Verifying Anonymous Credential Systems in Applied Pi
Calculus

Xiangxi Li', Yu Zhang?, and Yuxin Deng'-*

! Department of Computer Science and Engineering, Shanghai Jiao Tong University
Shanghai, China
2 Laboratory for Computer Science, Institute of Software, Chinese Academy of Sciences
Beijing, China

Abstract. Anonymous credentials are widely used to certify properties of a cre-
dential owner or to support the owner to demand valuable services, while hid-
ing the user’s identity at the same time. A credential system (a.k.a. pseudonym
system) usually consists of multiple interactive procedures between users and or-
ganizations, including generating pseudonyms, issuing credentials and verifying
credentials, which are required to meet various security properties. We propose
a general symbolic model (based on the applied pi calculus) for anonymous cre-
dential systems and give formal definitions of a few important security properties,
including pseudonym and credential unforgeability, credential safety, pseudonym
untraceability. We specialize the general formalization and apply it to the verifi-
cation of a concrete anonymous credential system proposed by Camenisch and
Lysyanskaya. The analysis is done automatically with the tool ProVerif and sev-
eral security properties have been verified.

1 Introduction

The use of anonymous credential systems (sometimes called pseudonym systems) [[11]]
is by far the best known idea to protect personal information in communications. These
systems use pseudonyms generated by special random processes instead of users’ pri-
vate information to identify the user in order to guarantee the anonymity of users. A
credential can be issued to a pseudonym, and the corresponding user can show her pos-
session of the credential, without revealing any information beyond the bare fact that
she owns such a credential. For a credential system to be useful, some basic properties
must be satisfied. For example, a user should not be able to make transactions with
others by using a credential not issued by some valid organization (credential unforge-
ability), and transactions carried out by the same user cannot be linked (unlinkability or
untraceability). In some applications it might be desirable that a credential can only be
used once (one-show credential) or a user cannot lend her credentials to others (non-
transferability).

It is widely known that designing good security protocols is an error-prone task.
There were protocols which had been used in practical applications for many years but

* The first and the third authors are supported by the National Natural Science Foundation of
China (Grant No. 60703033).

J.A. Garay, A. Miyaji, and A. Otsuka (Eds.): CANS 2009, LNCS 5888, pp. 209-223] 2009.
© Springer-Verlag Berlin Heidelberg 2009

210 X. Li, Y. Zhang, and Y. Deng

later on were found to be flawed. Examples include Needham-Schroeder [14]], SSL [20]
and PKCS [19]. Formal methods were introduced as a promising technique to analyze
security protocols and in many cases the analysis can be done with automatic tools. As
a case study in this respect, we formalize the anonymous credential system proposed
by Camenisch and Lysyanskaya (which we shall refer to as the CL system in the
sequel) in the applied pi calculus and we employ the tool ProVerif [8] to analyze
several security properties of the system.

To our knowledge, this is the first formal, automated verification (at the symbolic
level) of this type of security systems, although many credential systems, as a main
research concern of cryptography, have been verified using traditional, semi-formal ap-
proaches in cryptography. The main part of our work is devoted to the mechanized anal-
ysis of the CL system, which is probably the most complex pseudonym system targeting
many security requirements but remaining efficient. We have checked that the system
satisfies two very basic properties: unforgeability (of both pseudonyms and credentials)
and user privacy (pseudonym untraceability). A less arresting property, which we call
credential safety and aims at preventing unauthorized use (or stealing) of credentials, is
not met by the system — the traditional replay attack breaks safety.

However, we regard our contribution as more than just a case study using ProVerif.
As credential systems become more and more widely used in large-scale security ap-
plications and many protocols have been proposed, we have been very careful in for-
malizing the system to make our model scalable. In particular, we provide a general
modeling framework in the applied pi calculus and we believe that the formalization
of most credential systems falls into it. In fact, we are currently studying other systems
with significantly different implementation from the CL system.

The rest of the paper is structured as follows: In Section D] we briefly introduce the
applied pi calculus, as well as the formalization of zero-knowledge proofs by Backes
et al. Section 3] gives a general description of credential systems and an overall mod-
eling structure in applied pi. The next section formalizes four most important security
properties: pseudonym unforgeability, credential unforgeability, credential safety and
pseudonym untraceability, and summarizes the verification results in ProVerif of the
basic credential system of Camenisch and Lysyanskaya. Section [3] discusses related
work and Section [6] concludes the paper.

2 The Applied pi Calculus

2.1 Syntax and Semantics

We briefly recall the syntax and operational semantics of the applied pi calculus; more
details can be found in [3]].

A signature X is a finite set of function symbols. Given a signature 2, an infinite set
of terms is defined by the following grammar:

M,N :=a,b,c,...,k,... names
| x,v.2 variables
| f(My,...,M)) function applications

Verifying Anonymous Credential Systems in Applied Pi Calculus 211

where f ranges over the functions in 2’ and / matches the arity of f. Terms are equipped
with an equational theory E which consists of a set of equations over terms. We write
2+ M = N when the equation M = N is in the theory associated with 2, and 2 ¥ M =
N for the opposite.

The grammar for plain process is similar to the one in the pi calculus [16], except
that here messages can contain terms rather than names.

