
HPAKE : Password Authentication Secure

against Cross-Site User Impersonation

Xavier Boyen

Stanford University
xb@cs.stanford.edu

Abstract. We propose a new kind of asymmetric mutual authentication
from passwords with stronger privacy against malicious servers, lest they
be tempted to engage in “cross-site user impersonation” to each other.

It enables a person to authenticate (with) arbitrarily many indepen-
dent servers, over adversarial channels, using a memorable and reusable
single short password. Beside the usual PAKE security guarantees, our
framework goes to lengths to secure the password against brute-force
cracking from privileged server information.

1 Introduction

Password-based authentication and key exchange is the process whereby a client
achieves mutual authentication with a remote server over an adversarial channel,
turning it into a virtual secure communication channel, on the basis of a short
password that should be easy to memorize but not guess.

Shared-Password Authentication. (Symmetric) password-authenticated
key exchange (PAKE) assumes that the password is shared between the client
and the server. The threat in this case is that a (passive or active) outside at-
tacker might try to impersonate either party to the other, or to eavesdrop on
the communication taking place within the secure channel. Though such attacks
cannot be prevented in an adversarial network, they can be made to require one
fresh online authentication attempt for each password being tested. This is a
solved problem: many PAKE protocols achieve this notion very efficiently.

Private-Password Authentication. Asymmetric password-authenticated
key exchange (APAKE), by contrast, allows the password to be known to the
client only. The server holds a long-term authentication token, related in some
way to the password, but from which it is (presumably) hard to recover the
password itself. In addition to the unavoidable online attack, a secondary threat
of concern here is that a compromise of the server database might give to the
attacker the means of impersonating its users to another server. Thwarting this
threat means that it is safe for a client to to reuse the same password with
multiple servers. This constitutes a very significant usabily improvement around
human limitations.

J.A. Garay, A. Miyaji, and A. Otsuka (Eds.): CANS 2009, LNCS 5888, pp. 279–298, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

280 X. Boyen

Many elegant APAKE protocols have been proposed over the years, that de-
liver more or less optimally on all those requirements — provided that the pass-
word is not too weak, that is. Indeed, a general attack strategy for the evil insider
in the APAKE model is, once it has obtained the server’s database, to mount
an offline dictionary attack to recover the client password: a server can always
do that, simply by simulating the authentication protocol with itself posing as
the target user. Since such attack cannot be prevented, the user’s only recourse
is to make the attack slower, which requires: (1) that the protocol itself be made
intentionally slower; (2) and that the server implements it correctly. Both are
undesirable requirements.

On Password Strength. We remark in passing that the threshold for what
constitutes a “good” password is much higher in the insider threat model than
the outsider one, even though there are many more potential outsider attackers.
Online attacks, the only option for outsiders, are indeed inherently slow and
can be artificially and arbitrarily rate-limited; they are also easy to detect and
counter by locking up the account.

Thus, as long as some basic security requirements are met against outsider
attacks, one is much better served by devoting one’s energy to the prevention of
insider attacks.

Misaligned Incentives. Unfortunately for the end-user, servers generally have
little incentive to assist in this task, since (1) it would presumably make the
protocol more costly, and (2) it would be giving into the suggestion they, the
servers, cannot be trusted with the users’ passwords.

At a fundamental level, the entity most harmed in case of a password breach
would be the owner of the account, not the server providing the service. The
user thus has a greater incentive to do something about this, e.g., accept a
slower protocols if it can make the password safer. Alas, users generally have
no power to dictate such a change. The only available option is generally to
preprocess the password outside of the protocol before it starts. (Though better
than nothing, a problem of this approach is that the preprocessing function must
be non-parametric if one is not willing to accept a statefull client on which the
parameters can be stored).

Equally worrisome, the APAKE model does not explicitly take into account
the threat of cross-site user impersonation, where the server itself at site A turns
rogue and attempts to impersonate the client at some other site B (based on
the oft-fulfilled premise that the client picked identical or very similar passwords
on both sites). Since Server A itself is the threat in this attack scenario, one
cannot reasonably expect it willingly to fight against itself (unless an external
mechanism such as a reputation at stake comes into play). It could also be a
matter of denial; after all, website operators who are genuinely honest will most
likely consider themselves trustworthy — regardless of whether the user trusts
them or not.

Reinternalizing the Externality. In economic parlance, one would say that,
in the insider threat model, the incentives of the parties are mis-aligned; their

HPAKE : Password Authentication 281

wishes are at odds with each other. The root of the problem is that there an
economic externality: the client is the one who suffers if the server fails to protect
its database adequately.

(One of) our goal is thus to design a protocol whose “pricing structure” re-
internalizes this externality. But, first, we look at other simpler alternatives. (We
only consider alternatives that require no custom data storage, secret or public,
on the client side; with it, our problems would be solved.)

Client-side Preprocessing. The application of a complex transformation on
the password, e.g., hashing it many times before use, is the implicit customary
defense against offline server threats. Preprocessing can be very useful, if done
by the client, because it realigns the costs with the incentives. However, it also
creates new problems of its own, depending whether its complexity is fixed or
variable.

Fixed-cost preprocessing, e.g., with a hash function or password-based key
derivation function of fixed constant complexity, is easy to implement, but it
is a rather blunt instrument that can be too slow and inconvenient in some
situations, and not provide enough of a deterrent against attacks in others.

Parametric-cost preprocessing, i.e., based upon a user-selected complexity
parameter, poses another problem, which is that the parameter must be stored
somewhere, and available for the client to retrieve whenever needed. 1

The need to retrieve parameters is what makes parametric preprocessing prob-
lematic in practice, because it is generally not desirable to keep them in the clear,
and give them to anyone who asks. Indeed, the user’s choice of complexity pa-
rameter can itself provide very valuable information, e.g, to guide an attack
toward a promising target. And hiding the parameter behind an extra layer of
authentication is a circular non-solution that just moves the problem around.

A Host of Requirements. As we said, our goal is to realize a secure and
“economically sound” password protocol, i.e., with all the usual APAKE security
guarantees, plus a provision for the user to defend her password against dishon-
est servers the way she sees fit. Hence there must be a (secret, user-programmed,
user-computed) “computational bottleneck” somewhere that renders insider of-
fline attacks arbitrarily slower, but that does not penalize a honest server.

