
Blink ’Em All: Scalable, User-Friendly and Secure
Initialization of Wireless Sensor Nodes

Nitesh Saxena and Md. Borhan Uddin

Computer Science and Engineering
Polytechnic Institute of New York University

nsaxena@poly.edu, borhan@cis.poly.edu

Abstract. Wireless sensor networks have several useful applications in commer-
cial and defense settings, as well as user-centric personal area networks. To es-
tablish secure (point-to-point and/or broadcast) communication channels among
the nodes of a wireless sensor network is a fundamental security task. To this
end, a plethora of so-called key pre-distribution schemes have been proposed in
the past, e.g., [25][9][19][8][5]. All these schemes, however, rely on shared se-
cret(s), which are assumed to be pre-loaded onto the sensor nodes, e.g., during
the manufacturing process.

In this paper, we consider the problem of user-assisted secure initialization of
sensor network necessary to bootstrap key pre-distribution. This is a challenging
problem due to the level of user burden involved in initializing multiple (often
large number of) sensor nodes and lack of input and output user-interfaces on
sensor motes. We propose a novel method for secure sensor node initialization
based on a visual out-of-band channel that utilizes minimal output interface in
the form of LED(s) already available on most off-the-shelf sensor motes. The
proposed method requires only a little extra cost, is efficient and reasonably scal-
able. Moreover, based on a usability study that we conducted, the method turns
out to be quite user-friendly and easy to administer by everyday computer users.

Keywords: Wireless Sensor Networks, Authentication, Key Distribution.

1 Introduction

Wireless sensor networks (WSN) have several useful applications in monitoring diverse
aspects of the environment. Ready examples include monitoring of: structural/seismic
activity, wildlife habitat, air pollution, border crossings, nuclear emission and water
quality. In addition to commercial and defense settings, WSNs appeal to a variety of
user-centric applications in personal area networks [11,36,22]. In some applications,
sensor nodes operate in a potentially hostile environments and security measures are
needed to inhibit or detect node compromise and/or tampering with inter-node or node-
to-sink communication. A large body of literature has been accumulated in the last
decade dealing with many aspects of sensor network security, e.g., key management,
secure routing and DoS detection [24,14,9,7].

In a WSN environment, the nodes might need to communicate sensitive data among
themselves and with the base station (also referred to as “sink”). The communication

J.A. Garay, A. Miyaji, and A. Otsuka (Eds.): CANS 2009, LNCS 5888, pp. 154–173, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Blink ’Em All: Scalable, User-Friendly and Secure Initialization 155

among the nodes might be point-to-point and/or broadcast, depending upon the applica-
tion. These communication channels are easy to eavesdrop on and to manipulate, raising
the very real threat of the so-called Man-in-the-Middle (MiTM) attacker. A fundamental
task, therefore, is to secure these communication channels.

Key Pre-Distribution and the Underlying Assumption: A number of so-called “key
pre-distribution” techniques to bootstrap secure communication in a WSN have been
proposed, e.g., [25,9,19,8,5]. However, all of them assume that, before deployment,
sensor nodes are somehow pre-installed with secret(s) shared with other sensor nodes
and/or the sink. The TinySec architecture [15] also assumes that the nodes are loaded
with shared keys prior to deployment. This might be a reasonable assumption in some,
but certainly not all, cases. Consider, for example, a user-centric application of WSN:
an individual user (Bob) wants to install a sensor network to monitor the perimeter
of his property; he purchases a set of commodity noise-and-vibration sensor nodes at
some retailer and wants to deploy the sensor nodes with his home computer acting as
the sink. Being off-the-shelf, these sensor nodes are not sold with any built-in secrets.
Some types of sensor nodes might have a USB (or similar) connector that allows Bob
to plug each sensor node into his computer to perform secure initialization. This would
be immune to both eavesdropping and MiTM attacks. However, sensor nodes might not
have any interface other than wireless, since having a special “initialization” interface
influences the complexity and the cost of the sensor node. Also, note that Bob would
have to perform security initialization manually and separately for each sensor node. To
initialize N motes, Bob will have to perform O(N) amount of work. This undermines
the scalability of the approach since potentially a large number of sensor nodes might
be involved.

Furthermore, we argue that keys can not always be pre-loaded during the manufac-
turing phase because eventual customers might not trust the manufacturer. Moreover,
an application might involve motes produced by multiple manufacturers. A PKI-based
solution might be infeasible as it would require a global infrastructure involving many
diverse manufacturers.1

Secure Initialization Approach: The best possible strategy would be for the network
administrator or user of WSN to himself/herself perform the key distribution on-site.
Due to lack of hardware interfaces (such as USB interfaces) on sensor nodes and for
usability reasons, this key distribution should be performed wirelessly. Prior key pre-
distribution schemes assume the existence of some pre-installed secret (such as a point
on a bivariate polynomial f(x, y) in [8]) using which the shared keys can be derived.
Therefore, the task of key distribution is reduced to establishing a secure channel be-
tween the administrator’s computer (the sink node) and each sensor node. The resulting
secure channels can in turn be used to securely transfer, from the sink to each node,
the shared secrets necessary to bootstrap key pre-distribution. Since the administrator
might need to initialize a large number of sensor nodes, the process needs to be repeated

1 The problem that we consider in this paper is very similar to the problem of “wireless device
pairing,” the premise of which is also based on the fact that the devices wanting to commu-
nicate with each other do not share any pre-shared secrets or a common PKI with each other
[2].



156 N. Saxena and M.B. Uddin

in batches. The larger the number of sensor nodes in each batch, the more scalable is
the secure initialization method.

Out-of-Band Channels: In quest of a scalable sensor node initialization method, we
consider out-of-band (OOB) channels. The OOB (audio, visual or tactile) channels have
recently been utilized in the context of secure device pairing application [2,21,12,29],
used to establish shared keys between two previously un-associated devices (we review
these methods and their applicability to sensor node initialization in the following sec-
tion). Unlike the wireless communication channel, the OOB channels are both perceiv-
able and manageable by the human user(s) operating the devices, and thus can be used
to authenticate information exchanged over the wireless channel. Unlike the wireless
channel, the attacker can not remain undetected if it interferes with the OOB channel,
although it can still eavesdrop upon it.

Our Contributions: We develop a scalable sensor node initialization method based on
a visual OOB channel. Our system builds on an existing protocol of Saxena et al. [29].
However, we make two important extensions to realize the proposed system. First, we
develop a new visual channel consisting of simultaneously blinking LEDs2 as transmit-
ters on sensor nodes and a video camera on the administrator’s computer (the sink).
This enables efficient transmission of OOB data from sensor motes to the sink with
little involvement from the administrator. Second, we design a very intuitive yet effec-
tive interface on the sink that allows the administrator to easily discard any potential
“attacked” sensor nodes.