P,O,R =0 null processes
| PO parallel composition
| P replication
| vn.P name restriction
| if M = N then P else Q conditional
| u(x).P message input
| u(N).P message output

The null process 0 does nothing and is usually omitted from process specifications.
The process P|Q executes P and Q in parallel, and !P stands for an infinite copies
of P running in parallel. The process vn.P generates a fresh name n and behaves as
P. The process if M = N then P else Q behavesas Pif X + M = N, and as
Q otherwise. The input process u(x).P can receive a message N from channel a and
behaves as P{N/x}. We often take the abbreviation v(u).P for vu;.--- .vu,.P and u(=
M).P for
u(x).if x = M then P else 0.

The output process U(N).P sends message N on channel a and behaves as P.
Extended processes are defined with active substitutions:

A,B,C::=P plain process
| AlB parallel composition
| vx.A variable restriction
| {M]/x} active substitution
| event(xy,...,x,)events

where {M/x} is the substitution that replaces the variable x with the term M. The process
vx.({M/x}|P) restricts the scope of substitution in P and is often written as let x =
M in P. As usual, names and variables have scopes, which are delimited by restrictions
and inputs. We write fv(A) and bv(A) (resp. fn(A) and bn(A)) for the sets of free and
bound variables (resp. names) of A. An extended process is closed when every variable
is either bound or defined by an active substitution. Events are supported by ProVerif
and are used to define traces of processes.

Every extended process can be mapped to a frame ¢(A) by replacing every plain
process embedded in A with 0. Thus, a frame is built up from 0 and active substitutions
by parallel composition and restriction. The frame ¢(A) can be viewed as the static
knowledge exposed by A to the environment, but not as A’s dynamic behavior. The
domain dom(yp) of a frame ¢ is the set of variables that ¢ exports.

An evaluation context is a context (a process with a hole) whose hole is not under a
replication, a conditional, an input, or an output. A context C[] closes A when C[A] is
closed.

212 X. Li, Y. Zhang, and Y. Deng

The semantics of the applied pi calculus are defined by structural equivalence and
internal reduction. Structural equivalence = is the smallest equivalence relation on ex-
tended processes that satisfies the following rules and that is closed under a-renaming
of names and variables and under application of evaluation contexts.

A = A|0 PAR-0 vn.0 =0 NEW-0
A|(BIC) = (A|B)|C PAR-A vm.vn.A = vn.vmA NEW-C
A|B=B|A PAR-C vx{M/x} =0 ALIAS
\P=P|'P REPL {M/x} = {N/x},

{M/x}|]A = A{M/x} SUBST ifX+-M=N REWRITE

Internal reduction — is the smallest relation on extended processes closed by structural
equivalence and application of evaluation contexts such that:

u(x).Plu(x).0 —» P|Q COMM

if M =M then Pelse Q —» P THEN

if M =N then Pelse Q —» Q ELSE
for all ground terms M, N s.t. X ¥ M = N

Observational equivalence is an important relation for the applied pi calculus. Intu-
itively, two processes are observationally equivalent if no evaluation context can distin-
guish them; evaluation contexts are often used to model attackers. We write A || @ when
A can send a message on a, i.e A —* Cl[a({M).P] for some evaluation context C that
does not bind a.

Definition 1. Observational equivalence (=) is the largest symmetric relation R be-
tween closed extended processes with the same domain such that A R B implies:

1. ifAl a, then B || a;
2. ifA—*A’, then B—>" B" and A’ R B’ for some B’.
3. C[A] R C[B] for all closing evaluation contexts C[].

Trace properties are also important in process calculi. Correspondence was introduced
to capture these properties [8].

Definition 2 (Correspondence). The closed process P satisfies the correspondence:
P Ir event(f(x,...,x;)) ~ event(f' (yi,...,y;)

means that if the event f(xy, ..., x;) is executed, then event f'(yy, ...,y;) must have been
executed. The closed process P satisfies the injective correspondence:

P Ir event(f(xi,...,x;)) «» event(f' (yi,...,y;))

means that for each event f(xi,...,x;) being executed, there is a unique event
S O1,...,y;) which has been previously executed.

We refer the reader to [8] for the technical definition of correspondences.

Verifying Anonymous Credential Systems in Applied Pi Calculus 213

2.2 Representing Zero-Knowledge Proofs in Applied pi

Zero-knowledge proofs become a widely used technique in constructing modern cryp-
tographic protocols [18], including many credential systems. Loosely speaking, a zero-
knowledge proof consists of a message or a sequence of messages that constitute a proof
of a statement, which yields nothing but the validity of the statement. The applied pi
calculus does not natively support the verification of security protocols involving zero-
knowledge proofs, but Backes et al. have extended the tool ProVerif to enable modeling
and analyzing non-interactive zero-knowledge proofs [J3]].

Let 2p,5 be a base signature including logic and arithmetic operations as well as
basic cryptographic primitives such as encryption, decryption, digital signature, etc.,
and Ep,, be an equational theory for 2. For representing zero-knowledge, we need
to extend the equational theory, based on an extended signature:

27k = 2pase U {ZK,"]‘, Veri,j, Public;, Formula, true | l,] e N}

A non-interactive zero-knowledge proof is formalized as a term ZK; j(A7I s N , F), where
M denotes the term sequence My, ..., M; which represent the private components of the
statement that are not revealed to the verifier and the adversary, and N denotes the term
sequence Ny,...,N; which represent the public components of the statement, and F
constitutes a formula over these terms. In particular, we fix a distinguished set of vari-
ables ZV = {aj,a»,...,B1,B2,...} which are only used to construct zero-knowledge
formulas. Intuitively, @ variables can be substituted by private components and S vari-
ables by public components. We call a term F' an (i, j)-formula if it contains no names
and f(F) C {ay,...,a;B1,...,B;}. Public;, Formula are operations for retrieving,
respectively, the i-th public element and the formula from a proof, and Ver;; is the
function which verifies a proof against a formula. We shall often omit the arities of ZK;
and Ver; ; when they are clear from the context.

