
Transferable Constant-Size Fair E-Cash

Georg Fuchsbauer, David Pointcheval, and Damien Vergnaud

École normale supérieure, LIENS -CNRS - INRIA, Paris, France
http://www.di.ens.fr/{~fuchsbau,~pointche,~vergnaud}

Abstract. We propose a new blind certification protocol that provides
interesting properties while remaining efficient. It falls in the Groth-
Sahai framework for witness-indistinguishable proofs, thus extended to a
certified signature it immediately yields non-frameable group signatures.
We then use it to build an efficient (offline) e-cash system that guarantees
user anonymity and transferability of coins without increasing their size.
As required for fair e-cash, in case of fraud, anonymity can be revoked
by an authority, which is also crucial to deter from double spending.

1 Introduction

1.1 Motivation

The issue of anonymity in electronic transactions was introduced for e-cash and
e-mail in the early 1980’s by Chaum, with the famous primitive of blind sig-
natures [Cha83, Cha84]: a signer accepts to sign a message, without knowing
the message itself, and without being able to later link a message-signature pair
to the transaction it originated from. In e-cash systems, the message is a serial
number to make a coin unique. The main security property is resistance to “one-
more forgeries” [PS00], which guarantees the signer that after t transactions a
user cannot have more than t valid signatures.

Blind signatures have thereafter been widely used for many variants of e-
cash systems; in particular fair blind signatures [SPC95], which allow to provide
revocable anonymity. They deter from abuse since in such a case the signer
can ask an authority to reveal the identity of the defrauder. In order to allow
the signer to control some part of the message to be signed, partially blind
signatures [AO00] have been proposed.

Another primitive providing anonymity are group signatures [Cv91], enabling
a user to sign as a member of a group without leaking any more information
about his identity. The strong security model in [BSZ05] considers dynamic
groups in which the group manager is not fully trusted: one thus requires that
the latter cannot frame honest users.

For e-cash systems, the classical scenario is between a bank, a user and a
merchant/shop: the user withdraws money from the bank and can then spend
it in a shop. The latter deposits it at the bank to get its account credited.
Literature tries to improve the withdrawal and the spending processes, e.g. with
divisible e-cash [EO94, CG07]. However, for many applications, such as e-tickets

J.A. Garay, A. Miyaji, and A. Otsuka (Eds.): CANS 2009, LNCS 5888, pp. 226–247, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.di.ens.fr/{~fuchsbau,~pointche,~vergnaud}

Transferable Constant-Size Fair E-Cash 227

or coupons [NHS99], transferability [OO90, OO92, CG08] is a more desirable
property. It is known that the size of coins grows linearly in the number of
transfers [CP92]—a drawback we will avoid in our construction by modifying
the model (cf. Sect. 1.3).

Classical e-cash requires that as long as a user does not spend a coin twice
(double spending), she remains anonymous. Von Solms and Naccache [vSN92]
pointed out that perfect anonymity enables perfect crimes, and thus suggested
fair e-cash, where an authority can trace coins that were acquired illegally. Neces-
sity to fight money laundering also encourages the design of fair e-cash systems
enabling a trusted party to revoke the anonymity of users, whenever needed.

1.2 Contributions

Our first result is the definition and efficient pairing-based instantiation of a new
primitive, which we call partially-blind certification. A protocol allows an issuer
to interactively issue a certificate to a user, of which parts are then only known
to the user and cannot be associated to a particular protocol execution by the
issuer. The certificates are unforgeable in that from q runs of the protocol with
the issuer cannot be derived more than q valid certificates. We then give two
applications of the primitive:

– In order to achieve anonymity and unlinkability in group signatures, a com-
mon approach is the following: Using a signing key provided by the group
manager, a user produces a signature, encrypts it and adds a proof of its
validity. For this method to work efficiently in the standard model, these
signing keys have to be constructed carefully. In [BW07] for example, it is
the group manager that constructs the entire signing key—which means that
he can impersonate (frame) users.
Groth [Gro07] achieves non-frameability by using certified signatures (de-
fined in [BFPW07]): The user chooses a verification key which is signed by
the issuer. A signature produced with the corresponding signing key together
with the verification key and the issuer’s signature on it can then be verified
under the issuer’s key. Security of Groth’s instantiation however relies on an
unnatural assumption.
We avoid this by observing the following: it is not necessary that the user
choose the verification key, as long as she can be sure that the private key
contains enough entropy. Since the blind component of our instantiation of
our primitive can serve as signing key, our construction applies immediately
to build non-frameable group signatures (see Sect. 4).

– Second, in e-cash, the serial number of a coin needs to contain enough entropy
to avoid collisions, but again the user need not control it entirely. Partially-
blind certificates are applicable here too.

1.3 Transferable Anonymous Constant-Size Fair E-Cash

The instantiation we give of our new primitive allows it to be combined with
the results of Groth and Sahai [GS08], which is crucial to our main contribution:

228 G. Fuchsbauer, D. Pointcheval, and D. Vergnaud

an efficient standard-model anonymous fair e-cash system in the classical three-
party scenario with the following novel features:

First, coins are transferable while remaining constant in size. We circumvent
the impossibility results by introducing a new method to trace double spenders:
the users keep receipts when receiving coins instead of storing all information
about transfers inside the coin. The amount of data a user has to deal with is
thus proportional to the number of coins he received, rather than the path a
coin took until reaching him.

Second, partial blindness of our certificates provides the strongest possible
notion of anonymity: a user remains anonymous even w.r.t. an entity issuing coins
and able to detect double spendings.1 Moreover, coins are unlinkable to anyone
except the authority and the double-spending detector. We give an overview of
our model before getting back to its security properties.

– The participants of the system are the following: the system manager (that
registers users within the system), the bank (issuing coins), users (that with-
draw, transfer or spend coins), merchants to which coins are spent, the
double-spending detector, and a trusted authority, called tracer, that can
trace coins, revoke anonymity and identify double-spenders.

– In order to get a coin, a user runs a withdrawal protocol with the bank, after
which he holds a coin and a receipt to be kept even after transferring or
spending the coin (to defend himself against wrongful accusation of double-
spending).2

– Another protocol enables users to transfer coins to other users who, besides
the coin, also get a receipt, which they keep too.

– To spend the coin, the user interacts with a merchant. The latter will deposit
the coin at the bank who invokes the double-spending detector to check if it
has already been spent. If it is the case, the tracer is invoked to reveal the
double spender. He does so by tracing back the two instances of the coin by
asking the receipts from the users that transferred the coins until identifying
the double spender.

Note that the tracing authority identifies innocent users that merely transferred
a coin that has been used fraudulently before. However, this does not weaken
anonymity, which does not hold against the tracer anyway and since identities
are not revealed to anyone else. Moreover, this can be proved to be unavoidable
in order to achieve constant-size transferable coins. An inevitable shortcoming of
our model is that a user who loses a receipt can be accused of double spending,
since he cannot prove legal acquisition of the coin if he transferred it. The system
satisfies the following security notions:
1 In fair e-cash, there exists an authority that can trace users (user-tracing) and coins

(coin-tracing) under a judge decision, in case of fraud suspicion (not necessarily
double spending). We separate the notions of detection of double spendings, which
is done on a regular basis when a coin is deposited, from that of tracing, which is
performed by a trusted authority only when a fraud was committed.