Our experiments show that with an inexpensive web cam connected to a laptop or
desktop computer, we are efficiently able to use the above visual channel to securely
initialize 16 sensor nodes per batch. To evaluate our proposal at the “usability layer,”
we pursue a thorough and systematic usability study. The results of our study show that
our system is both user-friendly as well as robust to errors (human or otherwise).

Organization: In the following section, we review the prior related work. Next, we de-
scribe the security model and summarize the relevant protocol we use. This is followed
by the description of the design and implementation of our scheme. Finally the results
of our experimental testing are presented and discussed.

2 Related Work

The problem of secure sensor node initialization has been considered only recently.
Most closely related to our proposal is the sensor network initialization method, called
“Message-In-a-Bottle” (MiB) by Kuo et al. [6]. In MiB, the key distribution takes place
inside a Faraday Cage, which is used to shield communication from eavesdropping
and outside interference. MiB can support key distribution onto multiple sensor nodes3

and from the administrator’s perspective, it is quite user-friendly. However, it has some

2 Most commercially available sensor motes possess multiple (typically three) LEDs. (For ex-
ample, refer to Mica2 specifications [1].)

3 Although it is not clear from the experiments presented in [6], at most how many motes can
be initialized per batch.



Blink ’Em All: Scalable, User-Friendly and Secure Initialization 157

drawbacks. The first problem is the need to obtain and carry around a specialized piece
of equipment – a Faraday Cage. As illustrated in [6], building a truly secure Faraday
Cage might be a challenge. The cost and the physical size of the Cage can also be
problematic. In other words, only a very few sensor motes could be supported in each
batch with a reasonably priced and reasonably sized cage. The second drawback with
MiB is that if the initialization process fails for only one sensor node or if there is an
error (e.g., if the cage was not properly closed), the entire batch of sensor nodes needs to
be re-initialized and re-keyed from scratch. Third, a batch of sensor motes must consist
of homogeneous sensor motes with similar weights (the weight is used to calculate
the number of motes inside the Cage [6]). Fourth, two additional motes (called “keying
device” and “keying beacon”) that possess physical interfaces, such as USB connectors,
are needed along with the base station and un-initialized nodes. These increase both the
cost and the complexity of the system.

The method we propose in this paper can be viewed as an alternative to MiB; the
former provides (authenticated key exchange) protocol level security whereas the latter
offers physical layer security. Our method also addresses aforementioned drawbacks
with MiB (we will discuss this in the final section of the paper). As opposed to MiB
[6], our proposal is based on public-key cryptography. We note, however, that most
commercial sensor motes are efficiently able to perform public key cryptography [20].
Elliptic-Curve Cryptography has particularly been shown to be very promising on sen-
sor motes [18].

Prior to the MiB method of [6], following schemes were proposed. However, these
schemes were aimed at associating only two sensor nodes at a time and not multiple
nodes, which is the focus of our paper. The “Shake-them-up” [4] scheme suggests a sim-
ple manual technique for pairing two sensor motes that involves shaking and twirling
them in very close proximity to each other, in order to prevent eavesdropping. While
being shaken, two sensor motes exchange packets and agree on a key one bit at a time,
relying on the adversary’s inability to determine the sending sensor node. However, it
turns out that the sender can be identified using radio fingerprinting [27] and the security
of this scheme is uncertain.

Other two related schemes are: “Smart-Its Friends” [13] and “Are You with Me?”
[17]. Both use human-controlled movement to establish a secret key between two de-
vices. In addition to having the same drawbacks as “Shake-Them-Up”, these schemes
would require an accelerometer on each sensor mote to measure movement. Most sen-
sor motes are not equipped with accelerometers, however.

The initialization method that we propose in this paper is similar to the device pairing
schemes that use an OOB channel. Thus, we also review most relevant device pairing
methods and argue whether or not they can be extended for the application of scalable
sensor node initialization. In their seminal work, Stajano and Anderson [35] proposed
to establish a shared secret between two devices using a link created through a physical
contact (such as an electric cable). As pointed out previously, this approach requires
interfaces not available on most sensor motes. Moreover, the approach would be un-
scalable.

Balfanz, et al. [2] extended the above approach through the use of infrared as an OOB
channel – the devices exchange their public keys over the wireless channel followed by



158 N. Saxena and M.B. Uddin

exchanging (at least 80-bits long) hashes of their respective public keys over infrared.
Most sensor motes do not possess infrared transmitters. Moreover, infrared is not easily
perceptible by humans.

Based on the protocol of Balfanz et al. [2], McCune et al. proposed the “Seeing-is-
Believing” (SiB) scheme [21]. SiB involves establishing two unidirectional visual OOB
channels – one device encodes the data into a two-dimensional barcode and the other
device reads it using a photo camera. To apply SiB for sensor node initialization, one
would need to affix a static barcode (during the manufacturing phase) on each mote,
which can be captured by a camera on the sink node. However, this will only provide
unidirectional authentication, since the sensor motes can not afford to have a camera
each. Note that it will also not be possible to manually input on each sensor mote the
hash of the public key of the sink, since most motes do not possess keypads and even if
they do, this will not scale.

Saxena et al. [29] proposed a new scheme based on visual OOB channel. The scheme
uses one of the protocols based on Short Authenticated Strings (SAS) [23], [16], and
is aimed at pairing two devices (such as a cell phone and an access point), only one of
which has a relevant receiver (such as a camera). The protocol is depicted in Figure 1
and as we will see in the next section, this is the protocol that we utilize in our proposal.
In this paper, we extend the above scheme to a “many-to-one” setting applicable to key
distribution in sensor networks. Basically, the novel OOB channel that we build consists
of multiple devices blinking their SAS data simultaneously, which is captured using a
camera connected to the sink. In addition, we design an intuitive user interface on the
sink that facilitates human users to clearly discard any potential “attacked” sensor nodes.

Recently, Soriente et al. [34] consider the problem of pairing two devices based on
an audio channel. Their scheme can be based on the protocol of [29], with the unidi-
rectional SAS channel consisting of one device encoding its SAS data into audio, and
the other device capturing it using a microphone. Extending this scheme to initialize
multiple sensor nodes in a scalable manner seems hard as it will be hard to decode
simultaneously “beeping” sensor nodes.

There are a variety of other pairing schemes, based on manual comparison/transfer
of OOB data: [12,37] can not be used on motes as they require displays; [33,26] are
applicable on sensor motes but would not scale well due to their manual nature.