The equational theory Ezx for representing zero-knowledge is the smallest theory
satisfying all equations in Ep, and the following equations defined over all terms
M,N, F:

Public/(ZK, (M,N,F)) =N, 1<I<}

Formula(ZK; (M, N, F)) = F,

Veri,j(F, ZK,"]‘(M, ﬁ, F)) =true iff Ez¢+ F{M/&}{N/E} = true
and F is an (i, j)-formula.

Backes et al. also supply several techniques for dealing with infinite equational theories,
so as to enforce the termination of the verification in ProVerif. We refer the reader
to [18] for details.

3 A General Description of Credential Systems in Applied pi

In general, a credential system consists of two types of agents: users who wish to anony-
mously prove part of their personal information or use valuable services through cre-
dentials, and organizations who issue credentials to users and verify the validity of

214 X. Li, Y. Zhang, and Y. Deng

credentials shown by users. In anonymous credential systems, a user needs first to in-
teract with an organization to establish a pseudonym before demanding a credential.
The user is then known at the organization by the pseudonym, which is usually based
on some information known by the organization about the user (e.g. an account in a
bank). A real individual can have a pseudonym at each organization, or even multiple
pseudonyms at one organization. However, organizations should not be able to link two
different pseudonyms belonging to the same user. Credentials are issued by organiza-
tions to pseudonyms instead of real identities: when demanding a credential, the user
interacts with the organization in the name of the pseudonym that he has established,
and obtains a credential which can be shown by the user to another organization in the
verifying procedure.

3.1 Modeling Credential Systems

We give a general framework of modeling credential systems in applied pi, by defining
the overall structure of processes without concrete definitions. In later sections we shall
see how a real credential system can be modeled following the structure. The model of
a credential system in applied pi generally consists of two types of processes: the user
processes and the organization processes.

When a user enters the system, she must first demand a pseudonym at some orga-
nization, and then use this pseudonym to demand and show credentials, hence a user
process can be generally defined as

def —
UP = v(u).!ckey(j, pk;). UN(j, pk;) . \UC(j, pkj,nym;) | \UV(j, pk;, nym;))

U is a set of secret channels inside the user process which are basically used to transmit
secret data like keys, randoms, and so on. The process UN(j, pk;) models the user’s
behavior of establishing a pseudonym at the organization O; and the user must receive
the correct public key pk; properly (e.g., from a secret channel ckey shared between
users and organizations). The process UC(}, pk;, nym;) models the user’s behavior of
demanding a credential from the organization O}, in name of the pseudonym nym;
that has been established in UN(}j, pk;). In the end of the process, the generated cre-
dential must be recorded together with the ID of the issuing organization. The pro-
cess UV(j, pkj,nym;) models the user’s behavior of showing a credential using the
pseudonym nym ;. There are in general two manners of showing a credential:

UV(j, pkj,nym;) aef WUi(= j,cred;) . UVl(j, pkj,cred;)
| 'ui(l, credy) . UV?(, pkj, nym;, I, pki, credy),

where UV'(j, pk;, cred;) models the behavior of showing a single credential cred; is-
sued by the organization O; and U V3(J» pkj,nym;, 1, pk;, cred;) models the behavior of
showing a credential cred; issued by the organization Oy, using the pseudonym nym;
(known at O;. Note that in the first procedure, the credential can be essentially shown
to any valid organization, while in the latter it can only be shown to Oj, i.e., the or-
ganization who knows the pseudonym nym;. If the system guarantees unlinkability of
pseudonyms, this does not break the anonymity.

Verifying Anonymous Credential Systems in Applied Pi Calculus 215

Correspondingly, an organization process consists of generating a pseudonym, issu-
ing a credential and verifying a credential:

OP & v@®@).\ON .(10C(nym) | 'OV\(I, pky, cred) | \OV*(L, pky, nym, cred)),
where the process ON models the organization’s behavior of establishing a pseudonym
nym, OC(nym) models the behavior of issuing a credential to nym, ovi(, pky, cred)
models the behavior of verifying the credential cred and oV(l, pki, nym, cred) models
the behavior of verifying the credential cred, plus the statement that its owner has the
pseudonym nym. Note that nym in UV? must be the pseudonym established by the
organization, but cred in UV' and UV? can be an arbitrary credential issued by a valid
organization (presumably the organization Oy). It is possible that some organizations
only do the verification and never issue credentials, and in modeling a concrete system,
one can safely remove the corresponding processes.

The whole credential system is then modeled as a set of user processes and organi-
zation processes running in parallel.

3.2 Events

As we shall see in Section 4l many security properties are defined using the notion of
correspondence between events, which must be added at right places when we define
processes. We summarize here a set of events which can be commonly defined in many
credential systems and are sufficient for defining and verifying their security properties.

— NymGenerated(U,n): The user U executes this event when she establishes a
pseudonym n with some organization.

— NymApproved(O, n): The organization O executes this event when he approves that
the pseudonym 7 is correctly formed.

— CredIssued(O,c,n): The organization O executes this event after she issues the
credential ¢ to the pseudonym n.

— UserShow(U, ¢): A user executes this event when he starts a session of showing a
credential ¢ with a verifying organization.

— CredVerified(O, c, O’): Verifier O executes this event after the credential ¢ has
been shown to her and she is convinced that ¢ has been issued by organization O’.