Intuitively, our “computational bottleneck”, or programmable costly function,
will have to satisfy the following requirements:

Client-owned bottleneck: As discussed, the only way to thwart offline insider
attacks is to make the protocol slower, somewhere. The client must own this
feature, since his or her interests are at stake.

Server-side independence: Not only should the server be oblivious to the
selection of the client-side bottleneck, it should also be removed from its cal-
culation, for obvious scalability reasons (whereas a human will authenticate

1 The password authentication system of [42] is based precisely on that idea. It relies
on a third-party central server for storing and recalling the cost parameter. Anyone
can request and obtain this data.

282 X. Boyen

to one site at a time, a machine may have to answer thousands such requests
per second).

Cacheable preprocessing: Because the hard function may, by user choice,
take a very large amount of time to compute, it would be nice if the result
could be cached in secure storage, for future uses with the same server, for as
long as the user deems it safe to keep it there.2 This requires: (1) the output
of the bottleneck function to be independent of any random ephemeral used
in the protocol execution; (2) the authentication process to be “hot-started”
at the point where the client has just finished evaluating the bottleneck
function.

Zero client storage: Conversely, no persistent storage whatsoever should be
required of the client. Especially, all secrets should fit in the user’s mind
(those being the password and nothing else). We specifically demand that
the user be allowed to forget the value of the cost parameter once it has been
programmed into the registration data sent to the server.

Secrecy of the parameter: In general, in security it is a good idea not to leak
any information that is not explicitly needed, unless one can prove that such
leak is benign. Leaking the cost parameter is certainly not benign, since it
might tell what the important targets are, and reveal other password usage
pattern of the user.

Secrecy of the parameter’s retrieval: Allowing an attacker to learn the
bottleneck parameter can be very damaging, but even more so to let it learn
whether the user has recovered it correctly. Depending on the leakage mech-
anism, e.g., if it comes from the protocol itself, then a dishonest server could
use it to mount an offline dictionary attack that entirely bypasses the hard
function. Neither party should learn whether a retrieval attempt succeeded,
before the protocol actually reaches the accepting state.

Contribution. To address all the issues we raised, we propose the notion of
Hardened Password-Authenticated Key Exchange (HPAKE), which integrates a
user-programmable hard function with the above properties into an authentica-
tion protocol with PAKE and APAKE security.

With it, users will thus be able to reuse the same passwords at various sites,
without having to trust that the server or the network is behaving nicely. The
benefits over existing solutions, such as APAKE are especially pronounced in the
case of weak passwords that would be easy to crack were they used in a regular
APAKE protocol.

The architecture of HPAKE is easy to explain generically; it is based on three
existing cryptographic primitives used as black boxes; all of them in fact have
been known since the dawn of cryptography, except for the preferred instantia-
tion of the user-programmable hard function which is recent.

2 It is indeed a good strategy for long-term passwords of last resort to pick them very
memorable, and thus very weak, and rely on a very high cost parameter to defeat
offline attacks.

HPAKE : Password Authentication 283

Setup Assumption. Before proceeding, we should mention that there are a
lot of ways to attack password-based systems, many of which do not depend on
the protocol used (key loggers and social engineering attacks being two common
examples). Our objective is to provide the highest level of security for multi-site
password authentication, under the common-sense assumption that neither the
human user nor the electronic device acting as the client on his or her behalf
(and on which the password will be seized), leaks any information to the outside
world other than as specified by the protocol.

On the other hand, we stress once again that we make none of the following
all-too-common assumptions: a public-key infrastructure (PKI), a preexisting
one-sided authentication mechanism (such as SSL with a root CA), a client-side
data storage device of any kind (whether private and/or authentic or neither),
or any tamper-proof client hardware that has somehow become tied to the user
(including physically unclonable functions or PUF).

2 Related Work

All password-based remote authentication and key exchange protocols can be
divided into two broad categories, depending on the nature of the secrets held
by the client and the server:

A. Shared-password authentication, where both parties share the same se-
cret. Since there is no password privacy there is no possibility of password
reuse. For completeness, we mention:

– cleartext passwords, even if transmitted over an encrypted link à la SSL;
– symmetric challenge-response authentication using nonces and hashes;
– various ad hoc password-only protocols using public-key techniques;
– most cryptographic password-authenticated key exchange PAKE proto-

cols (see below).
B. Password-private authentication, where the secrets are asymmetric.

The client proves possession of the password to a server that proves knowl-
edge of a derived secret. There are:
Stateful schemes, whose clients keep state or carry custom data beside
the password, e.g.:

– preregistered public keys, where the password unlocks a signing key;
– multi-factor systems, e.g., involving biometric or hardware credentials;
– client-side “password managers” unlocked by a meta-password;
– any authentication system that uses lists of one-time credentials.

Stateless schemes, where the only client custom data is a small secret
password. Such protocols truly enable “untethered” roaming for a human
user. The only examples are:

– augmented password-authenticated key exchange (APAKE, see below);
– our HPAKE protocol, which is better hardened against malicious servers.

AKE. Key exchange (or key agreement) protocols from high-entropy secrets
date back from the original Diffie-Hellman protocol [19]. Authenticated key

284 X. Boyen

exchange (AKE) further ensures that the two parties are mutually authenti-
cated, i.e., that they have the proper long-term secrets, and thus that no im-
personation is taking place. Since achieving AKE from a shared high-entropy
secret is all but trivial, mentions of AKE in the literature truly refer to “asym-
metic” authentication (AAKE), where each party has its own private secret and
has registered the corresponding public key with the other party. This notion
of AAKE has been progressively refined and perfected over the years; see for
example [20,3,7,15,32,30,37,17,31]. (We make the distinction between AKE and
AAKE to emphasize the fact that later on we may elect to use one or the other.)