2 If one assumes a validity period for coins (after which the issuing key is changed),
it suffices to keep a receipt only as long as the respective coin is valid.

Transferable Constant-Size Fair E-Cash 229

– Any user who spends a coin twice is detected.
– As long as a user keeps all his receipts, he cannot be wrongfully accused of

double spending, even if everyone else colludes against him.
– A user is anonymous even against collusions of the manager, the bank, the

double-spending detector, merchants, and other users.
– Transfers of coins are unlinkably anonymous to collusions possibly com-

prising the manager, the bank, merchants, and other users. (The double-
spending detector must necessarily be able to link two spendings of the
same coin.)

Our construction is secure in the standard security model (i.e., without relying
on the random oracle idealization [BR93])3 and its security is based on a new
(though natural) assumption that holds in the generic group model [Sho97].

1.4 Organization of the Paper

In the next section, we state the employed assumptions. In Sect. 3, we describe
our new Partially-Blind Certification primitive, and apply it to group signatures
in Sect. 4. In Sect. 5, we extend some techniques of Groth-Sahai, recapitulating
re-randomization of commitments and introducing proofs for relations of values
committed under different keys. In Sect. 6, we combine everything to construct
our e-cash system.

2 Assumptions

We present the assumptions on bilinear groups on which our security results
build. A bilinear group is a tuple (p,G,GT , e, G) where (G,+) and (GT , ·) are
two cyclic groups of order p, G is a generator of G, and e : G × G → GT is a
non-degenerate bilinear map, i.e., ∀U, V ∈ G ∀ a, b ∈ Z : e(aU, bV) = e(U, V)ab,
and e(G,G) is a generator of GT .

The first two of the following assumptions are classical [DH76, BBS04]. The
third is a simple extension of the Hidden Strong Diffie-Hellman Problem pro-
posed by Boyen and Waters in [BW07].

Definition 1. The Computational Diffie-Hellman (CDH) Assumption states
that the following problem is intractable4: given (G,αG, βG) ∈ G3, for α, β ∈ Zp,
output αβG.

3 Note that in our context, due to re-randomization of encryptions (cf. Sect. 6.2 for
details), it seems even impossible to replace the Groth-Sahai techniques with the
Fiat-Shamir heuristic [FS87] to improve efficiency at the expense of relying on the
random oracle model.

4 We say that a computational problem is intractable if no probabilistic polynomial-
time (p.p.t.) adversary can solve it with non-negligible probability. A decisional
problem is intractable if no p.p.t. adversary can decide it with probability of non-
negligibly more than 1/2.

230 G. Fuchsbauer, D. Pointcheval, and D. Vergnaud

Definition 2. The Decisional Linear (DLIN) Assumption states that the fol-
lowing problem is intractable: given (U, V,G, αU, βV, γG) ∈ G6, decide whether
γ = α+ β or not.

Definition 3. The q-Double Hidden Strong Diffie-Hellman (DHSDH) Assump-
tion states that the following problem is intractable: given (G,H,K, Γ = γG) ∈
G4 and q − 1 tuples

(
Xi = xiG, X

′
i = xiH, Yi = yiG, Y

′
i = yiH, Ai = 1

γ+xi
(K + yiG)

)

with xi, yi ← Z∗
p (1 ≤ i ≤ q − 1), output a new tuple

(
X = xG, X ′ = xH, Y =

yG, Y ′ = yH, A = 1
γ+x(K + yG)

)
.

Note that a tuple (X,X ′, Y, Y ′, A) has the above format if and only if it satisfies

e(X,H) = e(G,X ′) e(Y,H) = e(G, Y ′) e(A,Γ +X) = e(K + Y,G)

Remark 4. Boneh and Boyen [BB04] introduced the Strong Diffie-Hellman
(SDH) assumption stating that given a (q + 1)-tuple (G, γG, γ2G, . . . , γqG) ∈
Gq+1 for a random γ ← Z∗

p, it is infeasible to output a pair (x, 1
γ+xG) ∈ Zp×G.

Hardness of SDH implies hardness of the following two problems (the first im-
plication is proven in [BB04], the second in the full version [FPV09]):

(I) Given G, γG ∈ G and q − 1 distinct pairs (xi,
1

γ+xi
G) ∈ Zp × G, output a

new pair (x, 1
γ+xG) ∈ Zp ×G.

(II) Given G,K, γG ∈ G and q − 1 distinct triples
(
xi, yi,

1
γ+xi

(K + yiG)
)
∈

Z2
p ×G, output a new triple

(
x, y, 1

γ+x(K + yG)
)
∈ Z2

p ×G.

The Hidden SDH problem defined in [BW07] is a variant of Problem (I), where
instead of giving the xi’s explicitly, they are given as (xiG, xiH). Similarly, the
goal is to output a new triple (xG, xH, 1

γ+xG). Now the Double Hidden SDH
assumption (Definition 3) transforms Problem (II) the same way: instead of
being given explicitly, xi and yi are given as (xiG, xiH, yiG, yiH). In the full
version [FPV09] we discuss assumptions derived from SDH and their relations.

3 Partially-Blind Certification

3.1 Model

Definition 5. A partially-blind certification scheme (Setup, Sign,User,Verif) is
a 4-tuple of (interactive) probabilistic polynomial-time Turing machines (PPTs)
such that:

– Setup is a PPT that takes as input an integer k and outputs a pair (pk, sk)
of public (resp. secret) key. We call k the security parameter.

Transferable Constant-Size Fair E-Cash 231

Experiment Expblindness−b
A (k)

(pk, state)← A(FIND, k)
τ0 ← T
(σ1, τ1) (�=⊥)← UserA(state)(pk)
b′ ← A(GUESS, τb)
RETURN b′

Experiment Expforge
A (k)

(pk, sk)← Setup(k)

((σ1, τ1), . . . , (σ�, τ�))← ASign(sk,·)(pk)
IF ∀i ∈ [1, �], Verif(pk, (σi, τi)) = accept

AND ∀(i, j) ∈ [1, �]2, i �= j: (σi, τi) �= (σj , τj)
AND � > m RETURN 1

where m is the number of executions of
the certificate issuing protocol where Sign
outputs completed.

(1) Partial Blindness (2) Unforgeability

Fig. 1. Security experiments for partially-blind certificates

– Sign and User are interactive PPTs such that User takes as inputs a public
key pk and Sign takes as input the matching secret key sk. Sign and User
engage in the certificate-issuing protocol and when they stop, Sign outputs
completed or not-completed while User outputs a pair of bit strings (σ, τ)
or ⊥.

– Verif is a deterministic polynomial-time Turing machine that on input a
public key pk and a pair of bit strings (σ, τ) outputs either accept or reject.

For all k ∈ N, all pairs (pk, sk) output by Setup(k), if Sign and User follow the
certificate issuing protocol with input sk and pk respectively, then Sign outputs
completed and User outputs a pair (σ, τ) that satisfies Verif(pk, (σ, τ)) = accept.
A pair (σ, τ) is termed valid with regard to pk if on input (pk, (σ, τ)) Verif
outputs accept, in which case, we say that (σ, τ) is a certificate for pk and τ is
termed the blind component of the certificate. We denote T ⊂ {0, 1}∗ the set of
bit-strings which are blind component of some certificate.

Partial Blindness. To define partial blindness, we consider the real-or-random
game (i.e., random experiment) among an adversarial signer A and a challenger
presented in Fig. 1 (1).

