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Preface

The 8th International Conference on Cryptology and Network Security (CANS
2009) was held at the Ishikawa Prefectural Museum of Art in Kanazawa, Japan,
during December 12–14, 2009. The conference was jointly co-organized by the
National Institute of Advanced Industrial Science and Technology (AIST), Japan,
and the Japan Advanced Institute of Science and Technology (JAIST). In addi-
tion, the event was supported by the Special Interest Group on Computer Secu-
rity (CSEC), IPSJ, Japan, the Japan Technical Group on Information Security
(ISEC), IEICE, the Japan Technical Committee on Information and Commu-
nication System Security(ICSS), IEICE, and the Society of Information Theory
and its Applications (SITA), Japan, and co-sponsored by the National Insti-
tute of Information and Communications Technology, Japan, ComWorth Co.,
LTD, Japan, Hitachi, Ltd., Hokuriku Telecommunication Network Co.,Inc., and
Internet Initiative Japan Inc.

The conference received 109 submissions from 24 countries, out of which
32 were accepted for publication in these proceedings. At least three Program
Committee (PC) members reviewed each submitted paper, while submissions
co-authored by a PC member were submitted to the more stringent evaluation
of five PC members. In addition to the PC members, many external reviewers
joined the review process in their particular areas of expertise. We were fortunate
to have this energetic team of experts, and are deeply grateful to all of them
for their hard work, which included a very active discussion phase—almost as
long as the initial individual reviewing period. The paper submission, review
and discussion processes were effectively and efficiently made possible by the
Web-based system iChair.

The main goal of CANS as a conference is to promote research on all aspects
of network security, as well as to build a bridge between research on cryptology
and on network security. The broad range of areas covered by the high-quality
accepted papers to the current edition, which include novel cryptographic and
number-theoretic constructs enabling new functionalities, the various security as-
pects of protocols and wireless and sensor networks, new cipher designs, advanced
cryptanalytic techniques without which soundness would be unattainable, and
the treatment of privacy in multifarious settings, from privacy-preserving com-
putation to privacy in the ever-popular social networks, attests—exceedingly—
to the fulfillment of that goal. In addition, the conference featured three invited
speakers: Craig Gentry from IBM Research, Adrian Perrig from Carnegie Mellon
University, and Adam Smith from The Pennsylvania State University, whose lec-
tures on cutting-edge research areas—“Computing on Encrypted Data,” “Build-
ing Secure Networked Systems with Code Attestation,” and “A Cryptographer’s-
Eye View of Privacy in Statistical Databases,” respectively—contributed in no
small part to the richness of the program.



VI Preface

Finally, we thank all the authors who submitted papers to this conference;
the Organizing Committee members, colleagues and student helpers for their
valuable time and effort; and all the conference attendees who made this event
a truly intellectually stimulating one through their active participation.

December 2009 Juan A. Garay
Atsuko Miyaji
Akira Otsuka
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Improved Garbled Circuit Building Blocks and
Applications to Auctions and Computing

Minima�

Vladimir Kolesnikov1, Ahmad-Reza Sadeghi2, and Thomas Schneider2

1 Bell Laboratories, 600 Mountain Ave. Murray Hill, NJ 07974, USA
kolesnikov@research.bell-labs.com

2 Horst Görtz Institute for IT-Security, Ruhr-University Bochum, Germany
{ahmad.sadeghi,thomas.schneider}@trust.rub.de

Abstract. We consider generic Garbled Circuit (GC)-based techniques
for Secure Function Evaluation (SFE) in the semi-honest model.

We describe efficient GC constructions for addition, subtraction, mul-
tiplication, and comparison functions. Our circuits for subtraction and
comparison are approximately two times smaller (in terms of garbled
tables) than previous constructions. This implies corresponding compu-
tation and communication improvements in SFE of functions using our
efficient building blocks. The techniques rely on recently proposed “free
XOR” GC technique.

Further, we present concrete and detailed improved GC protocols for
the problem of secure integer comparison, and related problems of auc-
tions, minimum selection, and minimal distance. Performance improve-
ment comes both from building on our efficient basic blocks and several
problem-specific GC optimizations. We provide precise cost evaluation
of our constructions, which serves as a baseline for future protocols.

Keywords: Secure Computation, Garbled Circuit, Millionaires Prob-
lem, Auctions, Minimum Distance.

1 Introduction

We are motivated by secure function evaluation (SFE) of integer comparison,
and related problems such as auctions and biometric authentication. For this, we
propose new, more efficient SFE protocols for these functions. More specifically,
we propose improved constructions for subtraction, and comparison functions,
and demonstrate their advantages on the example of our motivating applications.

Comparison is a widely used basic primitive. In particular, it plays an espe-
cially important role in financial transactions, biometric authentication, database
mining applications, etc.

� Supported by EU FP6 project SPEED, EU FP7 project CACE and ECRYPT II.

J.A. Garay, A. Miyaji, and A. Otsuka (Eds.): CANS 2009, LNCS 5888, pp. 1–20, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 V. Kolesnikov, A.-R. Sadeghi, and T. Schneider

Auctions. With the growth of the Internet and its widespread acceptance as the
medium for electronic commerce, online auctions continue to grow in popularity.
Additionally, many sellers consider the “name your price” model. For example,
sites such as priceline.com ask a buyer for a price he is willing to pay for a prod-
uct, and the deal is committed to if that price is greater than a certain (secret)
threshold. In many such situations, it is vital to maintain the privacy of bids
of the players. Indeed, revealing an item’s worth can result in artificially high
prices or low bids, specifically targeted for a particular buyer or seller. While a
winning bid or a committed deal may necessarily reveal the cost of the transac-
tion, it is highly desirable to keep all other information (e.g., unsuccessful bids)
secret. There has been a large stream of work dedicated to ensuring privacy and
security of online auctions and haggling (e.g., [13,7,39]). Our work complements,
extends, and builds on it.

Biometric authentication. Widespread adoption of biometric authentication
(e.g., fingerprint or face recognition) is causing strong concerns of privacy viola-
tions. Indeed, improper use of biometric information has far more implications
than “simple” collection of personal information. Adoption of privacy-preserving
biometric authentication is highly desired and will benefit the users and the ad-
ministrators of the systems alike. Because biometric images are never scanned
perfectly, the identity of the user is determined by proximity of the scanned
and stored biometrics. It is natural, therefore, that threshold comparisons are
frequently employed in such identification systems. Further, in some multi-user
systems, it may be desired to simply find the closest match in the database. In
such systems, secure comparison would be also extensively used.

State of the art for secure comparison and related algorithms. Starting
with the original paper of Yao [45], secure comparison, also referred to as the
“two Millionaires problem”, has attracted much attention [46,20,37,31]. A va-
riety of techniques are employed in these solutions – homomorphic encryption,
evaluation of branching programs, Garbled Circuit (GC).

Today, in the standard computational setting, the most efficient protocol is
the simple evaluation of the generic GC. Indeed, the size of the comparison
circuit is quite small (linear in the size of the inputs), and its secure evaluation
is rather efficient (linear number of Oblivious Transfers (OT) and evaluations of
a cryptographic hash function, such as SHA-256).

Most popular alternative solutions are based on homomorphic encryptions.
For comparison, they offer a similar complexity compared to GC, as they still
must perform a linear (in the input) number of public key operations by both
players. However, GC offers more flexible and cheap programming possibilities,
due to its low cost of manipulation of boolean values. In contrast, homomorphic
encryptions are not suitable, e.g., for branching based on the encrypted value
which can be achieved only with much more expensive techniques than GC).

In sum, GC approach is a clear choice for integer comparison, its extensions,
such as auctions, simple integer manipulations (addition and even multiplica-
tions) and a variety of other problems that have small circuit representation. We
build our solutions in this framework.

p
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Our contributions. As justified above, our work is based on GC. We advance
the state of the art of SFE for subtraction and comparison functions, by con-
structing their more efficient GC representations. We work in the semi-honest
model which is appropriate for many application scenarios.

More specifically, our optimizations take advantage of the recently proposed
method of GC construction [33], where XOR gates are evaluated essentially for
free (one XOR operation on keys, and no garbled table entries to generate or
transfer). We show how to compute comparison and other basic functions with
circuits consisting mostly of XOR gates. This results in reduction of the size
of GC (i.e., the size of garbled tables) by approximately half (see Table 2 for
detailed comparison). We note that the method of [33] (and thus our work)
requires the use of a weak form of Random Oracle, namely of correlation-robust
functions [26].

As further contribution, we then follow through, and discuss in detail GC-
based constructions for the Millionaires problem, computing first-price auctions
and minimum Hamming- or Euclidian distance. In addition to improvements due
to our new building blocks, our protocols benefit from a number of GC-based
optimizations. In addition to establishing a new performance baseline for these
problems, we aim to promote GC as a very efficient solution, and prevent its
frequent unfair dismissal as an “impractical generic approach”.

Related work. SFE (and in particular GC), and secure comparison has received
much attention in the literature, all of which we cannot possibly include here.
In this section we summarize relevant work to give the reader a perspective on
our results. We discuss additional related work (on which we improve) in the
individual sections of the paper.

Circuit-Based Secure Function Evaluation. GC technique of SFE was introduced
by Yao [46], with a formal proof of security (in the semi-honest model) given
in [34]. Extensions of Yao’s garbled circuit protocol to security against covert
players were given in [1,25], and against malicious players in [27,35,40]. Our con-
structions rely on the recent work of [33], where a GC technique is proposed that
allows evaluation of XOR gates “for free”, i.e., with no communication and neg-
ligible computation costs. In [33] improved circuit constructions for multiplexer,
addition and (in-)equality testing are presented. Our main contribution – the
building block constructions – further improve their proposals (e.g., subtraction
and comparison are improved by a factor of two.

Secure Two-Party Comparison. The first secure two-party comparison protocol
was proposed in [45], and today GC [46] is the most efficient solution to this
problem as shown in this paper: our solution for comparing two �-bit numbers
requires 16�t bit offline communication and 3�t bit online communication, where
t is a symmetric security parameter (i.e., length of a symmetric key).

Homomorphic encryption is another popular tool for comparison. The pro-
tocol of Fischlin [20] uses the Goldwasser-Micali XOR-homomorphic encryption
scheme [24] and has communication complexity �T (κ + 1), where κ is a sta-
tistical correctness parameter (e.g., κ = 40) and T is an asymmetric security
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parameter (i.e., size of an RSA modulus). The comparison protocol of [6] uses
bitwise Paillier encryption and has communication complexity 4�T . This pro-
tocol was improved in [14,16,15] to communication complexity 2�T by using a
new homomorphic encryption scheme with smaller ciphertext size. These two-
party protocols were extended to comparisons in the multi-party setting with
logarithmic and linear round complexity in [21].

Minimum Selection. A two-party protocol for finding k-Nearest Neighbors was
given in [44], and improved from quadratic to linear communication complexity
in [43]. Our protocol for finding the nearest neighbor is a more efficient protocol
for the special case k = 1. A simple protocol to select the minimum of homo-
morphically encrypted values based on the multiplicative hiding assumption was
given in [30] in the context of privacy-preserving benchmarking. However, multi-
plicative blinding reveals some information about the magnitude of the blinded
value. Our minimum selection protocol can be used as a provably secure replace-
ment of this protocol. Finally, we note that in our minimum Hamming distance
protocol we use several steps of the Hamming distance protocol of [28].

Efficient circuits for addition and multiplication. Boyar et al. [10,11,9] considered
multiplicative complexity1 of symmetric functions (i.e., functions only dependent
on the hamming weight of their inputs). As a corollary, Boyar et al. describe
efficient circuits for addition (and thus multiplication, via Karatsuba-Ofman
method [29]). Our subtraction and comparison building blocks are extensions of
their construction.

2 Preliminaries

In this section, we summarize our conventions and setting in §2.1 and crypto-
graphic tools used in our constructions: oblivious transfer (OT) in §2.3, garbled
circuits (GC) with free XOR in §2.4, and additively homomorphic encryption
(HE) in §2.2. Reader familiar with the prerequisites may safely skip to §3.

2.1 Parameters, Notation and Model

We denote symmetric security parameter by t and the asymmetric security pa-
rameter, i.e., bitlength of RSA moduli, by T . Recommended parameters for
short-term security (until 2010) are for example t = 80 and T = 1024 [23]. The
bitlength of a garbled value is t′ := t + 1 (cf. §2.4 for details). The statistical
correctness parameter is denoted with κ (the probability of a protocol failure is
bounded by 2−κ) and the statistical security parameter with σ. In practice, one
can choose κ = σ = 80. The bitlength of protocol inputs is denoted with � and
the number of inputs with n. We write x� to denote �-bit value x.

We work in the semi-honest model. We note that the method of [33] (and
thus our work) requires the use of a weak form of Random Oracle, namely of
correlation-robust functions [26].
1 Multiplicative complexity of a function measures the number of AND gates in its

circuit (and gives NOT and XOR gates for free).
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2.2 Homomorphic Encryption (HE)

Some of our constructions make black-box usage of a semantically secure ho-
momorphic encryption scheme with plaintext space (P, +, 0), ciphertext space
(C, ∗, 1), and probabilistic polynomial-time algorithms (Gen, Enc, Dec).

An additively homomorphic encryption scheme allows addition under encryp-
tion as it satisfies ∀x, y ∈ P : Dec(Enc(x) ∗ Enc(y)) = x + y. It can be instan-
tiated with a variety of cryptosystems including [41,17], or the cryptosystem of
[14,16,15] which is restricted to small plaintext space P – just to name a few.

For the sake of completeness we mention, that the cryptosystem of [8] allows
for an arbitrary number of additions and one multiplication and fully homo-
morphic encryption schemes allow to evaluate an arbitrary number of additions
and multiplications on ciphertexts. Possible candidates are the cryptosystem of
[3] (size of ciphertexts grows exponentially in the number of multiplications) or
the recently proposed scheme without such a restriction [22]. However, the size
of ciphertexts in these schemes is substantially larger than that of the purely
additively homomorphic schemes.

2.3 Oblivious Transfer (OT)

Parallel 1-out-of-2 Oblivious Transfer of m �-bit strings, denoted as OTm
� , is a

two-party protocol run between a chooser C and a sender S. For i = 1, . . . , m, S
inputs a pair of �-bit strings s0

i , s
1
i ∈ {0, 1}� and C inputs m choice bits bi ∈ {0, 1}.

At the end of the protocol, C learns the chosen strings sbi

i , but nothing about
the unchosen strings s1−bi

i whereas S learns nothing about the choices bi.
Efficient OT protocols. We use OTm

� as a black-box primitive which can be
instantiated efficiently with different protocols [38,2,36,26]. For example the pro-
tocol of [2] implemented over a suitably chosen elliptic curve has communication
complexity m(6(2t + 1)) + (2t + 1) ∼ 12mt bits and is secure against malicious
C and semi-honest S in the standard model as described in the full version of
this paper [32]. Similarly, the protocol of [38] implemented over a suitably cho-
sen elliptic curve has communication complexity m(2(2t + 1) + 2�) bits and is
secure against malicious C and semi-honest S in the random oracle model. Both
protocols require O(m) scalar point multiplications.

Extending OT efficiently. The extensions of [26] can be used to efficiently re-
duce the number of computationally expensive public-key operations of OTm

� to
be independent of m. Their transformation for semi-honest receiver reduces OTm

�

to OTt
t and a small additional overhead: one additional message, 2m(� + t) bits

additional communication, and O(m) invocations of a correlation robust hash
function (2m for S and m for C) which is substantially cheaper than O(m) asym-
metric operations. Also a slightly less efficient extension for malicious receiver is
given in their paper.

2.4 Garbled Circuits (GC)

The most efficient method for secure evaluation of a boolean circuit C for compu-
tationally bounded players is Yao’s garbled circuit approach [46,34]. We briefly



6 V. Kolesnikov, A.-R. Sadeghi, and T. Schneider

summarize the main ideas of this protocol in the following. The circuit construc-
tor (server S) creates a garbled circuit C̃ with algorithm CreateGC: for each wire
Wi of the circuit, he randomly chooses two garbled values w̃0

i , w̃
1
i , where w̃j

i is
the garbled value of Wi’s value j. (Note: w̃j

i does not reveal j.) Further, for each
gate Gi, S creates a garbled table T̃i with the following property: given a set
of garbled values of Gi’s inputs, T̃i allows to recover the garbled value of the
corresponding Gi’s output, but nothing else. S sends these garbled tables, called
garbled circuit C̃ to the evaluator (client C). Additionally, C obliviously obtains
the garbled inputs w̃i corresponding to inputs of both parties (details on how
this can be done later in §2.4). Now, C can evaluate the garbled circuit C̃ on the
garbled inputs with algorithm EvalGC to obtain the garbled outputs simply by
evaluating the garbled circuit gate by gate, using the garbled tables T̃i. Finally,
C translates the garbled outputs into output values given for the respective play-
ers (details below in §2.4). Correctness of GC follows from the method of how
garbled tables T̃i are constructed.

Improved Garbled Circuit with free XOR [33]. An efficient method for
creating garbled circuits which allows “free” evaluation of XOR gates was pre-
sented in [33]. More specifically, a garbled XOR gate has no garbled table (no
communication) and its evaluation consists of XOR-ing its garbled input values
(negligible computation). The other gates, called non-XOR gates, are evaluated
as in Yao’s GC construction [46] with a point-and-permute technique (as used
in [37]) to speed up the implementation of the GC protocol: the garbled values
w̃i = 〈ki, πi〉 ∈ {0, 1}t′ consist of a symmetric key ki ∈ {0, 1}t and a ran-
dom permutation bit πi ∈ {0, 1} and hence have length t′ = t + 1 bits. The
permutation bit πi is used to select the right table entry for decryption with
the t-bit key ki (recall, t is the symmetric security parameter). The encryp-
tion of the garbled table entries is done with the symmetric encryption function
Encs

k1,...,kd
(m) = m ⊕ H(k1|| . . . ||kd||s), where d is the number of inputs of the

gate, s is a unique identifier for the specific row in the gate’s garbled table used
once, and H is a suitably chosen cryptographic hash function. Hence, creation
of the garbled table of a non-XOR d-input gate requires 2d invocations of H and
its evaluation needs one invocation, while XOR gates are “for free”.

The main observation of [33] is, that the constructor S chooses a global key
difference Δ ∈R {0, 1}t which remains unknown to evaluator C and relates the
garbled values as k0

i = k1
i ⊕ Δ. (This technique was subsequently extended in

the LEGO paper [40] which allows to compose garbled circuits dynamically with
security against malicious circuit constructor). Clearly, the usage of such gar-
bled values allows for free evaluation of XOR gates with input wires W1, W2 and
output wire W3 by computing w̃3 = w̃1 ⊕ w̃2 (no communication and negligi-
ble computation). However, using related garbled values requires that the hash
function H used to create the garbled tables of non-XOR gates has to be mod-
eled to be correlation robust (as defined in [26]) which is stronger than modeling
H as a key-derivation function (standard model) but weaker than modeling
H as a random-oracle (ROM). In practice, H can be chosen from the SHA-2
family.
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Input/Output Conversion. In secure two-party computation protocols ex-
ecuted between circuit constructor S and circuit evaluator C, each of the in-
puts and outputs of the securely computed functionality can be given in dif-
ferent forms depending on the application scenario: privately known to one
party (§A.1), secret-shared between both parties (§A.2), or homomorphically
encrypted under the public key of the other party (§A.3). These inputs can be
converted from different forms to garbled inputs given to C. Afterwards, C eval-
uates the garbled circuit, obtains the garbled outputs, and converts them into
outputs in the needed form.

The resulting communication complexities of these input and output conver-
sion protocols for semi-honest parties are summarized in Table 1 and a detailed
description of these known techniques is given in §A.

Table 1. Communication complexity for converting �-bit inputs/outputs in different
forms to inputs/outputs of a garbled circuit (parameters defined in §2.1). SS: Secret-
Shared, HE: Homomorphically Encrypted.

Input Output
Private S (§A.1) �t′ bits � bits
Private C (§A.1) OT�

t′ � bits
SS (§A.2) OT�

t′ � bits
HE (§A.3) 1 ciphertext + 5�t′ bits + OT�

t′ 1 ciphertext + (� + σ)(5t′ + 1) bits

3 Building Blocks for GC

In this section we present our basic contribution – improved circuit construc-
tions for several frequently used primitives, such as integer subtraction (§3.1),
comparison (§3.2), and selection of the minimum value and index (§3.3)2. As
summarized in Table 2, our improved circuit constructions are smaller than
previous solutions by 33% to 50% when used with the GC of [33]. This reduc-
tion in size immediately translates into a corresponding improvement in com-
munication and computation complexity of any GC protocol built from these
blocks. The efficiency improvements are achieved by modifying the underlying
circuits, i.e., by carefully replacing larger (more costly) non-XOR gates (e.g., a
3-input gate) with smaller non-XOR gates (e.g., a 2-input gate) and (free) XOR
gates.

Multiplexer Circuit (MUX). Our constructions use �-bit multiplexer circuits
MUX to select one of the �-bit inputs x� or y� as output z�, depending on
the selection bit c. We use the construction of [33] with � non-XOR gates.

2 As noted in §1, Boyar et al. [11,9] had previously proposed improved circuits for
addition and multiplication. Further, the circuits for subtraction and comparison
can be relatively naturally derived from the same ideas. We leave these building
blocks in our presentation for completeness and readability.
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Table 2. Size of efficient circuit constructions for �-bit values and computing the
minimum value and index of n �-bit values (in table entries)

Circuit Standard GC [33] This Work (Improvement)
Multiplexer 8� 4�
Addition/Subtraction (§3.1) 16� 8� 4� (50%)
Multiplication (§3.1) 20�2 − 16� 12�2 − 8� 8�2 − 4� (33%)
Equality Test (§3.2) 8� 4�
Comparison (§3.2) 8� 4� (50%)
Minimum Value + Index (§3.3) ≈ 15�n [39] 8�(n − 1) + 4(n + 1) (47%)

3.1 Integer Addition, Subtraction and Multiplication

Addition circuits (ADD) to add two unsigned integer values x�,y� can be effi-
ciently composed from a chain of 1-bit adders (+), often called full-adders, as
shown in Fig. 1. (The first 1-bit adder has constant input c1 = 0 and can be
replaced by a smaller half-adder). Each 1-bit adder has as inputs the carry-in
bit ci from the previous 1-bit adder and the two input bits xi, yi. The outputs
are the carry-out bit ci+1 = (xi ∧ yi) ∨ (xi ∧ ci) ∨ (yi ∧ ci) and the sum bit
si = xi ⊕ yi ⊕ ci (the latter can be computed “for free” using “free XOR” [33]).
The efficient construction of a 1-bit adder shown in Fig. 2 computes the carry-
out bit as ci+1 = ci⊕((xi⊕ci)∧(yi⊕ci)). Overall, the efficient construction for a
1-bit adder consists of four free XOR gates and a single 2-input AND gate which
has size 22 = 4 table entries. The overall size of the efficient addition circuit is∣∣∣ADD�

∣∣∣ = � · |+| = 4� table entries.

Subtraction in two’s complement representation is defined as x� − y� = x� +
ȳ� + 1. Hence, a subtraction circuit (SUB) can be constructed analogously to
the addition circuit from 1-bit subtractors (−) as shown in Fig. 3. Each 1-bit
subtractor computes the carry-out bit ci+1 = (xi ∧ ȳi) ∨ (xi ∧ ci) ∨ (ȳi ∧ ci) and
the difference bit di = xi ⊕ ȳi ⊕ ci. We instantiate the 1-bit subtractor efficiently
as shown in Fig. 4 to compute ci+1 = xi ⊕ ((xi ⊕ ci) ∧ (yi ⊕ ci)) with the same
size as the 1-bit adder.

x� y� x1 y1y2x2

s�+1 s� s2 s1

. . . +++ c2c3 0
ADD

Fig. 1. Addition Circuit (ADD)

ci+1 ∧

xi yi

ci

+
si

Fig. 2. Improved 1-bit Adder (+)
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x� y� x1 y1y2x2

d�+1 d� d2 d1

. . . −−− c2c3
1

SUB

Fig. 3. Subtraction Circuit (SUB)

ci+1 ∧

xi yi

ci

di

−

Fig. 4. Improved 1-bit Subtractor (−)

Multiplication circuits (MUL) to multiply two �-bit integers x�,y� can be con-
structed according to the “school method” for multiplication, i.e., adding up
the bitwise multiplications of yi and x� shifted corresponding to the position:
x� · y� =

∑�
i=1 2i−1(yi · x�). This circuit is composed from �2 of 1-bit mul-

tipliers (2-input AND gates) and (� − 1) of �-bit adders. Using the efficient
implementation for adders, the size of the multiplication circuit is improved to
4�2 + 4�(�− 1) = 8�2 − 4� table entries. Alternatively, for multiplication of large
�-bit numbers, a circuit based on Karatsuba-Ofman multiplication [29] of size
approximately O(�1.6) is more efficient.

3.2 Integer Comparison

We present improved circuit constructions for comparison of two �-bit integers
x� and y�, i.e.,

z =
[
x� > y�

]
:=

{
1 if x� > y�,
0 else.

Note that this functionality is more general than checking equality of �-bit in-
tegers x� and y�, i.e., z =

[
x� = y�

]
, for which an improved construction was

given in [33].
As shown in Fig. 5, a comparison circuit (CMP) can be composed from � se-

quential 1-bit comparators (>). (The first 1-bit comparator has constant input
c1 = 0 and can be replaced by a smaller gate). Our improved instantiation for
a 1-bit comparator shown in Fig. 6 uses one 2-input AND gate with 4 table
entries and three free XOR gates. Note, this improved bit comparator is ex-
actly the improved bit subtractor shown in Fig. 4 restricted to the carry output:[
x� > y�

] ⇔ [
x� − y� − 1 ≥ 0

]
which coincides with an underflow in the corre-

sponding subtraction denoted by subtractor’s most significant output bit d�+1.
The size of this comparison circuit is

∣∣∣CMP�
∣∣∣ = � · |>| = 4� table entries.

Improved comparison circuits for
[
x� < y�

]
,
[
x� ≥ y�

]
, or

[
x� ≤ y�

]
can be

obtained from the improved circuit for
[
x� > y�

]
by interchanging x� with y�

and/or setting the initial carry to c1 = 1.
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z

. . .

x� y� x1 y1y2x2

>>> c2c3 0

CMP

Fig. 5. Comparison Circuit (CMP)

xi yi

ci+1

ci∧
>

Fig. 6. Improved 1-bit Comparator (>)

3.3 Minimum Value and Minimum Index

Finally, we show how the improved blocks presented above can be combined to
obtain an improved minimum circuit (MIN) which selects the minimum value
m� and minimum index i of a list of n �-bit values x�

0, . . . ,x
�
n−1, i.e., ∀j ∈

{0, . . . , n − 1} : (m� < x�
j) ∨ (m� = x�

j ∧ i ≤ j). E.g., for the list 3, 2, 5, 2 the
outputs would be m� = 2 and i = 1 as the leftmost minimum value of 2 is at
position 1. W.l.o.g. we assume that n is a power of two, so the minimum index
can be represented with log n bits.

Performance improvement of MIN mainly comes from the improved building
blocks for integer comparison. We shave off an additive factor by carefully ar-
ranging tournament-style circuit so that some of the index wires can be reused
and eliminated. That is, at depth d of the resulting tree we keep track of the �-bit
minimum value m� of the sub-tree containing 2d values but store and propagate
only the d least significant bits idd of the minimum index.

More specifically, the minimum value and minimum index are selected pair-
wise in a tournament-like way using a tree of minimum blocks (min) as shown
in Fig. 7. As shown in Fig. 8, each minimum block at depth d gets as inputs the
minimum �-bit values m�

d,L and m�
d,R of its left and right subtrees TL, TR and the

d least significant bits of their minimum indices idd,L and idd,R, and outputs the
minimum �-bit value m�

d+1 and (d+1)-bit minimum index id+1
d+1 of the tree. First,

the two minimum values are compared with a comparison circuit (cf. §3.2). If

x�
0 x�

1 x�
2 x�

3 x�
n−1x�

n−2x�
n−4 x�

n−3

m� ilog n

min min

min

m�
1 i11 i11m�

1

m�
2 i22

min min

min

min

. . .

. . .

MIN

Fig. 7. Minimum Circuit (MIN)

m�
d,L

m�
d+1

m�
d,R

CMP>

MUX

idd,L idd,R

id+1
d+1

MUX

min

Fig. 8. Minimum Block (min)
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the minimum value of TL is bigger than that of TR (in this case, the comparison
circuit outputs value 1), m�

d+1 is chosen to be the value of TR with an �-bit mul-
tiplexer block [33]. In this case, the minimum index id+1

d+1 is set to 1 concatenated
with the minimum index of TR using another d-bit multiplexer. Alternatively, if
the comparison yields 0, the minimum value of TL and the value 0 concatenated
with the minimum index of TL are output. Overall, the size of the efficient min-
imum circuit is

∣∣∣MIN�,n
∣∣∣ = (n− 1) · (

∣∣∣CMP�
∣∣∣+ ∣∣∣MUX�

∣∣∣) +
∑log n

j=1
n
2j

∣∣MUXj−1∣∣ =

8�(n − 1) + 4n
∑log n

j=1
j−1
2j < 8�(n − 1) + 4n(1 + 1

n ) = 8�(n − 1) + 4(n + 1).
Our method of putting the minimum blocks together in a tree (cf. Fig. 7)

is non-trivial: If the minimum blocks would have been arranged sequentially
(according to the standard selection algorithm to find the minimum), the size
of the circuit would have been (n − 1) · (

∣∣∣CMP�
∣∣∣ +

∣∣∣MUX�
∣∣∣ +

∣∣∣MUXlog n
∣∣∣) =

8�(n − 1) + 4(n − 1) log n table entries which is less efficient than the tree.
In previous work [39], a circuit for computing first-price auctions (which is

functionally equivalent to computing the maximum value and index) with a
size of approximately 15�n table entries is mentioned over which our explicit
construction improves by a factor of approximately 15

8 .

4 Applications

We now describe how our efficient circuit constructions (§3) can be applied to
improve previous solutions for several applications. We note that constructions of
this section are not novel and may be folklore knowledge. We explicate them for
concreteness, and use them to demonstrate the usefulness of our building blocks
and to arrive at performance estimates to form a baseline for future protocols.

4.1 Integer Comparison (Millionaires Problem)

The “Millionaires problem” was introduced by Yao in [45] as motivation for
secure compuation: two millionaires want to securely compare their respective
private input values (e.g., their amount of money) without revealing more infor-
mation than the outcome of the comparison to the other party. More concretely,
client C holds a private �-bit value x� and server S holds a private �-bit value
y�. The output bit z = [x� > y�] should be revealed to both.

We obtain an efficient comparison protocol by evaluating the comparison cir-
cuit of §3.2 with the GC protocol of [33] and an efficient OT protocol. Our
protocol, when executed without precomputation has asymptotic communica-
tion complexity 5�t + OT�

t bit with symmetric security parameter t (cf. §2.1).
In many practical application scenarios it is beneficial to shift as much of the

computation and communication cost of a protocol into a setup (precomputa-
tion) phase, which is executed before the parties’ inputs are known, while the
parties’ workload is low. In the following we apply a folklore technique, which
demonstrates that GC protocols are ideally suited for precomputation as (in con-
trast to many protocols based on homomorphic encryption) almost their entire
cost can be shifted into the setup phase.
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Millionaires with setup. GC protocols allow to move all expensive operations
(i.e., computationally expensive OT and creation of GC, as well as the transfer
of GC which dominates the communication complexity) into the setup phase.
The idea is to create and transfer the garbled circuit in the setup phase, and
pre-compute the OTs [5]: for this, the parallel OT protocol is run on randomly
chosen (by C and S) values of corresponding sizes (instead of private inputs of
C and pairs of garbled input values of S). Then, in the online phase, C uses
its randomly chosen value to mask his private inputs, and sends them to S. S
replies with encryptions of wire’s garbled inputs using his random values from
the setup phase. Which garbled input is masked with which random value is
determined by C’s message. Finally, C can use the masks he received from the
OT protocol in the setup phase to exactly decrypt the correct garbled input
value.

More precisely, the setup phase works as follows: for i = 1, . . . , �, C chooses
random bits ri ∈R {0, 1} and S chooses random masks m0

i , m
1
i ∈R {0, 1}t′ (recall,

t′ = t+1 is the bitlength of garbled values). Both parties run a OT�
t′ protocol on

these randomly chosen values, where S inputs the pairs m0
i , m

1
i and C inputs ri

and C obliviously obtains the mask mi = mri

i . Additionally, S creates a garbled
circuit C̃ with garbled inputs x̃0

i , x̃
1
i and ỹ0

i , ỹ1
i and sends C̃ together with the

output decryption table to C. This message has the size 4�t′ + 1 ∼ 4�t bits.
Overall, the setup phase has a slightly smaller communication complexity than
the Millionaires protocol without setup described above.

In the online phase, S sends the garbled values ỹ� corresponding to his input
y� to C and the online part of the OT protocol is executed: for each i = 1, . . . , �, C
masks its input bits xi with ri as Xi = xi⊕ri and sends these masked bits to S. S
responds with the masked pair of t′-bit strings

〈
M0

i , M1
i

〉
=
〈
m0

i ⊕ x̃0
i , m

1
i ⊕ x̃1

i

〉
if Xi = 0 or

〈
M0

i , M1
i

〉
=
〈
m0

i ⊕ x̃1
i , m

1
i ⊕ x̃0

i

〉
otherwise. C obtains

〈
M0

i , M1
i

〉
and decrypts x̃i = M ri

i ⊕ mi. Using the garbled inputs x̃�, ỹ�, C evaluates the
garbled circuit C̃, obtains the result from the output decryption table and sends
it back to S. Overall, in the online phase �t′ + 2�t′ + 1 ∼ 3�t bits are sent.

Cost Evaluation. In the following we show how the GC-based comparison
protocol outperforms those based on homomorphic encryption:

Computation Complexity. As our improved GC for integer comparison consists
of no more than � non-XOR 2-to-1 gates (cf. comparison circuit in §3.2), C
needs to invoke the underlying cryptographic hash-function (e.g., SHA-256 for
t = 128 bit symmetric security) exactly � times to evaluate the GC (cf. §2.4). All
other operations are negligible (XOR of t-bit strings). Hence, the computational
complexity of the online phase of our protocol is negligible as compared to that
of protocols based on homomorphic encryption. Even with an additional setup
phase, those protocols need to invoke a few modular operations for each input
bit which are usually by several orders of magnitude more expensive than the
evaluation of a cryptographic hash function used in our protocols. Further the
computational complexity of the setup phase in our protocol is more efficient
than in protocols based on homomorphic encryption when using efficient OT
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protocols implemented over elliptic curves and efficient extensions of OT for a
large number of inputs (cf. §2.3).

Communication Complexity. Table 3 shows that also the communication com-
plexity of our protocol is much lower than that of previous protocols which are
based on homomorphic encryption. As underlying OT�

t′ protocol we use the pro-
tocol of [2] implemented over a suitably chosen elliptic curve and using point
compression (see the full version of this paper [32] for details). This protocol has
asymptotic communication complexity 12�t bits and is secure in the standard
model. (Using the protocol of [38] which is secure in the random oracle model
would result in communication complexity 6�t bits and much lower computation
complexity.) The chosen values for the security parameters correspond to stan-
dard recommendations for short-term (upto 2010), medium-term (upto 2030)
and long-term security (after 2030) [23].

Table 3. Asymptotic communication complexity of comparison protocols on �-bit val-
ues. Parameters defined in §2.1: � = 16, κ = 40, short-term security: t = 80, T = 1024,
medium-term security: t = 112, T = 2048, long-term security: t = 128, T = 3082.

Communication Previous Work This Work
Complexity [20] [6] [14] Setup Phase Online Phase Total
Asymptotic (κ + 1)�T 4�T 2�T 16�t 3�t 19�t

short-term 82 kByte 8 kByte 4 kByte 2.5 kByte 0.5 kByte 3.0 kByte
medium-term 164 kByte 16 kByte 8 kByte 3.5 kByte 0.7 kByte 4.2 kByte
long-term 246 kByte 24 kByte 12 kByte 4.0 kByte 0.8 kByte 4.8 kByte

4.2 First-Price Auctions

In standard auction systems such as ebay, the auctioneer learns the inputs of
all bidders and hence can deduce valuable information about the bidding be-
havior of unsuccessful bidders or cheat while computing the auction function
depending on bidders’ input values. To overcome this, a secure protocol can be
used instead. Bidders provide their bids in a “smartly” encrypted form to the
protocol which allows the auctioneer to compute the auction function without
learning the bids. In the following we show how our constructions can be used
to improve two previously proposed secure auction systems: one in which all
bids are collected before the auction function is computed (Offline Auctions),
and another one where bids are input dynamically and the current highest bid
is published (Online Auctions).

Offline Auctions. In the offline auction system of [39], the auction function is
computed by two parties, an auction issuer and the auctioneer, who are assumed
not to collude. The auction issuer creates a garbled circuit which computes the
auction function and sends it to the auctioneer. For each of the bidders’ input
bits b, a proxy-OT protocol is run, where the auction issuer inputs the two
complementary garbled input values b̃0, b̃1 of the garbled circuit, the bidder
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inputs b and the auctioneer obtains the corresponding garbled value b̃. Then,
the auctioneer evaluates the garbled circuit on the garbled inputs and obtains
the outcome of the auction as output.

In order to run a first-price auction which outputs the maximum bid and
the index of the maximum bidder, our improved minimum circuit of §3.3 can
be used. This circuit is substantially smaller and hence the resulting protocol is
more efficient than the circuit used in [39] as shown in Table 2.

Online Auctions. In the following we show that our GC-based comparison
protocol outperforms the comparison protocol of Damg̊ard, Geisler and Kroig̊ard
presented in [14] for the online auction scenario.

The auction system proposed in [14,15,16] extends the idea of splitting the
computation of the auction function between two parties, the auctioneer (called
server) and another party (called assisting server) who are assumed not to col-
lude. Each bidder can submit a maximum bid b which he secret-shares between
server and assisting server over respective secure channels. Afterwards, the bid-
der can go offline, while the server and assisting server run a secure comparison
protocol to compare the secret-shared maximum bid with the publicly known
value of the currently highest bid to keep track which bidder is still “in the
game”. A detailed description of the scenario can be found in [16].

Our protocol uses the efficient comparison protocol of §4.1 with inputs given
in different forms: the bid is secret-shared between both players (cf. §A.2 for sim-
ple folklore technique to use such inputs in GC) and the other input is publicly
known to both parties (e.g., can be treated as a private input of circuit con-
structor S). The resulting circuit-based protocol for online auctions has exactly
the same performance as our solution for the Millionaires problem described in
§4.1 with the same efficiency improvements over previous solutions. In particu-
lar, the possibility to move all expensive operations into the setup phase, which
can be executed during idle times (whenever no new bids are received), is very
beneficial for this application as this enables the bidders to instantly see if their
current bid was successful or if another bidder meanwhile gave a higher bid. This
feature is important towards the end of the auction, where the frequency of bids
is high. We further recall that the workload of the setup phases can be reduced
by extending OTs efficiently (cf. §2.3).

4.3 Minimum Distance

Finally, we give an efficient protocol for secure computation of the minimum
distance (or nearest neighbor) between a private query point Q, held by client C,
and an ordered list of private points P0, . . . , Pn−1 (called database), held by server
S. The protocol consists of two sub-protocols: the first sub-protocol computes
for i = 1, . . . , n the encrypted distance �δi� of the query point Q to each point
Pi in the database, using a suitably chosen homomorphic encryption scheme,
and outputs these encrypted distances to S. The second sub-protocol securely
selects the minimum value and index of these encrypted distances and outputs
the minimum distance δmin and minimum index imin to C.
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Distance Computation. We sketch the sub-protocols to securely compute the
distance �δi� between query point Q and points Pi in the database next.

Hamming Distance. The Hamming distance between two points P =(p1, . . . , pm)
and Q = (q1, . . . , qm) with pj, qj ∈ {0, 1} is defined as dH(P, Q) :=

∑m
j=1 pj ⊕

qj =
∑m

j=1(1−pj)qj +pj(1−qj). With an additively homomorphic cryptosystem,
the Hamming distance can be computed as follows: C generates a public-key pk
and corresponding secret-key and sends (the verifiably correct) pk and bitwise
homomorphic encryptions of Q, �q1�, . . . , �qm�, to S. As computing the Hamming
distance is a linear operation, S can compute the encrypted Hamming distance
to each point P = Pi in its database as �δi� = �dH(P, Q)� from �qj� and pj using
standard techniques as proposed in [28].

Euclidean Distance. The Euclidean distance can be seen as an extension of
the Hamming distance from 1-bit coordinates to �-bit coordinates, i.e., for j =
1, . . . , m : pj , qj ∈ {0, 1}�. The Euclidean distance is then defined as dE(P, Q) :=√∑m

j=1(pj − qj)2. As the Euclidean distance is not negative, it is sufficient to
compute the square of the Euclidean distance instead, in order to find the min-
imum (or maximum) Euclidean distance: dE(P, Q)2 =

∑m
j=1(pj − qj)2. The

encryption of the square of the Euclidean distance �δ2
i � = �dE(Pi, Q)2� can be

computed analogously to the protocol for the Hamming distance by using addi-
tively homomorphic encryption which allows for at least one multiplication (cf.
§2.2). Alternatively, when using an additively homomorphic encryption scheme,
one can run an additional round for multiplication as used in [18].

Minimum Selection. After having securely computed the homomorphically
encrypted distances �δi� held by S, the minimum and minimum index of these
values can be selected by converting these homomorphically encrypted values to
garbled values as described in §A.3 and securely evaluating the minimum circuit
of §3.3. The asymptotic communication complexity of this minimum selection
protocol is 13�nt bits for the garbled circuits (when GCs are pre-computed), n
homomorphic ciphertexts, and OTn�

t′ . The number of homomorphic ciphertexts
can be further reduced using packing (§A.3), and the number of OTs can be re-
duced to a constant number of OTs (§2.3). As for the other application scenarios
described before, all expensive operations can be moved into a setup phase and
the entire protocol has a constant number of rounds.

Our minimum selection protocol can also be used as a provably secure3 re-
placement for the minimum selection protocol of [30], which was used in the
context of privacy-preserving benchmarking. In this scenario, mutually distrust-
ing companies want to compare their key performance indicators (KPI) with the
statistics of their peer group using an untrusted central server.

3 The minimum selection protocol of [30] requires multiplicative-blinding of an addi-
tively homomorphically encrypted value which reveals some information about the
magnitude of the blinded value.
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A Input/Output Conversion Protocols

A.1 Private Inputs and Outputs

Private S Input: Inputs privately known to the circuit constructor S are easiest
to deal with. For each of these inputs i, S sends the garbled value w̃vi

i cor-
responding to the plain value vi to evaluator C. As described in [42], in case
of semi-honest constructor (i.e., with no cut-and-choose), the inputs of S can
also be securely incorporated into the garbled circuit. This optimization avoids
to transfer any additional data for S’s private inputs and the size of the GC
can be reduced as well. However, in many applications it is beneficial even in
the semi-honest scenario to separate conversion of the inputs from creation of
the garbled circuit, as this allows S to create the garbled circuit in an offline
pre-computation phase already before its private inputs are known.

Private C Input: For private inputs wi of the evaluator C, both parties execute
an OT protocol for each input bit in which constructor S inputs the two garbled
t′-bit values w̃0

i , w̃1
i and C inputs its plain value vi to obtain w̃vi

i as output. For
� input bits, the OTs can be executed in a parallel OT�

t′ protocol which can
efficiently be extended to OTt

t as described in 2.3.
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Private S Output: If the output of the functionality is a private output wi of the
evaluator C, constructor S provides C with the output decryption table for wi,
i.e., the permutation bit πi chosen when creating the garbled value w̃0

i =
〈
k0

i , πi

〉
.

Private C Output: For private outputs wi of the constructor S, evaluator C
does not get an output decryption table but sends the obtained permutation
bit πi of the obtained garbled value w̃i = 〈ki, πi〉 back to S who can deduce
the corresponding plain value from this. Clearly, this works only if C is semi-
honest as otherwise he could easily flip the output bit. This can be prevented by
requiring C to send the output key ki instead.

A.2 Secret-Shared Inputs and Outputs

Secret-Shared Input: As proposed in [19], a bit b can be secret-shared between C
holding share bC and S holding share bS , with b = bC⊕bS . A secret-shared input
bit b can be converted into a garbled input b̃ using an OT�

t′ protocol: C inputs
bC and S inputs the two corresponding garbled values in the usual order b̃0, b̃1 if
bS = 0 or swaps them to b̃1, b̃0 otherwise. It is easy to verify that C obliviously
obtains the correct garbled value b̃ for the shared bit b.

Secret-Shared Output: A similar method can be used for a secret-shared output
bit b. S chooses a random share bS and provides C with an output decryption
table (cf. private output to C) in the correct order in case bS = 0 or with swapped
entries otherwise. C decrypts the garbled output to bC which satisfies b = bC⊕bS .

A.3 Homomorphically Encrypted Inputs and Outputs

In the scenario of secure two-party computation based on homomorphic encryp-
tion, one party, say client C, generates a key-pair of the homomorphic encryption
scheme and sends the (verifiably correct) public key and its inputs encrypted un-
der the public key to S. Afterwards, S can perform operations on the ciphertexts
which result in corresponding operations on the encrypted plaintext data (using
the homomorphic property of the cryptosystem). In order to compute operations
that are not compatible with the homomorphic property (e.g., multiplication of
two ciphertexts encrypted with an additively homomorphic encryption scheme),
additional communication rounds must be performed. In the following we show
how computing on homomorphically encrypted data can be combined with a
garbled circuit to efficiently evaluate non-linear functions, such as comparison,
minimum search, or other functionalities in a constant number of rounds.

Homomorphically Encrypted Input: If S holds an �-bit value �x��, additively
homomorphically encrypted under C’s public key, this value can be converted into
a garbled value x̃� output to C as follows: S chooses a random value r from the
plaintext space P and adds this to the encrypted value: �y� = �x� + r�. In order
to avoid an overflow, this requires that � + κ ≤ |P | for a statistical correctness
parameter κ (e.g., κ = 40). S sends �y� to C who decrypts into y. Afterwards,
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both parties evaluate a garbled circuit which takes off the additive blinding: the
private input of S into this garbled circuit are the � least significant bits of r,
r� = r mod 2�, and C inputs the � least significant bits of y, y� = y mod 2�.
The garbled circuit is an �-bit subtraction circuit (cf. §3.1) which recovers the
plaintext value from the blinded value as x̃� = ỹ� − r̃�. This conversion protocol
from additively homomorphically encrypted values into garbled values was used
in [12,28]. A detailed proof and efficiency improvements (by packing together
multiple values and converting the packed value at once) is given in [4].

Homomorphically Encrypted Output: This is similar to an homomorphically en-
crypted input (add random (� + σ)-bit mask in GC and remove it under homo-
morphic encryption) and included in the full version of this paper [32].
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unbounded semi-honest adversary, who can passively corrupt at most
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information theoretically secure protocols in a multi-party setting for all
the three problems. Previous solutions for Distributed Private Match-
ing and Cardinality of Set Intersection were cryptographically secure and
the previous Set Disjointness solution, though information theoretically
secure, is in a two party setting. We also propose a new model for Dis-
tributed Private matching which is relevant in a multi-party setting.
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1 Introduction

Consider the following problem: Alice has a set A of values and there exists an
element a ∈ A. Bob also has a set of values B. Alice wants to check if her element
a belongs to Bob’s set B or not; i.e., if a ∈ B or not. Alice does not want to
reveal her element a to Bob and nor does Bob want Alice to know about any of
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the elements in his set. Alice should ultimately learn if her element belongs to
Bob’s set or not and nothing more. And Bob should not learn anything (neither
about Alice’s value nor about its presence in his set). This is the private matching
problem. In the distributed private matching problem proposed by Ye et al. [16],
Bob’s dataset B is distributed across n servers such that t or less servers cannot
come together and reconstruct his dataset.

Consider another problem: Alice and Bob have sets A and B respectively
and Alice wishes to find out if A ∩ B = φ. Alice and Bob also do not want
to reveal any other information about their datasets to either party. The only
information that Alice should gain is whether A ∩B = φ or not and Bob learns
no new information. This is known as the private set disjointness test [6].

Suppose Alice and Bob have the sets A and B respectively and Alice wants to
find out the cardinality of the set A∩B. The solution should only reveal |A∩B|
to Alice and should not reveal any more information about Bob’s dataset to
Alice and at the end of the solution, Bob should not gain any extra information
about Alice’s dataset. This is the Cardinality Set-Intersection Problem [3].

Distributed Private Matching has a lot of motivating examples from real life.
For example, assume Alice has a highly sensitive information and wants to know
if Bob has any record of the same. Bob, concerned about the security of his data
and in order to cater to needs across the globe, has distributed all the information
he has, in a database over n servers. Bob is willing to help Alice, but at the same
time is not ready to reveal any other information that might help Alice get his
dataset. Also, Alice does not want to reveal her sensitive information to Bob.
For example, Alice could be a credit card service provider and Bob could have
the set of all credit faulters from a single service. Alice might want to check if
her customer belongs to bad credit union before agreeing to provide services and
Bob would not want Alice to gain information about anyone else on the list. The
Distributed Private Matching protocol gives solution to such problems.

As another example, suppose that a community social services centre has a
list of drug abusers in the age group 11-19. A school administration in the local-
ity wants to find out if its school is ’clean’ or not. Since this is highly sensitive
information the centre would not like to reveal any information or names in the
list and would be willing to reveal only whether there are report cases of drug
abuse from the school. This is an example of private set disjointness test. Again,
if the school wants to know the number of students on the list and the centre is
willing to reveal the number but does not want to divulge any more information,
it becomes an example of the cardinality of set intersection.

Existing Literature: Private matching was introduced as a private two-party
matching problem by Freedman et al.[3], who solved the problem under cryp-
tographic assumptions, using oblivious polynomial evaluation with a public-key
homomorphic encryption system. In the protocol, Alice has an element a and
Bob has a dataset B = {b1, b2, · · · , bm}. At the end of the protocol, Alice gets to
know if his element a belongs to Bob’s Dataset B. The protocol does not reveal
Alice’s element a to Bob and Alice knows nothing more than whether a ∈ B.
Ye, Wang and Pieprzyk [16] extended this problem to a Distributed scenario.
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In Distributed Private Matching, Alice has a value a and Bob has his dataset
B = {b1, b2, · · · , bm} distributed among n servers such that t or less servers can-
not discover Bob’s Original Dataset while t + 1 or more servers can reconstruct
Bob’s dataset. In [16], a protocol for distributed private matching problem under
cryptographic assumptions is provided.

Quite a few protocols exist for the set disjointness problem. Freedman et al. [3]
proposed a protocol for two-party set disjointness under cryptographic assump-
tions, based on the representation of datasets as roots of a polynomial and obliv-
ious polynomial evaluation techniques. The protocol reveals information about
the cardinality of set intersection. It is very efficient against honest-but-curious
adversaries but invokes expensive sub-protocols to work against malicious ad-
versaries. Hohenberger and Weis [5] had used similar construction as in [3] and
proposed a protocol in cryptographic setting (the security proof relies on the
hardness of the discrete logarithm problem). Their protocol assumes an hon-
est Alice while Bob can be malicious and again reveals information about the
cardinality of the set intersection. Kiayias and Mitrofanova [7] proposed three
protocols for set disjointness. The first protocol works on a relatively smaller
domain for set disjointness, the second uses a new primitive called superposed
encryption based on Pedersen commitments [13], the third uses a multi variate
polynomial to reduce the high round complexity of the second protocol. Both
[5] and [7] work in the two party setting. The first information theoretic solu-
tion to the private set disjointness problem is provided in [17]. The authors in
[17] presented two protocols for two-party set disjointness using Sylvester matri-
ces technique with round complexity of O(1). While the first protocol is secure
against honest-but-curious adversaries, the second protocol is secure against ma-
licious adversaries.

The Cardinality Set-Intersection problem was previously studied in [3] in the
two-party setting. In [7], Kiayias et al. studied private set disjointness as men-
tioned above which can be looked at as a restricted version of Cardinality of Set
Intersection . In [8], Kisner et al. studied the problem in the multi-party setting
and proposed efficient solutions for both honest-but-curious and malicious ad-
versary under cryptographic assumptions, using zero knowledge proofs. Vaidya
and Clifton [15] presented a protocol for cardinality of set intersection that is
scalable and efficient in cryptographic settings and hence suitable for data min-
ing applications.

Also, multi-party set intersection problems in information theoretic settings have
been studied in [9] and [12]. Though there exist protocols for set intersection and
in general for Multi-Party Computations, using them to solve set disjointness or
cardinality of set intersection will be an overkill and highly inefficient. Our goal
is to design efficient customised protocols as opposed to using generic abstract
protocols.

Our Motivation and Contribution: From the literature, we find that exist-
ing solutions for private matching are in cryptographic settings. Also, the Dis-
tributed Private Matching proposed in [16] is essentially between two parties,
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where the data set of the second party is distributed among n servers. In this pa-
per, we propose the first information theoretically secure protocol for Distributed
Private Matching in the model proposed in [16]. We then propose a new model
for Distributed Private Matching in a multi-party setting. The distributed pri-
vate matching in our new model can be looked at as a general n-party Private
Matching, where each party has a dataset and Alice has a value a and wants
to know if a belongs to any of the n datasets. Here, the parties distribute their
datasets among themselves such that t or less parties cannot come together and
gain information about any honest party’s dataset. Thus the parties themselves
act as the servers used in the 2-party setting. The n-party Distributed Private
Matching is useful in many scenarios. For example, suppose there are n trading
agencies who store information about the available resources in a region. This
information is sensitive and to ensure its safety, they share it among each other,
so that any set of t or less agencies cannot get the information of any other
agency. Now assume that Alice is a trader interested in setting up a factory
over this region but needs to know if she can get the necessary resources for her
production from any of the trading agencies. But Alice does not want to reveal
her requirements to the agencies till she can get a confirmation that they will
be of help. In such a case, n-party Distributed Private Matching is helpful. We
also propose an information theoretically secure protocol for n-party Distributed
Private Matching, secure against a semi-honest adversary.

Set Disjointness has been handled in information theoretic setting previously
[17], but only in a 2-party setting. We provide the first multi party information
theoretically secure protocol for set disjointness, secure against a semi-honest
adversary. In our model, there are n parties where each party’s dataset is dis-
tributed among the n parties, such that t + 1 or more parties need to come
together to reconstruct the entire dataset, similar to our proposed model for
n-party Distributed Private Matching.

Privacy law is the area of law concerned with the protection and preservation
of the privacy rights of individuals. The law of privacy regulates the type of
information which may be collected and how this information may be used.
Many privacy rules and regulations like HIPAA, GLBA and SOX [10] exist that
restrict companies from sharing their data as it is to other parties. For example,
there could be a hospital database and there could be a vendor who wants to
check if the technology used by his mobile results in complaints such as ear ache,
headache etc. Also there could be a vendor who wants to check for multiple
ailments which could result from the use of his product. So, he would like to
find out if a threshold number of customers have complained of these ailments
by checking with the hospital database. Also, the hospital’s database would be
governed by privacy rules like the ones mentioned above. Hence, this problem is
an example for multi-party cardinality of set intersection.

The existing solutions for Cardinality of Set Intersection problem (both in
2-party and n-party setting) are in cryptographic settings. We provide the first
multi party information theoretically secure protocol for Cardinality of Set In-
tersection problem, secure against a semi-honest adversary.
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Hence our contribution in this paper is to provide information theoretically
secure protocols for Private Matching, Set Disjointness and Cardinality Set-
Intersection in a multi-party setting against a semi-honest adversary. We also
show how to adapt our protocols to work against an active adversary in the
same model. To the best of our knowledge, this is the first work to address these
problems in a multi-party scenario, in information theoretic settings.

2 Model Definitions and Preliminaries

In this paper, we will be considering two different models. The first model is
adapted from [16], while the second model is proposed by us. We provide a per-
fectly secure protocol for Two party distributed private matching problem in the
first model, while we propose perfectly secure protocols for n-party distributed
private matching, Cardinality of Set Intersection and Set Disjointness in the
second model. We now briefly discuss these models. We also give the details of
various existing sub-protocols, used in this paper.

2.1 Model for 2-Party Distributed Private Matching [16]

Here Alice and Bob are two parties. Alice has a secret value a ∈ F and Bob has
a private dataset B = {b(1), . . . , b(m)}, consisting of m elements from a finite
prime field F, where |F| > n. The dataset of Bob is distributed among n servers
in a manner as explained in section 2.5, where n ≥ 2t+1. There exists a passive
adversary with unbounded computing power, who can control at most t servers
out of the n servers. We assume that Alice does not interact with Bob directly.
Instead Alice contacts the set of n servers to perform the private-matching op-
erations. We assume also that no server colludes with Alice to cheat and only
Alice learns the output of any operation. More precisely, the following conditions
should hold [16]:

1. Correctness: If Alice and the servers honestly follow the steps of the pro-
tocol, then protocol works and Alice learns the correct result of the operation
specified in the protocol.

2. Alice’s Security : If Alice is honest, then at the end of the protocol, the ad-
versary controlling t servers should not get any information whatsoever about a.

3. Bob’s Security : Provided that no server colludes with Alice, the protocol
ensures that Alice does not get any extra information other than the output of
the operation. In addition, any t or less servers should not be able to find out
any information about Bob’s dataset.

2.2 Model for n-Party Distributed Private Matching, Set
Disjointness and Cardinality of Set Intersection

Here we consider a complete synchronous network of n parties, denoted as
P = {P1, . . . , Pn}, who are pairwise connected by a secure channel. There
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exists a centralized adversary, having unbounded computing power, who can
passively control at most t < n/2 parties. This is a valid assumption as in-
formation theoretic MPC against a computationally unbounded t-active passive
adversary is possible iff n ≥ 2t + 1 [2]. By passive adversary, we mean that
all the parties under the control of adversary follow the prescribed steps of
the protocol, but may try to learn something extra from the messages seen
during the execution of the protocol. Each party Pi has a private data set
Bi = {b(i,1), . . . , b(i,m)}, consisting of m elements from a finite prime field F

where |F| > n (the protocols presented in this paper will also work if the num-
ber of elements in each data set is different). All computation and communi-
cation in our protocols are done over F. To ensure the secrecy and distributed
nature of datasets, each party Pi distributes his dataset among all other parties,
as shown in Section 2.5. We now state the security definition, associated with
n-party distributed private matching, Cardinality of Set Intersection and Set
Disjointness.

Security Definition for n-Party Distributed Private Matching: Here
Alice has an element a ∈ F, whose presence she wants to check for in any of the
n datasets. For this, she interacts with the n parties. As in [16], we assume that
no party colludes with Alice and only Alice learns the output of any operation.
More precisely, the following should hold as in [16]:

1. Correctness: If Alice and the parties honestly follow the steps of the pro-
tocol, then protocol works and Alice learns the correct result of the operation
specified in the protocol.

2. Alice’s Security : If Alice is honest, then at the end of the protocol, the ad-
versary controlling t parties should not get any information whatsoever about a.

3. Party’s Security : Provided that no party colludes with Alice, the protocol
ensures that Alice does not get any extra information other than the output of
the operation. In addition, if Pi is honest, then his dataset Bi is secure against
a passive adversary controlling at most t parties.

Security Definition for n-Party Set Disjointness: Here the n parties want
to know whether (B1 ∩ B2 ∩ · · · ∩ Bn) = φ or not and nothing more. More
specifically, the following conditions should be satisfied at the end of the protocol,
even if t < n/2 parties are passively corrupted by a computationally unbounded
adversary:

1. Correctness: If the parties honestly follow the steps of the protocol, then
they learn if (B1 ∩B2 ∩ · · · ∩Bn) = φ or not.

2. Party’s Security : The adversary should not get any extra information
about the input and output of honest parties, other than what can be inferred by
the input of t corrupted parties (i.e., the dataset of these parties) and the output
of t corrupted parties (which is (B1 ∩B2 ∩ · · · ∩Bn) ?= φ).
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Security Definition for n-Party Cardinality of Set Intersection : Here
the parties want to know |B1∩B2∩· · ·∩Bn| and nothing more. More specifically,
the following conditions should be satisfied at the end of the protocol, even
if t < n/2 parties are passively corrupted by a computationally unbounded
adversary:

1. Correctness: If the parties honestly follow the steps of the protocol, then
the parties learn |B1 ∩B2 ∩ · · · ∩Bn|.
2. Party’s Security : The adversary should not get any extra information
about the input and output of honest parties, other than what can be inferred by
the input of t corrupted parties (i.e., the dataset of these parties) and the output
of t corrupted parties (which is |B1 ∩B2 ∩ · · · ∩Bn|).

2.3 Sharing a Value s among n Parties

Consider the following problem: there exists a dealer D ∈ P . D has a secret
s ∈ F, which he wants to share among P1, . . . , Pn, such that if t or less parties
pool their shares, then they will know nothing about s. On the other hand,
if t + 1 or more parties pool their shares, then they can reconstruct s. This
problem is called secret sharing. One of the methods to solve this problem is
Shamir Secret Sharing [14], where to share s, D chooses a random polynomial
f(x) of degree t, such that f(0) = s. D then gives Pi his share si = f(αi), where
each αi is a publicly known distinct element from F. To reconstruct s, each party
produces his share si. Once all the n shares are available, anyone can interpolate
the t degree polynomial f(x) passing through (αi, si)’s and hence reconstruct
s = f(0). It is easy to see that if t parties pool their shares, then they will know
nothing about s [14].

d-Sharing and its Properties [1]: We say a value s ∈ F is d-shared among
the parties in P , if every (honest) party Pi ∈ P is holding a share si of s, such
that there exists a degree-d polynomial p(·) with p(0) = s and p(αi) = si for
every Pi ∈ P . The vector of shares (s1, . . . , sn) is called a d-sharing of s, and
is denoted by [s]d. In the rest of the paper, whenever we say that the parties
have [s]d for some s ∈ F, we mean to say that each party is holding his share
corresponding to d-sharing of s.

Shamir sharing is a t-sharing scheme and generates t-sharing [s]t of secret s.
Notice that Shamir sharing satisfies the following properties:

1. [a]t + [b]t = [a + b]t, for any a, b ∈ F.
2. [a]t[b]t = [ab]2t, for any a, b ∈ F.

Thus if the parties hold [a]t and [b]t, then they can locally generate [a + b]t,
without doing any communication, by simply adding their respective shares of a
and b. On the other hand, if the parties simply multiply their respective shares
of a and b, then this will generate [ab]2t. To generate [ab]t from [a]t and [b]t, we
need to use the multiplication protocol specified in section 2.4.
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2.4 Multiplying Shared Values

Let a and b be two values, which are Shamir shared (i.e., t-shared) among
P1, . . . , Pn using degree-t polynomials f(x) and g(x) respectively. Thus party
Pi has shares ai and bi of a and b respectively. Then the parties P1, . . . , Pn

can generate the Shamir shares of c = ab by using the multiplication proto-
col of [4] as follows: Let di = aibi. Each party Pi Shamir share di, say us-
ing degree-t polynomial hi(x). This results in party Pi holding the share-share
d1i, · · · , dni of d1, . . . , dn respectively. Then from Lagrange’s interpolation, the
degree-t polynomial h(x) =

∑n
i=1 wihi(x) is the polynomial that Shamir shares c,

where

wi =
n∏

j=1,j �=i

αj/(αj − αi) (1)

To get jth share of c, party Pj computes cj = h(αj) =
∑n

i=1 wihi(αj) =∑n
i=1 widij . It is easy to see that during this process, an adversary passively

controlling at most t parties does not get any information about a, b and c [4].
Also, the method works only if n > 2t which holds in our case.

Lemma 1. The above multiplication protocol communicates O(n2) field ele-
ments and takes one round of communication.

Proof: In the protocol, each party Shamir shares a value, which involves a com-
munication complexity of O(n) field elements and one round of communication.
Hence the lemma. �

Lemma 2. Suppose the parties have [a(1)]t, . . . , [a(�)]t and [b(1)]t, . . . , [b(�)]t,
where each a(l) and b(l) belongs to F and � ≥ 1. Then the parties can generate
[a(l)b(l)]t, for l = 1, . . . , � in 1 communication round using the above multiplica-
tion protocol. On the other hand the parties can generate [a(1) . . . a(�)]t in log2 �
communication rounds.

Proof: Computing [a(l)b(l)]t for l = 1, . . . , � will require 1 round because each
a(l)b(l) is independent of the other and we can generate these products in par-
allel. On the other hand, generating [a(1) . . . a(�)]t requires log2 � communication
rounds because we can multiply two operands at a time, say ai and ai+� �

2 � for
i = 1, · · · , � �

2�, and find their products in the first round and then make pairs
among the resulting products(after the first round) and multiply them in the
next round and so on. �

2.5 Dataset Distribution of Parties

In both the models, namely the one presented in section 2.1 and section 2.2, the
parties distribute their dataset in a specific manner. We now give the details of
how this is done.
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Dataset Distribution for Two Party Distributed Private Matching:
Here Bob on having the data set B = {b(1), . . . , b(m)} does the following: Bob
forms a polynomial F (x) such that the elements of his set B are roots of the
polynomial; i.e., F (x) =

∏m
i=1(x − b(i)) =

∑m
i=0 Cix

i, such that Cm = 1. Bob
then Shamir shares each Ci among the n servers. It is easy to see that even if t
or less servers combine their shares, they will have no information about B. On
the other hand, B can be reconstructed by pooling the shares of any t + 1 or
more servers.

Dataset Distribution for n-party Distributed Private Matching: Here
each party Pi on having a dataset Bi = {b(i,1), . . . , b(i,m)} distributes it in the
following way: Pi forms a polynomial Fi(x) such that the elements of his set Bi

are roots of the polynomial; i.e., Fi(x) =
∏m

j=1(x− b(i,j)) =
∑m

j=0 C(i,j)xj , such
that C(i,m) = 1. Party Pi then Shamir shares each C(i,j) among the n parties. It
is easy to see that even if t or less parties combine their shares, they will have no
information about Bi. On the other hand, Bi can be reconstructed by pooling
the shares of any t + 1 or more servers.

Dataset Distribution for n-party Set Disjointness and Cardinality of
Set Intersection: Here each party Pi on having dataset Bi ={b(i,1), . . . , b(i,m)},
distributes it in the following way: for j = 1, . . . , m, party Pi Shamir shares b(i,j)

among the parties in P . Since each element in the dataset is individually shared
using a t-degree polynomial, it implies that if Pi is honest, then each element of
his dataset Bi is secure against a passive adversary controlling at most t parties.
Moreover, any set of t + 1 or more parties can reconstruct Bi by pooling their
shares.

2.6 Checking If a Shared Value Is Zero

Nishide and Ohta [11] present an efficient and deterministic protocol to check if
a shared value is zero or not. More specifically, the protocol takes [s]t as input,
where s is shared using Shamir sharing and outputs the following:

1. If s = 0, then the protocol generates [1]t.
2. If s �= 0, then the protocol generates [0]t.

The protocol performs 81l multiplications of shared values, where l = log(|F|)
and takes 8 rounds. In the rest of the paper, we use this protocol for testing if
a shared value is zero. We shall henceforth refer to this protocol as TEST-IF-

ZERO.

Remark 1. The TEST-IF-ZERO protocol of [11] is a deterministic protocol,
without any error, which we use in the rest of this paper. A drawback of this
protocol is that it performs very large number of multiplications. In the last
section of this paper, we present a simple protocol for testing if a shared value is
zero, involving significantly less number of multiplications. However, this proto-
col is probabilistic and gives the correct output, except with an error probability
of 1

|F| .
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3 Two-Party Distributed Private Matching Protocol

Recall that in the 2-party distributed private matching, Bob has a private data
set B of m elements, which he has distributed among n servers, say S1, . . . , Sn,
as explained in section 2.5. Alice has a secret element a ∈ F, whose presence she
wants to check in Bob’s dataset. For this she interacts with the servers. We now
present a perfectly secure protocol for this problem. Before proceeding further,
we give the following trivial lemma:

Lemma 3. The value a belongs to B iff F (a) = 0, where F (x) =
∏m

i=1(x −
b(i)) =

∑m
i=0 Cix

i.

Proof: The proof is obvious and it follows from the definition of F (x). �

The high level idea of the protocol is as follows: Alice first Shamir shares the
values a, . . . , am among n servers. Hence all the servers, apart from having the
shares of the coefficients of F (x), now also have the shares of a, . . . , am. The
servers then compute the Shamir shares of Vj = Cja

j for 0 ≤ j ≤ m, using
the multiplication protocol (see section 2.4). Since F (a) =

∑m
j=0 Vj , by a linear

combination of all the shares that a server has, each server gets his share of F (a).
Till this point, the servers have generated the Shamir shares of F (a). Now if the
servers give their shares of F (a) to Alice, then Alice could reconstruct F (a) and
find whether a belongs to B. But directly revealing F (a) to Alice will violate
Bob’s security, as Alice would come to know about one point on F (x).

Since Alice wants to know only if a ∈ B or not, all we need to find out is
if F (a) = 0 or not. For this, all the servers run the TEST-IF-ZERO protocol
on the shares of F (a) and reconstruct the output towards Alice. If the output
is one then Alice concludes that F (a) = 0, otherwise F (a) �= 0. Accordingly,
Alice concludes that a belongs (does not belong) to B. The protocol called 2-
party DPMP is formally given in Table 1. Before proceeding further to prove the
properties of 2-Party DPMP, we make the following claim.

Claim. In protocol 2-Party DPMP if Alice is honest, then a passive adversary
controlling at most t servers does not get any information about a even after
knowing t shares of a, . . . , am.

Proof: The proof follows easily from the properties of Shamir sharing and
simple linear algebra. For a complete proof, see APPENDIX A. �

Lemma 4. Protocol 2-party DPMP satisfies the properties of 2-party distributed
private matching.

Proof: The correctness property is trivial. The secrecy of Bob’s dataset
against a passive adversary controlling at most t servers follows from the prop-
erties of Shamir sharing. The secrecy of Bob’s data set against a passive Alice
follows from the secrecy of TEST-IF-ZERO. Finally, secrecy of Alice’s a follows
from Claim 3. �

Lemma 5. Protocol 2-party DPMP communicates O(n2m) field elements and
involves one invocation of TEST-IF-ZERO. The protocol takes two rounds.
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Proof: In the setup phase, the parties communicates O(nm) field elements for
data set distribution. In the computation phase, there are m multiplications and
hence it communicates O(n2m) field elements. Since all the multiplications are
independent, by lemma 2 it can be done in parallel in one round. Moreover,
setup phase takes one round. �

Table 1. Protocol for 2-party DPMP

2-Party DPMP

Setup Phase:

Alice Shamir shares a, . . . , am among n servers. Bob distributes his dataset B =
{b(1), . . . , b(m)} among n servers as explained in section 2.5. Let F (x) =

∏m
j=1(x −

b(j)) =
∑m

j=0 Cjx
j . Thus the parties have [Cj ]t for j = 0, . . . , m.

Computation (by each server):

1. The servers compute [Vj ]t = [Cja
j ]t for 0 ≤ j ≤ m using the multiplication protocol

described in section 2.4.
2. The servers then compute [F (a)]t = [V0]t + . . . + [Vm]t.
3. Finally the servers run the protocol TEST-IF-ZERO on [F (a)]t to generate [v]t,
where v = 1(0), if F (a) = 0( �= 0).

Reconstruction Phase:

The servers give their shares of v to Alice. Alice reconstruct v and checks if v = 1. If
v = 1, then a ∈ B else a /∈ B.

4 n-Party Distributed Private Matching Protocol

We now present a perfectly secure protocol called n-party DPMP for distributed
private matching in n-party settings. For this, we use the model presented in
section 2.2. Recall that in this model, there are n parties denoted as P =
{P1, . . . , Pn}, where each Pi has a private dataset Bi = {b(i,1), . . . , b(i,m)} rep-
resented using Fi(x) =

∏m
j=1(x− b(i,j)) =

∑m
j=0 C(i,j)xj . Moreover, the dataset

Bi is Shamir shared among the n parties; i.e., the parties hold [C(i,j)]t, for
i = 1, . . . , n and j = 0, . . . , m (see Section 2.5). Alice has a secret element a.
Alice wants to know if a ∈ (B1 ∪ . . . ∪ Bn). Before proceeding further, we give
the following lemma.

Lemma 6. a ∈ (B1 ∪B2 ∪ · · · ∪Bn) iff atleast one of the Fi(a) = 0.

The high level idea of protocol n-party DPMP is as follows: Alice first Shamir
shares the values a, . . . , am among n servers. Thus parties hold [aj ]t for j =
1, . . . , m . The parties then compute [V (i,j)]t = [C(i,j)aj ]t using the multi-
plication protocol. The parties then compute the Shamir shares of [Fi(a)]t =∑m

j=0[V
(i,j)]t. Since shamir sharing is linear, this can be done locally. The par-

ties then compute [F (a)]t where
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F (a) =
n∏

i=1

Fi(a) (2)

After this step, the parties have [F (a)]t. To ensure that no more information is
revealed to Alice than what is necessary, the parties run the TEST-IF-ZERO

protocol on [F (a)]t and reconstruct the output towards Alice, so that Alice
gets to know only if F (a) is zero or not and nothing more. Alice checks if the
reconstructed value is 0 or not to find if a ∈ (B1∪B2∪· · ·∪Bn). Protocol n-party
DPMP is formally given in the following table.

n-Party DPMP

Setup Phase:
Alice shamir shares a, a2, a3, · · · , am among the n parties and each party Pi for 1 ≤
i ≤ n distributes his dataset Bi using the polynomial Fi(x) =

∑m
j=0 C(i,j)xj among

n parties using Dataset Distribution scheme described in section 2.5. Thus the parties
have [aj ]t for 1 ≤ j ≤ m and [C(i,j)]t for 1 ≤ i ≤ n and 0 ≤ j ≤ m.

Local Computation (by each party):

1. The parties compute [V (i,j)]t = [C(i,j)aj ]t for 0 ≤ j ≤ m and 1 ≤ i ≤ n and
compute [Fi(a)]t =

∑m
j=0[V

(i,j)]t.

2. The parties compute [F (a)]t =
∏n

i=1[Fi(a)]t by running the multiplication protocol
specified in section 2.4.

3. The parties now run the protocol TEST-IF-ZERO on [F (a)]t to generate [v]t, where
v = 1(0), if F (a) = 0( �= 0).

Reconstruction Phase: The parties give their shares of v to Alice. Alice reconstructs
v and checks if v = 1. If v = 1, then a ∈ B1 ∪B2 ∪· · · ∪Bn else a /∈ B1 ∪B2 ∪· · ·∪Bn .

Lemma 7. Protocol n-party DPMP satisfies the properties of n-party distributed
private matching.

Proof: Follows directly from the protocol steps and properties of Shamir sharing
and TEST-IF-ZERO protocol. �

Lemma 8. Protocol n-party DPMP communicates O(n3m) field elements and
executes one instance of TEST-IF-ZERO. The protocol involves O(log(n)) com-
munication rounds.

Proof: The communication complexity is easy to analyze. In setup phase,
O(nm) values are t shared and it communicates O(n2m) field elements. Dur-
ing computation phase, in step 1, we first do nm multiplications simultaneously
which can be done in 1 round. In step 2, n shared values need to be multiplied.
Since these values are dependent, the multiplications totally take O(log(n)) com-
munication rounds and communicates O(n3m) field elements by lemma 1 and
lemma 2. �
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5 n-Party Set Disjointness Protocol

We now present a perfectly secure protocol called n-party Set Disjointness for
n-party set disjointness problem. Recall that in this problem, there are n parties
P = {P1, . . . , Pn}, where each Pi has a private dataset Bi = {b(i,1), . . . , b(i,m)}.
Moreover, each b(i,j) is Shamir shared among the n parties for j = 1, . . . , m.
Thus the parties hold [b(i,j)]t. The parties want to know if (B1∩ . . .∩Bn) = φ or
not. We first present a protocol called Gen-El, which we will later use in solving
the n-party set disjointness as well as cardinality of set intersection problem.

5.1 Protocol Gen-El

In this section we give a protocol that helps in solving the set cardinality and
disjointness problems. We call this protocol as Gen-El, which generates shares of
El (which we will define subsequently). We first observe that, (B1∩· · ·∩Bn) ⊆ Br

for any 1 ≤ r ≤ n. Hence we fix a party Pr ∈ P as reference and refer to the
elements of his dataset as {a1, . . . , am} for convenience. Now we check if some
element of Br is present in the the dataset of each party in P \Pr. If there exists
any such element al ∈ {a1, . . . , am}, then the sets Bi’s are not disjoint. Protocol
Gen-El checks for the presence of any such element al.

Gen-El

Setup Phase:

1. Each party Pi on having dataset Bi = {b(i,1), . . . , b(i,m)} Shamir shares each b(i,j).
Thus the parties hold [b(i,j ]t, for 1 ≤ i ≤ n and 1 ≤ j ≤ m.

2. The parties fix one arbitrary party among them as the reference, say, the lowest
index party, P1. For the ease of presentation, let {a1, . . . , am} denote the element of
P1’s dataset.

Computation (by each party):

1. The parties first compute [V (l,i,j)]t = [b(i,j)]t − [al]t for i = 2, . . . , n, j = 1 . . . , m
and l = 1 . . . , m.

2. The parties use the multiplication protocol to generate [C(i,l)]t =
∏j=m

j=1 [V (l,i,j)]t
for i = 2, . . . , n and l = 1 . . . , m.

3. The parties then compute [El]t =
∑i=n

i=2 [C(i,l)]t.

Lemma 9. If El = 0 is zero, then the element al ∈ B1 is also present in
(B1 ∩ · · · ∩Bn).

Proof : The proof follows easily from the protocol steps. �

Lemma 10. Protocol Gen-El communicates O(n3m2) field elements in setup
phase. The protocol takes O(log(nm2)) communication rounds.
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Proof: The communication complexity and the number of multiplications is
easy to analyze. Since there are nm2 multiplications and all of them are depen-
dent, from Lemma 2, the number of rounds needed to perform these multiplica-
tions is O(log(nm2)). �

5.2 Protocol for Multi Party Set Disjointness

To compute multi party set disjointness, the parties first execute protocol Gen-El

to generate [El]t for l = 1, . . . , m. The parties then compute [E]t =
∏l=m

l=1 (El)
by using the multiplication protocol. The parties then execute TEST-IF-ZERO

on [E]t to generate [v]t. Finally v is reconstructed by each party, after which the
parties conclude whether the sets are disjoint or not.

n-party Set Disjointness

1. The parties run protocol Gen-El to generate [El]t for l = 1, . . . , m.
2. The parties now run multiplication protocol to compute [E]t =

∏l=m
l=1 ([El]t).

3. The parties then run the TEST-IF-ZERO protocol on [E]t to generate [v]t.

Reconstruction Phase:

The parties produce their respective share of v. Once v is reconstructed, the parties
check if v = 0 or 1. If v = 0, then (B1 ∩ · · · ∩ Bn) = φ else (B1 ∩ · · · ∩ Bn) �= φ.

Lemma 11. Protocol n-party Set Disjointness satisfies the properties of n-party
set disjointness.

Proof: The proof follows easily from the protocol steps, properties of protocol
Gen-El and Shamir secret sharing. �

Lemma 12. Protocol n-party Set Disjointness communicates O(n3m2 + n2m)
field elements, and executes one instance of TEST-IF-ZERO. The protocol
takes O(log(nm2) + log(m)) communication rounds.

Proof: Communication complexity is easy to analyze. In the protocol, Gen-El

performs nm2 multiplications. Computing [E]t require m multiplications. Hence
the total number of multiplications done is (nm2+m). Since these multiplications
are dependent, we require O(log(nm2) + log(m)) rounds to perform them. It is
easy to see that protocol executes one instance of TEST-IF-ZERO. �

6 n-Party Cardinality of Set Intersection

We now present a perfectly secure protocol called n-party Cardinality of Set In-
tersection for n-party cardinality of set intersection. Recall that in this prob-
lem, there are n parties P = {P1, . . . , Pn}, where each Pi has a private dataset
Bi = {b(i,1), . . . , b(i,m)}. Moreover, each b(i,j) is Shamir shared among the n par-
ties for j = 1, . . . , m. Thus the parties hold [b(i,j)]t. The parties want to only
know the value |B1 ∩ · · · ∩Bn| and nothing more. Protocol n-party Cardinality of
Set Intersection is formally given in the following table.
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n-party Cardinality of Set Intersection

1. The parties run the protocol Gen-El to generate the [El]t for l = 1, . . . , m.

2. For l = 1, . . . , m, the parties run TEST-IF-ZERO on [El]t to generate [vl]t.

3. The parties then compute [v]t =
∑l=m

l=1 [vl]t.

Reconstruction Phase: All the parties produce their respective shares of v to
reconstruct v. The value v is |B1 ∩ · · · ∩ Bn|.

Lemma 13. Protocol n-party Cardinality of Set Intersection satisfies the proper-
ties of n-party cardinality of set intersection.

Proof: The security of honest parties’ datasets is satisfied because the elements
of the datasets of honest parties are Shamir shared and hence are safe against
a passive adversary having control over t parties. Also the final outcome of the
protocol is only the cardinality of (B1 ∩ · · · ∩ Bn) and not anything more. The
correctness property follows from Lemma 9 and protocol steps. �

Lemma 14. Protocol n-party Cardinality of Set Intersection communicates
O(n3m2) field elements and invokes m instances of TEST-IF-ZERO protocol.
The protocol has a round complexity of O(log(nm2)).

Proof: The protocol communicates O(n2m) field elements for sharing the
datasets and does nm2 multiplications. Since all the multiplications are depen-
dent, from Lemma 2, it takes O(log(nm2)) communication rounds to perform
them. From protocol, we can clearly see that it involves m invocations of TEST-

IF-ZERO protocol. �

7 A Simple Protocol for Checking If a Shared Value Is
Zero

In section 2.6, we gave the details of protocol TEST-IF-ZERO, which checks
whether a shared value is zero or not. The protocol is used in all our protocols
as a black-box. However, protocol TEST-IF-ZERO involves a large number of
multiplications. We now present a protocol new-TEST-IF-ZERO, which takes
[a]t as an input and produces [V ]t as the output, where a ∈ F is a random value.
The protocol has the following properties:

1. If a = 0, then V = 0.
2. If V = 0, then except with probability 1

|F| , a = 0.
3. If a �= 0 then except with probability 1

|F| , V can be any random non-zero
value.

4. Even if V is reconstructed by each party, a passive adversary controlling at
most t parties/servers will have no information about a.

5. The protocol performs significantly less number of multiplications in com-
parison to protocol TEST-IF-ZERO.
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The protocol is formally given in the following table.

new-TEST-IF-ZERO

Setup Phase:

1. Each party Pi chooses a random value r(i) ∈ F and Shamir shares r(i). So now the
parties have [a]t and [r(i)]t for 1 ≤ i ≤ n.

Computation (by each party):

1. The parties compute [R]t =
∑n

i=1[r
(i)]t.

2. The parties compute [V ]t = [R]t[a]t by using the multiplication protocol.

Reconstruction Phase:

The parties reconstruct the value V . If V is non-zero, then the parties conclude that
a is also non-zero. If V is 0, then the parties conclude that a is 0 with very high
probability.

Lemma 15. Protocol new-TEST-IF-ZERO satisfies all the properties men-
tioned above.

Proof:Before proceeding further, we first note that R =
∑n

i=1 r(i) is completely
random. This is because at least one r(i) in R is shared by an honest Pi and hence
r(i) is random, implying that R is also random. It is easy to see that if a = 0 then
V = Ra will be also zero. Thus if V = 0, the probability that a �= 0 is same as the
probability R = 0, which is 1

|F| . Moreover, if a �= 0, then except with probability
1
|F| , V can be any random value. This is because R can be any random value. If a
passive adversary knows t shares of a, then even after knowing V = Ra, the value
a remains information theoretically secure due to the random R. Finally it is easy
to see that the protocol performs only one multiplication. �

7.1 Application of Protocol new-TEST-IF-ZERO

By seeing the properties of protocol new-TEST-IF-ZERO, we find that it can
be used as a substitute of TEST-IF-ZERO in any protocol, where we just want
to know whether the shared value a is zero or not. In protocols 2-Party DPMP,
n-party DPMP and n-party Set Disjointness, protocol TEST-IF-ZERO was used
to just check whether a shared value a is zero or not. So we can replace TEST-

IF-ZERO with our new protocol new-TEST-IF-ZERO in 2-Party DPMP, n-
party DPMP and n-party Set Disjointness. Since new-TEST-IF-ZERO requires
less number of multiplications than TEST-IF-ZERO, the resultant protocols
for 2-Party DPMP, n-party DPMP and n-party Set Disjointness becomes more
efficient. However, since protocol new-TEST-IF-ZERO involves a negligible
error probability, the resultant protocols for 2-Party DPMP, n-party DPMP and
n-party Set Disjointness will also now involve a negligible error probability in
correctness.

Notice that we cannot use our new protocol new-TEST-IF-ZERO as a sub-
stitute of TEST-IF-ZERO in protocol n-party Cardinality of Set Intersection.
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This is because if a �= 0, then new-TEST-IF-ZERO outputs [V ]t, where ex-
cept with probability 1

|F| , V can be any random non-zero value. On the other
hand, protocol TEST-IF-ZERO would output [0]t in this case. Now in protocol
n-party Cardinality of Set Intersection , the parties added the outcome of each in-
stance of TEST-IF-ZERO to count the number of elements in the intersection
of n sets. However, the parties cannot do so if TEST-IF-ZERO is replaced by
new-TEST-IF-ZERO.

8 Some Optimization Issues

8.1 Further Reduction of Communication Complexities

In all our protocols, we have used the multiplication protocol of [4], which com-
municates O(n2) field elements to generate the t-sharing of the product of two
t-shared values, in the presence of a computationally unbounded passive adver-
sary, controlling t < n/2 parties/servers. To further optimise the communication
complexity of our protocols, we can use the multiplication protocol in [1]. In [1]
the authors have presented a perfectly secure multiplication protocol tolerating
a t-active malicious adversary. The MPC protocol of [1], when executed with
n = 2t + 1 parties, in the presence of a passive adversary, controlling at most t
parties, will communicate O(n) field elements to generate the t-sharing of the
product of two t-shared values. Moreover, the protocol will take O(1) communi-
cation rounds.

8.2 Adapting Our Protocols to Work against Malicious Adversary

All our protocols can be extended to work against a t-active malicious adversary1,
having unbounded computing power, by doing the following steps:

1. Taking n = 3t + 1, instead of n = 2t + 1. This is required because from [2],
secure computation tolerating an all powerful, t-active malicious adversary
is possible iff n ≥ 3t + 1.

2. Using Verifiable Secret Sharing (VSS) [2] instead of Shamir’s secret sharing
scheme for n = 3t + 1.

3. Using multiplication protocol of [1] secure against a malicious adversary.
4. Modifying the TEST-IF-ZERO protocol as suggested in [11] to work

against a malicious adversary.

9 Conclusion and Open Problems

In this paper, we have given perfectly secure protocols for private matching,
set disjointness and cardinality of set intersection problems in information the-
oretic settings, secure against a computationally unbounded passive adversary.
1 A malicious adversary takes complete control of the parties under its control and

can make them behave in any arbitrary fashion during the protocol execution.
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Future work would be to come up with efficient protocols that can work against
more powerful adversaries such as byzantine and mixed adversaries. The security
model can be made stronger by allowing collusion between Alice and the servers;
protocols that work in this model are interesting open problems. Also, improving
the communication complexity and efficiency of the protocols presented in this
paper are other interesting future directions.
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APPENDIX A: Properties of Protocol 2-Party DPMP

Claim 3: In protocol 2-Party DPMP if Alice is honest, then a passive adversary
controlling at most t servers does not get any information about a even after
knowing t shares of a, . . . , am.

Proof: Without loss of generality, let the adversary passively control the servers
S1, . . . , St. Thus the adversary will know the first t shares of a, . . . , am. We first
show that by knowing t shares of a and a2, the adversary does not get any extra
information than by just knowing the t shares of a. So let a and a2 be Shamir
shared using degree-t polynomials f(x) and g(x) respectively, where f(0) = a
and g(0) = a2. Moreover, for i = 1, . . . , t, we have f(αi) = ai and g(αi) = a2

i .
Here ai and a2

i denotes ith share of a and a2 respectively. Moreover, α1, . . . , αt

are publicly known distinct elements from F.
From the shares of a, the adversary can form a t−1 degree polynomial fint(x)

such that fint(x) = f(x), for x = α1, . . . , αt. The polynomial f(x) can thus be
expressed in terms of fint(x) in the following way :

f(x) = fint(x) + γ(x− α1) . . . (x− αt) (3)

The adversary knows fint(0) and α1, . . . , αt. However, f(0) is information the-
oretically secure because of the fact that γ is still unknown to the adversary.
Thus the security of a lies on the inability of the adversary to gain information
on γ.

Similarly, the adversary can form a t− 1 degree polynomial gint(x), such that

g(x) = gint(x) + β(x − α1) . . . (x− αt) (4)

If Alice would have only Shamir shared a2, then a2 would be information theo-
retically secure because adversary would have no information about β. However,
from Eqn (3) and Eqn (4), the adversary can form the following system of equa-
tions:

f(x) = fint(x) + γ(x− α1) . . . (x− αt) (5)
g(x) = gint(x) + β(x − α1) . . . (x− αt) (6)

With the above two equations for f(x) and g(x), the adversary can obtain the
following relation :

a = fint(0) + γ(−α1) . . . (−αt) (7)
a2 = gint(0) + β(−α1) . . . (−αt) (8)
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Using the relation between a and a2, adversary can obtain the following relation
between γ and β:

(fint(0) + (−1)tγ ×
t∏

i=1

αi)2 = (gint(0) + (−1)tβ ×
t∏

i=1

αi) (9)

As we see, we can only get β in terms of γ and vice versa. As long as γ is
secure, the whole set of dependent information is secure and we can see that,
because of the dependency, the security of a2 is also in terms of γ. The argument
can be further extended to other powers of a or to any set of values that are
dependent on a showing that ultimately all their securities depend on γ and
hence on the security of a as is the case when we share just a (and not its
powers). �
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Abstract. At CRYPTO 2003, Rubin and Silverberg introduced the
concept of torus-based cryptography over a finite field. We extend their
setting to the ring of integers modulo N . We so obtain compact represen-
tations for cryptographic systems that base their security on the discrete
logarithm problem and the factoring problem. This results in smaller key
sizes and substantial savings in memory and bandwidth. But unlike the
case of finite fields, analogous trace-based compression methods cannot
be adapted to accommodate our extended setting when the underlying
systems require more than a mere exponentiation. As an application, we
present an improved, torus-based implementation of the ACJT group
signature scheme.
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— To Isabelle Déchène

1 Introduction

Groups where the discrete logarithm problem is assumed to be intractable are
central in the design of public-key cryptography. This was first pointed out by
Diffie and Hellman in their seminal paper [7]. The security of the Diffie-Hellman
key-distribution system relies on the intractability of the discrete logarithm prob-
lem in the multiplicative group of finite fields. Such groups also allow one to
construct encryption schemes, digital signature schemes, and many other cryp-
tographic primitives and protocols [19].

Several improvements were proposed to improve the efficiency of the so-
obtained schemes. In [24], Schnorr suggests to work in a prime-order subgroup
of F×

p rather than in the whole group F×
p . Building on [26], Lenstra [15] extends

this idea to the cyclotomic subgroup of F×
pr . He states that the underlying field

is really Fpr and not some intermediate subfield thereof. More recently, Rubin
and Silverberg [21] (see also [22,23]) rephrased cyclotomic subgroups in terms
of algebraic tori over Fp. They also proposed the CEILIDH cryptosystem. The
main advantage of their approach resides in the compact representation of the
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elements. Previous prominent proposals featuring a compact representation in-
clude LUC [26] and XTR [16]. Several speedups and simplifications for XTR are
described in [28]. Optimizations for CEILIDH and a comparison with XTR can
be found in [11].

Variants of Diffie-Hellman key-distribution system in the multiplicative group
Z×

N where N is the product of two primes are proposed in [17,25]. The goal is
to combine the security of the original scheme with the difficulty of factoring
large numbers. In [17], McCurley argues that it may be desirable to design
cryptographic systems with the property that breaking them requires to solve
two different computational problems.

In this paper, we introduce torus-based cryptography over the ring ZN . It
finds applications in settings similar to those considered by McCurley. It also
reveals useful to increase the performance of cryptographic schemes whose secu-
rity requires both the integer factorization assumption and the discrete logarithm
assumption, or related assumptions (e.g., [3,2,10]). Substantial savings both in
memory and in transmission are achieved without security loss. The represen-
tation used in [27] offers the same savings as one-dimensional tori over ZN .
Unfortunately, its usage is mostly restricted to exponentiation: [27] presents an
analogue of RSA. Numerous applications however require full use of multipli-
cation. Tori over ZN embed a group structure and therefore suit a much wider
range of applications. We consider this as the main feature of torus-based cryp-
tography.

As an illustration, we consider the ACJT group signature scheme [1], used in
the design of the protocol standardized by the Trusted Computing Group [29] to
protect privacy of the device’s user. Group signature schemes, as introduced by
Chaum and van Heyst [5], allow a group member to sign anonymously on behalf
of the group. However, the group manager is able to recover the signer’s identity.
The ACJT scheme makes use of arithmetic modulo N , where N = pq is a strong
RSA modulus. Each group member possesses a membership certificate [A, e]
satisfying Ae = ax a0 (mod N) where {a, a0, N} are common public parameters
and x denotes the member’s private key. As the group manager may know the
factorization of N , the secrecy of private key x is only guaranteed modulo p and
q. As remarked in [4], if we wish to disallow the group manager to frame group
members, the length of modulus N should typically be doubled. Based on current
understanding, a torus-based implementation offers the same security level but
without requiring to increase the length of N . For example, for an expected 80-
bit security level, the size of the resulting signatures is about 11 kb (this is half
the amount of the original scheme) and the generation of a signature is more
than three times faster.

The rest of this paper is organized as follows. In the next section, we provide
some background on algebraic tori. We present a compact representation of
one-dimensional tori from the geometric interpretation of the group law on Pell
conics. We also mention compact representations for higher-dimensional tori. In
Section 3, we extend torus-based representations over rings. The main focus is
put on the ring ZN where N is an RSA modulus. We compare the so-obtained
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representations with Lucas-based representations and explain why the latter are
not appropriate. Section 4 addresses applications of our torus-based compression.
We present a detailed implementation of the ACJT group signature scheme using
a torus-based representation and discuss the performance of the resulting scheme.
Finally, we conclude in Section 5.

2 Torus-Based Cryptography

Let Fq denote the finite field with q = pr elements. The order of the multiplicative
group F×

pr = Fpr \ {0} is pr − 1. Note that pr − 1 =
∏

d|r Φd(p) where Φd(x)
represents the r-th cyclotomic polynomial. We let Gp,r ⊆ F×

pr denote the cyclic
subgroup of order Φr(p).

In [21], Rubin and Silverberg identify Gp,r with the Fp-points of an algebraic
torus Tr(Fp). Namely, they consider

Tr(Fp) = {α ∈ F×
pr | NFpr/F (α) = 1 whenever Fp ⊆ F � Fpr} ,

that is, the elements of F×
pr whose norm is one down to every intermediate sub-

field F . The key observation is that Tr(Fp) forms a group whose elements can be
represented with only ϕ(r) elements of Fp, where ϕ denotes Euler’s totient func-
tion. The compression factor is thus of r/ϕ(r) over the field representation [21,9].

2.1 Parametrization of T2(Fp)

We detail a compact representation of Tr(Fp) for the case r = 2. We have
|F×

p2 | = p2 − 1, Φ2(p) = p + 1, and Gp,2 = {α ∈ F×
p2 | αΦ2(p) = 1}. We assume

p odd and write Fp2 = Fp(
√

Δ) for some non-square Δ ∈ F×
p . We have Gp,2 =

{x + y
√

Δ | x, y ∈ Fp and (x + y
√

Δ)p+1 = 1}. Since (x + y
√

Δ)p = x− y
√

Δ, it
follows that (x + y

√
Δ)p+1 = (x− y

√
Δ)(x + y

√
Δ) = x2 −Δy2.

So, the group Gp,2 can be seen as the set of Fp points on the genus 0 curve C
over Fp given by the Pell equation

C/Fp
: x2 −Δy2 = 1. (1)

We have Gp,2 ∼= T2(Fp) ∼= C(Fp) [21, Lemma 7] (see also [18, Theorem 4.5]). If we
denote by ⊕ the group law on C(Fp), given two points (x1, y1), (x2, y2) ∈ C(Fp),
we have

(x1, y1)⊕ (x2, y2) = (x1x2 + Δy1y2, x1y2 + x2y1).

The neutral element is O = (1, 0) and the inverse of (x, y) is (x,−y).
As remarked in [6, Chapter 3], the geometric interpretation of the group law

on C(Fp) gives rise to a compact representation. Let P = (x1, y1) and Q =
(x2, y2) be two points of C(Fp). The group law on C(Fp) is given by the so-
called ‘chord-and-tangent’ rule [20] (see also [14, § 1] for a detailed account). We
denote by �P ,Q the line passing through P and Q; �P ,Q represents the tangent
line at P if P = Q. The parallel line, say �′, to �P ,Q that passes through
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O = (1, 0) intersects (counting multiplicity) the Pell conic C at precisely one
other point (x3, y3), which is defined as P ⊕Q. If m denotes the slope of �P ,Q

then the equation of �′ is given by y = m(x − 1). Therefore, (x3, y3) satisfies
x3

2 − Δy3
2 = 1 and y3 = m(x3 − 1). We get x3

2 − Δm2(x3 − 1)2 = 1 ⇐⇒
(x3 − 1)

(
x3(1−Δm2) + Δm2 + 1

)
= 0. From y3 = m(x3 − 1), we find

(x3, y3) =
(

Δm2 + 1
Δm2 − 1

,
2m

Δm2 − 1

)
=
(

(Δm)2 + Δ

(Δm)2 −Δ
,

2(Δm)
(Δm)2 −Δ

)
.

Let now P = (x, y) be a point in C(Fp) \ {O}. Since P = P + O, we have a
map

ψ : Fp → C(Fp) \ {O}, m̄ �→ P =
(

m̄2 + Δ

m̄2 −Δ
,

2m̄

m̄2 −Δ

)
(2)

where m̄ = Δm and m is the slope of the line �P ,O passing through P and O.1

Note that m̄2 −Δ �= 0 for all m̄ ∈ Fp since Δ is a non-square in Fp.

Proposition 1. The set of solutions satisfying Eq. (1) is given by{
ψ(m̄) | m̄ ∈ Fp

} ∪ {O}.
Proof. It is easy to see that ψ is injective. Indeed, assuming ψ(m̄1) = ψ(m̄2), we
get {

(m̄2
1 + Δ)(m̄2

2 −Δ) = (m̄2
2 + Δ)(m̄2

1 −Δ)
2m̄1(m̄2

2 −Δ) = 2m̄2(m̄2
1 −Δ)

=⇒
{

m̄2
1 = m̄2

2

2m̄1(m̄2
2 −Δ) = 2m̄2(m̄2

1 −Δ)

=⇒ m̄1 = m̄2.

This concludes the proof by noting that there are (p+1) solutions to Eq. (1). ��
The inverse map is given by

ψ−1 : C(Fp) \ {O} → Fp, (x, y) �→ m̄ =
Δy

x− 1
. (3)

By augmenting Fp with ∞, maps ψ and ψ−1 yield an isomorphism C(Fp)
∼→

Fp ∪ {∞} by defining ψ(∞) = O and ψ−1(O) =∞.
We use this latter representation and define

T2(Fp) =
{
m̄ | m̄ = ψ−1(x, y) with (x, y) ∈ C(Fp)

}
. (4)

The neutral element in T2(Fp) is ∞. The inverse of m̄ is −m̄. Let m̄1, m̄2 ∈
T2(Fp) \ {∞} and write ⊗ for the group law in T2(Fp). If m̄1 = −m̄2 then
m̄1 ⊗ m̄2 =∞. If m̄1 �= −m̄2, we get

m̄1 ⊗ m̄2 = ψ−1(ψ(m1)⊕ ψ(m2)
)

=
m̄1m̄2 + Δ

m̄1 + m̄2
. (5)

1 We consider m̄ rather than m to get slightly faster arithmetic. This corresponds to
the map presented in [21, § 5.2].
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As a result, we can do cryptography in T2(Fp) by doing all arithmetic directly
in Fp.

2.2 Trace-Based Compression

The trace map is defined by

Tr : Fp2 → Fp : α �→ Tr(α) = α + αp.

Then α ∈ Gp,2 and its conjugate αp are the roots of polynomial (X − α)(X −
αp) = X2 − Tr(α)X + 1. Define Vk = Tr(αk). Since Vk = αk + α−k, it is
easily verified that Vi+j = ViVj − Vi−j . In particular, we get V2i = Vi

2 − 2 and
V2i+1 = Vi+1Vi − Tr(α). Therefore, if � is the binary length of k, Tr(αk) can
be quickly evaluated with only � multiplications and � squarings in Fp using the
Montgomery ladder (e.g., see [13, Fig. 4]). As we see, trace-based representations
are well suited for exponentiation.

Note that letting P = Tr(α), Vk = Vk(P, 1) corresponds to the kth item of
Lucas sequence {Vk(P, Q)} with parameter Q = 1. Moreover, since α ∈ Gp,2, it
follows that α �= αp and Δ := Tr(α)2−4 = P 2−4 is a non-square. Let {Uk(P, 1)}
denote the companion Lucas sequence where Uk ∈ Fp satisfies Vk+Uk

√
Δ = 2αk.

Noting that
√

Δ = α−α−1, we have Uk = (αk − α−k)/(α− α−1). We also have
Vk

2 − ΔUk
2 = (Vk + Uk

√
Δ)(Vk − Uk

√
Δ) = (2αk)(2α−k) = 4. Consequently,

an element α = x + y
√

Δ ∈ Gp,2 can be equivalently written as α = V1
2 + U1

2

√
Δ

and αk = Vk

2 + Uk

2

√
Δ such that

(
Vk

2

)2 −Δ
(

Uk

2

)2 = 1. In other words, we have
C(Fp) =

{(
Vk

2 , Uk

2

) | 0 ≤ k ≤ p
}
.

Enhanced trace-based representation. Trace-based representations over Fp

can be ‘enhanced’ to allow the multiplication of two compressed elements. For
y ∈ Fp, we define the parity bit of y as par(y) = y mod 2. As prime p is odd,
we obviously have par(−y) = 1 − par(y) if y ∈ Fp \ {0}. Hence, a point P =
(x, y) ∈ C(Fp) is uniquely identified by the pair (x, β) where β = par(y). We call
this the enhanced trace-based representation. Hence, being given (x1, β1) and
(x2, β2) (corresponding to P1 and P2 ∈ C(Fp)), the compressed value (x3, β3)
(corresponding to P3 = P1 ⊕ P2) can be obtained as follows: evaluate square
roots

√
(x1

2 − 1)/Δ and
√

(x2
2 − 1)/Δ over Fp; recover P1 = (x1, y1) and P2 =

(x2, y2) from β1 and β2; compute (x3, y3) = (x1, y1)⊕(x2, y2); and output (x3, β3)
with β3 = y3 mod 2. Compared to torus-based representation, this is however
at the expense of the computation of two square roots and of further memory
requirements.

2.3 Parametrization of Higher Dimensional Tori

The next cases for which the ratio r/ϕ(r) is large (and thus leading to optimal
compression factors) are r = 6 and r = 30. An explicit compact representation
of T6(Fp) is detailed in [21, Section 5.1]. For the case r = 30, we refer the reader
to [8, Section 5].
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3 Compact Representations over the Ring ZN

Let N = pq be the product of two large primes. We let ZN denote the ring of
integers modulo N . The isomorphism ZN

∼= Fp × Fq induces an isomorphism
between Tr(ZN ) and Tr(Fp)× Tr(Fq).

Current knowledge in cryptanalytic techniques implies that the hardness of
factoring an RSA modulus N or computing discrete logarithms in a finite field
of the size of N is broadly the same. Assuming that p and q are of equal size,
the discrete logarithm problem in Tr(Fp) and in Tr(Fq) will thus not be easier
than factoring N provided that r ≥ 2 [12]. For efficiency reasons, a smaller value
for r yields better performance. Henceforth, we focus on Tr(ZN ) with r = 2.

3.1 Tori T2(ZN ) and T̃2(ZN)

Consider the Pell equation over ZN ,

C/ZN
: x2 −Δy2 = 1 ,

where Δ ∈ Z×
N is a non-square modulo p and modulo q. By Chinese remainder-

ing, the set of points (x, y) ∈ ZN × ZN satisfying this equation form a group,
C(ZN ) = C(Fp) × C(Fq), under the ‘chord-and-tangent’ law (see § 2.1). The
neutral element is O = (1, 0). For each point P ∈ C(ZN ), there exists a unique
pair of points Pp ∈ C(Fp) and Pq ∈ C(Fq) such that P mod p = Pp and
P mod q = Pq. We denote this equivalence by P = [Pp, Pq].

We can now extend the previous compression map (cf. Eq. (3)) to ZN . The
only complication is that they are some points of the form [Pp, Oq] or [Op, Pq].
To deal more easily with these points, we consider a projective representation for
the compressed result. We write m̄ as a pair (M : Z) and say that m̄ = (M : Z)
is equivalent to m̄′ = (M ′ : Z ′) if there exists some t ∈ Z×

N such that M ′ = t M
and Z ′ = t Z. So we define

ψ−1 : C(ZN ) → P1(ZN ), (x, y) �→ m̄ = (Δy : x− 1). (6)

This in turn leads to the definition of T2(ZN ),

T2(ZN ) =
{
m̄ | m̄ = ψ−1(x, y) with (x, y) ∈ C(ZN )

}
. (7)

Group law. We note ⊗ the group law on T2(ZN ). The neutral element is
(t : 0) for some t ∈ Z×

N . The inverse of an element m̄ = (M : Z) is (−M : Z).
From Eq. (5), given m̄1 = (M1 : Z1) and m̄2 = (M2 : Z2) in T2(ZN ), a simple
calculation shows that

(M1 : Z1)⊗ (M2 : Z2) = (M1M2 + ΔZ1Z2 : M1Z2 + M2Z1). (8)

Observe that the group law is complete: it works for all inputs m̄1, m̄2 ∈ T2(ZN ).
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Affine parametrization. The map given by Eq. (6) does not yield a compact
representation for T2(ZN ) since each element m̄ then requires two elements of
ZN . A possible workaround is to ignore input points of the form [Pp, Oq] or
[Op, Pq] and to restrict to subset C̃(ZN ) = {(x, y) ∈ C(ZN ) | x−1 ∈ Z×

N}∪{O}.
A point P = (x, y) ∈ C̃(ZN ) corresponds to m̄ =

(
Δ y
x−1 : 1

)
if P �= O, and

m̄ = (1 : 0) otherwise. We define

T̃2(ZN ) =
{
m̄ | m̄ = ψ−1(x, y) with (x, y) ∈ C̃(ZN )

}
. (9)

From the above observation, an element m̄ in T̃2(ZN ) can be represented by
an element of ZN plus one bit:

(
Δ y
x−1 , 1

)
or (1, 0). Yet another possibility is to

represent m̄ as an element of A1(ZN ) ∪ {∞}. Namely, if P = (x, y) ∈ C̃(ZN )
then m̄ = Δ y

x−1 if P �= O, and m̄ = ∞ otherwise. In both cases, we get a compact
representation for T̃2(ZN ).

The group T2(ZN ) consists of all the elements of T̃2(ZN ) together with a num-
ber of elements of the form (M : Z) with gcd(Z, N) = p or q (corresponding to
points [Pp, Oq] and [Op, Pq] in C(ZN )). The ‘chord-and-tangent’ law on C̃(ZN ),
whenever it is defined, coincides with the group law on C(ZN ) = C(Fp)×C(Fq).
The same holds for T̃2(ZN ). In practice, for cryptographic applications, N is the
product of two large primes. It is therefore extremely unlikely that operation ⊗
is not defined on T̃2(ZN ).

3.2 Torus-Based vs. Trace-Based Compression

Similarly to § 2.2, Lucas sequences can be defined over the ring ZN by Chinese
remaindering. Trace-based or equivalently Lucas-based compressions are well
suited to exponentiation. For example, Smith and Lennon proposed in [27] an
analogue to RSA using Lucas sequence {Vk(P, 1)} over ZN .

When more than a mere exponentiation is required, trace-based represen-
tations are not applicable. Indeed, let P1 = (x1, y1), P2 = (x2, y2) ∈ C(ZN ).
Computing P3 = P1 ⊕ P2 being given P1 and P2 is easy: we have P3 =
(x1x2 + Δy1y2, x1y2 + x2y1). However, computing x3 = x1x2 + Δy1y2 being
only given x1 and x2 is not possible.

Even an enhanced trace-based representation (cf. § 2.2) does not seem helpful
when working over ZN . Here is an example of such an enhanced compression
for Blum integers N (i.e., N = pq with primes p, q ≡ 3 (mod 4)). As before,
for y ∈ ZN , we define par(y) = y mod 2. We also define chr(y) = 0 if

(
y
N

)
= 1

and chr(y) = 1 otherwise, where
(

y
N

)
denotes the Jacobi symbol of y modulo N .

Since p, q ≡ 3 (mod 4), we have
(−1

p

)
=
(−1

q

)
= −1. It is therefore easily verified

that a point P = (x, y) ∈ C(ZN ) is uniquely identified by the tuple (x, β, χ)
where β = par(y) and χ = chr(y), that is, with one element of ZN and two bits.
Unfortunately, decompressing (x, β, χ) into P = (x, y) requires the knowledge of
p and q, which are, in most settings, private values. Unlike the finite field case, we
do not know enhanced trace-based representation over ZN allowing to multiply
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compressed elements. Only torus-based representation over ZN is available in
this case to get a compact representation.

3.3 Extensions and Generalizations

Because the problems of computing discrete logarithms and of factoring were
assumed to be balanced for an RSA modulus N = pq, we focused on the case
T2(ZN ). But the same methodology extends to higher-dimensional tori. It also
generalizes to more general moduli; for example, to RSA moduli made of three
prime factors. This allows for different trade-offs between the two computational
problems.

4 Applications

Our compression technique reduces the parameter size (typically by a factor of
two). This in turn reduces the requirements for storage and transmission. It saves
a significant amount in applications where many group elements are evaluated.

As an example, we consider the ACJT group signature scheme. We pointed
out in the introduction (see also [4]) that the group manager in the original
scheme may know the factors of RSA modulus N = pq and so can frame group
members if the computation of discrete logarithms modulo the factors of N is
feasible. As will be apparent, a torus-based implementation allows one to keep
the security of the original ACJT scheme even when the group manager is not
entirely trustworthy — without increasing the length of RSA modulus N .

To simplify the presentation, we omit the various security lengths (λ1, λ2, γ1,
γ2) and corresponding ranges (Λ, Γ ). We refer the reader to [1] for details. Slight
modifications need to be brought. The original ACJT group signature scheme
makes use of a strong RSA modulus, that is, N = pq with p = 2p′ + 1 and
q = 2q′ + 1 for primes p′, q′. Since Gp,2 (resp. Gq,2) has order p + 1 (resp. q + 1),
we choose an RSA modulus N = pq with p = 4p′− 1 and q = 4q′ − 1 for primes
p′, q′; note that doing so −1 is a non-square modulo p and modulo q (i.e., p, q ≡ 3
(mod 4)), which yields faster arithmetic. We let T2 denote the subgroup of order
p′q′ in T2(ZN ). Finally, we let T̃2 = T2 ∩ T̃2(ZN ).

Being a group signature scheme, our modified scheme consists of five algo-
rithms. We use the notation of [1].

Setup Select two random primes p′, q′ such that p = 4p′ − 1 and q = 4q′ − 1
are prime. Set the modulus N = pq. Choose random elements a, a0, g, h in
T̃2. Choose a random element x ∈ Z×

p′q′ and set y = gx ∈ T̃2.
The group public key is Y = (N, a, a0, y, g, h). The corresponding secret key
(known only to the group manager) is S = (p′, q′, x).

Join Each user Ui interactively constructs with the group manager a member-
ship certificate [Ai, ei] satisfying Ai

ei = axi ⊗ a0 in T̃2 for some prime ei.
Parameter xi is the private key of Ui (and is unknown to the group manager).
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Sign Generate a random value w and compute in T̃2

T1 = Ai ⊗ yw, T2 = gw, T3 = gei ⊗ hw.

Randomly choose values r1, r2, r3, r4 and compute
1. d1 = T1

r1⊗(ar2⊗yr3)−1, d2 = T2
r1⊗(gr3)−1, d3 = gr4 and d4 = gr1⊗hr4

(all in T̃2);
2. c = H(Y‖T1‖T2‖T3‖d1‖d2‖d3‖d4‖m) where m is the message being

signed;
3. s1 = r1−c(ei−2γ1), s2 = r2−c(xi−2λ1), s3 = r3−ceiw and s4 = r4−cw

(all in Z).
The signature on message m is σ = (c, s1, s2, s3, s4, T1, T2, T3).

Verify Compute in T̃2

d′1 = a0
c ⊗ T1

s1−c2γ1 ⊗ (as2−c2λ1 ⊗ ys3)−1, d′2 = T2
s1−c2γ1 ⊗ (gs3)−1,

d′3 = T2
c ⊗ gs4 , d′4 = T3

c ⊗ gs1−c2γ1 ⊗ hs4 .

Accept the signature if and only if c′ := H(Y‖T1‖T2‖T3‖d′1‖d′2‖d′3‖d′4‖m) is
equal to c (and if the signature components belong to appropriate ranges).

Open Check the signature’s validity. The group manager then recovers Ai =
T1 ⊗ (T2

x)−1 (in T̃2).

We now discuss the performance of our modified scheme and compare it with
the original ACJT scheme.

Let �N denote the binary length of modulus N . The system secret key S re-
quires 2�N bits. As shown in § 3.1, an element in T̃2 \ {∞} can be coded with �N

bits using an affine parametrization. Hence, the common public key Y consisting
of 6 elements of T̃2 requires 6�N bits. The size of exponent ei in membership cer-
tificate [Ai, ei] and of corresponding private key xi are about the size of N2; there-
fore, a membership certificate requires roughly 3�N bits and the user’s private key
roughly 2�N bits. Since the size of sj (1 ≤ j ≤ 4) is about the size of N2, a signature
σ = (c, s1, s2, s3, s4, T1, T2, T3) requires approximatively 11�N bits. Typically, for
a 80-bit security level (i.e., 2048-bit modulus for the ACJT scheme and 1024-bit
modulus for its torus-based implementation), we have:

Table 1. Performance comparison: Typical lengths

ACJT scheme Torus-based scheme
Common public key 12 kb 6 kb
System secret key 4 kb 2 kb
Membership certificate 6 kb 3 kb
User’s private key 4 kb 2 kb
Signature (approx.) 22 kb 11 kb
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Our torus-based signatures are not only shorter, as we will see, they are also
faster to generate. We neglect the cost of additions and hash computations.
For the sake of comparison, we assume that exponentiations are done with the
basic square-and-multiply algorithm and that multi-exponentiations are evalu-
ated with the simultaneous binary exponentiation algorithm (see e.g. [19, Algo-
rithm 14.88]). A k-exponentiation with exponent of binary length � then amounts
to (�−1)·(S+ 2k−1

2k M), on average, where S and M represent the cost of a squaring
and of a multiplication in T̃2. It also requires (2k− 2)M for the precomputation.
Since T1, T2 involve exponents of size about �N bits and T3, d1, d2, d3, d4 involve
exponents of size about 2�N bits, the generation of a signature takes about

�N(S + 1
2M) + �N(S + 1

2M) + 2�N(S + 3
4M) + 2�N(S + 7

8M)

+ 2�N(S + 3
4M) + 2�N(S + 1

2M) + 2�N(S + 3
4M) = 12�NS + 8.25�NM , (10)

neglecting the precomputation.
In our scheme, we have p, q ≡ 3 (mod 4). We can thus take Δ = −1. In this

case, using projective coordinates, the multiplication of two elements m̄1 = (M1 :
Z1) and m̄2 = (M2 : Z2) in T̃2, m̄3 = m̄1⊗m̄2, simplifies to m̄3 = (M3 : Z3) with
M3 = M1M2 +Z1Z2 and Z3 = M1Z2 +M2Z1 = (M1 +Z1)(M2 +Z2)−M3. Let s
and m denote the cost of a square and a multiplication in ZN . The multiplication
of two elements of T̃2 requires thus 3m. Note that for a mixed multiplication
(i.e., when one of the two operands has its Z-coordinate equal to 1), the cost
reduces to 2m. Squaring m̄1 = (M1 : Z1) can be evaluated as m̄3 = (M3 : Z3)
with Z3 = 2M1Z1 and M3 = (M1 + Z1)2 − Z3 and requires thus 1s + 1m. If the
precomputed values in the k-exponentiation are expressed in affine way (this can
be done with a single inversion and a few multiplications in ZN using the so-called
Montgomery’s trick), we have M = 2m and S = 1s + 1m. Therefore, neglecting
the cost of this inversion in ZN and assuming s = 0.8m, we obtain that the cost of
a torus-based ACJT group signature is about (12 ·1.8+8.25 ·2)�Nm = 38.1 �Nm.

Similarly, from Eq. (10), we obtain that the cost of a regular ACJT group signa-
ture is about (12 ·0.8+8.25)�Nm=17.85 �Nm, assuming again s = 0.8m. But since
the length of �N is twice smaller in T̃2, the expected speed-up factor amounts to

17.85 �N · (�N )2

38.1 (�N/2) · (�N/2)2
≈ 3.75.

In practice, the expected speed-up factor is even more spectacular as the above
value assumes that the same exponentiation algorithms are being used; however,
for the same amount of memory, the torus-based implementation can be sped
up using more pre-computed values and higher-order methods. Note also that
the above analysis neglects the cost of inversion in Z×

N (in the evaluation of d1
and d2) for the regular ACJT signatures.

5 Conclusion

This paper extended the concept of torus-based cryptography over the ring of
integers modulo N . Our extended setting finds applications in cryptographic
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schemes whose security is related to factoring and discrete logarithms. Typically,
it results in twice shorter keys and outputs and offers faster computation. This
was exemplified with a torus-based implementation of the ACJT group signature
scheme.
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Abstract. Differential privacy is a definition of “privacy” for statistical
databases. The definition is simple, yet it implies strong semantics even in
the presence of an adversary with arbitrary auxiliary information about
the database.

In this talk, we discuss recent work on measuring the utility of dif-
ferentially private analyses via the traditional yardsticks of statistical
inference. Specifically, we discuss two differentially private estimators
that, given i.i.d. samples from a probability distribution, converge to the
correct answer at the same rate as the optimal nonprivate estimator.

1 Differential Privacy

Differential privacy is a definition of “privacy” for statistical databases. Roughly,
a statistical database is one which is used to provide aggregate, large-scale infor-
mation about a population, without leaking information specific to individuals.
Think, for example, of the data from government surveys (e.g. the decennial
census or epidemiological studies), or data about a company’s customers that it
would like a consultant to analyze.

Differential privacy is a condition on the algorithm used by the server/agency
to analyze and release information about the database. Informally, it ensures
that no matter what an adversary knows ahead of time about the data set,
the adversary learns the same thing about an individual whether or not the
individual’s data appears in the data set. For example, a differentially private
release of epidemiological statistics might reveal that the H1N1 virus is prevalent
among US university students, but would not allow an attacker to learn whether
or not a particular student was infected. For formal statements of this guarantee,
see Dwork [4] and Kasiviswanathan and Smith [11].

We model the server/agency as a randomized functionA that takes the data set
as input and outputs the released information (or the transcript, in the case of an
interactive service). Due to a composition property of differential privacy [7], we
do not need to distinguish between the interactive and non-interactive settings.

We model the database x as a set of rows, each containing one person’s
data. For example if each person’s data is a vector of d real numbers, then
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x ∈ ({0, 1}d
)n, where n is the number of individuals in the database. We say

databases x and x′ differ in at most one element if one is a subset of the other
and the larger database contains just one additional row.

Definition 1 ([7,4]). A randomized function A gives ε-differential privacy if for
all data sets x and x′ differing on at most one element, and all S ⊆ Range(A),

Pr[A(x) ∈ S] ≤ exp(ε)× Pr[A(x′) ∈ S], (1)

where the probability space in each case is over the coin flips of A.

Several different approaches have been used to design differentially private func-
tions. For example, one can calculate the average value of a numerical variable,
add random noise to the result, and release the noisy value [1,7]. More gener-
ally, one can sample from an appropriately constructed distribution on objects
of interest [12], such as synthetic data sets [2,16]. See [5] for a survey.

2 Differential Privacy and Statistical Theory

Initially, work on differential privacy concentrated on “function approximation”
tasks—given a function f , how accurately can we approximate f(x) differnetially
privately? In this talk, we discuss recent work on measuring the utility of differ-
entially private analyses via the traditional yardsticks of statistical inference.

For simplicity, suppose our data set X consists of n i.i.d. observations X1, ..., Xn

drawn according to probability distribution P . How accurately can we describe the
properties of P privately? Even without the complications of privacy, this ques-
tion is involved. However, over the past century, statisticians have developed a re-
markable set of tools for answering it. In particular, there are many settings where
asymptotically optimal estimators are known. Here wemention two simple settings
where a similar result holds even with the added constraint of privacy.

Other Work on Differential Privacy and Statistical Theory. In addition to the
results described here, a number of recent papers have investigated the connec-
tions between differential privacy and statistical theory. Dwork and Lei [6] adapt
ideas from robust statistics to develop differentially private estimators for loca-
tion, scale and linear regression problems. Wasserman and Zhou [16] (following
Blum, Ligett and Roth [2]) discuss the generation of synthetic data with precise
statistical guarantees, as well as nonparametric density estimators (see below).
Kasiviswanathan et al. [10] consider differentially private algorithms with PAC
learning guarantees. Recently, Chaudhuri and Monteleoni [3] and McSherry and
Williams [13] investigated estimators for logistic regression. Dwork and Smith [9]
survey some recent work and discuss open problems.

2.1 Differential Privacy and Maximum Likelihood Estimation

We recently showed that, for every “well behaved” parametric model, there exists
a differentially private point estimator which behaves much like the maximum
likelihood estimate (MLE) [15]. This result exhibits a large class of settings
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in which the perturbation added for differential privacy is provably negligible
compared to the sampling error inherent in estimation (such a result had been
previously proved only for specific settings [8]).

Specifically, one can combine the sample-and-aggregate technique of Nissim et
al. [14] with the bias-corrected MLE from classical statistics to obtain an esti-
mator that satisfies differential privacy and is asymptotically efficient, meaning
that the averaged squared error of the estimator is (1 + o(1))/(nI(θ)), where n
is the number of samples in the input, I(θ) denotes the Fisher information of f
at θ and o(1) denotes a function that tends to zero as n tends to infinity.

This estimator’s average error is optimal even among estimators with no con-
fidentiality constraints. In a precise sense, then, differential privacy comes at no
asymptotic cost to accuracy for parametric point estimates.

Consider a parameter estimation problem defined by a model f(x; θ) where θ
is a real-valued vector in a bounded space Θ ⊆ Rp of diameter Λ, and x takes
values in a domain D (typically, either a real vector space or a finite, discrete
set). The assumption of bounded diameter is made for convenience and to allow
for cleaner final theorems.

Given i.i.d. random variables X = (X1, ..., Xn) drawn according to the dis-
tribution f(·; θ), we would like to estimate θ using an estimator t that takes
as input the data x as well an additional, independent source of randomness R
(used, in our case, for perturbation):

θ → X → t(X, R) = T (X)
↑

R

Theorem 1 ([15]). Under appropriate regularity conditions on f , there exists a
(randomized) estimator T ∗ which is asymptotically efficient and ε-differentially
private, where limn→∞ ε = 0.
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The idea is to apply the “sample-and-aggregate” method of [14], similar in spirit
to the parametric bootstrap. The procedure is quite general and can be instan-
tiated in several variants (see Figure 1 for an example). See [15] for details.

3 Private Histogram Estimators

Consider now a different setting, where we are given samples X = {X1, ..., Xn}
from an unknown probability distribution P on the interval [0, 1]. A histogram
estimator approximates the density of P by a step function: given a set of in-
tervals (called “bins”) B1, ..., Bt which partition [0, 1], the histogram estimator
assigns mass #(X∩Bi)

n to the interval Bi, spreading the mass uniformly in the
interval. That is, ĥ(y) = #(X∩Bi)

n·length(Bi)
when y ∈ Bi. In a fixed-width histogram,

the bins have the form Bi = [(i−1)w, iw], where w = 1
t is the width of each bin.

A classic result of nonparametric statistics states that if the distribution P
is continuous with a bounded density, then there is a fixed-width histogram
estimator that approximates P well in expectation for large n. Specifically, if the
number of bins t is Θ(n2/3), then the expected squared L2 distance (integrated
mean square error, or IMSE) between P and ĥ is O(n−2/3). Moreover, this rate
is optimal (sometimes called “minimax”)—no fixed-width histogram estimator
converges faster for all bounded-density distributions.

Here, we note that this result has a differentially private analogue. Dwork,
McSherry, Nissim and Smith [7] showed that given a partition of an underlying
domain D, one can release the proportion of points that lie in each piece of the
partition with relatively little noise while satisfying ε-differential privacy. In the
context of histograms, it suffices to add noise from a Laplace distribution with
variance Θ( 1

n2ε2 ) and expectation 0 to each of the observed proportions #(X∩Bi)
n

[7]. Constructing a histogram density estimator from the perturbed proportions
results in the following theorem:

Theorem 2. For n > 1
ε3 , there exists a ε-differentially private algorithm A that

takes a set of n points in [0, 1] and outputs a histogram density such that for any
continuous distribution P with a bounded density, if X is a sample of n points
drawn i.i.d. from P , then the expected squared L2 distance between A(X) and P
is O(n−2/3).

(A slightly weaker version of this result was shown independently by Wasserman
and Zhou [16], using the exponential mechanism of [12].)

An advantage of the noise addition framework is that it also allows for analyz-
ing a straightforward extension of the histogram estimator, called the frequency
polygon, which is the piecewise interpolation of the midpoints of the histogram.
The classical analysis shows that the frequency polygon has expected squared L2
error of O(n−4/5). Using the piecewise linear interpolation through the centers
of the perturbed histogram yields the following private analogue:

Theorem 3. For n > 1
ε5/2 , there exists a ε-differentially private algorithm A

that takes a set of n points in [0, 1] and outputs a piecewise linear density such
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that for any continuous distribution P with a bounded density, if X is a sample
of n points drawn i.i.d. from P , then the expected squared L2 distance between
A(X) and P is O(n−4/5).
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Abstract. The contributions of this paper include the first linear hull
and a revisit of the algebraic cryptanalysis of reduced-round variants
of the block cipher PRESENT, under known-plaintext and ciphertext-
only settings. We introduce a pure algebraic cryptanalysis of 5-round
PRESENT and in one of our attacks we recover half of the bits of the key
in less than three minutes using an ordinary desktop PC. The PRESENT
block cipher is a design by Bogdanov et al., announced in CHES 2007
and aimed at RFID tags and sensor networks. For our linear attacks,
we can attack 25-round PRESENT with the whole code book, 296.68 25-
round PRESENT encryptions, 240 blocks of memory and 0.61 success
rate. Further we can extend the linear attack to 26-round with small
success rate. As a further contribution of this paper we computed linear
hulls in practice for the original PRESENT cipher, which corroborated
and even improved on the predicted bias (and the corresponding attack
complexities) of conventional linear relations based on a single linear
trail.

Keywords: block ciphers, RFID, linear hulls, algebraic analysis, sys-
tems of sparse polynomial equations of low degree.

1 Introduction

This paper describes linear (hull) and algebraic cryptanalysis of reduced-round
versions of the PRESENT block cipher, a design by Bogdanov et al. aimed at
restricted environments such as RFID tags [3] and sensor networks. For the linear
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case, our analysis include linear hulls of reduced-round variants of PRESENT,
which unveils the influence of the linear transformation in the clustering effect
of linear trails. The computation of linear hulls also served to determine more
accurately the overall bias of linear relations, and consequently, more precise
complexity figures of the linear attacks.

Previous known analyses on (reduced-round) PRESENT, including the results
in this paper, are summarized in Table 4 along with attack complexities.

Our efficient attacks reach 25-round PRESENT under a known-plaintext set-
ting and 26-round with small success rate, and 15 rounds under a ciphertext-only
setting. The algebraic attacks, on the other hand, can recover keys from up to
5-round PRESENT in a few minutes, with only five known plaintext-ciphertext
pairs.

This paper is organized as follows: Sect. 2 briefly details the PRESENT block
cipher; Sect. 3 presents our algebraic analysis on PRESENT; Sect. 4 describes
our linear cryptanalysis of reduced-round PRESENT; Sect. 5 describes our linear
hull analysis of PRESENT; Sect. 6 concludes the paper.

2 The PRESENT Block Cipher

PRESENT is an SPN-based block cipher aimed at constrained environments,
such as RFID tags and sensor networks. It was designed to be particularly com-
pact and competitive in hardware. PRESENT operates on 64-bit text blocks,
iterates 31 rounds and uses keys of either 80 or 128 bits. This cipher was de-
signed by Bogdanov et al. and announced at CHES 2007 [3]. Each (full) round
of PRESENT contains three layers in the following order: a bitwise exclusive-or
layer with the round subkey; an S-box layer, in which a fixed 4 × 4-bit S-box
(Table 5) is applied sixteen times in parallel to the intermediate cipher state; a
linear transformation, called pLayer, consisting of a fixed bit permutation. Only
the xor layer with round subkeys is an involution. Thus, the decryption oper-
ation requires the inverse of the S-box (Table 5) and of the pLayer. After the
31st round there is an output transformation consisting of an exclusive-or with
the last round subkey. One full round of PRESENT is depicted in Fig. 1. Our

SSS S S S S S S S SS S S SS

Fig. 1. One full round of PRESENT
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attacks are independent of the key schedule algorithm. Further details about the
key schedule, for each key size, can be found in [3].

3 Algebraic Analysis

Algebraic cryptanalysis is attributed to C.E. Shannon, who mentioned in [27]
that breaking a good cipher should require ”as much work as solving a system
of simultaneous equations in a large number of unknowns of a complex type”.
Contrary to linear and differential attacks, that require a large number of chosen
or known plaintexts (which makes it roughly impractical in reality), algebraic
cryptanalysis requires a comparatively small number of text pairs. Any algebraic
attack consists of two distinct stages: the adversary writes the cipher as a system
of polynomial equations of low degree over GF(2) or GF(2k) [7,23]. Then, it
solves the corresponding system which turns out to be overdefined and sparse.
The methods already proposed for solving polynomial system of equations are
Gröbner basis including Buchberger algorithm [4], F4 [15], F5 [16] and algorithms
like ElimLin [9], XL [6] and its family [7], and Raddum-Semaev algorithm [26].
Converting these equations to Boolean expressions in Conjunctive Normal Form
(CNF) [9] and deploying various SAT-solver programs is another strategy [14].
Algebraic attacks since the controversial paper of [7] has gotten considerable
attention, has been applied to several stream ciphers (see [8]) and is able to
break some of them but it has not been successful in breaking real life block
ciphers, except Keeloq [11,18].

In this paper we deploy ElimLin algorithm proposed by Courtois against DES
[9] and F4 algorithm by Faugére [15] and we break up to 5-round PRESENT for
both key sizes. Then we compare our results using these two approaches. Cour-
tois and Debraize in [10] have already proposed a Guess-then-Algebraic attack
on 5-round PRESENT only for the 80-bit key version. In fact, our main focus
in this paper is a comparison between the efficiency of ElimLin algorithm which
uses simple linear algebra and the recent so called efficient implementation of
F4 algorithm under PolyBori framework. Although there exist other types of at-
tacks for larger number of rounds, we believe this result is interesting, because
we can recover many key bits with a relatively few known plaintext-ciphertext
pairs. Moreover, the designers of PRESENT in [3] have mentioned that they
were unsuccessful to obtain any satisfactory result in reasonable time using al-
gebraic cryptanalysis (F4 algorithm under MAGMA [21]) to break two rounds
of a smaller version of the cipher having only seven S-boxes per round compared
to the real PRESENT cipher having sixteen S-boxes per round.

3.1 ElimLin Algorithm and Attack Description

The ElimLin algorithm stands for Eliminate Linear and is a technique for solving
systems of multivariate polynomial equations of degree mostly 2, 3 or 4 over a
finite field, specifically GF(2). Originally, it was proposed in [9] to attack DES
and was reported to break 5-round DES.
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ElimLin is composed of two distinct stages, namely: Gaussian Elimination
and Substitution. All the linear equations in the linear span of initial equations
are found. Subsequently, one of the variables is nominated in each linear equation
and is substituted in the whole system. This process is repeated up to the time
when no linear equation is obtained in the linear span of the system.

3.2 F4 Algorithm under PolyBori Framework

F4 is currently the most efficient algorithm for computing the Gröbner basis of
an ideal. The most efficient implementation of F4 is available under PolyBori
framework [2] running alone or under SAGE algebra system. PolyBori is a C++
library designed fundamentally to compute Gröbner basis applied to Boolean
Polynomials. The ring of Boolean Polynomials is a quotient ring over GF(2),
where the field equation for each variable is x2 = x. A Python interface is used,
surrounding the C++ core, announced by the designers to be used from the
beginning to facilitate ”parsing of complex polynomial systems” and ”sophis-
ticated and easy extendable strategies for Gröbner base computation” [2]. It
uses zero-suppressed binary decision diagrams (ZDDs) [17] as a high level data
structure for storing Boolean Polynomials which results in the monomials to be
stored more efficiently with respect to the space they occupy in memory and
making the computational speed faster compared with other computer algebra
systems. We used polybori-0.4 in our attacks.

3.3 Algebraic Representation of PRESENT

It is a straightforward procedure to demonstrate that every 4× 4-bit S-box has
at least 21 quadratic equations. The larger the number of equations, the weaker
the S-box. In fact, the S-box of PRESENT has exactly 21 equations. Writing
the whole 80-bit key variant of PRESENT as a system of quadratic equations
for 5 rounds, we obtained 740 variables and 2169 equations. In our attack, we
fix some of the key bits and we recover the remaining unknown ones. In fact, we
introduce an attack on both PRESENT with key sizes of 80 and 128 bits. Notice
that for both key sizes one pair is not enough to recover the key uniquely and
we need at least two pairs.

The summary of our results is in Table 1. All the timings were obtained
under a 2Ghz CPU with 1Gb of RAM and we used an efficient implementation
of ElimLin available in [12]. As it is depicted in Table 1, the timing results of
ElimLin and PolyBori are comparable except the time in which PolyBori crashed1

due to probably running out of memory. As our experiments revealed, in all cases
ElimLin used much less memory compared to F4 under PolyBori which turns out
to be due to the Gröbner basis approach of increasing the degree of polynomials
in the intermediate stages.

1 In Appendix, we give the intermediate results of ElimLin for one of the cases in
which PolyBori crashes.
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Table 1. Algebraic attack complexities on reduced-round PRESENT

# rounds #key bits #key bits full key # plaintexts notes
fixed (hours)

5 80 40 0.04 5 KP ElimLin
5 80 40 0.07 5 KP PolyBori
5 80 37 0.61 10 KP ElimLin
5 80 37 0.52 10 KP PolyBori
5 80 36 3.53 16 KP ElimLin
5 80 36 Crashed! 16 KP PolyBori
5 80 35 4.47 16 KP ElimLin
5 80 35 Crashed! 16 KP PolyBori
5 128 88 0.05 5 KP ElimLin
5 128 88 0.07 5 KP PolyBori

Since the time complexity of the experiment depends on the system instance,
Table 1 represents the average time complexity. We had some instances revealing
that the times it takes to recover 45 bits of the key is much less than that for
44 bits. This seems very surprising at the first glance, but it can be justified by
considering that the running time of ElimLin implementation in [12] is highly
dependable on the sparsity of equations. So, our intuition is that as we have
picked distinct plaintext and key randomly in each experiment, by pure chance
the former system of equations turns out to be sparser than the latter and it is
also probable that more linear equations are generated due to some combination
of plaintexts and keys randomly picked.

In [1], Albrecht and Cid compared their result with exhaustive key search over
PRESENT assuming that checking an arbitrary key takes at least 2 CPU cycles
which seems ambitious implying that recovering 45 bits of the key should take
at least more than 9 hours, while we could recover the key in less than two hours
using only five KP in our best attack.

We tried to break 6 rounds of PRESENT by ElimLin and F4, but ElimLin
did not give us any satisfactory result and PolyBori crashed after a while due
to probably running out of memory for 6-round PRESENT. In [10], the results
are compared with F4 implementation under MAGMA which is specified not to
yield any satisfactory results in reasonable time. Although PolyBori crashes in
much fewer cases, we could not get anything better by using F4 under PolyBori
compared to ElimLin in this specific case.

4 Linear Analysis

Linear cryptanalysis (LC) typically operates under a known-plaintext (KP) or
a ciphertext-only (CO) setting, and its origin dates back to the works of Matsui
on DES [22]. The main tool for this attack is the linear relation, which consists
of a linear combination of text and key bits, holding with a relatively high
parity deviation from the uniform parity distribution. The effectiveness of a
linear relation is measured by a parameter called bias, denoted ε, which is the
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absolute value of the difference between the parity of the linear relation from
1/2. The higher the bias, the more attractive the linear relations are, since they
demand less plaintext-ciphertext pairs. These relations form the core of a linear
distinguisher, namely, a tool that allows one to distinguish a given cipher from
a random permutation, or to recover subkey bits.

Our linear analysis of the PRESENT cipher started with a study of the Linear
Approximation Table (LAT) [22] (Table 6) of its 4×4 S-box (Table 5). In Table 6,
the acronym IM stands for the Input Mask (leftmost column); OM for the Output
Mask (top row); the entries for non-zero masks are either 0, 2, −2, 4 or −4, that
is, the S-box is linearly 4-uniform. Thus, the largest entry for non-trivial (non-
zero) bitmasks corresponds to a bias of 4/16 = 2−2. Thus, entries in the LAT
correspond to 16 · ε, except for the sign; a negative entry implies that the parity
is closer to ’0’, while the absence of a sign means the parity is closer to ’1’.

One-round and multiple-round linear approximations were derived by com-
bining the LAT with the bit permutation pLayer that follows each S-box layer.
Our analysis indicated that the most promising linear relations shall exploit

– one-bit-input-to-one-bit-output bitmasks in order to minimize the number
of active S-boxes per round;

– the pLayer bit permutation following the S-box layer has order three, that
is, if we denote this permutation by P, then P(P(P(X))) = P3(X) = X , for
all text blocks X ; this fact motivated us to look for iterative relations across
three rounds. Particular bit positions of pLayer, though, have much smaller
order, such as the leftmost bit in a block which is unaffected by pLayer, that
is, it is a fix-point. There are four such fix-points in the pLayer. Thus, the
branch number [13] of pLayer is just two. This means that diffusion is quite
poor in PRESENT. Due to the fix-points of pLayer, and the LAT profile of
the S-box, iterative linear relations exist for any number of rounds.

Taking the order of pLayer into account, it is straightforward to find 3-round
iterative linear relations with only three active S-boxes (there cannot be less
than one active S-box per round due to the SPN structure). Nonetheless, the
S-box design minimizes the bias of single-bit linear approximations. The bias
for each such approximation is 2/16 = 2−3, which gives a maximum bias of
22−3−3−3 = 2−7 for any 3-round linear relation.

Let us denote a 64-bit mask by

Γ = γ0γ1γ2γ3γ4γ5γ6γ7γ8γ9γ10γ11γ12γ13γ14γ15

where γi ∈ Z4
2, 0 ≤ i ≤ 15, that is, a nibble (4 bits). An interesting example of

1-round linear relation for PRESENT is

8000000000000000x
1r→ 8000000000000000x (1)

where the linear approximation 8 S→ 8 for the S-box was used for the leftmost
nibble (the leftmost S-box), with bias 2−3, and 1r→ means one round transition.
Note that this bias is not the highest possible, but the non-zero bit position in
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the mask is a fix-point for the pLayer. Thus, (1) is an iterative linear relation
with a single active S-box. If we denote a text block as X = (x0, x1, . . . , x63),
then (1) can be expressed simply as

p0 ⊕ c0 = k1
0 ⊕ k2

0 , (2)

where k1
0 and k2

0 are the leftmost (most significant) bits of the first two round sub-
keys. For a distinguish-from-random attack, the complexity for a single round is
N = 8·(2−3)−2 = 29 KP and equivalent parity computations (2). Notice, though,
that if the plaintext is composed of ASCII text, then the most significant bit of
every plaintext byte is always zero, and the attack actually requires 29 cipher-
texts only (CO). Iterating (1) for up to 14 rounds requires 8 · (213−3∗14)−2 = 261

CO and an equivalent amount of parity computations. If we allow a lower success
probability, we can attack up to 15-round PRESENT using 4·(214−3∗15)−2 = 264

CO, and equivalent number of parity computations. But, since the codebook is
exhausted, the KP or CO settings are the same.

Other two 1-round iterative linear relations with the bias 2−3, also based on
fix-points of pLayer are

0000000000200000x
1r→ 0000000000200000x, (3)

and
0000040000000000x

1r→ 0000040000000000x. (4)

A linear relation based on the fourth fix-point of pLayer is not effective since the
LAT entry is zero.

