
Private-Key Hidden Vector Encryption with

Key Confidentiality

Carlo Blundo, Vincenzo Iovino, and Giuseppe Persiano

Dipartimento di Informatica ed Applicazioni,
Università di Salerno, 84084 Fisciano (SA), Italy

{carblu,iovino,giuper}@dia.unisa.it

Abstract. Predicate encryption is an important cryptographic primi-
tive that has been recently studied [BDOP04, BW07, GPSW06, KSW08]
and that has found wide applications. Roughly speaking, in a predicate
encryption scheme the owner of the master secret key K can derive se-
cret key K̃, for any pattern vector k. In encrypting a message M , the
sender can specify an attribute vector x and the resulting ciphertext X̃
can be decrypted only by using keys K̃ such that P (x, k) = 1, for a fixed
predicate P . A predicate encryption scheme thus gives the owner of the
master secret key fine-grained control on which ciphertexts can be de-
crypted and this allows him to delegate the decryption of different types
of messages (as specified by the attribute vector) to different entities.

In this paper, we give a construction for hidden vector encryption
which is a special case of predicate encryption schemes introduced by
[BW07]. Here the ciphertext attributes are vectors x = 〈x1, . . . , x�〉 over
alphabet Σ, key patterns are vectors k = 〈k1, . . . , k�〉 over alphabet
Σ ∪ {�} and we consider the Match(x, k) predicate which is true if and
only if ki �= � implies xi = ki. Besides guaranteeing the security of the
attributes of a ciphertext, our construction also gives security guarantees
for the key patterns. We stress that security guarantees for key patterns
only make sense in a private-key setting and have been recently consid-
ered by [SSW09] which gave a construction in the symmetric bilinear
setting with groups of composite (product of four primes) order. In con-
trast, our construction uses asymmetric bilinear groups of prime order
and the length of the key is equal to the weight of the pattern, thus
resulting in an increased efficiency. We remark that our construction is
based on falsifiable (in the sense of [BW06, Nao03]) complexity assump-
tions for the asymmetric bilinear setting and are proved secure in the
standard model (that is, without random oracles).

Keywords: private-key predicate encryption, key confidentiality.

1 Introduction

Predicate encryption is an important cryptographic primitive that has been re-
cently studied [BDOP04, BW07, GPSW06, KSW08] and that has found wide
applications. Roughly speaking, in a predicate encryption scheme the owner of

J.A. Garay, A. Miyaji, and A. Otsuka (Eds.): CANS 2009, LNCS 5888, pp. 259–277, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

260 C. Blundo, V. Iovino, and G. Persiano

the master secret key SK, can derive secret key K̃, for any pattern vectors k.
Similarly, in encrypting a message M , the sender can specify an attribute vector
x and the resulting ciphertext X̃ can be decrypted only by using keys K̃ such
that P (x, k) = 1, for a fixed predicate P .

In this paper, we consider hidden vector encryption that is a special class
of predicate encryptions first studied in [BW07]. In a hidden vector encryption
scheme, ciphertexts are associated with attribute vectors x of length � over an
alphabet Σ and keys are associated with pattern vectors k of length � over the
alphabet Σ ∪ {�}. The predicate we are interested in is the Match predicate
defined as follows: Match(x, k) = 1 if and only if for i = 1, . . . , � either ki = � or
ki = xi. Constructions for hidden vector encryption have been given in [BW07]
(based on hardness assumptions in groups of composite order) and in [IP08]
(based on hardness assumptions in groups of prime order).

Until now research has concentrated on guaranteeing the security of the ci-
phertext with respect to the cleartext and to the attribute vector and not much
attention has been devoted to the security of the key. Specifically, one would
like a key not to reveal the associated pattern. This is particularly important in
some applications in which a user generates the key for a certain pattern and
gives it to a third party to perform some operations. Knowledge of the pattern
associated with the key might reveal some information about the operation be-
ing performed. Obviously, this is impossible to achieve in a public-key setting.
Indeed an adversary A holding a key K̃ associated to a secret pattern k can sim-
ply produce a ciphertext X̃ with attribute x and then try to decrypt X̃ using
K̃. If A succeeds in decrypting K̃ then A knows that P (x, k) = 1. This attack
does not hold in the private key setting as A cannot produce ciphertext X̃ .
Simply keeping the public key secret from the adversary does not seem to work
for previous predicate encryption schemes (see, for example [BW07, KSW08])
and the problem seems to call for a new construction. The scheme of [SSW09] is
constructed modifying the previous scheme of [KSW08], likewise, we build our
scheme from the scheme of [IP08].

Prior work and our contribution. Shen, Shi and Waters [SSW09] were the first
to consider key confidentiality in the context of predicate encryption and they
provided a construction for the inner-product predicate (that is, a key can de-
crypt a ciphertext if and only if the pattern vector of the key is orthogonal to the
attribute vector of the ciphertext). In this paper we present a construction for
an hidden vector encryption scheme which, besides guaranteeing privacy of the
attribute vector of ciphertext, guarantees that keys do not leak any information
on the associated pattern, besides the location of the �’s. We stress that the con-
struction of [SSW09] for the inner-product predicate implies (with a small loss of
efficiency) a construction also for hidden vector encryption scheme. The security
of the construction of [SSW09] is based on bilinear assumptions on groups of
order product of four primes, and thus, it is less efficient. In our construction we
show that, by slightly relaxing the notion of key confidentiality, we can obtain
construction using asymmetric bilinear groups of prime order (which results in
much more efficient constructions). We remark that our construction is based

Private-Key Hidden Vector Encryption with Key Confidentiality 261

on falsifiable (in the sense of [BW06, Nao03]) complexity assumptions for the
asymmetric bilinear setting for groups of prime order and are proved secure in
the standard model (that is, without random oracles).

Moving from composite order groups to prime order groups, besides giving
very efficient constructions, is also important since assumptions based on prime
order groups are considered weaker than the corresponding assumptions that
intertwine and compound potential vulnerabilities from factoring and pairings
(see the discussion in [Boy08]).

Finally, we stress that the only previous construction of hidden vector encryp-
tion schemes based on prime order groups of [IP08] does not give any security
guarantee for the key.

2 Hidden Vector Encryption Schemes

In this paper we consider a special type of predicate encryption schemes called
Hidden Vector Encryption Scheme, (an HVE scheme, in short). We present the
definition and the construction for Σ = {0, 1}. In Section 8 we briefly explain
how the constructions can be extended to larger alphabets.

