4. Section 5 concludes the paper and explains our ongoing work in this field 
of study. 

2   Problem Statement 

The aim of association rule mining is to discover interesting relationships among 
items in a given dataset under minimum support and confidence conditions. The 
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problem of finding association rules YX ⇒ was first introduced in [6] as a data 
mining task of finding frequently co-occurring items in a large Boolean transaction 
database. Commonly used example is in market basket analysis, where an association 
rule YX ⇒ means if consumer buys the set of items X , then he/she probably also 
buys items Y. These items are typically called as itemsets [5].  

2.1   Basic Concepts 

Let { }miiiI ,...,, 21= be a set of items. Each transaction T  is a set of items, such 

that IT ⊆ . For example, this may correspond to a set of items which a consumer may 
buy in a basket transaction. An association rule is a condition of the form 
of YX ⇒ where IX ⊆ and IY ⊆ are two sets of items. [7] asserts that the idea of the 
association rule is to develop a systematic method by which user can figure out how 
to infer the presence of some sets of items, given the presence of other items in a 
transaction. Mining frequent itemsets or patterns is a fundamental and essential step in 
the discovery of association rules [6]. The frequent itemset mining problem 
corresponds to the discovery of all the itemsets that occur in the dataset at least as 
many times as predetermined minimum support threshold. The association rules that 
satisfy the minimum support and confidence constraints, are then easily created from 
these patterns. The support of a rule YX ⇒ is the number of transactions that contain 
both X andY , while the confidence of a rule YX ⇒ is the number of transactions 
containing X , that also containY . 

2.2   Interestingness Measures 

Determining which association rules are useful for the application at hand is a 
challenging problem. The rules that satisfy the minimum support and confidence 
threshold are often too numerous to be utilized efficiently and effectively for the 
application at hand [21]. The numerous patterns are often redundant patterns. [12] 
define redundant rules as those rules that include items in the antecedent that are 
entailed by the other elements of the antecedents. Redundant rule constraints discard 
rule yx → for which :xz ∈∃ support yx → = support )( yzx →→ [12]. In addition 

to that, [21] define a more dominant minimum improvement constraint in order to 
discard the redundant rules. The improvement of rule yx →  is defined as 

improvement =→ )( yx confidence (max)(
xz

yx
⊂

−→ confidence )).( yx →  

This frequent pattern based approach generates a large number of rules and these 
patterns reflect a strong association between items and carry the underlying 
information of the data. For a predefined class label dataset, this will contribute to a 
strong association between occurring items and class labels. [22, 23] suggested and 
successfully investigated the potential usage of frequent pattern mining for 
classification problem. This approach directly mined the predefined class label dataset 
using frequent pattern based classification. This approach offers promising results in 
terms of the classifier model accuracy and efficiency for classification problem.  
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Although there are various criteria in determining the usefulness of rules [1, 3, 24], 
the measures usually just reflect the usefulness of rules with respect to the specific 
database being observed [12]. It is hard to determine whether the rules produced are 
useful in practice or are valid in real world problems. Applying a data mining 
algorithm to practical problems may not be sufficient because we need to ensure that 
the results have a sound statistical basis. Even data mining algorithms founded on a 
sound statistical basis are not sufficient, if they cannot solve a practical problem [19]. 
Therefore, in this paper, we investigate how to combine data mining and statistical 
measurement techniques to arrive at more reliable and interesting set of rules.  

3   Proposed Method 

The association rules extracted from an available database will reflect the associations 
from the observed database and the real world data (implicitly). It is not easily known 
whether the rules truly represent/reflect the real data, since the mining process occurs 
at the database level. The data that is used for the rules generation in data mining 
process, further needs to be verified by the statistical analysis approaches. This will 
ensure that we identify and discard any coincident and random associations. Generally 
speaking we interpret interesting rules as those rules that have a sound statistical basis 
and are not redundant. Such an approach requires sampling process, hypothesis 
development, model building and finally a measurement using statistical analysis 
techniques to verify and prove the usefulness and quality of the rules discovered using 
association rule mining. This statistical approach offers a firm way of identifying 
significant rules that are statistically valid. 

3.1   A Conceptual Framework 

The proposed conceptual framework is shown in Figure 1. Initially, the dataset is 
divided into two partitions. The first partition is used for association rule generation 
and statistical evaluation, while the second partition acts as a sample data drawn from 
the database, used to verify the accuracy of discovered rules.  

Firstly, we apply preprocessing techniques toward the selected data. This will 
ensure a clean and consistent data. Secondly, we need to determine the relevance of 
attributes by classifying their importance to characterize an association. A powerful 
technique for this purpose is the Symmetrical Tau [25], which is a statistical-heuristic 
feature selection criterion. It measures the capability of an attribute in predicting the 
class of another attribute. The measure is based on the probabilities of one attribute 
value occurring together with the value of the second attribute. To calculate 
Symmetrical Tau a 21 cc × contingency table is used, where 1c  and 2c  are the values 
of two attributes. Let there be I rows and J columns in the contingency table for two 
attributes A and B. The probability that an individual belongs to row category i and 
column category j is represented as ( )ijP , and ( )+iP  and ( )jP +  are the marginal 

probabilities in row category i and column category j respectively. The Symmetrical 
Tau measure for the capability of attribute A in predicting the class of attribute B is 
defined as [24]: 
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For the purpose of feature selection, problem A could be viewed as a feature and B as 
the target class that needs to be predicted. Higher values of the Tau measure would 
indicate better discriminating criterions (features) for the class that is to be predicted 
in the domain. Symmetrical Tau has many more desirable properties in comparison to 
other feature selection techniques, as was reported in [25]. It is utilized here to 
provide the relative usefulness of attributes in predicting the value of the class 
attribute, and discard any of the attributes whose relevance value is fairly low. This 
would prevent the generation of rules which then would need to be discarded anyway 
once it was found that they comprise of some irrelevant attributes. 

The rules are then generated based on the minimum support and confidence 
framework. The discovered rules are then ascertained with rigorous statistical 
techniques. The chi-squared analysis is used to discover the properties of data 
attributes; principally on the data dependency. The logistic regression analysis is then 
employed to provide the classification power of the data. The development of logistic 
regression modeling involves the model building strategies. These statistical analysis 
results are used to determine and verify the applicability of the association rules to the 
real world data. We also use some constraint measurement techniques in order to 
discard the existence of redundant rules. The combination of this information will 
facilitate the association rule mining framework to determine the right and high 
quality rules. These rules will have a sound statistical basis and we can be more 
confident that they reflect the real world situation.  

 

 

Fig. 1. Framework for analyzing rule interestingness in Association Rules for large database 

3.2   Statistical Approaches  

A common multivariate statistical analysis is analyzing the association problem [26]. 
For associations between categorical variables there are several inferential methods 
involved. Chi-squared analysis is then often used to measure the difference between 
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observed and expected frequencies. The significance used of the chi-squared statistics 
is for hypothesis testing in tests of independence.  

The logistic regression methods have become an integral component of any data 
analysis concerned with describing the relationship between a response variable and 
one or more explanatory variables. The logistic regression model has become one of 
the standard methods of classification problems [26]. Logistics regression is used to 
estimate the probability that a particular outcome will occur. The dependent variable 
in logistic regression is the odd ratios and the outcome variable is binary. The 
coefficients are estimated using a statistical technique called maximum likelihood 
estimation. The interpretation of regression coefficient in terms of odd ratios is a 
familiar concept in analysis of categorical data [27].  

The selection of logistic regression model involves two competing goals: the model 
should be complex enough to fit the data well, while at the same time simpler models 
are preferred since they are easier to interpret [26]. Model building principally 
involves seeking and determining parsimonious (simple) model that explains the data. 
The rationale for preferring simple models is that they tend to be numerically more 
stable, and they are easier to interpret and generalize [27].  

4   Experimental Results 

Some evaluation of the framework towards unification of data mining and statistical 
analysis has been performed using the Mushroom dataset, a real world dataset 
obtained form UCI Machine Learning Repository. Since the Mushroom dataset is a 
supervised dataset that reflects a classification problem, we have chosen the target 
variable as the right hand side/consequence of the association rules for the association 
rule mining analysis.  

4.1   Mimicking the Framework 

The Mushroom dataset was partitioned randomly. The first partition consists of 70% 
(5687 records) of the dataset and this partition is to be used for association rule 
mining and statistical analysis procedures. The remaining 30% (2437 records), is used 
as a sample data to verify the final rules. We applied the sampling without 
replacement method [28]. We also make stratification based on the target variable 
classes. For missing values in the dataset, we applied the distributed based missing 
value approach. Taking in the whole dataset as input would produce a large number of 
rules, many of which are caused by the presence of irrelevant attributes. We therefore 
use the Symmetrical Tau feature selection criterion [25] earlier in the process to 
remove any irrelevant attributes. This would prevent the generation of rules that 
comprise of some irrelevant attributes. Hence in this experiment it is not necessary to 
use Symmetrical Tau to further verify the rules, this is due to the fact that the rules 
were created from the attribute subset considered as relevant by the measure as was 
done in [20]. Hence, the Symmetrical Tau [25] was calculated for all attributes in their 
capability in predicting the value of the class attribute. The attributes were then 
ranked according to their decreasing Symmetrical Tau value and a relevance cut-off 
point was picked. The subset of data consists now of 10 attributes: Odor, Spore Print 
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Color, Gill Size, Ring Type, Bruises, Gill Color, Population, Stalk Color Above Ring, 
Stalk Color Below Ring and Gill Spacing. Now the necessary pre-processing is done, 
we proceed with the application of an association rule mining algorithm and 
verification of the extracted rules through statistical analysis.  

We apply association rule mining with minimum support of 10% and confidence of 
60%, on the 70% partition of the whole data. This gives us a total of 36474 rules. 
However, since we have restricted the right-hand set (consequences) of the rules to be 
either Poisonous or Edibles (i.e. class values), this leaves us with 1094 rules. We next 
proceed with our statistical analysis to ascertain the discovered rules and reduce them 
to the most interesting ones. The 70% partition of the dataset is also used for this 
purpose.   

A natural way to express the dependence between antecedent and the consequence 
of an association rule yx →  is the correlation based on the chi squared analysis for 

independence [10]. Based on chi squared analysis for 5687 records, we found that all 
variables passed the chi squared basic requirement. The requirements are; all cells in 
the contingency table have expected values greater than 1 and at least 80% of the cells 
have expected values greater than 5.  

The next statistical analysis applied was logistic regression. The relationship 
between the antecedent and consequent in association rule mining can be presented as 
a relationship between a target variable and the input variables in logistic regression. 
As mentioned in Section 3.2, from logistic regression a number of models can be 
discovered. We have evaluated each model and the most parsimonious model with 
lowest misclassification rates was selected. 

Each model produces a different selection of variables. Such result is possible 
because different variables may contain different/complementary information that 
contributes to the prediction of the value of the target variable. Based on the selected 
logistic regression model, any rules that contain Bruises, Gill Color, Population, Ring 
Type, Stalk Color Below Ring and Stalk Color Above Ring can be discarded, since 
they were not significant contributor. Table 1 depicts the examples of pruned rules.  

Applying statistical analysis helps determine the usefulness and significance of 
input variables in predicting the target variables. Hence, this will provide a proper 
ways to identify and discard rules that are not significant. By applying the 
combination of the statistical analysis we managed to discard a total of 1050 (96%)  
 

Table 1. Example of prunes rules based on logistic regression analysis 

Set 
Size 

Confidence Support Count Rules 

7 100 12.55 714 whiteSCBelowRing & whiteSCAboveRing & 
noneOdor & noBruises & crowdedGspacing & 
broadGSize => edibleClasses 

8 100 10.80 614 
whiteSporePrintColor & severalPop & 
pinkSCAboveRing & noBruises & narrowGSize & 
evanescentRingType & closeGspacing 
=> poisonousClasses 
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Table 2. Examples of redundant rules 

Set 
Size 

Confidence Support Count Rules 

2 100 26.57 1511 foulOdor=>poisonousClasses 
*3 100 26.57 1511 foulOdor & closeGspacing =>poisonousClasses 
3 100 16.59 942 noneOdor & brownSporePrintColor =>edibleClasses 
 
*4 100 15.93 

 
906 

noneOdor & brownSporePrintColor & broadGSize 
=>edibleClasses 

Table 3. Examples of redundant rules (with minimum improvement) 

Set Size Confidence Support Count Rules 
2 97.14 41.83 2379 noneOdor => edibleClasses 
*3 96.39 28.64 1629 noneOdor & closeGspacing => edibleClasses 

 * Redundant rules 

 
rules. Of all 44 accepted rules, there are still some redundant rules left, which is due 
to the incapability of statistical analysis to identify the redundant rules. In Section 2.2 
earlier, we have explained the redundant rule constraint [12] and the minimum 
improvement constraint [21]. These two constraints were used in the final step to 
discard any redundant rules. Table 2 shows examples of rule discarded according to 
the redundant rule constraint, while Table 3 shows examples of rules considered as 
redundant according to the minimum improvement constraint.  

Based on the redundant rules analysis performed at 44 rules, we managed to 
discard another 22 rules. The combination of statistical significance analysis and 
redundant analysis provided a proper ways in discarding non significant rules. Only 
2% (22 rules) from 1094 rules are now considered as significant, which is a 
significant reduction in the overall complexity of the rule set. However, the question 
still remains whether this great reduction of rules is at a cost of a significant reduction 
in accuracy. Hence we evaluate the classification and predictive accuracy of the 
different sets of rules obtained throughout the process. Table 4 depicts the accuracy 
results. The 70% of the dataset was used to test the classification accuracy, while the 
remaining 30% was used for testing the predictive accuracy. The selected input 
variables for the final rules are Gill Size, Gill Spacing, Odor and Spore Print Color. 
These are significant contributors in the logistic regression model in predicting the 
value of the target variable. We investigate this framework on several data partitions 
to gauge the effect of accuracy test. As can be seen from Table 4 the reduction in the 
accuracy of the rule set is not significantly large in comparison to the significant 
reduction in the complexity of the rule set, for all of the data partitions. One can also 
see that, choosing different data partitions does not cause much difference in the 
accuracy of the initial and reduced rule set. The reduction of the rules set through 
statistical analysis was very similar for all of the data partitions. This is due to the 
similar statistical evaluation result (i.e. significant variables contributing to the target  
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variable in logistic regression) for each partition. These results are caused by the fact 
that the Mushroom data are uniformly distributed. However, one can expect that when 
the method is applied on the not uniformly distributed data, the accuracy of the rules 
at different stages will differ for different data partitions.  

Table 4. Accuracy comparison between several data partitions and selected rules  

Accuracy    
 Rule # Classification  Prediction 

[ 10 Input variables] 1094 93.83% 93.50% 
44 92.59% 92.16% 

70 / 30 
Data 
Partition 

[4 Input] GillSize, GillSpacing , 
Odor, SporePrintColor 22 91.68% 91.26% 
[ 10 Input variables] 1089 93.71% 93.68% 

44 92.43% 92.49% 
50 / 50  
Data 
Partition 

[4 Input] GillSize, GillSpacing , 
Odor, SporePrintColor 23 91.38% 91.55% 
[ 10 Input variables] 1099 93.74% 93.42% 

44 92.48% 92.29% 
90 / 10  
Data 
Partition 

[4 Input] GillSize, GillSpacing , 
Odor, SporePrintColor 21 91.34% 91.09% 

5   Conclusions and Future Works 

The combination of the approaches used in this method showed a number of ways for 
ascertaining the extracted data mining rules. In our framework, we focus mainly on 
the rules discovered from association rule mining algorithm and we integrate the 
statistical measurement techniques to ascertain the quality of the rules. The 
experimental results show that, this framework managed to reduce a large number of 
non significant and redundant rules while at the same time relatively high accuracy 
was preserved. As part of our ongoing works, the proposed framework will be 
compared with the current state-of-the-art rule interestingness measures. In addition to 
that, to fully address the problem of discovering significant/interesting rules, we must 
consider several factors such as the number of itemsets in the consequent part of the 
rules, types of variable involved, and selection of appropriated statistical tests and 
sampling methods. 
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Abstract. While most feature selection algorithms focus on finding rel-
evant features, few take the redundancy issue into account. We propose
a nonlinear redundancy measure which uses genetic programming to find
the redundancy quotient of a feature with respect to a subset of features.
The proposed measure is unsupervised and works with unlabeled data.
We introduce a forward selection algorithm which can be used along
with the proposed measure to perform feature selection over the output
of a feature ranking algorithm. The effectiveness of the proposed method
is assessed by applying it to the output of the Chi-square (χ2) feature
ranker on a classification task. The results show significant improvements
in the performance of decision tree and SVM classifiers.

1 Introduction

The goal of feature selection (FS), a commonly-used process in machine learning,
is to find a minimal subset of features which is sufficient to describe target
concepts. Feature ranking (FR) is an avenue to FS in which features are ranked
based on their relative importance (relevance) with respect to target concepts
[1]. Most of the FR methods like information-theoretic and statistical algorithms
take a filter approach and can only measure the goodness of individual features
[2,1]. The output of an FR algorithm is a vector of positive integers called a
ranking vector whose elements are indexes to the features of a dataset. The
elements are sorted in descending order of the importance of their corresponding
feature. Usually a small number of features indexed at the beginning of this
vector are used to build a learning model.

Since in many FR algorithms features are examined individually, it happens
quite often that high-ranked features exhibit redundancy. That is, although a
feature at the i-th rank is more relevant than a feature at the (i+1)-th rank,
the former would not be as useful if it gave the same information as the features
at ranks 1 to i − 1 did while the latter ((i+1)-th feature) can provide some
more relevant information. Obviously, being limited to use a certain number
of features, a feature subset with no redundancy could yield better learning
performance. Redundancy removal (RR) is the process of correcting a ranking
vector by replacing redundant features with non-redundant ones at lower ranks.
Cost could be another motivation for RR—for example, in medical domains
extracting/measuring extra features might be costly.

A. Nicholson and X. Li (Eds.): AI 2009, LNAI 5866, pp. 432–442, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Unsupervised Elimination of Redundant Features 433

If redundancy happened only between two single features following a certain
type of functional dependency, then one could use a predefined measure (e.g.
linear dependency) for RR. In practice, however, there might be some types of
dependency between a group of features which do not necessarily follow any
particular functional templates. Genetic programming (GP) has proved to be
a powerful search technique for discovering sophisticated relationships between
groups of features [3]. In this paper, we propose a GP-based measure for redun-
dancy that extends the univariate linear definition of correlation to a flexible
non-linear multivariate form. We then introduce a forward selection algorithm
which can be used along with the proposed measure to perform RR over the
output of an FR algorithm like χ2 (Chi-square) [4].

1.1 Syntactic Notation

Throughout this paper we follow a certain mathematical notation. We use cap-
ital letters like X for random variables or when we are talking about features
in abstract. Lowercase bold letters like x are used for vectors and features and
x[i] represents the i-th element (or observation) of the vector (or feature). Cal-
ligraphic capital letters like A are used for sets. The unary operator |.| is used
to indicate the cardinality of a set. A dataset is a set F = {x1,x2, . . . ,xm} of
m features, each of which contains n observations (values). We use m� for the
desired (or selected) number of features. If A is an arbitrary subset of features,
φ(A) is a function whose arguments are the features in A.

2 Redundancy Removal Using Genetic Programming

2.1 Fundamental Concepts

Redundancy can be defined based on general consensus:

Definition 1. A feature X is redundant with respect to a subset A of features
if and only if it can be approximated (reconstructed) by a function of A.

From an RR perspective, we are interested only in the existence of such a function
and not its exact formulation. We also know that in practice there are different
degrees of redundancy; that is, X can be partly expressed using A or up to a
certain precision. Thus a measure of the degree of redundancy is required.

A common measure of dependency (an so redundancy) between two random
variables is the quotient of their linear relationship. This measure, however,
comes with two limitations: I) It is a measure of linear relationships only II)
It can be applied to two features at a time. GP has previously been used to
measure a wide variety of non-linear correlations between a subset of features
and another variable [3]. We use GP to search for a function of features in
A that has the highest linear correlation with X . We prove that as the linear
correlation between the two increases, the error of approximating the feature by
the GP constructed function decreases.
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Proposition 1. The error of approximating a feature X by a linear function of
φ(A) decreases as ρ2 = Cor2 (X, φ(A)) ∈ [0, 1], the square of Pearson’s product-
moment correlation coefficient, approaches one.

Proof. Let X̂ = α + βφ(A), α, β ∈ IR, be a linear approximation of X with the
error of approximation defined as ε = X − X̂ . If α and β are determined by the
least squares method, the following properties hold [5]:

(i) E(ε) = E(X − X̂) = 0
(ii) Cov(ε, X̂) = Cov(X − X̂, X̂) = 0 (since X̂ and ε are orthogonal)

Because of property (ii), the covariance between X and X̂ reduces to the variance
of X̂ ;

Cov(X, X̂) = Cov(X − X̂, X̂) + Cov(X̂, X̂) = Var(X̂),

and hence, the correlation between X and X̂ becomes

Cor(X, X̂) =
Cov(X, X̂)√

Var(X)Var(X̂)
=

Var(X)√
Var(X)Var(X̂)

=

√
Var(X̂)√
Var(X)

(1)

Alternatively, the correlation between X and X̂ can be derived as follows

Cor(X, X̂) =Cor(X, α + βφ(A))

=
β Cov(X, φ(A))√

Var(X)β2Var(φ(A))
= Cor(X, φ(A)) = ρ

(2)

and therefore, from (1) and (2), we get

ρ2 =
Var(X̂)
Var(X)

(3)

The error of approximation, more specifically, the mean squared error (MSE) of
the approximation is a function of this squared correlation coefficient. The MSE
of the approximation, using property (i), is

MSE(X̂) = E(ε2) = E[(X − X̂)2] = Var(ε) + E2(X − X̂) = Var(ε)

where the variance of ε is

Var(ε) = Var(X − X̂) = Var(X) + Var(X̂)− 2cov(X, X̂) = Var(X)−Var(X̂)

Therefore, from (3), it follows that

MSE(X̂) = Var(X)− ρ2 Var(X) = (1− ρ2) Var(X)

Hence, as ρ2 increases, MSE(X̂) decreases. More precisely

lim
ρ2→1

MSE(X̂) = lim
ρ2→1

(1 − ρ2)Var(X) = 0 ��
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The proposition implies that if a GP search succeeds in maximising
Cor2 (X, φ(A)), the error of approximating X by some function of A can be
minimised. This can be a ground for defining a redundancy measure.

Definition 2. The degree of redundancy of a feature X with respect to a set A
of features is

ρ2
max = max

φ∈Φ
{Cor2 (X, φ(A))}

where Φ is a finite set of GP-constructable functions of A. The range of ρ2
max is

[0, 1] where 0 and 1 correspond to the minimum and maximum possible degree
of redundancy. The functions in Φ are constructed (found) by GP using a set
of primitive operators and a set of variable terminals which correspond to the
features in A. GP tries to maximise Cor2 (·, ·) and depending on how successful
it is, the degree of redundancy can be determined.

An advantage of this redundancy measure is that GP does not need to find
any approximation for X directly, but once it finds any member of the family
of functions that optimises Cor2 (·, ·), we would know that X is redundant. In
particular, (2) implies that if X̂ = α + βφ(A) is the best linear approximation
for X , where α, β ∈ IR, any function of the form α′ + β′φ(A) where α′, β′ ∈ IR
can maximise the fitness function. This is particularly important because GP is
not normally equipped with any type of hybrid learning (like gradient descent or
least square) to find right values for numeric constants efficiently. This relaxation
of the search criteria can significantly improve the probability of success of GP.

2.2 A Synthetic Example

We give an example to illustrate how the proposed measure can detect redundant
features that are not normally detectable by ordinary methods and how it can
reduce the size of the GP search space. Consider two random variables X1 ∼
N(μ = 0, σ2 = 2) and X2 ∼ N(μ = 0, σ2 = 1). We define a third random variable
with high functional dependency (redundancy) as X3 = −3X1X2 + 2 + ξ where
ξ ∼ U(−1, 1) is noise. We create sample vectors x1, x2 and x3 of size 10,000
from the random variables X1, X2 and X3 respectively.

Figure 1(a and b) show these three vectors plotted against each other. There
is no mutual linear relationship visible between these vectors as expected. In
terms of measurements Cor2 (x3,x1) = 0.00 and Cor2 (x3,x1) = 0.00. That is
the redundancy of x3 cannot be detected by measuring its correlation against the
other two random variables individually. Using a simple GP search to maximise
Cor2 (x3, φ(x1,x2), however, results in a variety of solutions like φ(x1,x2) =
x1x2 as illustrated in 1(c). Using this GP-constructed function, Cor2 (x3,x1x2)=
0.99 which indicates a high redundancy. We see that GP does not need to find
the exact formula of x3; actually any linear combination of x1x2 would yield the
same result.

2.3 Measuring Redundancy

Algorithm 1 presents how we use a GP search to measure redundancy. The
fitness of a GP individual (program) φ is Cor2 (x, φ(A)). The computational
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Fig. 1. An artificial example where x3 is redundant in the context of x1 and x2. The
three features are visualised in (a) and (b). A transformation function to detect the
redundancy is depicted in (c).

complexity of this fitness function is as low as O(n). The goal of the GP search
is to maximise the fitness. The degree of redundancy, ρ2

max in Definition 2, is
the maximum fitness obtained during the GP run. The parameter θ determines
the maximum acceptable redundancy; the search would stop once the fitness of
an individual reaches this threshold.

The algorithm starts with adding all the features in A to the GP variable ter-
minals set. Lines 2–3 initialise the population and add all the variable terminals
as single-node trees to the population. This is to make sure that at all times, the
redundancy will be measured against every single feature in the population. Each
GP program in the population defines a function φprogram : IR|A| �→ IR which
transforms an input vector (x1[i],x2[i], . . . ,x|A|[i]) into a scalar value y[i]. Lines
7–15 calculate the fitness. Line 16 updates the measured degree of redundancy
ρ2

max if the fitness of current program exceeds the current value of ρ2
max.

2.4 Forward Selection

Given a preliminary ranking vector, the output of a ranking algorithm,
Algorithm 2 introduces a forward selection algorithm that removes redundant
features from the vector. The algorithm takes the set of all m features in the
dataset F , a ranking vector r which is the output of a ranking algorithm, the
desired number m� of features to be selected and a threshold θ which determines
the maximum acceptable redundancy. At the first line the highest-ranked feature
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Algorithm 1. Measuring redundancy via GP
/* The function MeasureRedundancy(x,A,θ) uses GP to measure the

redundancy of a feature x with respect to a set of features A */

Input: x, a feature, where x ∈ F
Input: A, a subset of features, where A ⊆ F\{x}
Input: θ, maximum acceptable redundancy quotient
Output: ρ2

max, the redundancy between x and A where ρ2
max ∈ [0, 1]

T ← A ; // variable terminals include all the features in A1

P ← (a population of randomly-generated GP programs);2

P ← P ∪ T ; // include all single node (terminal) programs3

ρ2
max ← 0 ; // initialise the measure of redundancy4

while ¬max-generations∧ (ρ2
max < θ) do5

foreach program ∈ P do6

/* calculate the fitness for each program */

sx, sy, sx2 , sy2 , sxy ← 0 ; // initialising the sums7

for i ∈ {1, 2, . . . , n} do8

y[i] ← φprogram(x1[i], x2[i], . . . ,x|A|[i]) ; // transformation9

sx ← sx + x[i]; // updating sum10

sy ← sy + y[i]; // updating sum11

sx2 ← sx2 + (x[i])2; // updating sum of squares12

sy2 ← sy2 + (y[i])2; // updating sum of squares13

sxy ← sxy + x[i]y[i]; // updating sum of products14

fitnessprogram ←
(

nsxy−sxsy√
ns

x2−s2
x

√
ns

y2−s2
y

)2

; // calculating Cor2 (x,y)
15

ρ2
max ← max(ρ2

max, fitnessprogram);16

P ← (new population using genetic operators, keeping the best)17

return ρ2
max;18

is added to the set F� of selected features. In the loop starting on line 3, the
degree of redundancy of the next highest-ranked feature will be measured (on
line 4) and the feature will be added to F� only if its redundancy is less than
θ. The algorithm stops when m� features are selected or all the features in the
dataset have been processed.

3 Empirical Results and Analysis

3.1 Dataset

We use the Isolet5 dataset from the UCI machine learning repository [6]. The
dataset has been created by recording the voice of 30 people pronouncing the
names of the 26 English alphabets twice; there are 52 samples per person and
1559 samples in total (one sample is missing). The task is to classify the al-
phabets. There are 617 features available in total including spectral coefficients,
contour features, sonorant features, pre-sonorant and post-sonorant features. All
the features are real-valued, continuous and scaled into the range [−1, 1].
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Algorithm 2. Forward Selection
/* Find a (sub)optimal subset of features incrementally by removing

redundant features found by GP, from a ranking vector. */

Input: F = {x1,x2, . . . ,xm}, the set of all features
Input: r = (r1, r2, . . . , rm), a ranking vector
Input: m�, the desired number of selected features
Input: θ, the maximum acceptable redundancy where θ ∈ [0, 1]
Output: F�, the set of selected features

F� ← {xr1} ; // adding the feature at the highest rank1

i ← 2 ; // the next rank to be processed2

while (|F�| < m�) ∧ i ≤ m) do3

ρ2 = MeasureRedundancy(xri ,F�, θ) ; // measure the redundancy4

if ρ2 ≤ θ then5

F� ← F� ∪ {xri};6

i ← i + 1 ;7

return F�;8

3.2 GP Settings and Experimental Setup

We adopt the standard tree-based genetic programs. A function node can be
one of the four elementary binary arithmetic operators: +,−,×,÷ where ÷ is
protected, i.e. returns zero for division by zero. The ramped half-and-half method
[7] is used for generating programs in the initial population and for the mutation
operator. We use a population size of 1024, however, if the cardinality of A in
Algorithm 1 is very high, using a bigger population is recommended. We take
an elitist approach by keeping the best individual at each generation. The initial
maximum program tree depth is set to 4, but it can increase to 6 during the
evolution process. The probability of the crossover and mutation operators are
adapted automatically at runtime. We use Chi-square (χ2) [4] for FR, and J48
decision tree and SMO-SVM for classification, all from the Weka library [8].
Since no separate test data is available, we use 10-fold cross-validation in our
experiments.

3.3 Performance Results and Analysis

Table 1 presents the result of applying the proposed forward selection algorithm
on the Isolet5 dataset for different values of θ and m�. The numbers in each
column (except the first column) are indexes to the features in the dataset.
By increasing m� from 1 to 30, one step at a time, new ranking vectors are
created for the given values of θ. Each column presents the corrected ranking
generated by removing redundant features from the preliminary ranking vector
for the given value of θ. In the second column θ = 1 which means any level of
redundancy is accepted. Therefore the numbers in this column are actually the
first 30 elements of the preliminary ranking vector (the output of the χ2 ranking
algorithm, without any changes).
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Table 1. Corrected feature ranks based on different redundancy thresholds (θ)

m� / θ = θ = θ = θ = θ = θ = θ = θ = θ = θ = θ =
Rank 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

1 584 584 584 584 584 584 584 584 584 584 584
2 390 390 390 389 548 548 548 548 548 548 548
3 392 392 548 548 419 419 419 419 413 474 474
4 391 395 419 419 107 358 325 325 325 410 528
5 395 548 73 73 412 411 474 474 474 448 378
6 389 419 413 413 358 171 410 472 448 577 -
7 548 73 517 358 11 474 78 427 214 48 -
8 419 462 10 139 546 387 472 20 480 582 -
9 73 107 358 546 388 425 352 130 48 292 -
10 549 75 458 386 474 12 590 480 437 433 -
11 394 9 325 266 425 522 427 181 435 599 -
12 462 413 139 362 522 545 523 351 164 530 -
13 393 517 515 323 5 472 20 481 528 368 -
14 74 358 546 485 203 352 130 112 463 - -
15 107 42 386 327 472 69 480 437 347 - -
16 75 458 134 474 363 589 181 333 428 - -
17 9 325 362 397 322 214 332 435 334 - -
18 413 415 173 425 382 427 259 364 331 - -
19 106 11 360 198 352 446 372 164 370 - -
20 412 139 474 12 448 451 481 525 600 - -
21 517 411 397 522 486 20 398 595 473 - -
22 418 359 387 174 589 130 437 4 - - -
23 10 547 110 78 143 321 435 532 - - -
24 461 515 233 5 214 480 364 433 - - -
25 358 546 425 203 576 577 445 377 - - -
26 417 386 198 424 427 493 406 224 - - -
27 416 265 76 472 452 16 164 336 - - -
28 42 550 426 101 446 541 528 403 - - -
29 458 134 298 352 14 24 28 341 - - -
30 457 518 12 448 20 332 595 252 - - -

For all values of θ, the feature at the first rank is always the same (see the first
line of Algorithm 2). However, as the redundancy threshold decreases, features
at the lower ranks might be removed due to being redundant with respect to the
features at higher ranks. For example by decreasing θ from 1 to 0.9 the feature at
the fourth rank (391) is considered redundant with respect to the three feature
at higher ranks (584, 390 and 392) and hence, is removed and replaced by the
next feature (395) which in this case is not redundant with respect to those
three features. As θ decreases, more features are removed due to redundancy.
For very low values of θ, like 0.2 and lower, the number of selected features, i.e.
the number of remaining features after RR, is even less than 30.

To study the effect of elimination of redundant features we use the selected
features in groups of size 5, 10, . . . , 30. Table 2 shows the number of redundant
(and hence, eliminated) features for different thresholds. For a given θ, the num-
ber in each column represents the number of features that have been removed
in order to select m� features. In the first row, where θ = 1, no feature is re-
moved. The hyphens in the table indicate situations where the desired number
of selected features cannot be obtained due to the large number of features that
have been removed.

It should be noted that although in theory only features with some level of
redundancy exhibit a ρ2

max greater than zero, in practice even two independent
features may have a ρ2

max greater than zero. The major cause is that the true
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Table 2. Number of eliminated redundant features

θ m� = 5 m� = 10 m� = 15 m� = 20 m� = 25 m� = 30
1.0 0 0 0 0 0 0
0.9 2 6 13 24 34 36
0.8 4 19 45 74 82 86
0.7 4 50 78 96 104 118
0.6 15 84 120 128 141 151
0.5 47 106 138 160 171 199
0.4 89 159 179 241 284 330
0.3 89 184 281 317 494 514
0.2 89 286 468 555 - -
0.1 143 487 - - - -
0.0 340 - - - - -

quotient of correlation can only be obtained by an unlimited number of ob-
servations. All the measurements obtained from real problems are actually an
estimations of the true values. For instance, although X1 and X2 in our synthetic
example are completely independent, their correlation is not absolute zero which
is due to the limited number of observations (in that case 10,000). A minor cause
could be the existence of confounding factors or lurking variables [9] which hap-
pens when features show some correlation, but their contents are completely
different. Therefore, large numbers of eliminated features for low values of θ are
not necessarily due to true redundancy.

Table 3 shows the results of applying two classification algorithms, J48 and
SVM, on different numbers of selected features. The structure of the table is
similar to that of table 2. The numbers in the table are classification test perfor-
mances which are calculated as the ratio of correctly classified instances to the
total number of instances through a 10-fold cross-validation process. The first
row, where θ = 1 (with no redundant features being removed), is considered the
baseline. Therefore, the first row shows the classification performance using the
first 5, 10, . . . , 30 top features obtained directly from the χ2 ranking algorithm.
The performance measures on the second and lower rows are obtained using
features selected by removing redundant features. In each column, the perfor-
mance results are obtained based on the same number of features and the highest
performance is in bold face.

Table 3. Performance of J48 and SVM using the selected features

θ m� = 5 m� = 10 m� = 15 m� = 20 m� = 25 m� = 30
J48 SVM J48 SVM J48 SVM J48 SVM J48 SVM J48 SVM

1.0 0.22 0.23 0.43 0.46 0.54 0.60 0.62 0.69 0.68 0.76 0.68 0.77
0.9 0.31 0.31 0.53 0.58 0.60 0.70 0.66 0.74 0.67 0.76 0.67 0.78
0.8 0.34 0.36 0.53 0.57 0.61 0.66 0.67 0.76 0.69 0.78 0.70 0.82
0.7 0.32 0.35 0.54 0.57 0.57 0.65 0.63 0.76 0.67 0.82 0.67 0.84
0.6 0.38 0.43 0.54 0.59 0.64 0.72 0.63 0.73 0.67 0.81 0.70 0.85
0.5 0.33 0.29 0.52 0.59 0.60 0.68 0.64 0.74 0.66 0.81 0.66 0.83
0.4 0.30 0.27 0.48 0.45 0.55 0.64 0.56 0.71 0.58 0.73 0.60 0.75
0.3 0.30 0.27 0.40 0.45 0.52 0.59 0.57 0.69 0.58 0.76 0.58 0.76
0.2 0.34 0.33 0.48 0.52 0.55 0.64 0.56 0.69 - - - -
0.1 0.27 0.29 0.36 0.42 - - - - - - - -
0.0 0.22 0.25 - - - - - - - - - -
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None of the performance results obtained by using the original ranking (the
baseline) has achieved the best performance. In fact, compared to the middle
rows, the performance of the original ranking is quite low. By decreasing the
redundancy threshold on the lower rows, the performance starts rising. The best
performances are spread among rows with θ between 0.5 and 0.8. In most cases
the difference between the baseline and the highest performance is quite signif-
icant. This indicates that replacing redundant features by non-redundant ones
has a major effect on the performance. On the other hand, as θ decreases below
0.5, resulting in an aggressive removal of redundant and semi-redundant features,
the performance decreases down to the baseline or even less. However, this is not
unexpected, since as described earlier, part of the measured redundancy could
be due to the limited number of observations or the presence of confounding
features. It is also observed that although the two classifiers have different per-
formance results on the same subset of features, their performance trends with
respect to the changes in θ and m� are similar and they seem to conform with
each other on the best selected subset of features.

4 Conclusions and Future Work

FS algorithms that merely rely on FR methods can severely suffer from the
redundancy issue. Features at high ranks, although highly related to target con-
cepts, might be redundant with respect to each other. Using GP we were able to
devise a method to measure the redundancy of a feature with respect to a group
of features. We used this measure with a forward selection algorithm for FS. Our
results show that removing redundant features can significantly boost the learn-
ing performance. Our proposed algorithm is unsupervised and can, therefore, be
quite efficient in applications where labeling data is costly. We tested this method
on a classification problem, but it can be generally applied to any problem with
numeric features. As future work, one might consider merging the proposed RR
method into previous research on using GP for feature subset selection to build
up an FS method which is capable of handling complicated relationships between
features and target classes while preserving the minimality.
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Abstract. In this paper we propose to use a distance metric based on
user-preferences to efficiently find solutions for many-objective problems.
In a user-preference based algorithm a decision maker indicates regions of
the objective-space of interest, the algorithm then concentrates only on
those regions to find solutions. Existing user-preference based evolution-
ary many-objective algorithms rely on the use of dominance comparisons
to explore the search-space. Unfortunately, this is ineffective and compu-
tationally expensive for many-objective problems. The proposed distance
metric allows an evolutionary many-objective algorithm’s search to be
focused on the preferred regions, saving substantial computational cost.
We demonstrate how to incorporate the proposed distance metric with a
user-preference based genetic algorithm, which implements the reference
point and light beam search methods. Experimental results suggest that
the distance metric based algorithm is effective and efficient, especially
for difficult many-objective problems.

Keywords: Distance metric, User-preference, Many-objective optimiza-
tion, Multi-objective optimization, Reference point, Light beam search.

1 Introduction

The use of Evolutionary Multi-objective Optimization (EMO) algorithms to find
solutions for problems with two or three objectives have been very popular in the
recent times [1]. In these studies, the concept of dominance plays a major role
in the functionality of the algorithms. In many-objective optimization problems
(where the number of objectives are greater than three), comparing individuals
using dominance becomes less effective [2,3]. Theoretical results in [2] shows
that in many-objective search-spaces the number of non-dominated individuals
increases to a point where the entire population becomes non-dominated to
each other. This severely limits an algorithm’s ability to compare and search for
solutions in many-objective problems.

A different approach than modifying the dominance concept [3,4] that has
been gathering popularity recently in EMO algorithms is user-preferences [5,6,7].
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These preference mechanisms were seen originally in Multi-Criteria Decision
Making (MCDM) literature [8]. In user-preference based algorithms, a Decision
Maker (DM) is required to first indicate preferred regions of the objective-space
for an algorithm to find solutions in. This information is extremely valuable and
can be used to guide the algorithm to further explore the search-space.

The user-preference based EMO algorithms seen in the literature all use dom-
inance comparisons to select their candidate solutions [5,6,7]. Unfortunately,
these algorithms suffer from the problem of not being able to distinguish solu-
tions effectively for problems with a large number of objectives, where most so-
lutions are non-dominated to each other. Consequently these algorithms are less
effective in search, and inclined to converge prematurely to local Pareto-fronts.
To address this issue, we introduce a distance metric utilizing the user-preference
information which is provided by the DM. This method removes the need to use
dominance comparisons. We have presented an EMO algorithm using this dis-
tance metric which is capable of handling problems of large number of objectives.
This paper focuses on EMO algorithms for many-objective problems, therefore
we use the term EMO here onwards to refer to Evolutionary Many-objective
Optimization.

This paper is organized as follows. Section 2 briefly describes the user-
preference methods used in this study. These include the classical definitions
of the reference point method and light beam search. Section 3 presents the dis-
tance metric and an implementation of an EMO algorithm using this metric.
The experiments used to evaluate the EMO algorithm are provided in section 4.
Finally, in section 5, we present our conclusions and avenues for future research.

2 Background

To better understand the distance metric we first describe user-preference mech-
anisms used in this study.

2.1 Reference Point Method

The classical reference point method was first described by Wierzbicki [6,9]. It
has been included successfully in several EMO algorithms [6,7]. A reference point
z for a many-objective problem consists of aspiration values for each objective.
In the classical MCDM literature this reference point is used to construct a single
objective function (given by (1)), which is to be minimized over the entire search-
space. If x = [x0, . . . , xn−1] is a solution in the search-space of n dimensions,

minimize max
i=0,...,M−1

{wi(fi(x)− zi)} (1)

where z = [z0, . . . , zM−1] is the reference point and w = [w0, . . . , wM−1] is a
set of weights. fi is the ith objective function, while M denotes the number of
objectives. The DM can assign values for weights, which represents any bias
toward an objective.
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Fig. 1. (a) Classical reference point method (b) Classical light beam search method

Figure 1(a) illustrates the classical reference point method in a two-objective
space. The classical MCDM literature [6] shows that several other reference
points (z1 and z2) can be derived using the original reference point (z) and the
solution point. In a recursive manner these new reference points can be used
to derive more solution points. This traditional approach can be used to define
preferred regions in the objective-space.

Using a reference point approach within EMO algorithms is efficient because
the entire population can concentrate on finding solutions within this preferred
region in a single execution run. We illustrate how preferred regions can be
defined with the notion of outranking later.

2.2 Light Beam Search Method

The light beam search was first introduced by Jaszkiewicz and Slowinski [10].
The DM first needs to indicate two points in the objective-space, the Aspiration
Point (AP), denoted by zr and the Reservation Point (RP), denoted by zv. In
situations where the AP and RP are not given, some other points like the nadir
point and ideal point can be used instead. The search direction is given from AP
to RP. Metaphorically, this illustrates a light beam originating from AP in the
direction of RP. Figure 1(b) illustrates the classical light beam search setup in
a two-objective space.

In the classical MCDM literature the light beam search method uses an
achievement scalarizing function (given by (2)), which is to be minimized. If
x is a solution in the search-space,

minimize max
i=0,...,M−1

{λi (fi(x)− zr
i )}+ ρ

M−1∑
i=0

(fi(x)− zr
i ) (2)

where, zr = [zr
0 , . . . , z

r
M−1] and zv = [zv

0 , . . . , zv
M−1]. ρ is a sufficiently small

positive number called the augmentation coefficient usually set to 10−6.
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λ = [λ0, . . . , λM−1], where λi > 0 is a weighted vector. This weighted vector
is derived from (3).

λi =
1

|zr
i − zv

i |
(3)

The projection of the AP in the direction of the RP will result in a middle point
on the non-dominated solution front. In the usual notation, a middle point is
given by zc = [zc

0, . . . , z
c
M−1]. The DM can then decide on a region surrounding

this middle point, which gives the preferred region. This region is obtained by the
notion of outranking (S) [10]. a outranks b (denoted by aSb) if a is considered to
be at least as good as b within some threshold value. Here, the term better can be
defined according to the used algorithms and problems. Fitness and dominance
are some such definitions. In this study we use the distance metric to define the
outranking criteria.

Solutions are obtained in this preferred region illuminated by the light beam.
We next illustrate how a distance metric is derived from these classical user-
preference approaches and how it is used in an EMO algorithm.

3 The Distance Metric

The classical user-preference methods were used to find a single solution on the
Pareto front. This single solution would be the closest point to a reference point
on the Pareto front or the middle point derived from the light beam search. We
introduce a distance metric based on the process of obtaining this solution point.

We define distance of an individual x, to a reference point z using (1) as:

dist(x) = max
i=0,...,M−1

{wi(fi(x)− zi)} (4)

Similarly in the light beam search for any individual x, its distance is defined
using (2) as:

dist(x) = max
i=0,...,M−1

{λi (fi(x)− zr
i )}+ ρ

M−1∑
i=0

(fi(x)− zr
i ) (5)

We consider a to be better than b if dist(a) < dist(b). This distance metric will
guide the EMO algorithm towards the Pareto front as illustrated in Figure 2(a).
We have incorporated both features of the reference point method and light
beam search in Figure 2(a) for brevity. Here, it is important to note that RP is
defined only if AP is given (for the light beam search). The term intersection
point (u) is used to identify the closest solution point to the reference point or
the middle point of the light beam. It is useful to realize that the many-objective
problem is not converted to a single-objective problem with the use of scalarizing
functions as seen in traditional MCDM literature. Although (4) and (5) provide
a scalar value, the target is not to optimize that value, but to use the value as
a metric to guide the population (the closer the individual is to the preferred
region, the better it is).
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Fig. 2. (a) EMO search yielding a solution point (b) EMO using outranking to define
preferred regions

3.1 Controlling the Spread of Solutions

As seen in Figure 2(a) if no control of the spread of solutions is present, the EMO
algorithm will explore the search-space along the given direction and converge to
the intersection point u. To have a control over the spread of solutions we define
a threshold value (δ) for the distance metric using the notion of outranking.
Here, the aim is to obtain a set of solutions around the intersection point u.
More specifically, to allow the EMO algorithm to converge to an area of solution
points rather than a single solution. If x is any solution point we can define xSu
as:

xSu ⇔ dist(x) < dist(u) + δ (6)

This relation allows the EMO algorithm to converge not only to the solution
point u, but to any other solution x around u as long as xSu. All the solutions
outranking u by a given δ defines a preferred region (Figure 2(b)). It is important
to note that a preferred region is defined by the search direction, governed by
the indicated points, and the spread of solutions. A larger value of δ provides a
larger region and a smaller value provides a smaller region. It is also clear that
δ = 0 gives u. With this δ threshold value the EMO algorithm can have a control
of the spread of solutions as required by the DM.

3.2 A Distance Metric Based EMO Algorithm

We now outline how the distance metric can be integrated to an EMO algorithm.
Here, a Genetic Algorithm (GA) is used as the search strategy. We have used
the original NSGA-II [1] algorithm and replaced the non-dominated sorting pro-
cedure by integrating the proposed distance metric approach. Other than GA,
the distance metric can be easily integrated into Particle Swarm Optimization
(PSO) or Differential Evolution (DE) based EMO algorithms.
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– Step 1: Obtain preferences from the DM
The DM will first choose a preference method; either the reference point
or light beam search. Depending on the preference method the DM will
provide aspiration values to indicate the reference points or the APs and RPs.
The DM will next provide a δ value indicating the spread of solutions. The
DM has the freedom to indicate any points on the objective-space without
considering them to be feasible or infeasible points.

– Step 2: Initialize the population
A population of size N is first initialized. After initialization, each individ-
ual’s distance to the preferred regions are calculated using (4) or (5) depend-
ing on the preference method. The individuals are then evaluated with the
objective functions and fitness is assigned.

– Step 3: Select parents and reproduce
Parents are obtained using tournament selection. Here, individuals closest
to the preferred regions are given priority. The parents will crossover and
mutate to produce offspring. Here we used the SBX crossover [1] and Poly-
nomial Mutation [1]. The parent population of size N will create N number
of offspring.

– Step 4: Select survivors
The parent population of size N is combined with the offspring population
of size N to create a population of size 2N . From this combined popula-
tion, N number of individuals are selected to move to the next iteration.
More specifically, first, the 2N population is sorted according to the dis-
tance metric. The individuals closest to the preferred regions are selected as
the intersection points. Next the individuals which outrank these intersec-
tion points are selected. If the total number of such selected points are less
than N , random individuals are selected from the population to make a final
population of size N . If the number of outranked individuals and intersec-
tion points are greater than N , the individuals furthest from the preferred
regions are removed.

The steps 3 and 4 are repeated until the maximum number of iterations is
reached. The distance metric approach guides the population towards the pre-
ferred regions such that solutions are found on the Pareto front (Figure 2). At
the end of the execution the first non-dominated front is extracted from the
population, giving the final solution set.

A dominance comparison based EMO algorithm normally has a computa-
tional complexity of O(MN2) because of the use of the non-dominated sorting
procedure [1]. However, the proposed distance metric approach only depends on
the sorting procedure using the distance metric. As a result, the computational
complexity of using the distance metric (for the entire population) is O(NlogN).

4 Experiments

To evaluate the performance of the EMO algorithm using the distance metric, we
used following test problem suits; ZDT [11] for two-objective problems, WFG [12]
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and DTLZ [13] for two and up to ten objective problems. These test problem
suites contain many varieties of multi-objective problems including some with
many local optima fronts (multi-modal). The parameter settings were constant
throughout the experimentation process because the algorithm was robust, not
requiring tweaking depending on the type of problem. The population size was
200 and the maximum number of iterations was 500. The SBX crossover prob-
ability was set to 0.9 and the mutation probability was 1/n, where n was the
number of decision variables of each problem. The algorithm executed 50 runs
on each problem instance. The proposed algorithm was always able to converge
on the global Pareto fronts on the simpler problems and frequently on the more
difficult problems. In this section, we only illustrate some of the best results
from the more interesting (and difficult) problems from the test problem suites
because of the lack of space.

4.1 Two-Objective Problems

Figure 3 shows the solutions fronts obtained for the two-objective multi-modal
ZDT4 (n = 10) and WFG4 (n = 6) test problems. The two preferred regions have
spread values of δ = 0.01 and δ = 0.05. Figure 3(a) shows two reference points
in the feasible region. ZDT4 is a very challenging problem for EMO algorithms
because of its modality (219 local optima fronts). However, the EMO algorithm
using reference points is still able to converge onto the global Pareto front. A
very interesting result can be seen for the two-objective WFG4 in Figure 3(b).
Here, the light beams are located in the infeasible region of the objective-space,
because both AP and RPs are infeasible. However, the EMO algorithm with the
light beam search still managed to guide the population in the direction of the
light beams until solutions are located on the global Pareto front.
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Fig. 3. (a) Two-objective ZDT4 with two reference points (b) Two-objective WFG4
with two light beams



450 U.K. Wickramasinghe and X. Li

0.0

1.0

2.00.0 1.0 2.0 3.0 4.0

0.0

1.5

3.0

4.5

6.0

f2

AP
RP

RP

δ = 0.05

δ = 0.01

f0

f1

f2

0.0

0.5

1.00.0
0.5

1.0

0.0

0.5

1.0

f2

(0.5, 0.5, 0.5)

(0.2, 0.3, 0.5)

δ = 0.05

δ = 0.01

f0

f1

f2

(a) (b)

Fig. 4. (a) Three-objective WFG2 with two light beams (b) Three-objective DTLZ1
with two reference points

4.2 Three-Objective Problems

Figure 4 shows the solutions fronts obtained for three-objective WFG2 (n = 6)
and DTLZ1 (n = 7) test problems. Here, WFG2 has disjointed Pareto fronts and
DTLZ1 is multi-modal (having 115 − 1 local optima). It is interesting to note
that in Figure 4(a) the light beam (with AP (2.0, 2.0, 2.0) and RP (0.0, 0.0, 0.0))
goes through the disjoint Pareto front, but the algorithm was still able to locate
solutions on the region of the Pareto front which is closest to this light beam.
The distance metric guides individuals in the direction given by the vector from
AP to RP. This is possible because the algorithm concentrates its search in the
direction of this vector. With the population the algorithm has the ability to
move in parallel along the direction of this vector until a middle point is found
on the Pareto front. Figure 4(b) shows that regardless of the modality, the EMO
algorithm was able to converge on the true Pareto with spread values of δ = 0.01
and δ = 0.05.

4.3 Five-Objective Problems

Figure 5 illustrates the solution obtained by each preference mechanism with
δ = 0.05. Figure 5(a) shows the result obtained for a five-objective DTLZ1
(n = 9) instance. Here, the reference point was at 0.5 for all of the objectives in
the objective-space. The sum of the objective values of each individual was found
to be in the range [0.5039, 0.5373] for DTLZ1. This suggests that the individuals
are very close to the true Pareto front of DTLZ1, since it holds the condition
M−1∑
i=0

fi(x) = 0.5 for every x on the true Pareto optimal front. Figure 5(b) shows

the five-objective DTLZ3 (n = 14) instances where the AP was set to be the
nadir point having the value of 1.0 for all objectives and the RP to be the ideal
point having 0.0 for all objectives. DTLZ3 is one of the more difficult multi-
modal problems having close to 310 number of local Pareto fronts and one global
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Fig. 5. (a) Five-objective DTLZ1 with one reference point (b) Five-objective DTLZ3
with one light beam (each line represents a solution point, where the intersection at
the objectives axis represents the value for that objective)

Pareto front. The solutions given for DTLZ3 showed that for each individual
x, the sum of its squared objective values were in [1.0475, 1.0671]. This shows
that the solutions are very close to the true Pareto front, because for DTLZ3 a

solution x is on the true Pareto front if
M−1∑
i=0

(fi(x))2 = 1.

4.4 Ten-Objective Problems

Figure 6 illustrates the solution obtained by each preference mechanism with
δ = 0.05. Figure 6(a) shows the result obtained for a ten-objective DTLZ1
(n = 14) instance. Here, the reference point was at 0.5 for all of the objectives
in the objective-space. The sum of the objective values of each individual was
found to be in the range [0.5084, 0.5662] for DTLZ1. Figure 6(b) shows the ten-
objective DTLZ3 (n = 19) instances where the AP was the nadir point and the
RP was the ideal point. The solutions obtained for the DTLZ3 instance indicated
that the sum of the squared objective values were in [1.0837, 1.1322], showing
that the individuals were very close to the global Pareto front.
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Fig. 6. (a) Ten-objective DTLZ1 with one light beam (b) Ten-objective DTLZ3 with
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5 Conclusion and Future Work

In this paper we have proposed a distance metric for EMO algorithms which
does not rely on dominance comparisons to find solutions. The proposed dis-
tance metric obtained by utilizing user-preferences, either by the reference point
or light beam search method, has been integrated into a GA based EMO algo-
rithm. The resulting user-preference based EMO algorithm is shown to provide
good performances especially for problems characterized by a high number of
objectives and multiple local Pareto-fronts.

Interesting results can be also observed in the behaviour of the proposed EMO
algorithm when the preferred regions specified by the DM are in the infeasible
regions. In such cases the EMO algorithms are still able to converge to the
Pareto front near those specified preferred regions. This property provides an
advantage to the DM, since the DM does not have to have the knowledge of
where the actual true Pareto optimal front is.

In future we will carry out more comprehensive studies on the distance metric
and variations of it. We are also interested in applying EMO algorithms based
on this distance metric to solving real world problems.
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Abstract. In order to drive Genetic Programming (GP) search towards
an optimal situation, balancing selection pressure between the parent and
offspring selection phases is an important aspect and very challenging.
Our previous work showed that stochastic elements cannot be removed
from both parent and offspring selections and suggested that maximis-
ing diversity in parents and minimising randomness in offspring could
provide significantly good performance. This paper conducts additional
carefully designed experiments to further investigate how diverse the par-
ent should be if the offspring selection pressure is intensive. This paper
shows that any attempt on adding more selection pressure to the parent
selection can result in lower GP performance, and the higher the parent
selection pressure, the worse the GP performance. The results confirm
and strengthen the finding in our previous work.

1 Introduction

Evolutionary Algorithms (EAs) are inspired by biological evolution such as mu-
tation, recombination, natural selection and survival of the fittest, that is, the
Darwinian natural selection theory. One form of EAs — Genetic Programming
(GP) [1] — started to receive attention from a wide group of researchers from
the early 1990s. Since then, it has been rapidly developed into a popular re-
search field of artificial intelligence. To fulfill a certain task, GP starts with a
randomly-initialised population of programs. It evaluates each program’s perfor-
mance using a fitness function, which generally compares the program’s outputs
with the target outputs on a set of training data (“fitness cases”). It assigns each
program a fitness value, which in general represents the program’s degree of suc-
cess in achieving the given task. Based on the fitness values, it then chooses some
of the programs using a stochastic selection mechanism. After that, it produces a
new population of programs for the next generation from these chosen programs
using crossover, mutation, and copy operators. The search repeats until it finds
an optimal or acceptable solution, or meets certain stopping criteria.

There are many factors that can affect the evolutionary search performance
for given problems. These factors include the size of a population, the repre-
sentation of individuals in a population, the fitness evaluation of individuals,
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the selection mechanisms for reproduction and for survival, the genetic opera-
tions for modifying individuals, and many more. Amongst these factors, selection
mechanisms play an extremely important role.

A selection mechanism consists of a selection scheme and a selection pressure
control strategy. According to the configuration of selection pressure, the evolu-
tionary search in GP, as well as in some other instances of EAs, has two extremes
[2]. One extreme, when there is no selection pressure, is completely stochastic so
that the search acts just like the Monte Carlo method [3], randomly sampling
the space of feasible solutions. The other extreme, when the selection pressure is
very high, is minimally stochastic so that the search acts like a local hill-climbing
search method. It is clear that in general the drawback of the former extreme
is its inefficiency and the drawback of the latter extreme is its possible confine-
ment to local optima or “premature convergence”. Therefore, an effective and
efficient evolutionary search algorithm must balance between these two extremes:
removing some stochastic elements in order to distinguish evolutionary search
algorithms from a random search algorithm, but on the other hand retaining
some stochastic elements in order to prevent the search from being confined in
local optima or converging prematurely. In order to obtain the balanced situ-
ation, selection pressure, the key element in the selection mechanism, must be
properly controlled to maintain the stochastic elements at an optimal level.

As selection in GP and some other forms of EAs consists of two phases —
parent selection (selection for reproduction) and offspring selection (selection
for survival), selection pressure needs to be controlled in the parent selection
and in the offspring selection, as well as be balanced between the parent and
offspring selections. The selection of parents has been well explored through the
development of EAs. There have been quite a few researches on tuning selection
pressure in the parent selection phase [4,5,6,7,8]. However, the selection of off-
spring (choosing which offspring to put into the next generation) was effectively
missing in GP originally: the creation of offspring was a random process and
created offspring were directly put into the next generation, meaning that “sur-
vival of the fittest” was not applied to offspring. Although later the importance
of offspring selection has been noticed and there have been many promising at-
tempts to develop new constructive genetic operators [9,10,11,12], there is little
study on tuning selection pressure in the offspring selection phase, and even less
on balancing selection pressure between parent and offspring selections. In fact,
balancing selection pressure between the parent and offspring selection phases
is more challenging than tuning selection pressure in each selection phase alone.
How to control selection pressure, consequently the stochastic elements, for driv-
ing the evolutionary search towards an optimal situation remains an open and
challenging problem in EAs’ research.

In our previous work [13], we analysed the selection pressure issue in the
context of GP. Although we have found some guidelines to balance the stochastic
elements between the parent and offspring selection, to properly achieve that
requires further investigations.
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1.1 Goals

Our previous work showed that parent diversity is important and recommended
to select parents randomly for maximising the parent diversity but select offspring
exhaustively for receiving significantly good search performance. The recommen-
dation was derived from a coarse performance comparison where the performance
of selecting a pair of parents both randomly was only compared with the perfor-
mance of selecting a pair of parents both using tournament selection with
tournament size 4.

It is likely that choosing one parent randomly while choosing the other one
with some selection pressure may also be able to keep parent diversity at an
adequate level, and the offspring produced may contain good genetic material
with higher chance than that produced by randomly selected parents thus con-
sequently GP search performance may be further improved.

Therefore, this paper further investigates the balance of selection pressure be-
tween the parent and offspring selections for driving the GP search towards an
optimal situation. In particular, this paper intends to answer if exhaustive off-
spring selection is chosen, how weak the parent selection pressure is appropriate
and whether it is necessary to maximise the parent diversity.

2 The Approach and Experiment Design

This section introduces our previous work for providing sufficient background
and describes the experiment design for addressing the research questions.

Constructive genetic operators [9,10,11,12] often replace the standard breed-
ing process, that is, two offspring by crossover and one offspring by mutation,
with a many-offspring breeding process. The best offspring is then chosen for sur-
vival. The increased offspring selection pressure further reduces the stochastic
nature of the GP search. In order to explore the actual effect of offspring selec-
tion in combination with parent selection, as well as the balance between parent
and offspring selection pressure, we conducted several sets of experiments [13].

The experiments considered six different combinations of selection pressure
illustrated in Figure 1. The selection of parents has two options, either without
selection pressure by using a random parent selection process, or with selection
pressure (using tournament selection with size 4). The selection of offspring has
three levels of selection pressure: no selection pressure as in the standard breed-
ing process, or weak selection pressure, or strong selection pressure. The weak
offspring selection pressure was implemented through the use of partial crossover,
which chooses a crossover point randomly in one parent but considers all nodes
in the other parent to produce offspring. The strong offspring selection pressure
was implemented through the use of full crossover, which considers all possible
ways of recombining a given pair of parents to produce offspring. Three testing
problems were used: the even-6 parity problem, a symbolic regression problem,
and a binary classification problem. The ramped half-and-half method was used
to create new programs with the maximum depth of four. The population size
was 100. The maximum number of generations is 51. The crossover rate and the
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Fig. 1. Six GP systems according to configurations of selection pressure on parent
selection and offspring selection (modified from [13])

reproduction rate were 95% and 5%. For ease of analysis, the mutation operator
was not used.

Although sometimes increased offspring selection pressure together with par-
ent selection was suggested as effective in the literature [9,10,11,12,14,15], the
experimental results showed that stochastic elements cannot be removed from
both parent and offspring selections, otherwise premature convergence will ap-
pear very often. To obtain a significantly good performance, it was recommended
to maximise diversity in parents and minimise randomness in offspring.

2.1 Problem Set

Our experiments considered three problems. Two of them are from [13]: the even-
6-parity (EvePar) and the symbolic regression problem (SymReg). Another one
is Poly10 as it “is extremely hard” [16]. SymReg and Poly10 are illustrated in
Equations 1 and 2.

f(x) = exp(1 − x)× sin(2πx) + 50sin(x) (1)

f(x1, x2, ..., x10) = x1x2 + x3x4 + x5x6 + x1x7x9 + x3x6x10 (2)

2.2 Parent Selection Pressure Configuration

To answer the above research questions, we investigate four different levels of
parent selection pressure configurations when selecting parents for crossover. In
these configurations, one parent is selected randomly, the other one is selected
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using one of the four following ways: 1) randomly thus having no selection pres-
sure; 2) standard tournament selection with size two thus having a weak selection
pressure; 3) standard tournament selection with size four thus having a strong
selection pressure; and 4) the best of the population, thus having extreme selec-
tion pressure. Four GP systems using the four parent selection schemes will be
referred to as R&RS, R&T2S, R&T4S and R&BS, respectively. The experiments
only consider the full crossover from [13] according to the research questions in-
vestigated in this paper. It is clear that the full crossover operator is expensive
but we intend to ignore this factor here because its impact has already been
analysed and justified in [13]. Furthermore, computational saving is out of the
scope of this paper.

2.3 Function Sets, Terminal Sets and Fitness Functions

The function set used for EvePar consists of the standard Boolean operators
{ and, or, not } and if function. The function set used for SymReg includes the
standard arithmetic binary operators {+, -, *, / } and unary operators { abs,
exp }. The / function returns zero if it is given invalid arguments. The function
set used for Poly10 includes the standard arithmetic binary operators {+, -, * }
and a customised {/} operator. The / function returns the denominator if the
numerator is zero. The terminal set for EvePar consists of 6 boolean variables.
The terminal set for SymReg and Poly10 both consists of a single variable x. In
addition, real valued constants in the range [-5.0, 5.0] are also included in the
terminal sets for SymReg.

The fitness function for EvePar is the number of wrong outputs (misses) for
the 64 combinations of 6-bit length strings. The fitness functions for SymReg
and Poly10 are the root-mean-square (RMS) error and the sum of absolute error
of the outputs of a program relative to the expected outputs, respectively.

Note that the terminal sets, function sets, and fitness functions are the same
as that used in [13] for EvePar and SymReg and that in [16] for Poly10. Other
generic parameter configurations are consistent with that in [13].