An example of 2-round (non-iterative) linear relation for PRESENT with
maximum bias is

1000000000000000x
1r→ 0000800000008000x

1r→ 0808080808080000x, (5)

with bias 22−2−2−2 = 2−4, and three active S-boxes. The local S-box approxi-
mations used were 1 S→ 5 and 8 S→ 14, both with bias 2−2. Reducing the number
of active S-boxes to only two across two rounds would decrease the bias to
21−3−3 = 2−5. Thus, the trade-off of three active S-boxes versus the bias, across
two rounds, is the best possible. The attack complexity is N = 8 · (2−4)−2 = 211

KP and equivalent parity computations.
For three rounds, one of the simplest, most-biased and iterative linear relations

we have found is

0800000000000000x
1r→ 4000000000000000x

1r→
0000800000000000x

1r→ 0800000000000000x,
(6)

where the S-box linear approximations were 8 S→ 8 and 4 S→ 4, both with bias
2−3. The overall bias is 22−3−3−3 = 2−7. Relation (6) is an example that demon-
strates a trade-off between the number of active S-boxes per rounds versus the
overall bias of linear relations involving single-bit-input-single-bit-output masks.
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Relation (6) allows to mount a distinguish-from-random linear attack on
3-round PRESENT with N = 8 · (2−7)−2 = 217 KP and equivalent num-
ber of parity computations (less than one encryption) and negligible memory.
For six rounds, the attack complexity becomes N = 8 · (21−2∗7)−2 = 229 KP
and equivalent parity computations. For nine rounds, the complexity becomes
N = 8 · (22−3∗7)−2 = 241 KP and equivalent number of parity computations. For
twelve rounds, the attack complexity becomes N = 8 · (23−4∗7)−2 = 253 KP and
equivalent parity computations. For fifteen rounds, if we allow a smaller success
rate, then N = 4 · (24−5∗7)−2 = 264 KP are required, and an equivalent number
of parity computations (which is about the effort of one-round computation).
Actually, in the 12-round case, the first and last round S-box approximations
can be improved, leading to

7700000000000000x
1r→ 0000C00000000000x

1r→ 0800000000000000x
12r→

0800000000000000x
1r→ 4000000000000000x

1r→ 8000000080008000x,
(7)

where the S-box approximations were 7 S→ 4 with bias 2−2 in the 1st round;
C

S→ 8 with bias 2−2 in the 2nd round; 8 S→ 8 with bias 2−3 in the 15th round;
4 S→ B, with bias 2−2 in the last round. The notation xr→ means an x-round
transition. The overall bias is 2−2−2−2−3·12−3−2+16 = 2−31. A distinguish-from-
random attack using the 16-round relation (7) costs N = 4 · (2−31)−2 = 264

KP.
Additional 16-round linear approximations can be derived taking into account

other fix-points of pLayer. For instance, using (3):

00000000A0A00000x
1r→ 0000000000A00000x

1r→ 0000000000200000x
13r→

0000000000200000x
1r→ 0020000000200020x,

(8)

where the S-box approximations were A
S→ 2 with bias 2−2 in the 1st and 2nd

rounds; 2 S→B with bias 2−2 in the last round. The overall bias is 2−3·(2+13)−2+16 =
2−31.
Further, using (1), we have

CC00000000000000x
1r→ C000000000000000x

1r→ 8000000000000000x
13r→

8000000000000000x
1r→ 8000800080000000x,

(9)

where the S-box approximations were C
S→ 8 with bias 2−2 in the 1st and 2nd

rounds; 8 S→ E with bias 2−2 in the last round. The overall bias is 2−3·(13+2)−2+16

= 2−31.
A 1R key-recovery attack can be applied at the top end of (9) would require

guessing the subkeys on top of four S-boxes, because CC00000000000000x has
four active bits. It means a complexity of 264+16/4 = 278 1-round computations,
or 278/17 ≈ 273.91 17-round computations. The memory complexity is a 16-bit
counter and the success rate [28] is about 0.37. Recovering subkeys at the bottom
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end requires guessing only twelve subkey bits since 8000800080000000x has only
three active bits. It means 264+12 · 3/(16 · 17) ≈ 269.50 17-round computations.
The memory complexity is a 12-bit counter and the success rate is about 0.63.
Applying this attack at both ends (2R attack) requires 264+16+12 · 7/(16 · 18) ≈
286.64 18-round computations (applies only to 128-bit keys). The success rate is
about 0.03.

For the remaining 100 key bits, we use (8), which has the same bias as (9).
So, the effort to recover further 24+12 key bits is 264+24+12 · 8/(16 · 18) ≈ 296.83

18-round computations. The remaining 64 key bits can be found by exhaustive
search.

5 Linear Hulls

The concept of linear hulls was first announced by Nyberg in [24]. A linear hull
is the LC counterpart to differentials in differential cryptanalysis. Therefore, a
linear hull stands for the collection of all linear relations (across a certain number
of rounds) that have the same (fixed) input and output bitmasks, but involves
different sets of round subkeys according to different linear trails. Consequently,
the bias of a linear hull stands for the actual bias of a linear relation involving
a given pair of input and output bitmasks. When there is only a single linear
trail between a given pair of input and output bitmasks, the concepts of linear
relation and linear hull match.

The linear hull effect accounts for a clustering of linear trails, with the con-
sequence that the final bias may become significantly higher than that of any
individual trail. Due to Nyberg [24], given the input and output masks a and b
for a block cipher Y = Y (X, K), the potential of the corresponding linear hull is
denoted

ALH(a, b) =
∑

c

(P (a ·X ⊕ b · Y ⊕ c ·K = 0)− 1
2
)2 = ε2 (10)

where c is the mask for the subkey bits. Then, key-recovery attacks such as
Algorithm 2 in [22] apply with

N =
t

ALH(a, b)
=

t

ε2

known plaintexts, where t is a constant. An advantage to use linear hulls in key-
recovery attacks, such as in Algorithm 2, is that the required number of known
plaintexts can be decreased for a given success rate. Keliher et al. exploited this
method to attack the Q cipher [19].

For PRESENT, in particular, it makes sense to choose input/output masks
that affect only a few S-boxes, because it minimizes the number of key bits
to guess in key-recovery attacks around the linear hull distinguisher. Moreover,
minimizing the number of active S-boxes in the first round may also minimize
the number of linear trails to look for, which speeds up our search program for
all possible linear paths and the corresponding bias computation.
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Our approach to determine linear hulls for PRESENT used a recursive al-
gorithm (in ANSI C) employing a depth-first search strategy. It is a classical
technique to find exhaustively all linear trails systematically and with low mem-
ory cost. Fixed input and output (I/O) bitmasks and a number of rounds were
provided as parameters, and the algorithm computed all possible linear trails
starting and ending in the given I/O masks, the corresponding biases and the
number of active S-boxes. One objective of the linear hull search was to dou-
ble check if the linear relations we derived in (1), (5) and (6) actually had the
predicted biases (which have been confirmed).

An interesting phenomenon we have observed is the rate of decrease of the bias
in linear hulls with some fixed input/output bitmasks of low Hamming Weight
(HW), for increasing number of rounds. In particular, we have focused on a few
cases, where the input and output masks are the same (iterative linear relations)
and have low HW. We have studied all 64-bit input and output bit masks with
HW = 1. Further, to optimize the search, we have focused only on the linear
trails with the highest bias (single-bit trails), which we call the best trails (with
a single active S-box per round). The best results we obtained concern the mask
0000000000200000x (both at the input and at the output). Table 2 summarizes
our experiments, where “computed bias” denotes the bias of the linear hull for
the given number of rounds computed according to 10. For up to four rounds,
all trails were found. For five rounds or more, only the trails with highest biases
were accounted for. The values under the title “expected bias” indicate the bias
as computed by the Piling-up lemma.

From Table 2, we observe that the bias for linear hulls in PRESENT does
not decrease as fast, with increasing number of rounds, as in linear relations as
dictated by the Piling-up lemma. Fig.2 compares the computed and the predicted
bias values in Table 2. Our experimental results indicate that the linear hull effect
is significant in PRESENT even for a small number of rounds. For five rounds
or more, we could not determine all linear trails, but we looked for the ones with
the highest bias values, so that their contribution to the overall ALH would be
significant. We have searched for linear trails with r up to r + 2 active S-boxes
across r rounds. Thus, the values for more than four rounds represent a lower
bound on the overall bias of the linear hulls.

In Table 2, consider the linear hull across five rounds. We have found nine
trails with bias 2−11 inside this linear hull. Repeating it three times, we arrive
at 93 15-round linear trails. The ALH (0000000000200000x, 0000000000200000x)
for 15 rounds is (2−31)2 · 93 = 2−62+9.51 = 2−52.49. We extend this 15-round
linear hull to a 17-round linear hull with 93 17-round linear trails by choosing
an additional 1-round relation at the top and at the bottom ends of it:

0000000000A00000x
1r→ 0000000000200000x

15r→
0000000000200000x

1r→ 0020000000200020x,
(11)

where the ALH for the 17-round linear hull is (2−33)2 ·93 = 2−66+9.51 = 2−56.49.
This linear hull can be used to distinguish 17-round PRESENT from a random
permutation with 256.49 · 8 = 259.49 KP, and equivalent parity computations.
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Fig. 2. Behaviour of linear hull bias (ALH) against expected bias (by Piling-up lemma)
for increasing number of rounds of PRESENT (data from Table 2)

Table 2. Computed bias (cb) and expected bias (eb) of linear hulls in PRESENT for
input/output mask 0000000000200000x

# rounds 1 2 3 4 5 6 7 8
# trails 1 1 1 9 9 27 72 192

(cb) 2−3 2−5 2−7 2−8.20 2−9.40 2−10.61 2−11.90 2−13.19

(eb) 2−3 2−5 2−7 2−9 2−11 2−13 2−15 2−17

# rounds 9 10 11 12 13 14 15 16
# trails 512 1344 3528 9261 24255 63525 166375 435600

(cb) 2−14.48 2−15.78 2−17.08 2−18.38 2−19.71 2−21.02 2−22.33 2−23.63

(eb) 2−19 2−21 2−23 2−25 2−27 2−29 2−31 2−33

# rounds 17 18 19 20 21 22 23
# trails 1140480 2985984 7817472 20466576 53582633 140281323 367261713

(cb) 2−24.94 2−26.25 2−27.55 2−28.85 2−30.16 2−31.47 2−32.77

(eb) 2−35 2−37 2−39 2−41 2−43 2−45 2−47

Applying a key-recovery (1R attack) at the top end of (11) requires guessing
only eight bits because there are only two active bits in 0000000000A00000x. The
attack complexity becomes 259.49+8 ·2/(16 ·18) = 260.33 18-round computations.
The memory complexity is just an 8-bit counter and the success rate is about
0.997.

For six rounds, and still using mask 0000000000200000x, we have found 27
trails, each with bias 2−13 inside this linear hull. Concatenating the linear hull
three times, we arrive at 273 18-round trails. The ALH (0000000000200000x,
0000000000200000x) for 18 rounds is (2−37)2 · 273 = 2−59.73. Extending it to 20
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rounds by choosing carefully an additional relation on top and at the bottom of
it results in

0000000000A00000x
1r→ 0000000000200000x

18r→
0000000000200000x

1r→ 0020000000200020x.
(12)

The ALH of (12) is (2−39)2 ·273 = 2−63.73. Thus, (12) can be used to distinguish
20-round PRESENT from a random permutation using the full codebook. A key-
recovery (1R) attack at the top of (12) leads to a complexity of 264+8/(8 · 21) ≈
264.60 21-round computations. The memory needed is an 8-bit counter and the
success rate is about 0.246. For 80-bit keys, the remaining 80-12 = 68 key bits
can be found by exhaustive search.

For nine rounds and mask 0000000000200000x, we have found 512 trails, each
with bias 2−19 inside this linear hull. Concatenating the linear hull twice, we ar-
rive at 5122 18-round trails. The ALH (0000000000200000x, 0000000000200000x)
for 18 rounds is (2−37)2 · 5122 = 2−56. Extending it to 20 rounds, just like (12),
leads to an ALH of (2−39)2 · 5122 = 2−60. A key-recovery (1R) attack at the
top of this linear hull results in a complexity of 8 · 260+8/(8 · 21) ≈ 263.60 21-
round computations. The memory needed is an 8-bit counter and the success
rate is about 0.997. For 80-bit keys, the remaining 72 key bits can be found by
exhaustive search, leading to a complexity of 272 encryptions.

For ten rounds and mask 0000000000200000x, we have found 1344 trails, each
with bias 2−21 inside this linear hull. Concatenating the linear hull twice, we
arrive at 13442 20-round trails. The corresponding ALH (0000000000200000x,
0000000000200000x) for 20 rounds is (2−41)2 · 13442 = 2−61.22. Extending it to
21 rounds leads to

0000000000A00000x
1r→ 0000000000200000x

20r→
0000000000200000x,

(13)

with an ALH of (2−42)2·13442 = 2−63.21. A key-recovery (2R) attack at both ends
of this linear hull requires guessing 16 key bits. The effort becomes 263.21+16/(16·
23) ≈ 260.68 23-round computations. The memory needed is a 16-bit counter. For
80-bit keys the remaining 64 key bits can be found by exhaustive search, leading
to a final complexity of 264 encryptions.

For the 21-round linear hull, with bitmask 0000000000200000x, we have found
53582633 trails with bias 2−43 and the accumulated bias is 2−30.16. These trails
always have one single active S-box per round. In order to improve the accumu-
lated bias, we identify the second best trails across 21 rounds in which 23 active
S-boxes are involved. Unlike the best trails, the second best ones have a ’2-way
branching’ that is the trail splits from one to two S-boxes. This branching later
merges back into a single S-box (Fig. 3) after three rounds. We developed an-
other depth-first search program to find the 2nd-best trails for a variable number
of rounds. The results are listed in Table 3. From the empirical results in Ta-
ble 3, the number of 2nd best trails seems to be (# rounds-3) times more than
the number of best trails. This means that the contribution of the second best
trails to the overall bias of the 22-round hull is about

√
18 · 53582633 · 2−47 or
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Table 3. Number of second best trails using bitmask 0000000000200000x

# rounds # best trails # 2nd best trail bias of 2nd best trails
5 9 18 2−12.915

6 27 81 2−13.830

7 72 288 2−14.915

8 192 960 2−16.046

9 512 3072 2−17.207

10 1344 9536 2−18.376

11 3528 28896 2−19.565

12 9261 85995 2−20.771

13 24255 252021 2−21.990

14 63525 730235 2−23.219

2−32.077. Combining the biases of the 1st best trails and 2nd best trails results
in
√

(2−30.16)2 + (2−32.077)2 ∼ 2−30.11.
We now make the key recovery attack on 25-round by guessing 20 bits at both

ends of the 21-round linear hull. This means 264+16+16+4+4 · 10/16 = 2103.33 1-
round computations, or 2103.33/25 ≈ 298.68 25-round computations, which only
applies to 128-bit keys. For the remaining 88-bit subkey, we can search it ex-
haustively. The success rate is 0.61.

For the 22-round linear hull, with bitmask 0000000000200000x, we have found
140281323 trails, each with bias 2−45 and

√
19 · 140281323 ·2−49 trails each with

bias 2−49. The corresponding ALH is (2−45)2·140281323+(19·140281323)·2−49 ≈
2−62.83, which means an accumulated bias of 2−31.415. We use this 22-round
linear hull to make a key recovery attack on 26-round PRESENT. This means
264+16+16+4+4 · 10/16 = 2103.33 1-round computations, or 2103.33/26 ≈ 298.62

26-round computations, which only applies to 128-bit keys. The success rate is
only 0.00002.

It is reasonable that the linear trails in a linear hull could not be indepen-
dent. Kaliski et al., though, showed that the linear dependency of the linear
approximations has no effect for the attack [20].

6 Conclusions

This paper described the first linear hull attacks and revisited algebraic attacks
with a comparison between two distinct algorithms on reduced-round versions
of the block cipher PRESENT. The analysis based on linear hulls were used to
detect any significant variation in the bias, which would impact the linear attack
complexities; and, to assess the linear hull effect in PRESENT and its resilience
to LC. We have confirmed that the linear hull effect is significant even for a small
number of rounds of PRESENT.

Table 4 lists the attack complexities for PRESENT for increasing number of
rounds and in increasing order of time complexity.
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Table 4. Attack complexities on reduced-round PRESENT block cipher

#Rounds Time Data Memory Key Size Source Comments
(bits)

5 2.5 min 5 KP — 80 Sect. 3 KR†, AC
5 2.5 min 5 KP — 128 Sect. 3 KR†, AC
5 1.82 h 64 KP — 80 [10] KR, AC
6 226 226 KP — all eq. (6) DR* + KR, LC
7 2100.1 224.3 CP 277 128 [30] IC
14 261 261 CO — all eq. (1) DR* + KR, LC
15 235.6 235.6 CP 232 all [5] KR, SC
15 264 264 KP — all eq. (1) DR*, LC
16 262 262 CP 1Gb all [1] KR, AC + DC
16 264 264 CP 232 all [29] KR, DC
17 269.50 264 KP 212 80 eq. (9) KR, LC
17 273.91 264 KP 216 80 eq. (9) KR, LC
17 2104 263 CP 253 128 [25] KR, RKR
17 293 262 CP 1Gb 128 [1] KR, AC + DC
18 298 262 CP 1Gb 128 [1] KR, AC + DC
19 2113 262 CP 1Gb 128 [1] KR, AC + DC
24 257 257 CP 232 all [5] KR, SSC
25 298.68 264 KP 240 128 Table 2 KR, LH
26 298.62 264 KP 240 128 Table 2 KR, LH

*: time complexity is number of parity computations; †: recover half of the user key;
DR: Distinguish-from-Random attack; KR: Key Recovery attack
LC: Linear Cryptanalysis; DC: Differential Cryptanalysis; AC: Algebraic Crypt.;
SSC: Statistical Saturation analysis; IC: Integral Cryptanalysis;
RKR: Related-Key Rectangle; LH: Linear Hull; ML: Multiple Linear;
CP: Chosen Plaintext; KP: Known Plaintext; CO: Ciphertext Only.

A topic for further research is to look for the 3rd and 4th best trails inside a
linear hull. The issue is to find out their contribution to the overall bias of the
linear hulls, that is, if they can further improve the bias as the 2nd best trails did.
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A ElimLin Intermediate Results

Table 7 depicts the intermediate ElimLin results for 5-round PRESENT-80
where 36 bits of the key are fixed and we try to recover the remaining key
bits. In the third column, T represents the total number of monomials and Ave
is the average number of monomials per equation.

Table 5. The 4 × 4-bit S-box of PRESENT and the inverse S-box

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S[x] 12 5 6 11 9 0 10 13 3 14 15 8 4 7 1 2

S−1[x] 5 14 15 8 12 1 2 13 11 4 6 3 0 7 9 10

http://magma.maths.usyd.edu.au/magma/
http://eprint.iacr.org/2006/475
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Fig. 3. Example of branching inside a trail, from single S-box to two S-boxes, and
merging back to one S-box
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Table 6. Linear Approximation Table (LAT) of the S-box of PRESENT

OM
IM 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 -4 0 -4 0 0 0 0 0 -4 0 4
2 0 0 2 2 -2 -2 0 0 2 -2 0 4 0 4 -2 2
3 0 0 2 2 2 -2 -4 0 -2 2 -4 0 0 0 -2 -2
4 0 0 -2 2 -2 -2 0 4 -2 -2 0 -4 0 0 -2 2
5 0 0 -2 2 -2 2 0 0 2 2 -4 0 4 0 2 2
6 0 0 0 -4 0 0 -4 0 0 -4 0 0 4 0 0 0
7 0 0 0 4 4 0 0 0 0 -4 0 0 0 0 4 0
8 0 0 2 -2 0 0 -2 2 -2 2 0 0 -2 2 4 4
9 0 4 -2 -2 0 0 2 -2 -2 -2 -4 0 -2 2 0 0
10 0 0 4 0 2 2 2 -2 0 0 0 -4 2 2 -2 2
11 0 -4 0 0 -2 -2 2 -2 -4 0 0 0 2 2 2 -2
12 0 0 0 0 -2 -2 -2 -2 4 0 0 -4 -2 2 2 -2
13 0 4 4 0 -2 -2 2 2 0 0 0 0 2 -2 2 -2
14 0 0 2 2 -4 4 -2 -2 -2 -2 0 0 -2 -2 0 0
15 0 4 -2 2 0 0 -2 -2 -2 2 4 0 2 2 0 0

Table 7. ElimLin result for 5-round PRESENT-80 when 36 bits of key are fixed

# Variables # Equations (Ave/ # Linear
# Monomials) Equations

10340 46980 7/ T= 46321 6180
4160 46980 8/ T= 48744 1623
2537 46980 9/ T= 40763 1069
1468 46980 14/ T= 43155 405
1063 46980 76/ T= 73969 165
898 46980 158/ T= 145404 201
697 46980 77/ T= 85470 584
113 46980 0/ T= 413 113
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Abstract. HIGHT is a block cipher with 64-bit block length and 128-
bit key length, which was proposed by Hong et al. in CHES 2006 for
extremely constrained environments such as RFID tags and sensor net-
works. In this paper, a new saturation attack on HIGHT is discussed.
We first point out and correct an error in the 12-round saturation dis-
tinguishers given by the HIGHT proposers. And then two new 17-round
saturation distinguishers are described. Finally, we present a 22-round
saturation attack on HIGHT including full whitening keys with 262.04

chosen plaintexts and 2118.71 22-round encryptions.

Keywords: Block cipher, HIGHT, Distinguisher, Saturation attack.

1 Introduction

With the establishment of the AES[18], the need for new block ciphers has
been greatly diminished. The AES is an excellent and preferred choice for al-
most all block cipher applications. However, despite recent implementation ad-
vances, the AES is not suitable for extremely constrained environments such
as RFID(Radio Frequency Identification) tags and sensor networks which are
low-cost with limited resources. So some block ciphers suitable for these envi-
ronments have been designed, such as TEA[25], HIGHT[10], SEA[22], CGEN[20],
mCrypton[13], PRESENT[5] and so on.

HIGHT[10] is a block cipher with 64-bit block length and 128-bit key length,
which is suitable for low-cost, low-power and ultra-light implementations, such
as RFID systems. It has a 32-round iterative structure which is a variant of
generalized Feistel network. Due to the simple operations such as XOR, addi-
tion mod 28 and left bitwise rotation, HIGHT is especially efficient in hardware
implementations.

Square attack, proposed by Daemen et al. in[6], is a dedicated attack on the
block cipher SQUARE. And it has been applied to some other block ciphers
based on the SPN structure. In order to apply square attack to the Feistel
structure, Lucks introduced the saturation attack on the Twofish cipher in FSE
2001[16], which is a variation of square attack. Then in[4], Biryukov et al. pro-
posed the multiset attack by which we can break a 4-round SPN cipher even

J.A. Garay, A. Miyaji, and A. Otsuka (Eds.): CANS 2009, LNCS 5888, pp. 76–86, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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if the S-box is unknown. And in[12], a more generalized attack, named integral
attack, was proposed by Knudsen et al.. Furthermore, Z’aba et al. presented the
bit-pattern based integral attack against bit-based block ciphers in[28], which
is a new type of integral attack. Consequently, some famous ciphers have been
analyzed based on the idea of the attacks shown above, such as Rijndael[8],
FOX[26], Camellia[7,9,27], SMS4[14], CLEFIA[21,23] and so on.

In[10], the HIGHT proposers had analyzed its security against some existing
cryptanalytic attacks, they described a differential attack[3], a linear attack[17]
and a boomerang attack[24] on 13-round HIGHT, a truncated differential
attack[11] and a saturation attack[16] on 16-round HIGHT, an impossible dif-
ferential attack[1] on 18-round HIGHT, and finally a related-key boomerang
attack[2] on 19-round HIGHT. Subsequently, Lu gave an impossible differential
attack on 25-round HIGHT, a related-key rectangle attack on 26-round HIGHT,
and a related-key impossible differential attack on 28-round HIGHT[15]. Further-
more, Özen et al. presented an impossible differential attack on 26-round HIGHT
and a related-key impossible differential attack on 31-round HIGHT[19].

Particularly in [10], the proposers gave some 12-round saturation distinguish-
ers which were applied to the attack on 16-round HIGHT with 242 chosen plain-
texts and 251 16-round encryptions. In this paper, we first point out and correct
an error in the 12-round saturation distinguishers shown in[10]. Then two new
17-round saturation distinguishers are described. Finally, we present a 22-round
saturation attack on HIGHT including full whitening keys with 262.04 chosen
plaintexts and 2118.71 22-round encryptions.

The paper is organized as follows. In Section 2, we briefly describe some no-
tations and the HIGHT block cipher. Section 3 corrects an error in the 12-round
distinguishers shown in[10] and gives two new 17-round saturation distinguish-
ers. Then the attacks are discussed in section 4. Finally, we conclude this paper
and summarize our findings in Section 5.

2 Preliminaries

2.1 Notations

In order to clearly illustrate the following encryption and attack, some notations
and symbols are defined as follows:

⊕: XOR (exclusive OR);

�: addtion modulo 28;

A<<<s: s-bit left rotation of an 8-bit value A;

P = (P7, P6, · · · , P0): the plaintext;

C = (C7, C6, · · · , C0): the ciphertext;
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Xi = (Xi,7, Xi,6, · · · , Xi,0): the output of the i-th round(1 ≤ i ≤ 32);

Xi−1 = (Xi−1,7, Xi−1,6, · · · , Xi−1,0): the input of the i-th round(1 ≤ i ≤ 32);

X
(k)
i,j (0 ≤ k ≤ 7): the k-th bit of Xi,j ;

MK = (MK15, MK14, · · · , MK0): the master key;

MKi,j(0 ≤ j ≤ 7): the j-th bit of MKi;

WKi(0 ≤ i ≤ 7): the whitening keys;

WKi,j(0 ≤ j ≤ 7): the j-th bit of WKi;

SKi(0 ≤ i ≤ 127): the round keys;

SKi,j(0 ≤ j ≤ 7): the j-th bit of SKi.

2.2 The HIGHT Block Cipher

The encryption procedure can be described as follows:
Step1. Perform the Initial Transformation, which transforms a plaintext P

to the input of the first round X0 by using the four whitening keys, WK0, WK1,
WK2 and WK3.

X0,0 = P0 � WK0; X0,1 = P1; X0,2 = P2 ⊕WK1; X0,3 = P3;
X0,4 = P4 � WK2; X0,5 = P5; X0,6 = P6 ⊕WK3; X0,7 = P7.

Step2. For i = 1, 2, · · · , 32, Round Function transforms Xi−1 to Xi as follows,
which is shown in Fig.1.

Xi,0 = Xi−1,7 ⊕ (F0(Xi−1,6) � SK4i−1);
Xi,1 = Xi−1,0;
Xi,2 = Xi−1,1 � (F1(Xi−1,0)⊕ SK4i−2);
Xi,3 = Xi−1,2;
Xi,4 = Xi−1,3 ⊕ (F0(Xi−1,2) � SK4i−3);
Xi,5 = Xi−1,4;
Xi,6 = Xi−1,5 � (F1(Xi−1,4)⊕ SK4i−4);
Xi,7 = Xi−1,6.

And the functions F0 and F1 are defined as:

F0(x) = (x<<<1)⊕ (x<<<2)⊕ (x<<<7),
F1(x) = (x<<<3)⊕ (x<<<4)⊕ (x<<<6).
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Xi-1,7

F0

SK4i-1

Xi-1,6 Xi-1,5

F1

SK4i-4

Xi-1,4 Xi-1,3

F0

SK4i-3

Xi-1,2 Xi-1,1

F1

SK4i-2

Xi-1,0

Xi,7 Xi,6 Xi,5 Xi,4 Xi,3 Xi,2 Xi,1 Xi,0

Fig. 1. The i-th Round Function of HIGHT for i = 1, 2, · · · , 32

Step3. Perform the Final Transformation, which untwists the swap of the
last round function and transforms X32 to the ciphertext C by using the four
whitening keys, WK4, WK5, WK6 and WK7.

C0 = X32,1 � WK4; C1 = X32,2; C2 = X32,3 ⊕WK5; C3 = X32,4;
C4 = X32,5 � WK6; C5 = X32,6; C6 = X32,7 ⊕WK7; C7 = X32,0.

The key schedule of HIGHT consists of two algorithms, which generate 8 whiten-
ing key bytes WKi(0 ≤ i ≤ 7) and 128 subkey bytes SKj(0 ≤ j ≤ 127). Firstly,
the 128-bit master key is considered as a concatenation of 16 bytes and de-
noted by MK = (MK15, MK14, · · · , MK0). Then the whitening key bytes are
generated as follows:

WKi = MKi+12(i = 0, 1, 2, 3);
WKi = MKi−4(i = 4, 5, 6, 7).

And the subkey bytes are generated as follows:

SK16·i+j = MKj−i mod 8 � δ16·i+j(0 ≤ i, j ≤ 7),
or SK16·i+j+8 = MK(j−i mod 8)+8 � δ16·i+j+8(0 ≤ i, j ≤ 7),

where δ16·i+j and δ16·i+j+8 are public constants.

3 Saturation Distinguishers

Now we will point out and correct an error in the saturation distinguishers
shown in[10]. Furthermore, two new 17-round saturation distinguishers will be
presented.

3.1 Distinguishers based on Byte Saturation

Let S = {Yi|Yi = (Yi,7, Yi,6, · · · , Yi,0) ∈ {0, 1}8, 0 ≤ i < 28} be a set of 8-bit
values, where Yi,k(0 ≤ k ≤ 7) is the k-th bit of Yi. Then we categorize the status
of the set S into five groups depending on the conditions defined as follows:
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(1) Const(C): if ∀i, j, Yi = Yj ,

(2) All(A): if ∀i, j, i �= j ⇐⇒ Yi �= Yj ,

(3) Balance(B): if
⊕

0≤i<28
Yi = 0,

(4) Balancek(Bk): if
⊕

0≤i<28
Yi,k = 0,

(5) Unknown(U): unknown.

Thus, using the conditions, we can get two 11-round saturation distinguishers
based on byte saturation which are shown as follows. And the details of distin-
guisher(I) is shown in Fig.2.

(I) (A, C, C, C, C, C, C, C) 11r−−→ (U, U, U, U, B0, U, U, U),

(II) (C, C, C, C, A, C, C, C) 11r−−→ (B0, U, U, U, U, U, U, U).

In[10], the HIGHT proposers had described that distinguisher(I) is a 12-round
one. From the details shown in Fig.2, we can see that it is only a 11-round one. In
addition, we also implement the distinguishers through the computer simulation,
and we find that there are no Balance or Balancek sets in the output of the 12-
round encryptions. That is to say, the distinguishers based on byte saturation
are only 11-round ones.

3.2 17-Round Distinguishers

With the two 11-round distinguishers shown above, we can deduce two 17-round
ones, respectively. Hereinafter, we will give the details.

Firstly, we explain how to extend to 12-round distinguishers. Let A(16) be
an All state of 16-bit values, and it is divided into two segments as A(16) =
A1(16)|A0(16). Then we can get the 12-round distinguishers as follows:

(I) (A1(16), A0(16), C, C, C, C, C, C) 12r−−→ (U, U, U, U, B0, U, U, U),

(II) (C, C, C, C, A1(16) , A0(16), C, C) 12r−−→ (B0, U, U, U, U, U, U, U).

These distinguishers can be explained in the following way. After the first round
of distinguisher(I), (A1(16), A0(16), C, C, C, C, C, C) becomes (A0(16), C, C, C, C,
C, C, A′

1(16)), where the concatenated segment A′
1(16)|A0(16) is also an All sate.

It can be regarded as that (A0(16), C, C, C, C, C, C, A′
1(16)) contains 28 structures

of (A, C, C, C, C, C, C, C), where the first rightmost constant takes all possible
28 8-bit values. Therefore, the Balance0 state is kept at the output, which is
presented in the above 11-round distinguishers. In addition, distinguishers(II)
can also be explained using the similar method.

The extensions to 13,14,15,16 and 17-round distinguishers can be obtained in
the similar way. Let A(56) be an All state of 56-bit values, which is divided into
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Fig. 2. 11-Round Distinguisher(I) Based on Byte Saturation
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seven segments as A(56) = A6(56)|A5(56)|A4(56)|A3(56)|A2(56)|A1(56)|A0(56). Then
we can get the 17-round distinguishers as follows.

(I)(A6(56), A5(56), A4(56), A3(56), A2(56), A1(56), A0(56), C)
17r−−→ (U, U, U, U, B0, U, U, U),

(II)(A6(56), A5(56), A4(56), C, A3(56), A2(56), A1(56), A0(56))
17r−−→ (B0, U, U, U, U, U, U, U).

4 Saturation Attack with Full Whitening Keys

4.1 Attack Procedure

With the two 17-round distinguishers, a 22-round saturation attack on HIGHT
can be obtained. As an example, we give the attack procedure based on 17-round
distinguisher(I) by the following steps, which is shown in Fig.3.
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Fig. 3. 22-Round Attack Based on 17-Round Distinguisher(I)
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Step1. Chose a set of 256 plaintexts which has the following format:

S = (A6(56), A5(56), A4(56), A3(56), A2(56), A1(56), A0(56), C).

Ask for the corresponding ciphertexts C7, C6, C5, C4, C3 and C2 after the 22-
round encryptions.

Step2. Guess the subkeys and the whitening keys as follows:

SK69,0, SK73, SK76,0, SK77, SK80, SK81, SK84, SK85, SK87,0,

WK5, WK6, WK7.

Since the value X17,3 which is a Balance0 state can be calculated by the guessed
keys and the ciphertexts obtained in Step1. Then the correct keys can be checked
by the following equation.⊕

P∈S

X
(0)
17,3 =

⊕
P∈S

F (Ci, SKj,0, SKk, WKl) = 0, (1)

where P is the plaintext, i=7,6,5,4,3,2, j = 69, 76, 87, k = 73, 77, 80, 81, 84, 85
and l = 5, 6, 7.

If the equation is satisfied, accept the guessed keys as the candidates for the
correct keys. Otherwise, discard the keys.

Step3. For the key candidates kept in Step2, chose another set which has the
format shown in Step1 and check whether Eq.1 is satisfied. If it is satisfied, keep
the keys. Otherwise, discard the ones. Repeat this step, until all the correct keys
are obtained exclusively.

Using the similar method, we can get another 22-round saturation attack
based on 17-round distinguisher(II). And the following keys require to be guessed
in the attack.

SK71,0, SK75, SK78,0, SK79, SK82, SK83, SK85,0, SK86, SK87,

WK4, WK5, WK7.

4.2 Complexity Analysis

From the key schedule, it is clear that all the guessed keys in the attack are
generated by the master key bytes MKi(0 ≤ i ≤ 15), respectively. And the
generations are shown in Table 1 and Table 2.

In the tables, we can find that some guessed keys are generated by the same
master key byte. Thus we need not guess all of them. In addition, the guessed
keys in the attack based on distinguisher(II) which have been obtained in the
attack based on distinguisher(I) are not required anymore.

Consequently, the guessed keys in the attack based on distinguisher(I) are
listed as follows:

MK0, MK1, MK2, MK3, MK4, MK7, MK8,0, MK9, MK13.
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Table 1. Generation of Guessed Keys in the Attack Based on Distinguisher(I)

SK69,0 SK73 SK76,0 SK77 SK80 SK81 SK84 SK85 SK87,0 WK5 WK6 WK7

MK1,0 MK13 MK8,0 MK9 MK3 MK4 MK7 MK0 MK2,0 MK1 MK2 MK3

Table 2. Generation of Guessed Keys in the Attack Based on Distinguisher(II)

SK71,0 SK75 SK78,0 SK79 SK82 SK83 SK85,0 SK86 SK87 WK4 WK5 WK7

MK3,0 MK15 MK10,0 MK11 MK5 MK6 MK0,0 MK1 SK2 MK0 MK1 MK3

And we merely need guess the following keys in the attack based on distin-
guisher(II):

MK5, MK6, MK10,0, MK11, MK15.

In the attack, the probability that a key candidate in the key space survives the
discarding step is expected to be 2−1. And we need to guess 65-bit and 33-bit
key values in the attack based on distinguisher(I) and (II), respectively. Then if
we suppose that N sets are required, it is satisfied that

265 · 2−N < 1, and 233 · 2−N < 1.

Besides, the sets used in the attack based on distinguisher(I) can also be used
in the attack based on distinguisher(II). Therefore, 66 sets of 256 plaintexts
are required to obtain the correct key values exclusively. That is to say, we need
66×256 ≈ 262.04 plaintexts in the attack. Additionally, we need (256×265+256×
264+· · ·+256)+(256×233+256×232+· · ·+256) ≈ 2122 F-function computations to
get the correct keys. Consequently, the time complexity is 2122 × 9

22×4 ≈ 2118.71

22-round encryptions.

5 Conclusion

In this paper, a new saturation attack on HIGHT is discussed. We first point
out and correct an error in the 12-round saturation distinguishers shown by the
HIGHT proposers. And then two new 17-round saturation distinguishers are de-
scribed. Finally, we present a 22-round saturation attack on HIGHT including
full whitening keys with 262.04 chosen plaintexts and 2118.71 22-round encryp-
tions. The attack presented in this paper shows that the reduced versions of
HIGHT are less secure than they should be.
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Abstract. At Crypto 2008, Shamir introduced a new algebraic attack
called the cube attack, which allows us to solve black-box polynomials if
we are able to tweak the inputs by varying an initialization vector. In a
stream cipher setting where the filter function is known, we can extend
it to the cube attack with annihilators: By applying the cube attack to
Boolean functions for which we can find low-degree multiples (equiva-
lently annihilators), the attack complexity can be improved. When the
size of the filter function is smaller than the LFSR, we can improve
the attack complexity further by considering a sliding window version of
the cube attack with annihilators. Finally, we extend the cube attack to
vectorial Boolean functions by finding implicit relations with low-degree
polynomials.

Keywords: Cube Attack, Algebraic Attack, Low-Degree Annihilators.

1 Introduction

In the history of cryptography, algebraic cryptanalysis is a rather recent trend.
The underlying idea behind this attack is rather simple: in trying to attack a
cryptosystem, write the problem as a set of polynomial equations with coeffi-
cients and unknowns in some common finite field K, most probably of character-
istic 2. One then employs whatever means at one’s disposal to solve this system
of polynomial equations.

It has been long known that the general problem of solving such a system
is NP-complete, even if the system comprises of only quadratic equations over
F2 (see [13]). Nevertheless, many cryptographic systems appear susceptible to
attacks via this approach. Indeed, a large arsenal of attacks have been designed
with the algebraic approach in mind, including (but not restricted to) lineariza-
tion, relinearization [9], eXtended Linearization [4], Gröbner basis [7,8] and the
fast algebraic attack [5].
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In Aug 2008, during the Crypto conference, Adi Shamir [12] presented a new
approach to algebraic attacks in an invited lecture. Termed cube attack, his
method requires the attacker to launch an active attack (e.g. chosen-IV or chosen-
PT) in order to extract useful information from the bits obtained. Roughly
speaking, by skillfully choosing the bits in a systematic manner, the attacker
may lower the degree of the polynomial quickly.

In Section 2, we shall give a description of Shamir’s cube attack. Then, we
offer several variations to the basic cube attack. In Section 3, we extend the cube
attack to polynomials f for which we can find a low degree g such that fg is
also of low degree, and we apply this to the Toyocrypt cipher as an example. We
call this the cube attack with low degree annihilator and show that it has better
attack complexity than the basic cube attack and algebraic attack.

In Section 3.2, we refine the cube attack with low degree annihilators to the
special case where the size of the filter function is smaller than the LFSR. We call
this refinement the sliding window cube attack. We demonstrate several scenarios
where the sliding window cube attack has better attack complexity than the cube
attack with annihilators. We also compare our attack with the re-synchronization
attack of Daemon et. al. [10] since it is also applicable in this case, and conclude
that our attack gives better attack complexity under suitable conditions.

In Section 4, we consider the cube attack when applied to vectorial filter
functions. We show that there always exist equations describing the vectorial
functions, which has lower degree than low degree multiples of single-bit out-
put Boolean functions. Thus this shows that theoretically, we have better attack
complexity when we apply the vectorial cube attack rather than attacking single
bit output of the S-boxes by the cube attack with low degree annihilators. Fi-
nally in Section 5, we summarize our findings and propose some further research
directions.

2 Preliminaries: Cube Attack

First let us give a brief overview of the cube attack [12]. Throughout this arti-
cle, all polynomials have coefficients in F2, and x (resp. v) denotes the vector
(x0, x1, . . . xn−1) (resp. (v0, v1, . . . , vm−1)).

The primary idea behind this attack lies in the following theorem:

Theorem 1. Let f(x) be a polynomial in n variables of degree d. Suppose 0 <
k ≤ d and t is the monomial x0x1 . . . xk−1. Write f in the form:

f(x) = t · Pt(x) + Qt(x),

where none of the terms in Qt(x) is divisible by t. Note that deg(Pt) ≤ d− k.
Then the sum of f over all (x0, . . . , xk−1) ∈ Fk

2 , considered as a polynomial
in xk, xk+1, . . . , equals

Pt(

k︷ ︸︸ ︷
1, . . . , 1, xk, xk+1, . . . , xn−1)

and hence is a polynomial of degree at most d− k.
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Proof. Consider the equality f = t ·Pt +Qt. Split the sum into
∑

(x0,...,xk−1) t ·Pt

and
∑

(x0,...,xk−1) Qt. In the first sum, t = 0 unless x0 = x1 = · · · = xk−1 = 1 in
which case

∑
(x0,...,xk−1)∈Fk

2

t · Pt = Pt(

k︷ ︸︸ ︷
1, . . . , 1, xk, xk+1, . . . , xn−1).

On the other hand Qt is a sum of monomials, each of which is not divisible
by t. Let m be any one of these monomials. Since m is not divisible by t, it
excludes xi for some 0 ≤ i ≤ k − 1. If it excludes (say) x0, then the sum across
all (x0, . . . , xk−1) ∈ Fk

2 can be further split into two sums: the sum for x0 = 0
and for x0 = 1. These two sums are equal since x0 does not appear in m. Hence∑

(x0,...,xk−1)∈Fk
2

m = 0 =⇒
∑

(x0,...,xk−1)∈Fk
2

Qt = 0.

This completes our proof of the theorem.

Let us apply this theorem to cryptanalyze a stream cipher. Write the cipher in
the form:

z = f(x,v),

which takes in an n-bit key x and an m-bit IV v, and outputs the first bit of the
keystream. Suppose d = deg f ≤ m. We describe the cube attack for the term
t = v0v1 · · · vd−2.

Fix the IV bits vd−1, vd, vd+1, · · · ∈ F2 and write C for the set of v with these
values of vd−1, vd, . . . . Thus |C| = 2d−1. Sum f(x,v) over v ∈ C. By applying
Theorem 1 to t, this sum is linear in x:∑

v∈C

f(x,v) = L(x). (1)

If L(x) �= 0, we call t a maxterm in accordance with [12], and obtain one linear
relation in the key bits. To obtain n − 1 more such relations, we can do the
following.

– Use the same f , but use a different maxterm t.
– Use a different f , e.g. by using the second bit of the keystream.

With n linearly independent relations of the key bits, we can easily find them
via Gaussian elimination.

Hence, given access to such a function f , Cube Attack proceeds to find the
unknown vector x according to the following stages:

1. First: the preprocessing stage. This involves finding the coefficients of L for
n such L. Each L has n + 1 coefficients including the constant term; to find
them, we need to compute the sum (1) for n + 1 keys:
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x = 0, e0, e1, . . . , en−1,

where ei is the vector where the i-th component is 1 and the rest are 0. The
amount of work required is n(n + 1)2d−1 evaluations of f .
We also compute the inverse of the matrix of linear relations. This requires
n3 operations at most so the amount of work is upper-bounded by

n(n + 1)2d−1 + n3.

2. Second: the online stage. Now we apply a chosen-IV attack on the cipher.
Compute the sum (1) for n linear relations L. Each sum requires 2d−1 eval-
uations of f , so we need n2d−1 evaluations of f in all. Since we already have
the inverse of the L-matrix, we only need to perform matrix multiplication
which takes n2 operations. Hence, the amount of work is upper-bounded by

n2d−1 + n2.

Notice that the attack only assumes deg f ≤ d, and that we can evaluate f . No
knowledge of the coefficients of f is required.

Remark 1. For a given maxterm t, in the case where deg(t) < n − 1, we may
be able to derive multiple equations, since each maxterm gives an equation that
may have monomials containing terms in the IV as well as in the key. Hence, sub-
stituting in different values for the terms in the IV that are not in the maxterm
may produce different equations.

3 Cube Attack with Annihilators

In 2003, Courtois and Meier[5] observed that for some polynomials f , we can
find a low degree g such that h := fg is also of low degree. We shall apply this
observation to derive an enhanced version of the cube attack.

As before, let z = f(x,v) represent the first output bit, where x is the key
and v is the IV. Let g(x,v) be a polynomial such that:

– g(x,v) is of low degree e;
– h(x,v) := f(x,v)g(x,v) is of degree d ≤ deg(f) and d > e.

Our attack works as follows: suppose we pick the maxterm v0v1 · · · vd−e−1. Fix
the IV-bits vd−e, vd−e+1, · · · ∈ F2 and let C be the set of v which has these
values of vd−e, vd−e+1 . . . . Consider the sum:∑

v∈C

h(x,v) =
∑
v∈C

f(x,v)g(x,v).

By Theorem 1, on the left, we get a polynomial in x of degree at most d−(d−e) =
e. On the right, note that f(x,v) is known since it is a keystream bit, so we get
a polynomial of degree ≤ e. Now we can solve for the secret bits by applying a
range of techniques, such as linearization [4] or Gröbner basis techniques [7,8].
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We shall term this method Cube Attack with Annihilators1. Given the filter
function f , assume we have a low degree multiple g of degree e such that h = fg
has low degree d. There are many efficient algorithms in literature to find f and
g. See [1] and [11] for example. The attack proceeds as follows:

1. First, the preprocessing stage. We need to compute the polynomial

P (x) :=
∑
v∈C

h(x,v)

which is of degree ≤ e. Since this is a linear combination of
∑e

i=0

(
n
i

)
mono-

mials, we need to evaluate this sum
∑e

i=0

(
n
i

)
times (by pumping in different

x’s) to find the coefficients. This requires 2d−e
∑e

i=0

(
n
i

)
evaluations of h to

compute the coefficients of a single P . For linearization to work, we need∑e
i=0

(
n
i

)
such polynomials, so the total amount of operations is:

2d−e

(
e∑

i=0

(
n

i

))2

evaluations of h.
2. Second: the online phase. For each of the

∑e
i=0

(
n
i

)
maxterms, we must com-

pute
∑

v∈C f(x,v)g(x,v). The polynomial g(x,v), for a fixed v ∈ C has
typically

∑e
i=0

(
n
i

)
terms. Hence, the computation of the term f(x,v)g(x,v)

requires 2d−e
∑e

i=0

(
n
i

)
computations. For

∑e
i=0

(
n
i

)
such maxterms, we re-

quire 2d−e
(∑e

i=0

(
n
i

))2 computations. Finally linearization of∑
v∈C

f(x,v)g(x,v) =
∑
v∈C

h(x,v) = P (x)

gives a system of
∑e

i=0

(
n
i

)
linear equations which requires

(∑e
i=0

(
n
i

))3 op-
erations to solve. Hence, the total amount of operations is about:

2d−e

(
e∑

i=0

(
n

i

))2

+

(
e∑

i=0

(
n

i

))3

.

We note that both the basic cube attack and the cube attack with annihilators
are chosen IV resynchronization attacks. However, some of their differences are
as follows:

1. This variation of the cube attack requires us to compute h = fg for an
appropriate polynomial g. To find such a g, we most likely need to express
f in algebraic normal form.

2. Here, we cannot perform the matrix inversion during the preprocessing stage,
because the entries of the matrix depends on the keystream output.

1 We have used the term annihilators in naming our attack because from [1], the exis-
tence of low degree multiples is equivalent to the existence of low degree annihilators.
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3. Each polynomial evaluation (of g or h) requires
∑e

i=0

(
n
i

)
computations if

we express the polynomials in algebraic normal form.

In the next subsection, we shall provide a concrete example of this variant of
cube attack.

3.1 Application to the Toyocrypt Cipher with Re-synchronization

The main Toyocrypt cipher [15] comprises of a 128-bit MLFSR (modular linear
feedback shift register), filtered through a nonlinear function f of degree 63. This
f is given by:

f(s0, . . . , s127) =s127 +
62∑

i=0

sisαi + s10s23s32s42+

s1s2s9s12s18s20s23s25s26s28s33s38s41s42s51s53s59 +
62∏

i=0

si,

where αi, 0 ≤ i ≤ 62, is a permutation of the set {63, . . . , 125}. The output of
the filter function gives a keystream bit. Upon the next clocking, the MLFSR
clocks once and passes through the filter function to give the next keystream
bit. For simplicity of explanation, we can treat the MLFSR as a LFSR because
as shown in [15], there is a one-to-one linear transformation between the states
of the MLFSR and an LFSR.

In [3], Courtois described an algebraic attack on Toyocrypt. He observed that
f can be approximated by a degree-4 polynomial g by ignoring the two terms
of degree 17 and 63 respectively. The error rate in this approximation is given
by 2−17 which is good enough for practical purposes. Later, in [5], Courtois and
Meier found an even better attack by noting that the polynomials

f · (s23 + 1) and f · (s42 + 1)

are cubic since the variables s23 and s42 occur in all terms of f of degree at least 4.
The above observations will come in handy when we apply the two variants of

cube attack on Toyocrypt. We shall assume a simplified variant, where during
initialization, an n-bit key and m-bit IV are linearly mixed to fill up the LFSR.

Let us replace f with a quartic polynomial g as mentioned above. We may
then write the first bit of the keystream as a quartic polynomial in the key (xi)
and the IV (vj). In applying cube attack, we require a preprocessing work factor
of n3 + 8n(n + 1) and an online work factor of n2 + 8n.

The attack fails if f �= g for one of the evaluations. We may safely assume
that this does not occur during preprocessing (since checks can easily circumvent
that); hence, the probability of success is

(1 − 2−17)8n.

Even in the extreme case of n = 128, this is greater than 99%.
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Cube Attack with Annihilators: We can find a degree-1 polynomial g such
that fg = h is cubic. Hence the cube attack with annihilators requires only
23−1n2 = 4n2 evaluations of a linear function during the preprocessing stage.
During the online phase, the amount of work is 8n + n3.

A Comparison: In Table 1, we compare the above variants of the cube attack
(quartic approximation, low degree annihilators) with the basic cube attack on
the filter function of degree 63 and the algebraic attack of [6,14] using cubic
equations on the Toyocrypt cipher with n = 128. We see that our cube attack
variant has lower complexities and requires much fewer keystream bits.

Table 1. Comparison of Improved Variants of Cube Attack with the Basic Cube Attack
and Algebraic Attack on Toyocrypt with 128-bit State Function Linearly Initialized by
128-bit Key and IV

Fast Algebraic Basic Basic Cube Attack Cube Attack
Attack Cube Attack with Quartic with Annihilators
[6, 14] [12] Approximation (new)

Keystream Bits 218 262 × 128 23 × 128 22 × 128
Pre-Computation 230 276 221 216

Online Complexity 220 269 214 221

Note that the keystream bits for algebraic attack can be obtained from one keystream
while those of the other attacks have to be obtained across different keystreams from
re-synchronizations. E.g., in the 4th column, we need 22 × 128 = 29 keystream bits
from 4 re-synchronizations, each having 128 bits.

Implementation: We implemented both variants of the cube attack (quartic
approximation and low-degree annihilators). In both versions, the Toyocrypt
cipher can be broken in a few milliseconds on an ordinary PC. Although both
variants seem to have comparable pre-computation + online attack time from
Table 1, the cube attack with annihilators runs about twice as fast as the basic
cube attack using quartic approximation. It also has the slight advantage of
being 100% reliable and uses fewer re-synchronizations.

In a Nutshell: The example of Toyocrypt is used to illustrate our cube attack
variant. It demonstrates its effectiveness against ciphers in which multiplying f
with a low-degree polynomial g dramatically lowers its degree.

3.2 Sliding Window Cube Attack on Filter Function Taking Few
Inputs

Consider the case where our key is of size N and our filter function f takes only
n < N inputs from the state. Suppose we have the following two conditions:

– Linear initialization
– Linear feedback
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There is a known re-synchronization attack on such a cipher with complexity
�N/n�×2n, see [10, Section 3]. We shall describe an extension of the cube attack
with annihilators on this cipher where the complexity is generally better than
the re-synchronization attack of [10].

Because of the linear initialization, we can write the inputs from the state at
time t as lt(x,v), where lt is linear, and consider the filter function as a function
of the inputs (as opposed to the entire state). Now its output at time t is

zt = f(lt(x,v)) = f(yt + lt(0,v))

where yt = lt(x,0).
As before, suppose we have g and h of low degrees e and d respectively such

that fg = h and e < d ≤ deg(f). Let us write ft(yt,v) = f(yt + lt(0,v)), and
define gt and ht similarly. We can apply the cube attack with annihilators to
ftgt = ht to find yt for any t. We choose �N/n� values of t such that the corre-
sponding yt give us N linearly independent equations in the (xi), and solve for
the yt. We can then solve the N linear equations in (xi) by Gaussian elimination.

Suppose we have found low degree g and h such that h = fg. The attack
works as follows:

1. First: The preprocessing stage. We pick �N/n� values of t such that the yt

give us N linearly independent equations in the (xi). For each value of t, we
pick

∑e
i=0

(
n
i

)
maxterms. For a given maxterm, we denote C to be the cube

of 2d−e vectors which have all possible combinations of values for the terms
in the maxterm, and have all other terms fixed in some configuration.
For each maxterm, we compute

∑
C ht(yt,v) by finding the coefficient of ev-

ery yt-monomial, of which there are
∑e

i=0

(
n
i

)
, so ht gets evaluated

2d−e
∑e

i=0

(
n
i

)
times.

Hence the total complexity of this stage is

�N/n�2d−e
e∑

i=0

(
n

i

)
2. Second: The online phase. Each value of t has

∑e
i=0

(
n
i

)
corresponding max-

terms, and for each maxterm we can compute
∑

ft(yt,v)gt(yt,v) since
we know the keystream bits ft(yt,v). This is a polynomial in yt, and we
find the coefficient of every yt-monomial as before. This has complexity
2d−e

∑e
i=0

(
n
i

)
. We then equate it to

∑
ht(yt,v) to obtain an equation in yt

of degree at most e. Since there are
∑e

i=0

(
n
i

)
maxterms for each t, we get∑e

i=0

(
n
i

)
equations in yt of degree at most e, and we can solve for yt by

linearization. This has complexity (
∑e

i=0

(
n
i

)
)3.

After solving for all �N/n� of the yt, which are linear combinations of (xi),
we get N linear equations in (xi), and can then solve for x using Gaussian
elimination with complexity N3.
The total complexity of this stage is

�N/n�
(

2d−e
( e∑

i=0

(
n

i

))2
+
( e∑

i=0

(
n

i

))3
)

+ N3
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Remark 2. This argument also applies in the more general case where the filter
function can be written as a function of αt(x) and βt(v) where αt, βt are not
necessarily linear, and the αt are of degree at most c for some small c. In this
case, we need to solve for

(
n
c

)
of the αt(x), and then solve for x by linearization.

3.3 Applications of the Sliding Window Cube Attack

In this section, we give two examples of the sliding window cube attack on a
filter function generator where the filter function has size n = 128 and the key
has size N = 256 and 10000.

Example 1. Consider a filter function generator where a 256-bit key is linearly
mixed with a 256-bit IV to fill up a 256 bit LFSR. Let the filter function be a
Toyocrypt-like function defined by:

f(s0, . . . , s127) = s127 +
62∑

i=0

sisαi + s0s1s2 . . . s31 + s32s33s34 . . . s62,

where αi, 0 ≤ i ≤ 62, is a permutation of the set {63, . . . , 125}. This function
is balanced, has algebraic degree 32 and like the Toyocrypt filter function, near
optimal nonlinearity 2127−264 for protection against correlation attack. However,
it is easy to see that we can multiply it by (s0 + 1)(s32 + 1) to get a degree 4
equation. Thus e = 2 and d = 4.

1. The complexity of the sliding window cube attack from Section 3.2 on this
cipher is:

(256/128)×
(( 2∑

i=0

(
128
i

))2
× 24−2 +

( 2∑
i=0

(
128
i

))3
)

+ 2563 ≈ 240.03

and it needs
(∑2

i=0

(128
i

))× (256/128) ≈ 214.01 keystream bits from each of

24−2 = 4 re-synchronizations.
2. The complexity of the cube attack with annihilator from Section 3 on this

cipher is: ( 2∑
i=0

(
256
i

))2
× 24−2 +

( 2∑
i=0

(
256
i

))3
≈ 245.02

and it needs
(∑2

i=0

(256
i

)) ≈ 215.00 keystream bits from each of 24−2 = 4
re-synchronizations.

3. The complexity of the direct cube attack [12] on this cipher by taking the
filter function degree as 32 is:

2562 × 232−1 + 2563 ≈ 247.01

and it needs 256 keystream bits from each of 232−1 = 231 re-synchronizations.
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4. The complexity of the re-synchronization attack [10] on this cipher by taking
the filter function input size as 128 bits is

(256/128)× 2128 = 2129

and it needs (256/128)=2keystreambits fromeach of 128 re-synchronizations.
5. The complexity of the fast algebraic attack [6] on this cipher (where we

combine the pre-processing and online complexity) is:( 2∑
i=0

(
256
i

))( 4∑
i=0

(
256
i

))
+
( 2∑

i=0

(
256
i

))3

+
( 4∑

i=0

(
256
i

))
log
( 4∑

i=0

(
256
i

))
≈ 245.23

and it needs
∑2

i=0

(256
i

) ≈ 215.00 bits from one keystream.

Thus we see that the sliding window cube attack has better attack complexity
than the other attacks when applied to on this filter function generator. ��
When we increase the size of the LFSR as in the following example, we can see
that the cube attack with annihilator may even perform worse than the direct
cube attack [12] but the sliding window cube attack will still have better attack
complexities than the other attacks.

Example 2. Consider a filter function generator where we use the same filter func-
tion as that in Example 1 but increase the size of the key and IV to 10000 bits
and used that to initialize a 10000-bit LFSR. Then by replacing N = 256 with
N = 10000 in Example 1, we have the following complexity for the various attacks:

1. Sliding Window Cube Attack: Attack Complexity = 245.37 and it needs 219.32

keystream bits from each of 4 re-synchronizations.
2. Cube Attack with Annihilators: Attack Complexity = 276.73 and it needs

225.58 keystream bits from each of 4 re-synchronizations.
3. Direct Cube Attack. Attack Complexity=257.58 and it needs 213.29 keystream

bits from each of 231 re-synchronizations.
4. Resynchronization Attack. Attack Complexity = 2134.30 and it needs 26.30

keystream bits from each of 128 re-synchronizations.
5. Fast Algebraic Attack. Attack Complexity = 276.95 and it needs 225.58 bits

from one keystream.

Again, we see that the sliding window cube attack has better attack complexity
than the other attacks when applied to on this filter function generator. ��

4 Cube Attack on Vectorial Filter Function with Low
(x, v)-Degree

4.1 Applying the Cube Attack to Vectorial Filter Functions

We now consider the case where the state function (e.g. LFSR) is filtered by a
vectorial Boolean function F : Fn

2 → Fr
2, r > 1. In 2005, Canteaut [2] introduced
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a method for finding implicit equations of the form G(x,v, z) = 0 where z =
F (x,v) and G(x,v, z) has low (x,v)-degree and is of unrestricted degree in
the output variable z. Then this low degree equation can be solved by XL or
linearization methods to recover the secret key.

In a similar way, we can extend the cube attack with annihilators to vectorial
filter functions. Let a vectorial filter function be denoted by

z = F (x,v)

where x is the key of size n, v is the IV of size m, and z is a vector of multiple
output bits. We can find G(x,v, z) of low (x,v)-degree e such that H(x,v) :=
G(x,v, F (x,v)) also has low (x,v)-degree d, with e < d ≤ deg(F ). Proposition
1 in Section 4.2 ensures that we can always find such functions G(x,v, z) and
H(x,v).

We can apply an adaptation of the attack on 1-bit filter functions to G and
H . For a given maxterm, we denote C to be the cube of 2d−e vectors which
have all possible combinations of values for the terms in the maxterm, and have
all other terms fixed in some configuration. For each v ∈ C, z = F (x,v) is
known as it is a keystream bit, so by substituting these keystream bits into∑

C G(x,v, z) =
∑

C H(x,v), we get a polynomial of degree at most e. We do
this for

∑e
i=0

(
n
i

)
maxterms to find

∑e
i=0

(
n
i

)
polynomials of degree at most e,

and then solve for x by linearization.
The attack proceeds as follows:

1. First: the preprocessing stage. First, we pick
∑e

i=0

(
n
i

)
maxterms. For each

maxterm, we compute
∑

C H(x,v) by finding the coefficient of every x-
monomial, of which there are

∑e
i=0

(
n
i

)
, so H gets evaluated 2d−e

∑e
i=0

(
n
i

)
times.
The total complexity of this stage is

2d−e

(
e∑

i=0

(
n

i

))2

2. Second: the online phase. For each maxterm we can compute
∑

C G(x,v, z)
as a polynomial of x, since we have the keystream bits z. This has complexity
2d−e

∑e
i=0

(
n
i

)
. We equate this to

∑
H(x,v) to obtain an equation in x

of degree at most e. Since there are
∑e

i=0

(
n
i

)
maxterms, we get

∑e
i=0

(
n
i

)
equations in x of degree at most e, and we can solve for x by linearization.
This has complexity (

∑e
i=0

(
n
i

)
)3.

The total complexity of this stage is

2d−e

(
e∑

i=0

(
n

i

))2

+

(
e∑

i=0

(
n

i

))3

Remark 3. Given a stream cipher filtered by the vectorial function

z = (z1, . . . , zr) = F (x,v).
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A straightforward attack would be to apply the cube attack on a linear combina-
tion of output bits, which we denote by z =

∑
i∈I zi = f(x,v). If the attacker is

able to find a multiple f(x,v)g(x,v) of low degree d where zg(x,v) has low de-
gree e, the attack complexity can be much reduced as in the attack on Toyocrypt
in Section 3.1.

However, it is easy to see that low-degree equations f(x,v)g(x,v) and zg(x,v)
are special cases of the equation G(x,v, F (x,v)) of low (x,v)-degree d and
G(x,v, z) of low (x,v)-degree e, considered in Section 4. Therefore we expect
the vectorial cube attack in Section 4 to utilize lower degree equations than the
single-bit cube attack. This will translate into lower attack complexity when we
linearize and solve the resulting system of equations for the secret keys.

4.2 Existence of Low Degree Equations for Vectorial Cube Attack

In contrast with Canteaut’s method [2], we need not to have H(x,v) = 0 for all
x,v, so the condition that 2r

∑e
i=0

(
n+m

i

)
> 2n+m is not necessary. Instead, we

require a weaker condition stated as an existence result in Proposition 1 below.
The proposition also implies that finding low degree annihilators for vectorial
Boolean function case (r > 1) is no harder than the single output bit case (r = 1).

Proposition 1. (Existence of Low Degree Equations) Let a vectorial Boolean
function F : {0, 1}n × {0, 1}m → {0, 1}r be denoted by z = F (x,v) where x is
the key of size n, v is the IV of size m, and z is a vector of multiple output bits.
For 0 < e < d ≤ deg(F ), if

(2r − 1)
e∑

i=0

(
n + m

i

)
+

d∑
i=0

(
n + m

i

)
> 2n+m,

then there exists G(x,v, z) of (x,v)-degree e such that H(x,v) :=G(x,v, F (x,v))
is of degree d.

Proof. Construct a matrix M with each row indexed by a value of (x,v), there
are 2n+m rows. Let the columns range over all (x,v, z)-monomials with (x,v)-
degree at most e, z-degree unrestricted except that z = 0, as well as all the
(x,v)-monomials with degree at most d. The number of columns nC := (2r −
1)
∑e

i=0

(
n+m

i

)
+
∑d

i=0

(
n+m

i

)
.

Define the (i, j)-th entry of M to be the value of the monomial corresponding
to the j-th column evaluated with the value of (x,v) at the i-th row, with
z = F(x,v).

If nC > 2n+m, we can find a column vector y ∈ FnC
2 by Gaussian elimination

such that My = 0. Then for every value of (x,v), corresponding to row i, we
have ∑

j

yjMij = 0.

Namely, each solution for y corresponds to a linear combination of some of the
column index monomials, the sum of which evaluates to 0 for every value of
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(x,v). Let G be the sum of all (x,v, z)-monomials and H be the sum of all
(x,v)-monomials. The proof is done. ��
Remark 4. For a general single-bit output Boolean function, it may have alge-
braic immunity n/2, in which case, the best we can do is d = e = n/2 for the
annihilator cube attack. But for the vectorial case, as shown above, we always
get low degree equations when the existence condition holds and in many cases,
d and e are lower than n/2. Thus theoretically the vectorial cube attack is better
than the single-bit output cube attack with annihilator.

4.3 Results from Searching Implicit Low Degree Equations for
Vectorial Boolean Functions

We have implemented the algorithm in the proof of Proposition 1 for a few
well-known vectorial Boolean functions. Experimental results obtained seem to
be even better than the above stated theoretical bound, namely, even if the
condition for existence does not hold, as long as the number of columns exceeds
the number of non-zero rows in the Reduced Row Echelon Form (RREF) of the
matrix, we are still able to find low degree annihilators for F (x,v). The results
are presented in Appendix A.

The algorithm is of at least exponential space complexity to n + m. However,
it may provide a good motivation and starting point to find efficient algorithms
to search for such low degree implicit equations for vectorial cube attack.

5 Conclusion

We have proposed several variants of the cube attack, which makes use of low
degree equations. First, the cube attack with annihilators combines the low de-
gree multiples used in algebraic attack with cube attack. The complexity of this
combined attack is better than just a direct application of the cube attack or
the algebraic attack by itself. This is demonstrated in the attack on Toyocrypt
where the attack complexities are lower and the keystream needed is greatly
reduced as shown in Table 1.

Second, when the size of the filter function is smaller than the LFSR, we pro-
posed the sliding window cube attack with annihilators. As shown in Examples
1 and 2, it has better complexity than the cube attack with annihilators and the
related resynchronization attack of Daemen et. al. [10].

Finally, the vectorial cube attack works on multi-output stream ciphers and
it combines the cube attack with a new form of low degree implicit equations.
The existence of such equations can be ensured by the rank computation of
certain “monomial” matrices. Because the upper bound of the degree of the
implicit equations in the vectorial cube attack is less than that of the degree
of annihilators in the single-bit case, we see that theoretically, the vectorial
cube attack has better attack complexity than applying the cube attack with
annihilators to single-bit output of the vectorial function. We also did some
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experiments to find low degree implicit equations for the vectorial cube attack
and got some results which are better than that expected by theory. These
findings may serve as a motivation to find an efficient algorithm to find the low
degree vectorial equations G(x,v, F (x,v)) and G(x,v, z) for the vectorial cube
attack of Section 4.
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Appendix

A Implicit Low Degree Equations for Vectorial Boolean
Functions

Let a configuration be (n + m, r, e, d), we restrict the output of F (x,v) to the
first r bits. Let nR be the number of rows in the matrix M , nC the number
of columns, nRREF be the row rank of M , namely, the number of non-zero
rows when M is reduced to the reduced row echelon form (RREF). Let nS be
the number of low degree equations obtained. When working in GF (2n), the
irreducible polynomial is denoted m(x).

Table 2. F : {0, 1}8 → {0, 1}8, F is the S-Box of AES

n + m r e d nR nC nRREF nS

8 2 1 2 28 64 64 0
8 2 1 3 28 120 120 0
8 2 1 4 28 190 190 0
8 2 2 3 28 204 203 1
8 2 2 4 28 274 248 26
8 2 3 4 28 442 256 186
8 3 1 2 28 100 100 0
8 3 1 3 28 156 156 0
8 3 1 4 28 226 224 2
8 3 2 3 28 352 256 96
8 3 2 4 28 422 256 166
8 3 2 4 28 422 256 166
8 3 3 4 28 814 256 558
8 4 1 2 28 172 172 0
8 4 1 3 28 228 225 3
8 4 1 4 28 298 256 42
8 4 2 3 28 648 256 392
8 4 2 4 28 718 256 462
8 4 3 4 28 1558 256 1295
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Table 3. F : GF (29) → GF (29), the inverse function, m(x) = x9 + x4 + 1

n + m r e d nR nC nRREF nS

9 2 1 2 29 76 76 0
9 2 1 3 29 160 160 0
9 2 1 4 29 286 286 0
9 2 2 3 29 268 268 0
9 2 2 4 29 394 384 10
9 2 3 4 29 646 511 135
9 3 1 2 29 116 116 0
9 3 1 3 29 200 200 0
9 3 1 4 29 326 326 0
9 3 2 3 29 452 441 11
9 3 2 4 29 578 510 68
9 3 3 4 29 1166 512 654
9 4 1 2 29 196 196 0
9 4 1 3 29 280 280 0
9 4 1 4 29 406 403 3
9 4 2 3 29 820 512 308
9 4 2 4 29 946 512 434
9 4 3 4 29 2206 512 1694

Table 4. F : GF (210) → GF (210), the inverse function, m(x) = x10 + x3 + 1

n + m r e d nR nC nRREF nS

10 2 1 2 210 89 89 0
10 2 1 3 210 209 209 0
10 2 1 4 210 419 419 0
10 2 2 3 210 344 344 0
10 2 2 4 210 554 554 0
10 2 3 4 210 914 873 41
10 3 1 2 210 133 133 0
10 3 1 3 210 253 253 0
10 3 1 4 210 463 463 0
10 3 2 3 210 568 568 0
10 3 2 4 210 778 751 27
10 3 3 4 210 1618 1024 594
10 4 1 2 210 221 221 0
10 4 1 3 210 341 341 0
10 4 1 4 210 551 551 0
10 4 2 3 210 1016 993 23
10 4 2 4 210 1226 1024 202
10 4 3 4 210 3026 1024 2002
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Abstract. The XSL attack when applied on BES-128 has been shown
to have an attack complexity of 2100, which is faster than exhaustive
search. However at FSE 2007, Lim and Khoo analyzed the eprint XSL
attack on BES and showed that the attack complexity should be 2401.
Later at IEEE-YCS 2008, Qu and Liu counter-proposed that the compact
XSL attack on BES-128 works and has complexity 297. In this paper, we
point out some errors in the attack of Qu and Liu. We also show that the
complexity of the compact XSL attack on BES-128 is at least 2209.15. At
Indocrypt 2007, Ji and Hu claimed that the eprint XSL attack on ESMS4
has complexity 277. By the same method we used to analyze BES, we
also show that the complexity of compact XSL attack on ESMS4 is at
least 2216.58 . Our analysis adapts the approach of Lim and Khoo to the
compact XSL attack, and improves on it by considering the T ′ method
that grows the number of equations.

Keywords: Compact XSL Attack, BES, ESMS4.

1 Introduction

The eXtended Sparse Linearization method [3], introduced in 2002 by Courtois
and Pieprzyk, is a refinement of the XL algorithm and is supposed to work on
special types of ciphers such as AES. One main improvement is to take advantage
of the sparseness of the multivariate quadratic system of the cipher: the equations
should only be multiplied by “carefully selected monomials” so as to generate a
new system where there are more equations than monomials. This will allow the
new equations to be solved via linearization [3].

There are different versions of the XSL algorithm. The eprint version was
described in [3] and a compact version was introduced in [4]. For both versions,
there are two types of attacks. In the first XSL attack, the key schedule equations
are not considered but more plaintext-ciphertext pairs are required. The second
XSL attack includes the key schedule equations and uses less plaintext-ciphertext
pairs, but is more specific as the key schedule needs to have a similar structure
to the encryption. We shall focus on the second XSL attack as its complexity is
much better than the first XSL attack.

Although the complexities of both the eprint and compact XSL attacks on
AES (the Advanced Encryption Standard by NIST) are worse than or close

J.A. Garay, A. Miyaji, and A. Otsuka (Eds.): CANS 2009, LNCS 5888, pp. 103–118, 2009.
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to that of exhaustive search, the breakthrough of the XSL attack is that the
complexity is polynomial in the number of rounds, unlike traditional block cipher
attacks whose complexities are exponential in the number of rounds.

At Crypto 2002, Murphy and Robshaw [7] showed that we can embed AES into
a big encryption system (BES) where all operations are done over GF (28). The
advantage of this embedding is that the multivariate quadratic system becomes
even more sparse. This results in a tremendous improvement in the attack com-
plexity which makes the XSL attack not just a theoretically interesting attack, but
also a plausible one. When the eprint XSL attack is applied on BES, the complex-
ity is only 2100 (or 287 if we take the complexity of solving N linear equations to
be N2.376 [3]). However, it was shown by Lim and Khoo [6], through an alterna-
tive analysis of the equations of the XSL attack, that the actual complexity of the
eprint XSL attack on BES should be 2401. Therefore, they conclude that BES (and
thus AES) is still secure against the eprint XSL attack.

In a later paper, Qu and Liu claimed that the BES cipher can be efficiently
cryptanalyzed by the compact XSL attack with complexity 297 [9]. They tried
to improve on the compact XSL attack by introducing a new concept of using
S′-boxes where they only consider the conjugacy relations for most of the S-
boxes in the key schedule. However, we show in Section 3.3 that this process will
disregard many inversion relations and introduce too many free variables for the
system of equations to be solvable. We also explain that some of the observations
on [6] made by the authors of [9] are erroneous.

In Section 3.4, we shall give an analysis of the compact XSL attack on BES
based on the corrected attack of [9], where S′-boxes are disallowed. It can be seen
that this corrected attack reduces to an application of the compact XSL attack [4]
on BES. By adapting the analysis of the eprint XSL attack on BES in [6] to the
compact XSL attack, we show that the actual complexity of compact XSL attack
on BES is at least 2209.15. Moreover, we also improved the approach of [6] by taking
into account the T ′ method. Thus BES-128 is still secure against the compact XSL
attack. Furthermore, we also show that the actual complexities of the compact
XSL attack on BES-192 and BES-256 are 2231.50 and 2267.21 respectively.

In [5], Ji and Hu used the method of [7] to embed the SMS4 cipher (the
Chinese National Encryption Standard) in GF (28). They called the embedded
cipher the ESMS4 cipher. They applied the eprint second XSL attack on ESMS4
and found the attack complexity to be 277. We shall analyze the compact XSL
attack on ESMS4 with a method similar to our analysis of BES and show that
the attack complexity is at least 2216.58. Therefore ESMS4 is also secure against
the compact XSL attack.

2 Preliminaries

2.1 Embedding Block Ciphers in GF (28)

One difficulty in the cryptanalysis of AES is the tension between the operations
in two different fields, GF (2) and GF (28). The S-box inversion is defined over
GF (28) whereas diffusion is defined over GF (2). To address this issue, Robshaw
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and Murphy introduced the Big Encryption System (BES) embedding for the
AES cipher [7] at Crypto 2002. In this embedding, all operations are performed
over the finite field GF (28) and this allows for easier analysis of structural fea-
tures of the cipher. Since the algebraic structure of SMS4 is similar to that of
AES, we can also embed SMS4 in a larger cipher, ESMS4 which is an Extension
of SMS4 [5], to achieve the same aim.

Let F denote the field GF (28). The main idea is to represent each byte a ∈ F
by a set of 8-byte vector conjugates in F8 with the use of a vector conjugate
mapping φ from F to a subset of F8 as follows:

φ(a) = (a20
, a21

, a22
, a23

, a24
, a25

, a26
, a27

).

This definition extends naturally to a vector conjugate mapping φ from Fn to a
subset of F8n where a = (a0, . . . , an−1) ∈ Fn is mapped to

ã = φ(a) = (φ(a0), . . . , φ(an−1)).

Both the block cipher and its embedded system use a state vector of bytes,
which is transformed by basic operations within a round. In both cases, the
plaintext is the input state vector and the ciphertext is the output state vector.
Denote the state spaces of the block cipher and its embedded system by A and
B respectively. For AES, A = F16 and B = F128 while for SMS4, A = F4

and B = F32. Since φ is additive and preserves inversion, any state vector in the
vector space A can be embedded in the vector space B with the vector conjugate
map φ.

As described in detail in [7] and [5], all AES and SMS4 operations can be
replicated by simple operations on the conjugates. In particular, all GF (2)-linear
transformations can be extended to GF (28) operations by virtue of the following
result which is a direct consequence of dimension counting over GF (2).

Lemma 1. Consider the finite field K = GF (28). Then any GF (2)-affine map
K → K can be written in the form:

f(x) = c + a0x + a1x
2 + · · ·+ an−1x

2n−1
,

for some constants c, a0, a1, . . . , an−1 ∈ K.

In essence, the encryption of AES and SMS4 can now be described exclusively in
terms of GF (28) operations. The advantage of this rewriting lies in the simplicity
of the S-box equation: by first conveniently ignoring the case when x = y = 0,
we have xy = 1 immediately instead of 8 quadratic equations in the input and
output bits. Furthermore, in introducing the conjugates to the S-boxes, we have
to express their relationship as xi+1 = x2

i , where the subscript is taken from
Z/8Z (the integers modulo 8). If we denote the input and output variables by
x0, x1, . . . , x7 ∈ F and y0, y1, . . . , y7 ∈ F respectively, then

x0y0 = 1, x1y1 = 1, x2y2 = 1, . . . , x7y7 = 1,

x2
0 = x1, x2

1 = x2, x2
2 = x3, . . . , x2

7 = x0,

y2
0 = y1, y2

1 = y2, y2
2 = y3, . . . , y2

7 = y0.
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Hence, this gives 24 equations for each S-box. Observe that the number of mono-
mials is substantially reduced to 41 for both BES and ESMS4. These monomials
are 1, xi, yi, x

2
i , y

2
i , xiyi for 0 ≤ i ≤ 7.

To conclude this section, we make the following definition which will be used
in the subsequent sections.

Definition 1. [6] Let xi be an input variable of an S-box and yi be the corre-
sponding output variable such that xiyi = 1. We shall say xi and yi are dual to
each other.

3 Analysis of the Compact XSL Attack on BES from [9]

This section is structured as follows:

(1) In Section 3.1, we start by describing the compact XSL attack on BES from
[9].

(2) In Section 3.2, we describe the analysis of the eprint XSL attack on BES
from [6]. Later, the techniques of [6] shall be modified and adapted to our
analysis of the attack of [9].

(3) In Section 3.3, we point out and correct some errorneous assumptions made
by the authors of [9] in their compact XSL attack on BES. These corrected
assumptions will be used in our anaysis of the attack of [9]. We also correct
some errorneous observations made by the authors of [9] on the analysis of
[6].

(4) Finally in Section 3.4, we present our analysis of the attack from [9].

3.1 Description of the Attack of [9]

In [9], the authors presented an analysis of the compact XSL attack applied to
the BES with the key schedule involved. They distinguished between two differ-
ent types of S-boxes: one used both inversion and conjugacy relations (regular
S-boxes); the other used purely conjugacy relations (S′-boxes). With their ap-
proach, they claimed to obtain a complexity estimate of 297 for BES-128. In this
section, we describe their strategy. We shall adopt their notation:

Nr: number of encryption rounds;
Na, Nb: number of rows and columns in the encryption state;
Nk: number of columns in the cipher key state;
wnijl , xnijl: input and output of the S-box inversion in the encryption state

in round n for
component in column i, row j and conjugate l, with 1 ≤ n ≤ Nr,

0 ≤ i < Nb, 0 ≤ j < Na,
0 ≤ l < 8;

knijl: round key used in round n for component in column i, row j, and
conjugate l, with

1 ≤ n ≤ Nr, 0 ≤ i < Nb, 0 ≤ j < Na, 0 ≤ l < 8;
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sn3jl: S-box inversion of the subkey kn3jl which goes through an S-box during
the key schedule;

S: number of regular S-boxes;
s: number of bits on an S-box;
r: number of equations in a regular S-box;
t: number of monomials in the regular S-box equations;
t′: number of terms in the basis for one regular S-box that can be multiplied

by some fixed variable
in the same S-box and still belong to the basis;

S′: number of S′-boxes in the key schedule;
rk: number of equations in an S′-box;
tk: number of monomials in the S′-box equations;
T : total number of monomials in the system;
T ′: total number of monomials in the system which can be multiplied by a

fixed variable in some
regular S-box and still remain in the same set of T system monomials.

R: total number of equations in the system;
R′: number of linear equations in the BES cipher.

S-box Inversion Equations. All variables wnijl, xnijl, knijl, and sn3jl are ele-
ments in GF (28). By introducing the vector conjugate mapping to the S-boxes,
we have r = 24 equations for each inverse S-box:

wnijlxnijl = 1, w2
nijl = wnij(l+1), x

2
nijl = xnij(l+1)

with t = 41 terms:

{1, wnijlxnijl, w
2
nijl , x

2
nijl, wnijl, xnijl}.

Subscript addition is computed modulo 8 and the case where w = 0 is disre-
garded. A natural basis of t − r = 17 elements {1, wnijl, xnijl} of each S-box is
chosen and we get t′ = 51.

Key Schedule S and S′-boxes Equations. Next, consider the key schedule
equations. Using the 1280 key schedule linear equations, the authors express all
round key variables knijl as a linear combination of key basis elements defined
as follows:

Key Basis Elements =
{Initial cipher key variables k0ijl} ∪ {key schedule S-box output bits sn3jl}.

Based on this approach, they reduced the number of S-box equations and mono-
mials used, thereby reducing the size of the expanded equation system in the
compact XSL attack. The details involving the key schedule quadratic equations
used in their attack are outlined below:
1 In [9], the value of t′ was stated to be 4. However, we have verified that this is

incorrect and that in fact, t′ = 5. For example, for the variable wnij0, the terms
involved in t′ are {1, wnij0, xnij0, xnij1, xnij7}.
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(1) Out of the 40 S-boxes in the key schedule, the 4 S-boxes corresponding to
the last column of the cipher key should be included in the regular S-box set
since both their input k03jl and output s03jl are in the key basis;

(2) The rest of the cipher key variables k00jl, k01jl, k02jl do not pass through any
S-box. Furthermore, none of the the remaining key basis variables sn3jl’s
input counterparts are included in the basis. Therefore, the authors ignored
the inversion equations in the remaining 36 S-boxes of the key schedule.
Then, the only relevant equations are:

k2
0ijl = k0ij(l+1)

and
s2

n3jl = sn3j(l+1), 1 ≤ n ≤ Nr − 1.

In the above equations, the authors define each conjugate set (consisting
of 8 conjugate equations) as an S′-box, and treat them in a similar way as
S-boxes. There are 48 conjugate sets arising from the remaining 40− 4 = 36
S-boxes and 16−4 = 12 bytes of cipher key (the authors exclude the 8 bytes
k03jl and s03jl from the conjugate sets because they are the input/output of
a regular S-box).

In light of the preceeding argument, they used rk = 8, tk = 16 for each S′-box,
and the sets {k0ijl} and {sn3jl} (1 ≤ n ≤ Nr − 1) are chosen as the basis of the
S′-boxes. In total, there will be 164 S-boxes and 48 S′-boxes that will be utilized
in the attack.

Cipher Linear Layer Equations. The linear diffusion layer consists of matrix
multiplication by a 128× 128 matrix in GF (28), giving 128 linear equations in
each round of the form

w(n+1)ijl +
∑
ijl

dnijl · xnijl + [knijl], 1 ≤ n ≤ Nr.

Adding in 128 more linear equations w1ijl + pijl + k0ijl generated by the initial
AddRoundKey (where pijl is the plaintext), there is a total of R′ = 1408 cipher
linear equations. Here, each [knijl] is knijl expressed as a linear combination of
terms that are in the basis of the relevant key schedule S and S′-boxes.

Multiplying Linear Layer Equations. After deriving all the S, S′-boxes and
cipher linear equations, choose a parameter P , where P needs to satisfy certain
conditions to be explained later. Multiply each of the cipher linear equations by
the product of (P − 1) monomials from the bases of different S and S′-boxes.
Use the quadratic relations such as x2

nijl = xnij(l+1) to simplify the resulting
equations where possible. Following this step, the authors got

R ≈ R′
P−1∑
i=0

(t− r)i

(
S

i

)
(tk − rk)P−1−i

(
S′

P − 1− i

)
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(not all linearly independent) equations. The total number of terms used in the
attack is approximately

T ≈
P∑

i=0

(t− r)i

(
S

i

)
(tk − rk)P−i

(
S′

P − i

)
.

The T ′ Method. If the number of equations R is more than the number of
terms T , then it would be possible to solve for the key via linearization, i.e. treat
each monomial as an independent variable and solve by Gaussian elimination.
If not, use the T ′ method described in [3,4] to obtain new linearly independent
equations without creating any new monomials. In their attack, T ′ is about

T ′ ≈ t′
P−1∑
i=0

(t− r)i

(
S − 1

i

)
(tk − rk)P−1−i

(
S′

P − 1− i

)
.

In order to implement the T ′ method, P needs to be chosen such that R > T−T ′,
i.e. so that there are more equations than terms to apply the linearization attack.

Summary. The compact XSL attack presented in [9] is as follows:

(1) Obtain the set of S and S′-box equations.
(2) Define the basis for each S and S′-box.
(3) Express the terms in each cipher linear layer equation as a linear combination

of terms from the bases of S and S′-boxes.
(4) For each linear equation, multiply it by a product of (P −1) monomials from

the bases of different S and S′-boxes.
(5) Use the S and S′-box equations to simplify the monomials in the resulting

system.
(6) Apply the T ′ method and solve for the key via linearization attack.

Results for BES-128. For BES-128, the condition that R > T −T ′ is satisfied
when P ≥ 3. Then taking the Gaussian reduction exponent to be 3, Qu and
Liu [9] obtained the result that the complexity of the XSL attack on BES-128 is
WF ≈ 297.

3.2 Description of the Analysis on the ePrint XSL Attack on BES
from [6]

Lim and Khoo argued in [6] that for the smallest value of P such that the sys-
tem of equations can be solved, the complexity of the attack is 2401 for BES-128.
Their attack was based on non-compact eprint XSL attack published in [3] using
key schedule relations. We highlight here that all the S-boxes considered in [6]
are regular S-boxes having 16 input and output variables. We employ the fol-
lowing notation:
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Stotal: number of regular S-boxes in the cipher and key schedule;
L: number of linear equations in the cipher and key schedule.

The (eprint non-compact) XSL attack can be summarized as follows:

(1) Pick P distinct S-boxes and choose one of them to be active. The rest
are called passive S-boxes. From the active S-box, choose one equation and
multiply it by a product of monomials from each of the P−1 passive S-boxes.
The resulting equation is called an extended S-box equation. The set of
all extended S-box equations is denoted by ΣS. Each monomial occuring in
the equations of ΣS is called an extended S-box monomial.

(2) Pick a linear equation and choose P −1 distinct S-boxes. Multiply the linear
equation by a product of monomials from each of the P − 1 S-boxes. The
resulting equation is called an extended linear equation and the set of
all extended linear equations is denoted by ΣL.

(3) Solve the system of equations ΣS ∪ΣL via linearisation.
(4) If there are insufficient equations for a complete solution, apply the T ′

method to grow the number of linearly independent equations.

Definition 2. Let α = α1α2 . . . αQ be an extended S-box monomial, where each
αi is a variable belonging to some S-box. Then α is defined to be reduced if no
two variables belong to the same S-box. The set of reduced S-box monomials of
degree Q is denoted by ΦQ.

Due to the peculiarity of each S-box equation which is always an equation of
two monomials, we can get the following result:

Fact 1. [6, Theorem 1] Every extended S-box monomial α is equivalent to a
unique reduced monomial β.

Therefore, upon solving the extended S-box equations, the linearly independent
terms are exactly Φ0∪Φ1∪ . . . ΦP . The upshot of the preceding argument is that
the XSL method can be summarized as follows:

(1) Obtain the set ΣS of extended S-box equations.
(2) For each linear equation, multiply it by a reduced monomial from Φ0 ∪ Φ1 ∪

. . . ∪ ΦP−1 and obtain the set Σ′
L of extended linear equations.

(3) Solve ΣS ∪Σ′
L together via linearisation.

The authors then considered the hypothetical situation where we only do steps 2
and 3 (i.e. ΣS = ∅). This is equivalent to removing the S-boxes, giving 8Stotal free
variables taken to be the input variables of the S-boxes. Therefore, the number of
linearly independent terms is at least the number of reduced monomials formed
by these free variables. This is given by

D1 =
P∑

i=0

(
Stotal

i

)
8i.
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We are then faced with the question of whether step 1 provides sufficiently many
equations to remove this number of linearly independent terms. The sole purpose
of the set ΣS is to substitute each monomial in Σ′

L with a corresponding reduced
one. Hence, they obtained the following result:

Fact 2. [6, Theorem 2] When solving Σ′
L with the extended S-box equations, the

only useful extended S-box equations are of the form

(v)(m1) = m2,

where:

(1) m1, m2 ∈ Φ0 ∪ Φ1 . . . ΦP−1;
(2) v is an S-box variable such that it or its dual occurs in m1;
(3) the remaining variables in m1 are among the 8Stotal free (input) variables.

An extended S-box equation is relevant if it is of the form stated in Fact 2. The
number of such equations is given by

D2 = 24Stotal ×
P−2∑
i=0

(
Stotal − 1

i

)
8i.

So in order to solve the system of equations ΣS∪Σ′
L, we must have D2 ≥ D1 and

this imposes a condition on P . Note that in [6], the authors left the T ′ method
out of their discussion on the basis that it can only be applied if the original
number of equations is already very close to being sufficient.

3.3 Corrections on Some Claims in [9]

Before embarking on our analysis of the compact XSL attack on BES, we first
clarify several major erroneous claims made in [9].

Qu and Liu eliminated many S-box inversion equations in the key schedule and
replaced them with S′-boxes using only conjugacy relations. This was based on
the reasoning that all the subkey bits can be expressed as a linear combination
of a reduced set of subkey bits. However, this step will introduce many free
variables sn3jl (1 ≤ n ≤ Nr−1) and therefore, should be disallowed. This means
that we need to take all the S-box inversion and conjugacy relations into account
in both the cipher and key schedule, as in the traditional approach. Thus, in the
next section, we shall leave out the discussion of the S′-boxes. Consequently, all
the cipher and key schedule linear equations should be explicitly involved in the
multiplication by monomials.

In [9], it was stated that the authors of [6] excluded the key schedule from
their analysis. However, this is incorrect since in Section 2.1 of [6], variables such
as Stotal and L are specifically defined to take the key schedule into account.
Stotal and L are defined to be the number of S-boxes and linear equations in
the cipher and key schedule. Consequently, all subsequent calculations take key
schedule variables and equations into consideration.
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It was also claimed that Lim and Khoo presented their analysis of the attack
over GF (2), which is untrue since their paper focuses on XSL attack on BES
which is over GF (28).

Furthermore, it was claimed in [9] that the compact XSL attack is more
efficient than the eprint XSL attack (both involving the key schedule). However
contrary to their claim, the complexity of the second XSL attack on AES-128
was estimated to be 2298 in Courtois and Pieprzyk’s compact XSL paper [4,
Section 7.1], while the complexity in their eprint XSL attack paper [3, Section
8.1] is only 2230.

3.4 An Analysis of the Compact XSL Attack in [9]

As explained in the previous section, we shall leave out the discussion of S′-boxes,
that is, all the S-boxes involved are regular ones. Comparing the descriptions in
Sections 3.1 and 3.2, we can easily spot the parallel between the two approaches
due to the simple form of the S-box equations in BES:

(1) Multiplying Linear Layer Equations:
– In the analysis of [6], each of the linear equations are multiplied by

a reduced monomial comprising of a product of variables from P − 1
distinct S-boxes.

– In compact XSL attack, each of the linear equations are multiplied by a
product of (P −1) monomials from the basis of different S boxes in both
the cipher and key schedule. For each S-box, the set with 17 elements,
comprising 1, the input and output components of the S-box inversion,
is chosen as the basis.

– From this, we can see that the product of monomials in compact XSL
attack is, in actual fact, a reduced monomial.

(2) Solving the System:
– In the analysis of [6], the set ΣS of extended S-box equations are used

to substitute each monomial in Σ′
L with a corresponding reduced one.

– In compact XSL attack, the S-box quadratic equations are used to sim-
plify the resulting post-multiplication equations.

– Since each S-box is simply an equality of one monomial with another,
these two steps are equivalent.

Based on this correspondence, we can easily apply the arguments in Section
3.2 to the compact XSL attack on BES. However, we also note the following
difference between the two attacks in Sections 3.1 and 3.2:

(1) T ′ Method:
– In the analysis of [6], the T ′ method was not considered.
– In compact XSL attack of [9], the authors used the T ′ method.
– To make our analysis more complete, we shall include the T ′ method as

applied to the compact XSL attack in the discussion that follows.
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As in Section 3.2,

D1 =
P∑

i=0

(
Stotal

i

)
8i

and

D2 = 24Stotal ×
P−2∑
i=0

(
Stotal − 1

i

)
8i.

(Recall that Stotal is the number of regular S-boxes in the cipher and key sched-
ule.)

The T ′ Method in our Analysis. The T ′ method in [3,4] works as follows:
Suppose we have R equations in T monomials of degree at most d. Choose a
subset of monomials T′ such that when we multiply them by the variable xi,
the resulting monomial still belongs to the original set of T monomials. By a
single Gaussian elimination, we express each monomial not in T′ in terms of the
monomials in T′. If R > T − T ′ (where T ′ is the size of T′), there will be some
equations which only consists of the monomials of the set T′. When we multiply
these equations by the variable xi, we obtain extra equations without growing the
number of monomials. We apply the T ′ method to the same system of equations
several times with respect to distinct variables x1, x2, . . .. Then we express the
extra equations of one system in terms of the T ′ monomials of another to obtain
even more equations. In this way, we can grow the number of equations from R
to T whenever R > T − T ′. An illustrative example of the T ′ method can be
found in [3, Appendix E] or [4, Appendix B].

Now suppose an adversary has found a P such that R > T − T ′ in the
compact XSL attack on BES. Then he can grow another T − R equations by
the T ′ method to make the total number of equations T . If we partially solve
the original R equations, we have shown that there would be at least D1 −D2
unsolved monomials, i.e. D1−D2 degrees of freedom. Assuming each of the T−R
extra equations were able to help solve for another monomial, i.e. decrease a
degree of freedom, we would need D1 −D2 ≤ T −R. Since T −R < T ′, we see
that D1 − D2 < T ′ is a necessary condition for the system of equations to be
solved by linearization.

As pointed out in Section 3.3, the formulas of Section 3.1 obtained from the
concept of S′-boxes are errorneous. The corrected formulas should be:

R ≈ R′(t− r)P−1
(

Stotal

P − 1

)
,

T ≈ (t− r)P

(
Stotal

P

)
,

T ′ ≈ t′(t− r)P−1
(

Stotal − 1
P − 1

)
.

Note that now, unlike in Section 3.1, these expressions for R, T and T ′ no longer
consider S′-boxes.
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Table 1. D1, D2 and T ′ values corresponding to various P for compact XSL attack
on BES

P BES-128 BES-192 BES-256
2 D1 1.288 × 106 5.554 × 106 8.020 × 106

D2 4.824 × 103 1.001 × 104 1.202 × 104

D1 − D2 1.283 × 106 5.544 × 106 8.008 × 106

T ′ 1.700 × 104 3.536 × 104 4.250 × 104

3 D1 6.839 × 108 6.149 × 109 1.067 × 1010

D2 7.723 × 106 3.332 × 107 4.811 × 107

D1 − D2 6.762 × 108 6.115 × 109 1.063 × 1010

T ′ 2.876 × 107 1.247 × 108 1.803 × 108

...
...

...
...

...
6 D1 2.235 × 1016 1.850 × 1018 5.596 × 1018

D2 1.281 × 1015 5.048 × 1016 1.269 × 1017

D1 − D2 2.107 × 1016 1.799 × 1018 5.469 × 1018

T ′ 1.800 × 1016 7.195 × 1017 1.812 × 1018

7 D1 4.985 × 1018 8.691 × 1020 3.166 × 1021

D2 4.021 × 1017 3.329 × 1019 1.007 × 1020

D1 − D2 4.583 × 1018 8.359 × 1020 3.066 × 1021

T ′ 9.946 × 1018 8.378 × 1020 2.541 × 1021

8 D1 1.565 × 1024

D2 6.647 × 1022

D1 − D2 1.498 × 1024

T ′ 3.049 × 1024

We see in Table 1 the minimum values of P required to satisfy the condition
D1 −D2 < T ′ are P = 7 for BES-128, BES-192 and P = 8 for BES-256. This
will translate to an attack complexity of at least:

WF = T 3 ≈ (9.710× 1020)3 ≈ 2209.15 for BES-128;
WF = T 3 ≈ (1.697× 1023)3 ≈ 2231.50 for BES-192;
WF = T 3 ≈ (6.492× 1026)3 ≈ 2267.21 for BES-256.

This shows that the compact XSL attack is worse than exhaustive search for
BES-128, 192 and 256. Furthermore, we have to keep in mind that this is just
a lower bound on the attack complexity because we have assumed that each
‘extra’ equation generated by the T ′ method can solve for a remaining unsolved
monomial of the original R equations. Therefore, the complexity estimate in [9]
is far too optimistic.

It is easy to see that the corrected formulas used in our analysis are exactly
those of the compact XSL attack in [4]. Thus we have essentially shown that
the compact XSL attack of [4] when applied to BES-128, 192 and 256 does not
work.

Remark 1. We used T in the calculation of the complexity of the attack, unlike
in [6] where D1 was used instead. Since D1 is a lower bound for the number of
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linearly independent terms, either term would be applicable to our analysis of
the attack.

Remark 2. Note that we have assumed that the complexity to solve N linear
equations by Gaussian elimination is N3 so that it is a fair comparison with the
complexity 297 claimed in [9]. If we assume the Gaussian elimination complexity
to be N2.376, then the attack complexity for BES-128 will be 2143 which is still
worse than exhaustive search.

4 Analysis of the Compact XSL Attack on ESMS4

Following the notation used in [5], let (X0, X1, X2, X3) ∈ (F32)4 be the input
plaintext block of ESMS4 and the corresponding ciphertext be (X32, X33, X34,
X35) ∈ (F32)4. For rounds i = 1, · · · , 32,

Wi,(j,m): the (8j + m)-th component of the input of the affine transformation
in the S-box;

Vi,(j,m): the (8j + m)-th component of the input variables of the inversion
transformation;

Yi,(j,m): the (8j + m)-th component of the output variables of the inversion
transformation;

Zi,(j,m): the (8j + m)-th component of the output variables of the linear dif-
fusion transformation;

Ki,(j,m): the (8j + m)-th component of the round key,
where j = 0, · · · , 3 and m = 0, · · · , 7.

According to [5], the probability of 0-inverse occurring is only O(2−10). Based on
this assumption, the encryption of ESMS4 can be fully described by the following
system:

0 = Xi,(j,m) + Xi+1,(j,m) + Xi+2,(j,m) + Ki,(j,m) + Wi,(j,m)

0 = C(j,m) + Vi,(j,m) +
∑

(j′,m′)

α(j,m),(j′,m′)Wi,(j′,m′)

0 = D(j,m) + Zi,(j,m) +
∑

(j′,m′)

β(j,m),(j′,m′)Yi,(j′,m′)

0 = Xi−1,(j,m) + Zi,(j,m) + Xi+3,(j,m)

0 = Vi,(j,m)Yi,(j,m) + 1

0 = V 2
i,(j,m) + Vi,(j,m+1)

0 = Y 2
i,(j,m) + Yi,(j,m+1),

where C(j,m), D(j,m), α(j,m),(j′,m′) and β(j,m),(j′,m′) are some constants.
Since the key scheduling algorithm is similar to its encryption, we can also

describe the key schedule with a multivariate quadratic system over F. Hence,
for ESMS4, we have Nr = 32, Stotal = 256, t = 41, r = 24 and s = 8. It was cal-
culated in [5] that there are 8192 linear equations, 6144 quadratic equations and
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17536 terms for the whole system in total. As the above multivariate quadratic
system is very sparse, ESMS4 seems to be a potential candidate for XSL attack
to be carried out.

The XSL technique used in [5] is based on the eprint second XSL attack where
the key schedule is taken into account. Different from the compact version, all
the t monomials from each S-box are used to multiply the S-box and diffusion
layer equations, as opposed to the use of a basis of t− r monomials for each S-
box. By taking the Gaussian reduction exponent to be 3, Ji and Hu [5] calculated
the complexity of eprint XSL second attack to be approximately 277. However,
as our paper is devoted to the study of compact XSL attack, we shall limit
our analysis of the XSL attack on ESMS4 to the compact version with the key
schedule equations being taken into account.

We now proceed to evaluate the effectiveness of the compact XSL attack
against ESMS4 by using a similar approach as BES to estimate the complexity
of the attack. For each S-box in the cipher, choose {1, Vi,(j,m), Yi,(j,m)} with 17
elements as the basis.

For i = 1, · · · , 32, j = 0, · · · , 3 and m = 0, · · · , 7, denote the (8j + m)-th
component of the input and output of the S-box inversion in the key schedule by
Gi,(j,m) and Hi,(j,m) respectively. Similarly, for each S-box in the key schedule,
we choose {1, Gi,(j,m), Hi,(j,m)} with 17 elements as the basis. Hence, as before,
we get t′ = 5.

With the following formula,

D1 =
P∑

i=0

(
256
i

)
8i,

Table 2. D1, D2 and T ′ values corresponding to various P for compact XSL on ESMS4

P = 2 D1 2.091 × 106

D2 6.144 × 103

D1 − D2 2.085 × 106

T ′ 2.168 × 104

P = 3 D1 1.417 × 109

D2 1.254 × 107

D1 − D2 1.404 × 109

T ′ 4.680 × 107

...
...

...
P = 6 D1 9.690 × 1016

D2 4.339 × 1015

D1 − D2 9.256 × 1016

T ′ 6.132 × 1016

P = 7 D1 2.770 × 1019

D2 1.743 × 1018

D1 − D2 2.596 × 1019

T ′ 4.343 × 1019
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D2 = 24× 256×
P−2∑
i=0

(
255
i

)
8i,

T ≈ 17P ×
(

256
P

)
,

T ′ ≈ 5× 17P−1
(

255
P − 1

)
,

we obtain the values forD1, D2 and T ′ values corresponding to variousP and hence
estimate the complexity of the attack. The results are summarized in Table 2.

From Table 2, the smallest P such that D1 − D2 < T ′ is P = 7. Hence the
complexity for compact XSL second attack on ESMS4 is

WF = T 3 = (5.401× 1021)3 ≈ 2216.58,

which shows that the compact XSL attack on ESMS4 is worse than exhaustive
search.

Remark 3. Here, we assume that the complexity to solve N linear equations by
Gaussian elimination is N3 so that it is a fair comparison with the complexity 277

claimed in [5]. If we assume the Gaussian elimination complexity to be N2.376,
then the attack complexity for ESMS4 will be 2171.53 which is still worse than
exhaustive search.

5 Conclusion

We have adapted the analysis on the eprint XSL attack on BES in [6] to the
compact XSL attack on BES and ESMS4 in this paper. Moreover, we have
considered the T ′ method in our analysis to make it more accurate. We showed
that the compact XSL attack on both BES (for all 3 key sizes) and ESMS4
are worse than exhaustive search. Further research in this direction could be
undertaken to include the T ′ method in the analysis of the eprint XSL attack
on both BES and ESMS4.
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Abstract. RFID systems suffer from different location-based attacks
such as distance fraud, mafia fraud and terrorist fraud attacks. Among
them mafia fraud attack is the most serious since this attack can be
mounted without the notice of both the reader and the tag. An adversary
performs a kind of man-in-the-middle attack between the reader and the
tag. It is very difficult to prevent this attack since the adversary does
not change any data between the reader and the tag. Recently distance
bounding protocols measuring the round-trip time between the reader
and the tag have been researched to prevent this attack.

All the existing distance bounding protocols based on binary chal-
lenges, without final signature, provide an adversary success probability
equal to (3/4)n where n is the number of rounds in the protocol. In
this paper, we introduce a new protocol based on binary mixed chal-
lenges that converges toward the expected and optimal (1/2)n bound.
We prove its security in case of both noisy and non-noisy channels.

Keywords: RFID, authentication, distance bounding protocol, relay at-
tack.

1 Introduction

RFID (radio frequency identification) tags or contactless smart cards are often
used for proximity authentication. For example, Texas Instrument (TI) manu-
factured an RFID device called a Digital Signature Transponder (DST). The
DST serves as a theft-deterrent in millions of automobiles. Present as a tiny,
concealed chip in the ignition key of the driver, the DST authenticates the key
to a reader near the key slot as a precondition for starting the engine. The DST
is also present in SpeedPassTM wireless payment devices, used by millions of
customers primarily at ExxonMobil petrol stations in North America.

RFID tags and contactless smart cards are normally passive; they operate
without any internal battery and receive the power from the reader. This offers
long lifetime but results in short read ranges and limited processing power. They
are also vulnerable to different attacks related to the location: distance fraud and
relay attacks. Relay attacks occur when a valid reader is tricked by an adversary
into believing that it is communicating with a valid tag and vice versa. That is,
the adversary performs a kind of man-in-the-middle attack between the reader

J.A. Garay, A. Miyaji, and A. Otsuka (Eds.): CANS 2009, LNCS 5888, pp. 119–133, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



120 C.H. Kim and G. Avoine

and the tag. It is difficult to prevent these attacks since the adversary does not
change any data between the reader and the tag. Therefore relay attacks cannot
be prevented by cryptographic protocols that operates at the application layer.

Although one could verify location through the use of GPS coordinates, RFID
tags do not lend themselves to such applications. Distance bounding protocols is
a good solution to prevent such distance fraud and relay attacks. These protocols
measure the signal strength or the round-trip time between the reader and the
tag. However the proof based on measuring signal strength is not secure as an
adversary can easily amplify signal strength as desired or use stronger signals to
read from afar.

1.1 Distance Fraud and Relay Attacks

There are three types of attacks related with distance between the reader and
the tag. The dishonest tag may claim to be closer than he really is. This attack
is called distance fraud attack. There are two types of relay attacks: mafia
fraud and terrorist fraud attacks.

Mafia fraud attack was first described by Desmedt [2]. In this attack sce-
nario, both the reader (R) and the tag (T ) are honest, but a malicious adversary
is performing a man-in-the-middle attack between the reader and the tag by
putting fraudulent tag (T ) and receiver (R). The fraudulent tag T interacts
with the honest reader R and the fraudulent reader R interacts with the honest
tag T . T and R cooperate together. It enables T to convince R of a statement
related to the secret information of an honest tag T , without actually needing
to know anything about the secret information.

Terrorist fraud attack is an extension of the mafia fraud attack. The tag T
is not honest and collaborate with fraudulent tag T in this attack. The dishonest
tag T uses T to convince the reader that he is close, while in fact he is not. T
does not know the long-term private or secret key of T .

Among these attacks, mafia fraud attack is the most serious since this attack
can be mounted without the notice of neither the reader nor the tag. Many works
are devoted to prevent this attack [1,3,4,5,6,7].

1.2 Distance Bounding Protocols

In 1993, Brands and Chaum presented their distance bounding protocol [1]. It
consists of a fast bit exchanges phase where the reader sends out one bit and
starts a timer. Then the tag responds to the reader with one bit that stops the
timer. The reader uses the round trip time to extract the propagation time. After
series of n rounds (n is a security parameter), the reader decides whether the tag
is within the limitation of the distance. In order to extract the propagation time,
the processing time of the tag must be as short and invariant as possible. The
communication method used for these exchanges is different from the used one
for the ordinary communication. An ultra wide band (UWB) channel is used to
achieve a resolution of 10 cm. It does not contain any error detection or correction
mechanism in order not to make additional variable cycles of processing.
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Reader Tag
(secret K) (secret K)

Pick a random Na Pick a random Nb
Na−−−−−−−−→
Nb←−−−−−−−−

{H}2n = h(K, Na, Nb)
{v0} = H1||H2|| . . . ||Hn

{v1} = Hn+1||Hn+2|| . . . ||H2n

Start of fast bit exchange
for i = 1 to n

Pick Ci ∈ {0, 1}
Start Clock

Ci−−−−−−−−→

Ri =
{

v0
i , if Ci = 0

v1
i , if Ci = 1

Stop Clock
Ri←−−−−−−−−

Check correctness of
Ri’s and �ti ≤ tmax

End of fast bit exchange

Fig. 1. Hancke and Kuhn’s protocol

Hancke and Kuhn proposed a distance bounding protocol (HKP) [3] that has
been chosen as a reference-point because it is the most popular distance bounding
protocol in the RFID framework. As depicted in Fig. 1, the protocol is carried
out as follows. After exchanges of random nonces (Na and Nb), the reader and
the tag compute two n-bit sequences, v0 and v1, using a pseudorandom function
(typically a MAC algorithm, a hash function, etc.). Then the reader sends a
random bit for n times. Upon receiving a bit, the tag sends back a bit Ri from
v0 if the received bit Ci equals 0. If Ci equals 1, then it sends back a bit from v1.
After n iterations, the reader checks the correctness of Ri’s and the propagation
time.

In each round, the probability that the adversary sends a correct response is
a priori 1

2 . However the adversary can query the tag in advance with some arbi-
trary C′

is, between the nonces are sent and the rapid bit exchange starts. Doing
so, the adversary obtains n bits of the registers. For example, if the adversary
queries the with some zeroes only, he will entirely get v0. In half of all cases, the
adversary will have the correct guesses, that is C′

i = Ci, and therefore will have
obtained in advance the correct value Ri that is needed to satisfy the reader.
In the other half of all cases, the adversary can reply with a guessed bit, which
will be correct in half of all cases. Therefore, the adversary has 3

4 probability of
replying correctly.

One of the solutions to reduce the probability less than (3
4 )n is to include

signed messages [1,6,7]. However signed messages could not be sent with UWB
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Reader Tag
(secret K) (secret K)

Pick a random Na Pick a random Nb
Na−−−−−−−−→
Nb←−−−−−−−−

{H}3n = h(K, Na, Nb)
{P} = H1||H2|| . . . ||Hn

{v0} = Hn+1||Hn+2|| . . . ||H2n

{v1} = H2n+1||H2n+2|| . . . ||H3n

Start of fast bit exchange
for i = 1 to n

Pick Ci ∈ {0, 1}{
Ci, if Pi = 1
void, if Pi = 0

Start Clock
Ci or void−−−−−−−−−−−−−→

Ri =
{

v0
i , if Ci = 0,

v1
i , if Ci = 1.

Detect error if challenge is
not void when Pi = 0.
Tag becomes mute after
error detection.

Stop Clock
Ri or void←−−−−−−−−−−−−−

End of fast bit exchange

Check correctness of
E=h(K,v0,v1)←−−−−−−−−−−−−−−−

Ri’s, E and �ti ≤ tmax

Fig. 2. Munilla et al.’s protocol

as it is very sensitive to the background noise. It should be sent by normal com-
munication method with error detection or correction technique. Therefore this
approach would put an overload on computation of a tag as well as communica-
tion, which causes the protocol slower.

Munilla, Ortiz, and Peinado [4,5] modified the Hancke and Kuhn’s protocol
by applying “void challenges” in order to reduce the success probability of the
adversary. As shown in Fig. 2, the challenges from the reader are divided into
two categories, full challenge and void challenge. After exchanges of random
nonces (Na and Nb), the reader and the tag compute 3n-bit sequence, P ||v0||v1,
using a pseudorandom function. The string P indicates the void-challenges; that
is, if Pi = 1 reader sends a random challenge and if Pi = 0 it does not. These
void-challenges allow the tag to detect if an adversary is trying to get the re-
sponses in advance. When the tag detects an adversary it stops sending re-
sponses. The protocol ends with a message to verify that no adversary has been
detected.
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The adversary can choose between two main attack strategies: asking in ad-
vance to the tag, taking the risk that the tag uncovers him, and without taking
in advance and trying to guess the responses to the challenges when they oc-
cur. The adversary’s success probability depends on pf , the probability of the
occurrence of full challenge, and can be calculated:

pMP =
{

(1− pf

2 )n, if pf ≤ 4
5 (without asking in advance),

(pf · 3
4 )n, if pf > 4

5 (asking in advance). (1)

The adversary’s success probability is the lowest when pf = 4/5, but it is not
easy to generate a bit string P with such value of pf . However, the value pf = 3/4
is close to 4/5 and it is much easier to generate. By generating a random 2n-bit
P and letting ‘00’, ‘01’, or ‘10’ as Pi = 1 and ‘11’ as Pi = 0, we can get pf = 3/4.
If the responses of the tag are taken out from one edge of the bit-string (LSB,
the least significant bit) or from the other one (MSB, the most significant bit)
depending on the challenge, n + 1 bits are enough to generate v0||v1. Therefore
total 3n + 1 bits (2n bits for P , n + 1 bits for responses) are required to store.
The success probability of the adversary is (5

8 )n if the string P is random [5],
which is less than (3

4 )n.
Note that the final confirmation message h(K, v0, v1) does not take any chal-

lenges Ci as an input. So it can be pre-computed before the start of the fast bit
exchange. On the other side, the disadvantage of their solution is that it requires
three (physical) states: 0, 1, and void, which may be difficult to implement.
Furthermore the success probability of the adversary is higher than (1

2 )n.

2 Distance Bounding Protocol Using Mixed Challenges

2.1 Description

To overcome the disadvantage of Munilla et al.’s protocol, we present a mod-
ification using mixed challenges : the challenges from the reader to the tag in
the fast bit exchanges are divided into two categories, random challenges and
predefined challenges. The earlier are random bits from the reader and the latter
are predefined bits known to both the reader and the tag in advance.

As shown in Fig. 3, the reader and the tag compute 4n-bit sequence for
T ||D||v0||v1, after exchange of random nonces (Na and Nb). The string T in-
dicates random-challenges: if Ti = 1 the reader sends a random bit Si ∈ {0, 1}
and if Ti = 0 it sends a predefined bit Di to the tag. From the point of the
adversary’s view, all Ci’s from the reader look like random. Therefore he can-
not distinguish random challenges from predefined challenges. However, thanks
to these predefined challenges, the tag is able to detect an adversary sending
random challenges in order to get responses in advance. Upon reception of a
challenge Ci from the reader, either Ti = 1 (random challenge), in this case the
tag sends out the bit vCi

i ; or Ti = 0 (predefined challenge), in this case the tag
sends out the bit v0

i if Ci = Di and a random bit if Ci �= Di (it detects an
error).
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Reader Tag
(secret K) (secret K)

Pick a random Na Pick a random Nb
Na−−−−−−−−→
Nb←−−−−−−−−

{H}4n = h(K, Na, Nb)
{T} = H1||H2|| . . . ||Hn

{D} = Hn+1||Hn+2|| . . . ||H2n

{v0} = H2n+1||H2n+2|| . . . ||H3n

{v1} = H3n+1||H3n+2|| . . . ||H4n

Start of fast bit exchange
for i = 1 to n

Pick Si ∈ {0, 1}

Ci =
{

Si, if Ti = 1
Di, if Ti = 0

Start Clock
Ci−−−−−−−−→

If Ti = 1, then

Ri =
{

v0
i , if Ci = 0

v1
i , if Ci = 1

If Ti = 0, then

Ri =
{

v0
i , if Ci = Di

random, if Ci �= Di

(error detected)

∗ After error detection,
sends a random bit
for all subsequent iterations.

Stop Clock
Ri←−−−−−−−−

Check: �ti ≤ tmax

Check: correctness of Ri

End of fast bit exchange

Fig. 3. Distance bounding protocol using mixed challenges

From the moment the tag detects an error, it replies a random value to all
the subsequent challenges. By doing this, both the reader and the tag fight the
adversary.

We note that we do not use any confirmation message after the end of fast
bit exchanges, which improves efficiency in terms of computation and communi-
cation compared to Munilla et al. [5].

2.2 Discussion about the Tag’s Behavior after an Error Is Detected

In our protocol, the tag always replies with a random bit after detection of an
error. This is a conservative behavior but some other ones are also possible.
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Interrupt the protocol. One may think that the tag can simply interrupt the
protocol when an error is detected. However, the reader will simply conclude in
such a case that the protocol failed, while in practice it could be interesting for
the reader to be able to distinguish a failure from an attack; it could so react
accordingly.

Complementary bits. Another variant consists for the tag in sending the
complementary bits of the right answers once a received predefined challenge
is wrong. In this way, the tag helps the reader to detect early that an attack
occurs. Indeed, if the strategy of the adversary is to exactly send to the reader
what he previously received from the tag, then his probability of success is 0
once he sent a wrong challenge. However, with such a variant, a better strategy
for the adversary is to expect an early wrong challenge, and then to flip all the
subsequent responses from the tag. His probability of success becomes 1 once he
sent a wrong challenge.

Half-time complementary bits. To thwart an attack based on the “flip strat-
egy”, one way consists in flipping only half of the responses. Thus, after an error
is detected, the tag sends the right response when Ti = 0 but sends the comple-
mentary one when Ti = 1. As the adversary cannot distinguish between Ti = 0
and Ti = 1, he cannot decide when he delivers the response as it is or not.
Consequently, after an error, the probability for the adversary to get the right
response is 1 if Ti = 0, and 0 if Ti = 1.

Use the obsolete Dis. Instead of using the complementary approach or gen-
erating new random bits as in the basic protocol, the tag may reply with the
remaining Dis after an attack is detected. Indeed, after a wrong challenge is re-
ceived, the Dis become useless. This approach has two advantages: (a) to avoid
generating new random values; (b) to help the reader to detect earlier an at-
tack (the reader detects that the answers match the Dis). Here, because the Dis
are still used for the reader’s challenges when Ti = 0, this variant gives to the
adversary the ability to observe that he has been detected by the tag. He may
so interrupt the protocol, expecting the reader to conclude that a failure occurs
instead of an attack.

Use the obsolete Tis. As in the previous variant, after an error is detected, the
tag uses an already generated random register that is no longer in use; however,
T is used instead of D because T does not reveal that the adversary is detected.
This variant presents the same two advantages than the previous one without
revealing the attack detection.

A detailed analysis of the success probability of the adversary follows in the
next section. We consider in this analysis the basic version of the protocol, where
the tag replies with some random bits after an error is detected.

3 Analysis

We define pd as the probability that a challenge is a predefined challenge. Sim-
ilarly pr is defined as the probability that a challenge is a random challenge.



126 C.H. Kim and G. Avoine

Therefore we have pd + pr = 1. We start the analysis from the noise-free case
then analyze in the noisy case.

3.1 Analysis in the Noise-Free Case

The adversary can choose between two main attack strategies. First he can guess
the responses to the challenges without asking in advance to tag. Secondly he
can ask in advance to the tag, taking the risk that the tag uncovers him. Let us
denote the adversary’s probability of success without asking as Pno−ask and that
with asking as Pask. The adversary’s probability of success of Munilla et al.’s
protocol depends on the probability of the occurrence of full or void challenges
as shown in Eq. 1. Therefore Pno−ask and Pask are different according to the
probability of the occurrence of full challenges. With the recommended pf = 3/4,
the adversary’s probability of the success without asking, Pno−ask, is (5/8)n,
which is higher than Pask. Therefore it is better for the adversary to choose the
first attack approach in Munilla et al.’s protocol.

In our proposed protocol the adversary’s probability of the success without
asking in advance, Pno−ask, is always (1/2)n. Therefore we compute Pask and
compare it with Pno−ask in the next section.

Adversary’s probability of success of not being detected by reader. To
compute Pask, we assume that an adversary asks in advance to tag, taking the
risk that the tag uncovers him. If the challenge, C∗

i , that the adversary asks to
the tag in advance is the same than the challenge, Ci, that the reader sends to
the tag, he sends the response received from the tag to the reader. If C∗

i �= Ci,
then he sends a random response to the reader.

Although the adversary’s attack is detected by the tag there is still a chance
of not being detected by the reader. To analyze this probability, we define some
events as follows:

– Ai: the event that the adversary’s attack is detected by the reader in the ith

round,
– Ai: the event that the adversary’s attack is not detected by the reader in

the ith round,
– Bi: the event that the adversary’s attack is detected by the tag in the ith

round,
– Bi: the event that the adversary’s attack is not detected by the tag in the

ith round.

The event of not being detected by the reader in the ith round, Ai, depends on
the event of being detected by the tag in the (i− 1)th round. Because tag gives
random values once it detects an error and the adversary does not know that it
is an original or a random value.

The probability of not being detected by the reader in the ith round provided
that it is not detected by the tag in the (i− 1)th round, P (Ai|Bi−1), is
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P (Ai|Bi−1) = Prandom ch. & not detected + Ppredefined ch. & not detected

= pr · (PC∗
i =Ci& not det. by Reader + PC∗

i �=Ci& not det. by Reader)
+pd · (PC∗

i =Ci& not det. by Reader + PC∗
i �=Ci& not det. by Reader)

= pr(
1
2
· 1 +

1
2
· 1
2
) + pd(

1
2
· 1 +

1
2
· 1
2
)

=
3
4
pr +

3
4
pd

=
3
4
. (2)

If the challenge is random and C∗
i = Ci, then the adversary can correctly answer

the response. If the challenge is random and C∗
i �= Ci, then the adversary have

a chance of 1
2 of giving a correct response. If the challenge is predefined and

C∗
i = Ci, he can correctly answer the response. If the challenge is predefined

and C∗
i �= Ci, he has a chance of 1

2 of giving a correct response to the reader
although he is always detected by the tag.

The probability of not being detected by the reader in the ith round provided
that it is detected by the tag in the (i− 1)th round, P (Ai|Bi−1), is

P (Ai|Bi−1) = Prandom ch. & not detected + Ppredefined ch. & not detected

= pr · (PC∗
i =Ci& not det. by Reader + PC∗

i �=Ci& not det. by Reader)
+pd · (PC∗

i =Ci& not det. by Reader + PC∗
i �=Ci& not det. by Reader)

= pr(
1
2
· 1
2

+
1
2
· 1
2
) + pd(

1
2
· 1
2

+
1
2
· 1
2
)

=
1
2
pr +

1
2
pd

=
1
2
. (3)

If the challenge is random and C∗
i = Ci, then the adversary sends the same

response from the tag (not knowing that he was detected in the previous round).
This response from the tag is a random value as the tag detected an error in
the previous round. So he has a chance of 1

2 of not detected by the reader. If
the challenge is random and C∗

i �= Ci, then the adversary have a chance of 1
2

of giving correct response. Because he chooses a random response by himself. If
the challenge is predefined and C∗

i = Ci, he again sends the same response from
the tag. Therefore he has a chance of 1

2 of not being detected by the reader. If
the challenge is predefined and C∗

i �= Ci, he has a chance of 1
2 of giving a correct

response to the reader as he chooses a random response by himself.
The probability of not being detected by the reader in the ith round is com-

puted by

P (Ai) = P (Ai|Bi−1)P (Bi−1) + P (Ai|Bi−1)P (Bi−1)

=
3
4
P (Bi−1) +

1
2
P (Bi−1), (4)

where, P (A1) = 3
4 and i = 2, 3, ....
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The probability of being detected by the tag in the ith round depends on the
probability of being detected by the tag in the (i − 1)th round. Therefore we
have

P (Bi) = P (Bi|Bi−1)P (Bi−1) + P (Bi|Bi−1)P (Bi−1). (5)

The P (Bi|Bi−1) is always 1 since the tag already detected an error in the (i−
1)th round. The P (Bi|Bi−1) is 1

2pd since the tag can detect an error when the
challenge is a predefined one and C∗

i �= Ci. Therefore we can rewrite Eq 5 as
follows:

P (Bi) = P (Bi−1) +
1
2
pdP (Bi−1) (6)

= P (Bi−1) +
1
2
(1− pr)P (Bi−1), (7)

where, P (B0) = 0. From Eq. 4 and Eq. 7, we compute:

P (Ai) =
1
2

+
1
4

(
1
2

+
1
2
pr

)i−1

.

When pr = 1
2 , we obtain:

P (Ai) =
1
2

+
1
4

(
3
4

)i−1

.

For example, when pr = 1
2 , P (A1) = 3

4 P (A2) = 11
16 , P (A3) = 41

64 , P (A4) = 155
256 ,

etc.
We depict the probabilities of not being detected by the reader by varying

pr and n in Fig. 4. For the comparison we also show the success probabilities
of the adversary of HKP and MP. The adversary’s probability of success of our
protocol is smaller than those of HKP and MP. And the adversary’s probability
of success with asking, Pask, is higher than that with no asking, Pno−ask = (1

2 )n.
So it is better for the adversary to choose the strategy of asking advance. However
as the number of iterations increases, the success probability of the adversary
approaches (1

2 )n.

Distance fraud attack. Until now, we suppose that the tag is honest and the
adversary tries to perform a mafia fraud attack. In this section, we consider the
case of a dishonest tag. That is, we analyze the distance fraud attack on our
protocol.

The tag knows the predefined challenges before the start of the fast bit ex-
changes as he knows T . Therefore he may try to deceive the reader with distance
fraud attack. The probability of the success of the distance fraud attack by the
dishonest tag for a round is
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Pdistance fraud attack = Prandom challenge and deceive + Ppredefined challenge and deceive

= pr · (Pv0
i =v1

i and deceive + Pv0
i �=v1

i and deceive) + pd

= pr · (1
2
· 1 +

1
2
· 1
2
) + pd

=
3
4
pr + pd

= 1− 1
4
pr.

If the challenge is a random challenge (Ti = 1) and ith bits of v0 and v1 are
equal, then the tag can send its response early. If ith bits of v0 and v1 are not
equal when Ti = 1, then the tag chooses the response randomly. Finally if the
challenge is a predefined challenge (Ti = 0), then he can send its response early.

We depict the success probabilities according to the variation of pr and n
in Fig. 5. If pr = 1

2 , which is the average case when we use a pseudorandom
function to generate a bit string, then we have (7

8 )n.
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We note that the probability of success of the Distance fraud attack decreases
as pr is closer to 1. However that of the Mafia fraud attack increases as pr

becomes higher. Therefore The trade-off between these two attacks should be
considered according to the applications. In an environment where Distance
fraud attack does not make sense (that is, you can trust the tag), taking a small
pr, possibly 0, clearly increases the security of the protocol with respect to Mafia
fraud attack.

3.2 Analysis in the Noisy Case

In a real application, there may exist errors due to the channel noise although
the adversary does not attack. Therefore, we need to allow some channel errors
for practical reasons. However the adversary may get benefit from this allowance
of channels errors. We analyze the success probability of the adversary in the
noisy case.

We assume that the maximum (j − 1) errors are allowed in the tag. That is,
the tag starts to send random values after jth error is detected. We define some
events as follows:

– Ai: the event that the error is detected by the reader in the ith round,
– Ai: the event that the error is not detected by the reader in the ith round,
– Bj

i : the event that total j errors are detected by the tag until the ith round,
– B

j

i : the event that less than j errors are detected by the tag until the ith

round.

Then we have

P (Bj
i) = P (Bj

i|Bj
i−1)P (Bj

i−1) + P (Bj
i|Bj

i−1)P (B
j
i−1)

= P (Bj
i|Bj

i−1)P (Bj
i−1) + P (Bj

i|Bj−1
i−1)P (Bj−1

i−1)P (B
j
i−1).

The probability of P (Bj
i|Bj

i−1) is 1 as j errors are already detected in (i−1)th

round. The probability of P (Bj
i|Bj

i−1) is equal to P (Bj
i|Bj−1

i−1) P (Bj−1
i−1).

Because the jth error can be detected in ith round only if j−1 errors are detected
in the (i− 1)th round.

The probability of P (Bj
i|Bj−1

i−1) is 1
2 (1−pr). Because the tag can detect an

error only when the challenge is predefined and C∗
i �= Ci. The tag starts to send

random values after it detects jth error, the probability of not being detected by
the reader, P (Ai), depends on the P (Bj

i ). Once tag detects jth error, probability
of not being detected by the reader becomes 1

2 . Otherwise, probability of not
being detected by the reader is 3

4 . Therefore we have

P (Ai) = P (Ai|Bj

i−1)P (B
j

i−1) + P (Ai|Bj
i−1)P (Bj

i−1)

=
3
4
P (B

j

i−1) +
1
2
P (Bj

i−1), (8)

where, P (A1) = 3
4 and i = 2, 3, ....
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For example, suppose that j = 2 and pr = 0.5. It means that only one error
is allowed in the tag and the tag sends random values after it detects two errors.
Then, we have

P (B2
i) = P (B2

i|B2
i−1)P (B2

i−1) + P (B2
i|B1

i−1)P (B1
i−1)P (B

2
i−1),

= P (B2
i−1) +

1
4
P (B1

i−1)P (B
2
i−1). (9)

To compute P (B2
i), we need to compute P (B1

i) that is the same with P (Bi) in
the previous section. Therefore, we have P (B1

1) = 1
4 , P (B1

2) = 7
16 , P (B1

3) = 37
64 ,

etc. The P (B2
1) = 0 as two errors can not be detected in the first round. From

Eq. 9, we have P (B2
2) = 1

16 , P (B2
3) = 169

1024 , etc. Finally we have P (A1) = 3
4

P (A2) = 3
4 , P (A3) = 46

64 , P (A4) = 2734
4096 , etc. from Eq. 8. The probability of not

being detected by reader until ith round, Pask[i] =
∏i

k=1 P (Ai). We depict it in
Fig. 6.
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Fig. 6. Probability of not being detected by the reader in noisy channel: left) when tag
allows errors, right) when reader allows errors

Now we assume that the maximum (j − 1) errors are allowed in the reader.
That is, the reader decides that the attack occurs after jth error is detected.
Contrary to the error detection by the tag, the detection of the error by the
reader does not change P (Ai) nor P (Bi). Therefore the probability of not being
detected by reader until ith round, Pask[i] is

Pask[i] =
{∑

C

∏i
k=1{akP (Ak) + akP (Ak)}, i ≥ j,

1, i < j,

Where, ak ∈ {0, 1} and C = {(a1, ..., ai)|
∑

ak < j}. That is, Pask[i] is the
probability that less than j errors are detected by the reader until ith round. For
example, if j = 2, then we have
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Pask[1] = 1,

Pask[2] = P (A1)P (A2) + P (A1)P (A2) + P (A1)P (A2),
Pask[3] = P (A1)P (A2)P (A3) + P (A1)P (A2)P (A3) + P (A1)P (A2)P (A3) +

P (A1)P (A2)P (A3),
Pask[4] = P (A1)P (A2)P (A3)P (A4) + P (A1)P (A2)P (A3)P (A4) +

P (A1)P (A2)P (A3)P (A4) + P (A1)P (A2)P (A3)P (A4) +
P (A1)P (A2)P (A3)P (A4),

Pask[5] = ...

If pr = 0.5, we have Pask[i] = {1, 0.922, 0.776, 0.600, 0.432, ...}. We depict the
result in Fig. 6.

4 Conclusion

Relay attack is one of the most serious problems in RFID and contactless smart-
card applications. Distance bounding protocols prevent relay attacks by com-
puting the distance between the reader and the tag, where they measure the
round-trip time between the reader and the tag. The Hancke and Kuhn proposed
a distance bounding protocol with the probability of the adversary’s success of
(3
4 )n, where n is a security parameter. After that, many tried to decrease the

probability of the adversary’s success to (1
2 )n. Almost all of them used signed

messages that made the protocol to be slower due to the computation and com-
munication of a signing message. Munilla et al.’s approach does not use signed
messages but requires three (physical) states: 0, 1, and void, which is difficult to
implement.

In this paper, we proposed a new protocol with (binary) mixed challenges
that provides the best performances among all the existing distance bounding
protocols with binary challenges that do no use final signature. Indeed, while all
these protocols provide a probability of the adversary success equal to (3/4)n,
the probability quickly converges toward (1/2)n in our case.
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Abstract. RFID-based systems are becoming a widely deployed perva-
sive technology that is more and more used in applications where privacy-
sensitive information is entrusted to RFID tags. Thus, a careful analysis
in appropriate security and privacy models is needed before deployment
to practice.

Recently, Vaudenay presented a comprehensive security and privacy
model for RFID that captures most previously proposed privacy models.
The strongest achievable notion of privacy in this model (narrow-strong
privacy) requires public-key cryptography, which in general exceeds the
computational capabilities of current cost-efficient RFIDs. Other privacy
notions achievable without public-key cryptography heavily restrict the
power of the adversary and thus are not suitable to realistically model
the real world.

In this paper, we extend and improve the current state-of-the art for
privacy-protecting RFID by introducing a security and privacy model for
anonymizer -enabled RFID systems. Our model builds on top of
Vaudenay’s model and supports anonymizers, which are separate de-
vices specifically designated to ensure the privacy of tags. We present
a privacy-preserving RFID protocol that uses anonymizers and achieves
narrow-strong privacy without requiring tags to perform expensive
public-key operations (i.e., modular exponentiations), thus providing a
satisfying notion of privacy for cost-efficient tags.

1 Introduction

Radio frequency identification (RFID) is a technology that enables RFID read-
ers to perform fully automatic wireless identification of objects that are labeled
with RFID tags. Initially, this technology was mainly used for electronic labeling
of pallets, cartons and products to enable seamless supervision of supply chains.
Today, RFID technology is widely deployed and studied for its applications, in-
cluding animal identification [1], library management [2], access control [1,3,4,5],
electronic tickets [4,3,5,6] and passports [7] and even human implantation [8].

As pointed out in previous publications (see, e.g., [9,8]), this prevalence of
RFID technology introduces various risks, in particular concerning the privacy
of its users and holders. The most deterrent privacy risk concerns the tracking of
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users. Thus, an RFID system should provide anonymity (i.e., confidentiality of
the tag identity) as well as untraceability (i.e., unlinkability of the communication
of a tag) even in case the state of (i.e., the information stored on) the tag has
been disclosed.1 RFID applications in practice must also achieve various security
and functional goals. The security goals include authentication, which prevents
an adversary from impersonating and forging tags and availability, which means
the resilience to remote tampering that allows denial-of-service attacks. The
functional goals include efficiency (e.g., fast verification of cost-efficient tags)
and scalability (i.e., support of a huge number of tags).

Most currently used RFID systems do not offer privacy at all (e.g., [11,12,4,5]).
This is mainly because current cost-efficient tags do not provide the necessary
computational resources to run privacy-preserving protocols [1,4], which heavily
rely on public-key cryptography. Moreover, as pointed out in Section 2, privacy-
preserving solutions without public-key cryptography do not fulfill important
security or functional requirements and thus, are inapplicable to real-world
applications.

As elaborated in related work (see Section 2), a promising approach towards
solving these problems and our focus in this paper, are anonymizers. These are
special devices that take off the computational workload (i.e., the public-key
operations) from the tags and enable privacy-preserving protocols with cost-
efficient tags. Note that an anonymizer-based RFID system is not equivalent to
a straight forward extension of a resource constrained RFID system to one with
higher capabilities (such as public-key cryptography). The anonymizer-enabled
approach in general requires an additional protocol between tags and anonym-
izers that opens attack surfaces and thus, must be carefully considered. Indeed,
an anonymizer shall not be able to impersonate or to copy the tags it anonymizes
since this would violate authentication. Moreover, to ensure availability, the pro-
tocol between a tag and the anonymizer must be secure against attacks where
an adversary aims to manipulate the tag.

Anonymizers can be incorporated into the standard RFID system model in
different ways. One approach is to provide public anonymizers that can be con-
trolled by the operator of the RFID system or by one of several independent
anonymizing service providers the user may choose from. Alternatively, each
user may have his/her own personal anonymizer that could be implemented
as a software running on the user’s mobile phone or PDA2, allowing a very
cost-efficient implementation of anonymizers. The main advantage of anonym-
izer-enabled protocols is that they allow operators of RFID systems to enable
privacy for the concerned users (who may buy his/her own personal anonymizer)
with no or only minor extra costs.

1 To distinguish tracing in past or future protocol-runs, the notions of forward untrace-
ability (i.e., unlinkability of the communication of the tag that has been recorded
before disclosure) and backward untraceability (i.e., unlinkability of the communica-
tion of the tag that takes place after disclosure) are defined in [10].

2 An increasing number of mobile phones and PDAs support the Near Field Commu-
nication (NFC) standard, which enables them to communicate to RFID devices.
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However, as pointed out in Section 2, current anonymizer-enabled solutions
are vulnerable to impersonation attacks. Hence, the design of a secure and
privacy-preserving RFID system requires an appropriate security and privacy
model to enable a careful analysis of the underlying schemes. On the other
hand, existing security and privacy models for RFID (e.g., [13,14,15,16]) suf-
fer from various shortcomings. As discussed in Section 2, these models do not
consider important aspects like adversaries with access to auxiliary information
(i.e., whether the identification of a tag was successful or not) or the privacy of
corrupted tags (i.e., whose state has been disclosed). Both are essential to en-
sure anonymity and untraceability in practice. Another drawback is that most of
these models are incomparable, which leads to the problem that a protocol can
be proven secure in one privacy model while being insecure in another model.3
Therefore, it is crucial to develop a widely accepted security and privacy model
for RFID.

Recently, a comprehensive security and privacy model that generalizes and
improves many previous works has been proposed in [18] and refined in [19,20].
The strongest achievable privacy notion in this model (narrow-strong privacy)
allows the adversary to arbitrarily corrupt tags but does not capture the avail-
ability of auxiliary information. If auxiliary information is of concern, the weaker
notions of destructive and forward privacy must be considered while weak pri-
vacy does not adequately model the capabilities of real-world adversaries since
weak privacy does not allow tag corruption. However, narrow-strong privacy
requires the use of public-key cryptography [18], which in general clearly ex-
ceeds the capabilities of current cost-efficient RFIDs [1,4]. Moreover, it has been
shown that forward privacy can be achieved but at the cost of using public-key
cryptography [18] (which in general is too expensive).

We observe that the model of [18] does not include anonymizers, which play a
critical role for going beyond the barrier of simultaneously achieving a strong pri-
vacy notion with protocols that are suitable for cost-efficient tags. Therefore, we
investigate the use of anonymizers in the model of [18] and show an anonymizer-
enabled scheme that provides important security and privacy properties while
fulfilling the functional requirements of real-world applications.

Contribution. We introduce a formal framework for privacy-preserving RFID
systems, which extends the security and privacy model of [18] to support an-
onymizers and at the same time is backwards-compatible to it. Given the granu-
larity of the different security and privacy notions of [18], our anonymizer-based
model is the first universal security and privacy model for anonymizer-enabled
RFID systems. Moreover, we propose a privacy-preserving RFID protocol that
can be proven secure and private in the anonymizer-enabled model (with random
oracles). The protocol that we propose enjoys several appealing features that
were not simultaneously achieved by any previous proposal. Indeed, our proto-
col is very efficient for all involved entities, in particular for tags that only have

3 For instance, the OSK protocol [17] can be proven secure in the model of [13] although
a tracing attack can be shown in the model of [14].
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to perform minimal computations. Further, the protocol enjoys the strongest
achievable4 privacy notion defined in [18], which is narrow-strong privacy. Our
protocol also provides forward privacy, which restricts the adversary’s capabil-
ity to corrupt tags but instead allows him to access auxiliary information. We
finally stress that our protocol is provably secure against impersonation attacks
and forgeries even if the adversary can corrupt the anonymizers. Therefore, we
require the existence of (honest) anonymizers in the system only to guarantee
privacy (anonymity and untraceability) of the tags. This assumption gracefully
matches the realistic scenario where many anonymizers are spread in the system
and an adversary can be successful in corrupting many of them with the purpose
of violating the security of the system. At the same time, privacy is guaranteed
as long as tags are frequently anonymized by an uncorrupted anonymizer.

2 Related Work

Privacy-Preserving RFID Protocols. A general problem with privacy-pre-
serving authentication of low-cost tags that are incapable of public-key operations
is how to inform the reader which key should be used for the authentication.5 Es-
sentially there are two approaches that address this problem. The first approach is
that the reader performs an exhaustive search for the secret key that is used by the
authenticating tag [9]. Solutions to optimize this approach (see, e.g., [2,30]) suffer
from inefficiency since tag verification depends on the total number of tags in the
system. Clearly, this violates the efficiency and scalability requirements of most
practical RFID systems. In the second approach, a tag updates its identity after
each interaction such that the new identity is unlinkable and only known to the tag
and the authorized readers, which allows readers to identify tags in constant time
(see, e.g., [31,32,33,10,34]). This approach requires each tag to be always synchro-
nized with all readers in the system. However, in general, it is easy to mount denial-
of-service attacks that desynchronize the tag and the readers (see e.g., [31,33]). For
a broad overview about privacy issues in RFID systems, see also [35].

Anonymizer-Enabled RFID Protocols. A promising approach to enhance
privacy of RFID without lifting the computational requirements on tags are an-
onymizer-enabled protocols, where external devices (anonymizers) are in charge
of providing anonymity of tags. Anonymizer-enabled RFID protocols are very

4 Note that the impossibility of achieving strong privacy [18] trivially holds in our
anonymizer-enabled model since any protocol in the anonymizer-enabled model also
works in the model of [18] by simply requiring that the anonymization protocol (i.e.,
the protocol run between tags and anonymizers) is played locally inside tags.

