
Linear (Hull) and Algebraic Cryptanalysis of the

Block Cipher PRESENT

Jorge Nakahara Jr.1, Pouyan Sepehrdad1, Bingsheng Zhang2,�,
and Meiqin Wang3,��

1 EPFL, Lausanne, Switzerland
2 Cybernetica AS, Estonia and University of Tartu, Estonia

3 Key Laboratory of Cryptologic Technology and Information Security, Ministry of
Education, Shandong University, Jinan 250100, China

{jorge.nakahara,pouyan.sepehrdad}@epfl.ch, b.zhang2009@gmail.com,

mqwang@sdu.edu.cn

Abstract. The contributions of this paper include the first linear hull
and a revisit of the algebraic cryptanalysis of reduced-round variants
of the block cipher PRESENT, under known-plaintext and ciphertext-
only settings. We introduce a pure algebraic cryptanalysis of 5-round
PRESENT and in one of our attacks we recover half of the bits of the key
in less than three minutes using an ordinary desktop PC. The PRESENT
block cipher is a design by Bogdanov et al., announced in CHES 2007
and aimed at RFID tags and sensor networks. For our linear attacks,
we can attack 25-round PRESENT with the whole code book, 296.68 25-
round PRESENT encryptions, 240 blocks of memory and 0.61 success
rate. Further we can extend the linear attack to 26-round with small
success rate. As a further contribution of this paper we computed linear
hulls in practice for the original PRESENT cipher, which corroborated
and even improved on the predicted bias (and the corresponding attack
complexities) of conventional linear relations based on a single linear
trail.

Keywords: block ciphers, RFID, linear hulls, algebraic analysis, sys-
tems of sparse polynomial equations of low degree.

1 Introduction

This paper describes linear (hull) and algebraic cryptanalysis of reduced-round
versions of the PRESENT block cipher, a design by Bogdanov et al. aimed at
restricted environments such as RFID tags [3] and sensor networks. For the linear
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case, our analysis include linear hulls of reduced-round variants of PRESENT,
which unveils the influence of the linear transformation in the clustering effect
of linear trails. The computation of linear hulls also served to determine more
accurately the overall bias of linear relations, and consequently, more precise
complexity figures of the linear attacks.

Previous known analyses on (reduced-round) PRESENT, including the results
in this paper, are summarized in Table 4 along with attack complexities.

Our efficient attacks reach 25-round PRESENT under a known-plaintext set-
ting and 26-round with small success rate, and 15 rounds under a ciphertext-only
setting. The algebraic attacks, on the other hand, can recover keys from up to
5-round PRESENT in a few minutes, with only five known plaintext-ciphertext
pairs.

This paper is organized as follows: Sect. 2 briefly details the PRESENT block
cipher; Sect. 3 presents our algebraic analysis on PRESENT; Sect. 4 describes
our linear cryptanalysis of reduced-round PRESENT; Sect. 5 describes our linear
hull analysis of PRESENT; Sect. 6 concludes the paper.

2 The PRESENT Block Cipher

PRESENT is an SPN-based block cipher aimed at constrained environments,
such as RFID tags and sensor networks. It was designed to be particularly com-
pact and competitive in hardware. PRESENT operates on 64-bit text blocks,
iterates 31 rounds and uses keys of either 80 or 128 bits. This cipher was de-
signed by Bogdanov et al. and announced at CHES 2007 [3]. Each (full) round
of PRESENT contains three layers in the following order: a bitwise exclusive-or
layer with the round subkey; an S-box layer, in which a fixed 4 × 4-bit S-box
(Table 5) is applied sixteen times in parallel to the intermediate cipher state; a
linear transformation, called pLayer, consisting of a fixed bit permutation. Only
the xor layer with round subkeys is an involution. Thus, the decryption oper-
ation requires the inverse of the S-box (Table 5) and of the pLayer. After the
31st round there is an output transformation consisting of an exclusive-or with
the last round subkey. One full round of PRESENT is depicted in Fig. 1. Our
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Fig. 1. One full round of PRESENT
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attacks are independent of the key schedule algorithm. Further details about the
key schedule, for each key size, can be found in [3].

3 Algebraic Analysis

Algebraic cryptanalysis is attributed to C.E. Shannon, who mentioned in [27]
that breaking a good cipher should require ”as much work as solving a system
of simultaneous equations in a large number of unknowns of a complex type”.
Contrary to linear and differential attacks, that require a large number of chosen
or known plaintexts (which makes it roughly impractical in reality), algebraic
cryptanalysis requires a comparatively small number of text pairs. Any algebraic
attack consists of two distinct stages: the adversary writes the cipher as a system
of polynomial equations of low degree over GF(2) or GF(2k) [7,23]. Then, it
solves the corresponding system which turns out to be overdefined and sparse.
The methods already proposed for solving polynomial system of equations are
Gröbner basis including Buchberger algorithm [4], F4 [15], F5 [16] and algorithms
like ElimLin [9], XL [6] and its family [7], and Raddum-Semaev algorithm [26].
Converting these equations to Boolean expressions in Conjunctive Normal Form
(CNF) [9] and deploying various SAT-solver programs is another strategy [14].
Algebraic attacks since the controversial paper of [7] has gotten considerable
attention, has been applied to several stream ciphers (see [8]) and is able to
break some of them but it has not been successful in breaking real life block
ciphers, except Keeloq [11,18].