An HVE scheme consists of four algorithms:
1. MasterKeyGen(1n, 1�): Given security parameter n, and number of attributes

� = poly(n), procedure MasterKeyGen outputs the private key SK.
2. Enc(SK, x): Given attribute vector x ∈ {0, 1}� and secret key SK, procedure

Enc outputs an encrypted attribute vector X̃.
3. KeyGen(SK, k): Given private key SK, a pattern vector k of length � over the

alphabet {0, 1, �}, procedure KeyGen outputs a key K̃ for the k.
4. Test(X̃, K̃): given encrypted attribute vector X̃ and key K̃ corresponding to

pattern k, procedure Test returns Match(x, k) except with negligible proba-
bility.

We state security in the selective attribute model using the following experi-
ments.

2.1 Semantic Security

The first experiment considers an adversary that tries to learn information from
an encryption. We model this using an indistinguishability experiment in which
the adversary A selects two challenge attribute vectors z0 and z1 and receives
an encrypted attribute vector corresponding to a randomly chosen challenge
attribute vector. We allow the adversary to issue key queries for patterns y that
match neither of z0 and z1 and to see encryption of attribute vectors of his choice
(see Section 7 for a stronger notion). Following is the description of experiment
SemanticExpA.

SemanticExpA(1n, 1�)
1. Initialization Phase. The adversary A announces two challenge attribute

vectors z0, z1 ∈ {0, 1}�.

262 C. Blundo, V. Iovino, and G. Persiano

2. Key-Generation Phase. The secret key SK is generated by the MasterKeyGen
procedure.

3. Query Phase I. A can make any number of key and encryption query.
A key query for pattern k is answered as follows. If Match(z0, k) = 0 and
Match(z1, k) = 0 then A receives the output of KeyGen(SK, k). Otherwise,
A receives ⊥. An encryption query for attribute vectors x is answered by
returning Enc(SK, x).

4. Challenge construction. η is chosen at random from {0, 1} and A is given
Enc(SK, zη).

5. Query Phase II. Identical to Query Phase I.
6. Output Phase. A returns η′.

If η = η′ then the experiments returns 1 else 0.

Definition 1. An HVE scheme (MasterKeyGen, Enc, KeyGen, Test) is semanti-
cally secure, if for all probabilistic poly-time adversaries A

∣
∣Prob[SemanticExpA(1n, 1�) = 1] − 1/2

∣
∣

is negligible in n for all � = poly(n).

2.2 Key Confidentiality

In this section we present our definition for key confidentiality. We model this
property by using an indistinguishability experiment in which the adversary A
outputs two challenge patterns k0 and k1 of his choice. A is then allowed to issue
encryption queries for vectors x that match neither of k0 and k1 and key queries
for patterns k of his choice. At the end A is presented with the key associated
with a randomly chosen challenge pattern. In our notion of key confidentiality,
the adversary is limited to challenges on patterns in which the “don’t care”
entries (that is, �) are in the same positions.

KeyExpA(1n, 1�)
1. Initialization Phase. The adversary A announces two challenge patterns

k0, k1 ∈ {0, 1, �}�. If the set of positions for which k0 and k1 have � dif-
fer then the experiment returns 0.

2. Key-Generation Phase. The secret key SK is generated by the MasterKeyGen
procedure.

3. Query Phase I. A can make any number of key and encryption query.
A key query for pattern k is answered by returning KeyGen(SK, k).
An encryption query for attribute vector x is answered as follows.
If Match(x, k0) = Match(x, k1) = 0 then A receives Enc(SK, x). Otherwise,
A receives ⊥.

4. Challenge construction. η is chosen at random from {0, 1} and receives
KeyGen(SK, kη).

5. Query Phase II. Identical to Query Phase I.

Private-Key Hidden Vector Encryption with Key Confidentiality 263

6. Output Phase. A returns η′.
If η = η′ then the experiments returns 1 else 0.

Definition 2. A predicate encryption scheme (MasterKeyGen, Enc, KeyGen,
Test) is key secure if for all probabilistic poly-time adversaries A,

∣
∣Prob[KeyExpA(1n, 1�) = 1] − 1/2

∣
∣

is negligible in n for all � = poly(n).

2.3 Secure HVE

Finally we have,

Definition 3. An HVEscheme (MasterKeyGen, Enc, KeyGen, Test) is secure if it
is both semantically secure and key secure.

Remark on the notion of key confidentiality. In our notion of key confidentiality
the key might reveal the position of the �’s in the associated pattern, since no
requirement is made for adversary choosing challenge patterns with �’s in differ-
ent positions. In some applications, this might not be a drawback. For example,
predicate encryption can be used for performing searches on encrypted data.
For example, a user interested in selecting ciphertexts for which Name=Alex
and Sex=M gets a key corresponding to a pattern that has � in all positions
other than Name and Sex. An eavesdropper learns that the user is searching the
fields Name and Sex but no information is given on the name the user is searching
for and whether the user is searching for a male or a female. We remark that the
construction of [SSW09] hides all information of the key, but their construction
is less efficient than ours since it uses groups of composite order of four primes.
Roughly speaking, by slightly relaxing the security notion, we manage to build
a more efficient scheme.

3 Complexity Assumptions

We work in asymmetric prime order bilinear groups of ’Type 3’ (see [Boy08]).
Specifically, we have cyclic multiplicative groups G1, G2 and GT of order p such
that there exists no efficiently computable morphism from G1 to G2 or from G2

to G1. In addition we have a non-degenerate pairing function e : G1×G2 → GT ;
that is, for all x ∈ G1, y ∈ G2, x �= 1 or y �= 1, we have e(x, y) �= 1 and for
all a, b ∈ Zp we have e(xa, yb) = e(x, y)ab. We denote by g1, g2, and e(g1, g2)
generators of G1, G2, and GT , respectively.

We call a tuple I = [p, G1, G2, GT , g1, g2, e] an asymmetric bilinear instance
and assume that there exists an efficient generation procedure G that, on input
security parameter 1n, outputs an instance with |p| = Θ(n).

We now present a new assumption, which we call the (d, m)-Q Assumption,
on which we base the proof of key security of our construction. Semantic security

264 C. Blundo, V. Iovino, and G. Persiano

is based instead on the Decision Linear Assumption and on the Bilinear Deci-
sion Diffie-Hellman Assumption which we review in Section 3. We present the
assumption in the form of a game between a challenger Ch and a distinguisher
D on input the security parameter n.