PAKE. For low-entropy human-memorable secrets, the grandfather of PAKE
protocols is the Encrypted Key Exchange (EKE) scheme proposed by Bellovin
and Merritt [4], and which can arguably be traced further back to the notion
of Privacy Amplification [6]. In both cases, the goal was to take a short shared
secret, and boost it into a cryptographically strong one by a public discussion
process over an open channel [36]. The EKE protocol provided a particularly ef-
ficient way to do so, with (implicit) mutual authentication of the parties. It also
jump-started a fruitful line of research, which led to many results including new
definitions [3,1,25], increased efficiency [26,33], and/or provable security proper-
ties [11,2]. More recently, there has been a surge of interest in the construction
of PAKE protocols with better proofs of security that avoid the random-oracle
model, e.g., in favor of the common reference string model; we mention the first
reasonably efficient such protocol [29,13], and a simpler and faster variant [27].
Although by far most of the constructions are based on a Discrete Log assump-
tion such as Diffie-Hellman or variations thereof, there are protocols based on
the RSA assumption [34] or the Phi-hiding assumption [23].

APAKE. Although the EKE protocol of Bellovin and Merritt originally re-
quired both parties to know the password, it was soon followed by an asymmet-
ric version called “Augmented” EKE, by the same authors [5], who had realized
the impracticality of requiring users to remember independent passwords for
different environments. However, it is not until much later that this concern
has been addressed again, first in [25] under somewhat stringent operating con-
ditions, then more practically in [2] and in a sequence of papers [11,33] which
culminated in the so-called Omega-method [24] for “augmenting” any given sym-
metric PAKE protocol. Another way to deal with the threat of server corruption
and password exposure is to use multiple servers in a threshold scheme, which
is the solution adopted in [35], though this requires the user to believe that the
servers are not colluding.

KDFs. Many approaches have been proposed to address the problem of offline
dictionary attacks, whether for static storage, or in the context of an authenti-
cation protocol. Most of these proposals involve the use of password alternatives
which are supposedly harder to brute-force without human assistance; we men-
tion the interactive grid-like password system PassMaze [12], schemes based on
visual recognition [39], sequences of challenges and responses [40], and solutions

HPAKE : Password Authentication 285

to “captcha”-like problems that are far easier for humans to solve than for com-
puters [14]. In the context of traditional alphanumeric passwords, the method of
choice to thwart guessing attacks remains the deliberately slow key derivation
functions in the original Unix password log-on, made programmable in [41], and
perfected into the secretly user-programmable halting key derivation functions
of [9]. These (H)KDFs are somewhat related to the proofs of work used in other
contexts [21,28,18].

3 Architecture

The generic HPAKE protocol is shown on Figure 1. We now informally explain
what it does. In Section 4 we give more details on its components.

General Overview. In our system, the user and the server hold asymmetric
credentials to authenticate each other: for the user, it is her password, for the
server, it is a long-term authentication token obtained from the user when she
initially registered. The user selects the cost parameter associated with that
password/token pair during the initial registration with the server. The password
is concealed from the server, and so is the cost parameter (see below). Once the
registration is completed, the user can forget everything (e.g., the token given
to the server, and the cost parameter) except the password.

Later, when the user wishes to establish a secure session with the server, she
sends a (blind) commitment to the server. The server responds with some cipher-
text that depends on the commitment. The client uses some of that ciphertext
as input to the hard function, and performs the computation (which may take
a while). If she committed to the correct password, the hard function output
will let her decrypt the rest of the ciphertext into a copy of the long-term au-
thentication token held by the server. Based on this, the two parties can then
mutually authenticate each other and set up a secure channel.

User Programmability and Parameter Secrecy. There are good reasons
for letting the user select the complexity parameter associated with his password;
but it is equally important to prevent anyone from learning this value prema-
turely (i.e., not until they have successfully completed the authentication).

At the same time, such value must be stored somewhere, since we cannot ask
the user to remember it from memory (the only thing he should be asked to
remember being the password).

This requirement of a user-programmable computational bottleneck whose
cost parameter is hidden from everyone and yet implicitly stored, requires a
specific kind of unpredictable function: one that halts (after the prescribed cost
expenditure) only on the correct input — and that on all other inputs proceeds
indefinitely without ever giving back any hint that its input might have been
wrong. We refer to such functions as “(selectively) halting functions”.

Selectively Halting Functions. Such notion of halting function is closely re-
lated to that of Halting Key Derivation Function (HKDF) used in [9] to boost the

286 X. Boyen

Players & Client password Protocols Server key & storage data

Components (ω) (HKDF, HCR, AAKE) (z, e, v)

I. Registration

0. Initial Registration

Choose password ω ∈ {0, 1}∗
Choose hardness factor τ ∈ N

(s, e)← HCR.Create(ω)
(y, v)← HKDF.Make(s, τ)

z ← AAKE.Init(y)
z, e, v

Client remembers ω (not τ) � Server safeguards z, e, v

II. Authentication

1. Blind Conditional Retrieval

(c, d)← HCR.Commit(ω) c
Flow 1: �

f ← HCR.Respond(e, c)
f, v

Flow 2: �
s← HCR.Develop(d, f)

2. Client Token Re-derivation

s, v

�
Θ(τ) work

y y = HKDF.Open(s, v)

3. Authenticated Key Exchange

Flows 3,...: � �
Client AAKE (y) �� Server AAKE (z)

AKE or AAKE from
high-entropy secrets

Auth’d session key: k k

Fig. 1. The generic HPAKE protocol

HPAKE : Password Authentication 287

security of stand-alone password-based encryption. Indeed, conditionally halting
functions such as HKDFs have another surprising benefit (which was the main
point of [9]): they provide more security than any key derivation function KDF
whose computational cost is known, for the same cost and the same password.

(Precisely, it is shown in [9] that a game-theoretically optimal attacker who
has no idea about the programmed cost parameter must expend about 3.59×
more work than if it knew it, e.g., if it were facing a regular KDF with an explicit
parameter.)

Incorporating stand-alone Halting Key Derivation Functions (HKDF) into our
two-party key exchange protocol requires some precautions, because we want the
client to compute it, but the server to store most of its input (since the client
is memory-constrained, and the server mostly time-constrained). A fundamental
and unavoidable problem with HKDFs is that they can serve as a password test
predicate, since by definition they halt only on the correct input, which is a
testable behavior. The consequence is that we will need a way to transport that
data from server to client without exposing it to outside attackers, with the main
complication being that the client will not have been authenticated yet by the
time it needs the HKDF data.

