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Abstract. We consider generic Garbled Circuit (GC)-based techniques
for Secure Function Evaluation (SFE) in the semi-honest model.

We describe efficient GC constructions for addition, subtraction, mul-
tiplication, and comparison functions. Our circuits for subtraction and
comparison are approximately two times smaller (in terms of garbled
tables) than previous constructions. This implies corresponding compu-
tation and communication improvements in SFE of functions using our
efficient building blocks. The techniques rely on recently proposed “free
XOR” GC technique.

Further, we present concrete and detailed improved GC protocols for
the problem of secure integer comparison, and related problems of auc-
tions, minimum selection, and minimal distance. Performance improve-
ment comes both from building on our efficient basic blocks and several
problem-specific GC optimizations. We provide precise cost evaluation
of our constructions, which serves as a baseline for future protocols.

Keywords: Secure Computation, Garbled Circuit, Millionaires Prob-
lem, Auctions, Minimum Distance.

1 Introduction

We are motivated by secure function evaluation (SFE) of integer comparison,
and related problems such as auctions and biometric authentication. For this, we
propose new, more efficient SFE protocols for these functions. More specifically,
we propose improved constructions for subtraction, and comparison functions,
and demonstrate their advantages on the example of our motivating applications.

Comparison is a widely used basic primitive. In particular, it plays an espe-
cially important role in financial transactions, biometric authentication, database
mining applications, etc.
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Auctions. With the growth of the Internet and its widespread acceptance as the
medium for electronic commerce, online auctions continue to grow in popularity.
Additionally, many sellers consider the “name your price” model. For example,
sites such as priceline.com ask a buyer for a price he is willing to pay for a prod-
uct, and the deal is committed to if that price is greater than a certain (secret)
threshold. In many such situations, it is vital to maintain the privacy of bids
of the players. Indeed, revealing an item’s worth can result in artificially high
prices or low bids, specifically targeted for a particular buyer or seller. While a
winning bid or a committed deal may necessarily reveal the cost of the transac-
tion, it is highly desirable to keep all other information (e.g., unsuccessful bids)
secret. There has been a large stream of work dedicated to ensuring privacy and
security of online auctions and haggling (e.g., [13,7,39]). Our work complements,
extends, and builds on it.

Biometric authentication. Widespread adoption of biometric authentication
(e.g., fingerprint or face recognition) is causing strong concerns of privacy viola-
tions. Indeed, improper use of biometric information has far more implications
than “simple” collection of personal information. Adoption of privacy-preserving
biometric authentication is highly desired and will benefit the users and the ad-
ministrators of the systems alike. Because biometric images are never scanned
perfectly, the identity of the user is determined by proximity of the scanned
and stored biometrics. It is natural, therefore, that threshold comparisons are
frequently employed in such identification systems. Further, in some multi-user
systems, it may be desired to simply find the closest match in the database. In
such systems, secure comparison would be also extensively used.

State of the art for secure comparison and related algorithms. Starting
with the original paper of Yao [45], secure comparison, also referred to as the
“two Millionaires problem”, has attracted much attention [46,20,37,31]. A va-
riety of techniques are employed in these solutions – homomorphic encryption,
evaluation of branching programs, Garbled Circuit (GC).

Today, in the standard computational setting, the most efficient protocol is
the simple evaluation of the generic GC. Indeed, the size of the comparison
circuit is quite small (linear in the size of the inputs), and its secure evaluation
is rather efficient (linear number of Oblivious Transfers (OT) and evaluations of
a cryptographic hash function, such as SHA-256).

Most popular alternative solutions are based on homomorphic encryptions.
For comparison, they offer a similar complexity compared to GC, as they still
must perform a linear (in the input) number of public key operations by both
players. However, GC offers more flexible and cheap programming possibilities,
due to its low cost of manipulation of boolean values. In contrast, homomorphic
encryptions are not suitable, e.g., for branching based on the encrypted value
which can be achieved only with much more expensive techniques than GC).

In sum, GC approach is a clear choice for integer comparison, its extensions,
such as auctions, simple integer manipulations (addition and even multiplica-
tions) and a variety of other problems that have small circuit representation. We
build our solutions in this framework.
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Our contributions. As justified above, our work is based on GC. We advance
the state of the art of SFE for subtraction and comparison functions, by con-
structing their more efficient GC representations. We work in the semi-honest
model which is appropriate for many application scenarios.

More specifically, our optimizations take advantage of the recently proposed
method of GC construction [33], where XOR gates are evaluated essentially for
free (one XOR operation on keys, and no garbled table entries to generate or
transfer). We show how to compute comparison and other basic functions with
circuits consisting mostly of XOR gates. This results in reduction of the size
of GC (i.e., the size of garbled tables) by approximately half (see Table 2 for
detailed comparison). We note that the method of [33] (and thus our work)
requires the use of a weak form of Random Oracle, namely of correlation-robust
functions [26].

As further contribution, we then follow through, and discuss in detail GC-
based constructions for the Millionaires problem, computing first-price auctions
and minimum Hamming- or Euclidian distance. In addition to improvements due
to our new building blocks, our protocols benefit from a number of GC-based
optimizations. In addition to establishing a new performance baseline for these
problems, we aim to promote GC as a very efficient solution, and prevent its
frequent unfair dismissal as an “impractical generic approach”.

Related work. SFE (and in particular GC), and secure comparison has received
much attention in the literature, all of which we cannot possibly include here.
In this section we summarize relevant work to give the reader a perspective on
our results. We discuss additional related work (on which we improve) in the
individual sections of the paper.