In this paper we deploy ElimLin algorithm proposed by Courtois against DES
[9] and F4 algorithm by Faugére [15] and we break up to 5-round PRESENT for
both key sizes. Then we compare our results using these two approaches. Cour-
tois and Debraize in [10] have already proposed a Guess-then-Algebraic attack
on 5-round PRESENT only for the 80-bit key version. In fact, our main focus
in this paper is a comparison between the efficiency of ElimLin algorithm which
uses simple linear algebra and the recent so called efficient implementation of
F4 algorithm under PolyBori framework. Although there exist other types of at-
tacks for larger number of rounds, we believe this result is interesting, because
we can recover many key bits with a relatively few known plaintext-ciphertext
pairs. Moreover, the designers of PRESENT in [3] have mentioned that they
were unsuccessful to obtain any satisfactory result in reasonable time using al-
gebraic cryptanalysis (F4 algorithm under MAGMA [21]) to break two rounds
of a smaller version of the cipher having only seven S-boxes per round compared
to the real PRESENT cipher having sixteen S-boxes per round.

3.1 ElimLin Algorithm and Attack Description

The ElimLin algorithm stands for Eliminate Linear and is a technique for solving
systems of multivariate polynomial equations of degree mostly 2, 3 or 4 over a
finite field, specifically GF(2). Originally, it was proposed in [9] to attack DES
and was reported to break 5-round DES.
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ElimLin is composed of two distinct stages, namely: Gaussian Elimination
and Substitution. All the linear equations in the linear span of initial equations
are found. Subsequently, one of the variables is nominated in each linear equation
and is substituted in the whole system. This process is repeated up to the time
when no linear equation is obtained in the linear span of the system.

3.2 F4 Algorithm under PolyBori Framework

F4 is currently the most efficient algorithm for computing the Gröbner basis of
an ideal. The most efficient implementation of F4 is available under PolyBori
framework [2] running alone or under SAGE algebra system. PolyBori is a C++
library designed fundamentally to compute Gröbner basis applied to Boolean
Polynomials. The ring of Boolean Polynomials is a quotient ring over GF(2),
where the field equation for each variable is x2 = x. A Python interface is used,
surrounding the C++ core, announced by the designers to be used from the
beginning to facilitate ”parsing of complex polynomial systems” and ”sophis-
ticated and easy extendable strategies for Gröbner base computation” [2]. It
uses zero-suppressed binary decision diagrams (ZDDs) [17] as a high level data
structure for storing Boolean Polynomials which results in the monomials to be
stored more efficiently with respect to the space they occupy in memory and
making the computational speed faster compared with other computer algebra
systems. We used polybori-0.4 in our attacks.

3.3 Algebraic Representation of PRESENT

It is a straightforward procedure to demonstrate that every 4 × 4-bit S-box has
at least 21 quadratic equations. The larger the number of equations, the weaker
the S-box. In fact, the S-box of PRESENT has exactly 21 equations. Writing
the whole 80-bit key variant of PRESENT as a system of quadratic equations
for 5 rounds, we obtained 740 variables and 2169 equations. In our attack, we
fix some of the key bits and we recover the remaining unknown ones. In fact, we
introduce an attack on both PRESENT with key sizes of 80 and 128 bits. Notice
that for both key sizes one pair is not enough to recover the key uniquely and
we need at least two pairs.

The summary of our results is in Table 1. All the timings were obtained
under a 2Ghz CPU with 1Gb of RAM and we used an efficient implementation
of ElimLin available in [12]. As it is depicted in Table 1, the timing results of
ElimLin and PolyBori are comparable except the time in which PolyBori crashed1

due to probably running out of memory. As our experiments revealed, in all cases
ElimLin used much less memory compared to F4 under PolyBori which turns out
to be due to the Gröbner basis approach of increasing the degree of polynomials
in the intermediate stages.

1 In Appendix, we give the intermediate results of ElimLin for one of the cases in
which PolyBori crashes.



62 J. Nakahara Jr. et al.

Table 1. Algebraic attack complexities on reduced-round PRESENT

# rounds #key bits #key bits full key # plaintexts notes
fixed (hours)

5 80 40 0.04 5 KP ElimLin
5 80 40 0.07 5 KP PolyBori
5 80 37 0.61 10 KP ElimLin
5 80 37 0.52 10 KP PolyBori
5 80 36 3.53 16 KP ElimLin
5 80 36 Crashed! 16 KP PolyBori
5 80 35 4.47 16 KP ElimLin
5 80 35 Crashed! 16 KP PolyBori
5 128 88 0.05 5 KP ElimLin
5 128 88 0.07 5 KP PolyBori

Since the time complexity of the experiment depends on the system instance,
Table 1 represents the average time complexity. We had some instances revealing
that the times it takes to recover 45 bits of the key is much less than that for
44 bits. This seems very surprising at the first glance, but it can be justified by
considering that the running time of ElimLin implementation in [12] is highly
dependable on the sparsity of equations. So, our intuition is that as we have
picked distinct plaintext and key randomly in each experiment, by pure chance
the former system of equations turns out to be sparser than the latter and it is
also probable that more linear equations are generated due to some combination
of plaintexts and keys randomly picked.