3 Communication and Security Model, and Protocol

Model: The protocol that we utilize in our initialization method is based upon the
following communication and adversarial model [38]. The devices being paired are
connected via two types of channels: (1) a short-range, high-bandwidth bidirectional
wireless channel, and (2) auxiliary low-bandwidth physical OOB channel(s). Based
on device types, the OOB channel(s) can be device-to-device (d2d), device-to-human
(d2h) and/or human-to-device (h2d). An adversary attacking the pairing protocol is as-
sumed to have full control on the wireless channel, namely, it can eavesdrop, delay,
drop, replay and modify messages. On the OOB channel, the adversary can eavesdrop
on but can not modify messages. In other words, the OOB channel is assumed to be
an authenticated channel. The security notion for a pairing protocol in this setting is



Blink ’Em All: Scalable, User-Friendly and Secure Initialization 159

A (sensor mote) B (sink)

Pick RA ∈ {0, 1}k

(cA, dA)← commit(pkA, RA)
pkA,cA �� Pick RB ∈ {0, 1}k

pkB ,RB��
dA ��

SASA = RB ⊕HRA
(pkB)

SASA ��
RA ← open(pkA, cA, dA)

b�� � � � �� � � � b��� � � � b← (SASA == RB ⊕HRA
(pkB))

Accept pkB as B’s public key if Accept pkA as A’s public key if
b = 1 b = 1

���� : the wireless channel
�� : the unidirectional d2d channel

��� � � � : the d2h channel
�� � � �� � � : the h2d channel

pkA, pkB : public keys of devices A and B
commit() and open(): functions of a commitment scheme based on random oracle model

(in practice, SHA-1/MD5)
H(): hash function drawn from an almost universal hash function family

Fig. 1. The protocol by Saxena et al. based on the SAS protocol of Pasini-Vaudenay

adopted from the model of authenticated key agreement due to Canneti and Krawczyk
[3]. In this model, a multi-party setting is considered wherein a number of parties si-
multaneously run multiple/parallel instances of pairing protocols. In practice, however,
it is reasonable to assume only two-parties running only a few serial/parallel instances
of the pairing protocol. For example, during authentication for an ATM transaction,
there are only two parties, namely the ATM machine and a user, restricted to only three
authentication attempts. The security model does not consider denial-of-service (DoS)
attacks. Note that on wireless channels, explicit attempts to prevent DoS attacks might
not be useful because an adversary can simply launch an attack by jamming the wireless
signal.

In a communication setting involving two users restricted to running three instances
of the protocol, the SAS protocol of [29] [30] need to transmit only k (= 15) bits of
data over the OOB channels. As long as the cryptographic primitives used in the pro-
tocols are secure, an adversary attacking these protocols can not win with a probability
significantly higher than 2−k (= 2−15). This gives us security equivalent to the security
provided by 5-digit PIN-based ATM authentication.

Protocol: The protocol that we utilize [29][30] is depicted in Figure 1 (we base the
protocol upon the SAS protocol of [23], although it can similarly work with other SAS
protocol [16] as well). The protocol works as follows. Over the wireless channel, de-
vices A (sensor mote) and B (sink) follow the underlying SAS protocol (due to lack
of space, we omit describing the protocol steps over the wireless channel and refer the
reader to [29]). Then a unidirectional OOB channel is established by device A trans-
mitting the SAS data, over the d2d channel. This is followed by device B comparing
the received data with its own copy of the SAS data, and transmitting the resulting bit
b of comparison over the 1-bit d2h OOB channel (say, displayed on its screen). Finally,



160 N. Saxena and M.B. Uddin

the user reads the transmitted bit b and accordingly indicates the result to device A by
transmitting the same bit b over an h2d input channel.

For our application of secure initialization of sensor nodes, we execute the protocol
of [29] in a “many-to-one” setting. Basically, the sink runs serial or (preferably) paral-
lel instances of the pairing protocol over the wireless channel with each of the n motes
belonging to a batch. The SAS data, however, is transmitted simultaneously from each
mote to the sink. Since the SAS data is transmitted simultaneously by each mote, the
sink has no efficient way to figure out what SAS value was transmitted by which of the
motes it discovered over the wireless channel. Therefore, the sink accepts the key dis-
tribution on a particular mote A if the SAS value (derived from information transmitted
over the wireless channel) corresponding to A matches with any of the n SAS values
received over the SAS channel. Sensor mote A is therefore accepted with a probability
at most n2−k instead of 2−k as in the original “one-to-one” setting. Note that in order
to achieve the same level of security offered by a 5-digit PIN-based authentication (as
mentioned above), the length of the SAS data should now be 15 + log2(n).

The security of our initialization method is equivalent to the security of the under-
lying SAS protocol, under the assumption that the administrator correctly discards the
motes based on the result (bit b corresponding to each mote) indicated by sink.

4 Our Proposal: Secure Initialization Using a Visual Channel

In this section, we describe the design and implementation of an efficient, scalable, user
friendly and commercially viable method of secure initialization for sensor nodes. The
core of our solution relies on the protocol of [29] executed in a many-to-one setting,
as mentioned in the previous section. For transmitting the SAS data of all motes si-
multaneously over the visual channel, the LEDs of sensor motes are used for ON-OFF
encoding, and for receiving the data, video frame based image processing is used on the
receiver side.

4.1 Set-Up of the Mechanism

In our setup (Figure 3), the administrator’s computer (the sink) is connected (using a
USB interface) with a sensor node having the functionality of a base station. The sink is
also connected with a video camera (a web cam). The motes and the sink communicate
over the wireless channel. Sensor motes have their on board displays implemented using
two types of LEDs – one Sync LED (used for synchronizing the data transmission
between the mote and the sink) and at least one Data LED (used for transmitting SAS
data). The Data LEDs can be of any color (same or different), but their color(s) should
be different from the color of the Sync LED. The blinking LEDs on motes are used
to transmit the SAS data, which is captured using the camera on the sink. The sink
matches the received SAS data with its own copy of the acquired SAS data for each
mote and based on this, learns whether a particular sensor mote “passed” or “failed”
during the process. The sink also displays on its screen the result corresponding to each
sensor mote. Based on the result indicated, the administrator must remove or turn off
the failed motes. In case the sink is also connected with a printer, the screen indicating
the result can also be printed, to better assist the administrator.



Blink ’Em All: Scalable, User-Friendly and Secure Initialization 161

4.2 Role of the Administrator

The administrator needs to follow the steps shown in Figure 2. On completion of Step
5, the sink makes use of the resulting secure channels between itself and each sensor
mote to bootstrap any of the key pre-distribution schemes, e.g., [8].

Step 1. The administrator turns on the sensor motes and places them on a table, one by one.

Step 2. The administrator presses the “Start” button on the sink. This triggers the sink to
sense the nearby motes and signal them over the wireless channel to start an instance each
of the protocol of Figure 1. Once done with their SAS data computation, the motes show a
“Ready” signal to the administrator by lighting up their red LEDs, and the sink shows the
message “Focus the Camera on Ready Motes and Press OK”.

Step 3. The administrator adjusts the camera accordingly to capture the LEDs of the ready
motes and presses the “OK” button on the sink. The sink sends a “Start Transmission” signal
over wireless channel to all sensor motes simultaneously to transmit their SAS data. All
the motes transmit their SAS data simultaneously and the camera on the sink captures and
decodes the data, and shows the result on the screen and/or prints it out.