Circuit-Based Secure Function Evaluation. GC technique of SFE was introduced
by Yao [46], with a formal proof of security (in the semi-honest model) given
in [34]. Extensions of Yao’s garbled circuit protocol to security against covert
players were given in [1,25], and against malicious players in [27,35,40]. Our con-
structions rely on the recent work of [33], where a GC technique is proposed that
allows evaluation of XOR gates “for free”, i.e., with no communication and neg-
ligible computation costs. In [33] improved circuit constructions for multiplexer,
addition and (in-)equality testing are presented. Our main contribution – the
building block constructions – further improve their proposals (e.g., subtraction
and comparison are improved by a factor of two.

Secure Two-Party Comparison. The first secure two-party comparison protocol
was proposed in [45], and today GC [46] is the most efficient solution to this
problem as shown in this paper: our solution for comparing two �-bit numbers
requires 16�t bit offline communication and 3�t bit online communication, where
t is a symmetric security parameter (i.e., length of a symmetric key).

Homomorphic encryption is another popular tool for comparison. The pro-
tocol of Fischlin [20] uses the Goldwasser-Micali XOR-homomorphic encryption
scheme [24] and has communication complexity �T (κ + 1), where κ is a sta-
tistical correctness parameter (e.g., κ = 40) and T is an asymmetric security
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parameter (i.e., size of an RSA modulus). The comparison protocol of [6] uses
bitwise Paillier encryption and has communication complexity 4�T . This pro-
tocol was improved in [14,16,15] to communication complexity 2�T by using a
new homomorphic encryption scheme with smaller ciphertext size. These two-
party protocols were extended to comparisons in the multi-party setting with
logarithmic and linear round complexity in [21].

Minimum Selection. A two-party protocol for finding k-Nearest Neighbors was
given in [44], and improved from quadratic to linear communication complexity
in [43]. Our protocol for finding the nearest neighbor is a more efficient protocol
for the special case k = 1. A simple protocol to select the minimum of homo-
morphically encrypted values based on the multiplicative hiding assumption was
given in [30] in the context of privacy-preserving benchmarking. However, multi-
plicative blinding reveals some information about the magnitude of the blinded
value. Our minimum selection protocol can be used as a provably secure replace-
ment of this protocol. Finally, we note that in our minimum Hamming distance
protocol we use several steps of the Hamming distance protocol of [28].

Efficient circuits for addition and multiplication. Boyar et al. [10,11,9] considered
multiplicative complexity1 of symmetric functions (i.e., functions only dependent
on the hamming weight of their inputs). As a corollary, Boyar et al. describe
efficient circuits for addition (and thus multiplication, via Karatsuba-Ofman
method [29]). Our subtraction and comparison building blocks are extensions of
their construction.

2 Preliminaries

In this section, we summarize our conventions and setting in §2.1 and crypto-
graphic tools used in our constructions: oblivious transfer (OT) in §2.3, garbled
circuits (GC) with free XOR in §2.4, and additively homomorphic encryption
(HE) in §2.2. Reader familiar with the prerequisites may safely skip to §3.

2.1 Parameters, Notation and Model

We denote symmetric security parameter by t and the asymmetric security pa-
rameter, i.e., bitlength of RSA moduli, by T . Recommended parameters for
short-term security (until 2010) are for example t = 80 and T = 1024 [23]. The
bitlength of a garbled value is t′ := t + 1 (cf. §2.4 for details). The statistical
correctness parameter is denoted with κ (the probability of a protocol failure is
bounded by 2−κ) and the statistical security parameter with σ. In practice, one
can choose κ = σ = 80. The bitlength of protocol inputs is denoted with � and
the number of inputs with n. We write x� to denote �-bit value x.

We work in the semi-honest model. We note that the method of [33] (and
thus our work) requires the use of a weak form of Random Oracle, namely of
correlation-robust functions [26].
1 Multiplicative complexity of a function measures the number of AND gates in its

circuit (and gives NOT and XOR gates for free).
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2.2 Homomorphic Encryption (HE)

Some of our constructions make black-box usage of a semantically secure ho-
momorphic encryption scheme with plaintext space (P, +, 0), ciphertext space
(C, ∗, 1), and probabilistic polynomial-time algorithms (Gen, Enc, Dec).

An additively homomorphic encryption scheme allows addition under encryp-
tion as it satisfies ∀x, y ∈ P : Dec(Enc(x) ∗ Enc(y)) = x + y. It can be instan-
tiated with a variety of cryptosystems including [41,17], or the cryptosystem of
[14,16,15] which is restricted to small plaintext space P – just to name a few.

For the sake of completeness we mention, that the cryptosystem of [8] allows
for an arbitrary number of additions and one multiplication and fully homo-
morphic encryption schemes allow to evaluate an arbitrary number of additions
and multiplications on ciphertexts. Possible candidates are the cryptosystem of
[3] (size of ciphertexts grows exponentially in the number of multiplications) or
the recently proposed scheme without such a restriction [22]. However, the size
of ciphertexts in these schemes is substantially larger than that of the purely
additively homomorphic schemes.

2.3 Oblivious Transfer (OT)

Parallel 1-out-of-2 Oblivious Transfer of m �-bit strings, denoted as OTm
� , is a

two-party protocol run between a chooser C and a sender S. For i = 1, . . . , m, S
inputs a pair of �-bit strings s0

i , s
1
i ∈ {0, 1}� and C inputs m choice bits bi ∈ {0, 1}.