Security by Obscurity? We emphatically stress that this notion of conceal-
ing a secretly programmed cost parameter from the adversary is not “secu-
rity by obscurity”, because all parties are deprived of the secret parameter,
including the user who may safely forget the choice once it has been made and
registered.

4 Components

We now give more details on the three cryptographic functions used in HPAKE.

Secure Registration. We note that the registration phase is special and not
truly part of the protocol. It requires a secure channel which can stem from a
face-to-face meeting or from a trusted PKI (which need not be used again in the
actual protocol execution). Registration exists so that a user and a server who
have never been in contact can start somewhere.

4.1 HKDF : Halting Key Derivation Functions

“Halting Key Derivation Functions” were originally defined in [9] to derive strong
keys from weak passwords in a rate-limiting manner, to be used in a stand-alone
password-based encryption system.

Here, we use HKDFs slightly differently: to map one secret random string (the
retrieved secret s) into another (the client-side token y), in a manner that can
be made as computationally expensive as the user wishes by selecting a suitable
value of the parameter τ .

288 X. Boyen

The primitive consists of two algorithms, HKDF.Make and HKDF.Open:

HKDF.Make takes as input a secret s ∈ S, a parameter τ ∈ N, and random
coins, and returns a random token y ∈ Y and its ciphertext v ∈ V .

HKDF.Open takes as input a secret s ∈ S and a ciphertext v ∈ V , and, either
returns a token y ∈ Y , or fails to halt in polynomial time.

We briefly recall the security requirements from [9]. For a random execution of
Make, it must be infeasible to find, in polynomial time in the security parameter,
a tuple (s′, s, τ, y) such that y = Open(s′, Make(s, τ)) and s �= s′. Furthermore,
finding a tuple (s, τ, y) such that y = Open(s, Make(s, τ)) must require Θ(τ)
units of time and memory, barring which no information about the correct y
must be obtained from v, s, τ .

For concreteness, we give an HKDF construction adapted from [9].

HKDF.Make : (s, τ) �→ (v, k)

r ← {0, 1}�
z ← Hash(s, r)
for i := 1, ..., τ or until user signal

zi ← z
repeat q times

j ← 1 + (z mod i)
z ← Hash(z, zj)

v ← (r, Hash(z1, z))
k ← Hash(z, r)

HKDF.Open : (s, v) �→ k

parse v as (r, h)
z ← Hash(s, r)
for i := 1, ...,∞

zi ← z
repeat q times

j ← 1 + (z mod i)
z ← Hash(z, zj)

if Hash(z1, z) = h break
k ← Hash(z, r)

The constant q is a design parameter that determines the ratio between the time
and space requirements. It is not critical and wide range of values are acceptable
for this parameter [9].

The primary purpose of using HKDFs is to let the user impose a computa-
tional cost without revealing it to the server or storing extra parameters locally.

The secondary benefit of HKDFs is that they are always at least as difficult to
crack as a regular KDF of equal computational cost, and usually more depending
on how wide or how far of the attacker’s distribution of τ is compared to the
user’s choice.

We refer the reader to [9] for a full analysis and explanation of these phenom-
ena. Suffice it to say that, in the best case, HKDFs provide a constant security
multiplier of 3.59 (or 1.84 bits) over comparable KDFs, and in the worst case the
multiplier is 1 (or 0 bit). In other words, HKDFs are never worse, and usually
better than regular KDFs of same cost. To reap those benefits, the user-selected
cost parameter must not be known exactly to the attacker, which is why it is
important to let the user choose it, perhaps haphazardly, on a case-by-case basis.

4.2 HCR: Hidden Credential Retrieval

“Hidden Credential Retrieval” [10], the next ingredient, is a very simple crypto-
graphic abstraction that allows a stateless client to retrieve some high-entropy

HPAKE : Password Authentication 289

secret s from a ciphertext e on remote storage server, based on a low-entropy
password ω, in the safest possible way over an insecure channel. A feature of
HCR is that it also protects the user data s and password ω against a curious
server: the server only has in its custody a blinded string or ciphertext e, from
which it is information-theoretically impossible to recognize either s or ω with-
out also knowing the other. Furthermore, no party is to learn from the HCR
protocol whether the user successfully retrieved the string s: in case of incorrect
password, a junk string is silently recovered instead.

HCR was first formalized and utilized in [10] as a stand-alone protocol, though
similar notions have been implicitly proposed much earlier, in different contexts.
Notably, the notion of blind signature, coupled to some mild additional condi-
tions (single-round signing and uniqueness of the unblinded signatures) already
fulfilled in Chaum’s original paper [16], subsumes that of HCR.

To define it, we consider three entities: a Preparer P that selects the retrieval
password ω and the random string s to be stored; a Querier Q that knows the
password ω and seeks to retrieve s; and a Responder R that acts as the storage
server, prepared by the preparer and responding to queries from the querier.
Both P and Q are meant to embody the same user, but we must separate the
two to account for the possibility that the user does not need to remember s once
it has finished to set up the server R. The protocol consists of four algorithms:

HCR.Create, used by the Preparer P , takes as input a reference password ω,
and ouputs a plaintext s and a ciphertext e. The plaintext and ciphertext
have uniform marginal distributions in some fixed sets S and Z respectively
(that is, both s and e are marginally, but not jointly, independent of ω).

HCR.Commit, used by the Querier Q, takes as input a query password ω, and
outputs a commitment c and some private information d. The commitment
is uniform in some set C and statistically independent of the query password.

HCR.Respond, used by the Responder R, takes as input a ciphertext e and a
commitment c, and outputs a response f in some set F .

HCR.Develop, used by the Querier Q, takes as input the private data d and the
response f , and outputs a plaintext s in the set S.