In [1], Albrecht and Cid compared their result with exhaustive key search over
PRESENT assuming that checking an arbitrary key takes at least 2 CPU cycles
which seems ambitious implying that recovering 45 bits of the key should take
at least more than 9 hours, while we could recover the key in less than two hours
using only five KP in our best attack.

We tried to break 6 rounds of PRESENT by ElimLin and F4, but ElimLin
did not give us any satisfactory result and PolyBori crashed after a while due
to probably running out of memory for 6-round PRESENT. In [10], the results
are compared with F4 implementation under MAGMA which is specified not to
yield any satisfactory results in reasonable time. Although PolyBori crashes in
much fewer cases, we could not get anything better by using F4 under PolyBori
compared to ElimLin in this specific case.

4 Linear Analysis

Linear cryptanalysis (LC) typically operates under a known-plaintext (KP) or
a ciphertext-only (CO) setting, and its origin dates back to the works of Matsui
on DES [22]. The main tool for this attack is the linear relation, which consists
of a linear combination of text and key bits, holding with a relatively high
parity deviation from the uniform parity distribution. The effectiveness of a
linear relation is measured by a parameter called bias, denoted ε, which is the
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absolute value of the difference between the parity of the linear relation from
1/2. The higher the bias, the more attractive the linear relations are, since they
demand less plaintext-ciphertext pairs. These relations form the core of a linear
distinguisher, namely, a tool that allows one to distinguish a given cipher from
a random permutation, or to recover subkey bits.

Our linear analysis of the PRESENT cipher started with a study of the Linear
Approximation Table (LAT) [22] (Table 6) of its 4×4 S-box (Table 5). In Table 6,
the acronym IM stands for the Input Mask (leftmost column); OM for the Output
Mask (top row); the entries for non-zero masks are either 0, 2, −2, 4 or −4, that
is, the S-box is linearly 4-uniform. Thus, the largest entry for non-trivial (non-
zero) bitmasks corresponds to a bias of 4/16 = 2−2. Thus, entries in the LAT
correspond to 16 · ε, except for the sign; a negative entry implies that the parity
is closer to ’0’, while the absence of a sign means the parity is closer to ’1’.

One-round and multiple-round linear approximations were derived by com-
bining the LAT with the bit permutation pLayer that follows each S-box layer.
Our analysis indicated that the most promising linear relations shall exploit

– one-bit-input-to-one-bit-output bitmasks in order to minimize the number
of active S-boxes per round;

– the pLayer bit permutation following the S-box layer has order three, that
is, if we denote this permutation by P, then P(P(P(X))) = P3(X) = X , for
all text blocks X ; this fact motivated us to look for iterative relations across
three rounds. Particular bit positions of pLayer, though, have much smaller
order, such as the leftmost bit in a block which is unaffected by pLayer, that
is, it is a fix-point. There are four such fix-points in the pLayer. Thus, the
branch number [13] of pLayer is just two. This means that diffusion is quite
poor in PRESENT. Due to the fix-points of pLayer, and the LAT profile of
the S-box, iterative linear relations exist for any number of rounds.

Taking the order of pLayer into account, it is straightforward to find 3-round
iterative linear relations with only three active S-boxes (there cannot be less
than one active S-box per round due to the SPN structure). Nonetheless, the
S-box design minimizes the bias of single-bit linear approximations. The bias
for each such approximation is 2/16 = 2−3, which gives a maximum bias of
22−3−3−3 = 2−7 for any 3-round linear relation.

Let us denote a 64-bit mask by

Γ = γ0γ1γ2γ3γ4γ5γ6γ7γ8γ9γ10γ11γ12γ13γ14γ15

where γi ∈ Z4
2, 0 ≤ i ≤ 15, that is, a nibble (4 bits). An interesting example of

1-round linear relation for PRESENT is

8000000000000000x
1r→ 8000000000000000x (1)

where the linear approximation 8 S→ 8 for the S-box was used for the leftmost
nibble (the leftmost S-box), with bias 2−3, and 1r→ means one round transition.
Note that this bias is not the highest possible, but the non-zero bit position in
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the mask is a fix-point for the pLayer. Thus, (1) is an iterative linear relation
with a single active S-box. If we denote a text block as X = (x0, x1, . . . , x63),
then (1) can be expressed simply as

p0 ⊕ c0 = k1
0 ⊕ k2

0 , (2)

where k1
0 and k2

0 are the leftmost (most significant) bits of the first two round sub-
keys. For a distinguish-from-random attack, the complexity for a single round is
N = 8·(2−3)−2 = 29 KP and equivalent parity computations (2). Notice, though,
that if the plaintext is composed of ASCII text, then the most significant bit of
every plaintext byte is always zero, and the attack actually requires 29 cipher-
texts only (CO). Iterating (1) for up to 14 rounds requires 8 · (213−3∗14)−2 = 261

CO and an equivalent amount of parity computations. If we allow a lower success
probability, we can attack up to 15-round PRESENT using 4·(214−3∗15)−2 = 264

CO, and equivalent number of parity computations. But, since the codebook is
exhausted, the KP or CO settings are the same.