5 A prominent family of lightweight authentication protocols proposed in the context
of RFID are the HB protocols (see e.g., [21,22,23,24]). However, these protocols are
subject to man-in-the-middle attacks [25,26,27,28], require the reader to perform an
exhaustive search for the (shared) authentication secret of the authenticating tag and
have a high communication complexity (many rounds of interaction) [29]. Moreover,
tag corruption is usually not considered in the security evaluation of the HB protocols.
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suitable for many practical scenarios with privacy needs that use cost-efficient
tags. The main concept of existing anonymizer-enabled protocols [36,37,38,39] is
that each tag stores a ciphertext that encrypts the information carried by the tag
(e.g., the tag identifier) under the public key of the reader. This ciphertext is sent
to the reader each time the tag authenticates. Since this ciphertext is static data
and can be used to track and to identify the tag, it must be frequently changed
to provide anonymity and unlinkability. However, current RFIDs [1,4] are not
capable of updating their ciphertext on their own and thus, privacy in these
protocols relies on anonymizers that frequently refresh the ciphertexts stored
on the tags. The first proposal to use anonymizers [36] considers a plan by the
European Central Bank to embed RFID tags into Euro banknotes to aggravate
forgeries [40]. It proposes to store a ciphertext of the serial number of a banknote
on the RFID tag that is attached to the banknote. Each time the banknote is
spent, anonymizers in shops or banks re-encrypt the ciphertext stored on the tag.
The drawback of this scheme is that the serial number of a banknote must be
optically scanned before its ciphertext can be re-encrypted. In [37], the authors
introduce a primitive called universal re-encryption, which is an extension of the
El Gamal encryption scheme where re-encryption is possible without knowledge
of the corresponding (private and public) keys. In this approach, an adversary
can “mark” tags such that he can recognize them even after they have been
re-encrypted. This issue has been addressed in [38] that shows tracing attacks
and proposes solutions. In [39], the authors improve the ideas of [37] and [38]
by introducing the notion of insubvertible encryption, which adds a signature on
the blinded public key of the reader that is linked to the ciphertexts stored on
the tags. Re-randomization involves this signature in a way that prevents the
adversary from marking tags.

All known anonymizer-enabled schemes are subject to impersonation attacks
since authentication is only based on the ciphertext that the tag sends to the
reader. Moreover, existing security models do not capture RFID systems that
use anonymizers.

Privacy Models for RFID. One of the first privacy models for RFID [17]
defines anonymity and backward untraceability based on a security game where
an adversary must distinguish a random value from the output of a tag. It does
not consider forward untraceability. A privacy model specific for RFIDs that
cannot perform any cryptographic operations [41] is based on assumptions on
the number of queries an adversary can make to a tag but does not capture
adversaries who can corrupt tags. Thus, it does not cover backward and forward
untraceability, which is required to realistically model adversaries against cost-
efficient tags in practice. Another privacy model [13,42] provides various flexible
definitions for different levels of privacy based on a security experiment where
an adversary must distinguish two known tags. This model is extended in [14]
by the notion of auxiliary information. In [15], a completeness and soundness
requirement is added to the definition of [14], which means that a reader must
accept all but only valid tags. The definition of [14] has been further improved
in [43] to cover backwards untraceability. Another privacy model [16] is based
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on the universal composability (UC) framework and claims to be the first model
that considers availability. However, it does not allow the adversary to corrupt
tags and thus does not capture backwards untraceability.

Recently, [18] presented a privacy model that generalizes and classifies previ-
ous RFID privacy models by defining eight levels of privacy that correspond to
real-world adversaries of different strength. The strongest privacy notion of [18]
captures anonymity, backward and forward untraceability and adversaries with
access to auxiliary information. Moreover, it provides a security definition equiv-
alent to [15] that covers authentication. The model of [18] has been extended
in [19] to consider reader authentication whereas [20] aims at reducing the men-
tioned eight privacy classes to three privacy classes. Recently in [44,45] other pri-
vacy notions have been considered along with denial of service attacks. Since [18]
classifies the most significant RFID privacy notions, we focus on this security
model and extend it to support anonymizers.

3 Our Anonymizer-Enabled RFID System

3.1 Trust Relations and Assumptions

Before presenting our anonymizer-enabled RFID system, we first give an informal
description of the underlying trust relations that are formalized in Section 4.1.

Roles and Trust Relations. An anonymizer-enabled RFID system consists of
readers R, anonymizers A and tags T. The readers R set up tags that can later
be identified by all the readers R in he system. A tag T that has been set up by
an honest R is called legitimate. The task of the anonymizers A is to enforce the
privacy goals of legitimate tags.

As most RFID privacy models, we assume the readers R to be trusted. This
means that the readers R will behave as intended, which means that they do noth-
ing that violates the security and privacy goals of legitimate tags. Tags are con-
sidered to be untrusted since an adversary can obtain full control of the tags and
the data stored on them. Similar to tags, we consider anonymizers to be untrusted
and an adversary can get full control over many anonymizers and their secrets.

Assumptions. Following the majority of existing RFID models, we make the
following assumptions.

Reader. We assume that all readers R are connected to the same backend system
(e.g., a database d). Thus, all honest readers R have access to the same infor-
mation and thus can be subsumed as one single reader entity R. Moreover, the
reader R can perform public-key cryptography and can handle multiple instances
of the identification protocol with different tags in parallel.

Tags. The tags considered in this paper are passive devices, which means that
they do not have own power supply but are powered by the electromagnetic
field of the reader R. Thus, tags cannot initiate communication, have a narrow
communication range (e.g., a few centimeters to meters) and are constrained in
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their computational and storage capabilities, which limits them to basic crypto-
graphic functions like hashing, random number generation and symmetric-key
encryption [1,4].

Anonymizer. Anonymizers can perform public-key cryptography and can handle
multiple parallel instances of the anonymization protocol with different tags.
Since a tag T does not posses the required computational resources to update
its state, it can always be tracked between two anonymizations. Therefore, to
provide anonymity and unlinkability, it must be guaranteed that each tag T
is frequently anonymized by an honest anonymizer (e.g., every few minutes).
In practice, this is achieved by a dense network of public anonymizers or a
personal anonymizer. At this point we stress that in order to eavesdrop on every
interaction of a tag with a reader or an anonymizer, an adversary must always
be within reading range of the tag. Due to the limited communication range
of RFID this implies that the adversary is following the user of the tag, which
obviously violates the tag user’s privacy even if he would not carry an RFID tag.
Thus, a privacy-preserving RFID system can at most offer privacy guarantees
against adversaries that do not have permanent access to the tags. Moreover,
an adversary in practice can at most corrupt a limited number of anonymizers,
which ensures that there is at least one honest anonymizer in the system.

3.2 Notation and Preliminaries

General Notation. For a finite set S, |S| denotes the size of set S whereas for
an integer n the term |n| means the bit-length of n. The term s ∈R S means
the assignment of a uniformly chosen element from S to variable s. Let A be
a probabilistic algorithm. Then y ← A(x) means that on input x, algorithm A
assigns its output to variable y. AK(x) means that the output of A depends on x
and some additional parameter K (e.g., a secret key). Probability ε(l) is called
negligible if for all polynomials f(·) it holds that ε(l) ≤ 1/f(l) for all sufficiently
large l. Moreover, probability 1− ε(l) is called overwhelming if ε(l) is negligible.

Encryption Schemes. An encryption scheme ES is a tuple of algorithms
(Genkey, Enc, Dec) where Genkey is the key generation, Enc is the encryption
and Dec is the decryption algorithm. ES is called homomorphic if there are
two operations (◦, •) such that for every pair of ciphertexts c1 = Enc(m1) and
c2 = Enc(m2) it holds that c1 • c2 = Enc(m1 ◦ m2) (see, e.g., [46,37,47]). We
indicate homomorphic encryption schemes by ESh = (Genkeyh, Ench, Dech). A
public-key encryption scheme is said to be CPA-secure [48,49] if every proba-
bilistic polynomial time (p.p.t.) adversary A has at most negligible advantage
of winning the following security experiment. An algorithm Scpa (called CPA-
challenger), generates an encryption key pair (sk , pk ) ← Genkey(1l) and gives
the public encryption key pk to A. Now, A must respond with two messages m0
and m1. Scpa then randomly chooses a bit b ∈R {0, 1}, encrypts cb ← Encpk (mb)
and returns the resulting ciphertext cb to A, who now must return a bit b′ that
indicates whether cb encrypts m0 or m1. A wins if b′ = b.
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Random Oracles. A random oracle RO [50] is an oracle that responds with a
random output for each given input. More precisely, RO starts with an empty
look-up table τ . When queried with an input m, RO first checks if it already
knows a value τ [m]. If this is not the case, RO chooses a random value r and
updates τ such that τ [m] = r. Finally, RO returns τ [m].

3.3 Protocol Description and Specification

Our Goals. Our scheme combines and extends some of the schemes proposed
in [18] and employs anonymizers, which brings several improvements that are
important for practical applications. Our protocol achieves both narrow-strong
and forward privacy, allows tags to be verified in constant time and provides basic
protection against denial-of-service attacks. Therefore, our protocol achieves the
most important security, privacy and functional requirements of practical RFID
systems for both adversaries with and without access to auxiliary information.

We stress that our scheme only considers anonymity and untraceability of
the communication between tags and the reader that takes place when a tag is
used to access some service. Therefore, our protocol does not consider privacy
of the communication between tags and anonymizers. Notice that all tags access
anonymizers and thus from a rerandomization there is no special information
given to the adversary about the use of a given tag obtaining access to a given
service (i.e., when the tag communicates with a reader). Moreover, the use of
services can be selective, since only some tags can have access to some services
and thus privacy is critical in this phase. Finally note that the crucial issue is
that an adversary must not be able to obtain any information about which tag
accessed any service and about whether the same tag has obtained access to
some services.

Our protocol provides basic availability, which means that an adversary can-
not manipulate (i.e., invalidate) legitimate tags without physically attacking an
anonymizer (and thus criminalizing himself). However, this is sufficient for most
practical scenarios since a stolen or damaged public anonymizer can be detected
and thus such attacks are unlikely to happen just to violate privacy. Further,
public anonymizers can be physically secured (e.g., by a robust housing as it is
used for surveillance cameras). Moreover, in the scenario of personal anonym-
izers, the damage that can be done by a corrupted anonymizer is limited only
to the tags of one single user (since only the key of this single user’s anonym-
izer is revealed). Obviously, a potential success in a security violation (i.e., in
impersonating a legitimate tag) could motivate an adversary since he would
obtain unauthorized access to services, which in turn means that he would get
some economic advantages. However, our protocols turn out to be secure against
impersonation attacks even against adversaries that corrupt anonymizers.

We do not consider unclonability of tags since this seems to be infeasible to
achieve without hardware assumptions for the tags (which would significantly
increase the costs of the tags). Further, we do not consider tracing or identifica-
tion attacks based on the physical characteristics of tags, which in practice seems
to be a problem that cannot be prevented by protocols on the logical layer [51].
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One of the main features of our scheme is that we give a generic structure that
allows one to instantiate our scheme using various cryptographic primitives (i.e.,
any CPA-secure homomorphic encryption scheme) based on different number-
theoretic assumptions with different performance properties. Our protocol does
not require tags to perform public-key cryptography (beyond the homomorphic
operation that usually does not resort to a modular exponentiation) and thus,
is not limited to the use of special lightweight public-key encryption schemes.
This opens the possibility to employ optimized schemes, e.g., with short keys
(in particular when using a prime as modulus) and ciphertexts to reduce the
memory requirements to tags and to decrease the size of the protocol messages.

Protocol Overview. Our RFID scheme consists of two protocols: The tag
identification and the tag anonymization protocol. The former protocol is exe-
cuted by the reader R and a tag T and allows R to check if T is legitimate. The
latter protocol ensures anonymity and untraceability of T in the identification
protocol by updating the authentication secrets of T.

System Setup. The reader R and the anonymizers A are initialized as follows.

Reader Setup. Given a security parameter lR = (lh, ls), the reader R generates a
key pair (skR, pkR) ← Genkeyh(1lh) for a CPA-secure homomorphic public-key
encryption scheme. Moreover, R initializes a secret database d ← {} that later
stores the identities and authentication secrets of all legitimate tags. The secret
key of R is skR whereas the corresponding public key is (lh, ls, pkR). For brevity,
we write pkR to mean the complete tuple.

Anonymizer Setup. Given a security parameter lA = (la, ls), the anonymizer A
generates a key pair (skA, pkA) ← Genkey(1la) for the CPA-secure public-key
encryption scheme. The secret key of A is skA whereas the corresponding public
key is the tuple (la, ls, pkA). We write pkA to mean the complete tuple.6

Tag Creation. A tag T with identifier ID is initialized by the reader R as follows:
first, R generates a random long-term secret K and an ephemeral secret T , that
are used later in the authentication protocol to authenticate T to R. Moreover,
R generates a symmetric encryption key A ← Genkey(1ls), which is used later
by T to encrypt the communication of the anonymization protocol. Moreover,
R computes three public-key encryptions E ← EncpkA

(A), F ← Ench
pkR

(T ) and
G ← Ench

pkR
(ID). The ciphertext E is used to transport the symmetric key A

from T to A in the anonymization protocol whereas F and G are used to transport
the ephemeral secret T and the identifier ID from T to R in the identification
protocol. Finally, R updates its database d ← d ∪ {(ID, K)} and initializes T
with the state S ← (A, T, E, F, G, ID, K).
6 Note that personal anonymizers (i.e., those running on the users’ mobile phone or

PDA) can have different user-specific keys. However, this requires the user of a
personal anonymizer to indicate to the tag issuing entity which anonymizer shall be
used later to anonymize the newly created tag.
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Tag TID

choose random 𝑁T 𝑁T, 𝐸

𝜆← Enc𝐴(𝑇 ∗, 𝐹 ∗, 𝐺∗, 𝑁T)𝜆

if 𝑁 ′
T = 𝑁T then

𝑇 ′ ← 𝑇 ∘ 𝑇 ∗

Anonymizer A

𝐴← DecskA
(𝐸)

(𝑇 ∗, 𝐹 ∗, 𝐺∗, 𝑁 ′
T)← Dec𝐴(𝜆)

choose random 𝑇 ∗

(𝑇, 𝐹,𝐺)← (𝑇 ′, 𝐹 ′, 𝐺′)

(𝐴, 𝑇,𝐸, 𝐹,𝐺,𝐾) (skA, pkA, pkR)

𝐹 ∗ ← Enc𝔥pkR
(𝑇 ∗)

𝐹 ′ ← 𝐹 ∙ 𝐹 ∗

𝐺∗ ← Enc𝔥pkR
(1)

𝐺′ ← 𝐺 ∙𝐺∗

START

Fig. 1. The anonymization protocol

Anonymization Protocol. The anonymization protocol is illustrated in Fig-
ure 1. It is a protocol between a tag T with identifier ID and an anonymizer A
and aims at updating the state S of T. First, T randomly chooses NT and sends
(NT, E) to A. Then, A chooses a new ephemeral tag secret T ∗ and encrypts it to
F ∗ ← Ench

pkR
(T ∗). Moreover, A encrypts G∗ ← Ench

pkR
(1) of the identity w.r.t.

to the homomorphic operation ◦ of the public-key encryption scheme. Finally, A
decrypts A ← DecskA

(E), encrypts λ ← EncA(T ∗, F ∗, G∗, NT) and sends λ to T.
Then, T decrypts (T ∗, F ∗, G∗, N ′

T)← DecA(λ) and checks if N ′
T = NT. If this is

the case, T computes a new ephemeral authentication secret T ′ ← T ◦ T ∗, the
(homomorphic) public-key encryption F ′ ← F • F ∗ of the new ephemeral key
T ′ and a new (re-randomized) encryption G′ ← G •G∗ of the tag identifier ID.
Finally, T updates its state (T, F, G) ← (T ′, F ′, G′). If N ′

T �= NT, T aborts the
anonymization protocol without updating its state.

Identification Protocol. Figure 2 illustrates the identification protocol, which
takes place between a tag T with identifier ID and the reader R with the goal to
identify T on the reader side. R sends a random NR to T, which then computes
D ← RO(NR, F, G, T, K) and responds with (D, F, G). Then, R decrypts ID′ ←
Dech

skR
(G) and checks if its secret database d contains a tuple (ID′, K ′). If this

is the case, R decrypts T ′ ← Dech
skR

(F ) and accepts T by returning ID′ if D =
RO(NR, F, G, T ′, K ′). Otherwise, R rejects T and returns ⊥.

Technical Feasibility. Using the (homomorphic) El Gamal public-key encryp-
tion scheme, our protocol requires tags to provide about 0.6 KBytes of non-
volatile memory. Anonymization requires the tag to generate a random number,
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NR choose random NR

ID′ ← Dech
skR

(G)

if d contains a pair (ID′, K′) then

D, F, G

Reader R

T ′ ← Dech
skR

(F )

if RO(NR, F, G, T ′, K′) = D

else return ⊥

then return ID′

Tag TID

(A, T, E, F, G, K) (skR, pkR, d)

D ← RO(NR, F, G, T, K)

Fig. 2. The identification protocol

decrypt one symmetric ciphertext and to perform five modular multiplications.
Identification only requires the tag to evaluate a hash function. Note that the
anonymization protocol is completely transparent to the user whereas identifi-
cation usually requires the user to wait (e.g., at a door) until the authentication
protocol completes. Thus, in contrast to the anonymization protocol, most prac-
tical applications have strict time constraints on the identification protocol. Our
scheme should be implementable with widely available RFID tags.

4 The Anonymizer-Enabled RFID Model

To prove the security and privacy properties claimed in Section 3.3, an appro-
priate security and privacy model is needed. Since existing RFID security and
privacy models do not capture anonymizer-enabled protocols (see Section 2), we
extend the model of [18] to the first universal security and privacy model for
anonymizer-enabled RFID systems.

4.1 System Model

To form the anonymizer-enabled model, the original system model of [18] must
additionally consider the anonymizers A and the corresponding protocols. This
means that there must be a procedure to set up A and an interactive protocol
where A updates the state of the tags. Following [18], we now define an anonym-
izer-enabled RFID system.

SetupReader(1lR)→ (skR, pkR, d) on input of a security parameter lR, this func-
tion initializes the reader R by creating some public parameters pkR that are
known to all entities and some secret parameters skR that are only known to
R. This function also creates a secret database d that can only be accessed by
R and that stores the identities and authentication secrets of all legitimate
tags.
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SetupAnon(1lA , pkR) → (skA, pkA) on input of a security parameter lA and the
public key pkR of R, this function initializes the anonymizer A by creating
some public parameters pkA that are known to all entities and some secret
parameters skA that are only known to A.

SetupTagpkR
(ID, pkA)→ (K, S) generates a tag-specific secret K and uses the

public key pkR of R to create an initial state S for the tag T with identifier
ID. T is initialized with S and (ID, K) is stored in the secret database d of
R. Since T must identify the anonymizer A in the anonymization protocol,
this procedure involves pkA.

AnonTag[TID(S)↔ A(skA, pkA, pkR)]→ S′ is an interactive protocol that is (fre-
quently) run between the tag T with identifier ID and the anonymizer A. The
goal of this protocol is to update the state S of T to a new indistinguishable
state S′.

IdentTag[TID(S) ↔ R(skR, pkR, d)] → out is an interactive protocol between the
tag T with identifier ID and the reader R. The goal of this protocol is to iden-
tify T and to verify whether T is legitimate. With overwhelming probability,
R returns out = ID if T is legitimate and out = ⊥ otherwise.7

4.2 Adversary Model

The adversary model of [18] defines the privacy and security objectives as a
security experiment, where a polynomially bounded adversary can interact with
a set of oracles that model the capabilities of the adversary.

In the anonymizer-enabled model, an adversary may obtain information from
the anonymization protocol. This ability is modeled by allowing the adversary
to launch new anonymization protocol sessions and to interact with the anonym-
izer. To consider the case where the adversary controls a set of anonymizers, we
allow the adversary to obtain the secrets of the anonymizers by corrupting them.
However, as discussed in Section 3.1 and stated in Assumption 1, we assume that
there is at least one honest anonymizer in the system whose communication
cannot be eavesdropped or manipulated by the adversary. In the anonymizer-
enabled model, the adversary has access to the oracles described below.

CreateTagb(ID, pkA) This oracle allows the adversary to set up a tag with iden-
tifier ID. This oracle internally calls SetupTagpkR

(ID, pkA) to create (K, S)
for tag ID. If input b = 1, the adversary chooses the tag to be legitimate,
which means that (ID, K) is added to the secret database d of the reader
R. For input b = 0, the adversary can create illegitimate tags where (ID, K)
is not added to d. This models the fact that an adversary can obtain (e.g.,
buy) legitimate tags and create forgeries.

DrawTag(Δ)→ (vtag1, b1, . . . , vtagn, bn) Initially, the adversary cannot inter-
act with any tag but must query the DrawTag oracle to get access to a set
of tags that has been chosen according to a given tag distribution Δ. This

7 A false negative occurs when T is legitimate but out = ⊥, a false positive happens
if T is not legitimate and out �= ⊥. An incorrect identification occurs if the tag T
with identifier ID is legitimate but out �∈ {ID,⊥}.
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models the fact that the adversary can only interact with the tags within his
reading range. The adversary usually only knows the tags he can interact
with by some temporary identifiers vtag1, . . . , vtagn (e.g., in our protocol
the tuple (F, G) can be seen as virtual identifier). The DrawTag oracle man-
ages a secret look-up table T that keeps track of the real identifier IDi that is
associated with each temporary identifier vtagi, i.e., T (vtagi) = IDi. More-
over, the DrawTag oracle also provides the adversary with information on
whether the corresponding tags are legitimate (bi = 1) or not (bi = 0). This
models the availability of auxiliary information to the adversary.8

FreeTag(vtag) Contrary to the DrawTag oracle, the FreeTag oracle makes a tag
vtag inaccessible to the adversary, which means that the adversary cannot
interact with vtag any longer until it is made accessible again (under a new
temporary identifier vtag′) by another DrawTag query. This models the fact
that a tag can get out of the reading range of the adversary.

LaunchIdent( ) → πR makes the reader to start a new instance πR of the IdentTag
protocol, which allows the adversary to start different parallel IdentTag pro-
tocol instances with the reader R.

LaunchAnon( )→ πA makes the anonymizer to start a new instance πA of the
AnonTag protocol, which allows the adversary to start different parallel
AnonTag protocol instances with an honest anonymizer.

SendTag(m, vtag) → m′ sends a message m to the tag T that is known as vtag
to the adversary. The tag T responds with message m′. This allows the ad-
versary to perform active attacks against both the AnonTag and the IdentTag
protocol.

SendReader(m, πR)→ m′ sends a message m to the instance πR of the IdentTag
protocol that is executed by the reader R, which responds with message m′.
This allows the adversary to perform active attacks against the IdentTag
protocol.

SendAnon(m, πA)→ m′ sends a message m to the instance πA of the AnonTag
protocol that is executed by an honest anonymizer A, which responds with
message m′. This allows the adversary to perform active attacks against the
AnonTag protocol.

Result(πR) returns 1 if the instance πR of the IdentTag protocol has been com-
pleted but the tag T that participates in the protocol has not been accepted
by the reader R. In case R identified a legitimate tag, Result returns 0. This
allows the adversary to obtain auxiliary information on whether the authen-
tication of T was successful or not.

CorruptTag(vtag) → S returns the current state S of the tag T that is known as
vtag to the adversary. This models (physical) attacks on tags that disclose
the current tag state.

CorruptAnon(A) → (skA) returns the secret parameter skA of anonymizer A. This
models (physical) attacks against honest anonymizers that disclose the secret
skA of anonymizer A.

8 For instance, in an access control scenario, the adversary may notice that a tag vtagi

is legitimate by observing its communication with a reader at a locked door and then
watching whether the door opens or not.
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As discussed in Section 3.1, we make the following assumption:

Assumption 1. A tag T with identifier ID always runs AnonTag[TID ↔ A] with
an honest anonymizer A at least once before each execution of IdentTag[TID ↔
R∗] with a (potentially malicious) reader R∗ and before each CorruptTag(vtag)
query where T (vtag) = ID.

Adversary Classes. The original model of [18] distinguishes the following four
major adversary classes that represent adversaries of different strength:

– Weak adversaries cannot corrupt tags and are limited to active attacks on
the protocols. This assumes that corruption of tags is infeasible (e.g., due to
tamper-resistant hardware), which is clearly not the case for low-cost RFIDs.

– Forward adversaries cannot interact with the RFID system (i.e., all the
oracles described above) any longer after corrupting any of the tags for the
first time but they can still make CorruptTag queries to all other tags. This
models the case where the secrets of the tags become known when the life
of the system is over.

– Destructive adversaries can never use a tag again after it has been corrupted
but can still query all oracles for any of the remaining non-corrupted tags.
This assumes that tags are destroyed when they are corrupted (e.g., due to
tamper-evident hardware).

– Strong adversaries have full access to all of the oracles at any time.

Moreover, [18] defines narrow variants of the four adversary classes described
above. A narrow adversary cannot obtain auxiliary information (i.e., on whether
a tag is legitimate or not). This may be the case in application scenarios where
the result of the identification protocol cannot be observed by the adversary.
Therefore, a narrow adversary cannot query the Result oracle and is not given
the values (b1, . . . , bn) from the DrawTag oracle, which both are the only sources
of auxiliary information.

4.3 Security Definition

The security definition of [18] considers attacks where the adversary aims to
impersonate or to forge a legitimate tag. More precisely, the definition is based
on a security experiment Expsec

Asec
where a strong adversary must create an

instance LaunchIdent( ) → πR of the IdentTag protocol with the reader R and
finish this protocol instance πR with a query SendReader(m, πR). Note that Asec
can arbitrarily interact with all of the oracles defined in Section 4.2 at any time
during the experiment. The adversaryAsec wins if (i) R identifies a legitimate tag
ID in the instance πR of the IdentTag protocol, (ii) tag ID has not been corrupted
and (iii) tag ID and R have not run any instance πR

′ of the IdentTag protocol
that generated the same messages as instance πR (i.e., πR is not a replay of an
old transcript πR

′). Let Expsec
Asec

= 1 denote the case where the adversary Asec
wins this security experiment.
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Definition 1 (Security [18]). An RFID system (as defined in Section 4.1)
is secure if for any strong adversary Asec the probability Pr[Expsec

Asec
= 1] is

negligible.

Definition 1 can be used in the anonymizer-enabled model as it is. Note that
the adversary Asec is allowed to corrupt all the anonymizers when playing the
security experiment described above. This models the fact that anonymizers
should not be able to clone or to forge tags.

4.4 Privacy Definition

The privacy definition of [18] is very flexible and, dependent on the class of
adversaries considered (in Section 4.2), it covers different notions of privacy. For
strong adversaries the definition considers anonymity, backward and forward
untraceability.

The privacy definition requires the communication of a tag T to not reveal
any information that helps an adversary Aprv to trace or to identify T. It is
based on the existence of a simulator B that can simulate the communication of
T to Aprv without using any of the secrets of the RFID system. B must answer
all queries of Aprv by only using the inputs and outputs of the oracle queries
that Aprv previously made (i.e., B “sees” what Aprv “sees”). In case the success
probability of Aprv does not change significantly when interacting with B instead
of the real RFID system, the communication of T does not help Aprv to break
the privacy properties of the RFID scheme. In [18], B is called blinder and an
adversary AB

prv who interacts with B is called blinded adversary.
More formally, the privacy definition considers a security game Expprv

Aprv
where

an adversary Aprv must distinguish whether he interacts with the real RFID
system or a blinder B. Therefore, Aprv first performs an attack phase that is
followed by an analysis phase. In the attack phase, Aprv is allowed to interact
with the oracles described in Section 4.2 in an arbitrary way. In the analysis
phase, Aprv cannot access the oracles any more but is given access to the secret
table T of the DrawTag oracle, which allowsAprv to link the temporary identifiers
vtag of all the tags he interacted with to their corresponding real identities ID.
Finally, Aprv must return a bit b to indicate whether he interacted with a blinder
B (b = 1) or the real RFID system (b = 0). This leads to the privacy definition
described below.

Definition 2 (Privacy [18]). Let P be one of the adversary classes defined
in Section 4.2. An RFID system (as defined in Section 4.1) is P -private if for
any adversary Aprv of class P there exists a blinder B such that |Pr[Expprv

Aprv
=

1]− Pr[Expprv
AB

prv
= 1]| is negligible.

The communication of a tag is modeled by the LaunchIdent, SendReader, SendTag
and the Result oracle. Thus, a blinder B must simulate these oracles. In the an-
onymizer-enabled model, we additionally have the LaunchAnon and the SendAnon
oracles that model the interaction of a tag with the anonymizer. However, as
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discussed in Section 3.3, we are not concerned of the privacy of the communica-
tion between tags and the anonymizer. Thus, the LaunchAnon and the SendAnon
oracle need not to be simulated by B. Note that the CorruptTag query is not sim-
ulated by B because Definition 2 only captures the privacy loss of the wireless
communication of tags.

5 Security Analysis

Theorem 1. The RFID system presented in Section 3.3 is correct, secure in the
random oracle model, narrow-strong and forward private in the random oracle
model under Assumption 1 if the homomorphic public-key encryption scheme is
CPA-secure.

Note that Assumption 1 is only required to ensure the privacy properties of
our scheme. Security (against impersonation attacks) also holds if there is no
(honest) anonymizer in the system.

Due to space restrictions, we only give proof sketches and provide full proofs
in the full version of the paper [52].

Correctness. No false negative can be produced since each legitimate tag T
will always be accepted by the reader R. A false positive cannot be produced
since the decryption of G outputs a unique ID and, if ID is not in the database
d, R immediately rejects the identification. ��
Security. The idea of the security proof is as follows: by contradiction, we
assume that there is a narrow-strong adversary Asec (as defined in Section 4.2),
who wins the security game of Definition 1. Given Asec, one can construct a
p.p.t. algorithm that finds a collision to the random oracle with non-negligible
probability. However, by the pseudorandomness of the random oracle, this can
happen with at most negligible probability. ��
Narrow-Strong Privacy. The idea of the privacy proof is as follows: by con-
tradiction, we assume that there is a narrow-strong adversary Aprv (as defined
in Section 4.2), who wins with non-negligible probability the game of Defini-
tion 2. Given such an adversary Aprv, one can construct a p.p.t. algorithm that
breaks the CPA-security of the homomorphic public key encryption scheme with
non-negligible probability. However, since the encryption scheme is assumed to
be CPA-secure, this can happen with at most negligible probability, which is a
contradiction. ��
Forward-Privacy. To prove forward-privacy, we can use the following lemma
from [18]:

Lemma 1. For every secure RFID scheme that has the property that, whenever
a legitimate tag T and the reader R have executed a complete run of the IdentTag
protocol in a secure environment (i.e., where no adversary can manipulate the
protocol-run), the output out of R is never ⊥ (i.e., R does never reject a legitimate
tag), it holds that narrow-forward privacy implies forward-privacy.
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Our scheme is narrow-strong private, which implies narrow-forward privacy [18].
Moreover, it is correct and secure, which means that it fulfills all requirements to
apply Lemma 1. Since the original proof of Lemma 1 is also valid in the anonym-
izer-enabled model, we can apply Lemma 1 to prove that our scheme achieves
forward privacy. ��
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Abstract. Wireless sensor networks have several useful applications in commer-
cial and defense settings, as well as user-centric personal area networks. To es-
tablish secure (point-to-point and/or broadcast) communication channels among
the nodes of a wireless sensor network is a fundamental security task. To this
end, a plethora of so-called key pre-distribution schemes have been proposed in
the past, e.g., [25][9][19][8][5]. All these schemes, however, rely on shared se-
cret(s), which are assumed to be pre-loaded onto the sensor nodes, e.g., during
the manufacturing process.

In this paper, we consider the problem of user-assisted secure initialization of
sensor network necessary to bootstrap key pre-distribution. This is a challenging
problem due to the level of user burden involved in initializing multiple (often
large number of) sensor nodes and lack of input and output user-interfaces on
sensor motes. We propose a novel method for secure sensor node initialization
based on a visual out-of-band channel that utilizes minimal output interface in
the form of LED(s) already available on most off-the-shelf sensor motes. The
proposed method requires only a little extra cost, is efficient and reasonably scal-
able. Moreover, based on a usability study that we conducted, the method turns
out to be quite user-friendly and easy to administer by everyday computer users.

Keywords: Wireless Sensor Networks, Authentication, Key Distribution.

1 Introduction

Wireless sensor networks (WSN) have several useful applications in monitoring diverse
aspects of the environment. Ready examples include monitoring of: structural/seismic
activity, wildlife habitat, air pollution, border crossings, nuclear emission and water
quality. In addition to commercial and defense settings, WSNs appeal to a variety of
user-centric applications in personal area networks [11,36,22]. In some applications,
sensor nodes operate in a potentially hostile environments and security measures are
needed to inhibit or detect node compromise and/or tampering with inter-node or node-
to-sink communication. A large body of literature has been accumulated in the last
decade dealing with many aspects of sensor network security, e.g., key management,
secure routing and DoS detection [24,14,9,7].

In a WSN environment, the nodes might need to communicate sensitive data among
themselves and with the base station (also referred to as “sink”). The communication
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among the nodes might be point-to-point and/or broadcast, depending upon the applica-
tion. These communication channels are easy to eavesdrop on and to manipulate, raising
the very real threat of the so-called Man-in-the-Middle (MiTM) attacker. A fundamental
task, therefore, is to secure these communication channels.

Key Pre-Distribution and the Underlying Assumption: A number of so-called “key
pre-distribution” techniques to bootstrap secure communication in a WSN have been
proposed, e.g., [25,9,19,8,5]. However, all of them assume that, before deployment,
sensor nodes are somehow pre-installed with secret(s) shared with other sensor nodes
and/or the sink. The TinySec architecture [15] also assumes that the nodes are loaded
with shared keys prior to deployment. This might be a reasonable assumption in some,
but certainly not all, cases. Consider, for example, a user-centric application of WSN:
an individual user (Bob) wants to install a sensor network to monitor the perimeter
of his property; he purchases a set of commodity noise-and-vibration sensor nodes at
some retailer and wants to deploy the sensor nodes with his home computer acting as
the sink. Being off-the-shelf, these sensor nodes are not sold with any built-in secrets.
Some types of sensor nodes might have a USB (or similar) connector that allows Bob
to plug each sensor node into his computer to perform secure initialization. This would
be immune to both eavesdropping and MiTM attacks. However, sensor nodes might not
have any interface other than wireless, since having a special “initialization” interface
influences the complexity and the cost of the sensor node. Also, note that Bob would
have to perform security initialization manually and separately for each sensor node. To
initialize N motes, Bob will have to perform O(N) amount of work. This undermines
the scalability of the approach since potentially a large number of sensor nodes might
be involved.

Furthermore, we argue that keys can not always be pre-loaded during the manufac-
turing phase because eventual customers might not trust the manufacturer. Moreover,
an application might involve motes produced by multiple manufacturers. A PKI-based
solution might be infeasible as it would require a global infrastructure involving many
diverse manufacturers.1

Secure Initialization Approach: The best possible strategy would be for the network
administrator or user of WSN to himself/herself perform the key distribution on-site.
Due to lack of hardware interfaces (such as USB interfaces) on sensor nodes and for
usability reasons, this key distribution should be performed wirelessly. Prior key pre-
distribution schemes assume the existence of some pre-installed secret (such as a point
on a bivariate polynomial f(x, y) in [8]) using which the shared keys can be derived.
Therefore, the task of key distribution is reduced to establishing a secure channel be-
tween the administrator’s computer (the sink node) and each sensor node. The resulting
secure channels can in turn be used to securely transfer, from the sink to each node,
the shared secrets necessary to bootstrap key pre-distribution. Since the administrator
might need to initialize a large number of sensor nodes, the process needs to be repeated

1 The problem that we consider in this paper is very similar to the problem of “wireless device
pairing,” the premise of which is also based on the fact that the devices wanting to commu-
nicate with each other do not share any pre-shared secrets or a common PKI with each other
[2].
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in batches. The larger the number of sensor nodes in each batch, the more scalable is
the secure initialization method.

Out-of-Band Channels: In quest of a scalable sensor node initialization method, we
consider out-of-band (OOB) channels. The OOB (audio, visual or tactile) channels have
recently been utilized in the context of secure device pairing application [2,21,12,29],
used to establish shared keys between two previously un-associated devices (we review
these methods and their applicability to sensor node initialization in the following sec-
tion). Unlike the wireless communication channel, the OOB channels are both perceiv-
able and manageable by the human user(s) operating the devices, and thus can be used
to authenticate information exchanged over the wireless channel. Unlike the wireless
channel, the attacker can not remain undetected if it interferes with the OOB channel,
although it can still eavesdrop upon it.

Our Contributions: We develop a scalable sensor node initialization method based on
a visual OOB channel. Our system builds on an existing protocol of Saxena et al. [29].
However, we make two important extensions to realize the proposed system. First, we
develop a new visual channel consisting of simultaneously blinking LEDs2 as transmit-
ters on sensor nodes and a video camera on the administrator’s computer (the sink).
This enables efficient transmission of OOB data from sensor motes to the sink with
little involvement from the administrator. Second, we design a very intuitive yet effec-
tive interface on the sink that allows the administrator to easily discard any potential
“attacked” sensor nodes.

Our experiments show that with an inexpensive web cam connected to a laptop or
desktop computer, we are efficiently able to use the above visual channel to securely
initialize 16 sensor nodes per batch. To evaluate our proposal at the “usability layer,”
we pursue a thorough and systematic usability study. The results of our study show that
our system is both user-friendly as well as robust to errors (human or otherwise).

Organization: In the following section, we review the prior related work. Next, we de-
scribe the security model and summarize the relevant protocol we use. This is followed
by the description of the design and implementation of our scheme. Finally the results
of our experimental testing are presented and discussed.

2 Related Work

The problem of secure sensor node initialization has been considered only recently.
Most closely related to our proposal is the sensor network initialization method, called
“Message-In-a-Bottle” (MiB) by Kuo et al. [6]. In MiB, the key distribution takes place
inside a Faraday Cage, which is used to shield communication from eavesdropping
and outside interference. MiB can support key distribution onto multiple sensor nodes3

and from the administrator’s perspective, it is quite user-friendly. However, it has some

2 Most commercially available sensor motes possess multiple (typically three) LEDs. (For ex-
ample, refer to Mica2 specifications [1].)

3 Although it is not clear from the experiments presented in [6], at most how many motes can
be initialized per batch.
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drawbacks. The first problem is the need to obtain and carry around a specialized piece
of equipment – a Faraday Cage. As illustrated in [6], building a truly secure Faraday
Cage might be a challenge. The cost and the physical size of the Cage can also be
problematic. In other words, only a very few sensor motes could be supported in each
batch with a reasonably priced and reasonably sized cage. The second drawback with
MiB is that if the initialization process fails for only one sensor node or if there is an
error (e.g., if the cage was not properly closed), the entire batch of sensor nodes needs to
be re-initialized and re-keyed from scratch. Third, a batch of sensor motes must consist
of homogeneous sensor motes with similar weights (the weight is used to calculate
the number of motes inside the Cage [6]). Fourth, two additional motes (called “keying
device” and “keying beacon”) that possess physical interfaces, such as USB connectors,
are needed along with the base station and un-initialized nodes. These increase both the
cost and the complexity of the system.

The method we propose in this paper can be viewed as an alternative to MiB; the
former provides (authenticated key exchange) protocol level security whereas the latter
offers physical layer security. Our method also addresses aforementioned drawbacks
with MiB (we will discuss this in the final section of the paper). As opposed to MiB
[6], our proposal is based on public-key cryptography. We note, however, that most
commercial sensor motes are efficiently able to perform public key cryptography [20].
Elliptic-Curve Cryptography has particularly been shown to be very promising on sen-
sor motes [18].

Prior to the MiB method of [6], following schemes were proposed. However, these
schemes were aimed at associating only two sensor nodes at a time and not multiple
nodes, which is the focus of our paper. The “Shake-them-up” [4] scheme suggests a sim-
ple manual technique for pairing two sensor motes that involves shaking and twirling
them in very close proximity to each other, in order to prevent eavesdropping. While
being shaken, two sensor motes exchange packets and agree on a key one bit at a time,
relying on the adversary’s inability to determine the sending sensor node. However, it
turns out that the sender can be identified using radio fingerprinting [27] and the security
of this scheme is uncertain.

Other two related schemes are: “Smart-Its Friends” [13] and “Are You with Me?”
[17]. Both use human-controlled movement to establish a secret key between two de-
vices. In addition to having the same drawbacks as “Shake-Them-Up”, these schemes
would require an accelerometer on each sensor mote to measure movement. Most sen-
sor motes are not equipped with accelerometers, however.

The initialization method that we propose in this paper is similar to the device pairing
schemes that use an OOB channel. Thus, we also review most relevant device pairing
methods and argue whether or not they can be extended for the application of scalable
sensor node initialization. In their seminal work, Stajano and Anderson [35] proposed
to establish a shared secret between two devices using a link created through a physical
contact (such as an electric cable). As pointed out previously, this approach requires
interfaces not available on most sensor motes. Moreover, the approach would be un-
scalable.

Balfanz, et al. [2] extended the above approach through the use of infrared as an OOB
channel – the devices exchange their public keys over the wireless channel followed by
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exchanging (at least 80-bits long) hashes of their respective public keys over infrared.
Most sensor motes do not possess infrared transmitters. Moreover, infrared is not easily
perceptible by humans.

Based on the protocol of Balfanz et al. [2], McCune et al. proposed the “Seeing-is-
Believing” (SiB) scheme [21]. SiB involves establishing two unidirectional visual OOB
channels – one device encodes the data into a two-dimensional barcode and the other
device reads it using a photo camera. To apply SiB for sensor node initialization, one
would need to affix a static barcode (during the manufacturing phase) on each mote,
which can be captured by a camera on the sink node. However, this will only provide
unidirectional authentication, since the sensor motes can not afford to have a camera
each. Note that it will also not be possible to manually input on each sensor mote the
hash of the public key of the sink, since most motes do not possess keypads and even if
they do, this will not scale.

Saxena et al. [29] proposed a new scheme based on visual OOB channel. The scheme
uses one of the protocols based on Short Authenticated Strings (SAS) [23], [16], and
is aimed at pairing two devices (such as a cell phone and an access point), only one of
which has a relevant receiver (such as a camera). The protocol is depicted in Figure 1
and as we will see in the next section, this is the protocol that we utilize in our proposal.
In this paper, we extend the above scheme to a “many-to-one” setting applicable to key
distribution in sensor networks. Basically, the novel OOB channel that we build consists
of multiple devices blinking their SAS data simultaneously, which is captured using a
camera connected to the sink. In addition, we design an intuitive user interface on the
sink that facilitates human users to clearly discard any potential “attacked” sensor nodes.

Recently, Soriente et al. [34] consider the problem of pairing two devices based on
an audio channel. Their scheme can be based on the protocol of [29], with the unidi-
rectional SAS channel consisting of one device encoding its SAS data into audio, and
the other device capturing it using a microphone. Extending this scheme to initialize
multiple sensor nodes in a scalable manner seems hard as it will be hard to decode
simultaneously “beeping” sensor nodes.

There are a variety of other pairing schemes, based on manual comparison/transfer
of OOB data: [12,37] can not be used on motes as they require displays; [33,26] are
applicable on sensor motes but would not scale well due to their manual nature.

3 Communication and Security Model, and Protocol

Model: The protocol that we utilize in our initialization method is based upon the
following communication and adversarial model [38]. The devices being paired are
connected via two types of channels: (1) a short-range, high-bandwidth bidirectional
wireless channel, and (2) auxiliary low-bandwidth physical OOB channel(s). Based
on device types, the OOB channel(s) can be device-to-device (d2d), device-to-human
(d2h) and/or human-to-device (h2d). An adversary attacking the pairing protocol is as-
sumed to have full control on the wireless channel, namely, it can eavesdrop, delay,
drop, replay and modify messages. On the OOB channel, the adversary can eavesdrop
on but can not modify messages. In other words, the OOB channel is assumed to be
an authenticated channel. The security notion for a pairing protocol in this setting is
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A (sensor mote) B (sink)

Pick RA ∈ {0, 1}k

(cA, dA) ← commit(pkA, RA)
pkA,cA �� Pick RB ∈ {0, 1}k

pkB ,RB��
dA ��

SASA = RB ⊕ HRA
(pkB)

SASA ��
RA ← open(pkA, cA, dA)

b�� � � � �� � � � b��� � � � b ← (SASA == RB ⊕ HRA
(pkB))

Accept pkB as B’s public key if Accept pkA as A’s public key if
b = 1 b = 1

���� : the wireless channel
�� : the unidirectional d2d channel

��� � � � : the d2h channel
�� � � �� � � : the h2d channel

pkA, pkB : public keys of devices A and B
commit() and open(): functions of a commitment scheme based on random oracle model

(in practice, SHA-1/MD5)
H(): hash function drawn from an almost universal hash function family

Fig. 1. The protocol by Saxena et al. based on the SAS protocol of Pasini-Vaudenay

adopted from the model of authenticated key agreement due to Canneti and Krawczyk
[3]. In this model, a multi-party setting is considered wherein a number of parties si-
multaneously run multiple/parallel instances of pairing protocols. In practice, however,
it is reasonable to assume only two-parties running only a few serial/parallel instances
of the pairing protocol. For example, during authentication for an ATM transaction,
there are only two parties, namely the ATM machine and a user, restricted to only three
authentication attempts. The security model does not consider denial-of-service (DoS)
attacks. Note that on wireless channels, explicit attempts to prevent DoS attacks might
not be useful because an adversary can simply launch an attack by jamming the wireless
signal.

In a communication setting involving two users restricted to running three instances
of the protocol, the SAS protocol of [29] [30] need to transmit only k (= 15) bits of
data over the OOB channels. As long as the cryptographic primitives used in the pro-
tocols are secure, an adversary attacking these protocols can not win with a probability
significantly higher than 2−k (= 2−15). This gives us security equivalent to the security
provided by 5-digit PIN-based ATM authentication.

Protocol: The protocol that we utilize [29][30] is depicted in Figure 1 (we base the
protocol upon the SAS protocol of [23], although it can similarly work with other SAS
protocol [16] as well). The protocol works as follows. Over the wireless channel, de-
vices A (sensor mote) and B (sink) follow the underlying SAS protocol (due to lack
of space, we omit describing the protocol steps over the wireless channel and refer the
reader to [29]). Then a unidirectional OOB channel is established by device A trans-
mitting the SAS data, over the d2d channel. This is followed by device B comparing
the received data with its own copy of the SAS data, and transmitting the resulting bit
b of comparison over the 1-bit d2h OOB channel (say, displayed on its screen). Finally,
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the user reads the transmitted bit b and accordingly indicates the result to device A by
transmitting the same bit b over an h2d input channel.

For our application of secure initialization of sensor nodes, we execute the protocol
of [29] in a “many-to-one” setting. Basically, the sink runs serial or (preferably) paral-
lel instances of the pairing protocol over the wireless channel with each of the n motes
belonging to a batch. The SAS data, however, is transmitted simultaneously from each
mote to the sink. Since the SAS data is transmitted simultaneously by each mote, the
sink has no efficient way to figure out what SAS value was transmitted by which of the
motes it discovered over the wireless channel. Therefore, the sink accepts the key dis-
tribution on a particular mote A if the SAS value (derived from information transmitted
over the wireless channel) corresponding to A matches with any of the n SAS values
received over the SAS channel. Sensor mote A is therefore accepted with a probability
at most n2−k instead of 2−k as in the original “one-to-one” setting. Note that in order
to achieve the same level of security offered by a 5-digit PIN-based authentication (as
mentioned above), the length of the SAS data should now be 15 + log2(n).

The security of our initialization method is equivalent to the security of the under-
lying SAS protocol, under the assumption that the administrator correctly discards the
motes based on the result (bit b corresponding to each mote) indicated by sink.

4 Our Proposal: Secure Initialization Using a Visual Channel

In this section, we describe the design and implementation of an efficient, scalable, user
friendly and commercially viable method of secure initialization for sensor nodes. The
core of our solution relies on the protocol of [29] executed in a many-to-one setting,
as mentioned in the previous section. For transmitting the SAS data of all motes si-
multaneously over the visual channel, the LEDs of sensor motes are used for ON-OFF
encoding, and for receiving the data, video frame based image processing is used on the
receiver side.

4.1 Set-Up of the Mechanism

In our setup (Figure 3), the administrator’s computer (the sink) is connected (using a
USB interface) with a sensor node having the functionality of a base station. The sink is
also connected with a video camera (a web cam). The motes and the sink communicate
over the wireless channel. Sensor motes have their on board displays implemented using
two types of LEDs – one Sync LED (used for synchronizing the data transmission
between the mote and the sink) and at least one Data LED (used for transmitting SAS
data). The Data LEDs can be of any color (same or different), but their color(s) should
be different from the color of the Sync LED. The blinking LEDs on motes are used
to transmit the SAS data, which is captured using the camera on the sink. The sink
matches the received SAS data with its own copy of the acquired SAS data for each
mote and based on this, learns whether a particular sensor mote “passed” or “failed”
during the process. The sink also displays on its screen the result corresponding to each
sensor mote. Based on the result indicated, the administrator must remove or turn off
the failed motes. In case the sink is also connected with a printer, the screen indicating
the result can also be printed, to better assist the administrator.
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4.2 Role of the Administrator

The administrator needs to follow the steps shown in Figure 2. On completion of Step
5, the sink makes use of the resulting secure channels between itself and each sensor
mote to bootstrap any of the key pre-distribution schemes, e.g., [8].

Step 1. The administrator turns on the sensor motes and places them on a table, one by one.

Step 2. The administrator presses the “Start” button on the sink. This triggers the sink to
sense the nearby motes and signal them over the wireless channel to start an instance each
of the protocol of Figure 1. Once done with their SAS data computation, the motes show a
“Ready” signal to the administrator by lighting up their red LEDs, and the sink shows the
message “Focus the Camera on Ready Motes and Press OK”.

Step 3. The administrator adjusts the camera accordingly to capture the LEDs of the ready
motes and presses the “OK” button on the sink. The sink sends a “Start Transmission” signal
over wireless channel to all sensor motes simultaneously to transmit their SAS data. All
the motes transmit their SAS data simultaneously and the camera on the sink captures and
decodes the data, and shows the result on the screen and/or prints it out.

Step 4. The administrator turns off the failed motes based on the on-screen or printed output.
The turning off of a mote is to be implemented in such a manner that it is equivalent to the
mote rejecting the protocol instance it executed with the sink. If the administrator does not
turn off a particular mote, within an (experimentally determined) time period Δ, by default,
the protocol instance will be accepted by the mote. (The default acceptance mechanism is
adopted in order to improve the usability of our method. Under normal circumstances, i.e.,
when no attacks or errors occur, the administrator does not need to turn off any mote.)

Step 5. Steps 1-4 are repeated, batch by batch, until all motes are initialized successfully.

Fig. 2. The Administrator’s Role

4.3 Design and Implementation

Our sensor node initialization method requires three phases: (1) the device discovery
phase, whereby the sink discovers each mote (over the wireless channel)4, (2) protocol
execution phase, whereby the first three rounds of the SAS protocol of Figure 1 are exe-
cuted between the sink and each mote, and (3) the SAS data transmission, whereby the
sensor motes simultaneously transmit their SAS data, the sink captures them, matches
each of them with the local copies and accordingly indicates to the administrator to
discard any failed motes.

4 The sink as well as the motes need to know the actual number n of motes being initialized in
one batch, since the length k of random nonces RA and RB and of SASA in the protocol of
Figure 1, should ideally be equal to 15 + log2(n) (as discussed in Section 3). However, an
adversary might influence the value of n the sink and the motes determine by sensing over the
wireless channel. Therefore, one can hard-code the value of k on the motes and on the sink,
based on the expected maximum number of motes to be initialized in a batch. For example,
one can safely set k to be 20, if it is expected that at most only 32 motes will be initialized in
a batch.
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Fig. 3. The Overall Set-up of Mechanism Fig. 4. Experimental setup: Re-
ceiver is Web camera, Transmit-
ters are LEDs on Breadboard

Fig. 5. Synchronization of Transmission (using LEDs) and Reception (on sink) of Data

We were most interested in the third phase as it is an essential element of our
proposal. To this end, we have developed an application in Microsoft Visual C# that
simulates our sensor node initialization process. The application has two parts – the
transmitter simulating the sensor nodes and the receiver simulating the sink; running on
two different computers. The transmitter encodes and transmits the SAS data using the
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display consisting of three blinking LEDs per sensor mote. All motes show the ith bit
of their respective SAS data simultaneously. The sink captures the transmitted data as
a video stream using its camera, extracts the SAS data for each mote, compares it with
its own local copy for the corresponding mote and displays the result on screen and/or
prints it out through a printer connected to it. Instead of dealing with real motes5, we
simulated the display of motes using LEDs on a breadboard, integrated with the trans-
mitter through the parallel port of the transmitting computer. It is important to note
that our simulated set-up very closely resembles a real system as viewed from usability
perspective, which is the primary focus of our evaluation.

Encoding using LEDs: In our simulation, each mote is equipped with one Sync LED
(red color LED) for synchronization at the beginning and end of SAS data transmission
and two Data LEDs(green color LEDs) for transmitting the SAS data. We simulated
the display of a total of 16 sensor motes on a breadboard(Figure 6) each having three
LEDs as most commercially available motes; however, our implementation supports an
arbitrary number of LEDs (with an arbitrary physical topology) and two distinct but not
fixed color LEDs(for differentiating Sync and Data LEDs).

The sync LED (kept “ON” at the beginning and end of SAS data transmission;
“OFF”, otherwise) is used to indicate the beginning and end of the SAS data trans-
mission and to detect any synchronization delays, adversarial or otherwise, between the
motes and the sink.

The data LEDs are used for SAS data transmission by indicating different bits
(‘0’/‘1’) using different states (OFF/ON) of LEDs. If N is the number of Data LEDs,
the transmitter can display N bits of SAS data at a time. The states of the sync and data
LEDs are kept unchanged for a certain time period (named “hold time”; experimentally
determined as 250ms); so that, a stable state (named “BitFrame”) can be easily cap-
tured in the video stream of the receiver video camera. After every 250 ms, next N bits
of the SAS data are simultaneously shown by each mote in the next frame. This process
continues until all bits of SAS data are transmitted. If the last frame does not have N
number of SAS bits to show, the beginning required LEDs show the data bits and the
remaining are kept OFF.

For discovering the location, color, dimension of LEDs for each mote at the receiver
side, two extra frames are needed at the beginning of data transmission – an “All-ON”
frame having all LEDs in ON state and an “All-OFF” frame having all LEDs in OFF
state. In addition to All-ON and All-OFF frames, another frame is required at the end
of SAS data transmission, to detect synchronization delays having the Sync LED in ON
state and the data LEDs in OFF state. Therefore, overall a total of three extra frames
are required. Thus, for 20-bit SAS data transmission(recall that [15+ log2(16)]-bit long
SAS is required for 16 motes) the total number of frames to be transmitted is � 20

N �+ 3,
which yields a total transmission time of (� 20

N �+ 3)× 250 ms. For transmitting 20-bit
SAS data using N=2 data LEDs, there is requirement of a total of 13 frames and thus a
total of 3.25 seconds of transmission and capturing time.

5 Since we wanted to deal with a number of motes, a testbed consisting of real motes was not
affordable, nor was it necessary.
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Decoding using a Video Camera: For successfully decoding the data transmitted using
the LEDs of motes, the receiver video camera must have a frame rate higher than the
transmission rate. If frames are not carefully captured from the video stream, there is
a likelihood of obtaining the counterfeit frames, which contain the transition state of
LEDs.

Resolving the Timing Issue of Frame Capturing: We assume that the transmission
delay of “Start Transmission” (ST) signal from the receiver to the transmitter is neg-
ligible (5-6 ms) compared to the “hold time” (HT) (of 250 ms) and the receiver video
camera also has a delay (about 30-40 ms, since most common cameras have a rate of
30-40 frames per second) of capturing the frame from video stream. Bases on this as-
sumption, the receiver captures the first frame from the video stream after a time, equal
to 0.6× HT (i.e. after 150 ms), termed as “initial waiting” (IW), after sending the sig-
nal. The sink pre-calculates capturing (saving frames into memory from video stream
buffer) timestamps for all frames by adding the IW + (HT (250ms) ×“frame index”),
with the timestamp of sending of the ST signal. The frames are captured into memory
at the corresponding timestamps. Figure 5 depicts the synchronization of transmission
and reception of SAS data. In this figure each small rectangle on the receiving window
denotes a video frame of video stream and brown arrow marked with “Video Frame
Streaming” denotes the propagation of transmitted signal to streamed frame in the video
stream, which implies that there is some propagation delay of an input transition from
transmitter’s side to the receiver’s video stream.

Detection of LEDs and Retrieval of SAS data: The frames are processed after the
completion of capturing of all required frames. Our LED location and dimension detec-
tion algorithm is simple yet fast, robust and efficient, unlike existing object/face detec-
tion algorithms [28,31,39]. The algorithm detects the position and dimension of LEDs
deterministically. It is able to detect any shape/geometry of LEDs unlike [39] and does
not require any prior training unlike [28,31]. The algorithm uses the color threshold
adjustment technique like [40] to detect the position and dimension of LEDs.

The maximal differences of RGB values, max(dR, dG, dB) (denoted as μ), of each
pixel of All-OFF and All-ON frames are measured and kept in memory. Using a thresh-
old value for μ, bit-strings are built for each row of pixels. For example, if μ exceeds a
certain threshold, the corresponding bit in the string becomes ‘1’, otherwise it becomes
a ‘0’.

Each bit-string is matched against a regular expression for consecutive 1s. For each
matching bit-string, its center is calculated and its safeness and centeredness as an LED
center is checked by matching against the already explored LEDs and exploring only
the nearby pixels of this center in the frame. If its safeness and centeredness is proved,
it is accepted as an LED and its coordinates are included in the explored list of LEDs.
This process continues up to a number of times by adjusting the threshold value of μ
and constructing the new bit strings until all LEDs are detected. In Figure 7, we show
an example of detection of LEDs from the bit-string.

After successful discovery of LEDs, the length, width, average RGB values of ON
and OFF states of LED area, for each LED are stored in memory for detecting the
ON/OFF state of LEDs in subsequent BitFrames. Successfully discovered LEDs are



Blink ’Em All: Scalable, User-Friendly and Secure Initialization 165

Fig. 6. Transmitter: Breadboard with 48 LEDs
Simulating Displays of 16 Motes

Fig. 7. Detected LEDs from BitString

clustered according to a threshold value of proximity among themselves, for identifying
the displays of different sensor motes.

After successful detection of all motes, the data LEDs of each mote are sorted ac-
cording to the left-to-right and top-to-bottom ordering of coordinates. Now SAS data
for each mote is extracted from the BitFrames by comparing the average RGB values
of LEDs with previously saved (from All-OFF and All-ON frames) OFF and ON state
RGB values of LEDs. For each extracted SAS, the sink matches it with its own com-
puted list of “free” SAS values. If there is a match, the sink marks the corresponding
computed SAS as “used” and the mote as “SAS Matched”. If extracted SAS of a mote
does not match with any free SAS values, the corresponding mote and all motes having
the same SAS are marked as “SAS Mismatched”. Each BitFrame is then examined: the
Sync LEDs of all motes should be in the OFF state, except for the last frame, where the
Sync LED should be in the ON state and all data LEDs of all motes should be in the
OFF state. If this is not the case, it implies that a synchronization error occurred.

If for a mote, both “SAS Matched” and “Sync Matched” are true, the sink accepts the
mote as a “passed”; otherwise, it rejects the mote as a “failed” due to mismatch of SAS
and/or synchronization errors. The LEDs of a passed mote are marked with a rectangle
of green color; and the LEDs of a failed mote are crossed out with red color (Figure 8).
Additionally, an automatic printing of the result-screen is done by the printer connected
to the sink. By observing the graphical result on screen of the sink and/or the printed
result, the administrator discards the failed motes.

5 Experiments and Results

5.1 Experimental Setup

To test our simulator implementing the sensor node initialization method, we used the
following set-up. The sink is running on a DELL Vostro 1500 Laptop (1.6 GHz CPU,
2GB RAM, WinXP Pro SP2) connected with a USB Web Camera (Microsoft LifeCam
VX6000, up to 30 frames/sec, live video streaming of resolution 640X480 pixels) and
a wireless printer. The webcam can be replaced with any similar camera with a frame
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rate 30 fps or higher, without any modification to the existing simulator. The camera
is set in NON STOP video capturing mode and frames are taken setting the camera in
preview mode. Camera controller is added to the simulator to allow adjusting the focus,
tilt and pan of camera as needed.

The transmitting side of the simulator runs on a DELL desktop computer (1.8 GHz
CPU, 1 GB RAM, WinXP Pro SP2) connected with LEDs on breadboard (Figure 6)
through parallel port (DB25 Connector). The laptop and the desktop computer are con-
nected with our university’s wireless connection (54 Mbps). Figure 4 has a snapshot of
our set-up.

5.2 Usability Testing

In order to test how our method fares with non-expert users, and especially to figure out
if the users are easily and correctly able to discard the failed sensor motes based on the
result screen (and/or print-out), we performed a usability study.

Testing Framework: For creating an automated testing framework, we extended the
transmitter application running on the desktop computer by implementing the usability
testing and user feedback collection functionality on it. The sink application running on
the laptop was configured to send the result (indicating passed or failed motes) to the
desktop application, as soon as it was determined. As there is no interface on breadboard
using which the users can turn off the failed mote(s), we simulated the “turning off”
mechanism in the desktop application. As soon as the desktop application receives the
result from the laptop application, it shows the layout of the mote field (i.e., the bread-
board) on screen, associating each sensor mote with a transparent button with the layout
of the mote in the background. The users are instructed to transfer the result from the
laptop screen to the desktop screen by clicking on the buttons (on the desktop screen)
corresponding to the failed motes shown on the laptop screen. After test completion, the
desktop application has the functionality of showing the questionnaires to obtain user
feedback and logging the data. In our current tests, we did not make use of the printed
output.

Test Cases: We created five categories of test cases to evaluate our method against
different types of possible attacks and errors. These included (1) matching SAS and
no synchronization errors (to simulate normal execution scenarios, where no attacks
or faults occur), (2) (single- and multiple-bit) SAS mismatch on a varying number of
motes; (3) missing, pre-mature and delayed turning on of the Sync LED (to simulate
synchronization errors), (4) both SAS mismatch and synchronization errors, and (5)
variable distance (from 0.5 to 2 feet) between the camera and the transmitters. Ten test
cases for each category were created. Each user executed a total of five test cases, one
each selected randomly from each of the five categories.

A (portion of the) screenshot of the result of execution of one of the test cases is
shown in Figure 8.
Test Participants: We recruited 21 subjects6 for our usability testing. Subjects were
chosen on a first-come first-serve basis from respondents to recruiting posters and email

6 It is well-known that a usability study performed by 20 participants captures over 98% of
usability related problems [10].
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Fig. 8. Result Screen: 7 Failed Motes (marked by “red
cross”), 9 Passed Motes (marked by “green rectan-
gle”)

Fig. 9. Average time (per test case ex-
ecution) taken by 21 subjects with
standard error. Subjects are sorted by
average time.

ads. At the end of the tests, the participants were asked to fill out an on screen question-
naire through which we obtained user demographics and their feedback on the method
tested.

Recruited subjects were mostly university students, both graduate and undergradu-
ate, with CS and non-CS backgrounds. This resulted in a fairly young (ages between 22-
31 [mean=25.48, se=0.5417]), well-educated participant group. All participants were
regular computer users. 19 out of 21 participants reported they have previously used
a PC camera (for internet chat). None of the study participants reported any physical
impairments that could have interfered with their ability to complete given task. The
gender split was: 17 males and 4 females.

Testing Process: Our study was conducted in a graduate student laboratory of our uni-
versity. Each participant was given a brief overview of our study goals and our experi-
mental set-up. Each participating user was then asked to follow on-screen instructions
on the laptop and desktop computer. No training of any sort was given. Basically, the
participants played the role of the administrator in the sensor node initialization method,
as depicted in Figure 2. Sink output, user interactions throughout the tests and timings
were logged automatically by the testing framework.

After completing the deputed test cases in the above manner, the participants were
asked to give some qualitative feedback on how easy or hard they found to focus
the camera on all LEDs, to read the result of the output screen and about the overall
ease/difficulty of the method. Participants demographic information such as age, gen-
der, educational qualification, visual disability, computer and camera experience is also
collected through this questionnaire. All user data and feedback was logged by the test-
ing framework for future analysis.

Test Results: Each of our 21 subjects executed 5 test cases, leading to a total of 105
test cases. Most of the test cases executed successfully giving expected results. In some
cases, however, we observed a few errors, which we categorize and describe below.
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– Camera Adjustment Error: We configured our usability testing application in such
manner that if all the LEDs are not within the camera viewpoint, an error message is
shown to the user asking him/her to re-execute. In our tests, 2 users failed to adjust
the camera on one occasion each and thus they had to repeat the tests. Therefore,
the rate of camera adjustment error equals 2

(105+2) × 100% = 1.87% of test cases.
– Sink Mis-reading Error: Sometimes the sink is not able to correctly read the SAS

string(s) transmitted by one or more sensor nodes. This could happen when the
camera is too distant (> 2 feet) from the sensor motes or due to reflection of LED
light on the table and other nearby surfaces. In our tests, this type of error occurred
for a total of 7 motes, where SAS strings of 1 or 2 motes were mis-read in some 5
test cases. In 105 testcases, the sink dealt with a total of (105× 16) = 1680 motes
on breadboard and out of them 7 motes failed due to sink errors. So, rate of sink
mis-reading error equals 7

1680 ×100% = 0.417%. Note that all of these errors were
only false positives, i.e., the mistakenly marked a passed mote as a failed one.

– User Error: A user error occurs when the user is not able to correctly transfer
the result, from the laptop screen to the desktop screen (simulating switching off
the failed mote). In our tests, 3 users accidentally clicked, on one occasion each,
a passed mote on the desktop screen (this implies that a passed mote was turned
off). However, it is important to note that on no occasions did a user miss clicking
on a failed mote. In other words, we did get a few false positives but no false
negatives whatsoever. Thus, rate of user errors from our tests turned out to be equal
to 3

1680 × 100% = 0.18%.

The average time taken by each user (over the 5 test cases), to complete Steps 2 to
4 of Figure 2, is depicted in Figure 9. As we see, the time taken by all of our users
to perform a test is less than a minute [mean=26.5 seconds, se=1.37]. Note that these
numbers arise when we assume a fairly conservative setting, one where both normal
scenarios and attacks or faults occur with equal likelihood. However, in practice, attacks
or faults are less likely. Therefore, considering only the normal test case, we find that
that on an average a user only takes 19.18 seconds [se=1.11] to complete the whole
process.

The results we obtained through the user feedback questionnaire are shown in
Table 1. Clearly, most users found the method robust and quite easy to work with. We
did not find any notable correlation of the subjects’ age, gender and technical expertise
with the results obtained for the method, however.

Table 1. User Feedback (numbers denote the number of users)

Easiness
Very
Easy

Easy
Medium
Difficult

Difficult
Very
Difficult

Impossible

Camera Adjustment over LEDs 5 13 3 0 0 0
Detection of Failed Motes 11 10 0 0 0 0

Easiness of Mechanism 7 10 4 0 0 0
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6 Discussion

We proposed a novel method for secure initialization of sensor nodes. Based on the
results of our testing with the proposed method, we discuss the following properties.

6.1 Efficiency

Using N Data LEDs and one Sync LED per sensor node, the transmission requires [� 20
N �+

3]×250 ms. This is equal to 3.25 sec for N=2 and 20-bit SAS data. Extraction of SAS data
from captured frames and displaying the result on screen require less than 3-4 seconds.
So, execution time of the method is 7-8 seconds. Overall, as our experiment results show,
most users took less than a minute to perform the whole process. Also, as shown in [20],
most existing commercial sensor motes (e.g. Mica2) can efficiently execute (within a
minute) the public key operations (private and public key generation, and one exponen-
tiation). Note that these operations constitute the dominant costs in the SAS protocol
(of Figure 1) that a sensor node executes with the sink. The sink, on the other hand, is
assumed to be a computer with a fairly strong computational power and therefore can
efficiently execute n parallel protocol instances with each of the sensor nodes.

Based on the above numbers, we recommend setting Δ = 2 minutes, as the time
period (to complete Steps 2 to 4 of Figure 2) by which the key initialization will be
accepted by each sensor node, by default. As our experiments show, within 2 minutes, a
human user can safely complete the initialization process, turning off any (failed) sensor
nodes, if necessary.

6.2 Robustness

Our method is quite robust to varying distances between the transmitter and receiver.
The distance between the camera and sensor motes on breadboard can be up to 2 feet.
The method also works quite well in varying lighting and brightness conditions as it de-
terministically learns the environment using the first two, All-OFF and All-ON, frames
in each session. The method could fail in presence of background noise during trans-
mission and reception of SAS data. Huge variations of lighting conditions during trans-
mission of SAS data which exceed color threshold of LEDs or shaking or displacement
of all sensor motes/camera while transmission of SAS data exceeding the dimension
threshold of LEDs will also cause failure of the method. However, these will only lead
to false positives and not to an attack. Except for the camera adjustment errors (as dis-
cussed previous section), all errors occurring with our method are localized i.e, if a
single sensor mote fails due to some reason, only that particular sensor node needs to
be re-initialized. Note that this is unlike the MiB scheme of [6], where any errors lead
to the re-initialization/re-keying of the whole batch of sensor motes. Even when camera
adjustment occur in our method, only the SAS data transmission needs be repeated, not
the whole initialization process. On the other hand, MiB is less prone to user errors than
our method. However, our results indicate that our user errors only lead to false posi-
tives and are negligible nevertheless. In our future work, we plan to explore how default
rejection (as opposed to our current default acceptance mechanism) would impact the
efficiency, usability and scalability of our method. It will clearly improve security.
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6.3 Scalability

Our method can be used to initialize multiple sensor nodes per batch. We tested the
method with 16 sensor nodes having three LEDs each. Compared to prior work, which
only allows for initialization of two motes, this is a significant improvement.7 By using
good quality wide-angle cameras (which will somewhat increase the overall cost of the
system), this number can be further improved, we believe. We are currently exploring
ways to make our method more scalable. Note that increase in the number of sensor
nodes will come at only a slight cost of increase in the length of SAS data. For example,
to support 128 sensor nodes, we would need to transmit 22 SAS bits. However, this will
make the task of detecting failed motes much harder for the administrator in case the
system is under attack by a man-in-the-middle attacker.

6.4 Usability

Via a systematic usability study, we find that our method is quite user friendly. It does
not require any expertise or prior training. Little or no acquaintance with the method
is enough to administer the process. It is easy to work with and enables safe detection
of failed sensor nodes by observing the result on the screen of the sink. Unlike the
MiB scheme of [6], the administrator does not have to deal with a specialized and often
cumbersome Faraday Cage. Of course, the administrator has to deal with a camera in
our method; however, most users are getting more and more familiar with cameras as
they become ubiquitous and our usability study (Table 1) shows that most users found
the task “camera adjustment to LEDs” to be easy . Moreover, a camera can be used
for purposes other than key distribution and is thus not truly specialized. Also note that
the sensor motes per batch do not need to be homogeneous. They can have different
number, color of LEDs, in any topology/orientation whatsoever (the only requirement
being they all possess one RED colored LED to act as the Sync LED). Recall that
this is unlike MiB [6], which can only support homogeneous sensor motes with very
similar weights. We consider this as an important issue with respect to usability – an
administrator might need to initialize a diverse pool of sensor motes and should not
need to group them up.

6.5 Power Requirements

From [20], we know that most available commercial motes can do public key crypto
operations using only a small amount of power. Now, we show that the SAS data trans-
mission through blinking LEDs also incurs a minimal overhead on motes in terms of
power. For 20-bit SAS data transmission, the three LEDs on each mote light-up 13 times
(for a period of 250ms), i.e., for a duration of 13 × 250=3.25seconds. Each LED has a
drop voltage, V = 2.9 Volts (typical range 1.7-3.3 Volts); Current Rating, I= 2.2 mA (typ-
ical range 2-3 mA). Therefore, the maximum energy consumption per mote (3 LEDs),
E=3× (V × I × t)= 3× (2.9× 2.2× 10−3× 3.25) Volt-A-seconds =0.062205 Joules.

7 Although the MiB [6] method considers multiple sensor nodes, the maximum number of nodes
that can be securely initialized per batch is not clear from the experiments and results presented
in [6]. We believe this number would be limited by the size of the Faraday Cage used.
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As stated in [20], the Energizer No. E91, two AA batteries used in Mica2 motes, have a
total energy of 2× (1.5× 2.850× 3600)=30780 Joules. So, our SAS data transmission
requires 0.062205

30780 × 100% = 0.0002% of battery life of Mica2. As shown in [20], public
key generation requires 0.816 Joules of energy. Thus, our SAS data transmission is more
that 13.11 times better than the public key generation in terms of power consumption

6.6 Simplicity and Economic Viability

The sink needs only a camera and each sensor node requires at least two LEDs (one
Sync and one Data) which are very cheap and commonly available. In fact, most exist-
ing commercial sensor motes have three LEDs. Our method is quite economic, as op-
posed to MiB [6] which requires a specialized Faraday Cage and two additional motes
having USB interfaces (called “keying device” and “keying beacon” ) along with a base
station and un-initialized nodes.

6.7 Resistance to Malicious Sensor Nodes

Our method offers a natural protection against corrupted or malicious sensor nodes8.
Our method is based on an authenticated key exchange protocol following the security
model of [3]. This model guarantees that an adversary who learns session key(s) corre-
sponding to some corrupted session(s), does not learn any information about the keys
corresponding to other uncorrupted sessions. This is unlike MiB [6], where a single
corrupted sensor node can compromise keys corresponding to all other sensor nodes9.

7 Conclusion and Future Work

In this paper, we presented a novel scalable method of secure sensor node initialization.
The proposed method offers (authenticated key exchange) protocol level security for
key pre-distribution process using visual OOB channel. This is a promising alternative
to MiB [6], the only prior work in this area, which offers physical layer security by
attenuating and jamming the wireless signals. We believe that achieving physical layer
security on insecure wireless channel might be a tough task and require specialized and
expensive equipment. Via a thorough and systematic usability study, we showed that
our method has several advantages over MiB in terms of scalability, usability, simplicity
and economic viability. Our future work includes usability study of the default rejection
mechanism as discussed in previous section and improvement of the scalability of the
mechanism by using slightly better quality cameras.
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Abstract. DNS cache poisoning attacks have been proposed for a long
time. In 2008, Kaminsky enhanced the attacks to be powerful based
on nonce query method. By leveraging Kaminsky’s attack, phishing be-
comes large-scale since victims are hard to detect attacks. Hence, DNS
cache poisoning is a serious threat in the current DNS infrastructure. In
this paper, we propose a countermeasure, DepenDNS, to prevent from
cache poisoning attacks. DepenDNS queries multiple resolvers concur-
rently to verify an trustworthy answer while users perform payment
transactions, e.g., auction, banking. Without modifying any resolver or
authority server, DepenDNS is conveniently deployed on client side. In
the end of paper, we conduct several experiments on DepenDNS to show
its efficiency. We believe DepenDNS is a comprehensive solution against
cache poisoning attacks.

1 Introduction

Domain Name System (DNS) provides name resolutions between memorable do-
main names and machine-friendly IP addresses. Almost all network applications
have to resolve given domain names to the corresponding IP addresses, such as
http, ftp, email, etc. However, design of DNS is prone to suffering attacks [1,2].
The most critical one is DNS cache poisoning attacks. Main concept of DNS
cache poisoning is to alter cache records of a DNS resolver. While user machines
query the DNS resolver, they would obtain poisoned mapping information and
connect to the forged IP addresses.

Nowadays, phishing is a huge threat on the Internet [3]. Traditionally, attack-
ers often exploit the similar domain name to cheat the victims to access the
faked websites. For instance, attackers can impersonate legal banks to despatch
e-mails. While victims receive the mails, the mails ask them to provide private in-
formation on a phished website. When the victims login to conduct transaction,
their bank accounts or authorized codes of credit cards are going to be stolen.
The above attack is called URL obfuscation. However, URL obfuscation is hard
to accomplish since those mails may be filtered by the spam-mail engine. Or
users may observe this attack since they pay more attention. Compared to URL
obfuscation, phishing becomes more practical and large-scale by leveraging DNS
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cache poisoning attacks. An attacker does not need to deliver faked url links
within spam mails. Instead, he only alters mapped IP addresses of banks cached
in DNS resolvers. Moreover, the scale of phishing becomes larger since users who
query to the poisoned DNS resolvers would be phished.

Numerous researchers have proposed solutions to prevent DNS cache poi-
soning. Popular countermeasures are based on cryptography, e.g., DNSSEC [4],
TKEY [5], TSIG [6], or based on SSL [7]. They provide integrity of DNS mes-
sage through cryptographic functions. However, these approaches require a major
overhaul to the current DNS infrastructure. For instance, DNSSEC uses pub-
lic key cryptography to authenticate communications. It requires a public key
infrastructure (PKI) to distribute public keys. Another approaches use traffic
analysis or construct a model to detect DNS cache poisoning attacks [8,9,10,11].
These approaches do not work well due to high false positive.

On the other hand, several solutions against cache poisoning attacks were
implemented on DNS resolvers without cryptography. DoX [12] adopts the peer-
to-peer system(P2P) to enhance DNS security, the cache updating is based on
the trust between resolvers. In 2008, Dagon et al. proposed DNS-0x20 [13] to raise
the low bound of DNS cache poisoning attacks. They utilized case encoding of
the queries to increase the attacked complexity. However, these two approaches
still need to modify DNS resolvers.

There is a proposed approach implemented on DNS clients, ConfiDNS [14].
ConfiDNS that utilizes cooperative DNS resolver systems, CoDNS [15], provides
more security against DNS cache poisoning attacks. CoDNS groups mutually-
trusted nodes agreement to resolve each other’s queries while the local infras-
tructure is failed, but its security is weak since any corruption or misbehavior
of a single resolver can easily propagate throughout the system. Although Con-
fiDNS improves the security of CoDNS, their mechanisms are not strong against
Kaminsky’s DNS cache poisoning attacks.

In this paper, we introduce the proposed security mechanism, DepenDNS,
against DNS cache poisoning attacks. DepenDNS utilizes multi-DNS resolvers
lookup mechanism, e.g., obtaining a dependable answer via querying multiple
resolvers. In brief, DepenDNS has the following advantages.

Practical. DepenDNS is a client program based on built-in DNS lookup utility.
Without modifying any DNS resolver or back-end authority server, DepenDNS
is convenient to be deployed on user machines.

Efficient. DepenDNS is a lightweight approach. The average lookup time is only
241.8ms when DepenDNS queries 20 DNS resolvers. And the storage for history
usage is also tiny, 0.0739KB for a single domain name with one IP address.

Secure. Comparing with existing DNS security mechanisms, DepenDNS pro-
vides sufficient security. Since poisoning multiple DNS resolvers at the same time
is difficult and infeasible, DepenDNS utilizes the IP addresses through querying
multiple resolvers concurrently. Moreover, the IP addresses returned by multiple
resolvers are verified by our algorithm π. Instead of returning queried IP ad-
dresses only, π chooses the trustworthy and dependable IP addresses as output.



176 H.-M. Sun et al.

The rest of this paper is organized as follows. Section 2 presents some re-
lated background about DNS architecture and DNS cache poisoning attacks.
Section 3 depicts the details of DepenDNS. Section 4 analyzes the security of
DepenDNS. Section 5 shows our experiments about availability and overhead.
Finally, discussion and conclusion are described in Section 6 and Section 7.

2 Backgrounds

2.1 DNS Architecture Overview

DNS is commonly regarded as a distributed architecture in the form of an in-
verted hierarchical tree. Any DNS server containing a complete copy of the
domain’s zone file is authoritative for that domain. These DNS servers are
called authority servers. In DNS architecture, authority servers can delegate
a sub-domain to another authority server and only maintain a referral to that
server. Besides, two other components typically existed in DNS architecture,
DNS clients and DNS recursive resolvers. Generally, user machines are capable
of DNS client programs. When a DNS client wants to resolve a domain name,
the client queries the DNS resolver via lookup procedure, instead of interacting
with authority servers. Another component is DNS recursive resolver, also called
resolver for simple. When a client sends queries to the resolver, the resolver will
execute lookups processes from root authority server to leaf authority server.
Once the resolver gets the response, the resolver sends the answer to the client
and also maintains this answer in its cache. Here we use a brief instance to depict
how DNS works. Resolving a domain name, e.g.,www.example.com., requires the
following steps:

1. DNS client Dc sends the query to the DNS resolver Dr. This query is usually
triggered by user applications, e.g. web browser.

2. Dr searches the corresponding domain name in its cache records. If a record
is matched, the IP addresses would be returned to Dc. Otherwise, go to the
next step.

3. Dr starts to hierarchically traverse down the DNS authority servers by query-
ing sub-domain recursively until the original query is returned by a DNS
authority server which is responsible for authoritatively answer. At the be-
ginning, the root authority server (dot server, ”.”) points out a downward
delegation of the com. to other DNS authority servers. Similarly, the com.
authority server delegates to example.com. authority server. Then Dr ob-
tains a response for www.example.com. which is returned by example.com.
authority server.

4. The answer is returned to Dc, and cached by Dr to assist in further resolu-
tions. Note that each answer of DNS authority servers would be cached until
its TTL values expires. In the example, Dr caches the following IP addresses.
(a) IP addresses of DNS authority servers which are responsible for com.
(b) IP addresses of DNS authority servers which are responsible for exam-

ple.com.
(c) IP addresses of www.example.com.
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2.2 DNS Cache Poisoning Attacks

DNS cache poisoning attacks are tampering with the cache records stored in
resolvers. In Section 2.1, the resolver caches IP addresses to facilitate further
queries. Once other clients query the same domain names, the resolver would
directly return the IP addresses from cache records. If attackers could tamper
with the cached records of resolvers, clients would receive malicious IP addresses
and be phished to the malicious websites.

The poisoning attacks could be achieved as follows. In Step 3 of the lookup
procedure in Section 2.1, resolvers starts recursively querying with the backward
authority servers when there is no matching records. Then authority servers
would return appropriate answer to the resolver. Concurrently, the attacker could
generates counterfeit packets and forwards them to the resolver before the legal
packets of authority server reaches.

To defend against such attacks, researchers proposed two well-known counter-
measures, transaction ID authentication and port randomization. In the first ap-
proach, transaction ID is to authenticate connections between authority servers
and resolvers. The attacker should forge legal answer packets with matched 16-
bit ID. However, the probability of guessing the matched transaction ID could be
much higher based on weaknesses in the random number generators and birthday
attacks [13,12]; even if there are 216 = 65536 possibilities, it is feasible to guess
the ID value successfully. The second approach is port randomization which also
increases the computation overhead on DNS cache poisoning. In port random-
ization, DNS resolvers would randomly choose a 16-bit source port number in
the query packet. Once it receives the answer packet from authority server, this
field is also adopted for authentication. However, several source ports could not
be utilized, such as the well-known ports, e.g., port numbers less than 1024.
Leveraging these two approaches concurrently, an attacker only guess about 230

to 232 combinations. Nevertheless, not all DNS resolvers are capable of port
randomization, especially the DNS resolvers in embedded systems [13]. Thus,
existing mechanisms are not secure enough for current DNS architecture.

2.3 Dan Kaminsky’s DNS Cache Poisoning

The primitive DNS cache poisoning attack spends a large amount of time for
waiting for TTL value to expire. The attacker will have to wait for TTL value
to expire when the targeted DNS resolvers have already the specific records (the
records are for some domain names which were targeted by the attacker).

In 2008, Dan Kaminsky substantially reduces the attack time of DNS cache
poisoning attacks. The skill is called nonce query. The attacker queries a series
of nonce queries to a DNS resolver. Each query is with a different random prefix
and contains additional records with genuine owner domain names but malicious
IP addresses. If the DNS poisoning attack fails to match the correct transaction
ID, a new nonce query with a distinct prefix is generated. Because each round
of the attacks has the different prefix of domain name, the DNS resolver will
consult with the backward DNS authority servers each time, no need to wait for
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Query Packet:
Query Section
- Domain Name: <nonce>.example.com

Spoof Response Packet:
Query Section
- Domain Name: <nonce>.example.com
Answer Section
- Resource Data: arbitrary IP addresses
Authority Section
- Resource Data: example.com
Additional Section
- Additional Data: 123.456.78.90

Fig. 1. Example of Dan Kaminsky’s DNS Cache Poisoning

TTL value expiration. Here we use a brief instance to depict how Kaminsky’s
DNS cache poisoning works (See Fig. 1).

At the beginning, an attacker sends a nonce query of victim domain name
(e.g., example.com) to the target resolver. The prefix of a nonce query is ran-
domly generated, for domain www.example.com, could be abc. Hence, the nonce
query is abc.example.com. Because the records of this nonce query are always
not exist in target resolver, the resolver will consult with the backward DNS
authority servers every time. Concurrently, the attacker sends a large number of
spoofed response packets to the target resolver. These spoofed response packets
include malicious informations in authority section and addition section. The
functionality of authority section and addition section are used to update cor-
responding records in the resolvers. However, the attacker utilizes these two
sections to tamper with the records in resolvers. Kaminsky substantially reduces
the attack time from weeks to seconds. An attacker could succeed to launch
attacks within about 6 seconds on most networks [13].

2.4 Attack Model

We assume that attackers can generate any packet forged and forward the packet
to any resolver targeted. The goal of the attackers is to tamper with the cache
records in resolvers and direct clients to malicious websites.

The patterns of such attacks are similar even in Dan Kaminsky’s DNS cache
poisoning attacks. The attackers exhaustively generate and forward the forged
answer packets to the resolver, until a answer packet is same as that one gen-
erated from the authority server. Therefore, several countermeasures against
such attacks is to increase complexity of guessing correct answer packets, e.g.,
random transaction ID and port randomization. In other words, if the com-
plexity gets higher, the countermeasure is stronger against cache poisoning
attacks.
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Besides that, we assume that the caches of the resolvers are poisoned with
independent success probability. This assumption is reasonable because the most
countermeasures are randomized algorithms. The attackers hardly take advan-
tage of the previous success attacks since the countermeasures in each query are
usually with different randomness.

3 DepenDNS

3.1 Multi-DNS Resolvers Lookup

The multi-DNS resolvers lookup mechanism protects users against DNS cache
poisoning attacks. Traditionally, when a user visits a site www.example.com,
the browser sends the query to one default resolver provided by ISP. Instead
of querying single resolver, DepenDNS duplicates the query and sends them to
multiple resolvers according to the predefined DNS resolver list. Once DepenDNS
gathers multiple responses from the resolvers, it will choose some trustworthy
IP addresses according to the proposed matching algorithm π. (See Section 3.2)

DepenDNS executes the following actions when a user wants to visit a website
through network applications, e.g., web browser. These actions are shown in
Fig. 2.

1. The browser triggers DepenDNS to handle the domain name x of website.
2. DepenDNS sends the duplicated queries of x to multiple resolvers from the

resolver list. Without loss of generality, we assume the number of resolvers
is t.

3. DepenDNS looks up the history data Hx for x. If a matching record is found,
this means there was the same query in the past.

4. Let R = R1 ∪R2 ∪ ...∪Rt where Ri is the set of IP addresses returned from
ith resolver. Given R and Hx as inputs, run algorithm π.

5. According to algorithm π, DepenDNS chooses a set of trustworthy IP ad-
dresses A ⊆ R.

6. Based on A, the browser will connect to the trustworthy IP addresses.
7. Store A into history data for further utilization.

The successful probability of poisoning multiple resolvers is quite lower than
that of poisoning one resolver in a time period. The more resolvers we query,
the higher accuracy of queried IP addresses we obtain. The detail analysis is
presented in Section 4.

3.2 Matching Algorithm π

If we only consider the countermeasure against DNS poisoning attacks, choosing
the most appeared IP addresses is intuitive. However, this approach may destroy
the load-balance mechanisms since users all connect to the most appeared IP
address [16,17,18]. Instead, algorithm π picks up a set of IP addresses A which
are dependable and trustworthy.
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Fig. 2. The Proposed Multi-DNS Resolvers Lookup Scheme

To design algorithm π, we observe some properties of IP addresses returned
from multi-DNS resolvers according to the experiments (See Section 5). We
exploit these properties to select IP addresses. First, we define ni

j , ni, and ck as
follows.

ni
j =

⎧⎨⎩1, if IPi ∈ Rj .
0, otherwise. , and ni =

t∑
j=1

ni
j .

ck =
∑

ni , where IPi exists in the kth class B IP address.

According to the above definitions, ni counts the number of IPi appearing in
the responses from all resolvers, and ck counts the number of IP addresses in kth

class B. Furthermore, let nmax = Max(n1, n2, ..., n|R|), where Max(.) outputs
the max value of a set and |R| denotes the size of set R. Next, we define the
following three policies according to the properties. Each unique IP address is
individually verified, and the following shows the verification of IPi.

– α: Because each domain name has different number of IP addresses, and
the associated authority servers decide how many number of IP addresses
is returned by the resolvers in each query. The authority servers not always
return all IP addresses but instead they return a subset of all IP addresses
according to their load-balance mechanisms. This means that the responses
from multiple DNS resolvers will be dispersed to each IPi. According to
our observation, when we query to multiple resolvers, each ni will be quite
closed if the load-balance mechanism is to averagely allocate traffic to each
IPi (such as Round-Robin DNS [17]). The following is the evaluation of α,
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where 20% is the tolerance of ni. We can decrease the tolerance to increase
security.

α =
{

1, if ni ≥ nmax(1 − 20%).
0, otherwise.

– β: According to our experiments, almost all domain names did not change
their IP addresses at all in one week. It implies that the IPi is trustworthy
if this IPi exists in history data at the same domain name. The following is
the evaluation of β:

β =
{

1, if IPi exists in history data at the same domain name.
0, otherwise.

– γ: A domain name may have several IP addresses but these IP addresses
usually belong to some same class B, which means the first 2-octet prefix of
the IP addresses are the same. Although the returned IP addresses will not
be all the same in each query, the proportion of specific class B IP addresses
will be almost the same in each query (See the example in Table 2). The
following is the evaluation of γ, where 10% is the tolerance of ck. We can
decrease the tolerance to increase security. ck

current and ck
history represent the

ck of current query and history data, respectively.

γ =

⎧⎨⎩
1, if IPi belongs to kth class B and
−10% ≤ ck

current − ck
history ≤ 10%

0, otherwise.

Next, we define the regions of IP addresses, denoted by N, as follows.

– N : As we mentioned above, the responses from multiple DNS resolvers will
be dispersed to each IP address, and we use N to represent the dispersion
strength. For example, if a domain name totally has three IP addresses (IP1,
IP2, IP3) and returns only one IP address to each resolver. We say that this
domain name has three regions, N = 3. The following is the calculating of
N :

N =
|Rα ∪Rβ ∪Rγ |

Mode(|R1|, |R2|, ..., |Rt|)

In the denominator, Mode(.) outputs the value that occurs the most frequently
in the set. We use Mode(.) to reduce the effect of that the attacker uses some
poisoned Ri to affect the value of N , namely, reducing the effect of outliers.

According to the above definitions, N means the regions of IP addresses, and
each ni will be smaller if N is bigger. However, attacker is easier to pass the
verification of α if N is bigger (nmax is smaller). Therefore, we decrease the
weight of α and instead increase the weight of β and γ when N increases. In this
way, besides passing verification of α, the attacker should pass β, γ or both to
pass the verification of π.
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Next, we calculate a grade G for each IPi according to the three policies. The
grade represents the strength of reliability about IPi. Gα and Gβγ represent the
weights of α and βγ where Gα + Gβγ = 100. We set Gα and Gβγ to 60 and 40
respectively in our experiment.

G = α ∗ (Gα − (N − 1) ∗ 10)% + 1
2 ∗ (β + γ) ∗ (Gβγ + (N − 1) ∗ 10)%

Finally, we select the IP addresses whose grades are greater than or equal to
60, store these IP addresses in set A and return A to browser. We set Gα = 60
because we think a IP address is undoubtedly trustworthy if most resolvers
return this IP address. More specifically, when N = 1, passing verification of α
is enough. According to our experiments (See Section 5), the grades of more than
94.67% IP addresses are over 60 in normal cases. Although some IP addresses
of a website fail the verification, the experiments show that at least one IP
address would pass the verification. In other words, the IP addresses which
fail the verification would not result in unreachable websites. Furthermore, it
is extremely difficult to obtain a high grade of malicious IP address in DNS
cache poisoning attacks (See Section 4).

3.3 History Data Records

Because DepenDNS utilizes the history data in algorithm π, the reliability of
history data is an important issue. If a name-to-IP mapping has been the same
for an extended period of time, the history data may be reliable. On the contrary,
a frequently changed name-to-IP mapping may indicate that a server frequently
migrated to other IP addresses and this causes the history data unreliable. In
previous study [19,14], more than 85% of domain names did not change their IP
addresses in one month and only 2% of domain names change IP addresses more
than once per week. Therefore, it is very likely that the attack occurs if some IP
addresses which does not exist in 7-day history data are returned.

4 Security Analysis

In this section, we analyze the probability of passing α, β and γ verification
according to the attack model.

The probability of passing α verification (Pα). We assume that there
are t selected DNS resolvers d1, d2, ..., dt, whose probabilities of poisoning their
caches are p1, p2, ..., pt, respectively and p̄i = 1 − pi. Let J(d1d2d̄3...d̄t) denotes
that the probability of poisoning exact d1 and d2 in a time period. Let Ei denotes
the probability of poisoning any i of t resolvers, e.g., E0 = J(d̄1d̄2d̄3...d̄t) and
E1 = J(d1d̄2d̄3...d̄t) + J(d̄1d2d̄3...d̄t) + ... + J(d̄1d̄2... ¯dt−1dt). Let Pi denotes the
probability of poisoning at least i of t resolvers.

Pi = 1−
i−1∑
j=0

Ej . (1)
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Recall that for a IPi, α is set to 1 while ni is greater than nmax(1− 20%). The
best case, the least number of resolvers the attacker should poison, occurs while
nmax = nj and ni = 1, i �= j. In this best case, the attacker should poison at
least x resolvers to pass α where x ≥ (nmax − x)(1 − 20%). Consequently, we
can infer Pα ≤ Px where x ≥ 4

9nmax.
To simplifying estimation, we assume that these probabilities p1, p2, ..., pt are

equivalent and independent. Namely, we assume p1 = p2 = ... = pt = p and
J(d1d2...dt−1d̄t) = p1p2...pt−1p̄t = pt−1p̄. (1) is simplified to (2).

Pi = 1−
i−1∑
j=0

(t
j)p

j p̄t−j . (2)

In most cases, N is fixed and determines nmax. If we assume that t = 20 and
N = 1, 2, 3, 4, nmax is about 20, 10, 7, 5, respectively and the numbers of resolvers
the attacker should poison are 9, 5, 4, 3 in the best cases, respectively. If we assume
that p = 2−16, the success probabilities are 2−126.64, 2−66.080, 2−51.758, 2−37.845,
respectively. For p = 2−32, the success probabilities are 2−270.64, 2−146.08, 2−115.76,
2−85.844, respectively. Since all probabilities are quite smaller than that of poison-
ing single resolver, α in DepenDNS is significant for security if nmax is in a reason-
able range.

The probability of affecting N . N determines the weights of α, β and γ
in grade G. It threatens the security of the proposed scheme that attackers
can easily adjust the value of N . More specifically, if the attackers set bigger
N , they have higher probability to pass α verification. Therefore, N should be
hardly affected. According to the calculation of N , the probability of affecting
numerator is Pα∨β∨γ and that of affecting denominator is usually close to P t

2

because the values of |Ri|, i = 1, 2, ..., t are usually all the same according to our
experiments. In short, affecting N is infeasible.

The probability of passing β verification (P β). P β is equal to P π since
all IP addresses in history data should have ever passed the verification of De-
penDNS.

The probability of passing γ verification (P γ). P γ refers to the hardness
of applying a specific class B IP address. In practice, to apply such a IP address
is not trivial because the application for specific class B IP address needs some
licenses. In addition, even if the attacker gets the same class B IP address with
legal owner’s class B IP address, she still needs to let the value of ck

current close
to ck

history. Therefore, the attacker is difficult to pass the verification of γ.

The probability of passing DepenDNS (P π). For an attacker, P π is equal
to the probability of obtaining a grade which is equal or greater than 60. Since
the malicious IP address would not be in history data before and N , which is
hard to affect, is less than 6, the IP address should pass α and γ. Therefore,
P π = PαP γ . According to the above analysis, P π would be quite smaller than
that of poisoning a single resolver. This demonstrates that DepenDNS is more
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secure than other conventional mechanisms whose security depends on a single
resolver.

5 Experiment Conduction

The history data was collected in 7 days - from 26th Mar, 2009 to 2nd Apr, 2009,
and we query 20 resolvers for different domain names once per half an hour in
this week, so each site has 336 lookup records in history data. After that, we use
DepenDNS to query the same sites 200 times.

5.1 Availability

We assume that ᾱ denotes the cases of failing the verification of α, α∧β denotes
the cases of passing both verifications of α and β, and β|α denotes the cases of
passing the verification of β in the condition of passing the verification α already.

Table 1 shows the percentage of IP addresses matching our policies α, β
and γ in the varied conditions. In the result, most of the IP addresses matches
the policies so the policies are consistent with the way that the authority servers
handle the domain name queries. More specifically, α refers to that the responses
from multiple resolvers are dispersed to each IPi. β refers to that the authority
servers rarely change the IP addresses in one week. γ refers to that the authority
servers usually use the IP addresses in some same class B and the proportions
of different class B IP addresses are usually fixed each time.

In addition, none of α, β and γ is removable because each of them has its
importance. We explain some special cases as follows. β ∧ γ|ᾱ represents that
even if some legal IPi with small ni fail the verification of α, they still probably
pass the verification of DepenDNS. As shown in the example in Table 2, when
N is big (N = 6), some legal IP addresses are hard to pass the verification of
α but these addresses can get sufficient grades from the verification of β and
γ. α ∧ γ|β̄ represents the cases of new IP addresses (maybe the domain name
adopts dynamic IP addresses). We notice that over 80% new IP addresses are
accepted according to the successful verification of α and γ. Furthermore, the

Table 1. The percentage of IP addresses passing DepenDNS verification (G ≥ 60).
” − ” denotes non-existed condition and ”x” denotes the cases of G < 60.

Policy N = 1 1 < N ≤ 2 2 < N ≤ 3 3 < N

α 100% 82.98% 72.22% 84.62%
β 98.78% 100% 100% 96.24%
γ 98.63% 95.74% 88.89% 82.69%

α|β̄ ∧ γ̄ 100% x x x
β ∧ γ|ᾱ - 87.5% 80.0% 50%
α ∧ γ|β̄ 92.33% - - 83.35%
α ∧ β|γ̄ 98.91% 50% 50% 55.56%

α ∧ β ∧ γ 97.63% 80.85% 66.67% 78.85%
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Table 2. Example: Part of results about www.live.com. This domain name totally has
more than 10 IP addresses and each resolver returns just 2 IP addresses in each query,
so |R| ≥ 10 and Mode (|R1|, |R2|, ..., |Rt|) = 2.

History Data Current Data
IP address Percentage Times Percentage α β γ

1th class B: 203.133.x.x 23.0% 4 23.4% - - -
IP1: 203.133.9.8 11.5% 2 11.7% 0 1 1
IP2: 203.133.9.17 11.5% 2 11.7% 0 1 1

2th class B: 61.30.x.x 23.1% 4 23.4% - - -
IP3: 61.30.236.135 11.5% 2 11.7% 0 1 1
IP4: 61.30.236.136 6.7% 2 11.7% 0 1 1
IP5: 61.30.236.134 4.9% - - - - -

The region is 6, N = 6 and t = 20.

percentages of some cases are 50% ∼ 70%, but the number of IP addresses in
these cases is rare (less than 5% IP addresses).

Table 3 shows average grades. The grades of 94.67% IP addresses are greater
than or equal to 60. This means that only 5.33% IP addresses are not se-
lected, so we almost retain the load-balance mechanism. Note that the unse-
lected 5.33% IP addresses would not make some websites unreachable since at
least one IP address verified would be returned by DepenDNS according to our
experiments.

5.2 Overhead Analysis

To analyze overhead, we examined the multi-DNS lookup time. As shown in
Fig. 3, the lookup time slightly increases when the number of resolvers increases.
The average lookup time is 146.4ms for one resolver and 241.8ms for 20 resolvers.
Obviously, the time overhead increases slightly. Moreover, for history data, the
average storage for a domain name with one IP address is 0.0739KB, and is only

Table 3. The grades versus different regions. The proportion of IP address in N ≤ 1,
1 < N ≤ 2, 2 < N ≤ 3 and N > 3 are 50.0%, 13.91%, 5.33% and 30.76%, respectively.

Resolver Number = 20
Region Grade (The value of G)

N 100 60 ∼ 99 0 ∼ 59
N ≤ 1 97.63% 2.37% 0%

1 < N ≤ 2 80.85% 8.51% 10.64%
2 < N ≤ 3 66.67% 27.78% 5.56%

N > 3 78.85% 9.62% 11.53%
Total 87.87%* 6.80% 5.33%

*87.5% = 97.63 * 50.0% + 80.85 * 13.91%
+ 66.67 * 5.33% + 78.85 * 30.76%.
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Fig. 3. DNS lookup time versus number of DNS resolvers

0.739KB for a domain name with ten IP addresses. The storage consumption is
quite negligible nowadays.

6 Discussion

Cooperation with Existing Solutions. DepenDNS which runs on client side
is independent of DNS resolvers and authority servers. Therefore, DepenDNS
can cooperate with existing solutions implemented on DNS resolvers, e.g, DNS-
0x20 [13] and DoX [12]. More specifically, we assign a weight to each DNS resolver
according to the security strength of the solutions adopted. In this way, we can
provide a more robust mechanism to verify IP addresses through weighting DNS
resolvers.

Survivability from DoS Attacks. Since DepenDNS utilizes multi-DNS re-
solvers lookup mechanism, it can keep operations even if some DNS resolvers
suffered from DoS attacks. Thus, DepenDNS can decrease the impact from DoS
attacks.

Accommodation to the Queries with No History Data. Because the
policies β and γ are determined by history data, they can not work without
history data about specific domain name. To accommodate to the initial query,
we utilize a centralized server database to offer users to look up when they query
a new domain name, or adjust the value of Gα and Gβγ in the first time.

Adoption of Other Policies. Two policies we have considered but did not
adopt by DepenDNS, Time to Live (TTL) and authoritative answer. First, TTL,
the time of IP addresses to live in a cache, refers to how freshness the cache
is. But TTL value can be altered by attacker since she could counterfeits re-
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sponse packets. Second, authoritative answer represents this response is directly
returned from authority server. The authoritative answer is more trustworthy;
however, it is quite rare from resolvers. Therefore, we consider adopting TTL
and authoritative answer in DepenDNS is not significant.

Security of SSL Certificate. SSH [20] and HTTPS [21] with self-signed
certificates utilize the popularity of ”Trust-on-first-use” (Tofu) authentication to
improve the completely insecure protocols (e.g., Telnet, HTTP). However, even
if the certificates are bad or out-of-date, most users decide to ignore the warnings
and continue to connect. Due to user carelessness, accepting all certificates on the
initial connections threatens the security of SSL connection [22]. Based on this,
”Man-in-the-Middle” (MitM) attacks would be achieved in Tofu authentication.
In other words, SSL connection cannot totally protect users against phishing.

7 Conclusion and Future Work

Combining with DNS cache poisoning attacks, phishing becomes serious and
large-scale for defrauding transactions. Although there were many proposed solu-
tions for combating poisoning attacks, they are barely adopted by all resolvers for
several reasons, such as expensive upgrade cost, compatibility problem and so on.
Therefore, we propose a novel approach based on querying multi-DNS resolvers,
called DepenDNS. DepenDNS is a lightweight client-end program without mod-
ification to the current infrastructure. The analysis and experiment results show
DepenDNS has sufficient security and feasibility.

In the near future, we plan to design an extension to evaluate the confident
levels of querying DNS resolvers. If we can weight the responses from different
resolvers, this feature would makes DepenDNS more robust and accurate. For
convenient use, we plan to implement DepenDNS as a patch for current DNS
lookup capability, e.g., nslookup. We believe DepenDNS would protect users
from suffering large-scale phishing.
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Abstract. As social networks sites continue to proliferate and are being used for
an increasing variety of purposes, the privacy risks raised by the full access of
social networking sites over user data become uncomfortable. A decentralized
social network would help alleviate this problem, but offering the functionalities
of social networking sites is a distributed manner is a challenging problem. In
this paper, we provide techniques to instantiate one of the core functionalities of
social networks: discovery of paths between individuals. Our algorithm preserves
the privacy of relationship information, and can operate offline during the path
discovery phase. We simulate our algorithm on real social network topologies.

1 Introduction

Social Networks have proliferated over the past few years, offering numerous services
that attract millions of subscribers. In fact, Social Networking Sites are among the most
frequently visited Internet sites (e.g., Myspace, Facebook). Their novel functionality
and the ways of personal interaction they offer fuel their tremendous success.

A fundamental feature of social networks is the relationship graph that connects
users. This graph enables two individuals to find the relationship paths that connect
them. These paths are useful to express trustworthy users: nearby people (with short
relationship paths connecting them) often deserve a higher level of trust. The path dis-
covery mechanism can be used as a building block for many social networking applica-
tions: (1) discovering a relationship path to a recruiter may boost the chances of a job
applicant to get the position; vice-versa, discovering a relationship path to an applicant
could help the recruiter get a more trusted judgment on the applicant; (2) relationship
path discovery can provide a basis for access control mechanisms suitable for Social
Networks, where users determine the authorized users based on their distance to them-
selves in the social network; (3) a path to a person submitting an online review can
boost confidence in the review; and (4) ensuring the receiver of an email that the sender
is nearby in her social network can help avoid falsely flagging the email as spam.

Although the relationship graph is at the core of the usefulness of social networks,
personal relationships represent sensitive, private information that can also be misused.
A primary concern is the unwelcome linkage among users. For example, two profes-
sionals employed by rival companies that have a connection may trigger suspicion. Or,
connections of innovators and venture capitalists could alert the competition by giving
leads to upcoming technological developments. Or, simply, a social relationship can
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correspond to a sensitive personal real-world relationship. Of greater concern is the dis-
covery of entire relationship paths and, in the end, of the entire graph. A significant
negative consequence of this discovery is the large-scale targeting, tracking, and moni-
toring of multiple individuals in real life based on discovered relationship paths. Other
privacy concerns can arise from graph operations; e.g., user de-anonymization through
merging of relationship graphs [15].

Problem Scope. Protecting the privacy of relationship paths in a social network is a
separate concern from that of protecting the privacy of (1) other content of individual
users, (2) pairwise inter-user relationships, or (3) inter-user relationships based on a
single intermediary contact. The stored content of a social network site can be protected
using cryptographic primitives [4,10,13]. Pairwise-private relationship protection arise
in practical settings such as instant messaging [12].

The protection of a user’s pairwise private relationships has received extensive cov-
erage outside social networks; e.g., “trust-negotiation” between a client and a server. In
trust negotiations, a client’s relationships-revealing credentials could not be disclosed to
a server, and the server’s relationship-revealing access policies could not be disclosed to
the client. In other settings, private set-intersection protocols (viz., Section 3) can main-
tain a limited type relationship privacy, namely help discover one intermediate contact
between two users privately.

In all these examples, enforcement of privacy protection is a matter of local user
policies; e.g., client-server policies, pairwise-private policies. In contrast, protecting
relationship paths among users in social networks requires (uniform) enforcement of
global privacy policies because all users are affected by unauthorized privacy breaches.
This is a significantly more challenging problem, whose solutions, nevertheless, present
opportunities for novel use in a variety of other applications.

Decentralized Access. Any effective solution to relationship-path privacy would be
based on decentralized access control mechanisms and policies. Decentralized access
control is required by both privacy and robustness concerns. First, mobile users should
be able to discover other mobile users with whom they have a relationship without
having to connect to a centrally administered social network site, which could track
their movement or which would be unreachable without network access. For example,
two nearby users should still be able to discover their private relationship paths even in
the absence of Internet connectivity.

Second, perhaps more important, a single point of privacy failure should be avoided.
The centralized, full access that Social Networking Sites have over relationship data
pose serious privacy threats. Some Social Networking Sites have permissive privacy
policies that enable them to use such data for commercial purposes. Moreover, even
sites with strict privacy policies can be subject to disclose private information disclo-
sure. For example, sites can be subpoenaed to disclose user information indiscrim-
inately, which would be ineffective whenever such information would be decentral-
ized; i.e., subpoenas would have to be network-node selective, need-to-know based and
would yield limited user information. Another risk are malicious insiders with access to
private information that can disclose private information. Finally, administrator errors
or security vulnerabilities can also lead to privacy disclosures, as we have frequently
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witnessed recently in the case of leaked databases containing credit card and social
security numbers.

Design Challenges. Implementing decentralized access control to protect relationship-
path privacy poses significant challenges, and obvious approaches do not address the
problem. An approach where people make their relationships list visible to their neigh-
bors is not viable because that would disclose sensitive information. Another approach
would be to flood relationship path discovery messages throughout the social network,
but that would incur high overhead and latency, especially if some users are offline; they
would delay path discovery until they are online. Furthermore, these challenges are ex-
acerbated during relationship-path discovery. For example, if two users want to discover
private relationship paths to each other, the path-discovery protocol could not rely on all
intermediate users sites to be on-line and help find relationship paths. In other words,
two users should be able to discover private relationship paths to each other based only
on their local communication.

Contributions. In this paper we propose a system that enables users to benefit from
social networking applications without the privacy exposure associated with having all
their data stored at a central site. The key contribution of this paper is thus our privacy-
preserving multi-hop relationship path discovery mechanism. Our design enables new
access control policies based on social relationships, new trust establishment policies,
and new ways to manage communication applications (e.g., e-mail spam).

2 System Model and Problem Statement

A relationship path between two users u and v is a sequence of users whose pairwise
relationships (i.e., friendship) connect the two users. We call the two users the end users
of the relationship path.

The distance (depth) d between two users on a relationship path is the number of
edges (aka hops) from one user to the other on that relationship path.

A bridge contact user ui, of user u to a user v on some relationship path is the direct
relationship (i.e., edge) of user u to user v on that relationship path.

A private relationship path from user u to user v is a tuple (u,ui,d,v) encoding a
relationship path (u,ui, ...,v j,v) of distance d. By symmetry, (v,vi,d,u) is the private
relationship path from user v to user u of distance d. Whenever a relationship path
(u,ui, ...,v j,v) is private, neither user (u, v) can discover any intermediate users on that
path to the other user beyond its respective bridge contact (ui, v j). Of course, there may
be multiple private relationship paths from u to v with the same bridge contact and
different distances, and an user may have multiple bridge contacts each on a different
private relationship path to the other user.

A bridge contact ui has different roles: (1) it can facilitate the introduction of u to
v. This can be relevant, for example, in a job search scenario. (2) It helps u assign a
trust value to v, which can be useful when the private relationship paths are used to
enforce access control. (3) It helps u track/blacklist misbehaving users. Assume that in
the email whitelisting scenario, many of ui’s friends send spam messages to u. u may no
longer want to whitelist a user v to which u has a private relationship path (u,ui,d,v).
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Fig. 1. Example topology and private relationship paths of distance d ≤ 3 discovered by A(lice)
and M(ary)

Whenever there are multiple private relationship paths (u,ui,di,v), then u would assign
trust value v based on the shortest private relationship path.

An obfuscated private relationship path (u,ui,d,?) is a private relationship path,
where the identity of one end user is unknown.

The example topology of Figure 1(a) is provided to illustrate the use of our system
entities defined above. In that figure, users A and M discover private relationship paths to
each other at distances d ≤ 3. A discovers the two private relationship paths (A,B,3,M)
and (A,D,3,M), where B and D are the bridge contacts and 3 is the distance of the
private relationship paths. These private relationship paths captured by graph edges
A−B−?−M and A−D−?−M, depicted in Figure 1(b), where “?” means that user A
does not know the identity of the corresponding user. User M discovers the two private
relationship paths (M,J,3,A) and (M,K,3,A), corresponding to M− J−?−A and M−
K−?−A depicted in Figure 1(c).

2.1 Assumptions

We assume that each user v is free to choose the users with whom she wishes to establish
a relationship, but that relationships can only be established based on the consent of both
users. We assume the existence of a secure and authenticated channel between each pair
of friends. We assume that friends can communicate anonymously, for example using
Tor. We assume that v has a public-private homomorphic key pair. We also assume that
two users who want to discover private relationship paths can authenticate each other’s
homomorphic public keys.

In this work, we also assume the typical case where relationship paths decline in
value with increasing length. Hence, users do not gain any benefits from increasing the
length of their own relationship paths. This assumption is based on the observation that
for all social network applications in use today, shorter paths are more desirable and
take precedence over longer paths.

2.2 Desired Properties

Privacy. The central goal of our protocol is to enable two parties to discover private
relationship paths to each other in an efficient manner while minimizing the additional
information about relationships that users can learn. We will compare our approaches
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to an ideal scheme, which returns private relationship paths without disclosing any ad-
ditional information. We say that our approach provides privacy if it does not leak any
more information than the ideal scheme.

Path Integrity. The protocol needs to provide path integrity for the discovered paths,
i.e., an adversary cannot alter discovered paths. An adversary may attempt to violate
path integrity in two ways: alter the bridge contact, or shorten the discovered path.

Completeness. Our protocol should also be complete in the sense that each party dis-
covers all the discoverable private relationship paths. On a discoverable private relation-
ship path, all users on the corresponding relationship path do not object the discovery.

Offline discovery. Our protocol should enable two users to discover private relation-
ship paths offline, i.e., based only on their physical interaction and without the help of
intermediate users. Not requiring intermediate users to be online during the discovery
phase is very appealing for most situations. The ability of two users to discover private
relationship paths based exclusively on their local interaction, without being connected
to the Internet, is particularly relevant for mobile users.

Low overhead. We aim for low communication and computation overhead.

2.3 Adversary Model

We distinguish between two kinds of adversaries: internal and network adversaries. An
internal adversary sets up an account and creates relationships with users they can e.g.,
her friends in real life. The network adversary controls the communication channel
between users, can eavesdrop, stop or inject messages. This adversary is, however, not
part of the social network, and does not participate in our protocol.

The internal adversary is free to arbitrarily deviate from our protocols. The adversary
may wish to alter the topology of the social network to bring more value to themselves.
For example, an adversary may want to make other users see her nearby (i.e., at a small
distance from them). The adversary M may also want to alter the bridge contact in a pri-
vate relationship path discovered by some user u to M. v may trust one bridge contact more
than other. Similarly, the adversary may try to deny value to honest users. The adversary
may also want to break the privacy of the social network by discovering the relationships
of other users. A misbehavior is not considered an attack if it only results in an outcome
permitted in social networks as described in Section 2.1. For example, a user may not
want an extremely sensitive relationship to be leaked. This user suppresses all private
relationship paths corresponding to a relationship path containing that relationship.

The network adversary can observe the network traffic of users in order to learn
about their relationships. It should be noted that people who use regular e-mails or
encrypted e-mails are already vulnerable to having this kind of adversary learn their
relationships. The network adversary can observe the source and destination of their e-
mails, as well as the frequency at which they send and receive e-mails from each person.
This combined information enables the network adversary to infer the friends of a user
as the people with whom the user has many e-mail exchanges. People concerned about
this kind of adversary usually use some form of anonymous communication. We do not
discuss this kind of adversary further in the paper.
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3 Background on Privacy-Preserving Cryptographic Techniques

In this section, we present background on privacy-preserving cryptographic techniques
that we will build on. Private set intersection protocols [3, 8, 11] enable two or more
parties that each hold a set of inputs drawn from a large domain to jointly calculate the
intersection of their inputs, without leaking additional information. The private set inter-
section proposed by Freedman et al. [8]1 is a two-party protocol between a client C and
a server S. C’s input is a set of size kC, drawn from some domain of size N; S’s input is a
set of size kS drawn from the same domain. At the conclusion of the protocol, C learns
which specific inputs are shared by both C and S. That is, if C inputs X = x1, . . . ,xkC

and S inputs Y = y1, . . . ,ykS , C learns X ∩Y : {xi|∃ j, xi = y j}. The protocol is based on
the presentation of sets as roots of a polynomial and on the use of homomorphic cryp-
tosystems. The protocol follows the basic structure. C defines a polynomial P whose
roots are her inputs: P(y) = (x1−y)(x2−y) · · · (xkC −y) = ∑kC

w=0 αwyw. C sends to S ho-
momorphic encryptions of the coefficients of this polynomial. S uses the homomorphic
properties of the encryption system to evaluate the polynomial at each of her inputs.
She then multiplies each result by a fresh random number n to get an intermediate re-
sult, and she adds to it an encryption of the value of her input. That is, S computes
Enc(n .P(y j)+ y j) for each of her inputs y j ∈ Y . S randomly permutes this set and re-
turns it to C. C decrypts each element of this set. For each element in the intersection
of the two parties’ inputs, the result of this computation is the value of the correspond-
ing element, whereas for all others the result is random. The computation overhead for
C mainly consists of kC homomorphic encryptions and kS homomorphic decryptions.
The kC homomorphic encryptions only need to be computed once per input set. The
computation overhead for S is mainly due to the evaluation of each of her inputs on a
degree-kC polynomial. The use of multiple-low degree polynomials and Horner’s Rule
make the asymptotic computation overhead O(kC + kS ln lnkC) exponentiations.

A slight variation of the above protocol is provably secure in the random oracle
model against malicious adversaries, where a malicious adversary may behave arbitrar-
ily. The security definition of private set intersection protocols is based on a comparison
between an ideal and a real implementation. In an ideal implementation, a trusted third
party receives the inputs of the two parties and outputs the result of the intersection,
whereas in the real implementation there is no trusted third party. The security model
requires that in the real implementation of the protocol, each party does not learn more
information than the ideal implementation. Such a security model does not deal with
attacks that apply to the ideal model. For example, a party may lie about her input set.

4 Protocol Overview

The goal of our protocol is to enable two users to discover private relationship paths to
each other offline, without disclosing superfluous relationships. This requires users to
store topology information that enables the discovery, without revealing relationships.

1 The paper refers to the protocol both by private set intersection and private matching. We only
refer to the protocol as private set intersection in order to avoid confusion with matchmaking
protocols.
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Fig. 2. Basic scheme. Extended hexagonal topology and obfuscated tokens propagated for origi-
nator A.

Our protocol operates in two phases: a token flooding phase and a path discovery phase.
During the infrequent token flooding phase, we assume that users are online so they can
exchange obfuscated topology information. The path discovery phase runs when two
users want to discover private relationship paths to each other, offline based on the col-
lected obfuscated topology information; it returns to the two users private relationship
paths.

During the token flooding phase, users disseminate cryptographic tokens that become
associated with obfuscated relationship paths. Each user issues tokens to her neighbors
to explore relationship paths starting from herself. Other users will cryptographically
obfuscate these tokens and continue the flooding process up to a pre-determined num-
ber of hops. The obfuscation operation is deterministic and independent of the identity
of the user. This enables the originator to compute the value of all possible tokens at any
distance. The originator will in fact simulate the flooding and compute the obfuscated
token values at all distances up to the maximum flooding depth. The originator asso-
ciates each computed token with an obfuscated relationship path. The path discovery
phase runs when two users want to discover private relationship paths to each other.
The two users perform a private set intersection protocol: one user plays the role of
a client and enters the tokens she has computed as originator, and the other plays the
role of a server and enters the tokens received. The first user learns the existing private
relationship paths based on the common tokens. A second run of the private set inter-
section protocol with the roles of the two users inverted enables the second user to learn
existing private relationship paths. The second private set intersection protocol does not
run if v is not interested in discovering private relationship paths.

We now explain some more details based on the example in Figure 2(a). We consider
the token flooding phase where node A is the originator and floods her tokens through
the network. To limit the flood up to a maximum distance, each token is accompanied
with the distance from the originator. Figure 2(b) depicts the hash tree that is created
during the flooding process for A’s tokens. To initiate the token flooding process, A picks
a random number z. To prevent nodes from inferring relationship topology information
during the flooding process, each token is obfuscated through a one-way hash function
H and a counter value – through this approach each token represents a unique sequence
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of users. As Figure 2(b) shows, A sends token T1 = H(z || 1) to user B, and token
T2 = H(z || 2) to user C, along with the distance 1. B and C obfuscate the token through
another application of the one-way hash function and a counter value, and forwards the
unique token values to their neighbors along with the distance value 2. Users store the
received tokens in their list of received tokens.

Figure 2(b) only shows the tokens that are distributed for user A; in practice each
user distributes her own set of tokens. Due to the deterministic operation of the token
obfuscation process, the token originator can simulate the token flooding phase and
compute all tokens depicted in the hash tree in Figure 2(b).

To demonstrate the discovery of a private relationship path, consider the case where
users A and F meet. One user will use the computed list of obfuscated tokens, and the
other user will use the list of all received tokens. In our example in Figure 2(b), A will
compute tokens T1,T2, . . . ,T8, and F will use all received tokens, which include tokens
T6 and T8. After performing private set intersection of the two lists, they find a match
with tokens T6 and T8. Since A knows that token T6 was derived from token T1 which
was handed to user B, B is the bridge contact for that private relationship path. A further
knows that T6 is at distance 3 hops. Analogously, A knows that C is the bridge contact
for the 3-hop long path represented by T8.

5 Protocol Description

We describe next our protocol in more detail, assuming all users follow the protocol.
Sections 6.1, and 6.2 discuss protocol deviations. Table 1 describes our notation.

Table 1. Notation.

o originator
r relay node
v, u users in the social network
xi ith friend of x
|x| number of friends of user x
d distance
dmax maximum distance of private relationship paths
degmax maximum number of neighbors of any node

5.1 Basic Scheme

In this section, we first describe a basic version of our protocol and extend it in Sec-
tion 5.2.

Token Flooding Phase. As we describe in Section 4, the originator floods tokens that
represent obfuscated paths and that can later be used to discover private relationship
paths. Algorithm 1 is used by the originator o to construct and send tokens to her friends.
To start, the originator o generates a random number z and uses it as a seed to compute
nodes at depth 1 of a hash tree. o computes Ti = H(z||i), i = 1, ..., |o| and sends (d =
1,Ti) to each friend oi.
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Algorithm 1. Basic scheme. Token propagation. Originator o.
Generate a random number z
Send (d = 1,Ti = H(z||i)) to oi, i = 1, . . . , |o|

Algorithm 2. Basic scheme. Token propagation. Relay r.
for reception of (d,T ) from ri do

Insert (ri,d,T ) into list of received tokens

if d < dmax then
Send (d +1,Tj = H(T || j)) to r j, j = 1, . . . , |r|, j �= i

end if
end for

Algorithm 3. Basic scheme. Hash tree construction. Originator o.
Insert(oi,1,Ti = H(z||i)), i = 1, . . . , |o| into hash tree
while Unmarked (oi,d,T ) do

Mark (oi,d,T )

if d < dmax then
Insert (oi,d +1,Tj = H(T || j)), j = 1, . . . ,degmax in hash tree

end if
end while

Algorithm 2 is used by the friends of the originator to construct and send tokens
to their friends. This propagation continues hop-by-hop up to distance d = dmax from
the originator. A user performing this propagation is termed a relay r. When r receives
(d,T ) from her friend ri, she inserts T into her list of received tokens. The relay ri

computes Tj = H(T || j), j ∈ {1, ..., |r|}, j �= i, and sends (d +1,Tj) to each of her friends
r j �= ri. Figure 2(b) presents the hash tree spanned by A’s token propagation, where A
plays the role of an originator.

The originator o can reconstruct the hash tree created during the token flooding phase
by users at distance d < dmax. This way, the originator has a common token with each
user at distance d ≤ dmax. Each of these tokens is associated with an obfuscated rela-
tionship path. The tokens that are common between the originator and users at distance
d ≤ dmax constitute the basis for discovering private relationship paths during the path
discovery phase (explained in detail below). Algorithm 3 is used by the originator to
reconstruct all tokens from the hash tree. The originator o constructs a hash tree based
on the seed z, the maximum degree degmax and depth dmax. Each token of the hash tree
is associated with an obfuscated private relationship path. A token Ti at depth 1 is a
token associated with the trivial obfuscated private relationship paths (o,oi,1,?), as the
token Ti was sent to the friend oi. A node T at depth d with ancestor Ti is associated
with the obfuscated private relationship path (o,oi,d,?).

Path Discovery Phase. The path discovery phase runs when two users u and v want to
discover private relationship paths. Users u and v run a private set intersection protocol
(as described in Section 3) where u plays the role of the client entering the tokens
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in her hash tree and v plays the role of the server entering the tokens in her list of
received tokens. The private set intersection outputs to u the tokens Tk in u’s hash tree
corresponding to the entries (uk,dk,Tk) in u’s hash tree. This enables u to discover
private relationship paths (u,uk,dk,v). A second private set intersection protocol with
the roles of u and v inverted. That is, v plays the role of the client and enters the tokens
in her hash tree as input, and u plays the role of the server and enters the tokens in her
list of received tokens as input. This second private set intersection enables v to discover
private relationship paths to u.

We consider the extended hexagonal topology, with users A and F running the path
discovery phase. A and F run a private set intersection protocol where A enters the
tokens in her hash tree as input, while F enters the tokens in her list of received tokens as
input. A’s hash tree contains tokens T1, · · · ,T8 depicted in figure 2(b). During the token
flooding phase, F received tokens T6,T8. The private set intersection protocol outputs
T6,T8 for A. T6 enables A to learn (A,B,3,F). A knows that B is the bridge contact since
A knows that T6 was derived from T1 that was handed to B. A further knows that F is
at distance 3 since T6 was derived from T1 by applying three times a hash function to
the seed z. Analogously, A discovers the private relationship path (A,C,3,F) from T8.
A second private set intersection protocol is run with the roles of A and F inverted. F
learns the private relationship paths (F,D,3,A) and (F,E,3,A).

5.2 Extended Scheme

The basic scheme, unfortunately, suffers from a privacy leak: it is possible to learn
whether discovered private relationship paths intersect at specific intermediate users.
Assume that in the extended hexagonal topology, A runs the path discovery phase
with F and subsequently with D. A discovers the private relationship paths (A,B,3,F),
(A,C,3,F) based on T6,T8 and later (A,B,2,D), (A,C,3,D) based on T3,T7. Since A
knows that T3 is the ancestor of T6 in the hash tree, A learns that D is the user at distance
2 in the private relationship path (A,B,3,F). Similarly, since T7 and T8 have the same
ancestor, A learns that (A,C,3,D) and (A,C,3,F) have the some intermediate user at
distance 2. The basic scheme also has a very large overhead since an originator com-
putes a hash tree of degree degmax. Since most users have fewer than degmax friends, the
basic scheme computes and stores many unnecessary tokens in the hash tree.

We present an extended scheme to address these shortcomings. The extended scheme
utilizes a randomization technique to seal the privacy leak and an optimization to re-
duce the overhead associated with the computation of unnecessary tokens. The goal of
the randomization technique is to prevent an originator from learning information about
intermediate users on a private relationship path beyond what can be directly inferred
from discovered private relationship paths. This holds even after the originator runs a
path discovery phase with multiple users. In the extended scheme, we separate the com-
putation of the token of a user v from the computation of tokens of intermediate users
between v and the bridge contact. More specifically, for a given bridge contact, we sepa-
rate the computation of tokens based on the distance to the originator. A user at distance
2≤ d ≤ dmax receives a token randomly chosen from the set of tokens computed for d.

Our basic observation towards designing the extended scheme is that since the bridge
contact is disclosed with the private relationship path, the bridge contact can directly
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Algorithm 4. Extended scheme. Token propagation. Originator o.
Generate a random number z
Send (d = 1,T 1

i = H(z||′1′||i)) to oi, i = 1, . . . , |o|

create tokens for all subsequent users at d ≤ dmax. Since in practice dmax = 3, the bridge
contacts creates tokens for distances 2 and 3. The bridge contact obtains the number
of tokens for distance 3 by asking her friends about their degrees and summing these
degrees. Tokens for distance 3 are computed separately from the ones for distance 2.
The bridge contact sends to each of her friends one token for distance 2 and a number
of tokens for distance 3 proportional to the friend’s degree. The tokens transmitted are
randomly chosen from the computed tokens. The friend stores the token for distance
2 and to each of her friends one of the received tokens for distance 3. This approach
addresses the inefficiency of the basic scheme, because each bridge contact can inform
the originator of how many tokens were distributed.

We now describe the extended scheme in more detail for the case of dmax = 3, which
we consider to be the largest value for dmax that is viable in practice. Algorithm 4
presents the algorithm used by the originator o to construct and forward tokens to her
friends. o generates a random number z and uses it to create tokens for her friends as
T 1

i = H(z||′1′||i), i = 1, · · · , |o| and sends (1,T 1
i ) to each of her friends. These friends

constitute the bridge contacts. Algorithm 5 presents the algorithm used by a bridge
contact b = oi to construct and send tokens. The algorithm assumes that b previously
received the value of |bi| from each of her friends. When b receives a token T from o,
b computes tokens for all subsequent users at distances 2 and 3. Tokens for distance
2 are computed as T 2

i = H(T ||′2′||i), i = 1, · · · , p = |b|− 1. Tokens for distance 3 are

computed as T 3
j = H(T ||′3′|| j), j = 1, · · · ,q = ∑|b|i=1,bi �=o(|bi|−1). Similarly to the basic

scheme, each token encodes the distance to the originator. b sends to each of her friends
bi a token for distance 2 and |bi|−1 tokens for distance 3. These tokens are randomly
chosen from tokens computed for distances 2 and 3 respectively. At the end, b informs
o about (p,q) the number of tokens computed for distances 2 and 3. A subsequent
user on the relationship path is termed as a relay r. Algorithm 6 presents the algorithm
used by r to forward tokens to her friends. When r receives from a bridge contact
((2,T 2), T 3

i , i = 1, · · · , |r|−1), r stores T 2. r sends to each of her friends (3,T 3), where
T 3 is randomly chosen from the received tokens T 3

i . Figure 5.2 presents the hash tree
spanned by A’s tokens propagation.

Similarly to the basic scheme, the originator computes the hash tree of tokens re-
ceived in the network, where each token is associated with an obfuscated private rela-
tionship path. Algorithm 7 presents the algorithm used by the originator. The algorithm
takes as input (pi,qi), the number of tokens computed for distances 2 and 3 by each
bridge contact oi. For each bridge contact oi, the originator constructs a token for dis-
tance 1 as T 1

i = H(z||′1′||i), where z is the previously generated seed. The originator
constructs tokens for distance 2 as T 2

j = H(T 1||′2′|| j), j = 1, · · · , pi and associates them
with obfuscated private relationship paths (o,oi,2,?). Similarly, tokens for distance 3
are constructed as T 3

j = H(T 1||′3′|| j), j = 1, · · · ,qi and associated with obfuscated pri-
vate relationship paths (o,oi,3,?). The hash tree constructed by this algorithm has a
different structure than the one for the basic scheme. The depth of the tree is 2. The
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Algorithm 5. Extended scheme. Token propagation. Bridge contact b.
Require: |bi|, i = 1, · · · , |b|

for reception of (1,T ) from o do
Insert T in list of received tokens

p = |b|−1
T 2

i = H(T ||′2′||i), i = 1, · · · , p

q = ∑|b|i=1,bi �=o(|bi|−1)
T 3

j = H(T ||′3′|| j), j = 1, · · · ,q

Shuffle T 2
i

Shuffle T 3
j

Send (2,T 2
i ) and (|ri|−1) values from T 3

j to ri

Send (p,q) to o
end for

Algorithm 6. Extended scheme. Token propagation. Relay r.

for reception of ((2,T ),T 3
i , i = 1, . . . , |r|−1) from bridge contact b do

Insert T in list of received tokens
Shuffle T 3

i
Send (3,T 3

i ) to ri, i = 1, . . . , |r|, ri �= b
end for

for reception of (3,T ) from ri do
Insert T in list of received tokens

end for
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Fig. 3. Extended scheme. Obfuscated tokens propagated for originator A in the extended hexago-
nal topology.

root z has degree |o|, whereas a token for distance 1 handed to oi has degree pi +qi. For
example, T1 has 3 children: T3, T4 and T5.

The path discovery phase runs similarly to the basic scheme. A private set intersec-
tion between u and v enables u to discover common tokens and learn private relationship
paths.
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Algorithm 7. Extended scheme. Hash tree construction. Originator o.
Require: (pi,qi) number of tokens for distances 2 and 3 computed by bridge contacts oi, i =

1, · · · , |o|
for i = 1, · · · , |o| do

Insert (oi,1,T 1 = H(z||′1′||i)) in hash tree
Insert (oi,2,T 2

j = H(T 1||′2′|| j)), j = 1, · · · , pi in hash tree

Insert (oi,3,T 3
j = H(T 1||′3′|| j)), j = 1, · · · ,qi in hash tree

end for

In practice, a user does not inform others about her exact degree. Instead, the user
adds to it a positive noise in order to further hide the network topology. To be consistent
with the noise added, the user creates and sends dummy tokens as if she had additional
friends. The amount of the noise to be added in order to appropriately hide the network
topology is beyond the scope of this paper. It should be noted that the extended scheme
does not require additional trustworthiness from the bridge contact. The bridge con-
tact is free to deviate from the protocol in order to suppress private relationship paths
containing her relationships, as any other intermediate user.

In our discussion, we considered dmax = 3. However, the scheme can be easily ex-
tended to a larger dmax.

6 Evaluation

In this section, we evaluate the extended scheme. Sections 6.1 and 6.2 provide a security
and a privacy analysis. Section 6.3 analyzes the scheme overhead. Simulations based
on real social network topologies are presented in Section 6.4. We consider dmax = 3.

6.1 Security Analysis

Completeness. Assume there exists a relationship path (u,ui, · · · ,v j,v) of distance d ≤
dmax. Completeness requires that when u and v run a path discovery phase, u discovers
(u,ui,d,v) and v discovers (v,v j,d,u) in case all users on the relationship path consent
to the discovery. In our protocol, a user is provided with the flexibility to suppress all
private relationship paths corresponding to paths containing one of her relationships.
This relationship may be extremely sensitive.

We focus on relationship paths with distance 3. The discussion can be easily adapted
to relationship paths with distance 2. We consider the discovery by u, the one by v
being very similar. We list sufficient conditions for u’s discovery: (1) during the token
flooding phase, v receives a well constructed token T originating from u and u computes
T as part of her hash tree and associates it with the obfuscated private relationship path
(u,ui,d,?); and (2) during the path discovery phase, both u and v enter T to the private
set intersection protocol instance where u plays the role of a client and v plays the role
of a server.

The first condition holds if u sends a token associated with d = 1 to ui, ui receives
an upper bound on |v j| from v j, constructs and forwards as many tokens for d = 3 (one
of these tokens being T ) to v j, and v j forwards T to v. The second condition holds if u
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computes all tokens encoding d = 3 forwarded by ui to v j, and associates them with the
obfuscated private relationship path (u,ui,3,?). u can perform such computation if ui

informs her about the total number of constructed tokens encoding d = 3. It can be seen
therefore that the first condition holds if all users on the relationship path consent to
the discovery by performing the required actions. Similarly, the second condition only
depends on the consent of u and v.

In order to further clarify why completeness holds in our protocol, we consider
one specific protocol deviation. Assume an intermediate user on the relationship path
(u,ui, · · · ,v j,v) does not forward tokens to subsequent users. u and v will not be able
to discover the corresponding private relationship paths. This, however, does not break
the completeness property. In our protocol, a user is provided with the flexibility of sup-
pressing private relationship paths corresponding to a relationship path containing one
of her relationships.

Path Integrity. Path integrity requires than an adversary M cannot alter the bridge
contact or shorten the discovered path. In our protocol, u discovers a private relationship
path (u,ui,d,M) when running a path discovery phase with M if: (1) M owns a token
that u associates with the obfuscated private relationship path (u,ui,d,?) and (2) both u
and M enter that token to the private set intersection protocol.

When M is at distance d > dmax from u, M does not receive any token originat-
ing from u. M is only left with the option of generating random tokens. This attack is
considered of limited scope. We now consider the existence of one relationship path
(u,ui, · · · ,M) of distance d ≤ dmax. M receives a token T corresponding to the private
relationship path (u,ui,d,M). Additionally, M has access to tokens corresponding to
longer private relationship paths with the same bridge contact because of the hop-by-
hop token propagation. T cannot be used to compute tokens corresponding to shorter
obfuscated paths with or with a different bridge contact, thanks to the preimage resis-
tance property of a cryptographic hash function. When there are multiple relationship
paths of distance d≤ dmax from u to M, M receives a token originating from u for each of
these relationship paths. Here also, the preimage resistance property of a cryptographic
hash function prevents these tokens from being used to compute a token corresponding
to a shorter obfuscated private relationship path or one with a different bridge contact.

In our protocol, M can make a user v appear at a shorter distance to another user u.
Consider a relationship path (u,ui,M,v). M can forward its own token to v, making v
appear at distance 2 to u. This misbehavior causes disturbance to the system, but does
not directly benefit M.

6.2 Privacy of the Network Topology

We compare our protocol to an ideal scheme, which returns private relationship paths
without disclosing any additional information. we first consider an honest but curious
adversary that follows our protocol, but performs all possible computation on available
data. Later, we consider a malicious adversary that deviates from our protocol.

Honest but Curious Adversary. During the token flooding phase, users learn no infor-
mation about the network topology in an ideal scheme. In our protocol, we distinguish
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between the three roles played by each user v: an originator, a bridge contact and a
relay. As an originator, v learns a noisy version of the number of users at distances 2
and 3, for each of her bridge contacts. We clarify that a user having two distinct re-
lationship paths of distance 2 or 3 to v is counted twice in the number learnt by v. v
receives this information directly from the bridge contacts as described in Algorithm 5.
As a bridge contact, v does not learn additional information, compared to what v already
learnt as an originator. As a relay, v can infer the number of users at distances 2 and 3
through a simple count of the received tokens. v already learnt this information as an
originator. v does not learn whether two received tokens have the same originator, when
v did not originate any of the two tokens. This is achieved thanks to the way tokens are
constructed. However, v can recognize that she is the originator of a received token. v
receives one of her tokens when v is on a cycle of distance d ≤ dmax = 3. Cycles of
distances 1 and 2 are trivial. The ones of distance 3 are the only interesting case. These
cycles enable v to learn about the existence of a friendship relationship between any of
her two friends. Although, in the ideal scheme, v does not learn about the existence of
these relationships during the token flooding phase, v can easily learn about them by
running a path discovery phase with her friends. Similarly, v does not know whether the
same intermediate user (beyond direct friends) was involved in the forwarding of two
received tokens, if v was not involved in the forwarding of any of the two tokens. v can
be involved in the forwarding of a token either as a relay, bridge contact or originator.
We consider again the example topology in Figure 1(a). Figure 6.2 presents A(lice)’s
perception of the social network topology by the end of the token flooding phase. The
figure does not depict the noise added by users to their degrees.

During the path discovery phase, the two parties u and v exclusively learn existing
private relationship paths, in an ideal scheme. In our protocol, u learns the common
tokens between her hash tree and v’s list of received tokens. The construction of these
tokens and the randomization technique prevent these tokens from leaking information
beyond existing private relationship paths to u. However, the perception of the social
network topology gained by u by the end of the token flooding phase may help her
gain some additional knowledge. Such knowledge is limited in case users have a large
number of friends. It is further reduced by the noise added by users to their degrees. We
consider the example topology in Figure 1(a). Assume that A(lice) runs a path discovery
phase with M(ary) and subsequently with G(ary). A discovers (A,B,3,M), (A,D,3,M)
and subsequently (A,D,2,G). The tokens of M and G were randomly chosen from the
total set of tokens computed by D for distances 2 and 3 respectively. This prevents A
from learning whether G is D’s friend present in (A,D,3,M). However, from Figure 6.2,
A knows that |D|= 3. A gains more confidence up to whether G is D’s friend present in
(A,D,3,F), compared to the ideal scheme, where A does not know |D|. This confidence
is limited in typical social network topologies where |D| would be much larger. It is
further reduced by the noise added by D to |D|.

Malicious Adversary. We examine relationship information that can be leaked to a
malicious adversary, but not to a honest but curious one. More specifically, we are inter-
ested in misbehaviors that aim at breaking relationship privacy. In our protocol, relation-
ship information can be learnt in two ways:(1) during the token flooding phase, through
analysis of data received from friends; and (2) by running a path discovery phase with
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Fig. 4. A’s perception of the topology by the end of the token flooding phase for the topology
from Figure 1(a)

other users. During the token flooding phase, a malicious adversary M learns additional
relationship information compared to an honest but curious one if it can influence the
received data in a way that leaks private information. However, the only data that M can
both influence and receive is the one propagated through cycles of distance d≤ dmax = 3
containing M. Even if M associates the smallest possible distance 1 with a transmitted
token, other users will stop the propagation after dmax hops from M. Such misbehavior
can help M discover friendship relationships between any of her friends. However, an
honest but curious adversary already knows about these relationships, as was already
discussed. During the path discovery phase with a user v, a malicious adversary can
enter to the private set intersection protocol more or less tokens than prescribed in our
protocol. When M plays the role of a server, this kind of misbehavior is not benefi-
cial as the private set intersection protocol does not output anything to the server. As
a client, M does not gain anything from entering less tokens to the private set inter-
section protocol. When M enters additional tokens, M learns whether these tokens are
in v’s list of received tokens. Because of the large space of tokens, we assume that M
has a token T that is in v’s list of received tokens only when M was involved in the
construction or the propagation of T . We first consider when M does not deviate during
the token flooding phase. Beyond tokens in its hash tree, M has access to the tokens
it received and to the ones that can be constructed from them. Entering these tokens
to the private set intersection protocol makes M discover private relationship paths to
v of distance d ≤ dmax− 1. These private relationship paths are also discovered in the
normal run of the protocol. By deviating during the token flooding phase, M can only
receive maliciously constructed tokens through cycles of distance d ≤ dmax, as was al-
ready explained. Tokens propagated through these cycles do not help M learn additional
information.