Step 4. The administrator turns off the failed motes based on the on-screen or printed output.
The turning off of a mote is to be implemented in such a manner that it is equivalent to the
mote rejecting the protocol instance it executed with the sink. If the administrator does not
turn off a particular mote, within an (experimentally determined) time period Δ, by default,
the protocol instance will be accepted by the mote. (The default acceptance mechanism is
adopted in order to improve the usability of our method. Under normal circumstances, i.e.,
when no attacks or errors occur, the administrator does not need to turn off any mote.)

Step 5. Steps 1-4 are repeated, batch by batch, until all motes are initialized successfully.

Fig. 2. The Administrator’s Role

4.3 Design and Implementation

Our sensor node initialization method requires three phases: (1) the device discovery
phase, whereby the sink discovers each mote (over the wireless channel)4, (2) protocol
execution phase, whereby the first three rounds of the SAS protocol of Figure 1 are exe-
cuted between the sink and each mote, and (3) the SAS data transmission, whereby the
sensor motes simultaneously transmit their SAS data, the sink captures them, matches
each of them with the local copies and accordingly indicates to the administrator to
discard any failed motes.

4 The sink as well as the motes need to know the actual number n of motes being initialized in
one batch, since the length k of random nonces RA and RB and of SASA in the protocol of
Figure 1, should ideally be equal to 15 + log2(n) (as discussed in Section 3). However, an
adversary might influence the value of n the sink and the motes determine by sensing over the
wireless channel. Therefore, one can hard-code the value of k on the motes and on the sink,
based on the expected maximum number of motes to be initialized in a batch. For example,
one can safely set k to be 20, if it is expected that at most only 32 motes will be initialized in
a batch.



162 N. Saxena and M.B. Uddin

Fig. 3. The Overall Set-up of Mechanism Fig. 4. Experimental setup: Re-
ceiver is Web camera, Transmit-
ters are LEDs on Breadboard

Fig. 5. Synchronization of Transmission (using LEDs) and Reception (on sink) of Data

We were most interested in the third phase as it is an essential element of our
proposal. To this end, we have developed an application in Microsoft Visual C# that
simulates our sensor node initialization process. The application has two parts – the
transmitter simulating the sensor nodes and the receiver simulating the sink; running on
two different computers. The transmitter encodes and transmits the SAS data using the



Blink ’Em All: Scalable, User-Friendly and Secure Initialization 163

display consisting of three blinking LEDs per sensor mote. All motes show the ith bit
of their respective SAS data simultaneously. The sink captures the transmitted data as
a video stream using its camera, extracts the SAS data for each mote, compares it with
its own local copy for the corresponding mote and displays the result on screen and/or
prints it out through a printer connected to it. Instead of dealing with real motes5, we
simulated the display of motes using LEDs on a breadboard, integrated with the trans-
mitter through the parallel port of the transmitting computer. It is important to note
that our simulated set-up very closely resembles a real system as viewed from usability
perspective, which is the primary focus of our evaluation.

Encoding using LEDs: In our simulation, each mote is equipped with one Sync LED
(red color LED) for synchronization at the beginning and end of SAS data transmission
and two Data LEDs(green color LEDs) for transmitting the SAS data. We simulated
the display of a total of 16 sensor motes on a breadboard(Figure 6) each having three
LEDs as most commercially available motes; however, our implementation supports an
arbitrary number of LEDs (with an arbitrary physical topology) and two distinct but not
fixed color LEDs(for differentiating Sync and Data LEDs).

The sync LED (kept “ON” at the beginning and end of SAS data transmission;
“OFF”, otherwise) is used to indicate the beginning and end of the SAS data trans-
mission and to detect any synchronization delays, adversarial or otherwise, between the
motes and the sink.

The data LEDs are used for SAS data transmission by indicating different bits
(‘0’/‘1’) using different states (OFF/ON) of LEDs. If N is the number of Data LEDs,
the transmitter can display N bits of SAS data at a time. The states of the sync and data
LEDs are kept unchanged for a certain time period (named “hold time”; experimentally
determined as 250ms); so that, a stable state (named “BitFrame”) can be easily cap-
tured in the video stream of the receiver video camera. After every 250 ms, next N bits
of the SAS data are simultaneously shown by each mote in the next frame. This process
continues until all bits of SAS data are transmitted. If the last frame does not have N
number of SAS bits to show, the beginning required LEDs show the data bits and the
remaining are kept OFF.

For discovering the location, color, dimension of LEDs for each mote at the receiver
side, two extra frames are needed at the beginning of data transmission – an “All-ON”
frame having all LEDs in ON state and an “All-OFF” frame having all LEDs in OFF
state. In addition to All-ON and All-OFF frames, another frame is required at the end
of SAS data transmission, to detect synchronization delays having the Sync LED in ON
state and the data LEDs in OFF state. Therefore, overall a total of three extra frames
are required. Thus, for 20-bit SAS data transmission(recall that [15+ log2(16)]-bit long
SAS is required for 16 motes) the total number of frames to be transmitted is � 20

N �+ 3,
which yields a total transmission time of (� 20

N � + 3) × 250 ms. For transmitting 20-bit
SAS data using N=2 data LEDs, there is requirement of a total of 13 frames and thus a
total of 3.25 seconds of transmission and capturing time.

5 Since we wanted to deal with a number of motes, a testbed consisting of real motes was not
affordable, nor was it necessary.



164 N. Saxena and M.B. Uddin

Decoding using a Video Camera: For successfully decoding the data transmitted using
the LEDs of motes, the receiver video camera must have a frame rate higher than the
transmission rate. If frames are not carefully captured from the video stream, there is
a likelihood of obtaining the counterfeit frames, which contain the transition state of
LEDs.

Resolving the Timing Issue of Frame Capturing: We assume that the transmission
delay of “Start Transmission” (ST) signal from the receiver to the transmitter is neg-
ligible (5-6 ms) compared to the “hold time” (HT) (of 250 ms) and the receiver video
camera also has a delay (about 30-40 ms, since most common cameras have a rate of
30-40 frames per second) of capturing the frame from video stream. Bases on this as-
sumption, the receiver captures the first frame from the video stream after a time, equal
to 0.6× HT (i.e. after 150 ms), termed as “initial waiting” (IW), after sending the sig-
nal. The sink pre-calculates capturing (saving frames into memory from video stream
buffer) timestamps for all frames by adding the IW + (HT (250ms) ×“frame index”),
with the timestamp of sending of the ST signal. The frames are captured into memory
at the corresponding timestamps. Figure 5 depicts the synchronization of transmission
and reception of SAS data. In this figure each small rectangle on the receiving window
denotes a video frame of video stream and brown arrow marked with “Video Frame
Streaming” denotes the propagation of transmitted signal to streamed frame in the video
stream, which implies that there is some propagation delay of an input transition from
transmitter’s side to the receiver’s video stream.

Detection of LEDs and Retrieval of SAS data: The frames are processed after the
completion of capturing of all required frames. Our LED location and dimension detec-
tion algorithm is simple yet fast, robust and efficient, unlike existing object/face detec-
tion algorithms [28,31,39]. The algorithm detects the position and dimension of LEDs
deterministically. It is able to detect any shape/geometry of LEDs unlike [39] and does
not require any prior training unlike [28,31]. The algorithm uses the color threshold
adjustment technique like [40] to detect the position and dimension of LEDs.

