
R. Nambiar and M. Poess (Eds.): TPCTC 2009, LNCS 5895, pp. 99–115, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Converting TPC-H Query Templates to Use DSQGEN
for Easy Extensibility

John M. Stephens Jr.1 and Meikel Poess2

1 Gradient Systems, 643 Bair Island Road #103, Redwood City, CA-94063
jms@gradientsystems.com

2 Oracle Corporation, 500 Oracle Parkway, Redwood Shores, CA-94107
meikel.poess@oracle.com

Abstract. The ability to automatically generate queries that are not known a-
priory is crucial for ad-hoc benchmarks. TPC-H solves this problem with a
query generator, QGEN, which utilizes query templates to generate SQL
queries. QGEN’s architecture makes it difficult to maintain, change or adapt to
new types of query templates since every modification requires code changes.
DSQGEN, a generic query generator, originally written for the TPC-DS
benchmark, uses a query template language, which allows for easy modification
and extension of existing query templates. In this paper we show how the
current set of TPC-H query templates can be migrated to the template language
of DSQGEN without any change to comparability of published TPC-H results.
The resulting query template model provides opportunities for easier
enhancement and extension of the TPC-H workload, which we demonstrate.

Keywords: Benchmark Development, Databases, Performance Analysis.

1 Introduction

TPC-H [4][6]has been a very successful benchmark for the Transaction Processing
Performance Council (TPC), with 147 results published as of June 2009. It relies on a
pair of executables for data and query generation (DBGEN and QGEN, respectively)
that were originally developed for its predecessor, TPC-D [5], which was released in
1994. QGEN is a command-line utility that uses pattern matching to expand the 22
query templates defined in TPC-H into fully qualified Structured Query Language
(SQL). While the substitutions defined in the TPC-H query set have proven adequate,
they have not been updated since five new templates were added in 1999, when TPC-
D morphed into TPC-H. Further, the substitutions are hard-coded into the QGEN
executable. As a result, any refinement or expansion of the query set requires
additional software development. The required costs for code modifications and code
testing have hindered further evolution of the benchmark.

The underlying design of QGEN remains valid. Its template-based query model
and common and well-understood business questions provide TPC-H with a high
degree of comparability between benchmark executions. At the same time the precise
values or targets of a given instance of a query are random, assuring appropriate

100 J.M. Stephens Jr. and M. Poess

variability and limiting the amount of foreknowledge that a test sponsor can employ.
The result is a query set that provides consistent and meaningful results, while
mimicking ad-hoc queries. However, the TPC-H query model has two inherent
problems: The query substitutions are hard coded into the query generator and cannot
be modified without additional software development and the query templates
themselves use a narrow range of syntax and substitution types, and no longer capture
the breadth of common decision support systems.

This paper details the migration of the QGEN query template model to the
DSQGEN query template model without any changes to TPC-H’s current query
template set. This preserves the investment that test sponsors have made in TPC-H,
and, simultaneously provides the opportunity for an updated query set which employs
a richer set of query operations and syntax. In addition, it leaves further enhancement
in the hands of the benchmark designers, without requiring further software
development.

The remainder of this paper is organized as follows: Section 2 gives a brief
overview of TPC-H focusing on how queries are currently generated with QGEN;
section 3 introduces the essential syntax of DSQGEN, including both functions
needed to write current TPC-H query templates in DSQGEN’s query template
language and additional functionality that exceeds the current needs of TPC-H;
section 4 demonstrates the changes required to migrate the current set of 22 TPC-H
queries to DSQGEN’s query template language; section 5 shows how the TPC-H
query set can be extended using DSQGEN.

2 TPC-H

Since its introduction in 1999 by the Transaction Performance Council, TPC-H has
been the industry standard benchmark for data warehouse applications. This section
briefly introduces those elements of TPC-H, which are necessary for the
understanding the next sections.