— CredNymVerified(O,n,c, O’): The verifying organization O executes this event
after the credential ¢ has been shown to her with the pseudonym n and she is con-
vinced that ¢ has been issued by O’ to the user. Note that n is not the pseudonym to
which ¢ has been issued to, but the one that is known by the verifier O. In principle,
the user must possess another pseudonym n’ (known by O")and has used n’ to get
the credential ¢ before she shows it, but this pseudonym is irrelvant in the verifying
procedure. in short, n hides the user’s identity at the verifying organization and n’
protects her at the issuing organization.

We remark that events are not necessary for modeling protocols, but rather for speci-
fying security properties based on traces, so only processes representing honest agents
will execute these events — adversaries never execute events. When defining security
properties using these events, we often omit some parameters (replaced by) when they
are irrelevant.

216 X. Li, Y. Zhang, and Y. Deng
4 Security Analysis of an Anonymous Credential System

In this section we apply the general modeling of the previous section to the anonymous
credential system proposed by Camenisch and Lysyanskaya [10], and do a verification
using ProVerif. The basic system consists of four protocols for, respectively, pseudonym
generation, credential generation, showing a single credential and showing a credential
w.r.t. a pseudonym. Due to the page limit, we only present here an abstract definition of
the whole system. Detailed description of protocols and corresponding process specifi-
cations in applied pi can be found in Appendix [Al

Definition 3 (Basic credential system). The basic credential system of the CL system
is a process in applied pi:

BCS < v(ckey).(UP|...|UP,| OP; |...| OPy),

where ckey is a secret channel for transferring organizations’ public keys between hon-

est agents, UP; &ef v(cy;y) . !(ckey(l, pk)) . UN;(l, pk;)), modeling each user agent, and

OP; &ef v(seed;) .let pk; = pkey(seed;), sk; = skey(seed;) in
Ickey(j, pk;) 1'c(j, pk;) I'ON; [!VP;

modeling each organization agent, where C is a public channel allowing agents includ-
ing adversaries to communicate with each other.

Definitions of the processes UN;, ON;, VP; can be found in Appendix [Al

The rest of the section is devoted to the formalization and verification of basic secu-
rity properties: unforgeability of credentials and pseudonyms, safety of credentials and
user privacy (pseudonym untraceability), which are supposed to be met by the CL basic
system.

Let CS be a model of a credential system defined in applied pi, such as BCS in
Definition Bl We write U(CS) for the set {U1,. .., U,} where each U, is a process rep-
resenting an honest user agent, and O(CS) for the set {Oy, ... O,,} where each O; is a
process representing an honest organization agent.

4.1 Unforgeability

Unforgeability of pseudonyms and credentials is the very basic security requirement
of anonymous credential systems, which in principle prevents adversaries from forging
fake credentials. Fake pseudonyms must be prevented too, since credentials are issued
to pseudonyms, never to real identities.

Definition 4 (Pseudonym unforgeability). A credential system CS respects
pseudonym unforgeability if whenever an organization O’ € O(CS') issues a creden-
tial c to a pseudonym n’, she must have established this pseudonym with a user:

CS I CredIssued(O’, c,n’) ~ NymApproved(O’,n’), (1)

Verifying Anonymous Credential Systems in Applied Pi Calculus 217

and whenever an organization O € O(CS) verifies a credential ¢ that is shown to her
w.r.t. a pseudonym n and is claimed to be issued by O’, the verifier must have established
the pseudonym with the user:

CS I CredNymVerified(O,n, c, O’) ~ NymApproved(O, n), 2)

Definition 5 (Credential unforgeability). A credential system CS respects credential
unforgeability if every successful showing (either single or with a pseudonym n at orga-
nization O) of a credential c, being claimed to be issued by an organization O’ € O(CS),
implies that O' has previously issued c to some pseudonym n’:

CS I+ CredVerified(,c, O') ~» CredIssued(O’,c,n’). 3)
CS I CredNymVerified(O,n,c, O") ~ CredIssued(O’, c,n’). %)

If a credential system respects both pseudonym unforgeability and credential unforge-
ability, we say that it is an unforgeable credential system.

The definition of credential unforgeability does not exclude the case where the ad-
versary can forge a valid credential that has indeed been generated by an honest orga-
nization, but not to the adversary. We shall consider it as the safety of credentials.

Theorem 1. The CL basic credential system (Definition[3)) is an unforgeable credential
system, i.e., it respects the unforgeability of both pseudonyms and credentials.

Proof. We check the four correspondences (), @), (B) and @) in ProVerif. O

4.2 Credential Safety

Credential safety aims at preventing adversaries from stealing or using unauthorizedly
a valid credential. In other words, no one other than the honest user, to whom a valid
credential has been issued to, can successfully show the credential to a verifier. How-
ever, there is a subtle situation where safety can be confused with unforgeability: if an
adversary can forge a credential which has been generated by an honest organization
to an honest user, we shall consider it as an attack to safety instead of unforgeability.
In fact, when we talk about credential safety, we actually mean safety of unforgeable
credentials, or safety in unforgeable credential systems.

Definition 6 (Credential safety). A credential c in an unforgeable credential system
CS is safe if there is an injective correspondence between the event indicating that c
(being issued by O € Org(CS)) is successfully verified, and the event indicating that
some user U € U(CS), who must be the owner of the credential, starts to show c, i.e,
for all pseudonym n’,

CS I CredVerified(,c,O’) » CredIssued(O’,c,n’)
= CS I CredVerified(,c, O’) «» UserShow(U, ¢) (®)]
A NymApproved(O’, n’) ~» NymGenerated(U, n’).