6.3 Overhead Analysis

We distinguish the overhead of the token flooding phase and that of the path discovery
phase. The token flooding phase needs to run very infrequently. The path discovery
phase runs when two users u and v need to discover private relationship paths for the first
time. We introduce a new variable for the purpose of simplifying the notation for this
section. Fi

v is the fan-out of a user v at depth i. That is Fi
v is the number of relationship
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paths starting at v, of distance d≤ i. In the extended hexagonal topology, F1
A = 2, F2

A = 4
and F3

A = 8.

Token Flooding Phase. As an originator, v computes F3
v tokens in constructing the

hash tree and transmits F1
v tokens. As a bridge contact, v computes O(F1

v .F2
v ) tokens

and transmits a similar number of them. v receives F1
v tokens. As a relay, v does not

perform any computation. v receives O(F3
v + F1

v .F2
v ) and transmits O(F1

v .F2
v ) tokens.

Therefore, during the token flooding phase, the overhead is O(F3
v +2F1

v .F2
v ) hash com-

putation and exchange.

Path Discovery Phase. We evaluate the overhead when u discovers private relationship
paths to v. The overhead originates from the private set intersection protocol run where
u plays the role of the client and enters the F3

u tokens in her hash tree and v plays the
role of the server and enters the F3

v tokens in her list of received tokens. From Section 3,
the computation overhead of u consists of F3

u homomorphic encryptions and F3
v homo-

morphic decryptions. The F3
u homomorphic encryptions only need to be computed once

per input set. The computation overhead of v consists of O(F3
u + F3

v ln lnF3
u ) exponen-

tiations. The communication overhead of this step consists of O(F3
u + F3

v ) exchange of
homomorphic ciphertexts. The overhead for v’s discovery can be obtained through a
similar analysis.

6.4 Simulations

We carried out our overhead analysis based on graphs of major social networking sites:
Flickr, LiveJournal, Orkut, YouTube. The graphs were crawled by Mislove et al. [14] in
late 2006. Table 2 presents statistics about the social network topologies used.

Token Flooding Phase. Figure 5 presents the computation and communication over-
head during the token flooding phase to an individual user. It presents the cdf of the
number of tokens computed and exchanged in logarithmic scale. For Flickr, LiveJour-
nal and YouTube, about 90% of users exchange less than 105 hash values, which is
equivalent to 2 MB, given that a hash value consists of 20 B. For Orkut, more than 75%
of users exchange less than 106 hash values equivalent to 20 MB and more than 90% of
users exchange less than 107 tokens, equivalent to 200 MB. Similar trend applies to the
computation overhead.

Path Discovery Phase. We consider F3
u = F3

v . Figure 6 presents the computation over-
head when user u discovers private relationship paths to user v. The overhead follows
a similar trend compared to the token flooding phase. The main difference is that u
performs homomorphic decryptions and v performs exponentiations. These operations
are more expensive than hash computations. The communication overhead is not de-
picted. It follows a similar trend compared to the token flooding phase. The difference
is that the items transmitted are homomorphic ciphertexts and not hash values. It should
be noted, however, that the path discovery phase only needs to run once between two
particular users u and v. After the first run, u and v can mark the common tokens with
the identity of the other party. u and v can also establish a shared symmetric key for
future use.
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Table 2. Statistics about the social network topologies used

Flickr LiveJournal Orkut YouTube
Number of users 1,846,198 5,284,457 3,072,441 1,157,827
Estimated fraction of user population crawled 26.9 % 95.4 % 11.3 % unknown
Number of friend links 22,613,981 77,402,652 223,534,301 4,945,382
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Fig. 5. Token flooding phase. Overhead per user in the number of hash values computed and
exchanged.
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Fig. 6. Path Discovery phase. Computation overhead when user u discovers private relationship
paths to user v.

7 Related Work

In this section, we discuss decentralized social networks that were proposed. We then
discuss previous schemes to discover relationship paths between users.

Several centralized social networking sites enable users to find relationship paths.
For instance, LinkedIn, a professional social networking site, enables users to find pri-
vate relationship paths to others. Unfortunately, these centralized sites know the entire
topology and offer no privacy.
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Decentralized social networks were proposed [1,2] to circumvent the lack of interop-
erability among current social networking sites, where users store their profiles locally
and directly communicate with their friends. We did not find any support for a discovery
of private relationship paths in a fully decentralized manner in any of these works. A
decentralized social network was also proposed by Popescu et al. [16] to resist govern-
ment monitoring. The social network provided search capabilities for sensitive items,
but unfortunately, discovery of private relationship paths is not supported.

The most closely related work is by Freedman and Nicolosi [7], and their preceding
paper [9]. Techniques to verify social proximity between users are presented as a mech-
anism to whitelist emails from the social network of the recipient. The paper mainly
focuses on verifying friend of friend relationships, i.e., a relationship path of distance 2,
while only disclosing common friends to one party. The paper suggests an extension to
check for longer relationship paths, but unfortunately, their extension discloses all the
relationships on the relationship path at the time of verifying the social proximity.

Carminati et al. [5] propose techniques to discover relationship paths between users
in a decentralized social network. The paper assumes an untrusted central node, and dis-
closes to one party all the relationships on the discovered relationship paths. Domingo-
Ferrer [6] propose a mechanism to discover private relationship paths in a decentralized
social network. When u wishes to discover paths to v, u floods her social network at
that time. A major issue of this approach is that the discovery to be arbitrarily delayed
if intermediate users are offline. Moreover, after some time has elapsed, u cannot know
whether there does not exist a relationship path, or simply that some intermediate user
did not happen to be online.

8 Conclusion

Social networks are increasing in importance. The majority of current social networking
sites rely on a centralized server, which unfortunately offer no privacy for users’ sensi-
tive data. Given the highly privacy-sensitive nature of social networking topology (i.e.,
friendship relationships), a challenge is how to construct privacy-preserving social net-
works that provide the ability to find relationship paths without disclosing superfluous
relationships. We take this problem one step further and consider decentralized social
networks, where users can discover relationship paths offline (in a privacy-preserving
manner) with people they meet. Our proposed approach provides the property to users
who casually meet to discover relationship paths without disclosing their private rela-
tionships. More efficient schemes are the subject of our future research.
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Abstract. Anonymous credentials are widely used to certify properties of a cre-
dential owner or to support the owner to demand valuable services, while hid-
ing the user’s identity at the same time. A credential system (a.k.a. pseudonym
system) usually consists of multiple interactive procedures between users and or-
ganizations, including generating pseudonyms, issuing credentials and verifying
credentials, which are required to meet various security properties. We propose
a general symbolic model (based on the applied pi calculus) for anonymous cre-
dential systems and give formal definitions of a few important security properties,
including pseudonym and credential unforgeability, credential safety, pseudonym
untraceability. We specialize the general formalization and apply it to the verifi-
cation of a concrete anonymous credential system proposed by Camenisch and
Lysyanskaya. The analysis is done automatically with the tool ProVerif and sev-
eral security properties have been verified.

1 Introduction

The use of anonymous credential systems (sometimes called pseudonym systems) [11]
is by far the best known idea to protect personal information in communications. These
systems use pseudonyms generated by special random processes instead of users’ pri-
vate information to identify the user in order to guarantee the anonymity of users. A
credential can be issued to a pseudonym, and the corresponding user can show her pos-
session of the credential, without revealing any information beyond the bare fact that
she owns such a credential. For a credential system to be useful, some basic properties
must be satisfied. For example, a user should not be able to make transactions with
others by using a credential not issued by some valid organization (credential unforge-
ability), and transactions carried out by the same user cannot be linked (unlinkability or
untraceability). In some applications it might be desirable that a credential can only be
used once (one-show credential) or a user cannot lend her credentials to others (non-
transferability).

It is widely known that designing good security protocols is an error-prone task.
There were protocols which had been used in practical applications for many years but
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later on were found to be flawed. Examples include Needham-Schroeder [14], SSL [20]
and PKCS [19]. Formal methods were introduced as a promising technique to analyze
security protocols and in many cases the analysis can be done with automatic tools. As
a case study in this respect, we formalize the anonymous credential system proposed
by Camenisch and Lysyanskaya [10] (which we shall refer to as the CL system in the
sequel) in the applied pi calculus [3] and we employ the tool ProVerif [8] to analyze
several security properties of the system.

To our knowledge, this is the first formal, automated verification (at the symbolic
level) of this type of security systems, although many credential systems, as a main
research concern of cryptography, have been verified using traditional, semi-formal ap-
proaches in cryptography. The main part of our work is devoted to the mechanized anal-
ysis of the CL system, which is probably the most complex pseudonym system targeting
many security requirements but remaining efficient. We have checked that the system
satisfies two very basic properties: unforgeability (of both pseudonyms and credentials)
and user privacy (pseudonym untraceability). A less arresting property, which we call
credential safety and aims at preventing unauthorized use (or stealing) of credentials, is
not met by the system — the traditional replay attack breaks safety.

However, we regard our contribution as more than just a case study using ProVerif.
As credential systems become more and more widely used in large-scale security ap-
plications and many protocols have been proposed, we have been very careful in for-
malizing the system to make our model scalable. In particular, we provide a general
modeling framework in the applied pi calculus and we believe that the formalization
of most credential systems falls into it. In fact, we are currently studying other systems
with significantly different implementation from the CL system.

The rest of the paper is structured as follows: In Section 2 we briefly introduce the
applied pi calculus, as well as the formalization of zero-knowledge proofs by Backes
et al. Section 3 gives a general description of credential systems and an overall mod-
eling structure in applied pi. The next section formalizes four most important security
properties: pseudonym unforgeability, credential unforgeability, credential safety and
pseudonym untraceability, and summarizes the verification results in ProVerif of the
basic credential system of Camenisch and Lysyanskaya. Section 5 discusses related
work and Section 6 concludes the paper.

2 The Applied pi Calculus

2.1 Syntax and Semantics

We briefly recall the syntax and operational semantics of the applied pi calculus; more
details can be found in [3].

A signature Σ is a finite set of function symbols. Given a signature Σ, an infinite set
of terms is defined by the following grammar:

M,N := a, b, c, . . . , k, . . . names
| x, y, z variables
| f (M1, . . . ,Ml) function applications
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where f ranges over the functions in Σ and l matches the arity of f . Terms are equipped
with an equational theory E which consists of a set of equations over terms. We write
Σ � M = N when the equation M = N is in the theory associated with Σ, and Σ � M =
N for the opposite.

The grammar for plain process is similar to the one in the pi calculus [16], except
that here messages can contain terms rather than names.

P,Q,R := 0 null processes
| P|Q parallel composition
| !P replication
| νn . P name restriction
| if M = N then P else Q conditional
| u(x) . P message input
| u(N) . P message output

The null process 0 does nothing and is usually omitted from process specifications.
The process P|Q executes P and Q in parallel, and !P stands for an infinite copies
of P running in parallel. The process νn.P generates a fresh name n and behaves as
P. The process if M = N then P else Q behaves as P if Σ � M = N, and as
Q otherwise. The input process u(x).P can receive a message N from channel a and
behaves as P{N/x}. We often take the abbreviation ν(˜u).P for νu1. · · · .νun.P and u(=
M).P for

u(x) . if x = M then P else 0.

The output process u〈N〉.P sends message N on channel a and behaves as P.
Extended processes are defined with active substitutions:

A, B,C ::= P plain process
| A|B parallel composition
| νx.A variable restriction
| {M/x} active substitution
| event(x1, . . . , xn) events

where {M/x} is the substitution that replaces the variable x with the term M. The process
νx.({M/x}|P) restricts the scope of substitution in P and is often written as let x =
M in P. As usual, names and variables have scopes, which are delimited by restrictions
and inputs. We write f v(A) and bv(A) (resp. f n(A) and bn(A)) for the sets of free and
bound variables (resp. names) of A. An extended process is closed when every variable
is either bound or defined by an active substitution. Events are supported by ProVerif
and are used to define traces of processes.

Every extended process can be mapped to a frame ϕ(A) by replacing every plain
process embedded in A with 0. Thus, a frame is built up from 0 and active substitutions
by parallel composition and restriction. The frame ϕ(A) can be viewed as the static
knowledge exposed by A to the environment, but not as A′s dynamic behavior. The
domain dom(ϕ) of a frame ϕ is the set of variables that ϕ exports.

An evaluation context is a context (a process with a hole) whose hole is not under a
replication, a conditional, an input, or an output. A context C[ ] closes A when C[A] is
closed.
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The semantics of the applied pi calculus are defined by structural equivalence and
internal reduction. Structural equivalence ≡ is the smallest equivalence relation on ex-
tended processes that satisfies the following rules and that is closed under α-renaming
of names and variables and under application of evaluation contexts.

A ≡ A|0 PAR-0
A|(B|C) ≡ (A|B)|C PAR-A
A|B ≡ B|A PAR-C
!P ≡ P|!P REPL
{M/x}|A ≡ A{M/x} SUBST

νn.0 ≡ 0 NEW-0
νm.νn.A ≡ νn.νm.A NEW-C
νx.{M/x} ≡ 0 ALIAS
{M/x} ≡ {N/x},

if Σ � M = N
REWRITE

Internal reduction→ is the smallest relation on extended processes closed by structural
equivalence and application of evaluation contexts such that:

u〈x〉.P | u(x).Q → P | Q COMM
if M = M then P else Q → P THEN
if M = N then P else Q → Q

for all ground terms M,N s.t. Σ � M = N
ELSE

Observational equivalence is an important relation for the applied pi calculus. Intu-
itively, two processes are observationally equivalent if no evaluation context can distin-
guish them; evaluation contexts are often used to model attackers. We write A ⇓ a when
A can send a message on a, i.e A →∗ C[ā〈M〉.P] for some evaluation context C that
does not bind a.

Definition 1. Observational equivalence (≈) is the largest symmetric relation R be-
tween closed extended processes with the same domain such that A R B implies:

1. if A ⇓ a, then B ⇓ a;
2. if A→∗ A′, then B→∗ B′ and A′ R B′ for some B′.
3. C[A] R C[B] for all closing evaluation contexts C[ ].

Trace properties are also important in process calculi. Correspondence was introduced
to capture these properties [8].

Definition 2 (Correspondence). The closed process P satisfies the correspondence:

P � event( f (x1, . . . , xi))� event( f ′(y1, . . . , y j))

means that if the event f (x1, . . . , xi) is executed, then event f ′(y1, . . . , y j) must have been
executed. The closed process P satisfies the injective correspondence:

P � event( f (x1, . . . , xi))� event( f ′(y1, . . . , y j))

means that for each event f (x1, . . . , xi) being executed, there is a unique event
f ′(y1, . . . , y j) which has been previously executed.

We refer the reader to [8] for the technical definition of correspondences.



Verifying Anonymous Credential Systems in Applied Pi Calculus 213

2.2 Representing Zero-Knowledge Proofs in Applied pi

Zero-knowledge proofs become a widely used technique in constructing modern cryp-
tographic protocols [18], including many credential systems. Loosely speaking, a zero-
knowledge proof consists of a message or a sequence of messages that constitute a proof
of a statement, which yields nothing but the validity of the statement. The applied pi
calculus does not natively support the verification of security protocols involving zero-
knowledge proofs, but Backes et al. have extended the tool ProVerif to enable modeling
and analyzing non-interactive zero-knowledge proofs [5].

Let Σbase be a base signature including logic and arithmetic operations as well as
basic cryptographic primitives such as encryption, decryption, digital signature, etc.,
and Ebase be an equational theory for Σbase. For representing zero-knowledge, we need
to extend the equational theory, based on an extended signature:

ΣZK = Σbase ∪ {ZKi, j, Veri, j, Publici, Formula, true | i, j ∈ N}

A non-interactive zero-knowledge proof is formalized as a term ZKi, j( ˜M, ˜N, F), where
˜M denotes the term sequence M1, . . . ,Mi which represent the private components of the
statement that are not revealed to the verifier and the adversary, and ˜N denotes the term
sequence N1, . . . ,Nj which represent the public components of the statement, and F
constitutes a formula over these terms. In particular, we fix a distinguished set of vari-
ables ZV = {α1, α2, . . . , β1, β2, . . .} which are only used to construct zero-knowledge
formulas. Intuitively, α variables can be substituted by private components and β vari-
ables by public components. We call a term F an (i, j)-formula if it contains no names
and fv(F) ⊆ {α1, . . . , αi, β1, . . . , β j}. Publici, Formula are operations for retrieving,
respectively, the i-th public element and the formula from a proof, and Veri, j is the
function which verifies a proof against a formula. We shall often omit the arities of ZKi, j

and Veri, j when they are clear from the context.
The equational theory EZK for representing zero-knowledge is the smallest theory

satisfying all equations in Ebase and the following equations defined over all terms
˜M, ˜N, F:

Publicl(ZKi, j( ˜M, ˜N, F)) = Nl, 1 ≤ l ≤ j,
Formula(ZKi, j( ˜M, ˜N, F)) = F,
Veri, j(F, ZKi, j( ˜M, ˜N, F)) = true iff EZK � F{ ˜M/α̃}{˜N/˜β} = true

and F is an (i, j)-formula.

Backes et al. also supply several techniques for dealing with infinite equational theories,
so as to enforce the termination of the verification in ProVerif. We refer the reader
to [18] for details.

3 A General Description of Credential Systems in Applied pi

In general, a credential system consists of two types of agents: users who wish to anony-
mously prove part of their personal information or use valuable services through cre-
dentials, and organizations who issue credentials to users and verify the validity of
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credentials shown by users. In anonymous credential systems, a user needs first to in-
teract with an organization to establish a pseudonym before demanding a credential.
The user is then known at the organization by the pseudonym, which is usually based
on some information known by the organization about the user (e.g. an account in a
bank). A real individual can have a pseudonym at each organization, or even multiple
pseudonyms at one organization. However, organizations should not be able to link two
different pseudonyms belonging to the same user. Credentials are issued by organiza-
tions to pseudonyms instead of real identities: when demanding a credential, the user
interacts with the organization in the name of the pseudonym that he has established,
and obtains a credential which can be shown by the user to another organization in the
verifying procedure.

3.1 Modeling Credential Systems

We give a general framework of modeling credential systems in applied pi, by defining
the overall structure of processes without concrete definitions. In later sections we shall
see how a real credential system can be modeled following the structure. The model of
a credential system in applied pi generally consists of two types of processes: the user
processes and the organization processes.

When a user enters the system, she must first demand a pseudonym at some orga-
nization, and then use this pseudonym to demand and show credentials, hence a user
process can be generally defined as

UP
def
= ν(˜u) . !ckey( j, pk j) .UN( j, pk j) . (!UC( j, pk j, nym j) | !UV( j, pk j, nym j))

˜u is a set of secret channels inside the user process which are basically used to transmit
secret data like keys, randoms, and so on. The process UN( j, pk j) models the user’s
behavior of establishing a pseudonym at the organization O j and the user must receive
the correct public key pk j properly (e.g., from a secret channel ckey shared between
users and organizations). The process UC( j, pk j, nym j) models the user’s behavior of
demanding a credential from the organization O j, in name of the pseudonym nym j

that has been established in UN( j, pk j). In the end of the process, the generated cre-
dential must be recorded together with the ID of the issuing organization. The pro-
cess UV( j, pk j, nym j) models the user’s behavior of showing a credential using the
pseudonym nym j. There are in general two manners of showing a credential:

UV( j, pk j, nym j)
def
= !ui(= j, cred j) .UV1( j, pk j, cred j)

| !ui(l, credl) .UV2( j, pk j, nym j, l, pkl, credl),

where UV1( j, pk j, cred j) models the behavior of showing a single credential cred j is-
sued by the organization O j and UV2( j, pk j, nym j, l, pkl, credl) models the behavior of
showing a credential credl issued by the organization Ol, using the pseudonym nym j

(known at O j. Note that in the first procedure, the credential can be essentially shown
to any valid organization, while in the latter it can only be shown to O j, i.e., the or-
ganization who knows the pseudonym nym j. If the system guarantees unlinkability of
pseudonyms, this does not break the anonymity.
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Correspondingly, an organization process consists of generating a pseudonym, issu-
ing a credential and verifying a credential:

OP
def
= ν(˜o) . !ON . (!OC(nym) | !OV1(l, pkl, cred) | !OV2(l, pkl, nym, cred)),

where the process ON models the organization’s behavior of establishing a pseudonym
nym, OC(nym) models the behavior of issuing a credential to nym, OV1(l, pkl, cred)
models the behavior of verifying the credential cred and OV2(l, pkl, nym, cred) models
the behavior of verifying the credential cred, plus the statement that its owner has the
pseudonym nym. Note that nym in UV2 must be the pseudonym established by the
organization, but cred in UV1 and UV2 can be an arbitrary credential issued by a valid
organization (presumably the organization Ol). It is possible that some organizations
only do the verification and never issue credentials, and in modeling a concrete system,
one can safely remove the corresponding processes.

The whole credential system is then modeled as a set of user processes and organi-
zation processes running in parallel.

3.2 Events

As we shall see in Section 4, many security properties are defined using the notion of
correspondence between events, which must be added at right places when we define
processes. We summarize here a set of events which can be commonly defined in many
credential systems and are sufficient for defining and verifying their security properties.

– NymGeneratedNymGeneratedNymGenerated(U, n): The user U executes this event when she establishes a
pseudonym n with some organization.

– NymApprovedNymApprovedNymApproved(O, n): The organization O executes this event when he approves that
the pseudonym n is correctly formed.

– CredIssuedCredIssuedCredIssued(O, c, n): The organization O executes this event after she issues the
credential c to the pseudonym n.

– UserShowUserShowUserShow(U, c): A user executes this event when he starts a session of showing a
credential c with a verifying organization.

– CredVerifiedCredVerifiedCredVerified(O, c,O′): Verifier O executes this event after the credential c has
been shown to her and she is convinced that c has been issued by organization O′.

– CredNymVerifiedCredNymVerifiedCredNymVerified(O, n, c,O′): The verifying organization O executes this event
after the credential c has been shown to her with the pseudonym n and she is con-
vinced that c has been issued by O′ to the user. Note that n is not the pseudonym to
which c has been issued to, but the one that is known by the verifier O. In principle,
the user must possess another pseudonym n′ (known by O′)and has used n′ to get
the credential c before she shows it, but this pseudonym is irrelvant in the verifying
procedure. in short, n hides the user’s identity at the verifying organization and n′
protects her at the issuing organization.

We remark that events are not necessary for modeling protocols, but rather for speci-
fying security properties based on traces, so only processes representing honest agents
will execute these events — adversaries never execute events. When defining security
properties using these events, we often omit some parameters (replaced by ) when they
are irrelevant.
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4 Security Analysis of an Anonymous Credential System

In this section we apply the general modeling of the previous section to the anonymous
credential system proposed by Camenisch and Lysyanskaya [10], and do a verification
using ProVerif. The basic system consists of four protocols for, respectively, pseudonym
generation, credential generation, showing a single credential and showing a credential
w.r.t. a pseudonym. Due to the page limit, we only present here an abstract definition of
the whole system. Detailed description of protocols and corresponding process specifi-
cations in applied pi can be found in Appendix A.

Definition 3 (Basic credential system). The basic credential system of the CL system
is a process in applied pi:

BCS
def
= ν(ckey) . (UP1 | . . . | UPn | OP1 | . . . | OPm),

where ckey is a secret channel for transferring organizations’ public keys between hon-

est agents, UPi
def
= ν(cui) . !(ckey(l, pkl) .UNi(l, pkl)), modeling each user agent, and

OP j
def
= ν(seed j) . let pk j = pkey(seed j), sk j = skey(seed j) in

!ckey( j, pk j) |!c( j, pk j) |!ONj |!VP j

modeling each organization agent, where c is a public channel allowing agents includ-
ing adversaries to communicate with each other.

Definitions of the processes UNi,ONj,VP j can be found in Appendix A.
The rest of the section is devoted to the formalization and verification of basic secu-

rity properties: unforgeability of credentials and pseudonyms, safety of credentials and
user privacy (pseudonym untraceability), which are supposed to be met by the CL basic
system.

Let CS be a model of a credential system defined in applied pi, such as BCS in
Definition 3. We write U(CS ) for the set {U1, . . . ,Un} where each Ui is a process rep-
resenting an honest user agent, and O(CS ) for the set {O1, . . .Om} where each O j is a
process representing an honest organization agent.

4.1 Unforgeability

Unforgeability of pseudonyms and credentials is the very basic security requirement
of anonymous credential systems, which in principle prevents adversaries from forging
fake credentials. Fake pseudonyms must be prevented too, since credentials are issued
to pseudonyms, never to real identities.

Definition 4 (Pseudonym unforgeability). A credential system CS respects
pseudonym unforgeability if whenever an organization O′ ∈ O(CS ) issues a creden-
tial c to a pseudonym n′, she must have established this pseudonym with a user:

CS � CredIssuedCredIssuedCredIssued(O′, c, n′)� NymApprovedNymApprovedNymApproved(O′, n′), (1)
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and whenever an organization O ∈ O(CS ) verifies a credential c that is shown to her
w.r.t. a pseudonym n and is claimed to be issued by O′, the verifier must have established
the pseudonym with the user:

CS � CredNymVerifiedCredNymVerifiedCredNymVerified(O, n, c,O′)� NymApprovedNymApprovedNymApproved(O, n), (2)

Definition 5 (Credential unforgeability). A credential system CS respects credential
unforgeability if every successful showing (either single or with a pseudonym n at orga-
nization O) of a credential c, being claimed to be issued by an organization O′ ∈ O(CS ),
implies that O′ has previously issued c to some pseudonym n′:

CS � CredVerifiedCredVerifiedCredVerified( , c,O′)� CredIssuedCredIssuedCredIssued(O′, c, n′). (3)

CS � CredNymVerifiedCredNymVerifiedCredNymVerified(O, n, c,O′)� CredIssuedCredIssuedCredIssued(O′, c, n′). (4)

If a credential system respects both pseudonym unforgeability and credential unforge-
ability, we say that it is an unforgeable credential system.

The definition of credential unforgeability does not exclude the case where the ad-
versary can forge a valid credential that has indeed been generated by an honest orga-
nization, but not to the adversary. We shall consider it as the safety of credentials.

Theorem 1. The CL basic credential system (Definition 3) is an unforgeable credential
system, i.e., it respects the unforgeability of both pseudonyms and credentials.

Proof. We check the four correspondences (1), (2), (3) and (4) in ProVerif. ��

4.2 Credential Safety

Credential safety aims at preventing adversaries from stealing or using unauthorizedly
a valid credential. In other words, no one other than the honest user, to whom a valid
credential has been issued to, can successfully show the credential to a verifier. How-
ever, there is a subtle situation where safety can be confused with unforgeability: if an
adversary can forge a credential which has been generated by an honest organization
to an honest user, we shall consider it as an attack to safety instead of unforgeability.
In fact, when we talk about credential safety, we actually mean safety of unforgeable
credentials, or safety in unforgeable credential systems.

Definition 6 (Credential safety). A credential c in an unforgeable credential system
CS is safe if there is an injective correspondence between the event indicating that c
(being issued by O ∈ Org(CS )) is successfully verified, and the event indicating that
some user U ∈ U(CS ), who must be the owner of the credential, starts to show c, i.e,
for all pseudonym n′,

CS � CredVerifiedCredVerifiedCredVerified( , c,O′)� CredIssuedCredIssuedCredIssued(O′, c, n′)
⇒ CS � CredVerifiedCredVerifiedCredVerified( , c,O′)� UserShowUserShowUserShow(U, c)

∧ NymApprovedNymApprovedNymApproved(O′, n′)� NymGeneratedNymGeneratedNymGenerated(U, n′).
(5)

If c is shown with respect to a pseudonym n at O ∈ O(CS ), then the user must be the
owner of n, i.e., there exists another pseudonym n′,
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CS � CredNymVerifiedCredNymVerifiedCredNymVerified(O, n, c,O′)� CredIssuedCredIssuedCredIssued(O′, c, n′)
⇒ CS � CredNymVerifiedCredNymVerifiedCredNymVerified(O, n, c,O′)� UserShowUserShowUserShow(U, c)

∧ NymApprovedNymApprovedNymApproved(O′, n′)� NymGeneratedNymGeneratedNymGenerated(U, n′)
∧ NymApprovedNymApprovedNymApproved(O, n)� NymGeneratedNymGeneratedNymGenerated(U, n)

(6)

If an unforgeable credential system respects credential safety, we say it is a safe creden-
tial system.

Unfortunately, the CL basic system is not safe if we assume the channels between
users and organizations is insecure as in normal networking environment. There is a
replay attack to safety, which works as follows: in the case of showing a single creden-
tial, the adversary can record A, B in Protocol 3 and all messages in the zero-knowledge
proof, then sends them repeatedly to a verifier. The reused zero-knowledge proof simply
passes. ProVerif actually shows that the injective correspondence in (5) fails. The same
attack simply applies in the case of showing a credential w.r.t. a pseudonym, but the
adversary can only show the credential to the organization whom the user has shown it
to, since she cannot change the pseudonym that is used in the verification.

Note that an adversary can steal a pseudonym too and even use it to demand a new
credential, but she cannot show it as in that case she cannot forge a proof for showing
the credential. In fact, in credential systems, what we care about is what people can do
with credentials, not what they can do with pseudonyms, so we do not define a property
like pseudonym safety.

4.3 Pseudonym Untraceability

Anonymous credential systems are designed essentially for providing user privacy. Cre-
dentials are issued to pseudonyms, so user privacy in credential systems indeed depends
on what we can deduce based on pseudonyms. In particular, organizations should not be
able to collectively distinguish pseudonyms that belong to different users. We call this
property pseudonym untraceability, and in the applied pi calculus, this is formalized by
the popular notion of observational equivalence.

Definition 7 (Pseudonym-untraceability). A credential system CS respects
pseudonym untraceability if for arbitrary users Ui,U j ∈ U(CS ) and a well formed
public key pk0,

UNi( , pk0) ≈ UNj( , pk0),

where UNi (resp. UNj), as defined in Definition 3, models the procedure of establishing
a pseudonym by the user Ui (resp. U j) and all her behavior involving the pseudonym in
the system.

Theorem 2. The basic credential system respects pseudonym untraceability, i.e.
UNi(l, pkl) ≈ UNj(l, pkl).

Proof. ProVerif supports proving observational equivalence of two processes which
differ only in the choice of some terms. In our definition of pseudonym untraceability,
we are actually proving: for all Ui,U j ∈ U(BCS ), UNi(0, pk0) ≈ UNi(0, pk0)[x j/xi].
ProVerif shows that the above observational equivalence holds. ��
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5 Related Work

A security model for anonymous credential systems was proposed by Pashalidis and
Mitchell [17]. It follows the idea of Bellare and Rogaway [6] based on complexity theo-
retic arguments, which potentially leads to information theoretic anonymity
metrics. The model does not specify how the credential system achieves its goals but
defines what the goals are. Some basic properties such as credential unforgeability, non-
transferability, pseudonym unlinkability, and pseudonym owner protection are formally
defined and the relationships between them are explored. Compared with our defini-
tions, their definitions are based on a computational model while ours are based on the
applied pi calculus and allow an automatic verification.

Abadi and Fournet introduced the applied pi calculus [3] as a language for reasoning
about security protocols. The calculus inherits communication and concurrency for the
pure pi calculus [16], and introduces functions and equations to reason about complex
messages transmitted in security protocols. ProVerif [7] is an automatic cryptographic
protocol verifier for the analysis of trace-based security properties and observational
equivalence. It accepts applied pi processes as inputs and translates them into Horn
clauses. Using this tool, Blanchet et al. verified a protocol for certified emails [1], a
protocol for secure file sharing on untrusted storage [9], as well as the JFK protocol [2].
Luo et al. [15] analyzed an electronic cash protocol, and Kremer and Ryan [12] verified
an electronic voting protocol. Backes et al. [5] introduced an implementation of zero-
knowledge in equational theories acceptable by ProVerif and applied it to the analysis
of a remote electronic voting protocol [4].

6 Conclusion

In this paper we have presented a general formalization of credential systems and some
important security properties. We apply them to the concrete credential system pro-
posed by Camenisch and Lysyanskaya and have verified that the basic system satisfies
unforgeability for both pseudonyms and credentials, and pseudonym untraceability. We
also reveal an attack to the system which allow adversaries to steal and unauthorizedly
use a credential.

We argue that the model that we propose in the paper is faithful enough. However,
as the original protocol itself is not written in a formal language, there is no way to
formally prove that our model faithfully specify the original protocol. Nevertheless, if
we assume that the specification is correct, then the soundness of ProtoVerif already
guarantees the correctness of the verification output.

One novelty of the CL system, compared with other credential systems, is the im-
plementation of non-transferable credentials which prevent users from lending their
credentials. As part of the future work, we shall investigate how to formalize non-
transferability, as well as other interesting, advanced properties like non-reshowability.
We are also trying to transplant our model to other credential systems, in order to es-
tablish a scalable model of analyzing credential systems with the applied pi calculus.
Another interesting work would be to focus on improving the efficiency for verifying
complex systems using zero-knowledge proofs heavily. How to optimize equational
theories to speed up termination is still a challenging problem.
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A Description and Modeling of the CL Basic System

A.1 Setup of the CL System

The CL system uses the asymmetric cryptography (typically RSA) to implement anony-
mous pseudonyms and credentials. Each organization O j will have a public key PKj

consisted of an RS A modulus n j, and five elements of QRnj : (a j, b j, d j, g j, h j), the cor-
responding secret key that contains the factorization of n j. Each user Ui has a master
secret key xi.

A pseudonym Ni j — a name for Ui being known at O j — consists of a user-generated
part N1 and organization-generated part N2. Every pseudonym Ni j will be tagged with
a validating tag Pi j. A credential issued by O j to a pseudonym Ni j is pair (e, c), where e
is a sufficiently long prime chosen by O j, and c = Pi jd j

1/e (mod n j). Under the strong
RS A assumption, such tuples cannot be existentially forged for correctly formed tags
even by an adaptive attack, since no one can generate c from e without knowing the
factorization of n j.

Zero knowledge is applied in the system to protect users’ privacy. A proof of pos-
session of a credential is realized by a proof of knowledge of a correctly formed tag
Pi j and a credential on it. This is done by publishing statistically secure commitments
to both the validating tag and the credential, and proving relationships between these
commitments. It can also include a proof that the underlying secret key is the same in
both the committed validating tag (corresponding to the pseudonym formed with the
issuing organization) and the validating tag with the verifying organization.

The base signature for analyzing the CL system consists basically of two sorts of
functions: basic crytpographic primitives (e.g., enc, dec for encryption and decryption
and pkey, skey for generating asymmetric key pairs) and cyclic group arithmetic oper-
ations (e.g., add, mult, exp and inv for group addition, multiplication, exponentiation
and inverse operation). The equational theory for this signature contains standard equa-
tions for cryptography and RSA arithmetic. Detailed definition can be found in [13].

A.2 Basic Credential System and Its Model in Applied pi

The CL basic system consists of four protocols for, respectively, pseudonym genera-
tion, credential generation, showing a single credential and showing a credential w.r.t.
a pseudonym. We briefly describe these protocols and give the user and organization
processes corresponding their behavior in each protocol.

Protocol 1 (Pseudonym generation). User Ui follows the protocol below to establish
a pseudonym at organization O j:

1. Ui chooses values N1, r1, r2, r3, sets C1 = gr1
j hr2

j ,C2 = gxi
j hr3

j and sends N1,C1,C2

to O j. Ui proves that C1 and C2 are formed correctly in

PK{(α1, α2, α3, α4) : C1 = gα1
j hα2

j ∧ C2 = gα3
j hα4

j }.

2. O j generates two randoms r,N2 and sends them to Ui.
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3. Ui computes si j = r1 + r, sets the pseudonym Ni j = (N1,N2) and the validating tag
Pi j = axi

j b
si j

j , then sends Pi j to O j. Ui proves that Pi j is formed correctly in

PK{(α, β, γ, δ, ε) : C1 = gαj h
β
j ∧C2 = gγj h

δ
j ∧ Pi j = aγj b

ε
j}

In this protocol, every generated pseudonym Ni j corresponds to a validating tag Pi j,
and they are stored in pair by both Ui and O j. Here Pi j is used to distinguish different
pseudonyms, and the representation of Pi j with respect to g j and h j is an essential part
when showing a credential.

The user process and the organization process for the protocol are defined as:

UNi( j, pk j)
def
= ν(N1, r1, r2, r3) .

let C1 = exp((g j, h j), (r1, r2)), C2 = exp((g j, h j), (xi, r3)) in

let zp1 = ZK(r1, r2, xi, r3; C1,C2, g j, h j; F1) in

co j((N1,C1,C2), zp1) . cu(r,N2) .

let Ni j = (N1,N2), si j = r1 + r, Pi j = exp((a j, b j), (xi, si j)) in

let zp2 = ZK(r1, r2, xi, r3, si j; C1,C2, g j, h j, a j, b j, Pi j; F2) in

NymGeneratedNymGeneratedNymGenerated(Ui,Ni j) . co j(Pi j, zp2) .

(!UCi( j,Ni j, Pi j) | !(cui(l, cred) .UV2
i ( j, l, cred,Ni j))),

ONj
def
= co j(N1,C1,C2, z1) .

if Ver(F1, z1) = true then

ν(r,N2) . cu(〈r,N2〉) . co j(P, z2) .

if Ver(F2, z2) = true then

let N = (N1,N2) in

NymApprovedNymApprovedNymApproved(O j,N) . (!OC j(N, P) | !OV j(N, P))

where

F1
def
= (β1 = exp((β3, β4), (α1, α2)) ∧ β2 = exp((β3, β4), (α3, α4))),

F2
def
= (β1 = exp((β3, β4), (α1, α2)) ∧ β2 = exp((β3, β4), (α3, α4))

∧ β7 = exp((β5, β6), (α3, α5))),

and co j and cu are public channels, cui is a secret channel inside the process of Ui.
UCi( j,Ni j, Pi j) is the user process of demanding a credential from O j, using the
pseudonym Ni j (together with the validating tag Pi j). UV2

i ( j, l, cred,Ni j) is the user pro-
cess of showing, to organization O j, the credential cred issued by organization Ol, using
the pseudonym Ni j. OC j(N, P) and OV j(N, P) represent, respectively, the organization
processes of issuing a credential to the pseudonym N and of verifying a credential sent
by a user using the pseudonym N. Note that the credential issue and verification can
be done separately at the organization side (by different processes in parallel), but they
must be done sequentially in the user process.

The events NymGeneratedNymGeneratedNymGenerated and NymApprovedNymApprovedNymApproved are executed in this protocol:
NymGeneratedNymGeneratedNymGenerated is executed by the user right after he receives the organization part
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of the pseudonym, and NymApprovedNymApprovedNymApproved is executed by the organization at the end of the
protocol, when he receives the validating tag and verifies the validity of its form.

Note that the user is assumed to communicate with the organization via an anony-
mous channel, which is modeled using a global public channel c, and we rely on the
scheduler to determine the right destination of messages transmitted on the channel.
In particular, there is no successful trace where the response of an organization is sent
to a wrong user, as in that case the organization will fail in checking the the second
zero-knowledge proof.

Protocol 2 (Credential generation). User Ui follows the protocol below to demand a
credential from organization O j:

1. Ui sends (Ni j, Pi j) to O j and proves the ownership in

PK{(α, β) : Pi j = aαj bβj}.
2. O j checks that (Ni j, Pi j) is in its database, chooses a random prime e, computes

c = (Pi jd j)1/e mod n j, sends c and e to Ui and stores (c, e) in its record for Ni j.
3. Ui checks if ce = Pi jd j mod n j; if so, she stores (c, e) in its record with organiza-

tion O j. The tuple (c, e) is called a credential record.

The cryptographic assumption ensures that an adversary who does not know the factor-
ization of n j should not be able to generate c from e.

The user process and the organization process of credential generation are:

UCi( j,Ni j, Pi j)
def
= let zp3 = ZK(xi, si j; Pi j, a j, b j; F3) in

co j(Ni j, Pi j, zp3) . cu(ci j, ei j) .

if exp(ci j, ei j) = mult(Pi, j, d j) then

let credi j = (ci j, ei j) in

!cui( j, credi j) | !UV1
i ( j, credi j)

OC j(N, P)
def
= co j(N′, P′, z3) .

if Ver(F3, z3) = true then

ν(e) . let c = exp(mult(P, d j), inv(e)), cred = (c, e) in

CredIssuedCredIssuedCredIssued(Oi, cred,N) . cu(c, e),

where
F3

def
= β1 = exp((β2, β3), (α1, α2)).

UV1
i ( j, credi j) is the user processes of showing the credential credi j to an arbitrary

organization (verifier).
When Ui receives a credential, she broadcasts it via the internal secret channel cui to

all other sub-processes; when Ui wants to show a credential with respect to a pseudonym
Ni j, she invokes the procedure UV2

i by sending the credential to the procedure via cui.
The event CredIssuedCredIssuedCredIssued is executed by the organization in this protocol after the

credential is generated.
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Protocol 3 (Showing a single credential). User Ui follows the protocol below to show
a credential, issued by O j, to a verifier V (without revealing the combined pseudonym):

1. Ui chooses r′1, r
′
2, computes A = ci jh

r′1
j , B = h

r′1
j g

r′2
j , and sends A, B with the creden-

tial to V .
2. U proves the validity of the credential in

PK{(α1, α2, α3, α4, α5, α6, α7) :

d j = Aα1 (
1
a j

)α2 (
1
b j

)α3 (
1
h j

)α4 ∧ B = hα5
j gα6

j ∧ 1 = Bα1(
1
h j

)α4 (
1
g j

)α7 }

Those who can successfully show a single credential are assumed to know the represen-
tation of Pi j with respect to g j, h j as well as the credential pair (ci j, ei j), so the protocol
should offer sufficiently security even when the transmission of a credential is unsafe.

The two processes engaged in this protocol are:

UV1
i ( j, credi j)

def
= ν(r′1, r

′
2) .

let A = exp((ci j, h j), (1, r
′
1)), B = exp((h j, g j), (r

′
1, r
′
2)) in

let zp4 = ZK(ei j, xi, si j, mult(r′1, ei j), r′1, r
′
2, mult(r

′
2, ei j);

A, B, a j, b j, d j, g j, h j; F4) in

UserShowUserShowUserShow(Ui, credi j) . cv( j, ci j, ei j, A, B, zp4),

VP j
def
= cv(= j, ci j, ei j, A, B, z4) .

if Ver(F4, z4) = true then CredVerifiedCredVerifiedCredVerified( , cred,O j),

where

F4
def
= β5 = exp((β1, inv(β3), inv(β4), inv(β7)), (α1, α2, α3, α4))

∧ β2 = exp((β7, β6), (α5, α6)) ∧ 1 = exp((β2, inv(β7), inv(β6)), (α1, α4, α7))

The events UserShowUserShowUserShow and CredVerifiedCredVerifiedCredVerified are executed in this protocol: UserShowUserShowUserShow is
executed by the user right before he starts to show a credential and CredVerifiedCredVerifiedCredVerified is
executed by the verifier after verifying the validity of the credential (the first parameter
is omitted since in this protocol the identity of the verifier is irrelevant). In the process
model, we explicitly let the user transmit the credential to the verifier, which is not
included in the original protocol. This is only for the verifier process to be able to
execute the event CredVerifiedCredVerifiedCredVerified. It is no harm of sending the credential over a public
channel since any valid credential has been sent over a public channel when it is first
generated.

Protocol 4 (Showing a credential w.r.t. a pseudonym). User Ui follows the protocol
below to show a credential issued by organization Ol, to another organization O j, using
a pseudonym Ni j that she has established with O j:

1. Ui chooses r′1, r
′
2, computes A = cil h

r′1
l and B = h

r′1
l g

r′2
l , and sends Ni j, A, B to O j.
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2. U proves the validity of the credential and the ownership of Ni j in

PK{(α1, α2, α3, α4, α5, α6, α7, α8) :

dl=Aα1 (
1
al

)α2 (
1
bl

)α3 (
1
hl

)α4 ∧ B=hα5

l gα6

l ∧ 1=Bα1(
1
hl

)α4 (
1
gl

)α7 ∧ Pi j = aα2
j bα8

j }

The above proof has a fourth equation which proves that the same master secret key that
is used in constructing the credential cil (issued by Ol), is also used in Pi j, the attached
validating tag of the pseudonym Ni j which is established with O j.

The two processes engaged in this protocol are:

UV2
i ( j, l, cred,Ni j)

def
= ν(r′1, r

′
2) .

let A = exp((ci j, h j), (1, r′1)), B = exp((h j, g j), (r′1, r
′
2)) in

let zp5 = ZK(eil, xi, sil, mult(r′1, eil), r′1, r
′
2, mult(r

′
2, eil), si j;

A, B, al, bl, dl, gl, hl, Pi j, a j, b j; F5) in

UserShowUserShowUserShow(Ui, cred) . co j(k, cred, A, B,Ni j, zp5)

OV j(N, P)
def
= cv(l, cred, A, B,= N, z5) . ckey(= l, pkl) .

if Ver(F5, z5)=true then CredNymVerifiedCredNymVerifiedCredNymVerified(O j,N, cred,Ol)

where

F4
def
= β5 = exp((β1, inv(β3), inv(β4), inv(β7)), (α1, α2, α3, α4))

∧ β2 = exp((β7, β6), (α5, α6)) ∧ 1 = exp((β2, inv(β7), inv(β6)), (α1, α4, α7))

∧ β8 = exp((β9, β10), (α2, α8))

The two processes are similar as those for Protocol 3, except that the user needs to send
a pseudonym to the verifier and it involves in the zero-knowledge proof.

Similar as CredVerifiedCredVerifiedCredVerified, the event CredNymVerifiedCredNymVerifiedCredNymVerified is executed in this protocol
by the verifier after the verification, but it contains more information than
CredVerifiedCredVerifiedCredVerified.
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Abstract. We propose a new blind certification protocol that provides
interesting properties while remaining efficient. It falls in the Groth-
Sahai framework for witness-indistinguishable proofs, thus extended to a
certified signature it immediately yields non-frameable group signatures.
We then use it to build an efficient (offline) e-cash system that guarantees
user anonymity and transferability of coins without increasing their size.
As required for fair e-cash, in case of fraud, anonymity can be revoked
by an authority, which is also crucial to deter from double spending.

1 Introduction

1.1 Motivation

The issue of anonymity in electronic transactions was introduced for e-cash and
e-mail in the early 1980’s by Chaum, with the famous primitive of blind sig-
natures [Cha83, Cha84]: a signer accepts to sign a message, without knowing
the message itself, and without being able to later link a message-signature pair
to the transaction it originated from. In e-cash systems, the message is a serial
number to make a coin unique. The main security property is resistance to “one-
more forgeries” [PS00], which guarantees the signer that after t transactions a
user cannot have more than t valid signatures.

Blind signatures have thereafter been widely used for many variants of e-
cash systems; in particular fair blind signatures [SPC95], which allow to provide
revocable anonymity. They deter from abuse since in such a case the signer
can ask an authority to reveal the identity of the defrauder. In order to allow
the signer to control some part of the message to be signed, partially blind
signatures [AO00] have been proposed.

Another primitive providing anonymity are group signatures [Cv91], enabling
a user to sign as a member of a group without leaking any more information
about his identity. The strong security model in [BSZ05] considers dynamic
groups in which the group manager is not fully trusted: one thus requires that
the latter cannot frame honest users.

For e-cash systems, the classical scenario is between a bank, a user and a
merchant/shop: the user withdraws money from the bank and can then spend
it in a shop. The latter deposits it at the bank to get its account credited.
Literature tries to improve the withdrawal and the spending processes, e.g. with
divisible e-cash [EO94, CG07]. However, for many applications, such as e-tickets
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or coupons [NHS99], transferability [OO90, OO92, CG08] is a more desirable
property. It is known that the size of coins grows linearly in the number of
transfers [CP92]—a drawback we will avoid in our construction by modifying
the model (cf. Sect. 1.3).

Classical e-cash requires that as long as a user does not spend a coin twice
(double spending), she remains anonymous. Von Solms and Naccache [vSN92]
pointed out that perfect anonymity enables perfect crimes, and thus suggested
fair e-cash, where an authority can trace coins that were acquired illegally. Neces-
sity to fight money laundering also encourages the design of fair e-cash systems
enabling a trusted party to revoke the anonymity of users, whenever needed.

1.2 Contributions

Our first result is the definition and efficient pairing-based instantiation of a new
primitive, which we call partially-blind certification. A protocol allows an issuer
to interactively issue a certificate to a user, of which parts are then only known
to the user and cannot be associated to a particular protocol execution by the
issuer. The certificates are unforgeable in that from q runs of the protocol with
the issuer cannot be derived more than q valid certificates. We then give two
applications of the primitive:

– In order to achieve anonymity and unlinkability in group signatures, a com-
mon approach is the following: Using a signing key provided by the group
manager, a user produces a signature, encrypts it and adds a proof of its
validity. For this method to work efficiently in the standard model, these
signing keys have to be constructed carefully. In [BW07] for example, it is
the group manager that constructs the entire signing key—which means that
he can impersonate (frame) users.
Groth [Gro07] achieves non-frameability by using certified signatures (de-
fined in [BFPW07]): The user chooses a verification key which is signed by
the issuer. A signature produced with the corresponding signing key together
with the verification key and the issuer’s signature on it can then be verified
under the issuer’s key. Security of Groth’s instantiation however relies on an
unnatural assumption.
We avoid this by observing the following: it is not necessary that the user
choose the verification key, as long as she can be sure that the private key
contains enough entropy. Since the blind component of our instantiation of
our primitive can serve as signing key, our construction applies immediately
to build non-frameable group signatures (see Sect. 4).

– Second, in e-cash, the serial number of a coin needs to contain enough entropy
to avoid collisions, but again the user need not control it entirely. Partially-
blind certificates are applicable here too.

1.3 Transferable Anonymous Constant-Size Fair E-Cash

The instantiation we give of our new primitive allows it to be combined with
the results of Groth and Sahai [GS08], which is crucial to our main contribution:
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an efficient standard-model anonymous fair e-cash system in the classical three-
party scenario with the following novel features:

First, coins are transferable while remaining constant in size. We circumvent
the impossibility results by introducing a new method to trace double spenders:
the users keep receipts when receiving coins instead of storing all information
about transfers inside the coin. The amount of data a user has to deal with is
thus proportional to the number of coins he received, rather than the path a
coin took until reaching him.

Second, partial blindness of our certificates provides the strongest possible
notion of anonymity: a user remains anonymous even w.r.t. an entity issuing coins
and able to detect double spendings.1 Moreover, coins are unlinkable to anyone
except the authority and the double-spending detector. We give an overview of
our model before getting back to its security properties.

– The participants of the system are the following: the system manager (that
registers users within the system), the bank (issuing coins), users (that with-
draw, transfer or spend coins), merchants to which coins are spent, the
double-spending detector, and a trusted authority, called tracer, that can
trace coins, revoke anonymity and identify double-spenders.

– In order to get a coin, a user runs a withdrawal protocol with the bank, after
which he holds a coin and a receipt to be kept even after transferring or
spending the coin (to defend himself against wrongful accusation of double-
spending).2

– Another protocol enables users to transfer coins to other users who, besides
the coin, also get a receipt, which they keep too.

– To spend the coin, the user interacts with a merchant. The latter will deposit
the coin at the bank who invokes the double-spending detector to check if it
has already been spent. If it is the case, the tracer is invoked to reveal the
double spender. He does so by tracing back the two instances of the coin by
asking the receipts from the users that transferred the coins until identifying
the double spender.

Note that the tracing authority identifies innocent users that merely transferred
a coin that has been used fraudulently before. However, this does not weaken
anonymity, which does not hold against the tracer anyway and since identities
are not revealed to anyone else. Moreover, this can be proved to be unavoidable
in order to achieve constant-size transferable coins. An inevitable shortcoming of
our model is that a user who loses a receipt can be accused of double spending,
since he cannot prove legal acquisition of the coin if he transferred it. The system
satisfies the following security notions:
1 In fair e-cash, there exists an authority that can trace users (user-tracing) and coins

(coin-tracing) under a judge decision, in case of fraud suspicion (not necessarily
double spending). We separate the notions of detection of double spendings, which
is done on a regular basis when a coin is deposited, from that of tracing, which is
performed by a trusted authority only when a fraud was committed.

2 If one assumes a validity period for coins (after which the issuing key is changed),
it suffices to keep a receipt only as long as the respective coin is valid.
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– Any user who spends a coin twice is detected.
– As long as a user keeps all his receipts, he cannot be wrongfully accused of

double spending, even if everyone else colludes against him.
– A user is anonymous even against collusions of the manager, the bank, the

double-spending detector, merchants, and other users.
– Transfers of coins are unlinkably anonymous to collusions possibly com-

prising the manager, the bank, merchants, and other users. (The double-
spending detector must necessarily be able to link two spendings of the
same coin.)

Our construction is secure in the standard security model (i.e., without relying
on the random oracle idealization [BR93])3 and its security is based on a new
(though natural) assumption that holds in the generic group model [Sho97].

1.4 Organization of the Paper

In the next section, we state the employed assumptions. In Sect. 3, we describe
our new Partially-Blind Certification primitive, and apply it to group signatures
in Sect. 4. In Sect. 5, we extend some techniques of Groth-Sahai, recapitulating
re-randomization of commitments and introducing proofs for relations of values
committed under different keys. In Sect. 6, we combine everything to construct
our e-cash system.

2 Assumptions

We present the assumptions on bilinear groups on which our security results
build. A bilinear group is a tuple (p, G, GT , e, G) where (G, +) and (GT , ·) are
two cyclic groups of order p, G is a generator of G, and e : G × G → GT is a
non-degenerate bilinear map, i.e., ∀U, V ∈ G ∀ a, b ∈ Z : e(aU, bV ) = e(U, V )ab,
and e(G, G) is a generator of GT .

The first two of the following assumptions are classical [DH76, BBS04]. The
third is a simple extension of the Hidden Strong Diffie-Hellman Problem pro-
posed by Boyen and Waters in [BW07].

Definition 1. The Computational Diffie-Hellman (CDH) Assumption states
that the following problem is intractable4: given (G, αG, βG) ∈ G3, for α, β ∈ Zp,
output αβG.

3 Note that in our context, due to re-randomization of encryptions (cf. Sect. 6.2 for
details), it seems even impossible to replace the Groth-Sahai techniques with the
Fiat-Shamir heuristic [FS87] to improve efficiency at the expense of relying on the
random oracle model.

4 We say that a computational problem is intractable if no probabilistic polynomial-
time (p.p.t.) adversary can solve it with non-negligible probability. A decisional
problem is intractable if no p.p.t. adversary can decide it with probability of non-
negligibly more than 1/2.
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Definition 2. The Decisional Linear (DLIN) Assumption states that the fol-
lowing problem is intractable: given (U, V, G, αU, βV, γG) ∈ G6, decide whether
γ = α + β or not.

Definition 3. The q-Double Hidden Strong Diffie-Hellman (DHSDH) Assump-
tion states that the following problem is intractable: given (G, H, K, Γ = γG) ∈
G4 and q − 1 tuples(

Xi = xiG, X ′
i = xiH, Yi = yiG, Y ′

i = yiH, Ai = 1
γ+xi

(K + yiG)
)

with xi, yi ← Z∗
p (1 ≤ i ≤ q − 1), output a new tuple

(
X = xG, X ′ = xH, Y =

yG, Y ′ = yH, A = 1
γ+x(K + yG)

)
.

Note that a tuple (X, X ′, Y, Y ′, A) has the above format if and only if it satisfies

e(X, H) = e(G, X ′) e(Y, H) = e(G, Y ′) e(A, Γ + X) = e(K + Y, G)

Remark 4. Boneh and Boyen [BB04] introduced the Strong Diffie-Hellman
(SDH) assumption stating that given a (q + 1)-tuple (G, γG, γ2G, . . . , γqG) ∈
Gq+1 for a random γ ← Z∗

p, it is infeasible to output a pair (x, 1
γ+xG) ∈ Zp×G.

Hardness of SDH implies hardness of the following two problems (the first im-
plication is proven in [BB04], the second in the full version [FPV09]):

(I) Given G, γG ∈ G and q − 1 distinct pairs (xi,
1

γ+xi
G) ∈ Zp × G, output a

new pair (x, 1
γ+xG) ∈ Zp ×G.

(II) Given G, K, γG ∈ G and q − 1 distinct triples
(
xi, yi,

1
γ+xi

(K + yiG)
) ∈

Z2
p ×G, output a new triple

(
x, y, 1

γ+x(K + yG)
) ∈ Z2

p ×G.

The Hidden SDH problem defined in [BW07] is a variant of Problem (I), where
instead of giving the xi’s explicitly, they are given as (xiG, xiH). Similarly, the
goal is to output a new triple (xG, xH, 1

γ+xG). Now the Double Hidden SDH
assumption (Definition 3) transforms Problem (II) the same way: instead of
being given explicitly, xi and yi are given as (xiG, xiH, yiG, yiH). In the full
version [FPV09] we discuss assumptions derived from SDH and their relations.

3 Partially-Blind Certification

3.1 Model

Definition 5. A partially-blind certification scheme (Setup, Sign, User, Verif) is
a 4-tuple of (interactive) probabilistic polynomial-time Turing machines (PPTs)
such that:

– Setup is a PPT that takes as input an integer k and outputs a pair (pk, sk)
of public (resp. secret) key. We call k the security parameter.
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Experiment Expblindness−b
A (k)

(pk, state) ← A(FIND, k)
τ0 ← T
(σ1, τ1) ( �=⊥) ← UserA(state)(pk)
b′ ← A(GUESS, τb)
RETURN b′

Experiment Expforge
A (k)

(pk, sk) ← Setup(k)
((σ1, τ1), . . . , (σ�, τ�)) ← ASign(sk,·)(pk)
IF ∀i ∈ [1, �], Verif(pk, (σi, τi)) = accept

AND ∀(i, j) ∈ [1, �]2, i �= j: (σi, τi) �= (σj , τj)
AND � > m RETURN 1

where m is the number of executions of
the certificate issuing protocol where Sign
outputs completed.

(1) Partial Blindness (2) Unforgeability

Fig. 1. Security experiments for partially-blind certificates

– Sign and User are interactive PPTs such that User takes as inputs a public
key pk and Sign takes as input the matching secret key sk. Sign and User
engage in the certificate-issuing protocol and when they stop, Sign outputs
completed or not-completed while User outputs a pair of bit strings (σ, τ)
or ⊥.

– Verif is a deterministic polynomial-time Turing machine that on input a
public key pk and a pair of bit strings (σ, τ) outputs either accept or reject.

For all k ∈ N, all pairs (pk, sk) output by Setup(k), if Sign and User follow the
certificate issuing protocol with input sk and pk respectively, then Sign outputs
completed and User outputs a pair (σ, τ) that satisfies Verif(pk, (σ, τ)) = accept.
A pair (σ, τ) is termed valid with regard to pk if on input (pk, (σ, τ)) Verif
outputs accept, in which case, we say that (σ, τ) is a certificate for pk and τ is
termed the blind component of the certificate. We denote T ⊂ {0, 1}∗ the set of
bit-strings which are blind component of some certificate.

Partial Blindness. To define partial blindness, we consider the real-or-random
game (i.e., random experiment) among an adversarial signer A and a challenger
presented in Fig. 1 (1).

– We define the advantage of A in breaking partial blindness by its advantage
in distinguishing the two above experiments (with b = 0 or b = 1):

Advblindness
A (k) := Pr[Expblindness−1

A (k) = 1] − Pr[Expblindness−0
A (k) = 1] ,

where the probability is taken over the coin tosses made by the challenger
and A.

– The scheme (Setup, Sign, User, Verif) is said to be partially blind if no adver-
sary A running in probabilistic polynomial time has a non-negligible advan-
tage Advblindness

A .

Unforgeability. To define unforgeability, we introduce the game among an
adversarial user A and an honest signer Sign depicted in Fig. 1 (2).
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(1) User Choose r, y1 ← Zp, compute and send: R1 := r(K + y1G), T := rG
and zero-knowledge proofs of knowledge of r and y1 satisfying the rela-
tions (cf. Remark 7).

(2) Sign Choose x, y2 ← Zp and compute R := R1+y2T (note that R = r(K+yG)
with y := y1 + y2.)

Send
(
S1 := 1

ω+x
R, S2 := xG, S3 := xH, S4 := y2G, S5 := y2H

)
(3) User Check whether (S1, S2, S3, S4, S5) is correctly formed:

e(S2, H) ?= e(G, S3) e(S4, H) ?= e(G, S5) e(S1, Ω + S2)
?= e(R,G)

If so, compute a certificate(
A := 1

r
S1, X := S2, X ′ := S3, Y := y1G + S4 = yG, Y ′ := y1H + S5 = yH

)
Fig. 2. Partially-blind certificate-issuing protocol

– We define the success of A in this game by

Succunforge
A (k) := Pr[Expforge

A (k) = 1] ,

where the probability is taken over the coin tosses made by A, Setup and
Sign.

– The scheme (Setup, Sign, User, Verif) is said to be unforgeable if no adver-
sary A running in probabilistic polynomial time has a non-negligible success
Succunforge

A .

Remark 6. In the experiment Expforge
A , depending on the security model, the ex-

ecutions of the certificate issuing protocol are run sequentially or in a concurrent
and interleaving way.

3.2 Instantiation

Let (p, G, GT , e, G) be a bilinear group and G, H, K ∈ G be public parameters;
define the signer’s key pair as sk := ω ← Zp and pk = Ω := ωG. A certificate is
defined as

Crt(ω ; x, y) :=
{

A =
1

ω + x
(K + yG)

X = xG
X ′ = xH

Y = yG
Y ′ = yH

for x, y ← Zp, with σ := (A, X, X ′, Y ) and the blind component τ := Y ′ ∈ G. It
satisfies:

e(X, H) = e(G, X ′) e(Y, H) = e(G, Y ′) e(A, Ω + X) = e(K + Y, G) (1)

Fig. 2 depicts an efficient protocol to interactively generate such a certificate
between the signer (issuer) that controls x and the user that partially controls
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y: at the end, the signer has no information about y, except that it is uniformly
distributed.

Remark 7. In the first round of the User protocol, one can use interactive
Schnorr-like zero-knowledge proofs of knowledge (ZKPoK) [Sch90]. Extraction
is then only possible for constant-depth concurrency [Oka06]. To achieve full
concurrency, and at the same time reduce interactivity to 2 moves, one can
use the following technique: Make linear commitments [GOS06] (cf. Sect. 5.1)
to the bits of r and y1 (which are extractable) and use the proof techniques
from [FP09, Appendix A.3 of the full version]. The drawbacks of this approach
are that security holds in the common reference string (CRS) model and we
incur a loss of efficiency.

3.3 Security Results

Theorem 8. Under DHSDH, the above certificates are unforgeable.

Proof. Let A be an adversary impersonating corrupt users running the issuing
protocol up to q − 1 times and then outputting q different valid certificates. We
build B solving q-DHSDH with the same probability by simulating the signer:
B gets a q-DHSDH-instance

(
G, H, K, Ω, (Ai, Xi, X

′
i, Yi, Y

′
i )q−1

i=1

)
. If the ZKPoK

are non-interactive, it sets the CRS so that it can extract r and y1 used in R1
and T—if they are interactive, B rewinds A to extract. In each issuing, A first
sends (R1,i, Ti) and proofs of knowledge. If the proofs are correct, B extracts
ri, y1,i from them and sends

(
S1,i := riAi, S2,i := Xi, S3,i := X ′

i, S4,i := Yi −
y1,iG, S5,i := Y ′

i − y2,iH
)
. Finally, B checks the q certificates and forwards one

different from those in the DHSDH-instance to its own challenger. ��
Theorem 9. Under DLIN, the above certificates are partially blind.

Proof. Consider A, which after an execution of the blind issuing protocol can
decide whether the blind component τ = Y ′ is real or random in G. We build
B deciding DLIN with the success probability of A. The algorithm B gets a
DLIN-instance (H, G, T, Z, K, R1), i.e., it has to decide whether

R1
?= (logH Z + logG K) T (2)

It gives A the triple (G, H, K) as public parameters (and a simulating CRS in
case we use non-interactive ZKPoK) and gets Ω, the issuer’s public key from A.
B runs the protocol User with A, starting by sending R1, and T from its DLIN
instance and simulating the PoK.

After getting back (S1, . . . , S5), B checks its correctness and gives A the
following: Y ′ := Z + S5, with Z from its DLIN instance. (B can verify cor-
rectness of S without knowledge of y1 and r by checking e(S2, H) = e(G, S3),
(S4, H) = e(G, S5) and e(S1, Ω + S2) = e(R, G). Also note that B only needs
to produce the last (blind) component of the certificate.) Finally A outputs a
guess b′, which B forwards to its DLIN challenger.
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– If the DLIN instance is not a linear tuple then Z and therefore Y ′ is inde-
pendently random.

– If (H, G, T, Z, K, R1) is linear, then with y1 := logH Z, κ := logG K, and r :=
logG T , we have R1 = (y1 + κ)T by (2). Furthermore, for public parameters
(G, H, K), we have

T = rG R1 = (y1 + κ)T = (y1 + κ)rG = r(K + y1G) Z = y1H

which means that Y ′ = Z+S5 is the blind component of a correctly produced
certificate.

If B outputs the bit returned by A, its success probability is equal to Advblindness
A .

��

4 A Fully-Secure Group Signature from Partially-Blind
Certificates

As a first application of the certification protocol from Sect. 3.2, we construct
fully-secure dynamic group signatures (in the sense of [BSZ05], in particular sat-
isfying non-frameability and CCA-anonymity) without random oracles. We con-
struct a certified-signature scheme, to which can then be applied Groth’s [Gro07]
methodology of transforming certified signatures that respect a certain struc-
ture into group signatures using Groth-Sahai NIZK proofs [GS08] and Kiltz’
tag-based encryption [Kil06], both relying exclusively on the DLIN assumption.

The resulting scheme is less efficient than that from [Gro07]; however, it is
based on a more natural assumption, while at the same time being of the same or-
der of magnitude—especially compared to the first instantiations of fully-secure
signatures in the standard model (e.g., [Gro06]). We think of the scheme as some-
how being the “natural” extension of [BW07] in order to satisfy non-frameability.

Certified Signatures. A certified-signature scheme consists of a setup algo-
rithm, a key-generation algorithm for the certification authority, an interactive
protocol between the authority (“issuer”) and a user letting the latter obtain a
triple (cert, vk, sk), where vk is a verification key for a signature scheme, sk is the
corresponding signing key (unknown to the issuer) and cert is a certificate on vk.

Besides correctness, Groth [Gro07] gives two security criteria that a certified
signature must satisfy to be transformable into a secure group signature scheme:
Unfakeability requires that no user can create a certificate for and a signature
under a verification key that was not certified by the issuer. Unforgeability means
that even a corrupt authority issuing a tuple (cert, vk, sk) cannot forge a signature
under vk.

Our Instantiation. Our certified signature is constructed from a certificate
(A, X, X ′, Y, Y ′) by using (Y, Y ′) as a pair of public and secret key for Wa-
ters’ signature scheme [Wat05]. A certified signature consists thus of the first
four components of the certificate prepended to a Waters signature. Note that
what is called cert above corresponds to (A, X, X ′) here, and (vk, sk) would be
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Let (Ui)n
i=0 ∈ Gn+1 be part of the public parameters; let Ω be the issuer’s public

key.

Certificate Generation. Run the certificate-creation protocol in Fig. 2, except
that the issuer running Sign sends an extractable commitment of S4 = y2G
before phase (1) and opens it in phase (2).

Signing. For a message M = (m1, . . . , mn) ∈ {0, 1}n, denote F(M) := U0 +∑n
i=1 miUi. Given a certificate C = (A, X, X ′, Y, Y ′), a signature on M using

randomness s ∈ Zp is defined as

Sig(C, M ; s) := (A, X, X ′, Y, Y ′ + sF(M),−sG) .

Verification. A certified signature (A, X, X ′, Y, Z, Z′) on message M is verified by
checking

e(X, H) = e(G, X ′) e(Y,H) = e(G, Z) e(Z′,F(M)) e(A,Ω+X) = e(K+Y,G)

Fig. 3. Chosen-message secure certified signature

(Y, Y ′). The scheme is given in Fig. 3. Our construction satisfies the security
requirements given by Groth:

Theorem 10. The certified-signature scheme in Fig. 3 is perfectly correct, un-
fakeable under DHSDH, and existentially unforgeable under chosen-message at-
tack under CDH.

Proof. Correctness follows by inspection. The two other properties are proven
similarly to Theorems 8 and 9, we thus highlight the differences.

(1) Unfakeability means that after running the issuing protocol multiple times
with the issuer, no user is able to produce a valid tuple (A, X, X ′, Y, Z, Z ′) with Y
different from those in the obtained certificates. The proof works similarly to that
of Theorem 8 with the following modifications: For 0 ≤ i ≤ n, B chooses μi ← Zp

and sets the public parameters Ui := μiG. In the issuing protocol, B simulates
the additional commitment at the beginning. From a valid (A, X, X ′, Y, Z, Z ′)
returned by A, B can then extract a new certificate by setting Y ′ := Z + (μ0 +∑

miμi)Z ′.
(2) Existential unforgeability under chosen-message attack (EUF-CMA) fol-

lows from partial blindness of certificates and security of Waters signatures,
which is implied by CDH (Def. 1): Let A be an adversary impersonating the is-
suer and mounting a chosen-message attack. We construct B against EUF-CMA
of Waters signatures. B is given a Waters public key V ∈ G and a signing oracle.
B runs the certificate-generation protocol playing the role of User with A.

When A sends a commitment to S4 in the first phase of the protocol, B extracts
S4 from it. It then chooses r, sends R1 := r(K +V −S4) and T := rG and simu-
lates the zero-knowledge proofs. (Note that this implicitly sets V = (y1 + y2)G.)
If A returns a valid tuple (S1, S2, S3, S4, S5), B can compute an (incomplete)
certificate (A := 1

r S1, X := S2, X ′ := S3, Y := V ) which suffices to answer A’s
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signing queries, as B can get the last two components by querying its own oracle.
When A returns a successful forgery, B returns the last two components, i.e., a
Waters signature under public key V . ��

5 New Techniques for Groth-Sahai Proof Systems

5.1 Preliminaries

We briefly review the results of [GS08] relevant to our paper: witness-indistin-
guishable (WI) proofs that elements in G that were committed to via linear
commitments satisfy pairing-product equations. We refer to the original work for
more details and proofs.

Let P ∈ G be a generator. We define a key for linear commitments. Choose
α, β, r1, r2 ∈ Zp and define U = αP , V = βP , and

u1 := (U, 0, P ) u2 := (0, V, P ) u3 := (W1, W2, W3) (3)

where W1 := r1U , W2 := r2V , and W3 is either

– soundness setting: W3 := (r1 + r2)P (which makes �u a binding key)
– WI setting: W3 := (r1 + r2 − 1)P (which makes �u a hiding key)

Under key ck = (U, V, W1, W2, W3), a commitment to a group element X ∈ G

using randomness (s1, s2, s3)← Z3
p is defined as (with ι(X) := (0, 0, X))

Com
(
ck, X ; (s1, s2, s3)

)
:= ι(X) +

∑3
i=1 siui

= (s1U + s3W1, s2V + s3W2, X + s1P + s2P + s3W3) .

Note that in the soundness setting, given the extraction key ek := (α, β), the
committed value can be extracted from a commitment c = (c1, c2, c3):

Extr((α, β), c) := c3 − 1
αc1 − 1

β c2

= X + (s1 + s2 + s3(r1 + r2))P − 1
α (s1 + s3r1)U − 1

β (s2 + s3r2)V ) = X ,

since 1
αU = P and 1

β V = P . On the other hand, in the WI setting we have
(with s′1 := s1 + s3r1 and s′2 = s2 + s3r2): c = (s′1U, s′2V, X + (s′1 + s′2 − s3)P ),
which is equally distributed for every X . The two settings are indistinguishable
by DLIN since for soundness (W1, W2, W3) is linear w.r.t. (U, V, P ), whereas in
the WI setting it is not.

For the sake of readability and consistency with the work of [GS08], we stick
to their abstract notation, which we sketch briefly:

– For a vector �X = (X1, . . . ,Xn)� ∈ Gn, let �X · �Y :=
∏n

i=1 e(Xi,Yi).
– Bold letters denote triples, e.g., d = (d1, d2, d3) ∈ G1×3, �d denotes a column

vector of triples, thus a matrix in Gn×3. Furthermore, define F̃ (c,d) :=[
e(ci, dj)]i,j=1,3 ∈ G3×3

T . In G3×3
T , “+” denotes entry-wise multiplication of

matrix elements. Define c • d :=
∑n

i=1

(
1/2 F̃ (ci, di) + 1/2 F̃ (di, ci)

)
.
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A pairing-product equation is an equation for variables Y1, . . . ,Yn ∈ G of the
form

n∏
i=1

e(Ai,Yi)
n∏

i=1

n∏
j=1

e(Yi,Yj)γi,j = tT ,

with Ai ∈ G, γi,j ∈ Zp and tT ∈ GT . Setting Γ :=
[
γi,j

]
i,j=1,...,n

∈ Zn×n
p , this

can be written as
( �A · �Y) (�Y · Γ �Y) = tT . (4)

Set H1 :=

⎡⎣ 0 1 0
−1 0 0
0 0 0

⎤⎦, H2 :=

⎡⎣ 0 0 1
0 0 0
−1 0 0

⎤⎦, H3 :=

⎡⎣0 0 0
0 0 1
0 −1 0

⎤⎦, and ιT (tT ) :=

⎡⎣1 1 1
1 1 1
1 1 tT

⎤⎦
for tT ∈ GT .

Let �d be a vector of commitments to �Y , i.e., �d := ι(�Y) + S�u with S ← Zn×3
p

and ι(�Y) := [ι(Yi)]i=1,...,n. The proof that the values committed in �d satisfy (4)
is defined as

Φ := S�ι( �A) + S�Γι(�Y) + S�Γ�ι(�Y) + S�ΓS�u +
∑3

i=1 riHi�u , (5)

with r1, r2, r3 ← Zp, and is verified by

ι( �A) • �d + �d • Γ�d = ιT (tT ) + �u • Φ . (6)

Soundness and WI of the proofs. In the soundness setting, if �d satisfies (6)
for some Φ, then Extr extracts �Y satisfying (4). In the WI setting, let �c and
�d be commitments to �X and �Y, resp., which both satisfy (4). Then Φ and Φ′

constructed as in (5) for �c and �d, resp., are equally distributed.

5.2 Commitment Re-randomization and Proof Updating

As observed by [FP09] and [BCC+09], commitments of this form can be re-
randomized and the corresponding proofs adapted without knowledge of the
committed values nor the used randomness: Given a commitment �d, set �c :=
�d + S̃�u, for S̃ ← Zn×3

p , and update the proof Φ for �d to Φ̃ for �c:

Φ̃ := Φ + S̃�ι( �A) + S̃�Γ�d + S̃�Γ��d + S̃�Γ S̃�u +
∑3

i=1r̃iHi�u (7)

with r̃i ← Zp. The pair (�c, Φ̃) satisfies (6) and some calculation shows that Φ̃ is
constructed as in (5) for �c being a commitment to �Y using randomness S + S̃.
(In particular (7) yields the same Φ̃ as (5) if in the latter the randomness used
for the proof is (ri + αi + r̃i)3i=1, where (r1, r2, r3) is the randomness of Φ and
α1, α2, α3 are such that A := S̃�Γ�S−S�Γ S̃ =

∑3
i=1 αiHi; such αi exist since
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A satisfies �u • A�u = 0 and the Hi’s form a basis for the matrices of this form;
cf. [GS08, Chapter 4].)

5.3 Linear Equations and Different Commitment Keys

Consider two commitments c,d of Y, Z under different commitment keys �u and
�u′, respectively. We construct a re-randomizable WI proof that the committed
values satisfy

e(H, Y ) = e(G, Z) . (8)

Let c be a commitment to Y w.r.t. key �u: c := (sY 1U + sY 3W1, sY 2V +
sY 3W2, Y + sY 1P + sY 2P + sY 3W3). The proof that the committed value Y sat-
isfies (8) (in which Z is considered as a constant) is5 π := (sY 1H, sY 2H, sY 3H),
which is verified by

e(π1, U) e(π3, W1) = e(H, c1) (9a)
e(π2, V ) e(π3, W2) = e(H, c2) (9b)

e(Z, G) e(π1, P ) e(π2, P ) e(π3, W3) = e(H, c3) (9c)

Regarding (9) as a set of equations over variables c1, c2, c3, Z, π1, π2, π3, we could
just use the Groth-Sahai proof system a second time by committing to the new
variables under key �u′ and making proofs for the equations in (9). However, this
can be optimized, since we need not commit to c1, c2 and c3. Correctness and
soundness follow from a simple hybrid argument.

Let us consider witness indistinguishability. We show that every pair (Y, Z)
satisfying (8) generates the same distribution of proofs once both keys �u and �u′

are replaced by hiding keys. Let (Y, Z) satisfying (8) be arbitrarily fixed. Since u
is perfectly hiding, for any given c there exist (s1, s2, s3) s.t. c = ι(Y )+

∑3
i=1 siui.

Now WI under key �u′ (of the second layer of commitments/proofs) ensures
that every (Z, π1, π2, π3) satisfying (9) (with the ci’s fixed!) generates identically
distributed proofs. Thus for Z := (logG Y )H , πi := siH , the proof does not leak
anything. We present the details:

We make commitments to Z, π1 = sY 1H , π2 = sY 2H , π3 = sY 3H w.r.t. �u′:

d :=

⎡⎣ sZ1U
′ + sZ3W

′
1

sZ2V
′ + sZ3W

′
2

Z +sZ1P
′ +sZ2P

′+sZ3W
′
3

⎤⎦ pi :=

⎡⎣ ti,1U
′ + ti,3W

′
1

ti,2V
′ + ti,3W

′
2

sY iH + ti,1P
′+ ti,2P

′ + ti,3W
′
3

⎤⎦ (10)

for 1 ≤ i ≤ 3. The proof ψi for the i-th equation in (9) is defined as follows:

ψ1,j := t1,jU + t3,jW1 ψ2,j := t2,jV + t3,jW2

ψ3,j := sZjG + t1,jP + t2,jP + t3,jW3 for 1 ≤ j ≤ 3
(11)

5 Groth-Sahai proofs for linear equations reduce to 3 group elements; see Sect. 6.1 of
the full version of [GS08].
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The final verification relations are the following:

For (9a): e(p1,1, U) e(p3,1, W1) = e(ψ1,1, U
′) e(ψ1,3, W

′
1)

e(p1,2, U) e(p3,2, W1) = e(ψ1,2, V
′) e(ψ1,3, W

′
2)

e(p1,3, U) e(p3,3, W1) = e(H, c1) e(ψ1,1, P
′) e(ψ1,2, P

′) e(ψ1,3, W
′
3)

For (9b): e(p2,1, V ) e(p3,1, W2) = e(ψ2,1, U
′) e(ψ2,3, W

′
1)

e(p2,2, V ) e(p3,2, W2) = e(ψ2,2, V
′) e(ψ2,3, W

′
2)

e(p2,3, V ) e(p3,3, W2) = e(H, c2) e(ψ2,1, P
′) e(ψ2,2, P

′) e(ψ2,3, W
′
3)

For (9c): e(d1, G) e(p1,1, P ) e(p2,1, P ) e(p3,1, W3) = e(ψ3,1, U
′) e(ψ3,3, W

′
1)

e(d2, G) e(p1,2, P ) e(p2,2, P ) e(p3,2, W3) = e(ψ3,2, V
′) e(ψ3,3, W

′
2)

e(d3, G) e(p1,3, P ) e(p2,3, P ) e(p3,3, W3) =
e(H, c3) e(ψ3,1, P

′) e(ψ3,2, P
′) e(ψ3,3, W

′
3)

Re-randomization. Given commitments c,d,p1,p2,p3 and proofs ψ1, ψ2, ψ3,
we can re-randomize the commitments by choosing s′Y i, s

′
Zi, t

′
i,j ← Zp for 1 ≤

i, j ≤ 3 and setting (cf. Sect. 5.2)

c̃ :=

⎡⎣ c1 + s′Y 3U
′ + s′Y 3W

′
1

c2 + s′Y 2V
′ + s′Y 3W

′
2

c3 + s′Y 3P
′ + s′Y 2P

′ + s′Y 3W
′
3

⎤⎦ d̃ :=

⎡⎣ d1 + s′Z1U
′ + s′Z3W

′
1

d2 + s′Z2V
′ + s′Z3W

′
2

d3 + s′Z1P
′ + s′Z2P

′ + s′Z3W
′
3

⎤⎦
p̃i :=

⎡⎣ pi,1 + t′i,1U
′ + t′i,3W

′
1

pi,2 + t′i,2V
′ + t′i,3W

′
2

pi,3 + s′Y iH + t′i,1P
′ + t′i,2P

′ + t′i,3W
′
3

⎤⎦ for 1 ≤ i ≤ 3

Note that p̃i not only re-randomizes pi but at the same time updates the com-
mitted proofs πi to the new randomness for the commitments to Y . The proofs
ψi are updated as follows:

ψ̃1,j := ψ1,j + t′1,jU + t′3,jW1

ψ̃2,j := ψ2,j + t′2,jV + t′3,jW2 for 1 ≤ j ≤ 3

ψ̃3,j := ψ3,j + s′ZjG + t′1,jP + t′2,jP + t′3,jW3

5.4 Proofs That Commitments Open to the Same Value

Given the extraction key, one can prove that two commitments open to the same
value without knowledge of the randomness used when committed. We start by
showing how to prove that a commitment (c1, c2, c3) opens to zero: given the
extraction key ek = (α, β) define the proof as (π1 := 1

αc1, π2 := 1
β c2). It satisfies

the following relations: e(π1, U) = e(c1, P ), e(π2, V ) = e(c2, P ), c3 = π1 + π2.
It is easily seen that the proofs are perfectly correct and perfectly sound. In

addition, they do not leak information about the opener’s secret key, since they
can be produced without knowledge of ek, given the randomness used to commit
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and the “trapdoor” (r1, r2) for the Wi’s: c1 = s1U + s3W1 = α(s1 + s3r1)P ,
thus π1 = (s1 + s3r1)P , and similarly π2 = (s2 + s3r2)P . Now to show that c
and d are two commitments to the same value, it suffices to prove that c − d
opens to 0.

6 Transferable Anonymous Constant-Size Fair E-Cash
from Certificates

6.1 Formal Model

In our model for e-cash, there are the following protagonists: users Ui that—
after registering—can withdraw, transfer and spend coins; the system manager
S, authorizing users to join the system; the bank B, able to issue coins; mer-
chants Mi who deposit the coins at the bank; the double-spending detector D,
that can detect if a coin was spent twice; and the tracing authority T , able to
trace users that misbehave in some way (e.g., tracing of a double spender or
prosecution of criminal activities). The system comprises the following protocols
and algorithms:

Setup A protocol between S (who gets the manager key mk), B (who
gets the issuing key ik), D (who gets dk), and T (who gets tk).
The protocol also outputs the public parameters pp.

Join A protocol between a user and S that registers the user in the
system and gives him usk.

Withdraw A protocol permitting a user to withdraw a coin from B.
Transfer A protocol between two users Ui and Uj , where Uj gets a coin and

a receipt from Ui.
Spend A protocol between a user and a merchant to spend a coin.
Detect An algorithm enabling D to check for double spendings (without

identifying the defrauder).
TraceDS A protocol conducted by T in order to trace a double spender.
TraceC An algorithm enabling T to match a withdrawal and a spending

transcript of the same coin.
TraceS An algorithm that lets T reveal the identity of a spender from a

spending transcript.

Besides correctness, which requires that honestly issued coins are accepted when
transferred or spent by honestly registered users, and that the tracing algorithms
work correctly, we define the following security notions for our model: Anonymity
of withdrawal means that not even the bank colluding with the (double-spending)
detector can tell to which withdrawal a coin corresponds. Anonymity of transfer
(or spending) ensures that when transferring/spending a coin a user remains
anonymous even with respect to the bank and malicious users the coin was
transferred by.

Traceability of double spenders states that for each time a user spends a coin
more than once he will be accused, whereas Detectability of double spending
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Expanon-with
A (k)

• Experiment plays: honest users U0 and
U1

• A impersonates: S, B, D, users
• U0, U1 run Join and Withdraw with A

impersonating S and B, resp.
• b← {0, 1}; A receives the coin of Ub

• A wins if it guesses b correctly

Exptrace-DS
A (k)

• Experiment plays: honest S, B
• A impersonates: users
• A gets keys: tk, dk (thus T , D semi-

honest)
• A gets oracles Join, Withdraw, Spend to

communicate with S, B and D, resp.
• The experiment runs Detect and Trace

on the spent coins
• Let q and d be the number of Withdraw

and Spend queries, resp.; let a be the
number of accusations by Trace. Then
A wins if a < d− q

Expdetect-DS
A (k)

• Experiment plays: honest B
• A impersonates: users, S, T
• A gets keys: dk (thus D semi-honest)
• A gets oracles Withdraw, Spend to com-

municate with B and D, resp.
• The experiment runs Detect on the spent

coins
• A wins if there where more accepted

Spend than Withdraw calls and D does
not detect double spending.

Expanon-trans
A (k)

• Experiment plays: honest users U0 and U1

• A impersonates: S, B, users
• U0 and U1 run Join with A impersonating
S

• A can ask withdrawals, transfers and
spendings of U0 and U1.

• b← {0, 1}, Ub runs Transfer with A play-
ing a user.

• A wins if it guesses b correctly.

Exp
trace-C/S
A (k)

• Experiment plays: honest S, B
• A impersonates: users, D
• A gets keys: tk (thus T semi-honest)
• Oracles for A: Join, Withdraw
• A spends a coin and wins if

− the spending cannot be matched to
a withdrawal (traceability of coins);
or

− TraceS returns ⊥ (spender trace-
ability)

Expnon-fram
A (k)

• Experiment plays an honest user U∗
• A can impersonate: S, B, D, T , users
• U∗ runs Join with A impersonating S
• A can ask the user to withdraw coins,

transfer and receive them and spend
coins

• A wins if
− it outputs a proof accusing U∗ of

double spending, which U∗ cannot
contest.

− U∗ is accused of a spending it did
not perform

Fig. 4. Security experiments for constant-size e-cash

means that Detect will determine if a coin was spent multiple times. Non-
frameability guarantees that even if everyone else colludes against an honest
user, he cannot be wrongfully accused of a spending he did not perform, nor of
double spending. See Fig. 4 for the details of the experiments. As for the BSZ-
model of group signatures, we call protagonists semi-honest if A impersonates
them but however follows protocols as prescribed. Note that in the experiment
for non-frameability, U∗ behaves honestly, so if he is asked to spend more coins
than he withdrew he refuses; moreover, a malicious tracer can always accuse an
honest user of not having a receipt, which the latter counters by showing it.
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We say an e-cash system is traceable, non-frameable, etc., if no p.p.t. adversary
can win the respective game with non-negligible probability (non-negligibly more
than 1/2 for the anonymity notions).

6.2 Instantiation

Overview. The core of a coin in our system is a certificate from Sect. 3.2.
Defining withdrawal as partially blind issuing guarantees that the bank does not
know the last component C5. Certificates were designed to consist of elements of
G so that their verification relations are paring-product equations; the user can
thus encrypt (in Groth-Sahai terminology: commit to) the coin and prove valid-
ity. Moreover, each time the coin is transferred, the receiver can re-randomize
the encryption (cf. Sect. 5.2), which guarantees unlinkable anonymity.

To check for double spendings, the detector will get the decryption key to
compare encrypted certificates. However, this straight-forward approach would
not guarantee user anonymity when bank and detector cooperate. The blind
component C5 is thus encrypted under a different key than the rest (in Sect. 5.3
we showed how to construct the corresponding proofs). The detector gets only
the key to decrypt C5, which suffices to detect double spending. Since the the first
4 components remain hidden from the detector, partial blindness of certificates
suffices. The other decryption key is given to the tracer, which enables tracing
of a coin by comparing C3 which is known to the bank.

The receipts, given when transferring and spending coins, are group signa-
tures on them, the signing keys for which the users get when joining the system.
This guarantees user traceability, while preserving anonymity (only the tracer,
holding the group-signature opening key, can reveal users’ identities). To iden-
tify a double spender, the tracer follows backwards the paths the certificate took
before reaching the spender, by opening the receipts. A user that spent or trans-
ferred a coin twice is then unable to show two receipts. To guarantee soundness
of tracing, we must ensure that each signature corresponds to at most one trans-
fer. We achieve this by having the receiver choose a nonce which is added to the
message the sender must sign.

Details. Let GS = (SetupGS , JoinGS , GSignGS , GVerGS) be a dynamic non-
frameable group-signature scheme.6 Let H : G∗ → {0, 1}n be a collision-resistant
hash function.

Setup. − Set up a group signature scheme GS such that S is the group’s
issuer (group manager) and T gets opening key ok. The group verification
key gvk is added to pp.

– Produce two keys for linear commitments ckT and ckD. The correspond-
ing extraction keys ekT and ekD are given to T (thus tk = (ekT , ekD, ok).
D receives dk := ekD.

6 Encrypting the certified signatures from Sect. 4 and proving validity by adding a
Groth-Sahai proof yields a (CPA-anonymous) non-frameable group signature scheme
that does not require any further assumptions.
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– Set up the CRS (if any) for the blind certificate-issuing scheme from
Sect. 3.2. B picks issuing key ik := ω ← Zp, adds Ω := ωG to pp, and
gets a group signing key gskB by joining GS.

Join. A user Ui joins the system by running JoinGS with S to obtain her group
signing key gski.

Withdraw. Ui runs the issuing protocol (Fig. 2) with B to get (C1, . . . C5) ∈ G5

satisfying

e(C1, Ω + C2) = e(K + C4, G)
e(C2, H) = e(G, C3)
e(C4, H) = e(G, C5)

(12)

B also gives the user a “receipt” RB ← GSignGS(gskB,H(C1, C2, C3,Ui)).7

Ui verifies the certificate and RB and makes the following commitments:

ci := Com(ckT , Ci), for 1 ≤ i ≤ 4 c5 := Com(ckD, C5)

and proofs Φ1, Φ2, Φ3 for the committed values satisfying each of the equa-
tions in (12). Φ1 and Φ2 are regular Groth-Sahai proofs; for the last equation
on commitments under different keys, see Sect. 5.3. We call (�c, �Φ) a coin, and
refer to the full version [FPV09] for its concrete construction.

Transfer / Spend. When user Ui transfers a coin (�c, �Φ) to user Uj , she sends
R ← GSigGS(gskUi

,H(�c,Uj , N)) as well, where N is a nonce set by Uj. The
receiver Uj checks correctness of (�c, �Φ) and R, re-randomizes �c and updates
�Φ (cf. Sects. 5.2 and 5.3). Spending is defined as transferring.

Detect. After receiving new a coin, D uses extraction key ekD to open c5:
C5 := Extr(ekD, c5) (cf. Sect. 5.1). He compares the tag C5 with that of
previously received coins to see if a coin was spent twice, in which case he
charges T to trace the double spender.

Tracing of DS
– If multiple spendings (�c(i), �Φ(i), R(i)) with Extr(ekD, c5

(i)) = C∗
5 for all i

were detected, the tracer uses the key ok to open the signatures R(i) in
order to reveal users U (i)

0 .

– Each U (i)
0 has to prove legal acquisition of his coin, which a user U does

as follows:

• If the coin was obtained from the bank, show C = (C1, . . . , C5) and
the receipt RB.
T accepts if C is valid, GVerGS(gvk,H(C1, C2, C3,U), RB) = 1 and
C5 = C∗

5 .

7 Abusing notation slightly, we let Ui be a unique encoding of the user’s identity in
G. Note that for the receipts from the issuer, no nonce is required, since the user
contributes to the randomness of the certificate.



244 G. Fuchsbauer, D. Pointcheval, and D. Vergnaud

• If the coin was received from a user, show the receipt R received with
it, and show (�c′, �Φ′), the received coin (i.e., before re-randomizing it),
and the nonce N .
T accepts if (�c′, �Φ′) is valid, GVerGS(gvk,H(�c′,U , N), R) = 1 and
Extr(ekD, c′5) = C∗

5 .

– In the second case (receipt produced by a user), T opens R to U (i)
1 , who

in turn has to prove legal acquisition of the coin. Moreover, the tracer
only accepts a receipt if it has not been given to him before.

– Continuing this process for every i produces a chain of users U (i)
0 ,U (i)

1 , . . .
which either ends with the bank, or with a user failing to prove legal
acquisition—in which case that user is accused.

– Correctness of tracing is proven by proving correctness of opening of
group signatures and proving that two commitments contain the same
certificate using the techniques from Sect. 5.4.

Tracing of coins and users. Given ekT , the tracer can recover C3 from a
coin and thus match withdrawn coins to spent coins. Spender anonymity is
revoked by opening the group signature.

6.3 Security Results

We briefly argue why our instantiation satisfies the security definitions from
Sect. 6.1. Each property follows by a straight-forward reduction to the security
of the underlying building blocks.

Detectability and traceability of double spenders. (I) Assuming an hon-
est bank, every certificate is only issued once with all but negligible probability;
(II) by unforgeability of certificates (Theorem 8) and soundness of the WI proofs,
opening all d spent coins leads to at most q different certificates, where q is the
number of Withdraw queries. This proves detectability.

For every i let s(i) be the number of times certificate C(i) was spent. Then the
tracing algorithm produces s(i) lists of users, beginning with the spenders and
linked by their certificates. Unforgeability of group signatures and (I) guarantees
that only one such list ends with the bank. Since s(i) − 1 users are thus accused
and by (II), we have a =

∑q
i=1(s

(i) − 1) = d− q, which proves traceability.

Non-frameability. If U∗ uses a random nonce each time then by collision resis-
tance of H, the probability of receiving the same valid receipt twice is negligible.
The user can only be provably accused if he spent/transferred a coin of which he
cannot justify acquisition. Non-frameability of group signatures guarantees that
U∗ only has to justify coins he actually transferred—and for each such coin he
possesses a valid receipt. Note that if a malicious user transfers the same coin
(possibly as two different randomizations) twice to U∗ then U∗ has two different
signatures (due to the nonce) and can thus justify both coins.

Anonymity. Anonymity of withdrawal follows from partial blindness of issuing
(indistinguishability of C5) and witness indistinguishability of the commitments
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(c1, . . . , c4) under key ckT . Anonymity of transfer follows from WI of commit-
ments under ckT and ckD and anonymity of group signatures.

Traceability. Traceability of coins follows from soundness of the WI proofs and
unforgeability of certificates; traceability of spenders follows from traceability of
group signatures.
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Abstract. The public key encryption with keyword Search (PEKS) scheme, pro-
posed by Boneh, Di Crescenzo, Ostrovsky and Persiano, enables one to search
for encrypted keywords without compromising the security of the original data.
Baek et al. noticed that the original notion of PEKS requires the existence of a
secure channel, and they further extended this notion by proposing an efficient
secure channel free public key encryption scheme with keyword search in the
random oracle model. In this paper, we take one step forward by adopting Baek
et al.’s model and propose a new and efficient scheme that does not require any
secure channels, and furthermore, its security does not use random oracles.

Keywords: public key encryption with keyword search, searchable encryption,
without random oracle.

1 Introduction

The public key encryption with keyword search (PEKS) scheme, proposed by Boneh
et al. [4], enables one to search for encrypted keywords without revealing the security
of the original data. PEKS schemes can be widely used and deployed in many practical
applications. An interesting application of PEKS is intelligent email routing. Suppose
Bob sends an encrypted email to Alice using Alice’s public key. The contents of the
email comprises a header information, a body of the email and a list of keywords that
are encrypted. In this case, the mail gateway cannot observe the header information (as
well as the body and the keywords attached) and hence, cannot make routing decisions.
Alice uses different electronic devices to read her email, such as an iPhone or a PDA and
a desktop computer. Alice may prefer emails to be routed to her devices depending on
the associated keywords. For example, she may like to receive emails with the keyword
“urgent” on her iPhone, meanwhile all other emails can be sent to her desktop computer
instead. In particular, when Alice is away on holiday, she only wants to read emails with
the keyword “urgent” that will require her urgent attention, instead of reading all of her
work emails.

In short, PEKS provides a mechanism that enables Alice to provide the gateway with
the ability to test whether “urgent” is a keyword in the original email, but additionally,

J.A. Garay, A. Miyaji, and A. Otsuka (Eds.): CANS 2009, LNCS 5888, pp. 248–258, 2009.
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the gateway should learn nothing else about the email itself. More generally, the mail
gateway can search the keywords required, but learn nothing else.

Waters et al. [16] introduced another interesting application of PEKS schemes, which
is to let an untrusted logging device to maintain an encrypted audit log of privacy-
sensitive data that is efficiently searchable by authorized auditors only. The entries in
the audit log are encrypted under the public key of a PEKS scheme, of which the corre-
sponding secret key is unknown to the logging device. If the device is ever confiscated,
or if the logbook leaks, privacy of users and their actions is maintained. The secret key
is known only to a trusted audit escrow agent, who provides (less trusted) authorized
investigators with trapdoors for the keywords they want to search for.

Related Work
Despite a large number of research work related to the privacy of database data, Boneh
et al. [4] noted that PEKS is different from the previously known solutions. Unlike the
private-key setting, data collected by the mail server is from third parties, and can not be
“organized” by the user in any convenient way. Furthermore, unlike the publicly avail-
able database, the data is not public, and hence the Public Information Retrieval (PIR)
solutions will not be applicable. Shortly after Boneh et al.’s pioneering work, Waters et
al. [16] showed that the PEKS scheme based on the bilinear pairing can be applied to
build encrypted and searchable audit logs. Golle et al. [12] proposed schemes that al-
low for conjunctive keyword queries on encrypted data. Boneh and Waters [5] extended
PEKS to support conjunctive, subset, and range comparisons over the keywords. Fur-
thermore, the subsequent papers [9,18] investigated the secure combination of public
key encryption with keyword search (PEKS) with public key data encryption (PKE).
Since the fact that keywords are chosen from much smaller space than passwords and
users usually use well-known keywords for search, the work in [6,13,15,17] studied the
off-line keyword guessing attacks on PEKS.

The drawback of the Boneh et al.’s scheme [4] is that it uses a secure channel be-
tween Alice and the email server, which is usually costly [2]. Baek et al. [2] proposed
an alternative solution to eliminate the need for a secure channel, by proposing public
key encryption with keyword search scheme with a designated server. Throughout this
paper, we refer this model as SCF-PEKS, which refers to Secure Channel-Free PEKS.

In 2007, Gu et al. [11] proposed an interesting construction of PEKS scheme based
on pairings, in which there is no pairing operation involved in the encryption procedure.
Then, they provided further discussion on removing the secure channel from PEKS, and
presented an efficient secure channel free PEKS scheme. Rhee et al. [14] enhanced the
Baek et al.’s security model [2] for SCF-PEKS in which an attacker is also allowed to
obtain the relation between non-challenge ciphertexts and a trapdoor. They presented an
SCF-PEKS scheme secure in the enhanced security model. The limitation of the exist-
ing schemes in the literature is that their security can only be guaranteed in the random
oracle model. Unfortunately, a proof in the random oracle model has been shown to
possibly lead to insecure schemes when the random oracles are implemented in the
standard model [7]. Therefore, it is desirable to have a solution that does not require the
random oracle model.
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Our Contributions
In this paper, we present an efficient and secure channel free public key encryption
with keyword search scheme. Based on the DBDH assumption and the truncated q-
ABDHE assumption, we prove its indistinguishability of secure channel free PEKS
against chosen keyword attack (IND-SCF-CKA) security without random oracle.

To summarize the existing knowledge, the three constructions of SCF-PEKS schemes
are due to Baek et al. [2], Gu et al. [11] and Rhee et al.[14] that require random oracle
model. Our work fills the gap in the literature by proposing an efficient secure channel
free PEKS (SCF-PEKS) scheme that does not incorporate random oracle, as outlined
in Table 1.

Table 1. Comparison Among Various SCF-PEKS Schemes

Properties Baek et al. [2] Gu et al. [11] Rhee et al.[14] This paper
Without ROM × × × �
Assumption BDH BDH, q-BDHI BDH, q-BDHI DBDH, q-ABDHE

Paper Organization
The rest of this paper is organized as follows. In the next section, we will present
some definitions and notations that will be used throughout this paper. In Section 3,
we present our new and efficient scheme and analyze its security. Finally, Section 4
concludes the paper.

2 Definitions

In this section, we firstly review the complexity assumptions required in our schemes,
and then provide the definition and security of a public key encryption with keyword
search scheme.

2.1 Negligible Function

A function ε(n) : N → R is negligible in n if 1/ε(n) is a non-polynomially-bounded
quantity in n.

2.1 Bilinear Maps

Let G1 and G2 be multiplicative cyclic groups of prime order p, and g be a generator of
G1 . (By G1

∗ and Zp
∗, we denote G1\{1} where 1 is the identity element of G1 , and

Zp\{0} respectively). We say e : G1 ×G1 → G2 is a bilinear map [3] if the following
conditions hold.

1. e(g1
a , g2

b) = e(g1 , g2 )ab for all a, b ∈ Zp and g1 , g2 ∈ G1 .
2. e(g, g) �= 1.
3. There is an efficient algorithm to compute e(g1 , g2 ) for all g1 , g2 ∈ G1 .
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2.2 The DBDH Assumption

Let e : G1 ×G1 → G2 is a bilinear map. We define the advantage function

AdvG1 ,BDBDH (λ)

of an adversary B as

|Pr[B(g, ga , gb , gc, e(g, g)abc) = 1]− Pr[B(g, ga , gb , gc, e(g, g)r ) = 1]|

where a, b, c, r ∈ Zp are randomly chosen. We say that the decisional bilinear Diffie
Hellman assumption [3] relative to generator G1 holds if AdvG1 ,BDBDH (λ) is negligi-
ble for all PPT B.

2.3 The Truncated (Decisional) q-ABDHE Assumption

Let e : G1 ×G1 → G2 is a bilinear map. We define the advantage function

AdvG1 ,Bq−ABDHE (λ)

of an adversary B as

|Pr[B(g, gx , · · · , gxq

, gz , gzxq+2

, e(g, g)zx
q+1

) = 1]−
Pr[B(g, gx , · · · , gxq

, gz , gzxq+2

, e(g, g)r) = 1]|

where x, z, r ∈ Zp are randomly chosen. We say that the truncated decisional aug-
mented bilinear Diffie-Hellman exponent assumption [10] relative to generator G1

holds if AdvG1 ,Bq−ABDHE (λ) is negligible for all PPT B.

2.4 Definition of SCF-PEKS

In the following, we will provide the definition of a SCF-PEKS scheme [2] and the
game-based security definition model.

Definition 1 (SCF-PEKS). A secure channel free public key encryption with keyword
search scheme comprises the following algorithms:

– GlobalSetup(λ): Takes a security parameter λ generates a global parameter GP .
– KeyGenServer(GP): Takes as input the common parameters GP . Output the pub-

lic/secret pair (pkS , skS) of server S.
– KeyGenReceiver(GP): Takes as inputGP , generates public/secret pair (pkR, skR)

of receiver R.
– SCF − PEKS(GP , pkS , pkR, w): Takes as input GP , a receiver’s public key

pkR, a server’s public key pkS , and a keyword w. Return a PEKS ciphertext C
under w.

– Trapdoor(GP , skR, w): Takes as input GP , a receiver’s secret key skR and a
keyword w. Generate a trapdoor Tw .
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– Test(GP, Tw , skS , C): Takes as input a common parameter GP , a trapdoor Tw , a
server’s secret key skS and a PEKS ciphertext C =SCF−PEKS(GP, pkS , pkR,
w′). Output a symbol “Correct” if w = w′ or “Incorrect” otherwise.

We define the notion of consistency in a SCF-PEKS scheme, which is similar to the
notion of consistency in a PEKS scheme from [1].

Definition 2 (Consistency). Suppose there exits an adversary A that wants to make
consistency fail. The consistency is formally defined as follows:

Experiment ExpAcons(λ)
(pkR, skR) ← KeyGenReceiver(λ); (pkS , skS)← KeyGenServer(λ)
(w, w′) ← A(pkR, pkS)
C ← SCF − PEKS(GP, pkS , pkR, w); Tw ′ ← Trapdoor(GP , skR, w′)
if w �= w′ and Test(GP, Tw ′ , skS , C) =“Correct”,

then return 1,
else return 0.

We define the advantage ofA as:

AdvAcons(λ) = Pr[ExpAcons(λ) = 1]

The scheme is said to be computationally consistent if it is negligible for polynomial
time adversariesA to win the above experiment.

In the following, we introduce the game-based security definition of SCF-PEKS, which
we call indistinguishability of secure channel free PEKS against chosen keyword attack
(IND-SCF-CKA). Informally, IND-SCF-CKA guarantees that the server that has not
obtained the trapdoors for given keywords cannot tell which PEKS ciphertext encrypts
which keyword, and the outside attacker that has not obtained the server’s private key
cannot make any decisions about the PEKS ciphertexts even though the attacker gets all
the trapdoors for the keywords that it holds. Our definition is adopted from the definition
by Baek et al. in [2]. Note that the attack models for these two types of attackers are
described as Game 1 and Game 2, respectively, in the following definition.

Definition 3 (IND-SCF-CKA game). Let λ be the security parameter and A be the
adversary. We consider the following two games between A and the simulator B.
Game 1: A is assumed to be a server.

1. Setup: The common parameter generation algorithm GlobalSetup(λ), the two key
generation algorithms KeyGenServer(GP) and KeyGenReceiver(GP) are exe-
cuted. A common parameter GP , private and public key pairs of the receiver and
the server, which we denote by (pkR, skR) and (pkS , skS) respectively, are set.
Then, B sends (pkS , skS) and pkR to A.

2. Query phase 1. A makes the queries a number of keywords, each of which is de-
noted by w:

– Trapdoor query 〈w〉:A can adaptively asks B for the trapdoor Tw for any key-
word w ∈ KSw of his choice. B responds the trapdoor Tw = Trapdoor(GP ,
skR, w) to A.
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3. Challenge. OnceA decides that Phase 1 is over, it outputs a target key pair (w0 , w1 ).
(Notice that none of w0 nor w1 has been queried for obtaining a corresponding
trapdoor in Phase 1). Upon receiving this, B responds by choosing a random b ∈
{0, 1}, and creates a target PEKS ciphertext C∗ = SCF−PEKS(GP, pkS , pkR,
wb) and sends it to A.

4. Query phase 2.A issues a number of trapdoor queries as in Phase 1. The restriction
here is that w0 and w1 are not allowed to be queried as trapdoor queries.

5. Guess. A outputs the guess b′. The adversary wins if b′ = b.

We defineA’s advantage in Game 1 by AdvAGame1 (λ) = |Pr[b = b′]− 1/2|.
Game 2: A is assumed to be an outside attacker (including the receiver).

1. Setup: The common parameter generation algorithm GlobalSetup(λ), the two key
generation algorithms KeyGenServer(GP) and KeyGenReceiver(GP) are exe-
cuted. A common parameter GP , private and public key pairs of the receiver and
the server, which we denote by (pkR, skR))and (pkS , skS) respectively, are set.
Then, B sends (pkR, skR) and pkS to A.

2. Challenge. A outputs a target keyword pair (w0 , w1 ). Upon receiving this, B re-
sponds by choosing a random b ∈ {0, 1}, and creates a target PEKS ciphertext
C∗ = SCF − PEKS(GP, pkS , pkR, wb) and sends it to A.

3. Guess. A outputs the guess b′. The adversary wins if b′ = b.

We define A’s advantage in Game 2 by AdvAGame2 (λ) = |Pr[b = b′] − 1/2|. The
SCF-PEKS scheme is said to be IND-SCF-CKA secure if AdvAGamei (λ), where i is
either 1 or 2, is negligible.

3 New SCF-PEKS Scheme

In this section, we will present our efficient construction of public key encryption with
keyword search scheme without random oracle. Our scheme is based on Gentry’s IBE
in the standard model.

3.1 Our Construction

Our public key encryption with keyword search scheme is described as follows.

– GlobalSetup(λ): Let λ be the security parameter and (p, g, G1 , G2 , e) be the bi-
linear map parameters. Select a one-way hash function H : {0, 1}∗ → Zp

∗. The
keyword space KSw = Zp

∗. The global parameters are GP = (p, g, G1 , G2 ,
e, H, KSw).

– KeyGenServer(GP): Choose x ∈ Zp
∗ uniformly at random and compute X = gx .

Choose Q ∈ G1
∗ uniformly at random. Return pkS = (GP , Q, X) and skS =

(pkS , x) as the server’s public and private key, respectively.
– KeyGenReceiver(GP): Choose y ∈ Zp

∗ uniformly at random and compute Y =
gy . Choose h ∈ G1

∗ uniformly at random. Return pkR = (pkS , Y, h) and skR =
(pkR, y) as the receiver’s public and private key, respectively.
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– SCF − PEKS(GP, pkS , pkR, w): Choose s, r ∈ Zp
∗ and compute C1 = gs ,

t = H(e(X, Q)s), C2 = (Y g−w )r/t , C3 = e(g, g)r , C4 = e(g, h)r . The PEKS
ciphertext is C = (C1 , C2 , C3 , C4 ). Return C.

– Trapdoor(GP , skR, w): Choose sw ∈ Zp
∗ and compute dw = (hg−sw )1/(y−w).

Let the trapdoor Tw = (dw , sw ). Return Tw .
– Test(GP, Tw , skS , C): Compute t=H(e(C1 , Q)x ), check if e(C2

t , dw )C3
sw =

C4 . If the equation holds return “Correct”. Otherwise, return “Incorrect”.

Correctness. In the following, we show that a correctly generated PEKS ciphertext can
be correctly tested by the server who has the correct trapdoor. In the following, let a
PEKS ciphertext C = (C1 , C2 , C3 , C4 ) associated with keyword w under the public
key pkS , pkR. Let the trapdoor Tw = (dw , sw ). We have

t = H(e(C1 , Q)x )
= H(e(gs , Q)x )
= H(e(gx , Q)s)
= H(e(X, Q)s).

e(C2
t , dw )C3

sw = e(((Y g−w )r/t )t , (hg−sw )1/(y−w))(e(g, g)r )sw

= e(g(y−w)r , (hg−sw )1/(y−w))e(g, g)rsw

= e(g, h)re(gr , g−sw )e(g, g)rsw

= C4 .

3.2 Consistency of Our SCF-PEKS

In this subsection, we prove the computational consistency of our scheme.

Theorem 1. Our SCF-PEKS scheme is computationally consistent.

Proof. Suppose there exists a polynomial-time adversary, A, that can attack computa-
tional consistency of our scheme. Let (w, w′) denote the pair of keywords thatA returns
in the consistency experiment, and assume without loss of generality that w �= w′.

Let s, r ∈ Zp
∗ denote the value chosen at random by SCF−PEKS(GP, pkS , pkR,

w). Let h = gz , C1 = gs , t = H(e(X, Q)s), C2 = (Y g−w )r/t , C3 = e(g, g)r ,
C4 = e(g, h)r .

Let Tw = (dw ′ , sw ′) where dw ′ = (hg−sw′ )1/(y−w ′) = g(z−sw′ )/(y−w ′) be the
trapdoor of w′.

Note that A wins exactly when w �= w′ and e(C2
t , dw ′)C3

sw′ = C4 .
e(C2

t , dw ′)C3
sw′ = C4

⇐⇒ e(((Y g−w )r/t )t , g(z−sw′ )/(y−w ′))e(g, g)rsw′ = e(g, g)zr

⇐⇒ e(g(y−w)r , g(z−sw′ )/(y−w ′))e(g, g)rsw′ = e(g, g)zr

⇐⇒ e(g, g)((y−w)/(y−w ′))(z−sw′ )re(g, g)rsw′ = e(g, g)zr

⇐⇒ e(g, g)((y−w)/(y−w ′))zre(g, g)−((y−w)/(y−w ′))sw′re(g, g)rsw′ = e(g, g)zr

⇐⇒ ((y − w)/(y − w′))zr − ((y − w)/(y − w′))sw ′r + rsw ′ = zr
⇐⇒ ((y − w)/(y − w′)− 1)zr − ((y − w)/(y − w′)− 1)sw ′r = 0
⇐⇒ ((w′ − w)/(y − w′))zr − ((w′ − w)/(y − w′))sw ′r = 0
⇐⇒ ((w′ − w)/(y − w′))(z − sw ′)r = 0.
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Since y, z is receiver’s unknown secret key in Zp
∗. Therefore, Pr[sw ′ = z] = 1/(p−1)

and Pr[w′ = y] = 1/(p− 1) where p− 1 is the total element number in Zp
∗.

As described above, under the condition w �= w′ and Test(GP, Tw ′ , skS , C) =
“Correct”

AdvAcons(λ) = Pr[ExpAcons(λ) = 1] = Pr[(sw ′ = z) ∨ (w′ = y)] ≤ 2/(p− 1).

3.3 Security of Our SCF-PEKS

In this subsection, we analyze the security of our SCF-PEKS scheme without requiring
any random oracle. The analysis of Game 1 and Game 2 is as follows.

Theorem 2. The above scheme is IND-SCF-CKA secure without random oracle model
assuming that the DBDH problem and q-ABDHE problem are intractable.

Lemma 1. Let q ≥ qk + 1, where qk is the number of trapdoor queries. Our scheme is
semantically secure against a chosen keyword attack in Game 1 without random oracle
model assuming q-ABDHE problem is intractable.
Proof. Suppose there exists a polynomial-time adversary,A, in Game 1 that can attack
our scheme in the standard model. Let qk is the number of trapdoor queries. We build a
simulator B that can play a q-ABDHE game. The simulation proceeds as follows:

We first let the challenger set the groups G1 and G2 with an efficient bilinear map e

and a generator g of G1 . Simulator B inputs a q-ABDHE instance (g, gx , gx2

, · · · , gxq

,

gz , gzxq+2

, T ), and has to distinguish T = e(g, g)zx
q+1

from a random element in G2 .

1. Setup: Let λ be the security parameter and (p, g, G1 , G2 , e) be the bilinear map
parameters. Specify a one-way hash function H : {0, 1}∗ → Zp

∗. Let the keyword
space be KSw = Zp

∗. The global parameters areGP=(p, g, G1 , G2 , e, H, KSw ).
Choose a ∈ Zp

∗ uniformly at random and compute X = ga . Choose Q ∈ G1
∗

uniformly at random. Let pkS = (GP , Q, X) and skS = (GP , a) as the server’s
public and private key, respectively.
Pick a random degree q polynomials f(X) and define Y = gx , h = gf (x). The
receiver’s public is pkR = (pkS , Y, h). Then, send (pkR, pkS , skS) to A.

2. Query phase 1. A makes trapdoor query :
– Trapdoor query 〈w〉: If A queries w to the trapdoor generation oracle, then
B sets sw = f(w), computes dw = g(f (x)−f (w))/(x−w), sends the trapdoor
Tw = {dw , sw} to A. When q ≥ qk + 1, sw = f(w) is random value from
A’s view, since f(X) is a random degree q polynomial.

3. Challenge. OnceA decides that Phase 1 is over, it outputs a keyword pair (w0 , w1 ).
B responds by choosing a random b ∈ {0, 1}, let w∗=wb and sets {sw∗ =fk(w∗)},
then B computes dw∗ = g(f (x)−f (w∗))/(x−w∗). B randomly chooses s∗ ∈ Zp

∗ and
computes C1

∗ = gs∗
, t∗ = H(e(X, Q)s

∗
). Defines the degree q + 1 polynomial

F ∗(X) = (Xq+2 − (w∗)q+2 )/(X − w∗) =
∑

i=0
q+1 (F i

∗X i).
Computes

C2
∗ = (gzxq+2

(gz )−(w∗)q+2

)1/t∗

C3
∗ = TFq+1

∗
e(gz ,

∏
i=0

q(gx i

)Fi
∗
)

C4
∗ = e((C2

∗)t
∗
, dw∗)(C3

∗)sw∗ .
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Sends the target PEKS ciphertext C∗ = (C1
∗, C2

∗, C3
∗, C4

∗) to A.
Let r∗ = zF ∗(x), if T = e(g, g)zx

q+1

, then
C2

∗ = (gzxq+2

(gz )−(w∗)q+2

)1/t∗ = g(x−w∗)(z(xq+2−(w∗)q+2 )/(x−w∗))1/t∗ =
g(x−w∗)r∗/t∗ = (Y g−w∗

)r
∗/t∗

C3
∗ = TFq+1

∗
e(gz ,

∏
i=0

q(gx i

)Fi
∗
) = e(g, g)r

∗

C4
∗ = e(g, h)r

∗
.

4. Query phase 2. A continues making queries as in the Query phase 1.
5. Guess. A outputs the guess b′, if b′ = b, then output 1 meaning T = e(g, g)zx

q+1

;
else output 0 meaning T = e(g, g)r .

Probability Analysis: If T = e(g, g)zx
q+1

, then the simulation is perfect, and A will
guess the bit b correctly with probability 1/2+ε. Else, T is uniformly random, and thus
(C2

∗, C3
∗) is a uniformly random and independent element. In this case, the inequality

C3
∗ �= e((C2

∗)t
∗
, g)1/(x−w∗) holds with probability 1 − 1/p. When the inequality

holds, the value of

C4
∗ = e((C2

∗)t
∗
, dw∗)(C3

∗)sw∗

= e((C2
∗)t

∗
, (h)1/(x−w∗))((C3

∗)/(e((C2
∗)t

∗
, g)1/(x−w∗)))sw∗

is uniformly random and independent from A’s view (except for the value C4
∗), since

sw∗ is uniformly random (when q ≥ qk + 1, sw∗ = f(w∗) are random values from
A’s view) and independent from A’s view (except for the value C3

∗). Thus, C4
∗ is

uniformly random and independent. Since s∗ ∈ Zp
∗ is randomly chosen, C1

∗ = gs∗
is

uniformly random and independent from (C2
∗, C3

∗, C4
∗) and (C1

∗, C2
∗, C3

∗, C4
∗)

can reveal no information regarding the bit b. This completes the proof of Game 1.

Lemma 2. Our scheme is semantically secure against a chosen keyword attack in Game
2 without random oracle model assuming DBDH problem is intractable.
Proof. Suppose there exists a polynomial-time adversary,A, in Game 2 that can attack
our scheme in the standard model. We build a simulator B that can play a DBDH game.
The simulation proceeds as follows:

We first let the challenger set the groups G1 and G2 with an efficient bilinear map
e and a generator g of G1 . B inputs a DBDH instance (g, ga , gb , gc, T ), and has to
distinguish T = e(g, g)abc from a random element in G2 .

1. Setup: Let λ be the security parameter and (p, g, G1 , G2 , e) be the bilinear map
parameters. Specify a one-way hash function H : {0, 1}∗ → Zp

∗. The global pa-
rameters are GP = (p, g, G1 , G2 , e, H, KSw) where KSw denotes a description
of a keyword space.
Let X = ga and Q = gb , the server’s public key is pkS = (GP , Q, X) .
Choose y ∈ Zp

∗ uniformly at random and compute Y = gy . Choose h ∈ G1
∗

uniformly at random. pkR = (pkS , Y, h) and skR = (pkS , y) denote the receiver’s
public and private key respectively. Then, send (pkR, skR, pkS) to A.

2. Challenge. A outputs a key pair (w0 , w1 ). B responds by choosing a random b ∈
{0, 1}, let the target keyword w∗ = wb , C1

∗ = gc and t∗ = H(T ), chooses
r ∈ Zp

∗, computes C2
∗ = (Y g−w∗

)r/t∗ , C3
∗ = e(g, g)r , C4

∗ = e(g, h)r . The
PEKS ciphertext is C∗ = (C1

∗, C2
∗, C3

∗, C4
∗). Sends C∗ to A.
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3. Guess. A outputs the guess b′, if b′ = b, then output 1 meaning T = e(g, g)abc;
else output 0 meaning T = e(g, g)r .

Probability Analysis: Suppose there exists a polynomial-time adversary,A, in Game 2
that can attack our scheme in the standard model with an advantage ε. Now we provide
the probability of the simulator B:

When T = e(g, g)abc then A must satisfy |Pr[b = b′] − 1/2| ≥ ε. When T is
uniform in G2

∗ then Pr[b = b′] = 1/2. Therefore, when a, b, c are uniform in Zp
∗ and

T is uniform in G2
∗. We have that

|Pr[B(g, ga , gb, gc, e(g, g)abc) = 1]- Pr[B(g, ga , gb , gc, e(g, g)r ) = 1]| ≥ |(1/2±
ε)− 1/2| = ε as required. This completes the proof of Game 2.

4 Conclusion and Future Work

In this paper, we constructed an efficient and secure channel free public key encryption
with keyword search scheme without random oracle. This construction fills the gap
in the literature that an efficient and secure channel free public key encryption with
keyword search can be built without requiring any random oracle model.
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Abstract. Predicate encryption is an important cryptographic primi-
tive that has been recently studied [BDOP04, BW07, GPSW06, KSW08]
and that has found wide applications. Roughly speaking, in a predicate
encryption scheme the owner of the master secret key K can derive se-
cret key K̃, for any pattern vector k. In encrypting a message M , the
sender can specify an attribute vector x and the resulting ciphertext X̃
can be decrypted only by using keys K̃ such that P (x, k) = 1, for a fixed
predicate P . A predicate encryption scheme thus gives the owner of the
master secret key fine-grained control on which ciphertexts can be de-
crypted and this allows him to delegate the decryption of different types
of messages (as specified by the attribute vector) to different entities.

In this paper, we give a construction for hidden vector encryption
which is a special case of predicate encryption schemes introduced by
[BW07]. Here the ciphertext attributes are vectors x = 〈x1, . . . , x�〉 over
alphabet Σ, key patterns are vectors k = 〈k1, . . . , k�〉 over alphabet
Σ ∪ {�} and we consider the Match(x, k) predicate which is true if and
only if ki �= � implies xi = ki. Besides guaranteeing the security of the
attributes of a ciphertext, our construction also gives security guarantees
for the key patterns. We stress that security guarantees for key patterns
only make sense in a private-key setting and have been recently consid-
ered by [SSW09] which gave a construction in the symmetric bilinear
setting with groups of composite (product of four primes) order. In con-
trast, our construction uses asymmetric bilinear groups of prime order
and the length of the key is equal to the weight of the pattern, thus
resulting in an increased efficiency. We remark that our construction is
based on falsifiable (in the sense of [BW06, Nao03]) complexity assump-
tions for the asymmetric bilinear setting and are proved secure in the
standard model (that is, without random oracles).

Keywords: private-key predicate encryption, key confidentiality.

1 Introduction

Predicate encryption is an important cryptographic primitive that has been re-
cently studied [BDOP04, BW07, GPSW06, KSW08] and that has found wide
applications. Roughly speaking, in a predicate encryption scheme the owner of

J.A. Garay, A. Miyaji, and A. Otsuka (Eds.): CANS 2009, LNCS 5888, pp. 259–277, 2009.
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the master secret key SK, can derive secret key K̃, for any pattern vectors k.
Similarly, in encrypting a message M , the sender can specify an attribute vector
x and the resulting ciphertext X̃ can be decrypted only by using keys K̃ such
that P (x, k) = 1, for a fixed predicate P .

In this paper, we consider hidden vector encryption that is a special class
of predicate encryptions first studied in [BW07]. In a hidden vector encryption
scheme, ciphertexts are associated with attribute vectors x of length � over an
alphabet Σ and keys are associated with pattern vectors k of length � over the
alphabet Σ ∪ {�}. The predicate we are interested in is the Match predicate
defined as follows: Match(x, k) = 1 if and only if for i = 1, . . . , � either ki = � or
ki = xi. Constructions for hidden vector encryption have been given in [BW07]
(based on hardness assumptions in groups of composite order) and in [IP08]
(based on hardness assumptions in groups of prime order).

Until now research has concentrated on guaranteeing the security of the ci-
phertext with respect to the cleartext and to the attribute vector and not much
attention has been devoted to the security of the key. Specifically, one would
like a key not to reveal the associated pattern. This is particularly important in
some applications in which a user generates the key for a certain pattern and
gives it to a third party to perform some operations. Knowledge of the pattern
associated with the key might reveal some information about the operation be-
ing performed. Obviously, this is impossible to achieve in a public-key setting.
Indeed an adversary A holding a key K̃ associated to a secret pattern k can sim-
ply produce a ciphertext X̃ with attribute x and then try to decrypt X̃ using
K̃. If A succeeds in decrypting K̃ then A knows that P (x, k) = 1. This attack
does not hold in the private key setting as A cannot produce ciphertext X̃ .
Simply keeping the public key secret from the adversary does not seem to work
for previous predicate encryption schemes (see, for example [BW07, KSW08])
and the problem seems to call for a new construction. The scheme of [SSW09] is
constructed modifying the previous scheme of [KSW08], likewise, we build our
scheme from the scheme of [IP08].

Prior work and our contribution. Shen, Shi and Waters [SSW09] were the first
to consider key confidentiality in the context of predicate encryption and they
provided a construction for the inner-product predicate (that is, a key can de-
crypt a ciphertext if and only if the pattern vector of the key is orthogonal to the
attribute vector of the ciphertext). In this paper we present a construction for
an hidden vector encryption scheme which, besides guaranteeing privacy of the
attribute vector of ciphertext, guarantees that keys do not leak any information
on the associated pattern, besides the location of the �’s. We stress that the con-
struction of [SSW09] for the inner-product predicate implies (with a small loss of
efficiency) a construction also for hidden vector encryption scheme. The security
of the construction of [SSW09] is based on bilinear assumptions on groups of
order product of four primes, and thus, it is less efficient. In our construction we
show that, by slightly relaxing the notion of key confidentiality, we can obtain
construction using asymmetric bilinear groups of prime order (which results in
much more efficient constructions). We remark that our construction is based
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on falsifiable (in the sense of [BW06, Nao03]) complexity assumptions for the
asymmetric bilinear setting for groups of prime order and are proved secure in
the standard model (that is, without random oracles).

Moving from composite order groups to prime order groups, besides giving
very efficient constructions, is also important since assumptions based on prime
order groups are considered weaker than the corresponding assumptions that
intertwine and compound potential vulnerabilities from factoring and pairings
(see the discussion in [Boy08]).

Finally, we stress that the only previous construction of hidden vector encryp-
tion schemes based on prime order groups of [IP08] does not give any security
guarantee for the key.

2 Hidden Vector Encryption Schemes

In this paper we consider a special type of predicate encryption schemes called
Hidden Vector Encryption Scheme, (an HVE scheme, in short). We present the
definition and the construction for Σ = {0, 1}. In Section 8 we briefly explain
how the constructions can be extended to larger alphabets.

An HVE scheme consists of four algorithms:
1. MasterKeyGen(1n, 1�): Given security parameter n, and number of attributes

� = poly(n), procedure MasterKeyGen outputs the private key SK.
2. Enc(SK, x): Given attribute vector x ∈ {0, 1}� and secret key SK, procedure

Enc outputs an encrypted attribute vector X̃.
3. KeyGen(SK, k): Given private key SK, a pattern vector k of length � over the

alphabet {0, 1, �}, procedure KeyGen outputs a key K̃ for the k.
4. Test(X̃, K̃): given encrypted attribute vector X̃ and key K̃ corresponding to

pattern k, procedure Test returns Match(x, k) except with negligible proba-
bility.

We state security in the selective attribute model using the following experi-
ments.

2.1 Semantic Security

The first experiment considers an adversary that tries to learn information from
an encryption. We model this using an indistinguishability experiment in which
the adversary A selects two challenge attribute vectors z0 and z1 and receives
an encrypted attribute vector corresponding to a randomly chosen challenge
attribute vector. We allow the adversary to issue key queries for patterns y that
match neither of z0 and z1 and to see encryption of attribute vectors of his choice
(see Section 7 for a stronger notion). Following is the description of experiment
SemanticExpA.

SemanticExpA(1n, 1�)
1. Initialization Phase. The adversary A announces two challenge attribute

vectors z0, z1 ∈ {0, 1}�.
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2. Key-Generation Phase. The secret key SK is generated by the MasterKeyGen
procedure.

3. Query Phase I. A can make any number of key and encryption query.
A key query for pattern k is answered as follows. If Match(z0, k) = 0 and
Match(z1, k) = 0 then A receives the output of KeyGen(SK, k). Otherwise,
A receives ⊥. An encryption query for attribute vectors x is answered by
returning Enc(SK, x).

4. Challenge construction. η is chosen at random from {0, 1} and A is given
Enc(SK, zη).

5. Query Phase II. Identical to Query Phase I.
6. Output Phase. A returns η′.

If η = η′ then the experiments returns 1 else 0.

Definition 1. An HVE scheme (MasterKeyGen, Enc, KeyGen, Test) is semanti-
cally secure, if for all probabilistic poly-time adversaries A∣∣Prob[SemanticExpA(1n, 1�) = 1]− 1/2

∣∣
is negligible in n for all � = poly(n).

2.2 Key Confidentiality

In this section we present our definition for key confidentiality. We model this
property by using an indistinguishability experiment in which the adversary A
outputs two challenge patterns k0 and k1 of his choice. A is then allowed to issue
encryption queries for vectors x that match neither of k0 and k1 and key queries
for patterns k of his choice. At the end A is presented with the key associated
with a randomly chosen challenge pattern. In our notion of key confidentiality,
the adversary is limited to challenges on patterns in which the “don’t care”
entries (that is, �) are in the same positions.

KeyExpA(1n, 1�)
1. Initialization Phase. The adversary A announces two challenge patterns

k0, k1 ∈ {0, 1, �}�. If the set of positions for which k0 and k1 have � dif-
fer then the experiment returns 0.

2. Key-Generation Phase. The secret key SK is generated by the MasterKeyGen
procedure.

3. Query Phase I. A can make any number of key and encryption query.
A key query for pattern k is answered by returning KeyGen(SK, k).
An encryption query for attribute vector x is answered as follows.
If Match(x, k0) = Match(x, k1) = 0 then A receives Enc(SK, x). Otherwise,
A receives ⊥.

4. Challenge construction. η is chosen at random from {0, 1} and receives
KeyGen(SK, kη).

5. Query Phase II. Identical to Query Phase I.
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6. Output Phase. A returns η′.
If η = η′ then the experiments returns 1 else 0.

Definition 2. A predicate encryption scheme (MasterKeyGen, Enc, KeyGen,
Test) is key secure if for all probabilistic poly-time adversaries A,∣∣Prob[KeyExpA(1n, 1�) = 1]− 1/2

∣∣
is negligible in n for all � = poly(n).

2.3 Secure HVE

Finally we have,

Definition 3. An HVEscheme (MasterKeyGen, Enc, KeyGen, Test) is secure if it
is both semantically secure and key secure.

Remark on the notion of key confidentiality. In our notion of key confidentiality
the key might reveal the position of the �’s in the associated pattern, since no
requirement is made for adversary choosing challenge patterns with �’s in differ-
ent positions. In some applications, this might not be a drawback. For example,
predicate encryption can be used for performing searches on encrypted data.
For example, a user interested in selecting ciphertexts for which Name=Alex
and Sex=M gets a key corresponding to a pattern that has � in all positions
other than Name and Sex. An eavesdropper learns that the user is searching the
fields Name and Sex but no information is given on the name the user is searching
for and whether the user is searching for a male or a female. We remark that the
construction of [SSW09] hides all information of the key, but their construction
is less efficient than ours since it uses groups of composite order of four primes.
Roughly speaking, by slightly relaxing the security notion, we manage to build
a more efficient scheme.

3 Complexity Assumptions

We work in asymmetric prime order bilinear groups of ’Type 3’ (see [Boy08]).
Specifically, we have cyclic multiplicative groups G1, G2 and GT of order p such
that there exists no efficiently computable morphism from G1 to G2 or from G2
to G1. In addition we have a non-degenerate pairing function e : G1×G2 → GT ;
that is, for all x ∈ G1, y ∈ G2, x �= 1 or y �= 1, we have e(x, y) �= 1 and for
all a, b ∈ Zp we have e(xa, yb) = e(x, y)ab. We denote by g1, g2, and e(g1, g2)
generators of G1, G2, and GT , respectively.

We call a tuple I = [p, G1, G2, GT , g1, g2, e] an asymmetric bilinear instance
and assume that there exists an efficient generation procedure G that, on input
security parameter 1n, outputs an instance with |p| = Θ(n).

We now present a new assumption, which we call the (d, m)-Q Assumption,
on which we base the proof of key security of our construction. Semantic security
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is based instead on the Decision Linear Assumption and on the Bilinear Deci-
sion Diffie-Hellman Assumption which we review in Section 3. We present the
assumption in the form of a game between a challenger Ch and a distinguisher
D on input the security parameter n.

Game (d, m)-Q(1n)
1. The challenger Ch picks a random asymmetric bilinear instance I = [p, G1,

G2, GT , g1, g2, e] by running generator G on input security parameter 1n and
sets ChOutput = ∅.

2. For i = 1, . . . , d and b = 0, 1, Ch chooses random t̂i,b, v̂i,b ∈ Zp.
3. For i = 1, . . . , d, Ch chooses random âi ∈ Zp such that their sum is equal to

0.
4. Define set of pairs JH = {(j, h)|1 ≤ j ≤ m, 1 ≤ h ≤ m, j �= h or j =

h, m + 1 ≤ j ≤ d}.
For (j, h) ∈ JH , Ch chooses a random ŝ(j,h) ∈ Zp and computes matrices
Aj,h and Bj,h as follows, where × denotes a missing entry in the matrices:1

Aj,h =⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[
g

ŝj,h t̂1,0
1 , . . . , ×, . . . , g

ŝj,h t̂h,0
1 , . . . , g

ŝj,h t̂d,0
1

g
ŝj,h t̂1,1
1 , . . . , g

ŝj,ht̂j,1
1 , . . . , × . . . , g

ŝj,h t̂d,1
1

]
if j �= h and j, h ≤ m

[
g

ŝj,h t̂1,0
1 , . . . , ×, . . . , g

ŝj,h t̂d,0
1

g
ŝj,h t̂1,1
1 , . . . , g

ŝj,ht̂j,1
1 , . . . , g

ŝj,h t̂d,1
1

]
if j = h and j > m

and Bj,h =⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[
g

ŝj,hv̂1,0
1 , . . . , ×, . . . , g

ŝj,hv̂h,0
1 , . . . , g

ŝj,hv̂d,0
1

g
ŝj,hv̂1,1
1 , . . . , g

ŝj,hv̂j,1
1 , . . . , × . . . , g

ŝj,hv̂d,1
1

]
if j �=zh and j, h≤m

[
g

ŝj,hv̂1,0
1 , . . . , ×, . . . , g

ŝj,hv̂d,0
1

g
ŝj,hv̂1,1
1 , . . . , g

ŝj,hv̂j,1
1 , . . . , g

ŝj,hv̂d,1
1

]
if j = h and j > m

Ch appends the above matrices to ChOutput.
5. For i = 1, . . . , d and b = 0, 1, Ch computes and appends to ChOutput

Ci,b = g
1/t̂i,b

2 and Di,b = g
1/v̂i,b

2 .

6. Ch chooses random η ∈ {0, 1} and let z = 〈z1, . . . , zd〉 = ηm · 0d−m.
For i = 1, . . . , d, Ch computes

Ei = C âi

i,zi
and Fi = Dâi

i,zi

and appends the values Ei and Fi to ChOutput.
1 For the sake of simplicity of exposition, in the definition we have implicitly assumed

that j ≤ h.
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7. Challenger Ch runs D on input sequence ChOutput and receives output η′.

We define the advantage AdvD(n, d, m) of distinguisher D in the Game (d, m)-
Q(1n) as

AdvD(n, d, m) =
∣∣∣∣Prob[η = η′]− 1

2

∣∣∣∣ .
We are now ready to formally state Assumption (d, m)-Q.

Assumption 1 (Assumption (d, m)-Q). For all probabilistic poly-time distin-
guishers D, we have that AdvD(n, d, m) is negligible in n, for d = poly(n), and
1 ≤ m ≤ d.

The (d, m)-Q Assumption can be justified by extending the framework of the
Uber-Assumption [BBG05, Boy08] to rational functions along the lines of
[Boy08]. In the rest of this section we review other hardness assumptions used
in the paper.

Bilinear Decision Diffie-Hellman. Given a tuple [g1, g2, g
a
1 , gb

1, g
a
2 , gb

2, g
c
1, Z] for

random exponents a, b, c ∈ Zp it is hard to distinguish between Z = e(g1, g2)abc

and a random Z from GT . More specifically, for an algorithm A we define ex-
periment BDDHExpA as follows.

BDDHExpA(1n)
1. Choose instance I = [p, G1, G2, GT , g1, g2, e] with security parameter 1n.
2. Choose a, b, c ∈ Zp at random.
3. Choose η ∈ {0, 1} at random.
4. If η = 1 then choose z ∈ Zp at random; else, set z = abc.
5. Set A = ga

1 , B = gb
1, Â = ga

2 , B̂ = gb
2, C = gc

1 and Z = e(g1, g2)z .
6. Let η′ = A(I, A, B, Â, B̂, C, Z).
7. If η = η′ then return 1 else return 0.

Assumption 2 (Bilinear Decisional Diffie-Hellman (BDDH)). For all
probabilistic poly-time algorithms A, |Prob[BDDHExpA(1n) = 1]− 1/2| is negli-
gible in n.

Decision Linear. Given a tuple [g1, g2, g
z1
1 , gz2

1 , gz1
2 , gz2

2 , gz1z3
1 , gs

1, Z] for random
exponents z1, z2, z3, s ∈ Zp it is hard to distinguish between Z = g

z2(s−z3)
1 and a

random Z from G1. More specifically, for an algorithm A we define experiment
DLExpA as follows.

DLExpA(1n)
1. Choose instance I = [p, G1, G2, GT , g1, g2, e] with security parameter 1n.
2. Choose u1, u2, u3, u ∈ Zp at random.
3. Choose η ∈ {0, 1} at random.
4. If η = 1 then choose z ∈ Zp at random; else, set z = u2(u − u3).
5. Set U1 =gu1

1 , U2 =gu2
1 , Û1 =gu1

2 , Û2 =gu2
2 , U13 =gu1u3

1 , U =gu
1 , and Z =gz

1 .
6. Let η′ = A(I, U1, U2, Û1, Û2, U13, U, Z).
7. If η = η′ then return 1 else return 0.
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Assumption 3 (Decision Linear (DLinear)). For all probabilistic poly-time
algorithms A, |Prob[DLExpA(1n) = 1]− 1/2| is negligible in n.

Note that Decision Linear implies Decision BDDH and the Decision Linear as-
sumption has been used in [BW06].

4 The Basic Scheme

In this section, we describe our proposal for a secure HVE.

The MasterKeyGen procedure. On input security parameter 1n and the number
of attributes � = poly(n), MasterKeyGen proceeds as follows.
1. Select an asymmetric bilinear instance I = [p, q, G1, G2, GT , g1, g2, e] with
|N | = Θ(n) by running G.

2. Pick y at random in Zp and set Y = e(g1, g2)y.
For i = 1, . . . , �,

Choose ti,0, ti,1, vi,0, vi,1 at random from Zp.
Set

Ti,0 = g
ti,0
1 , Ti,1 = g

ti,1
1 , Vi,0 = g

vi,0
1 , Vi,1 = g

vi,1
1 ,

T̄i,0 = g
1/ti,0
2 , T̄i,1 = g

1/ti,1
2 , V̄i,0 = g

1/vi,0
2 , V̄i,1 = g

1/vi,1
2 .

Set SKi = (Ti,0, Ti,1, Vi,0, Vi,1, T̄i,0, T̄i,1V̄i,0, V̄i,1, ).
3. Return SK = (I, Y, y, SK1, . . . , SK�).

The Enc procedure. On input secret key SK and attribute vector x of length �,
Enc proceeds as follows.
1. Pick s at random from Zp and set Ω = Y −s.
2. For i = 1, . . . , �,

pick si at random from Zp.
set Xi = T s−si

i,xi
and Zi = V si

i,xi
.

3. Return encrypted attribute vector X̃ = (Ω, (Xi, Zi)�
i=1).

In the following sometimes will use the writing Enc(SK, x; s, s1, . . . , s�) to denote
the encrypted attribute vector X̃ output by Enc on input SK and x when using
s, s1, . . . , s� as random elements.

The KeyGen procedure. On input secret key SK and pattern vector k, KeyGen
proceeds as follows.
1. Let Sk be the set of positions in which ki �= �.
2. Choose (ai)i∈Sk

at random in Zp under the constraint that their sum is y.
3. For i ∈ Sk, set Ri = T̄ ai

i,ki
and Wi = V̄ ai

i,ki
.

4. Return K̃ = (i, Ri, Wi)i∈Sk
.

In the following sometimes will use the writing KeyGen(SK, k; (ai)i∈Sk
) to denote

the key K̃ computed by KeyGen on input SK and k and using (ai)i∈Sk
as random

elements.
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The Test procedure. On input an encrypted attribute vector X̃ = (Ω, (Xi, Zi)�
i=1)

and a key K̃ = ((i1, Ri1 , Wi1), . . . , (im, Rim , Wim)), Test proceeds as follows.
1. Compute a = Ω ·∏m

j=1 e(Xij , Rij )e(Zij , Wij ).
2. If a = 1 then return TRUE else return FALSE.

We next prove that the quadruple is indeed a predicate encryption scheme.

Theorem 1. The quadruple of algorithms (MasterKeyGen, Enc, KeyGen, Test)
specified above is a predicate encryption scheme.