– We define the advantage of A in breaking partial blindness by its advantage
in distinguishing the two above experiments (with b = 0 or b = 1):

Advblindness
A (k) := Pr[Expblindness−1

A (k) = 1] − Pr[Expblindness−0
A (k) = 1] ,

where the probability is taken over the coin tosses made by the challenger
and A.

– The scheme (Setup, Sign,User,Verif) is said to be partially blind if no adver-
sary A running in probabilistic polynomial time has a non-negligible advan-
tage Advblindness

A .

Unforgeability. To define unforgeability, we introduce the game among an
adversarial user A and an honest signer Sign depicted in Fig. 1 (2).

232 G. Fuchsbauer, D. Pointcheval, and D. Vergnaud

(1) User Choose r, y1 ← Zp, compute and send: R1 := r(K + y1G), T := rG
and zero-knowledge proofs of knowledge of r and y1 satisfying the rela-
tions (cf. Remark 7).

(2) Sign Choose x, y2 ← Zp and compute R := R1+y2T (note that R = r(K+yG)
with y := y1 + y2.)

Send
(
S1 := 1

ω+x
R, S2 := xG, S3 := xH, S4 := y2G, S5 := y2H

)

(3) User Check whether (S1, S2, S3, S4, S5) is correctly formed:

e(S2, H)
?
= e(G, S3) e(S4, H)

?
= e(G, S5) e(S1, Ω + S2)

?
= e(R,G)

If so, compute a certificate

(
A := 1

r
S1, X := S2, X ′ := S3, Y := y1G + S4 = yG, Y ′ := y1H + S5 = yH

)

Fig. 2. Partially-blind certificate-issuing protocol

– We define the success of A in this game by

Succunforge
A (k) := Pr[Expforge

A (k) = 1] ,

where the probability is taken over the coin tosses made by A, Setup and
Sign.

– The scheme (Setup, Sign,User,Verif) is said to be unforgeable if no adver-
sary A running in probabilistic polynomial time has a non-negligible success
Succunforge

A .

Remark 6. In the experiment Expforge
A , depending on the security model, the ex-

ecutions of the certificate issuing protocol are run sequentially or in a concurrent
and interleaving way.

3.2 Instantiation

Let (p,G,GT , e, G) be a bilinear group and G,H,K ∈ G be public parameters;
define the signer’s key pair as sk := ω ← Zp and pk = Ω := ωG. A certificate is
defined as

Crt(ω ; x, y) :=
{
A =

1
ω + x

(K + yG)
X = xG
X ′ = xH

Y = yG
Y ′ = yH

for x, y ← Zp, with σ := (A,X,X ′, Y) and the blind component τ := Y ′ ∈ G. It
satisfies:

e(X,H) = e(G,X ′) e(Y,H) = e(G, Y ′) e(A,Ω +X) = e(K + Y,G) (1)

Fig. 2 depicts an efficient protocol to interactively generate such a certificate
between the signer (issuer) that controls x and the user that partially controls

Transferable Constant-Size Fair E-Cash 233

y: at the end, the signer has no information about y, except that it is uniformly
distributed.

Remark 7. In the first round of the User protocol, one can use interactive
Schnorr-like zero-knowledge proofs of knowledge (ZKPoK) [Sch90]. Extraction
is then only possible for constant-depth concurrency [Oka06]. To achieve full
concurrency, and at the same time reduce interactivity to 2 moves, one can
use the following technique: Make linear commitments [GOS06] (cf. Sect. 5.1)
to the bits of r and y1 (which are extractable) and use the proof techniques
from [FP09, Appendix A.3 of the full version]. The drawbacks of this approach
are that security holds in the common reference string (CRS) model and we
incur a loss of efficiency.

3.3 Security Results

Theorem 8. Under DHSDH, the above certificates are unforgeable.

Proof. Let A be an adversary impersonating corrupt users running the issuing
protocol up to q − 1 times and then outputting q different valid certificates. We
build B solving q-DHSDH with the same probability by simulating the signer:
B gets a q-DHSDH-instance

(
G,H,K,Ω, (Ai, Xi, X

′
i, Yi, Y

′
i)q−1

i=1

)
. If the ZKPoK

are non-interactive, it sets the CRS so that it can extract r and y1 used in R1

and T—if they are interactive, B rewinds A to extract. In each issuing, A first
sends (R1,i, Ti) and proofs of knowledge. If the proofs are correct, B extracts
ri, y1,i from them and sends

(
S1,i := riAi, S2,i := Xi, S3,i := X ′

i, S4,i := Yi −
y1,iG, S5,i := Y ′

i − y2,iH
)
. Finally, B checks the q certificates and forwards one

different from those in the DHSDH-instance to its own challenger. 	

Theorem 9. Under DLIN, the above certificates are partially blind.

Proof. Consider A, which after an execution of the blind issuing protocol can
decide whether the blind component τ = Y ′ is real or random in G. We build
B deciding DLIN with the success probability of A. The algorithm B gets a
DLIN-instance (H,G, T, Z,K,R1), i.e., it has to decide whether

R1
?= (logH Z + logGK) T (2)

It gives A the triple (G,H,K) as public parameters (and a simulating CRS in
case we use non-interactive ZKPoK) and gets Ω, the issuer’s public key from A.
B runs the protocol User with A, starting by sending R1, and T from its DLIN
instance and simulating the PoK.

After getting back (S1, . . . , S5), B checks its correctness and gives A the
following: Y ′ := Z + S5, with Z from its DLIN instance. (B can verify cor-
rectness of S without knowledge of y1 and r by checking e(S2, H) = e(G,S3),
(S4, H) = e(G,S5) and e(S1, Ω + S2) = e(R,G). Also note that B only needs
to produce the last (blind) component of the certificate.) Finally A outputs a
guess b′, which B forwards to its DLIN challenger.

234 G. Fuchsbauer, D. Pointcheval, and D. Vergnaud

– If the DLIN instance is not a linear tuple then Z and therefore Y ′ is inde-
pendently random.

– If (H,G, T, Z,K,R1) is linear, then with y1 := logH Z, κ := logGK, and r :=
logG T , we have R1 = (y1 + κ)T by (2). Furthermore, for public parameters
(G,H,K), we have

T = rG R1 = (y1 + κ)T = (y1 + κ)rG = r(K + y1G) Z = y1H

which means that Y ′ = Z+S5 is the blind component of a correctly produced
certificate.

If B outputs the bit returned by A, its success probability is equal to Advblindness
A .

	

4 A Fully-Secure Group Signature from Partially-Blind
Certificates

As a first application of the certification protocol from Sect. 3.2, we construct
fully-secure dynamic group signatures (in the sense of [BSZ05], in particular sat-
isfying non-frameability and CCA-anonymity) without random oracles. We con-
struct a certified-signature scheme, to which can then be applied Groth’s [Gro07]
methodology of transforming certified signatures that respect a certain struc-
ture into group signatures using Groth-Sahai NIZK proofs [GS08] and Kiltz’
tag-based encryption [Kil06], both relying exclusively on the DLIN assumption.

The resulting scheme is less efficient than that from [Gro07]; however, it is
based on a more natural assumption, while at the same time being of the same or-
der of magnitude—especially compared to the first instantiations of fully-secure
signatures in the standard model (e.g., [Gro06]). We think of the scheme as some-
how being the “natural” extension of [BW07] in order to satisfy non-frameability.