We refer to [10] for the formal security model of this primitive, and the vari-
ous ways to construct it, but note that HCR can be constructed immediately
from (very old) existing constructions such as unique blind signatures, includ-
ing Chaum’s [16] and Boldyreva’s [8]. The Ford-Kalisky server-assisted password
generation protocol from [22] is also an instantiation of HCR (though the use
that Ford and Kalisky proposed for their scheme was different).

For illustration purposes, we describe the Ford-Kalisky version which is a bit
simpler, but the Boldyreva signature would do just as well. Let G be a cyclic
group of prime order p, and let Hash : {0, 1}∗ → G be a hash function into G.

HCR.Create : ω �→ (e, s). On input a registration password ω ∈ {0, 1}∗, output
a storage-server string e ∈$ F

×
p and a user plaintext s← Hash(ω)e.

HCR.Commit : ω �→ (c, d). Given any candidate password ω ∈ {0, 1}∗, output
a private decommitment d ∈$ F

×
p and a public commitment c← Hash(ω)d.

290 X. Boyen

HCR.Respond : (e, c) �→ f . Given the ciphertext e ∈ F
×
p and a commitment

c ∈ G, output the (deterministic) blind response f ← ce.
HCR.Develop : (d, f) �→ s. Given an ephemeral d ∈ F

×
p and a response f ∈ G,

output the retrieved (but unverified) user plaintext s← f1/d.

4.3 AKE: Authenticated Key Exchange

“(Asymmetric) Authenticated Key Exchange” is our third and final ingredient.
Although it may seem strange to require an (A)AKE to build an HPAKE, there
is no circularity given that AKE or AAKE from high-entropy keys is quite easy
and very well known. In our description, the AKE shared secret, or the AAKE
conjugate secrets, are the client-side token y and the server-side token z (such
that y = z for AKE or y �= z for AAKE, respectively).

Choosing an AAKE scheme for this stage instead of AKE (i.e., with asymmet-
ric secrets), will result in resistance to the compromise of the server database,
even for authentication to the same server. That is, even with knowledge of all
the server secrets including z, impersonating the client to the server itself will
still require finding the password (and thus cracking the HKDF). The AAKE
server token is initialized at registration time by the client; we generically wrote
z = AAKE.Init(y), but in practice y and z will be returned together by a key
generation algorithm. Efficient AAKE schemes include [15] or the very compact
MQV [32] on elliptic curves.

Alternatively, for increased server-side efficiency it is possible to use a sym-
metric AKE scheme instead. In this case, the client and server tokens are the
same: z = y, though they will still vary from one server to the next even under
the same password. We this choice, we forgo resistance to server database com-
promise against the same server, but we still get all the other security properties
of HPAKE, including password secrecy and resistance to cross-site imperson-
ation attacks. (Indeed, an attacker who learns y = z for a specific client-server
pair will be able to impersonate that client to that same server, but not to any
other server, and without learning the password.)

For concreteness, we give an explicit “folklore” symmetric AKE protocol built
purely from hash functions modeled as random oracles [38]. It is a very efficient
three-flow AKE protocol where the client and server send each other fresh ran-
dom nonces nc and ns, and verify their correct reception and create a session
key by hashing them with the secret key y = z they share.

AKE.1 : C → S
C picks a fresh random nonce cc and sends it to S:

AKE.2 : C ← S
Using S’s stored copy of y and the received values ĉc of cc, S sends a fresh
random nonce cs and the value as ← Hash(y, cc, cs) to C.

AKE.3 : C → S
Using C’s reconstructed copy ŷ of y and the received values ĉs and âs of cs

and as, C verifies the equality, âs
?= Hash(ŷ, cc, ĉs). If true, C accepts the

session and sends ac ← Hash(y, cs, as) to the server.

HPAKE : Password Authentication 291

AKE : session key
Using S’s stored copy of y and the received value âc of ac, S verifies that,
âc

?= Hash(y, cs, as). If true, C accepts the session. At this point, if both
parties have accepted, they share a mutually authenticated random session
key given by, k ← Hash(y, âc, as) = Hash(ŷ, ac, âs).

4.4 Consolidation of Flows

The above AKE protocol requires three flows (or half-rounds). If we add the two
flows for HCR, that makes five flows for the complete HPAKE protocol.

However, it is possible and easy to interleave and consolidate the HCR and
AKE messages so that HPAKE as a whole only requires three flows.

The idea is for the client eagerly to send Flow 1 of AKE along with the HCR
commitment c in Phase 1 of HPAKE. The server then sends Flow 2 of AKE along
with the HCR response f back to the client. The client performs the HKDF hard-
function calculation in Phase 2 of HPAKE, and, once the token y is decrypted,
sends the final Flow 3 of AKE, thereby completing Phase 3 of HPAKE in one
additional flow instead of three.

It is easy to see that the first two flows of AKE are independent of the HCR
phases on the protocol. In the random-oracle model, it is even acceptable to
reuse the HCR commitment c directly as the AKE client nonce cc, thereby saving
a little extra bit of bandwidth.

The only drawback of this flow consolidation is that the server needs to pre-
serve the AKE state across Phases 1–3 of the full protocol, while Phase 2 may by
design take a long time for the client to complete (unless the client is caching a
copy of y, which is explicitly allowed). By contrast, in the plain unconsolidated
protocol, the server can remain stateless until Phase 3.

5 Security

Theorem 1. Let χ be a security parameter, such that all hash functions have
at least � ≥ 2χ bits of output in the random-oracle model. Let |D| 	 2χ be the
size of the password dictionary. Assume that the HCR and AKE subprotocols
are χ-bit secure in G, that is, they yield to PPT computational adversaries with
time-advantage product TA ≥ 2χ only. Suppose that |D| 	 2χ, i.e., the password
dictionary size is the weak link. Then, in the random-oracle model, the advantage
Adv of an polynomial-time adversary A at distinguishing from random a secure
channel established by uncorrupted parties (either by causing one party to accept
a new session with A, or by stealing an already established session), is, ∀k ∈ N:

– For an outsider A sending a total of q messages to the user and any number
of honest servers:

AdvA ≤ q

|D| + o(1/χk) .