Proof. It is sufficient to verify that the procedure Test returns 1 when Match(x, k)
= 1. Let X̃ = (Ω, (Xi, Zi)�

i=1) be the output of Enc(SK, x; s, s1, . . . , s�) and let
K̃ = (i, Ri, Wi)i∈Sk

be the output of KeyGen(SK, k; (ai)i∈Sk
). Then we have

Test(X̃, K̃)

= Ω ·
∏

i∈Sk

e(Xi, Ri) · e(Zi, Wi)

= e(g1, g2)−ys ·
∏

i∈Sk

e(T s−si

i,xi
, T̄ ai

i,ki
) · e(V si

i,xi
, V̄ ai

i,ki
) (since xi = ki for i ∈ Sk)

= e(g1, g2)−ys ·
∏

i∈Sk

e(T s−si

i,ki
, T̄ ai

i,ki
) · e(V si

i,ki
, V̄ ai

i,ki
)

(since e(Ti,ki , T̄i,ki) = e(Vi,ki , V̄i,ki) = e(g1, g2) ∈ GT )

= e(g1, g2)−ys ·
∏

i∈Sk

e(g1, g2)(s−si)ai · e(g1, g2)siai

= e(g1, g2)−ys ·
∏

i∈Sk

e(g1, g2)sai (since
∑
i∈Sk

ai = y)

= e(g1, g2)−ys · e(g1, g2)ys = 1.

5 Proof of Semantic Security

In this section, we prove that the scheme presented in Section 4 is semantically
secure. Consider the following experiments, for j = 0, · · · , �.
SemanticExpA(1n, 1�, z, j)
1. Key-generation Phase. Compute SK = (I, y, SK1, · · · , SK�) by executing

MasterKeyGen(1n, 1�).
2. Query Phase I. Answer Enc queries for attribute vectors x by using secret

key SK.
Answer KeyGen queries for pattern vectors k such that Match(z, k) = 0 using
secret key SK.

3. Challenge Construction.
1. If j = 0 set Ω = e(g1, g2)−ys.
2. If j ≥ 1 choose Ω uniformly at random from GT .
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3. For i = 1, . . . , j − 1,
choose Xi and Zi uniformly at random in G1.

4. If j = 0 set α = 1 else set α = j.
5. For i = α, . . . , �,

choose si uniformly at random in Zp and set Xi = g
ti,zi

(s−si)
1 and Zi =

g
sivi,zi
1 .

6. Set X̃ = (Ω, (Xi, Zi)�
i=1).

7. Query Phase II. Identical to Query Phase I.
8. return: A(X̃).

We will use the writing SemanticExpA(1n, 1�, z, j; s, sα, . . . , s�) to denote the tu-
ple X̃ computed by SemanticExpA(1n, 1�, z, j) using s, sα, . . . , s� as random val-
ues, where α = 1 for j = 0 and α = j for j > 0.

We will denote by pAj (z) the probability that experiment SemanticExpA(1n,

1�, z, j) returns 1. Notice that in SemanticExpA(1n, 1�, z, 0) adversary A receives
a valid encrypted attribute vector X̃ for attribute vector z and secret key SK
whereas in SemanticExpA(1n, 1�, z, �) adversary A receives X̃ consisting of one
random element of GT and 2� random elements of G1. Next we prove that,
under the Decision Linear assumption, for all attribute vectors z, the difference
|pA0 (z)− pA� (z)| is negligible. This implies the semantic security of the scheme.

Due to space limitation we omit the proof of the next lemmata. Similar proofs
can be found in [IP08].

Lemma 1. Assume BDDH holds. Then for any attribute string z and for any
adversary A,

|pA0 (z)− pA1 (z)|
is non-negligible.

Lemma 2. Assume DLinear holds. Then, for any attribute string z, for any
adversary A, and for 1 ≤ j ≤ �− 1

|pAj (z)− pAj+1(z)|
is negligible.

Combining Lemma 1 and Lemma 2 and by noticing that DLinear implies BDDH,
we have the following lemma.

Lemma 3. Assume DLinear. Then predicate encryption (MasterKeyGen, Enc,
KeyGen, Test) is semantically secure.

6 Proof of Key Confidentiality

In this section, we prove the construction of Section 4 is key secure, under As-
sumption Q. We use the following experiments for η ∈ {0, 1}.
KeyExpA(1n, 1�, z0, z1, η)
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1. Key-Generation Phase. The secret key SK is generated by the MasterKeyGen
procedure.

2. Query Phase I. A can make any number of key and encryption query.
A key query for pattern k is answered by returning KeyGen(SK, k).
An encryption query for attribute vector x is answered as follows.
If Match(x, z0) = Match(x, z1) = 0 then A receives Enc(SK, x). Otherwise,
A receives ⊥.

3. Challenge construction.
A receives KeyGen(SK, zη).

4. Query Phase II. Identical to Query Phase I.
5. Output Phase. A returns η′.

We denote by pA(z0, z1, η) the probability that KeyExpA(1n, 1�, z0, z1, η) re-
turns η. In the next lemma, we prove that, if z0 and z1 have no �-entry and
they differ in exactly m positions then the (�, m)-Q assumption implies that

|pA(z0, z1, 0)− pA(z0, z1, 1)|
is negligible for all probabilistic poly-time adversaries. A similar (omitted) proof
shows that, if z0 and z1 contain k �’s in the same positions and differ in exactly
m positions then the (�− k, m)-Q assumption implies that

|pA(z0, z1, 0)− pA(z0, z1, 1)|
is negligible.

Lemma 4. Assume Assumption (�, m)-Q holds. Then, for all probabilistic poly-
time adversaries A and for all vectors z0, z1 ∈ {0, 1}� which differ in exactly m
positions, we have that

|pA(z0, z1, 0)− pA(z0, z1, 1)|
is negligible.

Proof. Write z0 = 〈z0,1, . . . , z0,�〉 and z1 = 〈z1,1, . . . , z1,�〉 and assume, without
loss of generality, that z0 and z1 differ in exactly the first m positions and that
z0 = 0m · 0�−m and z1 = 1m · 0�−m.

We proceed by contradiction. We assume that the lemma does not hold for
some probabilistic poly-time adversary A, and prove that there exists a prob-
abilistic poly-time distinguisher B that has a non-negligible advantage for As-
sumption (�, m)-Q.

We now describe B. B takes as input a challenge ChOutput for Assumption
(�, m)-Q, simulates KeyExpA with parameters (1n, 1�, z0, z1, η) forA and usesA’s
output to obtain non-negligible advantage in the game of Assumption (�, m)-Q.

Initialization Phase. B starts by choosing random y ∈ Zp and by setting
Y = e(g1, g2)y. Define JH = {(j, h)|1 ≤ j ≤ m, 1 ≤ h ≤ m, j �= h or j =
h, m + 1 ≤ j ≤ d}. For (j, h) ∈ JH , B sets2

2 Hereafter, we assume that Aj,h’s (Bj,h’s) rows are indexed by 0 and 1.
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Gj,h = e(Aj,h[1, j], Cj,1).

Throughout the simulation we will consider secret key SK = (I, Y, y, SK1, . . . ,
SK�) implicitly defined by ChOutput, with SKi = (Ti,0, Ti,1, Vi,0, Vi,1, T̄i,0, T̄i,1,
V̄i,0, V̄i,1), for i = 1, . . . , �, where, for i = 1, . . . , � and b = 0, 1,

Ti,b = g
t̂i,b

1 , Vi,b = g
v̂i,b

1 ,
T̄i,b = Ci,b, T̄i,1 = Di,1.

This implies that, for i = 1, . . . , � and b = 0, 1,

ti,b = t̂i,b and vi,b = v̂i,b.

Since, for i = 1, . . . , �, and for b = 0, 1 the values t̂i,b, v̂i,b are random from Zp,
the key SK is uniformly distributed as the output of MasterKeyGen. We stress
that B only has indirect access to SK through ChOutput and in what follows we
show that this is sufficient for simulating KeyExp.

Answering encryption queries. To answer queries to the Enc oracle for at-
tribute vectors x = 〈x1, . . . , x�〉, we distinguish two cases.
Case 1. The vector x is such that there exists and index j ≥ m + 1 such
that xj = 1. B chooses s′, s′1, . . . , s

′
� at random in Zp, sets Ω = G−ys′

j,j and, for
i = 1, . . . , �, sets

Xi = (Aj,j[xi, i])s′−s′
i and Zi = (Bj,j[xi, i])s′

i .

B returns X̃ = (Ω, (Xi, Zi)�
i=1) as output of the query.

Case 2. The vector x is such that xj = 0 for m+1 ≤ j ≤ �. Since Match(x, z0) =
Match(x, z1), then there exist two indices j and h such that xj = 1 and xh = 0.
B chooses s′, s′1, . . . , s

′
� at random in Zp, sets Ω = G−ys′

j,h and, for i = 1, . . . , �,
sets

Xi = (Aj,h[xi, i])s′−s′
i and Zi = (Bj,h[xi, i])s′

i .

B returns X̃ = (Ω, (Xi, Zi)�
i=1) as output of the query.

We notice that, in both above described cases, B can perform the computation
as it has access to the needed values from ChOutput and from the initialization
phase. Let us now argue that the output returned by B has the same distribution
as in KeyExp. By setting, in Case 1, s = s′ŝ(j,j) and si = s′iŝ(j,j), for i = 1, . . . , �;
and, in Case 2, s = s′ŝ(j,h) and si = s′iŝ(j,h), for i = 1, . . . , �, we have that
Xi = T s−si

i,xi
and Zi = V si

i,xi
. Thus, X̃ = Enc(SK, x; s, s1, . . . , s�). Moreover, since

s and the si’s are random and independently chosen from Zp we can conclude
that X̃ has the same distribution as the answers obtained by A in KeyExpA.

Answering key queries. To answer to the queries to the KeyGen oracle for
attribute vector k = 〈k1, . . . , k�〉, B, for i ∈ Sk, chooses random ai ∈ Zp such
that their sum is y and sets

Ri = Cai

i,ki
and Wi = Dai

i,ki
.
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B returns K̃ = (Ri, Wi)i∈Sk
. Notice that, for i = 1, . . . , �, we have Ci,ki = T̄i,ki

and Di,ki = V̄i,ki . Therefore, we can conclude that K̃ = KeyGen(SK, k; (ai)i∈Sk
).

Since the ai are random in Zp under the constraint that their sum is y, we can
conclude that that K̃ has the same distribution as the answers obtained by A
in KeyExpA.

Challenge construction. We describe how B prepares the challenge for A.
B chooses, for i = m + 1, . . . , �, random b′i ∈ Zp under the constraint that their
sum is y and returns K̃ = ((R1, W1), . . . , (R�, W�)) computed as follows. For
i = 1, . . . , m, B sets

Ri = Ei and Wi = Fi;

while, for i = m + 1, . . . , �, B sets

Ri = Ei · Cb′i
i,0 and Wi = Fi ·Db′i

i,0.

Notice that, for i = m + 1, . . . , �, we have Ri = T̄ ai

i,0 and Wi = V̄ ai

i,0 where ai =
âi + b′i. In addition, for i = 1, . . . , m, we have Ri = T̄ ai

i,zηi
and Wi = V̄ ai

i,zηi
where

ai = âi. Therefore, we can conclude that K̃ = KeyGen(SK, zη, (a1, . . . , a�)).
Finally, we observe that the ai’s are random in Zp under the constraint that
their sum is y. Thus, K̃ is distributed as in KeyExpA(1n, 1�, z0, z1, η).

Finally, when A halts and returns η′, B halts and returns η′.

Since the simulation provided by B is perfect, by our assumption on A’s ad-
vantage, we can conclude that the advantage of B is also non-negligible thus
contradicting Assumption (d, m)-Q.

We thus have the following lemma.

Lemma 5. Under Assumptions (d, m)-Q predicate encryption scheme (Mas-
terKeyGen,Enc,KeyGen,Test) is key secure.

Combining Lemma 3 and Lemma 5 we have the main result of this paper.

Theorem 2. Under Assumptions (d, m)-Q and Decision Linear predicate en-
cryption scheme (MasterKeyGen,Enc,KeyGen,Test) is secure HVE.

7 Match Concealing

In this section, we show that, under a given assumption, the scheme presented
in Section 4 actually enjoys a stronger notion of semantic security in which
the adversary A is allowed to make queries for keys associated to any pattern
k provided only that Match(z0, k) = Match(z1, k). We call this notion match
concealing. In the notion presented in the main body of the paper, A is restricted
to queries for patterns k such that Match(z0, k) = Match(z1, k) = 0. This latter
notion is called match revealing (see [SBC+07]).

We now present the Double Decision Linear Assumption by means of the
following experiment DDLExpA.
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DDLExpA(1n)
01. Choose instance I = [p, G1, G2, GT , g1, g2, e] with security parameter 1n.
02. Choose u1, u2, u3, u4, u5, u ∈ Zp at random.
03. Choose η ∈ {0, 1} at random.
04. If η = 1, then
05. set Z = g

u2(u−u3)
1 and Z0 = gu1u3

1 ;
06. else, set Z = g

u5(u−u3)
1 and Z0 = gu4u3

1 .
07. Set U1 = gu1

1 , Û1 = gu1
2 , U2 = gu2

1 , U4 = gu4
1 , U5 = gu5

1 , U245 = gu2u4u5
2 .

08. Set U145 = gu1u4u5
2 , U125 = gu1u2u5

2 , U124 = gu1u2u4
2 , U = gu

1 .
09. Let η′ = A(I, U1, Û1, U2, U4, U5, U245, U145, U125, U124, U, Z, Z0).
10. If η = η′ then return 1 else return 0,

Assumption 4 (Double Decision Linear (DDLinear)). For all probabilis-
tic poly-time algorithms A, |Prob[DDLExpA(1n) = 1]− 1/2| is negligible in n.

Suppose that z0, z1 are two attribute vectors in {0, 1}� which differ only in
position j. Consider the following experiments.

SemanticExpA(1n, 1�, z0, z1, η)
1. Key-generation Phase. Compute SK = (I, y, SK1, · · · , SK�) by executing

MasterKeyGen(1n, 1�).
2. Query Phase I. Answer Enc queries for attribute vectors x by using secret key

SK. Answer KeyGen queries for pattern vectors k such that Match(z0, k) =
Match(z1, k) using secret key SK.

3. Challenge Construction.
1. Choose random s, s1, . . . , s� ∈ Zp and set Ω = e(g1, g2)ys.
2. For 1 ≤ i �= j ≤ �

set Xi = g
ti,z0,i

(s−si)
1 and Zi = g

sivi,z0,i

1 .

3. set Xj = g
tj,zη,i

(s−sj)
1 and Zj = g

sjvj,zη,j

1 .
4. Set X̃ = (Ω, (Xi, Zi)�

i=1).
5. Query Phase II. Identical to Query Phase I.
6. return A(X̃).

We will use the writing SemanticExp(1n, 1�, z0, z1, η; s, s1, . . . , s�) to denote the
tuple X̃ computed by SemanticExp(1n, 1�, z0, z1, η) using s, s1, . . . , s� as random
values. We will denote by pAη (z0, z1) the probability that experiment
SemanticExpA(1n, 1�, z0, z1, η) returns η. Notice that, since z0 and z1 differ only
in position j, then in SemanticExpA(1n, 1�, z0, z1, 0) adversaryA receives a valid
encrypted attribute vector X̃ for attribute vector z0 whereas in SemanticExpA(1n,
1�, z0, z1, 1) adversary A receives X̃ for attribute vector z1. Next we prove that,
under the Double Decision Linear assumption, for all attribute vectors z0, z1
which differ only in position j, the difference |pA0 (z0, z1)− p1�

A(z0, z1)| is neg-
ligible. This implies the match concealing semantic security of the scheme.
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Lemma 6. Assume DDLinear holds. Then, for any j, for any attribute strings
z0 and z1 which differ only in position j, and for any adversary A,

|pA0 (z0, z1)− pA1 (z0, z1)|

is negligible.

Proof. Suppose that there exist PPT adversary A and attribute vector z0, z1
for which |pA0 (z0, z1) − pA1 (z0, z1)| is non-negligible. We assume without loss
of generality that, for i �= j, we have z0,i = z1,i = 0 and that z0,j = 0 and
z1,j = 1. We next construct a PPT adversary B for the experiment DDLExp.
B takes in input [I, U1 = gu1

1 , Û1 = gu1
2 , U2 = gu2

1 , U4 = gu4
1 , U5 = gu5

1 , U245 =
gu2u4u5
2 , U145 = gu1u4u5

2 , U125 = gu1u2u5
2 , U124 = gu1u2u4

2 , U = gu
1 , Z, Z0], and

depending on whether Z = g
u2(u−u3)
1 and Z0 = gu1u3

1 or Z = g
u5(u−u3)
1 , Z0 =

gu4u3
1 , simulates experiment SemanticExp(1n, 1�, z0, z1, 0) or SemanticExp(1n, 1�,

z, 1) for A. We next describe algorithm B.

Initialization Phase. B simulates the key-generation phase by choosing ran-
dom y′ ∈ Zp and sets Y = e(Uy′

1 , g2). This implicitly sets y = u1y
′. B chooses

random t′i,0, v
′
i,0, t

′
i,1, v

′
i,1 ∈ Zp, for i �= j, and then computes values Ti,0, Ti,1, Vi,0,

and Vi,1 as follows.

Ti,0 = g
t′i,0
1 , Ti,1 = U

t′i,1
1 , Vi,0 = g

v′
i,0

1 , and Vi,1 = U
v′

i,1
1 .

These settings implicitly define ti,0 = t′i,0, ti,1 = u1 · t′i,1, vi,0 = v′i,0, and vj,1 =
u1 · v′i,1 which in turn define values T̄i,0, T̄i,1, V̄i,0, and V̄i,1. Then, B computes
Tj,0, Tj,1, Vj,0, and Vj,1 by setting

Tj,0 = U2, Tj,1 = U5, Vj,0 = U1, and Vj,1 = U4,

thus implicitly setting tj,0 = u2, tj,1 = u5, vj,0 = u1, and vj,1 = u4 which in turn
define values T̄j,0, T̄j,1, V̄j,0 and V̄j,1.

After this step key SK = (I, Y, y, SK1, . . . , SK�) with SKi = (Ti,0, Ti,1, Vi,0,
Vi,1, T̄i,0, T̄i,1, V̄i,0, V̄i,1) is implicitly defined even though B does not completely
know SK. Notice that SK has the same distribution as a key given in output by
MasterKeyGen.
Answering Queries. B answers A’s Enc queries for vector x by executing
procedure Enc. Notice that Enc only needs values Ti,b’s and Vi,b’s which are
known to B from the previous step. To describe how B answers A’s KeyGen
queries for vector k, we distinguish the following cases.

Case 1: kj �= �. In this case there exists index h ∈ Sk such that kh = 1, for
otherwise we would have Match(z0, k) �= Match(z1, k). Then, for i ∈ Sk, B
chooses random values a′

i ∈ Zp, and sets a′ =
∑

i∈Sk\{j,h} a′
i. For i ∈ Sk \ {j, h},

B computes Ri and Wi as follows. If ki = 0, then B sets

Ri = Û
a′

i/t′i,ki
1 and Wi = Û

a′
i/v′

i,ki
1
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else B sets
Ri = g

a′
i/t′i,ki

2 and Wi = g
a′

i/v′
i,ki

2 .

B then computes Rj and Wj as follows. If kj = 0, then B sets

Rj = U
a′

j

145 and Wj = U
a′

j

245,

else B sets
Rj = U

a′
j

124 and Wj = U
a′

j

125.

Finally, B sets

Rh = U
−a′

j/t′h,kh
245 g

(y′−a′)/t′h,kh
2 and Wh = U

−a′
j/v′

h,kh
245 g

(y′−a′)/v′
h,kh

2 .

B returns K̃ = (Ri, Wi)i∈Sk
.

We next show that, even though B does not have complete access to SK, K̃ has
the same distribution of the output of the KeyGen procedure on input SK and
k.
Set ai = u1a

′
i, for i ∈ Sk\{h, j}, aj = u1u2u4u5a

′
j , and ah = u1y

′−u1u2u4u5a
′
j−

u1a
′. Then, for i ∈ Sk \ {j, h} such that ki = 0 we have

Ri = Û
a′

i/t′i,ki
1 = g

u1a′
i/t′i,ki

2 = g
ai/t′i,ki
2 = T̄ ai

i,0.

Similarly, for i ∈ Sk \ {j, h} such that ki = 1,

Ri = g
a′

i/t′i,ki
2 = g

u1a′
i/u1t′i,ki

2 = g
ai/u1t′i,ki
2 = T̄ ai

i,1.

Similarly, we have in both cases that Wi = V̄ ai

i,ki
. Furthermore, if kj = 0 we have

Rj = U
a′

j

145 = g
u1u4u5a′

j

2 = g
u1u2u4u5a′

j/u2

2 = g
aj/u2
2 = T̄

aj

j,0.

Similarly, for kj = 1 and for Wj . Finally, we have

Rh = U
−a′

j/t′h,1
245 g

(y′−a′)/t′h,1
2

= g
(−u2u4u5a′

j+y′−a′)/t′h,1
2

= g
u1(−u2u4u5a′

j+y′−a′)/th,1

2

= g
ah/th,1
2

= T̄ ah

h,1.

To conclude notice that the ai’s are random under the constraint that their sum
is u1y

′ = y and thus the simulation is perfect.

Case 2: kj = �. In this case, for i ∈ Sk, B chooses random values a′
i ∈ Zp which

sum up to y′, and computes Ri and Wi as follows. If ki = 0, then B sets

Ri = Û
a′

i/t′i,ki
1 and Wi = Û

a′
i/v′

i,ki
1
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else B sets
Ri = g

a′
i/t′i,ki

2 and Wi = g
a′

i/v′
i,ki

2 .

If we set, for i ∈ Sk, ai = u1a
′
i, we have that if ki = 0 then

Ri = Û
a′

i/t′i,ki
1 = g

u1a′
i/t′i,ki

2 = g
ai/t′i,ki
2 = g

ai/ti,ki
2 = T̄ ai

i,0,

and if ki = 1 then

Ri = g
a′

i/t′i,ki
2 = g

u1a′
i/u1t′i,ki

2 = g
ai/ti,ki
2 = T̄ ai

i,1.

Similarly, we have Wi = V̄ ai

i,ki
. We thus conclude that K̃ =KeyGen(SK, k; (ai)i∈Sk

).
Moreover, the ai’s are independently and randomly chosen in Zp under the con-
straint that their sum is u1y

′ = y. Hence, also in this case, K̃ is distributed ac-
cording to KeyGen(SK, k).

Challenge construction. When B is asked to provide encrypted attribute
vector for z0 or z1, B constructs the tuple X̃ = (Ω, (Xi, Zi)�

i=1) in the following
way. B sets Ω = e(U, Û1)−y′

, thus implicitly setting s = u. For i �= j, B chooses
random si ∈ Zp and computes Xi and Zi as

Xi = U t′i,0g
−t′i,0si

1 and Zi = g
v′

i,0si

1 .

Notice that the above settings implies

Xi = U t′i,0g
−t′i,0si

1 = g
ut′i,0
1 T−si

i,0 = T s−si

i,0 and Zi = g
v′

i,0si

1 = V si

i,0.

Finally, Xj and Yj are computed as

Xj = Z and Zj = Z0.

Finally B returns A’s output.

Suppose that Z = g
u2(u−u3)
1 , Z0 = gu1u3

1 and sj = u3. Then, we have

Xj = Uu−u3
2 = T u−u3

j,0 = T s−s3
j,0 and Zj = Uu3

1 = V u3
j,0 = V s3

j,0

and thus X̃ = SemanticExp(1n, 1�, z0, z1, 0; s, s1, . . . , s�). Moreover s and the
si’s are random in Zp and thus we can conclude that X̃ is distributed as in
SemanticExp(1n, 1�, z0, z1, 1).

Suppose instead that Z = g
u5(u−u3)
1 and Z0 = gu4u3

1 , and sets sj = u3 as
before. Then we have

Xj = Uu−u3
5 = T u−u3

j,1 = T s−s3
j,1 and Zj = Uu3

4 = V u3
j,1 = V s3

j,1

and thus X̃ = SemanticExp(1n, 1�, z0, z1, 1; s, s1, . . . , s�). Since s and the si’s are
random in Zp, we can conclude that the challenge received by A is distributed as
in SemanticExp(1n, 1�, z, 1). Furthermore notice that setting s = u and y = u1y

′

then Ω has the correct distribution.
By the observations above, we can say that if Z = g

u2(u−u3)
1 and Z0 = gu1u3

1 ,
then A’s view is the same as in SemanticExp(1n, 1�, z0, z1, 0); whereas, if Z =
g

u5(u−u3)
1 and Z0 = gu4u3

1 , then A’s view is the same as in SemanticExp(1n, 1�, z0,
z1, 1). This contradicts the DDLinear assumption.
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Simple hybrid arguments can extend the lemma to arbitrary z0 and z1 (and not
just for vectors differing in one position).

Lemma 7. Assume DDLinear. Then predicate encryption (MasterKeyGen, Enc,
KeyGen, Test) is match concealing semantically secure.

8 Larger Alphabets

Our constructions have been presented for binary attribute vectors. The exten-
sion to larger alphabets is straightforward. Specifically, for an alphabet Σ of
size s we would have a master secret key consisting of an instance I and of one
element of GT , 2 · � · s elements of G1, and 2 · � · s elements of G2. The length of
the encrypted attribute vectors and of the keys are independent of the size of Σ
and only depend on �. We can make the length of the secret key SK independent
from the size of Σ by employing a pseudo-random function F. Specifically, we
randomly select a k-bit string R and set ti,σ = FR(i||σ) and vi,σ = FR(i||σ) for
i = 1, . . . , � and σ ∈ Σ.

Acknowledgements

The work of the authors has been supported in part by the European Commission
through the EU ICT program under Contract ICT-2007-216646 ECRYPT II and
through the FP6 program under contract FP6-1596 AEOLUS.

References

[BBG05] Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption
with constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005)

[BDOP04] Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key
encryption with keyword search. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg
(2004)

[Boy08] Boyen, X.: The uber-assumption family – a unified complexity framework
for bilinear groups. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008.
LNCS, vol. 5209, pp. 39–56. Springer, Heidelberg (2008)

[BW06] Boyen, X., Waters, B.: Anonymous hierarchical identity-based encryption
(Without random oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS,
vol. 4117, pp. 290–307. Springer, Heidelberg (2006)

[BW07] Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted
data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554.
Springer, Heidelberg (2007)

[GPSW06] Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-Based Encryption
for Fine-Grained Access Control for Encrypted Data. In: ACM CCS 2006,
Alexandria, VA, USA, pp. 89–98. ACM Press, New York (2006)



Private-Key Hidden Vector Encryption with Key Confidentiality 277

[IP08] Iovino, V., Persiano, G.: Hidden-vector encryption with groups of prime
order. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS,
vol. 5209, pp. 75–88. Springer, Heidelberg (2008)

[KSW08] Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunc-
tions, polynomial equations, and inner products. In: Smart, N.P. (ed.)
EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg
(2008)

[Nao03] Naor, M.: On cryptographic assumptions and challenges (invited talk). In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer,
Heidelberg (2003)

[SBC+07] Shi, E., Bethencourt, J., Chan, H., Song, D., Perrig, A.: Multi-Dimensional
Range Query over Encrypted Data. In: 2007 IEEE Symposium on Security
and Privacy, Oakland, CA. IEEE Computer Society Press, Oakland (2007)

[SSW09] Shen, E., Shi, E., Waters, B.: Predicate privacy in encryption systems.
In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457–473. Springer,
Heidelberg (2009)



Building Secure Networked Systems
with Code Attestation

(Invited Talk)

Adrian Perrig

CyLab / Carnegie Mellon University
Pittsburgh, USA
perrig@cmu.edu

Attestation is a promising approach for building secure systems. The recent de-
velopment of a Trusted Platform Module (TPM) by the Trusted Computing
Group (TCG) that is starting to be deployed in common laptop and desktop
platforms is fueling research in attestation mechanisms. In this talk, we will
present approaches on how to build secure systems with advanced TPM archi-
tectures. In particular, we have designed an approach for fine-grained attestation
that enables the design of efficient secure distributed systems, and other network
protocols. We demonstrate this approach by designing a secure routing protocol.
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Abstract. We propose a new kind of asymmetric mutual authentication
from passwords with stronger privacy against malicious servers, lest they
be tempted to engage in “cross-site user impersonation” to each other.

It enables a person to authenticate (with) arbitrarily many indepen-
dent servers, over adversarial channels, using a memorable and reusable
single short password. Beside the usual PAKE security guarantees, our
framework goes to lengths to secure the password against brute-force
cracking from privileged server information.

1 Introduction

Password-based authentication and key exchange is the process whereby a client
achieves mutual authentication with a remote server over an adversarial channel,
turning it into a virtual secure communication channel, on the basis of a short
password that should be easy to memorize but not guess.

Shared-Password Authentication. (Symmetric) password-authenticated
key exchange (PAKE) assumes that the password is shared between the client
and the server. The threat in this case is that a (passive or active) outside at-
tacker might try to impersonate either party to the other, or to eavesdrop on
the communication taking place within the secure channel. Though such attacks
cannot be prevented in an adversarial network, they can be made to require one
fresh online authentication attempt for each password being tested. This is a
solved problem: many PAKE protocols achieve this notion very efficiently.

Private-Password Authentication. Asymmetric password-authenticated
key exchange (APAKE), by contrast, allows the password to be known to the
client only. The server holds a long-term authentication token, related in some
way to the password, but from which it is (presumably) hard to recover the
password itself. In addition to the unavoidable online attack, a secondary threat
of concern here is that a compromise of the server database might give to the
attacker the means of impersonating its users to another server. Thwarting this
threat means that it is safe for a client to to reuse the same password with
multiple servers. This constitutes a very significant usabily improvement around
human limitations.
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Many elegant APAKE protocols have been proposed over the years, that de-
liver more or less optimally on all those requirements — provided that the pass-
word is not too weak, that is. Indeed, a general attack strategy for the evil insider
in the APAKE model is, once it has obtained the server’s database, to mount
an offline dictionary attack to recover the client password: a server can always
do that, simply by simulating the authentication protocol with itself posing as
the target user. Since such attack cannot be prevented, the user’s only recourse
is to make the attack slower, which requires: (1) that the protocol itself be made
intentionally slower; (2) and that the server implements it correctly. Both are
undesirable requirements.

On Password Strength. We remark in passing that the threshold for what
constitutes a “good” password is much higher in the insider threat model than
the outsider one, even though there are many more potential outsider attackers.
Online attacks, the only option for outsiders, are indeed inherently slow and
can be artificially and arbitrarily rate-limited; they are also easy to detect and
counter by locking up the account.

Thus, as long as some basic security requirements are met against outsider
attacks, one is much better served by devoting one’s energy to the prevention of
insider attacks.

Misaligned Incentives. Unfortunately for the end-user, servers generally have
little incentive to assist in this task, since (1) it would presumably make the
protocol more costly, and (2) it would be giving into the suggestion they, the
servers, cannot be trusted with the users’ passwords.

At a fundamental level, the entity most harmed in case of a password breach
would be the owner of the account, not the server providing the service. The
user thus has a greater incentive to do something about this, e.g., accept a
slower protocols if it can make the password safer. Alas, users generally have
no power to dictate such a change. The only available option is generally to
preprocess the password outside of the protocol before it starts. (Though better
than nothing, a problem of this approach is that the preprocessing function must
be non-parametric if one is not willing to accept a statefull client on which the
parameters can be stored).

Equally worrisome, the APAKE model does not explicitly take into account
the threat of cross-site user impersonation, where the server itself at site A turns
rogue and attempts to impersonate the client at some other site B (based on
the oft-fulfilled premise that the client picked identical or very similar passwords
on both sites). Since Server A itself is the threat in this attack scenario, one
cannot reasonably expect it willingly to fight against itself (unless an external
mechanism such as a reputation at stake comes into play). It could also be a
matter of denial; after all, website operators who are genuinely honest will most
likely consider themselves trustworthy — regardless of whether the user trusts
them or not.

Reinternalizing the Externality. In economic parlance, one would say that,
in the insider threat model, the incentives of the parties are mis-aligned; their
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wishes are at odds with each other. The root of the problem is that there an
economic externality: the client is the one who suffers if the server fails to protect
its database adequately.

(One of) our goal is thus to design a protocol whose “pricing structure” re-
internalizes this externality. But, first, we look at other simpler alternatives. (We
only consider alternatives that require no custom data storage, secret or public,
on the client side; with it, our problems would be solved.)

Client-side Preprocessing. The application of a complex transformation on
the password, e.g., hashing it many times before use, is the implicit customary
defense against offline server threats. Preprocessing can be very useful, if done
by the client, because it realigns the costs with the incentives. However, it also
creates new problems of its own, depending whether its complexity is fixed or
variable.

Fixed-cost preprocessing, e.g., with a hash function or password-based key
derivation function of fixed constant complexity, is easy to implement, but it
is a rather blunt instrument that can be too slow and inconvenient in some
situations, and not provide enough of a deterrent against attacks in others.

Parametric-cost preprocessing, i.e., based upon a user-selected complexity
parameter, poses another problem, which is that the parameter must be stored
somewhere, and available for the client to retrieve whenever needed. 1

The need to retrieve parameters is what makes parametric preprocessing prob-
lematic in practice, because it is generally not desirable to keep them in the clear,
and give them to anyone who asks. Indeed, the user’s choice of complexity pa-
rameter can itself provide very valuable information, e.g, to guide an attack
toward a promising target. And hiding the parameter behind an extra layer of
authentication is a circular non-solution that just moves the problem around.

A Host of Requirements. As we said, our goal is to realize a secure and
“economically sound” password protocol, i.e., with all the usual APAKE security
guarantees, plus a provision for the user to defend her password against dishon-
est servers the way she sees fit. Hence there must be a (secret, user-programmed,
user-computed) “computational bottleneck” somewhere that renders insider of-
fline attacks arbitrarily slower, but that does not penalize a honest server.

Intuitively, our “computational bottleneck”, or programmable costly function,
will have to satisfy the following requirements:

Client-owned bottleneck: As discussed, the only way to thwart offline insider
attacks is to make the protocol slower, somewhere. The client must own this
feature, since his or her interests are at stake.

Server-side independence: Not only should the server be oblivious to the
selection of the client-side bottleneck, it should also be removed from its cal-
culation, for obvious scalability reasons (whereas a human will authenticate

1 The password authentication system of [42] is based precisely on that idea. It relies
on a third-party central server for storing and recalling the cost parameter. Anyone
can request and obtain this data.
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to one site at a time, a machine may have to answer thousands such requests
per second).

Cacheable preprocessing: Because the hard function may, by user choice,
take a very large amount of time to compute, it would be nice if the result
could be cached in secure storage, for future uses with the same server, for as
long as the user deems it safe to keep it there.2 This requires: (1) the output
of the bottleneck function to be independent of any random ephemeral used
in the protocol execution; (2) the authentication process to be “hot-started”
at the point where the client has just finished evaluating the bottleneck
function.

Zero client storage: Conversely, no persistent storage whatsoever should be
required of the client. Especially, all secrets should fit in the user’s mind
(those being the password and nothing else). We specifically demand that
the user be allowed to forget the value of the cost parameter once it has been
programmed into the registration data sent to the server.

Secrecy of the parameter: In general, in security it is a good idea not to leak
any information that is not explicitly needed, unless one can prove that such
leak is benign. Leaking the cost parameter is certainly not benign, since it
might tell what the important targets are, and reveal other password usage
pattern of the user.

Secrecy of the parameter’s retrieval: Allowing an attacker to learn the
bottleneck parameter can be very damaging, but even more so to let it learn
whether the user has recovered it correctly. Depending on the leakage mech-
anism, e.g., if it comes from the protocol itself, then a dishonest server could
use it to mount an offline dictionary attack that entirely bypasses the hard
function. Neither party should learn whether a retrieval attempt succeeded,
before the protocol actually reaches the accepting state.

Contribution. To address all the issues we raised, we propose the notion of
Hardened Password-Authenticated Key Exchange (HPAKE), which integrates a
user-programmable hard function with the above properties into an authentica-
tion protocol with PAKE and APAKE security.

With it, users will thus be able to reuse the same passwords at various sites,
without having to trust that the server or the network is behaving nicely. The
benefits over existing solutions, such as APAKE are especially pronounced in the
case of weak passwords that would be easy to crack were they used in a regular
APAKE protocol.

The architecture of HPAKE is easy to explain generically; it is based on three
existing cryptographic primitives used as black boxes; all of them in fact have
been known since the dawn of cryptography, except for the preferred instantia-
tion of the user-programmable hard function which is recent.

2 It is indeed a good strategy for long-term passwords of last resort to pick them very
memorable, and thus very weak, and rely on a very high cost parameter to defeat
offline attacks.
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Setup Assumption. Before proceeding, we should mention that there are a
lot of ways to attack password-based systems, many of which do not depend on
the protocol used (key loggers and social engineering attacks being two common
examples). Our objective is to provide the highest level of security for multi-site
password authentication, under the common-sense assumption that neither the
human user nor the electronic device acting as the client on his or her behalf
(and on which the password will be seized), leaks any information to the outside
world other than as specified by the protocol.

On the other hand, we stress once again that we make none of the following
all-too-common assumptions: a public-key infrastructure (PKI), a preexisting
one-sided authentication mechanism (such as SSL with a root CA), a client-side
data storage device of any kind (whether private and/or authentic or neither),
or any tamper-proof client hardware that has somehow become tied to the user
(including physically unclonable functions or PUF).

2 Related Work

All password-based remote authentication and key exchange protocols can be
divided into two broad categories, depending on the nature of the secrets held
by the client and the server:

A. Shared-password authentication, where both parties share the same se-
cret. Since there is no password privacy there is no possibility of password
reuse. For completeness, we mention:

– cleartext passwords, even if transmitted over an encrypted link à la SSL;
– symmetric challenge-response authentication using nonces and hashes;
– various ad hoc password-only protocols using public-key techniques;
– most cryptographic password-authenticated key exchange PAKE proto-

cols (see below).
B. Password-private authentication, where the secrets are asymmetric.

The client proves possession of the password to a server that proves knowl-
edge of a derived secret. There are:
Stateful schemes, whose clients keep state or carry custom data beside
the password, e.g.:

– preregistered public keys, where the password unlocks a signing key;
– multi-factor systems, e.g., involving biometric or hardware credentials;
– client-side “password managers” unlocked by a meta-password;
– any authentication system that uses lists of one-time credentials.

Stateless schemes, where the only client custom data is a small secret
password. Such protocols truly enable “untethered” roaming for a human
user. The only examples are:

– augmented password-authenticated key exchange (APAKE, see below);
– our HPAKE protocol, which is better hardened against malicious servers.

AKE. Key exchange (or key agreement) protocols from high-entropy secrets
date back from the original Diffie-Hellman protocol [19]. Authenticated key
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exchange (AKE) further ensures that the two parties are mutually authenti-
cated, i.e., that they have the proper long-term secrets, and thus that no im-
personation is taking place. Since achieving AKE from a shared high-entropy
secret is all but trivial, mentions of AKE in the literature truly refer to “asym-
metic” authentication (AAKE), where each party has its own private secret and
has registered the corresponding public key with the other party. This notion
of AAKE has been progressively refined and perfected over the years; see for
example [20,3,7,15,32,30,37,17,31]. (We make the distinction between AKE and
AAKE to emphasize the fact that later on we may elect to use one or the other.)

PAKE. For low-entropy human-memorable secrets, the grandfather of PAKE
protocols is the Encrypted Key Exchange (EKE) scheme proposed by Bellovin
and Merritt [4], and which can arguably be traced further back to the notion
of Privacy Amplification [6]. In both cases, the goal was to take a short shared
secret, and boost it into a cryptographically strong one by a public discussion
process over an open channel [36]. The EKE protocol provided a particularly ef-
ficient way to do so, with (implicit) mutual authentication of the parties. It also
jump-started a fruitful line of research, which led to many results including new
definitions [3,1,25], increased efficiency [26,33], and/or provable security proper-
ties [11,2]. More recently, there has been a surge of interest in the construction
of PAKE protocols with better proofs of security that avoid the random-oracle
model, e.g., in favor of the common reference string model; we mention the first
reasonably efficient such protocol [29,13], and a simpler and faster variant [27].
Although by far most of the constructions are based on a Discrete Log assump-
tion such as Diffie-Hellman or variations thereof, there are protocols based on
the RSA assumption [34] or the Phi-hiding assumption [23].

APAKE. Although the EKE protocol of Bellovin and Merritt originally re-
quired both parties to know the password, it was soon followed by an asymmet-
ric version called “Augmented” EKE, by the same authors [5], who had realized
the impracticality of requiring users to remember independent passwords for
different environments. However, it is not until much later that this concern
has been addressed again, first in [25] under somewhat stringent operating con-
ditions, then more practically in [2] and in a sequence of papers [11,33] which
culminated in the so-called Omega-method [24] for “augmenting” any given sym-
metric PAKE protocol. Another way to deal with the threat of server corruption
and password exposure is to use multiple servers in a threshold scheme, which
is the solution adopted in [35], though this requires the user to believe that the
servers are not colluding.

KDFs. Many approaches have been proposed to address the problem of offline
dictionary attacks, whether for static storage, or in the context of an authenti-
cation protocol. Most of these proposals involve the use of password alternatives
which are supposedly harder to brute-force without human assistance; we men-
tion the interactive grid-like password system PassMaze [12], schemes based on
visual recognition [39], sequences of challenges and responses [40], and solutions
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to “captcha”-like problems that are far easier for humans to solve than for com-
puters [14]. In the context of traditional alphanumeric passwords, the method of
choice to thwart guessing attacks remains the deliberately slow key derivation
functions in the original Unix password log-on, made programmable in [41], and
perfected into the secretly user-programmable halting key derivation functions
of [9]. These (H)KDFs are somewhat related to the proofs of work used in other
contexts [21,28,18].

3 Architecture

The generic HPAKE protocol is shown on Figure 1. We now informally explain
what it does. In Section 4 we give more details on its components.

General Overview. In our system, the user and the server hold asymmetric
credentials to authenticate each other: for the user, it is her password, for the
server, it is a long-term authentication token obtained from the user when she
initially registered. The user selects the cost parameter associated with that
password/token pair during the initial registration with the server. The password
is concealed from the server, and so is the cost parameter (see below). Once the
registration is completed, the user can forget everything (e.g., the token given
to the server, and the cost parameter) except the password.

Later, when the user wishes to establish a secure session with the server, she
sends a (blind) commitment to the server. The server responds with some cipher-
text that depends on the commitment. The client uses some of that ciphertext
as input to the hard function, and performs the computation (which may take
a while). If she committed to the correct password, the hard function output
will let her decrypt the rest of the ciphertext into a copy of the long-term au-
thentication token held by the server. Based on this, the two parties can then
mutually authenticate each other and set up a secure channel.

User Programmability and Parameter Secrecy. There are good reasons
for letting the user select the complexity parameter associated with his password;
but it is equally important to prevent anyone from learning this value prema-
turely (i.e., not until they have successfully completed the authentication).

At the same time, such value must be stored somewhere, since we cannot ask
the user to remember it from memory (the only thing he should be asked to
remember being the password).

This requirement of a user-programmable computational bottleneck whose
cost parameter is hidden from everyone and yet implicitly stored, requires a
specific kind of unpredictable function: one that halts (after the prescribed cost
expenditure) only on the correct input — and that on all other inputs proceeds
indefinitely without ever giving back any hint that its input might have been
wrong. We refer to such functions as “(selectively) halting functions”.

Selectively Halting Functions. Such notion of halting function is closely re-
lated to that of Halting Key Derivation Function (HKDF) used in [9] to boost the
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Players & Client password Protocols Server key & storage data
Components ( ω ) ( HKDF, HCR, AAKE ) ( z, e, v )

I. Registration

0. Initial Registration

Choose password ω ∈ {0, 1}∗
Choose hardness factor τ ∈ N

(s, e) ← HCR.Create(ω)
(y, v) ← HKDF.Make(s, τ )

z ← AAKE.Init(y)
z, e, v

Client remembers ω (not τ ) � Server safeguards z, e, v

II. Authentication

1. Blind Conditional Retrieval

(c, d) ← HCR.Commit(ω) c
Flow 1: �

f ← HCR.Respond(e, c)
f, v

Flow 2: �
s ← HCR.Develop(d, f)

2. Client Token Re-derivation

s, v

�
Θ(τ ) work

y y = HKDF.Open(s, v)

3. Authenticated Key Exchange

Flows 3,...: � �
Client AAKE ( y ) �� Server AAKE ( z )

AKE or AAKE from
high-entropy secrets

Auth’d session key: k k

Fig. 1. The generic HPAKE protocol
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security of stand-alone password-based encryption. Indeed, conditionally halting
functions such as HKDFs have another surprising benefit (which was the main
point of [9]): they provide more security than any key derivation function KDF
whose computational cost is known, for the same cost and the same password.

(Precisely, it is shown in [9] that a game-theoretically optimal attacker who
has no idea about the programmed cost parameter must expend about 3.59×
more work than if it knew it, e.g., if it were facing a regular KDF with an explicit
parameter.)

Incorporating stand-alone Halting Key Derivation Functions (HKDF) into our
two-party key exchange protocol requires some precautions, because we want the
client to compute it, but the server to store most of its input (since the client
is memory-constrained, and the server mostly time-constrained). A fundamental
and unavoidable problem with HKDFs is that they can serve as a password test
predicate, since by definition they halt only on the correct input, which is a
testable behavior. The consequence is that we will need a way to transport that
data from server to client without exposing it to outside attackers, with the main
complication being that the client will not have been authenticated yet by the
time it needs the HKDF data.

Security by Obscurity? We emphatically stress that this notion of conceal-
ing a secretly programmed cost parameter from the adversary is not “secu-
rity by obscurity”, because all parties are deprived of the secret parameter,
including the user who may safely forget the choice once it has been made and
registered.

4 Components

We now give more details on the three cryptographic functions used in HPAKE.

Secure Registration. We note that the registration phase is special and not
truly part of the protocol. It requires a secure channel which can stem from a
face-to-face meeting or from a trusted PKI (which need not be used again in the
actual protocol execution). Registration exists so that a user and a server who
have never been in contact can start somewhere.

4.1 HKDF : Halting Key Derivation Functions

“Halting Key Derivation Functions” were originally defined in [9] to derive strong
keys from weak passwords in a rate-limiting manner, to be used in a stand-alone
password-based encryption system.

Here, we use HKDFs slightly differently: to map one secret random string (the
retrieved secret s) into another (the client-side token y), in a manner that can
be made as computationally expensive as the user wishes by selecting a suitable
value of the parameter τ .
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The primitive consists of two algorithms, HKDF.Make and HKDF.Open:

HKDF.Make takes as input a secret s ∈ S, a parameter τ ∈ N, and random
coins, and returns a random token y ∈ Y and its ciphertext v ∈ V .

HKDF.Open takes as input a secret s ∈ S and a ciphertext v ∈ V , and, either
returns a token y ∈ Y , or fails to halt in polynomial time.

We briefly recall the security requirements from [9]. For a random execution of
Make, it must be infeasible to find, in polynomial time in the security parameter,
a tuple (s′, s, τ, y) such that y = Open(s′, Make(s, τ)) and s �= s′. Furthermore,
finding a tuple (s, τ, y) such that y = Open(s, Make(s, τ)) must require Θ(τ)
units of time and memory, barring which no information about the correct y
must be obtained from v, s, τ .

For concreteness, we give an HKDF construction adapted from [9].

HKDF.Make : (s, τ) �→ (v, k)

r ← {0, 1}�

z ← Hash(s, r)
for i := 1, ..., τ or until user signal

zi ← z
repeat q times

j ← 1 + (z mod i)
z ← Hash(z, zj)

v ← (r, Hash(z1, z))
k ← Hash(z, r)

HKDF.Open : (s, v) �→ k

parse v as (r, h)
z ← Hash(s, r)
for i := 1, ...,∞

zi ← z
repeat q times

j ← 1 + (z mod i)
z ← Hash(z, zj)

if Hash(z1, z) = h break

k ← Hash(z, r)

The constant q is a design parameter that determines the ratio between the time
and space requirements. It is not critical and wide range of values are acceptable
for this parameter [9].

The primary purpose of using HKDFs is to let the user impose a computa-
tional cost without revealing it to the server or storing extra parameters locally.

The secondary benefit of HKDFs is that they are always at least as difficult to
crack as a regular KDF of equal computational cost, and usually more depending
on how wide or how far of the attacker’s distribution of τ is compared to the
user’s choice.

We refer the reader to [9] for a full analysis and explanation of these phenom-
ena. Suffice it to say that, in the best case, HKDFs provide a constant security
multiplier of 3.59 (or 1.84 bits) over comparable KDFs, and in the worst case the
multiplier is 1 (or 0 bit). In other words, HKDFs are never worse, and usually
better than regular KDFs of same cost. To reap those benefits, the user-selected
cost parameter must not be known exactly to the attacker, which is why it is
important to let the user choose it, perhaps haphazardly, on a case-by-case basis.

4.2 HCR: Hidden Credential Retrieval

“Hidden Credential Retrieval” [10], the next ingredient, is a very simple crypto-
graphic abstraction that allows a stateless client to retrieve some high-entropy
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secret s from a ciphertext e on remote storage server, based on a low-entropy
password ω, in the safest possible way over an insecure channel. A feature of
HCR is that it also protects the user data s and password ω against a curious
server: the server only has in its custody a blinded string or ciphertext e, from
which it is information-theoretically impossible to recognize either s or ω with-
out also knowing the other. Furthermore, no party is to learn from the HCR
protocol whether the user successfully retrieved the string s: in case of incorrect
password, a junk string is silently recovered instead.

HCR was first formalized and utilized in [10] as a stand-alone protocol, though
similar notions have been implicitly proposed much earlier, in different contexts.
Notably, the notion of blind signature, coupled to some mild additional condi-
tions (single-round signing and uniqueness of the unblinded signatures) already
fulfilled in Chaum’s original paper [16], subsumes that of HCR.

To define it, we consider three entities: a Preparer P that selects the retrieval
password ω and the random string s to be stored; a Querier Q that knows the
password ω and seeks to retrieve s; and a Responder R that acts as the storage
server, prepared by the preparer and responding to queries from the querier.
Both P and Q are meant to embody the same user, but we must separate the
two to account for the possibility that the user does not need to remember s once
it has finished to set up the server R. The protocol consists of four algorithms:

HCR.Create, used by the Preparer P , takes as input a reference password ω,
and ouputs a plaintext s and a ciphertext e. The plaintext and ciphertext
have uniform marginal distributions in some fixed sets S and Z respectively
(that is, both s and e are marginally, but not jointly, independent of ω).

HCR.Commit, used by the Querier Q, takes as input a query password ω, and
outputs a commitment c and some private information d. The commitment
is uniform in some set C and statistically independent of the query password.

HCR.Respond, used by the Responder R, takes as input a ciphertext e and a
commitment c, and outputs a response f in some set F .

HCR.Develop, used by the Querier Q, takes as input the private data d and the
response f , and outputs a plaintext s in the set S.

We refer to [10] for the formal security model of this primitive, and the vari-
ous ways to construct it, but note that HCR can be constructed immediately
from (very old) existing constructions such as unique blind signatures, includ-
ing Chaum’s [16] and Boldyreva’s [8]. The Ford-Kalisky server-assisted password
generation protocol from [22] is also an instantiation of HCR (though the use
that Ford and Kalisky proposed for their scheme was different).

For illustration purposes, we describe the Ford-Kalisky version which is a bit
simpler, but the Boldyreva signature would do just as well. Let G be a cyclic
group of prime order p, and let Hash : {0, 1}∗ → G be a hash function into G.

HCR.Create : ω �→ (e, s). On input a registration password ω ∈ {0, 1}∗, output
a storage-server string e ∈$ F×

p and a user plaintext s ← Hash(ω)e.
HCR.Commit : ω �→ (c, d). Given any candidate password ω ∈ {0, 1}∗, output

a private decommitment d ∈$ F×
p and a public commitment c ← Hash(ω)d.
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HCR.Respond : (e, c) �→ f . Given the ciphertext e ∈ F×
p and a commitment

c ∈ G, output the (deterministic) blind response f ← ce.
HCR.Develop : (d, f) �→ s. Given an ephemeral d ∈ F×

p and a response f ∈ G,
output the retrieved (but unverified) user plaintext s ← f1/d.

4.3 AKE: Authenticated Key Exchange

“(Asymmetric) Authenticated Key Exchange” is our third and final ingredient.
Although it may seem strange to require an (A)AKE to build an HPAKE, there
is no circularity given that AKE or AAKE from high-entropy keys is quite easy
and very well known. In our description, the AKE shared secret, or the AAKE
conjugate secrets, are the client-side token y and the server-side token z (such
that y = z for AKE or y �= z for AAKE, respectively).

Choosing an AAKE scheme for this stage instead of AKE (i.e., with asymmet-
ric secrets), will result in resistance to the compromise of the server database,
even for authentication to the same server. That is, even with knowledge of all
the server secrets including z, impersonating the client to the server itself will
still require finding the password (and thus cracking the HKDF). The AAKE
server token is initialized at registration time by the client; we generically wrote
z = AAKE.Init(y), but in practice y and z will be returned together by a key
generation algorithm. Efficient AAKE schemes include [15] or the very compact
MQV [32] on elliptic curves.

Alternatively, for increased server-side efficiency it is possible to use a sym-
metric AKE scheme instead. In this case, the client and server tokens are the
same: z = y, though they will still vary from one server to the next even under
the same password. We this choice, we forgo resistance to server database com-
promise against the same server, but we still get all the other security properties
of HPAKE, including password secrecy and resistance to cross-site imperson-
ation attacks. (Indeed, an attacker who learns y = z for a specific client-server
pair will be able to impersonate that client to that same server, but not to any
other server, and without learning the password.)

For concreteness, we give an explicit “folklore” symmetric AKE protocol built
purely from hash functions modeled as random oracles [38]. It is a very efficient
three-flow AKE protocol where the client and server send each other fresh ran-
dom nonces nc and ns, and verify their correct reception and create a session
key by hashing them with the secret key y = z they share.

AKE.1 : C → S
C picks a fresh random nonce cc and sends it to S:

AKE.2 : C ← S
Using S’s stored copy of y and the received values ĉc of cc, S sends a fresh
random nonce cs and the value as ← Hash(y, cc, cs) to C.

AKE.3 : C → S
Using C’s reconstructed copy ŷ of y and the received values ĉs and âs of cs

and as, C verifies the equality, âs
?= Hash(ŷ, cc, ĉs). If true, C accepts the

session and sends ac ← Hash(y, cs, as) to the server.
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AKE : session key
Using S’s stored copy of y and the received value âc of ac, S verifies that,
âc

?= Hash(y, cs, as). If true, C accepts the session. At this point, if both
parties have accepted, they share a mutually authenticated random session
key given by, k ← Hash(y, âc, as) = Hash(ŷ, ac, âs).

4.4 Consolidation of Flows

The above AKE protocol requires three flows (or half-rounds). If we add the two
flows for HCR, that makes five flows for the complete HPAKE protocol.

However, it is possible and easy to interleave and consolidate the HCR and
AKE messages so that HPAKE as a whole only requires three flows.

The idea is for the client eagerly to send Flow 1 of AKE along with the HCR
commitment c in Phase 1 of HPAKE. The server then sends Flow 2 of AKE along
with the HCR response f back to the client. The client performs the HKDF hard-
function calculation in Phase 2 of HPAKE, and, once the token y is decrypted,
sends the final Flow 3 of AKE, thereby completing Phase 3 of HPAKE in one
additional flow instead of three.

It is easy to see that the first two flows of AKE are independent of the HCR
phases on the protocol. In the random-oracle model, it is even acceptable to
reuse the HCR commitment c directly as the AKE client nonce cc, thereby saving
a little extra bit of bandwidth.

The only drawback of this flow consolidation is that the server needs to pre-
serve the AKE state across Phases 1–3 of the full protocol, while Phase 2 may by
design take a long time for the client to complete (unless the client is caching a
copy of y, which is explicitly allowed). By contrast, in the plain unconsolidated
protocol, the server can remain stateless until Phase 3.

5 Security

Theorem 1. Let χ be a security parameter, such that all hash functions have
at least � ≥ 2χ bits of output in the random-oracle model. Let |D| * 2χ be the
size of the password dictionary. Assume that the HCR and AKE subprotocols
are χ-bit secure in G, that is, they yield to PPT computational adversaries with
time-advantage product TA ≥ 2χ only. Suppose that |D| * 2χ, i.e., the password
dictionary size is the weak link. Then, in the random-oracle model, the advantage
Adv of an polynomial-time adversary A at distinguishing from random a secure
channel established by uncorrupted parties (either by causing one party to accept
a new session with A, or by stealing an already established session), is, ∀k ∈ N:

– For an outsider A sending a total of q messages to the user and any number
of honest servers:

AdvA ≤ q

|D| + o(1/χk) .

– For an insider A sending a total of q messages to the user and any number
of honest servers, and making t queries to the random oracle used in the
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function HKDF.Open (expressed in the same unit as the hardness parameter
τ used in HKDF.Make when registering with the insider):

AdvA ≤ 2t

|D| τ +
q

|D| + o(1/χk) in the general case ;

AdvA ≤ 2t

3.59 |D| τ +
q

|D| + o(1/χk) in cases where :

• the amount of memory available to A is ≤ o(|D| τ ) (which is always true
in practice by a wide margin); and,

• either, the parameter τ is drawn by the user from a distribution of density
∼ τ−1−ε, or, the attacker A believes that it is not in its interest to try to
guess τ (which is generally the case by a game-theoretic argument, see
[9] for details).

5.1 Interpretation

Theorem 1 expresses two very different bounds, depending on whether the user
and server(s) are together facing a third-party attacker, or whether the user is
facing a malicious server.

Against Outsiders. The advantage of outsiders, q
|D| + o(1/χk), is the usual

bound for PAKE and APAKE protocols. It corresponds (up to a negligible term)
to the unavoidable online attack where the outsider tries to impersonate the user
to the server (or vice versa) by trying out one password candidate at a time.

Since q is the number of online queries, and thus necessarily quite small, the
security margin against outsiders will remain acceptable even for very small dic-
tionaries D, and thus very weak passwords. The banking industry, for example,
is content to protect user accounts with four-digit PINs, thus with just 13 bits
of entropy, by locking the account after three incorrect attempts.

Against Insiders. The advantage of insiders (i.e., corrupt servers) is the same
as outsiders plus an additional term, 2 t

B |D|τ , that accounts for the possibility that
insiders have to mount an offline attack against the password. Here, τ if the user-
selected complexity parameter, and B is a small constant (B = 1 or B = 3.59
depending on whether the “halting principle” is not, or is, applicable [9], i.e.,
whether τ is adequately uncertain to the attacker). Together, the dictionary size
|D| and the user-programmable complexity parameter τ constitute the main
actionable defenses at the user’s disposal to thwart an insider offline attack.
(Having B > 1 is merely a useful side-effect of enforcing the secrecy of τ , though
the latter is already desirable in itself, as discussed previously.)

The offline attack, though it requires insider knowledge to be feasible, is far
more dangerous than the online attack already available to outsiders. It is dan-
gerous because, in an offline attack, the numerator t is out of the control of the
user (or any honest server). It depends only on the adversary’s resources and
can therefore be quite large; in particular, t+ q.
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It is useful to take a very concrete example to illustrate this point. Suppose
that the user, Alice, has a single password, which she uses everywhere, and
changes every four months (107 seconds). Suppose also that one of the web sites
where she has an account is a sham, and wishes to dedicate an enterprise-class
computer farm (105 CPUs) to the single task of attempting to recover Alice’s
password. The attacker thus has a window of 1012 ≈ 240 CPU-seconds at his
disposal before the password becomes useless. For comparison, Alice’s password
will succumb with probability p = 1

2 , in each of the following five scenarios (|D|
= dictionary size; τ = user-selected hash complexity):

A. |D| = 261 (61 bits) and fixed τ = 2−21 (0.5μs):
i.e., a strong password (13 random letters) with a computer-instantaneous
hash (e.g., SHA1);

B. |D| = 251 (51 bits) and fixed τ = 2−11 (500μs):
i.e., a strong password (11 random letters) with a number-theoretic hash
(e.g., on curves);

C. |D| = 238 (38 bits) and public parameter τ = 22 (4s):
i.e., an ok password (8 random letters) with a human-noticeable hash (such
as a 4-sec KDF);

D. |D| = 238 (38 bits) and secret user-selected τ = 20 (1s):
i.e., same password (8 random letters) with a human-instantaneous hash
(here, 1-sec HKDF);

E. |D| = 224 (24 bits) and secret user-selected τ = 214 (5h):
i.e., a very memorable but very weak “backup” password (5 random letters)
protected by a very expensive hash (5-hours HKDF, taking, e.g., 17 minutes
to compute on a 16-core client).

(In all scenarios, the password lengths are for lowercase-only random letters, i.e.,
a 26-symbol alphabet.)

Case A corresponds to the practice of simply hashing the password (possibly
with some site-dependent non-secret information) before use, in a regular PAKE
protocol.

Case B corresponds to most AEKE and APAKE protocol implementations,
where the KDF is an inherent part of the protocol, and subject to number-
theoretical constraints (such as compatibility with efficiently verifiable zero-
knowledge proofs of knowledge of the password).

Cases C and D correspond to our HPAKE protocol with everyday settings,
where the difference between the two is that in the former the hardness factor τ
is a known parameter of the system, while in the latter it is chosen by the user
in a somewhat unpredictable way (to the adversary).

Case E corresponds to the use of HPAKE with a last-resort backup password
that ought never to be used, but must be very easy to remember in case it is
ever needed, for instance because the user forgot her regular password. Because
highly memorable passwords are also easy to guess, a very large value of τ is
desirable to maintain a sufficient margin of security against insider attacks. (How
large τ should be, depends on the actual strenght of the backup password, which
is known to the user only. This case illustrates why τ must be kept secret.)
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Those examples clearly show the superiority of HPAKE over previous PAKE
and APAKE protocols in that it allows much weaker passwords to be safely
reused, both in an everyday situation (e.g., comparing Case D vs. Case B), as
well as in a last-resort backup situation (for which none of the existing protocols
offers a viable solution).

6 User Interface

Provided that text passwords are used, the client-side user interface (UI) does
not require any special hardware: a keypad is all that is required, with perhaps
a one-bit display to indicate that the hard function computation is in progress.
There are however two important software requirements:

6.1 Trusted Local Password Entry

All the precautions we took to protect the user password and ensure its reusabil-
ity are moot if an attacker ever manages to bypass the HPAKE protocol, e.g.,
by tricking the user into entering the password directly into web form.

Software Solutions. A software solution, specific to internet transactions,
would require native HPAKE support from the browser, and ideally from the op-
erating system, so that password-entry prompts can be made distinctive enough
to be easy to recognize as genuine by the user. E.g., some browsers already at-
tempt to make HTTP-Auth password dialog boxes look unlike regular browser
windows; and the Windows operating system requires a Ctrl-Alt-Del attention
sequence to escape any running application before a login password can be
keyed.

Hardware Solutions : Commodity vs. Custom. The safest way to reduce
the possibility of password exposure, is to seize it not on a general-purpose
computer, but on a dedicated hardware device in the possession of the user.

“Pocket password calculators” have been used for decades by the banking
industry for signing high-value electronic transactions, and more recently for
generating one-time passwords to gain access to corporate VPNs. Such devices
have a small keypad for entering a user PIN, but almost always also contain a
custom user-specific private key, which makes them difficult to replace and also
sensitive to theft and hardware key recovery attacks.

It is easy to imagine similar keypad-equipped hardware for securely entering
one’s HPAKE password and for performing all related HPAKE computations,
possibly interfacing with a host computer connected to the internet. This would
ensure that the password is never exposed, even in case of full compromise of the
host computer. A key advantage over earlier “password calculators” is that an
HPAKE device would be completely commoditized and contain no user-specific
information. User would thus not need to worry about losing the, or having them
stolen.
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6.2 Real-Time User-Driven Cancellation

Because the HKDF component in HPAKE will not halt spontaneously on all
inputs, the client-side UI must include an special button to allow the user to
take corrective actions (and optionally, during the registration phase, to make it
easier for the user to select the value of τ).

During registration, a “finish” button may serve as a simple and intuitive de-
vice for selecting the hardness parameter τ : the user would simply let HKDF.Make
run for a while and then click on the finish button, which will cause the system
to set τ to the current value of the HKDF loop iterator. The user need not be
shown the value of τ , since she has no use for it (except perhaps a vague rec-
ollection of what kind of delay she chose, if she suspects she might forget her
password).

During authentication, a “cancel” button must be available to let the user
stop the process. Since the HKDF.Open function is designed to run forever when
called on the wrong inputs, it is up to the user to stop it manually when she
realizes that she entered a wrong password. Having a cancel button is always a
good idea, since delays can occur for many reasons (e.g., network congestion).

7 Conclusion

The sad reality is that people are not using passwords the way protocol design-
ers and security experts wish they were. It is therefore natural to ask for an
authentication protocol that remains as secure as possible under such stringent
usage conditions.

Ideally, people should be able to conduct all their online business with a single
easy-to-remember password, no matter how numerous or how untrustworthy the
web sites they wish to authenticate with.

Just as importantly, the ideal protocol should need zero client-side long-term
storage (other than the password), to lessen the security impact in case of loss or
theft; this is especially important when traveling. This make a very compelling
case for “reusable-password stateless roaming authentication”, especially since
by far the safest place to keep a password is in one’s memory, where there is not
much room for more.

Existing password authentication protocols are generally not safe when related
passwords are used in multiple contexts. Protocols of the APAKE family come
very close, but are still vulnerable to offline dictionary attacks by insiders, unless
the password is strong, because they take no measure to limit the rate of such
attacks.

Various client-side stop-gap measures have also been proposed, but they in-
variably have steep additional requirements: for example, browser-based “pass-
word managers” require long-term storage on the client side; whereas “anti-
phishing” add-ons (intended to save you from mistakenly sending your pass-
word to an evildoer on a blacklist) make the tacit assumption that the DNS
system and the PKI authorities used in SSL can be trusted. PKI-based solutions
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generally require the storage of at least one authentic certificate on the client,
too.

Our HPAKE approach is certainly not perfect. However, it has a crucial com-
bination of benefits over the existing alternatives: (1) client and servers have
asymmetric secrets; (2) authentication is mutual; (3) no need for any client-side
storage; (4) the password is a user secret and can be reused with other servers;
(5) outsider attacks can do no better than online password guessing; (6) servers
with access to the user registration data can always brute-force the user’s pass-
word offline, but the presence of a hard function will greatly slow down such
attacks; (7) the hard function is user-programmed, giving the user full control
over it; (8) the hard function is user-computed, ensuring that it will be applied
effectively; (9) the server-side protocol is independent of the hard function, it is
lightweight and scales very well.

Our HPAKE protocol is but one example of a possible construction; there are
certainly others. Ours has the advantage of being very simple and efficient, but
relies heavily (and, in fact, almost exclusively) on the random-oracle model for
its security. We leave it as an open question to find other realizations that avoid
random oracles but are still reasonably efficient.

We conclude with an obvious but important word of caution: the reusability of
weak passwords that HPAKE enables only applies within the confines of HPAKE
(and HKDF [9], for local encryption applications). Reusing an HPAKE password
on an unsecured web form will void all security guarantees that our cryptography
sought to offer.
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Abstract. Cross-realm client-to-client password-authenticated key
agreement (C2C-PAKA) protocols provide an authenticated key exchange
between two clients of different realms, who only share their passwords
with their own servers. Recently, several such cross-realm C2C-PAKA pro-
tocols have been suggested in the private-key (symmetric) setting, but all
of these protocols are found to be vulnerable to password-compromise
impersonation attacks. In this paper, we propose our innovative C2C-
PAKA-SC protocol in which smart cards are first utilized in the cross-
realm setting so that it can resist all types of common attacks including
password-compromise impersonation attacks and provide improved effi-
ciency. Moveover, we modify the original formal security model to adapt
our proposed protocol and present a corresponding security proof.

Keywords: Password-authenticated key agreement, Cross-realm, Client-
to-client, Smart cards, Provable security.

1 Introduction

Password-based authentication is a popular method for user authentication in
the client-server model because of its easy-to-memorize property. Password-
authenticated key agreement (PAKA) protocols are usually designed to provide
secure authentication and key exchange between two entities who have a pre-
shared password. Most password-authenticated key agreement protocols [12-14]
in the literature are based on the single-server model which assumes each client
has a secret password shared with a common server. The main advantage of this
setting is that it provides two clients in the same realm with the capability of
generating a common session key while only requiring them to remember their
distinct passwords.

However, with dynamic diversity and development of communication environ-
ments such as mobile networks, home networking, ubiquitous networking and etc.,
it is considered as one of main concerns to establish a secure channel between
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clients registered in different servers. Such protocols are more popularly known as
cross-realm C2C-PAKA protocols. In fact, each realm would have its own trusted
server to manage clients’ passwords and provide service for them. In this paper,
we mainly focus on authentication settings involving cross-realm. For ease of no-
tation, we will simply call these C2C-PAKAs for the rest of this paper.

1.1 Related Works and Our Contribution

Related works include [1-10]. In 2002, Byun et al. [1] first proposed a cross-realm
C2C-PAKA protocol. Unfortunately, the protocol was found to be flawed. Chen
[2] first pointed out that one malicious server in the cross-realm setting could
mount a dictionary attack to obtain the password of a client who belongs to the
other realm. Similarly, Wang et al. [3] showed dictionary attacks on the same
protocol. Subsequently, Kim et al. [4] pointed out that the original protocol was
susceptible to the Denning-Sacco attack and proposed an improved C2C-PAKA
protocol. However, Phan et al. [5] suggested two unknown key-share attacks on
the improved C2C-PAKA protocol [4]. Yoon et al. [6] also pointed out that Kim
et al.’s protocol [4] was susceptible to a one-way man-in-the-middle attack and
a password-compromise impersonation attack, and presented an enhancement.
Nevertheless, all these protocols [1-6] were designed with heuristic security anal-
ysis. The first provably secure cross-realm C2C-PAKA protocols were indepen-
dently proposed by Byun et al. [7] and Yin et al. [8], respectively. But quickly,
Phan et al. [9] found that both protocols cannot withstand undetectable on-line
dictionary attacks by any adversary. Recently, Feng et al. [10] showed that Byun
et al.’s protocol [7] was insecure against the password-compromise imperson-
ation attack and furthermore pointed out that it appeared infeasible to make
any countermeasures against password-compromise impersonation attacks in the
private-key setting. Thus they proposed a new provably secure protocol based
on the public-key (asymmetric) setting which could avoid such attacks.

Indeed, up until now, there is no C2C-PAKA protocol in the private-key set-
ting which is secure against password-compromise impersonation attacks. On the
other hand, low-efficiency is the most serious disadvantage in the public-key set-
ting. In this paper, aiming at resistance against all types of common attacks includ-
ing password-compromise impersonation attacks and not reducing the efficiency,
we initiate a challenge on contriving one satisfying protocol in the private-key set-
ting. We first present a smart card based cross-realm C2C-PAKA protocol, named
C2C-PAKA-SC. Compared with Byun et al.’s protocol [7] and Feng et al.’s proto-
col [10], our protocol reduces the computation and communication cost. We also
define a new and clear security model for C2C-PAKA-SC protocols, which com-
bines all the corresponding security properties. In addition, we prove our C2C-
PAKA-SC protocol is secure under the well-known computational assumptions.

1.2 Organization

The remainder of this paper is organized as follows. In Section 2, we discuss
the requirements of a secure C2C-PAKA-SC protocol. Our new cross-realm
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C2C-PAKA-SC protocol is proposed in Section 3, along with its efficiency anal-
ysis. In Section 4, we introduce the formal model for C2C-PAKA-SC protocols
and provide the detailed security proof for our proposed protocol. Finally, we
conclude in Section 5.

2 Properties of C2C-PAKA-SC Protocol

Our C2C-PAKA-SC protocol is normally built as follows. In the registration
phase, each server issues a unique smart card to its each client through an au-
thenticated and secure environment where all parties are assumed to be honest
and perform exactly according to the protocol specification. If a client registers
with a server successfully, we say that the client is in the realm of the server.
Once the registration phase is completed, two clients of different realms could
authenticate each other and generate an agreed-upon session key with the help
of smart cards and two servers through the login-and-authentication phase. In
this phase, the communication channel is no longer considered to be secure. That
is, an adversary A has total controlled over the communication channel and he
may intercept, insert, delete, or modify any message in the channel. In addi-
tion, referring to the unique property of two-factor authentication mechanisms
including passwords and smart cards which was discussed in [15], we suppose A
may either steal a client’s smart card and then extracts the information from it,
or obtain the client’s password, but not both of them. In other words, a client’s
password and smart card cannot be both compromised.

It is desirable for normal C2C-PAKA-SC protocols to possess the following
security attributes:

(1) Forward secrecy. If passwords of the entities or long-term private keys of
the smart cards are compromised, the secrecy of previous session keys is not
affected.

(2) Password-compromise impersonation resilience. Compromising the password
of client Alice in one realm should not enable an outside adversary to share
the session key with Alice by masquerading as any other clients belonging
to another realm.

(3) Unknown key-share resilience. Client Alice should not be coerced into shar-
ing a key with client Carol when in fact she thinks that she is sharing the
key with client Bob.

(4) Dictionary attacks resilience. The password of any client in one realm should
be strongly protected against dictionary attacks of other entities (clients
or/and servers) belonging to another realm, even if his smart card is stolen.

3 Our C2C-PAKA-SC Protocol

As stated above, all existing C2C-PAKA protocols in the private-key setting are
vulnerable to password-compromise impersonation attacks. The weaknesses re-
sult from the fact that client Alice in one realm could not distinguish between
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interactions with the other honest client in another realm or with an adversary, if
the password of Alice is compromised. Unfortunately, in the private-key setting,
it appears infeasible to make any countermeasures against password-compromise
impersonation attacks, or else off-line dictionary attacks would be exploited.
However, such attacks may be avoided in the smart card setting in which addi-
tional security assumptions are required. In this section, we present a new smart
card based C2C-PAKA protocol.

3.1 Protocol Description

There are four participants involved in our C2C-PAKA-SC protocol: Clients =
{Alice; Bob}, and Servers = {SA; SB}, where Alice is a client in the realm of
server SA, and Bob is a client in the realm of server SB. We assume that the
key K is pre-distributed between SA and SB. To initialize, the system selects
large prime number p and q such that p = 2q + 1. The detailed steps of the
C2C-PAKA-SC protocol are described in the following subsections.

3.1.1 Registration Phase
In this phase (outlined in Fig. 1), client Alice registers with her server SA and
finally obtains a smart card SCA through a secure channel. Then the protocol
proceeds in the following steps:

(1) Client Alice chooses her identity IDA and password PWA. Alice then sub-
mits the registration request rA = {IDA, PWA} to her server SA through a
secure channel.

Client Alice Server SA

Select IDA, PWA

rA = {IDA, PWA}−−−−−−−−−−−−−−−→
RA = h(IDA)x + h(PWA) mod p

SCA : {IDA, RA, h1(·), p}
SCA←−−−−−−−−−−−−−−

Client Bob Server SB

select IDB, PWB

rB = {IDB, PWB}
−−−−−−−−−−−−−−−→

RB = h(IDB)y + h(PWB) mod p

SCB : {IDB , RB , h2(·), p}
SCB←−−−−−−−−−−−−−−

Fig. 1. Registration Phase
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(2) Server SA chooses its secret key x ∈ Z∗
q and an appropriate one-way hash

function h1(·) : {0, 1}∗ → Z∗
p . Upon receiving rA, SA computes RA =

h1(IDA)x + h(PWA) mod p.
(3) SA stores {IDA, RA, h1(·), p} into a smart card SCA and issues it to Alice.

In addition, SA discards all of the information of Alice, only hold its own
secret key x.

Similarly, client Bob interacts with his server SB as above steps. Finally, Bob
obtains his smart card SCB which contains {IDB, RB, h2(·), p} and SB only
keeps the value of its secret key y.

3.1.2 Login-And-Authentication Phase
In this phase (outlined in Fig. 2), two clients of different realms perform the
following steps for mutual authentication with their respective servers’ help.
Moreover, a session key sk is agreed by two clients. Then the protocol proceeds
in the following steps:

(1) Client Alice attaches her smart card SCA to a device reader and inputs her
identity IDA and her password PWA. Then, the device chooses a random α ∈
Z∗

q and computes R′
A = (RA − h1(PWA))α mod p, WA = h1(IDA)α mod p,

CA=h1(T1‖R′
A‖WA‖IDA), where T1 is a time stamp. Finally, Alice sends

the message {IDA, IDB, T1, CA, WA} to SA.
(2) Upon receiving the message from Alice, SA checks whether IDA and T1

are both valid. If so, SA computes R′′
A = WA

x mod p, and checks whether
CA equals h1(T1‖R′′

A‖WA‖IDA). If so, SA believes Alice is authenticated.
SA then computes KA = h1(R′′

A ⊕ T2), where T2 is a time stamp. SA also
randomly chooses k ∈ Z∗

q and computes VA = [k, IDA, IDB]KA
, T icketB =

[k, IDA, IDB, L]K , where K is the key between SA and SB, L is T icketB’s
lifetime, and [X ]K means the encryption of a message X using a symmetric
key K. Finally, SA sends {VA, T icketB, T2, L} to Alice.

(3) Upon receiving the message from SA, Alice checks whether the time stamp T2
is valid. If so, she computes K ′

A = h1(R′
A⊕T2), uses it to decrypt VA, and ob-

tains IDA, IDB and k. She also checks whether IDA and IDB are both cor-
rect. Then, Alice randomly chooses a ∈ Z∗

q , computes Ea = ga‖MACk(ga),
and forwards {IDA, Ea, T icketB} to client Bob.

(4) Upon receiving the message from Alice, Bob attaches his smart card SCB

to a device reader and inputs his IDB and PWB. Then, the device chooses
a random β ∈ Z∗

q and computes R′
B = (RB − h2(PWB))β mod p, WB =

h2(IDB)β mod p, and CB=h2(T3‖R′
B‖WB‖IDB), where T3 is the current

time. Finally, Bob sends the message {T icketB, T3, CB, WB} to SB.
(5) Upon receiving the message from Bob, SB first checks whether T3 is valid. If

so, it decrypts T icketB by using the value K to obtain k, L, IDA and IDB.
Then SB checks whether L, IDA and IDB are valid. If so, SB computes R′′

B =
WB

y mod p and checks whether the receivedCB equals h2(T3‖R′′
B‖WB‖IDB).

If so, SB believes Bob is authenticated. Then SB computes KB = h2(R′′
B⊕T4),

VB = [k, IDA, IDB]KB
, where T4 is the current time. Finally, SB sends {VB,

T4} to Bob.
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SA(x, K) Alice(SCA, PWA) Bob(SCB , PWB) SB(y, K)
Input IDA, PWA

Choose α ∈ Z∗
q

R′
A = (RA − h1(PWA))α mod p

WA = h1(IDA)α mod p

CA = h1(T1‖R′
A‖WA‖IDA)

{IDA,IDB ,T1,CA,WA}←−−−−−−−−−−−−−−−
Verify T1, IDA

R′′
A = WA

x mod p

CA
?= h1(T1‖R′′

A‖WA‖IDA)

Choose k ∈ Z∗
q

KA = h1(R′′
A ⊕ T2)

VA = [k, IDA, IDB ]KA

TicketB = [k, IDA, IDB , L]K
{VA,T icketB ,T2,L}−−−−−−−−−−−−−→

Verify T2

K′
A = h1(R′

A ⊕ T2)

Decrypt VA

Verify IDA, IDB

Choose a ∈ Z∗
q

Ea = ga‖MACk(ga)
{IDA,Ea,T icketB}−−−−−−−−−−−−−→

Input IDB , PWB

Choose β ∈ Z∗
q

R′
B = (RB − h2(PWB))β mod p

WB = h2(IDB)β mod p

CB=h2(T3‖R′
B‖WB‖IDB)
{TicketB ,T3,CB ,WB}−−−−−−−−−−−−−−→

Verify T3

Decrypt TicketB

R′′
B = WB

y mod p

CB
?= h2(T3‖R′′

B‖WB‖IDB)

KB = h2(R′′
B ⊕ T4)

VB = [k, IDA, IDB ]KB
{VB ,T4}←−−−−−−−−−−−

Check T4

K′
B = h2(R′

B ⊕ T4)

Decrypt VB

Check IDA, IDB

Choose b ∈ Z∗
q

Eb = gb‖MACk(gb)
{Eb}←−−−−−−−−−−

sk=h3(IDA‖IDB‖ga‖gb‖gab)

← −−−−−−−− →

Fig. 2. Login-And-Authentication Phase



An Efficient and Provably Secure Cross-Realm C2C-PAKA Protocol 305

(6) Upon receiving the message from SB, Bob first checks whether T4 is valid.
If so, Bob computes K ′

B = h2(R′
B ⊕ T4) and decrypts VB to obtain IDA,

IDB and k. He then checks whether IDA and IDB are both correct. If so,
Bob randomly chooses b ∈ Z∗

q , computes Eb = gb‖MACk(gb) and sends Eb

to Alice.
(7) Upon receiving Eb, Alice checks the integrity of gb. Finally, both Alice and

Bob can compute the agreed session key sk = h3(IDA‖IDB‖ga‖gb‖gab).

3.2 Performance Analysis of Our Protocol

In this subsection, we evaluate the performance of our C2C-PAKA-SC proto-
col in the login-and-authentication phase since the cost during the registration
phase can be pre-computed off-line. With respect to the efficiency, we com-
pare our C2C-PAKA-SC protocol with Byun et al.’s [7] and Feng et al.’s [10] in
Table 1.

Table 1 shows that, for the clients, our C2C-PAKA-SC protocol introduces
six modular exponentiations which could be pre-computed off-line, two extra
modular exponentiations, and two symmetric decryption operations. For the
servers, our C2C-PAKA-SC protocol only introduces two modular exponenti-
ations, three symmetric encryption operations, and one symmetric decryption
operation. Thus, the computation complexity of our C2C-PAKA-SC protocol is
lower than those of [7] and [10].

Another advantage of our protocol is its low communication complexity. Our
protocol takes only three rounds of message exchange (recall Fig. 2), while Byun
et al.’s protocol [7] and Feng et al.’s protocol [10] both take five rounds of message
exchange. Therefore, our protocol is more efficient than those proposed in [7]
and [10].

Table 1. Comparisons of performance

Our Protocol [7] [10]
Modular clients 6 Pre + 2 4 Pre + 4 2 Pre + 5

exponentiation servers 2 2 Pre + 2 3 Pre + 4
Symmetric clients N/A 2 Pre + 2 2 Pre + 1
encryption servers 3 5 1 Pre + 1
Symmetric clients 2 4 2
decryption servers 1 5 3
Asymmetric clients N/A N/A N/A
operation servers N/A N/A 6

Number of rounds 3 5 5
Note: “Pre” denotes pre-computed operation
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4 Security Analysis of Proposed Protocol

In this section, we introduce the formal security model for C2C-PAKA-SC pro-
tocols, and then present a security proof for our proposed protocol.

4.1 Security Model

In this subsection, we introduce a formal security model, which is mainly adopted
from Bellare et al. [11]. In addition, we formally define the special security re-
quirements for C2C-PAKA-SC protocols.

1. Communication model

We denote A, B as two clients belonging to two different realms. Client A shares
her password PWA and smart card SCA with server SA, and client B shares his
password PWB and smart card SCB with another server SB. SA and SB share
the common key K which is pre-distributed between them by using a 2-party
key exchange protocol. When client C enrolls in his server S, S stores RC into a
smart card and issues it to client C, where RC is an (injective) transformation
of the client’s password PWC and its server’s secret key SKS . In the end of the
registration phase, S discards the information about the password of client C
and the value RC , only holds its own secret key SKS. Additionally, all clients’
passwords are chosen from the same small dictionary D whose distribution is
Dpw. Each participant may has several instances involved in the execution of the
protocol. We denote participant U ’s (maybe a client or a server) i-th instances
as U i. We denote the set of all clients as C, and denote the set of all servers as
S. We denote the i-th instance of the protocol executed by entity C(S) as Ci

(Si).
The C2C-PAKA-SC protocol is an interactive protocol among four partic-

ipants’ instances: Ai, Bj , Ss
A, St

B. During the execution of the protocol, an
adversary A could interact with protocol participants via several oracle queries,
which model adversary’s possible attacks in the real execution. All possible oracle
queries are listed in the following:

- Execute(Ai, Bj , Ss
A, St

B): This query returns transcripts of an honest ex-
ecution between participants. This query models a passive adversary who
simply eavesdrops on an execution of the C2C-PAKA-SC protocol.

- Reveal(Ci): This query models the possibility that an adversary gets ses-
sion keys. After querying the oracle, the client instance Ci’s session key is
returned to the adversary.

- Corrupt(Ci, a): This query models the possibility that the adversary cor-
rupts a client Ci. In our adversary model, we assume that the adversary A
can get either the password or the smart card belonging to the same client,
but not both of them. We define this property as follows:
·If a=1, it outputs the password PWC of C.
·If a=2, it outputs information stored in the smart card.
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- SendClient(Ci, m): This oracle query is used to simulate active attacks
against the client. After querying the oracle, a message m is sent to the
client instance Ci. At the end, client instance Ci’s response is forwarded to
the adversary.

- SendServer(Si, m): This oracle query is used to simulate active attacks
against the server. After querying the oracle, a message m is sent to the
server instance Si. At the end, server instance Si’s response is forwarded to
the adversary.

- Test(Ci): This oracle query is not used to simulate adversary’s attacks, but
to define session key’s semantic security. After querying the oracle, the ses-
sion key of Ci or a random number will be returned according to a predefined
random bit b. If b=1, the adversary would learn the session key of Ci; other-
wise the adversary only learns a random number with the same length. This
query can be called only once.

Partnering: As other formal models [7,8,11], The definition of partnering uses
the session identification (sid). More specifically, two instances Ci and Cj are
said to be partners if the following conditions are satisfied: (1) Both Ci and
Cj accept; (2) Both Ci and Cj own the same sid; (3) Ci is Cj ’s partner and
vice-verse; and (4) No instance other than Ci and Cj accepts with a partner
identity equal to Ci and Cj .

Freshness: We say an instance Ci is fresh if the following conditions hold: (1)
It has accepted and generated a valid session key; (2) No Reveal queries have
been made to Ci or its partner; (3) Strictly less than 2 Corrupt queries have
been made to Ci and its partner.

2. Security definition

A secure cross-realm C2C-PAKA-SC protocol should satisfy four security re-
quirements: (1) the session key cannot be distinguished from a random number
by an outside malicious adversary; (2) Any server does not know the session key
between two clients; (3) Even if one client A’s smart card is obtained by the
other client B, B cannot learn A’s password; and (4) Clients’ passwords are not
revealed to other servers except for their own servers.

Semantic Security Against A Malicious Outside Adversary. In the Test
query, we require the adversary cannot tell whether the response received from
the Test oracle is the session key or a random number. In other words, the ad-
versary cannot guess the random bit b used in the Test query with non-negligible
probability larger than 1/2.

We say the adversary succeeds if he correctly guesses the value of b. Let
Succake denote the event that the malicious outside adversary succeeds. Let D
be client’s password dictionary. For any adversary A , we define his advantage
Advake

D (A ) as
Advake

D (A ) = 2Pr[Succake]− 1

Advake
D (t, R) = max{Advake

D (A )}
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where the maximum is over all adversaries with time complexity at most t and
using at most R times oracle queries.

We say our C2C-PAKA-SC protocol is semantically secure against a malicious
outside adversary if the advantage Advake

D (t, R) is only negligibly larger than
O(qs)/|D|, where qs is the number of active sessions, and |D| is the size of the
password dictionary.

Key Privacy Against A Passive Server. We require that no information
about the session key is revealed to servers. In the login-and-authentication
phase, an active server can easily use its secret key SKS to elicit an authenticated
value which is equal to its client’s value computed by using the password and
the value RC stored in smart card and could query the Execute, SendClient,
SendServer and Test oracles, so it is always able to impersonate one of its clients
and exchange a session key with another client by active attacks. As a result, we
cannot require an active server cannot learn the session key.

The passive server S could query only two oracles: Execute and Test. We
say S succeeds if it correctly guesses the value of the random bit b used in the
Test query. Let Succkp denote the event that the passive server succeeds. Let
D be client’s password dictionary. For any passive server S ∈ S, we define its
advantage Advkp

D (S) as
Advkp

D (S) = 2Pr[Succkp]− 1

Advkp
D (t, R) = max{Advkp

D (S)}
where the maximum is over all adversaries with time complexity at most t and
querying oracles at most R times. We say the C2C-PAKA-SC protocol is key
private against a passive server if the advantage Advkp

D (t, R) is negligible.

Password Protection Against A Malicious Client. The Test oracle query
is used to define the session key’s security, which is not considered in current
security notion. So the malicious client C does not have access to the Test query.
Let Succpw−mc(C) be the event that the malicious client C can successfully learn
the honest client’s password. The advantage of a malicious client C ∈ C are
defined to be Advpw−mc

D (C) as
Advpw−mc

D (C) = Pr[Succpw−mc(C)]
Advpw−mc

D (t, R) = max{Advpw−mc
D (C)}

We say our C2C-PAKA-SC protocol satisfies password protection against a ma-
licious client if the advantage Advpw−mc

D (t, R) is only negligibly larger than
O(qs)/|D|, where qs is the number of active sessions, and |D| is the size of
the password dictionary.

Password Protection Against A Malicious Server. Like the notion of
password protection against a malicious client, for any malicious server S ∈ S,
we define it advantage Advpw−ms

D (S) as
Advpw−ms

D (S) = Pr[Succpw−ms(S)]

Advpw−ms
D (t, R) = max{Advpw−ms

D (S)}



An Efficient and Provably Secure Cross-Realm C2C-PAKA Protocol 309

We say our C2C-PAKA-SC protocol satisfies password protection against a ma-
licious server if the advantage Advpw−ms

D (t, R) is only negligibly larger than
O(qs)/|D|, where qs is the number of active sessions, and |D| is the size of the
password dictionary.

3. Computational assumptions and cryptographic primitives

We adopt some computational assumptions and cryptographic primitives re-
quired in our cross-realm C2C-PAKA-SC protocol, some of them are similar to
those proposed in [7]. So we introduce them in brief. Let G be a finite cyclic
group of prime order p generated by an element g.

Discrete Logarithm (DL) Assumption. We denote by Advdl
G

(A ) the prob-
ability that A succeeds in computing x from (g, gx) and have Advdl

G (Tdl) =
max{Advdl

G
(A )}, where the maximum is over all the adversaries A running in

time at most Tdl. The DL assumption is that the value of Advdl
G (Tdl) is negligible.

Decisional Diffie-Hellman (DDH) Assumption. DDH assumption means
that given (g, gx, gy), no probabilistic polynomial time algorithm can distin-
guish gxy from a random element of G with non-negligible probability. We de-
fine Advddh

G
(A ) as the probability that the adversary A could distinguish gxy

from a random element of G, and define Advddh
G

(Tddh) as the maximum value of
Advddh

G
(A ) over all A with time complexity at most Tddh.

Secure Message Authentication Code Under Chosen Message Attack.
A message authentication code MAC = (Key, Tag, V er) is composed of a MAC
key generation algorithm Key, a MAC generation algorithm Tag and a MAC
verification algorithm V er. A secure MAC should prevent existential forgeries
under chosen-message attacks (CMA) if adversaries have access to the genera-
tion and verification oracles. The maximal value Advcma

MAC(Tmac) of the advantage
Advcma

MAC(A ) with at most Tmac time complexity and at most qt and qv queries to
its MAC generation and verification oracles, respectively, is a negligible function
of the parameters above.

Secure Symmetric Encryption under Chosen Cipher Attack. A scheme
symmetric scheme SE = (E, D) is composed of an encryption algorithm E and a
decryption algorithm D. We imagine an adversary Ase that runs in two stages.
In the Find stage, the adversary endeavors to come up with a pair of equal-
length plaintexts (x0, x1), whose encryption the adversary wants to tell apart.
In the Guess stage, the adversary is given a random ciphertext y for one of x0
and x1. The adversary wins if it correctly identifies which plaintext goes with y.
The maximal value Advcca

SE (Tse) of the advantage Advcca
SE (A ) with at most Tse

time complexity and at most qe and qd queries to the encryption and decryption
oracles, respectively, is a negligible function of the parameters above.

4.2 Security Proof

Theorem 4.1. Let A be a probabilistic polynomial time adversary against se-
mantic security of the proposed C2C-PAKA-SC protocol P within a time bound



310 W. Jin and J. Xu

t. A can make qsend Send queries, qexe Execute queries, qE encryption queries
for ideal cipher E, qe encryption queries for symmetric encryption E, qt tag
queries, and qv verification queries. Then

Advake
D (t, R) ≤q2

E + q2
h1

+ q2
h2

+ q2
h3

(q − 1)
+ 4Advdl

G (Tdl) + 6Advcca
SE (Tse, qe, qd)

+ 4Advcma
MAC(Tmac, qt, qv) + 2Advddh

G (Tddh) +
qsend

|D|
(1)

where |D| is the size of the password space, q is a prime order of a cyclic group
G, Tse = Tdl = Tddh ≤ t + qsend(τG + τE), Tmac ≤ t + τT (qt + qv), and τG , τE,
τT are computational time for an exponentiation, ideal encryption E, message
authentication code, respectively.
Proof. Our proof defines a sequence of hybrid experiments, starting with the real
attack and ending in an experiment in which the adversary has no advantage.
Each experiment addresses a different security aspect. The detailed proof of
Theorem 4.1 can be found in the Appendix A.

Theorem 4.2. In our cross-realm C2C-PAKA-SC protocol, a passive server
cannot learn the session key between two clients as long as the DDH assumption
holds in the group G. Formally,

Advkp
D (t, R) ≤ 2Advddh

G (Tddh) (2)

where Tddh ≤ t + qexeτG and τG is computational time for an exponentiation.
Proof. See Appendix B.

Theorem 4.3. In our cross-realm C2C-PAKA-SC scheme, the malicious client
B cannot learn the client A’s password as long as the DL assumption holds in
the group G. Formally,

Advpw−mc
D (t, R) ≤ qsend

|D| + 2Advdl
G (Tdl) (3)

where |D| is the size of the password space, Tdl ≤ t + (qsend + qexe)τG and τG is
computational time for an exponentiation.
Proof. See Appendix C.

Theorem 4.4. In our cross-realm C2C-PAKA-SC scheme, the malicious server
SB cannot learn the client A’s password as long as the DL assumption holds in
the group G. Formally,

Advpw−ms
D (t, R) ≤ qsend

|D| + 2Advdl
G (Tdl) (4)

where |D| is the size of the password space, Tdl ≤ t + (qsend + qexe)τG and τG is
computational time for an exponentiation.
Proof. The proof is similar to that of Theorem 4.3, omitted.
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5 Conclusion

In this paper, we proposed an efficient and provably secure C2C-PAKA-SC pro-
tocol, which simultaneously utilizes passwords and smart cards in the cross-realm
setting. We showed that in the private-key setting, our proposed C2C-PAKA-SC
protocol is the foremost protocol which can resist all types of common attacks, es-
pecially password-compromise impersonation attacks. Moveover, our protocol is
more efficient because many operations can be pre-computed off-line. To achieve
a provable security for our proposed protocol, we defined a security model which
is more appropriate to C2C-PAKA-SC protocols and provided a formal security
proof in detail.
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Appendix A: Security Proof of Theorem 4.1

Our proof defines a sequence of hybrid experiments, starting with the real attack
and ending in an experiment in which the adversary has no advantage. For each
experiment Expn, we define an event Succn corresponding to the case in which
the adversary correctly guesses the bit b involved in the Test query. By using
each difference of probability, we finally get the result of Theorem 4.1. Several
experiments are similar to Byun et al.’s implement[7], so we explain them briefly.

Experiment Exp0. This experiment corresponds to the real attack in the ran-
dom oracle model. By definition, we have

Advake
D (t, R) = 2Pr[Succ0]− 1 (5)

Experiment Exp1. In this experiment, we simulate H1, H2, H3, E and D
oracles. It is necessary to maintain H1, H2, H3, E and D tables (denoted by
TH1 , TH2, TH3 , TE and TD, respectively.) during the simulation of the above
oracles. We also simulate all instances of players for the Send, Reveal, and Execute
queries. The deductive process is similar to [7], the result is :

|Pr[Succ0]− Pr[Succ1]| ≤
q2
E + q2

h1
+ q2

h2
+ q2

h3

2(q − 1)
(6)

Experiment Exp2. In this experiment, we replace a real value WA with a ran-
dom value W ′

A. The other environments are identical to the previous experiment.
By using A ’s advantage with respect to a session key in the Exp1 and Exp2, we
construct a polynomial time algorithm Adl to break the DL assumption. And
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we can perform it again when replacing the real WB with a random value W ′
B .

Obviously, we can get

|Pr[Succ1]− Pr[Succ2]| = 2Advdl
G (Tdl) (7)

Experiment Exp3. In this experiment, we replace a real key k in the T icketB
with a random key rk. The other environments are identical to the previous
experiment. By exploiting A which tries to get the advantage of a session key
in the Exp2 and Exp3, we can construct a polynomial time algorithm Ase to
break the security of the symmetric encryption. This algorithm is designed by
the similar method of [7]. Because there are three symmetric encryptions, so the
formula is

|Pr[Succ2]− Pr[Succ3]| = 3Advcca
SE (Tse, qe, qd) (8)

Experiment Exp4. The goal of this experiment is to construct an algorithm
for the MAC adversary by using A . This experiment is completely same to [7].
There is

|Pr[Succ3]− Pr[Succ4]| ≤ 2Advcma
MAC(Tmac, qt, qv) (9)

Experiment Exp5. In this experiment, we consider a random DDH triple
(U, V, Z) where U = gu, V = gv, and Z = gr. The random DDH triple is
injected into the protocol, then the triple is used for generating a target session
key. This experiment is perfectly identical to [7]. The aim is to construct a
polynomial time algorithm Addh to break the DDH assumption. We get

|Pr[Succ4]− Pr[Succ5]| = Advddh
G (Tddh) (10)

In [7], there is rigorous analysis about the successful probability of the Exp5, de-
noted by Advsk

Exp5
(A ). In our C2C-PAKA-SC protocol, whether the Corrupt(Ci,

2) query has been made or not, the on-line password guessing attack is unavoid-
able. The advantage Advsk

Exp5
(A ) is bounded by qsend/|D| where qsend is the

maximum number of Send queries. Therefore, We have

Pr[Succ5] =
1
2
Advsk

Exp5
(A ) +

1
2
≤ qsend

2|D| +
1
2

(11)

Consequently from (5) to (11), we come to a conclusion in Theorem 4.1.

Appendix B: Security Proof of Theorem 4.2

A passive server only has access to the Execute and Test oracles, so the proof is
similar to the Exp5 in the proof of semantic security of C2C-PAKA-SC. Let SA

be an adversary against the key privacy of C2C-PAKA-SC whose time complex-
ity is at most t, we would construct another adversary Addh for DDH assumption
using SA. Addh runs the adversary SA in this environment and provides answers
for all oracle queries with Addh’s input and parameters. To deal with the se-
curity of the key privacy respect to a server, we only consider the last flow of
C2C-PAKA-SC.
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1. For the Execute query, Addh finally get (g, ga, gb) and computes the session
key as described in the protocol.

2. For the Test query, Addh responses the session key to SA when b = 1, or
responses a random number to SA when b = 0.

After all interaction, Addh sets his answer as the answer of the adversary SA.
Now we analyze Addh’s advantage. If z = gab, the simulation of Addh is perfect.
Hence, The probability that Addh outputs 1 is exactly 1/2 + 1/2 ·Advkp

G
(SA). If

z is a random number, the session key computed is a random number. Hence,
the probability that Addh outputs 1 is exactly 1/2. So

Advddh
G (A ) =

1
2

+
1
2
Advkp

D (SA)− 1
2

(12)

Therefore, we get the result of Theorem 4.2.

Appendix C: Security Proof of Theorem 4.3

We consider the following two cases: (1) the malicious client B hasn’t made
the Corrupt(Ai, 2) query. In other word, he didn’t obtain the honest client A’s
any information in her smart card; (2) the malicious client B has already made
the Corrupt(Ai, 2) query, that means he obtained A’s information in her smart
card. Obviously, in the case (2), the malicious client B has obtained A’s smart
card and some transcripts generated in the communicational process, if he still
cannot learns A’s password by using these useful information, he must not do it
in the case (1). So it is advisable for us to only consider the case (2), we suppose
the malicious client B has already obtained A’s smart card and wants to learn
A’s password.

Firstly, the malicious client B makes the Corrupt (Ai, 2) query to honest
A to get the information in her smart card. Secondly, the client B makes the
Send or Execute query and learns RA, WA, CA with respect to PWA. Obvi-
ously, if B learns the value of α, he can guess PWA by using CA=h1(T1‖(RA −
h1(PWA))α‖WA‖IDA). The maximal probability of obtaining α from WA is
Advdl

G (Tdl). Subsequently, we get

Advpw−mc
D (B) = Advdl

G (A ) (13)

In addition, because the on-line password guessing attack is unavoidable, this
advantage of Advpw−mc

D (B) is bounded by qsend/|D| where qsend is the maximum
number of Send queries. Hence, Theorem 4.3 is concluded.
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Abstract. In this paper, we study the broadcast authentication problem for both
erasure and adversarial networks. Two important concerns for authentication pro-
tocols are the authentication delay and the packet overhead. In this paper, we
address those points by proposing two schemes based on cryptographic accumu-
lators. Our first scheme is developed for erasure channels and its packet overhead
is less than the length of a digest most of the time. This makes our construction
one of the least expensive protocols for this network model. Even if the sender
processes the stream slightly in delay, the receivers can authenticate packets on-
the-fly. Our second scheme is designed for adversarial networks. We show that
our packet overhead is less than for the construction by Karlof et al. in 2004 and
the protocol by Tartary and Wang in 2006 which are two recent efficient schemes
dealing with adversarial networks.

Keywords: Stream Authentication, Polynomial Reconstruction, Erasure Chan-
nel, Adversarial Channel, Cryptographic Accumulator.

1 Introduction

In this early XXI century, communication networks have expended to such an extent
that most human beings are daily connected to them. They are used for many applica-
tions such as video-conferences, pay-TV and air traffic control to name a few. A gener-
alized way to distribute information through these networks is broadcasting. However,
large-scale broadcasts have the drawback that lost content cannot be retransmitted as
the size of the communication group would imply that a single deletion could lead to
an overwhelming number of redistribution requests at the sender end. Furthermore, the
communication network can be under the influence of malicious users altering the data
stream1. As a consequence, the security of a broadcasting protocol depends on the prop-
erties of the communication network as well as the computational power of the adver-
saries. In this work, we present authentication protocols secure against computationally
bounded opponents.

1 In broadcasting, the sequence of information sent into the network is called stream.
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The goal of streaming is to distribute continuous data such as stock market informa-
tion. Therefore, the digital content obtained at the receiver end must be authenticated
within a short period of delay upon reception. Moreover, many applications transmit
private or sensitive information. Thus, non-repudiation of the stream source needs to be
provided.

Network bandwidth availability and computational power of end-users are two pri-
mary concerns for a stream authentication protocol. Indeed, large packets may create a
congestion of the network information flow while receivers with small computational
resources will need more time to authenticate data delaying the stream play. Thus, when
designing a protocol for stream authentication, one should aim at minimizing both the
packet 2 overhead and the computational cost of authenticating information.

The multicast stream authentication problem has been widely studied [6]. Non-
repudiation of the sender is provided using a digital signature. However, signing each
data packet is not a practical solution as such a cryptographic primitive is generally ex-
pensive to generate and/or verify. Thus, a usual approach consists of generating a single
signature and amortizing its communication and computation overheads over several
packets using hash functions for instance.

In order to deal with erasures, Perrig et al. [26, 27], Challal et al. [7], Golle and
Modadugu [10] as well as Miner and Staddon [18] appended the hash of each packet
to several followers according to specific patterns. They all modeled the packet loss
behavior of the network by k-state Markov chains [9] and they obtained bounds on
the packet authentication probability. Nevertheless, the drawbacks of these schemes are
twofold. First, they are degrading3 as some received data packets may not be authenti-
cated. Second, they rely on the reception of signed packets which cannot be guaranteed
over networks such as the Internet where the User Datagram Protocol only provides a
best effort delivery of information. These two issues restrict the range of applications
for the previous protocols.

To overcome the issue of signature reliable delivery, a common approach is to split
the signature into k smaller parts where only � of them (� < k) are sufficient to recover
it. Signature dispersion can be achieved via various techniques: Park et al. [23, 24] as
well as Park and Cho [25] used the Information Dispersal Algorithm [28], Al-Ibrahim
and Pieprzyk [1] combined linear equations and polynomial interpolation, Pannetrat
and Molva [22] utilized erasure codes whereas Desmedt and Jakimoski [8] employed
cover-free families [30]. It should be noticed that each of those authentication schemes
is non-degrading as well.

The major shortcoming of the previous constructions is that none of them tolerates
a single packet injection. This is a central problem when data is distributed over large
public networks since it is likely to have some unreliable nodes.

Using an algorithm developed by Guruswami and Sudan called Poly-Reconstruct to
solve the polynomial reconstruction problem [11], Lysyanskaya et al. [14] constructed
a non-degrading authentication protocol exhibiting O(1) signature verification queries

2 Since the stream size is large, it is divided into small fixed-size entities called packets.
3 An authentication scheme is said to be non-degrading if every receiver can authenticate all the

data packets he obtained. Otherwise, the scheme is said to be degrading.
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per block4 as a function of the block length n. Their construction was extended by
Tartary and Wang [32] who used a Maximal Distance Separable (MDS) code to allow
total recovery of all n data packets. In this paper, we denote this latter construction as
TWMDS. The augmented packets5 of TWMDS are Ω(log2 n)-bit long as the underly-
ing field used for polynomial operations must have at least n distinct points. Note that
the same situation occurs in [14].

Another approach was followed by Karlof et al. in [12] when designing PRABS. This
protocol combines an erasure code and an accumulator [4] based on a Merkle hash tree
[17] to deal with injections. As TWMDS, PRABS only requires O(1) signature verifi-
cation queries per block. However, its packet overhead is Θ(log2(n))-bit long as each
augmented packet carries �log2(n)� hashes. Nonetheless, the implementations done in
[31] tend to infer that, for practical use, PRABS’ overhead is larger than TWMDS’.

There exist several cryptographic accumulators. The advantage of using a construc-
tion based on hash functions is that aggregation and membership verification are fast
contrary to [4, 20]. In [4], checking whether an element was accumulated costs as much
as verifying a RSA signature whereas, in [20], it requires two pairing evaluations which
is even slower [2, 5].

Nyberg’s probabilistic accumulator is also based on hash functions [21]. Recently,
Yum et al. proposed an improvement allowing to reduce the probability of false mem-
bership [35]. In this paper, we present two non-degrading authentication protocols based
on this new accumulator, MDS codes and Poly-Reconstruct. Our first scheme is devel-
oped for erasure channels. Its overhead is smaller than [22, 23, 24, 25] and it allows
each receiver to process information on-the-fly after a short part of the stream has been
received. In particular, immediate data authentication can be achieved. Our second pro-
tocol is designed for adversarial networks as TWMDS and PRABS. It allows com-
plete recovery of the data stream as TWMDS and we show on implementations that
its overhead is smaller than TWMDS’ and PRABS’ in many situations. Another point
worth noting is that our implementations also reinforce the intuition that TWMDS has
smaller overhead than PRABS which has only been studied on a particular case so far
(n = 1000) [31].

This paper is organized as follows. In the next section, we present the mathematical
tools needed for the understanding of this paper. In particular, we recall the accumulator
construction from [35] which plays a central role in our work. In Sect. 3, we present
our authentication protocol for erasure channels. Our scheme for adversarial networks
is studied in Sect. 4. The last section summarizes our contributions to the broadcast
authentication problem.

2 Preliminaries

In this section, we present the network models and erasure correcting codes used in
this paper. We also quote the polynomial reconstruction problem which plays an

4 In order to be processed, packets are gathered into fixed-size sets called blocks.
5 We call augmented packets the elements sent into the network. They generally consist of the

original data packets with some redundancy used to prove the authenticity of the element.
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important role for our authentication scheme over adversarial channels. Finally, we re-
call the cryptographic accumulator construction developed in [35].

2.1 Network Models

We consider that the communication network is under the control of an opponentO.

Erasure Channels. In this model, O is simply an eavesdropper. Therefore, no injec-
tions of malicious packets occur. In other words, any packet collected by the receiver is
authentic. We can assume that both sender and receivers have a buffering capacity of n
consecutive packets and that at most t packets can be erased over a scope of n elements.
This model generalizes the concept of bursts where, in the bursty model, the length of
the longest burst occurring in the network is t = n − 2 (one packet must been receive
on each side of the burst). An illustration is given as Fig. 1.

P1 P2 P3 · · · Pn Pn+1 Pn+2 · · ·

up to t erasures

up to t erasures

up to t erasures

Fig. 1. Erasure Channel Model for Streaming

It should be noted that the bursty model has been used to analyze many authentica-
tion protocols [10, 18, 26, 27]. This is justified by the work of Yajnik et al. [34] who
exhibited that the loss pattern of the Internet was bursty in nature. Notice that our model
also encompasses [1, 8] as it does not require the t erasures to appear as a burst.

Adversarial Channels. In this case, O who can drop and rearrange packets of his
choice as well as inject bogus data into the network [16]. Without loss of generality,
we can assume that a reasonable number of original augmented packets reaches the re-
ceivers and not too many incorrect elements are injected byO. We split the data stream
into blocks of n packets: P1, . . . , Pn. In this settings, we introduced two parameters:
α (0 < α ≤ 1) (the survival rate) and β (β ≥ 1) (the flood rate). It is assumed that at
least a fraction α and no more than a multiple β of the number of augmented packets
are received. This means that at least �αn� original augmented packets are received
amongst a total which does not exceed �βn� elements. The use of these two parameters
to model O first appeared in [14] and was subsequently used in [32].

2.2 Correction of Deletions

Since the communication network is a priori unreliable, it is likely that some packets do
not reach all the receivers. As in [32], we will use a linear correcting code to overcome
this issue. A linear code of length N , dimension K and minimum distance D is denoted
[N, K, D].
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Theorem 1 ([15]). Any [N, K, D] code satisfies: D − 1 ≤ N −K .

Since any [N, K, D] code can correct up to D−1 erasures [36], such a code can correct
at most N −K erasures. To maximize the efficiency of our protocols, we are interested
in codes correcting exactly N −K erasures. These codes are called Maximum Distance
Separable (MDS) codes [15]. TWMDS is also based on this family of codes.

2.3 Reconstructing Polynomials

The Polynomial Reconstruction Problem (PRP) is the following mathematical problem.

Polynomial Reconstruction Problem
Input: Integers D, T and N points {(xi, yi)}i∈{1,...,N} where xi, yi ∈ F for a field F .
Output: All univariate polynomials P (X) ∈ F [X ] of degree at most D such that yi =
P (xi) for at least T values of i ∈ {1, . . . , N}.

Guruswami and Sudan developed an algorithm called Poly-Reconstruct to solve the
PRP [11]. We modify it as in [32] where that new version was denoted MPR. Let F2q

be the field of the polynomial coefficients. Every element of F2q can be represented as
a polynomial of degree at most q− 1 over F2. Operations in F2q are performed modulo
an irreducible polynomialQ(X) over F2 having degree q [13].

Algorithm 1. MPR
Input: The maximal degree K of the polynomial Q(X), the minimal number N of agreeable

points, T points {(xi, yi), 1 ≤ i ≤ T} and the polynomial Q(X) of degree q.
1. If there are no more than

√
KN distinct points then the algorithm stops.

2. Using Q(X), run Poly-Reconstruct on the T points to get the list of all polynomials of
degree at most K over F2q passing through at least N of the points.
3. Given the list {L1(X), . . . , Lμ(X)} obtained at Step 2. For each polynomial Li(X) :=
Li,0 + . . . + Li,KXK where ∀i ∈ {0, . . . , K}Li,j ∈ F2q , form the elements: Li :=
Li,0‖ · · · ‖Li,K .

Output: {L1, . . . ,Lμ}: list of candidates.

2.4 Cryptographic Accumulators

In [35], Yum et al. proposed a modified version of Nyberg’s cryptographic accumulator
[21]. A list {x1, . . . , xm} is aggregated into an accumulated valueA using Algorithm 2.

One verifies the membership of an element x̃ to the list {x1, . . . , xm} using Algo-
rithm 3.

Yum et al. have shown that Algorithm 3 was a YES-bias Monte-Carlo algorithm
[29]. They demonstrated that the value of the bias was:

f(ε, k) :=
[
1− ε

(
1− ε

r

)k m
]k

based on the Random Oracle (RO) model for h and h′.
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Algorithm 2. ACCUMULATE
Input: Two cryptographic hash functions h and h′ outputting (r d)-bit long and (k log2(r))-

bit long digests respectively, a security parameter ε, a list of elements to be aggregated
{x1, . . . , xm}.

/* Digests Computation */

1. Compute the digests h(xi) := yi,1‖ · · · ‖yi,r where each yi,j is d-bit long for i ∈
{1, . . . , m}.
2. Compute the digests h′(xi) := y′

i,1‖ · · · ‖y′
i,r where each y′

i,j is log2(r)-bit long for i ∈
{1, . . . , m}.

/* Binary Strings Generation */

3. For i ∈ {1, . . . , m}, create the string bi,1‖ · · · ‖bi,r as follows:
3.1. Set bi,j = 1 for j ∈ {1, . . . , r}.
3.2. For τ ∈ {1, . . . , k}, do the following:

3.2.1. Set: j = y′
i,τ + 1.

3.2.2. Set: bi,j = 0 if
yi,j

2d−1
≤ ε.

/* Accumulated Value */

4. Compute the binary products: ∀j ∈ {1, . . . , r} aj :=
m∏

i=1

bi,j .

Output: A := (a1, . . . , ar): accumulated value for the list {x1, . . . , xm}.

Algorithm 3. MEMBERSHIP
Input: Two cryptographic hash functions h and h′ outputting (r d)-bit long and (k log2(r))-bit

long digests respectively, a security parameter ε, the accumulated value A = (a1, . . . , ar)
corresponding to the list {x1, . . . , xm} and a candidate element x̃.

/* Digests Computation */

1. Compute the digest h(x̃) := ỹ1‖ · · · ‖ỹr where each ỹj is d-bit long.
2. Compute the digest h′(x̃) := ỹ′

1‖ · · · ‖ỹ′
r where each ỹ′

j is log2(r)-bit long.

/* Binary Strings Generation */

3. Create the string b̃1‖ · · · ‖b̃r as follows:
3.1. Set b̃j = 1 for j ∈ {1, . . . , r}.
3.2. For τ in {1, . . . , n}, do the following:

3.2.1. Set: j = ỹ′
τ + 1.

3.2.2. Set: b̃j = 0 if
ỹ′

j

2d−1
≤ ε.

/* Accumulated Value */

4. For j ∈ {1, . . . , r}, do the following:
If (b̃j = 1 and aj = 1) then Return NO.

5. Return YES.

Output: Decide whether x̃ belongs to {x1, . . . , xm}.

The issue in [35] is that Yum et al. only provide an asymptotic analysis of f(ε, k).
Indeed, they substituted

(
1− ε

r

)k m
by exp(−k m ε

r ). However, it is unlikely that a very
large number of elements m be accumulated so that this approximation holds.
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Fortunately, we can still get some information on how to choose ε. Indeed, the partial
derivative ∂f

∂ε is negative. This involves:

∀ε ∈ [0, 1] f(ε, k) ≥ f(1, k)

Thus, it is suggested to choose ε = 1. In this situation, the bias of the algorithm gets:

f(1, k) =

[
1−

(
1− 1

r

)k m
]k

As observed in [35], setting ε = 1 allows us to completely remove h from the structure
of the accumulator. That is, only the cryptographic hash function h′ is needed. Given
this observation, we assume in the remaining of this paper that ε = 1.

Remark 1. The use of a cryptographic hash function to instantiate the RO model is fre-
quent [33]. In 2007, the National Institute of Standards and Technology (NIST) set a
competition for a new cryptographic hash algorithm SHA-3 [19]. One of the require-
ment that the candidates must satisfy is to support pseudo-random functions, in partic-
ular, the HMAC construction [3].

3 Stream Authentication over Erasure Channels

In the remaining of this paper, we work with a unforgeable S-bit long digital signature
(SignSK, VerifyPK) [29] the key pair of which (SK,PK) is created by a generator KeyGen
and a cryptographic hash function h′ outputingH′-bit long digests withH′ = k log2(r).

3.1 Authentication Protocol

The stream is a continuous flow of information. First, the sender generates the signature
σ on the digest h′(P1) of the first stream packet. He then encodes the concatenation
σ‖h′(P1) using a MDS code of length n and dimension n − t. The corresponding
codeword is denoted (C1 · · ·Cn) where each Ci is�S+H′

n−t �- bit long.
Second, the sender buffers the first n packets P1, . . . , Pn as list L1. He computes the

accumulated value A1 of L1 and builds the augmented packet: AP1 := 1‖P1‖A1‖C1.
Third, when a new stream packet Pn+j−1 (j ≥ 2) is available, the sender builds the

list Lj := {Pj , . . . , Pn+j−1}∪{h′(P1)}. He computes the corresponding accumulated
value Aj and builds the augmented packet: APj := j‖Pj‖Aj‖C[j] where [j] denotes
the unique integer in {1, . . . , n} congruent to j modulo n. In particular: [n] = [2n] =
[3n] = · · · = n. We notice that the delay at the sender is n packets as it sends into the
network APj after Pn+j−1 be available.

The receiver buffers the first n − t packets APr1 , . . . , APrn−t he collects. He can
recover the whole codeword (C1 · · ·Cn) from them and then the signature σ on h′(P1).
This allows to authenticate the n − t accumulated values thanks to h′(P1) aggregated
in them. Those values can in turn be used to authenticate all the received packets. The
receiver buffers the accumulated valueArn−t .
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When the receiver gets the (n− t + 1)th packet APrn−t+1 , then it can be authenti-
cated usingArn−t . The receiver buffersArn−t+1 and the process repeats throughout the
stream. One notices that any receiver can verify the authenticity of any packet on-the-fly
from the (n− t + 1)th received packet.

The packet overhead of the scheme is r + �S+H′
n−t � bits.

3.2 Analysis of the Protocol

Security. We have the following theorem the proof of which is in Appendix A.

Theorem 2. Our authentication scheme is a non-degrading authentication protocol.
The sender processes data with a delay of n packets throughout streaming while the
receiver can authenticate packets on-the-fly from the (n− t + 1)th received
element.

Remark 2. A single signature is needed to ensure non-repudiation of the whole stream.

Remark 3. One can notice that, when n is fixed, the lower t is, the larger the delay
gets. This might seem to be surprising at first but having low t’s implies having small
redundancy for the codeword coordinates as n − t is large. That is why one requires
more codeword information to reconstruct (C1 · · ·Cn). The trade-off delay/overhead is
an efficiency trade-off.

Packet Overhead. An important point to notice is that the value f(1, k) does not have
any impact on the security of our protocol for erasure channels. Therefore, the only
restriction that we have to take into account is 0 < k ≤ r as this is necessary to
construct the accumulator. We minimize the overhead of our construction by tuning the
pair (r, k) so that the bit sizeH′ of the digest output by h′ is k log2(r). More precisely,
we need to choose r as:

rmin := min{R ∈ IN : (0 < K ≤ R and K ∈ IN andH′ = K log2(R))}

In the case of the SHA-3 competition, NIST has required that the new hash function
provides message digests of 224, 256, 384 and 512 bits at least [19]. In this situation,
the optimal choice for r is given in Table 1.

Table 1. Optimal choice for the parameter r

H′ 224 256 384 512
rmin 128 256 64 256

We plotted the behavior of the packet overhead when the ratio t
n represented 10%,

30%, 50%, 70% and 90% for n varying between 100 and 1000 as Fig. 2. We chose to
use a 1024-bit long signature to illustrate this result (i.e. S = 1024).

We see that in most cases, our packet overhead is less than a digest long. In particular,
it is less than in [22, 23, 24, 25].
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(c) H′ = 384
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Fig. 2. Overhead of our authentication protocol for erasure channels

Remark 4. Desmedt and Jakimoski’s scheme has small overhead as well [8]. Their re-
sult is based on optimal choices for cover-free families. The issue is that those optimal
families have been shown to exist but they have yet to be constructed as the underlying
result by Stinson et al. is a non-constructive proof of existence [30].

4 Stream Authentication over Adversarial Channels

In this channel model, O can inject bogus data packets into the network. In this situa-
tion, we will process the whole data stream per block of n packets P1, . . . , Pn. Each of
these blocks is located within the whole stream using an identification value BID. This
approach is used in the different schemes designed for adversarial networks quoted in
Sect. 1 including TWMDS and PRABS. This is to be opposed to the on-the-fly authen-
tication process from the (n− t + 1)th packet at the receiver for our protocol presented
in Sect. 3.1.

4.1 Scheme Overview

Due to erasure of information, we want to generate n augmented packets AP1, . . . ,
APn such that we can reconstruct all packets P1, . . . , Pn from any �α n�-subset of



324 C. Tartary

{AP1, . . . , APn}. Therefore, our first step consists of encoding P1, . . . , Pn using a
[n, �α n�, n − �α n� + 1] code since it can correct up to n − �α n� erasures. Note
that this approach implies that the elements of the code alphabet are larger than the
size of a data packet as the message (M1 · · ·M�α n�) to be encoded into the codeword
(C1 · · ·Cn) should represent the concatenation P1‖ · · · ‖Pn.

To ensure non-repudiation of data and to allow new members to join the commu-
nication group at any time, we need to generate and distribute a signature which can
be reconstructed despite bogus injections by O. Our idea consists of aggregating the n
codeword coordinates C1, . . . , Cn and signing the corresponding accumulated valueA
as σ. We construct a polynomial A(X) of degree at most ρ n (for some rational constant
ρ), the coefficients of which representA‖σ. We build the augmented packets as:

∀i ∈ {1, . . . , n}APi := BID‖i‖Ci‖A(i)

Upon reception of data, the receiver checks the signature by reconstructing A(X) using
MPR. Once the signature σ is verified, the receiver knows the original accumulated
value A. Thus, he can identify the correct Ci’s amongst the list of elements he got
using MEMBERSHIP. According to the definition of α, there must be at least �α n�
symbols from C1, . . . , Cn in his list. Finally, he corrects the erasures using the MDS
code and recovers the data packets P1, . . . , Pn.

4.2 Authentication Protocol

We assume that the values α and β are rational numbers so that we can represent them
over a finite number of bits. In order to run Poly-Reconstruct as a subroutine of MPR,
we have to choose a parameter ρ ∈ (0, α2

β ). Notice that ρ has to be rational since ρ n
is an integer. Without loss of generality, one can consider that the value ρ is uniquely
determined when n, α and β are known. Table 2 summarizes the scheme parameters
which are assumed to be publicly known. The bit size S of the signature and its public
key PK are also publicly known. They do not appear in Table 2 as they are considered
as general parameters. Note that, once r is known, then k is uniquely determined since
the digests of h′ are (k log2(r))-bit long.

Table 2. Public parameters for our authentication scheme over adversarial channels

n: Block length A list of irreducible polynomials over F2

α: Survival rate β: Flood rate
P : Bit size of data packets r, k: Parameters of the accumulator hash function h′

The sender of data process the stream as in Algorithm 4. Note that the list of irre-
ducible polynomials is used at Step 1 and Step 3. Furthermore, since any element of
F2q̃ can be represented as λ0Y

0 + λ1Y1 + . . . + λq̃−1Y
q̃−1 where each λi belongs

to F2, we can define the first n elements as (0, . . . , 0) , (1, 0, . . . , 0) , (0, 1, 0, . . . , 0),
(1, 1, 0, . . . , 0) and so on until the binary decomposition of n− 1 (Step 3).

Upon reception of data, the receivers use Algorithm 5 to authenticate information.
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Algorithm 4. AUTHENTICATOR
Input: The secret key SK, the block number BID, Table 2 and n data packets P1, . . . , Pn.

/* Packet Encoding */

1. Parse P1‖ · · · ‖Pn as M1‖ · · · ‖M�α n� after padding. Encode the message (M1 · · ·M�α n�)

into the codeword (C1 · · ·Cn) using the MDS code over F2q with q =
⌈

n P
�α n�

⌉
.

/* Signature Generation and Representation */

2. Compute the accumulated value: A = ACCUMULATE(C1, . . . , Cn). Construct the block
signature as: σ = SignSK(h′(BID‖n‖α‖β‖P‖r‖A)).

3. Denote ξ the smallest element of N such that:⌈
r + S + ξ

ρ n + 1

⌉
≥ �log2 n� (1)

Denote q̃ the left hand side of Inequality (1). Write A‖σ as the concatenation a0‖ · · · ‖aρ n of
(ρn + 1) elements of F2q̃ after suitable padding. Form the polynomial A(X) := a0 + · · · +
aρ n Xρ n and evaluate it at the first n points of F2q̃ : ∀i ∈ {1, . . . , n} yi := A(i).

/* Construction of Augmented Packets */

4. Build the augmented packets as:

∀i ∈ {1, . . . , n} APi := BID‖i‖Ci‖yi

Output: {AP1, . . . , APn}: set of augmented packets.

4.3 Analysis of the Protocol

Security. As the channel model allows an adversary to inject bogus elements into the
network, we adopt the same security definition as in [32].

Definition 1. The collection of algorithms (KeyGen,AUTHENTICATOR,DECODER)
constitutes a secure and (α, β)-correct probabilistic multicast authentication scheme if
no probabilistic polynomial-time opponentO can win with a non-negligible probability
the following game:

i) A key pair (SK,PK) is generated by KeyGen.
ii) O is given: (a) The public key PK and (b) Oracle access to AUTHENTICATOR

(butO can only issue at most one query with the same block identification tag BID).
iii) O outputs (BID, n, α, β,P , r, RP).

O wins if one of the following happens:

a) (violation of the correctness property) O succeeds to output RP such that even
if it contains �α n� packets (amongst a total not exceeding �β n� elements) of
some authenticated packet set APi for block identification tag BID and parame-
ters n, α, β,P , the decoder fails to authenticate all the correct packets.
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Algorithm 5. DECODER
Input: The public key PK, the block number BID, Table 2 and the set of received packets RP.

/* Signature Verification */

1. Write the packets as BIDi‖ji‖Ĉji‖ŷji and discard those having BIDi �= BID or ji /∈
{1, . . . , n}. Denote N the number of remaining elements. If (N < �α n� or N > �β n�) then
the algorithm stops.

2. Rename the remaining elements as {ÂP1, . . . , ÂPN} and write each element as: ÂPi =
BID‖ji‖Ĉji‖ŷji where ji ∈ {1, . . . , n}. Compute q̃ as in Step 3 of AUTHENTICATOR. Get
the irreducible polynomial of degree q̃ from the sender’s public list and run MPR on the set
{(ji, ŷji), 1 ≤ i ≤ N} to get a list {c1, . . . , cμ} of candidates for signature verification. If
MPR rejects that set then the algorithm stops.

3. Initialize Â = ∅. While the list has not been exhausted (and the signature not veri-
fied yet), pick ci and write it as: Ai‖σi after removing the pad where Ai is r-bit long. If
VerifyPK(h′(BID‖n‖α‖β‖P‖r‖Ai), σi) = TRUE then set Â = Ai and break out the loop.
Otherwise, increment i by 1 and start again the While loop.

/* Codeword Reconstruction */

4. If A′ = ∅ then the algorithm stops. Otherwise, set C′
k := ∅ for all k ∈ {1, . . . , n}. For each

ÂPi written as at Step 2, if MEMBERSHIP(h′, 1, Â, Ĉji) = TRUE then C′
ji

= Ĉji .

5. If (C′
1 · · ·C′

n) has less than �α n� non-empty symbols then the algorithm stops. Otherwise,
denote it into the message (M ′

1 · · ·M ′
�α n�).

/* Packet Recovery */

6. If the decoding fails then the algorithm stops. Otherwise, remove the pad from
M ′

1‖ · · · ‖M ′
�α n� and write the remaining string as P ′

1‖ · · · ‖P ′
n where each P ′

i is P bits long.

Output: {P ′
1, . . . , P

′
n}: set of authenticated packets.

b) (violation of the security property) O succeeds to output RP such that the decoder
outputs {P ′

1, . . . , P
′
n} that was never authenticated by AUTHENTICATOR for the

value BID and parameters n, α, β,P .

Remark 5. A protocol with is secure and (α, β)-correct is non-degrading.

We have the following theorem the proof of which can be found as Appendix B.

Theorem 3. If our authentication scheme is either insecure or not (α, β)−correct, then
one can create a genuine element passing successfully MEMBERSHIP.

Packet Overhead. Due to Theorem 3, we have to choose r in order to reduce the value
of the YES-bias f(1, k) as much as possible to ensure the security of the authentication
protocol.

Since the packet overhead is:(
nP
�α n� − P

)
+
⌈

r + S + ξ

ρ n + 1

⌉
bits

we look for the smallest value of r such that:

f(1, k) ≤ tbias
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where tbias is the threshold value for the bias. Note that this minimal value for r is
independent from both rates α and β.

Table 3 represents the minimal values of r for n between 100 and 1000 when tbias =
10−10. As in Sect. 3.2, we used four digest length sizes for h′: 224, 256, 384, 512.

In order to provide a fair comparison with PRABS, we have to slightly modify Karlof
et al.’s construction so that it also allows recovery of the whole data stream as TWMDS
and our construction. This is at the cost of using a MDS code which leads to the addi-
tional overhead for PRABS of nP

�α n� − P bits. Therefore, in our implementations, the
packet overhead for PRABS becomes:(

nP
�α n� − P

)
+H′ �log2(n)� bits

Table 3. Minimal values of r for H′-bit long digests

n
100 277 278 1000

224 16384 65536
H′ 256 65536

384 65536
512 65536
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(b) H′ = 256
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(c) H′ = 384
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Fig. 3. Overhead comparison between PRABS, TWMDS and our scheme when α = 0.9 and
β = 1.25
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We performed comparisons for α ∈ {0.5, 0.75, 0.8, 0.9} and β = {1.1, 1.25, 1.5, 2}
for the four digest sizes H′ ∈ {224, 256, 384, 512}. We chose ρ = α

2 β2 as suggested in
[32]. Due to space limitations, we can only depict the case α = 0.9 and β = 1.25 as
Fig. 3.

Our results show that, in most situations, the overhead of our new scheme is much
smaller than PRABS’ and TWMDS’. This is particularly acute when n gets large. Fur-
thermore, those implementations demonstrate that the overhead of TWMDS is smaller
than PRABS’. This extends the comparative survey between PRABS and TWMDS
done so far which was only focused on the case n = 1000 [31, 32].

5 Conclusion

In this paper, we presented two protocols for the broadcast authentication problem us-
ing a modified version of Nyberg’s accumulator due to Yum et al. Our first scheme
was related to erasure channels. We showed that its packet overhead was less than the
length of a digest and, in particular, far less than [22, 23, 24, 25]. Even if the sender
processes the stream in delay of n packets, the receivers can authenticate packets on-
the-fly from the (n− t + 1)th received element to the end of the stream (if any). In ad-
dition, a single signature is needed to provide the non-repudiation of the whole stream.
Our second scheme was designed for adversarial networks. It is obvious that the num-
ber of signature queries at the receiver is the same as for TWMDS due to the use of
Poly-Reconstruct in both constructions. This number turns to be O(1) as a function
of the block length n [32]. Furthermore, the packet overhead of our new scheme is
smaller than PRABS’ and TWMDS’. Another interesting result from this comparative
study was that we obtained more a extensive comparison between PRABS and TWMDS
showing that the overhead of TWMDS was smaller.
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A Proof of Theorem 2

Denote APr1 , . . . , APrn−t , the first n − t augmented packets obtained by the receiver.
Due to our channel model, we have rn−t − r1 < n.

As a consequence, [r1], . . . , [rn−t] are n − t distinct values from {1, . . . , n}. Thus,
the receiver can uniquely identify C[r1], . . . , C[rn−t] to their n− t corresponding values
from C1, . . . , Cn by using the mapping x �→ [x] over the values r1, . . . , rn−t contained
within APr1 , . . . , APrn−t .

Using the correction capacity of the MDS code, the receiver can recover the code-
word (C1 · · ·Cn) and then its corresponding message (M1 · · ·Mn−t). This message
easily leads to σ‖h′(P1) as this string represents the first S+H′ bits of M1‖ · · · ‖Mn−t.
Finally, the receiver verifies the authenticity of the signature σ on h′(P1) using VerifyPK.

So far, the receiver only authenticated h′(P1). It should be noticed that, since we are
working over an erasure channel, it is sufficient to show that h′(P1) has been accumu-
lated within the value Ar1 to authenticate this value and therefore every single element
aggregated within (using MEMBERSHIP). We have two cases to consider.

http://zanotti.univ-tln.fr/enseignement/divers/chapter3.html
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1. r1 = 1 : The receiver obtained the first augmented AP1 of the stream. In this case,
he can verify the authenticity of AP1 by computing h′(P1). He authenticatesA1 using
h′(P1) and MEMBERSHIP. The remaining n − t − 1 augmented packets APr2 , . . . ,
APrn−t belong to {AP1, . . . , APn}. Since L1 = {P1, . . . , Pn}, the validity of Pr2 , . . . ,
Prn−t can be checked using MEMBERSHIP and A1.

2. r1 ≥ 2 : The receiver did not receive AP1. This case can also be seen as the receiver
joining the communication group after the beginning of streaming.

Since the receiver authenticated h′(P1) thanks to the digital signature, he can check the
authenticity of Ar1 using h′(P1) and MEMBERSHIP.

The remaining n− t− 1 augmented packets APr2 , . . . APrn−t can be authenticated
using Ar1 and MEMBERSHIP since Pr2 , . . . , Prn−t have been aggregated into Ar1

since: r1 < r2 < · · · < rn−t ≤ r1 + (n− 1).
Up to this point, we showed that the receiver could authenticate the first n − t aug-

mented packets he got. In order to terminate the demonstration of this theorem, it re-
mains to prove that the receiver can authenticate (on-the-fly) all the following aug-
mented packets he obtains: APrn−t+1 , APrn−t+2 , . . ..

Consider APrn−t+1 . The accumulated value Arn−t is contained within the authen-
ticated augmented packet APrn−t . This value represents the aggregation of list Lrn−t

which includes the set {Prn−t , Prn−t+1 , . . . , Prn−t+(n−1)}∪{h′(P1)}. Therefore,Arn−t

can be used to authenticate P1 using MEMBERSHIP since: r(n−t)+1− rn−t ≤ t+1 ≤
n− 1.

OnceAr(n−t)+1 is authenticated, the receiver can discardArn−t and bufferAr(n−t)+1

which will be used to authenticate APr(n−t)+2 and so on.
This recursive process shows that the receiver can authenticate every packet he ob-

tains, that is to say, the scheme is non-degrading.

B Proof of Theorem 3

Assume that the scheme is either insecure or not (α, β)-correct. By definition, a proba-
bilistic polynomial time opponentO can break the scheme security or correctness with
a non-negligible probability π(k) where k is the security parameter setting up the digi-
tal signature and the hash function. Note that, since h′ is a cryptographic hash function
in the RO model, it is assumed to be collision-resistant. We must have either cases:

1. With probability at least π(k)/2, O breaks the scheme correctness.
2. With probability at least π(k)/2, O breaks the scheme security.

It should be noticed that since π(k) is a non-negligible function of k, so is π(k)/2.
In both cases, we will demonstrate that O can turn an attack against either the cor-

rectness or the security of the scheme in polynomial time into forging an element Ĉ
passing successfully MEMBERSHIP in polynomial time as well.

Point 1. For this attack, O will have access to the signing algorithm SignSK (but O
will not have access to SK itself). He can use the public key PK as well as the hash
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function h′. O will be allowed to run AUTHENTICATOR whose queries are written
as (BIDi, ni, αi, βi,Pi, ri, DPi) where DPi is the set of ni data packets to be authenti-
cated. As said in Sect. 4.2, the knowledge of ri determines the value of ki as the digest
output by h′ are (ki log2(ri))-bit long with H′ = ki log2(ri). In order to get the corre-
sponding output, the signature is obtained by querying SignSK as a black-box at Step 2
of AUTHENTICATOR.

According to our hypothesis, O broke the correctness of the authentication protocol.
This means that, following the previous process, O obtained values BID, n, α, β,P , r
and a set of received packets RP such that:

– ∃i : (BID, n, α, β,P , r) = (BIDi, ni, αi, βi,Pi, ri).
Denote DP = {P1, . . . , Pn}(= DPi) the n data packets associated with this query
and AP the response given to O. In particular, we denote σ the signature corre-
sponding to DP and generated as in Step 2 of AUTHENTICATOR.

– |RP ∩ AP| ≥ �α n� and |RP| ≤ �β n�.
– {P ′

1, . . . , P
′
n} = DECODER(PK, BID, n, α, β,P , r, RP) where P ′

j �= Pj for some
j ∈ {1, . . . , n}.

It should be noticed that the values n, α, β,P , r as well as PK are publicly known.
Since the digital signature is unforgeable and the hash function is collision resis-

tant, it is impossible to obtain either a forgery (digital signature) or a collision (hash
function) in polynomial time with non-negligible probability π(k)/2. This observation
will be used to reduce the security of the authentication scheme to the security of the
accumulator.

Since |RP∩AP| ≥ �α n� and |RP| ≤ �β n�, Step 1 of DECODER ends successfully.
The consistency of Poly-Reconstruct involves that the list returned by MPR at Step
2 contains the element A‖σ corresponding to DP after removing the pad. It should
be noticed that the pad length can be uniquely determined from the public values as

q̃ =
⌈

r+S+ξ
ρ n+1

⌉
(see Inequality (1)).

As the digital signature is unforgeable and the hash function is collision resistant, the
pair message/signature going through the verification process at Step 3 corresponds to
DP. Therefore, at the end of that step, we have:

Â = A

At the beginning of Step 4, the receiver has recovered the accumulated value A corre-
sponding to the original codeword (C1 · · ·Cn) related to DP.

Assume that O cannot forge any Ĉ /∈ {C1, . . . , Cn} passing successfully MEM-
BERSHIP.

In this case, only elements from RP∩AP will successfully pass MEMBERSHIP. As
a consequence, at the end of Step 4, we get:

∀i ∈ {1, . . . , n} C′
i ∈ {∅, Ci}

and at least �α n� values C′
i’s are non-empty.
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Thus, at Step 5, (C′
1 · · ·C′

n) is first corrected into (C1 · · ·Cn) and then decoded as
(M1 · · ·M�α n�). Finally, at the end of Step 6, we have: ∀i ∈ {1, . . . , n} P ′

i = Pi.
We obtain a contradiction with our original hypothesis which stipulated:

∃j ∈ {1, . . . , n} P ′
j �= Pj

Therefore,O was able to construct a new value Ĉ passing MEMBERSHIP successfully
with non-negligible probability in polynomial time.

Point 2. We consider the same kind of reduction as in Point 1. The opponentO breaks
the security of the scheme if one of the following holds:

I. AUTHENTICATOR was never queried on input BID, n, α, β,P , r and the decod-
ing algorithm DECODER does not reject RP, i.e. {P ′

1, . . . , P
′
n} �= ∅ where:

{P ′
1, . . . , P

′
n} = DECODER(PK, BID, n, α, β,P , r, RP).

II. AUTHENTICATOR was queried on input BID, n, α, β,P , r for some data packets
DP = {P1, . . . , Pn}. Nevertheless, the output of DECODER verifies P ′

j �= Pj for
some j ∈ {1, . . . , n}.

Case I. Since DECODER output some non-empty packets, Step 3 had to terminate
successfully. Thus, it has been found a pair (h′(BID‖n‖α‖β‖P‖r‖A), σ) such that:

VerifyPK(h′(BID‖n‖α‖β‖P‖r‖A), σ) = TRUE

IfO never queried AUTHENTICATOR for block tag BID, then either the previous pair
is a forgery of the digital signature or BID‖n‖α‖β‖P‖r‖A collides with one of the
queries BIDi‖ni‖αi‖βi‖Pi‖ri‖Ai made by O for the hash function h′. Since none of
those cases can occur in polynomial time with non-negligible probability, we get a con-
tradiction in this situation.

If O queried AUTHENTICATOR for block tag BID then denote (BID, n̂, α̂, β̂, P̂ , r̂)
his query. By hypothesis, we have:

(n̂, α̂, β̂, P̂ , r̂) �= (n, α, β,P , r)

We conclude as above. That is to say that we get a contradiction with the security of
either the digital signature of the hash function.

Case II. We have the same situation as in Point 1.
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Abstract. In this paper, we propose a new lightweight 64-bit block ci-
pher, which we call MIBS, suitable for resource-constrained devices, such
as low-cost RFID tags. We also study its hardware implementation ef-
ficiency, as well as its security. The hardware implementation of MIBS
requires 1400 gates on 0.18 μm technology, which is less than 2000 gates
limit for low-cost RFID tags. We also show MIBS is secure against dif-
ferential and linear cryptanalysis.
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1 Introduction

Radio frequency identification (RFID) is a technology for automated identifica-
tion of objects and people. Although, this technology appeared quite a long time
ago, it is recently used in wide range of applications due to technical improve-
ments and dramatic cost decrease. There are security and privacy challenges
concerning this technology. Cryptographic solutions require high computing re-
sources and come with extra costs. Development of hardware efficient security
primitive for resource-constrained devices such as low-cost RFID tags is a chal-
lenging task that recently is being more dealt with[1]. Gate constraints for secu-
rity of low-cost tags are about 200-2000 gates, that is less than what is necessary
for standard cryptographic primitives, so existing cryptographic algorithms can
be hardly implemented under such resource constraint. In this paper, we propose
a new light-weight block cipher to satisfy this requirement, and at the same time,
it has the necessary security. In our design we have adopted several components
which are already presented in other ciphers. The paper is organized as follows.
Related works are described in section 2. In section 3, we present MIBS block
cipher. In section 4, the design rationale of cipher is discussed. In section 5 we
analyse the security of MIBS. The study of its hardware efficiency follows in
section 6. We give a conclusion in section 7.