3 Experiment Results

3.1 Overall Performance

Table 1 shows the effectiveness results over 100 independent runs for the four GP
systems on the three problems. The measures for EvePar are the failure rate and
the average number of misses. The failure rate shows the fraction of runs that
were not able to return the ideal solution. The measures for SymReg and Poly10
are the averages of the RMS error and the sum of absolute errors, respectively.
The standard deviation for averaged measures is shown after the ± sign.

The results show the same pattern as that in [13]: overall for all the three
problems, the best GP system is the one using random selection for both parents.

We also measured the index of the generation where the best-of-run appeared
for the first time in each run (shorten as GenIndex hereafter). In a situation
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Table 1. Effectiveness comparison between GP systems using the four parent selection
schemes

GP EvePar SymReg Poly10
System Failure (%) Miss RMS Error Sum Abs Error
R&RS 20 1.3 ± 2.8 48.1 ± 6.2 8.7 ± 3.2

R&T2S 23 1.7 ± 3.4 52.2 ± 6.6 9.3 ± 3.2
R&T4S 37 3.3 ± 4.9 53.4 ± 7.4 11.2 ± 3.6
R&BS 97 18.7 ± 7.2 63.6 ± 3.8 17.6 ± 3.0

Table 2. GenIndex comparison between GP systems using the four parent selection
schemes

GP System EvePar SymReg Poly10
R&RS 18.0 ± 5.5 37.3 ± 8.1 28.9 ± 13.5
R&T2S 13.2 ± 4.1 24.6 ± 5.8 19.3 ± 8.9
R&T4S 11.0 ± 2.1 17.7 ± 5.6 13.6 ± 7.6
R&BS 6.5 ± 2.8 6.0 ± 4.2 3.4 ± 4.2

where two GP systems have the same effectiveness, the smaller the GenIndex
value, the higher the efficiency. On the other hand, if one GP system has a
worse average effectiveness than the other but has a smaller average GenIndex,
it is likely that the former GP system has encountered a premature convergence
problem. Table 2 shows the average GenIndex values for the four GP systems.

From Tables 1 and 2, as the selection pressure increases for the selection of
the second parent, the effectiveness of a GP system reduces and the chance
of having premature convergence increases. Amongst the four GP systems, the
worst performance is given by the GP system in which the best of the population
always mates with others, indicating that extremely utilising the known “best”
genetic material can easily drive the GP search to local optima. Material in great
parents cannot always be considered as good.

3.2 Diversity in Parents

We noticed that the actual performance of the R&RS GP system on the EvePar
and SymReg problems was much worse than that reported in [13] (zero percent
failure for EvePar and 37.2 RMS error for SymReg). If maximising diversity in
parents is the key factor for obtaining the significant performance as reported
in [13], then the reason of having worse performance in our R&RS GP system
is that our R&RS GP system actually did not maximise the diversity in parents
although parents were selected randomly.

In general, random parent selection should give each individual in a population
the same chance to be selected as parent. However, since random parent selection
can be viewed as a special case of tournament selection with tournament size of
1, the random parent selection in fact has about 36% of the population lost in
the parent selection process due to the not-sampled issue [16,17].
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Consequently, when the second parent for crossover is selected under some
selection pressure, the proportion of a population that can be selected as parents
for crossover will be even smaller.

To further verify the necessity of maximising diversity in parents and to inves-
tigate the impact of the extra loss of diversity on the performances of the R&T2S,
R&T4S and R&BS GP systems, we conducted an additional set of experiments.
In this set of experiments, we implemented the round-replacement tournament
selection [17], which is designed to ensure every individual in a population can
participate into tournaments, for selecting both parents in the R&RS GP system
and the first parent in the other three GP systems in order to reduce the loss
of parent diversity. Tables 3 and 4 illustrate the effectiveness measures and the
GenIndex measure for the four GP systems, respectively.

Table 3. Effectiveness comparison between GP systems using the four parent selection
schemes (with round-replacement tournament selection)

GP EvePar SymReg Poly10
System Failure (%) Miss RMS Error Sum Abs Error
R&RS 0 0 38.2 ± 4.3 4.3 ± 2.3

R&T2S 19 1.5 ± 3.5 49.3 ± 6.4 8.9 ± 2.9
R&T4S 35 3.1 ± 3.8 53.0 ± 6.7 11.0 ± 4.1
R&BS 95 17.3 ± 7.1 62.5 ± 4.0 17.6 ± 2.8

Table 4. GenIndex comparison between GP systems using the four parent selection
schemes (with round-replacement tournament selection)

GP System EvePar SymReg Poly10
R&RS 14.2 ± 2.7 46.2 ± 5.1 41.7 ± 7.6
R&T2S 12.9 ± 3.2 25.6 ± 6.9 20.9 ± 8.7
R&T4S 10.8 ± 2.3 18.6 ± 6.3 13.0 ± 8.0
R&BS 7.0 ± 2.8 6.5 ± 4.5 3.0 ± 3.6

The performance of the R&RS GP system in the additional experiments is sig-
nificantly better than that reported in Tables 1 and 2 for all the three problems,
and measures for EvePar and SymReg match those in [13]. This observation
verified the necessity of maximising diversity in parents when a highly intensive
search is conducted in offspring selection.

However, as the selection pressure for the second parent increases, the perfor-
mance improvement in the additional experiments decreases and becomes even
not noticeable in the R&T4S and R&BS GP systems. These additional experi-
mental results show that the negative effect of the increased selection pressure for
the second parent overwhelms the positive effect of the extra utilised programs
for the first parent.

Overall, our experimental results showed that if exhaustive offspring selection
is used, the parent selection pressure should be minimised. Choosing one parent
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randomly while choosing the other with some selection pressure do not further
improve GP performance. It is necessary to maximise the parent diversity. The
results confirm and strengthen the work and the recommendation given by [13]:
maximising diversity in parents and minimising randomness in offspring can
obtain a significantly good performance.

4 Further Discussion

It appears that many researches have been focusing on balancing exploration
and exploitation in order to create an optimal search situation for EAs since
the 1990s [18,19,20,21,22,23,24,25,26]. Too much exploration results in a pure
random search whereas too much exploitation results in a pure local search
[18]. If the degree of exploration is too high, search may rapidly degenerate
into a random walk where the benefits of evolutionary search are quickly lost.
Conversely, if the degree of exploitation is too high, it may result in premature
convergence, with significant areas of the search space remaining unexplored [18].
This implies that the key point of balancing exploration and exploitation is to
maintain stochastic elements at an appropriate level as required through out the
evolutionary process.

Although the terms — exploration and exploitation — have been used for
many years, they have not yet been well defined in EAs’ literature. For instance,
based on the review in [21], Eshelman et al. [19] stated that in GAs selection is
commonly seen as the source of exploitation, while the mutation and crossover
operators are commonly seen as the source of exploration. However, Eiben and
Schippers [21] suggested that mutation and crossover operators can be seen as
both exploratory and exploitative. The operators are exploratory because new
material is created in mutation and new configurations of material are produced
during crossover. They are also exploitative since most of the old genetic material
is preserved after applying the operators. Furthermore, Naudts and Schippers
[27] interpreted exploitation and exploration in the context of a simple evolu-
tionary algorithm. They defined the process of sampling parents as neighborhood
exploration, the process of selecting parents as objective exploitation, the process
of putting selected parents into a mating pool as generational exploration, and
the process of generating new offspring as representational exploitation.

Consequently, due to different interpretations of the two terms, there exist
many different views on balancing exploration and exploitation. For instance, in
[28], the balance between exploitation and exploration can be adjusted either
by the selection pressure of a parent selection operator or by the probability of
crossover. In [29], exploitation is encouraged by elitist selection and smaller pop-
ulation sizes, or by using lower mutation rates to promote correlation between
parent and offspring. Exploration is encouraged by promoting greater popula-
tion diversity and selecting parents less discerningly, or by increasing mutation
rate. Eiben and Schippers [21] stated (mainly based on research in GAs) that
there are three levels at which the phenomena of exploration and exploitation
occur: at individual level, at sub-individual level, and at a single gene level. At
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the first level, individuals are atomic. At the second level, each individual is seen
as an instance of the 2l schemata in the traditional GAs, where l is the length
of the individual. At the third level, values of a single gene form the inheritable
properties, for instance in a real-valued evolutionary programming that performs
a Gaussian perturbation of an allele. It suggests that balancing exploration and
exploitation should be considered at the three different levels, but not applicable
at all three levels for a given search paradigm. Tackett [9] and Gustafson [25] also
suggested that in GP exploration and exploitation are two phases in an evolu-
tionary process, and the exploration phase is followed by the exploitation phase.
The two-phase concept in GP treats the maintenance of stochastic elements as
a generation-wise process which starts from exploring and ends with exploiting
generation by generation.

In order to drive evolutionary search toward an optimal situation, we think it is
unnecessarily hard to develop strategies to balance exploration and exploitation
when their definitions have not yet been clarified. Instead, it would make more
sense to focus on trying to balance parent and offspring selection pressure. This
is because not only do they both aim to control stochastic elements through out
an evolutionary process, but also the term selection is well understood in EAs.

5 Conclusions

This paper further investigated the balance between parent and offspring se-
lection pressure in order to drive GP search towards an optimal situation. It
confirmed and strengthened a heuristic in our previous work, that is, when a
highly intensive search is conducted in offspring selection, maximising the diver-
sity in parent selection is strongly recommended in order to receive a significantly
good performance result. Any attempt on adding more selection pressure to the
parent selection can result in lower GP performance, and the higher the parent
selection pressure, the worse the GP performance.

Since mutation has not been used in either [13] or this study, further investi-
gation on considering the effect of new material in mutation is necessary in order
to move closer to an optimal search situation in GP.

References

1. Koza, J.R.: Genetic Programming — On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge (1992)

2. Tettamanzi, A., Tomassini, M.: Soft Computing: Integrating Evolutionary, Neural,
and Fuzzy Systems. Springer, Heidelberg (2001)

3. Rubinstein, R., Kroese, D.: Simulation and the Monte Carlo Method, 2nd edn.
John Wiley and Sons, Chichester (2007)

4. Goldberg, D.E., Deb, K.: A comparative analysis of selection schemes used in
genetic algorithms. Foundations of Genetic Algorithms, 69–93 (1991)

5. Julstrom, B.A., Robinson, D.H.: Simulating exponential normalization with
weighted k-tournaments. In: Proceedings of the 2000 IEEE Congress on Evolu-
tionary Computation, pp. 227–231. IEEE Press, Los Alamitos (2000)



Balancing Parent and Offspring Selection in Genetic Programming 463
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Abstract. A Case-Based Reasoning system, nicknamed SARTRE, that
uses a memory-based approach to play two-player, limit Texas Hold’em
is introduced. SARTRE records hand histories from strong players and
attempts to re-use this information to handle novel situations. SARTRE’S
case features and their representations are described, followed by the re-
sults obtained when challenging a world-class computerised opponent.
Our experimental methodology attempts to address how well SARTRE’S
performance can approximate the performance of the expert player, who
SARTRE originally derived the experience-base from.

Keywords: Computer Poker, Game-AI, Case-Based Reasoning.

1 Introduction

Poker has been identified as a useful domain for Artificial Intelligence research
[1]. As the number of researchers working within the environment of Computer
Poker has increased, so too has the development of strong poker robots (or poker-
bots) which play increasingly more sophisticated strategies [2,4]. A beneficial
result of the increased attention paid to computer poker has been the creation
of the Annual Computer Poker Competition (CPC) [11], where researchers can
evaluate their systems by challenging other computerised opponents to the game
of Texas Hold’em poker.

Competitors of past CPC’s can typically be characterised into two broad cat-
egories. Firstly, those systems that attempt to approximate a Nash-equilibrium
strategy [2,4]. A Nash-equilibrium strategy guarantees that no matter what play-
ing style an opponent adopts, they will never win more than what the equilibrium
strategy guarantees [2]. This type of strategy can be said to favour not losing,
rather than looking for ways to win. At present, equilibrium strategies may only
be approximated for the game of Texas Hold’em due to the incredibly large size
of the game tree. On the other hand, an exploitative [3] strategy will attempt
to win by maximising profits and exploiting weaker competition. This approach
requires a system to model their opponent’s play. As this strategy deviates from
the equilibrium, the system may be prone to exploitation itself.

A. Nicholson and X. Li (Eds.): AI 2009, LNAI 5866, pp. 465–474, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.cs.auckland.ac.nz/research/gameai


466 J. Rubin and I. Watson

Our research currently looks into the use of memory in game AI. Rather than
relying on game-theoretic principles to construct near-equilibrium strategies, the
goal of this research is to investigate whether hand histories from strong poker
players can be re-used within a Case-Based Reasoning (CBR) framework to
achieve a similar performance? CBR is an AI methodology that uses solutions to
past problems to solve new problems [7]. A collection of experiences is recorded,
which consists of problems and solutions. When a novel situation is encountered
a CBR system attempts to retrieve similar experiences from its experience-base
and re-use or adapt the solutions to solve the new problem.

SARTRE (Similarity Assessment Reasoning for Texas hold’em via Recall of
Experience) is the latest outcome of our research that attempts to address the
above question. SARTRE differs from a previous system we developed, CASPER
[8], in that it is specifically designed to play 2-player poker, whereas CASPER
was more suited to challenge multiple opponents.

SARTRE’S experience-base is generated by observing and recording hand his-
tories from the strongest opponents of past CPC’s. In 2008 the University of
Alberta’s Hyperborean-eq took out first place in the limit Hold’em competition
[11]. Hyperborean-eq plays a fixed, near-equilibrium strategy.

The remainder of this paper proceeds as follows. The game of Texas Hold’em
is discussed in Section 2. Section 3 provides an overview of the SARTRE system,
followed by Section 4, the experimental results and finally the discussion and
conclusion in Section 5.

2 Texas Hold’em

Currently our research focuses around the Texas Hold’em variation of poker. At
present, Texas Hold’em is the most popular form of poker as well as being the
most strategically complex [5]. In Texas Hold’em play is broken down into four
main stages: preflop, flop, turn and river. For a full description of each stage of
the game consult [6].

SARTRE is a heads-up, limit poker-bot. This means SARTRE will only ever
challenge one opponent at any one time and betting will be capped at certain
limits during each round of play. Factors such as challenging multiple opponents
or handling a no-limit betting structure pose extra challenging research prob-
lems for poker playing agents. Heads-up, limit poker simplifies these tasks,
however, it still preserves the key qualities and structure of other more compli-
cated variants. It also offers its own unique challenges, for example, in heads-up
play both players need to play a lot more hands in order to be profitable [5].
Players therefore need to play weaker hands than they would play at a full table
(i.e. approx. 9 players), it then becomes more important to determine whether
an opponent actually has a valuable hand, or not, more often than would be
required at a full table. As only one opponent is available during each game
more opportunity exists to model and adapt to your opponents play. It makes
sense that two-player, limit poker should be investigated first [2] before focus-
ing effort on more complicated concepts such as no-limit betting and multiple
opponents.
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3 SARTRE: System Overview

SARTRE makes decisions by retrieving similar cases from its experience-base.
The authors have hand picked three key factors to represent case features that
SARTRE uses to determine a solution for a particular case.

1. The previous betting for the current hand.
2. The current strength of SARTRE’S hand given by combining personal hole

cards with the publicly available board cards.
3. Information about the state of the current community cards, called the tex-

ture of the board.

As SARTRE is a computer program the information required needs to be easily
recognised and able to be reasoned about algorithmically. Qualitative feature
descriptions have been favoured over quantitative descriptions as they are more
likely to be used by an expert, human player. Each case feature is described in
more detail below, including the representation we have chosen to implement for
the SARTRE system.

3.1 The Previous Betting for the Current Hand

The type of betting that can occur at each decision point in a hand consists
of a fold (f), check/call (c), or bet/raise (r). A combination of these symbols
corresponds to all the decisions made during a particular hand. We have chosen
to represent each betting pattern as a path within a betting tree. A betting tree
succinctly enumerates all betting combinations up until a certain point in the
hand. A path within this tree represents the actual decisions that were made
by each player during this hand. Fig. 1. represents a situation where SARTRE’S
opponent has made a bet on the flop and it is now SARTRE’S turn to act.

Given this representation, we can calculate the similarity between two sepa-
rate trees (a target tree and a source tree) by comparing the betting path within
each tree. If the betting path in the target tree is exactly the same as the bet-
ting path within the source tree a similarity value of 1.0 is assigned. Currently,
SARTRE will simply assign a value of 0.0 to any betting paths that are not
exactly similar, however, we plan to investigate less stringent approaches for fu-
ture implementations. For example, if one betting path mostly resembles that of
another, with a small number of variations, a similarity value close to (but less
than) 1.0 could be assigned.

3.2 The Current Strength of SARTRE’S Hand

The second case feature used to determine a betting action is a qualitative
category describing SARTRE’S personal hand. During the pre-flop SARTRE’S
hand simply consists of its personal hole cards, whereas for the post-flop stages
of play SARTRE’S hand is constructed by combining its hole cards with the
publicly available community cards, the best 5 card combination is used.
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Fig. 1. A tree that describes betting decisions for two players during a hand of Texas
Hold’em Poker. The highlighted nodes are the actual decisions that were made by each
player.

SARTRE’S best 5 cards are mapped to a category that describes the hand. The
classic hand categories in poker include no-pair, one-pair, two-pair, three-of-a-
kind, straight, flush, full-house, four-of-a-kind and finally a straight-flush. Each
category has a greater strength than the previous one, where a straight-flush,
consisting of the cards Ten, Jack, Queen, King, Ace, represents the highest
rank possible (i.e. a Royal Flush).

During the flop and the turn all the community cards have yet to be dealt
and therefore a player’s hand has the ability to improve from one category to
another, depending on which card is drawn next. It is therefore too simplistic to
only consider the current hand category, so further classification is required for
hands with the potential to improve. These types of hands are called drawing
hands (in poker terminology). SARTRE considers two types of drawing hands:
flush draws & straight draws. An example mapping is illustrated in Fig. 2.

The hand categories SARTRE uses to classify cards were decided upon by the
authors. Fig. 2. shows a combination of two categories, one which represents the
current hand category: overcards (i.e. no pair has been made, but both hole
cards have a higher rank than the community cards). Appended to this category
is a separate drawing category: ace-high-flush-draw-uses-both, that indi-
cates the strength of the current hand has the ability to improve to a flush. The
“ace-high” portion of this category further specialises this category by indicating
the strength of the possible flush.

Currently a simple rule-based system is used to decide which category a com-
bination of cards belongs to. Similarity for this feature is currently either 1.0
when the category of the target case is exactly that of the source case, otherwise
it is 0.0 when the categories are distinct.

3.3 The Texture of the Board

The final indexed feature attempts to summarise the state of the community
cards without considering the hole cards of a player. The texture of the board
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Fig. 2. Mapping a combination of five cards to a category that represents the current
hand rank and the drawing strength of this hand

refers to salient information a human poker player would usually notice about
the public cards, such as whether a flush is possible. Once again a set of qual-
itative categories were hand-picked by the authors to map various boards into.
Some categories used by SARTRE’S current implementation that refer to flush
and straight possibilities are Is-Flush-Possible (where three cards of the same
suit are showing), Is-Flush-Highly-Possible (where four cards of the same suit
are showing) & Is-Straight-Possible (where three consecutive card values are
showing), Is-Straight-Highly-Possible (where four consecutive card values are
showing).

If two boards are mapped into the same category, they are given a similarity
value of 1.0, whereas boards that map to separate categories have a similarity
of 0.0.

3.4 SARTRE’S Experience-Base

SARTRE’S experience-base is generated by analysing information from the logs
of previous CPC matches involving Hyperborean-eq. For each hand played in the
game log at least one new case is added to SARTRE’S experience-base. Each
feature described above is assigned into an appropriate category to represent
the situation. The decision that Hyperboean-eq made is recorded and acts as
the solution for that particular case. The final outcome of that decision is also
recorded.

The current version of SARTRE uses just over 1 million cases in total, these
are sub-divided into different stages of the game as follows: Preflop cases: 201335,
Flop cases: 300577, Turn cases: 281529, River cases: 216597.

When it is time for SARTRE to make a decision, the experience-base is con-
sulted and the most similar cases are retrieved, along with their solutions. A
probability triple is then constructed by summing the number of times each
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decision was made and dividing by the total decisions. SARTRE then proba-
bilistically selects a decision based on the values within the triple.

4 Experimental Results

Experimental results were obtained for SARTRE using a 3.00 GHz Intel Core 2
Duo CPU with 4.00 GB of Memory (RAM). SARTRE challenged two separate
computerized opponents: FellOmen2 [4] & BluffBot [9], both were chosen because
they are freely available. FellOmen2 is currently a world-class poker-bot, finishing
second equal in the 2008 AAAI Computer Poker Competition [11]. FellOmen2
uses a co-evolutionary strategy, to create a near-equilibrium solution [4]. The
limit version of BluffBot finished second in the 2006 AAAI CPC and, by today’s
standards, is not a world-class poker-bot [10]. BluffBot attempts to approach a
Nash-equilibrium strategy using game-theoretic methods, similar to [2].

All matches played were limit, heads-up, Texas Hold’em. The betting struc-
ture was $2/$4, meaning all bets made during the preflop and the flop were in
increments of $2 and all betting on the turn and river were in increments of $4.
As FellOmen2 and BluffBot were made available in different platforms, two sepa-
rate poker environments were used to obtain results, described in detail below:

AAAI Computer Poker Competition poker server Version 2.3.1. Using
the poker server software, duplicate matches were able to be played. Duplicate
matches proceed by playing N hands in a forward direction, then each competi-
tor’s memory is reset and the hands are replayed in the reverse direction, i.e.
each player now plays the hands that were dealt to their opponent on the for-
ward run. This has the effect of decreasing the inherent variance involved with
poker, as one player will not receive a set of better hands than another player.
Once the duplicate match is complete the total profit/loss for each direction is
summed and the competitor with a positive bankroll is determined the winner.
SARTRE challenged FellOmen2 by playing 6 separate duplicate matches, using
N = 3000, for a total of 36,000 hands.

Poker Academy Pro 2.5. BluffBot was only available to challenge using the
commercial application Poker Academy1. Poker Academy doesn’t allow a dupli-
cate match structure to be played as described above. Instead, all matches played
using Poker Academy proceeded in a forward direction and no reduction of vari-
ance took place. SARTRE challenged BluffBot by playing a total of 30,000 hands.

4.1 SARTRE vs. FellOmen2

Fig. 3. plots SARTRE’S bankroll for each of the 6 duplicate matches played
against FellOmen2. Table 1. provides a summary of the overall outcome. The
figures refer to SARTRE’S bankroll.

From the above results we can calculate that, on average, SARTRE loses
−2.92± 0.5 big bets per 100 hands (BB/100) to FellOmen2. BB/100 is a value
1 http://www.poker-academy.com/poker-software
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Fig. 3. Sartre vs. FellOmen2

Table 1. Sartre vs. FellOmen2 Summary

Total Hands Forward Reverse Final Outcome
Round1 6000 532 -827 -295
Round2 6000 -204 -292 -496
Round3 6000 -869 -261 -1130
Round4 6000 549 -1208 -659
Round5 6000 109 -900 -791
Round6 6000 226 -1063 -837
Total 36000 343 -6859 -6516
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commonly used in poker to measure a players success, without considering the
stakes the player is playing at. As the big bet was $4 this means that, on average
for each duplicate run, SARTRE will lose $11.60 ± $2 for every 100 hands
played against FellOmen2. Generally, any positive BB/100 value, over a large
sample, is considered good, whereas, a player who always folds would lose -37.5
BB/100. During the 2008 CPC, Hyperborean-eq achieved an average value of
+1.205 ± 0.15 BB/100 when challenging FellOmen2. An independent samples
t-test gives p < 0.00001, hence a significant difference is observed between the
average profit/loss of Hyperborean and SARTRE when challenging FellOmen2.

4.2 2008 CPC Competitors vs. FellOmen2

It is also interesting to consider the results of other competitors who challenged
FellOmen2, during the 2008 CPC. Table 2., lists the final outcome of matches
played against FellOmen2 for each of the 9 competitors in the limit Hold’em
competition [11,4].

Table 2. FellOmen2 vs. Opponents from 2008 AAAI CPC

Place Name Win rate against FellOmen2 (BB/100)
1 Hyperborean-eq 1.2
2 Fell Omen 2 0
2 Hyperborean-on 0.2
2 GGValuta -0.15
5 GS4-Beta -1
6 PokeMinn 2 -7.65
7 PokeMinn 1 -7.7
8 GUS -23.35
9 Dr. Sahbak -26.6

Our experiments show that SARTRE’S win rate against FellOmen2 was -2.92
BB/100 which would place SARTRE 6th, in Table. 2., between GS4-Beta and
PokeMinn2.

4.3 SARTRE vs. BluffBot

The above results only represent SARTRE’S performance against one specific
opponent, FellOmen2. To further evaluate the system, SARTRE challenged a sep-
arate, computerised opponent. The next opponent SARTRE faced was BluffBot.
SARTRE played 30,000 hands against BluffBot and the outcome is illustrated in
Fig. 4.

The platform that BluffBot was made available on did not allow for the du-
plicate match structure that was used when SARTRE challenged FellOmen2, so
caution must be used in interpreting the results. However, it is safe to say that
Fig. 4. clearly illustrates a profitable trend for SARTRE. SARTRE achieves a
win rate of +7.48 BB/100 against BluffBot.



A Memory-Based Approach to Two-Player Texas Hold’em 473

-1000

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0  5000  10000 15000 20000 25000 30000

P
ro

fi
t 

/ 
L

o
s
s

Hands Played

Sartre Vs. BluffBot

Sartre (7.48 BB/100)

Fig. 4. Sartre vs. BluffBot

5 Discussion and Conclusion

From the results it is clear that SARTRE has not reached the quality of per-
formance that Hyperborean-eq exhibits, as Hyperborean-eq is profitable against
FellOmen2, but SARTRE is unprofitable. Some possible reasons for this include:

– The hand strength feature needs to be improved. Presently, a large com-
bination of dissimilar hands are mapped into one category. This results in
detailed information being lost which could degrade the level of play.

– There are still many situations where case retrieval is sparse. For one match
(chosen at random) against FellOmen2 the results indicated that out of a total
of 3769 river decisions made by SARTRE, for 357 (9.47%) of these, SARTRE
was unable to retrieve any similar cases. When SARTRE cannot retrieve a
similar case a crude strategy of always checking/calling is adopted.

However, while SARTRE does not yet achieve the level of play of Hyperborean-eq,
the system still appears to play reasonably strong poker. SARTRE was profitable
against BluffBot and appears to perform better than four other competitors of
the 2008 CPC when challenging FellOmen2.

Acknowledgements. Thanks to Teppo Salonen & Ian Fellows for supplying
BluffBot and FellOmen2.
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Abstract. Research in General Game Playing aims at building systems
that learn to play unknown games without human intervention. We con-
tribute to this endeavour by generalising the established technique of
decomposition from AI Planning to multi-player games. To this end,
we present a method for the automatic decomposition of previously un-
known games into independent subgames, and we show how a general
game player can exploit a successful decomposition for game tree search.

1 Introduction

Research in General Game Playing is concerned with the development of sys-
tems that understand the rules of previously unknown games and learn to play
well without human intervention. Identified as a new Grand AI Challenge, this
endeavour requires to combine methods from a variety of a sub-disciplines in-
cluding Knowledge Representation, Search, Planning, and Learning [1,2,3,4]. An
annual AAAI Contest has been established in 2005 to foster research in this area
by evaluating general game playing systems in a competitive setting [5].

With this paper we contribute to the science of General Game Playing by
tackling an important and open sub-problem: how can game tree search be im-
proved by automatically decomposing a game into independent parts? The gen-
eral value of decomposition has been widely recognised in AI Planning, where it
is used to help solve large, complex problems arising in practical settings using a
divide-and-conquer strategy [6,7,8]. In [9] we have shown how this method can be
directly adapted to the special case of single-player games. This previous result
provides the starting point for our generalisation to multi-player games. Specif-
ically, we address the following two issues in the present paper: Given its mere
rules, how can a previously unknown multi-player game be automatically de-
composed into independent subgames? And how can a successful decomposition
be exploited for a significant improvement of game tree search during play?

We begin (Section 2) with a brief introduction to the formal basis for our
analysis, the Game Description Language [5]. In Section 3, we present a general
decomposition method for multi-player games. This result is used in Section 4 to
obtain a significant improvement of game tree search for decomposable games.
In Section 5, we further improve our method in the special case of so-called
impartial games. This is accompanied by both a formal complexity analysis and
an overview of experimental results. We conclude in Section 6.

A. Nicholson and X. Li (Eds.): AI 2009, LNAI 5866, pp. 475–484, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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2 Preliminaries

The Game Description Language (GDL) [5,10] is the standard language to com-
municate the rules of an arbitrary game to each player. It is a variant of first-order
logic enhanced by distinguished keywords for the conceptualisation of games.
GDL is purely axiomatic, that is, no algebra or arithmetics is included in the
language; if a game requires this, the relevant portions of arithmetics have to be
axiomatized in the game description.

The class of games that can be expressed in GDL can be classified as n-player
(n ≥ 1), deterministic, perfect information games with simultaneous moves.
“Deterministic” excludes all games that contain any element of chance, while
“perfect information” prohibits that any part of the game state is hidden from
some players, as is common in most card games. “Simultaneous moves” allows to
describe games like Roshambo, where the players move at the same time, while
still permitting to describe games with alternating moves, like chess or checkers,
by restricting all players except one to a single “noop” move. Also, GDL games
are finite in several ways: All reachable states are composed of finitely many
fluents; there is a finite, fixed number of players; each player has finitely many
possible actions in each game state, and the game has to be formulated such
that it leads to a terminal state after a finite number of moves. Each terminal
state has an associated goal value for each player, not necessarily zero-sum.

A game state is defined by a set of atomic properties, the fluents, that are
represented as ground terms. The leading function symbol of a fluent will be
called a fluent symbol. One game state is designated as the initial state. The
transitions are determined by the combined actions of all players. The game
progresses until a terminal state is reached.

Example 1. Figure 1 shows the GDL rules1 of “Double-Tictactoe”. This game
consists of two instances of the well-known Tic Tac Toe played in parallel.

The role keyword (lines 1–2) declares the players in the game. The initial
state of the game is described by the keyword init (lines 3–7). The two Tic
Tac Toe boards are described by fluent functions cell1 and cell2, respectively.
Constant b indicates a blank cell. The fluent function control defines whose
turn it is.

The keyword legal (lines 8–13) defines what actions (i.e., moves) are possible
for each player depending on the properties of the current state, which in turn
are encoded using the keyword true. The game designer has to ensure that each
player always has at least one legal action in every game state. In turn-taking
games, players typically have “noop” as their only legal move if it is not their
turn. In Double-Tictactoe, the player whose turn it is has to choose one of the
two boards and a cell on this board to mark.

The keyword next (lines 14–23) defines the effects of the players’ actions.
For example, lines 14–16 declare that cell (M, N) on the first board is marked
with constant x if xplayer executes action mark1(M, N). The reserved keyword
does refers to the actions executed by the players. GDL also requires the game
1 We use Prolog notation with variables denoted by uppercase letters.
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1 role ( xp layer ) .
2 role ( op layer ) .
3 in i t ( c e l l 1 (1 ,1 , b ) ) .

. . .
4 in i t ( c e l l 1 (3 ,3 , b ) ) .
5 in i t ( c e l l 2 (1 ,1 , b ) ) .

. . .
6 in i t ( c e l l 2 (3 ,3 , b ) ) .
7 in i t ( c on t r o l ( xp layer ) ) .
8 legal (W, mark1 (X,Y) ) :−
9 true ( c e l l 1 (X,Y, b ) ) ,

10 true ( c on t r o l (W) ) ,
11 not terminal1 .

. . .
12 legal ( xplayer , noop ) :−
13 true ( c on t r o l ( op layer ) ) .
14 next ( c e l l 1 (M,N, x ) ) :−
15 does ( xplayer , mark1 (M,N) ) ,
16 true ( c e l l 1 (M,N, b ) ) .

. . .

17 next( c e l l 1 (M,N,X) ) :−
18 does (P, mark2 (X2 ,Y2) ) ,
19 true ( c e l l 1 (M,N,X) ) .
20 next( c on t r o l ( xp layer ) ) :−
21 true ( c on t r o l ( op layer ) ) .
22 next( c on t r o l ( op layer ) ) :−
23 true ( c on t r o l ( xp layer ) ) .
24 open1 :− true ( c e l l 1 (M,N, b ) ) .
25 goal ( xplayer , 100 ) :−
26 l i n e 1 (x ) , l i n e 2 ( x ) .
27 goal ( op layer , 75 ) :−
28 l i n e 1 ( o ) , not l i n e 2 (x ) ,
29 not l i n e 2 ( o ) .

. . .
30 terminal :−
31 terminal1 , terminal2 .
32 terminal1 :− l i n e 1 ( x ) .
33 terminal1 :− l i n e 1 ( o ) .
34 terminal1 :− not open1 .

. . .

Fig. 1. Some GDL rules of the game Double-Tictactoe

designer to specify the non-effects of actions by frame axioms ; e.g., lines 17–19
say that marking a cell on the second board does not affect the first board.

The goal predicate (lines 25–29) assigns a number between 0 (loss) and 100
(win) to each role in a terminal state. It is defined with the help of the auxiliary
predicates line1(W) and line2(W). Auxiliary predicates are not part of the pre-
defined language, but are defined in the game description itself. The game is
over when a state is reached that implies terminal (lines 30–34).2

3 Subgame Detection

In our previous work [9], we have developed an algorithm to detect independent
subgames and applied this algorithm to single-player games. The basic idea is
to build a dependency graph for a given GDL description of a game, consisting
of the actions and fluents as vertices and edges between them if a fluent is a
precondition or an effect of an action. The connected components of this graph
then correspond to independent subgames of that particular game.

While in principle this idea can be applied to multi-player games, some im-
provements are necessary in order to extend the range of decomposable games.
One problem arises from the fact that in [9] the dependency graph is composed of
the mere fluent and action symbols of a game. This does not allow to decompose
a game based on different instances of these fluents and actions.

Example 2. Consider the following rules of the well-known game Nim with four
heaps (a,b,c,d), where the size of the heaps is represented by the fluent heap.
2 For a complete definition of syntax and semantics of GDL we refer to [11].
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1 in i t ( heap ( a , 1 ) ) .
2 in i t ( heap (b , 2 ) ) .
3 in i t ( heap ( c , 3 ) ) .
4 in i t ( heap (d , 5 ) ) . . . .
5 legal (W, reduce (X,N) ) :−
6 true ( c on t r o l (W) ) ,
7 true ( heap (X,M) ) ,
8 sma l l e r (N,M) .

9 . . .
10 next( heap (X,N) ) :−
11 does (W, reduce (X,N) ) .
12 next( heap (X,N) ) :−
13 true ( heap (X,N) ) ,
14 does (W, reduce (Y,M) ) ,
15 distinct (X,Y) .
16 . . .

Identifying each heap as an independent game is not possible with a dependency
graph that does not allow to distinguish different (partial) instances of heap.3

To overcome this restriction, we base subgame detection for multi-player games
on partially instantiated fluent and action terms instead of the mere fluent and
action symbols. Considering fully instantiated (i.e., ground) fluents and actions
would yield the best results for subgame detection, but this is practically infea-
sible except for very simple games. Therefore, we instantiate fluents and actions
according to the following heuristics:

– The i-th argument of a fluent f is instantiated with all possible values iff for
every rule that matches next(f(. . . , Xi, . . .)) : − B the call graph (see below)
of B contains true(f(. . . , Xi, . . .)) and does not contain true(f(. . . , X′i, . . .))
with X′i �= Xi.

– The j-th argument of a move m is instantiated with all possible values iff the
i-th argument of f is instantiated and there is a rule next(f(. . . , Xi, . . .)) : − B
where the call graph of B contains does(r, m(. . . , Yj, . . .)) with Yj = Xi.

A call graph [9] of a formula is the least set of atoms containing all atoms in the
formula as well as all atoms that occur in a rule whose head matches an atom in
the call graph. For computing the call graph, we replace every does(R, M) in the
rules by legal(R, M), in order to reflect the fact that every executed move must
be a legal one.

The idea behind the heuristics is that an argument of a fluent is instantiated
if its value does not change from one state to the next and if instances of the
fluent that differ in that argument do not interact. If the different instances
do not interact they are likely to belong to separate subgames. Arguments of
moves are instantiated if they refer to an instantiated argument of a fluent. In
example 2, for instance, the first argument of heap is instantiated because the
rules for next always refers directly (line 13) or indirectly (line 11 along with
lines 5, 7) to the first argument of heap in the current state and there is no other
heap referred to. The first argument of the move reduce is instantiated because
in the first next-rule the first argument of reduce is identical to that of heap.

Another problem we face in multi-player games is to determine which individ-
ual action of a joint move (by all players) is responsible for a positive or negative
effect. To this end, we extended the definition of potential effects from [9] by the
following notion of a role affecting some fluent.
3 See www.general-game-playing.de for the complete Nim rules.
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Fig. 2. Dependency graph for the game Nim

Definition 1. A role r affects a fluent f iff there is a game rule unifiable with
next(f) : −B, where the call graph of B contains does(r′, m) and r and r′ are
unifiable.

A move m is called a noop move if it is the only legal move of a player when
not in control and if m does not occur in the call graph of any next rule.

Fluent f is a potential positive effect of move m if there is a game rule
unifiable with next(f) : −B such that m is not a noop move, B does not imply
true(f), and B is compatible (see below) with ∃r, �y. does(r, m) where r affects
f and �y are the free variables in m.

Fluent f is a potential negative effect of move m if m is not a noop move
and there is no game rule unifiable with next(f) : −B such that for all r that
affect f we have ∀�y. (true(f) ∧ does(r, m) ⇒ B) where �y are the free variables
in m.

Fluent f is a potential precondition of move m if f occurs in the call graph
of the body of a game rule with head legal(p, m), or head next(f ′) where f ′ is
a potential positive or negative effect of m.

Compatibility means logical consistency under the constraint that each player
can do only one action at a time. Thus a fluent is a potential positive effect if
there is a non-frame axiom compatible with the action in question, and it is a
potential negative effect if there is no frame axiom for this fluent that applies
whenever the action is executed. The potential preconditions of a move include
all fluents occurring in a legal rule for that move and also the fluents that are
preconditions of its (conditional) effects.

The control-fluent that is used to encode turn-taking in multi-player games
typically occurs in the legal rules of all actions. We identify and subsequently
ignore the control-fluent as precondition during the subgame detection in turn-
taking games. Otherwise, it would connect all actions in the dependency graph,
effectively rendering subgame detection for turn-taking games impossible.

Applying the above definitions to the Nim game in example 2, we obtain the
dependency graph in figure 2 with six subgames: one for each heap consisting of the
respective heap-fluent and reduce-action, one consisting of the control-fluent,
and one for the noop-action.

4 Solving Decomposable Games

Once a multi-player game has been successfully decomposed, it needs to be solved
by what we call decomposition search (DS). DS is composed of subgame search
(SGS) and global game search (GGS). SGS searches each subgame independently
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and returns a set of paths of the subgame tree, which is then used by GGS to
compute optimal strategies. As the DS for alternating move games is very similar
to the one for simultaneous move games, we will only describe the algorithm for
alternating move games here.

Subgame Search (SGS). In each state of an alternating move game, we know
whose turn it is next. However, the turn in each state of the subgames is un-
known, because in each turn, a player can only choose one subgame to play.
Thus SGS needs to consider all players’ legal moves during each subgame state
expansion and to return a set of paths of the subgame tree, called turn-move
sequences (TMSeqs).

Definition 2. A turn-move sequence is a tuple (Ts, Ms, Es) where

– Ts is a list of roles (turn sequence), indicated by T1 ◦ T2 ◦ ... ◦ Tn,
– Ms is a list of moves (move sequence), indicated by M1 ◦M2 ◦ ... ◦Mn,
– Es is a set of evaluations of local concepts (see below),

where n ≥ 0 is the length of the sequence. If n = 0, we call it empty turn-move
sequence.

We extend our notion of local concepts from single-player games [9] by recording
a sign (positive or negative) for each concept: A local concept is a ground literal
that occurs in the call graph of a goal or terminal rule, and the local con-
cept’s call graph is only related to the fluents of one subgame. For the goal rule
in lines 27–29 of figure 1, for example, we get three local concepts: line1(o),
not line2(x), and not line2(o). The sign for each concept is determined by
whether an even or odd number of negations occurs in the path from the root
of the goal or terminal rule’s call graph to the concept. In this way we know
that a rule is satisfied if all its local concepts (with signs) are true.

With the help of the extended notion of local concepts, we can not only check
the equality of two TMSeqs but also find if one is better than another one by
using the following definition.

Definition 3. A turn move sequence s1 =(Ts1, Ms1, Es1) is evaluation dom-
inated by s2 = (Ts2, Ms2, Es2) (written s1 %Cs s2) under local concepts Cs iff
Ts1 = Ts2 and ∀C∈Cs(Es1 |= C ⇒ Es2 |= C), where Es |= C means C is satis-
fied after playing the moves in the TMSeq. If ∃C∈Cs(Es1 �|= C ∧ Es2 |= C),
we call s1 strongly evaluation dominated (s1 ≺Cs s2) by s2 under lo-
cal concepts Cs. This extends to sets of turn move sequences in the follow-
ing way: T1 %Cs T2 ≡ ∀s1∈T1∃s2∈T2s1 %Cs s2 and T1 ≺Cs T2 ≡ (T1 %Cs

T2 ∧ ∃s1∈T1,s2∈T2s1 ≺Cs s2).

The TMSeqs are constructed backwards from the leaf nodes to the initial state
of a subgame tree. An empty TMSeq, where Es are evaluations of all local
concepts, has to be added for every terminal state of the subgame. Because in
general the terminal rules cannot be evaluated in a subgame state, an empty
TMSeq is added for a state that has no legal move for any player or in which
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at least one local concept of the terminal rules is satisfied. In both cases the
subgame state could belong to a terminal state of the game. In each subgame
state s a set of TMSeqs is computed for every player in the following way:
TMSeqs(p, s) = {(p◦Ts, m◦Ms, Es)|(Ts, Ms, Es) ∈ TMSeqs(p′, do(p, m, s))}.
This means that the TMSeqs of a player p in a state s are exactly the TMSeqs
of all successor states of s (denoted by do(p, m, s)) with the turn sequence Ts
augmented by p and the move sequence Ms augmented by the move m that
leads to the successor state.

Fig. 3. Subtree of one
subgame of Double-Tictactoe

In each state, a set of turn move sequences
T1 obtained from a move of player p is re-
moved if there is a set T2 from other moves of
p such that ∃v(T1 ≺Cs T2 ∧ ∀v′>vT1 %Cs′ T2)
or ∀vT1 %Cs T2 where: v and v′ are goal values
defined for player p in the game rules, Cs are lo-
cal concepts of goal(p, v) and terminal, and Cs′

are local concepts of goal(p, v′) and terminal.
For example, the two paths with dashed lines
in figure 3 have the same evaluation under
local concepts of goal(x, 100) (line1(x)) and
terminal (terminal1) as the other two paths,
but under local concepts of goal(x, 75) (line1(x),
not line1(x), not line1(o), and not open1) and
terminal, the dashed path with turn sequence (xo) is strongly dominated by
the corresponding solid path because it does not entail not line1(o). Thus the
two paths with dashed lines can be removed.

Global Game Search (GGS). GGS is based on standard search techniques
(e.g., Minimax, MaxN) but uses TMSeqs returned from SGS instead of the
game’s legal rules to determine the moves in each state. Because of the removal
of dominated TMSeqs in SGS the number of moves from the TMSeqs is typically
smaller than the number of legal moves. This results in a much smaller game tree
compared to full search. Algorithm 4.1 shows the basic idea of DS. We applied
iterative-deepening depth-first search (IDDFS) in DS, which finds the shortest
solution first and prevents SGS from spending too much time on big subgames.

Algorithm 4.1. Decomposition Search
Input: State: global game state, Player: for which the best move is searched
Output: BestMove
TMSeqs ← �;
foreach Subgame∈Subgames do

SubState ← subgame state of Subgame in State;
SubgameTMSeqs ← SGS(SubState);
TMSeqs ← TMSeqs ∪ SubgameTMSeqs;

end
BestMove ← GGS(TMSeqs,Player);
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Fig. 4. DS and normal search (NS) testing results

Complexity Comparison and Experiments. The complexity of SGS is the
complexity of depth-first search (DFS) plus the complexity of TMSeq simplifica-
tion. The complexity of GGS depends on the number of TMSeqs returned from
SGS. The more TMSeqs can be removed in SGS the less time GGS will use.
Assuming a game has n subgames and the average number of states for each
subgame is SV , the time complexity of normal search with DFS or IDDFS is
O(|SV |n + |EN |) while the time complexity of DS is O(n ∗ |SV | + |ED| + C)
where EN and ED are edges of the game tree in normal and decomposition
search, respectively; EN ≥ ED; and C is the time complexity of GGS. Moreover,
the strategies found by DS are just as good as the ones found by normal search.

We have implemented and integrated DS for alternating move games in Flux-
player [3]. Figure 4 shows the time costs of DS and normal search with different
search depths (the depth is related to the global game tree, which is the sum of all
SGS depths) for two alternating move games. TMSeq simplification works very
well for those games; e.g., only 0.0016% (912 of 58242432) and 0.0661% (10448 of
15864465) of the TMSeqs are returned by subgame search for Double-Tictactoe
to depth 9 and for Double-Crisscross2 to depth 6, respectively.

5 Impartial Games

Definition 4. A game G is impartial if G is an alternating move game, in
each state of G the player whose turn it is has the same legal moves, and the
effects of each move are independent on who is making the move.

Impartial games allow for a special DS that is more efficient than the general
method. Before discussing DS for impartial games, let us describe how a general
game player can check whether a game is impartial.

Checking Impartiality. According to the definition of impartial games, we
would need to check every state of the game to know if the game is impartial.
Since this is not feasible in general, we only do a syntactic analysis of the game
rules. This yields a sound but incomplete method. The main idea is to verify
that the legal and next rules for all players are equivalent by checking that for
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each legal and next rule that is defined for one player there is a correspondent
rule for every other player.

Definition 5. Given two rules R1 and R2 of a multi-player game, R1 and R2
are correspondent for players P1 and P2 iff simultaneously substituting P1 for
P2 and P2 for P1 in control fluents and does predicates in R1 yields a variant
(R1[P1/P2, P2/P1]) of R2, that is, R1[P1/P2, P2/P1] and R2 are equal up to
renaming of variables and reordering of literals in the bodies of the rules.

As an example, the legal and next rules of Nim (example 2) are correspondent
to themselves for all players.

Decomposition Search (DS). It is easy to prove that a game G is impartial
iff its independent subgames are impartial. Another important theorem used in
this section is the Sprague-Grundy theorem, which says that each impartial game
with normal play convention is equivalent to some Nim heap. Nim is a typical
impartial game, which has been mathematically solved. Thus each subgame is
actually a Nim heap. If we have the size (called nimber) of each subgame, we
can use Nim-sum to obtain the size of the global game and solve the impartial
game by using the strategies used for Nim. More information about Nim and
nimber can be found in [12]; explaining the full theory behind impartial games
goes beyond the scope of our paper.

Subgame Search (SGS). SGS uses depth-first search to search each subgame
with only one player to compute the nimber of the subgame. As all players
have the same legal moves in each state, it is sufficient to consider one player’s
legal moves instead of all players. The nimber of terminal states is 0. For
intermediate state, the nimber is the minimal excludent of the nimbers of its
successors. For example, if the successors of a state have nimbers 0, 1 and 3,
the nimber for the state will be 2.

Global Game Search (GGS). The nimber of the global game can be easily
computed as Nim-sum of the nimbers of all subgames, and then the winning
strategies for Nim are used to do the rest.

Complexity Comparison and Experiments. For a subgame of size n, the
worst-case time complexity of SGS is O(2n). For an impartial game with m
heaps (subgames) of sizes n1, n2, ..., nm, the time complexity of DS is O(

∑
2ni),

whereas the worst-case time complexity of standard search is O(2
∑

ni). In prac-
tical play, however, the time complexities are much lower if transposition tables
are used in the search; e.g., for Nim this reduces the complexity of SGS to O(n).

The following table shows the time cost of DS and normal search for game
Nim with 4 heaps (4 subgames) in Fluxplayer :

Time Cost(s)
Normal Play Misère

Heaps Size
1,5,4,2 2,2,10,10 11,12,15,25 12,12,20,20

Normal Search 0.4 3.5 6607 10797
Decomposition Search 0.01 0.01 0.07 0.06
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From the results it is easy to see that the time cost for DS is linear in terms of
the biggest heap size, while the one for normal search is exponentially growing
in terms of the sum of all heap sizes.

6 Conclusion

We have developed a method by which general game playing systems can search
for a decomposition of a multi-player game into independent sub-games in order
to significantly improve game tree search. Our result generalises an established
method from AI Planning [6,7,8] to General Game Playing. A different, prelim-
inary approach to the decomposition of multi-player games has been indepen-
dently developed by [13], but there the authors did not address the issue of how
a general game player can actually exploit such a reduction during play.
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Abstract. An extended full computation-tree logic, CTLS∗, is intro-
duced as a Kripke semantics with a sequence modal operator. This logic
can appropriately represent hierarchical tree structures where sequence
modal operators in CTLS∗ are applied to tree structures. An embed-
ding theorem of CTLS∗ into CTL∗ is proved. The validity, satisfiability
and model-checking problems of CTLS∗ are shown to be decidable. An
illustrative example of biological taxonomy is presented using CTLS∗

formulas.

1 Introduction

Full computation-tree logic, CTL∗[3, 4], is known as one of the most important
branching-time temporal logics that use computation-trees to specify and verify
concurrent systems. CTL∗ is sufficiently expressive to represent almost all the
important temporal properties such as liveness, fairness, and safety of concur-
rent systems. CTL∗ is more expressive than computation-tree logic (CTL) and
linear-time temporal logic (LTL). CTL [2] is a useful subsystem of CTL∗, but
it cannot express some important properties such as strong fairness. LTL [5] is
also a useful subsystem of CTL∗, but it cannot express the properties that verify
the existence of a path. An important feature of CTL∗ is that the existence of
paths in computation-trees can be specified and verified. A computation-tree is
one that represents a non-deterministic computation or unwinding of a Kripke
structure. A Kripke structure is a directed graph; hence, it can naturally express
tree structures.

However, CTL∗ is not suitable for representing the highly complex and infor-
mative structures of ontologies and hierarchies. This is because “normal” trees
are not sufficiently expressive to represent such complex structures. “Hierar-
chical” trees are better suited for this purpose; hierarchical tree structures are
used to represent hierarchies, taxonomies, and ontologies in some computer sci-
ence applications. Biomedical ontologies, which are knowledge representation
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models with hierarchies of biomedical vocabularies, are usually represented by
is-a (subtype relation), part-of (inclusion relation), located-in (spatial relation),
and proceeded-by (temporal relation) using hierarchical trees or directed acyclic
graphs. A biological process pathway is searched by finding a path in such a hier-
archical tree or directed acyclic graph. In order to represent temporal properties
in hierarchical tree structures, we require a very expressive branching-time tem-
poral logic with a new modal operator. The aim of this study is to improve CTL∗

in order to represent “hierarchical” tree structures, i.e. to obtain computation-
trees with “additional information”. We introduce a sequence modal operator [b],
which represents a sequence b of symbols, to describe the ordered labels in a
hierarchy.

The reason of using the notion of “sequences” in the new modal operator is
explained below. The notion of “sequences” is fundamental to practical reason-
ing in computer science, because it can appropriately represent “data sequences,”
“program-execution sequences,” “action sequences,” “time sequences,” “word
(character or alphabet) sequences,” “DNA sequences” etc. The notion of sequences
is thus useful to represent the notions of “information,” “attributes,” “trees,” “or-
ders,” “preferences,” “strings,” “vectors,” and “ontologies”. “Additional informa-
tion” can be represented by sequences; this is useful because a sequence structure
gives a monoid 〈M, ;, ∅〉 with informational interpretation [6]:

1. M is a set of pieces of (ordered or prioritized) information (i.e., a set of
sequences),

2. ; is a binary operator (on M) that combines two pieces of information (i.e.,
a concatenation operator on sequences),

3. ∅ is the empty piece of information (i.e., the empty sequence).

The sequence modal operator [b] represents labels as “additional information”. A
formula of the form [b1 ; b2 ; · · · ; bn]α intuitively means that “α is true based on a
sequence b1 ; b2 ; · · · ; bn of (ordered or prioritized) information pieces.” Further,
a formula of the form [∅]α, which coincides with α, intuitively means that “α is
true without any information (i.e., it is an eternal truth in the sense of classical
logic).” Simple and intuitive consequence relations called sequence-indexed con-
sequence relations are required to formalize the sequence modal operator. These
consequence relations are regarded as natural extensions of the standard two-
valued consequence relation of classical logic. The sequence-indexed consequence
relations, denoted as |=d̂, are indexed by a sequence d̂, and the special case |=∅

corresponds to the classical two-valued consequence relation. Then, |=d̂ α means
that “α is true based on a sequence d̂ of information pieces” and |=∅ α means
that “α is eternally true without any information.”

The contents of this paper are summarized as follows: An extended CTL∗

with the sequence modal operator is introduced as a Kripke semantics with the
sequence-indexed consequence relations. An embedding theorem that explains
the introduction of CTLS∗ into CTL∗ is described. The validity, satisfiability and
model checking problems of CTLS∗ are shown to be decidable. An illustrative
example of biological taxonomy using CTLS∗ formulas is presented.
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2 Extended Full Computation-Tree Logic with Sequence
Modal Operator

Formulas of CTLS∗, which are defined by combining two types of formulas state
formulas and path formulas, are constructed from atomic formulas, � (truth
constant), ∨ (disjunction), ¬ (negation), E (some computation path), X (next),
U (until) and [b] (sequence modal operator) where b is constructed from atomic
sequence, the empty sequence ∅ and ; (concatenation). The other connectives ⊥
(falsity constant), → (implication), ∧ (conjunction), A (all computation paths),
G (always) and F (eventually) can be defined using the connectives displayed
above.

Definition 1. Assume that the numbers of atomic formulas and atomic se-
quences are respectively countable. The symbol ∅ represents the empty sequence.

Formulas α, state formulas β, path formulas γ and sequences b are defined by
the following grammar, assuming p and e represent atomic formulas and atomic
sequences, respectively:

α ::= β | γ
β ::= p | � | β ∨ β | ¬β | [b]β | Eγ
γ ::= γ ∨ γ | ¬γ | [b]γ | Xγ | γUγ | path(β)
b ::= e | ∅ | b ; b

Remark that the “path” in Definition 1 is regarded as an auxiliary function
from the set of state formulas to the set of path formulas. This means that
a state formula is a path formula. The set of atomic formulas is denoted as
ATOM, and the set of sequences (including the empty sequence ∅) is denoted
as SE. Lower-case letters b, c, ... are used for sequences, lower-case letters p, q, ...
are used for atomic formulas, and Greek lower-case letters α, β, ... are used for
(state/path) formulas. The symbol ω is used to represent the set of natural
numbers. Lower-case letters i, j and k are used for any natural numbers. The
symbol ≥ or ≤ is used to represent a linear order on ω, and the symbol > or <
is used to represent a strict linear order on ω. An expression A ≡ B indicates
the syntactical identity between A and B. An expression [∅]α coincides with α,
and expressions [∅ ; b]α and [b ; ∅]α coincide with [b]α. An expression ˆ[d] is used
to represent [d0][d1][d2] · · · [di] with i ∈ ω and d0 ≡ ∅, i.e., ˆ[d] can be the empty
sequence. Also, an expression d̂ is used to represent d0 ; d1 ; d2 ; · · · ; di with
i ∈ ω and d0 ≡ ∅.

The logic CTLS∗ is then defined as a Kripke structure with an infinite number
of consequence relations.

Definition 2. A Kripke structure for CTLS∗ is a structure 〈S, S0, R, {Ld̂}d̂∈SE〉
such that

1. S is a (non-empty) set of states,
2. S0 is a (non-empty) set of initial states and S0 ⊆ S,
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3. R is a binary relation on S which satisfies the condition: ∀s ∈ S ∃s′ ∈
S [(s, s′) ∈ R],

4. Ld̂ (d̂ ∈ SE) are mappings from S to the power set of AT (⊆ ATOM).

Definition 3. A path in a Kripke structure for CTLS∗ is an infinite sequence
of states, π = s0, s1, s2, ... such that ∀i ≥ 0 [(si, si+1) ∈ R]. An expression πi

means the suffix of π starting at si.

Definition 4. Let AT be a nonempty subset of ATOM. Let α1 and α2 be state
formulas and β1 and β2 be path formulas. Sequence-indexed consequence rela-
tions |=d̂ (d̂ ∈ SE) on a Kripke structure M = 〈S, S0, R, {Ld̂}d̂∈SE〉 for CTLS∗

are defined as follows (π represents a path constructed from S, s represents a
state in S, and e represents an atomic sequence):

1. for p ∈ AT, M, s |=d̂ p iff p ∈ Ld̂(s),
2. M, s |=d̂ � holds,
3. M, s |=d̂ α1 ∨ α2 iff M, s |=d̂ α1 or M, s |=d̂ α2,
4. M, s |=d̂ ¬α1 iff not-[M, s |=d̂ α1],
5. for any atomic sequence e, M, s |=d̂ [e]α1 iff M, s |=d̂ ; e α1,
6. M, s |=d̂ [b ; c]α1 iff M, s |=d̂ [b][c]α1,
7. M, s |=d̂ Eβ1 iff there exists a path π from s such that M, π |=d̂ β1,
8. M, π |=d̂ path(α1) iff s is the first state of π and M, s |=d̂ α1,
9. M, π |=d̂ β1 ∨ β2 iff M, π |=d̂ β1 or M, π |=d̂ β2,

10. M, π |=d̂ ¬β1 iff not-[M, π |=d̂ β1],
11. for any atomic sequence e, M, π |=d̂ [e]β1 iff M, π |=d̂ ; e β1,
12. M, π |=d̂ [b ; c]β1 iff M, π |=d̂ [b][c]β1,
13. M, π |=d̂ Xβ1 iff M, π1 |=d̂ β1,
14. M, π |=d̂ β1Uβ2 iff ∃k ≥ 0 [(M, πk |=d̂ β2) and ∀j (0 ≤ j < k implies

M, πj |=d̂ β1)].

Proposition 5. The following clauses hold for any state formula β, any path
formula γ and any sequences c and d̂,

1. M, s |=d̂ [c]β iff M, s |=d̂ ; c β,
2. M, s |=∅ [d̂]β iff M, s |=d̂ β,
3. M, π |=d̂ [c]γ iff M, π |=d̂ ; c γ,
4. M, π |=∅ [d̂]γ iff M, π |=d̂ γ.

Proof. (1) and (3) are proved by induction on c. (2) and (4) are derived using
(1) and (3), respectively. We thus show only (1) below.

Case (c ≡ ∅): Obvious.
Case (c ≡ e for an atomic sequence e): By the definition of |=d̂.
Case (c ≡ b1 ; b2): M, s |=d̂ [b1 ; b2]β iff M, s |=d̂ [b1][b2]β iff M, s |=d̂ ; b1 [b2]β

(by induction hypothesis) iff M, s |=d̂ ; b1 ; b2 β (by induction hypothesis).
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Definition 6. A formula α is valid (satisfiable) if and only if one of the
following clauses holds:

1. if α is a path formula, then M, π |=∅ α for any (some) Kripke structure M ,
any (some) sequence-indexed valuations |=d̂ and any (some) path π in M ,

2. if α is a state formula, then M, π |=∅ path(α) for any (some) Kripke struc-
ture M , any (some) sequence-indexed valuations |=d̂ and any (some) path π
in M .

An expression α ↔ β means (α→β) ∧ (β→α).

Proposition 7. The following formulas are valid: for any formulas α and β,
any path formulas γ1 and γ2, any state formula δ and any sequences b and c,

1. [b](α ∨ β) ↔ ([b]α) ∨ ([b]β),
2. [b](¬α) ↔ ¬([b]α),
3. [b ; c]α ↔ [b][c]α,
4. [b]�γ1 ↔ �[b]γ1 where � ∈ {E, X},
5. [b](γ1Uγ2) ↔ ([b]γ1)U([b]γ2),
6. [b]path(δ) ↔ path([b]δ).

Definition 8. Let M be a Kripke structure 〈S, S0, R, {Ld̂}d̂∈SE〉 for CTLS∗,
and |=d̂ (d̂ ∈ SE) be sequence-indexed consequence relations on M . Then, the
model checking problem for CTLS∗ is defined by: for any formula α, find the
set {s ∈ S | M, s |=∅ α}.

3 Embedding and Decidability

The logic CTL∗ can be defined as a sublogic of CTLS∗.

Definition 9. Let AT be a nonempty subset of ATOM. A Kripke structure for
CTL∗ is a structure 〈S, S0, R, L〉 such that

1. L is a mapping from S to the power set of AT,
2. 〈S, S0, R〉 is the same as that for a Kripke structure for CTLS∗.

The consequence relation |= on a Kripke structure for CTL∗ is obtained from
Definition 4 by deleting the clauses 5–6 and 11–12 and the sequence notation d̂.

Expressions |=d̂
CTLS∗ and |=CTL∗ are also used for CTLS∗ and CTL∗, respectively.

Note that |=∅
CTLS∗ includes |=CTL∗ .

A translation from CTLS∗ into CTL∗ is introduced below.

Definition 10. Let AT be a nonempty subset of ATOM and ATd̂ be the set
{pd̂ | p ∈ AT} (d̂ ∈ SE) of atomic formulas where p∅ := p, i.e., AT∅ := AT. The
language LS (the set of formulas) of CTLS∗ is defined using AT, �,∨,¬, [b], E,
path, X and U by the same way as in Definition 1. The language L of CTL∗ is
obtained from LS by adding

⋃
d̂∈SE

ATd̂ and deleting [b].
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A mapping f from LS to L is defined by:

1. f( ˆ[d]p) := pd̂ ∈ ATd̂ for any p ∈ AT,
2. f( ˆ[d]�) := �,
3. f( ˆ[d](α ◦ β)) := f( ˆ[d]α) ◦ f( ˆ[d]β) where ◦ ∈ {∨, U},
4. f( ˆ[d]�α) := �f( ˆ[d]α) where � ∈ {¬, E, X},
5. f( ˆ[d]path(α)) := path(f( ˆ[d]α)),
6. f( ˆ[d][b ; c]α) := f( ˆ[d][b][c]α).

Lemma 11. Let f be the mapping defined in Definition 10. For any Kripke
structure M = 〈S, S0, R, {Ld̂}d̂∈SE〉 for CTLS∗, any sequence-indexed conse-
quence relations |=d̂

CTLS∗ on M and any state or path s in M, there exist a
Kripke structure N = 〈S, S0, R, L〉 for CTL∗ and a consequence relation |=CTL∗

on N such that for any state or path formula α in LS,

M, s |=d̂
CTLS∗ α iff N, s |=CTL∗ f( ˆ[d]α).

Proof. Let AT be a nonempty subset of ATOM and ATd̂ be the set {pd̂ | p ∈AT}
of atomic formulas. Suppose that M is a Kripke structure 〈S, S0, R, {Ld̂}d̂∈SE〉
for CTLS∗ such that

Ld̂ (d̂ ∈ SE) are mappings from S to the powerset of AT.

Suppose that N is a Kripke structure 〈S, S0, R, L〉 for CTL∗ such that

L is a mapping from S to the powerset of
⋃

d̂∈SE

ATd̂.

Suppose moreover that for any s ∈ S,

p ∈ Ld̂(s) iff pd̂ ∈ L(s).

The lemma is then proved by induction on the complexity of α.

• Base step:
Case (α ≡ p ∈ AT): M, s |=d̂

CTLS∗ p iff p ∈ Ld̂(s) iff pd̂ ∈ L(s) iff N, s |=CTL∗ pd̂

iff N, s |=CTL∗ f( ˆ[d]p) (by the definition of f).
• Induction step: We show some cases.
Case (α ≡ [b]β): M, s |=d̂

CTLS∗ [b]β iff M, s |=d̂ ; b
CTLS∗ β iff N, s |=CTL∗ f([d̂ ; b]β)

(by induction hypothesis) iff N, s |=CTL∗ f( ˆ[d][b]β) by the definition of f .
Case (α ≡ α1 ∨α2): M, s |=d̂

CTLS∗ α1 ∨α2 iff M, s |=d̂
CTLS∗ α1 or M, s |=d̂

CTLS∗

α2 iff N, s |=CTL∗ f( ˆ[d]α1) or N, s |=CTL∗ f( ˆ[d]α2) (by induction hypothesis) iff
N, s |=CTL∗ f( ˆ[d]α1) ∨ f( ˆ[d]α2) iff N, s |=CTL∗ f( ˆ[d](α1 ∨ α2)) (by the definition
of f).