At the end of the protocol, C learns the chosen strings sbi

i , but nothing about
the unchosen strings s1−bi

i whereas S learns nothing about the choices bi.
Efficient OT protocols. We use OTm

� as a black-box primitive which can be
instantiated efficiently with different protocols [38,2,36,26]. For example the pro-
tocol of [2] implemented over a suitably chosen elliptic curve has communication
complexity m(6(2t + 1)) + (2t + 1) ∼ 12mt bits and is secure against malicious
C and semi-honest S in the standard model as described in the full version of
this paper [32]. Similarly, the protocol of [38] implemented over a suitably cho-
sen elliptic curve has communication complexity m(2(2t + 1) + 2�) bits and is
secure against malicious C and semi-honest S in the random oracle model. Both
protocols require O(m) scalar point multiplications.

Extending OT efficiently. The extensions of [26] can be used to efficiently re-
duce the number of computationally expensive public-key operations of OTm

� to
be independent of m. Their transformation for semi-honest receiver reduces OTm

�

to OTt
t and a small additional overhead: one additional message, 2m(� + t) bits

additional communication, and O(m) invocations of a correlation robust hash
function (2m for S and m for C) which is substantially cheaper than O(m) asym-
metric operations. Also a slightly less efficient extension for malicious receiver is
given in their paper.

2.4 Garbled Circuits (GC)

The most efficient method for secure evaluation of a boolean circuit C for compu-
tationally bounded players is Yao’s garbled circuit approach [46,34]. We briefly



6 V. Kolesnikov, A.-R. Sadeghi, and T. Schneider

summarize the main ideas of this protocol in the following. The circuit construc-
tor (server S) creates a garbled circuit ˜C with algorithm CreateGC: for each wire
Wi of the circuit, he randomly chooses two garbled values w̃0

i , w̃
1
i , where w̃j

i is
the garbled value of Wi’s value j. (Note: w̃j

i does not reveal j.) Further, for each
gate Gi, S creates a garbled table ˜Ti with the following property: given a set
of garbled values of Gi’s inputs, ˜Ti allows to recover the garbled value of the
corresponding Gi’s output, but nothing else. S sends these garbled tables, called
garbled circuit ˜C to the evaluator (client C). Additionally, C obliviously obtains
the garbled inputs w̃i corresponding to inputs of both parties (details on how
this can be done later in §2.4). Now, C can evaluate the garbled circuit ˜C on the
garbled inputs with algorithm EvalGC to obtain the garbled outputs simply by
evaluating the garbled circuit gate by gate, using the garbled tables ˜Ti. Finally,
C translates the garbled outputs into output values given for the respective play-
ers (details below in §2.4). Correctness of GC follows from the method of how
garbled tables ˜Ti are constructed.

Improved Garbled Circuit with free XOR [33]. An efficient method for
creating garbled circuits which allows “free” evaluation of XOR gates was pre-
sented in [33]. More specifically, a garbled XOR gate has no garbled table (no
communication) and its evaluation consists of XOR-ing its garbled input values
(negligible computation). The other gates, called non-XOR gates, are evaluated
as in Yao’s GC construction [46] with a point-and-permute technique (as used
in [37]) to speed up the implementation of the GC protocol: the garbled values
w̃i = 〈ki, πi〉 ∈ {0, 1}t′ consist of a symmetric key ki ∈ {0, 1}t and a ran-
dom permutation bit πi ∈ {0, 1} and hence have length t′ = t + 1 bits. The
permutation bit πi is used to select the right table entry for decryption with
the t-bit key ki (recall, t is the symmetric security parameter). The encryp-
tion of the garbled table entries is done with the symmetric encryption function
Encs

k1,...,kd
(m) = m ⊕ H(k1|| . . . ||kd||s), where d is the number of inputs of the

gate, s is a unique identifier for the specific row in the gate’s garbled table used
once, and H is a suitably chosen cryptographic hash function. Hence, creation
of the garbled table of a non-XOR d-input gate requires 2d invocations of H and
its evaluation needs one invocation, while XOR gates are “for free”.

The main observation of [33] is, that the constructor S chooses a global key
difference Δ ∈R {0, 1}t which remains unknown to evaluator C and relates the
garbled values as k0

i = k1
i ⊕ Δ. (This technique was subsequently extended in

the LEGO paper [40] which allows to compose garbled circuits dynamically with
security against malicious circuit constructor). Clearly, the usage of such gar-
bled values allows for free evaluation of XOR gates with input wires W1, W2 and
output wire W3 by computing w̃3 = w̃1 ⊕ w̃2 (no communication and negligi-
ble computation). However, using related garbled values requires that the hash
function H used to create the garbled tables of non-XOR gates has to be mod-
eled to be correlation robust (as defined in [26]) which is stronger than modeling
H as a key-derivation function (standard model) but weaker than modeling
H as a random-oracle (ROM). In practice, H can be chosen from the SHA-2
family.
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Input/Output Conversion. In secure two-party computation protocols ex-
ecuted between circuit constructor S and circuit evaluator C, each of the in-
puts and outputs of the securely computed functionality can be given in dif-
ferent forms depending on the application scenario: privately known to one
party (§A.1), secret-shared between both parties (§A.2), or homomorphically
encrypted under the public key of the other party (§A.3). These inputs can be
converted from different forms to garbled inputs given to C. Afterwards, C eval-
uates the garbled circuit, obtains the garbled outputs, and converts them into
outputs in the needed form.

The resulting communication complexities of these input and output conver-
sion protocols for semi-honest parties are summarized in Table 1 and a detailed
description of these known techniques is given in §A.

Table 1. Communication complexity for converting �-bit inputs/outputs in different
forms to inputs/outputs of a garbled circuit (parameters defined in §2.1). SS: Secret-
Shared, HE: Homomorphically Encrypted.