Game (d, m)-Q(1n)
1. The challenger Ch picks a random asymmetric bilinear instance I = [p, G1,

G2, GT , g1, g2, e] by running generator G on input security parameter 1n and
sets ChOutput = ∅.

2. For i = 1, . . . , d and b = 0, 1, Ch chooses random t̂i,b, v̂i,b ∈ Zp.
3. For i = 1, . . . , d, Ch chooses random âi ∈ Zp such that their sum is equal to

0.
4. Define set of pairs JH = {(j, h)|1 ≤ j ≤ m, 1 ≤ h ≤ m, j �= h or j =

h, m + 1 ≤ j ≤ d}.
For (j, h) ∈ JH , Ch chooses a random ŝ(j,h) ∈ Zp and computes matrices
Aj,h and Bj,h as follows, where × denotes a missing entry in the matrices:1

Aj,h =
⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

[

g
ŝj,h t̂1,0
1 , . . . , ×, . . . , g

ŝj,h t̂h,0
1 , . . . , g

ŝj,h t̂d,0
1

g
ŝj,h t̂1,1
1 , . . . , g

ŝj,ht̂j,1
1 , . . . , × . . . , g

ŝj,h t̂d,1
1

]

if j �= h and j, h ≤ m

[

g
ŝj,h t̂1,0
1 , . . . , ×, . . . , g

ŝj,h t̂d,0
1

g
ŝj,h t̂1,1
1 , . . . , g

ŝj,ht̂j,1
1 , . . . , g

ŝj,h t̂d,1
1

]

if j = h and j > m

and Bj,h =
⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[

g
ŝj,hv̂1,0
1 , . . . , ×, . . . , g

ŝj,hv̂h,0
1 , . . . , g

ŝj,hv̂d,0
1

g
ŝj,hv̂1,1
1 , . . . , g

ŝj,hv̂j,1
1 , . . . , × . . . , g

ŝj,hv̂d,1
1

]

if j �=zh and j, h≤m

[

g
ŝj,hv̂1,0
1 , . . . , ×, . . . , g

ŝj,hv̂d,0
1

g
ŝj,hv̂1,1
1 , . . . , g

ŝj,hv̂j,1
1 , . . . , g

ŝj,hv̂d,1
1

]

if j = h and j > m

Ch appends the above matrices to ChOutput.
5. For i = 1, . . . , d and b = 0, 1, Ch computes and appends to ChOutput

Ci,b = g
1/t̂i,b

2 and Di,b = g
1/v̂i,b

2 .

6. Ch chooses random η ∈ {0, 1} and let z = 〈z1, . . . , zd〉 = ηm · 0d−m.
For i = 1, . . . , d, Ch computes

Ei = C âi

i,zi
and Fi = Dâi

i,zi

and appends the values Ei and Fi to ChOutput.
1 For the sake of simplicity of exposition, in the definition we have implicitly assumed

that j ≤ h.

Private-Key Hidden Vector Encryption with Key Confidentiality 265

7. Challenger Ch runs D on input sequence ChOutput and receives output η′.

We define the advantage AdvD(n, d, m) of distinguisher D in the Game (d, m)-
Q(1n) as

AdvD(n, d, m) =
∣
∣
∣
∣
Prob[η = η′] − 1

2

∣
∣
∣
∣
.

We are now ready to formally state Assumption (d, m)-Q.

Assumption 1 (Assumption (d, m)-Q). For all probabilistic poly-time distin-
guishers D, we have that AdvD(n, d, m) is negligible in n, for d = poly(n), and
1 ≤ m ≤ d.

The (d, m)-Q Assumption can be justified by extending the framework of the
Uber-Assumption [BBG05, Boy08] to rational functions along the lines of
[Boy08]. In the rest of this section we review other hardness assumptions used
in the paper.

Bilinear Decision Diffie-Hellman. Given a tuple [g1, g2, g
a
1 , gb

1, g
a
2 , gb

2, g
c
1, Z] for

random exponents a, b, c ∈ Zp it is hard to distinguish between Z = e(g1, g2)abc

and a random Z from GT . More specifically, for an algorithm A we define ex-
periment BDDHExpA as follows.

BDDHExpA(1n)
1. Choose instance I = [p, G1, G2, GT , g1, g2, e] with security parameter 1n.
2. Choose a, b, c ∈ Zp at random.
3. Choose η ∈ {0, 1} at random.
4. If η = 1 then choose z ∈ Zp at random; else, set z = abc.
5. Set A = ga

1 , B = gb
1, Â = ga

2 , B̂ = gb
2, C = gc

1 and Z = e(g1, g2)z .
6. Let η′ = A(I, A, B, Â, B̂, C, Z).
7. If η = η′ then return 1 else return 0.

Assumption 2 (Bilinear Decisional Diffie-Hellman (BDDH)). For all
probabilistic poly-time algorithms A, |Prob[BDDHExpA(1n) = 1] − 1/2| is negli-
gible in n.

Decision Linear. Given a tuple [g1, g2, g
z1
1 , gz2

1 , gz1
2 , gz2

2 , gz1z3
1 , gs

1, Z] for random
exponents z1, z2, z3, s ∈ Zp it is hard to distinguish between Z = g

z2(s−z3)
1 and a

random Z from G1. More specifically, for an algorithm A we define experiment
DLExpA as follows.

DLExpA(1n)
1. Choose instance I = [p, G1, G2, GT , g1, g2, e] with security parameter 1n.
2. Choose u1, u2, u3, u ∈ Zp at random.
3. Choose η ∈ {0, 1} at random.
4. If η = 1 then choose z ∈ Zp at random; else, set z = u2(u − u3).
5. Set U1 =gu1

1 , U2 =gu2
1 , Û1 =gu1

2 , Û2 =gu2
2 , U13 =gu1u3

1 , U =gu
1 , and Z =gz

1 .
6. Let η′ = A(I, U1, U2, Û1, Û2, U13, U, Z).
7. If η = η′ then return 1 else return 0.

266 C. Blundo, V. Iovino, and G. Persiano

Assumption 3 (Decision Linear (DLinear)). For all probabilistic poly-time
algorithms A, |Prob[DLExpA(1n) = 1] − 1/2| is negligible in n.

Note that Decision Linear implies Decision BDDH and the Decision Linear as-
sumption has been used in [BW06].

4 The Basic Scheme

In this section, we describe our proposal for a secure HVE.