Case (α ≡ Eβ): M, s |=d̂
CTLS∗ Eβ iff ∃π: path starting from s (M, π |=d̂

CTLS∗ β)
iff ∃π: path starting from s (N, π |=CTL∗ f( ˆ[d]β)) (by induction hypothesis) iff
N, s |=CTL∗ Ef( ˆ[d]β) iff N, s |=CTL∗ f( ˆ[d]Eβ) (by the definition of f).
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Case (α ≡ β1Uβ2 and s is a path π): M, π |=d̂
CTLS∗ β1Uβ2 iff ∃k ≥ 0

[(M, πk |=d̂
CTLS∗ β2) and ∀j (0 ≤ j < k implies M, πj |=d̂

CTLS∗ β1)] iff ∃k ≥ 0
[(N, πk |=CTL∗ f( ˆ[d]β2)) and ∀j (0 ≤ j < k implies N, πj |=CTL∗ f( ˆ[d]β1))]
(by induction hypothesis) iff N, π |=CTL∗ f( ˆ[d]β1)Uf( ˆ[d]β2) iff N, π |=CTL∗

f( ˆ[d](β1Uβ2)) (by the definition of f).

Lemma 12. Let f be the mapping defined in Definition 10. For any Kripke
structure N = 〈S, S0, R, L〉 for CTL∗ and any consequence relation |=CTL∗

on N , and any state or path s in N, there exist a Kripke structure M =
〈S, S0, R, {Ld̂}d̂∈SE〉 for CTLS∗, sequence-indexed consequence relations |=d̂

CTLS∗

on M such that for any state or path formula α in LS,

N, s |=CTL∗ f( ˆ[d]α) iff M, s |=d̂
CTLS∗ α.

Proof. Similar to the proof of Lemma 11.

Theorem 13 (Embedding). Let f be the mapping defined in Definition 10.
For any formula α, α is valid in CTLS∗ iff f(α) is valid in CTL∗.

Proof. By Lemmas 11 and 12.

Theorem 14 (Decidability). The model checking, validity and satisfiability
problems for CTLS∗ are decidable.

Proof. By the mapping f defined in Definition 10, a formula α of CTLS∗

can finitely be transformed into the corresponding formula f(α) of CTL∗. By
Lemmas 11 and 12 and Theorem 13, the model checking, validity and satisfi-
ability problems for CTLS∗ can be transformed into those of CTL∗. Since the
model checking, validity and satisfiability problems for CTL∗ are decidable, the
problems for CTLS∗ are also decidable.

Since the mapping f is a polynomial-time translation, the complexity results for
CTLS∗ are the same as those for CTL∗, i.e., the validity, satisfiability and
model-checking problems for CTLS∗ are 2EXPTIME-complete, deterministic
2EXPTIME-complete and PSPACE-complete, respectively.

4 Illustrative Example

Let us consider an example of biological taxonomy (Linnaean taxonomy [1]) as
shown in Fig 1. We model such a case of biological taxonomy using CTLS∗

formulas in a manner such that the biological classes are partially ordered by
sequence modal operators and the life cycles of each class are characterized by
temporal operators.

First, the most general taxonomic class livingThing is formalized by CTLS∗

formulas as follows:

[livingThing]AF(living ∧AF(¬living) ∧A(livingU(AG¬living)))
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animal

mammalia

bird

livingThing

plant

amphibia

fish

Fig. 1. A biological taxonomy

This formula implies that every living thing is alive until it dies.

[animal; livingThing]AF(motile ∨ sentient)
[plant; livingThing]AG¬(motile ∨ sentient)

These formulas classify living things into animals and plants by characterizing
their life cycles. Every animal is motile or sentient, while plants are neither
motile nor sentient. The orders of symbols in sequence modal operators are useful
in representing a class hierarchy. This is because the orders differentiate their
validities; in other words, the two formulas [b; c]α and [c; b]α are not equivalent.
In addition, the abovementioned example includes both temporal operators and
sequence modal operators; CTL* and other logics do not include both these
types of operators.

Moreover, several subcategories of animals are defined by the following
formulas.

[mammalia; animal; livingThing]AF(¬egg ∧AXchild ∧AXAXadult)
[bird; animal; livingThing](AG(¬inWater)∧AF(egg∧AX(child∧¬canF ly)∧
AXAX(adult ∧ canF ly)))
[amphibia; animal; livingThing]AF((egg∧inWater)∧AX(child∧inWater)∧
AXAXadult)
[fish; animal; livingThing](AG(inWater)∧AF(egg∧AXchild∧AXAXadult))

Every mammal is viviparous. In the course of its life cycle, it grows from a
juvenile into an adult. Every bird is oviparous and can fly when it grows into an
adult. In addition, amphibians and fishes are modeled by the changes occurring
during growth.

Fig 2 shows a hierarchical tree structure of the biological taxonomy with
life cycles (the structure has been simplified to make it easy to understand).
We define a Kripke structure M = 〈S, S0, R, Ld̂〉 that corresponds to biological
taxonomy as follows:

1. S = {s0, s1, s2, s3, s4, s5, s6, s7},
2. S0 = {s0},
3. R = {(s0, s1), (s1, s2), (s2, s3), (s3, s4), (s4, s4), (s0, s5), (s5, s6), (s6, s7), (s7,

s4)},
4. LlivingThing(s0) = Lanimal(s0) = ∅,
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¬egg

egg child

child adult

adult

¬living

¬canF ly canF ly
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[mammalia]

[bird]

[livingThing]

living

living

living living

living living

Fig. 2. A biological taxonomy with life cycles

5. LlivingThing(s1) = Lanimal(s1) = Lmammalia(s1) = {living},
6. LlivingThing(s2) = Lanimal(s2) = Lmammalia(s2) = {child, living},
7. LlivingThing(s3) = Lanimal(s3) = Lmammalia(s3) = {adult, living},
8. LlivingThing(s4) = LlivingThing(s4) = Lmammalia(s4) = Lbird(s4) = ∅,
9. LlivingThing(s5) = Lanimal(s5) = Lbird(s5) = {egg, living},

10. LlivingThing(s6) = Lanimal(s6) = Lbird(s6) = {child, living},
11. LlivingThing(s8) = Lanimal(s7) = Lbird(s7) = {canF ly, adult, living},
12. Lmammalia(s0) = Lmammalia(s5) = Lmammalia(s6) = Lmammalia(s7) = ∅,
13. Lbird(s0) = Lbird(s1) = Lbird(s2) = Lbird(s3) = ∅.
We can verify the existence of a path that represents required information in the
structure M . For example, we can verify: “Is there an animal that hatches from
an egg and can fly?” This statement is expressed as:

[animal](EFegg ∧ (EFcanF ly))

The above statement is true because we have a path s0→s5→s6→s7 with egg ∈
Lanimal(s5) and canF ly ∈ Lanimal(s7).

5 Concluding Remarks

An extended full computation-tree logic CTLS∗ with the sequence modal op-
erator [b] was introduced. This logic could be used to appropriately represent
hierarchical tree structures, which are useful in formalizing ontologies. The em-
bedding theorem of CTLS∗ into CTL* was proved. The validity, satisfiability,
and model-checking problems of CTLS∗ were shown to be decidable. The embed-
ding and decidability results allow us to use the existing CTL*-based algorithms
to test the satisfiability. Thus, it was shown that CTLS∗ can be used as an
executable logic to represent hierarchical tree structures.

In the following paragraph, we explain that the applicability of CTLS∗ can
be extended by adding an operator − (converse), which can satisfy the following
axiom schemes:
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1. [−−b]α ↔ [b]α,
2. [−(b ; c)]α ↔ [−c ; −b]α.

The resulting extended logic is called CTLS∗
−. The converse operator − can

be used to change the order of sequences in the sequence modal operator; in
other words, the priority of information can be changed by −. The consequence
relations of CTLS∗

− are obtained from Definition 4 by adding the following
conditions:

1. for any atomic sequence e, M, s |=d̂ [−e]α1 iff M, s |=d̂ ; −e α1,
2. M, s |=d̂ [−−b]α1 iff M, s |=d̂ [b]α1,
3. M, s |=d̂ ; −−b α1 iff M, s |=d̂ ; b α1,
4. M, s |=d̂ [−(b ; c)]α1 iff M, s |=d̂ [−c ; −b]α1,
5. M, s |=d̂ ; −(b ; c) α1 iff M, s |=d̂ ; −c ; −b α1,
6. for any atomic sequence e, M, π |=d̂ [−e]β1 iff M, π |=d̂ ; −e β1,
7. M, π |=d̂ [−−b]β1 iff M, π |=d̂ [b]β1,
8. M, π |=d̂ ; −−b β1 iff M, π |=d̂ ; b β1,
9. M, π |=d̂ [−(b ; c)]β1 iff M, π |=d̂ [−c ; −b]β1,

10. M, π |=d̂ ; −(b ; c) β1 iff M, π |=d̂ ; −c ; −b β1.

In a similar manner as in the previous sections (with some appropriate modifi-
cations), we can obtain the embedding theorem of CTLS∗

− into CTL* and the
decidability theorem for the validity, satisfiability, and model-checking problems
of CTLS∗

−.
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Abstract. Information to be stored in databases is often fuzzy. Two
important issues in research in this field are the representation of fuzzy in-
formation in a database and the provision of flexibility in database query-
ing, especially via including linguistic terms in human-oriented queries
and returning results with matching degrees. Fuzzy linguistic logic pro-
gramming (FLLP), where truth values are linguistic, and hedges can
be used as unary connectives in formulae, is introduced to facilitate the
representation and reasoning with linguistically-expressed human knowl-
edge. This paper presents a data model based on FLLP called fuzzy
linguistic Datalog for fuzzy linguistic databases with flexible querying.

Keywords: Fuzzy database, querying, fuzzy logic programming, hedge
algebra, linguistic value, linguistic hedge, Datalog.

1 Introduction

Humans mostly use words to characterise and to assess objects and phenomena
in the real world. Thus, it is a natural demand for formalisms that can represent
and reason with human knowledge expressed in linguistic terms. FLLP [1] is such
a formalism. In FLLP, each fact or rule (a many-valued implication) is associated
with a linguistic truth value, e.g., Very True or Little False, taken from a linear
hedge algebra (HA) of a linguistic variable Truth [2,3], and linguistic hedges
(modifiers), e.g., Very and Little, can be used as unary connectives in formulae.
The latter is motivated by the fact that humans often use hedges to state different
levels of emphasis, e.g., very close and quite close.

Deductive databases combine logic programming and relational databases to
construct systems that are powerful (e.g., can handle recursive queries), still
fast and able to deal with very large volumes of data (e.g., utilizing set-oriented
processing instead of one tuple at a time). In this work, we develop an extension
of Datalog [4] called fuzzy linguistic Datalog (FLDL) by means of FLLP. Features
of FLDL are: (i) It enables to find answers to queries over a fuzzy linguistic
database (FLDB) using a fuzzy linguistic knowledge base (FLKB) represented
by an FLDL program in which all components (except usual connectives) can
be expressed in linguistic terms; (ii) Results are returned with a comparative
linguistic truth value and thus can be ranked accordingly.

A. Nicholson and X. Li (Eds.): AI 2009, LNAI 5866, pp. 495–505, 2009.
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The paper is organised as follows: Section 2 gives an overview of FLLP
while Section 3 presents FLDL; Section 4 gives discussions and concludes the
paper.

2 Preliminaries

2.1 Linguistic Truth Domains and Operations

Values of the linguistic variable Truth, e.g., True, VeryTrue, VeryLittleFalse, can
be regarded to be generated from a set of primary terms G = {False, T rue}
using hedges from a set H = {V ery, Little, ...} as unary operations. There exists
a natural ordering among these terms, with a ≤ b meaning that a indicates a
degree of truth not greater than b, e.g., True < V eryT rue. Hence, the term
domain is a partially ordered set and can be characterised by an HA X =
(X, G, H,≤), where X is a term set, and ≤ is the semantically ordering relation
on X [2,3]. Hedges either increase or decrease the meaning of terms they modify,
i.e., ∀h ∈ H, ∀x ∈ X, either hx ≥ x or hx ≤ x. The fact that a hedge h modifies
terms more than or equal to another hedge k, i.e., ∀x ∈ X , hx ≤ kx ≤ x or
x ≤ kx ≤ hx, is denoted by h ≥ k. The primary terms False ≤ True are
denoted by c− and c+, respectively. For an HA X = (X, {c−, c+}, H,≤), H
can be divided into disjoint subsets H+ and H− defined by H+ = {h|hc+ >
c+}, H− = {h|hc+ < c+}. An HA is said to be linear if both H+ and H− are
linearly ordered. It is shown that the term domain X of a linear HA is also
linearly ordered. An l-limited HA, where l is a positive integer, is a linear HA in
which every term has a length of at most l + 1. A linguistic truth domain is a
finite and linearly ordered set X = X ∪ {0, W, 1}, where X is the term domain
of an l -limited HA, and 0 (AbsolutelyFalse), W (the middle truth value), and
1 (AbsolutelyTrue) are the least, the neutral and the greatest elements of X ,
respectively [1]. Operations are defined on X as follows: (i) Conjunction: x ∧ y
= min(x, y); (ii) Disjunction: x ∨ y = max(x, y); (iii) An inverse mapping of a
hedge: the idea is that if we modify a predicate by a hedge h, its truth value
will be changed by the inverse mapping of h, denoted h−, e.g., if young(john) =
V eryT rue, then V ery young(john) = V ery−(V eryT rue) = True; (iv) Many-
valued modus ponens states that from (B, α) and (A ←i B, β) (i.e., truth values
of B and the rule A ←i B are at least α and β, respectively), one obtains
(A, Ci(α, β)), where Ci is the t-norm, whose residuum is the truth function of
the implication ←i, evaluating the modus ponens [5]. Note that our rules can use
any of the �Lukasiewicz and Gödel implications. Given a linguistic truth domain
X consisting of v0 ≤ v1 ≤ ... ≤ vn, where v0 = 0, vn = 1, �Lukasiewicz and Gödel
t-norms are defined as:

CL(vi, vj) =
{

vi+j−n if i + j − n > 0
v0 otherwise

CG(vi, vj) = min(vi, vj)
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2.2 Fuzzy Linguistic Logic Programming

Language. The language is a many-sorted predicate language without func-
tion symbols. Let A denote the set of all attributes. For each sort of variables
A ∈ A, there is a set CA of constant symbols, which are names of elements in
the domain of A. Connectives can be: conjunctions ∧ (also called Gödel) and
∧L (�Lukasiewicz); the disjunction ∨; implications ←L (�Lukasiewicz) and ←G

(Gödel); and hedges as unary connectives. For any connective c different from
hedges, its truth function is denoted by c•, and for a hedge connective h, its
truth function is its inverse mapping h−. The only quantifier allowed is ∀.

A term is either a constant or a variable. An atom (or atomic formula) is of the
form p(t1, ..., tn), where p is an n-ary predicate symbol, and t1, ..., tn are terms
of corresponding attributes. A body formula is defined inductively as follows: (i)
An atom is a body formula; (ii) If B1 and B2 are body formulae, then so are
∧(B1, B2), ∨(B1, B2) and hB1, where h is a hedge. A rule is a graded implication
(A ← B.r), where A is an atom called rule head, B is a body formula called rule
body, and r is a truth value different from 0; (A ← B) is called the logical part
of the rule. A fact is a graded atom (A.b), where A is an atom called the logical
part of the fact, and b is a truth value different from 0. A fuzzy linguistic logic
program (program, for short) is a finite set of rules and facts such that there are
no two rules (facts) having the same logical part, but different truth values. A
program P can be represented as a partial mapping P : Formulae → X \ {0},
where the domain of P , denoted dom(P ), is finite and consists only of logical
parts of rules and facts, and X is a linguistic truth domain; for a rule (A ← B.r)
(resp. fact (A.b)), P (A ← B) = r (resp. P (A) = b). A query is an atom ?A.

Example 1. We take the linguistic truth domain of a 2-limited HA X = (X, {F,
T }, {V, M, Q, L},≤), where V, M, Q, L, F and T stand for Very, More, Quite,
Little, False and True, i.e., X = {0,VVF,MVF,VF,QVF,LVF,VMF, MMF, MF,
QMF,LMF,F,VQF,MQF,QF,QQF,LQF,LLF,QLF,LF,MLF,VLF,W,VLT,MLT,
LT, QLT, LLT,LQT,QQT,QT,MQT,VQT,T,LMT,QMT,MT,MMT,VMT, LVT,
QVT,VT,MVT,VVT, 1} (truth values are in an ascending order). Assume that
we have the following piece of knowledge: (i) “A car is considered good if it
is quite comfortable and consumes very less fuel” is VeryTrue; (ii) “A Toyota
is comfortable” is QuiteTrue; (iii) “A Toyota consumes less fuel” is MoreTrue;
(iv) “A BMW is comfortable” is VeryTrue; (v) “A BMW consumes less fuel” is
QuiteTrue. The knowledge can be represented by the following program:

(good(X) ←G ∧(Q comfort(X), V less fuel(X)).V T )
(comfort(toyota).QT )

(less fuel(toyota).MT )
(comfort(bmw).V T )
(less fuel(bmw).QT )

It can be seen that since it is difficult to give precise numerical assessments of
the criteria, the use of qualitative assessments is more realistic and appropriate.
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We assume the underlying language of a program P is defined by constants and
predicate symbols appearing in P . Thus, we can refer to the Herbrand base of
P , which consists of all ground atoms, by BP [6].

Declarative Semantics. Given a program P , let X be the linguistic truth do-
main; a fuzzy linguistic Herbrand interpretation (interpretation, for short) f is
a mapping f : BP → X. Interpretation f can be extended to all formulae, de-
noted f , as follows: (i) f(A) = f(A), if A is a ground atom; (ii) f(c(B1, B2)) =
c•(f(B1), f(B2)), where B1, B2 are ground formulae, and c is a binary connec-
tive; (iii) f(hB) = h−(f(B)), where B is a ground body formula, and h is
a hedge; (iv) f(ϕ) = f(∀ϕ) = infϑ{f(ϕϑ)|ϕϑ is a ground instance of ϕ}. An
interpretation f is a model of P if for all ϕ ∈ dom(P ), f(ϕ) ≥ P (ϕ).

Given a program P , let X be the linguistic truth domain. A pair (x; θ), where
x ∈ X , and θ is a substitution, is called a correct answer for P and a query ?A
if for every model f of P , we have f(Aθ) ≥ x.

Fixpoint Semantics. Let P be a program. An immediate consequence operator
TP is defined as: for an interpretation f and every ground atom A, TP (f)(A) =
max{sup{Ci(f(B), r) : (A ←i B.r) is a ground instance of a rule in P}, sup{b :
(A.b) is a ground instance of a fact in P}}. It is shown in [1] that the Least
Herbrand model of the program P is exactly the least fixpoint of TP and can be
obtained by finitely iterating TP from the bottom interpretation, mapping every
ground atom into 0.

3 Fuzzy Linguistic Datalog

According to [4], a data model is a mathematical formalism with two parts: (i)
A notation for describing data, and (ii) A set of operations used to manipulate
that data. Furthermore, model-theoretic, proof-theoretic, fixpoint semantics and
their relationship are considered as important parts of a formal data model.

3.1 Language

Our FLDL is an extension of Datalog [4] without negation and possibly with
recursion in the same spirit as the one in [7]. The underlying mathematical
model of data for FLDL is the notion of fuzzy linguistic relation (fuzzy relation,
for short): a fuzzy predicate r(A1, ..., An) is interpreted as a fuzzy relation R :
CA1 × ... × CAn → X and is represented in the form of a (crisp) relation with
the relation scheme R(A1, ..., An, TV ), where X is a linguistic truth domain and
is the domain of the truth-value attribute TV . Thus, our FLDB is a relational
database in which a truth-value attribute is added to every relation to store a
linguistic truth value for each tuple. The relations are in the set-of-lists sense,
i.e., components appear in a fixed order, and reference to a column is only by
its position among the arguments of a given predicate symbol [4]. All notions
are the same as those in FLLP. Moreover, we also have some restrictions on
logic programs as in the classical case. A rule is said to be safe if every variable
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occurring in the head also occurs in the body. An FLDL program consists of finite
safe rules and facts. A predicate appearing in logical parts of facts is called an
extensional database (EDB) predicate, whose relation is stored in the database
and called EDB relation, while one defined by rules is called an intensional
database (IDB) predicate, whose relation is called IDB relation, but not both.

3.2 Model-Theoretic Semantics

Let P be an FLDL program; we denote the schema of P by sch(P ). For an
interpretation f of P , the fact that f(r(a1, ..., an)) = α, where r(a1, ..., an) is
a ground atom, is denoted by a tuple (a1, ..., an, α) in the relation R for the
predicate r. Hence, f can be considered as a database instance over sch(P ). As
in the classical case [4,8], the semantics of P is the least model of P .

3.3 Fuzzy Linguistic Relational Algebra

We extend a monotone subset, consisting of Cartesian product, equijoin, pro-
jection and union, of relational algebra [4] for the case of our relations and
create a new operation called hedge-modification. We call the collection of these
operations and the classical selection fuzzy linguistic relational algebra (FLRA).

Cartesian Product. Predicates can be combined by conjunctions or disjunc-
tions in rule bodies, thus we have two kinds of Cartesian product called conjunc-
tion and disjunction Cartesian product. Let R and S be fuzzy relations of arity
k1 and k2, respectively. The conjunction (resp. disjunction) Cartesian product
of R and S, denoted R×∧ S or ×∧(R, S) (resp. R×∨ S or ×∨(R, S)), is the set
of all possible (k1 + k2 − 1)-tuples of which the first k1 − 1 and the next k2 − 1
components are from a tuple in R and a tuple in S excluding the truth val-
ues, respectively, and the new truth value is ∧•(TVr, TVs) (resp. ∨•(TVr, TVs)),
where TVr, TVs are the truth values of the tuples in R and S, respectively.

Equijoin. We also have two kinds of equijoin called conjunction and disjunction
equijoin. The conjunction (resp. disjunction) equijoin of R and S on column i
and j, written R ��∧$i=$j S or ��∧$i=$j (R, S) (resp. R ��∨$i=$j S or ��∨$i=$j (R, S)),
is those tuples in the conjunction (resp. disjunction) product of R and S such
that the ith component of R equals the jth component of S.

Hedge-Modification. Let R be the relation for a predicate r. The relation
for formula kr, where k is a hedge, is computed by a hedge-modification of R,
denoted Hk(R), as follows: for every tuple in R with a truth value α, there is
the same tuple in Hk(R) except that the truth value is k−(α).

Projection. Given a relation for the body of a rule, a projection is used to
obtain the relation for the IDB predicate in the head. Due to semantics of our
rules, the truth value of each tuple in the projected relation is computed using
the expression C( , ρ), where C is the t-norm corresponding to the implication
used in the rule, ρ is the truth value of the rule, and the first argument of C is the
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truth value of the corresponding tuple in the body relation. More precisely, if R

is a relation of arity k, we let Π
C( ,ρ)
i1,i2,...,im

(R), where the ij’s are distinct integers
in the range 1 to k−1, denote the projection of R w.r.t. C( , ρ) onto components
i1, i2, ..., im, i.e., the set of (m + 1)-tuples (a1, ..., am, α) such that there is some
k-tuple (b1, ..., bk−1, β) in R for which aj = bij for j = 1, ..., m, and α = C(β, ρ).

Union. For the case there is more than one rule with the same IDB predicate in
their heads, the relation for the predicate is the union of all projected relations
of such rules. The union of relations R1, ..., Rn of the same arity k + 1, denoted⋃n

i=1 Ri, is the set of tuples such that for all tuples (a1, ..., ak, αi) in Ri, there is
one and only one tuple (a1, ..., ak, max{αi}) in

⋃n
i=1 Ri.

Remark 1. Clearly, it would not be efficient if we store all possible tuples in the
EDB relations; instead we want to store only tuples with non-zero truth values,
called non-zero tuples, i.e., those have actual meaning, and tuples not appearing
in the database are regarded to have a truth value 0. Nevertheless, there are
situations where we have to store all possible tuples in some EDB relations.
Our language allows rule bodies to be built using the disjunction. Thus, we can
have a non-zero tuple in the relation for a disjunction formula even if one of the
two tuples in the relations for its disjuncts is missing. However, by disjunction
Cartesian product or equijoin, the absence of a tuple in a relation for one of the
disjuncts will lead to the absence of the tuple in the relation for the formula.
Thus, to ensure that all non-zero tuples will not be lost, all relations for the
disjuncts need to consist of all possible tuples that can be formed out of constants
(of corresponding sorts of variables) appearing in the program such that tuples
which are not explicitly associated with a truth value will have a truth value 0.
Moreover, in order for the relations for the operands of a disjunction to consist
of all possible tuples, relations for all predicates occurring in the operands must
also consist of all their possible tuples; for the relation of a predicate in the head
of a rule to consist of all possible tuples, all relations for predicates in its body
also contain all their possible tuples. In summary, we can say that the relation for
a predicate involved in a disjunction must contain all possible tuples; conversely,
the relation just needs to consist of only non-zero tuples.

3.4 Translation of FLDL Rules into FLRA Expressions

From the proof-theoretic point of view, we would like to compute relations for
IDB predicates from relations for EDB predicates using rules. To that end, we
first translate every rule in an FLDL program into an FLRA expression which
yields a relation for the IDB predicate in the head of the rule. A translation
algorithm to do this is adapted from the algorithm for the classical case in [9]. The
algorithm requires the following: (a) Function corr(i) returns, for any variable
vi in the head of the rule, the index j of the first occurrence of the same variable
in the body; (b) Function const(w) returns true if argument w is a constant,
and false otherwise; (c) Procedure newvar(x) returns a new variable name in x;
(d) Let L be a string, and x, y symbols. Then L < x, y > (resp., L[x, y]) denotes
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a new string obtained by replacing the first occurrence (resp., all occurrences)
of x in L with y; (e) An artificial predicate eq(x, y) whose relation EQ contains
one tuple (c, c, 1) for each constant c appearing in the program. EQ is used to
express the equality of two components in the crisp sense, i.e., the truth values
of such tuples are 1.

TRANSLATION ALGORITHM
INPUT: A rule r : (H ←i B.ρ), where H is a predicate p(v1, ..., vn), and B is

a formula of predicates q1, ..., qm whose arguments uj are indexed consecutively.
During the execution, B denotes whatever follows the symbol ← except ρ.

OUTPUT: An FLRA expression of relations Q1, ..., Qm.
BEGIN T (r) END

RULE 1: T (r)
BEGIN

IF ∃i : const(vi) THEN /*case (a)*/
BEGIN newvar(x); RETURN T (H < vi, x >← ∧(B, eq(x, vi)).ρ) END

ELSEIF ∃i, j : vi = vj , i < j THEN /*case (b)*/
BEGIN newvar(x); RETURN T (H < vi, x >← ∧(B, eq(x, vj)).ρ) END

ELSE RETURN Π
Ci( ,ρ)
corr(1),...,corr(n)T

′(B)
END

RULE 2: T ′(B)
BEGIN

IF ∃i : const(ui) THEN /*case (a)*/
BEGIN newvar(x); RETURN σ$i=ui

T ′(B < ui, x >) END
ELSEIF ∃i, j : ui = uj , i < j THEN /*case (b)*/

BEGIN newvar(x); RETURN σ$i=$jT
′(B < ui, x >) END

ELSE
BEGIN B[∧,×∧]; B[∨,×∨]; B[h,Hh]; B[eq(...), EQ];

FOR i:= 1 TO m DO B[qi(...), Qi]; RETURN B
END

END

After the application of rule T ′, the selection conditions are replaced by those
of relations and join conditions as follows: (i) For each condition $i = a, we
find relation Q that contains the component of position i. Let l be the total
number of components of all relations preceding Q; we put a selection condition
$j = a for Q, where j = i − l. (ii) For each condition $i = $j, we find the
innermost expression, which is either a relation, a product ×c, or a join ��c,
where c ∈ {∧,∨}, that contains both components of positions i and j. Let l
be the total number of components of all relations preceding the expression; we
put i′ = i − l, j′ = j − l, and: (ii.1) If the expression is a relation Q, we put a
selection condition $i′ = $j′ for Q. (ii.2) If it is a product E = ×c(E1, E2) or a
join E =��c

F (E1, E2), the components of positions i and j are contained in E1
and E2, respectively (otherwise, E is not the innermost expression containing
both components). Let j′′ = j′−l1, where l1 is the total number of components of
all relations in E1; we replace E by a join ��c

i′=j′′ (E1, E2) or ��c
F∧i′=j′′ (E1, E2).
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Example 2. Given a rule (p(X, X, Z) ← ∨(r(X, Y ),∧(s(Y, a, Z), V q(X, Z))).ρ),
by Rule T , case (b), we have (1) in the following. Then, by T , last recursive call,
we have (2). After that, by T ′, cases (a) and (b), we have (3). Then, by T ′, last
recursive call, we have (4). After pushing the selections into relation selections
and join conditions, we have (5).

T (p(V1, X, Z) ← ∧(∨(r(X, Y ),∧(s(Y, a, Z), V q(X, Z))), eq(V1, X)).ρ) (1)

Π
C( ,ρ)
8,1,5 T ′(∧(∨(r(X, Y ),∧(s(Y, a, Z), V q(X, Z))), eq(V1, X))) (2)

Π
C( ,ρ)
8,1,5 σ$1=$6∧$2=$3∧$4=a∧$5=$7∧$6=$9T

′(∧(∨(r(V2 , V3),∧(s(Y, V4, V5),
V q(V6, Z))), eq(V 1, X))) (3)

Π
C( ,ρ)
8,1,5 σ$1=$6∧$2=$3∧$4=a∧$5=$7∧$6=$9(×∧(×∨(R,×∧(S,HV (Q))), EQ)) (4)

Π
C( ,ρ)
8,1,5 (��∧6=2 (��∨1=4∧2=1 (R, ��∧3=2 (σ$2=aS,HV (Q))), EQ)) (5)

The translated expression of a rule r with an IDB predicate p in its head will
be denoted by E(p, r). Since p can appear in the heads of more than one rule,
the relation for p is the union of all such translated expressions, denoted E(p) =⋃

r E(p, r). The collection of all E(p) is denoted by E .

3.5 Equivalence between E and TP

We show the equivalence between E and TP in the sense that for every IDB
predicate p, if there exists a tuple (a1, ..., an, α) in the relation produced by
E(p), the truth value of the ground atom p(a1, ..., an) computed by the immediate
consequence operator TP (f) is also α, otherwise, the truth value of p(a1, ..., an)
is 0, where f is the interpretation corresponding to current values of relations.

Consider a rule r : (A ← B.ρ) of a program P with predicate p in the head.
For each subformula Bj of B, including itself, we denote the subexpression of
E(p, r) corresponding to Bj by E(Bj), and the concatenation of arguments of all
predicates appearing in Bj by A(Bj). Moreover, we denote the part of E(p, r)
excluding the projection Π , which is a combination of E(B) and occurrences of
the relation EQ in the form of conjunction joins or products, by Eb(r).

Example 3. Consider the rule r in Example 2; if B1 = ∧(s(Y, a, Z), V q(X, Z)),
E(B1) =��∧3=2 (σ$2=aS,HV (Q)) and A(B1) = (Y, a, Z, X, Z); Eb(r) =��∧6=2
(��∨1=4∧2=1 (R, ��∧3=2 (σ$2=aS,HV (Q))), EQ).

Let Q1, ..., Qm be the relations that have been already computed for all pred-
icates q1, ..., qm in B, and f an interpretation such that f(qi(bi

1, ..., b
i
ki

)) = βi

if there is a tuple (bi
1, ..., b

i
ki

, βi) ∈ Qi, and f(qi(bi
1, ..., b

i
ki

)) = 0, otherwise. For
each ground instance (A′ ← B′.ρ) of r, let θ be the ground substitution such
that A′ = Aθ and B′ = Bθ. Also, let B′

j = Bjθ for all j. It can be seen
that the substitution θ identifies at most one tuple (bj

1, ..., b
j
nj

, βj), which cor-
responds to B′

j , in each E(Bj). More precisely, (bj
1, ..., b

j
nj

) is obtained from
A(Bj) by replacing each occurrence of a variable by its substitute value in θ.
We denote the subset of E(Bj) corresponding to B′

j by E(B′
j); thus, E(B′

j) is
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either empty or a tuple (bj
1, ..., b

j
nj

, βj). It can be proved by induction on the
structure of B′

j that for all j, if there exists such a tuple, then βj = f(B′
j),

otherwise f(B′
j) = 0. In particular, if E(B′) = {(b1, ..., bk, β)}, then β = f(B′);

otherwise, E(B′) is empty and f(B′) = 0. Moreover, if E(B′) = {(b1, ..., bk, β)},
since there is only one tuple (c, c, 1) in EQ for each constant c, there is ex-
actly one tuple in Eb(r) which is formed by the tuple in E(B′) and occur-
rences of EQ via conjunction joins or products (with one component of EQ
being restricted to a constant due to Cases (a) of Rule T and T ′). Because
∧•(β, 1) = β, the truth value of the tuple in Eb(r) is also β. By projection, the
truth value of the tuple corresponding to A′ in E(p, r) is C(β, ρ) = C(f(B′), ρ).
Otherwise, E(B′) is empty, and there is no tuple for A′ in E(p, r). Finally,
if there exist tuples for A′ in E(p, r)’s, the truth value of the tuple for A′ in
E(p) is max{C(f(B′), ρ)|(A′ ← B′.ρ) is a ground instance of a rule in P}. On
the other hand, since an IDB predicate cannot be an EDB predicate simultane-
ously, TP (f)(A′) = max{C(f(B′), ρ)|(A′ ← B′.ρ) is a ground instance of a rule
in P}. In the case there is no tuple for A′ in E(p), for all B′, E(B′) is empty,
and f(B′) = 0; hence, TP (f)(A′) = 0.

3.6 Fixpoint Semantics

Due to the equivalence between E and TP (f), the semantics of the program P
can be obtained by repeatedly iterating the expressions in E , obtained from the
rules in P , from a set of the relations for the EDB predicates. More concretely,
we can write E(p) as E(p, R1, ..., Rk, P1, ..., Pm), where Ri’s are all EDB relations
including EQ, and Pi’s are all IDB relations. The semantics of program P is the
least fixpoint of the equations Pi = E(pi, R1, ..., Rk, P1, ..., Pm), for i = 1 . . .m.
Similar to [4], we have a naive evaluation algorithm:

INPUT: A collection of FLRA expressions E obtained from rules by the trans-
lation algorithm, and lists of IDB and EDB relations P1, ..., Pm and R1, ..., Rk.

OUTPUT: The least fixpoint of equations Pi = E(pi, R1, ..., Rk, P1, ..., Pm).

BEGIN
FOR i := 1 TO k DO

IF ri involves a disjunction THEN
Ri := Ri+ a set of other possible tuples with a truth value 0;

FOR i := 1 TO m DO
IF pi involves a disjunction THEN

Pi := a set of all possible tuples with a truth value 0
ELSE Pi := ∅;

REPEAT FOR i := 1 TO m DO Qi := Pi; /*save old values of Pi*/
FOR i := 1 TO m DO Pi := E(pi, R1, ..., Rk, Q1, ..., Qm)

UNTIL Pi = Qi for all i = 1 . . .m;
END
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For example, given the program in Example 1, applying the above algorithms,
we obtain tuples {(toyota, QT ), (bmw, V LT )} in the relation for predicate good
(with Q−(QT ) = T, V −(MT ) = QT, Q−(V T ) = V V T, V −(QT ) = V LT ).

Since the least model of a program P can be obtained by finitely iterating TP

from the bottom interpretation, the following theorem follows immediately.

Theorem 1. Every query over an FLKB represented by an FLDL program can
be exactly computed by finitely iterating the expressions in E, obtained from the
rules in the program, from a set of relations for the EDB predicates.

4 Discussions and Conclusion

We can utilize some optimization techniques such as incremental evaluation and
magic-sets for evaluation of FLDL as for the classical case [4]. Nevertheless, in-
cremental tuples can be used for only relations of the predicates that do not
involve any disjunction. The procedural semantics of FLLP can be used to find
answers to queries w.r.t. a threshold as discussed in [1]. However, it may not
terminate for recursive programs. In this paper, we have presented a data model
for fuzzy data in which every tuple has a linguistic truth value; the data can be
stored in a crisp relational database with an extra truth-value attribute added
to every relation. Queries to the database are made over an FLKB expressed by
an FLDL program. We define FLRA as the set of operations to manipulate the
data. Logical rules whose heads have the same IDB predicate can be converted
into an expression of FLRA which yields a relation for the predicate. The seman-
tics of the FLDL program can be obtained by finitely iterating the expressions
from the database. Concerning related works, the many-valued logic extension
of Datalog in [7] can also handle fuzzy similarity and enable threshold compu-
tation. The probabilistic Datalog in [10] uses a magic sets method as the basic
evaluation strategy for modularly stratified programs. The method transforms
a probabilistic Datalog program into a set of relational algebra equations, then
the fixpoint of these equations is computed.
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Abstract. We present a semantic model of typicality of concept members in de-
scription logics (DLs) that accords well with a binary, globalist cognitive model
of class membership and typicality. We define a general preferential semantic
framework for reasoning with object typicality in DLs. We propose the use of
feature vectors to rank concept members according to their defining and charac-
teristic features, which provides a modelling mechanism to specify typicality in
composite concepts.

1 Introduction

The study of natural language concepts in cognitive psychology has led to a range of
hypotheses and theories regarding cognitive constructions such as concept inclusion,
composition, and typicality. Description logics (DLs) have been very successful in mod-
elling some of these cognitive constructions, for example IS-A and PART-OF. In this
paper, we focus on the semantic modelling of typicality of concept members in such a
way that it accords well with empirically well-founded cognitive theories of how people
construct and reason about concepts involving typicality. We do not attempt to survey
all models of concept typicality, but briefly outline some aspects of the debate:

According to the unitary model of concept typicality and class membership, vari-
ations in both graded class membership and typicality of class members reflect dif-
ferences in similarity to a concept prototype. Class membership and typicality are
determined by placing some criterion on the similarity of objects to the concept pro-
totype [10,11]. According to the binary model of concept typicality and class inclusion,
typicality and concept membership reflect essentially different cognitive processes.
Concepts have defining features providing necessary and sufficient conditions for class
membership, as well as characteristic features indicating typicality within that class
[4,17,18]. According to the localist view of concepts, the meaning of a compound con-
cept is a function of the meanings of its semantic constituents. According to the glob-
alist view, the meanings of concepts are entrenched in our world knowledge, which is
context-dependent and cannot be decomposed into, or composed from, our understand-
ing of basic building blocks [12,16]. Concept typicality can therefore not be determined
from concept definition alone, but requires a world view to provide context relative to
which typicality may be determined.

A. Nicholson and X. Li (Eds.): AI 2009, LNAI 5866, pp. 506–516, 2009.
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Description logics cannot resolve any of these debates, but we can use DLs to model
some aspects of them. In particular, we can model typicality of concept members based
on their characteristic features. We can also model compositional aspects of typicality.
Other aspects, such as the graded class membership that underpins the unitary model,
and non-compositionality of compound class membership in the globalist view, cannot
be modelled using DLs, or at least not in an intuitively natural way. In [21] a model of
graded concept membership was proposed, but this presented a marked departure from
classical DL reasoning. We therefore restrict our attention to the binary model, with a
compositional model of class membership, where being a member of a class is an all-or-
nothing affair, and membership of compound concepts are determined by membership
of their atomic constituents or defining features, while characteristic features contribute
to induce degrees of typicality within a class.

DLs have gained wide acceptance as underlying formalism in intelligent knowledge
systems over complex structured domains, providing an unambiguous semantics to on-
tologies, and balancing expressive power with efficient reasoning mechanisms [1]. The
nature of DL reasoning has traditionally been deductive, but there have been a fair
number of proposals to extend DLs to incorporate some form of defeasible reasoning,
mostly centered around the incorporation of some form of default rules, e.g. [5].

In a previous paper [3], we presented a general preferential semantic framework
for defeasible subsumption in DLs, analogous to the KLM preferential semantics for
propositional entailment [2,13]. We gave a formal semantics of defeasible subsumption,
as well as a translation of defeasible subsumption to classical subsumption within a
suitably rich DL language. This was done by defining a preference order on objects in
a knowledge base, which allowed for defeasible terminological statements of the form
“All the most preferred objects in C are also in D”.

In practice, an ontology may call for different preference orders on objects, and
correspondingly, multiple defeasible subsumption relations within a single knowledge
base. An object may be typical (or preferable) with respect to one property, but not
another. For example, a guppy may be considered a typical pet fish, even though it is
neither a typical fish, nor a typical pet [17]. So we may want a pet typicality order on
pets, a fish typicality order on fish, and some way of combining these orders, or other
relevant characteristics, into a pet fish typicality order. That is, we want to order objects
in a given class according to their typicality with respect to the chosen features of that
class. The subjective world view adopted in the fish shop may be different from that
adopted in an aquarium, or a pet shop, hence the features deemed relevant may differ in
each case, and this has to be reflected in the respective typicality orders.

Relative to a particular interpretation of a DL, any concept C partitions all objects in
the domain according to their class membership into those belonging to C, and those not
belonging to C. This yields a two-level preference order, with all objects in C preferred
to all those not in C. This order may be refined further to distinguish amongst objects in
C, but even the basic two-level order suffices to define an important class of preferential
subsumption relations, namely those characterising the stereotypical reasoning of [14].

A preference order on objects may be employed to obtain a notion of defeasible
subsumption that relaxes the deductive nature of classical subsumption. To this end, we
introduce a parameterised defeasible subsumption relation �∼j to express terminological
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statements of the form C �∼jD, where C and D are arbitrary concepts, and �∼j is induced
by a preference order≤j . If≤j prefers objects in A to objects outside of A, we say that
C is preferentially subsumed by D relative to A iff all objects in C that are typical
in A (i.e. preferred by the typicality order corresponding to A), are also in D. When
translated into DL terminology, the proposal of [14] reads as follows: Given concepts
C, D and S such that S represents a best stereotype of C, C is preferentially subsumed
by D relative to S if all stereotypical objects in C also belong to D.

The rest of the paper is structured as follows: We first fix some standard seman-
tic terminology on DLs that will be useful later on. After giving some background on
rational preference orders, we introduce the notion of an ordered interpretation, and
present a formal semantics of parameterised defeasible subsumption. This is a natural
extension of the work presented in [3], and provides a way of reasoning defeasibly with
the IS-A relationship between concepts relative to a given concept. We then put for-
ward two approaches to the definition of a derived typicality order on concepts, namely
atomic composition and feature composition. We argue that feature composition is the
more general approach, and is not as vulnerable to arguments against compositionality
as is the case with atomic composition. We show how feature vectors may be used to
determine typicality compositionally, taking into account semantic context.

2 Preliminaries

2.1 DL Terminology

In the standard set-theoretic semantics of concept descriptions, concepts are interpreted
as subsets of a domain of interest, and roles as binary relations over this domain. An
interpretation I consists of a non-empty set ΔI (the domain of I) and a function ·I
(the interpretation function of I) which maps each atomic concept A to a subset AI of
ΔI , and each atomic role R to a subset RI of ΔI × ΔI . The interpretation function
is extended to arbitrary concept descriptions (and role descriptions, if complex role
descriptions are allowed in the language) in the usual way.

A DL knowledge base consists of a Tbox which contains terminological axioms, and
an Abox which contains assertions, i.e. facts about specific named objects and relation-
ships between objects in the domain. Depending on the expressive power of the DL, a
knowledge base may also have an Rbox which contains role axioms. Tbox statements
are concept inclusions of the form C ) D, where C and D are (possibly complex) con-
cept descriptions. C ) D is also called a subsumption statement, read “C is subsumed
by D”. An interpretation I satisfies C ) D, written I � C ) D, iff CI ⊆ DI . C ) D
is valid, written |= C ) D, iff it is satisfied by all interpretations. Rbox statements
include role inclusions of the form R ) S, and assertions used to define role proper-
ties such as asymmetry. Objects named in the Abox are referred to by a finite number
of individual names. These names may be used in two types of assertional statements
– concept assertions of the form C(a) and role assertions of the form R(a, b), where
C is a concept description, R is a role description, and a and b are individual names.
To provide a semantics for Abox statements it is necessary to add to every interpreta-
tion a denotation function which satisfies the unique names assumption, mapping each
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individual name a to a different element aI of the domain of interpretation ΔI . An inter-
pretation I satisfies the assertion C(a) iff aI ∈ CI ; it satisfies R(a, b) iff (aI , bI) ∈ RI .
An interpretation I satisfies a DL knowledge base K iff it satisfies every statement in
K. A DL knowledge base K entails a DL statement φ, written as K |= φ, iff every
interpretation that satisfies K also satisfies φ.

2.2 Preferential Semantics

In a preferential semantics for a propositional language, one assumes some order rela-
tion on propositional truth valuations (or on interpretations or worlds or, more generally,
on states) to be given. The intuitive idea captured by the order relation is that interpreta-
tions higher up (greater) in the order are more typical in the context under consideration,
than those lower down. For any given class C, we assume that all objects in the appli-
cation domain that are in (the interpretation of) C are more typical of C than those
not in C. This is a technical construction which allows us to order the entire domain,
instead of only the members of C. This leads us to take as starting point a finite set of
preference orders {≤j: j ∈ J } on objects in the application domain, with index set J .
If ≤j prefers any object in C to any object outside of C, we call ≤j a C-order.

To ensure that the subsumption relations generated are rational, i.e. satisfy a weak
form of strengthening on the left, the rational monotonicity postulate (see [6,15], we
assume the preference orders to be modular partial orders, i.e. reflexive, transitive,
anti-symmetric relations such that, for all a, b, c in ΔI , if a and b are incomparable and
a is strictly below c, then b is also strictly below c.

Modular partial orders have the effect of stratifying the domain into layers, with any
two elements in the same layer being unrelated to each other, and any two elements in
different layers being related to each other. (We could also have taken the preference
order to be a total preorder, i.e. a reflexive, transitive relation such that, for all a, b in
ΔI , a and b are comparable. Since there is a bijection between modular partial orders
and total preorders on ΔI , it makes no difference here which formalism we choose.)

We further assume that the order relations have no infinite chains (and hence, in
Shoham’s terminology [20, p.75], are bounded, which is the dual of well-founded,
which in turn implies, in the terminology of [13], that the order relations are smooth).
In the presence of transitivity, this implies that, for any j ∈ J , nonempty X ⊆ ΔI and
a ∈ X , there is an element b ∈ X , ≤j-maximal in X , with a ≤j b.

3 Preferential Subsumption

We now develop a formal semantics for preferential subsumption in DLs. We assume
a DL language with a finite set of preference orders {%j: j ∈ J } in its signature. We
make the preference orders on the domain of interpretation explicit through the notion
of an ordered interpretation: (I, {≤j : j ∈ J }) is the interpretation I with preference
orders {≤j: j ∈ J } on the domain ΔI . The preference orders on domain elements may
be constrained by means of role assertions of the form a %j b for j ∈ J , where the
interpretation of %j is ≤j , that is, %I

j=≤j:
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Definition 1. An ordered interpretation (I, {≤j : j ∈ J }) consists of an interpretation
I and finite, indexed set of modular partial orders {≤j: j ∈ J } without infinite chains
over their domain ΔI .

Definition 2. An ordered interpretation (I, {≤j: j ∈ J }) satisfies an assertion a %j b
iff aI ≤j bI .

We do not make any further assumptions about the DL language, but assume that con-
cept and role assertions and constructors, and classical subsumption are interpreted in
the standard way, ignoring the preference orders of ordered interpretations.

We first introduce the notion of satisfaction by an ordered interpretation, thereafter
we relax the semantics of concept inclusion to arrive at a definition of satisfaction of
a parameterised preferential subsumption relation �∼j by an ordered interpretation. Fi-
nally, we define what it means for a preferential subsumption statement to be entailed
by a knowledge base.

3.1 Satisfaction of Preferential Subsumption Statements

Definition 3. An ordered interpretation (I, {≤j: j ∈ J }) satisfies C ) D, written
(I, {≤j: j ∈ J }) � C ) D, iff I satisfies C ) D.

The preferential semantics of �∼j is then defined as follows:

Definition 4. An ordered interpretation (I, {≤j: j ∈ J }) satisfies the preferential
subsumption C �∼jD, written (I, {≤j: j ∈ J }) � C �∼jD, iff CI

j ⊆ DI , where

CI
j = {x ∈ CI : there is no y ∈ CI such that x ≤j y and x �= y}.

For brevity, we shall at times write ≤J instead of {≤j: j ∈ J }. Preferential subsump-
tion satisfies the following three properties:

Supraclassicality: If (I,≤J ) � C ) D then (I,≤J ) � C �∼jD for all j ∈ J .
Nonmonotonicity: (I,≤J ) � C �∼jD does not necessarily imply

(I,≤J ) � C � C′ �∼jD for any j ∈ J .
Defeasibility: (I,≤J ) � C �∼jD does not necessarily imply (I,≤J ) � C ) D for

any j ∈ J .

It also satisfies the familiar properties of rational preferential entailment [13,15] (when
expressible in the DL under consideration): Reflexivity, And, Or, Left Logical Equiva-
lence, Left Defeasible Equivalence, Right Weakening, Cautious Monotonicity, Rational
Monotonicity, and Cut.

3.2 Entailment of Preferential Subsumption Statements

Satisfaction for defeasible subsumption is defined relative to a fixed, ordered interpre-
tation. We now take this a step further, and develop a general semantic theory of entail-
ment relative to a knowledge base using ordered interpretations. Note that, although the
knowledge base may contain preferential subsumption statements, entailment from the
knowledge base is classical and monotonic.
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Definition 5. The preferential subsumption statement C �∼jD is valid, written |=
C �∼jD, iff it is satisfied by all ordered interpretations (I, {≤j: j ∈ J }).
Definition 6. A DL knowledge base K entails the preferential subsumption statement
C �∼jD, written K |= C �∼jD, iff every ordered interpretation that satisfies K also sat-
isfies C �∼jD.

The following properties of �∼j are direct consequences of its corresponding properties
relative to a fixed, ordered interpretation:

�∼j is supraclassical: If K |= C ) D then also K |= C �∼jD.
�∼j is nonmonotonic:K |= C �∼jD does not necessarily imply that K |= C �C′ �∼jD.
�∼j is defeasible: K |= C �∼jD does not necessarily imply that K |= C ) D.

The other properties of �∼j mentioned earlier relative to a fixed, ordered interpreta-
tion extend analogously in the context of entailment relative to a knowledge base. For
example, reflexivity of �∼j relative to K reads K |= C �∼jC.

4 Derived Typicality of Concept Membership

In the previous section we presented a semantic framework to model typicality of con-
cept membership: ≤j is a C-order if it ranks any object in C higher than any object
outside of C. In a DL with value restrictions, we can write this as: C ) ∀%j .C. We
now address the question of derived typicality C-orders. We distinguish between two
possible approaches to resolve this problem:

1. Atomic composition: Here we use the atomic constituents or defining features of
the compound concept C as building blocks. We combine their respective typicality
orders recursively, depending on the operators used in the syntactic construction of
C. Say C ≡ A � B, and typicality orders ≤j and ≤k are defined such that ≤j is
an A-order and ≤k is a B-order respectively. We may then form a new typicality
order for C by composing≤j and ≤k according to some composition rule for �.

2. Feature composition: Here we identify the relevant features of the concept C. For
each object a belonging to C, we form a feature vector characterising a. These
feature vectors are then used to determine the typicality of a in C.

Irrespective of the composition rules applied, atomic composition is vulnerable to the
same criticisms that have been levied against localist, compositional cognitive models
of typicality of concept membership [16].

Feature composition is also compositional, but, in contrast with atomic composition,
it is not localist. That is, the typicality of a member of a concept may be influenced by
characteristic features that do not constitute part of the definition of the concept. For
example, the diet of penguins may be a relevant characteristic feature in determining
their typicality, but atomic composition cannot take this into account when determining
typicality unless this feature forms part of the definition of a penguin.

Atomic composition may be viewed as a restricted version of feature composition,
since any defining feature may be considered a relevant feature. Hence, we will only
consider feature composition further. We consider the definition of feature vectors, their
normalisation, and their composition.
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4.1 Feature Vectors

The features of a concept come in two guises: They are either characteristic features,
co-determining typicality of objects in the concept, or they are defining features of the
concept. In a DL extended with suitable preferential subsumption relations, charac-
teristic features may be introduced on the right-hand side of preferential subsumption
statements. For example, in the axioms given below, if �∼1 is derived from the Penguin-
order≤1, then ∀eats.F ish is a characteristic feature of Penguin. Defining features are
introduced on the right hand-side of classical subsumption statements. For example,
in the following axioms, Seabird is a defining feature of Penguin, so are Bird and
∃eats.F ish. Similarly, Bird and ∃eats.F ish are both defining features of Seabird:
Seabird ≡ Bird � ∃eats.F ish; Penguin ) Seabird; Penguin �∼1∀eats.F ish.

The question arises whether relevant features should be determined algorithmically
through some closure operator, or whether their identification is a modelling decision.
While defining features can easily be derived from the knowledge base, this is not ob-
vious in the case of characteristic features. We therefore view the choice of relevant
features as a modelling decision, in accordance with a globalist view of concepts as
context sensitive. The choice of features relevant for a particular concept, and their re-
spective preference orders, are therefore determined by a subjective world view and
have to be re-evaluated in each new context. The following development assumes a
fixed ordered interpretation, even when some order is defined in terms of others.

Definition 7. A feature vector is an n-tuple of concepts 〈CI
1 , . . . , CI

n〉 with correspond-
ing preference vector 〈≤1, . . . ,≤n〉 such that ≤j is a Cj-order, for 1 ≤ j ≤ n, and
weight vector 〈w1, . . . , wn〉 such that wj ∈ Z, for 1 ≤ j ≤ n.

We do not place any formal relevance restriction on the choice of elements of a feature
vector, as this is a modelling decision. We may even, for example, have two feature
vectors for Fish, one for use in the fish shop, and one for the pet shop. We may also
define different preference orders for the same concept, for use in different contexts. For
example, miniature, colourful fish may be typical in a pet shop, but not even relevant in
a fish shop.

Next, we consider the normalisation of preference orders, which paves the way for
their composition.

Definition 8. Let 〈CI
1 , . . . , CI

n〉 be a feature vector with corresponding preference vec-
tor 〈≤1, . . . ,≤n〉. The level of an object x ∈ ΔI relative to preference order≤j , written
levelj(x), is defined recursively as follows:

levelj(x) :=

⎧⎪⎪⎨⎪⎪⎩
1 if x is ≤j -minimal in CI

j ;
0 if x is ≤j -maximal in ΔI\CI

j ;
max{levelj(y) : y <j x}+ 1 for non-minimal objects in CI

j ;
min{levelj(y) : x <j y})− 1 for non-maximal objects in ΔI\CI

j .

Definition 8 maps objects in the domain to integers. We note that the absence of infinite
≤j-chains ensures that levelj is defined on the whole of ΔI . Given any feature CI

j

in the feature vector, Definition 8 assigns a positive level to all objects in Cj , and a
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non-positive level to all objects not in CI
j . In the case where ≤j is a two-level order,

levelj(x) = 1 for x ∈ CI
j , and levelj(x) = 0 for x �∈ CI

j .
It is not difficult to see (given the modularity of the preference orders) that this

mapping preserves the relative order of elements in the corresponding preference
order:

Proposition 1. For any x, y ∈ ΔI , x ≤j y iff levelj(x) ≤ levelj(y).

We now have the required apparatus to compose the chosen preference orders of a
feature vector. We define the typicality of objects relative to a given concept, based on
its relevant features. The weight vector may be used in two ways – to normalise the
preference orders so that they have the same range, or to adjust the relative importance
of each feature. Normalisation can be done without intervention from the modeller, and
resonates better with the qualitative approach to typicality followed so far in the paper.

The intuition of Definition 9 is that it ranks those objects that conform better to the
features of C in terms of typicality on a higher level. The function f first maps each
object in the domain to a non-negative integer. This induces a modular C-order, say≤k,
on objects in the domain.

Definition 9. Given concept C with feature vector 〈CI
1 , . . . , CI

n〉, preference vector
〈≤1, . . . ,≤n〉 and weight vector 〈w1, . . . , wn〉, let f : ΔI → Z

+
0 , such thatf(a) :=

Max{1,
∑n

j=1(levelj(a) × wj)} if a ∈ CI and 0 otherwise, for any object a ∈ ΔI .
The associated preference relation ≤k on ΔI given by: a ≤k b iff f(a) ≤ f(b), for
some k ∈ J , is the typicality C-order induced by the features, preferences and weights.

Our choice for f is not arbitrary, but there are alternatives, such as taking the maxi-
mum of the input preferences instead of their sum. By choosing different functions for
different connectives, atomic composition can be simulated using feature vectors.

4.2 Example

We conclude this section with an illustrative example. Suppose we have the following
terminological statements:

Penguin ) Bird � Flightless�Aquatic (1)

Penguin �∼1∀habitat.Southern (2)

Southern ) ¬Equatorial (3)

GalapagosPenguin) Penguin (4)

Penguin ) ∀%1 .P enguin (5)

∃habitat.Equatorial ) ∀%2 .∃habitat.Equatorial (6)

Line (2) of the TBox states that the habitat of typical penguins is restricted to the south-
ern regions. Note that we cannot derive from (2) and (4) that the habitat of typical
Galapagos penguins is restricted to the southern regions. Lines (5-6) ensure that%1 and
%2 are indeed, respectively, a Penguin-order and an ∃habitat.Equatorial-order. In
the ordered interpretation I satisfying this Tbox, and where %I

1 partitions objects into
typical penguins, atypical penguins, and non-penguins, we have that:



514 K. Britz, J. Heidema, and T. Meyer

level1(a) :=

⎧⎨⎩
2 if a is typical in PenguinI;
1 if a is atypical in PenguinI;
0 otherwise.

Suppose further that %I
2 is the modular default ∃habitat.Equatorial-order that parti-

tions this concept into two classes. Then level2(a) := 1 if a ∈ ∃habitat.EquatorialI ,
0 otherwise.

We now construct a feature vector for GalapagosPenguin. We choose Penguin as
relevant defining feature, and ∃habitat.Equatorial as relevant characteristic feature.
That is, a Galapagos penguin is a penguin whose distinctive characteristic is that it
occurs in the equatorial region. The feature vector for GalapagosPenguin is therefore
〈PenguinI, ∃habitat.EquatorialI〉. Its preference vector is 〈≤1,≤2〉, and as weight
vector we choose 〈1, 2〉 in order to normalise the ranges of ≤1 and ≤2. The resulting
derived GalapagosPenguin-order is ≤3, obtained from:

f3(a) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
4 if a is typical in PenguinI and a ∈ ∃habitat.EquatorialI;
3 if a is atypical in PenguinI and a ∈ ∃habitat.EquatorialI;
2 if a is typical in PenguinI and a ∈ ∀habitat.(¬Equatorial)I ;
1 if a is atypical in PenguinI and a ∈ ∀habitat.(¬Equatorial)I ;
0 otherwise.

Note that the first case, i.e. where f3(a) = 4, does not hold for any object a, as it
contradicts terminological axiom (2) in the knowledge base. The following preferential
subsumption statement holds in I: GalapagosPenguin �∼3∃habitat.Equatorial.

So, typically, Galapagos penguins are found in the equatorial region, not exclusively
in the southern regions. Of course, in this example we could simply have stated this, but
the point is that defining and characteristic features may be used to derive composition-
ally the typicality of objects in a class based on chosen relevant features. Our example
gives a simple illustration of this claim.

5 Related Work

Notions of typicality have been studied in a wide variety of contexts, most of them
beyond the scope of this paper. In the context of ontologies, Yeung and Leung [21]
proposed a model of graded membership, but their representation is not directly in terms
of DLs. Giordano et al. [7,8] define a nonmonotonic extension of the description logic
ALC to reason about typicality, while Grossi et al. [9] use contexts, modelled as sets of
DL models, to describe a version of typicality. In order to be able to determine similarity
between objects, Sheremet et al. [19] extend a DL with the constructors of the similarity
logic SL.

6 Conclusion

We presented a semantic framework for modelling object typicality in description log-
ics. In [3] we showed how reasoning with a single typicality order on the domain of
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interpretation (and the induced defeasible subsumption relation) can be reduced to rea-
soning in a sufficiently expressive DL. This translation is also applicable when reason-
ing with typicality of individual concept members, as presented in this paper.

We also presented a proposal for deriving new typicality orders from existing ones
using feature vectors. Our proposal is compositional, and rooted in a globalist cognitive
stance on the semantics of typicality. The determination of compositional rules is there-
fore a modelling decision, unlike compound class membership, the meaning of which
can be completely determined from the meanings of its atomic constituents. Implemen-
tation of feature vectors in a DL setting is a topic for further research.
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Abstract. We present new techniques for relative SAT encoding of permutations 
with constraints, resulting in improved scalability compared to the previous 
approach by Prestwich, when applied to searching for Hamiltonian cycles. We 
observe that half of the ordering variables and two-thirds of the transitivity 
constraints can be eliminated. We exploit minimal enumeration of transitivity, 
based on 12 triangulation heuristics, and 11 heuristics for selecting the first node 
in the Hamiltonian cycle. We propose the use of inverse transitivity constraints. 
We achieve 3 orders of magnitude average speedup on satisfiable random graphs 
from the phase transition region, 2 orders of magnitude average speedup on 
unsatisfiable random graphs, and up to 4 orders of magnitude speedup on 
satisfiable structured graphs from the DIMACS graph coloring instances. 

1   Introduction 

We investigate efficient SAT techniques for solving of problems that can be 
reformulated as permutations with constraints, based on the relative SAT encoding 
[21], thus exploiting the tremendous advances in the speed and capacity of SAT 
solvers without reimplementing the same optimizations in specialized tools for 
specific problems. Particularly, we do an in-depth study of Hamiltonian Cycle 
Problems (HCPs)—where the goal is to find a route in a graph by visiting each node 
exactly once and returning to the starting node—a known class of hard combinatorial 
problems, classified as NP-complete (p. 199 of [9]). Another hard combinatorial 
problem, quasigroup completion [1, 11, 16, 28], can be reformulated as multiple 
permutations with constraints; it has applications to design of experiments, and 
wavelength routing in switches on optical networks. Other combinatorial problems 
that can be viewed as permutations with constraints are discussed in [2, 12]. At 
NASA, problems that can be reformulated as permutations of tasks, subject to 
additional constraints, arise in preparing sites for human habitation [8]. The efficient 
encoding of real-world problems as equivalent SAT formulas is a challenge identified 
by Kautz and Selman [17]. 

The first method proposed for HCP solving by translation to SAT was based on the 
absolute SAT encoding of permutations [15], and was used in [2, 13, 21]. However, 
                                                           
* Corresponding author. 
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those papers present results for graphs with at most 24 nodes. Recently, we did an in-
depth study of techniques to improve the scalability of the absolute SAT encoding for 
permutations with constraints, when applied to solving HCPs [29]. We found that the 
above method for absolute SAT encoding of permutations does not scale for a suite 
with 100 graphs of 30 nodes each, generated in the phase-transition region [3, 7, 27]. 
We proposed new techniques that improved the scalability of the absolute encoding, 
and resulted in at least 4 orders of magnitude average speedup when solving HCPs for 
both satisfiable and unsatisfiable benchmarks. However, the new techniques scaled 
only for graphs with up to 95 nodes. 

In this paper, we extend the relative SAT encoding of permutations with 
constraints [21], and present techniques to improve its scalability when solving HCPs. 
The paper makes four contributions: 1) the observation that half of the ordering 
variables and two-thirds of the transitivity constraints can be eliminated in the 
relational encoding of permutations with constraints [21]; 2) the use of minimal 
enumeration of transitivity, based on 12 triangulation heuristics, and 11 heuristics for 
selecting the first node in the Hamiltonian cycle; 3) the concept of inverse transitivity 
constraints; and 4) experimental results showing 3 orders of magnitude average 
speedup on satisfiable random graphs from the phase transition region, 2 orders of 
magnitude average speedup on unsatisfiable random graphs, and up to 4 orders of 
magnitude speedup on satisfiable structured graphs from the DIMACS graph coloring 
instances [5]. 

2   Background 

In the relative encoding [21], represented are the relative positions of objects with 
respect to each other in a permutation. The motivation for this encoding is the 
observation that in the absolute encoding of permutations, if node v is to be moved 
forward (backward) in a permutation, then all nodes between the old and the new 
positions of v will also have to be moved, which will result in value changes for the 
Boolean variables encoding the placement of all those nodes. In contrast, in the 
relative encoding, we only need to change the relative position of node v with respect 
to the rest of the nodes by changing the values of some or all of the Boolean variables 
used for node v, while keeping the rest of the nodes in their original relative positions, 
i.e., keeping the values assigned to the Boolean variables encoding the relative 
placement of those nodes, thus significantly reducing the number of Boolean 
variables whose values have to be changed, and so significantly reducing the 
corresponding work of the SAT solver. Since Prestwich [21] presented constraints for 
Hamiltonian paths, while our focus is on Hamiltonian cycles that require additional 
constraints to ensure that the first and last nodes in the permutation are neighbors in 
the graph, we present next an extension of his formulation for Hamiltonian cycles. 

Two types of Boolean variables are introduced—successor and ordering variables. 
The successor variables encode the constraints that exactly one out of a node’s 
neighbors is selected to be its successor in the permutation, and exactly one is selected 
to be its predecessor, based on the direct encoding [4]. A successor Boolean variable 
sij is introduced for every ordered pair of nodes (vi, vj) that are neighbors in the graph, 
i.e., 2 such variables are required for each edge—one variable for each of the two 
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orderings of the two nodes of the edge—such that sij is true iff node vj appears 
immediately after vi in the permutation that represents the ordering of the nodes in the 
Hamiltonian cycle. 