Other two 1-round iterative linear relations with the bias 2−3, also based on
fix-points of pLayer are

0000000000200000x
1r→ 0000000000200000x, (3)

and
0000040000000000x

1r→ 0000040000000000x. (4)

A linear relation based on the fourth fix-point of pLayer is not effective since the
LAT entry is zero.

An example of 2-round (non-iterative) linear relation for PRESENT with
maximum bias is

1000000000000000x
1r→ 0000800000008000x

1r→ 0808080808080000x, (5)

with bias 22−2−2−2 = 2−4, and three active S-boxes. The local S-box approxi-
mations used were 1 S→ 5 and 8 S→ 14, both with bias 2−2. Reducing the number
of active S-boxes to only two across two rounds would decrease the bias to
21−3−3 = 2−5. Thus, the trade-off of three active S-boxes versus the bias, across
two rounds, is the best possible. The attack complexity is N = 8 · (2−4)−2 = 211

KP and equivalent parity computations.
For three rounds, one of the simplest, most-biased and iterative linear relations

we have found is

0800000000000000x
1r→ 4000000000000000x

1r→
0000800000000000x

1r→ 0800000000000000x,
(6)

where the S-box linear approximations were 8 S→ 8 and 4 S→ 4, both with bias
2−3. The overall bias is 22−3−3−3 = 2−7. Relation (6) is an example that demon-
strates a trade-off between the number of active S-boxes per rounds versus the
overall bias of linear relations involving single-bit-input-single-bit-output masks.
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Relation (6) allows to mount a distinguish-from-random linear attack on
3-round PRESENT with N = 8 · (2−7)−2 = 217 KP and equivalent num-
ber of parity computations (less than one encryption) and negligible memory.
For six rounds, the attack complexity becomes N = 8 · (21−2∗7)−2 = 229 KP
and equivalent parity computations. For nine rounds, the complexity becomes
N = 8 · (22−3∗7)−2 = 241 KP and equivalent number of parity computations. For
twelve rounds, the attack complexity becomes N = 8 · (23−4∗7)−2 = 253 KP and
equivalent parity computations. For fifteen rounds, if we allow a smaller success
rate, then N = 4 · (24−5∗7)−2 = 264 KP are required, and an equivalent number
of parity computations (which is about the effort of one-round computation).
Actually, in the 12-round case, the first and last round S-box approximations
can be improved, leading to

7700000000000000x
1r→ 0000C00000000000x

1r→ 0800000000000000x
12r→

0800000000000000x
1r→ 4000000000000000x

1r→ 8000000080008000x,
(7)

where the S-box approximations were 7 S→ 4 with bias 2−2 in the 1st round;
C

S→ 8 with bias 2−2 in the 2nd round; 8 S→ 8 with bias 2−3 in the 15th round;
4 S→ B, with bias 2−2 in the last round. The notation xr→ means an x-round
transition. The overall bias is 2−2−2−2−3·12−3−2+16 = 2−31. A distinguish-from-
random attack using the 16-round relation (7) costs N = 4 · (2−31)−2 = 264

KP.
Additional 16-round linear approximations can be derived taking into account

other fix-points of pLayer. For instance, using (3):

00000000A0A00000x
1r→ 0000000000A00000x

1r→ 0000000000200000x
13r→

0000000000200000x
1r→ 0020000000200020x,

(8)

where the S-box approximations were A
S→ 2 with bias 2−2 in the 1st and 2nd

rounds; 2 S→B with bias 2−2 in the last round. The overall bias is 2−3·(2+13)−2+16 =
2−31.
Further, using (1), we have

CC00000000000000x
1r→ C000000000000000x

1r→ 8000000000000000x
13r→

8000000000000000x
1r→ 8000800080000000x,

(9)

where the S-box approximations were C
S→ 8 with bias 2−2 in the 1st and 2nd

rounds; 8 S→ E with bias 2−2 in the last round. The overall bias is 2−3·(13+2)−2+16

= 2−31.
A 1R key-recovery attack can be applied at the top end of (9) would require

guessing the subkeys on top of four S-boxes, because CC00000000000000x has
four active bits. It means a complexity of 264+16/4 = 278 1-round computations,
or 278/17 ≈ 273.91 17-round computations. The memory complexity is a 16-bit
counter and the success rate [28] is about 0.37. Recovering subkeys at the bottom
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end requires guessing only twelve subkey bits since 8000800080000000x has only
three active bits. It means 264+12 · 3/(16 · 17) ≈ 269.50 17-round computations.
The memory complexity is a 12-bit counter and the success rate is about 0.63.
Applying this attack at both ends (2R attack) requires 264+16+12 · 7/(16 · 18) ≈
286.64 18-round computations (applies only to 128-bit keys). The success rate is
about 0.03.