Certified Signatures. A certified-signature scheme consists of a setup algo-
rithm, a key-generation algorithm for the certification authority, an interactive
protocol between the authority (“issuer”) and a user letting the latter obtain a
triple (cert, vk, sk), where vk is a verification key for a signature scheme, sk is the
corresponding signing key (unknown to the issuer) and cert is a certificate on vk.

Besides correctness, Groth [Gro07] gives two security criteria that a certified
signature must satisfy to be transformable into a secure group signature scheme:
Unfakeability requires that no user can create a certificate for and a signature
under a verification key that was not certified by the issuer. Unforgeability means
that even a corrupt authority issuing a tuple (cert, vk, sk) cannot forge a signature
under vk.

Our Instantiation. Our certified signature is constructed from a certificate
(A,X,X ′, Y, Y ′) by using (Y, Y ′) as a pair of public and secret key for Wa-
ters’ signature scheme [Wat05]. A certified signature consists thus of the first
four components of the certificate prepended to a Waters signature. Note that
what is called cert above corresponds to (A,X,X ′) here, and (vk, sk) would be

Transferable Constant-Size Fair E-Cash 235

Let (Ui)
n
i=0 ∈ G

n+1 be part of the public parameters; let Ω be the issuer’s public
key.

Certificate Generation. Run the certificate-creation protocol in Fig. 2, except
that the issuer running Sign sends an extractable commitment of S4 = y2G
before phase (1) and opens it in phase (2).

Signing. For a message M = (m1, . . . , mn) ∈ {0, 1}n, denote F(M) := U0 +∑n
i=1 miUi. Given a certificate C = (A, X, X ′, Y, Y ′), a signature on M using

randomness s ∈ Zp is defined as

Sig(C, M ; s) := (A, X, X ′, Y, Y ′ + sF(M),−sG) .

Verification. A certified signature (A, X, X ′, Y, Z, Z′) on message M is verified by
checking

e(X, H) = e(G, X ′) e(Y,H) = e(G, Z) e(Z′,F(M)) e(A,Ω+X) = e(K+Y,G)

Fig. 3. Chosen-message secure certified signature

(Y, Y ′). The scheme is given in Fig. 3. Our construction satisfies the security
requirements given by Groth:

Theorem 10. The certified-signature scheme in Fig. 3 is perfectly correct, un-
fakeable under DHSDH, and existentially unforgeable under chosen-message at-
tack under CDH.

Proof. Correctness follows by inspection. The two other properties are proven
similarly to Theorems 8 and 9, we thus highlight the differences.

(1) Unfakeability means that after running the issuing protocol multiple times
with the issuer, no user is able to produce a valid tuple (A,X,X ′, Y, Z, Z ′) with Y
different from those in the obtained certificates. The proof works similarly to that
of Theorem 8 with the following modifications: For 0 ≤ i ≤ n, B chooses μi ← Zp

and sets the public parameters Ui := μiG. In the issuing protocol, B simulates
the additional commitment at the beginning. From a valid (A,X,X ′, Y, Z, Z ′)
returned by A, B can then extract a new certificate by setting Y ′ := Z + (μ0 +∑
miμi)Z ′.
(2) Existential unforgeability under chosen-message attack (EUF-CMA) fol-

lows from partial blindness of certificates and security of Waters signatures,
which is implied by CDH (Def. 1): Let A be an adversary impersonating the is-
suer and mounting a chosen-message attack. We construct B against EUF-CMA
of Waters signatures. B is given a Waters public key V ∈ G and a signing oracle.
B runs the certificate-generation protocol playing the role of User with A.

When A sends a commitment to S4 in the first phase of the protocol, B extracts
S4 from it. It then chooses r, sends R1 := r(K+V −S4) and T := rG and simu-
lates the zero-knowledge proofs. (Note that this implicitly sets V = (y1 + y2)G.)
If A returns a valid tuple (S1, S2, S3, S4, S5), B can compute an (incomplete)
certificate (A := 1

rS1, X := S2, X
′ := S3, Y := V) which suffices to answer A’s

236 G. Fuchsbauer, D. Pointcheval, and D. Vergnaud

signing queries, as B can get the last two components by querying its own oracle.
When A returns a successful forgery, B returns the last two components, i.e., a
Waters signature under public key V . 	

5 New Techniques for Groth-Sahai Proof Systems

5.1 Preliminaries

We briefly review the results of [GS08] relevant to our paper: witness-indistin-
guishable (WI) proofs that elements in G that were committed to via linear
commitments satisfy pairing-product equations. We refer to the original work for
more details and proofs.

Let P ∈ G be a generator. We define a key for linear commitments. Choose
α, β, r1, r2 ∈ Zp and define U = αP , V = βP , and

u1 := (U, 0, P) u2 := (0, V, P) u3 := (W1,W2,W3) (3)

where W1 := r1U , W2 := r2V , and W3 is either

– soundness setting: W3 := (r1 + r2)P (which makes �u a binding key)
– WI setting: W3 := (r1 + r2 − 1)P (which makes �u a hiding key)

Under key ck = (U, V,W1,W2,W3), a commitment to a group element X ∈ G

using randomness (s1, s2, s3)← Z3
p is defined as (with ι(X) := (0, 0, X))

Com
(
ck, X ; (s1, s2, s3)

)
:= ι(X) +

∑3
i=1 siui

= (s1U + s3W1, s2V + s3W2, X + s1P + s2P + s3W3) .

Note that in the soundness setting, given the extraction key ek := (α, β), the
committed value can be extracted from a commitment c = (c1, c2, c3):

Extr((α, β), c) := c3 − 1
αc1 −

1
β c2

= X + (s1 + s2 + s3(r1 + r2))P − 1
α (s1 + s3r1)U − 1

β (s2 + s3r2)V) = X ,

since 1
αU = P and 1

βV = P . On the other hand, in the WI setting we have
(with s′1 := s1 + s3r1 and s′2 = s2 + s3r2): c = (s′1U, s

′
2V,X + (s′1 + s′2 − s3)P),

which is equally distributed for every X . The two settings are indistinguishable
by DLIN since for soundness (W1,W2,W3) is linear w.r.t. (U, V, P), whereas in
the WI setting it is not.

For the sake of readability and consistency with the work of [GS08], we stick
to their abstract notation, which we sketch briefly:

– For a vector �X = (X1, . . . ,Xn)� ∈ Gn, let �X · �Y :=
∏n

i=1 e(Xi,Yi).
– Bold letters denote triples, e.g., d = (d1, d2, d3) ∈ G

1×3, �d denotes a column
vector of triples, thus a matrix in G

n×3. Furthermore, define F̃ (c,d) :=[
e(ci, dj)]i,j=1,3 ∈ G

3×3
T . In G

3×3
T , “+” denotes entry-wise multiplication of

matrix elements. Define c • d :=
∑n

i=1

(
1/2 F̃ (ci, di) + 1/2 F̃ (di, ci)

)
.