Input Output

Private S (§A.1) �t′ bits � bits

Private C (§A.1) OT�
t′ � bits

SS (§A.2) OT�
t′ � bits

HE (§A.3) 1 ciphertext + 5�t′ bits + OT�
t′ 1 ciphertext + (� + σ)(5t′ + 1) bits

3 Building Blocks for GC

In this section we present our basic contribution – improved circuit construc-
tions for several frequently used primitives, such as integer subtraction (§3.1),
comparison (§3.2), and selection of the minimum value and index (§3.3)2. As
summarized in Table 2, our improved circuit constructions are smaller than
previous solutions by 33% to 50% when used with the GC of [33]. This reduc-
tion in size immediately translates into a corresponding improvement in com-
munication and computation complexity of any GC protocol built from these
blocks. The efficiency improvements are achieved by modifying the underlying
circuits, i.e., by carefully replacing larger (more costly) non-XOR gates (e.g., a
3-input gate) with smaller non-XOR gates (e.g., a 2-input gate) and (free) XOR
gates.

Multiplexer Circuit (MUX). Our constructions use �-bit multiplexer circuits
MUX to select one of the �-bit inputs x� or y� as output z�, depending on
the selection bit c. We use the construction of [33] with � non-XOR gates.

2 As noted in §1, Boyar et al. [11,9] had previously proposed improved circuits for
addition and multiplication. Further, the circuits for subtraction and comparison
can be relatively naturally derived from the same ideas. We leave these building
blocks in our presentation for completeness and readability.
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Table 2. Size of efficient circuit constructions for �-bit values and computing the
minimum value and index of n �-bit values (in table entries)

Circuit Standard GC [33] This Work (Improvement)

Multiplexer 8� 4�
Addition/Subtraction (§3.1) 16� 8� 4� (50%)
Multiplication (§3.1) 20�2 − 16� 12�2 − 8� 8�2 − 4� (33%)
Equality Test (§3.2) 8� 4�
Comparison (§3.2) 8� 4� (50%)
Minimum Value + Index (§3.3) ≈ 15�n [39] 8�(n − 1) + 4(n + 1) (47%)

3.1 Integer Addition, Subtraction and Multiplication

Addition circuits (ADD) to add two unsigned integer values x�,y� can be effi-
ciently composed from a chain of 1-bit adders (+), often called full-adders, as
shown in Fig. 1. (The first 1-bit adder has constant input c1 = 0 and can be
replaced by a smaller half-adder). Each 1-bit adder has as inputs the carry-in
bit ci from the previous 1-bit adder and the two input bits xi, yi. The outputs
are the carry-out bit ci+1 = (xi ∧ yi) ∨ (xi ∧ ci) ∨ (yi ∧ ci) and the sum bit
si = xi ⊕ yi ⊕ ci (the latter can be computed “for free” using “free XOR” [33]).
The efficient construction of a 1-bit adder shown in Fig. 2 computes the carry-
out bit as ci+1 = ci⊕((xi⊕ci)∧(yi⊕ci)). Overall, the efficient construction for a
1-bit adder consists of four free XOR gates and a single 2-input AND gate which
has size 22 = 4 table entries. The overall size of the efficient addition circuit is∣

∣

∣ADD�
∣

∣

∣ = � · |+| = 4� table entries.

Subtraction in two’s complement representation is defined as x� − y� = x� +
ȳ� + 1. Hence, a subtraction circuit (SUB) can be constructed analogously to
the addition circuit from 1-bit subtractors (−) as shown in Fig. 3. Each 1-bit
subtractor computes the carry-out bit ci+1 = (xi ∧ ȳi) ∨ (xi ∧ ci) ∨ (ȳi ∧ ci) and
the difference bit di = xi ⊕ ȳi ⊕ ci. We instantiate the 1-bit subtractor efficiently
as shown in Fig. 4 to compute ci+1 = xi ⊕ ((xi ⊕ ci) ∧ (yi ⊕ ci)) with the same
size as the 1-bit adder.

x� y� x1 y1y2x2

s�+1 s� s2 s1

. . . +++ c2c3 0
ADD

Fig. 1. Addition Circuit (ADD)

ci+1 ∧

xi yi

ci

+
si

Fig. 2. Improved 1-bit Adder (+)
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x� y� x1 y1y2x2

d�+1 d� d2 d1

. . . −−− c2c3
1

SUB

Fig. 3. Subtraction Circuit (SUB)

ci+1 ∧

xi yi

ci

di

−

Fig. 4. Improved 1-bit Subtractor (−)

Multiplication circuits (MUL) to multiply two �-bit integers x�,y� can be con-
structed according to the “school method” for multiplication, i.e., adding up
the bitwise multiplications of yi and x� shifted corresponding to the position:
x� · y� =

∑�
i=1 2i−1(yi · x�). This circuit is composed from �2 of 1-bit mul-

tipliers (2-input AND gates) and (� − 1) of �-bit adders. Using the efficient
implementation for adders, the size of the multiplication circuit is improved to
4�2 + 4�(�− 1) = 8�2 − 4� table entries. Alternatively, for multiplication of large
�-bit numbers, a circuit based on Karatsuba-Ofman multiplication [29] of size
approximately O(�1.6) is more efficient.

3.2 Integer Comparison

We present improved circuit constructions for comparison of two �-bit integers
x� and y�, i.e.,

z =
[

x� > y�
]

:=

{

1 if x� > y�,
0 else.

Note that this functionality is more general than checking equality of �-bit in-
tegers x� and y�, i.e., z =

[

x� = y�
]

, for which an improved construction was
given in [33].