The constraints for the successor variables are: 

• each node vi has at least one successor from its neighbors: sij ∨ sik ∨ ... , where 
the neighbors of vi are nodes vj, vk, ... ; 

• each node vi has at most one successor from its neighbors: ¬sij ∨ ¬sik, for every 
pair of neighbors vj and vk of node vi; 

• each node vi is the successor of at least one of its neighbors: sji ∨ ski ∨ ... , where 
the neighbors of vi are nodes vj, vk, ... ; and 

• each node vi is the successor of at most one of its neighbors: ¬sji ∨ ¬ski, for 
every pair of neighbors vj and vk of node vi. 

The ordering variables encode the relative ordering of the nodes in the permutation 
that represents the Hamiltonian cycle, starting from the node selected to be first, vf, 
and ending with the first node’s neighbor selected to be the last node in the cycle, vl. 
An ordering Boolean variable oij is introduced only for ordered pairs of two different 
nodes (vi, vj), where i ≠ j. The ordering variable oij is defined to be true iff node vi 
appears before node vj in the permutation. The ordering variables satisfy several 
properties: 

• transitivity: oij ∧  ojk ⇒ oik, i.e.,  ¬oij ∨ ¬ojk ∨ oik, for all permutations of 3 nodes 

vi, vj, and vk, such that i ≠ j, j ≠ k, and i ≠ k; 
• antisymmetry: ¬(oij ∧ oji), or equivalently ¬oij ∨ ¬oji, i.e., it is impossible for 

node vi to be before node vj and for node vj to be before node vi simultaneously; 

• the first node vf precedes all others: ofi, for all i ≠ f; and 
• the first node’s neighbor vl selected to be the last node in the cycle succeeds all 

others: slf ⇒ oil, or equivalently ¬slf ∨ oil, for all i ≠ f, i ≠ l, and all neighbors vl 
of the first node vf. 

Finally, the relationship between successor and ordering variables is: sij ⇒ oij, or 
equivalently ¬sij ∨ oij, i.e., if node vi has its neighbor vj selected to be vi’s successor 
along the Hamiltonian cycle, then the ordering variable oij is true. 

Prestwich [21] enforced transitivity for all possible permutations of three nodes. 
However, this results in n × (n – 1) ordering variables and n × (n – 1) × (n – 2) 
transitivity constraints for a graphs with n nodes, i.e., in a prohibitive number of 
transitivity constraints for large graphs. We refer to this method as exhaustive 
enumeration of transitivity, and will present improvements to it in Sect. 3 and 4. 

3   Eliminating Half of the Ordering Variables and Two-Thirds of 
the Transitivity Constraints 

We exploit the observation that the ordering variables oij and oji are complements of 
each other, since when node vi precedes node vj then oij is true and oji is false by 
definition, and vice versa—when node vj precedes node vi then oij is false and oji is 
true by definition. Thus, we can introduce an ordering variable oij only if the node 
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index i is less than the node index j, and replace the ordering variable oji with ¬oij. 
This leads to the following lemma: 

LEMMA 1. For a triple of nodes {vi, vj, vk}, whose indices are ordered 1 ≤ i < j < k ≤ n, 
where n is the number of nodes in the graph, after half of the ordering variables are 
eliminated by introducing an ordering variable opq only for an ordered pair of nodes 
(vp, vq) where the node indices satisfy 1 ≤ p < q ≤ n, and replacing the ordering 
variable oqp with ¬opq, then the six transitivity constraints that are introduced for the 
triple of nodes {vi, vj, vk} in exhaustive enumeration of transitivity will reduce to two 
transitivity constraints: (1) ¬oij ∨ ¬ojk ∨ oik; and (2) oij ∨ ojk ∨ ¬oik. 

Thus, half of the ordering variables, two-thirds of the transitivity constraints, and all 
the antisymmetry constraints (that evaluate to true now) are eliminated. This results in 
fewer decisions to be made by the SAT solver when solving the resulting CNF 
formula, as well as reduces significantly the Boolean Constraint Propagation 
(BCP)—the iterative process of assigning values to literals as implied by clauses that 
have become unit, i.e., where all literals but one have assigned values, and those 
values are false, so that the only literal without a value has to be set to true in order 
for the clause to be satisfied. BCP takes up to 90% of the execution time of SAT 
solvers [19]. 

4   Minimal Enumeration of Transitivity 

Exhaustive transitivity requires n × (n – 1) ordering variables and n × (n – 1) × (n – 2) 
transitivity constraints, where n is the number of nodes in the graph—see Sect. 2. 
Eliminating half of the ordering variables as described in Sect. 3 and applying  
Lemma 1 results in n × (n – 1) / 2 ordering variables and n × (n – 1) × (n – 2) / 3 
transitivity constraints. In this section we aim to further reduce the number of 
ordering variables and transitivity constraints by introducing only a minimal set of 
such variables and constraints in a way that the property of transitivity will be 
enforced for the required ordering variables—those that are used in the constraints in 
Sect. 2, except for the transitivity constraints. 

We introduce the concept of a relational graph that has the same set of nodes as 
the original graph that we want to find a Hamiltonian cycle in, but an extended set of 
edges, such that a pair of nodes is connected with an edge in the relational graph iff an 
ordering variable is introduced for that pair of nodes. We will use the relational graph 
to efficiently enforce the property of transitivity for the required ordering variables. 
These variables determine three types of edges that must be present in the relational 
graph: 

1. each edge from the original graph, since the relationship between successor and 
ordering variables requires that each edge in the original graph should have an 
associated ordering variable; 

2. given a choice for a first node, vf, an edge between vf and each of the other n – 1 
nodes in the relational graph, because of the constraints that vf must precede all 
other nodes in the permutation; and 
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3. given a choice for a first node, vf, an edge between each of vf’s neighbors and 
the other n – 2 nodes in the relational graph besides vf, because of the conditions 
that when that neighbor is selected to be the last node in the permutation, then 
the other nodes must precede that neighbor in the permutation (that vf precedes 
the last node is already ensured with constraints that resulted in edges of type 2 
above). 

We refer to the resulting graph as base relational graph, and designate it RB. Because 
of the second and third types of edges that depend on the choice of the first node, vf, 
the base relational graph must be constructed after the first node in the Hamiltonian 
cycle is selected. Note that the base relational graph RB is different from the original 
graph for which we are searching for a Hamiltonian cycle, and is used for an efficient 
relative SAT encoding of the node permutation. 

Besides the three types of required edges in RB that were described, we want to 
introduce additional edges such that the resulting graph becomes chordal [22]. That 
is, the graph has the property that every cycle of length greater than three has a 
chord—an edge joining two nodes that are not adjacent in the cycle. Chordal graphs 
are also called triangulated graphs. We can then generate a sufficient set of 
transitivity constraints by enforcing transitivity for each triangle in the resulting 
graph. Computing a minimal triangulation consists of embedding a given graph into a 
triangulated graph by adding a set of edges called a fill. Finding a fill that is minimum 
is NP-complete [30]. However, there are good heuristic solutions. The ones that we 
explored are described next. 

Our triangulation method proceeds as a series of elimination steps, starting with 
graph G0 = RB. On elimination step i, we create a new graph Gi that is identical to Gi – 

1, except that some vertex vm and its incident edges are removed, and new edges are 
possibly added in the following way: for every pair of distinct vertices vj and vk such 
that Gi – 1 contains the edges (vm, vj) and (vm, vk), we add the edge (vj, vk) to Gi if this 
edge does not already exist. This process continues until we reach an empty graph Gn. 
Let RT be the relational graph obtained from RB after extending it with all edges added 
during the elimination process. It can be shown that RT is a chordal graph [22]. To 
choose which node vm to eliminate on step i, we implemented the following 12 
triangulation heuristics that select the node with the current minimum degree, and if 
there are several nodes with such degree, the tie is broken as follows: t1—break the 
tie based on a lesser sum of neighbors’ degrees; t2—break the tie based on a greater 
sum of neighbors’ degrees; t3—break the tie based on a lesser fill (i.e., additional 
edges) that will be added at this step of the elimination; t4—break the tie based on a 
greater fill that will be added at this step of the elimination; t5—break the tie based on 
a lesser original degree of the node in RB; t6—break the tie based on a greater original 
degree of the node in RB; t7—break the tie based on a lesser number of additional 
triangles created in RT that include node vm, and edges from Gi – 1 and those added at 
step i; t8—break the tie based on a greater number of additional triangles created in 
RT that include node vm, and edges from Gi – 1 and those added at step i; t9—select the 
node that will result in a minimum fill at this step of the elimination, and break ties by 
selecting the first such node in the graph description; t10—select the node that will 
result in a minimum fill at this step of the elimination, and break ties randomly; t11—
select the node that will result in a minimal number of additional triangles created in 
RT that include node vm, and edges from Gi – 1 and those added at step i, and break ties 
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by selecting the first such node in the graph description; and t12—select the node that 
will result in a minimal number of additional triangles created in RT that include node 
vm, and edges from Gi – 1 and those added at step i, and break ties randomly. 

We use the triangles in RT to enforce transitivity of the ordering variables. When 
alhe optimizations from Sect. 3, we only introduce one ordering variable per edge in 
RT and the two transitivity constraints per triangle—see Lemma 1. 

Triangulation heuristic t10 was also explored by Kjaerulff [18], who found it to  
performance when triangulating belief networks in knowledge representation. He 
called that heuristic minimum fill. Rose [23] refers to it as minimum deficiency 
heuristic, and references other papers [25, 26] in which it is assumed that this 
heuristic produces a near optimal node-elimination ordering. 

5   Selecting the First Node for the Hamiltonian Cycle 

We exploit the observation that when the search is for a Hamiltonian cycle, as 
opposed to a Hamiltonian path, the first node in the cycle (i.e., permutation) can be 
selected in any way, since all nodes have to be included in the cycle, and if a cycle 
exists then all nodes are symmetrical in it. Thus, if a cycle does not exist when a 
particular node is selected as a first node, then a cycle would not exist when any other 
node is selected as a first node. That is, the first node can be chosen in any way 
because of the symmetry of a solution, and the general formulation of the relative 
encoding in Sect. 2.  

We implemented the following 11 heuristics for selecting the first node: f1—
choose the first node in the graph description; f2—choose the first node of max. 
degree in the graph description; f3—choose the first node of min. degree in the graph 
description; f4—choose the first node of average degree in the graph description; f5—
random choice; f6—choose a node of max. degree, and break ties based on a lesser 
sum of neighbors’ degrees; f7—choose a node of max. degree, and break ties based 
on a greater sum of neighbors’ degrees; f8—choose a node of average degree, and 
break ties based on a lesser sum of neighbors’ degrees; f9—choose a node of average 
degree, and break ties based on a greater sum of neighbors’ degrees; f10—choose a 
node of min. degree, and break ties based on a lesser sum of neighbors’ degrees; and 
f11—choose a node of min. degree, and break ties based on a greater sum of 
neighbors’ degrees. In contrast, Prestwich [21] selected the first node for a 
Hamiltonian path (he was searching for Hamiltonian paths, as opposed to cycles) to 
be the first node in the graph description. 

6   Inverse Transitivity Constraints 

We consider triples of nodes vi, vj, and vk, such that vi and vj are neighbors in the 
original graph. Then, if node vj is selected to be the successor of node vi in the 
permutation, as indicated by the successor Boolean variable sij being true, and node vi 
precedes node vk in the permutation, as indicated by the ordering Boolean variable oik 
being true, it follows that node vj must also precede node vk in the permutation, i.e., ojk 
must be true, since vj is the closest node that is after vi and thus vk must be after vj,  
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i.e., sij ∧ oik ⇒ ojk, or equivalently ¬sij ∨ ¬oik ∨ ojk (see Fig. 1.a). We call these 
constraints forward inverse transitivity constraints. Note that they are different from 
the regular transitivity constraints that state that if vi is before vj, and vj is before vk, 
then vi is before vk. 

We can also define a variant of these constraints for the case when node vk is 
before node vj, as indicated by the ordering Boolean variable okj being true, such that 
node vj is selected to be the successor of node vi in the permutation, as indicated by 
the successor Boolean variable sij being true. Then, it follows that node vk must be 
before vi, i.e., oki must be true, since vi is the closest node that is before vj by being the 
predecessor of vj and thus vk must be before vi, i.e., sij ∧ okj ⇒ oki, or equivalently ¬sij 
∨ ¬okj ∨ oki (see Fig. 1.b). We call these constraints backward inverse transitivity 
constraints. 

sij ∧ oik ⇒ ojk sij ∧ okj ⇒ oki

sij

vi vj

ojk

vk

oik

sij

vk vi

oki

vj

okj

 

                                 (a)                                                                    (b) 

Fig. 1. Illustration of: (a) forward inverse transivity; (b) backward inverse transivity 

When the optimizations from Sect. 3 are also applied, only two of the above four 
ordering variables will actually be introduced, while the other two will be each 
replaced with the negation of the introduced ordering variable for the same pair of 
nodes. In our tool, we imposed the inverse transitivity constraints for every ordered 
pair of neighboring nodes (vi, vj) from the original graph, and for every node vk that is 
different from vi and vj, such that the ordering variables for vk with respect to both vi 
and vj have been introduced by corresponding edges in the triangulated relational 
graph RT (see Sect. 4). Note that these constraints are optional, and that we can use 
only a subset of them. 

7   Results 

The experiments were conducted on a Dell Precision T7400 workstation with two 3.2-
GHz quad-core Intel Xeon processors, 32 GB of 800-MHz memory, and running Red 
Hat Enterprise Linux v5.3. Only one CPU core was used for each experiment. We 
started with satisfiable benchmarks (guaranteed to have Hamiltonian cycles) by 
generating suites of 100 graphs from the phase-transition region [3] that satisfy the 
ratio e / (n log n) = 1, where e is the number of edges and n the number of nodes in 
the graph, since that ratio was shown to result in the hardest instances for backtrack 
search algorithms [7, 27]. We used the Hamiltonian-graph generator by Vandegriend 
and Culberson1 [27]—that was also used in all previous papers on SAT-based solving 
                                                           
1 http://web.cs.ualberta.ca/~joe/Theses/HCarchive/main.html 
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of HCPs [2, 13, 21, 29]. We produced 9 suites of 100 random graphs each from the 
phase-transition region, with the following number of nodes in the graphs of a suite, 
respectively—20, 30, 50, 100, 150, 200, 250, 300, and 350—for a total of 900 graphs. 

We compared the SAT solvers siege [24], BerkMin [10], minisat v1.14 [6], tinisat 
[14], and rsat v3.1 [20], of which rsat v3.1 outperformed the rest by 2× or more, and 
so was used for the experiments discussed next. Fig. 2 presents the total CPU times 
for the 9 suites, plotted on a logarithmic scale, for the previous translation, and the 
best strategy for each of the proposed optimizations. As can be seen, the speedup is 
increasing with the size of the graphs. For the suite with the largest graphs of 350 
nodes, eliminating half of the ordering variables and two-thirds of the transitivity 
constraints resulted in approximately an order of magnitude speedup, followed by 
another order of magnitude speedup from minimal transitivity with heuristic t4 and 
selecting the first node in the Hamiltonian cycle with heuristic f4, and then another 
order of magnitude speedup from also exploiting inverse transitivity constraints 
combined with heuristics f1 and t9. 

Graph size

C
PU

 T
im

e 
[s

]

 

Fig. 2. Total CPU time [s] on a logarithmic scale for all 100 graphs in each of the 9 suites of 
satisfiable benchmarks from the phase-transition region 

Table 1 shows detailed statistics for the four strategies from Fig. 2 for the suite of 
100 graphs with 350 nodes. Strategy (ehov, f1, t9, it) resulted in efficient pruning of 
the solution space, reduced the number of conflicts and decisions by 3 orders of 
magnitude, and produced an average speedup of 1,071×, i.e., 3 orders of magnitude 
average speedup computed based on the total time for the suite of 100 graphs with 
350 nodes, relative to the previous translation. The individual speedup was up to 4 
orders of magnitude. Note that the reduction in the number of clauses and file size by 
approximately 30× will allow scalability for significantly larger instances. 

Although inverse transitivity constraints increased the number of clauses by 19% 
on average, they produced speedup due to the resulting pruning of the solution space, 
and eliminated wasteful work of the SAT solver by preventing it from exploring 
assignments that are guaranteed to not be part of solutions. This coincides with 
conclusions from previous work that adding redundant constraints to a CNF formula 
may make it easier to solve, e.g., see [1, 11, 16, 28]. 
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Table 1. Details of the four strategies in Fig. 2 on the suite of 100 graphs with 350 nodes 

Strategy

CNF Formula 
Average Statistics

SAT Solving 
Average Statistics

Average CPU Time 
per Graph [s]

Total
CPU
Time
for

Entire
Suite

[s]

Speedup

Variables Clauses
File
Size

[MB]
Conflicts Decisions Trans-

late
SAT
Solve Check

Total
for 3 
Steps

Previous 124,818 42,657 905 119,758 1,402,382 14.2 9,425 0.03 9,439 943,924 ———

(ehov) 63,743 14,196 284 53,748 629,956 5.4 1,424 0.02 1,429 142,919 6.6

(ehov, f4,
t4)

18,596 1,339 25 46,638 508,685 6.5 124 0.4 131 13,053 72

(ehov, f1,
t9, it)

18,544 1,593 30 34 875 7.1 1.3 0.4 8.8 882

 

To conduct experiments with unsatisfiable benchmarks that do not have 
Hamiltonian cycles, we generated such instances by implementing a program to 
rewrite each of the graphs with Hamiltonian cycles used for the presented 
experiments by injecting structures that make it impossible to find a Hamiltonian 
cycle in the resulting graph. We used two such transformations. First, selecting a 
random node of degree greater than 2, and modifying each of its neighbors to make 
them of degree 2, thus ensuring that only two of the neighbors can be on a path 
that includes the selected node, and so making it impossible to find a Hamiltonian 
cycle in the resulting graph. Second, selecting a random number of nodes up to 
60% of the nodes in the graph, but at least 7 nodes, and converting them to form a 
chain of k cycles of 4 nodes each, where each of these cycles is a sequence of four 
nodes (n1, n2, n3, n4), such that node n1 for the first cycle in the chain is connected 
to a random node in the portion of the graph that was not used for the chain, and 
node n3 in each cycle is used as node n1 for the next cycle in the chain, except in 
the last cycle of the chain, where node n3 is connected to a random node in the 
portion of the graph that was not used for the chain. Since nodes n2 and n4 in each 
cycle are of degree 2, it is impossible to include all four nodes in such a cycle in a 
Hamiltonian cycle for the entire graph. Furthermore, this chain has a total of 2k 
paths between node n1 in the first cycle and node n3 in the last cycle, so that a 
backtrack search algorithm may be affected negatively by the exponential number 
of such paths. Thus, each of the resulting 1,800 graphs was guaranteed to not have 
a Hamiltonian cycle. We found that strategy (ehov, f1, t9, it) resulted in up to 2 
orders of magnitude of average speedup, compared to the previous translation. The 
speedup is again increasing with the size of the graphs. 

To evaluate the benefit from these optimizations on structured benchmarks, we ran 
experiments with the DIMACS graph coloring instances [5]—see Table 2. The best 
was strategy (ehov, f4, t4, it), resulting in up to 4 orders of magnitude speedup. After 
we filtered the graphs that were trivially unsatisfiable because of nodes of degree 0 or 
1, all of the remaining DIMACS graphs had Hamiltonian cycles. 
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Table 2. Results for structured benchmarks from the DIMACS graph-coloring suite 

DIMACS
Graph Nodes Edges

Has
Hamiltonian

Cycle?

Total CPU Time [s]
Speedup

Orders of 
Magnitude
SpeedupPrevious (ehov, f4, t4, it)

myciel7 191 2,360 Yes >100,000 2.8 >35,714 4

queen15_15 225 10,360 Yes 23,102 35

queen16_16 256 12,640 Yes >100,000 86 >

miles500 128 1,170 Yes 6,590 2.0

miles750 128 2,113 Yes >50,000 1.2 >

miles1000 128 3,216 Yes >50,000 2.5 >  

8   Conclusion 

We presented new techniques for relative SAT encoding of permutations with 
constraints, resulting in improved scalability compared to the previous translation [21] 
when applied to HCPs. We achieved 3 orders of magnitude average speedup on 
satisfiable random graphs from the phase transition region, 2 orders of magnitude 
average speedup on unsatisfiable random graphs, and up to 4 orders of magnitude 
speedup on satisfiable structured graphs from the DIMACS graph coloring instances. 
We believe that these techniques can be used to solve other types of permutations 
with constraints. 
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Abstract. The notion of uniform interpolation for description logic ALC has
been introduced in [9]. In this paper, we reformulate the uniform interpolation
for ALC from the angle of forgetting and show that it satisfies all desired prop-
erties of forgetting. Then we introduce an algorithm for computing the result of
forgetting in concept descriptions. We present a detailed proof for the correct-
ness of our algorithm using the Tableau for ALC . Our results have been used to
compute forgetting for ALC knowledge bases.

1 Introduction

The Web Ontology Language (OWL) [15] provides a construct owl:imports for import-
ing and merging Web ontologies by referencing axioms contained in another ontology
that may be located somewhere else on the Web. This construct is very limited in that
it can only merge some linked ontologies together but is unable to resolve conflicts
among merged ontologies or to filter redundant parts from those ontologies. However,
an ontology is often represented as a logical theory, and the removal of one term may
influence other terms in the ontology. Thus, more advanced methods for dealing with
large ontologies and reusing existing ontologies are desired.

It is well-known that OWL is built on description logics (DLs) [1]. Recent efforts
show that the notions of uniform interpolation and forgetting are promising tools for
extracting modular ontologies from a large ontology. In a recent experiment reported in
[5], uniform interpolation and forgetting have been used for extracting modular ontolo-
gies from two large medical ontologies SNOMED CT [16] and NCI [17]. SNOMED
CT contains around 375,000 concept definitions while NCI Thesaurus has 60,000 ax-
ioms. The experiment result is promising. For instance, if 2,000 concepts definitions are
forgotten from SNOMED CT, the success rate is 93% and if 5,000 concepts definitions
are forgotten from NCI, the success rate is 97%.

Originally, interpolation is proposed and investigated in pure mathematical logic,
specifically, in proof theory. Given a theory T , ordinary interpolation for T says that if
T * φ → ψ for two formulas φ and ψ, then there is a formula I(φ, ψ) in the language
containing only the shared symbols, say S, such that T * φ → I(φ, ψ) and T *
I(φ, ψ) → ψ. Uniform interpolation is a strengthening of ordinary interpolation in
that the interpolant can be obtained from either φ and S or from ψ and S. Uniform

� This work was partially supported by the Australia Research Council (ARC) Discovery Project
0666107.

A. Nicholson and X. Li (Eds.): AI 2009, LNAI 5866, pp. 528–537, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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interpolation for various propositional modal logics have been investigated by Visser
[10] and Ghilardi [3]. A definition of uniform interpolation for the description logic
ALC is given in [9] and it is used in investigating the definability of TBoxes for ALC .

On the other hand, (semantic) forgetting is studied by researchers in AI [8,7,2]. In-
formally, given a knowledge base K in classical logic or nonmonotonic logic, we may
wish to forget about (or discard) some redundant predicates but still preserve certain
forms of reasoning. Forgetting has been investigated for DL-Lite and extended EL in
[11,6,5] but not for expressive DLs. Forgetting for modal logic is studied in [13].

Forgetting and uniform interpolation have different intuitions behind them and are
introduced by different communities. Uniform interpolation is originally investigated
as a syntactic concept and forgetting is a semantic one. However, if the axiom system
is sound and complete, they can be characterized by each other.

In this paper, we first reformulate the notion of uniform interpolation for
ALC studied in [9] from the angle of forgetting and show that all desired properties
of forgetting are satisfied. We introduce an algorithm for computing the result of for-
getting in concept descriptions and, a novel and detailed proof for the correctness of the
algorithm is developed using the Tableau forALC . We note that a similar algorithm for
uniform interpolation is provided in [9] in which it is mentioned that the correctness of
their algorithm can be shown using a technique called bisimulation that is widely used
in modal logic1. In a separate paper [12], we use the results obtained in this paper to
compute forgetting for ALC knowledge bases.

Due to space limitation, proofs are omitted in this paper but can be found at
http://www.cit.gu.edu.au/˜kewen/Papers/alc_forget_long.pdf.

2 Preliminaries

We briefly recall some basics of ALC . Further details of ALC and other DLs can be
found in [1].

First, we introduce the syntax of concept descriptions for ALC .
Elementary concept descriptions consist of both concept names and role names. So a

concept name is also called atomic concept while a role name is also called atomic role.
Complex concept descriptions are built inductively as follows: A (atomic concept); �
(universal concept); ⊥ (empty concept); ¬C (negation); C �D (conjunction); C �D
(disjunction); ∀R.C (universal quantification) and ∃R.C (existential quantification).
Here, A is an (atomic) concept, C and D are concept descriptions, and R is a role.

An interpretation I ofALC is a pair (ΔI , ·I) where ΔI is a non-empty set called the
domain and ·I is an interpretation function which associates each (atomic) concept A
with a subset AI of ΔI and each atomic role R with a binary relation RI ⊆ ΔI ×ΔI .
The function ·I can be naturally extended to complex descriptions:

�I = ΔI ⊥I = ∅
(¬C)I = ΔI − CI (C �D)I = CI ∩DI

(C �D)I = CI ∪DI

1 An email communication with one of the authors of [9] shows that they have not got a complete
proof yet.

http://www.cit.gu.edu.au/~kewen/Papers/alc_forget_long.pdf
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(∀R.C)I = {a ∈ ΔI : ∀b.(a, b) ∈ RI implies b ∈ CI}
(∃R.C)I = {a ∈ ΔI : ∃b.(a, b) ∈ RI and b ∈ CI}

An interpretation I satisfies an inclusion (or subsumption) of the form C ) D where
C, D are concept descriptions, denoted I |= C ) D, if CI ⊆ DI . We write |= C ) D
if I |= C ) D for all I. Similarly, |= C ≡ D is an abbreviation of |= C ) D and
|= D ) C. I satisfies an assertion of the form form C(a) or R(a, b), where a and b are
individuals, C is a concept description and R is a role name, if, respectively, aI ∈ CI

and (aI , bI) ∈ RI .
The signature of a concept description C, written sig(C), is the set of all concept and

role names in C.

3 Forgetting in Concept Descriptions

In this section, we discuss the problem of forgetting about a concept/role in description
logic ALC . In the rest of this paper, by a variable we mean either a concept name
or a role name. Intuitively, the result C′ of forgetting about a variable from a concept
description C may be weaker than C (w.r.t. subsumption) but it should be as close to C
as possible. For example, after the concept Male is forgotten from a concept description
for “Male Australian student” C = Australians � Students �Male , then we should
obtain a concept description C′ = Australians � Students for “Australian student”.

3.1 Semantic Forgetting

Let C be a concept description that contains a variable V . If we want to forget (or
discard) V from C, intuitively, the result of forgetting about V in C will be a concept
description C′ that satisfies the condition: C′ defines a minimal concept among all
concepts that subsumes C and is irrelevant to V (i.e. V does not appear in the concept
description).

Definition 3.1. (Forgetting for concept descriptions) Let C be a concept description in
ALC and V be a variable. A concept description C′ on the signature sig(C) \ {V } is
a result of forgetting about V in C if the following conditions are satisfied:

(RF1) |= C ) C′.
(RF2) For all concept description C′′ on sig(C) \ {V }, |= C ) C′′ and |= C′′ ) C′

implies |= C′′ ≡ C′, i.e., C′ is the strongest concept description weaker than C
that does not contain V .

Notice that we can forget about a set of concept names and role names in a concept
description by a straightforward generalization of Definition 3.1. The above (RF1)
and (RF2) correspond to the conditions (2) and (3) of Theorem 8 in [9]2, and gener-
alize them by allowing V to be a role name.

A fundamental property of forgetting in ALC concept descriptions is that the result
of forgetting is unique under concept description equivalence.

2 The correspondence between (RF2) and (3) of Theorem 8 can be seen from this: |= C � C′

and |= C � C′′ implies |= C � C′ � C′′. It implies by (RF2), |= C′ � C′′ ≡ C′, which
equals |= C′ � C′′ in (3).
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Theorem 3.1. For any concept description C and variable V , if C1 and C2 are results
of forgetting about V in C, then |= C1 ≡ C2.

As all results of forgetting are equivalent, we write forget(C, V ) to denote an arbitrary
result of forgetting about V in C.

We use the following examples of concept descriptions to illustrate our semantic
definitions of forgetting for ALC . We will introduce an algorithm later and explain
how we can compute a result of forgetting through a series of syntactic transformations
of concept descriptions.

Example 3.1. Suppose the concept “Research Student” is defined by C = Student �
(Master�PhD)�∃supervised .Professor where “Master”, “PhD” and “Professor” are
all concepts; “supervised” is a role and supervised(x, y) means that x is supervised by
y. If the concept description C is used only for students, we may wish to forget about
Student: forget(C,Student) = (Master � PhD) � ∃supervised .Professor . If we do
not require that a supervisor for a research student must be a professor, then the filter
“Professor” can be forgotten: forget(C,Professor ) = Student � (Master � PhD) �
∃supervised .�.

3.2 Properties of Semantic Forgetting

The semantic forgetting for description logic possesses several important properties.
The following result, which is not obvious, shows that forgetting distributes over
union �.

Proposition 3.1. Let C1, . . . , Cn be concept descriptions in ALC . For any variable
V , we have

forget(C1 � · · · � Cn, V ) = forget(C1, V ) � · · · � forget(Cn, V )

However, forgetting for ALC does not distribute over intersection �. For example, if
the concept description C = A � ¬A, then forget(C, A) = ⊥, since |= C ≡ ⊥.
But forget(A, A) � forget(¬A, A) = �. So forget(A � ¬A, A) �= forget(A, A) �
forget(¬A, A).

On the other hand, forgetting for ALC does preserve the subsumption relation be-
tween concept descriptions.

Proposition 3.2. Let C1 and C2 be concept descriptions in ALC , and |= C1 ) C2.
For any variable V , we have |= forget(C1, V ) ) forget(C2, V ).

As a corollary of Proposition 3.2, it is straightforward to show that semantic forgetting
also preserves the equivalence of concept descriptions.

Proposition 3.3. Let C1 and C2 be concept descriptions in ALC , and |= C1 ≡ C2.
For any variable V , we have forget(C1, V ) ≡ forget(C2, V ).

Satisfiability is key reasoning task in description logics. We say a concept C is satisfi-
able if CI �= ∅ for some interpretation I. C is unsatisfiable if |= C ≡ ⊥. Forgetting
also preserves satisfiability of concept descriptions.



532 Z. Wang et al.

Proposition 3.4. Let C be a concept description in ALC , and V be a variable. Then
C is satisfiable iff forget(C, V ) is satisfiable.

When we want to forget about a set of variables, they can be forgotten one by one since
the ordering of forgetting is irrelevant to the result.

Proposition 3.5. Let C be a concept description in ALC and let V = {V1, . . . , Vn}
be a set of variables. Then forget(C,V) = forget(forget(forget(C, V1), V2), . . .), Vn).

The next result shows that forgetting distributes over quantifiers.

Proposition 3.6. Let C be a concept description in ALC , R be a role name and V be
a variable. Then
(1) forget(∀V.C, V ) = � where V is a role name, and forget(∀R.C, V ) =
∀R.forget(C, V ) if V �= R;
(2) forget(∃V.C, V ) = � where V is a role name, and forget(∃R.C, V ) =
∃R.forget(C, V ). if V �= R.

4 Computing the Result of Forgetting

In this section we introduce an intuitive algorithm for computing the result of forgetting
through rewriting of concept descriptions (syntactic concept transformations). Given
a concept description C and a variable V , this algorithm consists of two stages: (1)
C is first transformed into an equivalent disjunctive normal form (DNF), which is a
disjunction of conjunctions of simple concept descriptions; (2) the result of forgetting
about V in each such simple concept description is obtained by removing some parts of
the conjunct.

We call an atomic concept A or its negation ¬A a literal concept or simply literal. A
pseudo-literal with role R is a concept description of the form ∃R.F or ∀R.F , where R
is a role name and F is an arbitrary concept description. A generalized literal is either
a literal or a pseudo-literal.

First, each arbitrary concept description can be equivalently transformed into a dis-
junction of conjunctions of generalized literals. This basic DNF forALC is well known
in the literature [1] and thus the details of the transformation are omitted here.

Definition 4.1. (Basic DNF) A concept description D is in basic disjunctive normal
form or basic DNF if D = ⊥ or D = � or D is a disjunction of conjunctions of
generalized literals D = D1 � · · · �Dn, where each Di �≡ ⊥ and Di is of the form

�
L �

�
R∈R[ ∀R.UR �

�
k ∃R.E

(k)
R ]

where each L is a literal, R is the set of role names that occur in Di, k ≥ 0, and each
UR or E

(k)
R is a concept description in basic DNF.

The reason for transforming a concept description into its basic DNF is that forgetting
distributes over � (Proposition 3.1). When a concept description is in its basic DNF, we
only need to compute the result of forgetting in a conjunction of generalized literals. It
can be shown that the result of forgetting about an atomic concept A in a conjunction B
of literals can be obtained just by extracting A (or ¬A) from the conjuncts (extracting a
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conjunct equals replacing it by �). Unlike classical logics and DL-Lite, the basic DNF
in ALC is not clean in that a generalized literal (i.e. pseudo-literal) can still be very
complex. When C is a conjunction containing pseudo-literals, it is not straightforward
to compute the result of forgetting about A in C. For example, let C = ∀R.A�∀R.¬A.
Through simple transformation we can see C ≡ ∀R.⊥ is the result of forgetting about
A in C, while simply extracting A and ¬A results in �. A similar example is when
C = ∀R.(A � B) � ∃R.(¬A � B), the result of forgetting is ∃R.B rather than ∃R.�
(note that ∀R.C1 �∃R.C2 ) ∃R.(C1 �C2)). For this reason, the following key step in
obtaining a DNF is required for computing forgetting:

∀R.C1 � ∃R.C2 � ∀R.C1 � ∃R.(C1 �C2)

By applying this transformations to a concept description in its basic DNF, each
ALC concept description can be transformed into the DNF as defined below.

Definition 4.2. (Disjunctive Normal Form or DNF)
A concept description D is in disjunctive normal form if D = ⊥ or D = � or D is

a disjunction of conjunctions of generalized literals D = D1 � · · · � Dn, where each
Di �≡ ⊥ (1 ≤ i ≤ n) is a conjunction

�
L of literals or in the form of

�
L �

�

R∈R

[
∀R.UR �

�

k

∃R.(E(k)
R � UR)

]
where each L is a literal, R is the set of role names that occur in Di, k ≥ 0, and each
UR or E

(k)
R � UR is a concept description in DNF.

For convenience, each Di is called a normal conjunction in this paper. The disjunctive
normal form is a bit different from the normal form in [1] but they are essentially the
same.

Once a concept D is in the normal form, the result of forgetting about a variable V
in D can be obtained from D by simple symbol manipulations.

Obviously, the major cost of Algorithm 1 is from transforming the given concept
description into its normal form. For this reason, the algorithm is exponential time in
the worst case. However, if the input concept description C is in DNF, Algorithm 1
takes only linear time (w.r.t. the size of C).

Example 4.1. Given a concept D = (A � ∃R.¬B) � ∀R.(B � C), we want to forget
about concept name B in D. In Step 1 of Algorithm 1, D is firstly transformed into its
DNF D′ = [A�∀R.(B�C)]� [∀R.(B �C)�∃R.(¬B �C)]. Note that ∃R.(¬B�C)
is transformed from ∃R.[¬B � (B � C)]. Then in Step 2, each occurrence of B in D′

is replaced by �, and ∀R.(� � F ) is replaced with �. We obtain CForget(D, B) =
A � ∃R.C. To forget about role R in D, Algorithm 1 replaces each pseudo-literals in
D′ of the form ∀R.F or ∃R.F with �, and returns CForget(D, R) = �.

Indeed we can prove that Algorithm 1 is sound and complete w.r.t. the semantic defini-
tion of forgetting for ALC in Definition 3.1.

Theorem 4.1. Let V be a variable and C a concept description in ALC . Then

|= CForget(C, V ) ≡ forget(C, V ).
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Algorithm 1
Input: A concept description C in ALC and a variable V in C.
Output: The result of forgetting about V in C.
Method CForget(C, V ):
Step 1. Transform C into its DNF D. If D is � or ⊥, return D; otherwise, let D = D1�· · ·�Dn

as in Definition 4.2.
Step 2. For each conjunct E in each Di, perform the following transformations:

– if (V is a concept name and) E is a literal equals V or ¬V , replace E with �;
– if (V is a role name and) E is a pseudo-literal of the form ∀V.F or ∃V.F , replace E with �;
– if E is a pseudo-literal in the form of ∀R.F or ∃R.F where R �= V , replace F with

CForget(F, V ), and replace each resulting ∀S.(�� G) with �.

Step 3. Return the resulting concept description as CForget(C,V ).

Fig. 1. Forgetting in concept descriptions

Theorem 4.1 and Proposition 3.6 can be immediately derived from some lemmas in the
next section and the validity of these lemmas is established by using the Tableau for
ALC .

5 Proof of Theorem 4.1

Proofs of Proposition 3.6 and Theorem 4.1 (i. e. the correctness of Algorithm 1) heavily
rely on the Tableau theory for ALC and thus we first briefly introduce it.

Given two concept descriptions C0 and D0, the Tableau theory states that |= C0 )
D0 iff no (finite) interpretation I can be constructed such that I satisfies concept
C0 � ¬D0, i.e., there is an individual x0 with xI

0 ∈ (C0 � ¬D0)I . Equivalently, ABox
A0 = {(C0 � ¬D0)(x0)} must be inconsistent for an arbitrary individual x0. And by
transforming C0 � ¬D0 into its Negation Normal Form (NNF) and applying Tableau
transformation rules to the ABox, clashes of the form A(x),¬A(x) must occur.

The ALC Tableau transformation rules are as follows:

- {(C1 � C2)(x), . . .}→� {(C1 � C2)(x), C1(x), C2(x), . . .}.
- {(C1�C2)(x), . . .}→� {(C1�C2)(x), C1(x), . . .} and {(C1�C2)(x), C2(x), . . .}.
- {(∃R.C)(x), . . .}→∃ {(∃R.C)(x), R(x, y), C(y), . . .}.
- {(∀R.C)(x), R(x, y)}→∀ {(∀R.C)(x), R(x, y), C(y)}.
Conversely, if clashes occur in each resulting ABox after applying Tableau rules, then
A0 must be inconsistent and |= C0 ) D0 holds.

Before presenting the proofs, we first show a useful lemma, whose correctness can
be immediately obtained using the Tableau.

Lemma 5.1. Let Ci’s be concepts and R a role name. Then, for every j(1 ≤ j ≤ m)
or Cj = ⊥, |= ∀R.(

⊔m
i=1 Ci) ) ∀R.Cj �

⊔m
i	=j ∃R.Ci.
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Lemma 5.2. Let U, Ei’s be concepts with |= Ei ) U , and R a role name. Denote
D = ∀R.U �

�
∃R.Ei with �|= D ≡ ⊥. Suppose D′ =

⊔
∀R.Cj � ∃R.C �

⊔
Lk,

where C and Cj’s are concepts, and Lk’s are generalized literals not containing R.
Then |= D ) D′ implies that at least one of the following three holds:

(1) |= D′ ≡ �; or
(2) |= Ei ) C for some i, and |= D ) ∃R.C ) D′; or
(3) |= U ) C � Cj , and |= D ) ∀R.(C � Cj) ) D′ for some j.

Proof. For simplicity, we discuss the case of m = 2 and n = 2, that is, D = ∀R.U �
∃R.E1�∃R.E2 and D′ = ∀R.C1�∀R.C2 �∃R.C �

⊔
Lk. Other cases can be proved

in the same way.
According to the Tableau, the ABox {D(x),¬D′(x)} is inconsistent, which can

be transformed through Tableau rules into { (∀R.U)(x), (∃R.E1)(x), (∃R.E2)(x),
(∃R.¬C1)(x), (∃R.¬C2)(x), (∀R.¬C)(x), ¬(

⊔
Lk)(x) }

It can be further transformed into

A = { R(x, y1), E1(y1), R(x, y2), E2(y2), R(x, z1), ¬C1(z1), R(x, z2),
¬C2(z2), (∀R.U)(x), U(y1), U(y2), U(z1), U(z2), (∀R.¬C)(x),
¬C(y1), ¬C(y2), ¬C(z1), ¬C(z2), ¬(

⊔
Lk)(x), . . . }.

Note that Lk’s do not contain any pseudo-literal of the form ∀R.F or ∃R.F . Thus there
is no way to generate any new assertions about yi or zj from ¬(

⊔
Lk)(x) (i, j = 1, 2).

Neither can R(x, v) with v �= yi and v �= zj be generated from A. This means no
Tableau rule is applicable to R(x, yi), R(x, zj), (∀R.U)(x) or (∀R.¬C)(x) any more.
Thus we can ignore those assertions.

According to the Tableau, A must be inconsistent for arbitrary instances
x, y1, y2, z1, z2. Thus it is safe to assume that x, y1, y2, z1, z2 represent different in-
dividuals. ThusA can be written as

{ ¬(
⊔

Lk)(x) } ∪ { E1(y1), U(y1), ¬C(y1) } ∪ { E2(y2), U(y2), ¬C(y2) }
∪{ U(z1), ¬C1(z1), ¬C(z1) } ∪ { U(z2), ¬C2(z2), ¬C(z2) }.

Consider three cases:
Case 1. {¬(

⊔
Lk)(x)} is inconsistent, then we have |=

⊔
Lk ≡ �. That is, |= D′ ≡ �.

Case 2. {Ei(yi), U(yi),¬C(yi)} (i = 1 or 2) is inconsistent, then |= Ei � U ) C.
From |= Ei ) U , it follows that |= Ei ) C. Thus |= D ) ∃R.Ei ) ∃R.C ) D′.
Case 3. {U(zj),¬Cj(zj),¬C(zj)} (j = 1 or 2) is inconsistent, then |= U ) C � Cj .
Thus, by Lemma 5.1, we have |= D ) ∀R.(C � Cj) ) ∀R.Cj � ∃R.C ) D′. �
Now we can show a general property of forgetting w.r.t. quantifiers. Proposition 3.6 is
just a special case of the following lemma.

Lemma 5.3. Let U, Ei’s be concepts with |= Ei ) U , R be a role name, and V be a
variable. Denote C = ∀R.U �

�
i∈M ∃R.Ei where M = {1, . . . , m} is a set of natural

numbers.
Suppose �|= C ≡ ⊥. If V = R, then forget(C, V ) = �. Otherwise, we have

forget(C, V ) = ∀R.forget(U, V ) �
�

i∈M ∃R.forget(Ei, V ).
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Proof. Set C′ = ∀R.forget(U, V ) �
�

i∈M ∃R.forget(Ei, V ).
(CF1): Obviously, |= C ) �. And we have |= C ) C′, since |= ∀R.U )
∀R.forget(U, V ) and |= ∃R.Ei ) ∃R.forget(Ei, V ) for all i.
(CF2): Suppose that D is a concept not containing V and |= C ) D. We want to prove
|= � ) D for V = R, and otherwise, |= C′ ) D.

Let D =
�

k∈N Dk, and every Dk is of the form
⊔
∀R.U ′

j � ∃R.E′ �B′ where E′

and U ′
j’s are concepts, B′ is a disjunction of generalized literals not containing R. From

|= C ) D, we have |= C ) Dk for all k.
If V = R, then each Dk contains no disjunct of ∀R.U ′

j , and |= E′ ≡ ⊥. By
Lemma 5.2, we have |= Dk ≡ � for each k. In this case, |= � ) D. We have shown in
this case, forget(C, V ) = �.

Otherwise, suppose for some Dk, it does not contain any occurrence of R. In this
case, |= Dk ≡ �, and we can remove Dk from the conjunction. In what follows, we
assume Dk contains R and �|= Dk ≡ � for each k ∈ N .

By Lemma 5.2, for some Dk’s in D (denoted as k ∈ K ⊆ N ), we always have some
Ei (i ∈ M ) in C such that |= Ei ) FEk

where ∃R.FEk
is the existential quantified

disjunct of Dk, and thus |= C ) ∃R.FEk
) Dk. For the other Dk’s with k ∈ N −K ,

we always have |= U ) FUk
and |= C ) ∀R.FUk

) Dk for some concept FUk
not

containing V . This is to say, we can always find
D′ =

�
k∈K ∃R.FEk

�
�

l∈N−K ∀R.FUl

such that D′ does not contain V , and |= C ) D′ ) D.
By the definition of K , for each FEk

(k ∈ K), we always have some Ei (i ∈M ) in C
such that |= Ei ) FEk

. By the definition of c-forgetting, |= forget(Ei, V ) ) FEk
. That

is, for each k ∈ K , there always exists some i ∈ M such that |= ∃R.forget(Ei, V ) )
∃R.FEk

. This implies |=
�

i∈M ∃R.forget(Ei, V ) )
�

k∈K ∃R.FEk
. Similarly, we

have |= ∀R.forget(U, V ) ) ∀R.
�

l∈N−K FUl
. Thus, we can conclude that

|= ∀R.forget(U, V ) �
�

i∈M ∃R.forget(Ei, V ) ) ∀R.
�

l∈N−K FUl
�

�
k∈K ∃R.FEk

.

which is, |= C′ ) D′. Hence, we have |= C′ ) D. �
Similar to the above lemma, we can show the following result. For a literal L, we use
L+ to denote the concept name in L.

Lemma 5.4. Let C be a disjunct in DNF such that C =
�

Li�
�

R∈R CR, where each
L is a literal, concept CR is of the form ∀R.U �

�
∃R.Ek with |= Ek ) U for each k.

Then we have, forget(C, V ) =
�

L+
i 	=V Li �

�
R∈R forget(CR, V ).

Since forgetting is distributive over disjunction, Theorem 4.1 is proven.

6 Conclusion

We have looked into the concept of uniform interpolation for ALC from the angle of
variable forgetting. As a result, a theory of forgetting in ALC concept descriptions is
developed, in which forgetting can be done for both concepts and roles. As well as
several important properties, we have developed algorithms for computing results of
forgetting and provide a novel proof for the correctness of the algorithm w.r.t. the
semantic definition of forgetting. Forgetting for ALC concept descriptions has been
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implemented in C++ as a new component of the DL reasoner FaCT++ [14] and
it is available at http://www.cit.gu.edu.au/˜kewen/DLForget/. Such a
forgetting component can be used by an ontology editor to enhance its ability to
partially reuse existing ontologies and thus provides a flexible tool for tailoring large
ontologies. Although semantic forgetting can be easily adapted to most DLs, it is
not straightforward to generalize the algorithms for computing forgetting to other
expressive DLs.
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Abstract. Modeling abstract behavior is essential for intelligent agents under
incomplete and uncertain environments. In this paper, we extend Propositional
Dynamic Logic (PDL) to Propositional Abstract Dynamic Logic (PADL) for
modeling abstract behavior in two aspects. On the one hand, we treat the task
of finding a plan to achieve a certain formula as an abstract action. On the other
hand, we explicitly represent the subsumption relation between two actions as
a formula in the language. We propose the semantics for the two operators and
discuss some important related properties.

1 Introduction

Modeling rational behavior of agents is one of the most fundamental problems for intel-
ligent agents. In the AI literature, behavior, or actions, of the agents are usually repre-
sented simply as atomic actions or sequences of atomic actions called plans. However,
little attention has been paid to the problem of modeling more flexible and complex
forms of actions.

Propositional Dynamic Logic (PDL for short) [1,2,3,4,5] is an elegant and power-
ful logic for modeling various kinds of compound actions. It can represent not only
sequences of actions, but also nondeterministic choices of actions, query actions and
iteration actions. More importantly, PDL relates actions with formulas so that it can be
used for reasoning about properties of actions. Indeed, as successfully shown in the area
of theoretical computer science [1], PDL is able to represent a large variety of programs
and to verify the partial and total correctness of them.

However, PDL is not powerful enough for modeling abstract behavior for intelligent
agents. By abstract behavior, we mean those actions that are not fully specified. In
other words, abstract actions are relatively general in contrast to more specific actions.
An abstract action is maybe a high level description of the agent about what to do; it
gives some but not all information. Thus, it can be further refined or elaborated to more
specific actions by fixing some of the details, which might be given in many different
ways.

Let us consider an example first. Suppose that Alice wants to present her research at
a conference. A reasonable solution for this problem is to divide it into two steps, a) to
get her paper accepted by the conference and b) to attend the conference. Here, both the
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two steps are abstract actions. The former is a subgoal of Alice, which can be achieved
by various specific plans. The latter is a general description of behavior, which needs to
be further refined by other specific actions such as to register the conference, to book a
flight and so on.

Abstract behavior is essential for intelligent agents for several reasons. Firstly, the
agent may only have incomplete information about the environment. Thus, sometimes
it is impossible for the agent to make a very specific plan due to the lack of information.
However, it is still possible to make abstract plans (behavior) according to its incom-
plete information. Secondly, abstract actions are more reliable than specific actions. In
realistic domains, environments are essentially unpredictable and uncertain. Therefore,
actions often lead to unexpected results. Abstract actions are usually more reliable since
they have less details. Thirdly, abstract actions are more flexible and robust than spe-
cific actions. Abstract actions can be further refined into various specific actions. Once
one of them is failed, we can trace back and choose another refinement according to the
abstract action. However, if no abstract action is allowed, then the agent may need to
replan the whole picture. Finally, abstract behavior is beneficial to the resource bounded
barriers, including computational resources. To consider problems in an abstract level
can reduce the cost of resources (e.g. computational cost) because representation in the
abstract level is usually more succinct.

In this paper, we extend Propositional Dynamic Logic into Propositional Abstract
Dynamic Logic (PADL for short) for modeling abstract behavior in two aspects. Firstly,
we treat the task of finding a plan to achieve a certain formula as an abstract action.
Technically, given a proposition φ, we introduce a new operator #, the achievement
operator, in front of φ as an abstract action #φ, meaning that the action to find an (arbi-
trary) action (or plan) to achieve φ. Secondly, we explicitly represent the subsumption
relation between two actions as a formula in the language. Technically, we introduce a
new operator �, the subsumption operator, between two actions α and β. α � β is a
well defined formula in PADL, meaning that α is more specific than β.

This paper is organized as follows. In the next section, we recall some basic defi-
nitions of PDL. In section 3, provide the syntax as well as the semantics for PADL.
We extensively study the properties of PADL in Section 4. Finally, we draw our
conclusions.

2 Propositional Dynamic Logic

Propositional Dynamic Logic (PDL for short) [1] is a logic for representing and reason-
ing about the interactions between propositions (or properties, formulas) and programs
(or actions, plans, events, behavior). It inherits three classical components: proposi-
tional logic, modal logic and regular expressions. The basic idea of PDL is to represent
each (regular) program as a modal operator in propositional modal logic. Therefore,
PDL is essentially a multi-modal logic.

The syntax of PDL has two kinds of expressions, namely, formulas and actions. They
are defined recursively from a set Π0 of events (or atomic actions), a set Φ0 of atoms
and the following operators:
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Propositional operators: → (implication) and ⊥ (falsity),
Behavioral operators: ; (composition), ∪ (choice) and ∗ (iteration),
Mixed operators: [] (necessity) and ? (test).

Given a set Π0 of primitive actions and a set Φ0 of atoms, we define the set Π of all
actions and the set Φ of all formulas to be the smallest set such that

S1 Φ0 ⊆ Φ and ⊥ ∈ Φ,
S2 Π0 ⊆ Π ,
S3 if φ, ψ ∈ Φ, then φ → ψ ∈ Φ,
S4 if α, β ∈ Π , then α; β, α ∪ β and α∗ ∈ Π ,
S5 if α ∈ Π and φ ∈ Φ, then [α]φ ∈ Φ,
S6 if φ ∈ Φ then φ? ∈ Π .

The other propositional operators � (truth), ¬ (negation), ∧ (conjunction), ∨ (disjunc-
tion) and ↔ (equivalence) are defined as usual. The possibility operator <> is the dual
of the necessity operator []. Given a formula φ and an action α, < α > φ is defined as
¬[α]¬φ.

The semantics of PDL inherits from standard Kripke semantics for modal logic. A
(Kripke) frame is a pair F = 〈W, MF〉, where W is a set of elements called worlds or
states and MF is a meaning function assigning a subset of W to each atom and a binary
relation on W to each atomic action. That is,

MF(p) ⊆ W, p ∈ Φ0

MF(a) ⊆ W ×W, a ∈ Π0.

We extend the meaning function MF to all actions and formulas inductively as follows

M1 MF(⊥) = ∅,
M2 MF(φ → ψ) = (W −MF(φ)) ∪MF(ψ),
M3 MF([α]φ) = {u | ∀v ∈W, if (u, v) ∈MF(α), then v ∈MF (φ)},
M4 MF(α; β) = {(u, v)|∃w ∈W, such that (u, w) ∈MF (α) and (w, v) ∈ MF(β)},
M5 MF(α ∪ β) = MF(α) ∪MF(β),
M6 MF(α∗) =

⋃
n≥0 MF (αn),

M7 MF(φ?) = {(u, u) | u ∈MF(φ)}.
Therefore,

– MF(�) = W ,
– MF(φ ∨ ψ) = MF(φ) ∪MF(ψ),
– MF(φ ∧ ψ) = MF(φ) ∩MF(ψ),
– MF(¬φ) = W −MF(φ),
– MF(< α > φ) = {u | ∃v ∈W , and v ∈MF(φ)}.

We say that a world u satisfies a formula φ in a frame F , or that φ is true at u in F , if
u ∈ MF(φ), also written F , u |= φ. We say that a formula φ is satisfiable in a frame
F = 〈W, MF 〉 if there exists some u ∈ W such that F , u |= φ.

We say that φ is valid in F , written F |= φ, if for all u ∈ W , F , u |= φ. We say
that φ is valid, denoted by |= φ, if for all frames F , F |= φ. Given a set Σ of formulas
and a frame F , we write F |= Σ if for all φ ∈ Σ, F |= φ. We say that a formula ψ
is a logical consequence of a formula set Σ if for all frames F , F |= Σ implies that
F |= ψ. Note that this notion of validity defined for PDL is defined on frames. That is,
this is not the same as saying that F , u |= Σ implies that F , u |= ψ for all pairs F , u.
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3 Propositional Abstract Dynamic Logic

In this section, we extend Propositional Dynamic Logic (PDL) to Propositional Ab-
stract Dynamic Logic (PADL) for formalizing abstract behavior in two aspects. Firstly,
we treat the task of finding a plan to achieve a certain formula as an abstract action.
Technically, we use a new mixed operator #, the achievement operator, to denote the
task of achieving a certain formula. Given a formula φ, #φ, reading as “to achieve φ”,
is an action in the language of PADL. Performing this action intuitively means to find
a(n) (arbitrary) action (plan) to achieve the formula φ. Particularly, we simply write #�
as U, which denotes the universal relation.

Example 1. Recall the example proposed in the introduction section. Alice’s first step
of getting her paper accepted by the conference can be represented as an abstract action
#paper − accepted, where paper − accepted is the formula saying that her paper is
accepted by the conference. Performing this action #paper − accepted means to find
an arbitrary action (or plan) to achieve the formula paper − accepted. There might
be many specific actions that can accomplish this task. However, the abstract action
itself does not care what the specific action really is. It represents the set of all specific
actions that can achieve the formula paper−accepted. In addition, Alice’s original idea
of presenting her research at the conference can also be considered as another abstract
action #research− presented.

Secondly, we consider the subsumption relation between two (abstract) actions. We use
a new mixed operator �, the subsumption operator, to denote the subsumption relation
between two actions. Given two actions α and β, α � β, reading as “α subsumes β”, is
a formula in the language of PADL. Intuitively, this formula is true if α always yields
more consequences than β. In other words, α is more specific than β.

The subsumption operator can be further explained by considering the equivalence
operator �� between two actions. Given two actions α and β, we write α �� β, reading
as “α is equivalent to β”, as an abbreviation of (α � β) ∧ (β � α). Intuitively, α �� β
means that α and β have the same consequences in every situation. In other words, α
and β have the same ability.

Example 2. Again, recall the example in the introduction section. Alice’s second step
to attend the conference can be further refined into small pieces, for instance, 1) to
register the conference, 2) to book a flight, 3) to book a hotel, 4) to take the trip to
the conference and 5) to present the paper. Thus, this procedure of refinement can be
represented in PADL as an assertion (PADL formula) register− conference; book−
flight; book− hotel; trip− conference; present− paper � attend− conference,
meaning that the abstract action to attend the conference is subsumed by a sequence
of more specific actions as mentioned above. In fact, Alice’s solution of dividing her
original idea into two steps can also be represented in PADL as a subsumption relation
#paper − accepted; attend− conference � #research− presented.

Hence, the syntax of Propositional Abstract Dynamic Logic (PADL) is an extension
of the syntax of PDL with two more mixed operators � (for subsumption) and # (for
achievement). As PDL, the language of PADL has two components, namely formulas
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as well as actions. Based on the syntactical composition rules of PDL, given a set Π0
of atomic actions and a set Φ0 of atoms, the set Π of all actions and the set Φ of all
formulas in PADL can be obtained by two more composition rules

S7 if α, β ∈ Π , then α � β ∈ Φ,
S8 if φ ∈ Φ then #φ ∈ Π .

In particular, we write α �� β (the equivalence relation between two actions) and U (the
universal operator) as the shorthand of (α � β) ∧ (β � α) and #� respectively.

We still adopt the Kripke semantics for PADL. Again, a (Kripke) frame is a pair
consisting of a set of worlds W and a meaning function MF assigning a subset of W
to each atom and a binary relation on W to each atomic action. We extend the meaning
function MF to all actions and formulas in a similar way. In addition, we need two
additional explanations for the two new mixed operators � and # respectively.

M8 MF(α � β) = W − {u | ∃v, (u, v) ∈MF(α), (u, v) �∈ MF(β)},
M9 MF(#φ) = {(u, v) | v ∈ MF(φ)}.

Therefore, the semantics of the operator �� can be induced from the above definitions:

MF(α �� β) = W − {u | ∃v, (u, v) ∈ (MF(α)\MF (β)) ∪ (MF(β)\MF (α))}.

Similarly, the semantics of the operator U can be induced as well.

MF(U) = {(u, v) | v ∈MF(�)} = W ×W.

Similarly, we say that a world u satisfies a formula φ in a frame F , or that φ is true at u
in F , if u ∈MF(φ), also written F , u |= φ.

In fact, we can rewrite the semantics of PADL equivalently as follows:

M1’ F , u �|= ⊥,
M2’ F , u |= φ → ψ iff F , u |= φ implies that F , u |= ψ,
M3’ F , u |= [α]φ iff ∀v, if (u, v) ∈MF(α), then F , v |= φ,
M4’ (u, v) ∈ MF(α; β) iff ∃w such that (u, w) ∈ MF(α) and (w, v) ∈MF(β),
M5’ (u, v) ∈ MF(α ∪ β) iff (u, v) ∈ MF(α) or (u, v) ∈MF(β),
M6’ (u, v) ∈MF(α∗) iff ∃n ≥ 0, and ∃u0, u1 . . . , un such that a) u0 = u, b) un = v

and c) (ui, ui+1) ∈MF(α) for all i, (0 ≤ i ≤ n− 1),
M7’ (u, v) ∈ MF(φ?) iff u = v and F , u |= φ,
M8’ F , u |= α � β iff ∀v, (u, v) ∈ MF(α) implies that (u, v) ∈ MF(β),
M9’ (u, v) ∈ MF(#φ) iff v ∈MF (φ).

The notions of satisfiability, validity and logical consequence in PADL are defined in
the same way as those for PDL. We say that φ is valid in F , written F |= φ, if for all
u ∈ W , F , u |= φ. We say that φ is valid, denoted by |= φ, if for all frames F , F |= φ.
Given a set Σ of formulas and a frame F , we write F |= Σ if for all φ ∈ Σ, F |= φ.
We say that a formula ψ is a logical consequence of a formula set Σ if for all frames
F , F |= Σ implies that F |= ψ.

In fact, the two operators are not exactly new in the literature. The notion of sub-
sumption relation and equivalence relation between actions (programs) are considerably
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studied in the area of theoretical computer science [1,2]. However, in most approaches,
subsumption and equivalence relation are treated in the meta level but not in the logic
language. Passay and Tinchev [2] discussed the idea of explicitly introducing subsump-
tion relation into PDL. Also, they considered to introduce the universal relation into
PDL. Note that the achievement operator and the universal relation can be defined in-
terchangeably, i.e., #φ �� U; φ? is valid in PADL. Therefore, mathematically, PADL
actually has the same expressive power as Passay and Tinchev’s CPDL⊂ without the
constant set. Some researchers used the universal relation for representing the any ac-
tion or arbitrary action of agents [4], whilst others believe that it is too strong. Giacomo
and Lenzerini [3] used a pre-defined subset of the universal relation to represent the any
action. Broersen [6] considered to use some accessible relations instead.

4 Properties

In this section, we study the properties of PADL. We first show that both the achieve-
ment operator and subsumption operator cannot be represented in standard PDL. Due
to the space limitation, we only outline the proofs in this section.

Theorem 1. The operator # cannot be represented in PDL.

Proof. Consider the logical consequence relation Γ |= φ. It can be represented in PADL
as a formula [U]

∧
Γ → [U]φ, where

∧
Γ is the conjunction of all formulas in Γ . In other

words, φ is a logical consequence of Γ iff [U]
∧

Γ → [U]φ is valid. On the other hand,
logical consequence cannot be represented as a formula in PDL itself [1]. This shows
that PDL with the achievement operator is strictly more expressive than PDL.

Theorem 2. The operator � cannot be represented in PDL.

Proof. As shown in [1], by induction on the structure of formulas, we have that given a
frame F and two worlds u and v in F that agree on all atoms, for all PDL formulas φ,
F , u |= φ iff F , v |= φ.

Now we construct a frame which contains three worlds u, v, w, where u and v agree
the same on all atoms. Let MF(α) = {(u, w), (v, w)} and MF(β) = {(u, w)}. We
have that F , u |= α � β but F , v �|= α � β. This shows that there does not exist a PDL
formula equivalent to α � β.

Theorem 1 and Theorem 2 show that PDL<PADL. That is, PADL is a strict extension of
PDL. Interestingly, the following proposition shows that the PDL modal operator [α]φ
can be represented by the new achievement operator together with the subsumption
operator.

Theorem 3. Let α be an action and φ be a formula. We have that |= [α]φ ↔ α � #φ.

Proof. For any MF ,
MF(α � #φ)
= W − {u | ∃v, (u, v) ∈ MF(α), (u, v) �∈MF (#φ)}
= W − {u | ∃v, (u, v) ∈ MF(α), v �∈MF (φ)}
= {u | ∀v ∈W, if (u, v) ∈MF(α), then v ∈MF(φ)}
= MF ([α]φ).

Thus, this assertion holds.
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Theorem 3 coincides with the intuitions. The left side means that after executing α, φ
should be true. On the other hand, the right side means that the action α always yields
more consequences than the action #φ. That is, all the consequences of the action #φ
(e.g., φ itself) are also consequences of α. Clearly, this is same as saying that after
executing α, φ is true.

Theorem 4. Let φ be a formulas and α and β two actions. We have that |= α � β →
([α]φ → [β]φ). Also, |= α � β → (< α > φ →< β > φ).

Proof. We prove the latter. The former can be proved similarly. For any frame F =
〈W, MF〉 and world u ∈ W , if F , u |= α � β and F , u |=< α > φ, then there exists
v ∈ W , such that (u, v) ∈ MF(α), and v ∈ MF(φ). Thus, (u, v) ∈ MF(β). Therefore,
F , u |=< β > φ. This shows that the latter assertion holds.

Theorem 4 shows that if an action α subsumes another action β, then for any formula φ,
if φ must hold after executing α, then φ also must hold after executing β; if φ possibly
holds after executing α, then φ also possibly holds after executing β. This shows that
all consequences of α are also consequences of β. This coincides with our intuition on
subsumption, as we discussed in Section 2.

Theorem 5. Let φ be a formula. We have that |= #φ �� [U]; φ?.

Proof. For any MF ,
MF([U]; φ?)
= {(u, v) | ∃w ∈W, such that (u, w) ∈MF (U) and (w, v) ∈MF(φ?)}
= {(u, v) | ∃w ∈W, such that w = v and v ∈MF(φ)}
= {(u, v) | v ∈ MF(φ)}
= MF (#φ).

Thus, this assertion holds holds.

Theorem 5 shows that the achievement operator can be defined by the universal opera-
tor. Together with the fact that the universal operator U can be defined as #�, we have
that the two operators can indeed be defined from each other.

Theorem 6. Let α, β and γ three actions. We have that |= (α�β)∧ (β �γ) → α�γ.

Proof. For any frame F and a world u in it. Suppose that F , u |= α � β and F , u |=
β � γ. Then, for any v, if (u, v) ∈ MF (α), then (u, v) ∈ MF(β). Therefore, (u, v) ∈
MF(γ). This shows that F , u |= α � γ as well.

Theorem 6 shows that the subsume operator satisfies transitivity.

Theorem 7. Let φ be a formula. We have that |= #φ; #φ �� #φ. Also, |= (#φ)∗ ��
#φ.