2 Related Works

In recent years, the lightweight cryptography for RFID tags has attracted much
attention. Feldhofer et al. [2] have presented a hardware implementation of
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Advanced Encryption Standard (AES), with a gate count of 3595. Poschmann
et al. [3] designed a lightweight variant of the Data Encryption Standard (DES)
called DESL, which makes use of only one S-box mapping and can therefore be
more compact than DES. Their implementation fits in 1848 gates. DESXL is
an another version of DES that strengthened DESL with a key size of 184 bits
and a hardware size of approximately 2168 gates [4]. PRESENT [5] is a 64-bit
block cipher with a key length of 80 or 128 and consists of 31 rounds which
has reasonable layout size for constrained environments such as low-cost RFID
tags. Hardware implementation of PRESENT requires 1570 gates. But recently,
Rolfes et al. [6] present a serialized architecture of the PRESENT that requires
only 1000 gates. Other compact block ciphers like mCRYPTON [7], HIGHT
[8], SEA [9], and PUFFIN [10] are also proposed, but they require more area
to implement than PRESENT implementation. The very compact block cipher
which we proposed has a reasonable area complexity. MIBS is a 32 rounds Feistel
cipher with a block length of 64-bit, where two key lengths of 64-bit and 80-bit
are supported.

3 MIBS Block Cipher

MIBS uses a Feistel structure with data block length of 64-bit and key lengths
of 64-bit or 80-bit and consists of 32 rounds. The round structure is shown in
Fig. 1. For applications that require moderate security levels, such as low-cost
RFID tags, 64-bit security is adequate. In practice, there is a tradeoff between
hardware efficiency and security. The F-function, depicted in Fig. 2, operates
on half a block (32 bits), representing it into eight nibbles, and it consists of
four stages: key addition, non-linear substitution layer, linear mixing layer, and
nibble-wise permutation.

Fig. 1. Encrypt round of MIBS
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Table 1. S-box mapping[7]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S 4 15 3 8 13 10 12 0 11 5 7 14 2 6 1 9

Fig. 2. The i-th round function of MIBS

Key addition. Current state s31, s30, ..., s0, which is input to the F-function,
is combined with a round subkey ki = ki

31, k
i
30, . . . , k

i
0for1 ≤ i ≤ 32, using a

bit-wise XOR operation. Since XOR is well-suited to hardware implementation,
all subkeys are bitwise XORed with data before substitution layer.

sj = sj ⊕ ki
j , for0 ≤ j ≤ 31

Substitution layer S. After adding subkey, the block is divided into eight
nibbles x8, x7, ..., x1, before processing by the S-boxes. The 4 × 4 S-box used in
our cipher is the same as the first S-box used in mCRYPTON and is shown in
Table 1. The non-linear layer is composed of eight identical 4× 4 S-boxes, so in
this transformation nibble-wise substitution is applied.

S : F 4
2 → F 4

2 : xi → yi = s (xi) , for1 ≤ i ≤ 8

Mixing layer M. The linear transformation mixes eight nibbles as follows:

M : (GF (2)4)8 → (GF (2)4)8, (y8, y7, . . . , y1)→ (y′
8, y

′
7, . . . , y

′
1)⇔
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Table 2. Permutation mapping

1 2 3 4 5 6 7 8
P 2 8 1 3 6 7 4 5

y′
1 = y2 ⊕ y3 ⊕ y4 ⊕ y5 ⊕ y6 ⊕ y7

y′
2 = y1 ⊕ y3 ⊕ y4 ⊕ y6 ⊕ y7 ⊕ y8

y′
3 = y1 ⊕ y2 ⊕ y4 ⊕ y5 ⊕ y7 ⊕ y8

y′
4 = y1 ⊕ y2 ⊕ y3 ⊕ y5 ⊕ y6 ⊕ y8

y′
5 = y1 ⊕ y2 ⊕ y4 ⊕ y5 ⊕ y6

y′
6 = y1 ⊕ y2 ⊕ y3 ⊕ y6 ⊕ y7

y′
7 = y2 ⊕ y3 ⊕ y4 ⊕ y7 ⊕ y8

y′
8 = y1 ⊕ y3 ⊕ y4 ⊕ y5 ⊕ y8

Permutation layer P. Finally, the eight nibble outputs from the mixing layer
are arranged according to Table 2. Each nibble is moved to a new position by P.

Key schedule for 64-bit key. The design principle of MIBS key schedule is
adopted from the design principle of PRESENT key schedule. Our key schedule,
generates 32-bit round key ki, for 0 ≤ i ≤ 31, from 64-bit user key K (represented
as k63, k62, ..., k0). We denote the key state of the i-th round as statei. The key
state for each round is updated as follows.

state0 = user-key
statei = statei ≫ 15
statei = S-box(statei

[63:60])||statei
[59:0]

statei = statei
[63:16]||statei

[15:11] ⊕ Round-Counter||statei
[10:0]

ki = statei
[63:32]

where ≫ means rotation to right, [i : j] indicates the i-th to the j-th bits are
involved in the operation, and || denotes concatenation. Also we use the same
S-box as in the F-function. The round key ki is the 32 left most bits of the
current state.

Key schedule for 80-bit key. The key K is first initialized with the user key,
and updates as follows.

state0 = user-key
statei = statei ≫ 19
statei = S-box(statei

[79:76])||S-box(statei
[75:72])||statei

[71:0]
statei = statei

[79:19]||statei
[18:14] ⊕ Round-Counter||statei

[13:0]
ki = statei

[79:48]

After that, the round key ki is the 32 left most bits of the key state. Test vectors
for MIBS with 64 bit and 80 bit key are provided in the Appendix I.
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4 Design Rationale

4.1 The Cipher Structure

MIBS is based on Feistel structure with an SPN round function. A large propor-
tion of block ciphers have used this scheme since the US Federal Government
adopted the DES. Moreover, DES has endured various attacks for over 20 years,
even though its round function is very simple. Since Feistel construction oper-
ates on half of the block length in each iteration, therefore the size of code or
circuitry required to implement it is nearly halved. Thus we use Feistel network
as an overall structure with the purpose of minimizing computational resources,
which certainly is one of the most important considerations in hardware design
for tiny ubiquitous devices.

4.2 Round Function

For round function we selected the Substitution-Permutation Network (SPN).
The SPN structure is directly based on the concepts of confusion and diffusion.
The confusion component is a nonlinear substitution and the diffusion compo-
nent is a linear mixing which is used for diffusing the cryptographic characteris-
tics of substitution layer.

The substitution layer. The most important objective in designing a block
cipher targeted to embedded applications such as RFID tags, is to achieve low
complexity in hardware while providing sufficient security. Consequently an ap-
propriate substitution layer of such a block cipher should meets the above bal-
ance. Although, large S-boxes can achieve better security but even in software,
large S-boxes require high storage cost and they are far worse in hardware. On the
other hand, too small S-boxes can hardly achieve suitable security. We observed
the gate count increases exponentially with the size of S-box. As a result, we
decided to use 4× 4 S-boxes with regard to hardware efficiency and at the same
time adequate security. Also existing lightweight block ciphers like PRESENT,
and mCRYPTON have used 4 × 4 S-boxes too. The S-box used in MIBS block
cipher is the same as the S0 mapping applied in mCRYPTON [7].

The linear transformation. In order to construct a fast and strong block
cipher, we design a round function that is secure against differential and lin-
ear cryptanalysis and yield small values for the maximum differential and linear
probabilities p, q. Kanda et al. [11], proposed a search algorithm for construct-
ing an optimal linear transformation layer by using the matrix representation in
order to minimize probabilities p, q as much as possible. They determined an
optimal linear transformation layer among many candidates which has a lower
computational complexity, which we used in MIBS. Additionally they showed
that any linear transformation following a non-linear layer consists of 8 parallel
S-boxes, can not have branch number more than 5. The branch number is the
minimum number of active S-boxes in two consecutive rounds of a non-trivial
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differential characteristic or non-trivial linear trail [12]. In this context, by Op-
timal we mean that the maximum differential and linear probabilities p, q are
as small as possible. Similar linear transformations is used also in E2[13] and
Camellia[14] block ciphers. The linear layer M, which we call mixing layer, is
represented using only 16 nibble-wise XORs that is suitable for computational
efficiency. For security against differential and linear cryptanalysis, the branch
number of layer M is optimal. Consequently, the mixing layer piles up the num-
ber of active S-boxes every two rounds to minimize the maximum differential
and linear probabilities.

5 Security Analysis

5.1 Differential and Linear Cryptanalysis

preliminaries. Two well-known attacks applicable against block ciphers are dif-
ferential cryptanalysis, introduced by Biham and Shamir [15], and linear crypt-
analysis proposed by Matsui[16]. Because of wide applicability of both attacks
to numerous block ciphers, resistant against them should be considered in the
design of block ciphers. The complexity of each attack is defined by the number
of active S-boxes involved and their differential characteristic or linear approx-
imation probabilities. Kanda et al. [17] show the minimum number of active
S-boxes in differential and linear attacks for Feistel ciphers with SPN round
function which is presented below.

Definition 1. For any given Δx, Δy, Γx, Γy ∈ GF (2)m, the differential and lin-
ear probabilities of each S-box are defined as:

DPSi(Δx → Δy) = #{x∈GF (2)m|Si(x)⊕Si(x⊕Δx)=Δy}
2m

LPSi(Γy → Γx) = (2× #{x∈GF (2)m|xΓx=Si(x)Γy}
2m − 1)2

Where x · Γx , denotes the parity (0 or 1) of bitwise product of x and Γx.

Definition 2. The maximum differential and linear probabilities of S-boxes are
defined as:

ps = max
i

max
Δx �=0,Δy

DPSi(Δx → Δy)

qs = max
i

max
Γx,Γy �=0

LPSi(Γy → Γx)

Definition 3 ([11]). A differential active S-box is defined as an S-box given a
non-zero input difference, while a linear active S-box is defined as an S-box given
a non-zero output mask value.

As we mentioned earlier, the security against differential and linear cryptanalysis
is evaluated using the branch number, and branch number is defined as follow[12].



340 M. Izadi et al.

Definition 4. The differential branch number Bd is defined as:

Bd = min
Δx �=0

(Hw(Δx) + Hw(θ(Δx)))

where Δx is an input difference into the diffusion layer and θ(Δx) is an output
difference from the layer. Hw denotes the number of non-zero nibbles as defined
in [17].

In our case that the mixing transformation is bijective, the differential branch
number Bd , and linear branch number Bl are identical (B = Bd = Bl).

Definition 5. The minimum number of differential active S-boxes of the r-
round Feistel cipher with SPN round function, is defined as:

D(r) = min
(Δx(0),Δx(1),...,Δx(r+1)) �=(0,0,...,0)

r∑
i=1

Hw(Δx(i))

where Hw(Δx(i)) is the number of the ith-round differential active S-boxes.

Theorem 1 ([17]). The minimum number of differential active s-boxes D(4r)

for 4r round Feistel ciphers with SPN round function satisfies D(4r) ≥ r ×B +
�r/2�.

Theoretical Analysis. Theorem 1 also holds for L(r), the number of non-zero
nibbles in linear approximation of round r, because both non-linear and linear
layers are bijective.

The maximum differential and linear probabilities of the S-boxes are ps =
qs = 2−2 , and the branch number of the linear transformation is 5. According
to theorem 1, the lower bound of the number of active S-boxes with respect to
linear and differential cryptanalysis is as follows: D(32) ≥ 8×5+4⇒ D(32) ≥ 44.

Therefore, the upper bound of maximum differential characteristic probability
is (2−2)44 = 2−88 , and the bias of linear approximation according to pilling-up
lemma, is 243 × (2−2)44 = 2−45 . As a result our suggested number of rounds is
a conservative choice and we have a fair amount of security margin.

Experimental Analysis

Differential cryptanalysis. In the previous section we presented the theoret-
ical bound for Differential Cryptanalysis. Here we present the best non-trivial
4-round differential characteristic we have found. Table 3 illustrates this 4-round
characteristic. The left and right columns represent the non-zero nibbles for each
round. This characteristic has the least number of active S-boxes i.e 6, and re-
sults in the 4-round characteristic probability of 2−15. If we assume it as an
iterative characteristic, we can deduce that the 32-round characteristic should
not have probability better than (2−15)8 = 2−120.
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Table 3. 4 rounds differential characteristic

Round Number Left Right Probability
Input 10000000 10001110

1 00100001 10000000 1/8
2 01000010 00100001 1/16
3 00000100 01000010 1/64
4 00100101 00000100 1/4

active S-boxes = 6 Total = 2−15

Table 4. 4 rounds linear approximation

Round Number Left Right Number of Active S-boxes Bias
1 00000001 00000100 5 2−6

2 00000100 11011101 1 2−2

3 11011101 00000000 0 1
4 00000000 11011101 1 2−2

Total = 7 Total = 2−8

Linear cryptanalysis. Here we show the best linear approximation we have
found. The best linear approximation for 4-round MIBS is illustrated in Table
4. The left and right columns represent the Non-zero nibbles for input of each
round.

It has 7 active S-boxes with the best bias in each S-box which is 2−2 ,that
results in the 4-round approximation with bias (2−2)7 × 26 = 2−8 . So it yields
that the bias for 32-round approximation is at least (2−8)8 × 27 = 2−57, which
requires λ.2114 known plaintext, where λ is a small factor that is used for better
success probability.

5.2 Multiple Linear Cryptanalysis

The idea of using multiple approximation in linear cryptanalysis is first intro-
duced by Kaliski and Robshaw [18], their method has the restriction that only
same bits of key can be used in approximations. In 2004 Biryukov et al. [19] intro-
duced the general statistical framework which does not possess that restriction.
As a result of their method the data complexity of attack becomes proportional
to the capacity of approximations. Time complexity of attack is equal to the
time for encrypting the known plaintexts and for each encryption, updating the
counters for the approximations. Multidimentional approximations without the
assumption of independence are introduced by Hermelin and Nyberg [20], which
allows us to build 2m approximations from m independent approximations. We
have found several approximations with good bias and several can be obtained
by changing the first round input mask and last round output mask. By taking
that into account we can use 16 independent approximations and build 216 ap-
proximations, so at the best case that all of the combined approximations have
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the maximum bias we may be able to reduce the data complexity by the order
of 216 at the cost of updating 216 counters for each known plaintext. So the data
complexity of linear cryptanalysis can be reduced to λ.298.

5.3 Other Variants of Linear Cryptanalysis

Differential-Linear is a method for connecting a differential characteristic to
linear approximation, which is introduced by Langford and Hellman [21] and
later enhanced for probabilistic differential characteristic by Dunkleman and Bi-
ham [22]. It is useful when we have differential and linear characteristics with
high probability for small number of rounds. However as we dont have such
characteristics, this attack is not applicable to the full rounds. Non-linear crypt-
analysis [23] is not applicable to MIBS since it is usually useful when we have
large s-boxes,and is used in outer rounds of the cipher. So the improvement by
this attack does not pose a threat to MIBS because of large security margin.
Bi-Linear cryptanalysis[24] which is proposed for feistel schemes is not a large
improvement to the attack so this is also not a practical attack against MIBS.

5.4 Algebraic Attack

Algebraic attack is a method for the cryptanalysis of ciphers, which was first pre-
sented by Courtois and Pieprzyk [25] to analyze AES. The attack aims to recover
the secret key through solving an overdefined system of multivariate algebraic
equations. A block cipher, which consists small S-boxes, may be represented as
many equations with small number of variables. By solving these multivariate
equations the key of the block cipher may be found, but the problem of solv-
ing a system of multivariate quadratic equations is in general NP-hard. Several
methods for solving such systems of equations has been proposed for the special
cases of overdefined and sparse systems[25,26], although some flaws in all such
techniques are claimed in [27,28]. Anyway, any 4×4 bit S-box can be represented
as 21 quadratic equations of 8 input/output bit variables over GF(2) [25]. MIBS-
64 consists of n = (32 × 8) + 32 = 288 S-boxes, as there are 8 S-boxes in each
round of the 32-round cipher, and one S-box in each round of key scheduling.
Thus, the cipher can be described with 6048 (= 288× 21) quadratic equations
of 2304 (= 288× 8) variables. MIBS-80 has 32 S-boxes more than MIBS-64, so
the number of quadratic equations is 6720 with 2560 variables.

According to [25], an estimation of the complexity of XSL attack on a block
cipher can be calculated with work factor. For MIBS-64, W.F. is accordingly
estimated as follows:

WF ≈ Γ ω · ((Block size) · (Number of rounds)2
)ω� t

r �

= (26)2.37 ·
(

(64) · (32
2

)2
)2.37� 37

21 �

= 280.58

Which is greater than 264 operations needed for exhaustive search, making the
attack impractical.
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5.5 Related Key Attack

Slide attack [29] and related-key [30] attack are a form of cryptanalysis which
use some weakness of key schedule. The attacker can observe the operation of a
cipher under several different keys whose values are initially unknown, but where
some mathematical relationship connecting the keys is known to the attacker.
The design rationale of the key schedule of MIBS is similar to the key schedule
of PRESENT. Since key schedule uses the round-dependent counter and a non-
linear operation to mix the contents of the key register K, it is secure against
these attacks.

6 Hardware Implementation

MIBS block ciphers is designed for very efficient hardware implementations, and
each component is carefully constructed with hardware implementations in mind.
In order to check hardware complexity, MIBS was implemented in a standard cell
library based on TSMC 0.18μm CMOS technology. The block cipher is described
in Verilog and simulated using ModelSim SE PLUS 6.2b. The synthesis is only
done for encryption using typical transistors with the aim of area optimization
by LEONARDO SPECTRUM 2005a.82. The data path of MIBS is depicted in
Fig. 3. Each round consists of key addition, substitution layer, mixing layer, per-
mutation layer, and right data addition. The substitution layer is composed of
eight 4× 4 S-boxes which are used in parallel. 4× 4 S-box is implemented with
simple combinational logic of 4-bit Boolean function. The key addition, and the

Fig. 3. Data path of MIBS-64
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Table 5. Hardware complexity of MIBS-64

Module (Round Function) GE Module (Key Schedule) GE
Data Register 384.68 Key Register 384.68
Substitution Layer 192 S-box 24
Key Xor 85.44 Right Rotation 0
Mixing Layer 170.84 Counter Xor 13.35
Permutation Layer 0 Total Key Schedule 422.03
Right Data Xor 85.44
Total Round Function 918.4
Control Unit 46
Other Logics 8.74
Total 1395.17

Table 6. Hardware complexity of MIBS-80

Module (Round Function) GE Module (Key Schedule) GE
Data Register 384.68 Key Register 484.46
Substitution Layer 192 S-box 48
Key Xor 85.44 Right Rotation 0
Mixing Layer 170.84 Counter Xor 13.35
Permutation Layer 0 Total Key Schedule 545.81
Right Data Xor 85.44
Total Round Function 918.4
Control Unit 46
Other Logics 19.35
Total 1529.56

Table 7. Hardware complexity comparison of lightweight ciphers

Block ciphers Block size Key size Cycles per
block

Logic process Area (GE)
Throughput

at 100
KHZ(Kbps)

MIBS-64 64 64 32 0.18 μm 1396 200
PRESENT-80[5] 64 80 32 0.18 μm 1570 200
PRESENT-80[6] 64 80 563 0.18 μm 1075 11.4

AES-128[2] 128 128 1032 0.35 μm 3400 12.4
mCRYPTON[7] 64 64 13 0.13 μm 2420 492.3

HIGHT[8] 64 128 34 0.25 μm 3048 188.2
PUFFIN[10] 64 128 - 0.18 μm 2577 194

DESL[3] 64 64 144 0.18 μm 1848 44.4
DESXL[4] 64 184 144 0.18 μm 2168 44.4

right data addition are implemented as bit-wise XORs, and the mixing layer is
implemented as nibble-wise XORs. The permutation layer is a simple wiring and
does not have extra gates. The round keys used for each round function can be
generated on-the-fly and, hence, there is no need to store all the round keys.
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The implemented MIBS requires 32 clock cycles to encrypt a 64 bit plain text
with 64 bit key (a single round per clock cycle), which result in throughput of
200 kilobit per second considering 100 KHz clock. MIBS implementation requires
1396 gates (2-input NAND gates). Table 5 shows the detailed gate counts of each
component. The estimated area for MIBS with 80-bit key is about 1530 gates
which is illustrated in table 6. A comparison for the hardware efficiency of MIBS
and other lightweight block ciphers is shown in Table 7.

7 Conclusion

In this paper, we have presented a new lightweight block cipher MIBS with a
64-bit block length and 64/80-bit key lengths. Our goal in the design of MIBS
was to provide security for resource-constrained applications, such as low-cost
RFID tags, while having a lower hardware complexity in comparison with other
compact block ciphers. MIBS is based on Feistel structure with SPN round func-
tion. We use Feistel network as an overall structure with the purpose of min-
imizing computational resources which is one of the important considerations
in hardware design for tiny ubiquitous devices. For round function we selected
the Substitution-Permutation Network. We use 4 × 4 S-boxes with regard to
hardware efficiency and at the same time adequate security. The diffusion layer,
which we named mixing layer M, is composed of 16 nibble-wise XORs, while for
security against differential and linear cryptanalysis, its branch number is opti-
mal. The hardware implementation of MIBS-64 requires 1400 gates on 0.18 μm
technology, which is less than 2000 gates limit for low-cost RFID tags. We also
studied the security of MIBS against several known attacks, where it showed ad-
equate security margins. MIBS is a secure block cipher, while having a lower gate
counts than PRESENT implemented in [5]. Although serialized implementation
of PRESENT with lower gate counts is reported in [6], but we have not yet de-
signed a serialized implementation for MIBS. Such an implementation remains
as a future work.
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Appendix I

Test vectors of MIBS for each key lenght are given here.The data are expressed
in hexadecimal form.

Table 8. Test vectors for 64 bit key

Plaintext Key Ciphertext
00000000 00000000 00000000 00000000 6D1D3722 E19613D2

00000000 00000001 00000000 00000000 D79C5610 0851488A

00000000 00000000 FFFFFFFF FFFFFFFF E538379F 99337F4A

00000000 00000001 FFFFFFFF FFFFFFFF EF0840A9 4FCC2EAF

FFFFFFFF FFFFFFFF 00000000 00000000 66F21F5B 1F96D626

FFFFFFFF FFFFFFFE 00000000 00000000 5D86E9E2 96B4527F

FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 595263B9 3FFE6E18

FFFFFFFF FFFFFFFE FFFFFFFF FFFFFFFF 598CE962 22A34BDE

Table 9. Test vectors for 80 bit key

Plaintext Key Ciphertext
00000000 00000000 00000000 00000000 0000 F575004B 83ABA59F

00000000 00000001 00000000 00000000 0000 C80A965F 0969BB70

00000000 00000000 FFFFFFFF FFFFFFFF FFFF F2144A89 F33C2AF0

00000000 00000001 FFFFFFFF FFFFFFFF FFFF 7A443766 74739625

FFFFFFFF FFFFFFFF 00000000 00000000 0000 DE2860FD B436725E

FFFFFFFF FFFFFFFE 00000000 00000000 0000 4617D4EB 1CE9E088

FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFF 3185C8A3 5B51EB23

FFFFFFFF FFFFFFFE FFFFFFFF FFFFFFFF FFFF FC835FF 013970A5
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Abstract. This paper first presents a new distinguishing attack on the
CBC-MAC structure based on block ciphers in cipher block chaining
(CBC) mode. This attack detects a CBC-like MAC from random func-
tions. The second result of this paper is a second-preimage attack on the
CBC-MAC, which is an extension of the attack of Brincat and Mitchell.
The attack also covers MT-MAC, PMAC and MACs with three-key en-
ciphered CBC mode. Instead of exhaustive search, both types of attacks
are of birthday attack complexity.
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1 Introduction

A message authentication code (MAC), also known as a keyed hash function, is a
short piece of information used to authenticate both the source of a message and
its integrity without the use of any additional mechanisms. A MAC algorithm
takes as input a secret key and an arbitrary-length message to be authenticated,
and outputs a short tag. As an important cryptographic primitive, MACs have
been widely used in practice. The applications include internet communication
protocols, e-commerce, e-banking etc. The cryptanalytic model of MACs usu-
ally involves three participants: a sender, a receiver and an adversary. The sender
and the receiver have agreed on a secret key (or a set of keys). Prior to send-
ing a message, the sender uses a MAC algorithm to produce an authentication
tag (or MAC) from the message and the secret key. On receipt, the receiver
verifies the message and the corresponding MAC by the same calculation using
their shared secret key. The goal of the adversary is to trick the receiver into
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accepting a message that was not sent by the sender. There are three main types
of constructions for MAC algorithms: the construction based on block ciphers
(OMAC, CBC-MAC and PMAC etc), the construction based on cryptographic
hash functions (HMAC, NMAC, MDx-MAC etc) and the construction based on
universal hashing. In this paper, we shall focus on the first type of construction.

The Security of MAC Algorithms. One of the most important require-
ments for a MAC is that, given a massage M and a lk-bit secret key K, the
computation of the MAC value MACK(M) should be easy. However, it should
be computationally infeasible to find MACK(M) without knowing K. Security
threats to a MAC algorithm include:

Existential Forgery. An adversary is able, without initial knowledge of K,
to get a corresponding MAC C for any message M , which has not been
MACed by the legitimate MAC generator. The message M may not have
any particular meaning.

Selective Forgery. An adversary is able to determine the MAC for a message
of his choice.

Second Preimage Attack. Second preimage attack is sometimes referred to
as weak collision attack. If an adversary observes M and the corresponding
MAC C, he can construct a message M ′ �= M with MACK(M ′) = C without
initial knowledge of K. Ideally, the relation Pr[MACK(M ′) = C] = 2−lm

should hold in this case, where lm is the length of the tag.
Universal Forgery. An adversary is able to find a MAC for every given mes-

sage. This attack is much more powerful than previous cases.
Key Recovery Attack. A key recovery attack is more devastating than forgery.

In this case an adversary is able to recover K itself, and thus can perform
arbitrary forgeries. Ideally, any attack allowing key recovery requires about
2lk operations. Verification of such an attack requires � lk

lm
� text-MAC pairs.

Related Work. CBC-MAC is a technique for constructing a message authen-
tication code from a block cipher through CBC mode. Most standards and ap-
plications use the CBC-MAC, such as [1,2,11]. Bellare et al.[3] formally examine
the security of this construction for messages with fixed length. Variants of the
CBC-MAC for variable length messages were then proposed, examples include
EMAC [5], XCBC [6], TMAC [14], OMAC [13]and CMAC [16] etc. PMAC [7] was
proposed by Black and Rogaway for parallel processing. Recently some provably
secure MACs from differentially-uniform permutations were brought forward by
Minematsu and Tsunoo [15]. Dodis et.al. [10] introduced a new mode of opera-
tion for block ciphers and length-preserving MACs.

In [18], Preneel and van Oorschot proposed a general forgery attack on all
iterative MACs using the birthday attack. In [19], they presented a key recovery
attack on the retail MAC [2] based on DES, which requires 232.5 known text-
MAC pairs and 3 · 256 off-line computations to find the 112-bit key. Knudesn
[12] presented a forgery attack on CBC-MAC based on n-bit block cipher with
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21+(n−lm)/2 known text-MAC pairs and two known texts, where lm is the trunca-
tion length of the tag. In [9], Coppersmith and Mitchell proposed a key recovery
attack against the MacDES. This attack was further improved by Coppersmith,
Knudsen and Mitchell [8]. The improved attack was applied to MacDES involves
prefixing the data to be MACed with its length. In [4], Brincat and Mitchell
gave new CBC-MAC forgery attacks. Recently, new techniques to identify the
underlying hash functions of MACs were developed by Wang et al. in [22,21].
In [22], Wang et al. presented distinguishing attacks on HMAC/NMAC-MD5
and MD5-MAC, partial subkey recovery of MD5-MAC can be achieved. Their
distinguisher makes use of internal near-collisions, which leaks more information
than internal collisions. A distinguisher based on the internal near-collision was
shown in [23]. Built upon that, a forgery attack on Alred construction and
equivalent subkey recovery attack on its AES-based instance Alpha-MAC were
suggested.

Our Contribution. This paper explores a new distinguishing attack on MACs,
which can be used to distinguish MACs based on block ciphers in CBC mode
from random functions. Another main result of the paper is to construct a second
preimage attack on the CBC-like MACs, which can be regarded as an extension
of the attacks proposed by Brintcat and Mitchell [4]. Besides the cases discussed
in [4], our attack also applies to MT-MAC [15], PMAC [7] and MACs with three-
key enciphered CBC mode [10]. Our second preimage attack can be achieved with
birthday attack complexity.

Our approach is to utilize the CBC structure, and turn the complexity of the
second preimage attack into birthday attack complexity. More specifically, given
a two-block message x1‖x2, we want to create another message x′

1‖x′
2 with the

same MAC, i.e., EK(x′
1)⊕ x′

2 = EK(x1)⊕ x2. From the CBC operation, we get
EK(x1) ⊕ x′

2 = EK(x′
1) ⊕ x2. We are able to choose x′

1, x
′
2 at random to get a

collision–MACK(x1‖x′
2) =MACK(x′

1‖x2). In particular, we explore the second
preimage attack on the CBC-MAC, EMAC, XCBC, TMAC, OMAC, CMAC,
PC-MAC, MT-MAC and PMAC etc.

Organization of the Paper. This paper is organized as follows. In Section 2,
after basic notations are reviewed, we give brief descriptions of some MACs based
on block ciphers in CBC mode. Section 3 shows a new method for distinguishing
a CBC-like MAC from a random function. A second preimage attack on the
CBC-like MACs is introduced in Section 4. Finally, we summary our results in
Section 5.

2 Preliminaries and Notations

In this section, we first list some notations used in this paper, and then give brief
descriptions of the relative MAC algorithms.
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2.1 Notations

M‖N : the concatenation of two messages M and N
|M | : the length of M
K : the secret key
C : the output of a MAC taking a secret key K and a message M as input
xi : the ith block of a message
yi : the internal state after the ith iteration of a MAC
0i : the strings of i 0s.
· : the multiplication in the field GF (2n)

lm : the length of the MAC output
Σn : {0, 1}n, the set of all strings of length n

2.2 The CBC-Like MAC Algorithms

MAC algorithms based on block ciphers are of great practical significance. CBC-
MAC is a well-known method to generate a MAC based on a block cipher in
CBC mode. In general, we will call MAC algorithms based on block ciphers in
CBC mode the CBC-like MAC algorithms.

CBC-MAC is used to compress the message M of a fixed length mn with a
secret key K, where n is the length of a block, and m is the number of blocks.
More precisely, the CBC-MAC is defined as:

y0 = 0,

yi = EK(yi−1 ⊕ xi), i = 1, . . . , m,

C = CBCK(M) = f(ym),

where f is a truncation function. For messages with fixed length, Bellare, Kilian,
and Rogaway [3] established the security of the CBC-MAC. However, a well
known fact says that the CBC-MAC without truncation is not secure for variable-
length messages. In fact, suppose that an adversary has known C = CBCK(M),
C′ = CBCK(M ′), then for any single block Y , the messages M‖Y and M ′‖(Y ⊕
(C⊕C′)) have the same MAC. Several variants of CBC-MAC have been proposed
for variable length messages in order to avoid this attack.

EMAC. EMAC is the encrypted CBC MAC, first proposed by Bosselaers et al.
as RIPE-MAC in [5]. It is obtained by encrypting the CBC-MAC value by the
block cipher encryption E again with a new key K2. That is,

C = EMACK1,K2(M) = EK2(CBCK1(M)),

where K1 is the key of the CBC-MAC and CBCK1(M) is the CBC-MAC value
of M without truncation. The result of EMAC is C. Petrank and Rackoff [20]
proved that EMAC is secure if the message length is a positive multiple of n. It is
remarked that, however, EMAC requires two key scheduling of the corresponding
encryption E.
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XCBC. Black and Rogaway [6] suggested some simple variants of the CBC-
MAC i.e., ECBC, FCBC and XCBC. These modified CBC-MACs can be used
to MAC messages of arbitrary lengths efficiently. The most typical construction
in [6] is XCBC which requires only one key scheduling of the built-in block cipher
E. In general, XCBC takes three keys: one block cipher key K1, and two n-bit
keys K2 and K3. If the message length is the multiple of n, set K = K2, P = M .
Otherwise, set K = K3, P = M‖10i, where i = n − 1 − (|M | mod n). Write
P = x1‖ · · · ‖xm, y0 = 0. Then yi = EK1(xi ⊕ yi−1), for i = 1, . . . , m − 1. The
XCBC value is C = EK1(xm ⊕ ym−1 ⊕K).

TMAC. Kurosawa and Iwata introduced two-key CBC-MAC (TMAC) in [14].
TMAC takes two keys with (lk + n) bits in total, one block cipher key K1 with
lk bits and the other key K2 with n bits. TMAC is obtained from XCBC by
replacing (K2, K3) with (K2 · u, K2), where u is some non-zero constant.

OMAC. OMAC, also proposed by Iwata and Kurosawa [13], is a generic name
for OMAC1 and OMAC2. OMAC1 is obtained from XCBC by replacing (K2, K3)
with (L · u, L · u2) for some non-zero constant u in GF (2n), where L is given by
L = EK(0n). OMAC2 is constructed in a similar manner by using (L ·u, L ·u−1).
Note that L · u, L · u−1 and L · u2 = (L · u) · u can be computed efficiently by
one shift operation and one conditional XOR from L, L and L · u, respectively.

CMAC. CMAC [16] is equivalent to OMAC1, which is recommended by NIST.

PC-MAC and MT-MAC. PC-MAC and MT-MAC were proposed by Mine-
matsu and Tsunoo [15] for higher performance for applications. Both are based
on truncated block ciphers. PC-MAC is a very efficient periodic CBC-like con-
struction. MT-MAC is an efficient MAC with provable security based on the
modified tree hash (MTH). See [15] for more details.

Three-Key Enciphered CBC Mode. Three-key enciphered CBC mode
[10] was constructed using the preserving fixed input length MAC by Dodis
et.al. To describe it, some notations are needed. For f1, f2 : Σn → Σn, let
g[f1, f2](x2‖x1) = f1(x1)⊕ f2(x2). The compression function G[f1, f2] is defined
as

G[f1, f2](x1‖ · · · ‖xt) = g[f1, f2](xt‖g[f1, f2](· · · g[f1, f2](x2‖x1) · · · )).
The three key enciphered CBC construction uses three length-preserving func-
tions f1, f2, f3 : Σn → Σn and takes a variable-length input M = x1‖ · · · ‖xt

(w.l.o.g., we assume the length to be a multiple of n; if not, then append a bit
“1” followed by the minimum “0”s to achieve this). The mode is defined as:

H [f1, f2, f3](x1‖ · · · ‖xt) = f3(G[f1, f2](x1‖ · · · ‖xt)).

Enhanced enciphered CBC, suggested in [10], can be used for the “unkeyed”
settings (RO and CRHF) as well as the “keyed” settings (PRF and MAC).
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The mode is denoted as H∗[π1, π2, π3]. The MAC can be regarded as the basic
enciphered CBC mode H [f1, f2, f3] with length-preserving functions f1, f2, f3,
where fi = πi(x)⊕ x for i=1, 2, and f3(x) = π3(x)⊕ π−1

3 (x).

3 Distinguishing Attack on CBC-Like MACs

Preneel and van Oorschot [18] proposed a general method to distinguish an
iterative MAC algorithm from a random function, which is based on an internal
collision searched by the birthday attack. However, we note the free-collision
property of the CBC-like MACs with only one-block as a variable. This follows
from the fact that the built-in block cipher is a permutation. So we utilize the
free-collision property to distinguish a block-cipher-based MAC from a random
function.

More specifically, we have the following observation.

Proposition 1. Let n, m ≥ 2 be integers. Given the block cipher E: Σn → Σn

and a secret key K, the values of CBC-MAC without truncation for the messages
x1‖x2‖ · · · ‖xm and x′

1‖x2‖ · · · ‖xm must be different provided that x1 �= x′
1, where

x′
1 and xi, i = 1, 2, . . . , m are single-block messages.

Proof. Let
y1 = EK(x1) and y′

1 = EK(x′
1).

It is immediate that y1 �= y′
1 since EK(·) is a permutation on Σn.

For i = 2, . . . , m, yi and y′
i can be recursively defined as

yi = EK(xi ⊕ yi−1) and y′
i = EK(xi ⊕ y′

i−1).

First, we claim that y2 �= y′
2. Otherwise, since E is a permutation, we would

have
x2 ⊕ y1 = x2 ⊕ y′

1,

which forces that y1 = y′
1. This is a contradiction.

Inductively, we have

yi �= y′
i for i = 3, . . . , m.

In particular, the inequality ym �= y′
m holds, and hence

C �= C′,

when there is no truncation on ym and y′
m. ��

Without taking into account of the truncation, it is obvious that the CBC-MAC
is a permutation on a single message block with other blocks fixed.

If there is a truncation function on the final output of the MACs, we can use
the method in [18] to detect the internal collision (collision before the truncation)
from all the collisions. For simplicity, we assume that there is no truncation
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function on the final output of the MACs ( i.e., lm = n) in the rest of our
discussion.

To perform the distinguishing attack, the adversary is given an oracle C =
CBCK(·), and makes 2(n+1)/2 queries with m-block messages that have the same
last m− 1 blocks. The following is the explicit structure S:

S = {M i |M i = xi
1‖x2‖ · · · ‖xm, i = 1, 2, . . . , 2(n+1)/2 },

where xi
1’s are different random single-block messages. If there is a collision in

the structure, the MAC algorithm is a random function. Otherwise it is the
CBC-MAC.

This attack requires about 2(n+1)/2 chosen messages. By the birthday paradox,
the success probability is 0.63.

Most variations of the CBC-MAC are obtained by modifying the padding
method of the message and encrypting the value of the CBC-MAC with another
key or the same key again. So these MACs are still permutations on single block
(the other blocks are fixed). Therefore, the above distinguishing technique can
also be used to attack other block-cipher-based MACs mentioned earlier, such
as EMAC, XCBC, TMAC and OMAC. For these cases, we only need messages
with one or two blocks to query the corresponding oracle.

4 Second Preimage Attack on CBC-Like MACs

Second preimage resistance is sometimes referred to as weak collision resistance.
It means that if an adversary obtains M and the corresponding tag C, it must
be computationally infeasible to construct another message M ′ s.t. MACK(M ′)
= C, without knowledge of K. The ideal complexity of finding the M ′ is 2lm .
In ACISP 2001, Brincat and Mitchell introduced a second-preimage attack with
birthday attack complexity. In this section, we extend this attack to the cases
that include CBC-like MACs and PMAC, which proposed by Black and Rogaway
as a parallelizable block-cipher mode of operation for message authentication [7].

4.1 The Attack of Brincat and Mitchell

The new forgery attack on CBC-MAC of Brincat and Mitchell [4] is a kind
of second-preimage attack. To perform this attack, the attacker constructs two
structures:

S1 = {M i |M i = M1‖ · · · ‖Mq‖X i‖F1‖ · · · ‖Fr, i = 1, . . . , 2n/2 },
S2 = {M i |M i = Y i‖F1‖ · · · ‖Fr, i = 1, . . . , 2n/2 },

where M1, . . . , Mq are arbitrary n-bit blocks, q is a positive integer, F1, F2, . . .,
Fr are arbitrary but fixed n-bit blocks, and X i(1 ≤ i ≤ 2n/2) are n-bit blocks and
pairwise distinct, so are Y i(1 ≤ i ≤ 2n/2). Then the attacker queries the corre-
sponding MACs with elements in S1 and S2. It is argued that with high probabil-
ity, a MAC of some element in S1 matches that of an element in S2. In other words,
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there are positive integers k, j such that CBC(M1‖ · · · ‖Mq‖Xj‖F1‖ · · · ‖Fr)
=CBC(Y k‖F1‖ · · · ‖Fr). Since the n−bit blocks F1, . . ., Fr are the same for the
two messages, it is immediate that CBC∗(M1‖ · · · ‖Mq‖Xj) = CBC∗(Y k). Here
we use CBC∗(X) to denote the computation of the MAC on message X without
the output transformation. This yields CBC∗(M1‖ · · · ‖Mq) = Xj ⊕Y k. As a re-
sult, if the attacker knows the MAC value C for the message Z‖P1‖ · · · ‖Pt(t ≥ 1),
then the attacker knows that the MAC for the message M1‖ · · · ‖Mq‖Xj ⊕ Y k ⊕
Z‖P1‖ · · · ‖Pt is also C.

4.2 The Second-Preimage Attack on the CBC-MAC

In this subsection, we propose another second-preimage attack on the CBC-
MAC. In this attack, we can construct a message that is different from the given
message (with at least two blocks) and also with the birthday attack complexity.

Let us start with the following statement.

Proposition 2. Let n, m > 2 be integers, E: Σn → Σn be the block cipher
encryption, and K the secret key for the CBC-MAC. Then the CBC-MAC values
of x1‖x2‖x3‖ · · · ‖xm and x′

1‖x′
2‖x3‖ · · · ‖xm are the same if and only if EK(x1)⊕

x2 = EK(x′
1)⊕x′

2, where x′
1, x′

2 and xi, i = 1, 2, . . . , m are single-block messages.

Proof. The proof is straightforward.
Note that the CBC-MAC value of x1‖x2‖x3‖ · · · ‖xm is given by

EK(EK(· · · (EK(EK(EK(x1)⊕ x2)⊕ x3) · · · )⊕ xm−1)⊕ xm).

Similarly, the CBC-MAC value of x′
1‖x′

2‖x3‖ · · · ‖xm is

EK(EK(· · · (EK(EK(EK(x′
1)⊕ x′

2)⊕ x3) · · · )⊕ xm−1)⊕ xm).

It is then easy to see that these two values are the same if and only if

EK(x1)⊕x2 = EK(x′
1)⊕x′

2. ��
Suppose that the adversary is given an oracle C = CBCK(·). Assume that the
adversary has intercepted a message M0 = x1‖x2‖ · · · ‖xm and its MAC C0. A
collision is shown in Fig. 1.

The following procedure can be used to forge the MAC C0 by finding another
message M ′.

1. Construct two structures

S1 = {M i
1 |M i

1 = x1‖xi
2‖x3‖ · · · ‖xm, i = 1, . . . , 2(n+1)/2 },

S2 = {M i
2 |M i

2 = xi
1‖x2‖x3‖ · · · ‖xm, i = 1, . . . , 2(n+1)/2 },

where x1
2, x

2
2, . . . are distinct random message blocks that are different from

x2, and so are x1
1, x

2
1, . . . from x1.

2. Query the oracle for the messages in the two structures and obtain Ci
1 =

CBCK(M i
1), Ci

2 = CBCK(M i
2), where i=1, 2, . . ., 2(n+1)/2.
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Fig. 1. A Collision of the CBC-MAC

3. Search a collision by the birthday attack. Assume w.l.o.g. that Ck
1 =Cj

2 . By
Proposition 2,

EK1(x1)⊕ xj
2 = EK1(x

k
1)⊕ x2,

then
EK1(x1)⊕ x2 = EK1(x

k
1)⊕ xj

2.

So the message M ′ = xk
1‖xj

2‖x3‖ · · · ‖xm has the same MAC value with the
message M .

Given the message M0 = x1‖x2‖ · · · ‖xm, it is not difficult to see that our tech-
nique still works for the following structures

S1 = {M i
1 |M i

1 = x1‖ · · · ‖xj‖xi
j+1‖xj+2‖ · · · ‖xm, i = 1, . . . , 2(n+1)/2 },

where x1
j+1, x

2
j+1, . . . are distinct random message blocks that are different from

xj+1; and

S2 = {M i
2 |M i

2 = X i‖xj+1‖xj+2‖ · · · ‖xm, i = 1, . . . , 2(n+1)/2 },

where X i’s are distinct random j-block messages, and different from x1‖ · · · ‖xj .
A collision can be obtained by the birthday attack, i.e., Mk

1 = M l
2. So we

can deduce EK(yj ⊕ xk
j+1) = EK(y′

j ⊕ xj+1), where y′
j = CBC∗(X l), thus

EK(yj ⊕ xj+1) = EK(y′
j ⊕ xk

j+1). The messages X l‖ xk
j+1‖xj+2‖ · · · ‖xm and M

have the same tag.
This attack is apparently working for the following MACs with arbitrary mes-

sage length such as EMAC, XCBC, TMAC, OMAC, CMAC, PC-MAC and MT-
MAC.
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4.3 A General Statement Attack on CBC-Like MACs

In this subsection, we describe a general statement about the building blocks
of MAC constructions, which results in the second preimage attack on more
CBC-like MACs.

By the above attack, we extract the building block: g(x, y) = EK(x)⊕ y from
the CBC-MAC as a new iteration function, so the CBC-MAC for the message
M = x1‖x2‖ · · · ‖xm is

y2 = g(x1, x2),
yi = g(yi−1, xi), i = 3, . . . , m,

ym+1 = EK(ym).

It can be seen that, given a message M = x1‖x2‖ · · · ‖xi‖xi+1‖ · · · ‖xm and
its CBC-MAC value, a particular second-preimage can be of the form M ′ =
x′

1‖x′
2‖ · · · ‖xi‖xi+1‖ · · · ‖xm as long as g(x1, x2) = g(x′

1, x
′
2). So, the second

preimage attack for the CBC-MAC can be reduced to the second preimage at-
tack on the equation g(x, y) = EK(x) ⊕ y, where x, y are independent block
variables.

Definition 1. Let b1, b2 ≥ n, f1 : Σb1 → Σn and f2 : Σb2 → Σn be two maps.
Define gf1,f2 : Σb1 ×Σb2 → Σn as

gf1,f2(x, y) = f1(x)⊕ f2(y),

where x ∈ Σb1 and y ∈ Σb2 .

For notational simplicity, we shall write g for gf1,f2 hereafter.

Proposition 3. Given x1, y1 ∈ Σb, there exists an algorithm to search (x2, y2)
such that g(x2, y2) = g(x1, y1) with birthday attack complexity 2(n+3)/2. The
probability of success is 0.63.

Proof. We present Algorithm 1 similar to Yuval’s birthday attack algorithm [24].

Algorithm 1. Find another pair (x2, y2) to make g(x2, y2) = g(x1, y1).
INPUT : x1, y1, g.

OUTPUT : x2, y2.
1. S1 ← ∅
2. For i ← 0 to 2(n+1)/2 do

Choose xi
1 /∈ {x1, x

0
1, . . . , x

i−1
1 } at random and compute zi

1 ← g(xi
1, y1)

S1 ← S1
⋃
{(xi

1, z
i
1)}

End For
3 For i ← 0 to 2(n+1)/2 do

Choose yi
1 /∈ {y1, y

0
1 , . . . , y

i−1
1 } at random and compute zi

2 ← g(x1, y
i
1)

If zi
2 = zk

1 where zk
1 is the second component of an element of S1

Return (xk
1 , yi

1)
End For
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Fig. 2. Three Types of Building Blocks to MAC Iterative Construction

To show that this is a successful attack, we need to check two things. First,
the forgery is valid, i.e., g(x2, y2) = g(x1, y1). Second, the messages are different,
i.e., (x2, y2) �= (x1, y1).

If a pair (x2, y2) is obtained from the Algorithm 1, (x2, y2) �= (x1, y1) is
obvious.

Next, we prove g(x2, y2) = g(x1, y1). By the algorithm, we have g(x2, y1) =
g(x1, y2), i.e.,

f1(x2)⊕ f2(y1) = f1(x1)⊕ f2(y2).

This implies that f1(x2)⊕ f2(y2) = f1(x1)⊕ f2(y1), and hence

g(x2, y2) = g(x1, y1).

Step 2 needs 2(n+1)/2 computations of the function g, and Step 3 has the same
complexity. Therefore, the complexity of the algorithm is 2(n+3)/2. The proba-
bility of success is

1−
2(n+1)/2−1∏

i=1

(1− i

2n
) ≈ 1−e−1 ≈ 0.63. ��

By our observation, there are three types of building blocks for MAC iterative
constructions that are consistent with the general statement. See Fig. 2.

1. The first type of building block is defined as g(x, y) = EK(x) ⊕ y, where x,
y are independent variables. The building block is available to CBC-MAC,
EMAC, XCBC, OMAC, PC-MAC etc. It is obvious that f1(x) = EK(x), and
f2(y) = y. See Fig 2 (a). We would like to point out that the CFB-MAC[1]
is the type, whose iteration function is defined as follows:

yi = g(yi−1, xi) = EK(yi−1)⊕ xi.

2. The second type is given by g(x, y) = f1(x)⊕ f2(y), where x, y are indepen-
dent variables. The building block g(x, y) comes from the MAC based on the
three-key enciphered CBC mode and PMAC. See Fig. 2 (b).

3. The third type is g(x, y) = (π1(x) ⊕ x) ⊕ π2(y), which is corresponding to
the MAC with the enhanced three-key enciphered CBC mode. Here, f1(x) =
π1(x)⊕ x, and f2(y) = π2(y). See Fig. 2 (c).
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Proposition 4. Let C be a MAC algorithm such that C(x‖y‖mf) = f(g(x, y)),
where f is a permutation, g(x, y) = f1(x)⊕f2(y), x and y are independent (block)
variables, mf is a concatenation of blocks. Then there exists an algorithm to get
the second-preimage for any message of at least two blocks with birthday attack
complexity.

Proof. Let M = x‖y‖mf , x, y are variable blocks, and mf is a fixed concate-
nation of blocks. By the assumption, the MAC value of M is a permutation of
g(x, y). By Proposition 3, we can get (x′, y′), s.t. g(x′, y′) = g(x, y) with birthday
attack complexity. Since f is a permutation, then f(g(x′, y′)) = f(g(x, y)), i.e.,
C(M ′) = C(M), where M ′ = x′‖y′‖mf . ��
It is clear that, the general statement is the core of the second preimage attack,
which is applicable to most CBC-like MACs, including the recently proposed
MAC based on three-key enciphered CBC mode and its enhanced version etc.

5 Conclusion

This paper first explores a new distinguishing attack on CBC-like MACs. The
distinguisher can detect a CBC-like MAC from a random function. The other
result of this paper is to show a second preimage attack on a variety of MACs
based on block ciphers in CBC mode. In particular, we have proved that the
MACs such as CBC-MAC, EMAC, XCBC, TMAC, OMAC, CMAC, PC-MAC,
MT-MAC, three-key enciphered CBC mode and PMAC etc. are all vulnerable
to the second preimage attack.

Acknowledgements. We would like to thank the reviewers for their very help-
ful comments on the paper.
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Improving the Rainbow Attack by Reusing
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Abstract. Hashing or encrypting a key or a password is a vital part in
most network security protocols. The most practical generic attack on
such schemes is a time memory trade-off attack. Such an attack inverts
any one-way function using a trade-off between memory and execution
time. Existing techniques include the Hellman attack and the rainbow at-
tack, where the latter uses different reduction functions (“colours”) within
a table.

This work investigates the possibility of reusing colours, i.e., repeat-
ing the reduction functions, in the rainbow attack. We show how this
outperforms the Hellman and the rainbow attack in a model of fixed re-
sources. We try to characterize exactly when this improvement appears
and in such a case the choice of an optimal number of colours.

1 Introduction

Almost all network security protocols have as an essential building block the use
of a hash function or a symmetric cipher to hash or encrypt some known value,
call it a key, a password or a plaintext. The function simply acts like a one-way
function, with the property that knowing an output value, it is computationally
difficult to find the input that maps to the given value.

In general, the key space could have been chosen very large (say 128 bits),
and it is essentially impossible to apply any generic attack to invert the one-way
function. However, there are several scenarios where the key space would be much
smaller. One such example is when the key is selected by a user as a password.
Another example could be in protocols where resources are very constrained, say
protocols for RFID and similar devices. Yet another class of examples would be
old security protocols that are still running; one such example is GSM.

In essence, there is a very strong motivation for studying generic attacks.
Apart from the trivial approach of an exhaustive key search, the most well
known and well studied class of generic attacks is the Time Memory Trade-Off
(TMTO) attacks. TMTO attacks provide a middle ground between brute force
and table lookup attacks on various cryptographic primitives. The size of e.g.,
the key, a stream cipher’s internal state or a set of possible passwords gives
the number N of possible values and determines the complexity which can be
balanced in terms of time and memory. In 1980, Hellman [1] described one such
attack and several improvements and tweaks have been suggested since. The
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concept has also been extended by Biryukov and Shamir [2] into Time Memory
Data Trade-Off (TMDTO) attacks, where another trade-off parameter is added
to the mix. However, this type of attack will not be studied in this paper.

The basic problem that TMTO attacks attempt to solve is that of inverting
a one-way function f : Ω → Ωc. While it is always a theoretical possibility to
try out all the possible values to see which one matches the value we attempt to
invert, in practice this usually takes too long. One could instead pre-calculate
and sort a table, which would allow a fast lookup, but the memory requirements
would be very large. Thus, it would be interesting to somehow balance the time
and memory requirements.

The Hellman attack creates chains by repeatedly applying the one-way func-
tion to different starting points. Each chain could consist of t different points, and
is represented on disk using only the starting points and endpoints. By creating a
large number of chains we could expect to cover a large part of the search space.
During the online phase of the attack, we traverse the chains, searching among
the endpoints. One modification to the original idea is that of using distinguished
points [3] which saves on disk accesses.

Another significant idea is to apply different reduction functions after each
successive application of the one-way function, in order to avoid the impact of
collisions. This latter approach is called the rainbow attack [4] since the differ-
ent functions used in each column of the table could be compared to different
“colours” that together make up a rainbow. The improvement offered by the
rainbow attack is only a relatively small reduction. Furthermore, it has been
shown [5] that there can be no substantial improvements compared to the cur-
rently known attacks, but only small reductions in required complexity.

Nevertheless, since the TMTO attack applies to all sorts of cryptographic
primitives and it is the most practical attack for many schemes, even improve-
ments giving small complexity reductions are very important. The rainbow at-
tack quickly became famous, even if it only provided at most a halving of com-
plexity compared to the Hellman attack using distinguished points.

This paper will investigate a generalized version of the rainbow attack, namely
what happens when the colours are systematically repeated within the chains. It
will become clear that for a certain chain length, the number of colours (number
of reduction functions we use before starting to reuse them) will affect the online
attack time and the probability of success when trying to invert a value. The
repeated pattern of colours will provide a speed-up of the attack that allows it
to perform better than the rainbow attack under some circumstances. We will
try to characterize exactly when such an improvement appears and in such a
case the choice of an optimal number of colours.

The analysis will be done in a model where we assume the attacker to have
fixed resources. This means that the attacker has a fixed memory of M0 words
(each word of size suitable for representing one chain) and we allow a certain
computational complexity T0 (measured in evaluations of f) in the online phase.
Then we are interested in maximizing the probability of success in the attack,
call it Psucc, assuming that the attacker has access to one hashed value y, where
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y = f(x). The precomputation is large, but similar for all different attacks, so we
do not consider this part in detail. To the best of our knowledge, the performance
of TMTO attacks under fixed resources has not been considered before.

As a motivating example, we might consider an attempt to attack a password
from an average equipped attacker. Using up to twelve alphanumerical charac-
ters, we have N ≈ 272 passwords. An attacker equipped with a few large disks
could have access to M0 = 236 words of memory and we might allow him to do
T0 = 254 computational operations (evaluations of f) in the online phase, either
on an FPGA or in a small network of computers. The time memory trade-off
attacks we know can achieve only a small success probability in this scenario.
How do we get the highest success probability Psucc for an attack using these
given resources?

This is certainly an interesting practical question. One can buy rainbow tables
for various search spaces online [6]. However, these tables are very limited in
the set of characters (numeric or lowercase) or in the password lengths (seven
characters) that they attack. If one wants to attack stronger passwords, one
simply has to accept a low success probability unless one wants to use completely
unrealistic hardware.

The paper is outlined as follows. In Section 2 we give an introduction to time
memory trade-off attacks and introduce some basic notation. Section 3 presents
the thin rainbow attack, which is the focus of this paper. Then we present some
initial properties in Section 4 before continuing to a comparison between the
Hellman attack, the original rainbow attack and the thin rainbow attack in
Section 5. The paper is concluded in Section 6.

2 TMTO Attacks

The family of TMTO attacks dealt with in this paper has evolved from an attack
introduced by Hellman almost thirty years ago. We start by supplementing the
one-way function f : Ω → Ωc with a reduction function h : Ωc → Ω which maps
an output from f to a new input. The name is not always entirely accurate since
we might have Ω = Ωc, but is kept for historical reasons.

By defining g = h ◦ f , the round function g can be applied repeatedly to a
starting point SP ∈ Ω to create an endpoint EP = g(. . . g(SP ) . . .) where g is
applied t times. This chain can be represented in memory by just preserving SP
and EP . By creating a long table consisting of m chains for random starting
points, and sorting the chains on the endpoints, we have allowed for a fast table
lookup.

During the online phase, we are given y ∈ Ωc and want to find a1 correspond-
ing x such that y = f(x). We calculate the first candidate endpoint x̂t−1 = h(y),
thus assuming that y occurs as yi

t−1 in some chain i and letting x̂t−1 be the end-
point resulting from it. By searching for x̂t−1 among the endpoints, we might
1 We might be looking for a password with a certain hash, in which case it is not

interesting that we find the “correct” password as long as we find some password
that gives the desired hash value.
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get an alarm. If so, we use the corresponding starting point SPi to reconstruct
the value x̂ immediately prior to yi

t−1 in the chain. This could be x. It could also
be a false alarm due to colliding rows (in turn caused by the reduction function
mapping several elements in Ωc to a certain element in Ω), meaning that x̂ does
not yield f(x̂) = y. Unless we find x, we calculate another candidate endpoint

x̂t−2 = g(h(y)) = g(x̂t−1).

We continue calculating candidate endpoints as

x̂t−i = g(. . . (g(h(y))) . . .) = g(x̂t−i+1), i = 3, 4, . . . , t

until we find x or until we have calculated x̂0 without result.
The two parameters that govern the number of points in the table, m and t,

can be chosen according to the TMTO curve [1]. This equation gives the number
of points that can be added to the table before expecting (too many) duplicates.
Let T and M be the time complexity of the online attack and the memory
complexity needed for storing the tables, respectively. Then, using the birthday
paradox, the curve of the original Hellman table can be found as N2 = TM2 [1]
and similarly, each TMTO attack has an associated TMTO curve. Hellman sug-
gested using t tables, with different reduction functions hi, in order to avoid the
problem of colliding chains where a repeated point causes all subsequent points
to be repeated, wasting memory in some sense. An implementation improvement
to the original idea is that of using distinguished points [3]. The chains are al-
lowed to be of variable length and the endpoints are those where some of the
bits, say the last b bits, are all zero. Such values occur with probability λ = 2−b,
so the chains will have an expected length of 2b.

In 2003 Oechslin proposed the rainbow attack [4] as another way to avoid this
problem. In this attack, each column of the table is created using a different
reduction function, i.e., EP = gt−1(. . . (g0(SP ))). For a repeated point to cause
further points to be repeated, it will have to occur using the same round function.
Since the problem of collisions of chains has disappeared, this allows the rainbow
method to use a single table sized t times larger than one of the Hellman tables.
See Figure 2 for an overview of a matrix, its chains and their points.

3 The Thin Rainbow Attack

One apparent drawback of the rainbow scheme is that calculating x̂t−i cannot
make use of the recently calculated x̂t−i+1. While each new candidate endpoint
in the Hellman attack required only one application of g, each new candidate
endpoint in the rainbow attack will require more calculations than the previous
one. This makes the online time complexity

T = 1 + 2 + . . . + t ≈ t2

2
.

However, this does not compare negatively with the Hellman attack once we
realize that the Hellman attack uses t tables where each will require t applications



366 M. Ågren, T. Johansson, and M. Hell

SP0 = x0
0 f y0

0 h0 x0
1 f . . . y0

t−2 ht−2 x0
t−1 f y0

t−1 ht−1 x0
t = EP0

SP1 = x1
0 f y1

0 h0 x1
1 f . . . y1

t−2 ht−2 x1
t−1 f y1

t−1 ht−1 x1
t = EP1

SP2 = x2
0 f y2

0 h0 x2
1 f . . . y2

t−2 ht−2 x2
t−1 f y2

t−1 ht−1 x2
t = EP2

SPm−2 = xm−2
0 f ym−2

0 h0 xm−2
1 f . . . ym−2

t−2 ht−2 xm−2
t−1 f ym−2

t−1 ht−1 xm−2
t = EPm−2

SPm−1 = xm−1
0 f ym−1

0 h0 xm−1
1 f . . . ym−1

t−2 ht−2 xm−1
t−1 f ym−1

t−1 ht−1 xm−1
t = EPm−1

...
...

...
...

...
...

...
...

...

g0 gt−1

Fig. 1. A general rainbow matrix consisting of m rows and t columns. Only the starting
and endpoints (shown in dashed rectangles) are stored on disk. A Hellman table uses hi =
h,∀i, while a rainbow table features different reduction functions, hi �= hj , ∀i, j �= i.

of g, giving T = t2. Indeed, the TMTO curve derived for the rainbow attack is
N2 = 2TM2, which has been taken as evidence of the superiority of the rainbow
attack. There has however been some discussion [5] as to whether the rainbow
attack really is as superior as was originally claimed.

We now examine a generalized version of the rainbow attack, which is called
the thin rainbow attack. This attack reuses colours in a repeated sequence: we
make a “mini-chain” of S colours which we repeat L times,

g0g1 . . . gS−1︸ ︷︷ ︸ g0g1 . . . gS−1︸ ︷︷ ︸ . . . g0g1 . . . gS−1︸ ︷︷ ︸,
i.e., hi = hj , i ≡ j (mod S). Of course, S = t gives an ordinary rainbow chain
while S = 1 is the Hellman case with one table. We have found that the idea
was mentioned in [5] as a TMDTO attack. The name “thin” stems from the fact
that the colours are repeated in many thin stripes.

As noted in [5], the candidate endpoints in the thin rainbow attack can be
calculated faster than in the rainbow attack when the chains are equally long,
SL = t. The observation is that if the sequence function is defined as

gSeq = gS−1 ◦ gS−2 ◦ . . . ◦ g0,

most of the candidate endpoints can be calculated using previously calculated
ones. Since every point in a chain can be identified by the sequence it is in and
the location within that sequence, using 0 ≤ j < S gives

x̂iS+j = gSeq ◦ gSeq ◦ . . . ◦ gSeq︸ ︷︷ ︸
L−i−1

◦gS−1 ◦ . . . ◦ gj+1 ◦ hj(y)

= gSeq(gSeq ◦ . . . ◦ gSeq︸ ︷︷ ︸
L−i−2

◦gS−1 ◦ . . . ◦ gj+1 ◦ hj(y))

= gSeq(x̂(i+1)S+j). (1)

The drawback of the thin rainbow attack is that the coverage is likely to be
smaller; while a reoccurring value in a rainbow table only leads to further re-
occurring values if the duplicate value appears in the exact same column, there
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is now an entire congruence class of columns where any of the L columns af-
ter which gi is applied will cause succeeding values to not add anything to the
coverage of the table.

Investigating the online behaviour reveals that the number of chain walk steps
that need to be made in the worst case scenario (not counting those that are
due to false alarms) is

T = 1 + 2 + . . . + S + (L − 1)S · S

=
S(S + 1)

2
+ (L − 1)S2 ≈ LS2. (2)

Given a chain length t = SL we have T = tS so it might be tempting to deduce
that S = 1 (a single Hellman table) gives the fastest online operation. However,
to find the actual online time of the thin rainbow attack we would also need to
investigate the number of false alarms, e.g., as in [7], and take into account the
different number of tables employed by the various methods. A more detailed
investigation of the proposed TMTO method is needed to see if it can provide
some improved performance.

4 The Deteriorating Coverage of the Thin Rainbow
Attack

Such an investigation has been done in the model of fixed resources and our
findings are presented in this section. The thin rainbow attack has been com-
pared to other TMTO attacks applied on fixed memory M0 and complexity T0.
Throughout the paper, simulations are based on password hashing using MD5.2

We start by studying the development of the tables’ coverage, i.e., we count
how many new points are added with each column of a table. Given a rainbow
table column count t and using the same column count for thin rainbow tables,
we get Figure 2, where it is clear how the number of unique points in each
column naturally develops in a similar manner for the first S columns, while the
subsequent slope of the curve is steeper for a thin rainbow table than it is for
an original rainbow table.

Since the area under each curve can be considered to represent the number
of points represented by the table, it is evident how the thin rainbow table does
not allow for as many successful inversions as the original rainbow table.

As a consequence of this, the thin rainbow attack is not as successful as the
rainbow attack using equally long chains — however, it is much faster due to
property (1). While keeping m constant, the coverage of the thin rainbow table
could be improved by increasing t = SL, creating longer chains. Increasing SL
makes the online time longer, but when the length has been increased so much
2 While this hash function is broken in its own right, none of its deficiencies have been

exploited here — it is simply used as a one-way function. There is no perceived need
to rerun the simulations using other hash functions as the conclusions would be the
same.
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Fig. 2. With m = 212 rows, the number of new points added with each column has
been plotted for an original rainbow table, corresponding to (L, S) = (1, 64), and
thin rainbow tables ((L, S) = (2, 32) and (L, S) = (4, 16)). The curves naturally start
out the same way for 16 columns but when the thin tables start reusing colours, the
number of added points gets lower than in the rainbow table. Results are averaged over
30 tables.

as to make the attack take equally long time as the original rainbow attack, it is
our hope that the coverage will actually outperform that of the original rainbow
attack. The memory consumption will not be affected.

In the next section, we will allow the thin rainbow attack to use longer chains,
and see where that leads us.

5 Detailed Performance Analysis under Fixed Resources

We consider the following problem: What probability of success Psucc can we
reach using M0 chains and T0 function evaluations? We apply a very strict policy
to T0: once the threshold is exceeded, we abandon all calculations, no matter if
we are currently investigating an alarm or if we are calculating a candidate end
point. We allow the M0 chains to be split among l tables of m chains each.

In our model we consider an attacker who is given a hashed password after an
initial pre-computation phase and wants to find the password within a certain
time. After building a set of tables, we have repeated the online attack on a large
number of hashes in order to establish the success probability Psucc. We have
performed many such experiments and averaged the results.
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Note that our setting does not translate directly into that of TMDTO attacks.
In the latter attacks, we might e.g., be trying to find the internal state in a stream
cipher [2]. If we can find the initial state during a certain time instance, there
is no point in continuing the search in order to find the state at a later time.
Thus, we do not care how many points we can invert, all that we are interested
in is inverting one out of many. The attacker in our setting investigated here,
however, is certainly interested in having a success probability Psucc that is as
high as possible. Given x passwords, our attacker can expect to reconstruct
xPsucc of them.

5.1 Algorithms and Parameters Considered

In order to investigate the chances for such an attack in real-world circumstances,
we have limited the resources available to our attacker. After deciding upon
resources M0 and T0, we have compared the following algorithms, while trying
out various parameter choices:

– The Hellman algorithm: The tables have been allowed to use any column
count t and any chain count m (and thus the table count l such that ml =
M0).

– The rainbow algorithm: Similarly, the tables have been allowed to use
any colour count t and any chain count m (and the table count l producing
ml = M0).

– The thin rainbow algorithm: These tables have been allowed to use any
colour count S and any sequence count L. As above, we have allowed any
value of m and the corresponding l. Keep in mind that the Hellman and the
rainbow attacks can both be obtained as special cases of the thin rainbow
attack, so the thin rainbow attack is guaranteed to be able to perform at least
as good as the other algorithms. In order to make a meaningful comparison
we have thus excluded the cases L = 1 and S = 1 from the values used with
the thin rainbow attack.

For each algorithm, the best success probability has been included in our results.
All other calculations have been discarded. This has been done for various search
space sizes N . Thus, for each choice of N , we have three data points which tell
us the success probability Psucc for the three algorithms when they perform “as
good as possible”.

The search has been done by first searching table one completely, then table
two, etc. until the last table is searched. Note that our fixed time resource may
be exhausted once we have searched some tables, causing the latter tables to
never be looked at. We have investigated whether this is the case, but it has
turned out that parameter choices that cause all tables to be searched have
performed better. Still, we allow the attacker to do whatever she pleases with
the memory and time alloted and if, for some reason, the best approach she can
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Fig. 3. The probability of success for the different algorithms as a function of the size
of the search space. M = 212 and T = 218.

come up with is to only use half of the memory, then we must allow her to do
just that.

Also note that we disregard the difference in bits needed to store the tables.
As pointed out in [5], the starting points of fewer, larger tables cannot be com-
pressed as much as equally many starting points in a larger number of smaller
tables. On the other hand [8,9], the compression of the endpoints behaves the
other way round. Even with a very small number of tables, these effects taken to-
gether put the difference in number of chains that fit into the tables at just a few
per cent.

5.2 Comparing TMTO Algorithms under Fixed Resources

Figure 3 illustrates the behaviour when M0 = 212 and T0 = 218. The Hellman,
rainbow and thin rainbow algorithms have all been applied to a password from
various domains, where the size of the domain is indicated on the x axis. The y
axis shows the success probability Psucc obtained. Note that the smaller search
spaces could be searched exhaustively in the allowed time.

Studying Figure 3 we find a pattern: at smaller domain sizes, the rainbow
attack and the thin rainbow attack are much more similar (and better) than
the Hellman attack. In this region, the original rainbow attack is slightly better,
while for larger domains, the thin rainbow attack has the upper hand. This is
perhaps more evident in the zoomed-in version, Figure 4. The behaviour for
even larger values of N is depicted in Figure 5 and we can see that the trend
continues.
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Fig. 4. The probability of success for the different algorithms as a function of the size
of the search space. M = 212 and T = 218. The dotted line illustrates the behaviour
when we choose parameters for the thin rainbow algorithm as in Section 5.3.

We naturally ask ourselves to which extent this is merely an effect of the
parameters used in this specific case. To investigate this, we have studied other
choices of (M0, T0) for which T0 = M

3/2
0 , i.e., (M0, T0) = (28, 212) and (M0, T0) =

(210, 215). Our findings are depicted in Figures 7 and 8 in Appendix A. Since
the behaviour is largely the same, we have reason to believe that similar effects
will be appearing for e.g., (M0, T0) = (236, 254). We believe that T0 = M

3/2
0 is a

suitable case to investigate considering current possibilities regarding resources.
Regarding the failures of the Hellman attack on smaller search spaces, we

believe that these occur due to the relatively large cost of collisions and investi-
gations of false alarms. Using a large column count t would give many collisions
and false alarms, so m needs to be small. This in turn makes the table count l
large, increasing the online time. We attribute the slightly irregular behaviour
in e.g., Figure 9 (Appendix A) to the smaller values of M0 and T0 which make
random effects much more prominent.

Now that we have found there is reason to believe that increasing the size
of the search space changes the choice of algorithm from the rainbow algorithm
to the thin rainbow algorithm or even the Hellman algorithm, we ask ourselves
just when this change occurs. Inserting T0 = M

3/2
0 into the rainbow TMTO

curve yields N =
√

2M7/4
0 =

√
2T

7/6
0 . Clearly, the point where the thin rainbow

algorithm becomes better than the rainbow one lies beyond this. Suggesting
N = T

5/4
0 as the point of break-even seems to be supported by the data.
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Fig. 5. The probability of success for the different algorithms as a function of the size
of the search space. M = 212 and T = 218.

We thus predict that the case (M0, T0, N) = (236, 254, 272) discussed in Sec-
tion 1 can be handled with much better performance using the thin rainbow
algorithm than with the rainbow algorithm.

Appendix B contains similar figures for configurations with other relations
between M0 and T0, namely T0 = M0 and T0 = M2

0 . These figures show the
same basic behaviour of the different algorithms.

5.3 Determining the Optimal Parameters

The TMTO curve for a thin rainbow table with m rows is mL2S = N (see [5])
while the time complexity for searching it is LS2 (disregarding false alarms) as
given by (2). Keeping in mind that we have l tables with M0 = lm, we find that
mL2S = N and LS2/m = T0/M0. Investigating these equations for the choices
that turned out to be optimal above, we find that

mL2S = c1N, 1 ≤ c1 ≤ 4, (3)

LS2/m = c2T0/M0, 4−1 ≤ c2 ≤ 1. (4)

In other words, we fill the tables slightly more than suggested by the TMTO
curve, and we keep the theoretical time consumption slightly below that sug-
gested by a step count analysis (thus allowing a certain fraction of steps due to
false alarms).
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Fig. 6. With M0 = 212 and T0 = 218, the most successful choice of L is displayed for
each search space size. The dotted line indicates the value of L chosen in in Section 5.3.

This gives us a rough idea about how to choose the parameters m, L and S for
other choices of T0 and M0. There is still one thing troubling us — we have three
unknown variables, L, S and m, but only two equations, (3) and (4). Studying
Figure 6 we get an idea regarding the optimal choice of L. The figure illustrates
the parameters that turned out to be the best for the case (M0, T0) = (212, 218).

If we assume that the parameter L increases from 1 to 10 as N goes from 18
to 32 (see Figure 6) and choose S and m to satisfy the above criteria, we obtain
the dotted line in Figure 4. Our guess at the behaviour of L is motivated by the
trend in Figure 6, but also the observation that larger L (and smaller S) make
the thin chain look more like Hellman chains and less like rainbow chains. Since
the Hellman algorithm apparently performs better than the rainbow algorithm
with increasing values of N , we choose to make the thin chains resemble Hellman
chains to a greater extent.

Certainly, the parameters produced in this manner do not give the best success
probability possible. However, it does perform better than the rainbow algorithm
and sometimes better than the best instance of the Hellman algorithm found.

A really determined attacker might be able to decide on a few promising
configurations of (m, L, S) and build a single table of each before investigating
their online behaviour, both with respect to success probability and (just as
importantly) time consumption. If the number of tables l is somewhat large, the
increase in precomputation due to tables being produced and later discarded in
favour of another configuration should be within a factor 2 or so.
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6 Conclusions

Assuming a fixed memory size M0 and fixed online computational resources
T0, we have compared the success probability Psucc of the rainbow, the thin
rainbow and the Hellman time memory trade-off attacks. It has been shown
that the optimal choice of algorithm depends on the size of the search space.
In particular we have demonstrated that the thin rainbow attack is the optimal
choice when the search space is large, i.e., when the probability of success is
small. Our interpretation of this result is that when the search space is large,
N2 	 T0M

2
0 , the faster online time of the thin rainbow attack allows us to cover

more points in the table since the probability of duplicates is low. On the other
hand, when the search space is small, N2 ≈ T0M

2
0 , the ability of the rainbow

attack to avoid duplicates will cause it to perform better.
In practice, rainbow tables are commonly used to recover passwords, i.e.,

to invert a hash function. An attacker obtains a list of hashed passwords and
uses a precomputed rainbow table in order to recover as many passwords as
possible. Applying our results to this scenario, we conclude that when the number
of possible passwords is very large, the thin rainbow attack can recover more
passwords from a given list.

We have given approximate values for the parameters L, S and m in order to
make the attack as successful as possible, but studying the details surrounding
these parameters remains an open problem.
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A Other Results with T = M3/2

12 14 16 18 20 22 24
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Two−logarithm of search space size (log
2
(N))

P
ro

ba
bi

lit
y 

of
 s

uc
ce

ss
 (

P
su

cc
)

Thin

Hellman
Rainbow

Fig. 7. The probability of success for the different algorithms as a function of the size
of the search space. M0 = 28 and T0 = 212. This is a full version of Figure 9.
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Fig. 8. The probability of success for the different algorithms as a function of the size
of the search space. M0 = 210 and T0 = 215. This is a full version of Figure 10.
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Fig. 9. The probability of success for the different algorithms as a function of the size
of the search space. M = 28 and T = 212. This is a zoomed-in version of Figure 7.
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Fig. 10. The probability of success for the different algorithms as a function of the size
of the search space. M = 210 and T = 215. This is a zoomed-in version of Figure 8.
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B Other Relations between Memory and Time

18 20 22 24 26 28 30 32 34
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Two−logarithm of search space size (log
2
(N))

P
ro

ba
bi

lit
y 

of
 s

uc
ce

ss
 (

P
su

cc
)

Thin

Hellman
Rainbow

Fig. 11. The probability of success for the different algorithms as a function of the size
of the search space. M0 = 214 and T0 = 214. This is a full version of Figure 13.
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Fig. 12. The probability of success for the different algorithms as a function of the size
of the search space. M0 = 210 and T0 = 220. This is a full version of Figure 14.
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Fig. 13. The probability of success for the different algorithms as a function of the size
of the search space. M0 = 214 and T0 = 214. This is a zoomed-in version of Figure 11.
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Fig. 14. The probability of success for the different algorithms as a function of the size
of the search space. M0 = 210 and T0 = 220. This is a zoomed-in version of Figure 12.
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Abstract. As an ultra-lightweight block cipher, PRESENT is presented
by A. Bogdanov et al. in CHES 2007. In this paper, we detect the non-
random properties in the first four rounds of PRESENT based on cube
attack proposed by Shamir et al. By analyzing the features of the S-box
and pLayer, we give the side channel cube attack on PRESENT. If any
output bit of the third round is leaked, we can recover the total 80-bit
key. Especially, for the leaked bit 1, bit 2 or bit 3 of the output bits in
the third round, we can also recover 80-bit key with lower computing
complexity compared to other leaked bits, and our attack requires 215

chosen plaintexts and 232 31-round PRESENT encryptions.

Keywords: Cryptanalysis, Cube attack, Side channel attack, PRESENT.

1 Introduction

Tiny computing devices such as RFID tags and sensor networks will be very
popular in future. In order to guarantee security in extremely constrained en-
vironments, many ultra-lightweight block ciphers have been developed such as
PRESENT [1], TEA [5,6], MCRYPTON [7], HIGHT [8], SEA [9] and CGEN
[10]. PRESENT, a hardware-optimized block cipher, is proposed by A. Bog-
danov et al. in CHES 2007 which consists of 31 rounds with a SP-network. The
block size is 64-bit, and the key size can be 80-bit and 128-bit for PRESENT-80
and PRESENT-128 respectively. Comparied with other ultra-lightweight block
ciphers, it has the lowest implementation costs.

In EUROCRYPT 2009, Itai and Shamir proposed a new type of algebraic
attacks named cube attack [2]. Cube attack is a generic key derivation attack
[2,3,4]. It can be used to attack any cryptosystem in which even a single bit can
be represented by a low degree multivariate polynomial in the key and plaintext
variables. Standard side channel attacks concentrate on how to obtain the side
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information. However, in this paper, we only concentrate on exploiting the leaked
information. We apply the data mode of leakage attacks in Figure 1 of [4].

In the standard attacks on block ciphers, only the plaintexts and ciphertexts
are avaiable. But in the side channel attacks, we can obtain either the plaintexts
and the ciphertexts or the internal state information for the intermediate rounds.
Under the attack model, Shamir et al. presented the side channel cube attack on
some block ciphers such as Serpent [2]. For the special property of PRESENT,
we will exploit the cube attack to cryptanalyze PRESENT.

As we know, there are several cryptanalysis for reduced-round of PRESENT.
In [13], the algebraic cryptanalysis for 5-round of PRESENT is shown, and the
integral attacks on 5, 6 and 7 rounds of PRESENT are given in [14]. In [12],
the differential cryptanalysis of 16-round PRESENT is presented. Based on the
differential characteristics in [12], a further analysis for 17-round PRESENT is
given integrating differential cryptanalysis and algebraic cryptanalysis [15].

By analyzing the relationship between the inter-media state in the first few
rounds with the plaintext bits and key bits for PRESENT, we found some im-
portant properties which can be utilized by the side channel cube attack. In this
paper, we will present how to recover 80-bit key of PRESENT even if only one
bit in the special position of the third round is leaked. As a result, with 215

chosen plaintexts, 216 64-bit key candidates can be obtained by solving a system
of linear equations. We can recover all 80-bit key with 232 31 round PRESENT
encryptions.

The paper is organized as follows. Section 2 introduces the PRESENT block
cipher and Section 3 gives the brief description of cube attack. We present the
non-random properties for reduced-round of PRESENT and give the side channel
cube attack on PRESENT-80 in Section 4. Finally, Section 5 concludes this
paper.

2 Description of PRESENT

PRESENT is a 31-round ultra-lightweight block cipher. The block length is 64-
bit. The cipher is described in Figure 1. As in Serpent, there are three stages
involved in each round of PRESENT. The first stage is addRoundKey described
as follows,

bj → bj ⊕ Kj
i ,

where bj , (0 ≤ j ≤ 63) is the current state bit and Kj
i , (1 ≤ i ≤ 32, 0 ≤ j ≤ 63) is

the jth subkey bit of round key Ki. The second stage is sBoxLayer which consists
of 16 parallel versions of the 4-bit to 4-bit S-box, which is given in Table 1. The

Table 1. Table of S-box

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S[x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2
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Fig. 1. 31-round PRESENT Encryption Algorithm

third stage is the bit permutation pLayer, which is given by Table 2. The bit i is
moved to the bit P (i) by pLayer.

Table 2. Table of pLayer

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P (i) 0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
P (i) 4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
P (i) 8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
P (i) 12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63

The key size of PRESENT can be taken as 80-bit or 128-bit. We will crypt-
analyze 80 bits version, so only the key schedule algorithm for 80 bits version is
given in the following.

– Step 1: The 80-bit user key will be stored in a key register K denoted as
K = k79k78 . . . k0.

– Step 2: for i = 1 to 32 do
• Extract 64-bit subkeys Ki as the round key for the ith round,

Ki = K63
i K62

i . . . K0
i = k79k78 . . . k16.

• Update key register K = k79k78 . . . k0 as follows,

[k79k78 . . . k1k0] = [k18k17 . . . k20k19] ,
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[k79k78k77k76] = S [k79k78k77k76] ,
[k19k18k17k16k15] = [k19k18k17k16k15] ⊕ roundcounter.

3 Brief Description of Cube Attack

Cube attack is a new type of algebraic cryptanalysis which considered the cryp-
tosystem as a black box [2]. It exploits the low-degree equations in cryptosystem
which even a single bit of ciphertext or inter-media bit can be represented as
a low-degree multivariate polynomial in the key and plaintext variables. The
cryptanalytic process can be divided into two stages: the preprocessing phase
and the on-line phase. The preprocessing phase is to determine which queries
should be made to the black box during the on-line phase of the attack. In the
on-line phase, cube attack can deduce a series of linear equations by querying to
a black box polynomial with tweakable public variables (e.g. chosen plaintexts
attack). Then the attackers can solve a system of linear equations to recover the
secret key bits.

Any output bit can be represented as a multivariate master polynomial p(k1, . . .
, kn, v1, . . . , vm) over GF (2). The variables include secret variables ki (key bits)
and public variables vi (plaintext bits in block ciphers and MACs, IV bits in
stream ciphers). Let the degree of the polynomial be d.

In the preprocessing phase, the attacker chooses tI randomly which can be
indexed by the subset I ⊆ {1, . . . , m} of the multiplied public variables. The
index of the subset I is defined as cube index. The polynomial can be represented
as follows,

p(k1, . . . , kn, v1, . . . , vm) = tI · pS(I) + q(k1, . . . , kn, v1, . . . , vm),

pS(I) is called the superpoly of I in p. The polynomial is divided into two parts
pS(I) and q by tI .

To demonstrate these notions, let

p(k1, k2, k3, v1, v2, v3) = v1v2k1 + v1v2k3 + v1k2k3 + v1v2v3 + k1k2 + v3 + 1

be a polynomial of degree 3 in 3 secret variables and 3 public variables. Let
I = {1, 2} be an index subset of the public variables which size is 2. We can
represent p as:

p(k1, k2, k3, v1, v2, v3) = v1v2(k1 + k3 + v3) + (v1k2k3 + k1k2 + v3 + 1),

where

tI = v1v2,

pS(I) = k1 + k3 + v3,

q(k1, k2, k3, v1, v2, v3) = v1k2k3 + k1k2 + v3 + 1.

We assign all the public variables 0/1 values. Then the pS(I) becomes a poly-
nomial including secret variables only. A maxterm of p is a term tI such that



Side Channel Cube Attack on PRESENT 383

deg(pS(I)) ≡ 1, (We only consider the degree of the secret variables.) i.e. the
supperpoly of I in p is a linear polynomial which is not a constant. The pS(I)
corresponding to the maxterm calls maxterm equation. According to Theorem. 1
of [2], Sum p that tI ∈ {0, 1}d−1, then∑

tI∈{0,1}d−1

p =
∑

tI∈{0,1}d−1

(tIpS(I) + q) = pS(I).

The public variables do not involve in the subset I, we can set them to be con-
stant. For convenience we set them to be zero. Since the key can be chosen
in this phase, it is easy to check whether a superpoly is linear by linear tests
[16]. We choose secret variable vectors x,y ∈ {0, 1}n randomly, and verify the
equation pS(I)[0] + pS(I)[x] + pS(I)[y] = pS(I)[x + y]. The test always succeeds
if pS(I) is linear. The attackers repeat the test N times, and a non-linear su-
perpoly can be accepted with probability 2−N . The preprocessing phase is not
key-dependant and perform once per cryptosystem. In this phase the attackers
find many maxterms and their equations.

In on-line phase, the attackers choose plaintexts to get a system of linear
equations and solve the equations to recover the key. The superpoly can be
evaluated by summing over every possible assignment to its maxterm. Assuming
the degree of the maxterm is d − 1, each sum requires 2d−1 evaluations of the
derived polynomials.

4 Cube Attack on PRESENT

4.1 The Non-randomness of PRESENT

In cryptographic algorithms, each output bit can be regard as a polynomial of
plaintext and key bits. We identify the non-random properties on the polynomial
for PRESENT. In general, as the input variables, the plaintext bits and the
subkey bits are confused so completely that the multivariate polynomial of the
ciphertext bit should be random polynomial. Firstly we give the definition of a
random polynomial [2].

Definition 1. A random polynomial of degree d in n +m variables is a polyno-
mial p ∈ Pn+m

n such that each possible term of degree at most d is independently
chosen to occur with probability 0.5.

If the polynomial in a cryptosystem doesn’t satisfy this definition, it means
the cryptosystem is not random [3] which will incur a potential flaw in the
cryptosystem. We have identified the polynomial after a few rounds of PRESENT
is not random.

We denote the 4 input bits of S-box as x0, x1, x2 and x3 respectively, and the
4 output bits of S-box as y0, y1, y2 and y3 respectively. We present the boolean
functions of S-box in Table 3. According to Table 3, the highest degree of the
four boolean functions is 3, and specially the degree of the boolean function for
y0 is 2.
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Table 3. Boolean Functions of S-box

Output Bit Boolean Function
y0 x0 + x2 + x1x2 + x3

y1 x1 + x0x1x2 + x3 + x1x3 + x0x1x3 + x2x3 + x0x2x3

y2 1 + x0x1 + x2 + x3 + x0x3 + x1x3 + x0x1x3 + x0x2x3

y3 1 + x0 + x1 + x1x2 + x0x1x2 + x3 + x0x1x3 + x0x2x3

Table 4. Distribution of Degree for State bits

Position 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Degree 8 12 12 12 12 18 18 18 12 18 18 18 12 18 18 18
Position 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Degree 12 18 18 18 18 27 27 27 18 27 27 27 18 27 27 27
Position 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
Degree 12 18 18 18 18 27 27 27 18 27 27 27 18 27 27 27
Position 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
Degree 12 18 18 18 18 27 27 27 18 27 27 27 18 27 27 27

The basic approach is to exploit the relationship between plaintext bits and
the state information in the first few rounds. PRESENT produces 64-bit state
variable after each round. Particularly, any state bit after the first round can be
represented as a simple polynomial involving 4-bit plaintext and 4-bit subkey.
Further more, the output bits from the same S-box are related with the same
plaintext bits and subkey bits. In this way, each state bit can be represented as
a polynomial with the state bits and the subkey bits of the top one round. So
we can derive the polynomials of the state bits round by round. Based on the
boolean functions of the S-box and the pLayer permutation, we can calculate a
distribution table of the degree for different bits before the pLayer in the third
round in Table 4.

According to definition 1, if we use cube index with the size less than d−1, the
superpoly is most likely non-linear. We test the randomness of the multivariate
polynomial after the third round by cube test (a randomness test with cube
attack) [3]. We take the cube index of consecutive c plaintext bits(c < d−1), e.g.
bit 0, 1, ... , c−1. For each cube index, we produce 64 corresponding superpolys
for 64 state bits. Then we count the number of the non-linear superpolys for the
cube index. If the polynomials for the state bits are random polynomials, the
number of non-linear superpolys is close to 64. The degree of the polynomials
in Table 4 is bigger than 8. If we use the cube indices with size less than 6, the
corresponding superpolys are mostly non-linear.

We choose c = 2 and c = 4 respectively as the degree of cube index for cube
test in the third round, and the obtained distributions of the number of non-
linear superpolys are listed in Fig. 2. At the same time, we choose c = 4 and
c = 6 respectively as the degree of cube index for cube test in the fourth round,
and the obtained distribution of the number of non-linear superpolys are listed
in Fig. 3. In Fig. 2 and Fig. 3, the x-axis denotes the first bit for cube index,
and the y-axis denotes the number of non-linear superpolys for 64 state bits we
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Fig. 2. Distribution of Biases (c = 2, c = 4) in Round 3
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Fig. 3. Distribution of Biases (c = 4, c = 6) in Round 4

get. From the figures, the non-randomness after the third round and the fourth
round will incur that the size of some cube index is very low.

4.2 Side Channel Cube Attack on PRESENT-80

Given an explicit representation of the multivariate polynomial, all the maxterms
can be deduced easily. Due to the number of terms of the polynomial increases
rapidly after several rounds, it is difficult to find the representation and store it.
If one variables of the term is a key variable, and others of it are public variables,
the maxterm may be identified from it. For each round, we reserve these terms in-
volving a key variable and the terms only involving public variables. Then in the
next round we calculate the partial terms in the polynomial of the state bit which
related to the reserved terms only. And we discard the terms involving more than
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one key variables. In this way, we can control the number of the terms in the first
three rounds. The maxterms can be deduced from the reduced polynomial.

From the non-randomness of Section 4.1 for PRESENT, it is easy to recover
partial key bits from a single state bit in the first or second round. But after
the fourth round, the lowest degree of the polynomials of the 64 state bits is
24. And most polynomials take the boolean function of the S-box with degree
3, so the degree can get to the theoretical degree d = 34 = 81. The cubes with
comparatively large dimension are required in order to get maxterms for any
state bit after the fourth round. It is not efficient to use cube attack.

If we proceed the side channel attack for the first round or the second round,
the complexity of chosen plaintexts is minimised. However the number of key
bits we can recover for the first round or the second round would be very few.
For the remained key bits, we search them exhaustively and it will procude much
more complexity. At the same time, if we proceed the attack on the 4-round, the
maxterms will involve much more plaintext bits, which will also lead much more
complexity. So we proceed the side channel attack for the third round.

According to the side channel attacks mode in Figure 1 of [4], we need to
obtain an intermediate state bit after the third round instead of a bit in each
round. From Table 4, the degree of the polynomials for the state bit 0, 1, 2 and
3 are lower than others, so we try to identify the maxterms corresponding to the
three bits.

In the preprocessing phase, we found 48 maxterms with linearly independent
superpolys corresponding to bit 1, 2 and 3 respectively after the third round,
and 32 maxterms with linearly independent superpolys corresponding to bit 0.
We show the cube indicse and maxterm equations for bit 1, 2 and 3 in Table 6,
Table 7 and Table 8 respectively.

In the on-line phase, we can choose the plaintexts determined in the prepro-
cessing phase and solve the system of linear equations with 48 equations.

For the system of equations involving 64-bit key, 216 groups of 64 bits key can-
didates are obtained. In order to identify the correct key from the 216 groups of
64-bit key candidates and the remaining 16-bit key, we search them exhaustively
with 232 full 31-round PRESENT encryptions.

Since the cube index size is different, we choose the number of plaintexts as
follows,

NCP = 12 · 22 + 12 · 25 + 12 · 28 + 12 · 211 ≈ 215.

Although 216 × 216 key candidates should be searched to assure the right key.
Noticing the feature of the system of linear equations, it can be split into 16

Table 5. Sorts of the bits in 3-round

Class 1 the bits of S-box 0, 4, 8, 12
Class 2 the first bits of S-box 1, 2, 3
Class 3 the other bits of S-box 1, 2, 3
Class 4 the first bits of rest S-boxes
Class 5 the other bits of rest S-boxes
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Table 6. 48 Maxterms and Maxterm Equations in Bit 1

Cube Indexes Maxterm Equations
0,1 X18 + X19

0,2 X17 + X19

1,2 X16

12,13 X30 + X31

12,14 X29 + X31

13,14 X28

48,49 X66 + X67

48,50 X65 + X67

49,51 1 + X64

60,61 X78 + X79

60,62 X77 + X79

61,62 X76

4,5,8,9,10 X22 + X23

4,6,8,9,10 X21 + X23

5,6,8,9,10 X20

4,5,6,8,9 X26 + X27

4,5,6,8,10 X25 + X27

4,5,6,9,10 X24

52,53,56,57,58 X70 + X71

52,54,56,57,58 X69 + X71

53,54,56,57,58 X68

52,53,54,56,57 X74 + X75

52,53,54,56,58 X73 + X75

52,53,54,58,59 1 + X72

16,17,36,37,38,40,41,42 X34 + X35

16,18,36,37,38,40,41,42 X33 + X35

17,18,36,37,38,40,41,42 X32

28,29,36,37,38,40,41,42 X46 + X47

28,30,36,37,38,40,41,42 X45 + X47

29,30,36,37,38,40,41,42 X44

20,21,22,24,25,26,32,33 X50 + X51

20,21,22,24,25,26,32,34 X49 + X51

20,21,22,24,25,26,33,34 X48

20,21,22,24,25,26,44,45 X62 + X63

20,21,22,24,25,26,44,46 X61 + X63

20,21,22,24,25,26,45,46 X60

20,21,24,25,26,36,37,38,40,41,42 X38 + X39

20,22,24,25,26,36,37,38,40,41,42 X37 + X39

21,22,24,25,26,36,37,38,40,41,42 X36

20,21,22,24,25,36,37,38,40,41,42 X42 + X43

20,21,22,24,26,36,37,38,40,41,42 X41 + X43

20,21,22,25,26,36,37,38,40,41,42 X40

20,21,22,24,25,26,36,37,40,41,42 X54 + X55

20,21,22,24,25,26,36,38,40,41,42 X53 + X55

20,21,22,24,25,26,37,38,40,41,42 X52

20,21,22,24,25,26,36,37,38,40,41 X58 + X59

20,21,22,24,25,26,36,37,38,40,42 X57 + X59

20,21,22,24,25,26,36,37,38,41,42 X56
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Table 7. 48 Maxterms and Maxterm Equations in Bit 2

Cube Indexes Maxterm Equations
0,1 1 + X19

0,3 1 + X17 + X18

1,3 1 + X16

12,13 1 + X31

12,15 1 + X29 + X30

13,15 1 + X28

48,49 1 + X67

48,51 1 + X65 + X66

49,51 1 + X64

60,61 1 + X79

60,63 1 + X77 + X78

61,63 1 + X76

4,5,8,9,11 1 + X23

4,7,8,9,11 1 + X21 + X22

5,7,8,9,11 1 + X20

4,5,7,8,9 1 + X27

4,5,7,8,11 1 + X25 + X26

4,5,7,9,11 1 + X24

52,53,56,57,59 1 + X71

52,55,56,57,59 1 + X69 + X70

53,55,56,57,59 1 + X68

52,53,55,56,57 1 + X75

52,53,55,56,59 1 + X73 + X74

52,53,55,57,59 1 + X72

16,17,36,37,39,40,41,43 1 + X35

16,19,36,37,39,40,41,43 1 + X33 + X34

17,19,36,37,39,40,41,43 1 + X32

28,29,36,37,39,40,41,43 1 + X47

28,31,36,37,39,40,41,43 1 + X45 + X46

29,31,36,37,39,40,41,43 1 + X44

20,21,23,24,25,27,32,33 1 + X51

20,21,23,24,25,27,32,35 1 + X49 + X50

20,21,23,24,25,27,33,35 1 + X48

20,21,23,24,25,27,44,45 1 + X63

20,21,23,24,25,27,44,47 1 + X61 + X62

20,21,23,24,25,27,45,47 1 + X60

20,21,24,25,27,36,37,39,40,41,43 1 + X39

20,23,24,25,27,36,37,39,40,41,43 1 + X37 + X38

21,23,24,25,27,36,37,39,40,41,43 1 + X36

20,21,23,24,25,36,37,39,40,41,43 1 + X43

20,21,23,24,27,36,37,39,40,41,43 1 + X41 + X42

20,21,23,25,27,36,37,39,40,41,43 1 + X40

20,21,23,24,25,27,36,37,40,41,43 1 + X55

20,21,23,24,25,27,36,39,40,41,43 1 + X53 + X54

20,21,23,24,25,27,37,39,40,41,43 1 + X52

20,21,23,24,25,27,36,37,39,40,41 1 + X59

20,21,23,24,25,27,36,37,39,40,43 1 + X57 + X58

20,21,23,24,25,27,36,37,39,41,43 1 + X56
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Table 8. 48 Maxterms and Maxterm Equations in Bit 3

Cube Indexes Maxterm Equations
0,2 X17 + X19

0,3 X17 + X18

1,2 1 + X16

12,14 X29 + X31

12,15 X29 + X30

13,14 1 + X28

48,50 X65 + X67

48,51 X65 + X66

49,51 X64

60,62 X77 + X79

60,63 X77 + X78

61,62 1 + X76

4,5,8,9,10 X22 + X23

4,6,8,9,10 X21 + X23

5,6,8,9,10 1 + X20

4,5,6,8,9 X26 + X27

4,5,6,8,10 X25 + X27

4,5,6,9,10 1 + X24

52,53,56,57,58 X70 + X71

52,54,56,57,58 X69 + X71

53,54,56,57,58 1 + X68

52,53,54,56,57 X74 + X75

52,53,54,56,58 X73 + X75

52,53,54,58,59 X72

16,17,36,37,38,40,41,42 X34 + X35

16,18,36,37,38,40,41,42 X33 + X35

17,18,36,37,38,40,41,42 1 + X32

28,29,36,37,38,40,41,42 X46 + X47

28,30,36,37,38,40,41,42 X45 + X47

29,30,36,37,38,40,41,42 1 + X44

20,21,22,24,25,26,32,33 X50 + X51

20,21,22,24,25,26,32,34 X49 + X51

20,21,22,24,25,26,33,34 1 + X48

20,21,22,24,25,26,44,45 X62 + X63

20,21,22,24,25,26,44,46 X61 + X63

20,21,22,24,25,26,45,46 1 + X60

20,21,24,25,26,36,37,38,40,41,42 X38 + X39

20,22,24,25,26,36,37,38,40,41,42 X37 + X39

21,22,24,25,26,36,37,38,40,41,42 1 + X36

20,21,22,24,25,36,37,38,40,41,42 X42 + X43

20,21,22,24,26,36,37,38,40,41,42 X41 + X43

20,21,22,25,26,36,37,38,40,41,42 1 + X40

20,21,22,24,25,26,36,37,40,41,42 X54 + X55

20,21,22,24,25,26,36,38,40,41,42 X53 + X55

20,21,22,24,25,26,37,38,40,41,42 1 + X52

20,21,22,24,25,26,36,37,38,40,41 X58 + X59

20,21,22,24,25,26,36,37,38,40,42 X57 + X59

20,21,22,24,25,26,36,37,38,41,42 1 + X56



390 L. Yang, M. Wang, and S. Qiao

small systems of linear equations. Each one can solve 2 solutions for 4 key bits.
So we can use negligible memory to store the 216 64-bit key candidates.

So the data complexity for our attack is 215 chosen plaintexts, the time com-
plexity is about 232 full 31-round encryptions and the memory requirements can
be negligible.

We can exploit any bit in 3-round to recover the key also, but the complexity
of bit 1, 2, 3 is the lowest. Since the intention of pLayer is to change the position
after sBoxLayer, we sort the bits into 5 classes by different S-boxes and output
positions of the S-box.

For each bit in class 1, 32 equations can be deduced to recover 32 key bits and
the remained key bits can be searched exhaustively with 248 encryptions. For
the bits in other classes can be utilized to derive 48 equations. For the output bit
1, 2 and 3 of the third round in class 2, the number of chosen plaintexts is 215.
For the bits in class 3, class 4 and class 5, the number of chosen plaintexts are
about 24 ·28 +24 ·211 ≈ 216, 24 ·28 +24 ·217 ≈ 222 and 48 ·226 ≈ 232 respectively
and the time complexity is about 232 full 31-round encryptions which is same as
that of the class 2.

5 Conclusion

The key points for a successful cube attack are how to gain a single output
bit represented as a low-degree polynomial and how to determine cube indices
leading to maxterms and maxterm equations efficiently. In order to identify the
low-degree state bits, we utilize the side channel attack. The original cube at-
tack searches the cube indices with random walk as the multivariate polynomial
is randomness. However we identify the low-degree state bits by analyzing the
property of round function of PRESENT. The term discarded technique is uti-
lized to reduce the scale of the polynomial. Then we can search maxterms in the
reduced polynomial efficiently in the third round.

According to our analysis, side channel cube attack is efficient to attack
PRESENT-80. We have identified the polynomials after a few rounds is not
random. Then we recover the 80 key bits with 215 chosen plaintexts and 232

31-round PRESENT encryptions with a special leaked output bit (bit 1, 2 or 3)
of the third round. Moreover, any other output bit of the third round can be
utilized to proceed the cube attack with more computing complexity.

There are some problems left open to this attack. Now many types of side
channel attacks are not accurate. In another word, when the side channel at-
tack access the cryptosystem to obtain data, the error data with noise may be
received. The cube attack is very sensitive to the error. And [4] gave the analy-
sis for error correct cube attack to random polynomials. But it is need further
research for non-random polynomials.

Acknowledgements. We would like to thank the reviewers for their very help-
ful comments on the paper.
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Abstract. In this paper, we present an efficient attack on the multi-
variate Quadratic Quasigroups (MQQ) public key cryptosystem. Our
cryptanalysis breaks the MQQ cryptosystem by solving a system of mul-
tivariate quadratic polynomial equations using both the MutantXL al-
gorithm and the F4 algorithm. We present the experimental results that
show that MQQ systems is broken up to size n equal to 300. Based on
these results we show also that MutantXL solves MQQ systems with
much less memory than the F4 algorithm implemented in Magma.

Keywords: Algebraic Cryptanalysis, MQQ public key cryptosystem,
MutantXL algorithm, F4 algorithm.

1 Introduction

The intractability of solving mathematical problems is the security basis for
many public key cryptosystems. One example are multivariate cryptosystems
which are based on the problem of solving large systems of multivariate polyno-
mial equations over finite fields.

The first multivariate public key cryptosystem was the Matsumoto-Imai
scheme in [12] which was broken by Patarin in [14]. Other systems like the
Hidden Field Equation (HFE) by Patarin [15] and the unbalanced Oil and Vi-
neger (UOV) by Kipnis, Patarin and Goubin in [11] were attacked by Faugère
et al. [7] and Wolf et al. [2,16] respectively.

At the American Conference on Applied Mathematics 2008 (MATH08), Glig-
oroski et al. presented a new multivariate public key encryption scheme referred
to as Multivariate Quadratic Quasigroups (MQQ), which, according to the au-
thors, is as fast as highly efficient block ciphers. MQQ is parameterized by the
number of variables n in the multivariate polynomials that are used in the public
key. The inventors of MQQ claim that for n ≥ 140 the security level of MQQ is
at least 2

n
2 , means an attacker must perform at least 2

n
2 elementary operations

to discover the plaintext.
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In this paper, we present an algebraic attack that breaks the MQQ scheme.
We present experiments that show that MQQ is easily broken for n up to 300.
For our algebraic attack we use the MutantXL algorithm, which was published
by Ding et al. [4], and improved by Mohamed et al. [13]. We slightly adjusted
the MutantXL implementation to make it more efficient when attacking MQQ.

We also use Magma’s implementation of the F4 algorithm [6] for this attack.
The result is, that F4 can also successfully attack MQQ, but MutantXL turns
out to use significantly less space than Magma’s F4. For example, if n = 200
MutantXL requires 6.3 Gigabytes of memory while F4 needs 17.7 Gigabytes.
After the initial publication of our attack on the IACR eprint archive, we were
informed that the F4 attack on MQQ was independently discovered by Ludovic
Perret.

The paper is organized as follows. In Section 2 we review the MQQ cryptosys-
tems. In Section 3 we describe the MutantXL algorithm and its adaptation to
MQQ. Section 4 contains our experimental results and shows how to cryptana-
lyze MQQ. Finally we conclude our paper in Section 5.

2 MQQ Cryptosystem

The MQQ public-key cryptosystem is a standard multivariate public key cryp-
tosystem that is constructed using quasigroup string transformation performed
on a class of quasigroups. The security parameter is a positive integer n which is
the number of variables and polynomials used in the public key. The authors of
MQQ proposed the length of n ≥ 140 for a conjectured security level of 2

n
2 . In

this Section we present an overview of the MQQ cryptosystem. A more detailed
explanation is found in [9,10].

Definition 1. Let Q = {a1, . . . , an} be a finite set of n elements. A quasigroup
(Q, ∗) is a groupoid satisfying the law

(∀a, b ∈ Q)(!∃x, y ∈ Q)(a ∗ x = b ∧ y ∗ a = b) (1)

The unique solutions to these equations are written x = a\∗b and y = b/∗a where
\∗ and /∗ are called a left parastrophe and a right parastrophe of ∗ respectively.
The basic quasigroup string transformation, called e-transformation is defined
as follows [8]:

Definition 2. A quasigroup e-transformation of a string S = (s0, . . . , sk−1) ∈
Qk with a leader l ∈ Q is the function el : Q × Qk → Qk defined as T = el(S),
T = (t0, . . . , tk−1) such that

ti =
{

l ∗ s0 i = 0
ti−1 ∗ si 1 ≤ i ≤ k − 1 (2)

Consider the case where each element a ∈ Q has a unique d-bit representation
x1, . . . , xd ∈ {0, 1} such that a = x1x2 . . . xd. The binary operation ∗ of the finite
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quasigroups (Q, ∗) is equivalent to a vector valued operation ∗vv : {0, 1}2d →
{0, 1}d defined as:

a ∗ b = c ⇔ ∗vv(x1, . . . , xd, y1, . . . , yd) = (z1, . . . , zd)

where x1 . . . xd, y1 . . . yd, and z1 . . . zd are binary representations of a, b, and c
respectively.
Lemma 1. For every quasigroup (Q, ∗) of order 2d and for each d-bit represen-
tation of Q there is a unique vector valued operation ∗vv and d uniquely deter-
mined arrays of length 2d of boolean functions f1, . . . , fd such that ∀a, b, c ∈ Q

a ∗ b = c ⇔ ∗vv(Xd, Y d) = (f1(Xd, Y d), . . . , fd(Xd, Y d))

where Xd = x1, . . . , xd, Y d = y1, . . . , yd.
Each k−bit boolean function f(x1, . . . , xk) has the following algebraic normal

form (ANF):

ANF (f) = c0 +
∑

1≤i≤k

cixi +
∑

1≤i≤j≤k

ci,jxixj + . . . , (3)

where c0, ci, ci,j , . . . ∈ {0, 1}. The degrees of the boolean functions fi are one of
the complexity factors of the quasigroup (Q, ∗).
Definition 3. A quasigroup (Q, ∗) of order 2d is called multivariate quadratic
quasigroup (MQQ) of type Quadd−kLink if exactly d − k of the polynomials fi

are quadratic and k of them are linear, where 0 ≤ k ≤ d.

The authors of [9,10] provide a heuristic algorithm to generate MQQs of order
2d and of type Quadd−kLink. The public and the private keys are constructed
as follows.

A system P ′ = (p1, . . . , pn) of quadratic polynomials over F2 in n variables
is generated using uniformly and randomly selected quasigroups ∗1, . . . , ∗8 as
described in Table 1. That system represents a map P ′ : Fn

2 → Fn
2 . The matrices

T, S ∈ F
(n,n)
2 are selected uniformly at random. The public key is the map

P = T ◦ P ′ ◦ S

which can also be represented by n quadratic polynomials in n variables over
F2. The secret key consists of the 10-tuple (T, S, ∗1, . . . , ∗8).

The plain text space is Fn
2 . A plaintext x = (x1, . . . , xn) ∈ Fn

2 is encrypted by
computing

c = P (x)
Decrypting means solving the multivariate system P (x) = c. If the secret key is
known then we can decrypt using the form

x = S−1P ′−1T−1(c)

where P ′−1 is computed by using the left parastrophes \∗ of the quasigroups
∗1, . . . , ∗8.

The parameter that was suggested for the practical applications of the MQQ
scheme is n(= 140, 160, 180, 200, . . .), where n is the bit length of the encrypted
block.
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Table 1. Definition of the the nonlinear mapping P ′

Input: Integer n, where n = 5k, k ≥ 28
Output: Eight quasigroups ∗1, . . . , ∗8 and n multivariate quadratic polynomials P ′

1. Randomly generate n Boolean functions L = (f1, . . . , fn) of n variables x = (x1, . . . , xn);
2. Represent a vector L as a string L = X1 . . . Xk, where Xi are vectors of dimension 5;
3. Generate several MQQs of type Quad4Lin1 and Quad5Lin0;

The algorithm of generating MQQs is described in [9,10] Table 2.
4. Randomly choose ∗1, ∗2 ∈ Quad4Lin1 and ∗3, ∗4, ∗5, ∗6, ∗7, ∗8 ∈ Quad5Lin0;
5. Define a (k − 1) − tuple I = (i1, . . . , ik−1) where ij ∈ {1, . . . , 8} such that, 1, 2 are

repeated 8 times in I, without loss of generality let i1, . . . , i8 ∈ {1, 2}.
6. Compute y = Y1 . . . Yk where Y1 = X1, Yj+1 = Xj ∗ij Xj+1, for j = 1, 2, . . . , k − 1;
7. Set a vector Z = Y1||Y2,1||Y3,1|| . . . ||Y8,1 that has 13 components as linear Boolean

functions, where Yj,1 means the first coordinate of the vector Yj ;
8. Transform Z by the bijection Dobbertin: W = Dob(Z);
9. Set Y1 = (W1, W2, W3, W4, W5), Y2,1 = W6, . . . , Y8,1 = W13;
10. Return y as n multivariate quadratic polynomials P ′ = {p′(x1, . . . , xn)), i = 1, . . . , n}

and the eight Quasigroups ∗1, . . . , ∗8;

3 MutantXL

MutantXL is an efficient algorithm for solving systems of multivariate polyno-
mial equations that have only one solution. It is a variant of the XL algorithm [3]
uses mutant strategy [5].

Let F be a finite field and q be its cardinality. We consider the ring

R = F [x1, . . . , xn]/(xq
1 − x1, ..., x

q
n − xn)

of functions over F in the n variables x1, . . . , xn. Here xq
i − xi = 0, 1 ≤ i ≤ n

are the so-called field equations. In R, each element is uniquely expressed as a
polynomial where each xi has degree less than q. Let the monomials of R are
ordered by the graded lexicographical order <glex.

Let P be a finite set of polynomials in R. Given a degree bound D, the XL
algorithm is simply based on extending the set of polynomials P by multiplying
each polynomial in P by all the possible monomials such that the resulting
polynomials have degree less than or equal to D. Then, by using linear algebra,
XL computes a row echelon form of the extended set P . XL uses univariate
polynomials in this row echelon form of P to solve P (x) = 0 at least partially.
If the system can not be solved, D is increased.

In [5,4], it was pointed out that during the linear algebra step, certain poly-
nomials of degrees lower than expected appear. These polynomials are called
mutants. The mutant strategy is to give mutants a predominant role in the
process of solving the system. The precise definition of mutants is as follows:

Let I be the ideal generated by the finite set of polynomials P . An element f
in I can be written as

f =
∑
p∈P

fpp (4)
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where fp ∈ R. The maximum degree of fpp, p ∈ P , is the level of this repre-
sentation. The level of f is the minimum level of all of its representations. The
polynomial f is called mutant with respect to P if deg(p) is less than its level.

We describe the MutantXL algorithm and its adaptation to MQQ. The input
of MutantXL is a set P . The output of MutantXL is a vector x = (x1, . . . , xn) ∈
Fn such that pi(x) = 0, 1 ≤ i ≤ m. The MutantXL algorithm executes the
following steps:

– Initialize: Set the degree bound D to the maximum degree of the polynomials
in P , set the elimination degree d to the minimum degree of the polynomials
in P , and set the set of mutants M to the empty set.

– Eliminate: Compute the row echelon form of the set Pd ={p ∈ P : deg(p) ≤
d}. Here polynomials are identified with their coefficient vectors as explained
in [6].

– Solve: If there are univariate polynomials in P , then determine the values
of the corresponding variables. If this solves the system return the solution
and terminate, otherwise substitute the values of the variables in P , set D
to max{deg(p) : p ∈ P}, set d to D, and go back to Eliminate.

– ExtractMutants : Add all the new elements of Pd, that have degree < d, to M .

– MultiplyMutants: If M is not empty, then multiply a necessary number of
mutants that have degree k = min{deg(p): p ∈ M} by all monomials of
degree one, remove the multiplied polynomials from M , add the new poly-
nomials obtained to P , set d to k + 1, and go back to Eliminate. The
necessary number of mutants are numerically computed as in [13].

– Extend : Extend P by adding all polynomials that are obtained by multiply-
ing the degree D elements in P by all monomials of degree one. Increment
D by one, set d to D and go back to Eliminate.

We explain why and how we adapted MutantXL to MQQ. When MutantXL
is not successful in solving the system P = 0 with a certain degree bound, the
algorithm increments the degree bound by one and extends P in the Extend step.
For MQQ it turned out that Extend yields more polynomials than required to
solve the system. In the Extend step we therefore only multiply the degree D
polynomials from the original system. We do not use the degree D polynomials
that were generated from mutants.

4 Experimental Results and Analysis

We performed several experiments to attack MQQ systems built using the algo-
rithm described in [9,10]. These systems come from decrypting ciphertext using
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the public key but not the secret key. The MQQ inventors supplied us with
a few MQQ systems that are not sufficient for the analysis. However, we used
them to confirm our implementation of the MQQ cryptosystem. We generated
some systems for n = 60, 80, . . . , 300 that were created using MQQs of type
Quad4Lin1 and Quad5Lin0 as in Table 1. According to [9,10], these correspond
to 30, 40, . . . , 150 bits of security. Our experiment setup has a Sun X4440 server,
with four ”Quad-Core AMD OpteronTM Processor 8356” CPUs and 128 GB of
main memory. Each CPU is running at 2,3 GHz. MutantXL code at the moment
uses only one out of the 16 cores. We used both our MutantXL variant and the
Magma’s implementation of the F4 algorithm (version V2.13-10).

Table 2 shows the results of our attacks. There we list the number n of vari-
ables and equations, the maximum required memory in Megabytes, the maxi-
mum matrix size, and the executed time in seconds. It is clear from Table 2 that
all systems up to n = 300 were successfully attacked by MutantXL as well as
Magma’s implementation of F4.

Figure 1(a) compares the maximum number of polynomials used in case of
MutantXL and Magma’s F4. We noticed from it that the MutantXL algorithm
solves the MQQ systems with smaller number of polynomial equations than
Magma’s F4. Conversely, Figure 1(b) shows that the number of monomials of
Magma’s F4 is smaller than MutantXL. This is due to the special selection
strategy used by the F4 algorithm, while MutantXL multiplies polynomials of the
initial system by all monomials up to certain degree D. For the MQQ systems,
all the quadratic monomials appear in the initial system. In this case, all the
monomials up to degree D will appear in the enlarged system.

Table 3 and Table 4 show the steps of solving an MQQ system for n = 200
using MutantXL and Magma’s F4, respectively. In Table 3, for each step we show
the elimination degree (d), the matrix size, the rank of the matrix (Rank), the

(a) Max. number of polynomials (b) Max. number of monomials

Fig. 1. Comparison between MutantXL and F4 for MQQ
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Table 2. Performance of MutantXL versus F4

n MutantXL F4

Memory
Max Matrix

Time in Memory
Max Matrix

Time in
MB in sec. MB in sec.

60 1.6 3714×3605 8 88.8 18835×35918 4

80 70.1 6830×85401 23 217.5 33267×32863 10

100 212.7 10649×166751 76 538 63258×62697 55

120 498.2 14387×288101 283 1819 149077×148234 298

140 1109 20192×457451 556 2909 200397×199391 873

160 2281 26937×682801 1283 4364 262244×261130 1366

200 6437 39497×1333501 16694 18198 699138×697280 17186

300 47952 88647×4500251 237362 111160 2339710×2336171 387754

Table 3. MutantXL: Results for MQQ-200

Step D Matrix Size Rank NM
1 2 200×20101 200 37
2 2 7600×20101 6897 0
3 3 39497×1333501 39497 130
4 2 7427×20101 7347 5
5 2 8347×20101 8125 3
6 2 8725×20101 8584 4
7 2 9384×20101 9183 4

. . . . . . . . . . . . . . .

42 2 20874×20101 20094 4

number of mutants found (NM), and the memory required in Megabyte (MB).
In Table 4 we show, for each step, the step degree (SD), the number of pairs
(NP), the matrix size, and the step memory in MB.

From Table 3 we see that MutantXL can easily solve the 200 variables MQQ
system. In the first iteration of the algorithm, the Eliminate step created 37
mutant polynomial equations of degree 1. In the multiply step, 6697 linearly
independent quadratic equations were generated from these 37 mutants. The
resulting equations were then appended to the 163 quadratic polynomial equa-
tions produced by eliminating the original system. In the second iteration, no
mutants were found. Therefore, MutantXL extended the system by multiply-
ing only the 163 quadratic equations producing 32600 cubic equations. In the
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Table 4. Magma-F4: Results for MQQ-200

Step SD NP Matrix Size
1 2 192 200×20101
2 2 163 6897×20101
3 3 4640 26732×721928
4 2 84 914×13366
5 2 182 1948×13366
6 2 130 2596×13233
7 2 148 3409×13189

. . . . . . . . . . . .

42 3 58891 699138×697280

(a) Degree = 2 (b) Degree = 3

Fig. 2. Relation between n and the number of mutants obtained

third iteration, MutantXL eliminated the extended system thus generating 128
quadratic mutants and two linear mutants. Further iteration steps continuously
generate linear mutants as shown in Table 3 until some of these mutants are
univariate which finally leads to solving the system.

It was indeed observed that all MQQ systems offer enough algebraic infor-
mation (in the sense that it finds enough mutants) to the MutantXL algorithm
such that it was always able to solve the system having a critical degree of 3.
Figure 2(a) shows the direct linear relation between the size of the initial system
n and the number of linear mutants obtained from it. On the other hand Figure
2(b) shows the relation between n and the number of mutants obtained from
the extended degree 3 system. Both figures point out two main drawbacks of the
MQQ system: First, the initial systems contains linear equations, which is easily
discovered in the first step of MutantXL. Second, at degree 3, the system keeps
producing mutants until the system is solved. This explains why MQQ systems
are solved at degree 3 and therefore can be easily defeated.



400 M.S.E. Mohamed et al.

We are going to estimate the security level of MQQ against attacks using
MutantXL. The MQQ systems that we have broken are solved by MutantXL
and F4 at degree D = 3 as explained above. It is reasonable to assume that
all the MQQ systems can be defeated at degree D = 3. For MutantXL the
memory resources are basically measured by the matrix size. From the linear
relation explained in Figure 2(a), we can easily estimate the number of linear
mutants obtained in the first step. This will enable us to calculate the maximum
number of polynomials. For MutantXL, all the monomials appear. We claim
that MutantXL can attack MQQ cryptosystems up to n = 365 using the same
memory resources of the architecture specified above (128 GB). In this case, the
expected matrix size is 133590× 8104461 which needs � 126 Gigabyte of space
in less than 10 days.

5 Conclusion

In this article, we have performed an efficient practical cryptanalysis of MQQ
Public Key cryptosystem by solving systems of multivariate quadratic polyno-
mial equations. We used an adapted version of MutantXL in this attack. We
also compared our attack to the attack using F4 in Magma. The results showed
that both MutantXL and F4 successfully attack the MQQ cryptosystem. We
analyzed the reason why MutantXL could break MQQ efficiently, which is that
there are many mutants in the polynomial systems coming from MQQ.

Our implementation of MutantXL uses the M4RI package that is based on the
Method of the Four Russians Inversion algorithm published by Bard [1]. M4RI
is not optimized for this application, so we claim that further optimization will
speed up MutantXL. Also we plan to parallelize MutantXL by performing paral-
lel multiplication of polynomials and using the latest version of the M4RI pack-
age. We expect that this parallel implementation of MutantXL will significantly
improve its speed performance. Also Magma’s implementation of F4 does not
use mutants, so we plan to combine the mutant strategy with the F4 algorithm.
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Abstract. Rotation symmetric Boolean functions (RSBFs) which are
invariant under circular translation of indices have been used as compo-
nents of different cryptosystems. In this paper, we study the construction
of RSBFs with maximum algebraic immunity. First, a new construction
of RSBFs on odd number of variables with maximum possible Algebraic
Immunity is given. Then by using the relationship between some flats
and support of a n-variables Boolean function f , we prove that a con-
struction of RSBFs on even number of variables has maximum possible
Algebraic Immunity. Furthermore, we study the nonlinearity of functions
by our construction.
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nity; Nonlinearity.

1 Introduction

The subject of Boolean functions is well established and constitutes a corner-
stone of cryptography and coding theory, and Boolean functions are the basic
building blocks of the most cryptosystems. The study of the different crypto-
graphic properties of Boolean functions is important because of the strong con-
nections between known cryptanalytic attacks and these properties. Recently,
rotation symmetric Boolean functions (RSBFs) have attracted attention due to
their simplicity-invariant under rotation transform-for efficient computation.

An n-variable boolean function which is invariant under the action of the
cyclic group Cn is called rotation symmetric Boolean functions. These functions
have been analyzed in [18] where the authors studied the nonlinearity of these
Boolean functions and found encouraging results. This study has been extended
in [19,20,13,9]. And important properties of RSBFs have been demonstrated. On
the other hand, Pieprzyk and Qu studied RSBFs as components in the rounds
of a hashing algorithm [14] and research in this direction was later continued
in [7].

In recent years algebraic attacks [1,5,6] have become an important tool in
cryptanalysis of stream and block cipher systems. A new cryptographic property
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for designing Boolean functions to resist this kind of attacks, called algebraic im-
munity(AI), has been introduced [8,12]. Since then several classes of Boolean func-
tions with large AI have been investigated and constructed in order to against the
algebraic attack [3,8,10,12,15,16,17].

It is Sarkar and Maitra who first present a theoretical construction of RSBFs
on odd number of variables with maximum possible AI [21], in the construction,
n-variable majority function is considered and its outputs are toggled at the
inputs of the orbits of size �n/2� and �n/2� respectively. We here work in the
direction at construction of RSBFs with maximum AI. In our construction of
odd-variable functions with maximum AI, n-variable majority function is con-
sidered and its outputs are toggled at the inputs of the orbits of size ≥ �n/2�
and �n/2� respectively. We also give a construction of RSBFs on even number
of variables has maximum AI, and we prove the constructed even-variable RS-
BFs are of better nonlinearity than the existing theoretical constructions with
maximum AI.

The paper is organized as follows. Section 2 provides basic definitions and
notations. In Section 3, a construction of RSBFs on odd number of variables
with maximum possible AI is given. In Section 4, we present a construction of
RSBFs on even number of variables with maximum possible AI by using the
relationship between some flats and support of a n-variables Boolean function
f . The nonlinearity of constructed even-variable RSBFs are studied in Section
5. Section 6 concludes this paper.

2 Preliminaries

Let F2 be the binary finite field, the vector space of dimension n over F2 is
denoted by Fn

2 . A Boolean function on n variables may be viewed as a mapping
from Fn

2 into F2. A Boolean function f(x1, x2, · · · , xn) is also interpreted as the
output column of its truth table, that is, a binary string of length 2n having the
form:

{f(0, 0, · · · , 0), f(0, 0, · · · , 1), · · · , f(1, 1, · · · , 1)}.
The weight of f is the number of ones in its output column, and is denoted by
wt(f). The support of f is the set {x|f(x) = 1} and is denoted by supp(f). The
support of a vector x = (x1, · · · , xn) is supp(x) = {i|xi �= 0}.
Definition 1. An n-variable function f is balanced iff wt(f) = 2n−1.

Let us denote the addition operator over F2 by +. An n-variable function
f(x1, · · · , xn) can be seen as a multivariate polynomial over F2, that is,

f(x1, · · · , xn) = a0 +
n∑

i=1

aixi +
n∑

1≤i<j≤n

ai,jxixj + · · · + a1,2,··· ,nx1x2 · · ·xn

where the coefficients a0, ai, ai,j ,· · · , a1,2,··· ,n are in F2. This representation of f is
called the algebraic normal form (ANF) of f . And the algebraic normal form of a
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Boolean function is a unique representation of this function in F2[x1, .., xn]/(x2
1−

x1, · · · , x2
n − xn).

Let x = (x1, · · · , xn) and w = (w1, · · · , wn) belong to Fn
2 and x ·w = x1w1 +

x2w2 + · · · + xnwn. The Walsh transform of an n-variable function f is a real
valued function defined as

Wf (w) =
∑
x∈Fn

2

(−1)f(x)+x·w.

The nonlinearity of f is defined as

NL(f) = 2n−1 − 1
2

max
u∈Fn

2

|Wf (u)| (1)

A nonzero n-variable Boolean function g is called an annihilator of an n-variable
Boolean function f if f ∗ g = 0. We denote the set of all annihilators of f by
AN(f).

Definition 2. For f ∈ Bn, the algebraic immunity(AI) of f is the minimum
degree of non-zero functions g ∈ Bn such that g ∗ f = 0 or g ∗ (f + 1) = 0.
Namely,

AI(f) = min{deg(g)|0 �= g ∈ AN(f) ∪ AN(1 + f)}
If xi ∈ F2 for any 1 ≤ i ≤ n, and 0 ≤ k ≤ n − 1. We define

ρk
n(xi) =

{
xi+k, if i + k ≤ n,

xi+k−n, if i + k > n.

Let x = (x1, · · · , xn) ∈ Fn
2 , then we can extend the definition of ρk

n on tuples
and monomials as follows:

ρk
n(x1, · · · , xn) = (ρk

n(x1), · · · , ρk
n(xn)),

and
ρk

n(xi1xi2 · · · ) = ρk
n(xi1 )ρ

k
n(xi2) · · · .

Definition 3. f(x1, x2, · · · , xn) is called Rotation Symmetric if for each input
x = (x1, x2, · · · , xn) ∈ Fn

2 , and for any k, 0 ≤ k ≤ n − 1,

f(ρk
n(x1, x2, · · · , xn)) = f(x1, x2, · · · , xn).

Note that there are 2n different input values corresponding to a function. Let us
define Gn(x1, x2, · · · , xn)={ρk

n(x1, x2, · · · , xn)|0 ≤ k ≤ n− 1}, that is, the orbit
of (x1, x2, · · · , xn) under the action of ρk

n, 0 ≤ k ≤ n − 1. It is clear that Gn

generates a partition of the set Fn
2 . Let gn be the cardinality of the partition.

Using Burnside lemma, it can be shown (see [19]) the number of n-variable
RSBFs is

2gn , where gn =
1
n

∑
t|n

φ(t)2
n
t ,

where φ(.) is Euler’s phi-function.
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The orbit of an input can be represented by its representative element which
is the lexicographically first element belonging to the orbit. The representative
elements are again arranged lexicographically as Λ1 > · · · > Λgn . Note that for
any n, Λ1 = (1, 1, · · · , 1) and Λgn = (0, 0, · · · , 0). Thus an n-variable RSBF f
can be represented by the length string f(Λ1), · · · , f(Λgn) which we call RSTT
of f and denote it by RSTTf .

In [20] it was shown that the Walsh spectrum of an RSBF f takes the same
value for all elements belonging to the same orbit, i.e.,Wf (u) = Wf (v) if v ∈
Gn(u). Therefore the Walsh spectrum of f can be represented by the gn length
vector (Wf (Λ1), · · · , Wf (Λgn)).

Definition 4. Let us defined n-variables Boolean function F as follows,

F (x) =

{
1, wt(x) < �n

2 �,
0, wt(x) ≥ �n

2 �.

F is called the majority function.

3 Construction of Odd-Variables RSBFs with
Maximum AI

Let us start with a few available results on n-variable Boolean functions with
maximum AI when n is odd.

Theorem 1. [10]Let n be a odd number, then the algebraic immunity of the
majority function F is AI(F ) = �n

2 �.
In [2], A. Canteaut has observed the following:

Proposition 1. Let n be a odd number, and f be an n-variable Boolean func-
tion, if f has no non-zero annihilator of degree at most �n

2 �, then AI(f) = �n
2 �.

For y = (y1, · · · , yn), we denote xy = xy1
1 · · ·xyn

n , We present in the sequel our
new construction.
Construction 1

1. Take n ≥ 5, n odd.
2. Take Λp such that wt(Λp) = n−1

2 .
3. Choose Λq such that |Gn(Λp)| = |Gn(Λq)| � N , and for each (λ1, · · · , λN ) �=

0, the equation
∑N−1

i=0 λix
ρi(Λq) = 1 has at least one solution in the set

Gn(Λq).
4. Construct

T (x) =

{
F (x) + 1, x ∈ Gn(Λp) ∪ Gn(Λq),
F (x), otherwise.

Theorem 2. The function T in Construction 1 is an n-variable RSBF with
maximum AI.
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Proof. By Proposition 1, We only need to prove that T has no annihilators with
degree less than �n/2�.

Let g be a non-zero annihilators of T with degree less than �n/2�, then
supp(g) ⊂ supp(T + 1), and g can be represented as the following polynomial,

g(x) =
∑

(τ1,··· ,τn)∈supp(g)

(x1 + τ1 + 1) · · · (xn + τn + 1)

If wt(τ1, · · · , τn) ≥ �n/2�, then the degree of each term of (x1 + τ1 +1) · · · (xn +
τn +1) is not less than �n/2�. Since deg(g) < �n/2�, there must be some vectors
with weight less than �n/2� in the support of g.

From the construction, we have supp(T +1) = {x|wt(x) ≥ �n/2�}∪Gn(Λp) \
Gn(Λq), which indicates that

Gn(Λp) ∩ supp(g) �= ∅.
and

g(x) =
∑

(τ1,··· ,τn)∈Gn(Λp)∩supp(g)

(x1 + τ1 + 1) · · · (xn + τn + 1)

Then g can be formed as

g(x) =
N−1∑
i=0

λix
ρi(Λq), where

N−1∏
i=0

λi �= 0.

From the assumptions, there are at least one vector in Gn(Λq) such that g(x) = 1,
then

Gn(Λq) ∩ supp(g) �= ∅ ⇒ Gn(Λq) ∩ supp(T + 1) �= ∅ ⇒ Gn(Λq) ⊂ supp(T + 1).

which contradict with the assumptions, so T has no annihilators with degree less
than �n/2�.

Hence, we finish our proof. �

4 Construction of Even-Variables RSBFs with
Maximum AI

In this section, we study the construction of even-variable RSBFs with maximum
algebraic immunity.

It is known that, if a function has degree strictly less than k and if it is null
on a flat of dimension at least k, except maybe at one vector of this flat, then it
must be null on the whole flat. Carlet exploit this idea for the annihilators of a
boolean function f and f + 1, and obtain the following result.

Lemma 1. [4] Let k be any positive integer such that k ≤ �n/2�. A sufficient
condition for a function f to have no non-zero annihilator of degree strictly less



Construction of RSBFs with Maximum AI 407

than k is that there exists a sequence of flats (i.e. of affine subspaces of Fn
2 )

(Ai)1≤i≤r of dimensions at least k, such that:{
∀i ≤ r, |Ai \ [∪i∗≤iAi∗

⋃
supp(f)]| ≤ 1,

Fn
2 \ supp(f) ⊆ ∪i≤rAi.

Now we present our construction
Construction 2

1. Take n ≥ 6.
2. Take Λp such that wt(Λp) ≤ n

2 − 1.
3. Choose Λq such that |Gn(Λp)| = |Gn(Λq)|, wt(Λq) = n

2 , and for each x ∈
Gn(Λp), there is a unique y ∈ Gn(Λq) such that supp(x) ⊆ supp(y).

4. Construct

R(x) =

{
F (x) + 1, x ∈ Gn(Λp) ∪ Gn(Λq),
F (x), otherwise.

Henceforth, we will consider R as the function on n-variables obtained from
Construction 1. We have the following theorem.

Theorem 3. The function R in construction 2 is an n-variable RSBF with
maximum AI.

Proof. it comes from a given property of binomial coefficients that
∑n/2

i=0

(
n
i

)
=∑n

i=n/2

(
n
i

)
, we denote this value by M .

1. Let a1, a2, · · · , aM be an ordering of the set of all vectors of weight at least
n/2 in Fn

2 , the order being by increasing weights (with any order for vectors
of the same weight). We take for Ai the vector spaces {x ∈ Fn

2 |supp(x) ⊆
supp(ai)}. Then
when 1 ≤ i ≤ ( n

n/2

)
{

Ai \ supp(R) = {ai}, ai �∈ Λq

Ai \ supp(R) = {a∗
i }, a∗

i ∈ Λp, ai ∈ Λq, supp(a∗
i ) ⊆ supp(ai).

when i >
(

n
n/2

)
Ai \ [∪i∗≤iAi∗

⋃
supp(R)] = {ai}

From Lemma 1, we prove that R(x) have no non-zero annihilator of degree
strictly less than n/2.

2. Let b1, b2, · · · , bM be an ordering of the set of all vectors of weight at most n/2
in Fn

2 , the order being by decreasing weights (with any order for vectors of the
same weight). We take for Ai the vector spaces {x ∈ Fn

2 |supp(ai) ⊆ supp(x)}.
Then
when 1 ≤ i ≤ ( n

n/2

)
{

Ai \ supp(R + 1) = ∅, bi �∈ Λq

Ai \ supp(R + 1) = {bi}, bi ∈ Λq.
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when i >
(

n
n/2

)
{

Ai \ [∪i∗≤iAi∗
⋃

supp(R + 1)] = {bi}, bi �∈ Λp

Ai \ [∪i∗≤iAi∗
⋃

supp(R + 1)] = ∅, bi ∈ Λp.

From Lemma 1, we prove that R(x) + 1 have no non-zero annihilator of
degree strictly less than n/2. �

Example 1.Take n = 6. Consider Λp = (1, 1, 0, 0, 0, 0) and Λq = (1, 1, 0, 1, 0, 0)
and generate the orbits

Gn(Λp) = (1, 1, 0, 0, 0, 0), (0, 1, 1, 0, 0, 0), (0, 0, 1, 1, 0, 0), (0, 0, 0, 1, 1, 0),
(0, 0, 0, 0, 1, 1), (1, 0, 0, 0, 0, 1).
Gn(Λq) = (1, 1, 0, 1, 0, 0), (0, 1, 1, 0, 1, 0), (0, 0, 1, 1, 0, 1), (1, 0, 0, 1, 1, 0),
(0, 1, 0, 0, 1, 1), (1, 0, 1, 0, 0, 1).

Here, for each x ∈ Gn(Λp), there is a unique y ∈ Gn(Λq) such that supp(x) ⊆
supp(y). Therefore by Theorem 3, the function R(x) is a 6-variable RSBF with
Maximum AI.

5 The Nonlinearity of the Constructed RSBFs

In this dection, we will study the nonlinearity of functions by our construction
2. First, we give the results relating algebraic immunity and the nonlinearities
of a Boolean function which was presented in [3].

Lemma 2. [3] if f has maximum algebraic immunity, then

NL(f) ≥
{

2n−1 − (n−1
n−1

2

)
, n odd

2n−1 − (n−1
n
2 −1

)− (n−1
n
2

)
, n even.

Now we study the Walsh spectra of the majority function F which have very
nice combinatorial properties related to Krawtchouk polynomial.

Krawtchouk polynomial [11] of degree i is defined by

Ki(x, n) =
i∑

j=0

(−1)j

(
x

j

)(
n − x

i − j

)
.

It is known that for a fixed w, such that wt(w) = k,∑
wt(w)=i

(−1)w·x = Ki(k, n).

Let us now list some known results about Krawtchouk polynomial Ki(x, n).
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Lemma 3. We have,

1.
Ki(k, n) = (−1)kKn−i(k, n),

2.
Ki(k, n) = (−1)iKi(n − k, n),

3.

Ki(n/2, n) =

{
0, i odd,

(−1)i/2
(n/2

i/2

)
, i even.

Lemma 4. The Walsh transform of the function F is as follows,

WF (w) =

{
Kn/2(wt(w), n), wt(w) even,

−2
∑n/2−1

i=0 Ki(wt(w), n), wt(w) odd,

Proof. If wt(w) is even, then

WF (w) =
∑

0≤wt(x)<n/2

(−1)w·x+1 +
∑

n/2≤wt(x)≤n

(−1)w·x

⇒ WF (w) = −
n/2−1∑

i=0

Ki(wt(w), n) +
n∑

i=n/2

Ki(wt(w), n)

⇒ WF (w) = Kn/2(wt(w), n).

If wt(w) is odd, then

WF (w) =
∑

0≤wt(x)<n/2

(−1)w·x+1 +
∑

n/2≤wt(x)≤n

(−1)w·x

⇒ WF (w) = −
n/2−1∑

i=0

Ki(wt(w), n) +
n∑

i=n/2

Ki(wt(w), n)

⇒ WF (w) = −2
n/2−1∑

i=0

Ki(wt(w), n). �

The following corollary is clear.

Corollary 1. We have,

WF (w) =

{
−( n

n/2

)
, wt(w) = 1,

(−1)n/2
(

n
n/2

)
, wt(w) = n.

Theorem 4. The nonlinearity of the function R is not less than 2n−1− 1
2

(
n

n/2

)
.
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Proof. Let us first find the relation between the values of WR(Λk) and WF (Λk).

WR(Λk) =
∑

x∈Gn(Λp)

(−1)R(x)+x·Λk +
∑

x∈Gn(Λq)

(−1)R(x)+x·Λk

+
∑

x/∈Gn(Λp)∪Gn(Λq)

(−1)R(x)+x·Λk

=
∑

x∈Gn(Λp)

(−1)R(x)+x·Λk+1 +
∑

x∈Gn(Λq)

(−1)R(x)+x·Λk+1

+
∑

x/∈Gn(Λp)∪Gn(Λq)

(−1)R(x)+x·Λk

= WF (Λk) + 2
∑

x∈Gn(Λp)

(−1)x·Λk − 2
∑

x∈Gn(Λq)

(−1)x·Λk .

Now we have the following four cases.

1. If wt(Λk) = 0. It is clear that |WF (Λk)| =
(

n
n/2

)
.

2. If wt(Λk) = 1.
∑

x∈Gn(Λp)(−1)x·Λk = 2,
∑

x∈Gn(Λq)(−1)x·Λk = n− 2wt(Λq),
from Corollary 1,

|WR(Λk)| = |WF (Λk) + 4 − 2(n − 2wt(Λq))|
= | −

(
n

n/2

)
+ 4 − 2(n − 2wt(Λq))| ≥ −

(
n

n/2

)
+ 4.

3. If wt(Λk) = n,
∑

x∈Gn(Λp)(−1)x·Λk = (−1)wt(Λp) · n,
∑

x∈Gn(Λq)(−1)x·Λk =
(−1)wt(Λq) · n. Then from Corollary 1,

WR(Λk) = WF (Λk) + 2(−1)wt(Λp) · n − 2(−1)wt(Λq) · n

⇒
{

WR(Λk) ≤ ( n
n/2

)− 2n + 2n, n/2 odd,

WR(Λk) ≥ −( n
n/2

)
+ 2n − 2n, n/2 even.

4. If 2 ≤ wt(Λk) ≤ n − 1, |∑x∈Gn(Λp)(−1)x·Λk | ≤ n, |∑x∈Gn(Λq)(−1)x·Λk | ≤
n · wt(Λq). Then, from Lemma 4,
if wt(Λk) is odd,

|WR(Λk)| ≤ |WF (Λk)| + 4n = |2
n/2−1∑

i=0

Ki(wt(Λk), n)| + 4n

≤ 2
n/2−1∑

i=0

|Ki(wt(Λk), n)| + 4n

≤ 2
n/2−1∑

i=0

|Ki(2, n)| + 4n ≤
(

n

n/2

)

if wt(Λk) is even,



Construction of RSBFs with Maximum AI 411

|WR(Λk)| ≤ |WF (Λk)| + 4n = |Kn/2(wt(Λk), n)| + 4n

= |
n/2∑
j=0

(−1)j

(
wt(Λk)

j

)(
n − wt(Λk)

n/2 − j

)
| + 4n ≤

(
n

n/2

)
.

then by Relation (1), we end our proof. �

It is obvious that 2n−1 − 1
2

(
n−1
n/2

)
> 2n−1 − (n−1

n
2 −1

)− (n−1
n
2

)
, which indicates that

the nonlinearity of functions is than better nonlinearity than the existing con-
structions with maximum AI.