The MasterKeyGen procedure. On input security parameter 1n and the number
of attributes � = poly(n), MasterKeyGen proceeds as follows.
1. Select an asymmetric bilinear instance I = [p, q, G1, G2, GT , g1, g2, e] with

|N | = Θ(n) by running G.
2. Pick y at random in Zp and set Y = e(g1, g2)y.

For i = 1, . . . , �,
Choose ti,0, ti,1, vi,0, vi,1 at random from Zp.
Set

Ti,0 = g
ti,0
1 , Ti,1 = g

ti,1
1 , Vi,0 = g

vi,0
1 , Vi,1 = g

vi,1
1 ,

T̄i,0 = g
1/ti,0
2 , T̄i,1 = g

1/ti,1
2 , V̄i,0 = g

1/vi,0
2 , V̄i,1 = g

1/vi,1
2 .

Set SKi = (Ti,0, Ti,1, Vi,0, Vi,1, T̄i,0, T̄i,1V̄i,0, V̄i,1,).
3. Return SK = (I, Y, y, SK1, . . . , SK�).

The Enc procedure. On input secret key SK and attribute vector x of length �,
Enc proceeds as follows.
1. Pick s at random from Zp and set Ω = Y −s.
2. For i = 1, . . . , �,

pick si at random from Zp.
set Xi = T s−si

i,xi
and Zi = V si

i,xi
.

3. Return encrypted attribute vector X̃ = (Ω, (Xi, Zi)�
i=1).

In the following sometimes will use the writing Enc(SK, x; s, s1, . . . , s�) to denote
the encrypted attribute vector X̃ output by Enc on input SK and x when using
s, s1, . . . , s� as random elements.

The KeyGen procedure. On input secret key SK and pattern vector k, KeyGen
proceeds as follows.
1. Let Sk be the set of positions in which ki �= �.
2. Choose (ai)i∈Sk

at random in Zp under the constraint that their sum is y.
3. For i ∈ Sk, set Ri = T̄ ai

i,ki
and Wi = V̄ ai

i,ki
.

4. Return K̃ = (i, Ri, Wi)i∈Sk
.

In the following sometimes will use the writing KeyGen(SK, k; (ai)i∈Sk
) to denote

the key K̃ computed by KeyGen on input SK and k and using (ai)i∈Sk
as random

elements.

Private-Key Hidden Vector Encryption with Key Confidentiality 267

The Test procedure. On input an encrypted attribute vector X̃ = (Ω, (Xi, Zi)�
i=1)

and a key K̃ = ((i1, Ri1 , Wi1), . . . , (im, Rim , Wim)), Test proceeds as follows.
1. Compute a = Ω · ∏m

j=1 e(Xij , Rij)e(Zij , Wij).
2. If a = 1 then return TRUE else return FALSE.

We next prove that the quadruple is indeed a predicate encryption scheme.

Theorem 1. The quadruple of algorithms (MasterKeyGen, Enc, KeyGen, Test)
specified above is a predicate encryption scheme.

Proof. It is sufficient to verify that the procedure Test returns 1 when Match(x, k)
= 1. Let X̃ = (Ω, (Xi, Zi)�

i=1) be the output of Enc(SK, x; s, s1, . . . , s�) and let
K̃ = (i, Ri, Wi)i∈Sk

be the output of KeyGen(SK, k; (ai)i∈Sk
). Then we have

Test(X̃, K̃)

= Ω ·
∏

i∈Sk

e(Xi, Ri) · e(Zi, Wi)

= e(g1, g2)−ys ·
∏

i∈Sk

e(T s−si

i,xi
, T̄ ai

i,ki
) · e(V si

i,xi
, V̄ ai

i,ki
) (since xi = ki for i ∈ Sk)

= e(g1, g2)−ys ·
∏

i∈Sk

e(T s−si

i,ki
, T̄ ai

i,ki
) · e(V si

i,ki
, V̄ ai

i,ki
)

(since e(Ti,ki , T̄i,ki) = e(Vi,ki , V̄i,ki) = e(g1, g2) ∈ GT)

= e(g1, g2)−ys ·
∏

i∈Sk

e(g1, g2)(s−si)ai · e(g1, g2)siai

= e(g1, g2)−ys ·
∏

i∈Sk

e(g1, g2)sai (since
∑

i∈Sk

ai = y)

= e(g1, g2)−ys · e(g1, g2)ys = 1.

5 Proof of Semantic Security

In this section, we prove that the scheme presented in Section 4 is semantically
secure. Consider the following experiments, for j = 0, · · · , �.

SemanticExpA(1n, 1�, z, j)
1. Key-generation Phase. Compute SK = (I, y, SK1, · · · , SK�) by executing

MasterKeyGen(1n, 1�).
2. Query Phase I. Answer Enc queries for attribute vectors x by using secret

key SK.
Answer KeyGen queries for pattern vectors k such that Match(z, k) = 0 using
secret key SK.

3. Challenge Construction.
1. If j = 0 set Ω = e(g1, g2)−ys.
2. If j ≥ 1 choose Ω uniformly at random from GT .

268 C. Blundo, V. Iovino, and G. Persiano

3. For i = 1, . . . , j − 1,
choose Xi and Zi uniformly at random in G1.

4. If j = 0 set α = 1 else set α = j.
5. For i = α, . . . , �,

choose si uniformly at random in Zp and set Xi = g
ti,zi

(s−si)

1 and Zi =
g

sivi,zi
1 .

6. Set X̃ = (Ω, (Xi, Zi)�
i=1).

7. Query Phase II. Identical to Query Phase I.
8. return: A(X̃).

We will use the writing SemanticExpA(1n, 1�, z, j; s, sα, . . . , s�) to denote the tu-
ple X̃ computed by SemanticExpA(1n, 1�, z, j) using s, sα, . . . , s� as random val-
ues, where α = 1 for j = 0 and α = j for j > 0.

We will denote by pAj (z) the probability that experiment SemanticExpA(1n,

1�, z, j) returns 1. Notice that in SemanticExpA(1n, 1�, z, 0) adversary A receives
a valid encrypted attribute vector X̃ for attribute vector z and secret key SK
whereas in SemanticExpA(1n, 1�, z, �) adversary A receives X̃ consisting of one
random element of GT and 2� random elements of G1. Next we prove that,
under the Decision Linear assumption, for all attribute vectors z, the difference
|pA0 (z) − pA� (z)| is negligible. This implies the semantic security of the scheme.

Due to space limitation we omit the proof of the next lemmata. Similar proofs
can be found in [IP08].