Proof. We only prove the former. The latter holds similarly. For any MF , MF(#φ; #φ)
= {(u, v) | ∃w, (u, w) ∈MF(#φ), (w, v) ∈MF(#φ)}
= {(u, v) | ∃w, w ∈MF(φ), v ∈ MF(φ)}
= {(u, v) | v ∈ MF(φ)}
= MF (#φ).

This shows that |= #φ; #φ �� #φ.
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Theorem 7 shows that the achievement operator is closed under iteration. That is, re-
peating to achieve a formula twice or many times is the same as to achieve it just once.

Theorem 8. Let φ and ψ be two formulas. We have that |= [#φ]ψ → (φ → ψ).

Proof. For any frame F and a world u in it. Suppose that F , u |= [#φ]ψ. Then, for all
v, if F , v |= φ, then F , v |= ψ. Hence, if F , u |= φ, then F , u |=|= ψ. This shows that
F , u |= [#φ]ψ → (φ → ψ).

Theorem 8 shows that if a formula ψ holds in company with achieving another formula
φ, then ψ must be a logical consequence of φ.

Theorem 9. Let φ and ψ be two formulas and α an action. We have that |= [#φ]ψ →
[α](φ → ψ).

Proof. For any frame F and a world u in it. Suppose that F , u |= [#φ]ψ. Then, for
all v, if F , v |= φ, then F , v |= ψ. Therefore, for any world v in F , F , v |= φ → ψ.
Therefore, for any α, F , v |= α(φ → ψ).

Theorem 9 shows that if a formula ψ holds in company with achieving another formula
φ, then after executing any actions α, ψ always holds in company with φ i.e., if φ holds,
then ψ holds as well.

There are of course many other valid formulas in PADL, other than the valid formulas
in PDL. Due to the space limitation, we are not able to list more. Here, we propose an
additional one.

Theorem 10. Let φ and ψ be two formulas. We have that |= (φ → ψ) → [#φ]
< #φ > ψ.

Proof. The proof of this assertion is similar to the above techniques of proving valid
formulas in PADL, we leave it to the readers.

An important task is to axiomatize the logic PADL. However, this might not be an
easy task. One reason comes from the studies of another extended version of PDL with
intersection and negation on actions, which can also represent the subsumption operator.
Researcher have found that it is very difficult to axiomatize this logic.

Is PADL expressive enough for capturing the essence of abstract behavior. Here, we
argue that PADL is indeed powerful for this purpose. Firstly, PADL makes it possible
to treat both formulas and actions as the same objects by the achievement operator.
Secondly, using the subsumption operator, one can reason about the abilities of actions
explicitly. Hence, the two new operators themselves and the combination of them, to-
gether with the original operators in PDL, offer adequate expressive power for modeling
abstract behavior for intelligent agents. In fact, it can be shown that some complex ac-
tion formalisms, such as conditional planning and HTN planning, can be represented
in PADL. Nevertheless, there are other features that cannot be modeled by PADL, for
instance, temporal operators and joint actions in multi-agent environment.

The term abstract behavior (or actions, plans) has been used elsewhere in the AI
literature. However, the basic ideas of these work are different from PADL in nature.
In HTN planning [7], abstract plan is introduced to denote those plans on a higher
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abstract level, whilst concrete plan is those plans that can be really executed. A partial
order relation among plans is used to represent the refinement relation (i.e., subsumption
relation) among plans in the meta level. In 3APL agent language [8], abstract plan
has to be transformed into basic actions according to some rules. A set AP is used to
denote the set of all abstract plans. Schmidt and Tishkovsky [9] used abstract actions to
represent those actions that can be performed by any agent, whilst concrete actions can
only performed by some particular agents.

5 Conclusion

The main contributions of this paper are summarized as follows. Firstly, we argued that
abstract behavior plays an essential role for intelligent agent decision making under
incomplete and uncertain environments. Secondly, we extended PDL into PADL for
modeling abstract behavior by adding two mixed operators # (for achievement) and �
(for subsumption). The action #φ is an abstract action meaning that to find a specific
plan to achieve the goal φ; the formula α � β states that the action α always yields
more consequences that the action β in any cases. We defined the semantics for them
and showed that both operators are strict extensions of PDL. We also discussed other
important related properties of PADL.

For future work, as we mentioned, one important task is to find a sound and complete
axiom system for PADL. Also, another work worth pursuing is to further extend PADL
for modeling abstract behavior in multi-agent systems. Finally, it is crucial to apply
PADL to real agent programming languages, e.g. 3APL [8]. We leave these work to our
future investigations.
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Abstract. This paper explores the use of machine learning techniques
to restore punctuation and case in English text, as part of which it in-
vestigates the co-dependence of case information and punctuation. We
achieve an overall F-score of .619 for the task using a variety of lexical
and contextual features, and iterative retagging.

1 Introduction

While digitised text data is growing exponentially in volume, the majority is of
low quality. Such text is often produced automatically (e.g. via speech recognition
or optical character recognition [OCR]) or in a hurry (e.g. instant messaging
or web user forum data), and hence contains noise. Normalisation of case and
punctuation in such text can greatly improve its consistency and accessibility to
natural language processing methods [10].

This research is focused on the restoration of case and punctuation. To
illustrate the task, given the following input text:

(1) ... club course near mount fuji marnie mcguire of new zealand winner of
the mitsukoshi cup ladies in april had a ...

we would hope to restore it to:

(1’) ... club course near Mount Fuji. Marnie McGuire of New Zealand, winner
of the Mitsukoshi Cup Ladies in April, had a ...

There are some notable effects taking place, such as mcguire, where the first and
third letters are capitalised, and april , which is both capitalised and has a comma
attached to it. While cup and ladies would not standardly be capitalised, they
require capitalisation in this context because of their occurrence in the proper
name Mitsukoshi Cup Ladies. Similarly, words such as prime and minister , and
new and york , need to be capitalised primarily when they co-occur. The above
example illustrates the complexities involved in the task of case and punctuation
restoration.

A. Nicholson and X. Li (Eds.): AI 2009, LNAI 5866, pp. 547–556, 2009.
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This research has applications over the output of speech dictation systems
and automatic speech recognition (ASR) systems, which tend to have difficulties
predicting where to insert punctuation and sentence boundaries, and also over
noisy web data (e.g. as found in web user forums), where case and punctuation
are often haphazard [2].

In the process of exploring the complexity of this task and proposing a restora-
tion method, we have developed a benchmark dataset for research on case
restoration and punctuation restoration.

2 Related Work

Case and punctuation restoration is a relatively unexplored field. cyberpunc
[2] is a lightweight method for automatic insertion of intra-sentence punctuation
into text. It uses a simple hidden Markov model with trigram probabilities to
model the comma restoration problem, restoring the punctuation of 54% of the
sentences correctly. [15] tackle the problem of comma restoration using syntactic
information, and improve on this to achieve an accuracy of 58%. In both of these
cases, sentence boundaries are assumed to be given. In our case, we assume
no punctuation whatsoever, including sentence boundaries, and hence direct
comparison with our work is not possible.

The above-mentioned methods deal with punctuation restoration at the sen-
tence level, i.e., the input to both systems is a single sentence. For instance, the
following input instances:

(2) the golf tournament was at the country club course near mount fuji
(3) marnie mcguire of new zealand winner of the mitsukoshi cup ladies in april

had a 72 for 212

would be converted to:

(2’) The golf tournament was at the country club course near Mount Fuji.
(3’) Marnie Mcguire of New Zealand, winner of the Mitsukoshi Cup Ladies in

April, had a 72 for 212.

This simplifies the task significantly, as the sentence boundaries are explicitly
specified. This is not the case in our system, where the input is a stream of words,
thus requiring the system to detect sentence boundaries (explicitly or implicitly).
Hence it is not possible to apply these systems over our data or compare the
results directly.

In ASR systems, researchers have made use of prosodic information, disflu-
encies and overlapping speech to predict punctuation, which they have then
supplemented with language models [15].

[10] look into the task of truecasing, or case restoration of text. They propose a
language model-based truecaser, which achieves a word accuracy of around 98%
on news articles. The high accuracy reported here can be used as an indication
that the case restoration task is simpler in comparison to punctuation restora-
tion. Note that a direct comparison of the accuracy of punctuation methods
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mentioned above and the truecasing task is misleading: the accuracy reported
for the punctuation tasks is at the sentence level, whereas, in case of the true-
casing task it is at the word level.

3 Task Description

To generate our dataset, we randomly selected 100 articles each (roughly 65K
words) from the AP Newswire (APW) and New York Times (NYT) sections of
the English Gigaword Corpus, as training, development and test data. We then
tokenised the data, before stripping off all punctuation and converting all the text
to lower case. The only punctuation that was left in the text was hyphenation,
apostrophes and in-word full stops (e.g. U.S and trade-off ).1 Each of these Table
1 shows the number of words in each of the datasets.

Each token is treated as a single instance and annotated with a class indicating
the punctuation and case restoration that needs to take place, in the form of a
capitalisation class, indicating the character indices requiring capitalisation, and
a list of zero or more punctuation labels, each representing a punctuation mark
to be appended to the end of the word. For example, cap1+fullstop+comma
applied to corp would restore it to Corp.,. The class allcaps is used to represent
that all letters in the word need to be converted to uppercase, irrespective of the
character length of the word.

Unsurprisingly, the distribution of classes in the data is heavily skewed as de-
tailed in Table 2, with the vast majority of instances belonging to the nochange
class.

In addition to the token instances, we fashioned a set of base features for each
word as part of the data release. The base features consist of:

1. the lemma of the word, based on morph [13];
2. Penn part-of-speech (POS) tags [12] based on fnTBL 1.0 [14];
3. CLAWS7 POS tags [16] based on the RASP tagger [4]; and
4. CoNLL-style chunk tags based on fnTBL 1.0.

Table 1. Size of the training, development and test datasets

Dataset Number of tokens

Training 66371
Development 65904

Test 64072

1 The decision to leave in-word full stops and hyphens in the data is potentially
controversial. In future work, we intend to explore their impact on classification
performance by experimenting with data which contains literally no punctuation
information.
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Table 2. The top-8 classes in the training data, with a description of the corresponding
change to the token

Class Description % Example

nochange no change 75.8% really → really
cap1 capitalise first letter 12.4% thursday → Thursday
nochange+comma append comma 4.1% years → years,
nochange+fullstop append full stop 3.8% settlement → settlement.
cap1+comma capitalise first letter and ap-

pend comma
1.7% thursday → Thursday,

cap1+fullstop capitalise first letter and ap-
pend full stop

0.9% thursday → Thursday.

allcaps capitalise all letters 0.7% tv → TV
allcaps+fullstop capitalise all letters and ap-

pend a full stop
0.2% u.s → U.S.

We generate all of these features over the case-less, punctuation-less text,
meaning that we don’t have access to sentence boundaries in our data. For
both POS taggers and the full text chunker [1], therefore, we process 5-token
sequences, generated by running a sliding window over the text. For a given
token, therefore, 5 separate tags are generated for each preprocessor, at 5 discrete
positions in the sliding window; all 5 tags are included as features.2 The total
number of base features is thus 16 per instance.

This dataset is available for download at http://www.csse.unimelb.edu.au/
research/lt/resources/casepunct/.

4 Feature Engineering

While the data release includes a rich array of features, we chose to optimise
classifier performance via feature engineering, modifying the feature descrip-
tion in various ways. In all cases, feature engineering was performed over the
development data, holding out the test data for final evaluation.

4.1 Lemma and POS/Chunk Tag Normalisation

First, we converted all 4-digit numbers (most commonly years, e.g. 2008 ) into a
single lemma, and all other sequences of all digits into a second number lemma.
Similarly, we converted all month and day of the week references into separate
lemmas. The primary reason for this was the high frequency of date strings such
as 14 Jan, 2007 which require comma restoration; in this case, the string would
be lemmatised into the three tokens non-4digit-num-ersatz month-ersatz 4digit-
num-ersatz , respectively. In the case of these filters successfully matching with

2 For tokens at the very start or end of a dataset which do not feature in all 5 positions,
we populate any missing features with the value .

http://www.csse.unimelb.edu.au/
research/lt/resources/casepunct/
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the wordform, the resultant lemma substituted for that in the original dataset.
For example, the lemma for 2007 is 2007 in the original dataset, but this would
be replaced with 4digit-num-ersatz . As such, this processing doesn’t generate
any new features, but simply modifies the existing lemma feature column.

Rather than include all 5 POS and chunk tags for a given token, we select the
POS and chunk tags which are generated when the token is at the left extremity
in the 5-word sliding window. That is, we remove all but the leftmost POS and
chunk tags from the features provided in the dataset. Surprisingly, this simple
strategy of taking the first out of the 5 POS and chunk tags provided in the
dataset was superior to a range of more motivated disambiguation strategies
trialled, and also superior to preserving all 5 tags.

4.2 Lexical Features

We capture hyphens, apostrophes and in-word full stops by way of a vector of
three Boolean lexical features per instance.

In an attempt to capture the large number of acronyms (e.g. dvd) and proper
nouns in the data, we fashioned a list of acronyms from GCIDE and WordNet
2.1 [7]. We used the British National Corpus [5] to determine which capitalisa-
tion form had the highest frequency for a given lemma. For lemmas where the
word form with the highest prior involves capitalisation, we encode the capital-
isation schema (e.g. allcaps+fullstop for u.s.a) via a fixed set of Boolean
features, one each for the different schemas. We additionally encode the condi-
tional probabilities for a given lemma being lower case, all caps, having its first
letter capitalised, or having the first and third letters capitalised (e.g. mcarthur);
these were discretised into three values using the unsupervised equal frequency
algorithm algorithm as implemented in nltk [3].

4.3 Context Information

Punctuation and capitalisation are very dependent on context. For example,
prime is most readily capitalised when to the immediate left of minister . To
capture context, we include the lemma, Penn POS tag, CLAWS7 POS tag and
chunk tag (disambiguated as described in Section 4.1) for the immediately pre-
ceding and proceeding words, for each target word. That is, we copy across a
sub-vector from the preceding and proceeding words. We also include: (1) bi-
grams of the target word and proceeding word, in the form of each of word,
Penn POS tag and CLAWS7 POS tag bigrams; and (2) trigrams of the Penn
and CLAWS7 POS tags of the preceding, target and proceeding words; and (3)
trigrams of the CLAWS7 tags of the target word and two preceding words.

5 Classifier Architecture

We experimented with a range of classifier architectures, decomposing the task
into different sub-tasks and combining the results differently.
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5.1 Class Decomposition

We first experimented with a 3-way class decomposition, performing dedicated
classification for each of: (1) acronym detection, (2) case restoration, and (3)
punctuation restoration. We then take the predictions of the three classifiers
for a given instance, and combine them into a fully-specified class. Note that
acronym detection cross-cuts both punctuation and case restoration, but is a
well-defined standalone sub-task.

For the acronym detection task, we focus exclusively on the three classes
of cap1+fullstop, allcaps+fullstop and nochange (the three most fre-
quent classes). This was achieved through simple class translation over the train-
ing/development instances, by stripping off any extra classes from the original
data to form a modified class set.

To perform case restoration, we again strip all but the case information
from the class labels. There will inevitably be some overlap with the acronym
classifier, so we exclude allcaps+fullstop instances from classification with
this classifier (i.e. transform all allcaps+fullstop instances into nochange
instances).

Finally, for the punctuation restoration sub-task, we strip off any case infor-
mation from class labels, leaving only the punctuation-related labels.

To combine the predictions for the classifiers associated with each of the three
sub-tasks, we tested two approaches: (1) using heuristics to directly combine the
class labels of the three classifiers, and (2) performing meta-classification across
the classifier outputs. In the heuristic approach, the class label produced by the
abbreviation sub-task overrides the predictions of the other two classifiers if both
predict that case restoration is necessary. For example, if allcaps+fullstop
was predicted by the abbreviation classifier and cap1 was predicted by the case
restoration classifier, we would accept allcaps+fullstop as the final case
prediction. If the punctuation classifier then predicted comma, the final class
would be allcaps+fullstop+comma. If, on the other hand, the abbreviation
classifier predicted nochange, the prediction from the case restoration classifier
would be accepted.

In the meta-classification approach, the three classifiers are run over both the
test and development datasets, and the outputs over the development data are
used to train a meta-classifier. The outputs from the three classifiers for each
test instance are fed into the meta-classifier to generate the final class.

5.2 Retagging

As stated in Section 3, the base features were generated using a sliding window
approach (without case or punctuation information). We expect the performance
of the preprocessors to improve with correct case and punctuation information,
and sentence-tokenised inputs. We thus experiment with a feedback mechanism,
where we iteratively: (a) classify the instances, and restore the (training, devel-
opment and test) text on the basis of the predicted classes; and (b) sentence
tokenise, re-tag, lemmatise and chunk the data, and then feed the updated tags
back into the data as new feature values. As our sentence tokeniser, we used the
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nltk implementation of punkt [9]; the lemma, POS and chunk tags are gener-
ated in the same way as mentioned in Section 3. We stop the iterative process
when the relative change in tags from one iteration to the next becomes suffi-
ciently small (gauged as a proportion of test instances which undergo change in
their predicted class).

6 Results

All evaluation was carried out using token-level accuracy, precision, recall and
F-score (β = 1).

As our baseline classifier, we ran the TiMBL implementation of the IB1 learner
[6] over the base set of features (which actually outperformed an SVM learner
over the same features). All other classifiers are based a multi-class support
vector machine, implemented as part of the BSVM toolkit [8].3 We used a
linear kernel in all experiments described in this paper, because we found that it
performed better than the Radial Basis Function (RBF) and polynomial kernels.

The results for all the experiments are presented in Table 3.
First, we can see that the strategy of using only the first POS and chunk tag

improves accuracy and precision, but actually leads to a drop in recall and F-
score over the baseline. The addition of lexical features (Section 4.2) appreciably
improved results in all cases, and had the greatest impact of any one of the feature
sets described in Section 4. The incorporation of all the extra features brought
precision down slightly, but improved recall and led to an overall improvement
in F-score.

Using the same set of expanded features with the 3-way task decomposition
and either direct heuristic combination or meta-classification, actually led to a
slight drop in F-score in both cases relative to the monolithic classification strat-
egy. The meta-classifier generated the highest precision and equal-best accuracy
of all the classifiers using only automatically-generated features, but precision
dropped considerably.

The retagging method, in combination with the monolithic classifier architec-
ture, resulted in the best accuracy, recall and F-score of all automatic methods
tried. The indicated F-score is based on three iterations, as the number of changes
dropped exponentially across iterations to only 335 at this point. Error analysis
of this final classifier revealed that the performance over case restoration ac-
tually deteriorated (to below-baseline levels for the class allcaps+fullstop,
e.g.), but the performance over punctuation restoration picks up considerably.
Results for the top-10 classes (based on F-score4) are presented in Table 4.

To investigate the potential for the retagging method to improve results, we
separately ran the lemmatiser, taggers and chunker over the original text (with
correct case and punctuation information, and sentence tokenisation), and re-ran
the classifier. This caused the F-score to jump up to .740, suggesting that this

3 http://mloss.org/software/view/62/
4 Excluding the nochange class.

http://mloss.org/software/view/62/
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Table 3. Classification results (italicised numbers indicate gold-standard data used;
bold numbers are the best achieved without gold-standard data)

Classifier Description Accuracy Precision Recall F-score

Baseline (IB1) .784 .516 .301 .381
Base features, with only first tag .790 .571 .282 .378
+ extra lexical features .837 .637 .534 .581
+ all extra features .839 .620 .604 .611
Heuristic combination .834 .596 .612 .604
Meta-classifier .840 .639 .554 .594
Iterative retagging .840 .615 .622 .619

Retagging (based on original text) .885 .715 .766 .740
With gold-standard punct labels .926 .887 .793 .837
With gold-standard case/abbrev labels .912 .793 .813 .803

Table 4. Best-10 performing classes for the iterative retagger (ranked based on F-score)

Class Accuracy Precision Recall F-score

allcaps+fullstop .657 .787 .799 .793
allcaps .561 .853 .621 .719

cap1 .523 .719 .658 .687
cap1+fullstop .312 .607 .391 .476
cap1+comma .276 .523 .369 .433

nochange+fullstop .251 .450 .361 .401
nochange+comma .191 .351 .294 .320

cap1-3 .143 .750 .150 .250
cap1+fullstop+comma .100 .667 .105 .182

cap1+colon .082 1.000 .082 .151

approach could lead to much greater improvement given higher performance of
the base classifier.

Finally, we investigated the co-dependency of the case and punctuation restora-
tion tasks in the context of the meta-classification approach, by combining gold-
standard case labels with automatically-generated punctuation labels, and vice
versa. This resulted in the final two lines of Table 3, which clearly show that if we
can get one of the two tasks correct, the other becomes considerably easier.

7 Future Work

Our research focussed on a small sub-set of punctuation. Punctuation such as
question marks and colons was not explored here, and features targeting these
could be considered to further improve the performance of the classifier.

Another area for future investigation is instance selection [11]. The distri-
bution of instances over the set of classes is skewed heavily in favour of the
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nochange class. Instance filtering could have helped in alleviating this bias,
forcing the classifier to look at the other classes. This could help especially when
looking at the sub-tasks, where the number of nochange instances increased
because of the stripping off of the case or punctuation class information.

The original motivation for this research was in applications such as ASR and
OCR, but all of our results are based on the artificially-generated dataset, which
lacks case and punctuation but is otherwise clean. We are keen to investigate
the applicability of the proposed method to noisy outputs from ASR and OCR
in more realistic settings.

8 Conclusion

We have explored the task of case and punctuation restoration over English text.
First, we established a benchmark dataset for the task, complete with a base fea-
ture set, and then we proposed an expanded feature set, and a range of classifier
architectures based on decomposition of the overall task. The best results were
achieved with the expanded feature set, a monolithic classifier architecture and
iterative retagging of the text.
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Abstract. Traditional Recurrent Neural Networks (RNNs) perform
poorly on learning tasks involving long time-lag dependencies. More re-
cent approaches such as LSTM and its variants significantly improve on
RNNs ability to learn this type of problem. We present an alternative
approach to encoding temporal dependencies that associates temporal
features with nodes rather than state values, where the nodes explic-
itly encode dependencies over variable time delays. We show promising
results comparing the network’s performance to LSTM variants on an
extended Reber grammar task.

1 Introduction

An intelligent agent must be able to make sense of temporally distributed ob-
servations, learn to recognise temporally correlated occurrences and patterns,
and make use of these for future predictions. Connectionist approaches to this
problem can be roughly divided into two camps.

In Time-delay Neural Networks (TDNN) [1], each feature (observation) is
supplied to the network not only in the time step in which it occurs, but for
a fixed number of additional time steps. The network therefore has access to
a finite history of observations on which to base classifications or predictions.
While this approach has proved successful in a range of practical applications,
it is limited in its generality. It cannot solve problems with arbitrarily long time
delays, and there is a trade off between the length of history supplied, and the
number of input nodes that must be incorporated to access each feature at each
time point. This in turn has a bearing on training requirements.

A more general and intuitively appealing approach makes use of recurrent
connections to create memory elements within the network. In these approaches
the activation state of the recurrent nodes encodes a history of the observations
presented to the network. Conceptually this history may be arbitrarily long. In
practice, however, traditional recurrent neural networks (RNNs) have performed
poorly on learning tasks involving long time-lag dependencies (more than about
5 to 10 time steps), due to the tendency of back-propagated error flows to vanish
or explode [2,3]. This has led to the development of a range of extended recur-
rent networks designed to deal with long time-lags. We discuss some of the key
approaches and their limitations in Section 2.
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In this paper we propose an alternative approach to encoding temporal de-
pendencies, where the responsibility of storing temporal patterns is shifted from
an implicit representation within the state space of the recurrent network, to
the explicit responsibility of nodes within the network. That is, nodes them-
selves encode dependencies over variable time delays. At first sight, this would
appear to suggest an explosion in the number of nodes, not unlike the TDNN
approach. The key to our approach, however, is the recognition that, while there
are infinitely many potential temporal relationships, relatively few of those will
turn out to play a significant role in any problem of interest.

This thinking is not new to artificial intelligence and machine learning, which
rely heavily on abstracting away the infinite detail of a problem domain to
identify key features on which problem solving or classification might depend.
Humans do this naturally as a way of dealing with complexity. It is also central
to techniques such as principal component analysis, discriminant analysis and
information gain, as well as constructive connectionist approaches. Our work
seeks to identify and exploit the important temporal features in a problem.

Since our approach associates temporal features with nodes rather than state
values, it is necessary that some of the dynamicism of the network is also shifted
from activation values to the network structure and connections. To achieve
this we employ a novel, highly dynamic, Hebbian-style network, where new
nodes are created to reflect temporally correlated occurrences, evidence for these
relationships is accumulated, and less useful nodes are pruned. The resulting
Constructive Hypothesise and Test Network (CHTN) is described in Section 3.

In order to compare our approach with existing networks we evaluate it in
Section 4 on an extended Reber grammar task that has been extensively used in
the literature. We show that, unlike recurrent approaches targeted at long time-
lag problems, our approach is able to consistently find exact solutions, with
significantly less training. At the same time, we provide evidence to show that
the networks’ size remains manageable. The paper is concluded in Section 5.

2 Background

2.1 The Embedded Reber Grammar Problem

A benchmark long time-lag problem used for comparison in the literature is the
embedded Reber grammar (ERG) [3,4], illustrated in Figure 1. This is a popular
choice because the grammar generates strings with time dependencies that are
just beyond the capabilities of traditional networks. The ERG is an extension
of the far simpler standard Reber grammar (SRG) which is not a long time-lag
problem and can be learned successfully by most RNNs.

The standard Reber grammar (SRG) and its derivatives are a set of rules
describing sequences of symbols. Sequences are generated by starting at the
left-most node and traversing the directed edges until the right-most node is
reached. At each traversal, the symbol associated with the edge is appended to
the sequence. Nondeterministic choices are made with equal probability.
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Fig. 1. Left: Transition diagram for SRG. Right: Transition diagram for ERG and
CERG. The dashed line indicates the recurrent connection that distinguishes the
CERG.

The embedded Reber grammar (ERG) extends the SRG and is a significantly
harder problem to learn. Two types of string can be generated by the ERG;
BT<Reber string>TE and BP<Reber string>PE. To learn this grammar, a
system must remember the first T or P to correctly predict the penultimate
symbol. Furthermore, the system must remember this symbol over the duration
of the SRG, which is variable in length.

RNNs that are applied to learning the SRG and ERG use an external “teacher”,
which knows a priori about the ends of each string, to reset the network’s inter-
nal state at the end of each sequence. The continual embedded Reber grammar
(CERG) [5] is a more stringent form of the ERG that does not use an external
teacher. This is of potential importance in cases where the start and end of repet-
itive patterns (in this case sequences) within a body of data is not available and
must be learned by the network. The CERG generates a contiguous stream of ERG
sequences, where the boundaries between each ERG are not known to the learning
system, making it a more difficult problem to solve.

2.2 Previous Approaches

Tradional neural networks, such as TDNNs [1], and RNNs trained using Back-
Propagation Through Time [6] are well suited to learning problems with short
time-lag dependencies. The SRG is one such example, as it only requires the
network to remember information for up to one time step. The same networks
however, struggle to learn problems with time-lags over about 5-10 time steps.
When applied to the ERG, a long time-lag problem, these networks fail to per-
form well because they are required to remember information over arbitrary time
periods, often greater than 10 time steps.

Hochreiter and Schmidhuber in [3] provide a review of a large variety of
existing RNNs, including the following types of networks:

– Gradient-descent variants [7,4,6]
– Time delays [1]
– Time constants [8]
– Ring’s approach [9]
– Bengio et al ’s approaches [2]
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– Kalman filters [10]
– Second order nets [11]
– Simple weight guessing [12]
– Adaptive sequence chunkers [13]

Their conclusion was that none of these RNNs were well suited to learning
long time-lag problems. As a solution they proposed a recurrent network called
Long Short-Term Memory (LSTM). LSTM is a gradient-descent variant but is
designed to overcome the difficulties faced by existing variants with respect to
learning long time-lag patterns.

Gradient-descent approaches use back-propagation of error to adjust network
parameters such that the network output more closely matches the desired out-
put. The error flow, however, tends to either vanish or explode quickly over a
short number of steps [2,3]. LSTM overcomes this problem by using input and
output gates to control the error flow. Each input and output gate learns to open
and close access to the error flow when appropriate, allowing it to bridge arbi-
trarily long time-lags. Experimental results on long time-lag problems showed
that the network was the first to perform well on problems of this type.

LSTM did not perform well however on the more difficult variant of the Reber
grammar task. Gers et al [5] applied LSTM to the CERG and their results showed
that LSTM performed poorly on this problem, unable to find a perfect solution
in any trial. They reported that this was because without external resets, a
continual input stream eventually may cause the internal values of the cells to
grow without bound, even if the repetitive nature of the problem suggests they
should be reset occasionally. Their solution was extended LSTM with forget gates
(ELSTM). The forget gates allowed the network to learn when to reset its own
internal values. As a result, the network offered a significant improvement over
the LSTM for learning the CERG.

While the LSTM and ELSTM provide promising approaches to long time-lag
problems, previously unsolvable by tradition RNNs, these networks still cannot
achieve 100% success on the CERG problem and training times are long. The
following section describes our alternative approach to encoding temporal de-
pendencies. Experimental results show that this approach is successful in finding
solutions to the CERG in every trial with relatively few training examples.

3 The CHTN Architecture

The goal of the CHTN network is to recognize temporal patterns in a sequence of
observations (or state descriptions), and use these to predict future observations.
More specifically, each observation in a discrete-time sequence can be represented
as a feature vector, and the goal of the network is to predict the feature vector
at the subsequent time step.

The network is constructive: it begins with input nodes only, one for each fea-
ture in the input sequence. It then dynamically builds connections and hypoth-
esis nodes which attempt to encode the temporal relationships in the sequence.
The survival of the nodes depends on how useful they turn out to be.
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In the following we say that an input node is activated when the corresponding
feature is seen in the current observation.

3.1 Connections

Connections are unidirectional links from a source node to a destination node.
They play two complementary roles. The first is to learn about correlated activity
between nodes from past observations; the second is to predict future activity.

Correlation Learning

Hebbian learning is nature’s way of recording correlated activity by strengthen-
ing neuronal connections. It is often paraphrased as “neurons that fire together,
wire together”. This notion is modelled in our network by associating a simple
frequency-based probability with connections.

Each connection in our network has two properties associated with it: a signal
delay, and a signal spread. When the source node of a connection is activated, it
emits a “learning” signal. The signal reaches the destination node after the spec-
ified delay, and then remains active for the duration of the specified spread (the
“active period”). If the destination node is activated at any time during that du-
ration, they’re considered to have fired together and the connection is strength-
ened (positive correlation), otherwise it is weakened (negative correlation). The
observed probability of the connection’s pattern is then simply:

observed probability =
#positive correlations

#positive correlations + #negative correlations

This observed probability is subsequently used in making predictions.
Note that the observed probability is not time-weighted towards more recent

events. This encourages stability. In order to learn patterns that change over time
the system must discover appropriate features that correlate with the changes
over time.

In the implementation of the architecture used for the experiments in this pa-
per, only two types of connection instances are used for learning and prediction.
Both have a one step time delay. The first has a spread of one time instant, while
the second has an infinite spread. We will refer to these as instantaneous and
persistent connections respectively.

Making Predictions

Connections predict future activity on the basis of past observations. When the
source node of a connection is activated, it predicts that the destination node
will become active during the connection’s active period at the probability de-
termined from previous observations. If the active period includes more than one
point in discrete time, the probability at each point is the measured probability
divided by the number of points within the active period. (Persistent connections
therefore do not contribute directly to predictions. We will see their role later in
node construction.)
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Before a connection is allowed to make predictions about node activity, the
number of observations on which its prediction is based must reach a minimum
threshold or maturity. This is a parameter of the network that acts much like a
traditional learning rate, trading off rate of adaptation against stability.

A destination node may receive multiple prediction signals from different
sources at any one time, and must resolve these to give a single prediction for
the node’s activity. This is achieved by selecting the prediction signal with the
largest positive or negative activity correlation.

Forming New Connections
Connections are freely formed within the network. Whenever a node becomes
active, connections are formed with any input node that is active or incorrectly
predicted within the active durations specified above. More specifically, if At is
the set of all nodes active at time t, and Et is the set of all nodes incorrectly
predicted at time t, then:

– Instantaneous connections are formed between all nodes At and At+1∪Et+1;
that is, between any active node and active or error node that form a
contigous sequence.

– Persistent connections are formed between all nodes At and An ∪En, where
n >= t+1. Because most nodes become active at some point, this will result
in a persistent connection between every node combination.

3.2 Nodes

While connections allow the network to learn correlations and make predictions
based on simple patterns of temporal activity between input nodes, more com-
plex patterns require a way of compounding these relationships. This is achieved
by constructing additional “intermediary” nodes that represent compound fea-
tures. These nodes can be regarded as hypotheses for useful temporal relation-
ships or features. To maintain a workable network size, the hypothesised nodes
must be pruned when they do not turn out to be useful.

Construction of New Nodes
The construction of new nodes is targeted at improving predictions. If a node’s
activity is imperfectly predicted, the network will seek to combine nodes to
improve the prediction. Candidate nodes for combining are sought from those
which already contribute to the node’s prediction. The idea is that if a node
is already providing some (though imperfect) predictive information, then com-
bining it with other nodes (thus incorporating additional features or temporal
combinations) may be able to improve the prediction.

A node with an imperfect prediction will only motivate the construction of
a new node if it is considered useful. Similarly, only nodes that are considered
useful are regarded as candidates for combining to form the new nodes. A node
is deemed useful if, via one of its outgoing connections, it is successfully con-
tributing to improving the prediction of any node. In the implemention used for
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this article, “successfully contributing to improving the prediction” is restricted
to a perfect prediction, that is, one with a probability of 0 or 1.

New nodes are constructed by combining signals from two existing (useful)
nodes, which we will refer to as the primary and secondary nodes, and specifying
a time range that defines their temporal combination. The nodes that contribute
to an imperfect prediction form a pool of candidates for secondary nodes. The
signals that arrived at these secondary nodes at the time they made their predic-
tion, and the connections that carried those signals, are in turn considered. The
connection’s source and destination nodes and active period form the primary
and secondary nodes and active period for the new node. The new node activates
(or “fires”) if the secondary node becomes active during the active period after
the primary node activates.

Once a node has been created from a given connection, no further nodes will
be constructed from it. This ensures that duplicate nodes are not created.

Pruning
The CHTN network works according to the “hypothesise and test” principle.
The constructed nodes can be regarded as hypotheses, and their usefulness as
the test. Nodes that prove to be useful are kept, while the others are pruned.
The pruning process is peformed at each time step. Any node whose outgoing
connections have all reached maturity, yet is not useful, is pruned. Pruning
serves to reduce the computing complexity of the network, but does not affect
the prediction.

4 CERG Experiment and Results

In the CERG experiment, the network is presented with a sequence of symbols
generated by the continual embedded Reber grammar. This is encoded as a
sequence of feature vectors with a component for each of the seven symbols, one
of which will be active (1) at each time point. The network initially consists of
seven corresponding input nodes.

The task of the network is to predict the next symbol, or the next two possible
symbols where there is a nondeterministic choice. In traditional RNNs, LSTM,
and its variants, the network expresses predictions with a real value (value ∈
[0, 1]) for each output node. Where there is only one possible next symbol in
the grammar, correct prediction requires that the output node corresponding to
that symbol be the one with the highest value. Where there are two possible
symbols, the two appropriate output nodes must have the highest values.

The CHTN network expresses prediction by assigning an activation proba-
bility for each node that corresponds to a symbol (the input nodes). Correct
prediction in this network requires that when there is one possible next symbol,
the corresponding node is predicted to be active with 100% probability, while
all others are 0%. When there are two possible symbols, the two corresponding
nodes must be predicted with some positive probability, while all others are 0%.

After Gers et al [5] we say the network has “solved” the problem if it is able
to correctly predict 1 million consecutive symbols.
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Table 1. Results for ERG (left) and CERG (right) showing percentage of trials result-
ing in a perfect solution and average number of symbols to reach the perfect solutions.
ERG results taken from [3]. CERG results for LSTM and ELSTM taken from [5].

ERG % perfect # symbols est.
RTRL “some fraction” 287,500
ELM 0 >2,300,000
RCC 50 2,093,000
LSTM 100 97,060

CERG % perfect # symbols
Standard LSTM 0 -
ELSTM 18 >18,889
ELSTM α decay 62 >14,087
CHTN 100 2127

4.1 Comparative Results

The CHTN network, when applied to the CERG problem, was able to find a
perfect solution in every trial. Averaged over a run of 20 tests, using a maturity
threshold of 5, the network was able find the solution after only 2127 symbols.
In each case, the following 1,000,000 symbols were predicted correctly.

Table 1 shows the comparative results on the CERG problem. For complete-
ness, we also include results of earlier recurrent networks on the simpler ERG
problem. CERG results for LSTM and ELSTM are taken from Gers et al [5],
where the experimental conditions differ slightly to ours. Gers et al use input
streams of 100,000 symbols that are stopped as soon as the network makes an
incorrect prediction or the stream ends. They alternate learning and testing —
after each stream, weights are frozen and the network is fed 10 streams of 100,000
symbols. Performance is measured by the average number of test symbols fed on
each stream before an incorrect prediction is made.

Gers et al only report on how many training streams were given to each
network, not the number of sequences or symbols seen by the network, so it is
not possible to give a direct comparison of training time to our own results. We
do know, however, that the number of symbols used for training is at least as
many as the number of streams, giving us a lower bound for comparison. We
can, on the other hand, directly compare percentage of successful trials as this
requirement is 1,000,000 consecutively correct predictions, the same used in our
experiments. LSTM and the two variants of ELSTM find perfect solutions in up
to 62% of trials. CHTN is the only network that finds perfect solutions every
time.

4.2 Solution Size and Maturity Threshold

It is important in a constructive network that its size (number of nodes) does not
grow uncontrollably. Figure 2(a) shows the number of nodes being hypothesized,
kept and pruned over a single CERG trial. It can be seen that the node count
increases from the original 7 to a maximum of 519 before starting to decline.
By the end of training, the network has found 66 useful nodes and pruned 2176
nodes. This suggests the hypothesise and test approach is working to restrict
attention to key temporal features.
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(a) Network size over time (b) Maturity threshold

Fig. 2. (a) Network size over the lifetime of one network: Useful nodes and total current
nodes at each time step and the cumulative count of pruned nodes over time. (b)
Effects of changing the maturity threshold: Training symbols required to reach a perfect
solution, the number of useful nodes kept in the final solution, the number of nodes
pruned whilst training and peak node count of a network at any given time.

Figure 2(b) shows the effect of the maturity threshold on the learning time
and node counts. It can be seen that the maturity threshold provides a trade-
off between the rate of network growth and the time to find a solution. Lower
maturity leads to quicker solutions, but at the expense of more nodes being
hypothesized and pruned. The lower maturity threshold networks find solutions
faster by searching more hypotheses simultaneously.

5 Conclusion

Traditional RNNs have difficulty learning problems with long time-lag depen-
dencies. LSTM and its variants provide the first set of solutions that perform
well in this domain. On a benchmark long time-lag problem, CERG, the LSTM
variants outperform previous RNNs but are not able to find perfect solutions in
every trial and require many training samples.

In this paper we presented a novel network in which the responsibility for
encoding temporal relationships is shifted from an implicit representation in the
network’s activation space, to an explicit encoding in the network’s nodes. In
order for the network to identify key temporal features and manage the number
of features, a hypothesise and test approach is used. The network hypothesises
new nodes that represent potentially important temporal relationships, measures
their usefulness, and prunes those that do not contribute to successful outcomes.
The CHTN network was shown to find perfect solutions in every trial on the
CERG problem with far fewer training samples than the existing networks.

While the experimentation with the CERG problem did not reveal problems
with network growth, it is nevertheless possible that problems may arise with
larger scale problems. We are currently investigating larger applications with
promising preliminary results. A further limitation of the algorithm in its cur-
rent form is the restriction of connections to two active duration types. This con-
straint, while improving the training speed and limiting the potential of growth
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explosion, will likely limit the scope of temporal dependencies that the network
can learn. Ideally, this constraint could be lifted whilst keeping the network size
manageable, and is a subject of ongoing work.
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Abstract. Language ontologies provide an avenue for automated lexical
analysis that may be used to supplement existing information retrieval
methods. This paper presents a method of information retrieval that
takes advantage of WordNet, a lexical database, to generate paths of
abstraction, and uses them as the basis for an inverted index structure
to be used in the retrieval of documents from an indexed corpus. We
present this method as a entree to a line of research on using ontologies to
perform word-sense disambiguation and improve the precision of existing
information retrieval techniques.

1 Introduction

In the creation of an information retrieval system, an ambiguity must be ad-
dressed in finding the relationships among documents and queries. Word to word
or word-to-synonym comparisons may address this ambiguity. But methods re-
lying on such comparisons fail to address the issue that relevance may elude
such comparisons. Documents seen in comparison with one another may refer to
relative supersets or subsets of the words used to describe the subject matter [1].
In this paper we present a method for fusing the two worlds of word-sense dis-
ambiguation and concept abstraction to create a new, abstraction path-based
data model for documents for use in an information retrieval system.

An illustration of this ambiguity involves the problem of polysemy. A pol-
ysemous word has more than one meaning. For example, the word “sign” is
polysemous in that it may mean [2]:

1. n: any object, action, event, pattern, etc., that conveys a meaning.
2. v: to engage by written agreement.
3. v: to obligate oneself by signature.

It is clear from the distinctness of each definition that a system that compares
documents in the dimension of the word “sign” will need to be aware of the dif-
ference among the referred definitions and provide a method for disambiguating
such words. In addition to the polysemy problem, the panoply of lexica that may
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be used to refer to any singular topic may lead to a truncation of relevant re-
sults. This may occur, for example, as time advances and different jargon is used
to refer to a topic. Such a problem may be mitigated through an abstraction-
based search, since an assemblage of broader concepts may imply specificity with
respect to the desired information need.

Such dimensional considerations would arguably be even more useful for a
corpus of specialized documents, such as a database of medical papers in which
a specialized lexicon is used. Documents related in such a manner will tend to
address the same issues repeatedly, using similar language in each repetition.
This would allow a greater degree of confidence in the way that a set of words
is being used [3].

2 Related Works

Pedersen, et al. [4] presented a method of word-sense disambiguation based on
assigning a target word the sense that is most related to the senses of its neigh-
boring words. Their methodology was based on finding paths in concept networks
composed of information derived from the corpus and word definitions. Wan and
Angryk [5] proposed using WordNet to create context vectors to judge relation-
ships between semantic concepts. Their measure involves creating a geometric
vector representation of words and their constituent concepts and using the co-
sine of the angle between concepts to measure the similarity between them. Per-
haps one of the most relevant ideas comes from Resnik [6] who created a measure
of semantic similarity in an IS-A taxonomy based on shared information content.
The relevance comes from the IS-A taxonomy idea, since this betrays the use of
subclass/superclass relationships within the measure. Measuring semantic dis-
tance between network nodes for word-sense disambiguation was addressed by
Sussna [1], who also clarified the perils of inaccuracy in keyword-based search.
Jiang and Conrath [3] combined lexical taxonomy structures with statistical in-
formation hewn from the corpus. In doing so they were not reliant on either of the
methods for a measure of semantic similarity, but rather both. An essential idea
to them was that words used in a subject-specific corpus would be more likely to
mean some things based on how they are normally used in relation to the subject
address in the corpus. Lin [7] proposed a measure of similarity of words based on
the probability that they contain common independent features. Widdows and
Dorow [8] presented a graph method for recognizing polysemy. Word-sense dis-
ambiguation provided motivation for the technique, which is based on creating
graphs of words, using the words’ equivalence relations as the connections.

3 Proposed System

3.1 Overview of Frequent Abstraction Path Discovery

Our approach consists of the following steps:

1. Obtain a word-vector representation of the entire corpus under consideration.
2. Use WordNet to create document graph representations of each document’s

word vector and a master document graph representation of the entire corpus.
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3. Use the FP-Growth algorithm for association rule mining to obtain corpus-
wide frequent paths.

4. Use these frequent abstraction paths to create an inverted index for docu-
ment retrieval.

The word-vector representation we have chosen to use for the primary step is the
tfidf word vector. tfidf is a measure based upon a term count that is normalized
with respect to both the document in which a term appears and also with respect
to the entire corpus in which the document appears [9].

The concept of an abstraction path is central to our approach. An abstrac-
tion path is a path of term derivation, from most general to most specific, that
corresponds to an objective ontological hierarchy of terms. For our purposes,
WordNet is this ontology though other domain-specific ontologies exist.

WordNet [10] is a lexical database that depicts relationships among words [4].
In WordNet, words are organized by several standard relationships. Among these
are synonomy, which describes words having the same meaning; polysemy, which
describes words that have many meanings; and hypernymy/hyponymy which is
the property that describes abstracts of a term (hypernyms) or terms that are
more concrete than a term (hyponyms).

Figure 1 shows two abstraction paths for the term ‘basketball’. As an example
of polysemy, the two paths correspond to ‘basketball’ the game and ‘basketball’
the ball. Starting from the bottom, each term above the current term is a more
general term whose meaning embodies some subset of the current term. The
term ‘entity’, the most general noun in WordNet is where all abstraction paths
terminate.

Our process makes use of the hypernym/hyponym relationship in WordNet.
There are many other relationships in WordNet that may also be useful in this
type of analysis. However, for the demonstration of the validity of our method,
we chose to restrict our analysis to the hypernym/hyponym relationship in the
interest of saving processing time and memory.

For exploiting this hypernym/hyponym relationship among words we use doc-
ument graphs, which depict original keywords (words that are found in a docu-
ment) as well as implicit words (words whose presence is implied by being the
hypernyms of those keywords) in a hierarchy that is created according to the
ontology in use [11]. For each keyword in a document’s vector representation, a
query is made to WordNet to obtain all hypernyms of this keyword recursively,
all the way to the the word entity, the most abstract hypernym in WordNet 3.0.
The result of this is a subgraph of WordNet’s hypernym ontology that depicts
the document’s ontological footprint. During this process, the keyword weight
in the word vector is distributed to its direct hypernyms (and then further up
the hypernyms’ graph) by dividing the weight of the keyword evenly among
them.

Figure 2 shows how the time and memory usage changes as the number of
documents for which we created document graphs increases from 1,000 through
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entity

abstraction, abstract entity

psychological feature

event

act, deed, human action, human activity

activity

game

athletic game

court game

physical entity

object, physical object

whole, unit

artifact, artefact

instrumentality, instrumentation

equipment

game equipment

basketball

most abstract (general)

most specific

Fig. 1. Examples of Abstraction Paths for the word ‘basketball’

Fig. 2. Time to create document graphs and maximal memory usage for creating
document graphs

20,000. As is apparent, the time is polynomial, but close to linear and memory
usage is approximately linear. This supports our claim that the construction of
this data model can be achieved in a time and space-efficient manner.

A document tree is a tree representation of a document graph. It is created
by continually splitting each vertex that has an in-degree greater than 1 into as
many nodes as its in-degree until all vertices have an in-degree of 1 (or less in
the case of the root vertex).
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A:0.786

B:0.786

F:0.214

root

leaf

A:0.214

B:0.214

F:0.214

A:0572

B:0.572

Path Abs. Path 1 Abs. Path 2

Fig. 3. An Example of Abstraction Path Beginning Criteria

A document abstraction path is a path of term derivation, from most general to
most specific. A singular abstraction path will contain all of the words in a unique
path from a keyword to the word “entity” (in WordNet). For our purposes, a
vertex in a document tree must fulfill one of two criteria to be the beginning of
an abstraction path:

1. The vertex is a leaf.
2. The vertex has a greater weight than any of its children.

In the path shown in figure 3 the abstraction path from the leaf vertex would
produce path F, B, A because F is a leaf vertex and will therefore have a corre-
sponding abstraction path. It would also produce path B, A because the support
of B is greater than that of F, indicating that B has more of a contribution to
the document than it does just as a matter of being a hypernym of F. These
criteria guarantee that the first vertex in any abstraction path corresponds to
either a keyword a junction word (a word that is at the junction of two or more
hyponym branches).

An aggregate document graph representation for the entire corpus is created
during the creation of each individual document graph. This is called the master
document graph, and it includes every type of relationship that is depicted in
each document graph. Its corresponding tree representation is called the master
document tree. We will use this structure to discover abstraction paths that, as
we believe, provide much better representation of the content of the corpus than
the original keywords.

FP-Growth [12] is a method of mining frequent patterns in a dataset without
generating candidates, as is done with the popular Apriori method [11] [12] [13].
Instead of generating frequent pattern candidates and checking them against
the entire dataset, as is done with Apriori, the FP-Growth traverses the dataset
exactly twice to create its representation in the form of a tree structure, the FP-
Tree, that is monotonic in its weight values for each vertex. It then mines this
tree by recursively decomposing the original FP-Tree into itemset-dependent FP-
Trees and pruning items that are no longer frequent (for a detailed description
of this process, see Han et al. [12]).

An important characteristic of this master document tree is that it is mono-
tonic, since vertex weights accumulate as vertices get closer to the root. This
makes the use of the FP-Growth algorithm possible. However, the master doc-
ument tree structure does differ in that each path from root to leaf represents
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an abstraction and not a profile of a shopping transaction. This is important
because, in the case of derived words, the existence of any vertex in the tree is
dependent on the existence of at least one of its children.

In mining the master document tree we are only concerned with directly
connected patterns because they represent related, non-disparate abstractions
from a single branch of word derivation, e.g. the ‘basketball’ game equipment
path from figure 1 as opposed to the game path. We extended the FG-Growth
algorithm with this heuristic, since the original FP-Growth algorithm would
generate patterns of words without checking if the words are directly linked via
a hypernym relationship.

The frequent patterns that are hewn from the master document tree are called
frequent paths, as they are all connected. To make them compatible for com-
parison with the document abstraction paths we convert these frequent paths
into frequent abstraction paths, which are frequent paths augmented with their
entire hypernym traces all the way to the most abstract hypernym, (entity). The
frequent abstraction paths are used to create the inverted index. Documents are
related to an intersection of the document abstraction paths and the frequent
abstraction paths.

3.2 Query Handling

Upon acceptance of a plain-text query, several actions proceed in sequence:

1. The query undergoes the same preprocessing as the documents (creation of
the query graph and query tree and harvesting the query abstraction paths).

2. Selection of the related documents from the inverted index is performed
using the query abstraction paths.

3. Ranking of documents and presentation take place.

A query tree is the same as a document tree, except that it is constructed for a
query. It allows us to perform standard comparisons between queries and docu-
ments as if we were comparing only documents. To facilitate the search through
the collection of abstraction paths that came from the document analysis, only
the same structures are obtained from the query tree.

The query abstraction paths’ hash codes are used to query the inverted index
for relevant postings. If any of the paths is found to have a document in its
postings list, that document is included in the result set.

The ranking procedure uses the cosine similarity measure [14], but now cal-
culated in frequent abstraction path space, not in regular keyword space. Each
document in the result set, generated by the inverted index, is compared against
the query using this measure. The results are then sorted by descending order
of cosine similarity and the results are presented to the user. The high dimen-
sionality of the frequent abstraction path space is reduced using the inverted
index, as only the frequent abstraction paths that occur in the query are used
for document ranking (i.e. cosine-based ordering).
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3.3 Preliminary Experiments

For our experimentation we used a 10 newsgroup subset of the 20 Newsgroups
dataset [15], a dataset that contains almost 20,000 newsgroup documents from 20
different newsgroups, about 1,000 per newsgroup. A template for our preliminary
experimentation was taken from the work of Cohn and Gruber [16]. The main
purpose of this truncation to 10 newsgroups was to pick the newsgroups that
were most distinct from each other [17], and to take advantage of benchmarks
with queries freely available on the Internet [16].

The results from our procedure are influenced by several parameters that can
be manipulated to adjust the efficacy of our approach. These are:

1. Path length upper limit : How short a path must be in order to be considered.
This parameter limits the specificity of the paths to a low abstraction level.

2. Path length lower limit : How long a path must be.
3. Path length range: Limits the abstraction level to a length that is within a

range.
4. Path popularity upper limit : How many documents in which a particular

path may be found.
5. Path popularity lower limit : How few documents in which a particular path

may be found.
6. Path popularity range: Limits the number of document in which an

abstraction path may be found to a range.

Fig. 4. Experimental Results: Precision at k
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Fig. 5. Experimental Results: Recall at k

Fig. 6. Results: Precision vs. Recall
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We ran several experiments using several different scenarios. Figures 4 and 5
depict the results of the best of these configurations. Each point represents the
precision (figure 4) and recall (figure 5) for a specific number of documents
retrieved. Specifically, using a path length range of 1 through 9, using a path
length of 12, and using the path popularities of 0 through 5,000, 9,000 through
10,000, and 7,000 through 9,000. Our best results were achieved when we used
a path length of 12. At this point the 10-document precision was above 0.8.

Figure 6 shows an approximation of Cohn and Gruber’s TFIDF results [16]
as well as the results from our frequent abstraction path experiments (FAP). As
can be seen, Cohn and Gruber’s TFIDF results achieve a precision just below
0.9 for a recall level of 0.1. The chart shows a gradual waning of this efficacy for
higher recall levels. In comparison, our process achieved a precision high that was
just below 0.8 at a recall level of 0.09. A possible explanation for the difference
between our best results and the results achieved by Cohn and Gruber’s TFIDF
process is that they do not mention using an inverted index.

4 Conclusions and Future Work

In this paper we have shown how the consideration of word abstractions, found
using objective (non corpus-based) lexical ontologies, can be leveraged to pro-
vide an effective and efficient way to construct an inverted index. We have also
demonstrated a framework for further work involving ontological abstractions in
information retrieval.

In the future, we intend to investigate the ramifications of each of the para-
metric considerations in all of their permutations to see how each parameter
affects the efficacy of the system. The parameters we have identified are those
of abstraction path popularity thresholds and ranges, abstraction path length
thresholds and ranges, minimum support threshold, and dimension collapse via
a common hypernym substitution strategy.

Another avenue of future work that we wish to pursue is the creation of a
framework by which other ontologies may be adapted. Since there exist many
domains that have produced these ontologies, e.g. the aerospace, medical, and
pharmaceutical industries, we hope to use this system to resolve disparate lexica
that differ with respect to time or region. An example of this may be if someone
is performing a search for “potentiometer,” which also may be referred to as a
“voltage divider,” or a “potential divider.” We hope to discover whether or not
such vernaculars may be resolved through the use of these ontologies.
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Abstract. Vietnamese is very different from English and little research has 
been done on Vietnamese document classification, or indeed, on any kind of 
Vietnamese language processing, and only a few small corpora are available for 
research. We created a large Vietnamese text corpus with about 18000 
documents, and manually classified them based on different criteria such as 
topics and styles, giving several classification tasks of different difficulty levels. 
This paper introduces a new syllable-based document representation at the 
morphological level of the language for efficient classification. We tested the 
representation on our corpus with different classification tasks using six 
classification algorithms and two feature selection techniques. Our experiments 
show that the new representation is effective for Vietnamese categorization, and 
suggest that best performance can be achieved using syllable-pair document 
representation, an SVM with a polynomial kernel as the learning algorithm, and 
using Information gain and an external dictionary for feature selection. 

Keywords: Vietnamese language processing, text categorization, classification, 
machine learning. 

1   Introduction 

Since the beginning of the World Wide Web, the need to organize and structure the 
text-based information available electronically has constantly increased. Automated 
text categorization is one of the important techniques for arranging and finding 
relevant information. Many applications have been built for such tasks as classifying 
news by subjects or newsgroups, sorting and filtering e-mail messages, etc. Many 
Vietnamese documents are available online but little research has been done on 
Vietnamese document categorization. 

Text categorization is the task of assigning a natural language document to one or 
more predefined categories based on its content. Formally, text categorization can be 
represented by a function Φ: D × C  {True, False}, where D = {d1…dN } is a set of 
documents di to be classified, and C = {c1…cM} is a set of predefined labels cj of each 
category [1]. A number of approaches to automatic text categorization have been 
proposed such as Naïve Bayes, K-Nearest Neighbour (K-NN), and Support Vector 
Machines (SVM). They differ in their representation of documents and their 
algorithms to decide the category of documents. Some approaches are good only for a 
particular data set, while others can be applied to many different tasks.  
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In most research, the techniques are applied to English documents. How to apply 
these techniques on Vietnamese documents has not been explored and the 
performance of these techniques on this very different language is unknown. There 
are many differences between English and Vietnamese, for example, in Vietnamese, a 
sentence is written as a sequence of syllables rather than words; each word in 
Vietnamese may have two or three syllables, and word segmentation is not trivial. 
Therefore, the standard bag-of-words model for English document categorization and 
the techniques based on this model is hard to apply to Vietnamese documents. 

In fact, there has been little research on Vietnamese Language Processing of any 
kind. Among the few active researchers in this area,  Dien et al [2], [3] mainly do 
research on English-Vietnamese translation; Nguyen et al [4] are trying to build and 
standardize Part of Speech (POS) tagging of Vietnamese corpora. Some others focus 
on building spoken and written language resources for Vietnamese [5]. However, to 
our knowledge, no one has used machine learning techniques for Vietnamese text 
categorization yet. 

This paper describes our efforts to build an effective classifier for Vietnamese 
documents. We created a large corpus with about 18000 documents and investigated 
document representation, feature extraction, and learning methods that are suitable for 
Vietnamese document categorization. Our research questions include the following: 

• What are the special languages features of this language that might be useful for 
classification? How can we represent the documents effectively? 

• Among all the different learning algorithm and feature selection techniques, 
which ones are suitable for Vietnamese document categorization?  

The paper is organized as follows. Section 2 describes the important features of 
Vietnamese language. Section 3 introduces a syllable-level representation of 
Vietnamese documents. Section 4 describes our Vietnamese text corpus and the 
testing environment. Section 5 presents empirical results and Section 6 concludes the 
paper.  

2   Vietnamese Language Features 

This section summarizes the main characteristics of Vietnamese language and then 
details its alphabet, tones, syllables and words. Related research is found [5,6,7] that 
discusses Vietnamese features at syntactic and semantic linguistic levels. This paper 
focuses only on the features that are related to the document representation and 
feature extraction techniques.  

Vietnamese belongs to the Austro-Asiatic language family. Its vocabulary is based 
on Sino-Vietnamese and enriched from the French language. Like other isolating 
languages, Vietnamese has the following common characteristics: 

• It is a tonal, monosyllabic language; 
• In contrast to Latin languages, Vietnamese word forms never change when 

making a sentence. For example, a noun does not have different forms for 
singular or plural; a verb does not change with tense, person, number, voice and 
mood.  
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• Word order and auxiliary words are necessary for building grammatical 
relations in a sentence;  

• Sentence and paragraph structure most commonly has a “topic-elaboration” 
pattern.  

The Vietnamese alphabet is based on the Latin alphabet with some digraphs and the 
addition of nine accent marks or diacritics — four of them to create additional sounds, 
and the other five to indicate the tone of each word. The Vietnamese alphabet has 29 
letters (12 vowels and 17 consonants). Its vowels form 24 diphthongs and 4 
triphthongs, and its consonants form 9 digraphs and 1 trigraph. 

Vietnamese is a tonal language so that syllables with different tones have different 
meanings. There are six distinct tones; the first one ("level tone") is not marked, but 
the other five are indicated by diacritics applied to the vowel part of the syllable. In 
syllables where the vowel part consists of more than one vowel (such as diphthongs 
and triphthongs), the placement of the tone is still a matter of debate. For example, 
“hóa” and “hoá” are the same and both are acceptable.  

In contrast to words in English, Vietnamese is written as a sequence of syllables, 
separated by spaces and/or punctuation. Each syllable consists of at most three parts, 
in the following order from left to right: 

1. An optional beginning consonant part  
2. A required vowel part and the tone mark applied above or below it if needed.  
3. An optional ending consonant part, which must be one of the following: c, ch, 

m, n, ng, nh, p, t. 

For example, “trường” consists of 3 parts: the beginning consonant part: “tr”; the 
vowel part: “ươ” with the falling tone `; and the ending part: “ng”. 

There are three types of syllables: 
1. Syllables with a complete meaning. Such syllables are monosyllable words; 
2. Syllables with a meaning, but also used to form  compound words (especially 

sino-vietnamese words); and 
3. Syllables with no meaning of their own. 

The semantically meaningful vocabulary words in Vietnamese do not necessarily 
correspond to single grams (syllables) in Vietnamese documents – each word consists 
of 1, 2 or 3 grams, separated by space characters and/or punctuations. For example, 
the word “doanh nghiệp” /company is written as two separated grams “doanh” and 
“nghiệp”.  

According to Cao X. Hao [8], the Vietnamese vocabulary can be partitioned into 
the following categories: 

1. Monosyllabic words, (e.g. đi/go, ở/live, ăn/eat), constituting about 15% of a 
general dictionary. 

2. Reduplicated words composed of phonetic reduplication (e.g. trăng 
trắng/whitish) 

3. Compound words composed by semantic coordination (e.g. quần áo/clothes 
from quần/ pant + áo/shirt) 

4. Compound words composed by semantic subordination (e.g. xe đạp/bicycle 
from xe/vehicle + đạp/pedal, or máy bay/airplane from máy/machine + bay/fly) 
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5. Complex words whose phonetics are transcribed from foreign languages, 
especially French (e.g. cà phê/coffee). 

3   Syllable-Based Document Representation  

Text can be analyzed at five different levels: 

1. Morphological level: the components of words 
2. Lexical level: complete words 
3. Syntactic level: the structure of sentences 
4. Semantic level: the meaning of text 
5. Pragmatic level: the meaning of text with respect to context and situation 

We investigated a number of different representations at different levels. The paper 
introduces a new representation at morphological level, where documents are 
represented either as a sequences of syllables (unigram) or syllable pairs (bigrams).  

For English document categorization, text is typically represented at the lexical 
level, which is easy because words are separated by spaces or punctuations in English 
documents. The most common methods use a bag-of-words representation which 
throws away the structure of the document but captures the semantic information 
present at the lexical level.  However, this approach can not be directly applied to 
Vietnamese documents since complete words in Vietnamese are not identified and 
may consist of multiple separated syllables.  

It is not trivial to segment words in Vietnamese [7]. For example, the sentence 
“học sinh ra từ hành” may segment to “học/learning | sinh ra/become | từ/from | 
hành/practice” or to “học sinh/pupil | ra/go out | từ/of | hành/practice”. All the 
unigrams (single syllable) and bigrams (two syllables) from this example are 
meaningful and exist in a Vietnamese dictionary. However, only the first 
segmentation is semantically correct. In one of our projects, we are working on an 
algorithm that learns word segmentation from unlabelled documents with the help of 
a dictionary, but this paper describes an alternative approach.   

This paper analyzes text primarily at the morphological level, treating a document 
as a sequence of syllables. We represent a Vietnamese document at the syllable level 
as a bag of syllables. The bag-of-syllables model is simple to construct, and to our 
surprise, it is reasonably effective for easy classification tasks as shown in our 
experiments. One problem is that it is poor at capturing the semantic properties of a 
document because the majority of meaningful Vietnamese words consist of more than 
one syllable. So we introduce a bag-of-syllable-pairs model and represent documents 
as a sequence of syllable pairs. Since more than 80% of complete Vietnamese words 
consist of two syllables, we expect that the bag-of-syllable-pairs model is likely to 
capture many of the semantic properties of the document. Our experiments show it is 
effective and sufficient for our classification tasks. 

We also investigated an even lower level representation that breaks down each 
syllable into three parts: onset, rhyme and tone in order to capture the phonological 
structure of Vietnamese language. Our preliminary results showed that this 
representation is very effective for classifying documents into different styles, for 
example, to classify documents into ancient vs. modern, and to identify poems, songs 
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and dialogues. However, this low level representation is not very effective for general 
categorization tasks and these results are not included in this paper. 

4   Constructing the Corpus and the Testing Environment 

We created a corpus with about 18000 Vietnamese documents and made it publically 
available on the Internet. We constructed a test environment and plan to make it 
publically available too, so users can plug in their own algorithms and compare it with 
our approach. 

4.1   Vietnamese Document Corpus 

To our knowledge, there is no standard Vietnamese document corpus for text 
categorization. Therefore, we had to build our corpus from scratch. In order to create 
a good corpus, we collected documents from different sources (e.g. websites, emails, 
newspapers, etc), and made sure that the documents had a good range of document 
sizes, from hundreds to thousands of words. We manually labelled them by category 
and ensured that the categories were balanced, so the numbers of documents in each 
category were approximately equal. Our corpus allows ambiguous words and lexical 
errors. These documents are manually labeled using different criteria such as topics 
and styles, which construct multiple data sets with different classification tasks at 
different difficulty levels. The first two data sets used in this paper are detailed in this 
section. 

Our first data set, D1, contains modern Vietnamese documents from four general 
categories: Vietnamese Society, Sciences, Economy and Sport. Each category has 
approximately 4000 documents. The average document size is about 800 syllables or 
500 words. Each document has about 20 sentences divided into 5-6 paragraphs. The 
spelling error ratio is nearly 0.5%. 

Our second data set, D2, is a subset of 1743 documents from the first data set, but 
classified into two categories based on the type of document rather than on the topic 
of the document. The two categories were “Tu-lieu/Documentary” and “Phan-tich/ 
Analysis”. Both categories contain documents on a range of topics, but 
“Documentary” contains documents which give information about a fact or event in 
the past, whereas “Analysis” contains documents that discuss or analyse an issue. Of 
the 1743 documents in D2, 825 documents were manually classified into the 
“Analysis” category, and the other 918 documents into the “Documentary” category. 
About 15% of them are hard to classify even for a human expert.  