For the remaining 100 key bits, we use (8), which has the same bias as (9).
So, the effort to recover further 24+12 key bits is 264+24+12 · 8/(16 · 18) ≈ 296.83

18-round computations. The remaining 64 key bits can be found by exhaustive
search.

5 Linear Hulls

The concept of linear hulls was first announced by Nyberg in [24]. A linear hull
is the LC counterpart to differentials in differential cryptanalysis. Therefore, a
linear hull stands for the collection of all linear relations (across a certain number
of rounds) that have the same (fixed) input and output bitmasks, but involves
different sets of round subkeys according to different linear trails. Consequently,
the bias of a linear hull stands for the actual bias of a linear relation involving
a given pair of input and output bitmasks. When there is only a single linear
trail between a given pair of input and output bitmasks, the concepts of linear
relation and linear hull match.

The linear hull effect accounts for a clustering of linear trails, with the con-
sequence that the final bias may become significantly higher than that of any
individual trail. Due to Nyberg [24], given the input and output masks a and b
for a block cipher Y = Y (X, K), the potential of the corresponding linear hull is
denoted

ALH(a, b) =
∑

c

(P (a · X ⊕ b · Y ⊕ c · K = 0) − 1
2
)2 = ε2 (10)

where c is the mask for the subkey bits. Then, key-recovery attacks such as
Algorithm 2 in [22] apply with

N =
t

ALH(a, b)
=

t

ε2

known plaintexts, where t is a constant. An advantage to use linear hulls in key-
recovery attacks, such as in Algorithm 2, is that the required number of known
plaintexts can be decreased for a given success rate. Keliher et al. exploited this
method to attack the Q cipher [19].

For PRESENT, in particular, it makes sense to choose input/output masks
that affect only a few S-boxes, because it minimizes the number of key bits
to guess in key-recovery attacks around the linear hull distinguisher. Moreover,
minimizing the number of active S-boxes in the first round may also minimize
the number of linear trails to look for, which speeds up our search program for
all possible linear paths and the corresponding bias computation.
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Our approach to determine linear hulls for PRESENT used a recursive al-
gorithm (in ANSI C) employing a depth-first search strategy. It is a classical
technique to find exhaustively all linear trails systematically and with low mem-
ory cost. Fixed input and output (I/O) bitmasks and a number of rounds were
provided as parameters, and the algorithm computed all possible linear trails
starting and ending in the given I/O masks, the corresponding biases and the
number of active S-boxes. One objective of the linear hull search was to dou-
ble check if the linear relations we derived in (1), (5) and (6) actually had the
predicted biases (which have been confirmed).

An interesting phenomenon we have observed is the rate of decrease of the bias
in linear hulls with some fixed input/output bitmasks of low Hamming Weight
(HW), for increasing number of rounds. In particular, we have focused on a few
cases, where the input and output masks are the same (iterative linear relations)
and have low HW. We have studied all 64-bit input and output bit masks with
HW = 1. Further, to optimize the search, we have focused only on the linear
trails with the highest bias (single-bit trails), which we call the best trails (with
a single active S-box per round). The best results we obtained concern the mask
0000000000200000x (both at the input and at the output). Table 2 summarizes
our experiments, where “computed bias” denotes the bias of the linear hull for
the given number of rounds computed according to 10. For up to four rounds,
all trails were found. For five rounds or more, only the trails with highest biases
were accounted for. The values under the title “expected bias” indicate the bias
as computed by the Piling-up lemma.

From Table 2, we observe that the bias for linear hulls in PRESENT does
not decrease as fast, with increasing number of rounds, as in linear relations as
dictated by the Piling-up lemma. Fig.2 compares the computed and the predicted
bias values in Table 2. Our experimental results indicate that the linear hull effect
is significant in PRESENT even for a small number of rounds. For five rounds
or more, we could not determine all linear trails, but we looked for the ones with
the highest bias values, so that their contribution to the overall ALH would be
significant. We have searched for linear trails with r up to r + 2 active S-boxes
across r rounds. Thus, the values for more than four rounds represent a lower
bound on the overall bias of the linear hulls.