As shown in Fig. 5, a comparison circuit (CMP) can be composed from � se-
quential 1-bit comparators (>). (The first 1-bit comparator has constant input
c1 = 0 and can be replaced by a smaller gate). Our improved instantiation for
a 1-bit comparator shown in Fig. 6 uses one 2-input AND gate with 4 table
entries and three free XOR gates. Note, this improved bit comparator is ex-
actly the improved bit subtractor shown in Fig. 4 restricted to the carry output:
[

x� > y�
] ⇔ [

x� − y� − 1 ≥ 0
]

which coincides with an underflow in the corre-
sponding subtraction denoted by subtractor’s most significant output bit d�+1.
The size of this comparison circuit is

∣

∣

∣CMP�
∣

∣

∣ = � · |>| = 4� table entries.

Improved comparison circuits for
[

x� < y�
]

,
[

x� ≥ y�
]

, or
[

x� ≤ y�
]

can be
obtained from the improved circuit for

[

x� > y�
]

by interchanging x� with y�

and/or setting the initial carry to c1 = 1.
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z

. . .

x� y� x1 y1y2x2

>>> c2c3 0

CMP

Fig. 5. Comparison Circuit (CMP)

xi yi

ci+1

ci∧
>

Fig. 6. Improved 1-bit Comparator (>)

3.3 Minimum Value and Minimum Index

Finally, we show how the improved blocks presented above can be combined to
obtain an improved minimum circuit (MIN) which selects the minimum value
m� and minimum index i of a list of n �-bit values x�

0, . . . ,x
�
n−1, i.e., ∀j ∈

{0, . . . , n − 1} : (m� < x�
j) ∨ (m� = x�

j ∧ i ≤ j). E.g., for the list 3, 2, 5, 2 the
outputs would be m� = 2 and i = 1 as the leftmost minimum value of 2 is at
position 1. W.l.o.g. we assume that n is a power of two, so the minimum index
can be represented with log n bits.

Performance improvement of MIN mainly comes from the improved building
blocks for integer comparison. We shave off an additive factor by carefully ar-
ranging tournament-style circuit so that some of the index wires can be reused
and eliminated. That is, at depth d of the resulting tree we keep track of the �-bit
minimum value m� of the sub-tree containing 2d values but store and propagate
only the d least significant bits idd of the minimum index.

More specifically, the minimum value and minimum index are selected pair-
wise in a tournament-like way using a tree of minimum blocks (min) as shown
in Fig. 7. As shown in Fig. 8, each minimum block at depth d gets as inputs the
minimum �-bit values m�

d,L and m�
d,R of its left and right subtrees TL, TR and the

d least significant bits of their minimum indices idd,L and idd,R, and outputs the
minimum �-bit value m�

d+1 and (d+1)-bit minimum index id+1
d+1 of the tree. First,

the two minimum values are compared with a comparison circuit (cf. §3.2). If

x�
0 x�

1 x�
2 x�

3 x�
n−1x�

n−2x�
n−4 x�

n−3

m� ilog n

min min

min

m�
1 i11 i11m�

1

m�
2 i22

min min

min

min

. . .

. . .

MIN

Fig. 7. Minimum Circuit (MIN)

m�
d,L

m�
d+1

m�
d,R

CMP>

MUX

idd,L idd,R

id+1
d+1

MUX

min

Fig. 8. Minimum Block (min)
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the minimum value of TL is bigger than that of TR (in this case, the comparison
circuit outputs value 1), m�

d+1 is chosen to be the value of TR with an �-bit mul-
tiplexer block [33]. In this case, the minimum index id+1

d+1 is set to 1 concatenated
with the minimum index of TR using another d-bit multiplexer. Alternatively, if
the comparison yields 0, the minimum value of TL and the value 0 concatenated
with the minimum index of TL are output. Overall, the size of the efficient min-
imum circuit is

∣

∣

∣MIN�,n
∣

∣

∣ = (n− 1) · (
∣

∣

∣CMP�
∣

∣

∣ +
∣

∣

∣MUX�
∣

∣

∣) +
∑log n

j=1
n
2j

∣

∣MUXj−1
∣

∣ =

8�(n − 1) + 4n
∑log n

j=1
j−1
2j < 8�(n − 1) + 4n(1 + 1

n ) = 8�(n − 1) + 4(n + 1).
Our method of putting the minimum blocks together in a tree (cf. Fig. 7)

is non-trivial: If the minimum blocks would have been arranged sequentially
(according to the standard selection algorithm to find the minimum), the size
of the circuit would have been (n − 1) · (

∣

∣

∣CMP�
∣

∣

∣ +
∣

∣

∣MUX�
∣

∣

∣ +
∣

∣

∣MUXlog n
∣

∣

∣) =
8�(n − 1) + 4(n − 1) log n table entries which is less efficient than the tree.

In previous work [39], a circuit for computing first-price auctions (which is
functionally equivalent to computing the maximum value and index) with a
size of approximately 15�n table entries is mentioned over which our explicit
construction improves by a factor of approximately 15

8 .

4 Applications

We now describe how our efficient circuit constructions (§3) can be applied to
improve previous solutions for several applications. We note that constructions of
this section are not novel and may be folklore knowledge. We explicate them for
concreteness, and use them to demonstrate the usefulness of our building blocks
and to arrive at performance estimates to form a baseline for future protocols.

4.1 Integer Comparison (Millionaires Problem)

The “Millionaires problem” was introduced by Yao in [45] as motivation for
secure compuation: two millionaires want to securely compare their respective
private input values (e.g., their amount of money) without revealing more infor-
mation than the outcome of the comparison to the other party. More concretely,
client C holds a private �-bit value x� and server S holds a private �-bit value
y�. The output bit z = [x� > y�] should be revealed to both.