Transferable Constant-Size Fair E-Cash 237

A pairing-product equation is an equation for variables Y1, . . . ,Yn ∈ G of the
form

n∏

i=1

e(Ai,Yi)
n∏

i=1

n∏

j=1

e(Yi,Yj)γi,j = tT ,

with Ai ∈ G, γi,j ∈ Zp and tT ∈ GT . Setting Γ :=
[
γi,j

]
i,j=1,...,n

∈ Zn×n
p , this

can be written as
(�A · �Y) (�Y · Γ �Y) = tT . (4)

Set H1 :=

⎡

⎣
0 1 0
−1 0 0
0 0 0

⎤

⎦, H2 :=

⎡

⎣
0 0 1
0 0 0
−1 0 0

⎤

⎦, H3 :=

⎡

⎣
0 0 0
0 0 1
0 −1 0

⎤

⎦, and ιT (tT) :=

⎡

⎣
1 1 1
1 1 1
1 1 tT

⎤

⎦

for tT ∈ GT .
Let �d be a vector of commitments to �Y , i.e., �d := ι(�Y) + S�u with S ← Zn×3

p

and ι(�Y) := [ι(Yi)]i=1,...,n. The proof that the values committed in �d satisfy (4)
is defined as

Φ := S�ι(�A) + S�Γι(�Y) + S�Γ�ι(�Y) + S�ΓS�u +
∑3

i=1 riHi�u , (5)

with r1, r2, r3 ← Zp, and is verified by

ι(�A) • �d + �d • Γ�d = ιT (tT) + �u • Φ . (6)

Soundness and WI of the proofs. In the soundness setting, if �d satisfies (6)
for some Φ, then Extr extracts �Y satisfying (4). In the WI setting, let �c and
�d be commitments to �X and �Y, resp., which both satisfy (4). Then Φ and Φ′

constructed as in (5) for �c and �d, resp., are equally distributed.

5.2 Commitment Re-randomization and Proof Updating

As observed by [FP09] and [BCC+09], commitments of this form can be re-
randomized and the corresponding proofs adapted without knowledge of the
committed values nor the used randomness: Given a commitment �d, set �c :=
�d + S̃�u, for S̃ ← Zn×3

p , and update the proof Φ for �d to Φ̃ for �c:

Φ̃ := Φ+ S̃�ι(�A) + S̃�Γ�d + S̃�Γ��d + S̃�Γ S̃�u +
∑3

i=1r̃iHi�u (7)

with r̃i ← Zp. The pair (�c, Φ̃) satisfies (6) and some calculation shows that Φ̃ is
constructed as in (5) for �c being a commitment to �Y using randomness S + S̃.
(In particular (7) yields the same Φ̃ as (5) if in the latter the randomness used
for the proof is (ri + αi + r̃i)3i=1, where (r1, r2, r3) is the randomness of Φ and
α1, α2, α3 are such that A := S̃�Γ�S−S�Γ S̃ =

∑3
i=1 αiHi; such αi exist since

238 G. Fuchsbauer, D. Pointcheval, and D. Vergnaud

A satisfies �u • A�u = 0 and the Hi’s form a basis for the matrices of this form;
cf. [GS08, Chapter 4].)

5.3 Linear Equations and Different Commitment Keys

Consider two commitments c,d of Y, Z under different commitment keys �u and
�u′, respectively. We construct a re-randomizable WI proof that the committed
values satisfy

e(H,Y) = e(G,Z) . (8)

Let c be a commitment to Y w.r.t. key �u: c := (sY 1U + sY 3W1, sY 2V +
sY 3W2, Y + sY 1P + sY 2P + sY 3W3). The proof that the committed value Y sat-
isfies (8) (in which Z is considered as a constant) is5 π := (sY 1H, sY 2H, sY 3H),
which is verified by

e(π1, U) e(π3,W1) = e(H, c1) (9a)
e(π2, V) e(π3,W2) = e(H, c2) (9b)

e(Z,G) e(π1, P) e(π2, P) e(π3,W3) = e(H, c3) (9c)

Regarding (9) as a set of equations over variables c1, c2, c3, Z, π1, π2, π3, we could
just use the Groth-Sahai proof system a second time by committing to the new
variables under key �u′ and making proofs for the equations in (9). However, this
can be optimized, since we need not commit to c1, c2 and c3. Correctness and
soundness follow from a simple hybrid argument.

Let us consider witness indistinguishability. We show that every pair (Y, Z)
satisfying (8) generates the same distribution of proofs once both keys �u and �u′

are replaced by hiding keys. Let (Y, Z) satisfying (8) be arbitrarily fixed. Since u
is perfectly hiding, for any given c there exist (s1, s2, s3) s.t. c = ι(Y)+

∑3
i=1 siui.

Now WI under key �u′ (of the second layer of commitments/proofs) ensures
that every (Z, π1, π2, π3) satisfying (9) (with the ci’s fixed!) generates identically
distributed proofs. Thus for Z := (logG Y)H , πi := siH , the proof does not leak
anything. We present the details:

We make commitments to Z, π1 = sY 1H , π2 = sY 2H , π3 = sY 3H w.r.t. �u′:

d :=

⎡

⎣
sZ1U

′ + sZ3W
′
1

sZ2V
′ + sZ3W

′
2

Z+sZ1P
′ +sZ2P

′+sZ3W
′
3

⎤

⎦ pi :=

⎡

⎣
ti,1U

′ + ti,3W
′
1

ti,2V
′ + ti,3W

′
2

sY iH+ ti,1P
′+ ti,2P

′ + ti,3W
′
3

⎤

⎦ (10)

for 1 ≤ i ≤ 3. The proof ψi for the i-th equation in (9) is defined as follows:

ψ1,j := t1,jU + t3,jW1 ψ2,j := t2,jV + t3,jW2

ψ3,j := sZjG+ t1,jP + t2,jP + t3,jW3 for 1 ≤ j ≤ 3
(11)

5 Groth-Sahai proofs for linear equations reduce to 3 group elements; see Sect. 6.1 of
the full version of [GS08].

Transferable Constant-Size Fair E-Cash 239

The final verification relations are the following:

For (9a): e(p1,1, U) e(p3,1,W1) = e(ψ1,1, U
′) e(ψ1,3,W

′
1)

e(p1,2, U) e(p3,2,W1) = e(ψ1,2, V
′) e(ψ1,3,W

′
2)

e(p1,3, U) e(p3,3,W1) = e(H, c1) e(ψ1,1, P
′) e(ψ1,2, P

′) e(ψ1,3,W
′
3)

For (9b): e(p2,1, V) e(p3,1,W2) = e(ψ2,1, U
′) e(ψ2,3,W

′
1)

e(p2,2, V) e(p3,2,W2) = e(ψ2,2, V
′) e(ψ2,3,W

′
2)

e(p2,3, V) e(p3,3,W2) = e(H, c2) e(ψ2,1, P
′) e(ψ2,2, P

′) e(ψ2,3,W
′
3)

For (9c): e(d1, G) e(p1,1, P) e(p2,1, P) e(p3,1,W3) = e(ψ3,1, U
′) e(ψ3,3,W

′
1)

e(d2, G) e(p1,2, P) e(p2,2, P) e(p3,2,W3) = e(ψ3,2, V
′) e(ψ3,3,W

′
2)

e(d3, G) e(p1,3, P) e(p2,3, P) e(p3,3,W3) =
e(H, c3) e(ψ3,1, P

′) e(ψ3,2, P
′) e(ψ3,3,W

′
3)

Re-randomization. Given commitments c,d,p1,p2,p3 and proofs ψ1, ψ2, ψ3,
we can re-randomize the commitments by choosing s′Y i, s