– For an insider A sending a total of q messages to the user and any number
of honest servers, and making t queries to the random oracle used in the

292 X. Boyen

function HKDF.Open (expressed in the same unit as the hardness parameter
τ used in HKDF.Make when registering with the insider):

AdvA ≤ 2t

|D| τ +
q

|D| + o(1/χk) in the general case ;

AdvA ≤ 2t

3.59 |D| τ +
q

|D| + o(1/χk) in cases where :

• the amount of memory available to A is ≤ o(|D| τ) (which is always true
in practice by a wide margin); and,
• either, the parameter τ is drawn by the user from a distribution of density
∼ τ−1−ε, or, the attacker A believes that it is not in its interest to try to
guess τ (which is generally the case by a game-theoretic argument, see
[9] for details).

5.1 Interpretation

Theorem 1 expresses two very different bounds, depending on whether the user
and server(s) are together facing a third-party attacker, or whether the user is
facing a malicious server.

Against Outsiders. The advantage of outsiders, q
|D| + o(1/χk), is the usual

bound for PAKE and APAKE protocols. It corresponds (up to a negligible term)
to the unavoidable online attack where the outsider tries to impersonate the user
to the server (or vice versa) by trying out one password candidate at a time.

Since q is the number of online queries, and thus necessarily quite small, the
security margin against outsiders will remain acceptable even for very small dic-
tionaries D, and thus very weak passwords. The banking industry, for example,
is content to protect user accounts with four-digit PINs, thus with just 13 bits
of entropy, by locking the account after three incorrect attempts.

Against Insiders. The advantage of insiders (i.e., corrupt servers) is the same
as outsiders plus an additional term, 2 t

B |D|τ , that accounts for the possibility that
insiders have to mount an offline attack against the password. Here, τ if the user-
selected complexity parameter, and B is a small constant (B = 1 or B = 3.59
depending on whether the “halting principle” is not, or is, applicable [9], i.e.,
whether τ is adequately uncertain to the attacker). Together, the dictionary size
|D| and the user-programmable complexity parameter τ constitute the main
actionable defenses at the user’s disposal to thwart an insider offline attack.
(Having B > 1 is merely a useful side-effect of enforcing the secrecy of τ , though
the latter is already desirable in itself, as discussed previously.)

The offline attack, though it requires insider knowledge to be feasible, is far
more dangerous than the online attack already available to outsiders. It is dan-
gerous because, in an offline attack, the numerator t is out of the control of the
user (or any honest server). It depends only on the adversary’s resources and
can therefore be quite large; in particular, t q.

HPAKE : Password Authentication 293

It is useful to take a very concrete example to illustrate this point. Suppose
that the user, Alice, has a single password, which she uses everywhere, and
changes every four months (107 seconds). Suppose also that one of the web sites
where she has an account is a sham, and wishes to dedicate an enterprise-class
computer farm (105 CPUs) to the single task of attempting to recover Alice’s
password. The attacker thus has a window of 1012 ≈ 240 CPU-seconds at his
disposal before the password becomes useless. For comparison, Alice’s password
will succumb with probability p = 1

2 , in each of the following five scenarios (|D|
= dictionary size; τ = user-selected hash complexity):

A. |D| = 261 (61 bits) and fixed τ = 2−21 (0.5μs):
i.e., a strong password (13 random letters) with a computer-instantaneous
hash (e.g., SHA1);

B. |D| = 251 (51 bits) and fixed τ = 2−11 (500μs):
i.e., a strong password (11 random letters) with a number-theoretic hash
(e.g., on curves);

C. |D| = 238 (38 bits) and public parameter τ = 22 (4s):
i.e., an ok password (8 random letters) with a human-noticeable hash (such
as a 4-sec KDF);

D. |D| = 238 (38 bits) and secret user-selected τ = 20 (1s):
i.e., same password (8 random letters) with a human-instantaneous hash
(here, 1-sec HKDF);

E. |D| = 224 (24 bits) and secret user-selected τ = 214 (5h):
i.e., a very memorable but very weak “backup” password (5 random letters)
protected by a very expensive hash (5-hours HKDF, taking, e.g., 17 minutes
to compute on a 16-core client).

(In all scenarios, the password lengths are for lowercase-only random letters, i.e.,
a 26-symbol alphabet.)

Case A corresponds to the practice of simply hashing the password (possibly
with some site-dependent non-secret information) before use, in a regular PAKE
protocol.

Case B corresponds to most AEKE and APAKE protocol implementations,
where the KDF is an inherent part of the protocol, and subject to number-
theoretical constraints (such as compatibility with efficiently verifiable zero-
knowledge proofs of knowledge of the password).

Cases C and D correspond to our HPAKE protocol with everyday settings,
where the difference between the two is that in the former the hardness factor τ
is a known parameter of the system, while in the latter it is chosen by the user
in a somewhat unpredictable way (to the adversary).

Case E corresponds to the use of HPAKE with a last-resort backup password
that ought never to be used, but must be very easy to remember in case it is
ever needed, for instance because the user forgot her regular password. Because
highly memorable passwords are also easy to guess, a very large value of τ is
desirable to maintain a sufficient margin of security against insider attacks. (How
large τ should be, depends on the actual strenght of the backup password, which
is known to the user only. This case illustrates why τ must be kept secret.)

294 X. Boyen

Those examples clearly show the superiority of HPAKE over previous PAKE
and APAKE protocols in that it allows much weaker passwords to be safely
reused, both in an everyday situation (e.g., comparing Case D vs. Case B), as
well as in a last-resort backup situation (for which none of the existing protocols
offers a viable solution).

6 User Interface

Provided that text passwords are used, the client-side user interface (UI) does
not require any special hardware: a keypad is all that is required, with perhaps
a one-bit display to indicate that the hard function computation is in progress.
There are however two important software requirements:

6.1 Trusted Local Password Entry

All the precautions we took to protect the user password and ensure its reusabil-
ity are moot if an attacker ever manages to bypass the HPAKE protocol, e.g.,
by tricking the user into entering the password directly into web form.