If ¢ is shown with respect to a pseudonym n at O € O(CS), then the user must be the
owner of n, i.e., there exists another pseudonym n’,

218 X. Li, Y. Zhang, and Y. Deng

CS I+ CredNymVerified(O,n,c, O') ~» CredIssued(O’,c,n’)
= CS I CredNymVerified(O,n,c, O) «» UserShow(U, c)
A NymApproved(O’, n’) ~ NymGenerated(U, n’)
A NymApproved(O, n) ~~ NymGenerated(U, n)

(6)

If an unforgeable credential system respects credential safety, we say it is a safe creden-
tial system.

Unfortunately, the CL basic system is not safe if we assume the channels between
users and organizations is insecure as in normal networking environment. There is a
replay attack to safety, which works as follows: in the case of showing a single creden-
tial, the adversary can record A, B in Protocol[Bland all messages in the zero-knowledge
proof, then sends them repeatedly to a verifier. The reused zero-knowledge proof simply
passes. ProVerif actually shows that the injective correspondence in (3)) fails. The same
attack simply applies in the case of showing a credential w.r.t. a pseudonym, but the
adversary can only show the credential to the organization whom the user has shown it
to, since she cannot change the pseudonym that is used in the verification.

Note that an adversary can steal a pseudonym too and even use it to demand a new
credential, but she cannot show it as in that case she cannot forge a proof for showing
the credential. In fact, in credential systems, what we care about is what people can do
with credentials, not what they can do with pseudonyms, so we do not define a property
like pseudonym safety.

4.3 Pseudonym Untraceability

Anonymous credential systems are designed essentially for providing user privacy. Cre-
dentials are issued to pseudonyms, so user privacy in credential systems indeed depends
on what we can deduce based on pseudonyms. In particular, organizations should not be
able to collectively distinguish pseudonyms that belong to different users. We call this
property pseudonym untraceability, and in the applied pi calculus, this is formalized by
the popular notion of observational equivalence.

Definition 7 (Pseudonym-untraceability). A credential system CS respects
pseudonym untraceability if for arbitrary users U;, U; € U(CS) and a well formed
public key pko,

UN;(, pko) = UN;(, pko),

where UN; (resp. UN,), as defined in Definition[3] models the procedure of establishing
a pseudonym by the user U; (resp. U;) and all her behavior involving the pseudonym in
the system.

Theorem 2. The basic credential system respects pseudonym untraceability, i.e.
UN;(l, pk;) =~ UN,(l, pk;).

Proof. ProVerif supports proving observational equivalence of two processes which
differ only in the choice of some terms. In our definition of pseudonym untraceability,
we are actually proving: for all U;, U; € U(BCS), UN;(0, pko) = UN;i(0, pko)[x;/x;].
ProVerif shows that the above observational equivalence holds. O

Verifying Anonymous Credential Systems in Applied Pi Calculus 219

5 Related Work

A security model for anonymous credential systems was proposed by Pashalidis and
Mitchell [17]]. It follows the idea of Bellare and Rogaway [6] based on complexity theo-
retic arguments, which potentially leads to information theoretic anonymity
metrics. The model does not specify how the credential system achieves its goals but
defines what the goals are. Some basic properties such as credential unforgeability, non-
transferability, pseudonym unlinkability, and pseudonym owner protection are formally
defined and the relationships between them are explored. Compared with our defini-
tions, their definitions are based on a computational model while ours are based on the
applied pi calculus and allow an automatic verification.

Abadi and Fournet introduced the applied pi calculus [3]] as a language for reasoning
about security protocols. The calculus inherits communication and concurrency for the
pure pi calculus [16], and introduces functions and equations to reason about complex
messages transmitted in security protocols. ProVerif [7] is an automatic cryptographic
protocol verifier for the analysis of trace-based security properties and observational
equivalence. It accepts applied pi processes as inputs and translates them into Horn
clauses. Using this tool, Blanchet ef al. verified a protocol for certified emails [1]], a
protocol for secure file sharing on untrusted storage [9]], as well as the JEK protocol [2]].
Luoetal. analyzed an electronic cash protocol, and Kremer and Ryan [12] verified
an electronic voting protocol. Backes et al. [3] introduced an implementation of zero-
knowledge in equational theories acceptable by ProVerif and applied it to the analysis
of a remote electronic voting protocol [4]].

6 Conclusion

In this paper we have presented a general formalization of credential systems and some
important security properties. We apply them to the concrete credential system pro-
posed by Camenisch and Lysyanskaya and have verified that the basic system satisfies
unforgeability for both pseudonyms and credentials, and pseudonym untraceability. We
also reveal an attack to the system which allow adversaries to steal and unauthorizedly
use a credential.

We argue that the model that we propose in the paper is faithful enough. However,
as the original protocol itself is not written in a formal language, there is no way to
formally prove that our model faithfully specify the original protocol. Nevertheless, if
we assume that the specification is correct, then the soundness of ProtoVerif already
guarantees the correctness of the verification output.

One novelty of the CL system, compared with other credential systems, is the im-
plementation of non-transferable credentials which prevent users from lending their
credentials. As part of the future work, we shall investigate how to formalize non-
transferability, as well as other interesting, advanced properties like non-reshowability.
We are also trying to transplant our model to other credential systems, in order to es-
tablish a scalable model of analyzing credential systems with the applied pi calculus.
Another interesting work would be to focus on improving the efficiency for verifying
complex systems using zero-knowledge proofs heavily. How to optimize equational
theories to speed up termination is still a challenging problem.