′
Zi, t

′
i,j ← Zp for 1 ≤

i, j ≤ 3 and setting (cf. Sect. 5.2)

c̃ :=

⎡

⎣
c1 + s′Y 3U

′ + s′Y 3W
′
1

c2 + s′Y 2V
′ + s′Y 3W

′
2

c3 + s′Y 3P
′ + s′Y 2P

′ + s′Y 3W
′
3

⎤

⎦ d̃ :=

⎡

⎣
d1 + s′Z1U

′ + s′Z3W
′
1

d2 + s′Z2V
′ + s′Z3W

′
2

d3 + s′Z1P
′ + s′Z2P

′ + s′Z3W
′
3

⎤

⎦

p̃i :=

⎡

⎣
pi,1 + t′i,1U

′ + t′i,3W
′
1

pi,2 + t′i,2V
′ + t′i,3W

′
2

pi,3 + s′Y iH + t′i,1P
′ + t′i,2P

′ + t′i,3W
′
3

⎤

⎦ for 1 ≤ i ≤ 3

Note that p̃i not only re-randomizes pi but at the same time updates the com-
mitted proofs πi to the new randomness for the commitments to Y . The proofs
ψi are updated as follows:

ψ̃1,j := ψ1,j + t′1,jU + t′3,jW1

ψ̃2,j := ψ2,j + t′2,jV + t′3,jW2 for 1 ≤ j ≤ 3

ψ̃3,j := ψ3,j + s′ZjG+ t′1,jP + t′2,jP + t′3,jW3

5.4 Proofs That Commitments Open to the Same Value

Given the extraction key, one can prove that two commitments open to the same
value without knowledge of the randomness used when committed. We start by
showing how to prove that a commitment (c1, c2, c3) opens to zero: given the
extraction key ek = (α, β) define the proof as (π1 := 1

αc1, π2 := 1
β c2). It satisfies

the following relations: e(π1, U) = e(c1, P), e(π2, V) = e(c2, P), c3 = π1 + π2.
It is easily seen that the proofs are perfectly correct and perfectly sound. In

addition, they do not leak information about the opener’s secret key, since they
can be produced without knowledge of ek, given the randomness used to commit

240 G. Fuchsbauer, D. Pointcheval, and D. Vergnaud

and the “trapdoor” (r1, r2) for the Wi’s: c1 = s1U + s3W1 = α(s1 + s3r1)P ,
thus π1 = (s1 + s3r1)P , and similarly π2 = (s2 + s3r2)P . Now to show that c
and d are two commitments to the same value, it suffices to prove that c − d
opens to 0.

6 Transferable Anonymous Constant-Size Fair E-Cash
from Certificates

6.1 Formal Model

In our model for e-cash, there are the following protagonists: users Ui that—
after registering—can withdraw, transfer and spend coins; the system manager
S, authorizing users to join the system; the bank B, able to issue coins; mer-
chants Mi who deposit the coins at the bank; the double-spending detector D,
that can detect if a coin was spent twice; and the tracing authority T , able to
trace users that misbehave in some way (e.g., tracing of a double spender or
prosecution of criminal activities). The system comprises the following protocols
and algorithms:

Setup A protocol between S (who gets the manager key mk), B (who
gets the issuing key ik), D (who gets dk), and T (who gets tk).
The protocol also outputs the public parameters pp.

Join A protocol between a user and S that registers the user in the
system and gives him usk.

Withdraw A protocol permitting a user to withdraw a coin from B.
Transfer A protocol between two users Ui and Uj , where Uj gets a coin and

a receipt from Ui.
Spend A protocol between a user and a merchant to spend a coin.
Detect An algorithm enabling D to check for double spendings (without

identifying the defrauder).
TraceDS A protocol conducted by T in order to trace a double spender.
TraceC An algorithm enabling T to match a withdrawal and a spending

transcript of the same coin.
TraceS An algorithm that lets T reveal the identity of a spender from a

spending transcript.

Besides correctness, which requires that honestly issued coins are accepted when
transferred or spent by honestly registered users, and that the tracing algorithms
work correctly, we define the following security notions for our model: Anonymity
of withdrawal means that not even the bank colluding with the (double-spending)
detector can tell to which withdrawal a coin corresponds. Anonymity of transfer
(or spending) ensures that when transferring/spending a coin a user remains
anonymous even with respect to the bank and malicious users the coin was
transferred by.

Traceability of double spenders states that for each time a user spends a coin
more than once he will be accused, whereas Detectability of double spending

Transferable Constant-Size Fair E-Cash 241

Expanon-with
A (k)

• Experiment plays: honest users U0 and
U1

• A impersonates: S, B, D, users
• U0, U1 run Join and Withdraw with A

impersonating S and B, resp.
• b← {0, 1}; A receives the coin of Ub

• A wins if it guesses b correctly

Exptrace-DS
A (k)

• Experiment plays: honest S, B
• A impersonates: users
• A gets keys: tk,dk (thus T , D semi-

honest)
• A gets oracles Join, Withdraw, Spend to

communicate with S, B and D, resp.
• The experiment runs Detect and Trace

on the spent coins
• Let q and d be the number of Withdraw

and Spend queries, resp.; let a be the
number of accusations by Trace. Then
A wins if a < d− q

Expdetect-DS
A (k)

• Experiment plays: honest B
• A impersonates: users, S, T
• A gets keys: dk (thus D semi-honest)
• A gets oracles Withdraw, Spend to com-

municate with B and D, resp.
• The experiment runs Detect on the spent

coins
• A wins if there where more accepted

Spend than Withdraw calls and D does
not detect double spending.

Expanon-trans
A (k)

• Experiment plays: honest users U0 and U1

• A impersonates: S, B, users
• U0 and U1 run Join with A impersonating
S

• A can ask withdrawals, transfers and
spendings of U0 and U1.

• b← {0, 1}, Ub runs Transfer with A play-
ing a user.

• A wins if it guesses b correctly.

Exp
trace-C/S
A (k)

• Experiment plays: honest S, B
• A impersonates: users, D
• A gets keys: tk (thus T semi-honest)
• Oracles for A: Join, Withdraw
• A spends a coin and wins if

− the spending cannot be matched to
a withdrawal (traceability of coins);
or

− TraceS returns ⊥ (spender trace-
ability)

Expnon-fram
A (k)

• Experiment plays an honest user U∗
• A can impersonate: S, B, D, T , users
• U∗ runs Join with A impersonating S
• A can ask the user to withdraw coins,

transfer and receive them and spend
coins

• A wins if
− it outputs a proof accusing U∗ of

double spending, which U∗ cannot
contest.

− U∗ is accused of a spending it did
not perform

Fig. 4. Security experiments for constant-size e-cash

means that Detect will determine if a coin was spent multiple times. Non-
frameability guarantees that even if everyone else colludes against an honest
user, he cannot be wrongfully accused of a spending he did not perform, nor of
double spending. See Fig. 4 for the details of the experiments. As for the BSZ-
model of group signatures, we call protagonists semi-honest if A impersonates
them but however follows protocols as prescribed. Note that in the experiment
for non-frameability, U∗ behaves honestly, so if he is asked to spend more coins
than he withdrew he refuses; moreover, a malicious tracer can always accuse an
honest user of not having a receipt, which the latter counters by showing it.