Data set D2 constitutes a more challenging classification task than D1.  Documents 
in one category of D1 are likely to share vocabulary associated with the topic of the 
category that is distinct from the vocabulary associated with the other topics.  
However, documents in both categories of D2 may be dealing with the same topic, 
facts and events and therefore the vocabularies of the documents of the two categories 
are likely to by much less distinct than in D1; many of the distinguishing features of 
the two categories in D2 are in the logical and semantic structure of the document that 
is lost in a morphological (or even lexical) model. 
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4.2   The Testing Environment  

Our current test environment compares six typical classification methods: Naïve 
Bayes(NB), K-Nearest Neighbour(KNN) and Support Vector Machine(SVM) with 
four different kernel functions including Linear (LSVM), Polynomial (PSVM), 
Gaussian (GSVM), and Sigmoid (SSVM). NB is a simple method that gives a useful 
baseline. For English text categorization, SVM-based and k-NN classifiers deliver top 
performance on many different experiments and data sets, e.g. Reuter-21578, Reuter-
22173(ModApte), or OHSUMED [1]. Our experiments tested whether they work well 
for Vietnamese text categorization. 

In our experiments, we use a small validation set Va (5% of the training set Tr) to 
optimize the parameters of these learning methods. For our text corpus, the number of 
neighbors in the KNN method is 32, and the parameters for SVM kernels are d=3 for 
the polynomial kernel, c=16 (ball radius = 4) for the Gaussian, and θ = 1.0 for the 
sigmoid kernel.  

Our current testing environment also supports two feature selection techniques: 
using information gain and an external dictionary for filtering the vocabulary. 

In our experiments, we use classification accuracy to evaluate the classification 
performance of the different algorithms on the data sets: Accuracy = TP / N where TP 
is the number of correctly classified documents and N is the number of test 
documents. In all the experiments, each classification algorithm was run ten times 
using a randomly selected 10% of the documents as training data using the remainder 
of the documents for testing. The average classification accuracy over the ten runs 
was used for the final results.  

5   Experimental Results 

Our document representation is tested on two data sets using six algorithms and two 
feature selection techniques. 

5.1   Bag-of-Syllables vs. Bag-of-Syllable-Pairs  

The first experiment was designed to compare the two document representations: bag-
of-syllables (“unigram”) and bag-of-syllable-pairs (“bigram”).  Both models are based 
on a bag-of-tokens model, but we expected the bigram model to lead to better 
classification accuracy than the unigram model because it captures more of the 
semantically meaningful elements of the documents. On the other hand, because the 
bigram representation involves a much larger vocabulary, we also expected it to be 
less efficient. We tested each representation of the documents in the D1 data set using 
six different algorithms. We measured both the quality (accuracy) and the efficiency 
(time consumed); the results are presented in Tables 1 and 2 below.  

As expected, the bigram representation achieves a higher accuracy for all 
algorithms but also takes considerable more time. However, for this classification 
task, the accuracy is extremely good for all the algorithms (regardless of the model), 
and there appears to be little difference between the accuracy of the algorithms. This 
demonstrates that representing Vietnamese documents at the morphological level is 
adequate for straightforward classification into topics, even when using the unigram 
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Table 1. Accuracy (%): unigram vs bigram 

 NB KNN LSVM PSVM GSVM SSVM 
syllable 97.8 97.5 98.1 98.1 98.0 98.1 
syllable pair 98.1 98.4 98.5 98.6 98.6 98.5 

Table 2. Time consumed (s): unigram vs bigram 

 NB KNN LSVM PSVM GSVM SSVM 
syllable 51 45 68 81 89 96 
syllable pair 235 228 305 655 832 925 

 
model. For this task, there appears to be no need to pursue the more expensive route 
of segmenting Vietnamese text into lexical words. 

5.2   Task Difficulty 

The second experiment was designed to compare the different algorithms on a harder 
classification task. We used the same six algorithms as in the previous experiment, 
but ran them on the harder data set D2, as well as on D1. We only used the bigram 
model since it showed slightly better performance in experiment 1. We expected the 
accuracy to be lower for D2, and perhaps a wider spread of accuracies across the 
algorithms. Table 3 shows the average accuracy of the six algorithms on the two data 
sets. 

Table 3. Accuracy of six methods on two clasification tasks 

NB KNN LSVM PSVM     GSVM SSVM 
D1 98.1 98.4 98.5 98.6 98.6 98.5 
D2 84.0 73.2 86.7 89.8 88.6 89.3 

 
The results confirmed our expectations, with a drop in accuracy of at least 9%,  

though we were surprised how well the best algorithms performed on the harder 
classification task, given that the human expert (who had access to the full semantic 
content of the document) considered that about 15% of the documents were very hard 
to classify.  

KNN was clearly the worst algorithm at the harder task – 16% worse than the best 
algorithm, and the SVM algorithms were the best. The polynomial kernel (PSVM) 
was the best of the SVM algorithms by a small margin. 

With an accuracy of almost 90% on this difficult classification task, it is clear that 
the bigram model, combined with SVM, can be successfully applied to Vietnamese 
document classification.   

However, the size of the bigram models means that the time cost of the 
classification algorithms is high. The remaining experiments explore various 
approaches to reducing the cost of the classification.  
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5.3   Dictionary Based Filtering 

The third experiment explored a method for reducing the model size which exploited 
semantic information.  In this case, we used the harder classification task of data set 
D2 in order to get a wider range of accuracies and used both the unigram and bigram 
models. We used a Vietnamese dictionary to identify and prune out grams that did not 
correspond to complete words. This reduced the total size of the unigram models to 
17% (from 30,000 to 5,000 grams), and the size of the bigram models to 10% (from 
300,000 to 30,000 bigrams).  

Again, we ran the six algorithms on the two different models with and without the 
dictionary based filtering. Table 4 shows the results. The four different SVM methods 
had very similar results so only the results for Linear SVM are presented.  

Table 4. Accuracy (%) with and without a dictionary 

Model Vocabulary NB KNN LSVM 

Unigram 
 

30K 

5K (dictionary) 

83.6 

82.1 

65.5 

74.3 

84.9 

82.1 

Bigram 
 

300K 

30K (dictionary) 

84.0 

85.1 

73.2 

78.4 

86.7 

85.9 

 
Interestingly, the accuracy increased for KNN in both unigrams and bigrams. We 

believe that this is because KNN is very sensitive to irrelevant features, such as the 
presence of semantically meaningless elements in the morphological-level models. 
We suggest that the dictionary is able to remove many of these features in a simple 
way. It also increased for NB in the bigram case, though not as dramatically. For 
SVM (and NB unigrams), the accuracy decreased very slightly, although the much 
smaller vocabulary represents a significant increase in efficiency. For SVM, which is 
more able to ignore irrelevant features than KNN, pruning non-word grams and 
bigrams actually loses a small amount of useful information. 

This experiment demonstrates that dictionary based filtering is a useful technique 
for feature selection in morphological-level models of Vietnamese text documents. 

5.4   Selection with Information Gain 

The fourth experiment uses a commonly used information theoretic approach to 
reduce the size of the document models. As in the previous experiment, we used the 
harder classification task of data set D2 and used both unigram and bigram models. 
We calculated the infogain measure for each term (unigram or bigram) in the data set, 
and then pruned from the document models all but the top M terms from the list of 
terms ordered by infogain.  

We ran the classification algorithms on the pruned documents using seven different 
values of M={3000, 2000, 1500, 1000, 500, 100, 50}. The accuracy of the unigram 
models was similar to that of the bigram models, and all the SVM algorithms also had 
similar results. Table 5 shows the results on the bigram models of NB, KNN, and LSVM. 
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Table 5. Using infogain for feature selection  

Number of terms NB KNN LSVM 
Full(300K) 84.0 73.2 86.7 

M=3000 85.5 77.3 83.4 

M=2000 85.1 79.8 82.1 

M=1500 84.8 80.6 82.4 

M=1000 84.9 81.5 80.8 

M=500 84.3 80.0 78.7 

M=100 72.7 72.1 71.5 

M=50 69.5 71.8 70.7 

 
As with the dictionary based pruning, KNN accuracy improves when the less 

informative features are pruned, with a maximum accuracy when the vocabulary is 
pruned to 0.33%. NB accuracy also improves, though less dramatically, but enough to 
make NB the best classifier for all but levels of pruning at the most extreme.   The 
infogain pruning can be far more extreme than the dictionary based pruning for the 
same loss of accuracy. 

The experiment shows that infogain is a very effective feature selection method for 
morphological-level models of Vietnamese documents. The size of the vocabulary 
can be significantly reduced from 300K to 100 with minimal impact on accuracy, and 
significant reduction in cost. 

6   Conclusions 

The paper has introduced a morphological level representation of Vietnamese text 
documents using bags of syllables and bags of syllable pairs. Our experiments show 
that it is possible to build highly effective classifiers using syllable based documents 
representations, particularly using the syllable pairs model. The SVM with a 
polynomial kernel appeared to be the best classification algorithm with this model. 
The experiments also demonstrated that using a dictionary and the InfoGain measure 
for feature selection is able to reduce the vocabulary size considerably with little loss 
in accuracy. We created a large text corpus with about 18000 documents and a testing 
environment with different learning algorithms and feature selection techniques which 
can be used in future research. 

This paper is one of the earliest attempts at text categorization for Vietnamese 
documents. We investigate a number of language features and a number of different 
classification tasks. But there are a lot of areas yet to be explored. In future work, we 
will explore further ways to enrich the bag-of-syllables models, for example, by 
taking into account the similarities between syllables, and the relatedness of bigrams. 
We are also working on word segmentation techniques, both to enable document 
representations at the lexical level and to provide better feature selection for the 
bigram model.  Finally, we are investigating ways of improving our classifier by 
adding further linguistic knowledge, for example, developing a new representation to 
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capture the phonological structure of Vietnamese language and enriching document 
representations using part-of-speech annotations. 
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Can Shallow Semantic Class Information Help
Answer Passage Retrieval?
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Abstract. In this paper, the effect of using semantic class overlap evi-
dence in enhancing the passage retrieval effectiveness of question answer-
ing (QA) systems is tested. The semantic class overlap between questions
and passages is measured by evoking FrameNet semantic frames using
a shallow term-lookup procedure. We use the semantic class overlap ev-
idence in two ways: i) fusing passage scores obtained from a baseline
retrieval system with those obtained from the analysis of semantic class
overlap (fusion-based approach), and ii) revising the passage scoring func-
tion of the baseline system by incorporating semantic class overlap evi-
dence (revision-based approach). Our experiments with the TREC 2004
and 2006 datasets show that the revision-based approach significantly
improves the passage retrieval effectiveness of the baseline system.

1 Introduction

Having received natural language questions, question answering (QA) systems
perform various processes (question analysis, information retrieval, and answer
processing) to return actual direct answers to the information requests eliminat-
ing the burden of query formulation and reading lots of irrelevant documents to
reach the exact desired information. This is because users usually seek not the
entire document texts but brief text snippets to specific questions like: “How
old is the President? Who was the second person on the moon? When was the
storming of the Bastille?” [1].

In the pipelined architecture of information retrieval-based QA systems, three
main processes are carried out: i) question processing to find the answer type of
the given question and formulate the best representative query, ii) information
(document and/or passage) retrieval using the query formed in the first step,
and iii) answer processing (answer extraction and scoring) in the most related
texts retrieved.

There are empirical studies in the domain of QA which show that the answer
processing task can be handled more effectively on the passage-level information
in documents rather than document-level texts [2][3][13][14][15]. In effectively
answering questions, the successful processing of candidate and actual answers
can be achieved by analyzing the passages which are most similar to the queries.
However, in many cases in the context of QA, relatedness of the passages is
not enough and specificity is required to have short texts containing real and
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potentially correct answers. This introduces new limitations in passage retrieval
and requires more precise retrieval processes to improve QA effectiveness.

The effectiveness of passage retrieval can be affected by two aspects: a) the
performance of the passage scoring and ranking algorithm, and b) the formu-
lation of representative queries. In this paper, we focus on the first aspect and
analyze the impact of using semantic class information in scoring and ranking
retrieved passages. We use FrameNet [4] frames to capture the semantic class of
question and passage predicates and utilize it in two ways: i) fusing the scoring
evidence from the baseline passage retrieval method (MultiText [5][6][16][17])
with the score that is obtained after semantic class overlap analysis between the
question and passage predicates, and ii) revising the passage scoring function of
the baseline retrieval system to incorporate the semantic class overlap evidence
in scoring retrieved passages. We call the first method a fusion-based method
and the second one a revision-based method.

Our fusion functions in the fusion-based method are based on the mathemati-
cal aggregation of the scores that are obtained from each type of evidence, while
in the revision-based method we modify the internal passage scoring function of
the baseline retrieval system by replacing a part of the function with the seman-
tic class overlap evidence. The main question in this paper is whether semantic
class overlap evidence, when fused or incorporated with other types of evidence,
can enhance the answer passage retrieval performance.

2 FrameNet Semantic Classes

Frame semantics, that has been developed from Charles Fillmore’s Case Struc-
ture Grammar [8][9], emphasizes the continuities between language and human
experience [10][11][12]. The main idea behind frame semantics is that the mean-
ing of a single word is dependent on the essential knowledge related to that word.
The required knowledge about each single word is stored in a semantic class. In
order to encapsulate frame semantics in such classes, the FrameNet project [4]
has been developing a network of interrelated semantic classes that is now a
lexical resource for English being used in many natural language applications.

The main entity in FrameNet is the frame which encapsulates the semantic
relation between concepts based on the scenario of an event. Each frame (seman-
tic class) contains a number of frame elements (FEs) which represent different
semantic and syntactic roles regarding a target word. For instance, in the frame
Personal relationship, partner 1 and partner 2 are two core FEs which partici-
pate in the scenario of having personal relationships. “Adultery.n”, “affair.n”,
“date.v”, and “wife.n” are examples of the terms (Lexical Units (LUs)) which
are covered by (and can evoke) this frame.

3 Baseline Passage Retrieval System

MultiText interprets all textual documents as a continuous series of words and
also interprets passages as any number of words starting and ending at any
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position in the documents. A document d is treated as a sequence of terms
{t1, t2, . . . , t|d|} and the query is translated to an unordered set of terms Q =
{q1, q2, . . . , q|Q|}. There are two definitions necessary:

– An extent over a document d is a sequence of words in d which contains
a subset of Q. It is denoted by the pair (p, q) where 1 ≤ p ≤ q ≤ |d|.
This is translated to the interval of texts in document d from tp to tq. An
extent (p, q) satisfies a term set T ⊆ Q if it includes all of the terms in T .

– An extent (p, q) is a cover for the term set T if it satisfies T and there is no
shorter extent (ṕ, q́) over the document d which satisfies T . A shorter extent
(ṕ, q́) is a nested extent in (p, q) where p < ṕ ≤ q́ ≤ q or p ≤ ṕ ≤ q́ < q. In
any document d there may be different covers for T which are represented
in the cover set C for the term set T .

The passages retrieved by MultiText are identified by covers and scored based
on the length of the passages and the weight of the query terms covered in the
passages. Each term t gets the IDF1-like weight wt as shown in Equation 1,
where ft is the frequency of the term t in the corpus and N is the total length
of the unique string constructed over the document set.

wt = log(
N

ft
) (1)

A passage containing a set T of the terms is assigned a score according to the
formula in Equation 2 where p and q are the start and end points of the passage
in the unique string of words in the document set.

Score(T, p, q) =
∑
t∈T

wt − |T |log(q − p + 1) (2)

The high performance of MultiText [7], as well as its frequent participation in
TREC [5], is the main reason for choosing MultiText as the baseline passage
retrieval method in our experiments.

4 Semantic Class Overlap Evidence for Passage
Specificity

4.1 Theory of Semantic Class Overlap

The existing passage retrieval algorithms which rely on surface structures of
passages and questions are dependent on the occurrences of exact matches of
syntactical features. As a result, their highest performance of retrieval cannot
reach very high levels due to the limitations imposed by syntactic structures.
Example 1 shows a case where surface structures fail to resolve the connection
between the answer-bearing passage and the question. The predicate “discover”
appears in the question whereas the answer-containing passage is formulated
using an alternative predicate “spot”.
1 Inverse Document Frequency.
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Example 1

Who discovered Hale-Bopp?

The comet, one of the brightest comets this century, was first spotted by Hale

and Bopp, both astronomers in the United States, on July 23, 1995.

These types of mismatches are tackled by other passage retrieval methods which
incorporate linguistic information. However, there are other types of mismatches
which are more complicated.

Example 2

Who is his [Horus’s] mother?

Osiris, the god of the underworld, his wife, Isis, the goddess of fertility, and

their son, Horus, were worshiped by ancient Egyptians.

In this example, there is no direct relationship between the terms “mother” and
“son”. To overcome such mismatches, we use the frame semantics encapsulated
in FrameNet. In the case of Example 2, for instance, the semantic class evoked
by “mother” in the question is Kinship which is the same as the semantic class
invoked by the predicate “son” in the passage. Such shared semantic classes
imply scenario-based similarities between questions and passages that may help
retrieval systems improve their performance. This can be carried out by consider-
ing semantic class similarity evidence in scoring and ranking retrieved passages.

4.2 Procedure

We use two types of evidence for scoring and ranking retrieved passages by the
baseline passage retrieval method explained in section 3:

– Passage relatedness scores obtained from the baseline passage retrieval sys-
tem (MultiText) on the basis of query terms coverage and passage length

– Semantic class similarity score obtained by comparing the semantic classes
in questions and retrieved passages

In order to measure the semantic class similarity of a given question q and a
passage p, we take the following steps:

– For each question term tq in question q, we evoke all frames from FrameNet
which include tq as a LU. The invocation of frames is based on a shallow
term-lookup in all FrameNet frames. A frameset framesq is formed by the
union of the frames evoked for the whole question term set.

– For each passage term tp in passage p, we evoke all frames from FrameNet
which include tp as a LU. A frameset framesp is formed by the union of the
frames evoked for the whole passage term set.

– We form the intersection of the two framesets framesq and framesp as the
semantic class overlap evidence (|framesq ∩ framesp|).

The two types of evidence (MultiText and semantic class overlap) are then used
to score retrieved passages by the MultiText passage retrieval system in two
ways.
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foreach passage in retrieved passages{ 
 mscore  get passage score from MultiText} 
shift mscores from [-x,+y] to [0,+z] 
foreach passage in retrieved passages{ 

if mscore/max(mscores) < threshold{ 
  fscore  semantic_class_overlap(question, passage) 
  if fscore>0{ 

passage_score  (fscore+1) ∆ mscore} 
  else{ 
   passage_score  mscore}} 
 else{ 
  passage_score  mscore}} 
foreach passage in retrieved passages{ 
 passage_score  passage_score/max(passage_scores) 

Fig. 1. Fusion of the MultiText evidence and semantic class similarity evidence for
passage scoring

Fusion-Based: We fuse the results obtained from the two above-mentioned
types of evidence using different operators and threshold values.

A fusion process in our experiments is defined by the pair (�, threshold). The
� operator is a mathematical operator, either addition or multiplication of the
scores obtained using the two types of evidence (� ∈ {+,×}). The threshold2

factor is the minimum MultiText score that is required for each passage in order
to not use any semantic class overlap evidence. The threshold factor in our
experiments includes two values threshold ∈ {0.5, 0.75}.

Figure 1 shows the pseudo code of the fusion process with a generic fusion
operator � and a generic threshold factor threshold.

Revision-Based: As an alternative approach, we change the passage scoring
function of MultiText (see Equation 2) to incorporate semantic class overlap
evidence in its cover scoring process. Equation 3 shows the new scoring function
that we use in MultiText where fscore(Psg) is the score obtained according to the
semantic class similarity of the question and passage Psg (this is measured using
the procedure explained in section 4.2). This approach generalizes the MultiText
coverage concept. In MultiText only exact matches are considered to calculate
the coverage rate. This is encapsulated in the |T | factor of Equation 2. By using
fscore(Psg) = |framesq ∩ framesp| instead of |T |, it is possible to consider
pairs of question and passage terms tq and tp as exact matches if they appear in
the same semantic class (FrameNet frame). However, it is important to notice
that in this approach, we are not expanding T itself and so the

∑
t∈T wt part

of Equation 2 remains intact. The only concept that we change is the coverage
rate of passages formulated in |T | by developing it to |framesq ∩ framesp|.

2 We use this threshold to avoid fusion where there is already much evidence for
passages to be containing answers.
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Score(Psg, T, p, q) =
∑
t∈T

wt − fscore(Psg)× log(q − p + 1) (3)

5 Empirical Analysis

5.1 Datasets

The datasets under experiment are the TREC 2004 and TREC 2006 factoid ques-
tion lists and their corresponding text collection - AQUAINT. The TREC 2004
question list contains 230 factoid questions. We have run the retrieval methods
on the subset of 208 questions for which there exists an answer in the document
collection. In the TREC 2006 track, there are 403 factoid questions. We have
run the experiments on 386 factoid questions in this set for which there is an
answer in the document collection.

5.2 Results

We have performed two types of retrieval effectiveness analysis for each passage
retrieval method:

Table 1. Analysis of the top 100 passages: the TREC 2004 dataset

1st answer passage rank
Method 1-25 25-50 50-75 75-100 Total Avg.
MultiText 127 15 7 2 151 12.27
Best fusion-based 120 19 8 2 149 14.29
Revision-based 134 9 5 4 152 11.08

Long-List Analysis: An analysis based on the top 100 passages retrieved to
observe the effect of each method in terms of the ranking of the first answer
passages. Table 1 and Table 2 show the results of this analysis for the TREC 2004
and TREC 2006 datasets. The Avg. column in these tables shows the average
rank of the first answer passage calculated over the total number of questions
for which an answer passage is found in the top 100 passages. From a set of
experiments with different fusion parameters (the addition and multiplication
operators) and two threshold values {0.5,0.75}, we only report the best fusion
method that uses the multiplication operator and selects 0.75 for the threshold
value formulated as the fusion task (×,0.75).

Short-List Analysis: An analysis based on the top 10, 15, and 20 passages re-
trieved by each method to test the effect of the methods regarding a small number
of retrieved passages. This analysis is more dedicated to information retrieval-
based QA systems where the final answer processing task can be more efficiently
and effectively carried out on a small number of retrieved text passages. Here,
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Table 2. Analysis of the top 100 passages: the TREC 2006 dataset

1st answer passage rank
Method 1-25 25-50 50-75 75-100 Total Avg.
MultiText 176 32 18 10 236 19.25
Best fusion-based 160 42 24 8 234 21.21
Revision-based 186 31 11 10 238 15.72

Table 3. Accuracy analysis of the top 10, 15, and 20 passages: the TREC 2004 and
TREC 2006 datasets

trec 04 trec 06
Method %@10 %@15 %@20 %@10 %@15 %@20
MultiText 48.07 53.36 57.21 28.75 36.01 40.15
Best fusion-based 41.82 47.11 52.88 28.23 33.67 37.56
Revision-based 50.48 58.17∗ 62.50∗ 37.04‡ 43.26† 45.33∗

we report the accuracy3, mean reciprocal rank (mrr)4, and F-measure5 of the
retrieval methods. For calculating F-measure, we do not calculate precision val-
ues at standard recall levels; instead, the precision values are evaluated at the
three levels of top 10, 15, and 20 passages retrieved. The main reason for this
is the importance of measuring the appearance of answer-containing passages
at high ranks. Therefore, our focus is on a limited number of top-ranked pas-
sages instead of the distribution of precision at a range of standard recall levels.
Table 3, Table 4, and Table 5 show the results regarding accuracy, mrr, and
F-measure respectively for both the TREC 2004 and TREC 2006 datasets. The
symbols ∗, †, and ‡ show the statistical significance with p < 0.25, p < 0.05, and
p < 0.01 respectively6. The statistical tests have been carried out between the re-
sults obtained by the MultiText and revision-based methods, leaving aside those
obtained by the best fusion-based method that do not show any improvement.

5.3 Discussion

From the results in Table 1 and Table 2, it can be seen that the fusion-based
method does not assist with retrieval of a greater number of answer passages in
either of the datasets. With regard to the high ranks (1-25 and 25-50), the fusion-
based method shifts a number of passages from the range of 1-25 to 25-50. As a
result, the average ranking of the first answer passage increases from 12.27 (by

3 Accuracy is calculated as the rate of questions with at least a single answer passage
to the total number of questions in each dataset.

4 mrr = 1
nq

∑nq

i=1
1

ari
, where nq is the total number of questions and ari stands for

the rank of the first answer-bearing passage for the question qi.
5 F1 = 2 × recall×precision

recall+precision
.

6 The t-test has been carried out to measure the statistical significance level of the
results.
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Table 4. mrr analysis of the top 10, 15, and 20 passages: the TREC 2004 and TREC
2006 datasets

trec 04 trec 06
Method mrr@10 mrr@15 mrr@20 mrr@10 mrr@15 mrr@20
MultiText 0.29 0.29 0.29 0.16 0.17 0.17
Best fusion-based 0.24 0.24 0.24 0.12 0.13 0.13
Revision-based 0.30 0.30 0.30 0.25‡ 0.25‡ 0.25‡

Table 5. F-measure analysis of the top 10, 15, and 20 passages: the TREC 2004 and
TREC 2006 datasets

trec 04 trec 06
Method F1@10 F1@15 F1@20 F1@10 F1@15 F1@20
MultiText 0.098 0.076 0.061 0.058 0.049 0.042
Best fusion-based 0.085 0.067 0.056 0.054 0.044 0.038
Revision-based 0.103 0.081∗ 0.068∗ 0.070† 0.058† 0.047∗

MultiText) to 14.29 by the best fusion-based method. The results summarized
in Table 3, Table 4, and Table 5 also show that not only is the best fusion-based
method not able to improve the results of the baseline MultiText method, but
also it damages the retrieval effectiveness of MultiText in terms of accuracy, mrr,
and F-measure in the both TREC 2004 and TREC 2006 datasets.

We have carried out a set of experiments using the fusion-based methodology
(only the best of which reported here). Our experiments consisted of different set-
tings for the fusion operation including the mathematical addition and multipli-
cation of the scores obtained from each type of evidence (� ∈ {+,×}, see section
4.2). We also experimented with two threshold values threshold ∈ {0.5, 0.75} for
using the semantic class overlap evidence. Surprisingly, none of the fusion-based
runs could improve the baseline effectiveness of MultiText. We are planning to
carry out an accurate failure analysis to possibly learn ways of improving the
fusion-based method.

The revision-based method, however, outperforms MultiText in the exper-
iments on both datasets shown in Table 1 and Table 2. The revision-based
method retrieves 7 and 10 more answer passages in the range of 1-25 passages
in the TREC 2004 and TREC 2006 datasets respectively. On average, the first
answer passage by the revision-based method has the rank of 11.08 and 15.72
in the top 100 passages (for the TREC 2004 and TREC 2006 datasets). This is
better than the average ranks 12.27 and 19.25 achieved by MultiText.

Considering the results shown in Table 3, Table 4, and Table 5, the revision-
based method quite significantly outperforms MultiText at the levels of top 15
and top 20 passages in terms of accuracy and F-measure in the TREC 2004
dataset. In terms of mrr, however, there is no significant improvement achieved
using the revision-based method in the same dataset.
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With respect to the TREC 2006 dataset, the accuracy, mrr, and F-measure of
the results obtained by the revision-based method are significantly higher than
those of the results obtained by MultiText at all retrieval levels.

All our results (which are promising regarding the revision-based method) are
based on a term-lookup approach to identifying FrameNet frames. The frame
evocation task can be further elaborated by using a shallow semantic parser
that can perform word sense disambiguation and focus on the exact semantic
classes of terms. This would, however, introduce more complexity to the process
of measuring semantic class overlap in terms of efficiency. On the other hand,
existing shallow semantic parsers are still far from the best parsing performance
that could be achieved.

6 Conclusion

We have tested the effect of using semantic class overlap evidence in enhancing
the passage retrieval effectiveness for QA systems. To measure the semantic class
overlap between questions and passages, we have used a shallow term-lookup
procedure in FrameNet frames to evoke a set of semantic classes related to each
question/passage term. We have exploited the semantic class overlap evidence
in a fusion-based method and a revision-based method in an effort to enhance
the retrieval effectiveness of a baseline passage retrieval method (MultiText).

In our experiments with the TREC 2004 and TREC 2006 datasets, the fusion-
based method fails in improving the baseline MultiText method and we are plan-
ning to conduct a failure analysis task to understand the underpinning reasons
for this.

The revision-based approach that incorporates semantic class overlap evidence
in the passage scoring function of MultiText has, however, significantly improved
the answer passage retrieval effectiveness of the baseline system. This has been
achieved at high retrieval levels in terms of the accuracy, mrr, and F-measure
evaluation metrics in the both TREC 2004 and TREC 2006 datasets. This is
more significant when considering our shallow frame invocation process that
does not involve any shallow semantic parsing stage which is recognized as a
real challenge in natural language processing.
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Abstract. In this paper, we describe a system for automatic correc-
tion of English. Our system uses rules based on article context features,
and generates new abstract rules by Semantic Category Based Inductive
Learning that we proposed before. In the experiments, we achieve 93%
precision with the best set of parameters. This method scored higher
than our previous system, and is competitive with a related method for
the same task.

1 Introduction

Using articles correctly is difficult for Japanese learners of English. Lee[1] re-
ported that native speakers of languages which do not have any articles often
have difficulty in choosing appropriate English articles, and tend to underuse
them. Also Kawai et al.[2] reported there are many article errors in English
written by Japanese.

In view of these circumstances, various methods for automatic detecting or
correcting article errors have been proposed in the past. Kawai et al.[2] proposed
a rule-based method which uses rules made by hand based on linguistic knowl-
edge. To make such rules much effort and a lot of expenses are needed, and it is
very difficult to achieve good coverage of articles usage. Izumi et al.[3] trained a
maximum entropy classifier to recognize various errors including articles using
contextual features. They reported the results for different error types (omission
- precision 76%, recall 46%; replacement - precision 31%, recall 8%). Yi et al.[4]
proposed a web count-based system for article error correction achieving preci-
sion 62% and recall 41%. De Felice et al[5] proposed a classifier-based approach
to correct article and preposition errors (accuracy 92% for articles).

We also proposed an article error correction system[6] which corrects errors us-
ing rules extracted and generated automatically by Inductive Learning[7]. Apart
from the performance, it has an advantage of being more understandable while
investigating why a given article was erroneous because of using rules. However,
its performance needs to be improved.

To improve the performance of our system, we propose an introduction of
WordNet category information into rules for article error correction and Semantic

A. Nicholson and X. Li (Eds.): AI 2009, LNAI 5866, pp. 597–606, 2009.
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Category Based Inductive Learning. Considering semantic category information,
the learning process of our system can generate more reliable rules even though
the system does not have any rules with the same head noun as user input. We
aim to improve precision of article error correction.

The rest of the paper is organized as follows. In section 2, we describe details of
the proposed system. In section 3, we evaluate the system and finally conclusions
are given in section 4.

2 System

Fig. 1 shows the process flow of our system. When the system gets English sen-
tences including article errors, it extracts feature slots. Using the resultant fea-
ture slots, the system extracts moderate amounts of rules from the rule database
in order to generate abstract rules by Inductive Learning that is described in
2.3. The system corrects article errors by the correction algorithm using the
resultant rules. In the correction algorithm, the system calculates scores of rules
to rank them by reliability.

We describe the details for each part of the process below.

2.1 Feature Slots and Rules

We use similar feature slots and rules as our previous system[6]. Consulting liter-
ature concerning usage of articles[8,9], we define feature slots that can be easily
extracted automatically for the context within a sentence. A difference between
the proposed system and our previously proposed system[6] is whether slots for
nouns and verbs have WordNet category information or not. The proposed sys-
tem extracts category information from WordNet 3.0 when it extracts feature

extract

feature slots 

user input

feature slots

rule

DB

outputs

extract

rules

rules

IL process

calculate score

output result

Correction algorithm

correct errors

outputs

training

corpus

construct in advance 

from training corpus

Fig. 1. Process flow
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Target

Head
ball

(noun.artifact)

Preceding Noun soccer

Phrase NP

Preposition -

Preceding verb
be

(verb.stative)

Following verb -

Number singular

Proper noun no

Following

Preposition

Preposition -

Determiner -

Nouns -

Head -

Modifier -

Infinitive

Verb -

Determiner -

Object -

Adverb -

Relative

Subject I

Verb
buy

(verb.possession)

Determiner -

Object -

Adverb yesterday

Preceding

Modifier only

Modifier POS RB

Article

the

*) Slot element “-” means that no corresponding element is present.

(i) This is the only soccer ball which I bought yesterday.

Fig. 2. An example of a rule

slots. There are 26 semantic categories for nouns (e.g. ‘noun.act’, ‘noun.food’),
and 15 categories for verbs (e.g. ‘verb.change’, ‘verb.creation’). A rule consists
of a combination of an article and such feature slots. They are extracted from
POS-tagged and chunked sentences automatically.

The feature slots and rule extracted from “soccer ball” in sentence (i) is as
shown in Fig. 2. Feature slots consists of three categories, Target, Preceding
and Following. Target category has context information about a target noun.
Since “soccer ball” is a compound noun, “ball” is put into the Head slot and
“soccer” is put into Preceding Noun. Head “ball” has category “noun.artifact”
and Preceding verb has category “verb.stative”. These categories are also put
into Head and Preceding verb slots respectively. The Preceding category means
modifiers preceding the target noun phrase, such as an adjective or adverb. The
Following category contains information about modifiers following the target
noun, such as prepositions, infinitive and relative clauses.

A requirement when applying rules to new text is that the rule feature slots
and the context of the target noun must agree. If the slot element is “-”, it counts
as agreeing with any other element.

2.2 Rule Extraction

After extracting feature slots of user input, the system tries to extract rules that
have feature slots similar to the user input from a rule database. These extracted
rules are used in next learning process. The rule database is constructed from a
training corpus in advance. The reason why we try to extract moderate amounts
of rules for every user input is that it is impossible for the system to generate
rules from the whole large corpus (say over 100 million words) because of the
exponential growth of the recursive Inductive Learning.
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When the system receives feature slots of user input, it searches rules from
the rule database using queries based on feature slot elements of the input. The
query patterns are as follows, in priority order:

1. Target Preposition and Preceding Modifier and Target Head
2. Target Preceding Verb and Target Head and Following Preposition

Preposition
3. Preceding Modifier and Target Head
4. Target Preceding Verb and Target Head
5. Target Preposition and Target Head
6. Target Head and Following Preposition Preposition
7. Target Head
8. Preceding Modifier

If the system cannot extract rules by a query including Target Head or Target
Preceding Verb element, it generates a new query that includes the semantic
category information of the element instead of the element value. Using such
queries with semantic category information, the system can get appropriate rules
to be used in the learning process even though the rule database has no identical
words as head nouns or verbs of user input.

2.3 Rule Abstraction

The system generates new abstract rules from extracted rules based on Induc-
tive Learning (IL) that is proposed by us originally. IL is defined as discovering
inherent regularities from actual examples by extracting their common and dif-
ferent parts recursively[7]. In our case, the actual examples are represented as
the feature slots extracted from training data.

In the IL process, by extracting common and different elements recursively
from comparison of feature slots of two rules, abstract rules are generated one
after another. The abstract rules have the common parts of elements and another
parts are abstracted.

However, by IL, abstract rules have only two kinds of elements, concrete
element and full abstract element. Full abstract element is allowed to agree
with any element. There is a possibility that many abstract rules which are too
generalized and possess lower reliability are generated because of ease of full
abstraction.

In this paper, we propose Semantic Category Based IL (SCB-IL). SCB-IL
supplies additional granularity for rule abstraction, which abstract rules can have
abstract elements with category information. We aim both to enhance accuracy
of error correction and to carry on versatility of abstract rules using SCB-IL.

Fig. 3 shows an example of rule abstraction by SCB-IL. In Fig. 3, rule 1 is the
same as Fig. 2 from sentence (i). Rule 2 and rule 4 are extracted from sentence
(ii) and (iii) respectively.

Rule 3 is an abstract rule generated from rule 1 and rule 2. These two upper
rules have many common slot elements: all of Preceding, a portion of Target
and the article. The other elements differ. Target Head elements also differ, but
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Target

Head
ball

(noun.artifact)

Preceding Noun soccer

Phrase NP

Preposition －

Preceding verb
be

(verb.stative)

Following verb －

Number singular

Proper noun no

Preceding
Modifier only

Modifier POS RB

Article

the

*) For clarity, the Following category is not included.

Target

Head
guitar

(noun.artifact)

Preceding Noun －

Phrase NP

Preposition －

Preceding verb
have

(verb.possession)

Following verb －

Number singular

Proper noun no

Preceding
Modifier only

Modifier POS RB

Article

the

Target

Head
*

(noun.artifact)

Preceding Noun －

Phrase NP

Preposition －

Preceding verb *

Following verb －

Number singular

Proper noun no

Preceding
Modifier only

Modifier POS RB

Article

the

Target

Head
child

(noun.person)

Preceding Noun －

Phrase NP

Preposition －

Preceding verb
have

(verb.stative)

Following verb －

Number singular

Proper noun no

Preceding
Modifier only

Modifier POS RB

Article

the

Target

Head *

Preceding Noun －

Phrase NP

Preposition －

Preceding verb *

Following verb －

Number singular

Proper noun no

Preceding
Modifier only

Modifier POS RB

Article

the

Rule 1 from (i)

Rule 3

Rule 5

(i) This is the only soccer ball which I bought yesterday.

(ii) I have the only guitar.

(iii) Bobby is the only child in his family.

Rule 2 from (ii)

Rule 4 from (iii)

Fig. 3. An example of when the SCB-IL process generates new abstract rules

these categories are the same. SCB-IL thus generates rule 3 as a new abstract
rule which has these common slot elements, an abstract element with category
information and full abstract elements at the differing slots. If slots of source
rules have different kinds of categories as Target Head slots of rule 3 and rule
4, the slot of the resultant rule is fully abstracted as rule 5. In Fig. 3, elements
with “*” similarly to “-” mean the slot is allowed to agree with any element.

If the only requirement for SCB-IL was that two rules must have common
slot elements, many rules abstracted too much would be generated. Thus, we
add the requirements that the article elements of the rules must agree and that
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Target Head or Preceding Modifier must also agree. If Target Head elements
disagree but their categories agree, the system can continue SCB-IL. SCB-IL
then generates rules recursively until no rules meeting these requirements remain.

2.4 Calculation of Scores for Rules

After preparing rules for error correction, the system calculates reliability scores
for each rule using the rule database. This is because we assume rules in the rule
database that is constructed from error free training corpus are very reliable.

Next we define “NA (Number of times Applied)” and “NAC (Number of
times Applied Correctly)”. NA means the number of times that a rule is ap-
plicable (context matches feature slots) in the rule database. NAC means the
number of times that the rule is applicable and the article used is the same as
the one suggested by the rule. The score of the rules is defined by the following
formula:

score =
NAC

NA
(1)

As in the case of our previous system[6], when correcting article errors, the
system prefers rules with high specificity levels. Specificity level means the pro-
portion of non-wild card elements (i.e., other than “-” and “*”) to all feature
slots. If there are some rules with the same specificity levels, the system prefers
the ones with high scores.

We set a threshold parameter θ for the system. The system uses only rules
with scores greater than or equal to θ. Therefore, the system may suggest more
than one articles.

3 Experiments

In this section, we describe the evaluation experiment and a comparison with our
previous system[6]. Our previous system[6] has no semantic category information
in the rule. We evaluate effectivity of rules with semantic category and SCB-IL.
Additionally, we compare the proposed system to a baseline and other methods.

3.1 Training Corpus and Test Data

We use the Reuters Corpus[10] (about 188 million words) as a source of the
rule database. Constructing the rule database from the corpus in advance, it has
46,140,689 rules. We use Brill’s Tagger[11] to extract feature slots from tagged
sentences. The test data is sentences that include 2,269 article instances from
the Reuters Corpus separate from the rule database. Since the test data does not
include article errors, we evaluate whether the system suggests the same article
as in the test data.

3.2 Experimental Procedures

We compare the proposed system and our previous system[6] results to the test
data for θ = 0 to 1 with 0.2 increments in between, and evaluate its precision
(P ) and recall (R) that are defined as follows:
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P =
the number of suggesting articles correctly

articles for which at least one rule matches the context
(2)

R =
the number of suggesting articles correctly

all existing articles in the test data
(3)

And we also define F (F -measure) as follows:

F =
2 · P · R
P + R

(4)

A requirement of suggesting articles correctly is that the rule with the highest
score suggests the correct article.

Our proposed and previous systems need many rule extraction and abstrac-
tion processes if input has many noun phrases. Furthermore, these are not very
lightweight processes. Therefore, in this experiment, we set 20 as the upper limit
of the number of extracting rules from the rule database per noun phrase.

3.3 Results and Discussion

Fig. 4, 5 and 6 show the results of precision, recall and F -measure respectively.
The threshold θ has a little effect on the change of the precision and recall of
both systems, except for θ = 1.0 in Fig. 5. The reason why only θ = 1.0 degrades
the recall is that there are very fewer rules with score 1.0 than others. In the
course of the scores calculation, many rules have scores less than 1.0 even if the
rule is reliable. Many reliable rules have scores close to 1.0 but not equal to 1.0.

Comparing both systems, the proposed system achieves better precision than
the previous system in every θ as Fig. 4. The best precision of the proposed
system is 0.93 with θ = 0.8. That of the previous system is 0.87 with θ = 1.0.
On the other hand, the previous system has better recall performance than
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the proposed system as Fig. 5. We consider the reason is the effect of SCB-IL
which generates more specific rules than IL, as rules with semantic categories.
Conversely, rules by IL are more general and easier to be applied to various
contexts. However, the proposed system achieves better F -measure for about 2%.
Therefore, the new method is more effective for error correction performance,
especially accuracy.

Table 1 relates our results to other system[5] reported in the literature on
comparable tasks for individual articles. In our system, it is not possible to
find a correlation between the number of rules seen in rule database (“a”:8%,
“the”:20%, “null”:72%) and precision and recall. We consider that the lowest
performance for “the” is attributed to a lack of information of a rule. Choice of
a definite article depends not only on context within a processed sentence but
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Table 1. Individual articles results

System Article Precision Recall

a - 0.00
Baseline the - 0.00

null 0.72 1.00
a 0.71 0.54

De Felice et al.[5] the 0.85 0.92
null 0.99 0.99
a 0.94 0.82

Our system (θ = 0.8) the 0.88 0.69
null 0.94 0.79

also on context of the preceding sentence or semantic information. A currently
used rule has no information about the preceding sentence and sense except for
WordNet category. We believe that the rule should have such information for
performance improvement about definite articles.

In Table 1, The baseline refers to the most frequent article, “null”. Our system
outperforms baseline in the comparison of precision. And in comparison of our
system and De Felice et al.[5], our system gets over 20% better performance of
both precision and recall for “a”. For other articles, our system can achieve similar
precision to theirs. However, recall of our system is about 20% lower than theirs
except for “a”. Our system suggests no article when it cannot generate rules that
matches input context and we consider it as one of the factors of lower recall.

4 Conclusions and Future Work

In this paper, we proposed a system for correcting article errors based on au-
tomatic rules generation by Semantic Category Based Inductive Learning. Our
proposed system achieved better precision performance than our previous sys-
tem. We confirmed that the introduction of WordNet category information into
rules for article error correction and SCB-IL have positive effect on our system.

However, our experiments are not sufficient in the following respects. First, the
size of test data is too small. For example, De Felice et al.[5] used over 300,000
article contexts for test data. Second, our experiments have no error correction
for sentences that are written by second learners of English. We try to evaluate
the system with larger test data and with sentences including article errors by
the second learners of English in the near future.
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Abstract. This paper describes a probabilistic mechanism for the interpretation
of utterance sequences in a task-oriented domain. The mechanism receives as in-
put a sequence of sentences, and produces an interpretation which integrates the
interpretations of individual sentences. For our evaluation, we collected a corpus
of hypothetical requests to a robot, which comprise different numbers of sen-
tences of different length and complexity. Our results are promising, but further
improvements are required in our algorithm.

1 Introduction

DORIS (Dialogue Oriented Roaming Interactive System) is a spoken dialogue system
under development, which will eventually be mounted on a household robot. In this
paper, we describe our most recent work on Scusi?, DORIS’s language interpretation
module, focusing on its mechanism for the interpretation of a sequence of utterances.

People often utter several separate sentences to convey their requests, rather than
producing a single sentence that contains all the relevant information. For instance,
people are likely to say “Go to my office. Get my mug. It is on the table”, instead of
“Get my mug on the table in my office”. This observation, which was validated in our
corpus study (Section 4), motivates the mechanism for the interpretation of a sequence
of utterances presented in this paper.

Our previous work focused on interpreting single-sentence utterances, where each
sentence is a command to DORIS [1]; and two-sentence utterances, where one sentence
is a command, and the other further specifies the command [2]. In this paper, we extend
our previous work, offering a probabilistic mechanism for interpreting multi-sentence
utterances.1 This mechanism combines sentence mode classification (declarative or im-
perative), sequential coreference resolution, and sequential sentence interpretation to
produce integrated interpretations of multi-sentence requests, and estimate the proba-
bility of these interpretations. Specifically, the sentence mode classification determines
whether the interpretation of a sentence in a request should be combined with the inter-
pretations of other sentences; and the coreference resolution determines which portions
of the individual interpretations should be combined.

Our evaluation demonstrates that our mechanism exhibits creditable performance
for requests comprising different numbers of sentences of different length and level

1 Since all of our test utterances are requests (Section 4), we henceforth refer to them as requests.
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of complexity, and highlights particular aspects of our algorithms that require further
inspection (Section 4).

This paper is organized as follows. In the next section, we describe our mechanism
for interpreting an utterance sequence. In Section 3, we present our formalism for esti-
mating the probability of an interpretation. The performance of our system is evaluated
in Section 4, followed by related research and concluding remarks.

2 Interpreting a Sequence of Utterances

We reported in previous work [1,2] that Scusi? follows a pipeline architecture, where
a speech wave is first transformed to text, which is then parsed with the Charniak
parser2 [3]. The resultant parse tree is then converted to an Uninstantiated Concept
Graph (UCG) — a meaning representation based on Concept Graphs [4], which is fi-
nally grounded to a virtual world in the form of an Instantiated Concept Graph (ICG).
Figure 1 shows the pictorial and textual form of a UCG sequence generated for the re-
quest “Go to the desk near the computer. The mug is on the desk near the phone. Fetch
it for me.” (this request is typical of our corpus).3

go to neardesk computer

on

near phone

desk

mug fetch

object

for me

it

S0: Go to the desk near the computer.

S1: The mug is on the desk near the phone. S2: Fetch it for me.

go−(to−desk−(near−computer))

objectfetch−( −it)−(for−me)mug−(on−desk)−(near−phone)

Fig. 1. Sample UCGs for a 3-sentence sequence

In this paper, we extend our previous work to interpret multi-sentence requests. To
avoid issues arising from speech recognition error, and focus on the integration of
single-sentence interpretations, we assume that we have the correct text for the speech
wave. Further, we focus on the interpretation process up to the UCG stage. This process
is broken down into four tasks: (1) generating candidate UCG sequences from individ-
ual UCGs, (2) determining the sentence mode of the individual sentences, (3) resolving
the coreferences in a sentence sequence, and (4) merging the UCGs in a sequence.

2.1 Generating Candidate UCG Sequences from Individual UCGs

The interpretation of a multi-sentence request starts by composing candidate UCG se-
quences from the candidate UCGs generated for each sentence. The process of

2 Version of August 2009 using a language model trained on the Brown Corpus.
3 The textual form is a short-hand representation which will be used in the rest of the paper.
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Sentence UCG Prob.
S0 go-(to-desk-(near-computer)) 0.6

∗∗∗go-(to-desk)-(near-computer) 0.4
S1 mug-(on-desk)-(near-phone) 0.55

mug-(on-desk-(near-phone)) 0.45
S2 fetch-(object-it)-(for-me) 0.8

∗∗∗fetch-(object-it-(for-me)) 0.2

(a) Top two UCGs for the individual sentences

Prob. Candidate UCG sequence
go-(to-desk-(near-computer))

0.264 mug-(on-desk)-(near-phone)
fetch-(object-it)-(for-me)
go-(to-desk-(near-computer))

0.216 mug-(on-desk-(near-phone))
fetch-(object-it)-(for-me)

(b) Top two candidate UCG sequences

Fig. 2. Example of candidate UCG sequence generation

transforming parse trees to UCGs has been described in [1]. Since the intended parse
tree for a sentence is often not top ranked by the Charniak parser, we decided to con-
sider up to 50 parse trees for each sentence during the interpretation process, which
yields multiple UCGs for each sentence. The candidate UCG sequences are generated
by combining the most probable UCGs for the individual sentences (the calculation of
the probability of a UCG is described in [1] and outlined in Section 3). For example,
Figure 2(a) shows the top two UCGs generated for each sentence in Figure 1, together
with their probabilities. The top two UCG sequences produced from these UCGs appear
in Figure 2(b). Given the combinatorial nature of the process for generating candidate
UCG sequences, we applied a thresholding technique to limit the total number of can-
didate UCG sequences. Using this technique, a candidate UCG sequence is retained for
further processing only if its probability matches or exceeds a threshold relative to the
probability of the top-ranked candidate UCG sequence.4

2.2 Determining the Sentence Mode for Individual Sentences

Since a user’s request contains commands (imperative sentences) and specifications to
the commands (declarative sentences), it is necessary to distinguish between these two
types of sentences so that we can determine how the information in these UCGs should
be combined. This is the task of sentence-mode classification. At present, we consider
only two modes: imperative and declarative.

We trained a Maximum Entropy based classifier5 [5] to assign mode to the sentences
in our corpus. The features used (obtained from the highest probability parse tree for a
sentence) are: (1) top parse-tree node; (2) types of the top level phrases under the top
parse-tree node combined with their positions, e.g., (0, NP), (1, VP), (2, PP); (3) top
phrases under the top parse-tree node reduced to a regular expression, e.g., VP-NP+

to represent, say, VP NP NP; (4) top VP head – the head word of the first top level
VP; (5) top NP head – the head word of the first top level NP; (6) first three tokens in
the sentence; and (7) last token in the sentence. Using leave-one-out cross validation,
this classifier has an accuracy of 99.2% on the test data — a 33% improvement over the
majority class (imperative) baseline. As for the generation of candidate UCG sequences,
we applied a threshold to retain the most probable sentence-mode sequences.

4 We use an empirically determined threshold of 80% for all stages of the interpretation process.
The interpretations whose probability is below this threshold are marked with an asterisk (∗∗∗).

5 http://homepages.inf.ed.ac.uk/s0450736/maxent_toolkit.html

http://homepages.inf.ed.ac.uk/s0450736/maxent_toolkit.html
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2.3 Resolving the Coreferences in a Sentence Sequence

UCGs obtained from declarative sentences usually contain descriptions of objects. In
order to produce a fully specified UCG sequence, these descriptions must be appropri-
ately incorporated in the (declarative or imperative) UCGs which mention these objects.
A first step in this process is the resolution of the coreferences in the noun phrases of
the UCGs.

Scusi? handles pronouns, one-anaphora (e.g., “the blue one”) and NP identifiers (e.g.,
“the book”). At present, we consider only exact matches between NP identifiers and
referents, e.g., “the cup” does not match “the dish”. In the future, we will incorporate
similarity scores, e.g., Leacock and Chodorow’s WordNet-based scores for approximate
lexical matches [6]; such matches occurred in 4% of our corpus (Section 4).

To reduce the complexity of reference resolution across a sequence of sentences, and
the amount of data required to reliably estimate probabilities (Section 3), we separate
the coreference resolution problem into two parts: (1) identifying the sentence being
referred to, and (2) determining the referent within that sentence.

Identifying a sentence. Most referents in our corpus appear in the current, previous or
first sentence in a sequence, with a few referents appearing in other sentences. Hence,
we have chosen the sentence classes {current, previous, first, other}. The probability
of referring to a sentence of a particular class from a sentence in position i is estimated
from our corpus, where i = 1, . . . , 5, > 5 (there are only 13 sequences with more
than 5 sentences). This distribution is estimated for each fold of the leave-one-out cross
validation (Section 4).

Determining a referent. We use heuristics based on those described in [7] to classify
pronouns, and heuristics based on the results obtained in [8] to classify one-anaphora.
If a term is classified as a pronoun or one-anaphor, then a list of potential referents is
constructed using the head nouns in the target sentence. We use the values in [7] to
assign a score to each anaphor-referent pair according to the grammatical role of the
referent in the target UCG (obtained from the highest probability parse tree that is a
parent of this UCG). These scores are then converted to probabilities using a linear
mapping function.

After we have calculated the coreference scores for every pair of noun phrases in
a request, we generate candidate coreference sequences using the same thresholding
method as for the UCG and sentence-mode sequences.

2.4 Merging the UCGs in a Sequence

After the candidate sequences of UCGs (US), sentence modes (MS) and coreferences
(CS) have been determined, we generate the most probable combinations of these can-
didate sequences. For example, Figures 3(a) and 3(b) respectively show the top two
candidate sentence-mode sequences and coreference sequences for the 3-sentence re-
quest in Figure 1, together with their probabilities (the (desk(s1),desk(s0)) coreference
pair is omitted for clarity of exposition). The resultant top two combinations of UCG,
mode and coreference sequences and their probabilities appear in Figure 3(c). The UCG
sequences differ in the attachment of the prepositional phrase (PP) “near the phone”
(boldfaced).
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Prob. Sentence mode sequence
0.8 Imperative, Declarative, Imperative
0.1 ∗∗∗Imperative, Imperative, Declarative

(a) Candidate sentence-mode sequences

Prob. Coref. resolution sequence for pronouns
0.48 [(it, mug)]
0.384 [(it, phone)]

(b) Candidate coreference resolution sequences

Prob. Candidate combinations
{Sentence mode: [Imperative, Declarative, Imperative] }, {Coref.: [(it, mug)]}

0.1014 {UCG: [go-(to-desk-(near-computer)), mug-(on-desk)-(near-phone),
fetch-(object-it)-(for-me)]}

{Sentence mode: [Imperative, Declarative, Imperative]}, {Coref.: [(it, mug)]}
0.0829 {UCG: [go-(to-desk-(near-computer)), mug-(on-desk-(near-phone)),

fetch-(object-it)-(for-me)]}

(c) Top two candidate combinations

Fig. 3. Example of combined candidate sequences

Given a combination of USi, MSj and CSk, we first replace the pronouns in the
UCGs of USi with their antecedents. We then aggregate the information about the ob-
jects mentioned in the declarative UCGs by merging these UCGs (the algorithm for
merging two UCGs is described in [2]). The resultant (possibly merged) declarative
UCGs are combined with imperative UCGs that mention the objects described in the
declarative UCGs. For example, the third UCG in the top-ranked candidate in Fig-
ure 3(c) yields fetch-(object-mug-(on-desk)-(near-phone))-(for-me). The generation of
a fully specified UCG sequence takes under 1 second on a typical desktop.

A limitation of this merging process is that the information about the objects speci-
fied in an imperative UCG is not aggregated with the information about these objects in
other imperative UCGs. This may cause some imperative UCGs to be under-specified.

3 Estimating the Probability of a Merged Interpretation

We now present a formulation for estimating the probability of a sequence of UCGs,
which supports the selection of the sequence with the highest probability.

One sentence. The probability of a UCG generated from a sentence T is estimated as
described in [1].

Pr(U |T ) ∝
∑

P Pr(P |T )·Pr(U |P ) (1)

where T , P and U denote text, parse tree and UCG respectively. The Charniak parser
returns an estimate of Pr(P |T ); and Pr(U |P )=1, since the process of generating a
UCG from a parse tree is deterministic.

A sentence sequence. An interpretation of a sequence of sentences T1, . . . , Tn com-
prises a sequence of (possibly merged) UCGs U1, . . . ,Um obtained by combining
the UCGs for individual sentences U1, . . . , Un as prescribed by their mode sequence
M1, . . . , Mn and coreference sequence R1, . . . , Rn. Thus, the probability of an inter-
pretation of a sequence of sentences is

Pr(U1, . . . ,Um) = Pr(U1, . . . ,Un,M1, . . . ,Mn,R1, . . . ,Rn|T1, . . . ,Tn)
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By making judicious conditional independence assumptions, and incorporating parse
trees into the formulation, we obtain

Pr(U1, . . . ,Um) =
∏n

i Pr(Ui|Ti)·Pr(Mi|Pi, Ti)·Pr(Ri|P1, . . . , Pi) (2)

This formulation is independent of the number of UCGs (m) in the merged sequence,
thereby supporting the comparison of sequences of different lengths (which are pro-
duced when different numbers of mergers are performed).

Pr(Ui|Ti) is obtained from Equation 1, and Pr(Mi|Pi, Ti) is obtained as described in
Section 2.2, where Pi is the highest-probability parse tree for sentence i (recall that the
input features to the classifier depend on the parse tree and the sentence).

To estimate Pr(Ri|P1, . . . , Pi) we assume conditional independence between the
identifiers in a sentence, yielding

Pr(Ri|P1, . . . , Pi) =
∏ki

j=1 Pr(Rij |P1, . . . , Pi)

where ki is the number of identifiers in sentence i, Rij is the referent for anaphor j in
sentence i, denoted Aij , and P1, . . . , Pi are the highest probability parse trees that are
parents of U1, . . . , Ui respectively. As mentioned in Section 2.3, this factor is separated
into determining a sentence, and determining a referent in that sentence. We also include
in our formulation the Type of anaphor Aij (pronoun, one-anaphor or NP) and sentence
position i, yielding

Pr(Rij |P1, . . . , Pi) = Pr(Aij refer to NPa in sent b, Type(Aij)|i, P1, . . . , Pi)

After making conditional independence assumptions we obtain

Pr(Rij |P1, . . . , Pi) = Pr(Aij refer to NPa|Aij refer to sent b,Type(Aij), Pi, Pb)×
Pr(Aij refer to sent b|Type(Aij), i)× Pr(Type(Aij)|Pi)

As stated in Section 2.3, Pr(Aij refer to NPa|Aij refer to sent b,Type(Aij),Pi,Pb) and
Pr(Type(Aij)|Pi) are estimated in a rule-based manner, while statistics obtained from
the corpus are used to estimate Pr(Aij refer to sent b|Type(Aij), i) (recall that we dis-
tinguish between sentence classes, rather than specific sentence positions).

4 Evaluation

We conducted a web-based survey to collect a corpus comprising multi-sentence ut-
terances. To this effect, we presented participants with a scenario where they are in a
meeting room, and they ask a robot to fetch something from their office. The idea is that
if people cannot see a scene, their instructions would be more segmented than if they
can view the scene. The participants were free to decide which object to fetch, what
was in the office, and how to phrase their requests.

We collected 115 requests mostly from different participants (a few people did the
survey more than once). These requests contain between 1 and 9 sentences. Figure 4(a)
shows the frequency of the number of sentences in a request, e.g., 51 requests consist
of 2 sentences; around 75% of the requests consist of 1 to 3 sentences. Our evaluation
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Table 1. Original and modified texts

Original Get my book “The Wizard of Oz” from my office. It’s green and yellow. It has a
picture of a dog and a girl on it. It’s in my desk drawer on the right side of my desk,
the second drawer down. If it’s not there, it’s somewhere on my shelves that are on
the left side of my office as you face the window.

Modified Get my book from my office. It’s green. It’s in my drawer on the right of my desk.

Original DORIS, I left my mug in my office and I want a coffee. Can you go into my office
and get my mug? It is on top of the cabinet that is on the left side of my desk.

Modified My mug is in my office. Go into my office. Get my mug. It is on top of the cabinet
on the left of my desk.

focuses on imperative UCG sequences, as they contain the actions the robot is expected
to perform. Figure 4(b) shows the average number of imperative Gold Standard UCGs
for requests of N sentences, e.g., the average number of command Gold UCGs for
3-sentence requests is 1.7. These Gold Standard UCG sequences were manually con-
structed by a tagger and the authors through consensus-based annotation [9]. As seen in
Figure 4(b), many requests of 1 to 3 sentences can be transformed to a single command
UCG, but requests with more sentences tend to include several commands.

Many of the sentences in our corpus had grammatical requirements which exceeded
the capabilities of our system. In order to focus our attention on the interpretation and
merging of an arbitrary number of UCGs, we made systematic manual changes to pro-
duce sentences that meet our system’s grammatical restrictions (in the future, we will
relax these restrictions, as required by a deployable system). The main types of changes
we made are: (1) indirect speech acts in the form of questions were changed to com-
mands; (2) sentences with relative clauses were changed to two sentences; (3) conjoined
verb phrases or sentences were separated into individual sentences; (4) composite verbs
were simplified, e.g., “I think I left it on” was changed to “it is on”; (5) composite
nouns were replaced by simple nouns or adjective-noun NPs; and (6) conditional sen-
tences were removed. Table 1 shows two original texts compared with the correspond-
ing modified texts (the changed portions in the originals have been italicized).

We tested Scusi?’s performance using leave-one-out cross validation. An interpreta-
tion generated by Scusi? was deemed successful if it correctly represented the speaker’s
intention, which was encoded by a sequence of imperative Gold Standard UCGs.
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Table 2. Scusi?’s interpretation performance

# Gold with Average Median 75%-ile Not Total #
prob. in top 1 Rank Rank Rank found

UCG seqs. 59 (51%) 3.14 0 1 36 (31%) 115
UCGs 146 (62%) NA NA NA 55 (23%) 234

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  1  2  3  4  5  6  7  8  9  10

%
 of

 G
old

 U
CG

 se
qu

en
ce

s

Number of sentences in a request

(a) % of Top-1 Gold UCG sequences

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  1  2  3  4  5  6  7  8  9  10

Pe
rce

nta
ge

 of
 G

old
 U

CG
s

Number of sentences in a request

(b) % of Top-1 Gold UCGs

Fig. 5. Scusi?’s performance broken down by request length

4.1 Results

Our results are summarized in Table 2. The first row shows the performance of Scusi?
on generating UCG sequences for the requests in our corpus. The top 1 column indi-
cates that for about half of the test instances, the most probable UCG sequence gener-
ated by Scusi? is the correct interpretation of the user’s request. Scusi? ranks the UCG
sequences that it generates by their probabilities, with the most probable sequence hav-
ing a rank of 0. The median and 75%-ile ranks show that whenever Scusi? generates
the correct interpretation, this interpretation tends to be highly ranked (“not found”
Gold UCGs are excluded from these three statistics). The average rank of the correct
UCG sequences generated by Scusi? is above 3 because there are a few requests for
which Scusi? ranked the correct UCG sequence above 30, thereby worsening the over-
all average. The second row of Table 2 shows how many correct individual UCGs were
generated by Scusi? in the top-1 ranked UCG sequence. This result indicates that when
Scusi? cannot fully interpret a user’s request, it can sometimes still generate a partially
correct interpretation.

Figure 5 shows a break-down of the results in Table 2 by request length (in number
of sentences). Figure 5(a) depicts the percentage of requests of length L for which the
most probable UCG sequence generated by Scusi? is the Gold UCG sequence, e.g., 65%
of 2-sentence requests were interpreted correctly. Figure 5(b) depicts the percentage of
top-ranked individual Gold UCGs generated by Scusi? for requests of length L, e.g.,
69% of the top-ranked UCGs generated for 2-sentence requests were Gold standard.
These results indicate that although very few requests comprising 5 or more sentences
were correctly interpreted in their entirety, Scusi? still found some Gold Standard UCGs
for each of these requests.

Table 2 shows that 31% of Gold Standard UCG sequences and 23% of Gold Stan-
dard UCGs were not found. Most of these cases (as well as the poorly ranked UCGs
and UCG sequences) were due to (1) several imperatives with object specifications (19
sequences), (2) wrong anaphora resolution (6 sequences), and (3) wrong PP-attachment
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(6 sequences). As mentioned in Section 2.4, we will refine the merging process to ad-
dress the first problem. The second problem occurs mainly when there are multiple
anaphoric references in a sequence. We propose to include this factor in our estima-
tion of the probability of referring to a particular sentence. The PP-attachment problem
is expected from a purely semantic interpreter. In order to alleviate this problem, we
propose to interleave semantic and pragmatic interpretation of prepositional phrases to
improve the rank of candidates which are pragmatically more plausible.

5 Related Research

This research extends our mechanism for interpreting stand-alone utterances [1] and
utterance pairs [2] to the interpretation of utterance sequences. Our approach may be
viewed as an information state approach [10,11], in the sense that utterances may up-
date different informational aspects of other utterances, without requiring a particular
“legal” set of dialogue acts. However, unlike these information state approaches, ours
is probabilistic.

Several researchers have investigated probabilistic approaches to the interpretation of
spoken utterances in dialogue systems, e.g., [12,13,14]. However, these systems do not
handle utterance sequences. Additionally, the first two systems employ semantic gram-
mars, while the third system performs word spotting. In contrast, Scusi? uses generic,
syntactic tools, and incorporates semantic- and domain-related information only in the
final stage of the interpretation process. This approach is supported by the findings
reported in [15] for relatively unconstrained utterances by users unfamiliar with the
system, such as those expected by DORIS.