The maximal differences of RGB values, max(dR, dG, dB) (denoted as μ), of each
pixel of All-OFF and All-ON frames are measured and kept in memory. Using a thresh-
old value for μ, bit-strings are built for each row of pixels. For example, if μ exceeds a
certain threshold, the corresponding bit in the string becomes ‘1’, otherwise it becomes
a ‘0’.

Each bit-string is matched against a regular expression for consecutive 1s. For each
matching bit-string, its center is calculated and its safeness and centeredness as an LED
center is checked by matching against the already explored LEDs and exploring only
the nearby pixels of this center in the frame. If its safeness and centeredness is proved,
it is accepted as an LED and its coordinates are included in the explored list of LEDs.
This process continues up to a number of times by adjusting the threshold value of μ
and constructing the new bit strings until all LEDs are detected. In Figure 7, we show
an example of detection of LEDs from the bit-string.

After successful discovery of LEDs, the length, width, average RGB values of ON
and OFF states of LED area, for each LED are stored in memory for detecting the
ON/OFF state of LEDs in subsequent BitFrames. Successfully discovered LEDs are



Blink ’Em All: Scalable, User-Friendly and Secure Initialization 165

Fig. 6. Transmitter: Breadboard with 48 LEDs
Simulating Displays of 16 Motes

Fig. 7. Detected LEDs from BitString

clustered according to a threshold value of proximity among themselves, for identifying
the displays of different sensor motes.

After successful detection of all motes, the data LEDs of each mote are sorted ac-
cording to the left-to-right and top-to-bottom ordering of coordinates. Now SAS data
for each mote is extracted from the BitFrames by comparing the average RGB values
of LEDs with previously saved (from All-OFF and All-ON frames) OFF and ON state
RGB values of LEDs. For each extracted SAS, the sink matches it with its own com-
puted list of “free” SAS values. If there is a match, the sink marks the corresponding
computed SAS as “used” and the mote as “SAS Matched”. If extracted SAS of a mote
does not match with any free SAS values, the corresponding mote and all motes having
the same SAS are marked as “SAS Mismatched”. Each BitFrame is then examined: the
Sync LEDs of all motes should be in the OFF state, except for the last frame, where the
Sync LED should be in the ON state and all data LEDs of all motes should be in the
OFF state. If this is not the case, it implies that a synchronization error occurred.

If for a mote, both “SAS Matched” and “Sync Matched” are true, the sink accepts the
mote as a “passed”; otherwise, it rejects the mote as a “failed” due to mismatch of SAS
and/or synchronization errors. The LEDs of a passed mote are marked with a rectangle
of green color; and the LEDs of a failed mote are crossed out with red color (Figure 8).
Additionally, an automatic printing of the result-screen is done by the printer connected
to the sink. By observing the graphical result on screen of the sink and/or the printed
result, the administrator discards the failed motes.

5 Experiments and Results

5.1 Experimental Setup

To test our simulator implementing the sensor node initialization method, we used the
following set-up. The sink is running on a DELL Vostro 1500 Laptop (1.6 GHz CPU,
2GB RAM, WinXP Pro SP2) connected with a USB Web Camera (Microsoft LifeCam
VX6000, up to 30 frames/sec, live video streaming of resolution 640X480 pixels) and
a wireless printer. The webcam can be replaced with any similar camera with a frame



166 N. Saxena and M.B. Uddin

rate 30 fps or higher, without any modification to the existing simulator. The camera
is set in NON STOP video capturing mode and frames are taken setting the camera in
preview mode. Camera controller is added to the simulator to allow adjusting the focus,
tilt and pan of camera as needed.

The transmitting side of the simulator runs on a DELL desktop computer (1.8 GHz
CPU, 1 GB RAM, WinXP Pro SP2) connected with LEDs on breadboard (Figure 6)
through parallel port (DB25 Connector). The laptop and the desktop computer are con-
nected with our university’s wireless connection (54 Mbps). Figure 4 has a snapshot of
our set-up.

5.2 Usability Testing

In order to test how our method fares with non-expert users, and especially to figure out
if the users are easily and correctly able to discard the failed sensor motes based on the
result screen (and/or print-out), we performed a usability study.

Testing Framework: For creating an automated testing framework, we extended the
transmitter application running on the desktop computer by implementing the usability
testing and user feedback collection functionality on it. The sink application running on
the laptop was configured to send the result (indicating passed or failed motes) to the
desktop application, as soon as it was determined. As there is no interface on breadboard
using which the users can turn off the failed mote(s), we simulated the “turning off”
mechanism in the desktop application. As soon as the desktop application receives the
result from the laptop application, it shows the layout of the mote field (i.e., the bread-
board) on screen, associating each sensor mote with a transparent button with the layout
of the mote in the background. The users are instructed to transfer the result from the
laptop screen to the desktop screen by clicking on the buttons (on the desktop screen)
corresponding to the failed motes shown on the laptop screen. After test completion, the
desktop application has the functionality of showing the questionnaires to obtain user
feedback and logging the data. In our current tests, we did not make use of the printed
output.

Test Cases: We created five categories of test cases to evaluate our method against
different types of possible attacks and errors. These included (1) matching SAS and
no synchronization errors (to simulate normal execution scenarios, where no attacks
or faults occur), (2) (single- and multiple-bit) SAS mismatch on a varying number of
motes; (3) missing, pre-mature and delayed turning on of the Sync LED (to simulate
synchronization errors), (4) both SAS mismatch and synchronization errors, and (5)
variable distance (from 0.5 to 2 feet) between the camera and the transmitters. Ten test
cases for each category were created. Each user executed a total of five test cases, one
each selected randomly from each of the five categories.

A (portion of the) screenshot of the result of execution of one of the test cases is
shown in Figure 8.
Test Participants: We recruited 21 subjects6 for our usability testing. Subjects were
chosen on a first-come first-serve basis from respondents to recruiting posters and email

6 It is well-known that a usability study performed by 20 participants captures over 98% of
usability related problems [10].



Blink ’Em All: Scalable, User-Friendly and Secure Initialization 167

Fig. 8. Result Screen: 7 Failed Motes (marked by “red
cross”), 9 Passed Motes (marked by “green rectan-
gle”)

Fig. 9. Average time (per test case ex-
ecution) taken by 21 subjects with
standard error. Subjects are sorted by
average time.

ads. At the end of the tests, the participants were asked to fill out an on screen question-
naire through which we obtained user demographics and their feedback on the method
tested.

Recruited subjects were mostly university students, both graduate and undergradu-
ate, with CS and non-CS backgrounds. This resulted in a fairly young (ages between 22-
31 [mean=25.48, se=0.5417]), well-educated participant group. All participants were
regular computer users. 19 out of 21 participants reported they have previously used
a PC camera (for internet chat). None of the study participants reported any physical
impairments that could have interfered with their ability to complete given task. The
gender split was: 17 males and 4 females.