242 G. Fuchsbauer, D. Pointcheval, and D. Vergnaud

We say an e-cash system is traceable, non-frameable, etc., if no p.p.t. adversary
can win the respective game with non-negligible probability (non-negligibly more
than 1/2 for the anonymity notions).

6.2 Instantiation

Overview. The core of a coin in our system is a certificate from Sect. 3.2.
Defining withdrawal as partially blind issuing guarantees that the bank does not
know the last component C5. Certificates were designed to consist of elements of
G so that their verification relations are paring-product equations; the user can
thus encrypt (in Groth-Sahai terminology: commit to) the coin and prove valid-
ity. Moreover, each time the coin is transferred, the receiver can re-randomize
the encryption (cf. Sect. 5.2), which guarantees unlinkable anonymity.

To check for double spendings, the detector will get the decryption key to
compare encrypted certificates. However, this straight-forward approach would
not guarantee user anonymity when bank and detector cooperate. The blind
component C5 is thus encrypted under a different key than the rest (in Sect. 5.3
we showed how to construct the corresponding proofs). The detector gets only
the key to decrypt C5, which suffices to detect double spending. Since the the first
4 components remain hidden from the detector, partial blindness of certificates
suffices. The other decryption key is given to the tracer, which enables tracing
of a coin by comparing C3 which is known to the bank.

The receipts, given when transferring and spending coins, are group signa-
tures on them, the signing keys for which the users get when joining the system.
This guarantees user traceability, while preserving anonymity (only the tracer,
holding the group-signature opening key, can reveal users’ identities). To iden-
tify a double spender, the tracer follows backwards the paths the certificate took
before reaching the spender, by opening the receipts. A user that spent or trans-
ferred a coin twice is then unable to show two receipts. To guarantee soundness
of tracing, we must ensure that each signature corresponds to at most one trans-
fer. We achieve this by having the receiver choose a nonce which is added to the
message the sender must sign.

Details. Let GS = (SetupGS , JoinGS ,GSignGS ,GVerGS) be a dynamic non-
frameable group-signature scheme.6 Let H : G∗ → {0, 1}n be a collision-resistant
hash function.

Setup. − Set up a group signature scheme GS such that S is the group’s
issuer (group manager) and T gets opening key ok. The group verification
key gvk is added to pp.

– Produce two keys for linear commitments ckT and ckD. The correspond-
ing extraction keys ekT and ekD are given to T (thus tk = (ekT , ekD, ok).
D receives dk := ekD.

6 Encrypting the certified signatures from Sect. 4 and proving validity by adding a
Groth-Sahai proof yields a (CPA-anonymous) non-frameable group signature scheme
that does not require any further assumptions.

Transferable Constant-Size Fair E-Cash 243

– Set up the CRS (if any) for the blind certificate-issuing scheme from
Sect. 3.2. B picks issuing key ik := ω ← Zp, adds Ω := ωG to pp, and
gets a group signing key gskB by joining GS.

Join. A user Ui joins the system by running JoinGS with S to obtain her group
signing key gski.

Withdraw. Ui runs the issuing protocol (Fig. 2) with B to get (C1, . . . C5) ∈ G5

satisfying

e(C1, Ω + C2) = e(K + C4, G)
e(C2, H) = e(G,C3)
e(C4, H) = e(G,C5)

(12)

B also gives the user a “receipt” RB ← GSignGS(gskB,H(C1, C2, C3,Ui)).7

Ui verifies the certificate and RB and makes the following commitments:

ci := Com(ckT , Ci), for 1 ≤ i ≤ 4 c5 := Com(ckD, C5)

and proofs Φ1, Φ2, Φ3 for the committed values satisfying each of the equa-
tions in (12). Φ1 and Φ2 are regular Groth-Sahai proofs; for the last equation
on commitments under different keys, see Sect. 5.3. We call (�c, �Φ) a coin, and
refer to the full version [FPV09] for its concrete construction.

Transfer / Spend. When user Ui transfers a coin (�c, �Φ) to user Uj , she sends
R ← GSigGS(gskUi

,H(�c,Uj , N)) as well, where N is a nonce set by Uj. The
receiver Uj checks correctness of (�c, �Φ) and R, re-randomizes �c and updates
�Φ (cf. Sects. 5.2 and 5.3). Spending is defined as transferring.

Detect. After receiving new a coin, D uses extraction key ekD to open c5:
C5 := Extr(ekD, c5) (cf. Sect. 5.1). He compares the tag C5 with that of
previously received coins to see if a coin was spent twice, in which case he
charges T to trace the double spender.

Tracing of DS
– If multiple spendings (�c(i), �Φ(i), R(i)) with Extr(ekD, c5

(i)) = C∗
5 for all i

were detected, the tracer uses the key ok to open the signatures R(i) in
order to reveal users U (i)

0 .

– Each U (i)
0 has to prove legal acquisition of his coin, which a user U does

as follows:

• If the coin was obtained from the bank, show C = (C1, . . . , C5) and
the receipt RB.
T accepts if C is valid, GVerGS(gvk,H(C1, C2, C3,U), RB) = 1 and
C5 = C∗

5 .

7 Abusing notation slightly, we let Ui be a unique encoding of the user’s identity in
G. Note that for the receipts from the issuer, no nonce is required, since the user
contributes to the randomness of the certificate.

244 G. Fuchsbauer, D. Pointcheval, and D. Vergnaud

• If the coin was received from a user, show the receipt R received with
it, and show (�c′, �Φ′), the received coin (i.e., before re-randomizing it),
and the nonce N .
T accepts if (�c′, �Φ′) is valid, GVerGS(gvk,H(�c′,U , N), R) = 1 and
Extr(ekD, c′5) = C∗

5 .

– In the second case (receipt produced by a user), T opens R to U (i)
1 , who

in turn has to prove legal acquisition of the coin. Moreover, the tracer
only accepts a receipt if it has not been given to him before.

– Continuing this process for every i produces a chain of users U (i)
0 ,U (i)

1 , . . .
which either ends with the bank, or with a user failing to prove legal
acquisition—in which case that user is accused.

– Correctness of tracing is proven by proving correctness of opening of
group signatures and proving that two commitments contain the same
certificate using the techniques from Sect. 5.4.

Tracing of coins and users. Given ekT , the tracer can recover C3 from a
coin and thus match withdrawn coins to spent coins. Spender anonymity is
revoked by opening the group signature.

6.3 Security Results

We briefly argue why our instantiation satisfies the security definitions from
Sect. 6.1. Each property follows by a straight-forward reduction to the security
of the underlying building blocks.

Detectability and traceability of double spenders. (I) Assuming an hon-
est bank, every certificate is only issued once with all but negligible probability;
(II) by unforgeability of certificates (Theorem 8) and soundness of the WI proofs,
opening all d spent coins leads to at most q different certificates, where q is the
number of Withdraw queries. This proves detectability.

For every i let s(i) be the number of times certificate C(i) was spent. Then the
tracing algorithm produces s(i) lists of users, beginning with the spenders and
linked by their certificates. Unforgeability of group signatures and (I) guarantees
that only one such list ends with the bank. Since s(i) − 1 users are thus accused
and by (II), we have a =

∑q
i=1(s

(i) − 1) = d− q, which proves traceability.