Our mechanism is well suited for processing replies to clarification questions [16,17],
as this is a special case of the problem addressed in this paper — the interpretation of
spontaneously volunteered, rather than prompted, information. Further, our probabilis-
tic output can be used by a utility-based dialogue manager [16].

6 Conclusion

We have extended Scusi?, our spoken language interpretation system, to interpret sen-
tence sequences. Specifically, we have proposed a procedure that combines the inter-
pretations of the sentences in a sequence, and presented a formalism for estimating
the probability of a merged interpretation. This formalism supports the comparison of
interpretations comprising different numbers of UCGs obtained from different merg-
ers. Additionally, our mechanism can be readily used to process replies to clarification
questions — a special case of the situation considered in this paper.

Our empirical evaluation shows that Scusi? performs well for textual input at the
sentence level, but several issues pertaining to the integration of UCGs still need to
be considered. Thereafter, we propose to extend the interpretation process to ICG se-
quences, and investigate the influence of speech recognition performance on Scusi?’s
performance. In the future, we intend to expand Scusi?’s grammatical capabilities.
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Abstract. In this paper, we construct a fuzzy rank linear regression
model using the rank transform (RT) method and least absolute devi-
ation (LAD) method based on the α-level sets of fuzzy numbers. The
rank transform method is known to be efficient when the error distribu-
tion does not satisfy the conditions for normality and the method is not
sensitive to outliers in the regression analysis. Some examples are given
to compare the effectiveness of the proposed method with other existing
methods.

1 Introduction

Tanaka et al. [14] introduced fuzzy regression models to explain the functional
relationship among the variables that are vaguely expressed. Numerical and sta-
tistical methods have been introduced to develop the parametric fuzzy regression
models. The numerical methods estimate the fuzzy regression model by minimiz-
ing the sum of the spreads of the estimated dependent variable. Many authors
have studied fuzzy regression models using linear or nonlinear programming
methods [3,6,8,9,11,12,13,14]. Statistical methods minimize the squares of the
differences between observed fuzzy data and predicted fuzzy data to construct
the parametric fuzzy regression models. Many authors have used the statistical
methods that employ the method of least squares to estimate the fuzzy regression
model [1,2,7,10]. The least squares method is suited to cases where the errors
of the estimated regression model have a normal distribution; however, in cases
where the errors do not have a normal distribution, the method of least squares
is not the best method. This shows that the accuracy of the fuzzy regression
model using this method, which is sensitive to the outliers, may decline in some
cases. Moreover, the errors in fuzzy regression models arise from the inaccuracy
of the regression models. Therefore, it is necessary to consider another method
that is both independent of the distributions of errors and insensitive to outliers.
The regression model with fuzzy outliers was developed to increase the efficiency
of such models [1].

In this paper, we introduce the rank transform (RT) method that uses the
rank of the modes and endpoints of the α-level sets of the fuzzy number to
develop the fuzzy regression model. We compare the efficiency of the proposed
regression model with those developed by the method of least squares and the
method of least absolute deviation (LAD) using some data that have outliers.

A. Nicholson and X. Li (Eds.): AI 2009, LNAI 5866, pp. 617–626, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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2 Fuzzy Regression Model

In order to explain the functional relationship among the variables that are
vaguely expressed, Tanaka et al. [14] first introduced the fuzzy regression model
that can be expressed as follows:

Y (Xi) = A0 + A1Xi1 + · · ·+ ApXip, (1)

where Xij , Aj , and Y (Xi) are LR-fuzzy numbers. One of the purposes of the
fuzzy regression analysis is to determine the regression coefficients that minimize
the difference between the observed fuzzy numbers and predicted fuzzy numbers
based on the observed data {(Xi1, · · · , Xip, Yi) : i = 1, · · · , n}.

The membership function of the LR-fuzzy number A = (a, la, ra)LR is

μA(x) =

⎧⎪⎨⎪⎩
LA ((a− x)/la) if 0 ≤ a− x ≤ la,

RA ((x− a)/ra) if 0 ≤ x− a ≤ ra,

0 otherwise,

where LA and RA are monotonic decreasing functions. Further, they satisfy
LA(0) = RA(0) = 1 and LA(1) = RA(1) = 0. Here, a denotes the mode of A, la
and ra denote the left and right spreads of the fuzzy number A, respectively. If
LA(x) = RA(x) = 1 − x, then the LR-fuzzy number A is called the triangular
fuzzy number and represented by (a, la, ra)T . In particular, we express the LR-
fuzzy number as (a, sa)LR, when the fuzzy number is symmetric, that is, the left
and right spreads are identical.

The α-level set of the LR-fuzzy number A = (a, la, ra)LR is

A(α) =

{
{x : μA(x) > α} if α = 0
{x : μA(x) ≥ α} if 0 < α ≤ 1,

where Ā denotes the closure of A. The α-level set of the fuzzy number A is the
closed interval with mode a, left spread (laL−1

A (α)), and right spread (raR−1
A (α)),

respectively. Hence, we can represent the α-level set of the fuzzy number as
follows:

A(α) .= [a− laL−1
A (α), a + raR−1

A (α)].

Thus, the α-level set of the observed fuzzy number Yi = (yi, lyi , ryi)LR is

Yi(α) .= [yi − lyiL
−1
Yi

(α), yi + ryiR
−1
Yi

(α)]

and the α-level set of the predicted fuzzy numbers Y (Xi) is

p∑
k=0

[lAk
(α), rAk

(α)] · [lXik
(α), rXik

(α)], (2)

where lAk
(α)=ak−lkL−1

Ai
(α), rAk

(α)=ak+rkR−1
Ai

(α), lXik
(α)=xik−lXik

L−1
Xik

(α),
and rXik

(α) = xik + rXik
R−1

Xik
(α).
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The extension principle and resolution identity theorem developed by Zadeh
[15] play an important role in fuzzy set theory. The extension principle implies
that an arithmetic of fuzzy numbers depends on a calculating operation of inter-
vals. The resolution identity states that the fuzzy number may be decomposed
into its level sets. As such, we can apply the α-level regression model (2) to derive
the predicted fuzzy output. In this paper, in order to increase the effectiveness
of the estimated fuzzy regression model, we first apply the RT method, which is
not affected by the distribution of the errors, to the α-level regression model. We
then construct the fuzzy regression model by using a robust method of fitting
the reference function to the estimated α-level sets.

3 Fuzzy Rank Linear Regression Model

In this section, the three types of fuzzy regression models classified by the con-
ditions of regression coefficients and independent variables are considered and
the RT method is applied to construct the proposed regression models in this
section. In the regression analysis, the RT method was recommended and used
when the assumptions of normal distribution are violated [4]. Iman and Conover
[5] applied the RT method to regression analysis, whose high efficiency was ver-
ified through experimental analysis. They proved that the estimators obtained
by the RT method are robust and not sensitive to the outliers in the regres-
sion model, including monotonic increasing data. To apply the RT method to
the fuzzy regression model, we use following two types of simple linear fuzzy
regression models:

Y (xi1) = A0 + A1xi1, (3)

where xi1(i = 1, · · · , n) are crisp numbers, and A0, A1, and Y (xi1) are LR-fuzzy
numbers.

Y (Xi1) = A0 + A1Xi1, (4)

where Xi1, A0, A1, and Y (Xi1) are LR-fuzzy numbers.

3.1 Fuzzy Rank Linear Regression with Crisp Independent
Variables

We first consider the fuzzy regression model where input data are ordinal num-
bers with zero spreads and regression coefficients are fuzzy numbers. The left-
hand(right-hand) side lyi(α) (ryi(α)) of the α-level sets of the proposed model
are given by

lyi(α) = l0(α) + l∗1(α)xi1 and ryi(α) = r0(α) + r∗1(α)xi1, (5)

where the points l∗1(α) and r∗1(α) satisfy the following.

l∗1(α) =

{
l1(α) if xi1 ≥ 0
r1(α) if xi1 < 0

and r∗1(α) =

{
r1(α) if xi1 ≥ 0
l1(α) if xi1 < 0.
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The result L−1
Yi

(α) = R−1
Yi

(α) = L−1
Ak

(1) = R−1
Ak

(1) = 0(k = 0, 1) yields that the
equation (3) is equivalent to an ordinary regression model

yi = a0 + a1xi1

and that yi = lyi(1) = ryi(1). After constructing the regression model based on
the set of modes of the fuzzy data, we can obtain the predicted value Y (Xi)(α)
by estimating the endpoints lyi(α) (ryi(α)) for α ∈ [0, 1).

Now we consider the application of the RT method to the regression model
(3) in the following four steps:

(i) Estimate the mode yi based on the RT method and the set {(xi1, yi) : i =
1, · · · , n}.

(ii) Estimate the left(the right) endpoints lyi(αo) (ryi(αo)) using the RT pro-
cedures and the set {(xi1, lyi(α)) : i = 1, · · · , n} for some αo ∈ (0, 1).

(iii) Estimate the endpoints lyi(α) (ryi(α)) using the RT method and the
results given in (ii) for any α ∈ (0, 1) and α �= αo.

(iv) Find the membership function μŶi
using a robust method of fitting an

estimated membership function LŶi
(x) (RŶi

(x)) to the left-hand(right-hand)
side (lyi(αi), αi) ((ryi (αi), αi)) given in (i) and (iii).

We now introduce a method that applies the RT method, which uses the ranks of
the components of the α-level sets of the observed fuzzy numbers, to estimate the
endpoints of the predicted value Y (xi)(α∗) for some α∗ ∈ [0, 1]. The procedures
of the RT method to construct the regression model

lyi(α
∗) = l0(α∗) + l1(α∗)xi1

are as follows:

1. Determine the rank R(xi1) of the observed value xi1 among {x11, · · · , xn1}
and R(lyi(α∗)) of lyi(α∗). If the ranks of the two values are the same, we take
the average.

2. We use the following regression model:

R(lyi(α
∗)) =

(n + 1)
2

+ β1

(
R(xi1)−

(n + 1)
2

)
.

3. Estimate the predicted ranks R̂(lyi(α∗)) using the best regression model
(3) and the set of the rank of the observed value.

4. Calculate the predicted value corresponding to the input xi by the estimated
rank R̂(lyi(α∗)) given in the third step as follows:

l̃yi(α
∗) =

⎧⎪⎨⎪⎩
ly(1)(α

∗) if R̂(lyi(α
∗)) < R(ly(1)(α

∗)),
ly(n)(α

∗) if R̂(lyi(α∗)) > R(ly(n)(α
∗)),

ly(j)(α
∗) if R̂(lyi(α∗)) = R(ly(j)(α

∗)).

If R(ly(j)(α
∗)) < R̂(lyi(α∗)) < R(ly(j+1)(α

∗)), then

l̃yi(α
∗) = ly(j)(α

∗) + (ly(j+1)(α
∗)− ly(j)(α

∗)) ·
R̂(lyi(α∗))−R(ly(j)(α

∗))
R(ly(j+1)(α∗))−R(ly(j)(α∗))

, (6)
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where ly(j)(α
∗) denotes the j-th largest value among {ly1(α∗), · · · , lyn(α∗)}. Since

the left-hand side of the α-level set of the fuzzy number has to be less than the
mode, the estimated left endpoint of Y (Xi)(α) is given by

l̄yi(α
∗) = min{l̃yi(α

∗), ŷi}.

Here, if the explanatory variable x∗ with respect to the response variable ly∗(α)
satisfies x∗ �= xi1(i = 1, · · · , n), it is necessary to know the rank of x∗ in order
to predict the value using the regression model estimated in the second step. For
this, we use the following method.

R(x∗) =

⎧⎪⎨⎪⎩
1 if x∗ < x(1),

n if x∗ > x(n),

R(x(i)) if x∗ = x(i).

Further if x(i) < x∗ < x(i+1), then

R(x∗) = R(x(i)) + (R(x(i+1))−R(x(i))) · x∗ − x(i)

x(i+1) − x(i) , (7)

where x(i) denotes the i-th largest value among {x11, · · · , xn1}. Similarly, we
can obtain the predicted value of the right-hand side (r̂yi(α∗)) and the mode
(ŷi) by applying the same procedure to {(xi, ryi(α

∗)) : i = 1, · · · , n}, and then
construct the parametric fuzzy regression model.

As the third step, we suggest the procedure to estimate the endpoints of the
α-level set of Y (xi1)(α) when α �= α∗. For each α, the estimated right (left)
endpoints based on the values r̃yi(α∗) (l̃yi(α∗)), derived in the previous step, are
given by

r̂yi(α) =

{
max{max{α≤s<α∗}{r̄yi(s)}, ŷi} if α < α∗

max{min{α∗<s≤α}{r̄yi(s)}, ŷi} if α∗ < α

and

l̂yi(α) =

{
min{max{α∗≤s<α}{l̄yi(s)}, ŷi} if α∗ < α

min{min{α<s≤α∗}{l̄yi(s)}, ŷi} if α < α∗.

We know that the value l̂yi(α) (r̂yi(α)) is decreasing (increasing) as α is decreas-
ing. The maximum and minimum value of the function l̂yi(α) are l̂yi(0) and
ŷi = l̂yi(1), respectively.

Finally, the membership function of the estimated fuzzy output Ŷi is obtained
using a parametric estimation method of fitting the reference function to the data
{(l̂yi(α1), α1k))} ({(r̂yi(α1), α1))}) subject to LŶi

(l̂yi(1)) = RŶi
(r̂yi(1)) = 1. The

predicted fuzzy output given by the proposed method is represented as follows:

Ŷi =
(
ŷi, ŷi − L−1

Ŷi
(0), R−1

Ŷi
(0)− ŷi

)
LR

.
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3.2 Fuzzy Rank Linear Regression with Fuzzy Input and Output

In this subsection, we study a method estimating the fuzzy regression using the
RT method and the resolution identity theorem when independent and depen-
dent variables are fuzzy numbers. If the regression coefficients are crisp numbers,
the α-level set of the proposed fuzzy model is

Y (Xi)(α) = [lyi(α), ryi(α)] =
[
a0 + a1l

∗
Xi1

(α), a0 + a1r
∗
Xi1

(α)
]
, (8)

where

l∗Xi1
(α) =

{
lXi1(α) if a1 ≥ 0
rXi1 (α) if a1 < 0

and r∗Xi1
(α) =

{
rXi1(α) if a1 ≥ 0
lXi1(α) if a1 < 0.

The above fuzzy regression model that employs crisp parameters has been de-
veloped by many authors [2,7,10]. Further, in the case where the regression
parameters are both fuzzy numbers, the α-level set of the fuzzy model is
given by

Y (Xi)(α) = [l0(α), r0(α)] + [l1(α), r1(α)] · [lXi1(α), rXi1 (α)].

Although a multiplication of interval numbers have complicated formula to ana-
lyze, we can convert the multiplication in the above regression into simple forms
under some conditions. That is, the multiplication of the intervals [l1(α), r1(α)]
and [lXi1(α), rXi1 (α)] equals{

[l1(α)lXi1 (α), r1(α)rXi1 (α)] if l1(α), lXi1 (α) ≥ 0
[r1(α)rXi1 (α), l1(α)lXi1 (α)] if r1(α), rXi1 (α) < 0.

Thus, if all the values of the independent variable Xi1(i = 1, · · · , n) are all
positive (or negative) fuzzy numbers, the α-level set of the fuzzy regression model
can be written as follows:

Y (Xi)(α) = [l0(α), r0(α)] + [l1(α)lXi1 (α), r1(α)rXi1 (α)] . (9)

Without loss of generality, in this paper, we assume that control variables Xi1(i =
1, · · · , n) are all positive (negative). Then, since model (7) is a special case of
equation (8), we can construct the fuzzy linear regression model with fuzzy input
and output by applying the RT method and parametric estimation to the data

{(lXi1(α), lyi(α)) : i = 1, · · · , n} ({rXi1 (α), ryi(α) : i = 1, · · · , n}).

The same third procedure given in the previous subsection gives the values
l̂yi(α) (r̂yi(α)) and l̃yi(α) (r̃yi(α)), which are the estimates of lyi(α) (ryi(α)).
Next, the conditions of reference function and parametric estimation provide the
membership function of the estimated fuzzy output Ŷi. In the following section,
we show the development of a fuzzy regression model by using the RT method
and a suitable estimation, and evaluate the effectiveness of the proposed fuzzy
regression model.
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4 Numerical Examples

In this section, we provide a measure of performance and fuzzy outliers to com-
pare the efficiency of the fuzzy regression model estimated by the RT and LAD
methods. Further, we compare the accuracy of the fuzzy regression model esti-
mated by the method proposed in this paper with those of other fuzzy regression
models that were constructed using different methods.

Kim and Bishu [9] used an integration of the membership functions to compare
the accuracy of the developed fuzzy regression models. The difference between
the membership values of the observed fuzzy number Yi and estimated fuzzy
number Ŷi is defined by

d
(
Yi, Ŷi

)
=

∫∞
−∞ |μYi(x)− μŶi

(x)|dx∫∞
−∞ μYi(x)dx

. (10)

The smaller the difference between the two fuzzy numbers, the closer is the value
in equation (10) to zero. Hence, we can assume that when the value in equation
(10) is the smallest, the accuracy of the method is the highest. Thus, we can
also conclude that when the value in equation (10) is the smallest, the accuracy
of the developed fuzzy regression model is the highest.

On the other hand, Choi and Buckley [1] introduced a fuzzy outlier that is
numerically distant from the other fuzzy data. They defined outliers in the fuzzy
regression model with respect to modes and spreads as M-type and S-type fuzzy
outliers.

In the following example, we consider a fuzzy rank linear regression model to
illustrate the use of the RT and LAD methods, and compare them with other
methods.

Example 4.1. The data in Table 1(a) were first used by Tanaka et al. [13] and
many authors have referred to this data. Tanaka et al. [13] and Kao and Chyu [6]
applied a method that minimizes the spreads of the estimated fuzzy numbers to
the data. Further, Kim and Bishu [9] and Nasrabadi [11] used the least squares
methods with the same data. Simple calculations show that the ranks for the
endpoints of the observed variable do not change with the values of α. That is,
R(lyi(α)) = R(lyi(α

∗)) for α �= α∗. The RT method implies that the estimated
regression model for the ranks of the value lyi(α) derived from the data given in
Table 1(a) are

R̂(lyi(α)) = 2.5 + 0.9(R(xi)− 2.5).

The predicted α-level sets calculated by the RT method are given in the right
side of Table 1(a).

Further, the least squares method yields that the third data item in
Table 1(a) is almost an S-type outlier (k = 1.01) [1]. The fuzzy regression model
using the least squares method may be affected by this data. From the estimated
level set given in Table 1(a), we get the fuzzy out in Table 1(b) using the LAD
method. The errors between the observed value and the predicted value obtained
by the several methods are also given in Table 1(b). The result in Table 1(b)
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Table 1. (a) Numerical Data and Estimates for Example 4.1. (b) Estimation Errors
for Example 4.1.

(a)

Input Output Estimated level sets
xi (yi, si)T Ŷi(1) Ŷi(0.75) Ŷi(0.5) Ŷi(0.25) Ŷi(0)
1 ( 8, 1.8 )T 6.81 [6.31, 7.32] [5.81, 7.83] [5.31, 8.34] [4.83, 8.86]
2 ( 6.4, 2.2)T 8.19 [7.72, 8.66] [7.25, 9.12] [6.78, 9.59] [6.31, 10.05]
3 ( 9.5, 2.6)T 9.5 [8.85, 10.15] [8.2, 10.8] [7.55, 11.45] [6.9, 12.1]
4 (13.5, 2.6)T 12.55 [11.92, 13.18] [11.29, 13.8] [10.66, 14.42] [10.02, 15.04]
5 ( 13, 2.4 )T 13.37 [12.73, 14.02] [12.09, 14.66] [11.45, 15.3] [10.81, 15.95]

(b)

Predicted Errors in estimation
Input output m(Yi,Ŷ

T
i ) m(Yi,Ŷ

KC
i ) m(Yi,Ŷ

KB
i ) m(Yi,Ŷ

N
i ) m(Yi,Ŷi)

1 (6.81, 2, 2.04)T 3.356 2.789 2.207 2.564 1.991
2 (8.19, 1.87, 1.87)T 2.85 2.589 3.025 2.813 2.792
3 (9.5, 2.6, 2.61)T 1.522 0.553 1.042 0.718 0.005
4 (12.55, 2.52, 2.49)T 2.257 3.363 2.902 3.062 1.737
5 (13.37, 2.57, 2.57)T 2.414 0.385 0.85 0.614 0.72

Total errors 12.399 9.679 10.026 9.771 7.245

shows that the total error of the regression model estimated by the RT method
is smaller than that using the least squares method.

The estimates Ŷ T
i , Ŷ KC

i , Ŷ KB
i , Ŷ N

i and Ŷi are the results of [13], [6], [9], [11]
and proposed method, respectively.

Example 4.2. Sakawa and Yano [12] used the data in Table 2(a) to develop a
fuzzy regression model with fuzzy coefficients. Furthermore, Kao and Chyu [6]
estimated the fuzzy regression model for the data in Table 2(a) and compared
their two-stage method with other methods. Nasrabadi [11] used the method of
least squares for the same data.

In Table 2(a), we know that the ranks of explanatory variables accord with
those of response variables. That is, syi = sxi(i = 1, · · · , 8). Thus, the regression
coefficients for the spreads in equation (2) equal 1. The regression model for the
ranks of the modes is

R̂(yi) = 4.5 + 0.974(R(xi)− 4.5).

The LAD method gives the predicted fuzzy output in Table 2(b) based on the
estimated α-level sets in Table 2(a). Further, a simple calculation reveals that
the sixth data item in Table 2(a) is an M-type outlier (k = 1.3) [1].

Hence, we can confirm that the estimators using the RT method are more
efficient than those using the least squares method through the total error given
in Table 2(b). The estimates Ŷ SY

i , Ŷ KC
i , Ŷ N

i and Ŷi are the results of [12], [6],
[11] and proposed method, respectively.
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Table 2. (a) Numerical Data and Estimates for Example 4.2. (b) Estimation Errors
for Example 4.2.

(a)

Input Output Estimated level sets
Xi Yi Ŷi(1) Ŷi(0.5) Ŷi(0)

(2.0, 0.5)T (4.0, 0.5)T 4.45 [4.20, 4.70] [3.96, 4.94]
(3.5, 0.5)T (5.5, 0.5)T 5.71 [5.46, 5.96] [5.22, 6.21]
(5.5, 1.0)T (7.5, 1.0)T 6.63 [6.35, 6.91] [6.07, 7.19]
(7.0, 0.5)T (6.5, 0.5)T 7.52 [7.02, 8.02] [6.52, 8.52]
(8.5, 0.5)T (8.0, 0.5)T 7.98 [7.48, 8.48] [6.98, 8.98]
(10.5, 1.0)T (8.0, 1.0)T 8.44 [8.15, 8.72] [7.87, 9.79]
(11.0, 0.5)T (10.5, 0.5)T 9.29 [ 9.04 9.54] [8.78 9.79]
(12.5, 0.5)T (9.5, 0.5)T 10.20 [9.95, 10.45] [9.70, 10.70]

(b)

Predicted Errors in estimation
Input output m

(
Yi, Ŷ

SY
i

)
m
(
Yi, Ŷ

KC
i

)
m
(
Yi, Ŷ

N
i

)
m
(
Yi, Ŷi

)
(2.0, 0.5)T (4.45, 0.5, 0.5)T 0.633 0.848 0.891 0.698
(3.5, 0.5)T (5.71, 0.5, 0.51)T 0.453 0.208 0.019 0.38
(5.5, 1.0)T (6.63, 0.57, 0.56)T 1.613 1.489 1.413 1.26
(7.0, 0.5)T (7.52, 1, 1)T 1.165 0.910 0.991 1.346
(8.5, 0.5)T (7.98, 1, 1)T 0.770 0.760 0.476 0.86
(10.5, 1.0)T (8.44, 0.57, 0.78)T 1.977 1.449 1.767 0.862
(11.0, 0.5)T (9.29, 0.5, 0.5)T 1.368 1.000 0.992 1.00
(12.5, 0.5)T (10.2, 0.5, 0.5)T 1.452 0.806 0.992 0.91

Total errors 9.431 7.470 7.541 7.316

5 Conclusions

In this paper, we construct a fuzzy rank linear regression model using the RT
method and LAD method based on the α-level sets of fuzzy numbers, and then
obtained the predicted value based on the equation for the ranks of the dependent
variables. We investigated the efficiency of the fuzzy regression model with the
data that have outliers through some examples. We confirm that the proposed
method may be a robust estimator in the fuzzy regression analysis through some
examples.
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Abstract. Neuronal temporal synchronization is one of the key issues in studying 
binding phenomenon in neural systems. In this paper we consider identical 
Hindmarsh-Rose neurons coupled over Newman-Watts small-world networks and 
investigate to what extent the numerical and analytic synchronizing coupling 
strengths are different. We use the master-stability-function approach to determine 
the unified coupling strength necessary for analytic synchronization. We also solve 
the network’s differential equations numerically and track the synchronization error 
and consequently determine the numerical synchronizing coupling parameters. 
Then, we compare these two values and investigate the influence of various 
network parameters on the gap between them. We find that this gap is almost not 
influenced by network size. The only parameter that affects the gap between the 
analytic and numerical synchronizing parameters is the average degree, i.e. average 
connection per node in the connection graph. In networks with higher average 
degree this gap is larger than those with lower average degree.  

1   Introduction 

Synchronization activity of two or many interconnected dynamical units is believed to 
play an important role in information processing in the brain both in macroscopic and 
cellular levels [1, 2]. It is hypothesized that synchronous brain activity is the most 
likely mechanism for many cognitive functions such as attention and feature binding, 
as well as learning, development and memory formation [3]. Neurons in a population 
synchronize their activity using electrical and chemical synapses with other neurons 
in the same population as well as with neurons from other populations. However, 
synchronization is not useful all the time; high levels of synchrony may proceed to 
epileptic behaviors. In other words, brain disorders such as Epilepsy, Schizophrenia, 
Alzheimer’s disease and Parkinson influence functional synchronization maps of 
different brain areas [4-9]. Thus, understanding the mechanisms behind the neural 
synchronization is of high importance in order to understand various brain functions. 

Studies of neuronal synchronization based on different neuronal models can be 
separated into two categories; those using threshold models of integrate-and-fire type 
and those with conductance-based realization such as various Hodgkin-Huxley type 
models. There are a number of simplified versions of the Hodgkin-Huxley model; 
Hindmarsh-Rose (HR) model is one, which consists of three first-order differential 
equations [10]. It has been shown to be capable of producing many of observed 
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neuronal behaviors such as regular bursting [11]. Without being biophysically 
meaningful, the HR model exhibits all of the behaviors that the Hodgkin-Huxley 
model is able to show, but with about a 10-fold increase in computational efficiency 
[11]. Therefore, one could get a great advance in understanding the collective 
behavior of real-world neuronal populations by studying the synchronization in 
meaningful networks of the HR systems. 

Here, we study the synchronization phenomenon in ensembles of HR neurons 
whose connection topology is Newman-Watts (NW) small-world network [12, 13]. 
We investigate the gap between the analytic and numerical synchronizing coupling 
parameters. In order to determine the coupling strength necessary for the analytic 
stability of the synchronization manifold, we use the master-stability-function (MSF) 
formalism [14], while the numerical synchronizing parameter is determined by 
numerically solving the network’s differential equations and tracking the 
synchronization error. 

2   Newman-Watts Small-World Networks 

It has been shown that lots of real-world networks have small-world property, 
including those for cortical neurons, i.e. their connection graph has a structure that is 
neither purely random nor a regular one [3, 5, 15]. In such networks, average 
characteristic path length scales almost logarithmically with network size, like 
random networks, while the clustering coefficient is as high as regular networks [16, 
17]. In this work as connection network model, we consider the one proposed by 
Newman and Watts [18], which guarantees connectedness of the network. The NW 
small-world networks are constructed as follows. Starting with a ring graph with N 
nodes each connected to its k–nearest neighbors by undirected links, the unconnected 
nodes get connected with probability P. The graphical representation of the Newman-
Watts networks with 20 nodes each connected to their first and second nearest 
neighbors and with different values for the probability of shortcuts (P = 0, P = 0.05, P 
= 0.15, and P = 1) is shown in Fig. 1. 

3   Hindmarsh-Rose Neuron Model and Neuronal Bursting 
Behavior 

In order to understand the underlying mechanisms of neural systems along with in 
vivo and in vitro measurements, computer simulations using model neurons should 
also be performed. In many works, different models of the family of Hodgkin-Huxley 
neuron model have been used, which are expensive to solve. A number of reduced 
models have been proposed in the literature and HR model is one [10], which is well-
known for its chaotic behavior and different types of bursts [19]. The model consists 
of three first-order ordinary differential equations and takes a form as follows 

( )( )

2 3

2

0

( ) 1

x y ax x z I

y dx y

z b x x zμ

⎧ = + − − +
⎪

= = − −⎨
⎪ = − −⎩

F X , (1) 
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Where X = (x,y,z) is the state variables of the system; x represents the membrane 
potential (dimensionless), y and z are virtual states representing the fast and slow 
current dynamics, respectively. I is the external input current injected to the neuron 
and a governs the qualitative behavior of the model. μ is a small parameter that 
governs the bursting and adaptation behavior of the model. b governs adaptation in 
which small b (values around b = 1) results in fast spiking behavior without 
accommodation and subthershold adaptations, whereas values around b = 4 gives 
strong accommodation[20]. x0 sets the resting potential of the system and d is a 
positive value. We adopted the parameters of the model as  μ = 0.01, b = 4, d = 5, x0 = 
–1.6, a = 2.6, and I = 4, which produces bursting behavior [20]. Fig. 2 shows the time 
history of the membrane potential (x-component) of such bursting neurons. 

 

 

Fig. 1. Graphical representation of NW networks with 20 nodes in a ring each connected to 
their first and second nearest neighbors and randomly with the other nodes with probability a) P 
= 0, b) P = 0.05, c) P = 0.15, and d) P = 1 

 
Fig. 2. The time history of the x–component of the Hindmarsh-Rose neuron exhibiting regular 
bursting behavior. We have considered the parameters of the model described by equations (1) 
as as  μ = 0.01, b = 4, d = 5, x0 = –1.6, a = 2.6, and I = 4.  

4   Numerical and Analytic Synchronization 

Let us consider an undirected and unweighted network with N nodes. On each node a 
dynamical system sits and the equations of the motion of the dynamical network read 
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1

( )    ;    1, 2,...,
N

i i ij j
j

F l H i Nσ
=

= − =∑X X X , (2) 

where d
i ∈X R  are the state vectors, : d dF →R R  defines the individual system’s 

dynamical equation (equations (1)). These dynamical systems are coupled via a 
unified coupling strength σ and coupling matrix L = (lij). L that is called Laplacian is a 
symmetric matrix with vanishing row-sums and negative off-diagonal entries, i.e. lij = 

lji for all pairs of (i,j), lij < 0 for i ≠ j, and 1 0N
j ijl= =∑  for all i. The nonzero elements 

of 3×3 matrix H determines the coupled elements of the oscillators. 
In the following we suppose that the connection graph is connected, which implies 

that the second smallest eigenvalue of L is strictly positive. Because of the zero row-
sums of the matrix L, the network equations (2) can be rewritten as 

( )
1

( )      ;      1, 2,...,
N

i
i ij j i

j
j i

d
F l H i N

dt
σ

=
≠

= − − =∑X
X X X . (3) 

Thus, any solution of (2) with Xi(0) = Xj(0) for all (i,j) satisfies Xi(t) = Xj(t) for all (i,j) 
and t ≥ 0. We call such a solution a synchronized solution. The question is what 
happens when another initial state of the network is chosen. 

Synchronization might be whether numerical or analytic and we distinguish 
analytic and numerical synchronization. 

a) The dynamical network described by (2) synchronizes numerically (and 
completely), if for any solution of (2) we have 

( ) ( ) 0       , 1,i j t
t t i j N→∞− ⎯⎯⎯→ ∀ = …X X . (4) 

b) The dynamical network (2) synchronizes analyticly, if there exists an ε > 0 
such that for any solution with  

( ) ( )0 0i j ε− <X X , (5) 

              we have  

( ) ( ) 0       , 1,i j t
t t i j N→∞− ⎯⎯⎯→ ∀ = …X X . (6) 

4.1   Determining the Analytic Synchronizing Coupling Parameter 

We have used the MSF formalism proposed by Pecora and Carroll to determine the 
analytic synchronization of the network [14]. The MSF gives necessary conditions for 
the analytic stability of the synchronization manifold X1(t) = X2(t) = … = XN(t) = s(t) 
[14]. Considering the dynamical network (2), the stability of the synchronization 
manifold can be determined by the variational equations, i.e. each dynamical system 
is considered to have extremely small perturbation from the synchronous state. The 
variational equations are written as 

( )   ;    1,2,...,i i i iDF s H i Nσλ η= − =η η , (7) 
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where D stands for Jacobian. λi‘s are the eigenvalues of L, ordered as 0 = λ1 ≤ λ2 ≤ … 
≤ λN, in which λ1 = 0 is associated with the synchronized manifold s(t).  

The largest Lyapunov exponent of the variational equation expressed by (7), Λ(a = 
σλi) called MSF [14] and accounts for the linear stability of the synchronization 
manifold, i.e. if Λ(a) < 0, the synchronized state is linearly stable. The MSF depends 
only on the coupling configuration expressed by H and the dynamics of the individual 
dynamical systems expressed by F(·). In this way, a necessary condition for the 
analytic stability of the synchronization manifold is obtained. It is worth mentioning 
that the MSF is computed for a dynamical system with specific H once and one only 
needs to compute λ2 and (for some systems) λN of the Laplacian L for determining the 
synchronization conditions of the dynamical network (2). Fig. 3 shows the MSF x-
coupled HR neurons. It shows the border of the analytic synchrony, i.e. above the red 
line where the MSF is positive the synchronization manifold is unstable, whereas 
below the line it is stable. Therefore, for providing synchronization in the network, 
the coupling parameter must be larger than the one needed for making the MSF 
negative. 

 

Fig. 3. The MSF for x-coupled bursting HR neurons. The graph shows the border of the 
analytic synchrony, i.e. above the red line where the MSF is positive the synchronization 
manifold is unstable, whereas below the line it is stable. 

4.2   Determining the Numerical Synchronizing Coupling Parameter 

Although we can study the (linear) synchronization in an analytic way, the most 
precise way for determining the (global) synchronizing coupling strength is 
numerically solving the differential equations and monitoring the synchronization 
error. In order to have the complete synchronization in the network, the error between 
the dynamical systems must distinctly goes to zero as time goes to infinity. The 
average synchronization error E of the network (2) in a time-interval (0,T) is defined 
as [21] 

( ) ( ) ( ) ( ) ( )2

0

2 1
 ;  

1

T

i j
i j t

E t t t E E t
N N T< =

= − =
− ∑ ∑X X . (8) 

In order to determine the synchronization error and hence the synchronizing coupling 
strength, the initial state of the trajectory, Xi(0), is randomly chosen, with the 
constraint E(0) = 1. By starting the coupling strength from a value (usually the one 
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obtained through the MSF method), it gradually increases until E gets a value less 
than ε, i.e. E  <  ε (ε = 10–5 in this work).  

5   Simulation Results 

The analytic synchronizing coupling strength was determined through the MSF 
formalism (Fig. 3). In order to determine the numerical synchronizing coupling 
strength through tracking the average synchronization error, 20 different dynamical 
networks were randomly generated and a trajectory Xi(t) ; i = 1,…,N was computed, 
and then the error expressed by (8) was computed and the corresponding 
synchronizing coupling strength was determined. Fig. 4 shows the numerical and 
analytic synchronizing coupling strengths (σnumerical and σanalytic, respectively) and the 
normalized gap between them ((σnumerical - σanalytic) / σanalytic) as a function of the 
network size N. In this experiment the nodes of the networks were connected at least 
to their k = 2 nearest neighbors and the probability of shortcuts was P = 0.01. It is 
seen that as the number of nodes increases the synchronizing coupling strength 
decreases. However, the normalized gap between the numerical and analytic 
synchronizing parameters is almost not influenced by the network size. Note that in 
this experiment the average degree per node is the same for all of the cases. 

 

 

Fig. 4. The numerical and analytic synchronizing coupling strengths (σnumerical and σanalytic, 
respectively) and the normalized gap between them ((σnumerical - σanalytic) / σanalytic) as a function 
of the network size N. The nodes of the networks are connected at least to their k = 2 nearest 
neighbors with P = 0.01. The graphs show averages and standard errorbars over 20 realizations. 

 

We further investigated the influence of the average degree on the gap between 
σSlobal and σanalytic. First, in networks with N = 200 the shortcut probability was fixed at 
P = 0.01 and the average degree changed by increasing k. The results are shown in 
Fig. 5 in which the influence of the average degree on the gap between these two 
synchronizing parameters is clear; the more the average degree the larger the gap. In 
another experiment we fixed k = 2 and the average degree changed by controlling P. 
The results of this experiment are shown in Fig. 6 where again by increasing P 
(increasing the average degree per node) the gap also increases. In other words, as the 
number of links per node increases, the strength providing the numerical 
synchronization in the network gets farther from the one necessary for the analytic 
synchronization, i.e. the one obtained through the MSF method. 
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Fig. 5. The numerical and analytic synchronizing coupling strengths and the normalized gap 
between them as a function of k. The network size is N = 200 and P = 0.01 and data refer to 
averages over 20 realizations with corresponding errorbars for standard error. 

 

Fig. 6. The numerical and analytic synchronizing coupling strengths and the normalized gap 
between them as a function of P. The network size is N = 200 and k = 2 and data refer to 
averages over 20 realizations with corresponding errorbars for standard error. 

6   Conclusions 

In this paper we investigated the numerical and analytic synchronization behavior of 
HR neurons connected over NW networks. The analytic synchronizing parameters 
were obtained through the MSF formalism, while the parameters providing global 
stability of the synchronization manifold were obtained through numerically solving 
the network’s differential equation and tracking the average synchronization error. 
We found that the gap between the analytic and numerical synchronizing parameters 
was almost independent of the networks size. However, the average degree was 
important in this context; the more the average degree of the network the larger the 
gap. Indeed, in networks with high average degree per node, the parameter obtained 
through the MSF approach, which is much simpler and cheaper than the numerical 
approaches, is far from the real synchronizing one.      
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Abstract. An optimization technique is proposed for the outline capture of 
planar images. The overall technique has various phases including extracting 
outlines of images, detecting corner points from the detected outline, and curve 
fitting. The idea of multilevel coordinate search has been used to optimize the 
shape parameters in the description of the generalized cubic spline introduced. 
The spline method ultimately produces optimal results for the approximate 
vectorization of the digital contour obtained from the generic shapes.  

Keywords: Optimization, multilevel coordinate search, Generic shapes, curve 
fitting, spline. 

1   Introduction 

Capturing and vectorizing outlines of images is one of the important problems of 
computer graphics, vision, and imaging. Various mathematical and computational 
phases are involved in the whole process. This is usually done by computing a curve 
close to the data point set. Computationally economical and optimally good solution 
is an ultimate objective to achieve the vectorized outlines of images for planar 
objects. 

Curve modeling [21-23] plays significant role in various applications The 
representation of planar objects in terms of curves has many advantages. For example, 
scaling, shearing, translation, rotation and clipping operations can be performed 
without any difficulty. Although a good amount of work has been done in the area [8-
20], it is still desired to proceed further to explore more advanced and interactive 
strategies. Most of the up-to-date research has tackled this kind of problem by curve 
subdivision or curve segmentation.  

This work is inspired by a global optimization algorithm based on multilevel 
coordinate search (MCS) by Huyer and Neumaier [24-25]. It motivates the authors to 
a global optimization technique proposed for the outline capture of planar images. In 
this paper, the data point set represents any generic shape whose outline is required to 
be captured. We present an iterative process to achieve our objective. The algorithm 
comprises of various phases to achieve the target. First of all, it finds the contour of 
the gray scaled bitmap image [26-27]. Secondly, it uses the idea of corner points [1-7] 
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to detects corners. These phases are considered as preprocessing steps. The next phase 
detects the corner points on the digital contour of the generic shape under 
consideration. The idea of multilevel coordinate search (MCS) is then used to fit a 
generalized cubic spline which passes through the corner points. It globally optimizes 
the shape parameters in the description of the generalized cubic spline to provide a 
good approximation to the digital curve.  

The organization of the paper is as follows, Section 2 discusses about 
preprocessing step which includes finding the boundary of planar object and corner 
detection algorithm for finding the significant points. Section 3 is about the 
interpolant form of cubic spline curves and computation of its associated tangents. 
The process of multilevel coordinate search is explained in Section 4. Overall 
methodology of curve fitting is explained in Section 5, it includes the idea of knot 
insertion as well as the algorithm design for the proposed vectorization scheme. 
Demonstration of the proposed scheme is presented in Section 6. Finally, the paper is 
concluded in Section 7. 

2   Preprocessing 

The proposed scheme starts with first finding the boundary of the generic shape and 
then using the output to find the corner points. The image of the generic shape can be 
acquired either by scanning or by some other mean. The aim of boundary detection is 
to produce an object’s shape in graphical or non-scalar representation. Chain codes 
[27], in this paper, have been used for this purpose. Demonstration of the method can 
be seen in Figure 1(b) which is the contour of the bitmap image shown in Figure 1(a). 
 

(a) (b) (c)  

Fig. 1. Pre-processing Steps: (a) Original Image, (b) Outline of the image, (c) Corner points 
achieved 

Corners in digital images give important clues for the shape representation and 
analysis. These are the points that partition the boundary into various segments. The 
strategy of getting these points is based on the method proposed in [1]. The 
demonstration of the algorithm is made on Figure 1(b). The corner points of the image 
are shown in Figure 1(c). 
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3   Curve Fitting and Spline 

The motive of finding the corner points, in Section 2, was to divide the contours into 
pieces. Each piece contains the data points in between two subsequent corners 
inclusive. This means that if there are m corner points cp1, cp2, …, cpm then there will 
be m pieces pi1, pi2, …, pim. We treat each piece separately and fit the spline to it. In 
general, the ith piece contains all the data points between cpi and cpi+1 inclusive. After 
breaking the contour of the image into different pieces, we fit the spline curve to each 
piece.  

The curve fitted by an ordinary Hermite cubic spline  is a candidate of best fit, but 
it may not be a desired fit. This leads to the need of introducing some shape 
parameters in the description of the cubic spline. This section deals with the 
generalized form of cubic spline. It introduces two parameters v and w in the 
description of cubic spline defined as follows: 

 

1
3223 )1(3)1(3)1()( ++−+−+−= iiii FWVFtP θθθθθθ     (1) 

where 

iiiii DvhFV += , 11 ++ −= iiiii DwhFW ,   (2) 

 
Fi and Fi+1 are corner points of the ith piece. Di and Di+1 are the corresponding tangents 
at corner points.  

Obviously, the parameters vi's and  wi's, when equal to 1/3, provide the special case 
of cubic spline. Otherwise, these parameters can be used to loose or tight the curve. 
This paper proposes an evolutionary technique, namely multilevel coordinate search 
(MCS), to optimize these parameters so that the curve fitted is optimal. 

To construct the parametric cubic spline interpolant on the interval ],[ 0 ntt , we 

have m
i RF ∈ , ni ,......,1,0= , as interpolation data, at knots ti, ni ,......,1,0= . The 

tangent vectors are calculated as follows: 
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Since, the objective of the paper is to come up with an optimal technique which can 
provide a decent curve fit to the digital data. Therefore, the interest would be to 
compute the curve in such a way that the sum square error of the computed curve with 
the actual curve (digitized contour) is minimized. Mathematically, the sum squared 
distance is given by:  
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where  
Pi,j = (xi,j, yi,j),    j = 1,2,…,mi ,   (5) 

 

are the data points of the ith segment on the digitized contour. The parameterization 
over t's is in accordance with the chord length parameterization. Thus the curve fitted 
in this way will be a candidate of best fit. 

4   Multilevel Coordinate Search (MCS) 

Multi-level coordinate search (MCS) is an optimization technique [24]. It guarantees 
to converge to the optimal solution if the function is continuous in the neighborhood 
of a global minimizer. It works by combining two types of searching: global 
searching and local searching. The advantage is that if the optimal value is 
somewhere near the current position, local search makes sure that the algorithm does 
not divert to distant locations in the solution space. It also reduces the time to reach 
the exact optimal value after reaching near it. A detailed description of the mapping of 
the MCS technique on our problem is given in the next section. 

5   Proposed Approach for Vectorization 

The proposed approach to the curve problem is described here in detail. It includes the 
phases of problem matching with MCS using cubic spline, description of parameters 
used for MCS, curve fitting, and the overall algorithm design. 

5.1   Problem Mapping 

Our interest is to optimize the values of curve parameters v and w such that the 
defined curve fits as close to the original contour segment as possible. We use MCS 
for this optimization of these two variables for the fitted curve. Hence the 
dimensionality of the solution space is 2, and each point in MCS represents a pair of 
values for v and w. We start with an initial set of points that are taken to be the corner 
points of the 2-dimensional solution space and the midpoints along the two directions. 
Since the solution space is bounded, with boundary values as -1 and 1 for both the 
dimensions, the initial points are chosen at these corners. Then we make boxes of  
the solution spaces using these points. For each point, we also compute and store the 
objective function value and associate each with one of the boxes. Now each box 
corresponds to a range of values of v and w. From all these boxes (ranges of v and w 
values), we first select the one having an associated point with the lowest function 
value. In this box, we apply local search and try to find the optimum in the 
determined direction of minimization within the box. If the v and w pair found in this 
box is not the optimal solution, then this box is split. That is, the range of v and w  
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values within this box is further split into smaller mutually exclusive ranges. Each 
new range is associated with a new representative point in the solution space and its 
fitness value. The shopping basket is hence kept updated with these ranges and fitness 
values. 

Note that we apply MCS independently for each segment of a contour between two 
consecutive corner points that we have identified using corner point algorithm. MCS 
is applied sequentially on each of the segments, generating an optimized fitted curve 
for each segment. The algorithm is run until the maximum level of allowed splitting is 
reached, or an optimal value is reached. Once, all the contour segments are exhausted 
and still the desired global optimum solution is not achieved, MCS is applied again.  

5.2   Initialization and Curve Fitting 

Once we have the bitmap image of a generic shape, the boundary of the image can 
be extracted using the method described in Section 2. After the boundary points of the 
image are found, the next step is to detect corner points as explained in Section 2. 
This corner detection technique assigns a measure of ‘corner strength’ to each of the 
points on the boundary of the image. This step helps to divide the boundary of the 
image into n segments. Each of these segments is then approximated by interpolating 
spline described in Section 3. The initial solution of spline parameters (v and w) are 
randomly selected within the range [-1, 1]. 

After an initial approximation for the segment is obtained, better approximations 
are obtained through MCS to reach the optimal solution. We experiment with our 
system by approximating each segment of the boundary using the generalized cubic 
spline of Section 3. Each boundary segment is approximated by the spline. The shape 
parameters. v and w, in the cubic spline provide greater flexibility over the shape of 
the curve. These parameters are adjusted using MCS to get the optimal fit. Here, we 
try to minimize the sum squared error. 

5.3   MCS Parameters Used 

Although MCS sets default values of the algorithm variables, but it also gives the 
option of manipulating some parameters that define various factors affecting its 
performance. One of the factors is that how much weight MCS should give to global 
searching as opposed to local searching. The higher this value, the more global level 
search will be done. Similarly, another parameter that defines how much local search 
to do is also specified.  

An initial set of starting solution points have to be specified for the system to start 
with. MCS requires an initial guess for the solution. It is the starting state parameters 
that affect the performance of the algorithm. If the starting solution is very near to the 
optimal solution, it is more likely to find the optimal solution readily than if the 
starting solution is distant from the optimal solution. An acceptable error value has to 
be defined, so that if the system comes within this error range from the optimal value, 
it terminates with the found solution.  
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(a) (b)

(c) (d)  

Fig. 2. Pre-processing Steps: (a) Original Image, (b) Outline of the image, (c) Corner points 
achieved, (d) Fitted Outline of the image 

  
(a) (b) 

Fig. 3. (a) Fitted Outline of the image, (b) Fitted Outline of the image with intermediate points 

An overall constraining factor is the maximum number of epochs that the 
algorithm may run. In this way, it does not run indefinitely if it is not reaching a stable 
solution. The direction of optimization of the fitness function has to be specified i.e. 
specific value that has to be attained. The default value is negative infinity and it can 
be used for our problem since the lowest value for our objective function is zero. The 
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dimension of the problem has to be defined as the number of inputs that will be 
passed to MCS, and the allowable range of these variables. 

6   Demonstration 

The methodology, in Section 5, has been implemented practically and the proposed 
curve scheme has been implemented successfully. We evaluate the performance of 
our system by fitting parametric curves to different binary images. Figure 2 shows the 
implementation results of the algorithm with MCS: Figures 2(a), 2(b), 2(c) and 2(d) 
are respectively the original image of an Airplane, its outline, outline together with 
the corner points detected, and the fitted outline at the final  iteration. 

 

(a) (b) (c)  

Fig. 4. Pre-processing steps for curve fitting (a) Image of a plane, (b) Extracted outline (c) 
Initial corner points 

 

 

1.  

 

(a) (b) 

Fig. 5. Cubic curve fitting (a) without intermediate points (b) with intermediate points 

Figure 3(a) shows the implementation results of the algorithm with MCS for the 
original image of an Arabic language word "Ilm" in Figure 1. One can see that the 
approximation is not satisfactory, this is specifically due to those segments which are 
bigger in size and highly curvy in nature. Thus, some more treatment is required for 
such outlines. One of the idea is to insert some intermediate points, this is 
demonstrated in Figure 3(b) where excellent result has been achieved. The idea of 
how to insert intermediate points is not explained here due to limitation of space. It 
will be explained in a subsequent paper. 
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Table 1. Names and contour details of images 

Image Name # of Contours # of Contour Points 

Ilm 1 [1641] 

Plane 3 [1106+61+83] 

Fork 1 [693] 

 

Table 2. Comparison of number of initial corner points, intermediate points and total time 
taken (in seconds) for cubic interpolation approaches 

Total Time Taken For Cubic 
Interpolation 
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Ilm.bmp 18 34 46.312 164.17 
Plane.bmp 31 13 56.766 100.58 
Fork.bmp 10 22 18.438 70.297 

Table 3. Comparison of number of epochs taken by MCS cubic interpolation approach with 
and without intermediate points 

# of Epochs taken by MCS 
Image Cubic Interpolation Without 

Intermediate Points 
Cubic Interpolation With 

Intermediate Points 
Ilm.bmp 2459 8915 

Plane.bmp 4726 7613 

Fork.bmp 1035 4690 

 
Another experiment is made on an image of Fork in Figure 4(a). Its outline is 

detected in Figure 4(b), and the corner points are shown in 4(c). Figures 5(a) and 5(b) 
demonstrate the fitted curves to the outline of Figure 4(b) corresponding to the scheme 
without and with insertion points respectively. It can be noticed that the fitted curve in 
Figure 5(a) has a good approximation, without inserting extra points, except at two 
segments. However, inserting extra points, has highly refined the approximation every 
where in Figure 5(b). 
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Tables 1 to 3 summarize the experimental results for different bitmap images. These 
results highlight various information including contour details of images (Table 1), 
intermediate points (Table 2), and number of iterations (Table 3). 

7   Conclusion and Future Work 

A global optimization technique, based on multilevel coordinate search, is proposed for 
the outline capture of planar images. The proposed technique uses the multilevel 
coordinate search to optimize a cubic spline to the digital outline of planar images. By 
starting a search from certain good points (initially detected corner points), an improved 
convergence result is obtained. The overall technique has various phases including 
extracting outlines of images, detecting corner points from the detected outline, curve 
fitting, and addition of extra knot points if needed. The idea of multilevel coordinate 
search has been used to optimize the shape parameters in the description of the 
generalized cubic spline introduced. The spline method ultimately produces optimal 
results for the approximate vectorization of the digital contours obtained from the 
generic shapes. It provides an optimal fit with an efficient computation cost as far as 
curve fitting is concerned. The proposed algorithm is fully automatic and requires no 
human intervention. The author is also thinking to apply the proposed methodology for 
another model curve namely conic. It might improve the approximation process. This 
work is in progress to be published as a subsequent work. 
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Abstract. Personalized information access tools are frequently based on
collaborative filtering recommendation algorithms. Collaborative filter-
ing recommender systems typically suffer from a data sparsity problem,
where systems do not have sufficient user data to generate accurate and
reliable predictions. Prior research suggested using group-based user data
in the collaborative filtering recommendation process to generate group-
based predictions and partially resolve the sparsity problem. Although
group recommendations are less accurate than personalized recommen-
dations, they are more accurate than general non-personalized recom-
mendations, which are the natural fall back when personalized recom-
mendations cannot be generated. In this work we present initial results
of a study that exploits the browsing logs of real families of users gath-
ered in an eHealth portal. The browsing logs allowed us to experimentally
compare the accuracy of two group-based recommendation strategies: ag-
gregated group models and aggregated predictions. Our results showed
that aggregating individual models into group models resulted in more
accurate predictions than aggregating individual predictions into group
predictions.

1 Introduction

The quantity of potentially interesting information services available online has
been growing rapidly and exceeds human processing capabilities. The vast amount
of online information necessitates Web sites and portals to provide users with
intelligent and personalized navigation support tools. These tools help users to
identify the information items most relevant to them and filter out the rest by
predicting the level of interest of users in particular information items. Collabo-
rative filtering [9] is a statistical recommendation technique that can be applied
to predict the interest level of a user in unvisited Web pages.

Collaborative filtering is commonly used in many online recommender systems
to support users in selecting news items [2], courses [3], and many more [13]. The
input for a collaborative filtering algorithm is a two dimensional matrix consist-
ing of user models describing their preferences, interests, and information needs
in the form of a feature vector. Collaborative filtering is based on the assumption
that users with similar interests prefer similar information items [15]. In order
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to generate a recommendation, collaborative filtering initially compares the user
models to identify users with the highest similarity to the current user and then
generates predictions on items by calculating the normalized and weighted av-
erage of the opinions of the similar users1.

One of the emerging practical problems of collaborative filtering recommender
systems is the sparsity of user data [7], i.e., the lack of sufficient information
about users, which prevents the system from generating accurate and reliable
predictions of interest in yet unseen information items. To partially resolve this
problem and increase the accuracy of the generated recommendations, [8] pro-
posed to aggregate the sparse individual user data into group-based data and
then use the aggregated data in the collaborative recommendation process. Al-
though in most conditions group-based recommendations cannot be as accurate
as the personalized recommendations, they have the potential to be more accu-
rate than general non-personalized recommendations, which are the natural fall
back if the sparsity problem prevents the system from generating the personal-
ized recommendations.

In this work we analyze family-based collaborative filtering recommendations
– a particular case of group recommendations – using real life browsing data
gathered in a study involving the users of an experimental eHealth family portal.
We implemented several strategies that aggregated individual browsing logs into
group-based data, generated collaborative filtering recommendations using the
aggregated data, and then evaluated them against the observed browsing logs of
the users.

The obtained experimental results demonstrate that group recommendations
are superior to global and inferior to personalized recommendations. Also, we
compared two aggregation strategies. The first aggregated the individual user
models into group models and then applied collaborative filtering to the aggre-
gated models. The second applied collaborative filtering algorithm to the in-
dividual user models and then aggregated the individual predictions into group
predictions. The results show that aggregating the user models allows generating
more accurate recommendations than aggregating the predictions.

Hence, the main contributions of this work are two-fold. Firstly, we evaluate
the accuracy of collaborative filtering group recommendations and compare it to
the accuracy of personalized and general recommendations. Secondly, we com-
pare two strategies for the data aggregation: aggregation of browsing models and
aggregation of predictions.

The rest of this paper is structured as follows. In section 2 we discuss related
work on collaborative filtering and group recommendations. In section 3 we
present and formulate the two aggregated group-based recommendation strate-
gies. In section 4 we present our experimental settings, results and findings.
Finally, in section 5 we conclude this work and present our future research
directions.

1 This presentation of collaborative filtering is narrowed down to user-to-user memory
based approach. For a recent through survey of collaborative filtering algorithms the
reader is referred to [14].
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2 Collaborative Filtering and Group Recommendations

Collaborative filtering is one of the most popular and widely-used recommenda-
tion algorithms. It is based on the notion of word of mouth [15], which assumes
that users who agreed in the past will agree in the future. In other words, it
uses opinions of similar users to generate future predictions for a target user.
The opinions of users on the items are expressed either as explicit ratings given
by users according to a predefined scale or as implicit ratings accumulated and
inferred through logging users’ interactions with the system.

The main stages of the collaborative filtering recommendation generation
process are: (1) recognizing commonalities between users by computing their
inter-user similarities; (2) selecting the most similar users; and (3) generating
recommendations by aggregating the opinions of the most similar users [9]. As
it is being based on the similarities of users, the collaborative filtering process
is sometimes referred to people-to-people correlation. In comparison with other
recommendation algorithms, the main advantage of collaborative filtering over
other algorithms is that it is not domain specific and independent of the repre-
sentation of users and items. That is, a single collaborative filtering recommender
systems can generate recommendations for any type of items (movies, images, or
text) regardless of their content. As such, it is considered a universal technique
applicable to a wide variety of domains and applications [13].

Collaborative filtering recommender systems suffer from the well-known spar-
sity problem [7]. It prevents the system from generating accurate predictions
due to the insufficient data available about the users. Two particular cases of
the sparsity problem can be differentiated: new user problem – the number of
user ratings is insufficient for the identification of similar users and reliable gener-
ation of recommendations for that user [10], and new item problem – the number
of item ratings is insufficient for a reliable generation of recommendations for
that item [5].

In recent years the focus of collaborative filtering recommendation algorithms
shifted from predictions for individuals to the more complex task of predictions
for groups. To date, group recommendations were generated using one of the
following three strategies: merging recommendations generated for individuals
(very rare occurrence; will not be considered in this work), aggregating individ-
ual user models into group-based models, or aggregating them predictions for
individual users into group-based recommendations [8].

The group modeling and aggregated predictions strategies differ in the timing
of the aggregation of information in the recommendation process as illustrated in
Figure 1. Specifically, group modeling strategy [4,16] aggregates individual user
models of the group members before the prediction computation and then gen-
erates recommendations basing on the aggregated group model. Alternatively,
aggregated predictions [11,12] treats group members as individuals for the pre-
diction computation and afterwards aggregates the individual predictions to gen-
erate group recommendations.

As discussed in [8], the selection between the group modeling and aggregated
prediction strategies depends on external factors, such as the ability to examine
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Fig. 1. Recommendation generation process

or negotiate group preferences, coverage of the recommendations, privacy con-
siderations, and ability to explain the recommendations. However, to the best
of our knowledge no prior work compared the accuracy of collaborative filtering
recommendations generated using the above two strategies.

3 Prediction Strategies

The aim of this work is to determine which of the above two strategies for ag-
gregating individual data and generating group-based recommendations is more
appropriate when dealing with coherent groups consisting of individuals within a
nuclear family structure. We concentrate on the following four recommendation
strategies (see Figure 1). Our baseline strategy, global popularity, exploits the
wisdom of the crowd at large and recommends the same most frequently visited
items to all users. Our second and third strategies, group modeling and aggre-
gated predictions, examine group-based recommendation algorithms and focus,
respectively, on the group modeling and aggregated predictions strategies. Our
fourth strategy is a standard personalized collaborative filtering recommendation
algorithm. We will elaborately present these four strategies.

The global popularity strategy implements a simple social navigation mecha-
nism [1], which guides users to areas of global interest. Each page pi is assigned
a predicted popularity score pred(pi) based on the number of times that it was
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visited across all users uxεU as shown in equation (1), where visit indicator
vis(ux, pi) = 1 if ux visited pi and 0 otherwise.

pred(pi) =
∑
xεU

vis(ux, pi) (1)

The group modeling strategy initially constructs a family based interest score
int(fa, pi) for family fa and page pi by aggregating the visit indicators vis(ux, pi)
of all family members ux that belong to the family fa according to their relative
weight ω(ux, fa)2 as shown in equation (2).

int(fa, pi) =

∑
uxεfa

ω(ux, fa)vis(ux, pi)∑
uxεfa

ω(ux, fa)
(2)

Then, collaborative filtering is applied to the family model as shown in equa-
tion (3). Family based prediction is computed by assigning similarity degrees
sim(fa, fb) between the target family fa and all other families fbεF , and using
these similarity degrees to aggregate the family based interest scores int(fb, pi)
in the target page pi.

pred(fa, pi) =

∑
fbεF sim(fa, fb) int(fb, pi)∑

fbεF sim(fa, fb)
(3)

Finally, the computed family based prediction pred(fa, pi) is assigned to all the
users ux that belong to the family fa, i.e., pred(ux, pi | uxεfa) = pred(fa, pi).

The aggregated prediction strategy maintains an individual model for each
user and initially generates individual predictions using the standard collabo-
rative filtering recommendation algorithm as shown in equation (4). Prediction
pred(ux, pi) for user ux and page pi is computed by assigning similarity degrees
sim(ux, uy) between the target user ux and all other users uyεU , and using these
similarity degrees to aggregate the individual visit indicators vis(uy, pi) for the
target page pi.

pred(ux, pi) =

∑
uyεU sim(ux, uy)vis(uy, pi)∑

uyεU sim(ux, uy)
(4)

Then, the process becomes group focused. To generate a family based prediction
pred(fa, pi), the individual predictions pred(ux, pi) for the family members are
aggregated according to their relative weight ω(ux, fa) as shown in equation (5).

pred(fa, pi) =

∑
uxεfa

ω(ux, fa)pred(ux, pi)∑
uxεfa

ω(ux, fa)
(5)

Similarly to the previous strategy, the computed family based prediction
pred(fa, pi) is assigned to all the users ux that belong to the family fa.
2 Uniform weighting is currently used to assign equal weight ω(ux, fa) = 1 to all the

users. Other weighting strategies will be investigated in the future.
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The personalized collaborative filtering recommendation strategy examines the
browsing patterns of individual users regardless of their membership in a family.
For each user ux, each page pi is assigned a prediction score pred(ux, pi) using
the standard collaborative filtering algorithm as shown in equation (4) presented
in the previous strategy.

In all four strategies we simplify the recommendation generation and recom-
mend k unvisited pages having the highest prediction scores, i.e., k pages that
maximize the product

∏k
i=1 pred(ux, pi). Note that the global popularity strat-

egy generates one list of recommendations for all users, the two group-based
strategies generate one list of recommendations for each family, and the person-
alized collaborative filtering produces one list for each family member.

4 Evaluation

The presented analysis was carried out through the browsing logs gathered as
part of an eHealth family portal study. The aim of the analysis was to determine
which strategy would be best to implement in a family based recommender in
future versions of the portal. Specifically, we aimed to ascertain the differences (1)
between the simple global popularity model, the aggregated family based models,
and the personalized recommendation model, and (2) between the combined
group model and the aggregated predictions strategies.

4.1 Experimental Setting

The data used was gathered over a two week period in March 2009. Members of
the general public (families to be specific) were invited to take part in a study of
family engagement with an eHealth application. The task for each family member
was to visit the experimental eHealth portal, possibly browse the healthy living
content, and submit suggestions for improving their lifestyles. A by product of
the study was the capture of browsing activity for all the members of the involved
families over the 23 portal pages.

In total, 64 users from 40 families took part in the trial. In 24 families only
one person interacted with the portal, in 8 families two members interacted
with the portal, in 2 families three members interacted with the portal, and in
6 families all four members interacted with the portal. In total 188 individual
page visits and 151 aggregated family based interest levels were logged, yielding
an individual matrix having 87.23% sparsity and a denser family based matrix
having 83.59% sparsity3. Each user visited on average 2.94 pages (stdev=2.77)
and each page was visited on average by 8.17 users (stdev=4.33).

The distribution of page visits across the users demonstrates a typical long tail
distribution. Only 2 users visited more than 10 pages, 6 users visited between 5
and 10 pages, and 56 users visited less than 5 pages. Conversely, the distribution
3 We disregard the families in which only one member interacted with the portal and

exclude them from the evaluation. However, we do use these users’ browsing logs as
sources of recommendation content in the training set.
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of page visits across the pages is more balanced. 7 pages were visited by more
than 10 users4, 7 pages were visited by between 5 and 10 users, and 9 pages were
visited by less than 5 users.

For each user or family, a one off similarity matrix with other users or fam-
ilies was created using Pearson’s Correlation similarity metric [9]5. Using this
similarity matrix, four recommendation lists were produced for each user us-
ing the four prediction strategies detailed in Section 3 (global, group modeling,
aggregated prediction, and personalized collaborative filtering). A leave one out
experimental evaluation was carried out to evaluate the performance of the algo-
rithms. In particular, the accuracy of the recommendations was evaluated using
the classification accuracy metrics of precision, recall, and F1 by comparing the
recommendation lists with the actual logs of the users [6].

Let us denote by V the set of pages that were visited by a user (will be con-
sidered as the relevant pages) and by R the set of pages that were recommended
by the system to the user. In this context, precision of the recommendations is
computed by |V∩R|

|R| and recall by |V∩R|
|V| . When the size of the recommended set

R is limited to k, the computed precision metric is referred to as precision@k.
Combining the two metrics of precision and recall yields a single metric, F1
score, which represents their harmonic mean assigning them equal weights. The
F1 score is computed as

F1 =
2× precision× recall

precision + recall

4.2 Experimental Results

The first question we posed related to the accuracy of recommendations based on
the global strategy of all users versus smaller groups of users in aggregated models
and aggregated predictions strategies versus individual activity in personalized
collaborative filtering strategy. Table 1 shows the average precision, recall, and
F1 scores obtained for each of the above recommendation strategies.