Lemma 1. Assume BDDH holds. Then for any attribute string z and for any
adversary A,

|pA0 (z) − pA1 (z)|
is non-negligible.

Lemma 2. Assume DLinear holds. Then, for any attribute string z, for any
adversary A, and for 1 ≤ j ≤ � − 1

|pAj (z) − pAj+1(z)|
is negligible.

Combining Lemma 1 and Lemma 2 and by noticing that DLinear implies BDDH,
we have the following lemma.

Lemma 3. Assume DLinear. Then predicate encryption (MasterKeyGen, Enc,
KeyGen, Test) is semantically secure.

6 Proof of Key Confidentiality

In this section, we prove the construction of Section 4 is key secure, under As-
sumption Q. We use the following experiments for η ∈ {0, 1}.
KeyExpA(1n, 1�, z0, z1, η)

Private-Key Hidden Vector Encryption with Key Confidentiality 269

1. Key-Generation Phase. The secret key SK is generated by the MasterKeyGen
procedure.

2. Query Phase I. A can make any number of key and encryption query.
A key query for pattern k is answered by returning KeyGen(SK, k).
An encryption query for attribute vector x is answered as follows.
If Match(x, z0) = Match(x, z1) = 0 then A receives Enc(SK, x). Otherwise,
A receives ⊥.

3. Challenge construction.
A receives KeyGen(SK, zη).

4. Query Phase II. Identical to Query Phase I.
5. Output Phase. A returns η′.

We denote by pA(z0, z1, η) the probability that KeyExpA(1n, 1�, z0, z1, η) re-
turns η. In the next lemma, we prove that, if z0 and z1 have no �-entry and
they differ in exactly m positions then the (�, m)-Q assumption implies that

|pA(z0, z1, 0) − pA(z0, z1, 1)|
is negligible for all probabilistic poly-time adversaries. A similar (omitted) proof
shows that, if z0 and z1 contain k �’s in the same positions and differ in exactly
m positions then the (� − k, m)-Q assumption implies that

|pA(z0, z1, 0) − pA(z0, z1, 1)|
is negligible.

Lemma 4. Assume Assumption (�, m)-Q holds. Then, for all probabilistic poly-
time adversaries A and for all vectors z0, z1 ∈ {0, 1}� which differ in exactly m
positions, we have that

|pA(z0, z1, 0) − pA(z0, z1, 1)|
is negligible.

Proof. Write z0 = 〈z0,1, . . . , z0,�〉 and z1 = 〈z1,1, . . . , z1,�〉 and assume, without
loss of generality, that z0 and z1 differ in exactly the first m positions and that
z0 = 0m · 0�−m and z1 = 1m · 0�−m.

We proceed by contradiction. We assume that the lemma does not hold for
some probabilistic poly-time adversary A, and prove that there exists a prob-
abilistic poly-time distinguisher B that has a non-negligible advantage for As-
sumption (�, m)-Q.

We now describe B. B takes as input a challenge ChOutput for Assumption
(�, m)-Q, simulates KeyExpA with parameters (1n, 1�, z0, z1, η) for A and usesA’s
output to obtain non-negligible advantage in the game of Assumption (�, m)-Q.

Initialization Phase. B starts by choosing random y ∈ Zp and by setting
Y = e(g1, g2)y. Define JH = {(j, h)|1 ≤ j ≤ m, 1 ≤ h ≤ m, j �= h or j =
h, m + 1 ≤ j ≤ d}. For (j, h) ∈ JH , B sets2

2 Hereafter, we assume that Aj,h’s (Bj,h’s) rows are indexed by 0 and 1.

270 C. Blundo, V. Iovino, and G. Persiano

Gj,h = e(Aj,h[1, j], Cj,1).

Throughout the simulation we will consider secret key SK = (I, Y, y, SK1, . . . ,
SK�) implicitly defined by ChOutput, with SKi = (Ti,0, Ti,1, Vi,0, Vi,1, T̄i,0, T̄i,1,
V̄i,0, V̄i,1), for i = 1, . . . , �, where, for i = 1, . . . , � and b = 0, 1,

Ti,b = g
t̂i,b

1 , Vi,b = g
v̂i,b

1 ,
T̄i,b = Ci,b, T̄i,1 = Di,1.

This implies that, for i = 1, . . . , � and b = 0, 1,

ti,b = t̂i,b and vi,b = v̂i,b.

Since, for i = 1, . . . , �, and for b = 0, 1 the values t̂i,b, v̂i,b are random from Zp,
the key SK is uniformly distributed as the output of MasterKeyGen. We stress
that B only has indirect access to SK through ChOutput and in what follows we
show that this is sufficient for simulating KeyExp.

Answering encryption queries. To answer queries to the Enc oracle for at-
tribute vectors x = 〈x1, . . . , x�〉, we distinguish two cases.
Case 1. The vector x is such that there exists and index j ≥ m + 1 such
that xj = 1. B chooses s′, s′1, . . . , s

′
� at random in Zp, sets Ω = G−ys′

j,j and, for
i = 1, . . . , �, sets

Xi = (Aj,j[xi, i])s′−s′
i and Zi = (Bj,j[xi, i])s′

i .

B returns X̃ = (Ω, (Xi, Zi)�
i=1) as output of the query.

Case 2. The vector x is such that xj = 0 for m+1 ≤ j ≤ �. Since Match(x, z0) =
Match(x, z1), then there exist two indices j and h such that xj = 1 and xh = 0.
B chooses s′, s′1, . . . , s

′
� at random in Zp, sets Ω = G−ys′

j,h and, for i = 1, . . . , �,
sets

Xi = (Aj,h[xi, i])s′−s′
i and Zi = (Bj,h[xi, i])s′

i .

B returns X̃ = (Ω, (Xi, Zi)�
i=1) as output of the query.

We notice that, in both above described cases, B can perform the computation
as it has access to the needed values from ChOutput and from the initialization
phase. Let us now argue that the output returned by B has the same distribution
as in KeyExp. By setting, in Case 1, s = s′ŝ(j,j) and si = s′iŝ(j,j), for i = 1, . . . , �;
and, in Case 2, s = s′ŝ(j,h) and si = s′iŝ(j,h), for i = 1, . . . , �, we have that
Xi = T s−si

i,xi
and Zi = V si

i,xi
. Thus, X̃ = Enc(SK, x; s, s1, . . . , s�). Moreover, since

s and the si’s are random and independently chosen from Zp we can conclude
that X̃ has the same distribution as the answers obtained by A in KeyExpA.