220

X. Li, Y. Zhang, and Y. Deng

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Abadi, M., Blanchet, B.: Computer-Assisted Verification of a Protocol for Certified Email.
In: Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 316-335. Springer, Heidelberg (2003)
Abadi, M., Blanchet, B., Fournet, C.: Just fast keying in the pi calculus. In: Schmidt, D. (ed.)
ESOP 2004. LNCS, vol. 2986, pp. 340-354. Springer, Heidelberg (2004)

Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In: Pro-
ceedings of the 28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, vol. 36, pp. 104-115. ACM, New York (2001)

Backes, M., Hritcu, C., Maffei, M.: Automated verification of remote electronic voting pro-
tocols in the applied pi-calculus. In: Proceedings of the 21st IEEE Computer Security Foun-
dations Symposium, pp. 195-209. IEEE Computer Society, Los Alamitos (2008)

Backes, M., Maffei, M., Unruh, D.: Zero-knowledge in the applied pi-calculus and auto-
mated verification of the direct anonymous attestation protocol. In: Proceedings of the IEEE
Symposium on Security and Privacy, pp. 202-215. IEEE Computer Society, Los Alamitos
(2008)

Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson, D.R. (ed.)
CRYPTO 1993. LNCS, vol. 773, pp. 232-249. Springer, Heidelberg (1994)

Blanchet, B.: Proverif: Cryptographic protocol verifier in the formal model,
http://www.proverif.ens. fr/

Blanchet, B.: Automatic verification of correspondences for security protocols. Journal of
Computer Security (2008) (to appear), http://arxiv.org/abs/0802.3444

Blanchet, B., Chaudhuri, A.: Automated formal analysis of a protocol for secure file sharing
on untrusted storage. In: Proceedings of the IEEE Symposium on Security and Privacy, pp.
417-431. IEEE Computer Society, Los Alamitos (2008)

Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anonymous creden-
tials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 93-118. Springer, Heidelberg (2001)

Chaum, D.: Security without identification: Transaction systems to make big brother obso-
lete. Communications of the ACM 28(10), 1030-1044 (1985)

Kremer, S., Ryan, M.: Analysis of an electronic voting protocol in the applied pi calculus.
In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 186-200. Springer, Heidelberg (2005)
Li, X., Zhang, Y., Deng, Y.: ProVerif scripts for verifying a non-transferable anonymous
credential system, http://basics.sjtu.edu.cn/~xiangxi/credentialsys.rar
Lowe, G.: An attack on the needham-schroeder public-key authentication protocol. Informa-
tion Processing Letters 56, 131-133 (1995)

Luo, Z., Cai, X., Pang, J., Deng, Y.: Analyzing an electronic cash protocol using applied pi
calculus. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 87-103. Springer,
Heidelberg (2007)

Milner, R.: Communicating and Mobile Systems: the 7-Calculus. Cambridge University
Press, Cambridge (1999)

Pashalidis, A., Mitchell, C.J.: A security model for anonymous credential systems. In: Pro-
ceedings of the 19th International Workshop on Information Security, pp. 183—-198. Kluwer,
Dordrecht (2004)

Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-
systems. SIAM Journal on Computing 18(1), 186-207 (1989)

Coron, J.-S., Joye, M., Naccache, D., Paillier, P.: New attacks on PKCS#1 v1.5 encryption.
In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 369-379. Springer, Heidel-
berg (2000)

Seifried, K.: The end of ssl and ssh? http://seifried.org/security/cryptography/
20011108-end-of-ssl-ssh.html

http://www.proverif.ens.fr/
http://arxiv.org/abs/0802.3444
http://basics.sjtu.edu.cn/~xiangxi/credentialsys.rar
http://seifried.org/security/cryptography/20011108-end-of-ssl-ssh.html
http://seifried.org/security/cryptography/20011108-end-of-ssl-ssh.html

Verifying Anonymous Credential Systems in Applied Pi Calculus 221
A Description and Modeling of the CL Basic System

A.1 Setup of the CL System

The CL system uses the asymmetric cryptography (typically RSA) to implement anony-
mous pseudonyms and credentials. Each organization O; will have a public key PK;
consisted of an RS A modulus n;, and five elements of ORy; : (aj, bj,dj, g, hj), the cor-
responding secret key that contains the factorization of n j‘. Each user U; has a master
secret key x;.

A pseudonym N;; — a name for U; being known at O ; — consists of a user-generated
part N; and organization-generated part N,. Every pseudonym »;; will be tagged with
avalidating tag P;;. A credential issued by O; to a pseudonym N;; is pair (e, ¢), where e
is a sufficiently long prime chosen by O}, and ¢ = P;;d jl/ ¢ (mod n;). Under the strong
RS A assumption, such tuples cannot be existentially forged for correctly formed tags
even by an adaptive attack, since no one can generate ¢ from e without knowing the
factorization of n;.

Zero knowledge is applied in the system to protect users’ privacy. A proof of pos-
session of a credential is realized by a proof of knowledge of a correctly formed tag
P;; and a credential on it. This is done by publishing statistically secure commitments
to both the validating tag and the credential, and proving relationships between these
commitments. It can also include a proof that the underlying secret key is the same in
both the committed validating tag (corresponding to the pseudonym formed with the
issuing organization) and the validating tag with the verifying organization.