6 Conclusion

In this paper, we firstly present a new construction of RSBFs on odd num-
ber of variables with maximum AI. We also give a construction of RSBFs on
even number of variables has maximum AI, and it is shown that our constructed
even-variable RSBFs are of better nonlinearity than the existing theoretical con-
structions with maximum AI. However, it is still an open problem to construct
balanced RSBFs on even variables. Furthermore, there are still some problems
need to be studied such as whether the constructed functions can achieve high
degree and be robust against fast algebraic attacks.
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Abstract. This paper describes the design of a fast multi-core library
for the cryptographic Tate pairing over supersingular elliptic curves. For
the computation of the reduced modified Tate pairing over F3509 , we
report calculation times of just 2.94 ms and 1.87 ms on the Intel Core2
and Intel Core i7 architectures, respectively. We also try to answer one
important design question that arises: how many cores should be utilized
for a given application?

Keywords: Tate pairing, ηT pairing, supersingular curve, finite field
arithmetic, multi-core.

1 Introduction

During the early years of this century it was generally assumed that computing
cryptographic bilinear pairings was a computationally expensive task. Taking as
a starting point the breakthrough introduced by Miller [23, 24], who proposed
the first iterative approach to compute a cryptographic pairing, several authors
focused their efforts on finding algorithmic improvements and shortcuts to fur-
ther reduce the complexity of the so-called Miller’s Algorithm [4,9,3,19,18,29].
Those theoretical findings were experimentally validated by different means. At
first, it was thought that the rich parallelization potential shown by hardware
platforms could be exploited in order to produce faster and more compact pair-
ing implementations. Through the years, this assumption has been confirmed in
many research works (see for instance [28, 20, 8] for a comprehensive bibliogra-
phy). Nevertheless, with the only exception of the ASIP in [20], all hardware
accelerators reported in the open literature until today, have targeted low and
medium security levels.

On the other hand, in the last few years a second wave of authors have in-
vestigated the challenges associated to the efficient implementation of pairings

J.A. Garay, A. Miyaji, and A. Otsuka (Eds.): CANS 2009, LNCS 5888, pp. 413–432, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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in software platforms [17, 12, 21, 16]. ¿From the results reported by those re-
search works, it appears that software pairing libraries can sometimes compete
with their hardware counterparts. Furthermore, yet another way to exploit par-
allelism can be instrumented when the multi-core architectures introduced just
recently by Intel are targeted. Multi-core architectures can be seen as a mas-
sive way to obtain parallelism via the concurrent usage of powerful individual
processors that are tightly interconnected.

To our knowledge, the only bilinear pairing library targeting a multi-core
architecture was reported in [12]. After considering several scenarios, the authors
came up with the not too optimistic conclusion that on a Core2 64-bit platform,
the best option to parallelize the computation was to perform one pairing on
each core. They state that, “if the requirement is for two pairing evaluations,
the slightly moronic conclusion is that one can perform one pairing on each
core [. . . ], doubling the performance versus two sequential invocations of any
other method that does not already use multi-core parallelism internally” [12].

This paper is devoted to the design of a software library for the cryptographic
Tate pairing on supersingular elliptic curves defined over finite fields of charac-
teristics two and three. After a careful selection of the field arithmetic (Section 2)
and pairing algorithms (Section 3) we show that multi-core architectures can be
effectively used to provide significant computational speedups. A single-core ver-
sion of our software 1 computes the reduced modified Tate pairing in 11.19 and
7.59 ms for the extension fields F21223 and F3509 , respectively, on an Intel Quad
Core running at 2.4 GHz. Speedups of approximately 2.6× are obtained when
using the four cores available in the target architecture (Section 4).

2 Finite Field Arithmetic Using SSE

2.1 Characteristic Two Field

Frobenius and Inverse-Frobenius Operators. We define the binary exten-
sion field F2m as F2[x]/ (f(x)), where f(x) is an irreducible degree-m polynomial
over F2. An arbitrary element a ∈ F2m is written as a(x) =

∑m−1
0 aix

i, where
ai ∈ F2 for i = 0, 1, . . . , m − 1. Let us also assume that the extension degree
m can be expressed as m = 2u + 1, with u ≥ 1. Then, the Frobenius operator
applied to a consists of computing c = a2 mod f(x), which can be obtained as

c =
u∑

i=0

aix
2i +

(
xm ·

u∑
i=1

au+ix
2i−1

)
mod f(x) = aL + xmaH mod f(x).

The field element c can be efficiently calculated in software by extracting the two
half-length vectors aL and aH along with the computation of an m

2 -bit multipli-
cation by the per-field constant xm. The subsequent reduction process modulo
f(x) is typically implemented in software by using XOR and shift operations.
1 An open source code for benchmarking the library is available at
http://homepage1.nifty.com/herumi/crypt/pairing.html

http://homepage1.nifty.com/herumi/crypt/pairing.html
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The inverse-Frobenius operator of a is computed by determining the unique
field element b ∈ F2m such that b2 = a holds. The element b can be computed
in terms of the square root of the field constant x as

b =
	m−1

2 
∑
i=0

a2ix
i +

⎛⎝x
1
2 ·

	m−3
2 
∑

i=0

a2i+1x
i

⎞⎠ mod f(x) = aeven + x
1
2 aodd mod f(x).

The efficient computation in software of b defined as above is performed by
extracting the even and odd bits of a into the half length vectors aeven and aodd,
respectively. This should be followed by multiplying the half length vector aodd
by the pre-computed constant x

1
2 .

In the case that the irreducible polynomial happens to be a trinomial of the
form f(x) = xm + xn + 1, where m and n are odd numbers, we have that
x

1
2 = x

m+1
2 + x

n+1
2 . Since x

1
2 aodd has degree m − 1, it follows that we do not

need to perform a polynomial modular reduction and hence the inverse Frobenius
operator of an arbitrary element a ∈ F2m can be obtained by computing [10]

b =
	m−1

2 
∑
i=0

a2ix
i +

(
x

m+1
2 + x

n+1
2

)
·
	m−3

2 
∑
i=0

a2i+1x
i.

Multiplier. We implemented this arithmetic block by using a variation of the
left-to-right comb multiplication scheme presented in [22], one of the fastest
multiplier schemes for binary fields reported in the open literature.

Let w be the processor word size in bits. Then, the number of processor words
required for storing an arbitrary element in the field F2m is s = �m

w �. From these
definitions, authors in [22] found that the computational complexity of their
algorithm (excluding the one associated to the reduction process) was of s(m

4 )
w-bit XOR operations and a total of (w/4−1) 4-bit left shift operations of a 2s-
word vector. Additionally, their method makes use of a look-up table containing
sixteen s-word entries, which is queried a total of s(m

4 ) times. The look-up table
is pre-computed at a cost of three 1-bit left shift operations over an s-word vector
and eleven s-word XOR operations.

In the case of the SSE instruction set, we have w = 128. Hence, we can invoke
specialized instructions to perform any logic or arithmetic operation over a bank
of 128-bit SSE register operators. It is also possible to manipulate the contents of
the SSE registers by applying left/right shift/rotate operators over them. Those
shift and rotate operations are executed with very high efficiency if the operand
is shifted or rotated by a constant value multiple of 8 bits. This feature motivated
us to propose a right-to-left comb multiplication scheme that trades all but one
of the 4-bit left shift operations required by the multiplier in [22], with 8-bit right
shift operations. In the rest of this subsection, we describe our formulation.

Let us define n = 32 · s. It appears convenient to group the bit representation
of a field element a ∈ F2m into 4-bit digits as follows:

a = (am−1 . . . a1a0) ⇔ a = (An−1 . . . A1A0),
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where Ai, for i = 0, 1, . . . , n − 1, is defined as Ai =
∑3

j=0 a4i+jx
4i+j . Notice

that each 128-bit SSE register can store thirty-two such digits.2

As it will be discussed below, it appears convenient to rearrange the n digits
of the field element a into a 2 × 16s matrix Idx as

Idx[2][16s] =
(

An−1 . . . A33 A31 . . . A3 A1
An−2 . . . A32 A30 . . . A2 A0

)
. (1)

In order to calculate the product c = a·b we prepare first a 16-entry look-up table
by pre-computing TblMul[i] ← (i3x3 + i2x

2 + i1x+ i0) · b, for i = 0, 1, . . . , 15 and
where i = (i3i2i1i0)2 is the binary expansion of i. Then, the polynomial product
c = ab can be computed as follows:

ab =
n−1∑
i=0

Aix
4ib =

16s−1∑
i=0

x8i
(
A2i + x4A2i+1

)
b

=
15∑

i=0

s−1∑
j=0

x8i
(
A32j+2i + x4A32j+2i+1

)
x128jb

=
15∑

i=0

s−1∑
j=0

x8i
(
TblMul[A32j+2i] + x4TblMul[A32j+2i+1]

)
x128j (2)

=

⎛⎝ 15∑
i=0

s−1∑
j=0

x8(i−16)TblMul[Idx[1][16j + i]]x128j

⎞⎠ x128 +

⎛⎝ 15∑
i=0

s−1∑
j=0

x8(i−16)x4TblMul[Idx[0][16j + i]]x128j

⎞⎠x128.

Note that in the last equality of Eq. (2) we used the matrix Idx as defined in
Eq. (1), which allows us to recover the digits A2(16j+i) and A2(16j+i)+1 as

Idx[1][16j + i] = A2(16j+i) and Idx[0][16j + i] = A2(16j+i)+1.

One can compute Eq. (2) as shown in Algorithm 1. It is worth stressing that:

– In step 5, we extract the bits of a in such a way that its digits Ai for
i = 0, . . . , n − 1 are rearranged into a two dimensional array Idx[2][16s] as
described in Eq. (1).

– The shift operations of step 10, namely, x128, x256, . . . , x1152, can be per-
formed at no cost because they correspond to shifts by entire 128-bit words.

– In step 12, a 1-byte right rotation is applied over the contents of the 2s-word
accumulator R. This rotation operation is invoked thirty-two times.

– In step 15, a 4-bit left rotation over the 2s-word accumulator R is performed.
This is the only left rotation by four bits included in the algorithm.

2 Note that the v = 128 − (m mod 128) most significant bits of the last SSE register
should be filled with zeroes.
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Algorithm 1. SSE implementation of a right-to-left comb multiplier over F2m .
Input: a, b ∈ F2m .
Output: c = a · b mod f(x) ∈ F2m .
1: for i ← 0 to 15 do
2: Compute the binary expansion of i = (i3i2i1i0)2;
3: TblMul[i] ← (i3x3 + i2x

2 + i1x + i0) · b(x);
4: end for

5: Idx[2][16s] ← extractIdx(a);
6: R ← 0;

7: for k ← 0 to 1 do
8: for i ← 0 to 15 do
9: for j ← 0 to s − 1 do

10: R ← R + TblMul[Idx[k][i + 16 · j]]x128·j ;
11: end for
12: R ← rotRight Byte(R, 1)
13: end for
14: if k = 0 then
15: R ← rotLeft bit(R, 4);
16: end if
17: R ← rotLeft Byte(R, 16);
18: end for

19: c ← R mod f(x);

20: return c;

– In step 17, a left rotation by 16 bytes must be executed. This rotation is
almost for free as it only implies the reassignment of the SSE registers.

– Finally in Step 19, a modular reduction with the polynomial f(x) must be
performed.

It is easy to verify that the computational cost of Algorithm 1 is of three 1-
bit left shift operations over an s-word vector, (32 + 11)s XOR operations, 32s
queries to the look-up table TblMul, thirty-two 1-byte right rotations of a 2s-
word vector, one 4-bit left rotation of a 2s-word vector, plus the computational
cost of the reduction operation of Step 19. As a final remark we state that it is
straightforward to generalize the multiplier of Algorithm 1 so that it can compute
field multiplications over finite fields with characteristic p > 2.

Multiplicative Inverse. We compute the multiplicative inverse of an arbitrary
field element a ∈ F2m by implementing the Almost Inverse Algorithm [26, 15],
which is a variant of the binary extended Euclidean algorithm.

2.2 Characteristic Three Field

Addition and Subtraction. In 2002, Galbraith et al. [11] showed how to
compute additions of two elements a, b ∈ F3 using 12 AND, OR, XOR and
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NOT Boolean functions. That same year, Harrison et al. [17] noted that this
operation could be computed using only 7 OR and XOR logical instructions.
This was considered the minimal number of logical operations for this arithmetic
operation until Kawahara et al. [21] presented in 2008 an expression that only
requires 6 logical instructions. However, our experiments, performed on a multi-
core processor environment, showed that the expression in [17] consistently yields
a shorter computation time than the one associated to the expression in [21].
Hence, we decided to adopt the expression reported in [17], which is briefly
described next. Each coefficient (trit) a ∈ F3 can be encoded as two bits ah

and al with a = 2ah + al. The addition of two elements a, b ∈ F3 can then be
computed as [17]

t = (al|bh) ⊕ (ah|bl), cl = t ⊕ (ah|bh), and ch = t ⊕ (al|bl).

As mentioned by the authors of [17], the order in which the above expression
is evaluated has a major impact on the performance of its implementation in
software. In fact, we use the following equivalent expression for computing c =
a + b:

t = (al|ah)& (bl|bh), cl = t ⊕ (al|bl), and ch = t ⊕ (ah|bh).

Similarly, subtraction in F3 can be computed using only 7 instructions as

t = (al|ah)& (bl|bh), cl = t ⊕ (al|bh), and ch = t ⊕ (ah|bl).

Frobenius and Inverse-Frobenius Operators. Let f(x) be an irreducible
polynomial of degree m over F3. Then, the ternary extension field F3m can be
defined as F3m ∼= F3[x]/ (f(x)). Let a be an arbitrary element of that field, which
can be written in canonical basis as a =

∑m−1
i=0 aix

i, ai ∈ F3. Assume that the
extension degree m is an integer of the form m = 3u + r, with u ≥ 1 and
r ∈ {0, 1, 2}. Then, the Frobenius operator applied to a consists of computing
c = a3, which can be obtained as [1]

c = a3 mod f(x) =
(
C0 + xmC1 + x2mC2

)
mod f(x), (3)

where C0 =
u∑

i=0

aix
3i, C1 =

u+r−1∑
i=1

ai+ux3i−r , and C2 =
u+r−1∑

i=r

ai+2ux3i−2r.

One can evaluate Eq. (3) by determining the constants xm and x2m, which are
per-field constants. The inverse-Frobenius operator of a is computed by deter-
mining the unique field element b ∈ F3m such that b3 = a holds. The element b
can be computed as [2]

b =
u−1+� r

2 �∑
i=0

a3ix
i + x

1
3 ·

u−1+	 r
2 
∑

i=0

a3i+1x
i + x

2
3 ·

u−1∑
i=0

a3i+2x
i mod f(x), (4)

Eq. (4) allows us to compute the inverse-Frobenius operator by performing two
third-length polynomial multiplications with the per-field constants x

1
3 and x

2
3 .
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Table 1. Pre-computation look-up table when using the comb method for a ∈ F3m

with a window size v = 2

Entry Value

[00] 0
[01] a
[02] ∼ [01]

Entry Value

[10] [01] � 1
[11] [10] + [01]
[12] [10] + [02]

Entry Value

[20] ∼ [10]
[21] ∼ [12]
[22] ∼ [11]

Multiplier. We use here the same comb method discussed previously. As we
did in characteristic two, we selected a window size v = 4, which in characteristic
three means that we have to pre-compute a look-up table containing 34 = 81
entries. Due to the fact that almost half of the entries can be obtained by per-
forming one single logical NOT, pre-computing such look-up table requires a
moderate computational effort. As an example, consider the case where we want
to build a look-up table for a given element a ∈ F3m , with a size of v = 2. Then,
we have to pre-compute 32 = 9 entries. Table 1 shows how to obtain those 9
elements, where ∼ and � stand for the logical negation and left shift operations,
respectively. As it can be seen in Table 1, 4 out of 9 entries can be computed
using logical negation only. We also need to compute two F3m additions, one
initialization to zero and one assignment of the element a. In the case of v = 4,
generating the 81-entry look up table requires a computational effort of 40 logical
negations, 36 field additions, and 3 left-shift operations.

Multiplicative Inverse. In order to compute the multiplicative inverse d of a
field element b ∈ F3m , namely, d = b−1 mod f(x), we used the ternary variant
of the binary extended Euclidean algorithm reported in [17].

2.3 Field-Arithmetic Implementation Timings

We present in Table 2 a timing performance comparison of our field arithmetic
library against the timings reported by Hankerson et al. in [16].3 In both works,
the libraries were executed on a Intel Core2 processor running at 2.4 GHz. It
is noticed that our multipliers in characteristic two and three are faster than
their counterparts in [16]. However, the field multiplier for 256-bit prime fields
reported in [16] easily outperforms all the other four multipliers listed in Table 2.

3 Pairing Computation on Supersingular Curves in
Characteristics Two and Three

In the following, we consider a supersingular elliptic curve E/Fpm (where p = 2
or 3) with a distortion map ψ. The point at infinity is denoted by O. Let 	 be a
large prime factor of N = #E(Fpm), and suppose that the embedding degree of

3 Our library was compiled using the MS Visual Studio 2008SP1 in 64-bit mode, and
it was executed on the Windows XP 64-bit SP2 environment.
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Table 2. A comparison of field arithmetic software implementations on an Intel Core2
processor (clock frequency: 2.4 GHz). All timings are reported in μs.

Field Prime/polynomial xp p
√

x Mult

Hankerson et al. [16] Fp256 256-bit prime – – 0.129
Hamming weight 87

F21223 x1223 + x255 + 1 0.250 0.208 3.417
F3509 x509 − x318 − x191 + x127 + 1 0.375 0.500 3.208

This work F21223 x1223 + x255 + 1 0.200 0.312 2.266
F3509 x509 − x318 − x191 + x127 + 1 0.375 0.406 1.720

the curve k is larger than 1 and that there are no points of order 	2 in E(Fpkm).
Let fn,P , for n ∈ N and P ∈ E(Fpm)[	], be a family of normalized Fpkm-rational
functions with divisor (fn,P ) = n(P ) − ([n]P ) − (n − 1)(O). The modified Tate
pairing of order 	 is a non-degenerate and bilinear pairing given by the map

ê : E(Fpm)[	] × E(Fpm)[	] −→ F∗
pkm/(F∗

pkm)�

(P, Q)  −→ f�,P (ψ(Q)).

Note that ê(P, Q) is defined as a coset of (F∗
pkm)�. However, FF ∗

pkm/(F∗
pkm)� is

cyclic of order 	 and isomorphic to the group of 	-th roots of unity μ� = {u ∈
F
∗
pm : u� = 1} ⊆ F∗

pkm . Hence, in order to obtain a unique representative, which
is desirable for pairing-based protocols, it suffices to raise f�,P (ψ(Q)) to the
(pkm −1)/	-th power. This operation is often referred to as final exponentiation.
We define the reduced modified Tate pairing as êr(P, Q) = ê(P, Q)(p

km−1)/�.

3.1 Miller’s Algorithm

Miller [23,24] proposed the first iterative approach to compute the function f�,P .
By proving the equality of the divisors, he showed that

fa+b,P = fa,P · fb,P · l[a]P,[b]P

v[a+b]P
,

where l[a]P,[b]P is the equation of the line through [a]P and [b]P (or the tangent
line if [a]P = [b]P ), v[a+b]P is the equation of the vertical line through [a + b]P ,
and f1,P is a constant function (usually, f1,P = 1). We obtain a double-and-add
algorithm for computing the rational function fn,P in �log2 n� iterations. A nice
property of supersingular elliptic curves is that multiplication by p is a relatively
easy operation: it involves only a few Frobenius maps and additions over Fpm

(see for instance [3] for details) and a p-ary expansion of 	 seems perfectly suited
to the computation of f�,P (ψ(Q)).

Several researchers focused on shortening the loop of Miller’s algorithm (see
for instance [19,18,29] for a comprehensive bibliography). Barreto et al. [3] intro-
duced the ηT pairing as “an alternative means of computing the Tate pairing on
certain supersingular curves” [25, page 108]. They suggest to compute êr(P, Q)
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using an order T ∈ Z that is smaller than 	. Their main result is a lemma giving
a method to select T such that ηT (P, Q) is a non-degenerate bilinear pairing [3].
In the case of characteristics two and three, they show that one can half the
number of basic Miller’s iterations by choosing T = pm − N :

ηT (P, Q) =
{

fT,P (ψ(Q)) if T > 0, or
f−T,−P (ψ(Q)) if T < 0.

It is worth noticing that T has a low p-adic Hamming weight and the compu-
tation of [T ]P (or [−T ]P ) requires (m + 1)/2 multiplications by p and a single
addition. It is therefore possible to pre-compute multiples of P by means of
Frobenius maps and to parallelize Miller’s algorithm on several cores. Multi-
plications over Fpkm are of course necessary to obtain ê(P, Q) from the partial
results computed on each core.

3.2 Reduced Modified Tate Pairing in Characteristic Two

We follow [6, Algorithm 1] to compute ê(P, Q) on a supersingular curve E/F2m ,
m an odd number and with embedding degree k = 4 given by E : y2 + y =
x3 + x + b, where m is odd and b ∈ {0, 1}. The reduced modified Tate pairing is
defined by [3, 6]:

êr(P, Q) = ηT ([2m]P, Q)
24m−1

N .

Loop unrolling does not allow one to reduce the number of multiplications over
F2m and Miller’s algorithm requires (m−1)/2 iterations which can be parallelized
on several cores.4 Final exponentiation consists of raising ê(P, Q) to the exponent
M = 24m−1

N = (22m−1)·(2m+1−ν2(m+1)/2) [3], where ν = (−1)b when m ≡ 1, 7
(mod 8) and ν = (−1)1−b in all other cases. We perform this operation according
to a slightly optimized version of [6, Algorithm 3] (see Appendices A.1 and A.2
for technical details):

– Raising to the (2m + 1)-st power. Raising the outcome of Miller’s al-
gorithm to the

(
22m − 1

)
-st power produces an element U ∈ F24m of order

22m + 1. This property allows one to save a multiplication over F24m when
raising U to the (2m + 1)-st power compared to [6, page 304].

– Raising to the 2
m+1

2 -th power. Beuchat et al. [8] exploited the linearity
of the Frobenius map in order to reduce the cost of successive cubings over
F36m . The same approach can be straightforwardly applied to characteristic
two: raising an element of F24m to the 2i-th power involves 4i squarings and
at most four additions over F2m .

4 Shirase et al. propose a loop unrolling technique in reference [27] and claim that
they reduce the computation time by 14.3%. However, they assume that additions
and multiplications by small constants are almost free, and inverse Frobenius maps
over F2m are m times more expensive than Frobenius maps. Such estimates do not
hold in our context (see for instance Table 2) and we did not investigate further the
approach by Shirase et al.
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3.3 Reduced Modified Tate Pairing in Characteristic Three

We consider a supersingular curve E/F3m with embedding degree k = 6 defined
by E : y2 = x3 − x + b, where m is coprime to 6 and b ∈ {−1, 1}. According
to [3, 6], we have

êr(P, Q) = ηT

([
−μb3

3m−1
2

]
P, Q

) 36m−1
N

,

where μ = 1 when m ≡ 1, 11 (mod 12), or μ = −1 otherwise. There are several
ways to compute the ηT pairing (see for instance [3, 7, 8]) and the choice of
an algorithm depends on the target architecture. Here, we decided to minimize
the number of arithmetic operations over F3m and applied the well-known loop
unrolling technique [13] to [7, Algorithm 3] (technical details are provided in
Appendix B). This approach allows us to save several multiplications over F3m

compared to the original algorithm. Final exponentiation is carried out according
to [7, 8].

4 Results and Comparisons

We list in Table 3 the timings achieved on an Intel Core2 processor by our library
for low, medium and high security levels (66, 89, and 128 bits, respectively),
including the performance obtained when using one, two, and four cores. Our
library was compiled using the MS Visual Studio 2008SP1 in 64-bit mode, and
it was executed on the Windows XP 64-bit SP2 environment. For comparison
purposes, we also include in Table 3 the performance reported by Hankerson
et al. [16], which is the fastest pairing library that we know of. The work by
Grabher et al. [12] is also of interest as it is the only pairing library preceding
this work that reports a multi-core platform implementation.

Table 4 shows the timings achieved by our library when implemented on an
Intel core i7 multi-processor platform running at 2.9 GHz. Finally, in Table 5
we list some of the fastest hardware accelerators for the Tate pairing reported
at low, medium, and high security levels.

Grabher et al. reported in [12] a multi-core implementation of the Ate pairing
defined over a Barreto–Naehrig (BN) curve [5], when using a 256-bit prime.
Since the BN curves have an embedding degree of k = 12, this implies a 128-bit
security level. As shown in Table 3, our pairing implementation in characteristic
three is faster than the prime field pairing library reported in [12].

In Table 4 we report a calculation time for the reduced modified Tate pair-
ing of just 3.08 ms and 1.87 ms for characteristics two and three, respectively.
This performance, that was obtained on a two Intel quad-core i7 multi-processor
platform, appears to be the fastest pairing timings yet reported.

Although our software implementation outperforms several hardware archi-
tectures previously reported for low and medium levels of security, when we
compare our results against the ones in [28, 8] (Table 5), we see that there still
exists a large gap between software and hardware pairing implementations for
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Table 3. Performance comparison of software implementations for pairings on an Intel
Core2 processor

Curve
Security # of Freq. Calc.

[bits] cores [GHz] time [ms]

This work E(F397 ) 66 1 2.6 0.15
E(F397 ) 66 2 2.6 0.09

This work E(F3193 ) 89 1 2.6 0.98
E(F3193 ) 89 2 2.6 0.55

Hankerson et al. [16] E(Fp256) 128 1 2.4 4.16
E(F21223 ) 128 1 2.4 16.25
E(F3509 ) 128 1 2.4 13.75

Grabher et al. [12] E(Fp256) 128 1 2.4 9.71
E(Fp256) 128 2 2.4 6.01

This work E(F21223 ) 128 1 2.4 11.19
E(F21223 ) 128 2 2.4 6.72
E(F21223 ) 128 4 2.4 4.22
E(F3509 ) 128 1 2.4 7.59
E(F3509 ) 128 2 2.4 4.31
E(F3509 ) 128 4 2.4 2.94

Table 4. Implementations timings for the reduced modified Tate pairing at the 128-bit
security level on an Intel core i7 processor (clock frequency: 2.9 GHz)

Curve
# of Calc.
cores time [ms]

E(F3509 ) 1 5.22
E(F3509 ) 2 3.16
E(F3509 ) 4 2.31
E(F3509 ) 8 1.87

Curve
# of Calc.
cores time [ms]

E(F21223 ) 1 7.94
E(F21223 ) 2 4.53
E(F21233 ) 4 3.13
E(F21223 ) 8 3.08

Table 5. Some hardware accelerators for the Tate pairing

Curve
Security

Platform Area
Freq. Calc.

[bits] [MHz] time [ms]

Shu et al. [28] E(F2239 ) 66 xc4vlx200 29920 slices 100 0.0365
Beuchat et al. [8] E(F397 ) 66 xc4vlx60-11 18683 slices 179 0.0048

Shu et al. [28] E(F2457 ) 88 xc4vlx200 58956 slices 100 0.1

Beuchat et al. [8] E(F3193 ) 89 xc4vlx100-11 47433 slices 167 0.01

Shu et al. [28] E(F2557 ) 96 xc4vlx200 37931 slices 66 0.6758

Kammler et al. [20] E(Fp256) 128 130 nm CMOS 97 kGates 338 15.8

moderate security levels. The computation of the reduced modified Tate pairing
over F3193 on a Virtex-4 LX FPGA reported in [8] with a medium speed grade
is for instance roughly fifty times faster than our software timings. Depending
on the application, this speedup may justify the usage of large FPGAs which
are now available in servers and supercomputers such as the SGI Altix 4700
platform.
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5 Conclusion

In this work we presented the multi-core implementation of a software library
that is able to compute the reduced modified Tate pairing on supersingular
elliptic curves at a high speed. The sequential timings reported in this work are
significantly faster than the ones achieved in [16] for pairings computed over
characteristics two and three fields.

In the light of the results obtained here, one important design question that
arises is: how many cores should be utilized by a given application? As dis-
cussed in the Appendices, our pairing library successfully parallelize the compu-
tation of Miller’s algorithm. However, if we use n cores for the implementation
of the Miller’s algorithm, in order to combine the n partial products gener-
ated by the n parallel sub-loops executed in each core, we are forced to add
n − 1 extra field multiplications over Fpkm . Furthermore, due to the dependen-
cies among the different operations involved in the final exponentiation step, this
portion of the pairing has to be computed sequentially. As shown in Table 4,
these two factors cause the acceleration achieved by an n-core implementation
to be always less than the ideal n× speedup factor. From Table 4, we can see
for instance that the acceleration provided by the eight-core implementation is
modest compared with the timings achieved by the four-core one. On the other
hand, when comparing the timings of the single-core and dual-core implementa-
tions, the acceleration factor is roughly 1.70× for both, characteristics two and
three.

Our future work includes the implementation of pairings for large characteris-
tics on ordinary curves and the SSE implementation of our pairing library using
the built-in carry-less 64-bit multiplier recently announced by Intel [14].
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A Reduced Modified Tate Pairing in Characteristic Two

Table 6 summarizes the parameters of the supersingular curve considered to
compute êr(P, Q) in characteristic two. Noting T ′ = −νT and P ′ = [−ν2m]P ,
we have:

êr(P, Q) = fT ′,P ′(ψ(Q))M

=

⎛⎝lP ′(ψ(Q)) ·
⎛⎝m−1

2∏
j=0

g[
2

m−1
2 −j

]
P ′

(ψ(Q))2
j

⎞⎠⎞⎠M

, (5)

where, for all V ∈ E(F2m)[	], lV is the equation of the line corresponding to
the addition of [ν]V with

[
2

m+1
2

]
V and gV is the rational function defined over

E(F24m)[	] corresponding to the straight line in doubling V . More precisely, we
have:(

g[
2

m−1
2 −j

]
P ′

(ψ(Q))

)2j

= (x2−j

P ′ + α) · (x2j

Q + α) + y2−j

P ′ + y2j

Q + β +

(x2−j

P ′ + x2j

Q + α)s + t, and

lP ′(ψ(Q)) = g[
2

m−1
2

]
P ′

(ψ(Q)) + x2
P ′ + xQ + α + s.

http://crypto.stanford.edu/miller
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Algorithm 2 describes the computation of êr(P, Q) according to Eq. (5) (this
algorithm is based on [6, Algorithm 1]). The equations of all straight lines can be
pre-computed by storing all square roots of xP and yP , as well as all squares of
xQ and yQ (lines 12 and 13 that can be computed in parallel on two cores). Then,
one can split the execution of Miller’s algorithm (lines 16 to 20) into several parts
that are run concurrently. We perform the final exponentiation according to an
improved version of [6, Algorithm 3] detailed in the following.

Table 6. Supersingular curves over F2m

Underlying field F2m , where m is an odd integer.

Curve E : y2 + y = x3 + x + b, with b ∈ {0, 1}.

Number of
rational points

N = 2m + 1 + ν2(m+1)/2, with

δ =

{
b if m ≡ 1, 7 (mod 8),

1− b if m ≡ 3, 5 (mod 8),

and ν = (−1)δ .

Embedding degree k = 4

ψ : E(F2m)[�] −→ E(F24m )[�] \ E(F2m)[�]

(x, y) �−→ (x + s2, y + sx + t)Distortion map

with s ∈ F22 satisfying s2 = s+1, and t ∈ F24 satisfying t2 = t+s.

Tower field F24m = F2m [s, t] ∼= F2m [X, Y ]/(X2 + X + 1, Y 2 + Y + X)

Final exponentiation M =
(
22m − 1

)
·
(
2m + 1− ν2(m+1)/2

)

Parameters of
Algorithm 2

α =

{
0 if m ≡ 3 (mod 4),

1 if m ≡ 1 (mod 4),

β =

{
b if m ≡ 1, 3 (mod 8), and

1− b if m ≡ 5, 7 (mod 8).

A.1 Raising an Element of Order 22m + 1 to the (2m + 1)-st Power
over F24m

Let F , U ∈ F24m and assume that U = F 22m−1. According to Fermat’s little
theorem, the result of raising to the

(
22m − 1

)
-st power produces an element of

order 22m + 1, i.e. U22m+1 = 1. Let us write

U = u0 + u1s︸ ︷︷ ︸
U0

+ (u2 + u3s)︸ ︷︷ ︸
U1

t,

where u0, u1, u2, u3 ∈ F2m and U0, U1 ∈ F22m . Since t2
2m

= 1 + t, we have:

U22m+1 = (U0 + U1t)(U0 + U1t)2
2m

= U2
0 + U0U1 + U2

1 s = 1.

Therefore,
u0u2 + u1u3 = u2

0 + u2
1 + u2

3 + 1, and

u0u3 + u1u2 + u1u3 = u2
1 + u2

2.
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Algorithm 2. Computation of the reduced modified Tate pairing in character-
istic two.
Input: P , Q ∈ F2m [�].
Output: êr(P, Q) ∈ F∗

24m .
1: xP ← xP + 1; (1 XOR)
2: yP ← xP + yP + α + δ̄; (α + δ̄ XOR, 1 A)

3: u ← xP + α; v ← xQ + α (2α XOR)
4: g0 ← u · v + yP + yQ + β; (1 M, 2 A, β XOR)
5: g1 ← u + xQ; g2 ← v + x2

P ; (1 S, 2 A)
6: G ← g0 + g1s + t;
7: L ← (g0 + g2) + (g1 + 1)s + t; (1 A, 1 XOR)
8: F ← L · G; (2 M, 1 S, 5 A, 2 XOR)

9: xP [0] ← xP ; yP [0] ← yP ;
10: xQ[0] ← xQ; yQ[0] ← yQ;
11: for j = 1 to m−1

2
do

12: xP [j] ←
√

xP [j − 1]; xQ[j] ← xQ[j − 1]2; (1 R, 1 S)
13: yP [j] ←

√
yP [j − 1]; yQ[j] ← yQ[j − 1]2; (1 R, 1 S)

14: end for

15: for j = 1 to m−1
2

do
16: u ← xP [j] + α; v ← xQ[j] + α (2α XOR)
17: g0 ← u · v + yP [j] + yQ[j] + β; (1 M, 2 A, β XOR)
18: g1 ← u + xQ[j]; (1 A)
19: G ← g0 + g1s + t;
20: F ← F · G; (6 M, 14 A)
21: end for

22: return F M ;

Let α = 0 when m ≡ 3 (mod 4) and α = 1 when m ≡ 1 (mod 4). Seeing that
s2m

= s + 1 and t2
m

= t + s + α + 1, we obtain:

U2m

=

{
(u0 + u1 + u3) + (u1 + u2)s + (u2 + u3)t + u3st if α = 1,
(u0 + u1 + u2) + (u1 + u2 + u3)s + (u2 + u3)t + u3st if α = 0.

A first solution to compute U2m+1 would be to multiply U2m

by U . There is
however a faster way to raise U to the power of 2m + 1. Defining m0 = u0u1,
m1 = u0u3, m2 = u1u2, and m3 = u2u3, we have:

U2m+1 = (u0u1 + u0u3 + u1u2 + u2
0 + u2

1) +
(u0u2 + u1u3︸ ︷︷ ︸
=u2

0+u2
1+u2

3+1

+u1u2 + u2u3 + u2
2 + u2

3)s +

(u0u3 + u1u2 + u2u3 + u2
2 + u2

3)t + (u2u3 + u2
2 + u2

3)st
= (m0 + m1 + m2 + (u0 + u1)2) + (m2 + m3 + (u0 + u1 + u2)2 + 1)s +

(m1 + m2 + m3 + (u2 + u3)2)t + (m3 + (u2 + u3)2)st,
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when α = 1, and

U2m+1 = (u0u2 + u1u3︸ ︷︷ ︸
=u2

0+u2
1+u2

3+1

+u0u1 + u1u2 + u2
0 + u2

1) +

(u0u2 + u1u3︸ ︷︷ ︸
=u2

0+u2
1+u2

3+1

+u0u3 + u2u3 + u2
2 + u2

3)s +

(u0u3 + u1u2)t + (u2u3 + u2
2 + u2

3)st
= (m0 + m2 + u2

3 + 1) + (m1 + m3 + (u0 + u1 + u2)2 + 1)s +
(m1 + m2)t + (m3 + u2

2 + u2
3)st,

when α = 0. Thus, computing U2m+1 involves only four multiplications, three
squarings, and eleven additions over F2m (Algorithm 3). This approach allows
us to save one multiplication over F2m compared to [6].

A.2 Computing U2
m+1

2 over F24m

Let U = u0 + u1s + u2t + u3st ∈ F24m . Noting that s2i

= s + γ1 and t2
i

=
t + γ1s + γ2, where γ1 = i mod 2 and γ2 = � i

2� mod 2, we obtain the following
formula for U2i

, depending on the value of i modulo 4:

Algorithm 3. Computation of U2m+1 over F24m , where U is an element of order
22m + 1.
Input: U = u0 + u1s + u2t + u3st ∈ F24m with U22m+1 = 1.
Output: V = U2m+1.
1: m0 ← u0 · u1; m1 ← u0 · u3; m2 ← u1 · u2; m3 ← u2 · u3; (4 M)
2: a0 ← u0 + u1; a1 ← a0 + u2; (2 A)
3: s1 ← a2

1; (1 S)
4: if α = 1 then
5: a2 ← u2 + u3; a3 ← m1 + m2; (2 A)
6: s0 ← a2

0; s2 ← a2
2; (2 S)

7: v3 ← m3 + s2; (1 A)
8: v2 ← v3 + a3; (1 A)
9: v1 ← m2 + m3 + s1 + 1; (3 A)

10: v0 ← m0 + a3 + s0; (2 A)
11: else
12: s0 ← u2

2; s2 ← u2
3; (2 S)

13: v0 ← m0 + m2 + s2 + 1; (3 A)
14: v1 ← m1 + m3 + s1 + 1; (3 A)
15: v2 ← m1 + m2; (1 A)
16: v3 ← m3 + s0 + s2; (2 A)
17: end if

18: return v0 + v1s + v2t + v3st;
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U2i

= (u0 + γ1u1 + γ2u2 + γ3u3)2
i

+ (u1 + γ1u2 + γ2u3)2
i

s

+(u2 + γ1u3)2
i

t + u2i

3 st,

where γ3 = 1 when i mod 4 = 1, and γ3 = 0 otherwise. According to the value

of (m + 1)/2 mod 4, the computation of U2
m+1

2 requires 2m + 2 squarings and
at most four additions over F2m .

B Reduced Modified Tate Pairing in Characteristic
Three

In the following, we consider the computation of the reduced modified Tate pair-
ing in characteristic three on several cores. Table 7 summarizes the parameters
of the supersingular curve. Noting T ′ = −μbT and P ′ = (xP ′ , yP ′) =

[
3

3m−1
2

]
P ,

we have to compute:

êr(P, Q) = fT ′,P ′(ψ(Q))M

=

⎛⎝lP ′(ψ(Q)) ·
⎛⎝m−1

2∏
j=0

g[
3

m−1
2 −j

]
P ′

(ψ(Q))3
j

⎞⎠⎞⎠M

, (6)

where, for all V ∈ E(F3m)[	], lV is the equation of the line corresponding to
the addition of [μb]V with

[
3

m+1
2

]
V , and gV is the rational function introduced

by Duursma and Lee [9] and having divisor (gV ) = 3(V ) + ([−3]V ) − 4(O).
Expanding everything, we obtain the following expressions:

lP ′(ψ(Q)) = yQσ + λyP ′(xP ′ + xQ − νb − ρ), and

g[
3

m−1
2 −j

]
P ′

(ψ(Q))3
j

= −λy3−j

P ′ y3j

Q σ −
(
x3−j

P ′ + x3j

Q − νb − ρ
)2

.

It is worth noticing that the Duursma-Lee functions can be pre-computed by
building a table of all cube roots of xP and yP as well as all cubes of xQ and yQ.

Beuchat et al. described an algorithm to compute êr(P, Q) according to Eq. (6)
(see [7, Algorithm 3]). They took advantage of the sparsity of lP ′ and gV to re-
duce the cost of the first multiplication over F3m and needed therefore m−1

2
iterations of Miller’s algorithm to accumulate the remaining products. We pro-
pose to optimize further the algorithm by computing two iterations at a time
and obtain Algorithm 4 for the case where m−1

2 is even. When m−1
2 is odd, one

has to restrict the loop on j from 1 to m−3
4 , and perform the last product by

means of an iteration of the original loop. Thanks to the sparsity of gV , the cost
of a double iteration is of 25 multiplications over F3m , whereas two iterations of
the original loop involve 28 multiplications [7]. The key observation is that the
sparse multiplication over F36m on line 15 requires only 8 multiplications over
F3m . Keeping in mind that our SSE implementation of multiplication over F3m
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Table 7. Supersingular curves over F3m (reprinted from [8])

Underlying field F3m , where m is coprime to 6.

Curve E : y2 = x3 − x + b, with b ∈ {−1, 1}.

Number of
rational points

N = #E(F3m) = 3m + 1 + μb3(m+1)/2, with

μ =

{
+1 if m ≡ 1, 11 (mod 12), and

−1 if m ≡ 5, 7 (mod 12).

Embedding degree k = 6

ψ : E(F3m)[�] −→ E(F36m )[�] \ E(F3m)[�]

(x, y) �−→ (ρ − x, yσ)Distortion map

with σ ∈ F32 satisfying σ2 = −1, and ρ ∈ F33 satisfying ρ3 = ρ+b.

Tower field F36m = F3m [ρ, σ] ∼= F3m [X, Y ]/(X3 −X − b, Y 2 + 1)

Final exponentiation M =
(
33m − 1

)
· (3m + 1) ·

(
3m + 1− μb3(m+1)/2

)

Parameters of
Algorithm 4

λ =

{
+1 if m ≡ 7, 11 (mod 12),

−1 if m ≡ 1, 5 (mod 12),

ν =

{
+1 if m ≡ 5, 11 (mod 12), and

−1 if m ≡ 1, 7 (mod 12).

involves a pre-computation step depending on the second operand, we designed
Algorithm 5 where several multiplications over F3m share a common operand
(lines 5 and 6).

Since lines 9 and 10 of Algorithm 4 do not present dependencies, the pre-
computation of the Duursma-Lee functions can be performed in parallel on two
cores. Then, one can split the execution of Miller’s algorithm (lines 13 to 16)
into several parts that are run concurrently.
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Algorithm 4. Unrolled loop for computing the reduced modified Tate pairing
in characteristic three when m−1

2 is even.
Input: P, Q ∈ E(F3m)[�].
Output: êr(P, Q) ∈ F∗

36m .
1: xP ← 3

√
xP − (ν + 1)b; (1 R, 1 A when m ≡ 5, 11 mod 12)

2: yP ← λ 3
√

yP ; (1 R)
3: yQ ← −λyQ;

4: t ← xP + xQ; (1 A)
5: R ← λ(yP t − yQσ − yP ρ) · (−t2 + yP yQσ − tρ − ρ2); (6 M, 1 C, 6 A)

6: xP [0] ← xP ; yP [0] ← yP ;
7: xQ[0] ← xQ; yQ[0] ← yQ;
8: for j = 1 to m−1

2
do

9: xP [j] ← 3
√

xP [j − 1]; xQ[j] ← xQ[j − 1]3; (1 R, 1 C)
10: yP [j] ← 3

√
yP [j − 1]; yQ[j] ← yQ[j − 1]3; (1 R, 1 C)

11: end for

12: for j ← 1 to m−1
4

do
13: t ← xP [2j − 1] + xQ[2j − 1]; u ← yP [2j − 1]yQ[2j − 1]; (1 M, 1 A)
14: t′ ← xP [2j] + xQ[2j]; u′ ← yP [2j]yQ[2j]; (1 M, 1 A)
15: S ← (−t2 + uσ − tρ − ρ2) · (−t′2 + u′σ − t′ρ − ρ2); (8 M, 13 A)
16: R ← R · S; (15 M, 67 A)
17: end for

18: return RM ;

Algorithm 5. Computation of (−t2 + uσ − tρ − ρ2) · (−t′2 + u′σ − t′ρ − ρ2).
Input: t, u, t′, and u′ ∈ F3m .
Output: W = (−t2 + uσ − tρ − ρ2) · (−t′2 + u′σ − t′ρ − ρ2).
1: a1 ← t + u; a2 ← t′ + u′; (2 A)
2: a3 ← t + t′; a4 ← u + u′; (2 A)
3: m1 ← t · t′; m2 ← u · u′; m3 ← a1 · a2; (3 M)
4: w3 ← m1 + m2 − m3; (2 A)
5: m4 ← m1 · m1; m5 ← m1 · a3; m6 ← m1 · a4; (3 M)
6: m7 ← a3 · a3; m8 ← a3 · w3; (2 M)
7: w0 ← m4 − m2 + ba3; (2 A)
8: w1 ← m6 + m8; (1 A)
9: w2 ← m5 + a3 + b; (2 A)

10: w4 ← m7 − m1 + 1; (2 A)
11: w5 ← −a4;

12: return w0 + w1σ + w2ρ + w3σρ + w4ρ
2 + w5σρ2;
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Abstract. This paper studies the complexity of computing discrete log-
arithms over algebraic tori. We show that the order certified version of
the discrete logarithm over general finite fields (OCDL, in symbols) re-
duces to the discrete logarithm over algebraic tori (TDL, in symbols)
with respect to the polynomial-time Turing reducibility. This reduction
means that if the integer factorization can be computed in polynomial
time, then TDL is equivalent to the discrete logarithm DL over general
finite fields with respect to the Turing reducibility.
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1 Introduction

It is a significant subject to construct compact and efficient cryptographic schemes
for reducing the sizes of ciphertexts and public keys without influencing the se-
curity. One of ideas for achieving this is to find an efficiently computable com-
pression map from a certain subgroup of F×

qn , the unit group of the finite field
of qn elements, to the affine space Fm

q of some dimension m < n. The length of
messages, ciphertexts or signatures decreases from n log q bits to m log q bits if
one applies the map to known cryptographic schemes based on the discrete log-
arithms, such as the Diffie-Hellman key agreement protocol [3] and the ElGamal
encryption and signature schemes [5]. A typical example of compression maps is
the trace map of fields. The trace maps of Fq2 , Fq3 and Fq6 are applied in LUC
[11], the Gong-Harn scheme [6] and XTR [7], respectively.

In the paper proposing CEILIDH, Rubin and Silverberg [8] pointed out that
these compression maps can be described in the context of algebraic tori. They
stated, in [8], that subgroups of F×

qn applied in the above schemes can be regarded
as (the quotient of) algebraic tori and that these maps are birational maps from
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the algebraic tori to the affine spaces. Their observations imply that study-
ing algebraic tori may give a lead in understanding properties and security of
torus-based cryptographic schemes. A lot of research concerning the torus-based
cryptography has worked on proposal for admissible parameters or security ar-
guments against known attacks. On the other hand, there are few investigations
on the torus-based cryptography from a complexity theoretic viewpoint so far.

In this paper, we study the computational complexity of the discrete logarithm
problem over algebraic tori. We prove that the order certified version of the
discrete logarithm over general finite fields reduces to the discrete logarithm
problem over algebraic tori. If we assume that the prime factorizations can easily
be computed, then this result means that computing discrete logarithms over
algebraic tori is as hard as computing those over finite fields. Hence, we can
consider the discrete logarithm problem over algebraic tori as a good candidate
for the hard cryptographic primitives as long as we believe that the discrete
logarithms over finite fields is hard to compute.

This paper is organized as follows: In Section 2, we refer to the definition of
algebraic tori and some notations needed later. In Section 3, we introduce the
discrete logarithm function of which we explore the computational complexity.
We then state the main theorem, and prove it. Concluding remarks are given in
Section 4.

2 Preliminaries

In this section, we introduce necessary notions and notations.
Let p be a prime, and set q = pn for n ≥ 1. Then there exists a field of q

elements. In particular, it is unique in a sense that if K and K ′ are fields of q

elements, then K � K ′ holds. We denote by Fq the field of q elements.
When q = pn, Fq is a Galois extension of degree n over its prime field Fp.

Then Fq/Fp is a simple extension (e.g. [12, Section 6.10]), that is, there exists an
element θ ∈ Fq such that Fq = Fp(θ). Let f = f(X) be the minimal polynomial
of θ over Fp. Then f is an irreducible polynomial over Fp of degree n, and we have
a canonical isomorphism Fq = Fp(θ) � Fp[X ]/(f), where Fp[X ] denotes the ring
of polynomials over Fp and (f) denotes the ideal of Fp[X ] generated by f . On the
other hand, let f∗ ∈ Fp[X ] be an irreducible polynomial of degree n. Then the
residue ring Fp[X ]/(f∗) is a field of pn elements, and Fp(θ∗) � Fp[X ]/(f∗) � Fpn

follows for any root θ∗ of f∗.
This observation suggests that one can identify Fpn with the residue ring

Fp[X ]/(f) for any irreducible polynomial f ∈ Fp[X ] of degree n. Then each
element α ∈ Fpn can be expressed by a tuple α = (p, f, g), where g is a polynomial
over Fp of degree less than n. Namely, α = (p, f, g) means that α is identified with
the residue class g+(f) in the residue ring Fp[X ]/(f). Under this expression, the
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length of the expression for α ∈ Fpn is O(n log p). If p and f are well understood,
then we denote the element α = (p, f, g) by the polynomial g itself. Let n0 be a
divisor of n. Then the subset

Kn0 = {(p, f, g) ∈ Fpn | gpn0 = g mod f} (1)

is a subfield of Fpn with pn0 elements. Hence, for any divisor n0 of n, Fpn0 can
be identified with the subfield Kn0 .

For each n ∈ N, the n-th cyclotomic polynomial Φn(X) is defined by

Φn(X) =
∏
ζ

(X − ζ),

where the product is taken over all the n-th primitive roots ζ of 1 in the field C

of complex numbers. Φn(X) is an irreducible polynomial over Z of degree ϕ(n),
where ϕ denotes the Euler function. For the cyclotomic polynomials, we refer to
the following two equations [4]:

Xn − 1 =
∏
d|n

Φd(X) (2)

and

Φn(X) =
∏
d|n

(Xd − 1)μ(n/d), (3)

where
∏

d|n denotes the product that is taken over all the positive divisors d of
n, and μ denotes the Möbius function.

We next introduce the notion of algebraic tori [8]. Let L/K be a Galois ex-
tension of degree n, and let Gal(L/K) be the Galois group of L/K, that is, the
group of all the K-automorphisms of L. Note that Gal(L/K) is a group of order
n. For each element α ∈ L, its norm NL/K(α) is defined by

NL/K(α) =
∏

σ∈Gal(L/K)

σ(α).

The algebraic torus TL/K for L/K is defined to be the set of all the elements
α ∈ L such that NL/M (α) = 1 for all intermediate fields M with K ⊆ M � L. If
q = pm for some prime p, L = Fqn and K = Fq, then we write TL/K = Tn(Fq) =
Tn(Fpm). We refer to the following proposition [8].

Proposition 1 ([8]). Tn(Fq) is a subgroup of F×
qn of order Φn(q).

Since F×
qn is a cyclic group, Tn(Fq) is characterized as the unique subgroup of

F×
qn of order Φn(q). Equivalently, we have

Tn(Fq) =
{

α ∈ F×
qn | αΦn(q) = 1

}
. (4)
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Note that Fqn is a subfield of Fqn1 for any multiple n1 of n. Hence, using an
irreducible polynomial f ∈ Fq[X ] of degree n1, we can regard the algebraic torus
Tn(Fq) as the subgroup of F×

qn1 in a way that

Tn(Fq) =
{
(p, f, g) ∈ F×

qn1 | gΦn(q) = 1 mod f
}

(5)

under the canonical isomorphism Fqn1 � Fp[X ]/(f).
In this paper, we use the notion of the polynomial-time Turing reducibility. We

follow the definition presented in [10]. For a multivalued function ξ, a refinement
of ξ is a function ξ0 such that dom(ξ) = dom(ξ0), and ξ(x) = y whenever ξ0(x) =
y, where dom denotes the domain of function. For any multivalued functions
ξ and η, ξ reduces to η, denoted by ξ ≤p

T η, if there exists a deterministic
polynomial-time Turing machine M with oracle tapes such that for any single-
valued refinement η0 of η, M computes a single-valued refinement of ξ with the
help of the oracle η0. ξ ≡p

T η means that both ξ ≤p
T η and η ≤p

T ξ hold.

3 Main Theorem

In this section, we present the main theorem on the complexity of computing
discrete logarithms over algebraic tori.

3.1 Discrete Logarithm Functions

We start with introducing the discrete logarithm functions that we investigate.
The discrete logarithm function DL over finite fields maps each pair (y, g) of

elements y and g in some finite field Fq to the exponents x ∈ Zq−1 such that
y = gx holds in the field Fq. Namely, DL is formally defined as follows: The
domain dom(DL) is the set of all tuples (p, f, g, y) that express two elements
(p, f, g), (p, f, y) ∈ F×

pn , where n = deg f . For each tuple (p, f, g, y) ∈ dom(DL),
we define

DL(p, f, g, y) = x, where x ∈ Zpn−1 and y = gx,

where we write y = gx instead of y = gx mod f for simplicity. Note that
DL(p, f, g, y) is defined to be ⊥ if there exists no exponent x such that y = gx.

We denote by PDL the discrete logarithm function over prime fields. Namely,
the domain dom(PDL) is the set of all tuples (p, g, y) of a prime p and two
elements g, y ∈ F×

p , and for each tuple (p, g, y) ∈ dom(PDL), PDL(p, g, y) is
defined by

PDL(p, g, y) = x, where x ∈ Zp−1 and y = gx.

PDL(p, g, y) is defined to be ⊥ if there exists no exponent x such that y = gx.
PDL is a restriction of DL in a sense that PDL(p, g, y) = DL(p, X, g, y).
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The function TDL (DL on algebraic Tori) is defined to be a restriction of DL
to the case where g and y are contained in algebraic tori. Formally, the domain
dom(TDL) of TDL is the set of all tuples (p, m, n, f, g, y) satisfying mn | deg f

and (p, f, g), (p, f, y) ∈ Tm(Fpn), where we identify Tm(Fpn) with the subgroup
of F×

pdeg f by Eq. (5). For each tuple (p, m, n, f, g, y) ∈ dom(TDL), we define

TDL(p, m, n, f, g, y) = x, where x ∈ ZΦm(pn) and y = gx.

TDL(p, m, n, f, g, y) is defined to be ⊥ if there exists no exponent x such that
y = gx. Since Tm(Fpn) = F×

p when (m, n) = (1, 1), TDL involves PDL in a sense
that PDL(p, g, y) = TDL(p, 1, 1, X, g, y). It should be noted that since T1(Fpn) �
F×

pn , TDL involves DL in a sense that DL(p, f, g, y) = TDL(p, 1, deg f, f, g, y).
Therefore, allowing the case where m = 1 seems to be improper for capturing
the complexity of discrete logarithms over algebraic tori in comparing with the
discrete logarithms over general finite fields. In fact, if m = 1 is allowed, then one
can obtain only the trivial relationship DL ≡p

T TDL. However, this tells nothing
about the complexity-theoretic characterization of TDL. Hence, it looks proper
that we exclude the case where m = 1. On the other hand, it looks natural to
allow the case where (m, n) = (1, 1), that is, PDL ≤p

T TDL, since what our main
result states is that the discrete logarithm over finite fields is equivalent to the
combination of TDL and PDL. Therefore, we always require that either m ≥ 2
or (m, n) = (1, 1) holds for any input (p, m, n, f, g, y) ∈ dom(TDL).

We should also note that DL is a multivalued function. In fact, for an input
tuple (p, f, g, y), if the base g is not a generator of the group F×

pn , where n =
deg f , then the exponent x satisfying y = gx is not unique under modulo pn − 1
but it is unique under modulo ord(g), the order of g, as long as the exponent x

exists. Similarly, PDL and TDL are multivalued functions. If the order ord(g) of
g in F×

pn is known, then one can find the unique exponent x0 ∈ Zord(g) satisfying
y = gx0 from an exponent x = DL(p, f, g, y) by x0 = x mod ord(g). A simple
way for efficiently computing the order ord(g) is to give the prime factorization
IF(pn − 1) of the order #F×

pn = pn − 1 as a part of the input tuple. Using the
factorization IF(pn − 1), one can compute the order ord(α) of any given element
α = (p, f, g) ∈ F×

pn in polynomial time in the expression length 	 = O(n log p) of
α. Thus, we introduce the “order certified” version OCDL of DL as follows [9]:
The domain dom(OCDL) is the set of all tuples (p, f, g, y, IF(pn − 1)) such that
(p, f, g, y) ∈ dom(DL), where n = deg f . For each tuple (p, f, g, y, IF(pn − 1)) ∈
dom(OCDL), OCDL(p, f, g, y, IF(pn − 1)) is defined to be the unique exponent
x ∈ Zord(g) such that y = gx. It is obvious from the definition that OCDL ≤p

T DL,
and moreover OCDL ≡p

T DL if IF(pn − 1) can be computed in polynomial time
in 	.
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3.2 Reductions

In this section, we prove the following main theorem.

Theorem. OCDL ≤p
T TDL.

Our strategy for the proof is to reduce the extension degree by successively
applying the oracle TDL and finally one reduces OCDL to the discrete logarithm
PDL over prime fields.

The goal is to construct a deterministic polynomial-time Turing machine M

with oracle tapes such that, for any single-valued refinement TDL0 of TDL, M

computes OCDL with the help of the oracleTDL0. Letw be any input string for M .
Since the primarity test can be done in polynomial time [1] and the irreducibility
test of polynomials can be done in polynomial time [2], one can determine in poly-
nomial time whether or not w is contained in dom(OCDL). If w /∈ dom(OCDL),
then M halts with output⊥. We assume that w ∈ dom(OCDL), that is, w is of the
form w = (p, f, g, y, IF(pk0 −1)), where k0 = deg f . M has to output the exponent
x ∈ Zord(g) that satisfies y = gx with the help of the oracle TDL0.

Using the prime factorization IF(pk0−1), one can compute the order ord(α) of
any given element α ∈ F×

pk0
in polynomial time in the length of α. Therefore, one

can determine in polynomial time in 	 = O(k0 log p), the expression length of w,
whether or not there exists the desired exponent x satisfying y = gx by verifying
the divisibility relationship ord(y) | ord(g). If there exists no such exponent x,
then M outputs ⊥ and halts.

We now assume that there exists the exponent x, that is, ord(y) | ord(g)
holds. We show the following lemma.

Lemma 2. For any divisor k of k0, the exponent OCDL(p, f, g, y, IF(pk0 − 1))
can be computed in polynomial time in 	 = O(k0 log p) with the help of the oracle
TDL0 whenever (p, f, g) ∈ K×

k , where Kk is defined in Eq. (1).

Since k0 is a divisor of k0 itself, the theorem immediately follows from this
lemma.

We now prove Lemma 2 by induction on divisors k of k0. When k = 1, one can
obtain the exponent x by calling the oracle TDL0 with the query (p, 1, 1, f, g, y).
Note that we allow (m, n) = (1, 1) for the instance of TDL.

Let k > 1 be any divisor of k0, and inductively assume that one can obtain the
exponent x′ = OCDL(p, f, g′, y′, IF(pk0 − 1)) in time polynomial in 	 with the
help of the oracle TDL0 whenever (p, f, g′) ∈ K×

k′ for any divisor k′ < k of k0.
One can find a prime factor p′ of k in time polynomial in 	 by a straightforward
successive division algorithm. Set k′ = k/p′. Using IF(pk0 −1), one can compute
the prime factorization of pk−1 in polynomial time in 	. Since pk−1 = (pk′

)p′ −
1 = (pk′ −1)Φp′(pk′

) from Eq. (2), one can also compute the prime factorizations
of Φp′ (pk′

) and pk′ − 1 in time polynomial in 	. Let
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pk − 1 = pa1
1 · · · par

r , Φp′(pk′
) = pb1

1 · · · pbr
r and pk′ − 1 = pc1

1 · · · pcr
r

be the prime factorizations of pk − 1, Φp′(pk′
) and pk′ − 1, respectively, where

ai = bi + ci for each i = 1, . . . , r. Furthermore, one can compute the prime
factorization of ord(g) in time polynomial in 	 as IF(pk0 − 1) is given. Since
g ∈ K×

k , we have ord(g) | pk − 1, and hence, ord(g) = pd1
1 · · · pdr

r for some
exponents 0 ≤ di ≤ ai. Renumbering the indices, we may assume without loss of
generality that bi > di for i = 1, . . . , t and bi ≤ di for i = t + 1, . . . , r. We write

Φp′(pk′
) = β1β2, β1 =

t∏
i=1

pbi

i , β2 =
r∏

i=t+1

pbi

i , (6)

ord(g) = δ1δ2, δ1 =
t∏

i=1

pdi

i , δ2 =
r∏

i=t+1

pdi

i . (7)

When bi > di for all i = 1, . . . , r, that is, t = r, we set β2 = δ2 = 1, β1 = Φp′(pk′
)

and δ1 = ord(g). Similarly, when bi ≤ di for all i = 1, . . . , r, that is, t = 0, we
set β1 = δ1 = 1, β2 = Φp′ (pk′

) and δ2 = ord(g). Let μ = β1/δ1, ν = δ2/β2,

g0 = gν and y0 = yν = gxν. (8)

Then we have μ, ν ∈ Z,

g
Φp′(pk′

)
0 = gνΦp′(pk′

) = gβ1δ2 = (gδ1δ2)μ = (gord(g))μ = 1

and y
Φp′(pk′

)
0 = (g

Φp′(pk′
)

0 )x = 1. Therefore, it follows from Eq. (5) that g0, y0 ∈
Tp′(Fpk′ ). Calling the oracle TDL0 with the query (p, p′, k′, f, g0, y0), one obtains
an exponent x0 ∈ ZΦp′(pk′ ) such that y0 = gx0

0 . Since gx0ν = gx0
0 = y0 = gxν, we

have (x − x0)ν = u ord(g), namely x − x0 = uδ1β2 for some integer u ∈ Z.
Let

g1 = gδ1β2 and y1 = yg−x0 = gx−x0 = guδ1β2 = gu
1 . (9)

Then we have

ord(g1) =
ord(g)

gcd(ord(g), δ1β2)
=

δ1δ2

gcd(δ1δ2, δ1β2)
=

δ1δ2

δ1β2
= ν.

Since

δ1β2(pk′ − 1) =
t∏

i=1

pci+di

i

r∏
i=t+1

pbi+ci

i =
t∏

i=1

pci+di

i

r∏
i=t+1

pai

i

= ord(g)
t∏

i=1

pci

i

r∏
i=t+1

pai−di

i ,
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that is, δ1β2(pk′ − 1) is a multiple of ord(g), we have gpk′−1
1 = gδ1β2(pk′−1) = 1.

This implies that g1 ∈ K×
k′ , and hence it follows that y1 = gu

1 ∈ K×
k′ . By the

induction hypothesis, one can find the exponent

x1 = OCDL(p, f, g1, y1, IF(pk0 − 1)) ∈ Zord(g1) = Zν

in time polynomial in 	 with making queries to the oracle TDL0.
Using the exponent x1, one can obtain the desired exponent x = OCDL(w) as

follows. Since gx1
1 = y1 = gu

1 , we have x1 − u = v ord(g1) = vν for some integer
v ∈ Z. Setting

x′ = x0 + x1δ1β2, (10)

we have

gx′
= gx0

(
gδ1β2

)x1 = gx0gx1
1 = gx0y1 = gx0yg−x0 = y = gx.

This implies that x ≡ x′ (mod ord(g)), and one can obtain the desired exponent
x ∈ Zord(g) by x = x′ mod ord(g). This completes the proof of Lemma 2.

We are now ready to construct a polynomial-time bounded deterministic oracle
Turing machine M which reduces OCDL to TDL by the proof of Lemma 2. For
an input string w, M works with the following procedure, where we omit the
verification of the validity of the input w.

procedure OCDL(p, f, g, y, IF(pk0 − 1))
find the minimum integer k ≥ 1 such that gpk−1 = 1;
if k = 1 then
return TDL0(p, 1, 1, f, g, y);
else
find a prime factor p′ of k and let k′ = k/p′;
compute β1, β2, δ1 and δ2 by Eqs. (6) and (7);
compute g0 and y0 by Eq. (8);
let x0 = TDL(p, p′, k′, f, g0, y0) by calling the oracle TDL;
compute g1 and y1 by Eq. (9);
let x1 = OCDL(p, f, g1, y1, IF(pk0 − 1)) by recursively calling OCDL;
return x0 + x1δ1β2 mod ord(g);
endprocedure

Each step can be done in time polynomial in 	, and the number of recursive calls
is at most O(log k0). Hence, M works in time polynomial in 	.

4 Concluding Remarks

In this paper, we have investigated the complexity of computing the discrete
logarithms over algebraic tori in the context of Turing reductions, and we have
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shown that OCDL, the order certified discrete logarithm over finite fields, reduces
to TDL, the discrete logarithm over algebraic tori. For simplicity, assume that
the prime factorizations of pn − 1 can be easily computed, that is, OCDL is
equivalent to DL with respect to the Turing reducibility. Then our result implies
that DL ≡p

T TDL. Since Tm(Fpn) is a subgroup of F×
pmn of order Φm(pn), we

have

#Tm(Fpn)
#F×

pmn

≤ cpnϕ(m)

pmn − 1
= O

(
qϕ(m)−m

)
, q = pn

for some constant c > 0 and any sufficiently large q = pn. Therefore, the algebraic
tori are negligibly small compared to the unit group of the finite fields. In view of
this observation, DL ≡p

T TDL looks a strong reduction because it means that DL
reduces to the discrete logarithms over negligibly small subgroups. Furthermore,
we assume that PDL ≡p

T TDL (Note that since PDL ≤p
T TDL, this is equivalent

to TDL ≤p
T PDL). Then our result implies that DL ≤p

T PDL. Conversely, since
TDL ≤p

T DL, DL ≤p
T PDL implies that TDL ≤p

T PDL. Therefore, our result
implies that TDL ≤p

T PDL if and only if DL ≤p
T PDL. Since the prime field

Fp is negligibly smaller than the extension Fpn with n being larger, this is an
unlikely event. Thus, as long as we believe that DL �≤p

T PDL, TDL is properly
harder than PDL. Namely, TDL can be thought as a good candidate for the
hard cryptographic primitives.
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Abstract. When users wish to establish wireless communication between their
devices, the channel needs to be bootstrapped first. Usually, the channel is desired
to be authenticated and confidential, in order to mitigate any malicious control
of or eavesdropping over the communication. When there is no prior security
context, such as, shared secrets, common key servers or public key certificates,
device association necessitates some level of user involvement into the process.
A wide variety of user-aided security association techniques have been proposed
in the past. A promising set of techniques require out-of-band communication
between the devices (e.g., auditory, visual, or tactile). The usability evaluation of
such techniques has been an active area of research.

In this paper, our focus is on the usability of an alternative method of secure
association – Integrity regions (I-regions) [40] – based on distance bounding. I-
regions achieves secure association by verification of entity proximity through
time-to-travel measurements over ultrasonic or radio channels. Security of I-
regions crucially relies on the assumption that human users can correctly gauge
the distance between two communicating devices. We demonstrate, via a thor-
ough usability study of the I-regions technique and related statistical analysis,
that such an assumption does not hold in practice. Our results indicate that I-
regions can yield high error rates, undermining its security and usability under
common communication scenarios.

Keywords: Authentication, Distance Bounding, Usable Security, Wireless Net-
works.

1 Introduction

Short- and medium-range wireless communication, based on technologies such as Blue-
tooth and WiFi, is becoming increasingly popular and promises to remain so in the fu-
ture. With this surge in popularity, come various security risks. Wireless communication
channel is easy to eavesdrop upon and to manipulate, and therefore a fundamental se-
curity objective is to secure this communication channel. In this paper, we will use the
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term “pairing” to refer to the operation of bootstrapping secure communication between
two devices connected with a short-range wireless channel. The examples of pairing,
from day-to-day life, include pairing of a WiFi laptop and an access point, a Bluetooth
keyboard and a desktop.

One of the main challenges in secure device pairing is that, due to sheer diversity of
devices and lack of standards, no global security infrastructure exists today and none is
likely for the foreseeable future. Consequently, traditional cryptographic means (such
as authenticated key exchange protocols) are unsuitable, since unfamiliar devices have
no prior security context and no common point of trust.

A number of research directions have been undertaken by the research community
to address the problem of pairing of ad hoc wireless devices. One valuable and well-
established research direction is the use of auxiliary – also referred to as “out-of-band”
(OOB) – channels, which are both perceivable and manageable by the human user(s)
who own and operate the devices1. An OOB channel takes advantage of human sen-
sory capabilities to authenticate human-imperceptible (and hence subject to Man-in-
the-Middle or MitM attacks) information exchanged over the wireless channel. OOB
channels can be realized using senses such as auditory, visual and tactile. Unlike the in-
band (wireless) channel, the attacker can not remain undetected if it actively interferes
with the OOB channel. A number of device pairing methods based on a variety of OOB
channels have been proposed (we overview these methods later in Section 5; see [18]
for a relevant survey). Usability evaluation of these methods is an active research area
these days [18,16,14].

The focus of this paper is on an alternative approach to device pairing, called In-
tegrity regions (I-regions). I-regions is based on distance bounding [4] and can be im-
plemented using ultrasonic or radio time-of-arrival ranging techniques. It relies on range
measurements to prevent MitM attackers from inserting forged messages into the com-
munication between the devices. Basically, the distance bounding technique allows a
communicating device A to compute an upper bound of its (physical) distance d from
another device it is being paired with. Note that the latter can be device B, with which
the user of A intends to pair her device or it could be an MitM attacker. An MitM
attack can be effectively foiled if the user controlling A can verify whether the ac-
tual distance between A and B is less than or equal to d and make sure that there is
no other device (except B) at a distance less than or equal to d. Figure 1 illustrates
an MitM attack scenario for I-regions. In the figure, inter-device distance denotes the
actual physical distance between the two devices (i.e., between the user’s phone and
kiosk) and attacker distance bound is the actual physical distance between user’s phone
and attacker’s device. In this example, attacker distance bound (6 ft) is larger than inter-
device distance (3.5 ft), which indicates to the user an ongoing MitM attack. As defined
in [40], an integrity region is a space centered at user’s location, within which the user
can confidently establish the presence (or absence) of other wireless devices.

Motivation and Contributions: In this paper, our focus is on the “User Layer” of the
I-regions method. In I-regions, once A computes the upper bound of its distance d from
B, and shows it on its screen, the user (controlling A) is required to perform two tasks:
(1) determine if the perceived distance between A and B is not more than d, and (2)

1 This has been the subject of recent standardization activities [37].
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Is  the distance 
from the phone 

to the kiosk  
5ft to 6ft?

Fig. 1. An MitM Scenario for I-regions (user intends to pair her phone with the kiosk)

make sure if there is no other device (except B) at distance less than or equal to d, i.e., if
B belongs to A’s integrity region.2 Clearly, a pre-requisite to the security of I-regions is
users’ ability of distance judgement. In other words, if users can not correctly perceive
the distance shown on devices’ screens as well as the distance between the two devices,
the security of I-regions can not be guaranteed.

We hypothesize that users perception and interpretation of physical distances (needed
to execute the first task mentioned above) is far from accurate. Consequently, I-regions
is quite likely to result in both safe errors [38] (i.e, rejection of a valid pairing attempt)
and more critically, fatal errors (i.e., acceptance of an MitM attack). In order to test our
hypothesis and to evaluate I-regions in terms of efficiency (i.e., speed), robustness (i.e.,
error tolerance) and usability (i.e., System Usability Score of the method and user’s self-
confidence about distance judgement), we pursue a thorough and systematic usability
study. We remark that such an experimental study was necessary to evaluate I-regions,
which is akin to human behavior.

Based on the results of our study, I-regions can be termed quite efficient in terms of
completion time. As hypothesized, however, in general (i.e., for arbitrary values of inter-
device distance and attacker distance bound), I-regions exhibits poor robustness, with
high likelihood of users committing both safe as well as fatal errors. This undermines
the security of I-regions, either directly (i.e, in case of fatal errors) or indirectly (i.e,
in case of safe errors). Thus, we can conclude that I-regions is not a suitable method
for all possible pairing scenarios. However, for some specific values of inter-device
distance (1 ft or 3.5 ft) in conjunction with attacker distance bound (at least 4.5 ft or 7

2 The first manual task can be eliminated if device A is only allowed to accept pairing with
devices located within a small, pre-determined distance (e.g., less than 1 meter). This would,
however, severely limit the utility of I-regions only to scenarios where devices are in close
proximity, and at the same time, damage usability by forcing user to move devices within a
certain distance bound, which may not always be possible (such as in case of a wall-mounted
access point or when two users are sitting across a long table in a meeting room).
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ft, respectively), I-regions shows reasonable level of robustness and might be acceptable
in practice.

Organization: The rest of the paper is organized as follows. In Section 2, we describe
the I-regions technique. In Section 3, we discuss our usability study aimed at evaluating
I-regions, followed by Section 4, in which we present the results of the study and our
analysis. Finally, in Section 5, we overview prior work in the area of wireless device
authentication and security association.

2 I-Regions

Adversarial Model: The security model for I-regions [40] is as follows. It is assumed
that the two entities involved in the communication (A and B) trust each other and are
not compromised; otherwise, little can be done. Also, it is assumed that the entities
know the (public) protocol parameters. An adversary attacking the I-regions protocol
is assumed to have full control on the wireless channel, namely, it can eavesdrop, de-
lay, drop, replay and modify messages. The security notion for I-regions protocol in
this setting is adopted from the model of authenticated key agreement due to Canneti
and Krawczyk [6]. In this model, a multi-party setting is considered wherein a num-
ber of parties simultaneously run multiple/parallel instances of pairing protocols. In
practice, however, it is reasonable to assume only two-parties running only a few se-
rial/parallel instances of the pairing protocol. The security model does not consider
denial-of-service (DoS) attacks. Note that on wireless channels, explicit attempts to
prevent DoS attacks might not be useful because an adversary can simply launch an
attack by jamming the wireless signal.

Protocol: The I-regions key exchange protocol, based on Diffie-Hellman (denoted DH-
IR), unfolds as shown in Fig. 2. Both Alice and Bob calculate the commitment/opening
pairs ((cA, oA) and (cB, oB)) for messages mA ← 0‖gXA‖NA and mB ← 1‖gXB‖NB,
respectively. Here, NA and NB are k bit long random strings and “0” and “1” are two
public (and fixed) values that are used to break the symmetry and thus prevent a reflec-
tion attack [21]. In the first two messages, Alice and Bob exchange the commitments
cA and cB . Then, in the following two messages they open the commitments by send-
ing out oA and oB , respectively. It is important to stress that a given party opens his/her
commitment only after having received the commitment value from the other party.
The first four messages are exchanged over a radio link. Having received the com-
mitment/opening pairs (cA, oA) and (cB, oB), Alice and Bob open the corresponding
commitments and verify that “1” and “0” appear at the beginning of m̂B and m̂A, re-
spectively. If this verification is successful, Alice and Bob generate the authentication
strings sA and sB . Note that the length of each of these strings is k. The main purpose of
the last two messages in the DH-IR protocol is to allow Alice to compare sA against the
authentication string sB generated by Bob, in a secure way. Thus, Alice sends a k-bit
long random string N ′

A to Bob and measures the time until she received the response
from Bob. Bob responds with RB ← N̂ ′

A ⊕ sB , where the sign hat denotes that the
N ′

A as transmitted by Alice may have been altered by the adversary. Alice receives R̂B ,
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where again the sign hat denotes that RB as transmitted by Bob may have been altered
by the adversary. At the same time, Alice calculates the distance dA and verifies the
corresponding integrity region for the presence of devices other than Bob’s device (see
Section 2). If this verification is successful, Alice knows that (with a high probability)
Bob must have transmitted R̂B , that is, R̂B = RB . Finally, if sA equals R̂B ⊕N ′

A, Al-
ice notifies Bob and they both accept the messages m̂A and m̂B (i.e., the corresponding
DH public keys) as being authentic. Note that R̂B ⊕ N ′

A = sB in case no attack takes
place.

An adversary against the DH-IR protocol can only succeed with a probability at
most 2−k, as long as the commitment scheme used in the protocol is secure. To achieve
a high level of security, k can be chosen to be arbitrarily long. For details regarding the
security arguments of DH-IR, refer to [40].

Implementation: The DH-IR protocol can be implemented using two techniques: (1)
using ultrasonic ranging (US) and (2) using radio (RF) ranging. Both exhibit equal
security guarantees, but require different equipment attached to the devices.

Ultrasonic ranging requires time measurement precision only in hundreds of μ-
seconds, but requires each device to be able to communicate via ultrasonic channel.
Current ultrasonic ranging systems (e.g., Cricket motes [29,27]) can have centimeter
precision ranging when the transceivers are perfectly aligned. However, the dependable

Alice Bob

Given gXA Given gXB

Pick NA, N ′
A ∈U {0, 1}k Pick NB ∈U {0, 1}k

mA ← 0‖gXA‖NA mB ← 1‖gXB‖NB

(cA, oA) ← commit(mA) (cB , oB) ← commit(mB)
cA

cB

oA m̂A ← open(ĉA, ôA)
m̂B ← open(ĉB , ôB) oB Verify 0 in m̂A.

Verify 1 in m̂B . sB ← NB ⊕ N̂A

sA ← NA ⊕ N̂B

(tA
s ) N′

A

(tA
r ) RB RB ← N̂ ′

A ⊕ sB

dA = s
(
tA
r − tA

s

)
Verify sA

?= N ′
A ⊕ R̂B

Alice verifies if distance between A and B is no more than dA.
If verification OK, Alice and Bob accept the mutual authentication.

���� : the wireless channel
��� � � � : unidirectional ultra-sonic or ultra wide band channel
XA, XB : Diffie-Hellman exponents of devices A and B
commit() and open(): functions of a commitment scheme

Fig. 2. DH-IR Key Agreement Protocol for I-regions
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accuracy is about 0.5ft in practical applications when there are imperfections in the
alignment of transceivers.

Radio ranging is more demanding and it requires devices with a high (nanosecond)
precision-of-time measurement. To the best of our knowledge, the only commercial
technique that achieves such precision, and achieves therefore a high precision-of-
distance measurement, is Ultra Wide Band (UWB). In [9], Fontana has demonstrated
that with UWB, distances can be measured with an error margin of up to 0.5 ft. Some
protocols, e.g., the distance-bounding protocol of Brands and Chaum [4] propose
some optimizations through which the cost of nanosecond processing of nodes can be
reduced.

In both radio-frequency and ultra-sound solutions, the response time (the XOR op-
eration and the reversion of the transceiver) of the challenged principal must be tightly
bound and predictable. With current off-the-self components, ultrasonic ranging seems
a more viable implementation of DH-IR and for both techniques the reasonable practi-
cal accuracy would be about 0.5ft in a typical use case for I-regions.

3 Usability Evaluation of I-Regions

A pre-requisite to the security as well as usability of I-regions is the ability of human
users to correctly gauge and interpret the distance between two communicating devices
in relation to the distance shown to them as a result of the I-regions protocol.

We hypothesize that human behavior in interpreting distances would be prone to er-
rors. There are two types of possible errors and following the terminology introduced
in [38], we call them: (1) safe errors, and (2) fatal errors. Safe errors occur when a
user rejects an authentication attempt from an honest device. This happens if the user
believes that the distance shown on her device is more than the (perceived) distance
between the two devices. As the name suggests, safe errors might not directly under-
mine the security of I-regions, however, they have an adverse effect on its efficiency
and thus usability. Once rejected, the user needs to re-execute another instance of the
I-regions protocol by varying the distance between the two devices. This process needs
to repeated iteratively until the user has sufficient confidence that she is indeed com-
municating with the intended device (and not with an attacker). This will clearly slow
down the authentication process. In addition, this will lead to poor usability due to user
annoyance and increased user burden. Moreover, in certain communication scenarios, it
might not be possible to vary the distance between two devices (e.g., two users wanting
to communicate in a meeting room). An adversary could also possibly take advantage
of such a situation because a user who gets frustrated due to repeated authentication at-
tempts is likely to accept even an attacked session, thus committing a fatal error (which
we explain next).

Fatal errors occur when the user accepts an authentication attempt from an attacking
device. This can happen if the user believes that the distance shown on her device is less
than or equal to the (perceived) distance between the two intended devices. Fatal errors
are clearly dangerous as the user’s device will now be communicating with the attacker,
even though the user believes her device is communicating with the intended device.
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In order to test our hypothesis and to evaluate I-regions, we performed usability
experiments. These experiments were simultaneously conducted at two different uni-
versity campuses: Polytechnic Institute of NYU, USA and University of Split, Croatia.

1. Efficiency: time it takes to complete the I-regions method (at the usability layer).
2. Robustness: how often the I-regions method leads to safe and fatal errors, with

varying inter-device distances.
3. Usability: how the method fares in system usability scale [5] and in terms of user

confidence in judging distance.

3.1 Testing Apparatus

In our experiments, we used Nokia cell-phones as the testing devices. The models used
in the U.S. were N73 and E61 and the model used in Europe was Nokia 6310.3 We chose
to use Nokia cell-phones as they are quite ubiquitous and familiar to many people.

Since our purpose was to test the I-regions method at the usability layer, we chose a
simulated test set-up. Our implementation of the I-regions method mock-up was devel-
oped to run over the open-source comparative usability testing framework developed by
Kostiainen et al. [17] (this framework has previously been used in comparative usabil-
ity studies of device authentication methods [18]). We used the basic communication
primitives as well as automated logging and timing functionalities as provided by this
framework.

In terms of user experience, our mock-up closely approximates a real implementa-
tion. The two main differences are: (1) our version omits the rounds of the underlying
DH-IR protocol, (2) the device only displays the syntactic distance measurement pro-
vided by the framework instead of measuring the distance using the packet trip time as
in the DH-IR protocol. Notice that the first difference is completely transparent to users
as the wireless (and if used, the ultra-sonic) channel is “human-imperceptible.” The sec-
ond difference was necessary to evaluate subjects’ ability of comprehending distances
and in order to measure resulting error rates.

3.2 Test Cases

We tested the usability of I-regions method with respect to 5 physical distance values,
where the actual distances between the devices were set to 1, 2, 3.5, 5 and 6.5 ft. These
distances were chosen to capture typical wireless device authentication scenarios. In
most situations, the two devices can be within a distance of few feet (e.g., less than 3-4
ft). In some situations, however, it may not be possible to bring the two devices very
close to each other (such as in case of a wall-mounted access point or when two users
are sitting across a table in a meeting room). For each inter-device distance value, we
created a total of 5 test-cases simulating normal scenarios (i.e., when no attacks occur
and the maximum distance shown on device’s screen is less than or equal to the physical
inter-device distance) as well as attack scenarios (i.e., when a MitM attack is simulated

3 See http://europe.nokia.com/phones/n73, http://europe.nokia.com/
A4142101 and http://europe.nokia.com/A4143044, respectively, for the speci-
fications of Nokia phones N73, E61 and 6310.

http://europe.nokia.com/phones/n73
http://europe.nokia.com/A4142101
http://europe.nokia.com/A4142101
http://europe.nokia.com/A4143044
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and the maximum distance shown on device’s screen is more that the physical inter-
device distance). Two of these test cases simulated normal pairing scenarios, while the
remaining three simulated attack scenarios, wherein the “attacker distance bound” (i.e.,
the simulated distance between attacker’s device and user’s own device) was kept as 1.5,
2.5 and 3.5 ft more than the inter-device distance (Figure 1 depicts an attack scenario).
This was done to estimate safe error rates as well as fatal error rates with the attacker
residing/hiding within a reasonable proximity of the two devices.

In our study, we only consider the MitM attack cases where the attacker’s physical
distance is farther than the intended device’s. As explained in section 1, users also have
to make sure that there is no other device at any distance less than or equal to the actual
distance between the intended devices. We did not test users’ ability to perform this
task. We believe that such attacks, where the attacker is closer than the intended device,
would be rare due to higher risk of detection by the user and attacker exposure.

3.3 Test Procedures

In our experiments, all participants were subject to the following procedures (in the
given order):

Background Questionnaire: Subjects were asked to fill out a questionnaire through
which they were polled for their age, gender and prior experience with device pairing.

Scenario Presentation: Subjects were asked to imagine that they had to send a confi-
dential file from their smart phone to a co-worker’s phone. In order to proceed with the
file transfer, they needed to first securely pair the two devices.

Experimentation with the Method: Each subject was provided with a test device. The
other device was held by the test administrator. The subject was then asked to perform
the following procedure a number of times with varying distances between the two
devices being paired.

1. Subject was instructed to move to a fixed test point/location previously marked for
him/her by the test administrator. He/she was instructed not to move away from this
point throughout the experiment.

2. Subject was then given brief and simple instructions on the I-regions pairing method,
both textually on the device and orally by the test administrator.

3. After the test administrator set the physical distance between the subject and the
administrator’s device to one of the pre-defined distances for a given test case,
the subject’s device showed a (simulated) value for the lower and upper bound
distances. Subject then indicated whether the actual physical distance between his
device and test administrator’s device was within the shown boundaries by pressing
the button labeled with his answer.

4. Test administrator relocated the administrator device according to the next test case.

To avoid order effects (particularly due to learning and fatigue), the sequence of test
cases was randomized. Also the distance marks/indicators used by the test administrator
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to correctly set the physical distance according to different test cases were obscured
from test participants.

At the beginning of the experiment, we also provided the participants with the choice
of distance measurement unit to be used during the experiment. Participants were given
the choice of using either the metric (shown in meter and centimeters) or the British
units (shown in feet). This was done in order to personalize the pairing method accord-
ing to individual participants and facilitate better distance comprehension.

In every run of the experiment, the following measures of observable efficiency and
robustness indicators were automatically recorded by the testing software: task perfor-
mance time, fatal errors (if any) and safe errors (if any).

Post-Test Questionnaire: After completing the experiments, subjects completed the
System Usability Scale (SUS) questionnaire [5], a widely used and highly reliable 10-
item Likert scale that polls subjects’ satisfaction with computer systems [2]. We used
the original questions from [5], but replaced “system” with “method”. Subjects also
rated their confidence level on judging physical distances of 1-10 ft with 0.5 ft accuracy,
i.e., the typical practical accuracy level provided by distance bounding techniques (as
discussed in 2). This allowed us to measure the usability of I-regions as perceived by
our participants.

3.4 Subjects

We recruited a total of 43 subjects for our study.4 20 of these users participated in our
study at the US venue and the remaining 23 of them took part in our study in Croatia.
Most participants were students and staff members from the respective universities that
we conducted our test at. The subjects were recruited on a first-come-first-serve basis
with no controlling or balancing on subject dependent variables such as age and gender.
As a result, our sample consisted of a large fraction (85%) of young subjects in the
18-25 age group and a relatively smaller fraction (15%) belonging to the age group of
26-40. We also had a high proportion (70%) of male participants. An overwhelmingly
high fraction (91.5%) of our subjects reported prior experience connecting two wireless
devices (in response to one of the questions in the Background Questionnaire) and none
of them reported any visual disability.

4 Test Results and Interpretations

As we described previously in Section 3.2, each subject participated in a total of 25 test
cases (5 test cases each for 5 different values of inter-device distances). Through our
tests, we collected data regarding following measures.

– Within-subjects measures: Task performance time, fatal error (categorical) and
safe error (categorical).

– Within-subjects factors: Test-case varying with respect to (1) physical inter-device
distance, (2) the attacker distance bound, and (3) normal or attack scenario.

4 It is well-known that a usability study performed by at least 20 participants captures over 98%
of usability related problems [8].
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– Between-subjects measures: SUS-score, average task performance time, self-
confidence ratings for gauging distances.

– Between-subjects factors: Age group, gender and prior experience with wireless
device authentication methods.

In the remainder of this section, we discuss our results and interpretations. Unless stated
otherwise, statistical significance is reported at the 5% level.

4.1 Overview of Results

Before delving into a detailed analysis of logged data, we provide a brief overview.
Following observations were made from the initial analysis of the data collected from
43 subjects, each of whom completed 25 test cases.

– The mean task completion time, over all test cases, was 4.93 seconds with standard
error of 0.84 seconds. Over the test cases simulating normal scenarios, the mean
of task completion time was 5.02 seconds with standard error of 0.82 seconds.
Figure 3(a) and 3(b) depict the average task completion time for different inter-
device distances, calculated over normal test scenarios and over all test scenarios,
respectively. When compared to the completion times for other pairing methods
studied in [18,16], we find that I-regions is quite fast for all inter-device distances.

– Depending on the inter-device distance and simulated attacker distance bound, ob-
served fatal error rate ranged from 9.5% to 78.5%. Over all executed test-cases, the
observed fatal error rate was 42%. Figure 4 shows the average rate of fatal errors
for different test cases. These numbers are alarmingly high, especially when the
simulated bound for the attacker distance is close to the inter-device distance, i.e.,
1.5 ft and 2.5 ft more than the inter-device distance. Recall that a fatal error leads
to a successful MitM attack.

– Over all normal test scenarios, the observed rate of safe errors was 29%. Figure
5 shows the observed average safe error rates for different inter-device distances.
Although safe error rates are smaller than fatal errors rates (as observed above),
they are still quite high (more than 10% in all cases). We believe that safe error

(a) Normal (no attack) test cases (b) All test cases

Fig. 3. Task Completion Time vs. Inter-Device Distance
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Fig. 4. Fatal Error Rates for Different Test Cases

rates higher than 10% are problematic since such errors undermine the usability,
can cause user frustration and eventually lead to fatal errors.

– The mean SUS-score assigned by the subjects was 75 (out of 100) with standard de-
viation of 12.4. In general, this means that our subjects were reasonably happy with
the method and felt that it is easy to use. This can be seen as a positive indication.

– The mean of all participant responses to the last question of the post-test question-
naire, i.e., the self-confidence level in guessing short distances with 0.5 ft accuracy,
was 3.24 with standard deviation 1.14. This was rated on a 5-point Likert scale
(1=strongly disagree, through 5=strongly agree). This implies that most of our users
believed that their comprehension of physical distances was quite up to the mark.

4.2 Within-Subjects Analysis

We analyze the effect of test case on the efficiency and robustness of I-regions. Repeated
measures analysis of variance and Chi-square tests revealed that the type of test case has
a highly significant effect on task completion time as well as fatal and safe error rates.
To better understand the effect of each independent variable of every test case, we look
at them individually.

Physical inter-device distance: Analysis of variance revealed that actual physical dis-
tance between devices has a significant effect on task completion time. As shown in
Figure 3(a), the mean task completion time, for normal scenarios, gradually increases
from 2.50 seconds to 6.24 seconds as the inter-device distance increases from 1 ft to
6.5 ft. A similar pattern can be observed in Figure 3(b) for completion time over all
test cases. This finding is intuitive as it is easier (and thus faster) to gauge the distance
between devices that are closer compared to those that are farther.
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Fig. 5. Safe Error Rate vs. Inter-Device Distance

Chi-square tests revealed that inter-device distance also has an effect on the like-
lihood of committing fatal and safe errors. However, the error rates are not directly
correlated with inter-device distance as it was in the case of task completion time.

Normal vs. attack scenario: We did not find any significant difference between the
mean completion timings of test cases corresponding to normal and attack scenarios.

Simulated attacker distance bound: The difference between the attacker’s distance
bound and the inter-device distance has a highly significant effect on fatal errors. As
the difference increases from 1.5 ft to 3.5ft, the mean proportion of fatal errors drops
from 0.73 to 0.17. This pattern can also be observed in Figure 4, irrespective of the
inter-device distance. As expected, this means that fatal errors are more likely to occur
when the attacker’s distance is close to the actual inter-device distance. In other words,
human subjects are expected to be less erratic in detecting a distant attacker.

Simulated attacker distance, on the other hand, did not have any significant effect on
task completion time.

4.3 Between-Subject Analysis

Effect of gender: In conducted unpaired t-tests, we have not found any significant effect
of gender on task completion time, and users’ SUS-scores and self-confidence ratings.

According to the results of Chi-square tests, the effect of gender on fatal error rate
and safe error rate were also not significant.

Effect of age: Our test sample consisted of subjects belonging to two age groups,
namely 18-25 years and 26-40 years. Unpaired t-tests revealed that subjects belong-
ing to the age group 26-40 take significantly longer time to complete the task compared
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to the subjects belonging to the 18-25 group (p=0.037). The means of task comple-
tion times were 7.128 and 4.744 seconds, respectively, corresponding to the two age
groups. There was no significant effect of age, however, on users’ SUS-scores and self-
confidence ratings.

Chi-Square tests revealed that age has significant effect on fatal (p=0.041) and safe
errors (p=0.038). The rate of making a fatal error was 0.44 for the 18-25 age group and
0.32 for the 26-40 age group. Similarly, the rate of safe errors in 18-25 and 26-40 age
groups were 0.31 and 0.18 respectively.

A plausible explanation of the above findings is that our slightly older subjects were
more conscious while completing the assigned tasks compared to their younger coun-
terparts. This also helps to explain the higher task completion durations for the older
group. Another possible reason could be that older subjects were perhaps more familiar
with distance measurements.

Self-confidence in distance judgement: ANOVA tests revealed that participants’ self-
confidence ratings for accurately judging distance have a significant effect on task com-
pletion time. Although there was no obvious linear correlation between self-confidence
and the completion, we observed that people with the highest confidence ratings tend
to have shorter completion times. People with mid-range confidence ratings took the
longest and subjects having the lowest confidence had the highest variance in comple-
tion times.

Self-confidence ratings also had a significant effect on fatal and safe errors. In both
cases, the proportion of errors (Y-axis) are almost bell shaped with respect to the self-
confidence ratings (X-axis). However, the variance is observed to be higher for subjects
with low confidence ratings. For fatal errors, the mean proportions corresponding to
self-confidence levels 1, 3 and 5 were 0.29, 0.49 and 0.34 respectively. For the same
self-confidence levels, the respective corresponding mean safe-error proportions were
0.18, 0.30 and 0.11.

When we look at the error rates, the most surprising finding was that the mean er-
ror rates for subjects with lowest confidence ratings was smaller than the mean error
rates for subjects with mid-range confidence ratings. Although hard to explain, this
finding could be partly because some subjects rated themselves higher due to optimism
and overconfidence biases. On the other hand, some subjects might also have become
over-cautious while answering this question and under-rated their confidence level or
performed better than they would normally do due to the observer effect (also known
as the Hawthorne Effect [19]. This also helps to explain the higher variance observed
within the task completion timings corresponding to the group of subjects with lowest
self-confidence ratings.

4.4 Discussion of Combined Measures

A usable wireless device authentication method should perform well in terms of all
three (not just one of the) measures, i.e., efficiency (task completion time), robustness
(likelihood of committing safe and fatal errors) and usability (user ratings and self-
confidence). As our analysis in prior subsections indicate, I-regions is certainly quite
efficient and can be considered usable in terms of its SUS-score. However, in general,
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I-regions has poor robustness, with high likelihood of safe as well as fatal errors. This
means that I-regions might not be a practical method for arbitrary values of inter-device
distance and attacker distance bound.

On the other hand, since I-regions exhibited, in spite of its manual nature, quite
low task completion time and good usability ratings from the participants, we set out
to further explore it. We were interested in investigating whether I-regions is robust
(for practical purposes) for any specific values for inter-device distance and attacker
distance bound. Looking at Figure 4, we find that fatal error rates are on a lower side
(less than 10%), when the distance between attacker’s device and user’s device is 3.5
ft more than the inter-device distance, especially for inter-device distances of 2.0 ft
and 3.5 ft. As mentioned previously, an error rate around 10% might be acceptable in
practice for certain scenarios. Similarly, looking at Figure 5, mean safe error rate for
inter-device distance of 1.0 ft is 12.5%, which might also be an acceptable fraction in
practice, especially for scenarios where user can vary (reduce) the inter-device distance
prior to re-executing the authentication process in case a safe error occurs.

We wanted to determine values (if any) of inter-device distance and attacker distance
bound optimal with respect to safe errors, fatal errors and task completion time (all
taken together). To this end, we first set out to check whether our efficiency, robustness
and usability measures were independent of one another. Table 1 shows the correla-
tion coefficients and their respective statistical significance (P-values). As shown in the
table, none of the measures is sufficiently correlated with others that it could be justifi-
ably omitted. However, it should be noted that the fatal and the safe errors are positively
correlated. Although this correlation is modest, it still suggests that the subjects who ac-
cepted incorrect distances showed a tendency to reject correct distances (or vice versa).

In terms of efficiency, shorter inter-device distances results in better completion
times. However, I-regions was quite efficient in general and completion times were
almost always under 8 seconds. Compared to other pairing methods, the time required
for I-regions is quite low and completion time differences among various inter-device
distances were small. Thus, it is more appropriate to concentrate on the combined effect
of fatal and safe errors on I-regions. Figure 6 shows this effect for varying inter-device
distances and attacker distance bounds. Clearly, the distance values lying on the lower
left are considered better. We can observe that although [inter-device distance, attacker

Table 1. Cross-Correlation of Different Measures

Average Task SUS-Score Fatal Error Rate
Performance Time

SUS-Score -0.242 - -
(0.129)

Fatal Error Rate -0.182 0.111 -
(0.249) (0.484)

Safe Error Rate 0.144 -0.157 0.393
(0.365) (0.332) (0.010)

Pearson correlation coefficient.
(P-Value)
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Fig. 6. Mean Fatal Error Rate vs. Mean Safe Error Rate for Different Test Cases

distance bound] values [1 ft, 2.5 ft] and [1 ft, 3.5 ft] have low safe error rates, they yield
quite high fatal error rates and are thus not suitable. [1 ft, 4.5 ft] and [3.5 ft, 7ft] are
the only tuples with reasonable safe and fatal error rates (although such rates may be
still high for many practical applications). We can conclude, therefore, that inter-device
distance of 1 ft and 3.5 ft, with the attacker distance bound no less than 4.5 ft and 7
ft, respectively, works the best for I-regions. These values might be suitable for certain
pairing scenarios. However, for all other values, I-regions can be deemed impractical.

4.5 Summary of Results

Our (significant) findings can be summarized as follows:

– I-regions exhibits low task completion timings and rated as usable by the test par-
ticipants.

– Most users were quite confident about their distance judgement ability.
– In general (i.e., for arbitrary values of inter-device distance and attacker distance

bound), I-regions shows poor robustness, with high likelihood of users committing
both safe as well as fatal errors. However, for some specific values of inter-device
distance (1 ft and 3.5 ft) in conjunction with attacker distance bound (at least 4.5 ft
and 7 ft), I-regions shows reasonable level of robustness and might be acceptable
in practice.

– Fatal errors become less likely as the difference between attacker’s distance bound
and the inter-device distance increases.

– The task completion time has a tendency to increase as the inter-device distance
increases.

– Older subjects (26-40 age group) commit less fatal and safe errors compared to
their younger counterparts (18-25 age group). Older subject, on the other hand,
took longer to complete the tasks.
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– Subjects who felt most confident about their distance judgment abilities (i.e., those
with a rating 5) committed less safe errors and completed the tasks faster compared
to those having mid-range confidence levels (i.e., those with ratings 2, 3 and 4).

5 Related Work

Providing integrity and authentication over insecure wireless channels is an active area
of research. This provision has mainly focused on the key establishment after which
the integrity and the authenticity of the messages is ensured by the use of known cryp-
tographic techniques. We review prior work in this area, in the chronological order of
publication.

In this context, Stajano and Anderson propose the resurrecting duckling security pol-
icy model, [36] and [35], in which key establishment is based on the physical contact
between communicating parties (their PDAs). In [1], the authors go one step further and
relax the requirement that the location limited channel has to be secure against passive
eavesdropping; they introduce the notion of a location-limited channel (e.g., an infrared
link), which is used to exchange pre-authentication data and should be resistant to active
attacks.

Another early approach involves image comparison. It encodes a small checksum data
calculated over the exchanged data into images and asks the user to compare them on two
devices. Prominent examples include “Snowflake” [10], “Random Arts Visual Hash” [26]
and “Colorful Flag” [7]. Such methods, however, require both devices to have displays
with sufficiently high resolution. A more practical approach, based on SAS protocols
[25,20], suitable for simpler displays and LEDs has been investigated in [30] and [28].

More recent work [24] proposed the “Seeing-is-Believing” (SiB) pairing method.
In SiB one device encodes a checksum data into a two-dimensional barcode which it
displays on its screen and the other device “reads it” using a photo camera, operated
by the user. For bidirectional authentication, the same procedure is executed once more
with devices changing roles. A related approach has been explored in [31]. Like SiB, it
uses the visual out-of-Band (OOB) channel but requires one device to have a continuous
visual receiver, e.g., a light detector or a video camera. The other device must have at
least one LED. The LED-equipped device transmits OOB data via blinking while the
other receives it by recording the transmission and extracting information based on
inter-blink gaps. The receiver device indicates success/failure to the user who, in turn,
informs the other to accept or abort.

Another recent method is “Loud-and-Clear” (L&C) [11]. It uses the audio (acous-
tic) OOB channel along with vocalized MadLib sentences which represent the digest
of information exchanged over the main wireless channel. There are two L&C variants:
“Display-Speaker” and “Speaker-Speaker”. In the latter the user compares two vocal-
ized sentences and in the former – displayed sentence with its vocalized counterpart.
Some follow-on work (HAPADEP [34,12]) considered pairing devices using only the
audio channel. HAPADEP transmits cryptographic protocol messages over audio and
requires the user to merely monitor device interaction for any extraneous interference.

Yet another approach: “Button-Enabled Device Authentication (BEDA)” [33,32] sug-
gests pairing devices with the help of user button presses, thus utilizing the tactile OOB
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channel. This method has several variants: “LED-Button”, “Beep-Button”, “Vibration-
Button” and “Button-Button”. In the first two variants, based on the SAS protocol variant
[31], the sending device blinks its LED (or vibrates or beeps) and the user presses a but-
ton on the receiving device. Each 3-bit block of the SAS string is encoded as the delay
between consecutive blinks (or vibrations). As the sending device blinks (or vibrates),
the user presses the button on the other device thereby transmitting the SAS from one de-
vice to another. In the Button-Button variant, the user simultaneously presses buttons on
both devices and random user-controlled inter-button-press delays are used as a means of
establishing a common secret using a password based key agreement protocol (e.g., [3]).

There are also other methods which require hardware that is less common. To briefly
summarize a few. [15] suggested using ultrasound and [23] suggested using laser as the
OOB channel. A very different OOB channel was considered in “Smart-Its-Friends”
[13]: a common movement pattern is used to communicate a shared secret to both de-
vices as they are shaken together by the user. A similar approach is taken in “Shake
Well Before Use” [22].

A closely related approach to the method tested in this paper is introduced in [39].
Although practical for establishing secure connection between devices that are in very
close proximity, [39] lacks the flexibility to accommodate various distances between
devices. This limitation is due to the fact that it uses the environmental radio signal
noise as the initiating shared secret between devices and the sensed noise is sufficiently
similar only within close proximity. Moreover, the security of using radio noise as a
location dependent secret is not well studied and currently unknown at best.

An experimental investigation [38] presented the results of a comparative usability
study of simple pairing methods for devices with displays capable of showing a few
digits. In the “Compare-and-Confirm” approach, the user simply compares two 4-, 6-
or 8-digit numbers displayed by devices. In the “Select-and-Confirm” approach, one
device displays to the user a set of (4-, 6- or 8-digit) numbers, the user selects the one
that matches the number displayed by the other device. In the “Copy-and-Confirm”
approach, the user copies a number from one device to the other. The last variant is
“Choose-and-Enter” which asks the user to pick a “random” 4-to-8-digit number and
enter it into both devices. All methods except “Choose-and-Enter” are based on SAS
protocols and the latter is based on password based key agreement protocols e.g., [3].

Quite recently, more comprehensive studies of different pairing methods have been
introduced in [18,16] and [14]. In [18], authors selected 13 pairing methods that they
deem practical and comparatively investigated the security and usability of them. [16,14]
also conducted similar studies but their main focus was usability rather than security.
Unfortunately, distance bounding based pairing methods were not included into any of
these studies and the usability of such methods left unknown. In this paper, we try to fill
this gap left by the previous work and shed light on the usability of distance bounding
based pairing methods.

6 Conclusion

In this paper, we presented the results of the first usability study of the I-regions tech-
nique. Based on our results, I-regions can be termed quite efficient and it is found to
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be usable by our subjects. However, in general (i.e., for arbitrary values of inter-device
distance and attacker distance bound), I-regions exhibits poor robustness, with high
likelihood of users committing both safe as well as fatal errors. This undermines the se-
curity of I-regions, either directly (i.e, in case of fatal errors) or indirectly (i.e, in case of
safe errors). Thus, we can conclude that I-regions is not a suitable method for all com-
munication scenarios. However, for some specific values of inter-device distance (1 ft
or 3.5 ft) in conjunction with attacker distance bound (at least 4.5 ft or 7 ft), I-regions
shows reasonable level of robustness and might be acceptable in practice.
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Abstract. We present a hash-based signature scheme customized for
wireless sensor networks. For message lengths required by instructions
or queries from the base station or single measurements like the temper-
ature, signature generation is 7 times faster and verification is 158 times
faster than state-of-the-art implementations of ECDSA at the same se-
curity level. For message lengths sufficient for most sensor network ap-
plications, the signature generation time is comparable to ECDSA, while
signature verification remains 20 times faster. Our scheme can be used
to authenticate messages exchanged between sensor nodes, as well as for
securing broadcast authentication. Our scheme minimizes the overhead
introduced in the network by the signature verification done by each sen-
sor before relaying the message.

Keywords: hash-based signature scheme, hash chain, wireless sensor
network, Winternitz one-time signature scheme.

1 Introduction

Wireless sensor networks (WSNs) [1] can be deployed in many security- and
safety-critical applications such as military surveillance, or medical applications
such as patient health monitoring. Thus, securing WSNs is of paramount impor-
tance. A WSN can be viewed as a closed user group and therefore the application
of symmetric cryptography seems sufficient. However, since sensor nodes are of-
ten deployed in an unattended or even hostile environment, an adversary may
compromise a sensor node to access stored keys and compromise the security of
the communication in the whole group [19].

This problem can be solved by using public key cryptography. For example,
one can use the elliptic curve digital signature algorithm (ECDSA) to ensure the
authenticity and integrity of the communication in a WSN. ECDSA is especially
suited for WSNs because of its small signatures: 320 bit for a sufficiently high
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security level of 80 bits. There exist several implementations of ECDSA on WSNs
[16,27,30] providing this security level. Signature generation takes between 0.81
and 2.16 seconds and signature verification takes between 1.62 and 4.32 seconds
on typical sensor hardware. This shows that especially the ECDSA signature
verification introduces a significant overhead in terms of time and energy required
to verify a signature.

This paper presents a hash-based digital signature scheme customized for
WSNs that addresses this issue. For the same security level, our scheme pro-
vides nearly the same signature sizes as ECDSA. To achieve this, we exploit
the property that messages to be signed mainly consist of only a few bits. Our
scheme provides a trade-off between the signature generation / verification time
and the maximum length of the message to be signed. If only 8-bit messages
must be signed, signature generation is 7 times faster and signature verification
is 158 times faster than ECDSA. In case of 14-bit messages, the signing time is
comparable to ECDSA while signature verification remains 20 times faster. The
signature size is 330 bit in both cases. These timings assume that our scheme is
implemented on an Atmel ATMega128 [7] microcontroller and that the sensor
node generates at most 210 signatures with one key pair.

Being able to efficiently verify signatures is crucial for WSNs, because each
node that relays a message should check its authenticity and integrity before do-
ing so. The signature verification time is of main interest especially in broadcast
authentication, where the signatures are generated by a powerful base station
but signature verification is performed by resource constrained sensor nodes.
While 8-bit messages can be used to transmit basic commands and single mea-
surements like the temperature, 14-bit messages are sufficient for most other
WSN applications.

Our scheme makes use of a variant of the Winternitz one-time signature
scheme [11] and a hash chain for the authentication of the one-time verification
keys. Compared to the usual approach of using a Merkle tree [25] for authenti-
cating verification keys, applying a hash chain significantly reduces the signature
size because no authentication path must be transmitted. For example, at secu-
rity level 80, this saves 800 bits if at most 210 signatures are generated. Similar
to the Merkle construction, our scheme requires predetermining the number of
signatures that can be generated with one key pair. Using a hash chain requires
a verifier to receive all signatures generated by the signer, because the current
signature is used to compute the authentication data for the next verification
key. In our opinion, this is a reasonable assumption for most WSNs. Neverthe-
less, we discuss measures that can be taken in case a sensor node misses some
signatures. Our scheme is similar to the construction proposed in [22]. The dif-
ference is that our construction explicitly makes use of a hash chain traversal
algorithm. The benefit is, that the signer is no longer required to store all po-
tentially used one-time key pairs to generate the hash chain. This reduces the
memory requirements from “linear in the maximum number of signatures” to
“logarithmic in the maximum number of signatures”. This is one of the reasons
why our scheme is also applicable on sensor nodes and not only for broadcast
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authentication of base station messages. The second novelty is the modified Win-
ternitz construction that provides signature sizes currently only achievable by
ECDSA.

The remainder of this paper is organized as follows: Section 2 summarizes
related work. In Section 3, the new hash-based signature scheme is introduced.
Section 4 analyses the security and Section 5 provides a performance evaluation
of the signature scheme. Finally, Section 6 states the authors conclusion.

2 Related Work

Research in the early stages of securing WSNs was predominantly focused on
symmetric encryption schemes. For example, the work presented in [26,17,35]
uses a Message Authentication Code (MAC) for two party authentication. To
establish the required symmetric keys, a variety of key establishment schemes
have been proposed [13,6]. However, for the reasons mentioned above, sym-
metric cryptography is not applicable if the sensors are deployed in a hostile
environment.

For this reason, research effort has been shifted on investigating the use of
public key cryptography in resource constrained systems and WSNs. The goal
is to overcome the key management issues of symmetric schemes and to provide
a higher resilience against node compromise [33,15,16,23,32,12,3,4,27,31,2,30].
Public key cryptography is especially useful to authenticate broadcast messages
from the base station since all verifying sensor nodes require only the public
key of the base station. Gura et al. [16] presented a software implementation
of the elliptic curve secp160r1 on an Atmel ATmega128 which is a commonly
used CPU on sensor nodes such as the MICA2 [9]. An ECDSA sign operation
takes 0.81 seconds and an ECDSA verify operation about 1.62 seconds. Similar
values (0.89/1.77 seconds) for the MICA2 nodes are stated by Piotrowski et
al. [27]. In [30], an ECC point multiplication using NIST k163 Koblitz curve
over GF (2163) is stated with 2.16 seconds (using binary field GF (2m)) and 1.27
(using prime field GF (p)) on a MICA2 node. This implies that an ECDSA
verify operation would take 4.32 (2.54) seconds. In [4], an implementation for
GF (2113) is presented which takes 6.74 seconds for one fixed point multiplication
on a MICA2 node. However, the large execution times and energy requirements
raise the question if public key cryptography is really applicable on sensor nodes.
Especially the slow ECDSA signature verification poses a problem.

As alternative to public key cryptography, approaches based on symmetric
primitives have been proposed. The seminal μTESLA protocol [26] provides an
asymmetric mechanism by employing a delayed disclosure of symmetric keys.
The drawback of this approach is the introduction of an authentication delay
and the requirement for loose time synchronization.

Hash-based one-time signature schemes have the advantage that signature
generation and verification are very efficient. At first glance, this makes them
very interesting for WSNs. However, they suffer two drawbacks. First, each key
pair can be used to sign at most one message. Thus, for each message, a new
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authentic verification key is required at the receivers side. This problem can
be solved using Merkle’s tree authentication scheme [25]. This approach uses a
binary hash tree, also called Merkle tree, to reduce the validity of an arbitrary
but fixed number of one-time verification keys to the validity of a single public
key. Using Merkle’s approach, the transmission of a potentially large authentica-
tion path becomes necessary. The second drawback is that hash-based signature
schemes produce quite large signatures. Although the signature size can be re-
duced using the time-memory trade-off provided by the Winternitz one-time
signature scheme [11], signature sizes comparable to ECDSA seem out of reach.

3 Short Hash-Based Signatures

We now describe the new digital signature scheme. It uses a variant of the
Winternitz one-time signature scheme to sign the messages and a hash chain to
authenticate the one-time verification keys.

Our scheme is parameterized by the three integers n, l, w. The parameter
n denotes the security level. The parameter l ≥ 1 determines the number of
signatures that can be generated with one key pair. The parameter w ≥ 2 denotes
the maximum bit length of the messages that can be signed using this key pair,
where w must be divisible by 2.

In the following, let f : {0, 1}n → {0, 1}n and g : {0, 1}4n → {0, 1}n be hash
functions that map bit strings of length n and 4n to bit strings of length n,
respectively. Further, let prng : {0, 1}n → {0, 1}n × {0, 1}n be a pseudo random
number generator that maps an n bit seed to an n bit pseudo random number
and an updated seed, i.e. prng(seedin) = (rand, seedout).

Key pair generation. We first choose an initial seed ψ1 ∈ {0, 1}n and the end
link zl ∈ {0, 1}n of the hash chain uniformly at random. Next, we generate the
one-time signature keys Xi = (xi[0], xi[1], xi[2]) ∈ {0, 1}(n,3) for i = 1, . . . , l
using the PRNG and the seed ψ1.

(xi[0], ψ′
i) ← prng(ψi), (xi[1], ψ′′

i ) ← prng(ψ′
i), (xi[2], ψi+1) ← prng(ψ′′

i ) (1)

Note that the seed is updated each time the PRNG is used. The next step is to
compute the one-time verification keys Yi = (yi[0], yi[1], yi[2]) ∈ {0, 1}(n,3) for
i = 1, . . . , l and the hash chain links zi ∈ {0, 1}n for i = 0, . . . , l − 1. We repeat
the following steps for i = l, . . . , 1

yi[0] ← f2w/2−1(xi[0]), yi[2] ← f2w/2+1−2(xi[2]),
yi[1] ← f2w/2−1(xi[1]), zi−1 ← g(yi[0] ‖ yi[1] ‖ yi[2] ‖ zi)

(2)

Here, ‖ denotes the concatenation of bit strings and fk(x) means that the func-
tion f is applied k times to x.

Initially, the public key is the beginning link z0 of the hash chain and the
private key is the seed ψ1 and the link z1. Figure 1 shows how the hash chain is
generated.
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z0 z1 z2 zl−1 zl

X1 X2 Xl

Y1 Y2 Yl

· · ·

Fig. 1. Visualization of the hash chain

Signature generation. We describe the generation of the ith signature, i ∈
{1, . . . , l}, of the w-bit message m = m1 ‖ m2 ∈ {0, . . . , 2w/2 − 1}2. The signer
knows the seed ψi required to generate the ith one-time signature key and the
ith link of the hash chain zi. For the first signature (i = 1), the signer knows ψ1
and z1 from key pair generation.

At first the signer generates xi[0], xi[1], xi[2] as described in (1). Doing so
he obtains the updated seed ψi+1 and stores it in the private key for the next
signature i + 1. Next, he uses the message m1 ‖ m2 to compute the checksum

c ← 2w/2+1 − 2 − m1 − m2 (3)

and finally generates (α1, α2, α3), the one-time signature of m.

α1 ← fm1(xi[0]), α2 ← fm2(xi[1]), α3 ← f c(xi[2]) (4)

In total, the signature of message m is given as σ = (i, α1, α2, α3, zi). After
signing, the signer must compute the previous link of the hash chain zi+1 which
is required for the next signature. This can be accomplished using an arbitrary
hash chain traversal algorithm. For our analysis we use the algorithm presented
in [34], which requires the computation of � 1

2 log2 l� links in each round and
needs to store �log2 l� links and seeds.

Signature verification. The verification of a signature σ = (i, α1, α2, α3, zi) of
message m works as follows. The verifier knows the i−1th link of the hash chain
zi−1. For the first signature (i = 1), the link z0 is the signers public key.

Signature verification consists of two steps. First, the verifier uses α1, α2, α3
to recompute the one-time verification key Yi = (β1, β2, β3). Second, he checks
whether the chain link zi−1 can be computed using this one-time verification key
and the link zi included in the signature.

β1 = f2w/2−1−m1(α1), β3 = f2w/2+1−2−c(α3),
β2 = f2w/2−1−m2(α2), g(β1 ‖ β2 ‖ β3 ‖ zi)

?= zi−1
(5)

If the comparison is successful, the signature is accepted as valid. Finally, the ver-
ifier discards the link zi−1 and stores zi for the verification of the next signature
i + 1.
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4 Security

We now analyze the security of the proposed signature scheme. We will show
that our scheme is unforgeable if the hash functions f and g are preimage and
second preimage resistant. We will also consider the case where an adversary
exploits the properties of WSNs to perform attacks.

4.1 Security against Preimage and Second Preimage Attacks

The goal of this section is to show that breaking the proposed signature scheme
requires breaking cryptographic properties of the used hash functions f and g.
These cryptographic properties are preimage and second preimage resistant. For
a detailed description of the various cryptographic properties of hash functions
we refer to [28]. We begin by considering two attacks and show that performing
them successfully requires the attacker to be able to compute preimages or second
preimages. Then we discuss the provable security of our scheme.

An attacker has two possibilities attacking our scheme via breaking crypto-
graphic properties of the used hash functions. The first possibility is trying to
forge a one-time signature as follows. Assume the attacker is given a one-time
signature (α1, α2, α3) of message m = m1 ‖ m2 and wants to generate a valid
one-time signature σ′ = (α′

1, α
′
2, α

′
3) of a different message m′ = m′

1 ‖ m′
2. There

are two cases to consider.

Case 1: (m′
1 < m1 or m′

2 < m2) To obtain a valid one-time signature, the
attacker must compute α′

1 = fm′
1−m1(α1) and α′

2 = fm′
2−m2(α2). This re-

quires the attacker to be able to compute preimages of the hash function f ,
since either m′

1 − m1 < 0 or m′
2 − m2 < 0 holds.

Case 2: (m′
1 ≥ m1 and m′

2 ≥ m2) In this case, the signer can easily compute
α′

1 = fm′
1−m1(α1) and α′

2 = fm′
2−m2(α2). However, in order to compute

α′
3 = f c′−c(α3), the attacker must be able to compute preimages of the hash

function f because, according to Equation (3), the checksum c′ of message m′

is smaller than the checksum c of message m; c′−c = m1−m′
1+m2−m′

2 < 0.

If the function f is preimage resistant, this attack cannot be performed. Note,
that, as in the Winternitz scheme, the purpose of the checksum is to prevent
this attack.

The second possibility an attacker has is to choose his own one-time signature
key X ′ = (x′[0], x′[1], x′[2]) ∈ {0, 1}(n,3) which allows him to sign arbitrary
messages. The task of the attacker then is to include the corresponding one-time
verification key Y ′ = (y′[0], y′[1], y′[2]) ∈ {0, 1}(n,3), computed as in Equation
(2), in the hash chain of the signer. He must therefore be able to find z′ ∈ {0, 1}n,
such that

g(y′[0] ‖ y′[1] ‖ y′[2] ‖ z′) = zi−1 = g(yi[0] ‖ yi[1] ‖ yi[2] ‖ zi)

holds for some i ∈ {1, . . . , l}. Here we assume that the values yi[0], yi[1], yi[2],
zi, zi−1 are known by the attacker, since he is able to compute them from the
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ith signature generated by the signer as shown in Equation (5). An attacker who
is able to successfully perform this attack is also able to compute second preim-
ages of the hash function g. In fact, successfully performing this attack is more
complicated than computing second preimages, since the first part of the second
preimage is determined by the one-time verification key Y ′ = (y′[0], y′[1], y′[2])
and cannot be chosen freely. Hence, this attack cannot be performed if the func-
tion g is second preimage resistant.

In summary, based on these attacks we require f to be a preimage resistant
hash function and g to be a second preimage resistant hash function. The best
generic attack to break these cryptographic properties of hash functions with
output length n bit is exhaustive search. In the following, we therefore assume
that our scheme provides a security level of n bits, which means that an attacker
on average requires 2n−1 evaluations of the hash functions to break the scheme.

Estimating the security level based on the best known attacks is sometimes
considered dubious. Although we are confident that no attack better than the
ones described above exists, there is no guarantee. To guarantee that no better
attack exists, a security reduction is required. In hash-based cryptography there
exist security reductions for Merkle’s tree authentication scheme to the collision
resistance of the used hash function and the Lamport–Diffie one-time signature
scheme to the preimage resistance of the used hash function [10]. By slightly
modifying Merkle’s construction, a security reduction to the second preimage
resistance of the used hash function is also possible [10]. Since our hash chain
based construction can be interpreted as a linearized version of Merkle’s tree
authentication scheme, these security reductions can be adopted to our scheme.
Estimating the security level of our signature scheme based on the security re-
duction increases the signature size by n bit, since the hash function g is now
required to be collision resistant. However, no attack that requires the adversary
to be able to compute collisions is known neither for Merkle’s tree authentication
scheme combined with the Winternitz scheme nor for our signature scheme. We
therefore assume that our scheme has security level n bit.

4.2 WSN Specific Attacks

Next, we consider an adversary that tries to exploit some of the special properties
of WSNs to perform attacks. Relevant are the wireless multihop communication
and the possibility of node compromise.

One threat to WSNs are replay attacks, where an attacker replays previously
sent messages, for example to order the sensor nodes to reboot. One great ad-
vantage of our scheme is that such attacks are not possible, since a sensor node
can detect a replay attack using the index i enclosed in the signature. However,
because of the wireless multihop communication, an adversary could perform a
successful replay attack by first preventing the reception of messages (e.g., by
jamming the wireless channel or by performing a selective forwarding attack [18])
and then replaying valid messages at a later point in time. This is a problem
that all signature schemes have in common and is not unique to the scheme pre-
sented here. To mitigate this type of attack, timestamps could be added to the
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signature to create a time window where the message is valid. Another strategy
an adversary can pursue is to prevent valid authentications. An adversary can
perform Denial-of-Service attacks such as jamming or selective forwarding at-
tacks to prevent the sensor node from receiving messages. This is hard to prevent
and a general problem of the wireless multihop communication. However, in the
case of our scheme, message loss prevents later messages to be authenticated.
This might not only be a result of an attack but could also be caused by the un-
reliable wireless channel. To enable sensor nodes to resynchronize to the current
verification link zi−1, they could send a request to the base station which uni-
casts the link zi−1 to the respective sensor nodes. To secure this communication,
a pairwise symmetric key could be used to generate MACs over the exchanged
messages. This approach is reasonable if the sensor nodes are located nearby the
sink. To decrease the communication overhead for farther located sensor nodes,
each sensor node could buffer a certain number of received signatures σ and send
them to neighboring nodes if required. Only if neighboring nodes cannot provide
the required signatures σ to resynchronize, the base station is contacted.

If the scheme is used to authenticate messages exchanged between sensor
nodes, an adversary could try to compromise a sensor node to access all keys
and data stored on the node. This would enable the adversary to generate valid
signatures originating from this node. However, in contrast to the symmetric
key approach, the adversary can only generate signatures from the compromised
node and not from other non-compromised sensor nodes. This is a general ad-
vantage of public key based signature schemes. One possibility to cope with node
compromise is the use of tamper-resistant hardware which may be applicable in
certain scenarios [20].

5 Performance Evaluation

This section deals with the performance of our signature scheme. We begin
by estimating the cost and memory requirements. Then we explain how the
functions f, g and prng are implemented. Finally, we estimate timings and sizes
for different parameters and compare our scheme with ECDSA.

5.1 Cost and Memory Requirements

The following formulae show the number of evaluations of f, g, and prng required
for computing a hash chain link, key pair generation, signature generation, and
verification. Here, cf , cg, cprng denotes the cost for one evaluation of f, g, prng,
respectively. The cost for one link of the hash chain is given by Equations (1)
and (2). Key pair generation requires l links to be computed. The initialization
of the hash chain traversal algorithm [34] can be done during key pair generation
without extra cost. Signing requires the computation of � 1

2 log2 l� links for the
traversal algorithm as well as (2w/2+1 − 2)cf and 3cprng according to Equations
(4) and (1). The verification cost is given by Equation (5).
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clink =
(
2w/2+2 − 4

)
cf + cg + 3 cprng (6)

ckeygen = l · clink (7)

csign =
⌈ 1

2 log2 l
⌉
clink +

(
2w/2+1 − 2

)
cf + 3 cprng (8)

cverify =
(
2w/2+1 − 2

)
cf + cg (9)

The following formulae show the sizes of the signature, private key, and public
key. The private key requires 2n bits to store the current seed ψi and hash chain
link zi as well as 2n�log2 l� bits to store the �log2 l� links and seeds required by
the traversal algorithm. The public key consists only of the last link of the hash
chain received by the verifier. The signature requires 3n bits for the one-time
signature, n bits for the hash chain link, and log2 l bits for the index i.

sprivkey = 2n (�log2 l� + 1) bit (10)
spubkey = n bit (11)

ssignature = 4n + log2 l bit (12)

5.2 Construction of f, g, and prng

We now describe concrete implementations of the three functions

f : {0, 1}n → {0, 1}n prng : {0, 1}n → {0, 1}n × {0, 1}n

g : {0, 1}4n → {0, 1}n seedin  → (rand, seedout)
(13)

used in our scheme. For the construction of f and g we use AES in the Matyas-
Meyer-Oseas (MMO) mode [24] and truncate the output to n bits. Let Ek(m)
denote an AES encryption of message m with key k, let ⊕ denote bitwise XOR,
and let �x�n denote truncation of the bit string x to n bits. Also, let IV be an
initialization vector. Then the functions f and g are constructed as follows.

f(x) = �EIV (x) ⊕ x�n g(x1, x2, x3, x4) = �Ek3(x4) ⊕ x4�n

with k3 = Ek2(x3) ⊕ x3,
k2 = Ek1(x2) ⊕ x2,
k1 = EIV (x1) ⊕ x1

(14)

Before applying the AES encryption, x is padded from the left with 128 − n
zeroes. For the implementation of the PRNG we use the following construction.
due to [14].

prng(ψ) = (f(ψ), f(ψ) + ψ + 1 mod 2n) (15)

This construction is already used for the signature key generation in implemen-
tations of the Merkle signature scheme [5,29].
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5.3 Practical Performance

In the following, we estimate timings and sizes of our signature scheme for differ-
ent maximum message lengths w and number of signatures l. Then we compare
our scheme with ECDSA. We compare our scheme exclusively with ECDSA,
because ECDSA is the only digital signature scheme that offers the same signa-
ture size as our scheme. Other hash-based signature schemes, like the Winternitz
scheme, have much larger signature sizes. In the following, we choose n = 80 as
output length of the hash functions. According to Section 4, this yields a security
level comparable to elliptic curves over a 160-bit prime field.

The timings are obtained by first estimating the number of evaluations of
f, g, and prng required for the specific choice of parameters using Equations (6)-
(9). This number is converted to actual timings using that one AES encryption
takes 0.3 msec as measured by the authors of [29] on an Atmel ATMega128
microcontroller. We therefore assume that one evaluation of f, g, and prng takes
0.3, 1.2, and 0.3 msec, respectively

Table 1 summarizes the signature generation and verification time for different
choices of parameters. The security parameter n is fixed to 80 to provide a
security level comparable to 160-bit elliptic curves. We state timings for up to
l = 210 and l = 216 signatures and different maximum message lengths. We
don’t state timings for more than 216 signatures, because on the one hand 216

signatures are sufficient for typical sensor node applications and on the other
hand, updating the private and public key more than 216 times is not possible
because this would exceed the life-span of the EEPROM where private and public

Table 1. Signature generation and verification timings of our signature scheme at
security level 80 (n = 80)

(l, w) tsign tverify

(210, 8) 110.4 msec 10.2 msec
(216, 8) 170.7 msec 10.2 msec
(210, 10) 216.0 msec 19.8 msec
(216, 10) 333.9 msec 19.8 msec
(210, 12) 427.2 msec 39.0 msec
(216, 12) 660.3 msec 39.0 msec
(210, 14) 849.6 msec 77.4 msec
(216, 14) 1313.1 msec 77.4 msec
(210, 16) 1694.4 msec 154.2 msec
(216, 16) 2618.7 msec 154.2 msec
(210, 18) 3384.0 msec 307.8 msec
(216, 18) 5229.9 msec 307.8 msec
(210, 20) 6763.2 msec 615.0 msec
(216, 20) 10452.3 msec 615.0 msec
(210, 22) 13521.6 msec 1229.4 msec
(216, 22) 20897.1 msec 1229.4 msec
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Table 2. Key and signature sizes of the new signature scheme at security level 80
(n = 80)

(l, w) ssignature sprivkey spubkey

(210, ·) 330 bits 1760 bits 80 bits
(216, ·) 336 bits 2720 bits 80 bits

key are stored. Table 1 omits the time required for key pair generation on the
sensor node, since it would take far to long. However, from previous timings for
the Merkle scheme [5], we can deduce that key pair generation on a PC does take
more than a few minutes. Table 2 shows the sizes of the keys and signatures,
again for up to l = 210 and l = 216 signatures. Note that these sizes do not
depend on the parameter w.

Table 2 shows that signatures of our scheme are almost as small as ECDSA
signatures. This is because we need additional 10 to 16 bits to store the in-
dex of the signature. Although the size of the private key is large compared to
ECDSA, it can be easily stored on the sensor node. Table 1 shows that the sig-
nature verification time does not depend on the parameter l. This is especially
meaningful in the scenario where our scheme is used for broadcast authentica-
tion. Table 1 also clarifies the flexibility of our construction. If a sensor node
needs to sign only 8-bit messages, e.g. if it measures only the temperature, our
scheme drastically outperforms ECDSA both in signature generation (7 times
faster) and verification (158 times faster). For the parameters (l, w) = (216, 12)
and (l, w) = (210, 14) the signature generation time of our scheme is comparable
to ECDSA but signature verification still is more than 20 times faster. If mes-
sages of bit length more than 14 have to be signed, signature generation of our
scheme is less efficient than ECDSA. However, for message lengths up to 22-bit,
signature verification of our scheme remains faster than ECDSA which is again
meaningful for broadcast authentication. For the comparison with ECDSA, we
use the timings due to Gura et al. [16], i.e. 0.81 seconds for signature generation
and 1.62 seconds for signature verification. Finally, we remark that 16384 differ-
ent messages can be encoded in 14 bits, which should me more than enough for
most sensor network applications.

6 Conclusion

We present a hash-based digital signature scheme customized for wireless sensor
networks that offers the same signature size as ECDSA at the same security level.
We show explicit formulae to estimate the timings and memory requirements of
our scheme for a given choice of parameters. Using AES timings measured on an
Atmel ATMega128, we show that our scheme provides 7 times faster signature
generation and 158 times faster verification than ECDSA for message lengths
required by instructions or queries from the base station or single measurements
like the temperature. In case of message lengths sufficient for most other WSN
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applications, the signature generation time is comparable to ECDSA, while sig-
nature verification remains 20 times faster.

Future research includes an implementation of our scheme to estimate the
exact power consumption of signature generation and verification. In addition,
we also plan an implementation on a platform providing hardware acceleration
for AES such as the Atmel ATxmega 128A1 processor [8]. Results presented in
[29] indicate that this would result in a speed up of our scheme by a factor of more
than 3. We will also compare our implementations with hardware accelerated
ECC implementations [21].
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Abstract. What if you want to query a search engine, but don’t want
to tell the search engine what you are looking for? Is there a way that
you can encrypt your query, such that the search engine can process
your query without your decryption key, and send back an (encrypted)
response that is well-formed and concise (up to some upper bound on
length that you specify)? The answer is yes, if you use a “fully homo-
morphic” encryption scheme. As another application, you can store your
encrypted data in the “cloud”, and later ask the server to retrieve only
those files that contain a particular (boolean) combination of keywords,
without the server being able to “see” either these keywords or your files.

We will present a recent fully homomorphic encryption scheme. In
particular, we will highlight the main ideas of the construction, discuss
issues concerning the scheme’s performance, and mention other applica-
tions.
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Abstract. We extend the well-known Tree-Diffie-Hellman technique used for
the design of group key exchange (GKE) protocols with robustness, i.e. with re-
sistance to faults resulting from possible system crashes, network failures, and
misbehavior of the protocol participants. We propose a fully robust GKE proto-
col using the novel tree replication technique: our basic protocol version ensures
security against outsider adversaries whereas its extension addresses optional in-
sider security. Both protocols are proven secure assuming stronger adversaries
gaining access to the internal states of participants. Our security model for robust
GKE protocols can be seen as a step towards unification of some earlier security
models in this area.

1 Introduction and Contributions

In group key exchange (GKE) protocols, users interact over a network to exchange con-
tributions and finally compute a common group key which is suitable for subsequent
cryptographic use. Outsider security encompasses scenarios in which all users are hon-
est and the adversary is an external entity, trying to violate the privacy of the established
key (indistinguishability). Outsider security is sufficient for many applications as it pro-
tects the communication between trusted users. However, with the increasing group size
it is quite natural to assume that some users will not follow the protocol execution in a
correct way. Insider security aims to define what security means if some users misbe-
have. Since the secrecy property of the key in this case becomes vacuous (nothing can
prevent insiders from learning and disclosing group keys), the insider security goals
usually focus on preventing the dishonest users from disrupting the protocol execution
amongst the remaining honest users.

The Tree-Diffie-Hellman GKE protocol from [12,26], called TDH1, achieves security
against both outsider and insider attacks. Yet, if any protocol participant fails then this
protocol has to abort. In this work we provide two extensions of TDH1 towards full ro-
bustness. Our first protocol, R-TDH1, preserves the strong outsider security of TDH1 (in
the standard model), whereas our second protocol, denoted IR-TDH1, combines robust-
ness and insider security (in the random oracle model). Our constructions are based
on a technical novelty called the tree replication technique. R-TDH1 is essentially as ef-
ficient as the underlying protocol TDH1, while IR-TDH1 needs some (rather inefficient)
NIZK proofs.

J.A. Garay, A. Miyaji, and A. Otsuka (Eds.): CANS 2009, LNCS 5888, pp. 478–497, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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1.1 Related Work

Outsider Security In most cases (e.g. [9, 15, 8, 24, 11]), security is defined against an
adversary that does not control any player (at least during the target session) resulting in
the main requirement called Authenticated Key Exchange (AKE) security, which ensures
the indistinguishability of the established group key from a random bit string. Usually,
AKE-security comes along with forward-secrecy that deals with indistinguishability of
keys computed in earlier sessions assuming that users can be corrupted at some later
stage, and recently it has been updated to include outsider key compromise imperson-
ation attacks [19]. Another requirement called Mutual Authentication (MA) has been
formalized and studied for the honest users setting in [9, 8].

Insider Security. In 2005, Katz and Shin formalized1 the notion of security against
insider impersonation attacks and key agreement in [23], and Choo et al. defined re-
sistance against unknown-key share attacks [18]. Another goal — contributiveness —
has been identified in [3, 10, 12, 19] and is also related to non-malleability [21] or key
control [31, 34]: briefly speaking, it prevents the adversary from “fixing” the value of
the group key computed by honest users; this property states the main difference be-
tween key exchange and key transport. In particular, it also prevents key-replication
attacks [28].

Robustness. Executions of GKE protocols that do not provide robustness are aborted
if some deviation from the given protocol specification is detected by the users, e.g.
when users are not able to send or receive messages or if some necessary verification
steps fail. Amir et al. [1] were the first to consider robustness in GKE protocols; they
merged the non-robust GKE protocol by Steiner et al. [38] with an underlying group
communication system (GCS) [17]. However their protocol must be restarted in case of
failures. Assuming authenticated channels, Cachin and Strobl [14] proposed and for-
mally proved (in the framework of Reactive Simulatability [33]) an asynchronous GKE
protocol by combining the GKE protocol by Burmester and Desmedt [5] with an ad-
ditional k-resilient consensus protocol [16, 13]. Their protocol can tolerate only up to
n − 2k corruptions to remain forward secure (which is an upper-bound for the asyn-
chronous setting). Desmedt et al. [21] considered an unauthenticated reliable broadcast
setting and designed a provably secure scheme immune to outsider and insider attacks
based on verifiable secret sharing (VSS). They also explained how to use the authentica-
tion compiler by Katz and Yung [24] to sort out invalid messages and tolerate failures.
Jarecki et al. [22] followed by Kim and Tsudik [27] used reliable broadcast/multicast
setting to design robust GKE protocols proven secure against outsider adversaries. They
also defined full-robustness: since a GKE protocol requires at least two users, the opti-
mal criterion for robustness is the ability to tolerate up to n − 2 (out of n) failed users.
We remark that solutions proposed in [14, 21] are not fully robust.

1 First security definitions for insider attacks in non-robust GKE protocols were formalized
in [23]. Later, [10, 12] merged these definitions as part of MA-security and formalized con-
tributiveness. Then, [19] updated MA-security with insider key compromise impersonation.
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Corruptions and Opening Attacks. Beside formal definitions of outsider and insider
security, existing models for GKE protocols differ in the adversarial abilities to corrupt
users: weak corruptions [9,24,21] allow the adversary to obtain users’ long-lived keys,
but not their internal states, whereas strong corruptions [36, 8, 38, 23, 29, 10, 12] reveal
both secret types at the same time. The latter gain more and more on attention due
to the significant advances in the field of malware and side-channel attacks used to
recover information stored locally within hardware and software. Corruptions allow to
model the requirement of (strong) forward secrecy [9,8,11,12] whose goal is to ensure
AKE-security “in the future”. Strong corruptions have been recently refined with so-
called opening attacks [12] that provide higher flexibility: they allow the adversary to
get users’ ephemeral secrets without necessarily obtaining their long-lived keys. The
formal advantage of this refinement is that it can exclude subsequent impersonation
attacks on the “opened” users who are then treated as honest (rather than corrupted). As
an illustrative example, AKE-security can be extended to capture the leakage of users’
internal states prior to the protocol execution; thus, GKE protocols which pre-compute
their ephemeral secrets off-line (for better efficiency) may become insecure.

1.2 Organization of the Paper

In Section 2 we present our tree replication technique. Then in Sections 3 and 4, we
present the protocols R-TDH1 and IR-TDH1, respectively. The security model is de-
scribed in Section 5; interestingly, it can be viewed as an extension of [12, 19] towards
consideration of (full) robustness, and at the same time as an extension of [21, 22] to-
wards consideration of strong corruptions and opening attacks. In Section 6 we compare
security and efficiency of R-TDH1 and IR-TDH1 with some earlier robust GKE protocols.

2 The Tree-Diffie-Hellman Protocol and Our Tree Replication
Technique

First, we recall the basic steps of the non-robust protocol TDH1 (see [12, 26] for more
details). Then, we introduce at a high-level our tree replication technique that achieves
full robustness.

2.1 Overview of Basic TDH1

Preliminaries. The protocol makes use of a linear binary tree Tn: a full binary tree
with one leaf at each level, except for the deepest one with two leaves, i.e. each node in
Tn has a label 〈l, v〉, where l ∈ [0, n − 1] denotes its level and v ∈ [0, 1] its position
within that level. For each node 〈l, v〉, there are two associated values: a secret value,
denoted xl,v , and a public one, denoted yl,v and computed as yl,v = gxl,v . Moreover,
each secret value associated to an internal node is the Diffie-Hellman function of the
public values associated to its children. In other words, for any l we have:

xl,0 = DH(yl+1,0, yl+1,1) = gxl+1,0xl+1,1



Fully Robust Tree-Diffie-Hellman Group Key Exchange 481

In order to be able to “chain” such operations, all operations are performed in a cyclic
group G with generator g in which the classical Decisional Diffie-Hellman (DDH) as-
sumption is assumed to be hard and for which there exists an efficient, bijective mapping
from G to Z|G| (which is not the discrete logarithm!); this bijection is used to consider
multiple-decker exponentiations: the result of an exponentiation (an element of G) can
be in turn re-interpreted as an exponent in Z|G|. A suitable group G of prime order q
generated by a quadratic residue g modulo a large safe prime number p = 2q + 1 has
been described in [25, 26, 12]. In this group if some exponent x is uniform and random
in Zq then so is gx in G and G = Zq (as sets).

Protocol Steps. The protocol is based on the following (intuitive) trick: users are asso-
ciated to the leaf nodes. Each user Ui knows the secret value associated to its own node,
and can reveal the corresponding public value yi. Using these values, it is easy to check
that the users associated to the deepest leaves have enough information to compute all
values (both secret and public) associated to the internal nodes. And once all public
values are available (that is, including public values associated to internal nodes), it is
clear that every user can inductively compute the secret value associated to the root.

– Round 1. User Ui associated to leaf 〈l, v〉 chooses a secret xl,v and broadcasts
yl,v := gxl,v ;

– Round 2. The goal of the protocol is to let each Ui compute the secret value x0,0
associated to the root. Therefore, U1 assigned to 〈n − 1, 0〉 computes a set X1 of
secret values xl,0 in its path up to the root 〈0, 0〉. Each xl,0 can be seen as the output
of the Diffie-Hellman function of yl+1,0 and yl+1,1. Note that for each internal node
〈l, 0〉 user U1 knows the public value yl+1,1 broadcasted by some other user and
the secret value xl+1,0 by induction at level l+1. Having computed the set X1 user
U1 broadcasts each yl,0 = gxl,0 . We emphasize, however, that y0,0 is never made
public —it is not used in the protocol;

– Group Key Derivation. Once user U1 finishes, all other users Ui�=1 are also able
to compute the secret values xl,0 in their paths up to the root. Hence, every user
finally learns x0,0 and uses it to derive the group key.

2.2 The Tree Replication Technique

The original TDH1 protocol is not robust, in particular if the second round message is
not delivered then all parties have to abort. In order to achieve robustness, we enhance
TDH1 such that, even if some users fail (they halt and/or are not able to continue), the
remaining users are still able to compute a common tree structure and to compute a
common root secret. This feature is achieved through what we call the tree replication
technique.