Answering key queries. To answer to the queries to the KeyGen oracle for
attribute vector k = 〈k1, . . . , k�〉, B, for i ∈ Sk, chooses random ai ∈ Zp such
that their sum is y and sets

Ri = Cai

i,ki
and Wi = Dai

i,ki
.

Private-Key Hidden Vector Encryption with Key Confidentiality 271

B returns K̃ = (Ri, Wi)i∈Sk
. Notice that, for i = 1, . . . , �, we have Ci,ki = T̄i,ki

and Di,ki = V̄i,ki . Therefore, we can conclude that K̃ = KeyGen(SK, k; (ai)i∈Sk
).

Since the ai are random in Zp under the constraint that their sum is y, we can
conclude that that K̃ has the same distribution as the answers obtained by A
in KeyExpA.

Challenge construction. We describe how B prepares the challenge for A.
B chooses, for i = m + 1, . . . , �, random b′i ∈ Zp under the constraint that their
sum is y and returns K̃ = ((R1, W1), . . . , (R�, W�)) computed as follows. For
i = 1, . . . , m, B sets

Ri = Ei and Wi = Fi;

while, for i = m + 1, . . . , �, B sets

Ri = Ei · Cb′i
i,0 and Wi = Fi · Db′i

i,0.

Notice that, for i = m + 1, . . . , �, we have Ri = T̄ ai

i,0 and Wi = V̄ ai

i,0 where ai =
âi + b′i. In addition, for i = 1, . . . , m, we have Ri = T̄ ai

i,zηi
and Wi = V̄ ai

i,zηi
where

ai = âi. Therefore, we can conclude that K̃ = KeyGen(SK, zη, (a1, . . . , a�)).
Finally, we observe that the ai’s are random in Zp under the constraint that
their sum is y. Thus, K̃ is distributed as in KeyExpA(1n, 1�, z0, z1, η).

Finally, when A halts and returns η′, B halts and returns η′.

Since the simulation provided by B is perfect, by our assumption on A’s ad-
vantage, we can conclude that the advantage of B is also non-negligible thus
contradicting Assumption (d, m)-Q.

We thus have the following lemma.

Lemma 5. Under Assumptions (d, m)-Q predicate encryption scheme (Mas-
terKeyGen,Enc,KeyGen,Test) is key secure.

Combining Lemma 3 and Lemma 5 we have the main result of this paper.

Theorem 2. Under Assumptions (d, m)-Q and Decision Linear predicate en-
cryption scheme (MasterKeyGen,Enc,KeyGen,Test) is secure HVE.

7 Match Concealing

In this section, we show that, under a given assumption, the scheme presented
in Section 4 actually enjoys a stronger notion of semantic security in which
the adversary A is allowed to make queries for keys associated to any pattern
k provided only that Match(z0, k) = Match(z1, k). We call this notion match
concealing. In the notion presented in the main body of the paper, A is restricted
to queries for patterns k such that Match(z0, k) = Match(z1, k) = 0. This latter
notion is called match revealing (see [SBC+07]).

We now present the Double Decision Linear Assumption by means of the
following experiment DDLExpA.

272 C. Blundo, V. Iovino, and G. Persiano

DDLExpA(1n)
01. Choose instance I = [p, G1, G2, GT , g1, g2, e] with security parameter 1n.
02. Choose u1, u2, u3, u4, u5, u ∈ Zp at random.
03. Choose η ∈ {0, 1} at random.
04. If η = 1, then
05. set Z = g

u2(u−u3)
1 and Z0 = gu1u3

1 ;
06. else, set Z = g

u5(u−u3)
1 and Z0 = gu4u3

1 .
07. Set U1 = gu1

1 , Û1 = gu1
2 , U2 = gu2

1 , U4 = gu4
1 , U5 = gu5

1 , U245 = gu2u4u5
2 .

08. Set U145 = gu1u4u5
2 , U125 = gu1u2u5

2 , U124 = gu1u2u4
2 , U = gu

1 .
09. Let η′ = A(I, U1, Û1, U2, U4, U5, U245, U145, U125, U124, U, Z, Z0).
10. If η = η′ then return 1 else return 0,

Assumption 4 (Double Decision Linear (DDLinear)). For all probabilis-
tic poly-time algorithms A, |Prob[DDLExpA(1n) = 1] − 1/2| is negligible in n.

Suppose that z0, z1 are two attribute vectors in {0, 1}� which differ only in
position j. Consider the following experiments.

SemanticExpA(1n, 1�, z0, z1, η)
1. Key-generation Phase. Compute SK = (I, y, SK1, · · · , SK�) by executing

MasterKeyGen(1n, 1�).
2. Query Phase I. Answer Enc queries for attribute vectors x by using secret key

SK. Answer KeyGen queries for pattern vectors k such that Match(z0, k) =
Match(z1, k) using secret key SK.

3. Challenge Construction.
1. Choose random s, s1, . . . , s� ∈ Zp and set Ω = e(g1, g2)ys.
2. For 1 ≤ i �= j ≤ �

set Xi = g
ti,z0,i

(s−si)

1 and Zi = g
sivi,z0,i

1 .

3. set Xj = g
tj,zη,i

(s−sj)

1 and Zj = g
sjvj,zη,j

1 .
4. Set X̃ = (Ω, (Xi, Zi)�

i=1).
5. Query Phase II. Identical to Query Phase I.
6. return A(X̃).

We will use the writing SemanticExp(1n, 1�, z0, z1, η; s, s1, . . . , s�) to denote the
tuple X̃ computed by SemanticExp(1n, 1�, z0, z1, η) using s, s1, . . . , s� as random
values. We will denote by pAη (z0, z1) the probability that experiment
SemanticExpA(1n, 1�, z0, z1, η) returns η. Notice that, since z0 and z1 differ only
in position j, then in SemanticExpA(1n, 1�, z0, z1, 0) adversary A receives a valid
encrypted attribute vector X̃ for attribute vector z0 whereas in SemanticExpA(1n,
1�, z0, z1, 1) adversary A receives X̃ for attribute vector z1. Next we prove that,
under the Double Decision Linear assumption, for all attribute vectors z0, z1

which differ only in position j, the difference |pA0 (z0, z1) − p1�
A(z0, z1)| is neg-

ligible. This implies the match concealing semantic security of the scheme.