We obtain an efficient comparison protocol by evaluating the comparison cir-
cuit of §3.2 with the GC protocol of [33] and an efficient OT protocol. Our
protocol, when executed without precomputation has asymptotic communica-
tion complexity 5�t + OT�

t bit with symmetric security parameter t (cf. §2.1).
In many practical application scenarios it is beneficial to shift as much of the

computation and communication cost of a protocol into a setup (precomputa-
tion) phase, which is executed before the parties’ inputs are known, while the
parties’ workload is low. In the following we apply a folklore technique, which
demonstrates that GC protocols are ideally suited for precomputation as (in con-
trast to many protocols based on homomorphic encryption) almost their entire
cost can be shifted into the setup phase.
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Millionaires with setup. GC protocols allow to move all expensive operations
(i.e., computationally expensive OT and creation of GC, as well as the transfer
of GC which dominates the communication complexity) into the setup phase.
The idea is to create and transfer the garbled circuit in the setup phase, and
pre-compute the OTs [5]: for this, the parallel OT protocol is run on randomly
chosen (by C and S) values of corresponding sizes (instead of private inputs of
C and pairs of garbled input values of S). Then, in the online phase, C uses
its randomly chosen value to mask his private inputs, and sends them to S. S
replies with encryptions of wire’s garbled inputs using his random values from
the setup phase. Which garbled input is masked with which random value is
determined by C’s message. Finally, C can use the masks he received from the
OT protocol in the setup phase to exactly decrypt the correct garbled input
value.

More precisely, the setup phase works as follows: for i = 1, . . . , �, C chooses
random bits ri ∈R {0, 1} and S chooses random masks m0

i , m
1
i ∈R {0, 1}t′ (recall,

t′ = t+1 is the bitlength of garbled values). Both parties run a OT�
t′ protocol on

these randomly chosen values, where S inputs the pairs m0
i , m

1
i and C inputs ri

and C obliviously obtains the mask mi = mri

i . Additionally, S creates a garbled
circuit ˜C with garbled inputs x̃0

i , x̃
1
i and ỹ0

i , ỹ1
i and sends ˜C together with the

output decryption table to C. This message has the size 4�t′ + 1 ∼ 4�t bits.
Overall, the setup phase has a slightly smaller communication complexity than
the Millionaires protocol without setup described above.

In the online phase, S sends the garbled values ỹ� corresponding to his input
y� to C and the online part of the OT protocol is executed: for each i = 1, . . . , �, C
masks its input bits xi with ri as Xi = xi⊕ri and sends these masked bits to S. S
responds with the masked pair of t′-bit strings

〈

M0
i , M1

i

〉

=
〈

m0
i ⊕ x̃0

i , m
1
i ⊕ x̃1

i

〉

if Xi = 0 or
〈

M0
i , M1

i

〉

=
〈

m0
i ⊕ x̃1

i , m
1
i ⊕ x̃0

i

〉

otherwise. C obtains
〈

M0
i , M1

i

〉

and decrypts x̃i = M ri

i ⊕ mi. Using the garbled inputs x̃�, ỹ�, C evaluates the
garbled circuit ˜C, obtains the result from the output decryption table and sends
it back to S. Overall, in the online phase �t′ + 2�t′ + 1 ∼ 3�t bits are sent.

Cost Evaluation. In the following we show how the GC-based comparison
protocol outperforms those based on homomorphic encryption:

Computation Complexity. As our improved GC for integer comparison consists
of no more than � non-XOR 2-to-1 gates (cf. comparison circuit in §3.2), C
needs to invoke the underlying cryptographic hash-function (e.g., SHA-256 for
t = 128 bit symmetric security) exactly � times to evaluate the GC (cf. §2.4). All
other operations are negligible (XOR of t-bit strings). Hence, the computational
complexity of the online phase of our protocol is negligible as compared to that
of protocols based on homomorphic encryption. Even with an additional setup
phase, those protocols need to invoke a few modular operations for each input
bit which are usually by several orders of magnitude more expensive than the
evaluation of a cryptographic hash function used in our protocols. Further the
computational complexity of the setup phase in our protocol is more efficient
than in protocols based on homomorphic encryption when using efficient OT
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protocols implemented over elliptic curves and efficient extensions of OT for a
large number of inputs (cf. §2.3).

Communication Complexity. Table 3 shows that also the communication com-
plexity of our protocol is much lower than that of previous protocols which are
based on homomorphic encryption. As underlying OT�

t′ protocol we use the pro-
tocol of [2] implemented over a suitably chosen elliptic curve and using point
compression (see the full version of this paper [32] for details). This protocol has
asymptotic communication complexity 12�t bits and is secure in the standard
model. (Using the protocol of [38] which is secure in the random oracle model
would result in communication complexity 6�t bits and much lower computation
complexity.) The chosen values for the security parameters correspond to stan-
dard recommendations for short-term (upto 2010), medium-term (upto 2030)
and long-term security (after 2030) [23].

Table 3. Asymptotic communication complexity of comparison protocols on �-bit val-
ues. Parameters defined in §2.1: � = 16, κ = 40, short-term security: t = 80, T = 1024,
medium-term security: t = 112, T = 2048, long-term security: t = 128, T = 3082.