The base signature for analyzing the CL system consists basically of two sorts of
functions: basic crytpographic primitives (e.g., enc, dec for encryption and decryption
and pkey, skey for generating asymmetric key pairs) and cyclic group arithmetic oper-
ations (e.g., add, mult, exp and inv for group addition, multiplication, exponentiation
and inverse operation). The equational theory for this signature contains standard equa-
tions for cryptography and RSA arithmetic. Detailed definition can be found in [13].

A.2 Basic Credential System and Its Model in Applied pi

The CL basic system consists of four protocols for, respectively, pseudonym genera-
tion, credential generation, showing a single credential and showing a credential w.r.t.
a pseudonym. We briefly describe these protocols and give the user and organization
processes corresponding their behavior in each protocol.

Protocol 1 (Pseudonym generation). User U; follows the protocol below to establish
a pseudonym at organization O:

1. U; chooses values Ny, 11,12, 13, sets C; = g;‘h;?, C, = gjf"h;3 and sends Ny, C;, C»
to O;. U; proves that C; and C; are formed correctly in

PK((a1, a2, a3,0) : C1 = g h A Cy = g7 h¥),

2. O; generates two randoms r, N> and sends them to U;.

222 X. Li, Y. Zhang, and Y. Deng

3. U; computes s;; = ry + r, sets the pseudonym N;; = (N, N>) and the validating tag
P;j = a;fb‘;."f, then sends P;; to O;. U; proves that P;; is formed correctly in

PK{(a.,B,7.6,¢) : C; = g‘;h/j A Cs = gl A Pij =)

In this protocol, every generated pseudonym N;; corresponds to a validating tag P,
and they are stored in pair by both U; and O;. Here P;; is used to distinguish different
pseudonyms, and the representation of P;; with respect to g; and &, is an essential part
when showing a credential.

The user process and the organization process for the protocol are defined as:

UN;(j, pk;) VN, 12T .
let Cy = exp((gj, 1)), (r1,12)), C2 = exp((g}, hj), (xi,13)) in
let zp1 = ZK(r1, 12, %3, 13, C1, Ca, 8, hj; F1) in
co;((N1,Cy, C),zp1) .cu(r, Na).
let Njj = (N1, N2), sij =1 +r, Pij=exp((aj,b)),(x;,s;;)) in
let zpy = ZK(r1, 12, Xi, 13, 55 C1,Ca, 8, hj, aj, bj, Pij; Fo) in
NymGenerated(U;, N;;) .co;(P;j, zp2) .
(MUCi(j, Nij, Pij) | '(cui(l, cred) . UVl-z(j, [, cred, N;)))),

ON; = coj(Ni,Cy,Ca,21).
if Ver(Fi,z;) = true then
v(r, N2) . cu({r, N2)) . co;(P, 22) .
if Ver(F,,zp) = true then
let N = (N, N,) in
NymApproved(O;, N).(!OC(N, P) | \OV(N, P))

where

def

Fiy = (81 = exp((B3,64), (a1, @2)) A B2 = exp((53, B4), (a3, a4))),
def

Fr = (B1 = exp((Bs, B4), (@1, @2)) A B2 = exp((B3, Ba), (@3, a4))
A ﬁ7 = exP((ﬂS’ﬁﬁ)’ (03’ aS))),

and co; and cu are public channels, cu; is a secret channel inside the process of U;.
UC(j, Nij, P;j) is the user process of demanding a credential from Oj, using the
pseudonym N;; (together with the validating tag P;;). U Vi2(J» 1, cred, N;;) is the user pro-
cess of showing, to organization O}, the credential cred issued by organization Oy, using
the pseudonym N;;. OC (N, P) and OV;(N, P) represent, respectively, the organization
processes of issuing a credential to the pseudonym N and of verifying a credential sent
by a user using the pseudonym N. Note that the credential issue and verification can
be done separately at the organization side (by different processes in parallel), but they
must be done sequentially in the user process.

The events NymGenerated and NymApproved are executed in this protocol:
NymGenerated is executed by the user right after he receives the organization part

Verifying Anonymous Credential Systems in Applied Pi Calculus 223

of the pseudonym, and NymApproved is executed by the organization at the end of the
protocol, when he receives the validating tag and verifies the validity of its form.

Note that the user is assumed to communicate with the organization via an anony-
mous channel, which is modeled using a global public channel ¢, and we rely on the
scheduler to determine the right destination of messages transmitted on the channel.
In particular, there is no successful trace where the response of an organization is sent
to a wrong user, as in that case the organization will fail in checking the the second
zero-knowledge proof.

Protocol 2 (Credential generation). User U; follows the protocol below to demand a
credential from organization O:

1. U; sends (N}, P;;) to O; and proves the ownership in
PK{(@.p) : Pij = ajtf).

2. O;j checks that (N;;, P;;) is in its database, chooses a random prime e, computes
¢ = (P;;d;)'* mod n;, sends c and e to U; and stores (c, e) in its record for N;;.

3. U, checks if ¢¢ = P;;d; mod nj; if so, she stores (c, e) in its record with organiza-
tion O;. The tuple (c, e) is called a credential record.

The cryptographic assumption ensures that an adversary who does not know the factor-
ization of n; should not be able to generate ¢ from e.
The user process and the organization process of credential generation are:

UC(j.N;j, Piy) € let zps = ZK(x;, 5;: Pijaj.bji F3) in
CO;(N;j, Pij, zp3) . cu(cij, e;)) -
if exp(cij, e;j) = mult(P;;,d;) then
let cred;j = (cij, ¢;j) in
leu;(j, cred;;) | UV} (j, cred;;)

OC{(N,P) € coj(N'.P'.z3).
if Ver(Fs,z3) = true then
v(e).let ¢ = exp(mult(P,d;),inv(e)), cred = (c,e) in

CredIssued(O;,cred, N).cu(c,e),

where ot
F3 = Bi = exp((Ba,), (a1,).