Testing Process: Our study was conducted in a graduate student laboratory of our uni-
versity. Each participant was given a brief overview of our study goals and our experi-
mental set-up. Each participating user was then asked to follow on-screen instructions
on the laptop and desktop computer. No training of any sort was given. Basically, the
participants played the role of the administrator in the sensor node initialization method,
as depicted in Figure 2. Sink output, user interactions throughout the tests and timings
were logged automatically by the testing framework.

After completing the deputed test cases in the above manner, the participants were
asked to give some qualitative feedback on how easy or hard they found to focus
the camera on all LEDs, to read the result of the output screen and about the overall
ease/difficulty of the method. Participants demographic information such as age, gen-
der, educational qualification, visual disability, computer and camera experience is also
collected through this questionnaire. All user data and feedback was logged by the test-
ing framework for future analysis.

Test Results: Each of our 21 subjects executed 5 test cases, leading to a total of 105
test cases. Most of the test cases executed successfully giving expected results. In some
cases, however, we observed a few errors, which we categorize and describe below.



168 N. Saxena and M.B. Uddin

– Camera Adjustment Error: We configured our usability testing application in such
manner that if all the LEDs are not within the camera viewpoint, an error message is
shown to the user asking him/her to re-execute. In our tests, 2 users failed to adjust
the camera on one occasion each and thus they had to repeat the tests. Therefore,
the rate of camera adjustment error equals 2

(105+2) × 100% = 1.87% of test cases.
– Sink Mis-reading Error: Sometimes the sink is not able to correctly read the SAS

string(s) transmitted by one or more sensor nodes. This could happen when the
camera is too distant (> 2 feet) from the sensor motes or due to reflection of LED
light on the table and other nearby surfaces. In our tests, this type of error occurred
for a total of 7 motes, where SAS strings of 1 or 2 motes were mis-read in some 5
test cases. In 105 testcases, the sink dealt with a total of (105 × 16) = 1680 motes
on breadboard and out of them 7 motes failed due to sink errors. So, rate of sink
mis-reading error equals 7

1680 ×100% = 0.417%. Note that all of these errors were
only false positives, i.e., the mistakenly marked a passed mote as a failed one.

– User Error: A user error occurs when the user is not able to correctly transfer
the result, from the laptop screen to the desktop screen (simulating switching off
the failed mote). In our tests, 3 users accidentally clicked, on one occasion each,
a passed mote on the desktop screen (this implies that a passed mote was turned
off). However, it is important to note that on no occasions did a user miss clicking
on a failed mote. In other words, we did get a few false positives but no false
negatives whatsoever. Thus, rate of user errors from our tests turned out to be equal
to 3

1680 × 100% = 0.18%.

The average time taken by each user (over the 5 test cases), to complete Steps 2 to
4 of Figure 2, is depicted in Figure 9. As we see, the time taken by all of our users
to perform a test is less than a minute [mean=26.5 seconds, se=1.37]. Note that these
numbers arise when we assume a fairly conservative setting, one where both normal
scenarios and attacks or faults occur with equal likelihood. However, in practice, attacks
or faults are less likely. Therefore, considering only the normal test case, we find that
that on an average a user only takes 19.18 seconds [se=1.11] to complete the whole
process.

The results we obtained through the user feedback questionnaire are shown in
Table 1. Clearly, most users found the method robust and quite easy to work with. We
did not find any notable correlation of the subjects’ age, gender and technical expertise
with the results obtained for the method, however.

Table 1. User Feedback (numbers denote the number of users)

Easiness
Very
Easy

Easy
Medium
Difficult

Difficult
Very
Difficult

Impossible

Camera Adjustment over LEDs 5 13 3 0 0 0
Detection of Failed Motes 11 10 0 0 0 0

Easiness of Mechanism 7 10 4 0 0 0



Blink ’Em All: Scalable, User-Friendly and Secure Initialization 169

6 Discussion

We proposed a novel method for secure initialization of sensor nodes. Based on the
results of our testing with the proposed method, we discuss the following properties.

6.1 Efficiency

Using N Data LEDs and one Sync LED per sensor node, the transmission requires [� 20
N �+

3]×250 ms. This is equal to 3.25 sec for N=2 and 20-bit SAS data. Extraction of SAS data
from captured frames and displaying the result on screen require less than 3-4 seconds.
So, execution time of the method is 7-8 seconds. Overall, as our experiment results show,
most users took less than a minute to perform the whole process. Also, as shown in [20],
most existing commercial sensor motes (e.g. Mica2) can efficiently execute (within a
minute) the public key operations (private and public key generation, and one exponen-
tiation). Note that these operations constitute the dominant costs in the SAS protocol
(of Figure 1) that a sensor node executes with the sink. The sink, on the other hand, is
assumed to be a computer with a fairly strong computational power and therefore can
efficiently execute n parallel protocol instances with each of the sensor nodes.

Based on the above numbers, we recommend setting Δ = 2 minutes, as the time
period (to complete Steps 2 to 4 of Figure 2) by which the key initialization will be
accepted by each sensor node, by default. As our experiments show, within 2 minutes, a
human user can safely complete the initialization process, turning off any (failed) sensor
nodes, if necessary.

6.2 Robustness

Our method is quite robust to varying distances between the transmitter and receiver.
The distance between the camera and sensor motes on breadboard can be up to 2 feet.
The method also works quite well in varying lighting and brightness conditions as it de-
terministically learns the environment using the first two, All-OFF and All-ON, frames
in each session. The method could fail in presence of background noise during trans-
mission and reception of SAS data. Huge variations of lighting conditions during trans-
mission of SAS data which exceed color threshold of LEDs or shaking or displacement
of all sensor motes/camera while transmission of SAS data exceeding the dimension
threshold of LEDs will also cause failure of the method. However, these will only lead
to false positives and not to an attack. Except for the camera adjustment errors (as dis-
cussed previous section), all errors occurring with our method are localized i.e, if a
single sensor mote fails due to some reason, only that particular sensor node needs to
be re-initialized. Note that this is unlike the MiB scheme of [6], where any errors lead
to the re-initialization/re-keying of the whole batch of sensor motes. Even when camera
adjustment occur in our method, only the SAS data transmission needs be repeated, not
the whole initialization process. On the other hand, MiB is less prone to user errors than
our method. However, our results indicate that our user errors only lead to false posi-
tives and are negligible nevertheless. In our future work, we plan to explore how default
rejection (as opposed to our current default acceptance mechanism) would impact the
efficiency, usability and scalability of our method. It will clearly improve security.