Communication Previous Work This Work
Complexity [20] [6] [14] Setup Phase Online Phase Total

Asymptotic (κ + 1)�T 4�T 2�T 16�t 3�t 19�t

short-term 82 kByte 8 kByte 4 kByte 2.5 kByte 0.5 kByte 3.0 kByte
medium-term 164 kByte 16 kByte 8 kByte 3.5 kByte 0.7 kByte 4.2 kByte
long-term 246 kByte 24 kByte 12 kByte 4.0 kByte 0.8 kByte 4.8 kByte

4.2 First-Price Auctions

In standard auction systems such as ebay, the auctioneer learns the inputs of
all bidders and hence can deduce valuable information about the bidding be-
havior of unsuccessful bidders or cheat while computing the auction function
depending on bidders’ input values. To overcome this, a secure protocol can be
used instead. Bidders provide their bids in a “smartly” encrypted form to the
protocol which allows the auctioneer to compute the auction function without
learning the bids. In the following we show how our constructions can be used
to improve two previously proposed secure auction systems: one in which all
bids are collected before the auction function is computed (Offline Auctions),
and another one where bids are input dynamically and the current highest bid
is published (Online Auctions).

Offline Auctions. In the offline auction system of [39], the auction function is
computed by two parties, an auction issuer and the auctioneer, who are assumed
not to collude. The auction issuer creates a garbled circuit which computes the
auction function and sends it to the auctioneer. For each of the bidders’ input
bits b, a proxy-OT protocol is run, where the auction issuer inputs the two
complementary garbled input values ˜b0,˜b1 of the garbled circuit, the bidder
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inputs b and the auctioneer obtains the corresponding garbled value ˜b. Then,
the auctioneer evaluates the garbled circuit on the garbled inputs and obtains
the outcome of the auction as output.

In order to run a first-price auction which outputs the maximum bid and
the index of the maximum bidder, our improved minimum circuit of §3.3 can
be used. This circuit is substantially smaller and hence the resulting protocol is
more efficient than the circuit used in [39] as shown in Table 2.

Online Auctions. In the following we show that our GC-based comparison
protocol outperforms the comparison protocol of Damg̊ard, Geisler and Kroig̊ard
presented in [14] for the online auction scenario.

The auction system proposed in [14,15,16] extends the idea of splitting the
computation of the auction function between two parties, the auctioneer (called
server) and another party (called assisting server) who are assumed not to col-
lude. Each bidder can submit a maximum bid b which he secret-shares between
server and assisting server over respective secure channels. Afterwards, the bid-
der can go offline, while the server and assisting server run a secure comparison
protocol to compare the secret-shared maximum bid with the publicly known
value of the currently highest bid to keep track which bidder is still “in the
game”. A detailed description of the scenario can be found in [16].

Our protocol uses the efficient comparison protocol of §4.1 with inputs given
in different forms: the bid is secret-shared between both players (cf. §A.2 for sim-
ple folklore technique to use such inputs in GC) and the other input is publicly
known to both parties (e.g., can be treated as a private input of circuit con-
structor S). The resulting circuit-based protocol for online auctions has exactly
the same performance as our solution for the Millionaires problem described in
§4.1 with the same efficiency improvements over previous solutions. In particu-
lar, the possibility to move all expensive operations into the setup phase, which
can be executed during idle times (whenever no new bids are received), is very
beneficial for this application as this enables the bidders to instantly see if their
current bid was successful or if another bidder meanwhile gave a higher bid. This
feature is important towards the end of the auction, where the frequency of bids
is high. We further recall that the workload of the setup phases can be reduced
by extending OTs efficiently (cf. §2.3).

4.3 Minimum Distance

Finally, we give an efficient protocol for secure computation of the minimum
distance (or nearest neighbor) between a private query point Q, held by client C,
and an ordered list of private points P0, . . . , Pn−1 (called database), held by server
S. The protocol consists of two sub-protocols: the first sub-protocol computes
for i = 1, . . . , n the encrypted distance �δi� of the query point Q to each point
Pi in the database, using a suitably chosen homomorphic encryption scheme,
and outputs these encrypted distances to S. The second sub-protocol securely
selects the minimum value and index of these encrypted distances and outputs
the minimum distance δmin and minimum index imin to C.
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Distance Computation. We sketch the sub-protocols to securely compute the
distance �δi� between query point Q and points Pi in the database next.

Hamming Distance. The Hamming distance between two points P =(p1, . . . , pm)
and Q = (q1, . . . , qm) with pj, qj ∈ {0, 1} is defined as dH(P, Q) :=

∑m
j=1 pj ⊕

qj =
∑m

j=1(1−pj)qj +pj(1−qj). With an additively homomorphic cryptosystem,
the Hamming distance can be computed as follows: C generates a public-key pk
and corresponding secret-key and sends (the verifiably correct) pk and bitwise
homomorphic encryptions of Q, �q1�, . . . , �qm�, to S. As computing the Hamming
distance is a linear operation, S can compute the encrypted Hamming distance
to each point P = Pi in its database as �δi� = �dH(P, Q)� from �qj� and pj using
standard techniques as proposed in [28].

Euclidean Distance. The Euclidean distance can be seen as an extension of
the Hamming distance from 1-bit coordinates to �-bit coordinates, i.e., for j =
1, . . . , m : pj , qj ∈ {0, 1}�. The Euclidean distance is then defined as dE(P, Q) :=
√

∑m
j=1(pj − qj)2. As the Euclidean distance is not negative, it is sufficient to

compute the square of the Euclidean distance instead, in order to find the min-
imum (or maximum) Euclidean distance: dE(P, Q)2 =

∑m
j=1(pj − qj)2. The

encryption of the square of the Euclidean distance �δ2
i � = �dE(Pi, Q)2� can be

computed analogously to the protocol for the Hamming distance by using addi-
tively homomorphic encryption which allows for at least one multiplication (cf.
§2.2). Alternatively, when using an additively homomorphic encryption scheme,
one can run an additional round for multiplication as used in [18].