Private-Key Hidden Vector Encryption with Key Confidentiality 273

Lemma 6. Assume DDLinear holds. Then, for any j, for any attribute strings
z0 and z1 which differ only in position j, and for any adversary A,

|pA0 (z0, z1) − pA1 (z0, z1)|

is negligible.

Proof. Suppose that there exist PPT adversary A and attribute vector z0, z1

for which |pA0 (z0, z1) − pA1 (z0, z1)| is non-negligible. We assume without loss
of generality that, for i �= j, we have z0,i = z1,i = 0 and that z0,j = 0 and
z1,j = 1. We next construct a PPT adversary B for the experiment DDLExp.
B takes in input [I, U1 = gu1

1 , Û1 = gu1
2 , U2 = gu2

1 , U4 = gu4
1 , U5 = gu5

1 , U245 =
gu2u4u5
2 , U145 = gu1u4u5

2 , U125 = gu1u2u5
2 , U124 = gu1u2u4

2 , U = gu
1 , Z, Z0], and

depending on whether Z = g
u2(u−u3)
1 and Z0 = gu1u3

1 or Z = g
u5(u−u3)
1 , Z0 =

gu4u3
1 , simulates experiment SemanticExp(1n, 1�, z0, z1, 0) or SemanticExp(1n, 1�,

z, 1) for A. We next describe algorithm B.

Initialization Phase. B simulates the key-generation phase by choosing ran-
dom y′ ∈ Zp and sets Y = e(Uy′

1 , g2). This implicitly sets y = u1y
′. B chooses

random t′i,0, v
′
i,0, t

′
i,1, v

′
i,1 ∈ Zp, for i �= j, and then computes values Ti,0, Ti,1, Vi,0,

and Vi,1 as follows.

Ti,0 = g
t′i,0
1 , Ti,1 = U

t′i,1
1 , Vi,0 = g

v′
i,0

1 , and Vi,1 = U
v′

i,1
1 .

These settings implicitly define ti,0 = t′i,0, ti,1 = u1 · t′i,1, vi,0 = v′i,0, and vj,1 =
u1 · v′i,1 which in turn define values T̄i,0, T̄i,1, V̄i,0, and V̄i,1. Then, B computes
Tj,0, Tj,1, Vj,0, and Vj,1 by setting

Tj,0 = U2, Tj,1 = U5, Vj,0 = U1, and Vj,1 = U4,

thus implicitly setting tj,0 = u2, tj,1 = u5, vj,0 = u1, and vj,1 = u4 which in turn
define values T̄j,0, T̄j,1, V̄j,0 and V̄j,1.

After this step key SK = (I, Y, y, SK1, . . . , SK�) with SKi = (Ti,0, Ti,1, Vi,0,
Vi,1, T̄i,0, T̄i,1, V̄i,0, V̄i,1) is implicitly defined even though B does not completely
know SK. Notice that SK has the same distribution as a key given in output by
MasterKeyGen.
Answering Queries. B answers A’s Enc queries for vector x by executing
procedure Enc. Notice that Enc only needs values Ti,b’s and Vi,b’s which are
known to B from the previous step. To describe how B answers A’s KeyGen
queries for vector k, we distinguish the following cases.

Case 1: kj �= �. In this case there exists index h ∈ Sk such that kh = 1, for
otherwise we would have Match(z0, k) �= Match(z1, k). Then, for i ∈ Sk, B
chooses random values a′

i ∈ Zp, and sets a′ =
∑

i∈Sk\{j,h} a′
i. For i ∈ Sk \ {j, h},

B computes Ri and Wi as follows. If ki = 0, then B sets

Ri = Û
a′

i/t′i,ki
1 and Wi = Û

a′
i/v′

i,ki
1

274 C. Blundo, V. Iovino, and G. Persiano

else B sets
Ri = g

a′
i/t′i,ki

2 and Wi = g
a′

i/v′
i,ki

2 .

B then computes Rj and Wj as follows. If kj = 0, then B sets

Rj = U
a′

j

145 and Wj = U
a′

j

245,

else B sets
Rj = U

a′
j

124 and Wj = U
a′

j

125.

Finally, B sets

Rh = U
−a′

j/t′h,kh
245 g

(y′−a′)/t′h,kh
2 and Wh = U

−a′
j/v′

h,kh
245 g

(y′−a′)/v′
h,kh

2 .

B returns K̃ = (Ri, Wi)i∈Sk
.

We next show that, even though B does not have complete access to SK, K̃ has
the same distribution of the output of the KeyGen procedure on input SK and
k.
Set ai = u1a

′
i, for i ∈ Sk\{h, j}, aj = u1u2u4u5a

′
j , and ah = u1y

′−u1u2u4u5a
′
j−

u1a
′. Then, for i ∈ Sk \ {j, h} such that ki = 0 we have

Ri = Û
a′

i/t′i,ki
1 = g

u1a′
i/t′i,ki

2 = g
ai/t′i,ki
2 = T̄ ai

i,0.

Similarly, for i ∈ Sk \ {j, h} such that ki = 1,

Ri = g
a′

i/t′i,ki
2 = g

u1a′
i/u1t′i,ki

2 = g
ai/u1t′i,ki
2 = T̄ ai

i,1.

Similarly, we have in both cases that Wi = V̄ ai

i,ki
. Furthermore, if kj = 0 we have

Rj = U
a′

j

145 = g
u1u4u5a′

j

2 = g
u1u2u4u5a′

j/u2

2 = g
aj/u2
2 = T̄

aj

j,0.

Similarly, for kj = 1 and for Wj . Finally, we have

Rh = U
−a′

j/t′h,1
245 g

(y′−a′)/t′h,1
2

= g
(−u2u4u5a′

j+y′−a′)/t′h,1
2

= g
u1(−u2u4u5a′

j+y′−a′)/th,1

2

= g
ah/th,1
2

= T̄ ah

h,1.

To conclude notice that the ai’s are random under the constraint that their sum
is u1y

′ = y and thus the simulation is perfect.

Case 2: kj = �. In this case, for i ∈ Sk, B chooses random values a′
i ∈ Zp which

sum up to y′, and computes Ri and Wi as follows. If ki = 0, then B sets

Ri = Û
a′

i/t′i,ki
1 and Wi = Û

a′
i/v′

i,ki
1

Private-Key Hidden Vector Encryption with Key Confidentiality 275

else B sets
Ri = g

a′
i/t′i,ki

2 and Wi = g
a′

i/v′
i,ki

2 .