2.1 Background

TPC-H models the activity of any industry, which manages, sells, and distributes
products worldwide (e.g., car rental, food distribution, parts, suppliers, etc.). It uses a
3rd normal form schema consisting of eight base tables. They are populated with
synthetic data, scaled to an aggregate volume or scale factor (SF). For example, in a
database with SF=100, the base tables hold 100 gigabytes of generated data. Fig. 1
illustrates the entity relationship (ER) diagram of the TPC-H schema. The two largest
tables, Lineitem and Orders contain about 83 percent of the data. Sizes of all tables,
except for nation and region scale linearly with the scale factor.

The TPC-H workload consists of database load, execution of 22 read-only queries
in both single and multi-user mode and two refresh functions. The queries are
intended to test the most common query capabilities of a typical decision support
system. In order to facilitate the understanding of TPC-H queries and the mapping of
the benchmark queries to real world situations, each query is described in terms of a
business question. This business question is formulated in English explaining the

 Converting TPC-H Query Templates to Use DSQGEN for Easy Extensibility 101

Fig. 1. TPC-H Entity Relationship Diagram (Source: TPC-H Version 2.8.0)

result of the query in context of TPC-H’s business model. The business questions are
translated into functional query definitions that define the queries using the SQL-92
query language. TPC-H queries are chosen to perform operations that are relevant to
common data warehouse applications. Accordingly, the demands a query places on
the hardware (processor, IO-subsystem) and software (Operating System, Database
Management System) of the tested system varies from query to query. To assure that
the benchmark remains dynamic, each TPC-H query contains substitution parameters
that are randomly chosen by the benchmark driver immediately before its execution,
to mimic ad-hoc workloads.

One TPC-H performance run consists of one execution of a Power Test (see Clause
6.3.3 of [6]), followed by one execution of a Throughput Test described (see Clause
6.3.4. of [6]). The Power Test measures single-user performance. Single-user
performance measures a systems ability to parallelize queries across all available
resources (memory, CPU, I/O) in order to deliver the result in the least amount of time.
In TPC-H’s Power Test the single-user performance measurement is implemented as
one stream of queries. This stream contains all 22 queries in a pre-defined order (see
Appendix A in [6]): The Throughput Test measures multi-user performance. A multi-
user test measures a system’s ability to execute multiple concurrent queries, allocate
resources efficiently across all users to maximize query throughput. In TPC-H’s
throughput test multi-user measurement is implemented with n concurrent streams.
Each stream contains all 22 queries ordered in a different permutation.

2.2 TPC-H Data Generator QGEN

QGEN produces the query streams required by TPC-H. The templates each contain
between one and five substitution tokens, each with a static set of possible values.

102 J.M. Stephens Jr. and M. Poess

Fig. 2. Sample QGEN Template Usage

QGEN replaces the substitution token with a randomly selected value from
the permissible domain to produce fully qualified SQL. Fig. 2 illustrates
the transformation of the query template of query 2 to a valid entry in a query
stream.

Clearly, QGEN depends heavily on the underlying data set defined for TPC-H. A
query generator can only exploit data relationships that exist in its target data
population. In QGEN, these relationships are captured in the source code of the query
generator itself. This means that the query set cannot be modified without modifying
the query generator, and that the relationships and domains employed by the queries
can only be discovered by referring to the benchmark specification or to the source
code of the query generator. Similarly, the query template permutations that define
the benchmark’s query streams are hard-coded into QGEN itself, and rely on a static,
hand-cobbled query ordering which cannot be extended without source code changes
to QGEN.

 Converting TPC-H Query Templates to Use DSQGEN for Easy Extensibility 103

3 Query Generator DSQGEN

DSQGEN (a.k.a. QGEN2 see [6]) was developed by the TPC for a proposed decision
support benchmark. It is a command-line utility that translates an arbitrary set of
query templates into streams of valid SQL statements. Query templates are defined in
a template language, and parsed using an LALR(1) grammar. DSQGEN provides a
rich set of query template translation semantics that go far beyond what is required to
support the TPC-H query set. For example, if DSQGEN is used in combination with
DSDGEN (a.k.a. MUDD see [1][3]), distribution-based predicate substitutions can be
defined. The distribution-related substitutions allow a template to use arbitrary
distributions, encoded as ASCII histograms. The result is a tight linkage between data
generation and query generation without requiring the template designer to know the
specifics of the data distributions. For a detailed description of DSQGEN’s
functionality, including its sophisticated template language, refer to [2]. The
following sections only address those parts of the template language that are relevant
to this paper.