Non-frameability. If U∗ uses a random nonce each time then by collision resis-
tance of H, the probability of receiving the same valid receipt twice is negligible.
The user can only be provably accused if he spent/transferred a coin of which he
cannot justify acquisition. Non-frameability of group signatures guarantees that
U∗ only has to justify coins he actually transferred—and for each such coin he
possesses a valid receipt. Note that if a malicious user transfers the same coin
(possibly as two different randomizations) twice to U∗ then U∗ has two different
signatures (due to the nonce) and can thus justify both coins.

Anonymity. Anonymity of withdrawal follows from partial blindness of issuing
(indistinguishability of C5) and witness indistinguishability of the commitments

Transferable Constant-Size Fair E-Cash 245

(c1, . . . , c4) under key ckT . Anonymity of transfer follows from WI of commit-
ments under ckT and ckD and anonymity of group signatures.

Traceability. Traceability of coins follows from soundness of the WI proofs and
unforgeability of certificates; traceability of spenders follows from traceability of
group signatures.

Acknowledgments

The authors would like to thank the members of the PACE research project for
the fruitful discussions that led to the new primitive discussed in this paper.
This work was supported by the French ANR 07-TCOM-013-04 PACE Project,
the European Commission through the IST Program under Contract ICT-2007-
216646 ECRYPT II, and EADS.

References

[AO00] Abe, M., Okamoto, T.: Provably secure partially blind signatures. In: Bel-
lare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 271–286. Springer,
Heidelberg (2000)

[BB04] Boneh, D., Boyen, X.: Short signatures without random oracles. In:
Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 56–73. Springer, Heidelberg (2004)

[BBS04] Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin,
M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg
(2004)

[BCC+09] Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A.,
Shacham, H.: Randomizable proofs and delegatable anonymous creden-
tials. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108–125.
Springer, Heidelberg (2009)

[BFPW07] Boldyreva, A., Fischlin, M., Palacio, A., Warinschi, B.: A closer look at
PKI: Security and efficiency. In: Okamoto, T., Wang, X. (eds.) PKC 2007.
LNCS, vol. 4450, pp. 458–475. Springer, Heidelberg (2007)

[BR93] Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for
designing efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, pp. 62–
73. ACM Press, New York (1993)

[BSZ05] Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: The case
of dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376,
pp. 136–153. Springer, Heidelberg (2005)

[BW07] Boyen, X., Waters, B.: Full-domain subgroup hiding and constantsize
group signatures. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS,
vol. 4450, pp. 1–15. Springer, Heidelberg (2007)

[CG07] Canard, S., Gouget, A.: Divisible E-cash systems can be truly anonymous.
In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 482–497.
Springer, Heidelberg (2007)

[CG08] Canard, S., Gouget, A.: Anonymity in transferable E-cash. In: Bellovin,
S.M., Gennaro, R., Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS,
vol. 5037, pp. 207–223. Springer, Heidelberg (2008)

246 G. Fuchsbauer, D. Pointcheval, and D. Vergnaud

[Cha83] Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D.,
Rivest, R.L., Sherman, A.T. (eds.) CRYPTO 1982, pp. 199–203. Plenum
Press, New York (1983)

[Cha84] Chaum, D.: Blind signature system. In: Chaum, D. (ed.) CRYPTO 1983,
p. 153. Plenum Press, New York (1984)

[CP92] Chaum, D., Pedersen, T.P.: Transferred cash grows in size. In: Rueppel,
R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 390–407. Springer,
Heidelberg (1993)

[Cv91] Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.)
EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg
(1991)

[DH76] Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans-
actions on Information Theory 22(6), 644–654 (1976)

[EO94] Eng, T., Okamoto, T.: Single-term divisible electronic coins. In: De San-
tis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 306–319. Springer,
Heidelberg (1995)

[FP09] Fuchsbauer, G., Pointcheval, D.: Proofs on encrypted values in bilinear
groups and an application to anonymity of signatures. In: Shacham, H.,
Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 132–149. Springer,
Heidelberg (2009), http://eprint.iacr.org/2008/528

[FPV09] Fuchsbauer, G., Pointcheval, D., Vergnaud, D.: Transferable anonymous
constant-size fair e-cash. Cryptology ePrint Archive, Report 2009/146
(2009), http://eprint.iacr.org/

[FS87] Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identi-
fication and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986.
LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)

[GOS06] Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new tech-
niques for NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117,
pp. 97–111. Springer, Heidelberg (2006)

[Gro06] Groth, J.: Simulation-sound NIZK proofs for a practical language and
constant size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT
2006. LNCS, vol. 4284, pp. 444–459. Springer, Heidelberg (2006)

[Gro07] Groth, J.: Fully anonymous group signatures without random oracles. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180.
Springer, Heidelberg (2007)

[GS08] Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear
groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
415–432. Springer, Heidelberg (2008)

[Kil06] Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In:
Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600.
Springer, Heidelberg (2006)

[NHS99] Nakanishi, T., Haruna, N., Sugiyama, Y.: Unlinkable electronic coupon
protocol with anonymity control. In: Zheng, Y., Mambo, M. (eds.) ISW
1999. LNCS, vol. 1729, pp. 37–46. Springer, Heidelberg (1999)

[Oka06] Okamoto, T.: Efficient blind and partially blind signatures without ran-
dom oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 80–99. Springer, Heidelberg (2006)

[OO90] Okamoto, T., Ohta, K.: Disposable zero-knowledge authentications and
their applications to untraceable electronic cash. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 481–496. Springer, Heidelberg (1990)

http://eprint.iacr.org/2008/528
http://eprint.iacr.org/

Transferable Constant-Size Fair E-Cash 247

[OO92] Okamoto, T., Ohta, K.: Universal electronic cash. In: Feigenbaum, J. (ed.)
CRYPTO 1991. LNCS, vol. 576, pp. 324–337. Springer, Heidelberg (1992)

[PS00] Pointcheval, D., Stern, J.: Security arguments for digital signatures and
blind signatures. Journal of Cryptology 13(3), 361–396 (2000)

[Sch90] Schnorr, C.-P.: Efficient identification and signatures for smart cards. In:
Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer,
Heidelberg (1990)

[Sho97] Shoup, V.: Lower bounds for discrete logarithms and related problems.
In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266.
Springer, Heidelberg (1997)

[SPC95] Stadler, M., Piveteau, J.-M., Camenisch, J.: Fair blind signatures. In: Guil-
lou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921,
pp. 209–219. Springer, Heidelberg (1995)

[vSN92] von Solms, S.H., Naccache, D.: On blind signatures and perfect crimes.
Computers & Security 11(6), 581–583 (1992)

[Wat05] Waters, B.R.: Efficient identity-based encryption without random oracles.
In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127.
Springer, Heidelberg (2005)

	Transferable Constant-Size Fair E-Cash
	Introduction
	Motivation
	Contributions
	Transferable Anonymous Constant-Size Fair E-Cash
	Organization of the Paper

	Assumptions
	Partially-Blind Certification
	Model
	Instantiation
	Security Results

	A Fully-Secure Group Signature from Partially-Blind Certificates
	New Techniques for Groth-Sahai Proof Systems
	Preliminaries
	Commitment Re-randomization and Proof Updating
	Linear Equations and Different Commitment Keys
	Proofs That Commitments Open to the Same Value

	Transferable Anonymous Constant-Size Fair E-Cash from Certificates
	Formal Model
	Instantiation
	Security Results

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