Table 1. Precision, Recall, and F-measure

global aggregated aggregated personalized
models predictions

precision 0.219 0.300 0.235 0.534
recall 0.552 0.689 0.609 0.779
F1 0.314 0.418 0.339 0.633

It can be seen that, as expected, the personalized recommendation strategy
outperformed all other strategies in terms of accuracy, returning the highest

4 One of the pages was an outlier – it was visited by 20 users.
5 Similar experimental results were obtained for the Cosine Similarity metric.
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precision, recall, and F1 scores. Statistical significance tests6 showed that the
personalized strategy significantly outperformed both the group-based strategies.
For precision we obtained p = 4.36×10−4 vs. aggregated models and p = 1.44×
10−5 vs. aggregated predictions, and for recall we obtained p = 2.32× 10−2 vs.
aggregated models and p = 2.72× 10−2 vs. aggregated predictions. Both group-
based strategies outperformed the global strategy. For precision we obtained p =
5.20× 10−2 vs. aggregated models and not statistically significant difference vs.
aggregated predictions, and for recall we obtained p = 5.45×10−2 vs. aggregated
models and not statistically significant difference vs. aggregated predictions.

Examining the whole recommendation lists and their accuracy is only one
dimension of the recommendations’ success. Precision@k measure analyzes the
position of the visited pages within the recommendation lists. Figure 2 depicts
the precision@k of the four recommendation strategies for gradually increasing
from 1 to 7 values of k. Precision@k curves showed that the personalized strat-
egy outperformed both the group-based strategies and the global strategy. For
example, for k = 1 (the most strict metric focusing on the first recommended
page) the personalized strategy achieved a precision of 74% in comparison to
38% and 44% for the two group-based strategies, and only 29% for the global
non-personalized strategy. This observation was valid also for other values of k.

Fig. 2. Precision@k for various values of k

The second question we posed related to the comparative accuracy of the two
group-based strategies. Both Table 1 and Figure 2 showed that the aggregated
model strategy consistently outperformed the aggregated predictions strategy.
For the overall precision and recall scores, the differences were statistically sig-
nificant: p = 1.79×10−2 for precision and p = 1.84×10−2 for recall. We explain
these findings by observing that aggregation of individual models yields a rea-
sonably dense and accurate group model, which allows the system to generate
6 All statistical significance results hereafter refer to a two-tailed t-test assuming equal

variances.
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reasonably accurate recommendations. Conversely, recommendations generated
using the individual sparse models are inaccurate, such that their aggregation
does not allow to improve their accuracy.

5 Conclusions and Future Work

The sparsity of user data is a well known problem of collaborative filtering rec-
ommender systems. To resolve it, the sparse individual user data can be aggre-
gated into group-based data and these can then be used in the recommendation
process. In this work we analyzed collaborative filtering family based recommen-
dations using the browsing logs of the users of an experimental eHealth family
portal. We implemented several strategies that aggregated individual data into
group-based data, generated family based collaborative filtering recommenda-
tions using the aggregated data, and evaluated their accuracy against the ob-
served browsing logs of the users.

Our empirical results showed that group recommendations were, as expected,
more accurate than non-personalized one-size-fits-all recommendations at deter-
mining relevant Web pages. However, personalized collaborative filtering recom-
mendations still outperformed group recommendations when comparing preci-
sion, recall, F1, and precision@k scores.

While previous works analyzed conditions when one group recommendation
strategy would be preferred over another, this work experimentally compared the
accuracy of two group-based aggregation strategies with real families of users of
an eHealth portal. Our results consistently showed that aggregating individual
browsing models into group models resulted in more accurate recommendations
than aggregating the predicted interest levels. That is, generating recommen-
dations using a dense group model was more accurate than aggregating the
predictions generated for individual users.

In this work the users were assigned uniform weights when aggregating indi-
vidual models into the family models. However, this is not reflective of the real
setting, where different users may have different browsing patterns and frequen-
cies. In the future we will evaluate the impact of various weighting heuristics
on the accuracy of the recommendations. The results presented in this work are
preliminary as they are supported by a reasonably small data set. In the fu-
ture we will conduct a larger scale user study of online group recommendations,
which will allow us to determine which strategies perform best under varying
conditions such as richer user models, larger and more heterogeneous groups of
users, and different content domains.
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Abstract. Advances in mobile computing and user modelling have enabled tech-
nologies that help museum visitors select personally interesting exhibits to view.
This is done by generating personalised exhibit recommendations on the basis of
non-intrusive observations of visitors’ behaviour in the physical museum space.
We describe a simple methodology for manually annotating museum exhibits
with bags of keywords (viewed as item features), and present two personalised
keyword-based models for predicting a visitor’s viewing times of unseen exhibits
from his/her viewing times at visited exhibits (viewing time is indicative of in-
terest). Our models were evaluated with a real-world dataset of visitor pathways
collected by tracking visitors in a museum. Both models achieve a higher predic-
tive accuracy than a non-personalised baseline, and perform at least as well as a
nearest-neighbour collaborative filter.

1 Introduction

Cultural heritage spaces such as museums provide a wealth of information. However,
a visitor’s receptivity and time are typically limited, posing the challenge of selecting
personally interesting exhibits to view within the available time. Advances in mobile
computing and user modelling provide the opportunity to assist a visitor in this selec-
tion process by means of suitable technologies. Such technologies can (1) utilise non-
intrusive observations of a visitor’s behaviour in the physical space to learn a model
of his/her interests, and (2) generate personalised exhibit recommendations based on
interest predictions.

In this paper, we describe a simple methodology for manually annotating museum
exhibits with bags of keywords, which we view as item features. We then present two
personalised keyword-based models for predicting a visitor’s viewing times of unseen
exhibits from his/her viewing times at visited exhibits (we use viewing time to mea-
sure interest in exhibits): (1) a memory-based nearest-neighbour Content-Based Fil-
ter (CBF), and (2) a model-based Normalised Least Mean Squares Filter (NLMSF). Our
models were evaluated with a dataset we collected by manually tracking visitors at Mel-
bourne Museum (Melbourne, Australia). We compared the performance of our models
with that of a non-personalised baseline, and a memory-based nearest-neighbour col-
laborative filter — the traditional approach for domains where features of items are not
readily apparent [1,2]. Both models attain a higher predictive accuracy than the base-
line, and perform at least as well as the collaborative filter (with NLMSF outperforming
CBF in the realistic Progressive Visit setting, Section 5).

A. Nicholson and X. Li (Eds.): AI 2009, LNAI 5866, pp. 656–665, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Using Keyword-Based Approaches to Adaptively Predict Interest in Museum Exhibits 657

This paper is organised as follows. In Section 2, we summarise related research.
Section 3 describes our domain, our dataset of visitor pathways, and our approach for
annotating museum exhibits, and Section 4 discusses our models for predicting a visi-
tor’s viewing times. We then summarise the results of our evaluation (Section 5), before
we conclude in Section 6.

2 Related Research

Our research lies at the intersection of statistical user modelling and personalised guide
systems for physical domains. Personalised guide systems for physical domains have
often employed adaptable user models, which require visitors to explicitly state their
interests in some form, e. g., [3,4]. Less attention has been paid to predicting prefer-
ences from non-intrusive observations, and to utilising adaptive user models that do not
require explicit user input. In the museum domain, adaptive user models have usually
been updated from the user’s interactions with the system, with a focus on adapting con-
tent presentation [5,6,7] rather than predicting or recommending exhibits to be viewed.

The above systems, like most systems in the museum domain, rely on knowledge-
based user models in some way, and hence, require an explicit, a-priori engineered
representation of the domain knowledge. In contrast, our research investigates non-
intrusive statistical user modelling and recommendation techniques that do not require
such an explicit domain knowledge representation.

3 Domain and Datasets

This section introduces our domain. We briefly discuss the dataset of visitor pathways
we collected at Melbourne Museum (Section 3.1), and our methodology for annotating
and representing museum exhibits (Section 3.2).

3.1 Visitor Pathways

Our dataset of visitor pathways was obtained by manually tracking visitors at Mel-
bourne Museum from April to June 2008, using a custom-made tracking tool running
on laptop computers [2]. We only shadowed first-time adult visitors travelling on their
own, to ensure that neither prior knowledge about the museum nor other accompanying
visitors’ interests influenced a visitor’s decisions about which exhibits to view. In total,
we recorded 158 visitor pathways in the form of time-annotated sequences of visited
exhibit areas,1 obtaining data which provides information of the type that may be in-
ferred from sensing data. The dataset (described in detail in [2]) contains 8327 viewing
durations at the 126 exhibit areas of Melbourne Museum, yielding an average of 52.7
exhibit areas per visitor (41.8% of the exhibit areas). Hence, on average 58.2% of the
exhibit areas were not viewed by a visitor, which indicates that there is potential for
pointing a visitor to relevant but unvisited exhibits.2

1 Prior to collecting the data, we grouped the individual exhibits of Melbourne Museum into
126 semantically coherent and spatially confined exhibit areas.

2 We use the terms ‘exhibit’ and ‘exhibit area’ synonymously in the remainder of this paper.
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Table 1. Annotator statistics

A1 A2 A3 A4

Annotated exhibit areas 126 122 85 79
Phrases 1242 772 403 324
Tokens 1578 806 889 906
Distinct tokens 764 328 495 447

Phrases / exhibit area 9.86 6.33 4.74 4.10
Tokens / exhibit area 12.52 6.61 10.46 11.47
Tokens / phrase 1.27 1.04 2.21 2.80

3.2 Exhibit Representation

Museum exhibits are complex, as they are usually composed of a collection of items (in-
cluding text labels and multimedia content). Hence, it is difficult to determine features
and feature weights that accurately describe the content being presented. In this section,
we outline the methodology we used to annotate the exhibit areas of Melbourne Mu-
seum. The idea is that subjective, manual annotations comprising keywords associated
with exhibits can be used to represent the content of the exhibits.

The 126 exhibit areas were annotated by four annotators — two were familiar with
the museum (A1, A2) and two were not (A3, A4) (the annotators operated in pairs A1-A4
and A2-A3, so that exhibit area boundaries were clear to all annotators). The annotators
were instructed to engage with an exhibit for a length of time equal to the expected
viewing time of the exhibit (estimated from our pathway dataset), before writing down
any keywords or phrases. This enabled us to take into account exhibit complexity. We
did not restrict the vocabulary that the annotators could use, and asked them to use
as many keywords or multi-word phrases they considered appropriate. In total, 77 ex-
hibit areas were annotated by all four annotators, and overall the annotators used 1381
distinct tokens (we split phrases into one-word tokens). Table 1 summarises annotator-
specific statistics, which highlight the differences between the annotators’ styles.

In this paper, we explore two content-based models based on a bag of words repre-
sentation of the exhibits (we remove stopwords in both models):

– Simple. We simply collect the tokens and phrases given by our annotators in an
exhibit-specific bag of words. We then remove tokens that occur in less than two
bags of words or have a corpus frequency of less than 3.3

– Populated. We proceed as in the Simple model, and use Wordnet [8] to further
populate the bags of words. This is done by including Wordnet topics and Word-
net synonyms from the most likely synset of a term (i. e., the first synset). Both
are included in proportion to how often the corresponding term was used by the
annotators. The inclusion of topics and synonyms is expected to alleviate the dif-
ferences between the words used by the annotators, and hence improve predictive
performance. We then remove tokens that occur in less than three bags of words or
have a corpus frequency of less than 5.

3 These thresholds, and those for the Populated model, were empirically determined.
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Equivalently to its bag of words, an exhibit i is represented by an f -dimensional term
vector xi (where f is the number of distinct tokens used across all exhibit areas). For
each model (Simple and Populated), we consider the following variants:

– Binary. The exhibit-specific bags of words are transformed into binary term vec-
tors xi by setting to 1 those elements of xi for which the term occurs in exhibit i’s
bag of words.

– Frequency. The bags of words are transformed into term vectors xi whose ele-
ments are set to word frequencies, i. e., the number of times a term occurs in ex-
hibit i’s bag of words.

– Tf-idf. The elements of xi are term frequency inverse document frequency (tf-idf)
term weights, where the term frequency tft,i of a term t for an exhibit i, and the
inverse document frequency idft for a term t are defined as follows:

tft,i =
nt,i∑
s ns,i

and idft = 1 + log
|I|

|{i ∈ I : nt,i > 0}|

where nt,i is the number of times term t occurs in exhibit i’s bag of words, s is a
term in this bag of words, |I| is the total number of exhibits, and |{i ∈ I : nt,i > 0}|
is the number of exhibits annotated with term t. The tf-idf weight for term t and
exhibit i is tf-idft,i = tft,i × idft.

4 Adaptive, Content-Based Viewing Time Prediction from
Non-intrusive Observations

In this section, we first describe how we use viewing time to quantify interest in ex-
hibits (Section 4.1). We then propose two keyword-based approaches for predicting a
visitor’s (log) viewing times (viewed as interest in exhibits) from non-intrusive obser-
vations of his/her (log) viewing times at visited exhibits (Sections 4.2 and 4.3).

4.1 From Viewing Time to Exhibit Interest

In an information-seeking context, people usually spend more time on relevant infor-
mation than on irrelevant information, as viewing time correlates positively with pref-
erence and interest [9]. Hence, viewing time can be used as an indirect measure of
interest. We propose to use log viewing time (instead of raw viewing time), due to
the following reasons. When examining our dataset of visitor pathways (Section 3.1),
we found the distributions of viewing times at exhibits to be positively skewed. Thus,
the usual assumption of a Gaussian model did not seem appropriate. To select a more
appropriate family of probability distributions, we used the Bayesian Information Cri-
terion (BIC) [10]. We tested exponential, gamma, normal, log-normal and Weibull dis-
tributions. The log-normal family fitted best, with respect to both number of best fits
and average BIC score (averaged over all exhibits). Hence, we transformed all viewing
times to their log-equivalent to obtain approximately normally distributed data. This
transformation fits well with the idea that for high viewing times, an increase in viewing
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time indicates a smaller increase in the modelled interest than a similar increase in the
context of low viewing times.

The basis for our predictive models is the current visitor u’s implicit rating vector ru,
where an element rui of ru is the implicit rating given by visitor u to exhibit i. To
build ru, for each element rui, we first calculate the log-equivalent tui of an observed
viewing time. We then normalise this log viewing time by calculating an exhibit-specific
z-score, thereby ensuring that varying exhibit complexity does not affect the predictions
of our models (viewing time increases with exhibit complexity). This is done by sub-
tracting from the log viewing time tui the exhibit’s log viewing time mean t·i, and
dividing by the sample standard deviation σi.4 Finally, we add the resultant normalised
log viewing time rui to ru.

4.2 Nearest-Neighbour Content-Based Filter

Our Content-Based Filter (CBF) for adaptively predicting a visitor’s viewing times of
unseen exhibits is a nearest-neighbour content-based filter, e. g., [11]. We start by cal-
culating r̃ui, a similarity-weighted personalised prediction of a current visitor u’s un-
observed normalised log viewing time rui for a current exhibit i, from the normalised
log viewing times ruj in visitor u’s rating vector ru as follows:

r̃ui =

∑
j∈N(u,i)

sijruj∑
j∈N(u,i)

sij

where N(u, i) is the set of nearest neighbours, and sij is the similarity between ex-
hibits i and j (calculated using the cosine similarity measure on the feature vectors xi

and xj of exhibits i and j, Section 3.2).5 The set of nearest neighbours N(u, i) for the
current visitor u and exhibit i is constructed by (1) calculating sij for all exhibits j
which were viewed by current visitor u, and (2) selecting up to k exhibits that are most
similar to the current exhibit i. Finally, we employ shrinkage to the mean [12] to cal-
culate r̂ui, a shrunken personalised prediction of rui (we unnormalise r̂ui afterwards to
obtain a log viewing time prediction t̂ui):

r̂ui = r̃·i + ω (r̃ui − r̃·i)

where r̃·i is a (normalised, non-personalised) mean prediction of rui, i. e., r̃·i = 0, and
ω ∈ [0, 1] is the shrinkage weight. Setting r̃·i = 0 corresponds to using the log viewing
time mean t·i as a non-personalised mean prediction of exhibit i’s log viewing time tui.

Whenever a similarity-weighted personalised prediction is not possible (e. g., when
the set of nearest neighbours is empty), we estimate rui using simply r̃·i = 0. We pro-
ceed in the same fashion for less than m observations in visitor u’s rating vector ru.

The maximum number of nearest neighbours k, minimum number of viewed exhibits
m and shrinkage weight ω are chosen so that an error measure of choice is minimised
— in our case, the mean absolute error (MAE) (Section 5.1).

4 We use the other visitors’ log viewing times to compute estimates for t·i and σi. Hence, our
predictive models are not content-based in the strict sense, as this normalisation procedure
uses information acquired from visitors other than the current visitor.

5 The similarities sij can be pre-computed, as they do not depend on visitor ratings.
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4.3 Normalised Least Mean Squares Filter

In addition to the memory-based approach discussed in Section 4.2, we present a model-
based approach for predicting a visitor’s (log) viewing times of unseen exhibits, called
Normalised Least Mean Squares Filter (NLMSF). For NLMSF, the current visitor u’s
user model is an f -dimensional weight vector wu (recall that f is the number of to-
kens, Section 3.2). A personalised prediction r̃ui of a current visitor u’s unobserved
normalised log viewing time rui for a current exhibit i is computed as the inner product
of the weight vector wu and the feature vector xi of the exhibit:

r̃ui = wu · xi

As for CBF, we use shrinkage to the mean to improve the predictive accuracy of
NLMSF, i. e., r̂ui = r̃·i + ω (r̃ui − r̃·i), where as above, r̃·i = 0 is a (normalised, non-
personalised) mean prediction of rui (we unnormalise r̂ui afterwards to obtain a log
viewing time prediction t̂ui). If we have less than m observations in the current visi-
tor u’s rating vector ru, we estimate rui using r̃·i = 0.

Let wu,t be the weight vector at time t. We initialise wu,0 = 0 (t = 0 corresponds to
having an empty rating vector ru), and use the normalised version of the Widrow-Hoff
rule [13] (also called gradient descent rule) to adaptively update the weight vector wu,
whenever a normalised log viewing time rui is added to the current visitor’s rating
vector ru:

wu,t+1 = wu,t −
η

‖xi‖2
(
wu,t · xi︸ ︷︷ ︸

r̃ui

− rui

)
xi

where η > 0 is the learning rate, which controls the degree to which an observation
affects the update (we normalise the learning rate by dividing it by ‖xi‖2). This up-
date rule moves the current weight vector in the direction of the negative gradient of
the squared error of the observation (being the direction in which the squared error
decreases most rapidly) — hence the name Normalised Least Mean Squares Filter.

The learning rate η, minimum number of viewed exhibits m and shrinkage weight ω
are chosen so that the MAE is minimised (Section 5.1).

5 Evaluation

This section reports on the results of an evaluation performed with our datasets
(Section 3), including a comparison with a nearest-neighbour collaborative filter [1,2].

5.1 Experimental Setup

To evaluate the performance of our predictive models CBF and NLMSF (Section 4), we
implemented two additional models: Mean Model (MM) and Collaborative Filter (CF).
MM, which we use as a baseline, predicts the log viewing time of an exhibit area i to be
its (non-personalised) mean log viewing time t·i. For CF (described in detail in [2]), we
implemented a nearest-neighbour collaborative filtering algorithm, and added modifica-
tions from the literature that improve its performance, such as significance weighting [1]
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and shrinkage to the mean [12]. Additionally, as for CBF and NLMSF, we transformed
the log viewing times into exhibit-specific z-scores, to ensure that varying exhibit area
complexity does not affect the similarity computation for selecting the nearest neigh-
bours. Visitor-to-visitor differences with respect to their mean viewing durations were
removed by transforming predictions to the current visitor’s viewing-time scale [1].

Due to the relatively small dataset, we used leave-one-out cross validation to evaluate
the performance of the different models. That is, for each visitor, we trained the models
with a reduced dataset containing the data of 157 of the 158 visit trajectories, and used
the withheld visitor pathway for testing.6 As discussed in Section 3.2, we explored three
exhibit-representation variants for the Simple model and three for the Populated model.
For each of the six variants, we tested several thousand different parametrisations of
CBF and NLMSF (we proceeded similarly for CF). For CBF, we varied the parameters
k, m and ω, and for NLMSF, the parameters η, m and ω. In this paper, we report only
on the performance obtained with the best configurations.

We performed two types of experiments: Individual Exhibit and Progressive Visit.

– Individual Exhibit (IE). IE evaluates predictive performance for a single exhibit.
For each observed visitor-exhibit pair (u, i), we first removed the implicit rating
rui from the vector ru of visitor u’s normalised log viewing durations. We then
computed a prediction r̂ui from the other observations, and unnormalised r̂ui to
obtain a log viewing time prediction t̂ui. This experiment is lenient in the sense
that all available observations except the observation for exhibit area i are kept in a
visitor’s rating vector ru.

– Progressive Visit (PV). PV evaluates performance as a museum visit progresses,
i. e., as the number of viewed exhibit areas increases. For each visitor, we started
with an empty visit, and iteratively added each viewed exhibit area to the visit
history, together with its normalised log viewing time. We then predicted the nor-
malised log viewing times of all yet unvisited exhibit areas, and unnormalised these
predictions to obtain log viewing times.

For both experiments, we used the mean absolute error (MAE) with respect to log
viewing times to measure predictive accuracy as follows:

MAE =
1∑

u∈U |Iu|
∑
u∈U

∑
i∈Iu

|tui − t̂ui|

where U is the set of all visitors, and Iu denotes a visitor u’s set of exhibit areas for
which predictions were computed. For IE, we calculated the total MAE for all valid
visitor-exhibit pairs; and for PV , we computed the MAE for the yet unvisited exhibit
areas for all visitors at each time fraction of a visit (to account for different visit lengths,
we normalised all visits to a length of 1).

5.2 Results

Table 2 shows the results for the IE experiment, where the best CBF variant achieves
an MAE of 0.7673 (stderr 0.0067), and the best NLMSF variant achieves an MAE of

6 For our experiments, we ignored travel time between exhibit areas, and collapsed multiple
viewing events of one area into one event.
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Table 2. Model performance for the IE experiment (MAE)

MAE

MM 0.8618
CF 0.7868

CBF Binary Frequency Tf-idf
MAE k m ω MAE k m ω MAE k m ω

Simple 0.7714 22 20 0.8 0.7673 20 21 0.8 0.7705 20 15 0.7
Populated 0.7758 35 15 0.8 0.7704 14 15 0.7 0.7699 14 15 0.7

NLMSF Binary Frequency Tf-idf
MAE η m ω MAE η m ω MAE η m ω

Simple 0.7829 0.3 1 1.0 0.7850 0.3 1 0.9 0.7780 0.4 1 1.0
Populated 0.7860 0.3 1 0.9 0.7875 0.2 1 1.0 0.7772 0.3 1 1.0

0.7772 (stderr 0.0067) (typeset in boldface in Table 2). Both models outperform MM
and CF (statistically significantly with p � 0.01).7 For the Binary and Frequency vari-
ants, Simple performs marginally better than Populated. For Tf-idf on the other hand, the
Populated variants perform better than Simple. However, these differences are not very
pronounced. Further experiments are necessary to make more conclusive statements
regarding the effects of the different ways of representing exhibits by bags of words.
Interestingly, the minimum number of viewed exhibits m is 1 for all NLMSF variants,
meaning that NLMSF produces personalised predictions that are more accurate than
the non-personalised mean with only little information about a visitor. Additionally, the
learning rates η are relatively small (the optimal learning rate for a normalised least
mean squares filter can be shown to be 1.0 in the case of perfect observations), and the
shrinkage weights ω are close to 1.0. In contrast, the shrinkage weights for CBF are
smaller. This can be explained by the fact that for NLMSF, small learning rates have the
same effect on performance as small shrinkage weights (i. e., weights close to 0.0).

The performance of our models for the PV experiment is depicted in Figure 1 (we
show only the results for the Populated Tf-idf variants of our models, as they yielded
the best performance). CF outperforms MM slightly (statistically significantly for visit
fractions 0.191 to 0.374 and for several shorter intervals later on, p < 0.05). CBF
performs at least as well as CF (statistically significantly better for 0.0701 to 0.2513
and for several shorter intervals later on, p < 0.05), and NLMSF performs significantly
better than both MM and CF for visit fractions 0.0160 to 0.9039 with gaps around 0.3
and 0.8 (p < 0.05). Additionally, NLMSF outperforms CBF (statistically significantly
for 0.0160 to 0.9199 with gaps from 0.1982 to 0.3674 and 0.8078 to 0.8308, p < 0.05).

Drawing attention to the initial portion of the visits, NLMSF’s MAE decreases in-
stantly, whereas the MAE for MM, CF and CBF remains at a higher level. Generally,
the faster a model adapts to a visitor’s interests, the more likely it is to quickly deliver
(personally) useful recommendations (alleviating the new-user problem, which is typi-
cal for content-based user modelling approaches). Such behaviour in the early stages of

7 Throughout this paper, the statistical tests performed are paired two-tailed t-tests.
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Fig. 1. Model performance for the PV experiment (MAE)

a museum visit is essential in order to build trust in the system, and to guide a visitor in
a phase of his/her visit where such guidance is most likely needed.

As expected, MM performs at a relatively constant MAE level. For the other models,
we expected to see an improvement in performance (relative to MM) as the number of
visited exhibit areas increases. However, this trend is rather subtle. Additionally, for
all four models, there is a performance drop towards the end of a visit. We postulate
that these phenomena may be explained, at least partially, by the increased influence
of outliers on the MAE, as the number of exhibit areas remaining to be viewed is
reduced with the progression of a visit. This influence in turn offsets potential gains in
performance obtained from additional observations. Our hypothesis is supported by a
widening in the standard error bands for all models as a visit progresses, in particular
towards the end (not shown in Figure 1 for clarity of presentation).

6 Conclusions and Future Work

We have offered a simple methodology for manually annotating museum exhibits with
bags of keywords. We then presented two content-based models for predicting a visi-
tor’s viewing times of unseen exhibits (used to measure interest in exhibits) from his/her
viewing times at visited exhibits: memory-based nearest-neighbour Content-Based Fil-
ter (CBF), and model-based Normalised Least Mean Squares Filter (NLMSF). For both
models, we considered six variants for the keyword-based exhibit representation. The
results of our evaluation favour slightly the Populated Tf-idf representation, but this
outcome requires further investigation. More importantly, both content-based models
attain a higher predictive accuracy than a non-personalised baseline, and perform at
least as well as a nearest-neighbour collaborative filter (with NLMSF outperforming
CBF in the realistic Progressive Visit setting). Additionally, in the Progressive Visit
setting, NLMSF rapidly adapts to observed visitor behaviour, alleviating the new-user
problem of content-based approaches.

In the future, we plan to hybridise collaborative and content-based models, e. g., in
an ensemble fashion [14]. We also plan to investigate whether more sophisticated ap-
proaches for representing museum exhibits improve the predictive performance of our
models. Further, the exhibits predicted by our interest-based models to be personally
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interesting (Section 4) will be combined with the most likely pathway through the mu-
seum (predicted by a location-based model [15]), in order to recommend exhibits that a
visitor may be interested in but is likely to overlook.
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Abstract. One application of smart homes is to take sensor activations from a
variety of sensors around the house and use them to recognise the particular
behaviours of the inhabitants. This can be useful for monitoring of the elderly
or cognitively impaired, amongst other applications. Since the behaviours them-
selves are not directly observed, only the observations by sensors, it is common
to build a probabilistic model of how behaviours arise from these observations,
for example in the form of a Hidden Markov Model (HMM). In this paper we
present a method of selecting which of a set of trained HMMs best matches the
current observations, together with experiments showing that it can reliably detect
and segment the sensor stream into behaviours. We demonstrate our algorithm on
real sensor data obtained from the MIT PlaceLab. The results show a significant
improvement in the recognition accuracy over other approaches.

Keywords: Behaviour Recognition, Hidden Markov Models (HMMs), Activity
Segmentation, Smart Home.

1 Introduction

It is a well-reported fact that the populations of the Western world are aging. In Europe,
for example, the number of people aged 65 and over is projected to increase from 10%
of the entire population in 1950 to more than 25% in 2050. Older adults are more fre-
quently subject to physical disabilities and cognitive impairments than younger people.
It is clearly impossible to rely solely on increasing the number of caregivers, since even
now it is difficult and expensive to find care. Additionally, many people are choosing to
stay in their own homes as long as possible, and hope to remain independent. This has
lead to a large number of monitoring systems (also known as ‘smart homes’, or ‘ubiq-
uitous computing systems’) that aim to assist in the Activities of Daily Living (ADLs)
such as bathing, grooming, dressing, eating and so on [11], either directly through in-
volvement with the person, or by alerting carers when a problem arises.

As the majority of the ADLs involve using physical objects, such as washing ma-
chines, cooking utensils, refrigerators, televisions and so forth, it is possible to infer the
inhabitant’s behaviour [9], [13]. As a result, behaviour recognition has been drawing
significant attention from the research community. The idea behind behaviour recogni-
tion is to infer the inhabitant’s behaviours from a series of observations acquired through
sensors.
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One of the main challenges in behaviour recognition is that the exact activities are
not directly observed. The only information provided are the sensor observations, which
could be that the kitchen light is on, the oven is turned on and the burner is on; the in-
ference that therefore somebody is cooking is left to the intelligent part of the system.
Two challenges of behaviour recognition are that many of the same sensor activations
will be involved in multiple behaviours, and that the number of observations in a be-
haviour can vary between activities, and within different instances of the same activity.
For example, making breakfast could involve sensors on the fridge, toaster, and cabinet
one day, and also the kettle the next day when the person decides to have coffee as well.
Making lunch will also involve the fridge and cabinet, and other unrelated sensors.

One common approach to recognising behaviours is to use Hidden Markov Models
(HMMs), which are probabilistic graphical models where sensor observations give rise
to latent variables which represent the behaviours. To use HMMs there are a few prob-
lems that have to be solved. One is to break the token sequence into appropriate pieces
that represent individual behaviours (i.e., segmentation), and another is to classify the
behaviours using the HMM. Most current approaches assume that the activities have
been segmented, and use a fixed window length to partition the input stream. With each
behaviour produces different numbers of sensor actions, it is inappropriate to rely on
fixed window length, as activity segmentation can be biased in this way. Thus, an intelli-
gent method is required to self-determine the window size based on the data. This paper
presents a prototype system that performs the behaviour recognition and segmentation
by using a set of HMMs that each recognise different behaviours and that compete to
explain the current observations. In this paper we propose a variable window length that
moves over the sequence of observations and use hand-labelled data to demonstrate the
efficacy of the system.

2 Related Work

There has been a lot of work on activity segmentation in smart homes. Within smart
home research it is common to use more complicated variants of the HMM, such as the
Hierarchical Hidden Markov Model [7], or Switching Hidden Semi-Markov Model [1].
In both of these models, a top-level representation of behaviours (e.g., cooking or mak-
ing coffee) is built up from a set of recognised activities that arise from the individual
sensor values. A variant of these methods uses a three level Dynamic Bayesian Net-
work [5] (the HMM is one of the simplest dynamic Bayesian network). These models
can be seen as adding complexity to the HMM in order to represent one complete model
of behaviours arising from sensor activations. The difficulty with these methods is that
more complex models require more data for training, and higher computational cost.

There are many other places where time series of activities are recognised and clas-
sified into ‘behaviours’, and our method owes more to other areas of temporal signal
analysis, such as recognising activities from posture information from video [3] and
motion patterns [8,4,14]. In common with our algorithm, Kellokumpu, Pietikäinen and
Heikkilä [3] use a set of HMMs, one for each activity, and apply the forward algorithm
in the same way that we do to monitor likelihood values. However, they do not use a
sliding time window, preferring multiple window sizes and thresholding in order to sep-
arate out the activities. Niu and Abdel-Mottaleb [8] merge the outputs of the different
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HMMs using majority voting. A vote is assigned to each window and activity is classi-
fied based on the most common classification from the set of HMMs. A similar method
is used in [12] for the identification of housekeeping activities using RFID data.

Kim, Song and Kim [4] turn the problem around and perform segmentation before
classification, in this case for gesture recognition. The starting point of gestures is de-
tected, and then a window is slid across the observation sequence until an end point is
reached. The extracted gestures are then fed to HMMs for gesture recognition, with the
final gesture type being determined by majority vote. An attempt to simultaneously de-
tect the sequences and train the HMMs was described by Yin, Shen, Yang and Li [14]. A
window is moved over the observation sequence to construct a linear dynamic system,
and the likelihood of each model is computed based on these linear systems. A modified
EM algorithm is used to simultaneously update these estimates. High-level goals can
then be inferred from these sequences of consecutive motion patterns. Another method
that is closely related to our approach is the work of Govindaraju and Veloso [2], which
attempts to recognise activities from a stream of video. They use a set of HMMs, but
maintain a single fixed window size, which is determined by averaging the lengths of
the training segments used.

3 Behaviour Recognition

In our work we use the Hidden Markov Model as the basic representation of a behaviour.
We posit that a typical behaviour is a sequence of activities that occur close to one
another in time, in one location. While this is not always true, for now we are focussing
on these types of behaviour, which includes activities such as cooking and preparing
beverages. It would not include common activities such as laundry, which may well be
separated in time (while waiting for the washer to finish) and in space (for example, if
clothes are hung outside rather than using a dryer).

The Hidden Markov Model (HMM) [10] is very commonly used for these types of
problem. It is a probabilistic model that uses a set of hidden (unknown) states to clas-
sify a sequence of observations over time. The HMM uses three sets of probabilities,
which form the model parameters: (1) state transition probability distribution A = aij ,
the probability of transition from state i to state j conditional on current state i, (2)
observation probability distribution B = bj(O), which illustrates the probability of
observing observation O given that current state is j and (3) initial state distribution
π = πi. The HMM is a special case of the Dynamical Bayesian Network or Graph-
ical Model [6], and unlike most graphical models, HMMs admit tractable algorithms
for learning and prediction without the need for sampling or approximation. We use a
separate HMM to recognise each behaviour. This is allows for variation in the activity,
such as different orders of sensor activation, the fact that certain sensor activations can
be shared by multiple behaviours, and the fact that the algorithm is probabilistic and
can hence deal with ‘noise’ in the data.

Given a set of HMMs trained on different behaviours, we present data from the
sensor stream to all of the HMMs, and use the forward algorithm [10] to compute the
likelihood of this sequence of activities according to the model of each behaviour, i.e.
P (O1, O2, . . . , OT |λ), for HMM λ and observation sequence O1, O2, . . . , OT using:
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P (O1, O2, . . . , OT |λ) =
N∑

i=1

αT (i)

which can be recursively computed by:

α1(i) = πibi(O1)

αt+1(j) =
N∑

i=1

αt(i)aijbj(Ot+1)

The αt values are quantised into the set {0, 1} using a winner-takes-all approach to
simplify the calculations at each subsequent step. The forward algorithm fits well into
the context of our study because it determines how well the ‘winning’ HMM explains
the observed sequences. This can be determined by monitoring the forward variable (α)
for each observation. A change in the quantised α value signifies a ‘change’ of activity
from the observation stream. The data that is presented to the HMMs is chosen from the
sensor stream using a window that moves over the sequence. The choice of the size of
this window is important, because it is unlikely that all of the activities in the sequence
belong to one behaviour, and so the HMM chosen to represent it will, at best, represent
only some of the activities in the sequence. Many of the methods described in related
work used multiple sizes of window to try and deal with this fact, which arises because
sequences of different behaviours (or indeed, the same behaviour in different instances)
can be of different lengths. We present an alternative solution to this problem. To see the
importance of the problem, consider the three different cases shown in Fig. 1. In each, a
behaviour w takes up much of the window and is the winning behaviour. However, the
location of it in the window differs, and we want to ensure that other behaviours in the
window are also recognised.

The solid line shown in Fig. 1 illustrates how the quantised α values computed by
the forward algorithm applied to one particular HMM, the one selected as the ‘winner’
for this window. If the quantised α values are high (that is, α = 1) at the beginning of
the observation sequence then it is likely that case (Fig. 1(a)) is occurring. Following
Fig. 1(a) we see that there is a drop in α value between observations O5 and O6, which
suggests that the behaviour has changed. We can therefore classify O1, O2, . . . , O5 as
belonging to the winning behaviour, w, and then initialise a new window of default size
(D2) at O6. When D2 is initialized, all the observations within D2 will then be fed
to HMMs for competition and the process iterates. The second case occurs when the
winning behaviour best describes observations that fall in the middle of the window,
e.g., O4, O5, . . . , O10 in Fig. 1(b). Since the winning behaviour (w) does not describe
observations O1, O2 and O3, the probability for these three observations is low and we
observe a jump in the α value at O4. When this is observed, a new window (D2) is
initialized that contains only the three observations that are not explained by behaviour
w. The whole process is then recursively computed on this window. With regard to
the remaining sequence (O4 and onwards) it would be possible to use HMM w and
continue to monitor the α values. However, it was observed that sometimes there may
be an overlap in individual sensor activations between the first and second behaviours,
which can confuse things. For this reason, a new window of default size (D3) is started
at O4 and the HMM competition is rerun on this sequence.
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Since these two cases have ensured that the winning behaviour is at the beginning
of the window, the only possibilities are that the behaviour stops during the window
(Fig. 1(a)) or does not (Fig. 1(c)). The first case is already dealt with, and in the second
case, we could simply classify the activities in the window as w and start a new one at the
end of the current window. However, instead we extend the size of the window (shown
as a dashed arrow in Fig. 1(c)) and continue to calculate the α value for each observation
until the α drops. Fig. 2 summarises the overall procedures of the proposed method.

(a) (b) (c)

Fig. 1. An activity w does not need to take up the entire window. Even assuming that the actions
in a behaviour are contiguous, it could be (a) at the start of the window, (b) in the middle, or (c)
at the end. If the entire window is classified as one behaviour, then a potentially large number
of behaviours are missed. O1, O2, . . . , OT is the observation sequence, D is the window size
and the initial default window size is 10. The solid line above the observation sequence shows
the possible representations of a winning sequence using the α values. The long dash below the
observation sequence shows the original observation sequence. For details, see the text.

Fig. 2. Summary of our algorithm. When no changes is observed in α value, the algorithm will
continue to monitor the α value based on the winning HMM (shown in dashed line). The recog-
nition process is recursively computed until it reaches the end of the observation stream.

4 Experiment and Results

In order to demonstrate our algorithm, we took a dataset from the MIT PlaceLab [13].
They designed a system based on a set of simple and easily installed state-change



Behaviour Recognition from Sensory Streams in Smart Environments 671

sensors that were placed in two different apartments with real people living in them.
The subjects kept a record of their activities that form a set of annotations for the
data, meaning that there is a ‘ground-truth’ segmentation of the dataset. We trained
the HMMs using this hand-segmented and labelled data. While this is a simplification
of the overall aims of the project, it enables us to evaluate the method properly; future
work will consider the problems of training with noisy and unlabelled data.

The actual dataset consists of state changes in objects within the home (such as the
washing machine, TV, coffee machine, and toaster). For the first of the two subjects
there were 77 sensors and data was collected for 16 consecutive days. It is this dataset
that will form the basis for most of the experiment reported here. Further details on
these datasets and PlaceLab architecture can be found in [13]. We assume for now
that activities take place in one room, and that the location of the sensors is known a
priori. For this reason, we concentrated on just one room, namely the kitchen, which
contained more behaviours than any other. The behaviours that were originally labelled
in the kitchen were (i) prepare breakfast, (ii) prepare beverage, (iii) prepare lunch, and
(iv) do the laundry. We split behaviour (i) into two different ones, prepare toast and
prepare cereal. This made two relatively similar behaviours, which is important to test
recognition accuracy to distinguish activities and to avoid bias classification.

In order to train the HMMs, a subset of the data was required. We partitioned the data
into a training set consisting of the first few days, followed by a test set consisting of the
remainder. From the total of 16 days of data, we tried different splits of the data, from
15 days for training (and 1 for testing) through 11 days, 8 days, and 5 days for training.
There were approximately 5-6 activities each day, made up of around 90-100 sensor
observations. The HMMs were each trained on the relevant labelled data in the training
set using the standard Expectation-Maximization (EM) algorithm [10]. We conducted
three separate experiments using these five trained HMMs. In the first, we compared
the algorithm with fixed window length, while in the second we looked at the effects of
window size on the efficiency and accuracy of the algorithm. In the third experiment,
we looked at how much training data was required for accurate results.

We defined two separate measurements of accuracy for our results:

Behaviour-level recognition accuracy: This simply compares the behaviour output
by the algorithm with that of the label whenever the behaviour changed (e.g. be-
haviour such as ‘doing laundry’, ‘preparing lunch’, etc.).

Observation-level recognition accuracy: This compares the behaviour output by the
algorithm with that of the label for every observation. This is particularly sensitive
to times when two behaviours that occur one after the other share the same observa-
tions (e.g. observation such as ‘oven is turned on’ should be classified as ‘preparing
lunch’ rather than ‘doing laundry’).

4.1 Experiment 1: Comparison between the Algorithm with Fixed Window
Length

The first experiment is designed to compare the algorithm with the fixed window length.
In this experiment, we used a fixed window length of size 10, with 5 days of training
and 11 days of testing, and ran the algorithm over the sensory stream. Table 1 shows
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Table 1. Comparison results between the variable window length and fixed window length

Recognition Accuracy Variable Window Length Fixed Window Length

Behaviour-level 87.80% 78%
Observation-level 98.35% 86.93%

the comparison results between the algorithm with the fixed window length. Results
are based on contiguous manner, so there is no variation when the experiment is rerun,
hence averages and standard deviations are not reported.

4.2 Experiment 2: Competition among HMMs

Before beginning this experiment, we used a window size of 10, with 5 days of training
and 11 days of testing, and ran the entire algorithm over the sensor observations. The
results of sliding this window over the data is shown in Fig. 3, which displays the
outputs of the algorithm, with the winning behaviour at each time being clearly visible.
As the figure shows, we can determine that the subject is doing laundry at observation

Fig. 3. Illustration of competition between HMMs based on a testing set of 727 sensor observa-
tions for five different behaviours: laundry, preparing toaster, preparing cereal, preparing bever-
age and preparing lunch. Since behaviours may share the same sensor observation, this explains
why the α = 1 is seen in multiple behaviours (e.g. between observation 120 and 140 in the last
two behaviours). The ‘preparing lunch’ is selected as winner because it appears in a continuous
manner.
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150 and preparing breakfast (toaster) at observation 550. The classification accuracy of
this experiment was high enough to encourage us to look further.

Table 2 shows the results of using different lengths of window. The different in the
results is not significantly different across the different sizes, and therefore a shorter
window length is preferred in order to keep the computational costs low.

Table 2. The results of using different initial window length on different training–test sets

Training Set Test Set Initial Window Length % Accuracy % Accuracy
(days) (days) (Behaviour) (Observation)

11 5

10 86.96 97.29
20 86.96 97.29
50 86.96 97.29

100 86.96 97.29

8 8

10 88.23 98.14
20 82.35 97.80
50 82.35 97.80

100 88.23 98.14

5 11

10 87.80 98.35
20 82.93 98.07
50 82.93 98.07

100 82.93 98.35

4.3 Experiment 3: Size of Training Data

The objective of this experiment is to analyze the amount of training data needed to
train the HMMs. The most important thing is that every behaviour is seen several times
in the training set to ensure that the HMM acquires a good representation of that be-
haviour. The results on recognition accuracy on both behaviour-level and observation-
level are presented in Table 3. As the table shows, the size of training data does not have
much significant impact on recognition accuracy. Even when only 5 days of training and
11 days of testing with window size 10 are used, we are still able to achieve 87.80%
recognition accuracy on behaviour-level and 98.35% on observation-level. It seems that
the proposed method does not need a significant large amount of training data for this
dataset, although this may not be true for more complicated behaviours.

Table 3. Behaviour-level and observation-level recognition accuracy using window length of
size 10

Behaviour-level Observation-level
Training Datasets Test Datasets Total Activities Accuracy Total Observations Accuracy

15 Days 1 Day 5 100% 99 100%
11 Days 5 Days 23 86.96% 369 97.29%
8 Days 8 Days 34 88.23% 591 98.14%
5 Days 11 Days 41 87.80% 727 98.35%
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5 Discussion

On this relatively simple dataset our algorithms have worked very well, producing over
98% accuracy at the observation-level. However, it is still instructive to see if there are
consistent reasons for the misclassifications that did occur.

We identified one main reason for misclassification, which is that individual sensor
observations can be in several behaviours. There are two places where this can be a
problem. The first is when the end of one behaviour contains observations that could
be in the start of the next. This will not pose a problem if the second behaviour hap-
pens immediately after the first. However, if the second behaviour happened two hours
after the first, that would be a totally different unrelated behaviours. The second place
that this can be seen is where the winning behaviour is not at the start of the window,
but those activities at the start could be interpreted as being part of that behaviour. It
was experimentally observed that this was more likely to happen where the size of the
window was large, because more behaviours were observed.

One way to reduce the misclassification is by adding extra information in order to
improve the classification accuracy. This can be achieved by augmenting the current
algorithm with spatio-temporal information. If spatio-temporal information is included,
then places where two behaviours abut one another can be reduced, since there could
be other non-kitchen behaviours inbetween.

6 Conclusions

We have presented a simple system that performs behaviour recognition based on com-
petition between trained Hidden Markov Models, and demonstrated that the method
works on labelled data. Our experimental results show that the method works effec-
tively, with an average of around 90.75% behaviour-level recognition accuracy and
98.45% observation-level recognition accuracy (by averaging the accuracy percentage
from table 3) based on relatively small amount of training data. We have investigated the
size of window required, and found that relatively small ones work best, which reduces
the amount of training data required even further. As the model is relatively simple and
based on recursive computation, the computational costs are significantly lower than
many other methods. We have also shown that a comparison between variable window
length and fixed window length and that the variable window length works best.

It is important to note that this study is purely performed on labelled data and have
proven the ability to distinguish activities given a series of observations. The encourag-
ing results highlight the need to test on unlabelled data, resulting in a system that can
be built up from nothing when sensors are placed into a new environment, and allowing
on-line recognition. The MIT PlaceLab dataset is very clean, in that there is little sensor
noise or inaccuracy. This may well not be the case with other datasets, since sensors can
be ‘twitchy’ or fail, there may be other people or animals in the house, etc. It is possible
that smoothing the sensor stream will deal with this, e.g., by using a median filter. It
may also be that behaviours are interleaved: a person may well make a beverage at the
same time preparing lunch, which could be done while the laundry was running. Our
current system will not deal with these behaviours in any sensible way, highlighting all
of the separate parts of the behaviour as different instances of that behaviour. This is
left for future work.
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Abstract. In P2P VoD streaming systems, user behavior modeling is critical to
help optimise user experience as well as system throughput. However, it still re-
mains a challenging task due to the dynamic characteristics of user viewing be-
havior. In this paper, we consider the problem of user seeking prediction which is
to predict the user’s next seeking position so that the system can proactively make
response. We present a novel method for solving this problem. In our method, fre-
quent sequential patterns mining is first performed to extract abstract states which
are not overlapped and cover the whole video file altogether. After mapping the
raw training dataset to state transitions according to the abstract states, we use a
simpel probabilistic contingency table to build the prediction model. We design
an experiment on the synthetic P2P VoD dataset. The results demonstrate the ef-
fectiveness of our method.

Keywords: User seeking prediction, State abstraction, Contingency table, P2P
VoD systems, User behavior modeling, PrefixSpan.

1 Introduction

With the proliferation of emerging applications, including Internet TV, online video, and
distance education, media streaming service over the Internet has become immensely
popular and generated a large percentage of today’s Internet traffic. Peer-to-peer (P2P)
technology has been proved as a successful solution which can effectively alleviate
server workload, save server bandwidth consumed and thus bring high system resilience
and scalability[1,2,3,4,5]. In P2P media streaming systems, the users do not need to
download the complete video files before playback which introduces long startup delay.
Instead, “play-as-download” streaming service is provided to let the users watch videos
while downloading. P2P live streaming, a typical media streaming service designed
for all peers receiving streamed video at the same playback position, has been widely
deployed to provide “play-as-download” service for a large number of users[4,5,6].
However, P2P video-on-demand (VoD) streaming is more difficult to design and deploy
than P2P live streaming. Unlike live streaming, VoD systems allow users’ interactive
behaviors, i.e., users can seek forward or backward freely when watching video streams.
If not handled properly, such seeking requests may lead to long response latency, which
severely deteriorates users’ viewing quality, e.g., playback freezing or even blackout.

To improve user viewing experience, user behavior understanding is critical. If a VoD
system could detect or predict user seeking patterns, it could proactively make response
to them in order to optimise media content delivery[7]. On the server side, the media

A. Nicholson and X. Li (Eds.): AI 2009, LNAI 5866, pp. 676–685, 2009.
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server could use spare bandwidth to push out the appropriate media contents to a user
before being requested. On the client side, a peer could prefetch media contents that
are likely to be requested by upcoming seeking events. This can effectively reduce the
response latency and maximize system throughput[8].

User behavior modeling has been already studied for a few years. Some researchers
have studied single genres like sports videos[7] and education videos[9] while others
have studied a range of video types[10,11]. Brampton et al.[7] analyzed the user inter-
activity characteristics for sports VoD systems and derived some statistical distributions
for user behavior which we employ to generate synthetic P2P VoD dataset for experi-
ments as currently the original viewer logs are not available to us. Both He et al.[12]
and Huang et al.[13] performed association rule mining to learn user seeking patterns
used to do prediction. Zheng et al.[14] analyzed the statistical pattern hidden in the
VoD dataset and applied the optimal quantization theory to learn user seeking behavior.
Vilas et al.[11] proposed a user behavior model on the observed dataset but no evalua-
tion or utilization of that model was presented. A survey paper on probabilistic human
behavior prediction models by Albrecht and Zukerman can be found in [15], which is
a great material to get a thorough understanding of probabilistic approaches on human
behavior modeling. However, user behavior modeling still remains a challenging task
due to the dynamic characteristics of the viewing behavior which is always changing
over time.

In this paper, we employ a simple probabilistic contingency table to solve the prob-
lem of user seeking prediction which is to predict the user’s next seeking position so that
the P2P VoD system can proactively make response. In the design of our method, fre-
quent sequential patterns mining[16] is first performed to extract abstract states which
are not overlapped and cover the whole video file altogether. After mapping the raw
training dataset to state transitions according to the abstract states, we simple count
the number of each seeking operation to build a transition model. We evaluate the pre-
diction model on a synthetic P2P VoD dataset containing 4000 user viewing logs. The
results demonstrate the effectiveness of our proposed method.

The rest of this paper is organized as follows. In Section 2, we state the user seeking
prediction problem in P2P VoD systems. Then our method is presented in Section 3.
Next in Section 4, our method is validated by the experiments on synthetic P2P VoD
dataset. Section 5 concludes and discusses some future work.

2 Problem Statement

In this section, we present some related terminology and define the problem of user
seeking prediction.

Terminology. Since the most basic user activity is the continuous viewing of a section
of a video, a peer maintains such basic activity in a user viewing record (UVR) in
playback time. The important parts of an UVR format is shown as follows.

(UID, MID, Start Position, Inter-Seek Duration, Jump Position)

where UID refers to the user’s identifier while MID refers to the movie’s identifier. The
inter-seek duration is described as the number of segments contained in the section of
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the video the user watched before seeking to a new position. The start position points
to the first watched segment in the current inter-seek duration while the jump position
points to the first segment in the next inter-seek duration.

In most cases, as soon as a user finishes recording one UVR, a new UVR is initial-
ized to record the next inter-seek duration. A sequence of UVRs forms a user view-
ing log which represents a complete user viewing history called a session. For ex-
ample, {(U1, V 1, 1, 6, 73), (U1, V 1, 73, 3, 4), (U1, V 1, 4, 3, End)} depicts a session as
follows: a user U1 first views the video V 1 from the 1-st segment to the 6-th segment,
then seeks forward to the 73-rd segment and views until the 75-th segment, and finally
seeks backward to the 4-th segment, re-views for 3 segments and finishes playback.

User viewing logs can also be represented in sequence format as {s0, s1, · · · , si, · · · ,
sn−1}, where si denotes that the user has viewed the si-th segment of the video. In this
example, the corresponding sequence format is {1, 2, 3, 4, 5, 6, 73, 74, 75, 4, 5, 6}. No-
tice that the UVR format can be easily transferred into the sequential format which is
used for mining frequent patterns in the state abstraction stage.

Problem Statement. Given a database of user viewing logs, the problem of user seek-
ing prediction is to predict the next seeking position according to the user’s viewing
history in the current session.

Still use the example mentioned above. Given large volumes of user viewing logs
of movie V 1 and suppose the viewing history of user U1’s current session to movie
V 1 is {1, 2, 3, 4, 5}, we hope to predict U1’s next seeking position 73 and pre-fetch it
in advance. As a result, when U1 finishes viewing segment 6 and requests to seek to
segment 73, the client-side software can directly satisfy U1 with little response latency.

3 Learning User Seeking Behavior

To learn the seeking behavior, we first do frequent sequential pattern mining on the
collected P2P VoD dataset and split the patterns into abstract states. Then we map the
raw data to state transitions according to the abstract states. Finally, a prediction model
is built using a simple contingency table.

3.1 State Abstraction

In typical P2P streaming systems, a video stream is divided into segments of uniform
length and each segment contains 1 second video content [6,17]. Typical video stream
on the Internet such as movies and sports videos take more than 1.5 hours (5400 sec-
onds/segments) long. If we simply use “segment” as the unit to do learning, it would
generate too many fine grained intermediates that bring difficulties for learning the pre-
diction model. As a result, state abstraction is essential. In this problem, we extract the
strongly associated segments into abstract states by distilling large volumes of user logs
and then maps the raw user viewing logs into state transitions.

Mine Frequent Sequential Patterns. According to the measurements of real deployed
media streaming systems [7,18,14], there are always some popular segments called
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highlights which attracts far more viewing times than other segments. This indicates that
users are much willing to watch some interesting scenes while skip boring scenes. Fig.1
is the segment popularity statistics in [7], which is collected from a real deployed 8200-
second sports video, a football match between Argentina vs. Serbia and Montenegro in
World Cup 2006. We can see that the match has about 10 highlights, either of which is
a kick-off or a goal. Fig.2 is the segment popularity of the synthetic P2P VoD dataset
generated according to the statistic distributions in [7]. We will explain in detail the
generation process in section 4.1.

Fig. 1. Segment popularity of the dataset in [7]
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Fig. 2. Segment popularity of synthetic dataset

Directly cutting the 8200 seconds into equally length time series would not work
well as it does not take the viewers’ watching patterns into consideration. For exam-
ple, if most viewers watched from 1000 to 1300 as a goal happened in that period,
we should try to aggregate these seconds as a state or some contiguous states. From
this point of view, we employ the frequent sequential pattern mining method Prefix-
projected Sequential pattern mining (PrefixSpan)[16] to mining frequent patterns from
the dataset. The general ideal of PrefixSpan is to examine the prefix subsequences and
project their corresponding postfix subsequences into projected databases. In each pro-
jected database, sequential patterns are grown by exploring only local frequent patterns.
This method is considerably fast than the Apriori-based algorithms and Frequent pat-
tern projected Sequential pattern mining (FreeSpan)[19]. We do some modification to
the PrefixSpan method as we aim at finding the contiguous sequential patterns. For ex-
ample, the original PrefixSpan will find patterns like 〈1, 2, 4, 5, 6, 7, 10〉 which are not
allowed in our result. We need patterns like 〈4, 5, 6, 7〉 which are not only sequential
but also contiguous. For this reason, we modified the PrefixSpan to generate only fre-
quent sequential and contiguous patterns. A procedural form of PrefixSpan is given in
Algorithm 1. We follow the code by Yasuo Tabei[20] in our implementation.

Split Sequential Patterns into States. As the patterns found are largely overlapped,
e.g., 〈1, 2, 3, 4, 5, 6, 7〉 and 〈5, 6, 7, 8, 9, 10, 11, 12〉may both exist in the mining result,
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Input : A sequence database S, and the minimum support threshold min sup
Output : The complete set of sequential patterns
Method : Call PrefixSpan(∅, 0, S)
Subroutine : PrefixSpan(α, l, S|α)
Parameters: α: asequential pattern; l: the length of α; S|α: the α − projected database, if

α �= ∅; otherwise, the sequence database S
call S|α once, find the set of frequent items b such that: b can be assembled to the last1

element of α to form a sequential pattern; or 〈b〉 can be appended to α to form a
sequential pattern;
foreach frequent item b and if b is contiguous after α do2

Append it to α to form a sequential pattern α′, and output α′;3

end4

foreach α′ do5

construct α′ − projected database S|α′ ;6

call PrefixSpan(α′,l + 1,S|α′ );7

end8

Algorithm 1. Modified PrefixSpan for mining frequent and contiguous time series in P2P VoD
systems

among which 〈5, 6, 7〉 is the overlapping part. We need to split the patterns into inter-
vals of different length which are not overlapped and remain contiguous. We design a
simple splitting algorithm which scans over the sequential patterns and cuts them into
intervals without overlapping, e.g., 〈1, 2, 3, 4, 5, 6, 7〉 and 〈5, 6, 7, 8, 9, 10, 11, 12〉 will
be cut into intervals [1, 7] and [8, 12]. For the intervals which do not exist in the mined
sequential patterns, we take each of them as a separate interval. After that, we split the
contiguous intervals into appropriate granularity intervals, called states, in order to fit
the pre-fetching buffer. A too large interval makes no sense for pre-fetching because
the buffer is size-limited. Here, we set two tunable parameters min-state-len and max-
state-len which are the minimum and maximum state length allowed according to the
condition of the client-side peer. The min-state-len avoids splitting an isolated segment
as a state while the max-state-len is set as the pre-fetching buffer size in our experiment.
Thus, the whole video stream can be represented by these abstract states.

Map Raw Dataset into State Transitions. With the abstract states generated from
the above step, we can easily map user viewing logs into state transitions. The mapped
results are in the following form:

〈s, s′〉
where s is the state the current playback position is in while s′ means the next state the
viewer will seek into. For a single inter-seek duration, several contiguous state transi-
tions may be generated as the duration may be very large for a single state.

3.2 Probabilistic Seeking Model Building

We assume the user seek operation satisfies the Markov property, that is, the next seek
position is dependent on the current position and independent on the previous positions
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before the current position. With this assumption, we employ a simple contingency table
to build a prediction model for predicting user behavior, that is the seeking operation.

Model Building using State Transitions. For the prediction task in this paper, we use
a simple contingency table to represent the transition probability. The table is shown
in Fig.3, in which s represents the current state in the mapped trainning data and s′

represents the next state. By simply counting the number of seeking operation of each
transition pair 〈s, s′〉, we can build this simple model in an efficient and incremental
way.

s’ P(s’|s)s

s0

s1

s0

s0

s1

s0 P00

P10

P01

s1 s1 P11

Fig. 3. A simple probabilistic contingency table for predicting user seeking behavior

After the training process, a model is built and can be used to do predictions. Given
current state s, we can infer P (s′|s) from the learnt transition table. According to this
distribution, we can predict the next seeking, e.g. we can employ roulette wheel section
or softmax selection. In our approach, we simply apply roulette wheel section strategy.

4 Performance Evaluation

In this section, we evaluate our method on the user seeking prediction problem. The
data used here is the state transitions generated in the above steps.

4.1 Data Generation

In the experiment, we generated a synthetic P2P VoD dataset of user viewing logs ac-
cording to the statistical distribution in [7]. The chosen video is the 8200-second foot-
ball match described in Section 3.1. In [7], the segment popularity, the session length
as well as the inter-seek duration follows some probability distribution, see Table 1.

For the generation, we modified the GISMO streaming generator [10] to produce
4000 user viewing logs in UVR format. We set most parameters of GISMO generator
to the values in Table 1. Moreover, we modified the jump sub-routine in GISMO using a
log-normal distribution to let users trend to jump around highlights. The segment popu-
larity of the synthetic dataset is shown in Fig.2 which is similar with the real popularity
statistics in [7]. So we believe our dataset can reflects the user behavior well.
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Table 1. Metrics with their corresponding distribution used in data generation

Metric Distribution R-Square

Segment popularity Log-normal, μ=0.016, σ=1.35 0.0941
Session length Log-normal, μ=4.835, σ=1.704 0.127
Inter-seek duration Log-normal, μ=1.4796, σ=2.2893 0.0358

4.2 Problem Analysis

The average number of seeking behavior is about 7 times in a whole session[14][7].
Most of the state transitions, 〈s, s′〉, are contiguous, that is, s′ = s + 1 as shown in
Table 2. These state transitions are useless for our prediction as the playback buffer has
already done this job. For this reason, we skip all the contiguous state transitions in the
training data, i.e., state transitions like 〈s, s + 1〉 will be just skipped.

Table 2. Statistical data of the user behavior prediction problem

Description Statistics
Forward seek ratio 99.28%
One step forward seek ratio 80.54%
Backward seek ratio 0.72%
One step backward seek ratio 31.9%

In our experiment, the streaming rate S of the video is set as 256 Kbps (most video
stream over the Internet today is encoded in the 200-400 Kpbs range [2]). The total
available downloading bandwidth of each peer is randomly distributed in [1.5S, 5S].
The length of the client-side buffer is 30Mbytes which can be easily accommodated in
state-of-art personal computers, i.e., each peer can cache 120 segments. The client-side
buffer is split into two parts: the playback buffer with 25Mbytes and the pre-fetching
buffer with 5Mbytes. In each time slot, Peers download urgent segments in playback
buffer in high priority of using bandwidth to guarantee continuous normal playback. If
there is still residual bandwidth, peers pre-fetch the segments in the predictive states
into the pre-fetching buffer for supporting user seeking behavior. Both of the two parts
use LRU (Least Recently Used) as a default buffer replacement policy.

4.3 Experimental Results

We use our data generation method to produce 4000 user viewing logs. The threshold
value used in PrefixSpan is 1/10 of the population, that is 400, and min-state-len is set to
5 while max-state-len is 20. After preprocessing, we split the whole data into a training
dataset and a validation dataset with a split ratio of 0.7. We run all the experiments
10 times and average the results. Fig.4 shows the learnt user behavior model, in which
each color represent a transition probability P (s′|s) for a specific state s. We can see
that our learnt transition model seems very similar to the segment popularity in Fig.2,
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which should not be surprising as we can expect users are more willing to seeking
to the highlights and this also validates our method. The prediction error curve of the
validation set is shown in Fig.5, in which, the x-coordinate is the transition pair and the
y-coordinate represents the prediction error between the predictive next state and the
actual next state in the validation data.
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Fig. 6. Comparison of VOVO and our approach

We apply our learnt model to do prediction-based per-fetching and evaluate the pre-
fetching performance in terms of hit ratio which is calculated using (1). When a user
imposes a seeking request on a peer, the peer checks its local buffer (both the playback
buffer and the pre-fetch buffer). If its local buffer contains segments in the requested
state, the seeking is considered as a hit event and the peer can continue playback without
jitter. Otherwise, it is a miss event and the peer must try to search and download the
requested segment from other peers, which leads to long latency.

Average hit ratio =
Total number of hit events

Total number of seeking requests
. (1)
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The system settings are described in Sect. 4.2. When entering the system, each peer is
assigned a unique user viewing log and thus its playback procedure is determined. We
further assume all the segments are available for all the peers. Each peer just predicts
the next seeking state and sequentially pre-fetches segments in the predictive state into
its pre-fetch buffer according to its download bandwidth. The results shows that the
average hit ratio is about 45% as shown in Fig. 6, more accurate than VOVO approach
proposed in [12]. In our approach, the minimum support threshold is 1/10 of each
different population. Moreover, for fair comparison, the prediction range of VOVO is
set to 20 segments, which equals to the max-state-len in our approach, i.e., as long
as the VOVO’s predictive result is within the interval [R − 10, R + 10] (R is the real
seeking segment), we consider it as a hit event. Notice that we do not consider any
collaboration between peers in this paper. Thus, we can prospect a much higher hit
ratio with the help of peer collaboration from which peers can exchange their buffer
contents with neighbors and are more likely to find appropriate contents. Consequently,
the results demonstrate the effectiveness of our approach.

5 Conclusion and Future Work

In this paper, we propose a new method on the user seeking prediction problem and get
good results. In data preprocessing, we extract abstract states from the raw user viewing
logs through frequent sequential pattern mining. Then we employ a simple contingency
table to build a state transition model. State abstraction as a step of preprocessing plays
an important role in our solution. Furthermore, the learnt user seeking model can be
used to do pre-fetching suggestions, that is we can mark the highlights beside the video
and offer suggestions for pre-fetching before the occurrence of seeking operations.

However, the accuracy is still not very satisfactory and much improvement could
be done in the future research. We intend to introduce time series analysis approach
into this problem to release our Markov property assumption of the state transitions.
Besides, model transfer or transfer learning is also a very important research for our
future work so as to use the current available learnt model to build new model for
new videos instead of starting from scratch. Finally, our code and synthetic dataset
are publicly available at my homepage http://cs.nju.edu.cn/rl/people/
weiweiwang to all researchers who are interested in this novel problem.
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