Minimum Selection. After having securely computed the homomorphically
encrypted distances �δi� held by S, the minimum and minimum index of these
values can be selected by converting these homomorphically encrypted values to
garbled values as described in §A.3 and securely evaluating the minimum circuit
of §3.3. The asymptotic communication complexity of this minimum selection
protocol is 13�nt bits for the garbled circuits (when GCs are pre-computed), n
homomorphic ciphertexts, and OTn�

t′ . The number of homomorphic ciphertexts
can be further reduced using packing (§A.3), and the number of OTs can be re-
duced to a constant number of OTs (§2.3). As for the other application scenarios
described before, all expensive operations can be moved into a setup phase and
the entire protocol has a constant number of rounds.

Our minimum selection protocol can also be used as a provably secure3 re-
placement for the minimum selection protocol of [30], which was used in the
context of privacy-preserving benchmarking. In this scenario, mutually distrust-
ing companies want to compare their key performance indicators (KPI) with the
statistics of their peer group using an untrusted central server.

3 The minimum selection protocol of [30] requires multiplicative-blinding of an addi-
tively homomorphically encrypted value which reveals some information about the
magnitude of the blinded value.
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A Input/Output Conversion Protocols

A.1 Private Inputs and Outputs

Private S Input: Inputs privately known to the circuit constructor S are easiest
to deal with. For each of these inputs i, S sends the garbled value w̃vi

i cor-
responding to the plain value vi to evaluator C. As described in [42], in case
of semi-honest constructor (i.e., with no cut-and-choose), the inputs of S can
also be securely incorporated into the garbled circuit. This optimization avoids
to transfer any additional data for S’s private inputs and the size of the GC
can be reduced as well. However, in many applications it is beneficial even in
the semi-honest scenario to separate conversion of the inputs from creation of
the garbled circuit, as this allows S to create the garbled circuit in an offline
pre-computation phase already before its private inputs are known.

Private C Input: For private inputs wi of the evaluator C, both parties execute
an OT protocol for each input bit in which constructor S inputs the two garbled
t′-bit values w̃0

i , w̃1
i and C inputs its plain value vi to obtain w̃vi

i as output. For
� input bits, the OTs can be executed in a parallel OT�

t′ protocol which can
efficiently be extended to OTt

t as described in 2.3.
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Private S Output: If the output of the functionality is a private output wi of the
evaluator C, constructor S provides C with the output decryption table for wi,
i.e., the permutation bit πi chosen when creating the garbled value w̃0

i =
〈

k0
i , πi

〉

.

Private C Output: For private outputs wi of the constructor S, evaluator C
does not get an output decryption table but sends the obtained permutation
bit πi of the obtained garbled value w̃i = 〈ki, πi〉 back to S who can deduce
the corresponding plain value from this. Clearly, this works only if C is semi-
honest as otherwise he could easily flip the output bit. This can be prevented by
requiring C to send the output key ki instead.

A.2 Secret-Shared Inputs and Outputs

Secret-Shared Input: As proposed in [19], a bit b can be secret-shared between C
holding share bC and S holding share bS , with b = bC⊕bS . A secret-shared input
bit b can be converted into a garbled input ˜b using an OT�

t′ protocol: C inputs
bC and S inputs the two corresponding garbled values in the usual order ˜b0,˜b1 if
bS = 0 or swaps them to ˜b1,˜b0 otherwise. It is easy to verify that C obliviously
obtains the correct garbled value ˜b for the shared bit b.

Secret-Shared Output: A similar method can be used for a secret-shared output
bit b. S chooses a random share bS and provides C with an output decryption
table (cf. private output to C) in the correct order in case bS = 0 or with swapped
entries otherwise. C decrypts the garbled output to bC which satisfies b = bC⊕bS .

A.3 Homomorphically Encrypted Inputs and Outputs

In the scenario of secure two-party computation based on homomorphic encryp-
tion, one party, say client C, generates a key-pair of the homomorphic encryption
scheme and sends the (verifiably correct) public key and its inputs encrypted un-
der the public key to S. Afterwards, S can perform operations on the ciphertexts
which result in corresponding operations on the encrypted plaintext data (using
the homomorphic property of the cryptosystem). In order to compute operations
that are not compatible with the homomorphic property (e.g., multiplication of
two ciphertexts encrypted with an additively homomorphic encryption scheme),
additional communication rounds must be performed. In the following we show
how computing on homomorphically encrypted data can be combined with a
garbled circuit to efficiently evaluate non-linear functions, such as comparison,
minimum search, or other functionalities in a constant number of rounds.

Homomorphically Encrypted Input: If S holds an �-bit value �x��, additively
homomorphically encrypted under C’s public key, this value can be converted into
a garbled value x̃� output to C as follows: S chooses a random value r from the
plaintext space P and adds this to the encrypted value: �y� = �x� + r�. In order
to avoid an overflow, this requires that � + κ ≤ |P | for a statistical correctness
parameter κ (e.g., κ = 40). S sends �y� to C who decrypts into y. Afterwards,
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both parties evaluate a garbled circuit which takes off the additive blinding: the
private input of S into this garbled circuit are the � least significant bits of r,
r� = r mod 2�, and C inputs the � least significant bits of y, y� = y mod 2�.
The garbled circuit is an �-bit subtraction circuit (cf. §3.1) which recovers the
plaintext value from the blinded value as x̃� = ỹ� − r̃�. This conversion protocol
from additively homomorphically encrypted values into garbled values was used
in [12,28]. A detailed proof and efficiency improvements (by packing together
multiple values and converting the packed value at once) is given in [4].

Homomorphically Encrypted Output: This is similar to an homomorphically en-
crypted input (add random (� + σ)-bit mask in GC and remove it under homo-
morphic encryption) and included in the full version of this paper [32].
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