Intuitively, it means that every user is going to compute its own key tree structure, and
act as if it would be in the position of U1. Then, after some users failed, the “deepest”
common structure will be used by all users to compute the root secret. At a high level
the modification is as follows.

– Round 1. Each user Ui chooses its secret exponent xi ∈R G and broadcasts its
public value yi := gxi . After this round all active users (i.e. those who do not fail)
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Fig. 1. Tree Replication Technique. Representation of each user’s computation in the second pro-
tocol round. One of the trees will be used commonly by all active users to derive the group key.

will receive sent public values of other active users. Based on this information, they
are assigned to tree leaves;

– Round 2. Each user Ui computes its own set Xi as visualized in Figure 1. Each
set Xi is composed of secret values x

(i)
l,0, where the superscript “(i)” indicates a

quantity which is computed by Ui only; when we write x
(i)
l,0 we mean that user Ui

computes his own value of the variable named “xl,0”. Users Ui also broadcasts the

public values y
(i)
l,0 corresponding to the exponents x

(i)
l,0 in Xi (and with the obvious

exclusion of y
(i)
0,0);

– Group Key Derivation. For the computation of the secret root, all users choose
the message broadcasted by the lowest-index alive user. Of importance is that all
users who are still active choose the same broadcast message and compute the same
secret value for the root 〈0, 0〉.

Remarks. Unlike in TDH1, the lowest-indexed user is not necessarily U1: it can be U2
if U1 has failed and so on. Note also that Xn and Xn−1 are empty sets: if Un−1 and Un

are the only remaining users, the protocol reduces to two-party Diffie-Hellman. Yet, Un

and Un−1 must still broadcast their “liveness” messages in the second round.
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3 A Fully Robust Protocol with Strong Outsider Security: R-TDH1

Here we specify R-TDH1 that achieves full robustness while preserving the constant
number of rounds and strong outsider security of TDH1 [12]. In what follows we assume
that each user Ui has a long-lived key LLi = (ski, pki) generated by Σ.Gen(1κ),
where Σ = (Gen, Sign, Verify) is an existentially unforgeable signature scheme.
By F :=

{{
fk

}
k∈{0,1}κ

}
κ∈N

we denote a pseudo-random function ensemble. Our
descriptions are provided from the perspective of one session with the initial set of
participants (U1, . . . , Un).

Formal Description of R-TDH1. We assume that each Ui is initialized with a partner
id pidi encompassing the identities of all users participating in that session. In the
beginning of each round each Ui will update own pidi by removing users that are
no longer active based on the messages it received. We assume that if at some stage
pidi = {Ui} then Ui erases every secret information from it internal state statei and
terminates without accepting.

Round 1. Each user Ui does the following:
– ri ∈R {0, 1}κ; broadcast Ui|1|ri.

Round 2. Each user Ui does the following:
– Remove from pidi every Uj with missing messages;
– noncesi ← r1| . . . |rn′ ;
– xi ∈R G; yi ← gxi ;
– σi ← Σ.Sign(ski, 2|yi|noncesi|pidi);
– Broadcast Ui|2|yi|σi.

Round 3. Each user Ui does the following:
– Remove from pidi every Uj with missing or invalid messages;
– Remove nonces of failed oracles from noncesi;
– Assigned remaining oracles to the leaves of Tn, where n = |pidi|;
– Y ← {yj}1≤j≤n;
– x

(i)
n−i,0 ← xi (renaming);

– For l = n − i − 1 downto 0, iteratively compute a set Xi made of values:

x
(i)
l,0 = y

x
(i)
l+1,0

l+1,1 ;

– For l = n − i − 1 downto 1, compute a set Ŷi made of values: y
(i)
l,0 = gx

(i)
l,0;

– σi ← Σ.Sign(ski, 3|M |Y |noncesi|pidi) where M = Ŷi if i < n − 1 and
M =‘alive’ if i ≥ n − 1;

– Broadcast Ui|3|M |σi.
Group Key Derivation. Each user Ui does the following:

– Remove from pidi every Uj with missing messages or invalid signatures;
– Update noncesi by removing the nonces of failed oracles;
– Determine the lowest-indexed oracle Uγ ;

– xn−i,0 ←
{

yxi
γ if i = γ + 1

y
(γ)
n−i+1,0

xi

if i > γ + 1
– For l = n − i − 1 downto 0: xl,0 = y

xl+1,0
l+1,1

– ki ← f
x
(γ)
0,0

(v);
– Erase every ephemeral secret information from statei and accept with ki.
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4 Securing R-TDH1 against Strong Insider Attacks

In this section we describe IR-TDH1, an extension of R-TDH1 which provides security
against outsider and insider attacks. To do so, we use a special NIZK proof for the
equality of the double discrete logarithm and a (single) discrete logarithm from [37,2].

4.1 NIZK Proof Lg2EqLg

Let H : {0, 1}∗ → {0, 1}� be a cryptographic hash function for some �. Let g, y, ỹ1, ỹ2
be public elements of G. A Non-Interactive Zero-Knowledge Proof for the statement
logg(ỹ1) = logy(logg(ỹ2)) is denoted Lg2EqLg[(x) : ỹ1 = gx ∧ ỹ2 = gyx

] and can be
constructed as follows using the witness x: for i ∈ [1, �], pick at random αi in G and
compute t1,i := gαi and t2,i := gyαi ; then output z := (c, s1, . . . , s�) with

c := H(g|y|ỹ1|ỹ2|t1,1| . . . |t1,�|t2,1| . . . |t2,�)

si :=
{

αi if c[i] = 0 (c[i] is the i-th bit of c)
αi − x otherwise.

To verify z one simply checks whether c =?H(g|y|ỹ1|ỹ2|t̄1,1| . . . |t̄1,�|t̄2,1| . . . |t̄2,�)
where

t̄1,i :=
{

gsi if c[i] = 0
ỹ1g

si otherwise
and t̄2,i :=

{
gysi if c[i] = 0
ỹysi

2 otherwise.

Using the Random Oracle Model (ROM) [4] one can show that Lg2EqLg is secure; we
denote by AdvzkLg2EqLg(κ) the maximum advantage of distinguishing a real proof from a
simulated one, and by SuccsndLg2EqLg(κ) the probability of computing a valid proof for a
false statement (soundness).

4.2 Description of IR-TDH1

Our protocol is an extension of R-TDH1. We add NIZK proofs in order to prevent cor-
rupted users from sending bad values. This increases the costs of the protocol. Briefly
speaking, the protocol is modified in the third round, as follows. In addition to comput-
ing Xi (a set of values), each user computes a set Zi of NIZK proofs {z(i)

l }n−i−1≥l≥1:

– for 1 ≤ l ≤ n − i − 2, proof z
(i)
l proves that

x
(i)
l+1,0 = logg

(
y
(i)
l+1,0

)
= logyl+1,1

(
logg

(
y
(i)
l,0

))
– for l = n − i − 1, proof z

(i)
l proves that⎧⎨⎩xn−1,0 = logg (yn−1,0) = logyn−1,1

(
logg

(
y
(1)
n−2,0

))
if i = 1

xn−i+1,1 = logg (yn−i+1,1) = logyn−i,1

(
logg

(
y
(i)
n−i−1,0

))
if i > 1

We note that Zn−1 and Zn computed by Un−1 and Un are empty. The remaining of
the protocol is identical to R-TDH1, however, in the Random Oracle Model, the key
derivation is simplified as: ki := H ′(x(γ)

0,0 |noncesi|pidi), where x
(γ)
0,0 is the common

secret computed by active users.
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5 Security of R-TDH1 and IR-TDH1

5.1 Security Model

Protocol Participants and Execution Model. In order to capture multiple sessions, we
model each user U through different instance oracles Πs

U . Then, the session identifier
is of the form sid := Ui1 |si1 | . . . |Uin |sin . We say that Πs

U and Πt
U ′ are partners if

there exists sid containing U |s and U ′|t as substrings. For each Πs
U we also define

its partner id pids
U and the internal state states

U as mentioned in the description of
the protocols. Once invoked Πs

U turns into the processing stage where it communicates
and updates pids

U by removing user identities of oracles that it treats as failed. As
long as |pids

U | > 1, the oracle is active (it continues the execution); at some point, it
accepts with a session key ks

U and terminates successfully. Otherwise (|pids
U | ≤ 1 or

no acceptance), it terminates with a failure.

Communication. For the security of R-TDH1 and IR-TDH1 we consider a reliable
broadcast channel without authentication and any ordering guarantees; this is similar
to [21] and less restrictive than [22]. The protocol execution is organized in rounds,
which are delimited by a local timer δ (within a round, events are asynchronous): that
is participants expect to receive round messages before their timer expires. At the be-
ginning of each round, the adversary A learns each round message to be broadcast. It
can then block (refuse to deliver) some of these messages. Additionally, it can inject its
own messages. Thus at some point, A will have a set of messages which it “puts” on
the broadcast channel before the timer expires. We model network failures by consid-
ering user U as disconnected if no expected message containing U as sender’s identity
is put on the channel. Reliability of the broadcast channel means that all messages put
on it are delivered to all participants that are still connected in that round. The actual
delivery order is determined by the adversary. At the end of the round, each oracle Πs

U

updates its partner id based on the previously received messages: users from whom no
message has been delivered are removed. Reliability of the channel implies consistency
of updated partner ids.

Adversarial Queries. The adversaryA is modeled as a PPT (probabilistic polynomial-
time Turing machine), it is assumed to mount its attacks through the following queries:

Initialize(S): for each user in the set S a new oracle Πs
U is initialized and the result-

ing session id sid is given to A.
Invoke(sid,S′), assuming that sid is a valid session id and S′ is a set of initialized

oracles (S′ ⊆ S where S led to the construction of sid). In response, for each U ∈ S′

the oracle Πs
U turns into the processing stage and learns pids

U = S. Then, A is given
the first protocol message m computed by each Πs

U and the round timer δ is started. The
separation between Initialize and Invoke allows opening attacks against honest oracles
prior to the first protocol round. It also allows A to decide which of these oracles should
proceed with the execution. We require that the Invoke query can be invoked only once
with a given argument.
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Broadcast(sid, m): In this query the message m is supposed to contain the identity
of its sender U . The Broadcast queries for the current round are collected in the order of
their occurrence; at the end of the round, message m is delivered to all connected oracles
Πs

U in sid (i.e., oracles such that U is part of m for some collected Broadcast(sid, m)
query). A can also provide several messages m that include the same sender U . It is
the task of the protocol to determine which of these messages should be processed or
dropped. At the end of the round, A receives messages to be sent by the connected
oracles in the next round, and each oracle Πs

U updates its set pids
U according to the

protocol specification.
Corrupt(U): A obtains LLU . This allows impersonation attacks, in which A can

“talk” on the network pretending to be U .
AddUser(U, Λ), where Λ contains the registration information and a long-lived key

LLU : in response, a new user with that long-lived key is added to U . This query (which
is missing in [12]) allows A to register new users whose behavior it will fully control.

RevealState(Πs
U ): A obtains ephemeral secrets stored in states

U (which may also
be empty, if erased). This query models opening attacks [12].

RevealKey(Πs
U ): A obtains ks

U (only if Πs
U has already accepted).

Terminology. We say U is corrupted or malicious if LLU is known to A, either via
Corrupt(U) or AddUser(U, Λ); if no such queries have been asked then U is honest.
This terminology also refers to the oracles of U . However, an opening attack is not
sufficient to make Πs

U malicious.

Definition of Robust Group Key Exchange. We can now formally specify what a
(fully) robust GKE protocol is.

Definition 1 (Robust GKE Protocol). A robust group key exchange (RGKE) protocol
P consists of a key generation algorithm KeyGen, and a protocol Setup:

– P.KeyGen(1κ): On input a security parameter 1κ, each user is given LLU .
– P.Setup(S): On input a set S ⊆ U a new oracle Πs

U is created for each U ∈ S.
A probabilistic interactive protocol is executed between these oracles such that at
the end all active oracles (those that have not failed and are still connected) accept
with the session group key and terminate.

P is correct if all active oracles that are honest accept the same session group key. P is
fully robust if it can tolerate all oracles dishonest except two.

Strong Outsider Security. The outsider security of GKE protocols can be expressed
through AKE-security. In this section we define its strong version revising the one from
[12] to address robustness.

We use the classical query Test(Πs
U ) to model AKE-security: in response, a bit b

is privately flipped and A is given ks
U if b = 1 or a random string if b = 0. The dif-

ficulty is in defining how to use this query; the notion of freshness aims at excluding
trivial and meaningless attacks. We provide the following four conditions: condition
(a) excludes prevents A from introducing new users; condition (b) allows A to corrupt
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some user of the attacked session but A must remain passive on behalf of that user’s
oracle until the session is complete, this models outsider key compromise imperson-
ation attacks [19] for robust protocols; condition (c) follows from [12] and allows A
to inspect internal states of participants before and after the attacked session but not
during it; condition (d) prevents A from obtaining the key directly via the RevealKey
query.

Definition 2. (Oracle Freshness for RGKE) In a session sid of P an oracle Πs
U that

has accepted is fresh if all of the following holds:

(a) no U ′ included in sid has been added by A via a corresponding AddUser query,
(b) if some U ′ (incl. U ′ = U ) from sid has been asked Corrupt(U ′) prior to the

acceptance of Πs
U then any message m with sender’s identity U ′ asked via a

Broadcast(sid, m) query must have been produced by the corresponding oracle
Πt

U ′ partnered with Πs
U ,

(c) neither Πs
U nor any of its partners has been asked for a query RevealState before

they terminated,
(d) neither Πs

U nor any of its partners is asked for a query RevealKey after having
accepted and terminated.

Definition 3. (Strong AKE-Security for RGKE) Let P be a correct RGKE protocol and
b a uniformly chosen bit. Consider an adversary A against the AKE-security of P. We
define the adversarial game Gameake−b

A,P (κ) as follows:

– A interacts via queries;
– at some point A asks a Test query to an oracle Πs

U which is (and remains) fresh;
– A continues interacting via queries;
– when A terminates, it outputs a bit, which is set as the output of the game.

We define: Advake
A,P(κ) :=

∣∣∣2 Pr[Gameake−b
A,P (κ) = b] − 1

∣∣∣
and denote with Advake

P (κ) the maximum advantage over all PPT adversaries A. We say
that a RGKE protocol P provides strong AKE-security if this advantage is negligible.

Strong Insider Security. We now revisit the strong insider security definitions, that is
MA-security and contributiveness, from [12] to address robustness.

In the next definition, condition (a) models robustness since it requires that every
honest, non-failed participant accepts, provided there exists other participants that have
not failed as well. In condition (b) we model mutual authentication in the sense that
no user accepts the group key until it is assured of the active participation of the other
users; this takes into account insider key compromise impersonation attacks [19] as A
can obtain the long-lived key of a user, as long as it remains passive with respect to that
user’s oracle. Finally, condition (c) models key confirmation and requires that session
group keys accepted by any two participants are identical.
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Definition 4. (Strong MA-Security for RGKE) Let P a correct RGKE protocol and A
an adversary who is allowed to query Initialize, Invoke, Broadcast, AddUser, Corrupt,
RevealKey and RevealState. We denote this interaction as Gamema

A,P(κ). We say that A
wins in some session sid if at the end of that session one of the following conditions is
satisfied:

(a) there is an honest oracle Πs
U (with U |s part of sid) which terminated without

having accepted some key but for which other partners exist (i.e., |pids
U | > 1),

(b) there are two partnered oracles Πs
U and Πt

U ′ such that Πs
U has accepted and U ′ ∈

pids
U is uncorrupted but Πt

U ′ has not been invoked via Invoke(sid, ·),
(c) there are two honest partnered oracles Πs

U and Πt
U ′ which have accepted and

ks
U �= kt

U ′ .

The maximum probability of this event is denoted Succma
P (κ); we say that a RGKE

protocol P provides strong MA-security if this probability is negligible.

The following requirement of strong contributiveness resists key control attacks by
which a malicious subset of (at most n − 1) users aims to predetermine the resulting
value of the group key [34]. This is in contrast to the non-malleability property [21],
which ensures uniform distribution of group keys in the presence of malicious partici-
pants but in a weaker model in which no opening attacks exist (as discussed in [12]).

Definition 5. (Strong Contributiveness for RGKE) Let P be a correct RGKE proto-
col and A an adversary operating in two stages (prepare and attack) and having
access to the queries Initialize, Invoke, Broadcast, AddUser, Corrupt, RevealKey and
RevealState. We define the following game Gamecon

A,P(κ):

– A(prepare) interacts via queries and outputs some k̃ ∈ {0, 1}κ, and some state
information ζ;

– A set Ψ is built, consisting of all session ids sid for which a query Invoke(sid,S′)
has been asked during the prepare stage;

– A(attack, ζ) continues interacting via queries and outputs some oracle identifier
U |s.

The adversary A wins in Gamecon
A,P(κ) if all of the following holds:

(a) Πs
U is honest, has terminated accepting k̃, and there is no sid ∈ Ψ which contains

its identifier U |s.
(b) There are at most n − 1 corrupted oracles that are partnered with Πs

U .

We define: Succcon
A,P(κ) := Pr[A wins in Gamecon

A,P(κ)]

and denote with Succcon
P (κ) the maximum probability of this event over all PPT adver-

saries A; we say P provides strong contributiveness if this probability is negligible in κ.

Since Ψ contains identifiers of sessions that have been invoked during the prepare
stage, the requirement that no sid ∈ Ψ should contain U |s excludes a trivial attack
by which A chooses k̃ as a key computed in some session invoked during the prepare
stage.
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5.2 Security Results

The following theorems proven in appendix show that R-TDH1 is secure against strong
outsiders and that IR-TDH1 is additionally secure against strong insider attacks.

As the underlying number-theoretic assumption we use the well-known Square-
Exponent Decisional Diffie-Hellman (SEDDH) assumption [35, 22], i.e. the following
probability is assumed to be negligible:

AdvSEDDHG (κ) =max
A′

∣∣Pr
a

[A′(g, ga, ga2
) = 1

]− Pr
a,b

[A′(g, ga, gb) = 1
]∣∣.

Theorem 1. If Σ is existentially unforgeable under chosen message attacks, if F is
pseudo-random, and G is SEDDH-hard then R-TDH1 provides strong AKE-security, and

Advake
R-TDH1(κ) ≤ Nq2

s

2κ−1 + 2N2Succeuf−cma
Σ (κ) + qsN

2AdvSEDDHG (κ) + 2qsAdvprf
F (κ).

Theorem 2. If Σ is existentially unforgeable under chosen message attacks, Lg2EqLg
is zero-knowledge, and G is SEDDH-hard then IR-TDH1 provides strong AKE-security in
ROM, and

Advake
IR-TDH1(κ) ≤ Nq2

s

2κ−1 + 2NSucceuf−cma
Σ (κ) + qsN

2 (AdvzkLg2EqLg(κ) + AdvSEDDHG (κ)
)
.

Theorem 3. If Σ is existentially unforgeable under chosen message attacks and if
Lg2EqLg is sound then IR-TDH1 provides strong MA-security in ROM, and

Succma
IR-TDH1(κ) ≤ Nq2

s

2κ
+ N2Succeuf−cma

Σ (κ) +
qsN

2

2
SuccsndLg2EqLg(κ).

Theorem 4. IR-TDH1 provides strong contributiveness in ROM, and

Succcon
IR-TDH1(κ) ≤ Nq2

s + 2Nqs + q2
H′

2κ
.

6 Comparison with Prior Work

At a glance, Table 1 describes how R-TDH1 and IR-TDH1 fit into the current state of the
art of provably secure RGKE protocols in terms of security, robustness and complex-
ity: (i) we indicate whether AKE-security, MA-security and contributiveness (CON) is
achieved, and for which strength of corruptions, (ii) we indicate the maximum of users
that may fail without disrupting the protocol execution (fully robust protocols have ro-
bustness of n− 2), and (iii) we compare the broadcast complexity and the total number
of operations per user.

To ensure fair comparison we adopt [14] to the reliable broadcast setting as described
in [22] and add authentication costs to non-authenticated protocols from [21, 22] based
on the technique from [24].

We highlight that R-TDH1 and the reliable broadcast version of [14] are the only
RGKE protocols that have been formally proven to achieve strong outsider security.
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Table 1. Security, Robustness, and Complexity of R/IR-TDH1 and other Robust GKE Protocols

Out-/Insider Security Robustness Complexity
RGKE Prot. AKE MA CON Model max Faults (k ≤) Rounds Broadcast Ops

adopted [14] strong - - STD n − 2 2 O(n2) O(n)
[21] weak weak weak STD n/2 − 1 7 O(nk) O(n)
BD-RGKA [22] weak - - STD n − 2 2 O(n3) O(n2)
RGKA [22] weak - - STD n − 2 2 O(n2) O(n)
t-RGKA [22] weak - - STD 2t − 1 2 O(nt) O(t)
RGKA′ [22] weak - - STD n − 2 O(δ) O(n log n) O(n)
R-TDH1 strong - - STD n − 2 3 O(n2) O(n)
IR-TDH1 strong strong strong ROM n − 2 3 O(n2l) O(nl)
TDH1 [12] strong strong strong STD 0 3 O(n) O(n)
The out-/insider security entries reflect the formally proven properties of the protocols, though
it might be possible to amend the protocols from [14, 21, 22] to achieve strong outsider and
insider security using techniques that are close to those proven secure for R-TDH1 and IR-TDH1.

The protocols from [22] are proven under consideration of weak corruptions only. In
terms of complexity and robustness R-TDH1 is similar to both RGKA and the modified
version of [14].

We proved that IR-TDH1 provides strong outsider and insider security, while [22,14]
did not address insider security, and [21] did not consider strong corruptions. Compared
to R-TDH1, IR-TDH1 has loss in the broadcast and computation complexity by factor
O(l) where l ranges from the number of users that do not fail (n − k) to 1. Finally, we
notice that compared to the original TDH1 from [12] the use of our tree replication tech-
nique achieves full robustness but increases the communication complexity by factors
O(n) and O(nl), respectively.

7 Conclusion

This paper introduced two fully robust versions of the Tree-Diffie-Hellman protocol
TDH1 from [12] based on our novel tree replication technique. R-TDH1 preserves the
strong outsider security of the original protocol, whereas IR-TDH1 presents the first
construction of a fully robust GKE protocol that remains resilient to strong insider at-
tacks. We proved both protocols in a security model which is of independent interest as
it combines strengths of several previous modeling approaches.

As mentioned, some existing robust GKE protocols can also be modified to achieve
insider security using NIZK proofs, however, this would require random oracles as well.
Hence, designing a fully robust GKE protocol with strong outsider and insider security
in the standard model remains an interesting open problem.

References

1. Amir, Y., Nita-Rotaru, C., Schultz, J.L., Stanton, J.R., Kim, Y., Tsudik, G.: Exploring Ro-
bustness in Group Key Agreement. In: Proc. of ICDCS 2001, pp. 399–408. IEEE CS, Los
Alamitos (2001)



Fully Robust Tree-Diffie-Hellman Group Key Exchange 491

2. Ateniese, G., Song, D.X., Tsudik, G.: Quasi-Efficient Revocation in Group Signatures. In:
Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 183–197. Springer, Heidelberg (2003)

3. Ateniese, G., Steiner, M., Tsudik, G.: Authenticated Group Key Agreement and Friends. In:
Proc. of ACM CCS 1998, pp. 17–26. ACM Press, New York (1998)

4. Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Designing Efficient
Protocols. In: Proc. of ACM CCS 1993, pp. 62–73. ACM Press, New York (1993)

5. Burmester, M., Desmedt, Y.: A secure and efficient conference key distribution system. In:
De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 275–286. Springer, Heidelberg
(1995)

6. Boyd, C., Mathuria, A.: Protocols for Authentication and Key Establishment. Springer, Hei-
delberg (2003)

7. Bresson, E., Chevassut, O., Pointcheval, D.: Provably Authenticated Group Diffie-Hellman
Key Exchange — The Dynamic Case. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS,
vol. 2248, pp. 290–390. Springer, Heidelberg (2001)

8. Bresson, E., Chevassut, O., Pointcheval, D.: Dynamic Group Diffie-Hellman Key Exchange
under Standard Assumptions. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 321–336. Springer, Heidelberg (2002)

9. Bresson, E., Chevassut, O., Pointcheval, D., Quisquater, J.-J.: Provably Authenticated Group
Diffie-Hellman Key Exchange. In: ACM CCS 2001, pp. 255–264. ACM Press, New York
(2001)

10. Bresson, E., Manulis, M.: Malicious Participants in Group Key Exchange: Key Control and
Contributiveness in the Shadow of Trust. In: Xiao, B., Yang, L.T., Ma, J., Muller-Schloer, C.,
Hua, Y. (eds.) ATC 2007. LNCS, vol. 4610, pp. 395–409. Springer, Heidelberg (2007)

11. Bresson, E., Manulis, M., Schwenk, J.: On Security Models and Compilers for Group Key
Exchange Protocols. In: Miyaji, A., Kikuchi, H., Rannenberg, K. (eds.) IWSEC 2007. LNCS,
vol. 4752, pp. 292–307. Springer, Heidelberg (2007)

12. Bresson, E., Manulis, M.: Securing Group Key Exchange against Strong Corruptions. In:
Proc. of ASIACCS 2008, pp. 249–261. ACM Press, New York (2008)

13. Cachin, C., Kursawe, K., Shoup, V.: Random Oracles in Constantinople: Practical Asyn-
chronous Byzantine Agreement using Cryptography. In: Proc. of PODC 2000, pp. 123–132.
ACM Press, New York (2000)

14. Cachin, C., Strobl, R.: Asynchronous Group Key Exchange with Failures. In: Proc. of PODC
2004, pp. 357–366. ACM Press, New York (2004)

15. Canetti, R., Krawczyk, H.: Analysis of Key-Exchange Protocols and Their Use for Building
Secure Channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 453–
474. Springer, Heidelberg (2001)

16. Canetti, R., Rabin, T.: Fast Asynchronous Byzantine Agreement with Optimal Resilience.
In: STOC 1993, pp. 42–51. ACM Press, New York (1993)

17. Chockler, G.V., Keidar, I., Vitenberg, R.: Group Communication Specifications: A Compre-
hensive Study. ACM Computing Surveys 33(4), 427–469 (2001)

18. Choo, K.-K.R., Boyd, C., Hitchcock, Y.: Examining Indistinguishability-Based Proof Models
for Key Establishment Protocols. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp.
585–604. Springer, Heidelberg (2005)
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A Security Proofs

In our proofs, similar to [8, 12], we assume that Σ.Sign is executed under the same
protection mechanism as ski so that any randomness used to compute the signature
will not be revealed in response to a RevealState query.

A.1 Proof of Strong AKE-Security of R-TDH1 (Theorem 1)

Proof (Sketch). We define a sequence of games: Gi, i = 0, . . . , 5 (whereby G4 is a
sequence of n−1 hybrid games where n is the number of invoked oracles in the attacked
session) with the adversary A against the strong AKE-security of R-TDH1. In each game
Winake

i denotes the event that the bit b′ output by A is identical to the randomly chosen
bit b in Game Gi.
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Game G0. This is the real game Gameake−b
A,R-TDH1(κ) where a simulator Δ simulates the

execution of the protocol and answers all queries of A.
Recall that the Test(Ui|s) query is asked to a fresh oracle Πs

Ui
which has accepted,

and that A then receives either a random string or a session group key ks
Ui

. Our defini-
tion of the oracle freshness restricts A from legal participation in the attacked session
and from opening oracles that are partnered with Πs

Ui
until these oracles terminate (hav-

ing erased ephemeral secrets as required in R-TDH1).
Game G1. This game is identical to Game G0 except that Δ aborts and b′ is set at
random if any two honest oracles identified by U |s and U |s′ that have been invoked for
two different sessions choose the same nonce in Round 1. Since there are at most N
users and at most qs sessions we get |Pr[Winake

1
]−Pr[Winake

0
]| ≤ Nq2

s /2κ. This game
ensures the uniqueness of nonces computed by each honest oracle Πs

U in Round 2 over
all invoked sessions.
Game G2. In this game the only exception is that Δ aborts and b′ is set at random if A
asks a query of the form Broadcast(sid,U |t|m|σ) such that t ∈ {2, 3}, the session id
sid contains Ui|s and there is an oracle of sender U which is partnered with Πs

Ui
and

is still treated as active during the t-th round, and σ is a valid signature on m, that has
not been previously output by that oracle of U prior to a query Corrupt(U).

In other words the simulation fails if A outputs a successful forgery of the signature.
A classical reductionist argument (e.g. [19]) can be used to construct a forger algorithm
against Σ such that |Pr[Winake

2
] − Pr[Winake

1
]| ≤ N2Succeuf−cma

Σ (κ).
Since the concatenation nonces|pid is part of every signed protocol message sent

by the oracles this game prevents successful replay attacks.
Game G3. In this game we add the following rule: Δ chooses q∗ ∈ [1, qs] and aborts
if the Test query does not occur in the q∗-th session. Let Q be the event that this guess
for q∗ is correct and Pr[Q] = 1/qs. Then, similar to the AKE-security proof of TDH1

in [12] we get Pr[Winake
2

] = qs

(
Pr[Winake

3
] − 1

2

)
+ 1

2 .

Game G4,j for j = 1, . . . , n − 1. Each Game G4,j is composed of two Sub-Games
G4,j,1 and G4,j,2.

Sub-Game G4,j,1. In this (sub-)game Δ is given a tuple from the real SEDDH
distribution, i.e., (g, A = ga, B = ga2

) for some unknown a ∈ G, and embeds it into
the simulation of the q∗-th session as follows. In Round 2 for each of n′ active oracles
Πi the simulator defines the public value yi := Aαi for some random αi ∈R G. In
Round 3 for every remaining active oracle Πi assigned to the leaf node 〈n − 1, 0〉 (if

i = 1) or 〈n − i + 1, 1〉 (if i > 1), the iterative computation of the values x
(i)
c,0 and y

(i)
c,0,

for n − i − 1 ≥ c ≥ 0 is modified according to the following three rules (see also Fig.
2 for an example):

Rule 1: For c = n− i− 1 downto n− i− j + 1: the computation of x
(i)
c,0 is ignored

and y
(i)
c,0 is defined to Aα

(i)
c,0 for a randomly chosen α

(i)
c,0; note that the rule is vacuous

for j = 1.
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Rule 2: For c = n − i − j, define x
(i)
c,0 := Bα

(i)
c+1,0αc+1,1 and y

(i)
c,0 = gx

(i)
c,0 , where

α
(i)
c+1,0 =

{
αi if j = 1 (value chosen in Round 2)

α
(i)
c+1,0 as chosen in Rule 1, if j > 1

α
(i)
c+1,0 = αi+1 (value chosen in Round 2)

Rule 3: For c = n − i − j − 1 downto 0, the computation is done normally: x
(i)
c,0 =

y
(i)
c+1,1

x
(i)
c+1,0

and y
(i)
c,0 = gx

(i)
c,0 .

Sub-Game G4,j,2. In this game Δ is given a tuple from the random SEDDH dis-
tribution, i.e., (g, A = ga, B = gb) for some unknown a, b ∈ G. Since the simulator
performs the same steps as defined for the Sub-Game G4,j,1 the only difference be-
tween them is that in G4,j,1 B = ga2

and in G4,j,2 B = gb. In each Game G4,j the
value B is embedded exactly n − j times (that is once per set Xi for n − j ≥ i ≥ 1
using the re-randomization exponent α

(i)
c+1,0αc+1,1 whose factor α

(i)
c+1,0 is different for

each i). Since n ≤ N the probability difference between G4,j,2 and G4,j,1 can be
upper-bounded by (N − j)AdvSEDDHG (κ).

Further we stress that by construction in Sub-Game G4,1,1 (the first sub-game in the
sequence) the distribution of secret values in each Xi is identical to G3. And since j
is a running variable from 1 to n − 1 and n ≤ N we can upper-bound the probability
difference between Game G4,n−1 (which ends with Sub-Game G4,n−1,2) and G3 as
follows:

|Pr[Winake
4,n−1] − Pr[Winake

3 ]| ≤
N−1∑
j=1

(N − j)AdvSEDDHG (κ).

The consequence of G4,n−1 is that among different sets Xi = {x(i)
c,0}l≥c≥0 computed

by Δ in the q∗-th session all values x
(i)
c,0 are random and independent in G = Zq (the

equality is due to the construction of G [12]). In particular, this implies that the value
x

(γ)
0,0 used by every active oracle Πi to derive the group key ki in the q∗-th session is

uniformly distributed in {0, 1}κ (since κ is the length of q).

Game G5. In this game Δ replaces in the q∗-th session f by a truly random function.
Hence, ki computed by every active oracle Πi including the one for which the Test
query is asked is uniformly distributed, and |Pr[Winake

5 ]−Pr[Winake
4,n−1]| ≤ Advprf

F (κ).
And since ki is uniform: Pr[Winake

5 ] = 1/2. Combining the previous equations, we
obtain the desired inequality for Advake

R-TDH1(κ). negligible advantage.

A.2 Proof of Strong AKE-Security of IR-TDH1 (Theorem 2)

Proof (Sketch). This proof is identical to the proof of Theorem 1 except that we need to
show that Lg2EqLg proofs computed by every honest oracle Πi within Zi do not reveal
any additional information to the outsider adversary that asks the Test query. For this
we need to plug in an additional game prior to Sub-Game G4,1,1 (the first sub-game

of G4,1) in which Δ simulates the Lg2EqLg proofs {z(i)
l }l in Zi computed by each

active Πi in Round 3. It is clear that the simulation of Lg2EqLg proofs can be done via
the classical technique of programmable random oracles. Hence, we omit the details.
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Π2Π1

y1,1=A
α1,1

y2,1=A
α2,1

y3,1=A
α3,1

y4,1=A
α4,1

Fig. 2. Snapshot of G4,2,1 and G4,2,2 with oracles Πi, 1 ≤ i ≤ 5. In G4,2,1: (A = ga, B =
ga2

). In G4,2,2: (A = ga, B = gb). Left side: Δ embeds A into yli,vi . Right side: Δ follows

the defined rules, i.e., Rule 1: it defines randomized y
(1)
3,0, y

(2)
2,0, and y

(3)
1,0 leaving corresponding

x
(1)
3,0, x

(2)
2,0, and x

(3)
1,0 undefined, uses α

(4)
0,0 to define x

(4)
0,0 (note that x

(4)
0,0 is already randomized at

the end of Game G4,1,2); Rule 2: embeds B in each second value of each Xi (i = 1, 2, 3); Rule
3: computes all subsequent values within Xi as specified in R-TDH1.

Assuming that n oracles remain active in Round 3 the number of simulated Lg2EqLg
proofs within each Zj is n − j − 1 (remember, oracles Πn−1 and Πn do not compute
any proofs). Since j ≤ n−2 and n ≤ N we can upper-bound the probability difference
between G4,1,1 and this game by

∑N−2
j=1 (N − j − 1)AdvzkLg2EqLg(κ).

Since the group key derivation in IR-TDH1 is performed through the random oracle
H ′ we can omit Game G5. The session group key ki computed by Πi to which the Test
query is asked is already uniform at the end of Game G4,n−1. It is easy to see that the
combination of probability upper-bounds for the difference of sequence games gives
the desired inequality for Advake

IR-TDH1(κ).

A.3 Proof of Strong MA-Security of IR-TDH1 (Theorem 3)

Proof (Sketch). In the following games, event Winma
i means that A wins in Gi.

Game G0. This is the real game Gamema
IR-TDH1(κ) played between Δ and A. Recall that

A wins if at some point there is a session sid for which the last protocol round is
finished and one of its honest oracles Πs

Ui
that does not fail after this round: (a) does

not accept a group key although other active partners exist, or (b) accepts a group key
without being assured that all other honest oracles that remain active after this last round
have been invoked, or (c) accepts a different group key.

We observe that, by construction of IR-TDH1, every honest oracle Πs
Ui

which has
been invoked to participate in some session sid and during the group key derivation
phase holds pids

Ui
consisting of at least two identities (from which one is Ui) will com-

pute the session group key ks
Ui

, and, thus accept. Hence, the probability that condition
(a) ever occurs is 0. Therefore, in the following we focus on conditions (b) and (c).

Game G1. In this game, as in Game G1 from the proof of Theorem 1, Δ aborts if
any two honest oracles identified by U |s and U |s′ that have been invoked for two
different sessions choose the same nonce in Round 1. Thus, |Pr[Winma

1
]−Pr[Winma

0
]| ≤

Nq2
s/2κ.
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Game G2. In this game, as in Game G2 from the proof of Theorem 1, we eliminate
signature forgeries in queries of the form Broadcast(sid, U |t|m|σ) with t ∈ {2, 3} and
get |Pr[Winma

2
] − Pr[Winma

1
]| ≤ N2Succeuf−cma

Σ (κ). As a consequence of Game G1
we also eliminate successful replay attacks.

If an oracle accepts a key, then it is clear that it must have received correctly signed
messages from its partners; having excluded forgeries, it means that these partners have
actually been invoked. Thus, we exclude condition (b).

Further, each active and honest Πs
Ui

must have received the same Round 3 message

Uj |3|M |σ′
j for all Uj ∈ pids

Ui
where M is either Ŷj |Zj or ‘alive’ (depending on

the assignments in the tree) and each Πs
Ui

holds the same set Y constructed from the
received Round 2 messages (which is also signed by σ′

j ).

Game G3. In this game Δ aborts if on behalf of any two partnered honest oracles Πs
Ui

and Πt
Uj

that are active during the group key derivation phase Δ computes two different

values for x
(γ)
0,0 which should be used by Πs

Ui
and Πt

Uj
to derive the session group key.

Assume that this failure event occurs and let Uγ |3|Ŷγ |Zγ |σ′
γ be the Round 3 mes-

sage received by Πs
Ui

and Πt
Uj

. In line with the notations used in IR-TDH1 upon the
construction of Tn we denote Πs

Ui
as Πi (assigned to the leaf node 〈n − i + 1, 1〉) and

Πs
Uj

as Πj (assigned to the leaf node 〈n − j + 1, 1〉) and assume w.l.o.g. that i < j.
We know that γ < i since Πγ has the lowest index.

Since oracles Πi and Πj receive the same Round 3 message (due to the broadcast
channel) and since in previous games we have excluded any impersonation attacks on
honest oracles, we conclude that if both oracles compute different values for x

(γ)
0,0 then

Πγ must be malicious.

Now we focus on the computation of x
(γ)
0,0 by Πj (still assuming that j > i). The first

value computed by Πj in the key derivation phase using its secret exponent xn−j+1,1

and y
(γ)
n−j+1,0 ∈ Ŷγ is x

(γ)
n−j,0. Also Πi computes this value, however, using the secret

exponent x
(γ)
n−j+1,0 and yn−j+1,1 ∈ Yi. Since the computation of x

(γ)
0,0 is deterministic

and both oracles Πi and Πj use identical sets Y (and Yi ⊂ Y ) we follow that Πi and

Πj compute different values for x
(γ)
0,0 only if they compute different values for x

(γ)
n−j,0.

Since Πj honestly uses its secret exponent xn−j+1,1 its computed value for x
(γ)
n−j,0

is different from that computed by Πi only if y
(γ)
n−j+1,0 ∈ Ŷγ used by Πj does not have

the form gx
(γ)
n−j+1,0 where x

(γ)
n−j+1,0 is the exponent used by Πi. In turn, Πi assigned

to 〈n − i + 1, 1〉 computes x
(γ)
n−j+1,0 through iteration starting with the computation of

x
(γ)
n−i,0 for which it honestly uses its secret exponent xn−i+1,1.

By construction, if y
(γ)
n−j+1,0 ∈ Ŷγ used by Πj does not have the required form

gx
(γ)
n−j+1,0 , then the set Zγ contains at least one forged proof. Moreover this proof can

be discovered by Δ as follows. Δ uses xn−i+1,1, Ŷγ , and Y to iteratively compute

each x
(γ)
l,0 for n − i ≥ l ≥ n − j + 1 and the corresponding y

(γ)
l,0 := gx

(γ)
l,0 . Then,

Δ sequentially checks whether each computed y
(γ)
l,0 is the same as the one included

in Ŷγ until it finds the first one which is different. At least one such value must exist;
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otherwise, oracles would have computed identical values for x
(γ)
n−j,0. When Δ finds the

first such value y
(γ)
l,0 the corresponding Lg2EgLg proof z

(γ)
l must be a forgery since it

claims that y
(γ)
l,0 = gy

x
(γ)
l+1,0

l+1,1 , a false statement.
Thus, if the described failure event occurs then Δ is able to output a forged Lg2EgLg

proof. Since for each oracle Πj with j ≤ n − 2 there are exactly (n − j − 1) Lg2EgLg
proofs we can upper-bound

|Pr[Winma
3

] − Pr[Winma
2

]| ≤ qs

N−2∑
j=1

(N − j − 1)SuccsndLg2EqLg(κ).

As a consequence of this game any two honest oracles Πs
Ui

and Πt
Uj

that are partnered
with respect to some sid and remain active during the key derivation phase compute
identical values for x

(γ)
0,0 and thus, accept with identical session group keys ks

Ui
= ks

Uj
.

This excludes condition (c). Hence, Pr[Winma
3

] = 0. Combining the previous equations
we obtain the desired inequality for Succma

IR-TDH1(κ).

A.4 Proof of Strong Contributiveness of IR-TDH1 (Theorem 4)

Proof. In the following games, event Wincon
i means that A wins in Gi.

Game G0. This is the real game Gamecon
A,IR-TDH1(κ), in which the honest players are

simulated by Δ. Recall that A wins if after the stage prepare it returned k̃ and if in the
stage attack the honest oracle Πs

Ui
accepts k̃ .

Game G1. In this game, similar to the previous proofs, Δ aborts if any two honest ora-
cles identified by U |s and U |s′ that have been invoked for two different sessions choose
the same nonce in Round 1. Thus, |Pr[Wincon

1
] − Pr[Wincon

0
]| ≤ Nq2

s/2κ. This im-
plies that in every session in which Ui participates through some oracle Πs

Ui
which re-

mains active during the group key derivation phase the concatenation of random nonces
noncesi held by Πs

Ui
contains a fresh nonce ri. Since the concatenation preserves the

lexicographic order of user identities in pids
Ui

the concatenation noncesi|pids
Ui

used

in addition to x
(γ)
0,0 as input for H ′ to derive ks

Ui
is unique for each session.

Game G2. In this game Δ aborts if A(prepare) returned some k̃ which it did not re-
ceive from Δ in response to some query to the random oracle H ′ but which is computed
by Δ on behalf of some honest Πs

Ui
as ks

Ui
(as output of H ′) invoked during the attack

stage. Since H ′ is modeled as a random oracle the probability that this event occurs for
any honest oracle and any invoked session is given by the probability for the random
guess of the output of H ′, so that |Pr[Wincon

2
] − Pr[Wincon

1
]| ≤ Nqs/2κ.

Therefore, A wins in this game only if it queried H ′ on some input m during the
prepare stage and received k̃ in response, which is then accepted by Πs

Ui
as ks

Ui
.

Case m = x
(γ)
0,0 |noncesi|pids

Ui
: The probability of A to win is given by the guess

of ri, i.e. Nqs/2κ (due to Game G1).

Case m �= x
(γ)
0,0 |noncesi|pids

Ui
: The probability of A to win is upper-bounded by

q2
H′/2κ by the birthday paradox.

Thus, Pr[Wincon
2

] = (Nqs + q2
H′)/2κ. Combining previous equations gives us the

desired inequality for Succcon
IR-TDH1(κ).
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1 Introduction

The group signature primitive, as introduced by Chaum and van Heyst in 1991
[17], allows members of a group to sign messages, while hiding their identity
within a population group members administered by a group manager. At the
same time, it must be possible for a tracing authority holding some trapdoor
information to “open” signatures and find out which group members are their
originator. A major issue in group signatures is the revocation of users whose
membership should be cancelled: disabling the signing capability of misbehaving
members (or honest users who intentionally leave the group) without affecting
remaining members happens to be a highly non-trivial problem. In 2004, Boneh
and Shacham [11] formalized the concept of group signatures with verifier-local
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revocation where revocation messages are only sent to signature verifiers (as
opposed to both signers and verifiers). This paper describes the first efficient
verifier-local revocation group signature scheme providing backward unlinkability
(i.e., previously issued signatures remain anonymous even after the signer’s revo-
cation) whose proof of security does not hinge upon the random oracle heuristic.

1.1 Related Work

Group signatures. Many group signatures were proposed in the nineties, the
first provably coalition-resistant proposal being the famous ACJT scheme [2]
proposed by Ateniese, Camenisch, Joye and Tsudik in 2000. The last few years
saw the appearance of new constructions using bilinear maps [9,32,21,19]. Among
these, the Boneh-Boyen-Shacham scheme [9] was the first one to offer signatures
shorter than 200 bytes using the Strong Diffie-Hellman assumption [7]. Its secu-
rity was analyzed using random oracles [5] in the model of Bellare, Micciancio
and Warinschi [4] (BMW) which captures all the requirements of group signa-
tures in three well-defined properties.

The BMW model, which assumes static groups where no new member can
be introduced after the setup phase, was independently extended by Kiayias
and Yung [28] and Bellare-Shi-Zhang [6] to a dynamic setting. In these mod-
els (that are very close to each other), efficient pairing-based schemes were put
forth by Nguyen and Safavi-Naini [32], Furukawa and Imai [21] and, later on,
by Delerablée and Pointcheval [19]. In dynamically growing groups, Ateniese et
al. [1] also proposed a construction without random oracles offering a compet-
itive efficiency at the expense of a security resting on interactive assumptions
that are not efficiently falsifiable [31]. Another standard model proposal was put
forth (and subsequently improved [12]) by Boyen-Waters [13] in the static model
from [4] under more classical assumptions. Groth [23] described a scheme with
constant-size signatures without random oracles in the dynamic model [6] but
signatures were still too long for practical use. Later on, Groth showed [24] a
fairly practical random-oracle-free group signature with signature length smaller
than 2 kB and full anonymity (i.e., anonymity in a model where the adversary
is allowed to open anonymous signatures at will) in the model of [6].

Verifier-local revocation. Membership revocation has always been a crit-
ical issue in group signatures. The simplest solution is to generate a new group
public key and provide unrevoked signers with a new signing key, which implies
the group master to send a secret message to each individual signer as well as
to broadcast a public message to verifiers. In some settings, it may not be con-
venient to send a new secret to signers after their inclusion in the group. In
verifier-local revocation group signatures (VLR-GS), originally suggested in [15]
and formalized in [11], revocation messages are only sent to verifiers (making the
group public key and the signing procedure independent of which and how many
members were excluded). The group manager maintains a (periodically updated)
revocation list (RL) which is used by all verifiers to perform the revocation test
and make sure that signatures were not produced by a revoked member.
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The RL contains a token for each revoked user. The verification algorithm ac-
cepts all signatures issued by unrevoked users and reveals no information about
which unrevoked user issued the signature. However, if a user is revoked, his sig-
natures are no longer accepted. It follows that signatures from a revoked member
become linkable: to test that two signatures emanate from the same revoked user,
one can simply verify signatures once using the RL before the alleged signer’s
revocation and once using the post-revocation RL. As a result, users who delib-
erately leave the group inevitably lose their privacy.

The property of backward unlinkability, first introduced in [36] in the context
of key-evolving group signatures, ensures that signatures that were generated
by a revoked member before his revocation remain anonymous and unlinkable.
This property is useful when members who voluntarily leave the group wish to
retain a certain level of privacy. When users’ private keys get stolen, preserving
the anonymity of their prior signatures is also definitely desirable.

Boneh and Shacham [11] proposed a VLR group signature using bilinear maps
in a model inspired from [4]. In [33], Nakanishi and Funabiki extended Boneh-
Shacham group signatures and devised a scheme providing backward unlink-
ability. They proved the anonymity of their construction under the Decision
Bilinear Diffie-Hellman assumption [10]. In [34], the same authors suggested an-
other backward-unlinkable scheme with shorter signatures. Other pairing-based
VLR-GS constructions were put forth in [38,39]

Traceable signatures [27], that also have pairing-based realizations [32,18],
can be seen as extensions of VLR-GS schemes as they also admit an implicit
tracing mechanism. They provide additional useful properties such as the abil-
ity for signers to claim (and prove) the authorship of anonymously generated
signatures or the ability for the group manager to reveal a trapdoor allowing
to publicly trace all signatures created by a given user. This primitive was re-
cently implemented in the standard model [30]. However, it currently does not
provide a way to trace users’ signatures per period: once the tracing trapdoor
of some group member is revealed, all signatures created by that member be-
come linkable. In some situations, it may be desirable to obtain a fine-grained
traceability and only trace signatures that were issued in specific periods. The
problem of VLR-GS schemes with backward unlinkability can be seen as the one
of tracing some user’s signatures from a given period onwards while preserving
the anonymity and the unlinkability of that user’s signatures for earlier periods.
The solution described in this paper readily extends to retain the anonymity of
signatures produced during past and future periods.

1.2 Contribution of the Paper

All known constructions of group signatures with verifier local revocation (with
or without backward unlinkability) make use of the Fiat-Shamir paradigm [20]
and thus rely on the random oracle methodology [5], which is known not to
provide more than heuristic arguments in terms of security. Failures of the ran-
dom oracle model were indeed reported in several papers such as [16,22]. When
first analyzed in the random oracle model, cryptographic primitives thus deserve
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further efforts towards securely instantiating them without appealing to the ran-
dom oracle idealization.

The contribution of this paper is to describe a new VLR-GS scheme with
backward unlinkability in the standard model. Recently, Groth and Sahai [25]
described powerful non-interactive proof systems allowing to prove that a num-
ber of committed variables satisfy certain algebraic relations. Their techniques
notably proved useful to design standard model group signatures featuring con-
stant signature size [12,23,24].

Extending the aforementioned constructions to obtain VLR-GS schemes with
backward unlinkability is not straightforward. The approach used in [34], which
can be traced back to Boneh-Shacham [11], inherently requires to use pro-
grammable random oracles, the behavior of which currently seems impossible
to emulate in the standard model (even with the techniques developed in [26]).
Another approach used in [33] looks more promising as it permits traceability
with backward unlinkablity without introducing additional random oracles. This
technique, however, does not interact with the Groth-Sahai toolbox in a straight-
forward manner as it typically requires non-interactive zero-knowledge (NIZK)
proofs for what Groth and Sahai called pairing product equations. The prob-
lem that we face is that proving the required anonymity property of VLR-GS
schemes entails to simulate a NIZK proof for such a pairing-product equation at
some step of the reduction. As pointed out in [25], such non-interactive proofs
are only known to be simulatable in NIZK under specific circumstances that are
not met if we try to directly apply the technique of [33].

To address the above technical difficulty, we use the same revocation mecha-
nism as [33] but use a slightly stronger (but still falsifiable [31]) assumption in
the proof of anonymity: while Nakanishi and Funabiki rely the Decision Bilinear
Diffie-Hellman assumption, we rest on the hardness of the so-called Decision Tri-
partite Diffie-Hellman problem, which is to distinguish gabc from random given
(g, ga, gb, gc). Our contribution can be summarized as showing that the implicit
tracing mechanism of [33] can be safely applied to the Boyen-Waters group sig-
nature [12] to make it backward-unlinkably revocable. This property comes at
the expense of a quite moderate increase of signature sizes w.r.t. [12]. The main
price to pay is actually to use a slightly stronger assumption than in [33] in the
security proof.

2 Preliminaries

2.1 Verifier-Local Revocation Group Signatures

This section presents the model of VLR group signatures with backward unlink-
ability proposed in [33] which extends the Boneh-Shacham model [11] of VLR
group signatures.

Definition 1. A VLR group signature scheme with backward unlinkability con-
sists of the following algorithms:
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Keygen(λ, N, T ): is a randomized algorithm taking as input a security pa-
rameter λ ∈ N and integers N, T ∈ N indicating the number of group mem-
bers and the number of time periods, respectively.
Its output consists of a group public key gpk, a N -vector of group members’
secret keys gsk = (gsk[1], . . . , gsk[N ]) and a (N × T )-vector of revocation
tokens grt = (grt[1][1], . . . , grt[N ][T ]), where grt[i][j] indicates the token of
member i at time interval j.

Sign(gpk, gsk[i], j, M) : is a possibly randomized algorithm taking as input,
the group public key gpk, the current time interval j, a group member’s
secret key gsk[i] and a message M ∈ {0, 1}∗. It outputs a group signature σ.

Verify(gpk, j, RLj , σ, M): is a deterministic algorithm taking as input gpk,
the period number j, a set of revocation tokens RLj for period j, a signature
σ, and the message M . It outputs either “valid” or “invalid”. The former
output indicates that σ is a correct signature on M at interval j w.r.t. gpk,
and that the signer is not revoked at interval j.

For all (gpk, gsk, grt) = Keygen(λ, N, T ), all j ∈ {1, . . . , T}, all RLj, all i ∈
{1, . . . , N} and any message M ∈ {0, 1}∗, it is required that if grt[i][j] /∈ RLj

then:
Verify(gpk, j, RLj,Sign(gpk, gsk[i], j, M), M) = “valid”.

Remark 1. As mentioned in [11], any such group signature scheme has an as-
sociated implicit tracing algorithm that allows tracing a signature to the group
member who generated it using the vector grt as the tracing key: on input a valid
message-signature pair (M, σ) for period j, the opener can determine which user
was the author of σ by successively executing the verification algorithm on (M, σ)
using the vector of revocation tokens (i.e., with RLj = {grt[i][j]}i∈{1,...,N}) and
outputting the first index i ∈ {1, . . . , N} for which the verification algorithm
returns “invalid” whereas verifying the same pair (M, σ) with RLj = ∅ yields
the answer “valid”.

From a security standpoint, VLR group signatures with backward unlinkability
should satisfy the following properties:

Definition 2. A VLR-GS with backward unlinkability has the traceability prop-
erty if no probabilistic polynomial time (PPT) adversary A has non-negligible
advantage in the following game.

1. The challenger C runs the setup algorithm to produce a group public key
gpk, a group master secret gsk and a vector grt of revocation tokens. It also
defines a set of corrupt users U which is initially empty. The adversary A
is provided with gpk and grt while C keeps gsk to itself.

2. A can make a number of invocations to the following oracles:

Signing oracle: on input of a message M , an index i ∈ {1, . . . , N} and a
period number j, this oracle responds with a signature σ generated on
behalf of member i for period j.
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Corruption oracle: given an index i ∈ {1, . . . , N}, this oracle reveals the
private key gsk[i] of member i which is included in the set U .

3. A eventually comes up with a signature σ� on a message M�, a period num-
ber j� and a set of revocation tokens RL�

j� .

The adversary A is declared successful if

– Verify(gpk, j�, RL�
j� , σ�, M�) = “valid”.

– The execution of the implicit tracing algorithm on input of revocation tokens
(grt[1][j�], . . . , grt[N ][j�]), ends up in one of the following ways:

• σ� traces to a member outside the coalition U\RL�
j� that did not sign

M� during period j�

• the tracing fails.

A’s advantage in breaking traceability is measured as

Advtrace
A (k) := Pr[A is successful],

where the probability is taken over the coin tosses of A and the challenger.

This definition slightly weakens the original one [33] that captures the strong
unforgeability requirement (i.e., the message-signature pair (M�, σ�) must be
different from that of any signing query during period j�). Due to the use of
publicly randomizable non-interactive witness indistinguishable proofs, we need
to settle for the usual flavor of unforgeability according to which the message
M� must not have been queried for signature during the target period j�.

Definition 3. A VLR-GS with backward unlinkability provides BU-anonymity
if no PPT adversary A has non-negligible advantage in the following game.

1. The challenger C runs Keygen(λ, n, T ) to produce a group public key gpk,
a master secret gsk and a vector grt of revocation tokens. The adversary A
is given gpk but is denied access to grt and gsk.

2. At the beginning of each period, C increments a counter j and notifies A
about it. During the current time interval j, A can adaptively invoke the
following oracles:

Signing oracle: on input of a message M and an index i ∈ {1, . . . , n}, this
oracle outputs a signature σ generated for member i and period j.

Corruption oracle: for an adversarially-chosen i ∈ {1, . . . , n}, this oracle
reveals member i’s private key gsk[i].

Revocation oracle: given i ∈ {1, . . . , n}, this oracle outputs member i’s
revocation token for the current period j.

3. At some period j� ∈ {1, . . . , T}, A comes up with a message M and two
distinct user indices i0, i1 ∈ {1, . . . , n} such that neither i0 or i1 has been
corrupt. Moreover, they cannot have been revoked before or during period j�.
At this stage, C flips a fair coin d� R← {0, 1} and generates a signature σ� on
M on behalf of user id� which is sent as a challenge to A.
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4. A is granted further oracle accesses as in phase 2. Of course, she may not
query the private key of members i0, i1 at any time. On the other hand, she
may obtain their revocation tokens for time intervals after j�.

5. Eventually, A outputs d′ ∈ {0, 1} and wins if d′ = d�.

The advantage of A in breaking BU-anonymity is defined as Advbu-anon
A (k) :=

|Pr[d′ = d�] − 1/2|, where the probability is taken over all coin tosses.

2.2 Bilinear Maps and Complexity Assumptions

Bilinear groups. Groups (G, GT ) of prime order p are called bilinear groups
if there is an efficiently computable mapping e : G × G → GT such that:

1. e(ga, hb) = e(g, h)ab for any (g, h) ∈ G × G and a, b ∈ Z;
2. e(g, h) �= 1GT whenever g, h �= 1G.

In such groups, we will need three non-interactive (and thus falsifiable [31])
complexity assumptions.

Definition 4. In a group G = 〈g〉 of prime order p > 2λ, the Decision Lin-
ear Problem (DLIN) is to distinguish the distributions (g, ga, gb, gac, gbd, gc+d)
and (g, ga, gb, gac, gbd, gz), with a, b, c, d R← Z∗

p, z R← Z∗
p. The Decision Linear

Assumption posits that, for any PPT distinguisher D,

AdvDLIN
G,D (λ) = |Pr[D(g, ga, gb, gac, gbd, gc+d) = 1|a, b, c, d R← Z∗

p]

− Pr[D(g, ga, gb, gac, gbd, gz) = 1|a, b, c, d R← Z∗
p, z R← Z∗

p]| ∈ negl(λ).

This problem amounts to deciding whether vectors �g1 = (ga, 1, g), �g2 = (1, gb, g)
and �g3 are linearly dependent or not. It has been used [25] to construct efficient
non-interactive proof systems.

We also rely on a variant, introduced by Boyen and Waters [12], of the Strong
Diffie-Hellman assumption [7].

Definition 5 ([12]). In a group G of prime order p, the �-Hidden Strong
Diffie-Hellman problem (�-HSDH) is, given elements (g, Ω = gω, u) R← G3

and � distinct triples (g1/(ω+si), gsi , usi) with s1, . . . , s�
R← Z∗

p, to find another
triple (g1/(ω+s), gs, us) such that s �= si for i ∈ {1, . . . , �}.
We also rely on the following intractability assumption suggested for the first
time in [10, Section 8].

Definition 6. In a prime order group G, the Decision Tripartite Diffie-
Hellman Assumption (DTDH) is the infeasibility of deciding if η = gabc on in-
put of (g, ga, gb, gc, η), where a, b, c R← Z∗

p. The advantage function AdvDTDH
G,D (λ)

of any PPT distinguisher D is defined analogously to the DLIN case.

The above assumption is a bit stronger than the widely accepted Decision Bi-
linear Diffie-Hellman assumption according to which the distributions

{(g, ga, gb, gc, e(g, g)abc)|a, b, c, R← Zp} and {(g, ga, gb, gc, e(g, g)z)|a, b, c, z R← Zp}
are computationally indistinguishable. Yet, the DTDH problem is still believed
to be hard in groups with a bilinear map where the DDH problem is easy.
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2.3 Groth-Sahai Proof Systems

In the following notations, for equal-dimension vectors or matrices A and B
containing group elements, A � B stands for their entry-wise product (i.e. it
denotes their Hadamard product).

When based on the DLIN assumption, the Groth-Sahai (GS) proof systems
[25] use a common reference string comprising vectors �g1, �g2, �g3 ∈ G3, where �g1 =
(g1, 1, g), �g2 = (1, g2, g) for some g1, g2 ∈ G. To commit to group elements X ∈ G,
one sets �C = (1, 1, X)� �g1

r � �g2
s � �g3

t with r, s, t R← Z∗
p. When the proof system

is configured to give perfectly sound proofs, �g3 is chosen as �g3 = �g1
ξ1 � �g2

ξ2 with
ξ1, ξ2

R← Z∗
p. Commitments �C = (gr+ξ1t

1 , gs+ξ2t
2 , X ·gr+s+t(ξ1+ξ2)) are then Boneh-

Boyen-Shacham (BBS) ciphertexts that can be decrypted using α1 = logg(g1),
α2 = logg(g2). In the witness indistinguishability (WI) setting, vectors �g1, �g2, �g3

are linearly independent and �C is a perfectly hiding commitment. Under the
DLIN assumption, the two kinds of CRS are computationally indistinguishable.

To commit to a scalar x ∈ Zp, one computes �C = �ϕx� �g1
r� �g2

s, with r, s R← Z∗
p,

using a CRS comprising vectors �ϕ, �g1, �g2. In the soundness setting �ϕ, �g1, �g2 are
linearly independent (typically �ϕ = �g3� (1, 1, g) where �ϕ = �g1

ξ1 � �g2
ξ2) whereas,

in the WI setting, choosing �ϕ = �g1
ξ1 � �g2

ξ2 gives a perfectly hiding commitment
since �C is always a BBS encryption of 1G.

To prove that committed variables satisfy a set of relations, the GS techniques
replace variables by commitments in each relation. The whole proof consists of
one commitment per variable and one proof element (made of a constant number
of group elements) per relation.

Such proofs are easily obtained for pairing-product relations, which are of the
type

n∏
i=1

e(Ai,Xi) ·
n∏

i=1

·
n∏

j=1

e(Xi,Xj)aij = tT , (1)

for variables X1, . . . ,Xn ∈ G and constants tT ∈ GT , A1, . . . ,An ∈ G, aij ∈ G,
for i, j ∈ {1, . . . , n}. Efficient proofs also exist for multi-exponentiation equations

m∏
i=1

Ayi

i ·
n∏

j=1

X bj

j ·
m∏

i=1

·
n∏

j=1

X yiγij

j = T, (2)

for variables X1, . . . ,Xn ∈ G, y1, . . . , ym ∈ Zp and constants T,A1, . . . ,Am ∈ G,
b1, . . . , bn ∈ Zp and γij ∈ G, for i ∈ {1, . . . , m}, j ∈ {1, . . . , n}.

In both cases, proofs for quadratic equations cost 9 group elements. Linear
pairing-product equations (when aij = 0 for all i, j) take 3 group elements
each. Linear multi-exponentiation equations of the type

∏n
j=1 X bj

j = T (resp.∏m
i=1 Ayi

i = T ) demand 3 (resp. 2) group elements.
Multi-exponentiation equations admit zero-knowledge proofs at no additional

cost. On a simulated CRS (prepared for the WI setting), a trapdoor makes it is
possible to simulate proofs without knowing witnesses and simulated proofs are
identically distributed to real proofs.
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On the other hand, pairing-product equations are not known to always have
zero-knowledge proofs. Proving relations of the type (1) in NIZK usually comes
at some expense since auxiliary variables have to be introduced and proof sizes
are not necessarily independent of the number of variables. If tT = 1GT in relation
(1), the NIZK simulator can always use X1 = · · · = Xn = 1G as witnesses. If tT

equals
∏n′

j=1 e(gj, hj) for known group elements g1, . . . , gn′ , h1, . . . , hn′ ∈ G, the
simulator can prove that

n∏
i=1

e(Ai,Xi) ·
n∏

i=1

·
n∏

j=1

e(Xi,Xj)aij =
n′∏

j=1

e(gj,Yj) (3)

and that introduced variables Y1, . . . ,Yn′ satisfy the linear equations Yj = hj

for j ∈ {1, . . . , n′}. Since linear equations are known to have NIZK proofs and
the proof of relation (3) can be simulated using witnesses X1 = · · · = Xn =
Y1 = · · · = Yn′ = 1G. When tT is an arbitrary element of GT , pairing-product
equations are currently not known to have NIZK proofs at all.

3 A Scheme in the Standard Model

3.1 Description of the Scheme

In notations hereafter, it will be useful to define the coordinate-wise pairing
E : G×G3 → G3

T such that, for any h ∈ G and any vector �g = (g1, g2, g3) ∈ G3,
E
(
h,�g

)
=
(
e(h, g1), e(h, g2), e(h, g3)

)
. As in [25], we will also make use of a

symmetric bilinear map F : G3 × G3 → GT defined in such a way that, for
any vectors �X = (X1, X2, X3) ∈ G3 and �Y = (Y1, Y2, Y3) ∈ G3, we have
F ( �X, �Y ) = F̃ ( �X, �Y )1/2 · F̃ (�Y , �X)1/2, where F̃ : G3 × G3 → G9

T is a non-
commutative bilinear mapping that sends ( �X, �Y ) onto the matrix F̃ ( �X, �Y ) of
entry-wise pairings (i.e., containing e(Xi, Yj) in its entry (i, j)).

Also, for any z ∈ GT , ιT (z) denotes the 3× 3 matrix containing z in position
(3, 3) and 1 everywhere else. For group elements X ∈ G, the notation ι(X) will
denote the vector (1, 1, X) ∈ G3.

The group manager holds a public key (g, Ω = gω, A = e(g, g)α, u), where
(α, γ) is the private key. As in the Boyen-Waters construction [12], group mem-
bers’ private keys consist of triples (K1, K2, K3) =

(
(gα)1/(ω+si), gsi , usi

)
, where

si uniquely identifies the group member. Messages can be signed by creating tu-
ples (S1, S2, S3, S4) = (K1, K2, K3 · F (m)r, gr), where r is a random exponent
and F : {0, 1}∗ → G is a Waters-like hash function [37].

The revocation mechanism of [33] consists in introducing a vector (h1, . . . , hT )
of group elements, where T is the number of time periods, that allow to form revo-
cation tokens for each user: the revocation token of user i for period j is obtained
as grt[i][j] = hsi

j . When user i must be revoked at stage j, the group manager can
simply add grt[i][j] to the revocation list RLj of period j. When user i signs a
message during stage j, he is required to include a pair (T1, T2) =

(
gδ, e(hj , g

si)δ
)

in the signature and append a proof that (g, T1 = gδ, K2 = gsi , hj, T2) satisfy
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the forementioned relation and that T2 is indeed the “Bilinear Diffie-Hellman
value” e(hj , g

si)δ associated with (g, T1, K2, hj).

Keygen(λ, N, T ): for security parameters λ and n ∈ poly(λ), choose bilinear
groups (G, GT ) of order p > 2λ, with g, h1, . . . , hT , u R← G. Select α, ω R← Z∗

p

and set A = e(g, g)α, Ω = gω. Select v = (v0, v1, . . . , vn) R← Gn+1. Choose
vectors g = (�g1, �g2, �g3) such that �g1 = (g1, 1, g) ∈ G3, �g2 = (1, g2, g) ∈ G3,
and �g3 = �g1

ξ1 · �g2
ξ2 , with g1 = gα1 , g2 = gα2 and α1, α2

R← Z∗
p, ξ1, ξ2

R← Zp.
Finally, select a collision-resistant hash function H : {0, 1}∗ → {0, 1}n. The
group public key is defined to be

gpk :=
(
g, h1, . . . , hT , A = e(g, g)α, Ω = gω, u, v, g, H

)
while the group manager’s private key is

(
α, ω, α1, α2

)
. User i is assigned

the group signing key gsk[i] = (K1, K2, K3) =
(
(gα)

1
ω+si , gsi , usi

)
and his

revocation token for period j ∈ {1, . . . , T} is defined as grt[i][j] := hsi

j .
Sign(gpk, gsk[i], j, M): given gsk[i] = (K1, K2, K3) =

(
(gα)

1
ω+si , gsi , usi

)
, to

sign a message M during period j, the signer Ui first computes a hash value
m = m1 . . .mn = H(j||M) ∈ {0, 1}n and conducts the following steps.
1. Choose δ, r R← Z∗

p and first compute

T1 = gδ T2 = e(hj, K2)δ (4)

as well as

θ1 = K1 = (gα)1/(ω+si) (5)
θ2 = K2 = gsi (6)
θ3 = K3 · F (m)r = usi · F (m)r (7)
θ4 = gr (8)
θ5 = hδ

j , (9)

where F (m) = v0 ·
∏n

k=1 vmk

k .
2. Commit to group elements θ�, for � ∈ {1, . . . , 5}. For � ∈ {1, . . . , 5},

choose r�, s�, t�
R← Z∗

p and set �σ� = (1, 1, θ�) · �g1
r� · �g2

s� · �g3
t� .

3. Give NIWI proofs that committed variables θ1, . . . , θ4 satisfy

e(θ1, Ω · θ2) = A (10)
e(θ3, g) = e(u, θ2) · e(F (m), θ4) (11)

Relation (10) is a quadratic pairing product equation (in the Groth-Sahai
terminology) over variables θ1, θ2. Such a relation requires a proof con-
sisting of 9 group elements that we denote by π1 = (�π1,1, �π1,2, �π1,3). Rela-
tion (11) is a linear pairing product equation over the variables θ2, θ3, θ4.
The corresponding proof, that we denote by π2 = (π2,1, π2,2, π2,3) ∈ G3,
consists of 3 group elements.
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5. Give NIZK proofs that committed variables θ2 and θ5 satisfy

T2 = e(θ2, θ5) (12)
e(hj , T1) = e(g, θ5) (13)

These are two linear pairing product equations over the variables θ2 and
θ5 and proving them in NIZK requires to introduce an auxiliary variable
θ6. Proving (13) is achieved by proving in NIZK that e(θ6, T1) = e(g, θ5)
and θ6 = hj . The proof for (13) thus comprises an auxiliary commitment
�σ6 = ι(hj) � �g1

r6 � �g2
s6 � �g3

t6 to θ6 = hj and proofs that relations

e(θ6, T1) = e(g, θ5) (14)
e(θ6, g) = e(hj , g) (15)

are simultaneously satisfied. These relations are all pairing-product equa-
tions. Relation (12) is quadratic and costs 9 group elements to prove. We
will call this proofs π3 = (�π3,1, �π3,2, �π3,3). Relations (14)-(15) are linear
and only require 3 group elements each. The corresponding proofs are
denoted by π4 = (π4,1, π4,2, π4,3) and π5 = (π5,1, π5,2, π5,3).

The signature consists of σ = (T1, T2, �σ1, . . . , �σ6, π1, π2, π3, π4, π5).

Verify(j, M, σ, gpk, RLj): parse σ as (T1, T2, �σ1, . . . , �σ6, π1, π2, π3, π4, π5) and re-
turn “valid” if and only if all proof are valid and σ passes the revocation
test:

1. We abstracted away the construction of proof elements π1, π2, π3, π4, π5
for clarity. To explain to proof of anonymity, it will be useful to out-
line what verification equations look like: namely, π1, π2, π3, π4, π5 must
satisfy

1) F
(
�σ1, ι(Ω) · �σ2

)
= ιT

(
A
)� F

(
�g1, �π1,1

)� F
(
�g2, �π1,2) � F (�g3, �π1,3

)
2) E

(
g, �σ3

)
= E

(
u, �σ2

)� E
(
F (m), �σ4

)
�E

(
π2,1, �g1

)� E
(
π2,2, �g2

)� E
(
π2,3, �g3

)
3) F

(
�σ2, �σ5

)
= F (ι(T2)) � F

(
�π3,1, �g1

)� F
(
�π3,2, �g2

)� F
(
�π3,3, �g3

)
4) E

(
T1, �σ6

)
= E

(
ι(g), �σ5

)� E
(
π4,1, �g1

)� E
(
π4,2, �g2

)� E
(
π4,3, �g3

)
5) E

(
g, �σ6

)
= E

(
hj , ι(g)

)� E
(
π5,1, �g1

)� E
(
π5,2, �g2

)� E
(
π5,3, �g3

)
2. The signer must not be revoked at period j: for all Bij = hsi

j ∈ RLj,

T2 �= e(Bij , T1) (16)

As in all VLR-GS schemes, there is an implicit tracing algorithm that can de-
termine which group member created a valid signature using the vector of re-
vocation tokens (and the revocation test (16)) which acts as a tracing key. We
observe that, if necessary, the group manager is able to explicitly open the sig-
nature in O(1) time by performing a BBS-decryption of �σ2 using the trapdoor
information α1, α2.
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As far as efficiency goes, signatures consist of 46 elements of G and 1 element
of GT . If we consider an implementation using symmetric pairings with a 256-bit
group order and also assume that elements of GT have a 1024-bit representa-
tion (with symmetric pairings and supersingular curves, such pairing-values can
even be compressed to the third of their length as suggested in [35]), we obtain
signatures of about 1.56 kB.

3.2 Security

When proving the BU-anonymity property, it seems natural to use a sequence
of games starting with the real attack game and ending with a game where T2 is
replaced by a random element of GT so as to leave no advantage to the adver-
sary while avoiding to affect the adversary’s view provided the Decision Bilinear
Diffie-Hellman (DBDH) assumption holds. The problem becomes to simulate
(using a fake common reference string) the NIZK proof that (g, T1, hj , K2, T2)
forms a bilinear Diffie-Hellman tuple. Since T2 is a given element of GT in the
proof, there is apparently no way to simulate the proof for relation (12).

As a natural workaround to this problem, we use the Decision Tripartite Diffie-
Hellman assumption instead of the DBDH assumption in the last transition of
the sequence of games.

Theorem 1 (BU-anonymity). The scheme satisfies the backward unlinkable
anonymity assuming that the Decision Linear problem and the Decision Tripar-
tite Diffie-Hellman problem are both hard in G. More precisely, we have

Advbu-anon
A (λ) ≤ T · N · (2 ·AdvDLIN

G (λ) + AdvDTDH
G (λ)

)
(17)

where N is the maximal number of users and T is the number of time periods.

Proof. The proof is a sequence of games organized in such a way that even an
unbounded adversary has no advantage in the final game while the first one is the
real attack game as captured by definition 3. Throughout the sequence, we call
Si the event that the adversary wins and her advantage is Advi = |Pr[Si]−1/2|.

Game 1: the challenger B sets up the scheme by choosing random exponents

ω, α, α1, α2, ξ1, ξ2
R← Z∗

p

and setting gω and A = e(g, g)α. It also sets u = gγ for a randomly chosen
γ R← Z∗

p and picks h1, . . . , hT ∈ G as well as vectors v ∈ Gn+1, and defines
�g1 = (g1 = gα1 , 1, g), �g2 = (1, g2 = gα2 , g), �g3 = �g1

ξ1 � �g2
ξ2 . Using ω, α, it

generates users’ private keys and answers all queries as in the real game. At the
challenge phase, the adversary chooses two unrevoked and uncorrupted users
i�0, i

�
1 and is given a challenge signature σ� on behalf of signer i�d� . Eventually,

she outputs a guess d′ ∈ {0, 1} and her advantage is Adv1 = |Pr[S1]−1/2|, where
S1 denotes the event that d′ = d�.
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Game 2: we modify the simulation and let the simulator B pick two indices
i� ∈ {1, . . . , N}, j� R← {1, . . . , T} at the outset of the simulation. In the challenge
phase, B aborts if A’s chosen pair (i�0, i�1) does not contain i� or if A does
not choose to be challenged for period j�. It also fails if i� is ever queried for
corruption or if it is queried for revocation before or during period j�. Assuming
that B is lucky when drawing i�, j� (which is the case with probability (2/N) ·
(1/T ) since i� and j� are independent of A’s view), the introduced failure event
does not occur. We can write Adv2 = 2 · Adv1/(NT ).

Game 3: we introduce a new rule that causes B to abort. At the challenge step,
we have i� ∈ {i�0, i�1} unless the failure event of Game 2 occurs. The new rule is
the following: when B flips d� R← {0, 1}, it aborts if i�d� �= i�. With probability
1/2, this rule does not apply and we have Adv3 = 1/2 · Adv2.

Game 4: we modify the setup phase and consider group elements Z1 = gz1 ,
Z2 = gz2 that are used to generate the public key gpk and users’ private keys.
Namely, for j ∈ {1, . . . , T}\{j�}, B chooses μj

R← Z∗
p and defines hj = gμj

whereas it sets hj� = Z2. Also, B chooses ν R← Z∗
p and sets A = e(g, Z1 · gω)ν

(so that α is implicitly fixed as α = ν(z1 + ω)). Private keys of users i �= i� are
calculated as (K1, K2, K3) =

(
(Z1 · gω)ν/(ω+si), gsi , usi

)
, for a random si

R← Z∗
p

and using ω. Since B knows si for each i �= i�, it can compute revocation tokens
Bij = hsi

j for users i �= i� in any period.
The group signing key of the expected target user i� is set as the triple

(K1, K2, K3) = (gν , Z1, Z
γ
1 ), which implicitly defines si� = z1 = logg(Z1). We

note that, for periods j �= j�, the revocation tokens hsi�

j are also computable as
Z

μj

2 . On the other hand, the token hsi�

j� = gz1z2 is not computable from Z1, Z2.
However, unless the abortion rule of Game 2 occurs, A does not query it. Al-
though B does not explicitly use z1 = logg(Z1) and z2 = logg(Z2), it still knows
all users’ private keys and it can use them to answer signing queries according to
the specification of the signing algorithm. It comes that A’s view is not altered
by these changes and we have Pr[S4] = Pr[S3].

Game 5: we bring a new change to the setup phase and generate the CRS
(�g1, �g2, �g3) by setting �g3 = �g1

ξ1 � �g2
ξ2 � ι(g)−1 instead of �g3 = �g1

ξ1 � �g2
ξ2 .

We note that vectors �g1, �g3, �g3 are now linearly independent. Any noticeable
change in the adversary’s behavior is easily seen1 to imply a statistical test
for the Decision Linear problem so that we can write |Pr[S5] − Pr[S4]| = 2 ·
AdvDLIN(B).

Game 6: we modify the generation of the challenge signature and use the trap-
door (ξ1, ξ2) of the CRS to simulate NIZK proofs. We suppose that B knows
values (Z1, Z2, Z3) = (gz1 , gz2 , gz3) and η = gz1z2z3 . Elements Z1 and Z2 are
used to define the group public key as in Game 4 whereas Z3 will be used to

1 Indeed, Pr[B(g1, g2, g
ξ1
1 , gξ2

2 , gξ1+ξ2) = 1] and Pr[B(g1, g2, g
ξ1
1 , gξ2

2 , gξ1+ξ2−1) = 1] are
both within distance AdvDLIN(B) from Pr[B(g1, g2, g

ξ1
1 , gξ2

2 , gz) = 1], where z is
random.
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create the challenge signature on behalf of user i� for period j�. To this end, B
first implicitly defines δ = z3 by setting

T1 = Z3 T2 = e(g, η).

Elements θ1, . . . , θ4 are committed to as specified by the scheme and π1, π2 are
calculated accordingly. This time however, �σ5 is calculated as a commitment to
1G: namely, �σ5 = �g1

r5 � �g2
s5 � �g3

t5 , where r5, s5, t5
R← Z∗

p. Then, B generates a
proof π3 = (�π3,1, �π3,2, �π3,3) satisfying

F
(
�σ2, �σ5

)
= F

(
ι(g), ι(η)

) � F
(
�π3,1, �g1

)� F
(
�π3,2, �g2

)� F
(
�π3,3, �g3

)
. (18)

Such an assignment can be obtained as

�π3,1 = �σ2
r5 � ι(η)−ξ1 �π3,2 = �σ2

s5 � ι(η)−ξ2 �π3,3 = ι(η) � �σ2
t5 .

We note that the value θ5 = hδ
j� = gz2z3 is not used by B. To simulate the

proof π3 that T2 = e(θ2, θ5) without knowing θ5, the simulator takes advan-
tage of the fact that T2 = e(g, η) for known g, η ∈ G (and simulating such
a proof would not have been possible if T2 had been a given element of GT ).
To simulate proofs π4 = (π4,1, π4,2, π4,3), π5 = (π5,1, π5,2, π5,3) that relations
(14)-(15) are both satisfied, B generates π4 as if it were a real proof using the
variable assignment θ5 = θ6 = 1G that obviously satisfies e(θ6, T1) = e(g, θ5)
(and �σ6 = �g1

r6 � �g2
s6 � �g3

t6 is thus computed as a commitment to 1G). As for
π5, the assignment

π5,1 = gr6 · h−ξ1
j π5,2 = gs6 · h−ξ2

j π5,3 = gt6 · hj.

is easily seen to satisfy the last verification equation

E
(
g, �σ6

)
= E

(
hj , ι(g)

)� E
(
π5,1, �g1

)� E
(
π5,2, �g2

)� E
(
π5,3, �g3

)
since �g3 = �g1

ξ1 � �g2
ξ2 � ι(g)−1. Simulated proofs π4, π5 are then randomized

as explained in [25] to be uniform in the space of valid proofs and achieve per-
fect witness indistinguishability. Simulated proofs are perfectly indistinguishable
from real proofs and Pr[S6] = Pr[S5].

Game 7: is identical to Game 6 but we replace η (that was equal to gz1z2z3

in Game 6) by a random group element. It is clear that, under the DTDH
assumption, this change does not significantly alter A’s view. We thus have
|Pr[S7] − Pr[S6]| ≤ AdvDTDH

G,B (λ).
In Game 7, it is easy to see that Pr[S7] = 1/2. Elements T1 and T2 are indeed

completely independent of si� = z1 (and thus of i�). Moreover, in the WI setting,
all commitments �σ1, . . . , �σ5 are perfectly hiding and proofs π1, . . . , π5 reveal no
information on underlying witnesses.

When gathering probabilities, we obtain the upper bound (17) on A’s advan-
tage in Game 1. ��
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Theorem 2 (Traceability). The scheme satisfies the full non-traceability as-
suming that the N -Hidden Strong Diffie-Hellman problem is hard in G. More
precisely, we have

Advtrace
A (λ) ≤ 4 · n · N · qs ·

(
1 − (N − 1)

p

)−1

·
(
AdvN-HSDH(λ) + AdvCR(n)

)
(19)

where N is maximum of the number of the adversary signature queries and the
maximal number of users and T is the number of time periods.

Proof. The proof is very similar to the proof of full traceability in the Boyen-
Waters [12] group signature. One difference is that [12] reduces the full trace-
ability property of their scheme to the unforgeability of a 2-level hierarchical
signature [29]. To prove this result, Boyen and Waters restricted the message
space (where the element si, that uniquely identifies the group member is the
group signature, must be chosen) to a relatively small interval at the first level.

In our proof of anonymity, we need elements si to be uniformly chosen in
Z∗

p. Therefore, we cannot directly link the security of our scheme to that of the
2-level hierarchical signature of [12] and a direct proof is needed (but it is simply
obtained using the techniques from [12]). Namely, two kinds of forgeries must be
considered as in [12]:

– Type I forgeries are those for which the implicit tracing algorithm fails
to identify the signer using the vector of revocation tokens for the relevant
period j�.

– Type II forgeries are those for which the implicit tracing algorithm in-
criminates a user outside the coalition and that was not requested to sign
the message M� during period j�.

The two kinds of adversaries are handled separately in lemmas 1 and 2.
To conclude the proof, we consider an algorithm B that guesses the kind of

forgery that A will come up with. Then, B runs the appropriate HSDH solver
among those described in previous lemmas. If the guess is correct, B solves the
HSDH problem with the success probability given in the lemmas. Since this guess
is correct with probability 1/2, we obtain the claimed security bound. ��
Lemma 1. If N is the maximal number of users, any Type I forger A has no
advantage than AdvType-I

A (λ) ≤ AdvN-HSDH(λ).

Proof. The proof is close to the one of lemma A.1 in [12]. The simulator B
is given a N -HSDH instance consisting of elements (g, Ω = gω, u) and triples
{(Ai, Bi, Ci) = (g1/(ω+si), gsi , usi)}i=1,...,N .

The simulator picks α, β0, . . . , βn
R← Z∗

p and sets vi = gβi , for i = 0, . . . , n.
Vectors �g1, �g2, �g3 are chosen as �g1 = (g1 = gα1 , 1, g), �g2 = (1, g2 = gα2 , g) and
�g3 = �g1

ξ1 � �g2
ξ2 , for randomly chosen α1, α2, ξ1, ξ2

R← Z∗
p, in such a way that

the CRS g = (�g1, �g2, �g3) provides perfectly sound proofs for which B retains the
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extraction trapdoor (α1 = logg(g1), α2 = logg(g2)). Finally, B generates (h1, . . . ,

hT ) ∈ GT as hj = gζj , for j = 1, . . . , T , with ζ1, . . . , ζT
R← Z∗

p. Then, B starts
interacting with the Type I adversary A who is given the group public key gpk :=
(g, A = e(g, g)α, h1, . . . , hT , Ω, u, v,g) and the vector of revocation tokens grt,
which B generates as grt[i][j] = hsi

j = B
ζj

i . The simulation proceeds as follows:

- when A decides to corrupt user i ∈ {1, . . . , N}, B returns the HDSH triple
(Ai, Bi, Ci).

- when A queries a signature from user i ∈ {1, . . . , N} for a message M , B
uses the private key (K1, K2, K3) = (Ai, Bi, Ci), to generate the signature
by following the specification of the signing algorithm.

When A outputs her forgery (M�, j�, σ�), B uses elements α1, α2 to decrypt
�σi

�, for indices i ∈ {1, . . . , 5}, and obtain θ�
1 = (gα)1/(ω+s�), θ�

2 = gs�

as well as
θ�
3 = us� ·(v0 ·

∏n
k=1 vmk

k )r and θ�
4 = gr. From these values, B can extract us�

since
it knows the discrete logarithm logg(v0 ·∏n

k=1 vmk

k ) = β0 +
∑n

k=1 mkβk, where
m1 . . . mn = H(j�||M�) ∈ {0, 1}n. Since σ� is a Type I forgery, the implicit
tracing algorithm must fail to identify one of the group members {1, . . . , N}.
The perfect soundness of the proof system implies that s� �∈ {s1, . . . , sN} and
(θ�

1
1/α, θ�

2 , u
s�

) is necessarily an acceptable solution. ��
Lemma 2. The scheme is secure against Type II forgeries under the (N − 1)-
HSDH assumption. The advantage of any Type II adversary A is at most

AdvType-II
A (λ, n) ≤ 2·n·N ·qs·

(
1− (N − 1)

p

)−1
·
(
Adv(N−1)-HSDH(λ)+AdvCR(n)

)
where N and qs stand for the number of users and the number of signing queries,
respectively, and the last term accounts for the probability of breaking the collision-
resistance of H.

Proof. The proof is based on lemma A.2 in [12]. Namely, the simulator B re-
ceives a (N − 1)-HSDH input comprising (g, Ω = gω, u) and a set of triples
{(Ai, Bi, Ci) = (g1/(ω+s

i
), gsi , usi)}i=1,...,N−1.

To prepare the public key gpk, the simulator B picks a random index ν R←
{0, . . . , n}, as well as ρ0, . . . , ρn

R← Z∗
p and integers β0, . . . , βn

R← {0, . . . , 2qs−1}.
It sets v0 = uβ0−2νqs ·gρ0 , vi = uβi ·gρi for i = 1, . . . , n. It also defines h1, . . . , hT

by setting hj = gζj , with ζj
R← Z∗

p, for j = 1, . . . , T . It finally chooses vectors g
as specified by the setup algorithm to obtain perfectly sound proofs.

Before starting its interaction with the Type II forger A, B initializes a coun-
ters ctr ← 0 and chooses an index i� R← {1, . . . , N} as a guess for the honest
user on behalf of which A will attempt to generate a forgery. The simulation
proceeds by handling A’s queries in the following way.

Queries: at the first time that user i ∈ {1, . . . , N} is involved in a signing query
or a corruption query, B does the following:

- if the query is a corruption query, B halts and declares failure if i = i� as
it necessarily guessed the wrong user i�. Otherwise, it increments ctr and
returns the triple (Actr , Bctr, Cctr) as a private key for user (K1, K2, K3).
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- if the query is a signing query for period j ∈ {1, . . . , T},
- if i �= i� B increments ctr and answers the query by running the signing

algorithm using the private key (K1, K2, K3) = (Actr, Bctr, Cctr).
- if i = i�, B chooses t� R← Z∗

p at random and implicitly defines a triple
(K�

1 , K�
2 , K�

3 ) = (g1/t�

, gt� · Ω−1, ∗), where ∗ is a placeholder for an un-
known group element (note that this implicitly defines s∗ = t�−ω). Then,
B computes m1 . . .mn = H(j||M) ∈ {0, 1}n. At this stage, it is conve-
nient to write F (m1 . . .mn) = v0 ·

∏n
k=1 vmk

k as F (m1 . . .mn) = uJ · gK

where J = β0 − 2νqs +
∑n

j=1 βjmj , K = ρ0 +
∑n

j=1 ρjmj . If J = 0, B
aborts. Otherwise, it can pick r R← Z∗

p and compute a pair(
θ3 = ut� · F (m1 . . . mn)r · Ω K

J , θ4 = gr · Ω 1
J

)
,

which can be re-written as (θ4 = ut�−ω · F (m1 . . .mn)r̃, θ5 = gr̃) if
we define r̃ = r + ω/J(m). This pair then allows generating a suitably
anonymized signature. In particular, since B knows θ2 = K�

2 = gt� ·Ω−1,
it is able to compute T2 = e(hj , K

�
2 )δ and T1 = gδ for a random δ R← Z∗

p.

When subsequent queries involve the same user i, B responds as follows (we
assume that corruption queries are distinct):

– For corruption queries on users i ∈ {1, . . . , N} that were previously involved
in signing queries, B aborts if i = i�. Otherwise, it knows the private key
(K1, K2, K3) (that was used to answer signing queries) and hands it to A.

– For signing queries, B uses the same values as in the first query involving
the user i ∈ {1, . . . , N}. If i �= i�, B uses the same triple (Actr, Bctr, Cctr). In
the case i = i�, B re-uses the pair (K�

1 , K�
2 ) = (g1/t�

, gt� ·Ω−1) and proceeds
as in the first query involving i� (but uses a fresh random exponent r).

Forgery: the game ends with the adversary outputting message M� together
with a type II forgery σ� = (T �

1 , T �
2 , �σ1

�, . . . , �σ6
�, π�

1 , . . . , π�
5) for some period

j� ∈ {1, . . . , T}. By assumption, the implicit tracing algorithm must point to
some user who did not sign M� at period j�. Then, B halts and declares failure
if σ� does not trace to user i�. Since the chosen index i� was independent of
A’s view, with probability 1/N , B’s guess turns out to be correct. Then, the
perfect soundness of the proof system implies that �σ2

� is a BBS encryption of
K�

2 . Then, B computes m� = m1 . . .mn = H(j�||M�). If user i� signed a message
M at period j such that (j, M) �= (j�, M�) but H(j||M) = H(j�||M�), A was
necessarily able to generate a collision on H . Otherwise, the perfect soundness
of the proof system implies that �σ3

� and �σ4
� decrypt into

θ�
3 = ut�−ωF (m�)r θ�

4 = gr

for some r ∈ Z∗
p and where F (m�) = v0 ·

∏n
k=1 vmk

k = uJ� · gK�

and s� = ti� −ω.
Then, B aborts if J(m�) = β0+

∑n
j=1 βjmj−2νqs �= 0. Otherwise, B can compute

us∗
and thereby obtains a full tuple

(
g1/(ω+s�), gs�

, us�)
where s� = t�−ω differs
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from s1, . . . , sN−1 with probability at least 1− (N −1)/p (since the value t� was
chosen at random).

B’s probability not to abort throughout the simulation can assessed as in
[37,12]. More precisely, one can show that J �= 0 in all signing queries with
probability greater than 1/2. Conditionally on the event that B does not abort
before the forgery stage, the probability to have J� = 0 is then shown to be at
least 1/(2nqs) (see [37,12] for details). ��

3.3 A Variant with Shorter Group Public Keys

As described in this section, the scheme suffers from a group public key of size
O(T ), which makes it impractical when the number of time periods is very large.
In the random oracle model h1, . . . , hT could be derived from a random oracle.
However, avoiding the dependency on T in the group public key size is also
possible without resorting to random oracles. This can be achieved using the
techniques introduced in [7] in the context of identity-based encryption.

The vector (h1, . . . , hT ) is replaced by a triple (h, h0, h1) ∈ G3 and the re-
vocation token of user i at period j ∈ {1, . . . , T} is defined to be the pair
(Bij1, Bij2) = (hsi ·F (j)ρ, gρ), where ρ R← Z∗

p and F (j) = h0 ·hj
1 is the selectively-

secure identity-hashing function of Boneh and Boyen [7]. Since the revocation
token (Bij1, Bij2) satisfies the relation e(Bij1, g) = e(h, gsi) · e(F (j), Bij2), we
have e(Bij1, g

δ) = e(h, gsi)δ · e(F (j)δ, Bij2) for any δ ∈ Z∗
p.

Therefore, in each signature σ, the pair (T1, T2) is superseded by a triple
(T1, T2, T3) = (gδ, F (j)δ, e(h, K2)δ) (so that the verifier needs the check that
e(T1, F (j)) = e(g, T2)) whereas �σ5 becomes a commitment to θ5 = hδ and the
NIZK proof for relation (13) is replaced by a proof that e(h, T1) = e(g, θ5). At
step 2 of the verification algorithm, the revocation test then consists in testing
whether e(T1, Bij1) = T3 · e(T2, Bij2) for revocation tokens {(Bij1, Bij2)}i∈RLj .
Using the technique of [7] to generate tokens for periods j ∈ {1, . . . , T}\{j�}, it
can be checked that everything goes through in the proof of anonymity.

4 Conclusion

We described a simple way to provide Boyen-Waters group signatures with an
efficient verifier local revocation mechanism with backward unlinkability.

The scheme can be easily extended so as to provide exculpability (and prevent
the group manager from signing on behalf of users) using a dynamic joining
protocol such as the one of [30]. It would be interesting to turn the scheme into
a traceable signature [27] supporting fine-grained (i.e. per period) user tracing
while leaving users the ability to claim their signatures.
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Abstract. In this paper, we propose the concept of a relinkable ring
signature, which is a ring signature with ring reformation function, i.e.,
a signer can delegate ring reformation ability separately from signing
ability to his/her proxy. The relinkable ring signature can be applicable
to proxy ring reformation, anonymization of past-generated signature, or
ring signature for dynamic group. We also propose a concrete relinkable
ring signature scheme that uses pairing in the random oracle model.

Keywords: ring signature, anonymity, pairing.

1 Introduction

Ring signature, where a signer can sign anonymously on behalf of a group, the
ring members, without a setup procedure or group manager, was introduced in
[RST01]. The signer generates a ring signature for a message using his/her secret
key and the public keys of all the ring members. Thus, by the moment of ring
signature generation, the ring members need to be determined and their public
keys need to be provided.

In this paper, we propose the concept of a relinkable ring signature: an exten-
sion of a ring signature where ring members do not need to be determined by
the moment of ring signature generation and the ring members of the generated
ring signature can be changed at a later point. Compared with the usual ring
signature scheme, a relinkable ring signature scheme has a relink algorithm that
can change the ring members of a given signature by using the relink key rk after
the signature is generated using the signing key sk. The relink key rk is weaker
than the signing key sk and can change the ring members but cannot change
the message and the real signer, i.e., using relink key rk, one can create a new
ring signature for the same message with different ring members that include
the same real signer from the existing ring signature, but one cannot create a
new ring signature for a new message and a new real signer. Thus, using the
relinkable ring signature, one can separately select a message and ring members.

The relinkable ring signature provides restricted anonymity in comparison
with the usual ring signature, i.e., it guarantees only computational anonymity,
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while the usual ring signature guarantees unconditional anonymity. Moreover,
using the relink key rk, one can check whether or not the real signer of a ring
signature is the signer corresponding to the the relink key rk by changing the
ring members to a set that consists of only the corresponding signer. Thus,
the relinkable ring signature is not suitable for applications that highly require
anonymity, e.g., voting or whistle-blowing. However, the restricted anonymity of
the relinkable ring signature can be utilized for the following applications.

Proxy Ring Formation: By providing relink key rk to the signer’s proxy, the
signer can delegate the ring reformation ability to the proxy separately from the
signing ability. This is useful for a signer with small computational resources.
For instance, one can securely store the signing key sk in a tamper-resistant IC
card that has only small computational resources and store the relink key rk in
a PC that has large computational resources and access to PKI. The IC card
computes a ring signature with ring members including only the signer by using
the signing key sk, then the PC reforms the ring members of the ring signature
by using the relink key rk and public keys of the other ring members from PKI.
By this, one can isolate a ring formation process whose computational cost is
heavy, i.e., is proportional to the number of ring members, and delegate it to a
PC with large computational resources.

Anonymization of Past-generated Signature: In the case that one publicizes a
document with a signature, he/she needs to ensure the privacy of the signer,
e.g., in the case of publication of a governmental document by a “freedom of
information act”. To hide the content of the document, one can use a sanitizing
signature [SBZ01]. To hide the signer, one can use the relinkable ring signa-
ture, i.e., one can anonymize a past-generated signature by using relink key rk.
The signer submits the document, the relinkable ring signature on it with ring
members including only the signer, and relink key rk. When the document is
publicized, one can anonymize the signature by reforming the ring members
using relink key rk.

Ring Signature for Dynamic Group: In a ring signature scheme [RST01], a signer
can sign anonymously on behalf of the ring members and there is no group man-
ager. However, this would not be suitable for a dynamic group whose members
change, since after the public key of a member is removed, one can no longer ver-
ify stored past-generated ring signatures whose ring members include the removed
member. The proposed relinkable ring signature can resolve this problem as fol-
lows. When a new member joins the group, the new member registers his/her pub-
lic key to the PKI of the group and passes his/her relink key to the relink manager.
When a member leaves the group, the PKI removes the public key of that mem-
ber and the relink manager removes that member from the ring members of stored
past-generated ring signatures by using that member’s relink key.

Private Key Exposure Attack: The usual ring signature scheme that has uncon-
ditional anonymity is susceptible to a private key exposure attack, i.e., once a
signer makes his/her private key public, all ring signatures whose ring members
include that signer become meaningless because anyone can use the publicized
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private key to generate the signature. The relinkable ring signature is not suscep-
tible to a private key exposure attack because it has computational anonymity
and one can exclude the signer who exposed his/her private key from the ring
members of a signature by using relink key rk.

Convertible Ring Signature: One can gradually decrease the anonymity of past-
generated ring signatures by decreasing the number of ring members of the signa-
ture by using relink key rk. In an extreme case, one can convert a past-generated
ring signature to non-anonymous signature by making the ring members include
only the signer. This is similar to a convertible ring signature [LWH05], though
one has a conversion key for each signature in the convertible ring signature.

Ring Signature and Group Signature: In a group signature scheme [CvH91], there
is a group manager who can revoke the anonymity of signatures. In contrast, in
a ring signature scheme [RST01], there is no group manager. As an intermediary
between the ring and group signatures, the revocable ring signature [LLM+07]
was invented. The relinkable ring signature can also be considered an interme-
diary between the ring and group signatures, where a signer can generate a
signature without a setup procedure and the signer’s proxy who has relink key
rk can revoke anonymity.

The proposed relinkable ring signature scheme is secure in the random or-
acle model, and uses groups with efficiently computable pairing on a non-
supersingular elliptic curve known as an MNT curve [MNT01], where there is
no efficiently computable distortion map. More precisely, we use three assump-
tions in groups G1, G2, and G3, where there is efficiently computable pairing
e : G1 × G2 → G3 but no efficiently computable distortion map ψ : G1 → G2.
These groups are studied by [SHUK03, GPS08] and used in some existing
schemes [Sco02, ACdM05, BGdMM05, ACHdM05] where the XDH (eXternal
Diffie-Hellman) assumption, i.e., the DDH problem in the group G1 is in-
tractable, is used.

In Section 2, we describe bilinear groups on a non-supersingular elliptic curve
and three assumptions used in the proposed scheme. In Section 3, we define
the relinkable ring signature. In Section 4, we show the proposed relinkable ring
signature scheme using pairing, prove its security, and estimate its efficiency. In
Section 5, we conclude the paper.

2 Bilinear Group and Assumptions

In this section, we describe groups with efficiently computable pairing but with-
out an efficiently computable distortion map, we also describe three assumptions
on these groups used in the proposed relinkable ring signature scheme.

We use the pairing on a non-supersingular elliptic curve known as an MNT
curve [MNT01], where no distortion map is known. By using an MNT curve, we
can construct cyclic groups G1, G2, and G3 of prime order p, which are called a
bilinear groups, and a polynomial-time computable bilinear non-degenerate map
called pairing



Relinkable Ring Signature 521

e : G1 × G2 → G3.

Let g ∈ G1 be a generator of G1 and ĝ ∈ G2 be a generator of G2. See Appendix
B for a detailed construction.

On MNT curves [MNT01], no polynomial-time computable homomorphism
ψ : G1 → G2, called a distortion map, is known. See Appendix B for details.

These bilinear groups are studied by [SHUK03, GPS08], and used in some ex-
isting schemes [Sco02, ACdM05, BGdMM05, ACHdM05] where the XDH (eX-
ternal Diffie-Hellman) assumption, i.e., the DDH problem in the group G1 is
intractable, is used.

We now state the three assumptions on these groups that are used in the
proposed relinkable ring signature scheme as follows.

For adversary A, we define advantage

AdvskewCDH(A) = Pr[g ∈U G1, ĝ ∈U G2, α ∈ Zp, A(g, gα, ĝ) = ĝα],

where the probability is taken over the choices of g, ĝ, α and the coin tosses of A.

Definition 1 (Skew CDH Assumption from G1 to G2). We assume that
for all polynomial-time adversary A, advantage AdvskewCDH(A) is negligible in
security parameter k.

For adversary A, we define advantage

AdvhintedCDH(A) = Pr[g ∈U G1, ĝ ∈U G2, α, β ∈ Zp, A(g, gα, gβ, ĝ, ĝα, ĝβ) = gαβ ],

where the probability is taken over the choices of g, ĝ, α, β and the coin tosses of A.

Definition 2 (Hinted CDH Assumption in G1). We assume that for all
polynomial-time adversary A, advantage AdvhintedCDH(A) is negligible in secu-
rity parameter k.

We denote by D1 = {(g, h, g′, h′) ∈ G4
1| logg h = logg′ h′} the set of DDH tuple,

and by D0 = {(g, h, g′, h′) ∈ G4
1} the set of random tuple. For adversary A, we

define advantage

AdvDDH(A) = |Pr[b ∈U {0, 1}, X ∈U Db : A(X) = b] − 1/2|

where the probability is taken over the choices of b, X and the coin tosses of A.

Definition 3 (DDH Assumption in G1). We assume that for all polynomial-
time adversary A, advantage AdvDDH(A) is negligible in security parameter k.

Notice that if there exists polynomial-time computable distortion map ψ : G1 →
G2, “Skew CDH Assumption from G1 to G2” and “DDH Assumption in G1” are
not true and “Hinted CDH Assumption in G1” is equivalent to “CDH Assump-
tion in G1”.
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3 Relinkable Ring Signature

In this section, we provide the definition of relinkable ring signature. Anonymity
means, informally, that adversary cannot distinguish test signature is gener-
ated by signer 0 or by signer 1, where the adversary knows all secret and re-
link keys except of signer 0 and 1. Traceability means, informally, that the real
signer of signature generated by adversary can be determined uniquely, where
the adversary knows all secret and relink keys. Unforgeability means, informally,
that adversary cannot create new forged signature and cannot modify a signa-
ture from signing oracle, where the adversary does not know secret and relink
keys. Relinker unforgeability means, informally, that adversary cannot create
new forged signature and cannot modify message and real signer of a signa-
ture from signing oracle, where the adversary knows relink keys. Our definition
of anonymity does not adopt adversarially-chosen keys and full key exposure
[BKM06], since exposure of revoke keys trivially breaks anonymity. Our def-
initions of unforgeability and relinker unforgeability adopt insider corruption
[BKM06].

3.1 Definition of Relinkable Ring Signature

We provide the definition of the relinkable ring signature scheme. In this scheme
there are two secret keys: signing key sk by which signer can generate a ring
signature, and relink key rk by which relinker can reform the ring member of
generated ring signature.

We denote the set of signers N = {0, 1, ...}. We also denote subset of signers
L ⊂ N that is called ring.

Syntax. A relinkable ring signature scheme is a tuple of four algorithms Σ =
(Gen, Sig, Ver, Rel), s.t.

– Gen, the key generation algorithm, is a probabilistic polynomial-time algo-
rithm that takes security parameter k ∈ N, and outputs secret, relink, and
public key (sk, rk, pk):

Gen(k) → (sk, rk, pk).

We denote by (ski, rki, pki) the public, secret, and relink key of the i-th
signer.

– Sig, the signing algorithm, is a probabilistic polynomial-time algorithm that
takes secret key ski, ring L ⊂ N s.t. i ∈ L, set of public keys of L, and
message m ∈ {0, 1}∗, and outputs signature σ:

Sig(ski, L, (pkj)j∈L, m) → σ.

– Ver, the signature verification algorithm, is a probabilistic polynomial-time
algorithm that takes ring L ⊂ N , set of public keys of L, message m ∈
{0, 1}∗, and signature σ, and outputs a bit 0/1 that means reject/accept,
respectively:

Ver(L, (pkj)j∈L, m, σ) → 0/1.
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– Rel, the relinking algorithm, is a probabilistic polynomial-time algorithm
that takes relink key rki, rings L, L′ ⊂ N s.t. i ∈ L, L′, sets of public keys
of L∪L′, message m ∈ {0, 1}∗, and signature σ, and outputs new signature
σ′:

Rel(rki, L, L′, (pkj)j∈L∪L′ , m, σ) → σ′/′′reject′′.

A relinkable ring signature scheme satisfies the following correctness.

Correctness. For every i ∈ N , every L1, ..., LJ ⊂ N s.t. i ∈ L1, ..., LJ , and
every m ∈ {0, 1}∗, if Gen(k) → (ski, rki, pki), Sig(ski, L1, (pkl)l∈L1 , m) → σ1,
Rel(rki, Lj, Lj+1, (pkl)l∈Lj∪Lj+1 , m, σj) → σj+1 for j = 1, ..., J −1, it holds with
overwhelming probability that Ver(Lj , (pkl)l∈Lj , m, σj) = 1 for j = 1, ..., J .

We first define the following three oracles called by adversary in the games
of security definitions. We then define the following four security notions of
relinkable ring signature: anonymity, unforgeability, relinker unforgeability, and
traceability.

Key Registration Oracle KO(i, rki, pki). Let N = {0, 1, ..} be set of registered
signers. Let RK = {rk1, rk2, ...} and PK = {pk1, pk2, ...} be set of registered
relink keys and public keys. Adversary generates secret, relink, and public keys
(ski, rki, pki) ← Gen(k)1 and send index of key i, relink keyrki, and public key
pki to key registration oracle KO. Key registration oracle KO registers the keys
sent from the adversary, i.e., appends i to N , rki to RK, and pki to PK.

Signing Oracle SO(i, L, m). Adversary sends index of signing key i, ring L ⊂ N ,
and message m to signing oracle SO. Signing oracle SO generates signature
Sig(ski, L, (pkj)j∈L, m) → σ and return signature σ.

Relink Oracle RO(L, L′, m, σ). Adversary sends ring L, L′ ⊂ N , message
m, and signature σ to relink oracle RO. If Ver(L, (pkj)j∈L, m, σ) �= 1,
return “reject”. Relink oracle RO finds i∗ s.t. Ver({i∗}, pki, m, Rel(rki, L,
{i∗}, (pkj)j∈L, m, σ)) = 1. Here, such i∗ is unique because of Traceability.
If i∗ ∈ L, L′ does not hold, return “reject”. Relink oracle RO generates re-
linked signature Rel(rki∗ , L, L′, (pkj)j∈L∪L′ , m, σ) → σ′ and return relinked
signature σ′.

Anonymity. We define the anonymity of a relinkable ring signature scheme Σ.
We consider the following game of adversary D against Σ.

At the beginning of the game, simulator chooses a random bit b ∈ {0, 1},
and generates secret, relink, and public keys (ski, rki, pki) ← Gen(k) (i = 0, 1)
and registers (i, rki, pki) (i = 0, 1). D takes pk0, pk1 as input, and performs the
following steps.2

1 To guarantee correct key generation, PKI may require zero-knowledge proof of cor-
rectness of keys, when user registers his/her keys.

2 We assume that D tries to distinguish signature generated by 0 or 1 w.l.o.g.
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D may make queries to key registration oracle KO, signing oracle SO, and
relink oracle RO. D is allowed to execute these oracle calls polynomially many
times at any moment.

D sends L∗ ⊂ N s.t. {0, 1} ⊂ L∗ and m∗ to the challenge oracle CO, and can
obtain signature σ∗ ← Sig(skb, (pkj)j∈L∗ , m∗). D is allowed to execute this once
at any moment.

Finally, D outputs a bit b′.
D cannot ask to relink oracle RO, if

– σ is σ∗ or its (polynomially many times) relinked signatures,
– and L′ ∩ {0, 1} = {0} or {1}.

When the game is defined in the random oracle model, D may access the random
oracle polynomially many times at any moment.

We define the advantage of D against Σ as

Advanon
Σ (D) =

∣∣∣∣Pr
[
b ∈ {0, 1}, (ski, rki, pki) ← Gen(k) (i = 0, 1),
b′ ← DKO,SO,RO,CO(pk0, pk1)

: b = b′
]
− 1

2

∣∣∣∣
where the probability is taken over the choice of bit b, keys (ski, rki, pki) (i =
0, 1), and the coin tosses of KO, SO, RO, CO and D.

Definition 4. We say that relinkable ring signature scheme Σ is anonymous, if
for every probabilistic polynomial-time adversary D the advantage Advanon

Σ (D)
is negligible in k.

Traceability. We define the traceability of a relinkable ring signature scheme Σ.
We consider the following game of adversary F against Σ.

F performs the following steps.
F may make queries to key registration oracle KO. F is allowed to execute

these oracle calls polynomially many times at any moment.
Finally, F outputs (L∗, m∗, σ∗).
We say F wins the game if

– Ver(L∗, (pkj)j∈L∗ , m∗, σ∗) = 1,
– #{i : i ∈ L∗, Ver({i}, pki, m

∗, Rel(rki, L
∗, {i}, (pkj)j∈L∗ , m, σ∗)) = 1} �= 1.

When the game is defined in the random oracle model, F may access the random
oracle polynomially many times at any moment.

We define the advantage of F against Σ as

Advtrace
Σ (F ) = Pr

[
(L∗, m∗, σ∗) ← FKO() : F wins.

]
where the probability is taken over the choice of the coin tosses of KO and F .

Definition 5. We say that relinkable ring signature scheme Σ is traceable, if
for every probabilistic polynomial-time adversary F the advantage Advtrace

Σ (F )
is negligible in k.

If a scheme is traceable, for given (L∗, m∗, σ∗) generated by probabilis-
tic polynomial-time adversary F , there exists unique signer i ∈ L∗ s.t.
Ver({i}, pki, m

∗, Rel(rki, L
∗, {i}, (pkj)j∈L∗ , m, σ∗)) = 1 except negligible prob-

ability. We denote the unique signer by i∗ ∈ L∗.
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Unforgeability. We define the unforgeability of a relinkable ring signature scheme
Σ. We consider the following game of adversary F against Σ.

At the beginning of the game, simulator generates secret, relink, and public
keys (ski, rki, pki) ← Gen(k) (i = 0, ..., n − 1) and registers (i, rki, pki) (i =
0, ..., n − 1). F takes (pkj)j=0,...,n−1 as input, and performs the following steps.

F may make queries to key registration oracle KO, signing oracle SO, and
relink oracle RO. F is allowed to execute these oracle calls polynomially many
times at any moment.

Finally, F outputs (L∗, m∗, σ∗).
We say F wins the game if

– Ver(L∗, (pkj)j∈L∗ , m∗, σ∗) = 1,
– L∗ ⊂ {0, ..., n − 1},
– ((i∗, L∗, m∗), σ∗) never appears in oracle query and reply list of SO,
– and ((i∗, L, L∗, m∗, σ), σ∗) never appears in oracle query and reply list of RO

for any L and σ.

When the game is defined in the random oracle model, F may access the random
oracle polynomially many times at any moment.

We define the advantage of F against Σ as

Advunforge
Σ (F ) = Pr

[
(ski, rki, pki) ← Gen(k) (i = 0, ..., n − 1),
(L∗, m∗, σ∗) ← FKO,SO,RO((pkj)j=0,...,n−1)

: F wins.
]

where the probability is taken over the choice of keys (ski, rki, pki) (i = 0, ..., n−
1) and the coin tosses of KO, SO, RO and F .

Definition 6. We say that relinkable ring signature scheme Σ is unforgeable, if
for every probabilistic polynomial-time adversary F the advantage Advunforge

Σ (F )
is negligible in k.

Relinker Unforgeability. We define the relinker unforgeability of a relinkable ring
signature scheme Σ. We consider the following game of adversary F against Σ.

At the beginning of the game, simulator generates secret, relink, and public
keys (ski, rki, pki) ← Gen(k) (i = 0, ..., n − 1) and registers (i, rki, pki) (i =
0, ..., n − 1). F takes (rki, pki)i=0,...,n−1 as input, and performs the following
steps.

F may make queries to key registration oracle KO, signing oracle SO. F is
allowed to execute these oracle calls polynomially many times at any moment.

Finally, F outputs (L∗, m∗, σ∗).
We say F wins the game if

– Ver(L∗, (pkj)j∈L∗ , m∗, σ∗) = 1,
– L∗ ⊂ {0, ..., n − 1},
– and ((i∗, L, m∗), σ) never appears in oracle query and reply list of SO for

any L and σ.

When the game is defined in the random oracle model, F may access the random
oracle polynomially many times at any moment.
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We define the advantage of F against Σ as

Advrelink
Σ (F ) = Pr

[
(ski, rki, pki) ← Gen(k) (i = 0, ..., n − 1),
(L∗, m∗, σ∗) ← FKO,SO((rki, pki)i=0,...,n−1)

: F wins.
]

where the probability is taken over the choice of keys (ski, rki, pki) (i = 0, ..., n−
1) and the coin tosses of KO, SO and F .

Definition 7. We say that relinkable ring signature scheme Σ is relinker un-
forgeable, if for every probabilistic polynomial-time adversary F the advantage
Advrelink

Σ (F ) is negligible in k.

4 Proposed Relinkable Ring Signature Scheme

In this section, we propose a relinkable ring signature scheme using pairing, prove
its security, and estimate its efficiency.

4.1 Intuition of the Proposed Scheme

The following scheme is the interactive protocol which our ring signature is based
on.

1. Prover P and verifier V have common input g, y = gx, h, w ∈ G1 and ĝ ∈ G2.
Prover P has witness ŷ = ĝx ∈ G2.

2. Prover P chooses random r ∈U Zp and sends a = e(gr, ĝ) ∈ G3 and b =
e(hr, ĝ) ∈ G3 to verifier V .

3. Verifier V chooses random c ∈U Zp and sends it to prover P .
4. Prover P sends ẑ = ĝrŷ−c ∈ G2 to verifier V .
5. Verifier V checks a = e(g, ẑ)e(y, ĝ)c and b = e(h, ẑ)e(w, ĝ)c.

This protocol is a variant of well known Chaum-Pedersen’s protocol [CP92]. By
using the Chaum-Pedersen’s protocol, the prover who knows x which satisfies
y = gx ∧ w = hx can give an interactive proof of knowledge about x, and he is
able to prove that (g, y, h, w) ∈ DDH-tuple. Instead of the discrete logarithm x,
we employ the corresponding group element of G2 as the knowledge to prove,
that is the prover who knows ŷ ∈ G2 such that e(y, ĝ) = e(g, ŷ)∧e(w, ĝ) = e(h, ŷ)
can give an interactive proof of knowledge about ŷ. Therefore we can separate
the ability to prove that (g, y, h, w) ∈ DDH-tuple from the discrete logarithm x,
namely we can use ŷ as a relink key, and can use x as a signing key. Furthermore
this protocol inherits honest verifier zero-knowledgeness, language soundness,
and knowledge soundness which are closely related to the security of our ring
signature scheme. Finally we combine this protocol with the Cramer-Damg̊ard-
Schoenmakers’ standard technique (proof of partial knowledge) [CDS94] to con-
struct our ring signature scheme.
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4.2 Proposed Relinkable Ring Signature Scheme

The proposed relinkable ring signature scheme is as follows.
Let G1, G2, G3 be a multiplicative cyclic group with prime order p. Let g ∈ G1

and ĝ ∈ G2 be generators of G1 and G2. Let e : G1 × G2 → G3 be pairing. Let
k ∈ N be a security parameter that is the bit length of group element. Let
H : {0, 1}∗ → G1 and H ′ : {0, 1}∗ → Zp be distinct hash functions that are
modeled as random oracles in the security statements below. We denote by
N = {0, ..., n − 1} the set of n signers.

Key Generation. Gen takes security parameter k, randomly chooses xi ∈U Zp,
and outputs secret, relink, public keys (ski = xi, rki = ŷi = ĝxi, pki = yi = gxi)
for i-th signer.

Signing. Sig takes i-th secret key ski = xi, ring L ⊂ N s.t. i ∈ L, public keys
(pki = yi)i∈L, and message m, and outputs signature σ as follows.

1. Choose random r ∈U {0, 1}l, compute h = H(r, m) ∈ G1, w = hxi ∈ G1.
2. Generate a (non-interactive) zero-knowledge proof for language

{(g, (yi)i∈L, h, w) | ∃i ∈ L, logg yi = logh w} as follows.
(a) For i, choose random ri ∈U Zp, compute ai = e(gri , ĝ), bi = e(hri , ĝ) ∈

G3.
(b) For all j ∈ L \ {i}, choose random cj ∈U Zp, ẑj ∈U G2, compute aj =

e(g, ẑj)e(yj , ĝ)cj , bj = e(h, ẑj)e(w, ĝ)cj ∈ G3.
(c) Compute ci = H ′(L, h, w, (ai)i∈L, (bi)i∈L) −∑j �=i cj mod p.
(d) Compute ẑi = ĝri ŷ−ci

i ∈ G2.
3. Output signature σ = (r, w, (ci)i∈L, (ẑi)i∈L).

Verification. Ver takes ring L ⊂ N , public keys (pki = yi)i∈L, message m, and
signature σ = (r, w, (ci)i∈L, (ẑi)i∈L), and outputs bit 0/1 as follows.

1. Check yi, w ∈ G1, ci ∈ Zp, ẑi ∈ G2 for all i ∈ L, otherwise reject.
2. Compute h = H(r, m).
3. Compute ai = e(g, ẑi)e(yi, ĝ)ci , bi = e(h, ẑi)e(w, ĝ)ci ∈ G3 for all i ∈ L.
4. Check that H ′(L, h, w, (ai)i∈L, (bi)i∈L) =

∑
i∈L ci mod p, otherwise reject.

5. Output accept if all checks above are passed, otherwise output reject.

Relinking. Rel takes i-th relink key rki = ŷi, rings L, L′ ⊂ N s.t. i ∈ L, L′, public
keys (pki = yi)i∈L∪L′ , message m, and signature σ = (r, w, (ci)i∈L, (ẑi)i∈L), and
outputs signature σ′ as follows.

1. Verify signature σ, otherwise reject.
2. Compute h = H(r, m).
3. Check e(h, ŷi) = e(w, ĝ), otherwise reject.
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Table 1. The comparison of costs of the proposed relinkable ring signature scheme
and ring signature scheme [AOS02]. Here, n is the number of group member, Texp is
the time to compute exponential in G, Tpair is the time to compute pairing, LG, LZp

are the lengths of elements of G, Zp, respectively.

proposed scheme ring signature [AOS02]
Signing costs 2nTexp + 4nTpair nTexp

Verification costs 2nTexp + 4nTpair 2nTexp

Relinking costs 2nTexp + 4nTpair −
Signature size (n + 1)(LG + LZp) 2nLZp

4. Generate a (non-interactive) zero-knowledge proof for language
{(g, (yi)i∈L′ , h, w) | ∃i ∈ L′, logg yi = logh w} as follows.
(a) For i, choose random ri ∈U Zp, compute ai = e(gri , ĝ), bi = e(hri , ĝ) ∈

G3.
(b) For all j ∈ L′ \ {i}, choose random c′j ∈U Zp, ẑ′j ∈U G2, compute

aj = e(g, ẑ′j)e(yj , ĝ)c′j , bj = e(h, ẑ′j)e(w, ĝ)c′j ∈ G3.
(c) Compute c′i = H ′(L′, h, w, (ai)i∈L′ , (bi)i∈L′) −∑j �=i c′j mod p.

(d) Compute ẑ′i = ĝri ŷ
−c′i
i ∈ G2.

5. Output signature σ′ = (r, w, (c′i)i∈L′ , (ẑ′i)i∈L′).

4.3 Security

The proposed relinkable ring signature scheme satisfies anonymity, unforgeabil-
ity, relinker unforgeability, and traceability.

Theorem 1. The proposed scheme satisfies

1. anonymity if we assume DDH problem in G1 is intractable and H and H ′

are random oracle,
2. unforgeability if we assume skew CDH problem from G1 to G2 is intractable

and H and H ′ are random oracle,
3. relinker unforgeability if we assume hinted CDH problem in G1 is intractable

and H and H ′ are random oracle,
4. and traceability if we assume H and H ′ are random oracle.

The proofs of theorem is provided in Appendix C.

4.4 Efficiency

The comparison of costs of the proposed relinkable ring signature scheme and
existing discrete logarithm based ring signature scheme [AOS02] is provided in
Table1. Although the proposed relinkable ring signature scheme has complexity
of same order in n as existing ring signature scheme [AOS02], the proposed
scheme needs more pairing operations and modular exponentiations.
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5 Conclusion

In this paper, we proposed the concept of the relinkable ring signature, which is a
ring signature with ring reformation, i.e., a signer can delegate ring reformation
ability separately from signing ability. The security of relinkable ring signature
is defined by anonymity, unforgeability, relinker unforgeability, and traceability.
We also proposed a concrete relinkable ring signature scheme that uses pairing.
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A Security of Skew and Hinted CDH Assumptions

Security in Generic Group Model: First, we prove security of the skew
CDH problem and the hinted CDH problem in generic groups in the sense of
[Sho97]. Our proof is essentially the same as the proof of CDH problem in [Sho97]
except the complicated group settings of the pairing. We employ the settings of
[BB04] which gives a generic proof of the q-SDH assumption on the type 2 curve
in [GPS08].

In the generic group model, elements of G1 = 〈g〉, G2 = 〈ĝ〉, and G3 are
encoded as unique random strings. Let ξi : Gi → {0, 1}∗ be a random encoding
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function of Gi for i = 1, 2, 3. The adversary A can make the following oracle
calls

– the group operation in each of G1, G2 and G3,
– the bilinear pairing e : G1 × G2 → G3, and
– the projection φ : G2 → G1.

These oracles takes encoding(s) of the input element(s) and answers encoding of
the output element. Notice that we consider projection just for generality.

We have the following propositions about security of skew and hinted CDH
assumptions in the generic group model. Due to lack of space, we omit here the
proofs of these propositions that only follow [Sho97, BB04].

Proposition 1. Let A be an algorithm that solves the skew CDH problem in
the generic group model, making a total of at most q queries to the oracles
computing the group action in G1, G2, G3, the oracle computing the projection φ,
and the oracle computing the bilinear pairing e. If a ∈ Zp and ξ1, ξ2, ξ3 are chosen
at random, then the probability ε that A(ξ1(g), ξ1(ga), ξ2(ĝ)) outputs ξ2(ĝa), is
bounded by ε ≤ O(q2/p)

Proposition 2. Let A be an algorithm that solves the hinted CDH problem in
the generic group model, making a total of at most q queries to the oracles com-
puting the group action in G1, G2, G3, the oracle computing the projection φ, and
the oracle computing the bilinear pairing e. If a, b ∈ Zp and ξ1, ξ2, ξ3 are chosen
at random, then the probability ε that A(ξ1(g), ξ1(ga), ξ1(gb), ξ2(ĝ), ξ2(ĝa), ξ2(ĝb))
outputs ξ1(gab), is bounded by ε ≤ O(q2/p)

Reduction Security: Second, we show reductions of the skew CDH problem
and the hinted CDH problem to other known problems, assuming that there
exists projection φ : G2 → G1, i.e., the type 2 curve in [GPS08].

Proposition 3. If there exists probabilistic polynomial-time algorithm As : G2
1×

G2 → G2 that solves the skew CDH problem on (G1, G2), there exists probabilistic
polynomial-time algorithm Ac : G3

1 → G1 that solves a variant of the CDH
problem on G1 (named chosen generator CDH).

Proof. Let g = φ(ĝ). Ac(g, ga, gb) outputs φ(As(g, gb, As(g, ga, ĝ))). ��
Proposition 4. If there exists probabilistic polynomial-time algorithm Ah : G3

1×
G3

2 → G1 that solves the hinted CDH problem on (G1, G2), there exists proba-
bilistic polynomial-time algorithm Ab : G4

2 → G3 that solves the BDH problem
on G2.

Proof. Ab(ĝ, ĝa, ĝb, ĝc) outputs e(Ah(φ(ĝ), φ(ĝa), φ(ĝb), ĝ, ĝa, ĝb), ĝc). ��

B Selection of Bilinear Group

Selection of G1 and G2: Let p be a prime and set q = pn. Let E[�] be �-torsion
points on elliptic curve E defined over Fq. Let φ(x, y) = (xq , yq) the q-th power
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Frobenius morphism. Let e : E[�]× E[�] → μ� be Weil pairing, where μ� ⊂ Fq is
the group of the �-th root of 1.

We consider the eigenspace decomposition of E[�] w.r.t. φ. For simplicity, we
assume that � is a prime, #E(Fq)[�] = �, m is minimal integer s.t. #E(Fqm)[�] =
�2. Since φ is the identity map on E(Fq), E(Fq)[�] is an eigenspace of φ with
eigenvalue λ1 = 1. Let λ2 be another eigenvalue, and we have λ2 = λ1λ2 = q
mod �. We also assume that the eigenvalues of φ are non-degenerative, i.e., t =
λ1 + λ2 �= 2 mod �.

Then, there exists the eigenspace corresponding to λ2 in E[�] \ E(Fq)[�]. Let
Q be its generator, and P be a generator of E(Fq)[�]. Thus, we have E[�] =
〈P 〉 ⊕ 〈Q〉 , and we use G1 = 〈P 〉 ⊂ E(Fq)[�], G2 = 〈Q〉 ⊂ E(Fqm)[�], G3 = μ� ⊂
F∗

qm , and Weil pairing e : 〈P 〉 × 〈Q〉 → μ�. We can use also G2 = 〈R〉 where
R = αP + βQ, α, β ∈ Z/�Z, and β �= 0.

The (normalized) trace map tr = 1/m
∑

i=0,...,m−1 φi : Fqm → Fq induces
polynomial-time computable group isomorphism tr : 〈R〉 → 〈P 〉.

The generator Q can be found by Q = R − tr(R) from R. The generator R
can be found with probability (� − 1)/� if a point on E[�] is chosen at random.
A point on E[�] can be found if a point on E(Fqm) is chosen at random, and
multiplied by #E(Fqm)/�2 . A point on E(Fqm) can be found with probability
of approximately 1/2 if x ∈ Fqm is chosen at random and y ∈ Fqm is obtained
by solving the curve equation.

The generator P of E(Fq)[�] can be found if a point on E(Fq) is chosen at
random, and multiplied by #E(Fq)/�. A point on E(Fq) can be found with
probability of approximately 1/2 if x ∈ Fq is chosen at random and y ∈ Fq is
obtained by solving the curve equation.

Selection of Elliptic Curve: To guarantee that our assumptions hold, we
need to choose an elliptic curve that satisfies the following conditions.

On the the supersingular curve and the trace-2 curve, polynomial-time com-
putable homomorphism from G1 to G2, called the distortion map, is known
[JN01, Ver01]. Therefore, we should avoid the supersingular curve and the trace-
2 curve.

On the other hand, it was shown that the distortion map on a non-supersingular
non trace-2 curve cannot be described by any single rational map [Ver01]. There-
fore, we choose the non-supersingular non trace-2 curve.

As in the case of a pairing-based cryptosystem, to guarantee that the CDH
or DL problem is intractable, we need to choose an elliptic curve that satisfies
the following two conditions.

– #E(Fq)[�] = � is large enough s.t. the CDH or DL problem on E(Fq)[�] is
intractable.

– #F∗
qm is large enough s.t. the CDH or DL problem on F∗

qm is intractable.

We can choose in practice � ∼ q ≥ 2160 and qm ≥ 21024.
Adding to the conditions above, we need to choose an elliptic curve with

small q and m s.t. elliptic addition and pairing can be computed efficiently, i.e.,
polynomial-time computable.
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Efficient methods to find non-supersingular non trace-2 pairing enabled secure
curves are given in [MNT01, SB06, BLS02, DEM05].

C Proofs of Theorem 1

Anonymity: Let Σ be the proposed revocable ring signature scheme. Let D
be a (τ, ε, qSO, qH)-adversary against Σ that requests signing oracle at most qSO

times and accesses random oracles at most qH times in total and breaks the
anonymity of Σ with advantage at least ε and running time at most τ . Let D′

be a (τ ′, ε′)-adversary against DDH assumption that breaks the assumption with
advantage at least ε′ and running time at most τ ′. We construct adversary D′

from adversary D as follows. Simulator maintains random oracle call lists H, H ′

and list Log, and performs followings.
At the beginning of the simulation, simulator D′ is given instance of DDH

problem (g, gα, gβ, gγ). Simulator selects random bit b ∈ {0, 1} and random
v ∈ Zp, sets pkb = yb = (gα)v, generates secret, relink, and public keys
(sk1−b, rk1−b, pk1−b) ← Gen(k), and gives pk0, pk1 to adversary D.

Random Oracle H(r, m). If H(r, m) is already defined, return defined value.
Otherwise, select random u ∈U Zp, define Log(g, h) = u, and define H(r, m) =
h = gu and return it.

Random Oracle H ′(L, h, w, (ai)i∈L, (bi)i∈L). If H ′(L, h, w, (ai)i∈L, (bi)i∈L) is al-
ready defined, return defined value. Otherwise, select random c ∈U Zp, and
define H ′(L, h, w, (ai)i∈L, (bi)i∈L) = c and return it.

Key Registration Oracle KO(i, ŷ, y). If yi is already defined, reject. If e(g, ŷ) �=
e(y, ĝ), reject. Otherwise, define ŷi = ŷ and yi = y.

Signing Oracle SO(i, L, m). Select random r ∈U {0, 1}k. Call random or-
acle h = H(r, m), if Log(g, h) is not defined, abort,otherwise set u =
Log(g, h) and w = yu

j . Create simulated proof ((ci)i∈L, (ẑi)i∈L) by setting
H ′(L, h, w, (ai)i∈L, (bi)i∈L) =

∑
i∈L ci. Return (r, w, (ci)i∈L, (ẑi)i∈L).

Relink Oracle RO(L, L′, m, σ). Verify signature σ = (r, w, (ci)i∈L, (ẑi)i∈L),
otherwise reject. Call random oracle h = H(r, m). Create simulated proof
((c′i)i∈L′ , (ẑ′i)i∈L′) by setting H ′(L, h, w, (a′

i)i∈L′ , (b′i)i∈L′) =
∑

i∈L′ c′i. Return
(r, w, (c′i)i∈L′ , (ẑ′i)i∈L′).

Challenge Oracle CO(L∗, m∗). Select random r ∈U {0, 1}k. If H(r, m) is al-
ready defined, abort,otherwise select random u ∈U Zp, define H(r, m) = h =
(gβ)u (Log(g, h) can not be defined), and set w = (gγ)uv. Create simulated
proof ((ci)i∈L, (ẑi)i∈L) by setting H ′(L, h, w, (ai)i∈L, (bi)i∈L) =

∑
i∈L ci. Return

(r, w, (ci)i∈L, (ẑi)i∈L).
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Finally, D outputs bit b′ ∈ {0, 1}. Simulator D′ outputs random bit if the
simulation abort, bit 1 if b = b′, and random bit if b �= b′.

The probability that the simulation does not abort is Pr[¬abort] ≥ (1 −
(qH + qS)/2k)(1 − 1/2k)qS , since CO does not abort with probability at least
1− (qH + qS)/2k and SO does not abort with probability at least (1− 1/2k)qS .

In the case that the simulation aborts, we have Pr[D′ wins|abort] = 1/2. Since
the view of adversary is independent from b if the instance is not DDH-tuple,
i.e., γ �= αβ, we have Pr[D′ wins|γ �= αβ|¬abort] = 1/2. Since the simulation
is perfect if the instance is DDH-tuple, i.e., γ = αβ, we have Pr[D′ wins|γ =
αβ|¬abort] = Pr[D wins|γ = αβ|¬abort].

Thus, we have ε′ = |Pr[D′ wins] − 1/2| = |Pr[D′ wins|¬abort] − 1/2| ·
Pr[¬abort] = |Pr[D′ wins|γ = αβ|¬abort] − 1/2| · Pr[γ = αβ|¬abort] ·
Pr[¬abort] = |Pr[D wins|γ = αβ|¬abort] − 1/2| · Pr[γ = αβ|¬abort] ·
Pr[¬abort] ≥ ε ·1/2 ·(1−(qH +qS)/2k)(1−1/2k)qS ≥ ε ·1/2 ·(1−(qH +2qS)/2k).

Traceability: Let Σ be the proposed revocable ring signature scheme. Let
F be a (τ, ε, qSO, qH)-adversary against Σ that requests signing oracle at most
qSO times and accesses random oracles at most qH times in total and breaks
the traceability of Σ with advantage at least ε and running time at most τ .
Simulator maintains random oracle call lists H, H ′ and performs followings.

Random Oracle H(r, m). If H(r, m) is already defined, return defined value.
Otherwise, select random u ∈U Zp, and define H(r, m) = h = gu and return it.

Random Oracle H ′(L, h, w, (ai)i∈L, (bi)i∈L). If H ′(L, h, w, (ai)i∈L, (bi)i∈L) is al-
ready defined, return defined value. Otherwise, select random c ∈U Zp, and
define H ′(L, h, w, (ai)i∈L, (bi)i∈L) = c and return it.

Key Registration Oracle KO(i, ŷ, y). If yi is already defined, reject. If e(g, ŷ) �=
e(y, ĝ), reject. Otherwise, define ŷi = ŷ and yi = y.

Finally, F outputs L∗, m∗, σ∗. we write σ∗ = (r∗, w∗, (ci)i∈L∗ , (ẑi)i∈L∗) and
h∗ = H(r∗, m∗). By the second winning condition of adversary, ∀i ∈ L∗,
(g, yi, h

∗, w∗) is not DDH-tuple, i.e., xi = logg(yi) �= x′
i = logh∗(w∗). Thus,

the first winning condition of adversary holds with negligible probability ε ≤
1 − (1 − 1/p)qH ≤ qH/p, since language soundness of zero-knowledge proof.

Unforgeability: Let Σ be the proposed revocable ring signature scheme. Let
F be a (τ, ε, qSO, qH)-adversary against Σ that requests signing oracle at most
qSO times and accesses random oracles at most qH times in total and breaks the
unforgeability of Σ with advantage at least ε and running time at most τ . Let F ′

be a (τ ′, ε′)-adversary against skew CDH assumption that breaks the assumption
with advantage at least ε′ and running time at most τ ′. We construct adversary
F ′ from adversary F as follows. Simulator maintains random oracle call lists
H, H ′ and list Log, and performs followings.
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At the beginning of the simulation, simulator F ′ is given instance of skew CDH
problem (g, gα, ĝ). Simulator selects random vi ∈ Zp, sets pki = yi = (gα)vi for
i = 0, ...n − 1, and gives them to adversary F .

Random Oracle H(r, m). If H(r, m) is already defined, return defined value.
Otherwise, select random u ∈U Zp, define Log(g, h) = u, and define H(r, m) =
h = gu and return it.

Random Oracle H ′(L, h, w, (ai)i∈L, (bi)i∈L). If H ′(L, h, w, (ai)i∈L, (bi)i∈L) is al-
ready defined, return defined value. Otherwise, select random c ∈U Zp, and
define H ′(L, h, w, (ai)i∈L, (bi)i∈L) = c and return it.

Key Registration Oracle KO(i, ŷ, y). If yi is already defined, reject. If e(g, ŷ) �=
e(y, ĝ), reject. Otherwise, define ŷi = ŷ and yi = y.

Signing Oracle SO(i, L, m). Select random r ∈U {0, 1}k. Call random oracle h =
H(r, m), set u = Log(g, h) and w = yu

j . Create simulated proof ((ci)i∈L, (ẑi)i∈L)
by setting H ′(L, h, w, (ai)i∈L, (bi)i∈L) =

∑
i∈L ci. Return (r, w, (ci)i∈L, (ẑi)i∈L).

Relink Oracle RO(L, L′, m, σ). Verify signature σ = (r, w, (ci)i∈L, (ẑi)i∈L),
otherwise reject. Call random oracle h = H(r, m). Create simulated proof
((c′i)i∈L′ , (ẑ′i)i∈L′) by setting H ′(L, h, w, (a′

i)i∈L′ , (b′i)i∈L′) =
∑

i∈L′ c′i. Return
(r, w, (c′i)i∈L′ , (ẑ′i)i∈L′).

Finally, F outputs L∗, m∗, σ∗. we write σ∗ = (r∗, w∗, (ci)i∈L∗ , (ẑi)i∈L∗) and
h∗ = H(r∗, m∗). By rewinding adversary F , F outputs L∗, m∗, σ∗′

where σ∗′
=

(r∗, w∗, (c′i)i∈L∗ , (ẑ′i)i∈L∗) s.t.
∑

i∈L ci �= ∑
i∈L c′i with probability 1/qH , since

adversary F uses same H ′ query for forgery with probability 1/qH . Find i s.t.
ci �= c′i and compute ŷi = (ẑi/ẑ′i)

1/(c′i−ci). Simulator F ′ outputs (ŷi)1/vi as guess
of ĝα. Using forking lemma, we have ε′ ≥ ε(ε/qH − 1/p).

Relinker Unforgeability: Let Σ be the proposed revocable ring signature
scheme. Let F be a (τ, ε, qSO, qH)-adversary against Σ that requests signing
oracle at most qSO times and accesses random oracles at most qH times in total
and breaks the relinker unforgeability of Σ with advantage at least ε and running
time at most τ . Let F ′ be a (τ ′, ε′)-adversary against hinted CDH assumption
that breaks the assumption with advantage at least ε′ and running time at most
τ ′. We construct adversary F ′ from adversary F as follows. Simulator maintains
random oracle call lists H, H ′ and list Log, and performs followings.

At the beginning of the simulation, simulator F ′ is given instance of hinted
CDH problem (g, gα, gβ, ĝα, ĝβ).

Simulator selects random vi ∈U Zp and random γi ∈U {0, 1}. Let ĝi =
(ĝα)γi(ĝβ)1−γi and gi = (gα)γi(gβ)1−γi . Simulator sets rki = ŷi = ĝvi

i and
pki = yi = gvi

i , and give them to adversary F .

Random Oracle H(r, m). If H(r, m) is already defined, return defined value. Oth-
erwise, select random u ∈U Zp, γ ∈U {0, 1} define H(r, m) = h = ((gα)γ(gβ)1−γ)u

and define Log((gα)γ(gβ)1−γ , h) = u, and return h.



536 K. Suzuki, F. Hoshino, and T. Kobayashi

Random Oracle H ′(L, h, w, (ai)i∈L, (bi)i∈L). If H ′(L, h, w, (ai)i∈L, (bi)i∈L) is al-
ready defined, return defined value. Otherwise, select random c ∈U Zp, and
define H ′(L, h, w, (ai)i∈L, (bi)i∈L) = c and return it.

Key Registration Oracle KO(i, ŷ, y). If yi is already defined, reject. If e(g, ŷ) �=
e(y, ĝ), reject. Otherwise, define ŷi = ŷ and yi = y.

Signing Oracle SO(i, L, m). Select random r ∈U {0, 1}k. If H(r, m) is already
defined, abort, otherwise select random u ∈U Zp, define H(r, m) = h = gu

i ,
define Log(gi, h) = u, and set w = hvi . Create simulated proof ((ci)i∈L, (ẑi)i∈L)
by setting H ′(L, h, w, (ai)i∈L, (bi)i∈L) =

∑
i∈L ci. Return (r, w, (ci)i∈L, (ẑi)i∈L).

Finally, F outputs L∗, m∗, σ∗. we write σ∗ = (r∗, w∗, (ci)i∈L∗ , (ẑi)i∈L∗) and
h∗ = H(r∗, m∗). Find j s.t. e(h∗, ŷj) = e(w∗, ĝ), and set v = vj . If
Log(gαgβ/gj, h

∗) is not defined, abort, otherwise set u = Log(gαgβ/gj , h
∗).

Simulator F ′ outputs (w∗)1/uv as guess of gαβ . Since the simulation suc-
cesses if SO doesn’t select random r that is already queried by adver-
sary F and Log(gαgβ/gj, h

∗) is defined at the final step, we have ε′ ≥
Pr[Log(gαgβ/gj, h

∗) is defined|F ′ finds j|F wins|¬abort in SO] ·
Pr[F ′ finds j|F wins|¬abort in SO] · Pr[F wins|¬abort in SO] ·
Pr[¬abort in SO] ≥ 1/2 · (1 − 1/p)qH · ε · (1 − (qH + qS)/2k)qS ≥ ε/2 · (1 −
qH/p − (qH + qS)qS/2k).
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