In Table 2, consider the linear hull across five rounds. We have found nine
trails with bias 2−11 inside this linear hull. Repeating it three times, we arrive
at 93 15-round linear trails. The ALH (0000000000200000x, 0000000000200000x)
for 15 rounds is (2−31)2 · 93 = 2−62+9.51 = 2−52.49. We extend this 15-round
linear hull to a 17-round linear hull with 93 17-round linear trails by choosing
an additional 1-round relation at the top and at the bottom ends of it:

0000000000A00000x
1r→ 0000000000200000x

15r→
0000000000200000x

1r→ 0020000000200020x,
(11)

where the ALH for the 17-round linear hull is (2−33)2 ·93 = 2−66+9.51 = 2−56.49.
This linear hull can be used to distinguish 17-round PRESENT from a random
permutation with 256.49 · 8 = 259.49 KP, and equivalent parity computations.
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Fig. 2. Behaviour of linear hull bias (ALH) against expected bias (by Piling-up lemma)
for increasing number of rounds of PRESENT (data from Table 2)

Table 2. Computed bias (cb) and expected bias (eb) of linear hulls in PRESENT for
input/output mask 0000000000200000x

# rounds 1 2 3 4 5 6 7 8
# trails 1 1 1 9 9 27 72 192

(cb) 2−3 2−5 2−7 2−8.20 2−9.40 2−10.61 2−11.90 2−13.19

(eb) 2−3 2−5 2−7 2−9 2−11 2−13 2−15 2−17

# rounds 9 10 11 12 13 14 15 16
# trails 512 1344 3528 9261 24255 63525 166375 435600

(cb) 2−14.48 2−15.78 2−17.08 2−18.38 2−19.71 2−21.02 2−22.33 2−23.63

(eb) 2−19 2−21 2−23 2−25 2−27 2−29 2−31 2−33

# rounds 17 18 19 20 21 22 23
# trails 1140480 2985984 7817472 20466576 53582633 140281323 367261713

(cb) 2−24.94 2−26.25 2−27.55 2−28.85 2−30.16 2−31.47 2−32.77

(eb) 2−35 2−37 2−39 2−41 2−43 2−45 2−47

Applying a key-recovery (1R attack) at the top end of (11) requires guessing
only eight bits because there are only two active bits in 0000000000A00000x. The
attack complexity becomes 259.49+8 ·2/(16 ·18) = 260.33 18-round computations.
The memory complexity is just an 8-bit counter and the success rate is about
0.997.

For six rounds, and still using mask 0000000000200000x, we have found 27
trails, each with bias 2−13 inside this linear hull. Concatenating the linear hull
three times, we arrive at 273 18-round trails. The ALH (0000000000200000x,
0000000000200000x) for 18 rounds is (2−37)2 · 273 = 2−59.73. Extending it to 20
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rounds by choosing carefully an additional relation on top and at the bottom of
it results in

0000000000A00000x
1r→ 0000000000200000x

18r→
0000000000200000x

1r→ 0020000000200020x.
(12)

The ALH of (12) is (2−39)2 ·273 = 2−63.73. Thus, (12) can be used to distinguish
20-round PRESENT from a random permutation using the full codebook. A key-
recovery (1R) attack at the top of (12) leads to a complexity of 264+8/(8 · 21) ≈
264.60 21-round computations. The memory needed is an 8-bit counter and the
success rate is about 0.246. For 80-bit keys, the remaining 80-12 = 68 key bits
can be found by exhaustive search.

For nine rounds and mask 0000000000200000x, we have found 512 trails, each
with bias 2−19 inside this linear hull. Concatenating the linear hull twice, we ar-
rive at 5122 18-round trails. The ALH (0000000000200000x, 0000000000200000x)
for 18 rounds is (2−37)2 · 5122 = 2−56. Extending it to 20 rounds, just like (12),
leads to an ALH of (2−39)2 · 5122 = 2−60. A key-recovery (1R) attack at the
top of this linear hull results in a complexity of 8 · 260+8/(8 · 21) ≈ 263.60 21-
round computations. The memory needed is an 8-bit counter and the success
rate is about 0.997. For 80-bit keys, the remaining 72 key bits can be found by
exhaustive search, leading to a complexity of 272 encryptions.

For ten rounds and mask 0000000000200000x, we have found 1344 trails, each
with bias 2−21 inside this linear hull. Concatenating the linear hull twice, we
arrive at 13442 20-round trails. The corresponding ALH (0000000000200000x,
0000000000200000x) for 20 rounds is (2−41)2 · 13442 = 2−61.22. Extending it to
21 rounds leads to

0000000000A00000x
1r→ 0000000000200000x

20r→
0000000000200000x,

(13)

with an ALH of (2−42)2·13442 = 2−63.21. A key-recovery (2R) attack at both ends
of this linear hull requires guessing 16 key bits. The effort becomes 263.21+16/(16·
23) ≈ 260.68 23-round computations. The memory needed is a 16-bit counter. For
80-bit keys the remaining 64 key bits can be found by exhaustive search, leading
to a final complexity of 264 encryptions.