If we set, for i ∈ Sk, ai = u1a
′
i, we have that if ki = 0 then

Ri = Û
a′

i/t′i,ki
1 = g

u1a′
i/t′i,ki

2 = g
ai/t′i,ki
2 = g

ai/ti,ki
2 = T̄ ai

i,0,

and if ki = 1 then

Ri = g
a′

i/t′i,ki
2 = g

u1a′
i/u1t′i,ki

2 = g
ai/ti,ki
2 = T̄ ai

i,1.

Similarly, we have Wi = V̄ ai

i,ki
. We thus conclude that K̃ =KeyGen(SK, k; (ai)i∈Sk

).
Moreover, the ai’s are independently and randomly chosen in Zp under the con-
straint that their sum is u1y

′ = y. Hence, also in this case, K̃ is distributed ac-
cording to KeyGen(SK, k).

Challenge construction. When B is asked to provide encrypted attribute
vector for z0 or z1, B constructs the tuple X̃ = (Ω, (Xi, Zi)�

i=1) in the following
way. B sets Ω = e(U, Û1)−y′

, thus implicitly setting s = u. For i �= j, B chooses
random si ∈ Zp and computes Xi and Zi as

Xi = U t′i,0g
−t′i,0si

1 and Zi = g
v′

i,0si

1 .

Notice that the above settings implies

Xi = U t′i,0g
−t′i,0si

1 = g
ut′i,0
1 T−si

i,0 = T s−si

i,0 and Zi = g
v′

i,0si

1 = V si

i,0.

Finally, Xj and Yj are computed as

Xj = Z and Zj = Z0.

Finally B returns A’s output.

Suppose that Z = g
u2(u−u3)
1 , Z0 = gu1u3

1 and sj = u3. Then, we have

Xj = Uu−u3
2 = T u−u3

j,0 = T s−s3
j,0 and Zj = Uu3

1 = V u3
j,0 = V s3

j,0

and thus X̃ = SemanticExp(1n, 1�, z0, z1, 0; s, s1, . . . , s�). Moreover s and the
si’s are random in Zp and thus we can conclude that X̃ is distributed as in
SemanticExp(1n, 1�, z0, z1, 1).

Suppose instead that Z = g
u5(u−u3)
1 and Z0 = gu4u3

1 , and sets sj = u3 as
before. Then we have

Xj = Uu−u3
5 = T u−u3

j,1 = T s−s3
j,1 and Zj = Uu3

4 = V u3
j,1 = V s3

j,1

and thus X̃ = SemanticExp(1n, 1�, z0, z1, 1; s, s1, . . . , s�). Since s and the si’s are
random in Zp, we can conclude that the challenge received by A is distributed as
in SemanticExp(1n, 1�, z, 1). Furthermore notice that setting s = u and y = u1y

′

then Ω has the correct distribution.
By the observations above, we can say that if Z = g

u2(u−u3)
1 and Z0 = gu1u3

1 ,
then A’s view is the same as in SemanticExp(1n, 1�, z0, z1, 0); whereas, if Z =
g

u5(u−u3)
1 and Z0 = gu4u3

1 , then A’s view is the same as in SemanticExp(1n, 1�, z0,
z1, 1). This contradicts the DDLinear assumption.

276 C. Blundo, V. Iovino, and G. Persiano

Simple hybrid arguments can extend the lemma to arbitrary z0 and z1 (and not
just for vectors differing in one position).

Lemma 7. Assume DDLinear. Then predicate encryption (MasterKeyGen, Enc,
KeyGen, Test) is match concealing semantically secure.

8 Larger Alphabets

Our constructions have been presented for binary attribute vectors. The exten-
sion to larger alphabets is straightforward. Specifically, for an alphabet Σ of
size s we would have a master secret key consisting of an instance I and of one
element of GT , 2 · � · s elements of G1, and 2 · � · s elements of G2. The length of
the encrypted attribute vectors and of the keys are independent of the size of Σ
and only depend on �. We can make the length of the secret key SK independent
from the size of Σ by employing a pseudo-random function F. Specifically, we
randomly select a k-bit string R and set ti,σ = FR(i||σ) and vi,σ = FR(i||σ) for
i = 1, . . . , � and σ ∈ Σ.

Acknowledgements

The work of the authors has been supported in part by the European Commission
through the EU ICT program under Contract ICT-2007-216646 ECRYPT II and
through the FP6 program under contract FP6-1596 AEOLUS.

References

[BBG05] Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption
with constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005)

[BDOP04] Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key
encryption with keyword search. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg
(2004)

[Boy08] Boyen, X.: The uber-assumption family – a unified complexity framework
for bilinear groups. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008.
LNCS, vol. 5209, pp. 39–56. Springer, Heidelberg (2008)

[BW06] Boyen, X., Waters, B.: Anonymous hierarchical identity-based encryption
(Without random oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS,
vol. 4117, pp. 290–307. Springer, Heidelberg (2006)

[BW07] Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted
data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554.
Springer, Heidelberg (2007)

[GPSW06] Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-Based Encryption
for Fine-Grained Access Control for Encrypted Data. In: ACM CCS 2006,
Alexandria, VA, USA, pp. 89–98. ACM Press, New York (2006)

Private-Key Hidden Vector Encryption with Key Confidentiality 277

[IP08] Iovino, V., Persiano, G.: Hidden-vector encryption with groups of prime
order. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS,
vol. 5209, pp. 75–88. Springer, Heidelberg (2008)

[KSW08] Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunc-
tions, polynomial equations, and inner products. In: Smart, N.P. (ed.)
EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg
(2008)

[Nao03] Naor, M.: On cryptographic assumptions and challenges (invited talk). In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer,
Heidelberg (2003)

[SBC+07] Shi, E., Bethencourt, J., Chan, H., Song, D., Perrig, A.: Multi-Dimensional
Range Query over Encrypted Data. In: 2007 IEEE Symposium on Security
and Privacy, Oakland, CA. IEEE Computer Society Press, Oakland (2007)

[SSW09] Shen, E., Shi, E., Waters, B.: Predicate privacy in encryption systems.
In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457–473. Springer,
Heidelberg (2009)

	Private-Key Hidden Vector Encryption with Key Confidentiality
	Introduction
	Hidden Vector Encryption Schemes
	Semantic Security
	Key Confidentiality
	Secure HVE

	Complexity Assumptions
	The Basic Scheme
	Proof of Semantic Security
	Proof of Key Confidentiality
	Match Concealing
	Larger Alphabets

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