170 N. Saxena and M.B. Uddin

6.3 Scalability

Our method can be used to initialize multiple sensor nodes per batch. We tested the
method with 16 sensor nodes having three LEDs each. Compared to prior work, which
only allows for initialization of two motes, this is a significant improvement.7 By using
good quality wide-angle cameras (which will somewhat increase the overall cost of the
system), this number can be further improved, we believe. We are currently exploring
ways to make our method more scalable. Note that increase in the number of sensor
nodes will come at only a slight cost of increase in the length of SAS data. For example,
to support 128 sensor nodes, we would need to transmit 22 SAS bits. However, this will
make the task of detecting failed motes much harder for the administrator in case the
system is under attack by a man-in-the-middle attacker.

6.4 Usability

Via a systematic usability study, we find that our method is quite user friendly. It does
not require any expertise or prior training. Little or no acquaintance with the method
is enough to administer the process. It is easy to work with and enables safe detection
of failed sensor nodes by observing the result on the screen of the sink. Unlike the
MiB scheme of [6], the administrator does not have to deal with a specialized and often
cumbersome Faraday Cage. Of course, the administrator has to deal with a camera in
our method; however, most users are getting more and more familiar with cameras as
they become ubiquitous and our usability study (Table 1) shows that most users found
the task “camera adjustment to LEDs” to be easy . Moreover, a camera can be used
for purposes other than key distribution and is thus not truly specialized. Also note that
the sensor motes per batch do not need to be homogeneous. They can have different
number, color of LEDs, in any topology/orientation whatsoever (the only requirement
being they all possess one RED colored LED to act as the Sync LED). Recall that
this is unlike MiB [6], which can only support homogeneous sensor motes with very
similar weights. We consider this as an important issue with respect to usability – an
administrator might need to initialize a diverse pool of sensor motes and should not
need to group them up.

6.5 Power Requirements

From [20], we know that most available commercial motes can do public key crypto
operations using only a small amount of power. Now, we show that the SAS data trans-
mission through blinking LEDs also incurs a minimal overhead on motes in terms of
power. For 20-bit SAS data transmission, the three LEDs on each mote light-up 13 times
(for a period of 250ms), i.e., for a duration of 13 × 250=3.25seconds. Each LED has a
drop voltage, V = 2.9 Volts (typical range 1.7-3.3 Volts); Current Rating, I= 2.2 mA (typ-
ical range 2-3 mA). Therefore, the maximum energy consumption per mote (3 LEDs),
E=3× (V × I × t)= 3× (2.9× 2.2× 10−3 × 3.25) Volt-A-seconds =0.062205 Joules.

7 Although the MiB [6] method considers multiple sensor nodes, the maximum number of nodes
that can be securely initialized per batch is not clear from the experiments and results presented
in [6]. We believe this number would be limited by the size of the Faraday Cage used.



Blink ’Em All: Scalable, User-Friendly and Secure Initialization 171

As stated in [20], the Energizer No. E91, two AA batteries used in Mica2 motes, have a
total energy of 2× (1.5× 2.850× 3600)=30780 Joules. So, our SAS data transmission
requires 0.062205

30780 × 100% = 0.0002% of battery life of Mica2. As shown in [20], public
key generation requires 0.816 Joules of energy. Thus, our SAS data transmission is more
that 13.11 times better than the public key generation in terms of power consumption

6.6 Simplicity and Economic Viability

The sink needs only a camera and each sensor node requires at least two LEDs (one
Sync and one Data) which are very cheap and commonly available. In fact, most exist-
ing commercial sensor motes have three LEDs. Our method is quite economic, as op-
posed to MiB [6] which requires a specialized Faraday Cage and two additional motes
having USB interfaces (called “keying device” and “keying beacon” ) along with a base
station and un-initialized nodes.

6.7 Resistance to Malicious Sensor Nodes

Our method offers a natural protection against corrupted or malicious sensor nodes8.
Our method is based on an authenticated key exchange protocol following the security
model of [3]. This model guarantees that an adversary who learns session key(s) corre-
sponding to some corrupted session(s), does not learn any information about the keys
corresponding to other uncorrupted sessions. This is unlike MiB [6], where a single
corrupted sensor node can compromise keys corresponding to all other sensor nodes9.

7 Conclusion and Future Work

In this paper, we presented a novel scalable method of secure sensor node initialization.
The proposed method offers (authenticated key exchange) protocol level security for
key pre-distribution process using visual OOB channel. This is a promising alternative
to MiB [6], the only prior work in this area, which offers physical layer security by
attenuating and jamming the wireless signals. We believe that achieving physical layer
security on insecure wireless channel might be a tough task and require specialized and
expensive equipment. Via a thorough and systematic usability study, we showed that
our method has several advantages over MiB in terms of scalability, usability, simplicity
and economic viability. Our future work includes usability study of the default rejection
mechanism as discussed in previous section and improvement of the scalability of the
mechanism by using slightly better quality cameras.

Acknowledgements

We would like to thank Jonathan Voris for his comments on an earlier version of this
paper and CANS’09 anonymous reviewers for their feedback.

8 A manufacturer could possibly sneak in malicious sensor node(s) along with normal sensor
nodes shipped to a customer, as pointed out in [6].

9 [6] suggests using a software-based attestation technique [32] to prevent this attack.



172 N. Saxena and M.B. Uddin

References

1. Mica2 specifications, http://www.xbow.com/Products/Product pdf files/
Wireless pdf/MICA2 Datasheet.pdf

2. Balfanz, D., Smetters, D., Stewart, P., Wong, H.C.: Talking to strangers: Authentication in
ad-hoc wireless networks. In: Network & Distributed System Security (NDSS) (2002)

3. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for building
secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, p. 453.
Springer, Heidelberg (2001)

4. Castelluccia, C., Mutaf, P.: Shake them up!: a movement-based pairing protocol for cpu-
constrained devices. In: International Conference on Mobile Systems, Applications, and Ser-
vices (MobiSys) (2005)

5. Chan, H., Perrig, A., Song, D.X.: Random key predistribution schemes for sensor networks.
IEEE Security & Privacy (2003)

6. Cynthia, K., Luk, M., Negi, R., Perrig, A.: Message-in-a-bottle: User-friendly and secure
key deployment for sensor nodes. In: ACM Conference on Embedded Networked Sensor
Systems (SenSys) (2007)

7. Du, W., Deng, J., Han, Y., Chen, S., Varshney, P.: A key management scheme for wireless
sensor networks using deployment knowledge. In: IEEE INFOCOM 2004 (March 2004)

8. Du, W., Deng, J., Han, Y.S., Varshney, P.K.: A pairwise key pre-distribution scheme for
wireless sensor networks. In: ACM Computer and Communications Security, CCS (2003)

9. Eschenauer, L., Gligor, V.D.: A key-management scheme for distributed sensor networks. In:
ACM Computer and Communications Security (CCS) (2002)

10. Faulkner, L.: Beyond the five-user assumption: Benefits of increased sample sizes in usability
testing. Behavior Research Methods, Instruments, & Computers 35(3), 379–383 (2003)

11. Giorgetti, G., Manes, G., Lewis, J.H., Mastroianni, S.T., Gupta, S.K.S.: The personal sensor
network: a user-centric monitoring solution. In: BodyNets 2007: Proceedings of the ICST
2nd international conference on Body area networks (2007)