For the 21-round linear hull, with bitmask 0000000000200000x, we have found
53582633 trails with bias 2−43 and the accumulated bias is 2−30.16. These trails
always have one single active S-box per round. In order to improve the accumu-
lated bias, we identify the second best trails across 21 rounds in which 23 active
S-boxes are involved. Unlike the best trails, the second best ones have a ’2-way
branching’ that is the trail splits from one to two S-boxes. This branching later
merges back into a single S-box (Fig. 3) after three rounds. We developed an-
other depth-first search program to find the 2nd-best trails for a variable number
of rounds. The results are listed in Table 3. From the empirical results in Ta-
ble 3, the number of 2nd best trails seems to be (# rounds-3) times more than
the number of best trails. This means that the contribution of the second best
trails to the overall bias of the 22-round hull is about

√
18 · 53582633 · 2−47 or
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Table 3. Number of second best trails using bitmask 0000000000200000x

# rounds # best trails # 2nd best trail bias of 2nd best trails

5 9 18 2−12.915

6 27 81 2−13.830

7 72 288 2−14.915

8 192 960 2−16.046

9 512 3072 2−17.207

10 1344 9536 2−18.376

11 3528 28896 2−19.565

12 9261 85995 2−20.771

13 24255 252021 2−21.990

14 63525 730235 2−23.219

2−32.077. Combining the biases of the 1st best trails and 2nd best trails results
in

√
(2−30.16)2 + (2−32.077)2 ∼ 2−30.11.

We now make the key recovery attack on 25-round by guessing 20 bits at both
ends of the 21-round linear hull. This means 264+16+16+4+4 · 10/16 = 2103.33 1-
round computations, or 2103.33/25 ≈ 298.68 25-round computations, which only
applies to 128-bit keys. For the remaining 88-bit subkey, we can search it ex-
haustively. The success rate is 0.61.

For the 22-round linear hull, with bitmask 0000000000200000x, we have found
140281323 trails, each with bias 2−45 and

√
19 · 140281323 ·2−49 trails each with

bias 2−49. The corresponding ALH is (2−45)2·140281323+(19·140281323)·2−49 ≈
2−62.83, which means an accumulated bias of 2−31.415. We use this 22-round
linear hull to make a key recovery attack on 26-round PRESENT. This means
264+16+16+4+4 · 10/16 = 2103.33 1-round computations, or 2103.33/26 ≈ 298.62

26-round computations, which only applies to 128-bit keys. The success rate is
only 0.00002.

It is reasonable that the linear trails in a linear hull could not be indepen-
dent. Kaliski et al., though, showed that the linear dependency of the linear
approximations has no effect for the attack [20].

6 Conclusions

This paper described the first linear hull attacks and revisited algebraic attacks
with a comparison between two distinct algorithms on reduced-round versions
of the block cipher PRESENT. The analysis based on linear hulls were used to
detect any significant variation in the bias, which would impact the linear attack
complexities; and, to assess the linear hull effect in PRESENT and its resilience
to LC. We have confirmed that the linear hull effect is significant even for a small
number of rounds of PRESENT.

Table 4 lists the attack complexities for PRESENT for increasing number of
rounds and in increasing order of time complexity.
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Table 4. Attack complexities on reduced-round PRESENT block cipher

#Rounds Time Data Memory Key Size Source Comments
(bits)

5 2.5 min 5 KP — 80 Sect. 3 KR†, AC
5 2.5 min 5 KP — 128 Sect. 3 KR†, AC
5 1.82 h 64 KP — 80 [10] KR, AC
6 226 226 KP — all eq. (6) DR* + KR, LC
7 2100.1 224.3 CP 277 128 [30] IC
14 261 261 CO — all eq. (1) DR* + KR, LC
15 235.6 235.6 CP 232 all [5] KR, SC
15 264 264 KP — all eq. (1) DR*, LC
16 262 262 CP 1Gb all [1] KR, AC + DC
16 264 264 CP 232 all [29] KR, DC
17 269.50 264 KP 212 80 eq. (9) KR, LC
17 273.91 264 KP 216 80 eq. (9) KR, LC
17 2104 263 CP 253 128 [25] KR, RKR
17 293 262 CP 1Gb 128 [1] KR, AC + DC
18 298 262 CP 1Gb 128 [1] KR, AC + DC
19 2113 262 CP 1Gb 128 [1] KR, AC + DC
24 257 257 CP 232 all [5] KR, SSC
25 298.68 264 KP 240 128 Table 2 KR, LH
26 298.62 264 KP 240 128 Table 2 KR, LH

*: time complexity is number of parity computations; †: recover half of the user key;
DR: Distinguish-from-Random attack; KR: Key Recovery attack
LC: Linear Cryptanalysis; DC: Differential Cryptanalysis; AC: Algebraic Crypt.;
SSC: Statistical Saturation analysis; IC: Integral Cryptanalysis;
RKR: Related-Key Rectangle; LH: Linear Hull; ML: Multiple Linear;
CP: Chosen Plaintext; KP: Known Plaintext; CO: Ciphertext Only.