Software Solutions. A software solution, specific to internet transactions,
would require native HPAKE support from the browser, and ideally from the op-
erating system, so that password-entry prompts can be made distinctive enough
to be easy to recognize as genuine by the user. E.g., some browsers already at-
tempt to make HTTP-Auth password dialog boxes look unlike regular browser
windows; and the Windows operating system requires a Ctrl-Alt-Del attention
sequence to escape any running application before a login password can be
keyed.

Hardware Solutions : Commodity vs. Custom. The safest way to reduce
the possibility of password exposure, is to seize it not on a general-purpose
computer, but on a dedicated hardware device in the possession of the user.

“Pocket password calculators” have been used for decades by the banking
industry for signing high-value electronic transactions, and more recently for
generating one-time passwords to gain access to corporate VPNs. Such devices
have a small keypad for entering a user PIN, but almost always also contain a
custom user-specific private key, which makes them difficult to replace and also
sensitive to theft and hardware key recovery attacks.

It is easy to imagine similar keypad-equipped hardware for securely entering
one’s HPAKE password and for performing all related HPAKE computations,
possibly interfacing with a host computer connected to the internet. This would
ensure that the password is never exposed, even in case of full compromise of the
host computer. A key advantage over earlier “password calculators” is that an
HPAKE device would be completely commoditized and contain no user-specific
information. User would thus not need to worry about losing the, or having them
stolen.

HPAKE : Password Authentication 295

6.2 Real-Time User-Driven Cancellation

Because the HKDF component in HPAKE will not halt spontaneously on all
inputs, the client-side UI must include an special button to allow the user to
take corrective actions (and optionally, during the registration phase, to make it
easier for the user to select the value of τ).

During registration, a “finish” button may serve as a simple and intuitive de-
vice for selecting the hardness parameter τ : the user would simply let HKDF.Make
run for a while and then click on the finish button, which will cause the system
to set τ to the current value of the HKDF loop iterator. The user need not be
shown the value of τ , since she has no use for it (except perhaps a vague rec-
ollection of what kind of delay she chose, if she suspects she might forget her
password).

During authentication, a “cancel” button must be available to let the user
stop the process. Since the HKDF.Open function is designed to run forever when
called on the wrong inputs, it is up to the user to stop it manually when she
realizes that she entered a wrong password. Having a cancel button is always a
good idea, since delays can occur for many reasons (e.g., network congestion).

7 Conclusion

The sad reality is that people are not using passwords the way protocol design-
ers and security experts wish they were. It is therefore natural to ask for an
authentication protocol that remains as secure as possible under such stringent
usage conditions.

Ideally, people should be able to conduct all their online business with a single
easy-to-remember password, no matter how numerous or how untrustworthy the
web sites they wish to authenticate with.

Just as importantly, the ideal protocol should need zero client-side long-term
storage (other than the password), to lessen the security impact in case of loss or
theft; this is especially important when traveling. This make a very compelling
case for “reusable-password stateless roaming authentication”, especially since
by far the safest place to keep a password is in one’s memory, where there is not
much room for more.

Existing password authentication protocols are generally not safe when related
passwords are used in multiple contexts. Protocols of the APAKE family come
very close, but are still vulnerable to offline dictionary attacks by insiders, unless
the password is strong, because they take no measure to limit the rate of such
attacks.

Various client-side stop-gap measures have also been proposed, but they in-
variably have steep additional requirements: for example, browser-based “pass-
word managers” require long-term storage on the client side; whereas “anti-
phishing” add-ons (intended to save you from mistakenly sending your pass-
word to an evildoer on a blacklist) make the tacit assumption that the DNS
system and the PKI authorities used in SSL can be trusted. PKI-based solutions

296 X. Boyen

generally require the storage of at least one authentic certificate on the client,
too.

Our HPAKE approach is certainly not perfect. However, it has a crucial com-
bination of benefits over the existing alternatives: (1) client and servers have
asymmetric secrets; (2) authentication is mutual; (3) no need for any client-side
storage; (4) the password is a user secret and can be reused with other servers;
(5) outsider attacks can do no better than online password guessing; (6) servers
with access to the user registration data can always brute-force the user’s pass-
word offline, but the presence of a hard function will greatly slow down such
attacks; (7) the hard function is user-programmed, giving the user full control
over it; (8) the hard function is user-computed, ensuring that it will be applied
effectively; (9) the server-side protocol is independent of the hard function, it is
lightweight and scales very well.

Our HPAKE protocol is but one example of a possible construction; there are
certainly others. Ours has the advantage of being very simple and efficient, but
relies heavily (and, in fact, almost exclusively) on the random-oracle model for
its security. We leave it as an open question to find other realizations that avoid
random oracles but are still reasonably efficient.

We conclude with an obvious but important word of caution: the reusability of
weak passwords that HPAKE enables only applies within the confines of HPAKE
(and HKDF [9], for local encryption applications). Reusing an HPAKE password
on an unsecured web form will void all security guarantees that our cryptography
sought to offer.

References

1. Bellare, M., Canetti, R., Krawczyk, H.: A modular approach to the design and
analysis of authentication and key exchange protocols. In: Proceedings of the ACM
Symposium on the Theory of Computing—STOC 1998. ACM Press, New York
(1998)

2. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 139–155. Springer, Heidelberg (2000)

3. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994)

4. Bellovin, S.M., Merritt, M.: Encrypted key exchange: Password-based protocols
secure against dictionary attacks. In: IEEE Symposium on Security and Privacy—
SP 1992, pp. 72–84. IEEE Press, Los Alamitos (1992)

5. Bellovin, S.M., Merritt, M.: Augmented encrypted key exchange. In: ACM Confer-
ence on Computer and Communications Security—CCS 1993, pp. 224–250. ACM
Press, New York (1993)

6. Bennett, C.H., Brassard, G., Robert, J.-M.: Privacy amplification by public dis-
cussion. SIAM Journal of Computing 17(2) (1988)

7. Blake-Wilson, S., Johnson, D., Menezes, A.: Key agreement protocols and their
security analysis. In: Darnell, M.J. (ed.) Cryptography and Coding 1997. LNCS,
vol. 1355, pp. 30–45. Springer, Heidelberg (1997)

HPAKE : Password Authentication 297

8. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based
on the gap-Diffie-Hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC
2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2003)