12. Goodrich, M.T., Sirivianos, M., Solis, J., Tsudik, G., Uzun, E.: Loud and Clear: Human-
Verifiable Authentication Based on Audio. In: International Conference on Distributed Com-
puting Systems (ICDCS) (2006)

13. Holmquist, L.E., Mattern, F., Schiele, B., Alahuhta, P., Beigl, M., Gellersen, H.-W.: Smart-
Its Friends: A Technique for Users to Easily Establish Connections between Smart Artefacts.
In: Abowd, G.D., Brumitt, B., Shafer, S. (eds.) UbiComp 2001. LNCS, vol. 2201, p. 116.
Springer, Heidelberg (2001)

14. Hu, F., Sharma, N.: Security considerations in ad hoc sensor networks. Ad Hoc Networks 3
(2005)

15. Karlof, C., Sastry, N., Wagner, D.: Tinysec: a link layer security architecture for wireless
sensor networks. In: ACM Conference on Embedded Networked Sensor Systems (SenSys)
(2004)

16. Laur, S., Asokan, N., Nyberg, K.: Efficient mutual data authentication based on short authen-
ticated strings. In: Pointcheval, D., Mu, Y., Chen, K. (eds.) CANS 2006. LNCS, vol. 4301,
pp. 90–107. Springer, Heidelberg (2006)

17. Lester, J., Hannaford, B., Borriello, G.: Are You with Me? - Using Accelerometers to De-
termine If Two Devices Are Carried by the Same Person. In: International Conference on
Pervasive Computing ( Pervasive) (2004)

18. Liu, A., Ning, P.: Tinyecc: A configurable library for elliptic curve cryptography in wireless
sensor networks. In: Information Processing in Sensor Networks (IPSN) (2008)

19. Liu, D., Ning, P.: Establishing pairwise keys in distributed sensor networks. In: ACM Com-
puter and Communications Security (CCS) (2003)

20. Malan, D.J., Welsh, M., Smith, M.D.: A public-key infrastructure for key distribution in
tinyos based on elliptic curve cryptography. In: IEEE Communications Society Conference
on Sensor, Mesh and Ad Hoc Communications and Networks (SECON) (2004)

http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICA2_Datasheet.pdf
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICA2_Datasheet.pdf


Blink ’Em All: Scalable, User-Friendly and Secure Initialization 173

21. McCune, J.M., Perrig, A., Reiter, M.K.: Seeing-is-believing: Using camera phones for
human-verifiable authentication. IEEE Security & Privacy (2005)

22. Milenkovic, A., Otto, C., Jovanov, E.: Wireless sensor networks for personal health mon-
itoring: Issues and an implementation. Computer Communications 29(13-14), 2521–2533
(2006)

23. Pasini, S., Vaudenay, S.: SAS-based authenticated key agreement. In: Yung, M., Dodis, Y.,
Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 395–409. Springer, Hei-
delberg (2006)

24. Perrig, A., Stankovic, J., Wagner, D.: Security in wireless sensor networks. Communications
of the ACM 47, 53–57 (2004)

25. Perrig, A., Szewczyk, R., Wen, V., Culler, D.E., Tygar, J.D.: Spins: security protocols for
sensor netowrks. In: ACM Annual International Conference on Mobile Computing and Net-
working (MOBICOM) (2001)

26. Prasad, R., Saxena, N.: Efficient device pairing using human-comparable audiovisual pat-
terns. In: Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS,
vol. 5037, pp. 328–345. Springer, Heidelberg (2008)

27. Rasmussen, K.B., Capkun, S.: Implications of radio fingerprinting on the security of sensor
networks. In: International Conference on Security and Privacy in Communication Networks
(SecureComm) (2007)

28. Rowley, H.A., Baluja, S., Kanade, T.: Neural network-based face detection. In: Pattern Anal-
ysis and Machine Intelligence (PAMI) (1998)

29. Saxena, N., Ekberg, J.-E., Kostiainen, K., Asokan, N.: Secure device pairing based on a
visual channel. IEEE Security & Privacy, short paper (2006)

30. Saxena, N., Uddin, B.: Automated device pairing for asymmetric pairing scenarios. In: Chen,
L., Ryan, M.D., Wang, G. (eds.) ICICS 2008. LNCS, vol. 5308, pp. 311–327. Springer,
Heidelberg (2008)

31. Schneiderman, H., Kanade, T.: A statistical method for 3d object detection applied to faces
and cars. In: IEEE Conference on Computer Vision and Pattern Recognition (June 2000)

32. Seshadri, A., Perrig, A., van Doorn, L., Khosla, P.K.: Swatt: Software-based attestation for
embedded devices. IEEE Security & Privacy (2004)

33. Soriente, C., Tsudik, G., Uzun, E.: BEDA: Button-Enabled Device Association. In: Interna-
tional Workshop on Security for Spontaneous Interaction (IWSSI) (2007)

34. Soriente, C., Tsudik, G., Uzun, E.: HAPADEP: Human-assisted pure audio device pairing.
In: Wu, T.-C., Lei, C.-L., Rijmen, V., Lee, D.-T. (eds.) ISC 2008. LNCS, vol. 5222, pp. 385–
400. Springer, Heidelberg (2008)

35. Stajano, F., Anderson, R.J.: The resurrecting duckling: Security issues for ad-hoc wireless
networks. In: Security Protocols Workshop (1999)

36. Tatbul, N., Buller, M., Hoyt, R., Mullen, S., Zdonik, S.: Confidence-based data management
for personal area sensor networks. In: DMSN 2004:1st international workshop on Data man-
agement for sensor networks. ACM, New York (2004)

37. Uzun, E., Karvonen, K., Asokan, N.: Usability analysis of secure pairing methods. In: Di-
etrich, S., Dhamija, R. (eds.) FC 2007 and USEC 2007. LNCS, vol. 4886, pp. 307–324.
Springer, Heidelberg (2007)

38. Vaudenay, S.: Secure communications over insecure channels based on short authenticated
strings. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 309–326. Springer, Heidel-
berg (2005)

39. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In:
IEEE Conference on Computer Vision and Pattern Recognition (2001)

40. Weszka, J.: A survey of threshold selection techniques. Computer Graphics and Image Pro-
cessing 7 (1978)


	Blink 'Em All: Scalable, User-Friendly and Secure Initialization of Wireless Sensor Nodes
	Introduction
	Related Work
	Communication and Security Model, and Protocol
	Our Proposal: Secure Initialization Using a Visual Channel
	Set-Up of the Mechanism
	Role of the Administrator
	Design and Implementation

	Experiments and Results
	Experimental Setup
	Usability Testing

	Discussion
	Efficiency
	Robustness
	Scalability
	Usability
	Power Requirements
	Simplicity and Economic Viability
	Resistance to Malicious Sensor Nodes

	Conclusion and Future Work



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