A topic for further research is to look for the 3rd and 4th best trails inside a
linear hull. The issue is to find out their contribution to the overall bias of the
linear hulls, that is, if they can further improve the bias as the 2nd best trails did.
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tions with Boolean polynomials. Electronic Proceedings of MEGA (2007),
http://www.ricam.oeaw.ac.at/mega2007/electronic/26.pdf

http://www.ricam.oeaw.ac.at/mega2007/electronic/26.pdf


72 J. Nakahara Jr. et al.

3. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

4. Buchberger, B.: An Algorithm for Finding the Basis Elements of the Residue Class
Ring of a Zero Dimensional Polynomial Ideal. Ph.D Dissertation (1965)

5. Collard, B., Standaert, F.X.: A Statistical Saturation Attack against the Block
Cipher PRESENT. In: CT-RSA 2009. LNCS, vol. 5473, pp. 195–210. Springer,
Heidelberg (2009)

6. Courtois, N., Shamir, A., Patarin, J., Klimov, A.: Efficient Algorithms for Solving
Overdefined Systems of Multivariate Polynomial Equations. Adv. In: Preneel, B.
(ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg
(2000)

7. Courtois, N., Pieprzyk, J.: Cryptanalysis of Block Ciphers with Overdefined Sys-
tems of Equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp.
267–287. Springer, Heidelberg (2002)

8. Courtois, N., Meier, W.: Algebraic Attacks on Stream Ciphers with Linear Feed-
back. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 345–359.
Springer, Heidelberg (2003)

9. Courtois, N.T., Bard, G.V.: Algebraic cryptanalysis of the data encryption stan-
dard. In: Galbraith, S.D. (ed.) Cryptography and Coding 2007. LNCS, vol. 4887,
pp. 152–169. Springer, Heidelberg (2007)

10. Courtois, N.T., Debraize, B.: Specific S-Box Criteria in Algebraic Attacks on Block
Ciphers with Several Known Plaintexts. In: Lucks, S., Sadeghi, A.-R., Wolf, C.
(eds.) WEWoRC 2007. LNCS, vol. 4945, pp. 100–113. Springer, Heidelberg (2008)

11. Courtois, N.T., Bard, G.V., Wagner, D.: Algebraic and slide attacks on keeLoq.
In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 97–115. Springer, Heidelberg
(2008)

12. Courtois, N.T.: Tools for experimental algebraic cryptanalysis,
http://www.cryptosystem.net/aes/tools.html

13. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer, Heidelberg (2002)
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16. Faugére, J.: A new efficient algorithm for computing Gröbner bases without re-
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A ElimLin Intermediate Results

Table 7 depicts the intermediate ElimLin results for 5-round PRESENT-80
where 36 bits of the key are fixed and we try to recover the remaining key
bits. In the third column, T represents the total number of monomials and Ave
is the average number of monomials per equation.

Table 5. The 4 × 4-bit S-box of PRESENT and the inverse S-box

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S[x] 12 5 6 11 9 0 10 13 3 14 15 8 4 7 1 2

S−1[x] 5 14 15 8 12 1 2 13 11 4 6 3 0 7 9 10

http://magma.maths.usyd.edu.au/magma/
http://eprint.iacr.org/2006/475
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Fig. 3. Example of branching inside a trail, from single S-box to two S-boxes, and
merging back to one S-box
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Table 6. Linear Approximation Table (LAT) of the S-box of PRESENT

OM
IM 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 -4 0 -4 0 0 0 0 0 -4 0 4
2 0 0 2 2 -2 -2 0 0 2 -2 0 4 0 4 -2 2
3 0 0 2 2 2 -2 -4 0 -2 2 -4 0 0 0 -2 -2
4 0 0 -2 2 -2 -2 0 4 -2 -2 0 -4 0 0 -2 2
5 0 0 -2 2 -2 2 0 0 2 2 -4 0 4 0 2 2
6 0 0 0 -4 0 0 -4 0 0 -4 0 0 4 0 0 0
7 0 0 0 4 4 0 0 0 0 -4 0 0 0 0 4 0
8 0 0 2 -2 0 0 -2 2 -2 2 0 0 -2 2 4 4
9 0 4 -2 -2 0 0 2 -2 -2 -2 -4 0 -2 2 0 0
10 0 0 4 0 2 2 2 -2 0 0 0 -4 2 2 -2 2
11 0 -4 0 0 -2 -2 2 -2 -4 0 0 0 2 2 2 -2
12 0 0 0 0 -2 -2 -2 -2 4 0 0 -4 -2 2 2 -2
13 0 4 4 0 -2 -2 2 2 0 0 0 0 2 -2 2 -2
14 0 0 2 2 -4 4 -2 -2 -2 -2 0 0 -2 -2 0 0
15 0 4 -2 2 0 0 -2 -2 -2 2 4 0 2 2 0 0

Table 7. ElimLin result for 5-round PRESENT-80 when 36 bits of key are fixed

# Variables # Equations (Ave/ # Linear
# Monomials) Equations

10340 46980 7/ T= 46321 6180
4160 46980 8/ T= 48744 1623
2537 46980 9/ T= 40763 1069
1468 46980 14/ T= 43155 405
1063 46980 76/ T= 73969 165
898 46980 158/ T= 145404 201
697 46980 77/ T= 85470 584
113 46980 0/ T= 413 113
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