9. Boyen, X.: Halting password puzzles. In: USENIX Security Symposium—
SECURITY 2007, pp. 119–134. The USENIX Association (2007)

10. Boyen, X.: Hidden credential retrieval from a reusable password. In: ACM Sym-
posium on Information, Computer & Communication Security—ASIACCS 2009.
ACM Press, New-York (2009)

11. Boyko, V., MacKenzie, P., Patel, S.: Provably secure password-authenticated key
exchange using diffie-hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 156–171. Springer, Heidelberg (2000)

12. Brown, D.R.L.: Prompted user retrieval of secret entropy: The passmaze protocol.
Cryptology ePrint Archive, Report 2005/434 (2005), http://eprint.iacr.org/

13. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.: Universally composable
password-based key exchange. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 404–421. Springer, Heidelberg (2005)

14. Canetti, R., Halevi, S., Steiner, M.: Mitigating dictionary attacks on password-
protected local storage. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp.
160–179. Springer, Heidelberg (2006)

15. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 453–474. Springer, Heidelberg (2001)

16. Chaum, D.: Blind signatures for untraceable payments. In: Advances in
Cryptology—CRYPTO 1982, pp. 199–203 (1982)

17. Choo, K.-K.R., Boyd, C., Hitchcock, Y.: Examining indistinguishability-based
proof models for key establishment protocols. In: Roy, B. (ed.) ASIACRYPT 2005.
LNCS, vol. 3788, pp. 585–604. Springer, Heidelberg (2005)

18. Dean, D., Stubblefield, A.: Using client puzzles to protect TLS. In: USENIX Secu-
rity Symposium—SECURITY 2001 (2001)

19. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Transactions on
Information Theory 22(6), 644–654 (1976)

20. Diffie, W., van Oorschot, P., Wiener, M.: Authentication and authenticated key
exchanges. Designs, Codes and Cryptography 2, 107–125 (1992)

21. Dwork, C., Naor, M.: Pricing via processing or combating junk mail. In: Brick-
ell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Heidelberg
(1993)

22. Ford, W., Kaliski Jr., B.S.: Server-assisted generation of a strong secret from a
password. In: Proc. IEEE 9th Int. Workshop on Enabling Technologies: Infrastruc-
ture for Collaborative Enterprises, pp. 176–180. IEEE Computer Society Press,
Los Alamitos (2000)

23. Gentry, C., MacKenzie, P., Ramzan, Z.: Password authenticated key exchange
using hidden smooth subgroups. In: ACM Conference on Computer and Commu-
nications Security—CCS 2005, pp. 299–309. ACM Press, New York (2005)

24. Gentry, C., MacKenzie, P., Ramzan, Z.: A method for making password-based
key exchange resilient to server compromise. In: Dwork, C. (ed.) CRYPTO 2006.
LNCS, vol. 4117, pp. 142–159. Springer, Heidelberg (2006)

25. Halevi, S., Krawczyk, H.: Public-key cryptography and password protocols. In:
ACM Conference on Computer and Communications Security—CCS 1998, pp.
122–131. ACM Press, New York (1998)

26. Jablon, D.: Strong password-only authenticated key exchange. Computer Commu-
nication Review (1996)

http://eprint.iacr.org/

298 X. Boyen

27. Jiang, S., Gong, G.: Password based key exchange with mutual authentication.
In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 267–279.
Springer, Heidelberg (2004)

28. Juels, A., Brainard, J.: Client puzzles: A cryptographic defense against connection
depletion attacks. In: Proceedings of NDSS 1999, pp. 151–165 (1999)

29. Katz, J., Ostrovsky, R., Yung, M.: Efficient password-authenticated key exchange
using human-memorable passwords. In: Pfitzmann, B. (ed.) EUROCRYPT 2001.
LNCS, vol. 2045, pp. 475–494. Springer, Heidelberg (2001)

30. Krawczyk, H.: HMQV: A high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Hei-
delberg (2005)

31. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (2007)

32. Law, L., Menezes, A., Qu, M., Solinas, J., Vanstone, S.A.: An efficient protocol for
authenticated key agreement. Designs, Codes and Cryptography 28(2), 119–134
(2003)

33. MacKenzie, P.: More efficient password-authenticated key exchange. In: Naccache,
D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 361–377. Springer, Heidelberg (2001)

34. MacKenzie, P., Patel, S., Swaminathan, R.: Password-authenticated key exchange
based on RSA. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp.
599–613. Springer, Heidelberg (2000)

35. MacKenzie, P., Shrimpton, T., Jakobsson, M.: Threshold password-authenticated
key exchange. Journal of Cryptology 19(1), 27–66 (2006)

36. Maurer, U.: Information-theoretically secure secret-key agreement by not authenti-
cated public discussion. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233,
pp. 209–225. Springer, Heidelberg (1997)

37. Menezes, A.: Another look at HMQV. Cryptology ePrint Archive, Report 2005/205
(2005), http://eprint.iacr.org/

38. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. CRC Press, Boca Raton (1997)

39. Naor, M., Pinkas, B.: Visual authentication and identification. In: Kaliski Jr., B.S.
(ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 322–336. Springer, Heidelberg (1997)

40. Pinkas, B., Sander, T.: Securing passwords against dictionary attacks. In: ACM
Conference on Computer and Communications Security—CCS 2002, pp. 161–170.
ACM Press, New York (2002)

41. Provos, N., Mazières, D.: A future-adaptable password scheme. In: USENIX Tech-
nical Conference—USENIX 1999 (1999)

42. Yee, K.-P., Sitaker, K.: Passpet: Convenient password management and phishing
protection. In: Symposium On Usable Privacy and Security—SOUPS 2006. ACM
Press, New York (2006)

http://eprint.iacr.org/

	 HPAKE : Password Authentication Secure against Cross-Site User Impersonation
	Introduction
	Related Work
	Architecture
	Components
	HKDF : Halting Key Derivation Functions
	HCR: Hidden Credential Retrieval
	AKE: Authenticated Key Exchange
	Consolidation of Flows

	Security
	Interpretation

	User Interface
	Trusted Local Password Entry
	Real-Time User-Driven Cancellation

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