U Vl.l(J.cred;j) is the user processes of showing the credential cred,; to an arbitrary
organization (verifier).

When U, receives a credential, she broadcasts it via the internal secret channel cu; to
all other sub-processes; when U; wants to show a credential with respect to a pseudonym
Nij, she invokes the procedure U Vl.2 by sending the credential to the procedure via cu;.

The event CredIssued is executed by the organization in this protocol after the
credential is generated.

224 X. Li, Y. Zhang, and Y. Deng

Protocol 3 (Showing a single credential). User U; follows the protocol below to show
a credential, issued by O}, to a verifier V (without revealing the combined pseudonym):

1. U; chooses 1}, 7%, computes A = ¢; jh?, B = h;; g;é, and sends A, B with the creden-
tial to V.
2. U proves the validity of the credential in

PK{(a1, a2, 3, a4, a5, a6, @7) :

1 1 1 1 1
d: = Am a a3 @y AB= ha/5 @ Al = Ba] @y a7
=AM o5 ()")
Those who can successfully show a single credential are assumed to know the represen-
tation of P;; with respect to g;, h; as well as the credential pair (¢;;, ¢;;), so the protocol
should offer sufficiently security even when the transmission of a credential is unsafe.
The two processes engaged in this protocol are:

UVil (J, cred;;) of v(ry,r5).
let A = exp((cij, b)), (1,7})), B = exp((hj,g)),(r},r5) in
let zpy = ZK(ejj, x;, sij, mult(ry, e;j), v}, vy, mult(r}, e;j);
A.B.aj.b;.d;.g; hj: Fy) in
UserShow(U;, cred;;) . cv(j, cij, eij, A, B, 2ps),

def)
VP; = cv(= j,cij, eij, A, B, 2a) .

if Ver(F4,z4) = true then CredVerified(,cred, O)),

where

Fy € Bs = exp((B1, inv(Bs), inv(By), inv(By)), (1, an, @3,)
A B2 = exp((B7,B6), (a5, a6)) A 1 = exp((B2, inv(B7), inv(Be)), (a1, a4, a7))

The events UserShow and CredVerified are executed in this protocol: UserShow is
executed by the user right before he starts to show a credential and CredVerified is
executed by the verifier after verifying the validity of the credential (the first parameter
is omitted since in this protocol the identity of the verifier is irrelevant). In the process
model, we explicitly let the user transmit the credential to the verifier, which is not
included in the original protocol. This is only for the verifier process to be able to
execute the event CredVerified. It is no harm of sending the credential over a public
channel since any valid credential has been sent over a public channel when it is first
generated.

Protocol 4 (Showing a credential w.r.t. a pseudonym). User U; follows the protocol
below to show a credential issued by organization Oy, to another organization O, using
a pseudonym N;; that she has established with O;:

1. U; chooses r7, 15, computes A = ¢;; hlr‘ and B = hlr‘glrz, and sends N;;,A, Bto O;.

Verifying Anonymous Credential Systems in Applied Pi Calculus 225

2. U proves the validity of the credential and the ownership of N;; in

PK{(ai, a2, a3, a4, as, as, @7, a3)

1 1 1 1 1
A=A ()R),)™ AB=H"g" A1=B"(,)™()7 APy =al b
=A%) g () Py = a0

The above proof has a fourth equation which proves that the same master secret key that
is used in constructing the credential ¢; (issued by Oy), is also used in P;;, the attached
validating tag of the pseudonym N;; which is established with O;.

The two processes engaged in this protocol are:

UV?(j, l,cred, N;j) & v(r,ry).
let A = exp((cij, h)), (1, 7)), B = exp((hj, g)),(r},r})) in
let zps = ZR(ey, x;, sy, mult(r], ep), r}, vy, mult(r}, ey), sij;
A,B,a;, b, d;, g1, i, Pij,aj,bj; Fs) in
UserShow(U;, cred) . coj(k, cred, A, B, Njj, zps)

OV(N, P)E cv(l, cred, A, B, = N, zs) . ckey(= L, pk)) .
if Ver(Fs,zs)=true then CredNymVerified(O;, N, cred, O))

where

Fy € Bs = exp((B1, inv(Bs), inv(Ba), inv(B)), (a1, @2, 3, @)
A B2 = exp((B7,B6), (a5, a6)) A 1 = exp((B2, inv(B7), inv(Be)), (a1, @4, @7))
A Bs = exp((By, B10), (a2, ag))

The two processes are similar as those for Protocol 3] except that the user needs to send
a pseudonym to the verifier and it involves in the zero-knowledge proof.

Similar as CredVerified, the event CredNymVerified is executed in this protocol
by the verifier after the verification, but it contains more information than
CredVerified.

	Verifying Anonymous Credential Systems in Applied Pi Calculus
	Introduction
	The Applied pi Calculus
	Syntax and Semantics
	Representing Zero-Knowledge Proofs in Applied pi

	A General Description of Credential Systems in Applied pi
	Modeling Credential Systems
	Events

	Security Analysis of an Anonymous Credential System
	Unforgeability
	Credential Safety
	Pseudonym Untraceability

	Related Work
	Conclusion
	Description and Modeling of the CL Basic System
	Setup of the CL System
	Basic Credential System and Its Model in Applied pi

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