3.1 Query Template Grammar

A query template is divided into two parts: substitution definitions and SQL Text. The
substitution definitions specify the substitution rules for a query as a list of
substitution tags. These tags control the translation of the SQL Text portion of the
template into a valid SQL query. Once defined, a substitution tag can be used
throughout the query template. Each occurrence of the substitution tag is replaced by
values generated according to the tag’s definition. Multiple occurrences of the same
tag are replaced with the same value. If a substitution tag is post-fixed with a number,
then each unique tag/number combination receives a unique value. A simplified
grammar for substitution tag, limited to the <random> and <text> substitution types
used in Section 4, is outlined in Fig. 3.

<tag>= <exp>|
 string[30]|
 <substitution type>|
 list(<substitution type>,<exp>)|
 ulist(<substitution type>,<exp>);
<substitution type>=<random> | <text>
<random> = (<min>,<max>,uniform)
<exp> = <exp>-<exp>|<exp>+<exp>|<exp>/<exp>|
 <exp>*<exp>|<exp>%<exp>|<number>|<const>
<number>=<number>|0|1|2|3|4|5|6|7|8|9
<const>=_SCALE|_SEED|_QUERY|_TEMPLATE|_STREAM|_LIMIT

Fig. 3. Basic Substitution Declaration Grammar

The Random substitution type allows defining tags to use randomly-generated
integers in an inclusive range [min, max] using a uniform distribution. The specific
grammar for a <random> substitution tag is:

104 J.M. Stephens Jr. and M. Poess

<random> = random(<exp>,<exp>,uniform);

Let’s call the first expression min and the second expression max. The likelihood Pi of
each value to be picked by DSQGEN is identical:

 (1)

The location parameter min and the scale parameter max must be picked such that
min<max. The designer of a query template must assure that the values picked for min
and max fall within the range of the data distribution of the targeted column. The
following examples show how the random substitution tag can be used:

Example 1 order_quantity = random (1, 10, uniform);
Example 2 price_int=random(1,1000,uniform;

price_frac=random(1,100,uniform);
Example 3 birthday=random(“1929-01-01”

 ,“2009-05-31”,uniform);

Example 1 defines a tag, which randomly chooses a value between 1 and 10. This can
be used as a projection predicate on a quantity column. Example 2 defines two tags,
one to generate the integer portion of a price (price_int) and a second (price_frac) to
generate the fraction of a price. The price can then be combined in the SQL text as:
[price_int]+1/[price_frac]. Example 3 selects a random date between 2009 and 2029,
with appropriate allowances for leap years.

The TEXT substitution, which uses the grammar shown in Fig. 4, replaces a
particular tag with one of a weighted set of ASCII strings. This substitution type can
be employed in many different ways. In its basic form, this can be employed in a
projection predicate such as: column_name = “<string>”, providing a crude
form of text searching. The elements of a TEXT substitution tag must be distinct. The
empty string is permissible.

<text> =({<subelem>, <weight>}<subelem_weight>);
<subelem_weight>=,{<subelem>, <weight>}|NULL
<subelem> = string[100];
<weight> = integer;

Fig. 4. TEXT Substitution Type

The likelihood of a particular “subelem” to be picked as a substitution parameter
depends on the ratio of its weight (<subelem_weight>) to the sum of all weights. The
probability of Si for the following definition with n elements tag=TEXT({“S1”,
W1},…,{“S1”, W1}) is defined as :

0:0:

1

>≤≤=
∑

=

in

j
j

i
S Wni

W

W
P

i

(2)

minmax

1

−
=iP

 Converting TPC-H Query Templates to Use DSQGEN for Easy Extensibility 105

Table 1. DSQGEN Build-In Functions

Keyword Value

_SCALE Scale factor in GB, as set with -scale command line option

_SEED Current random-number-generator seed

_QUERY Sequence number within a query set

_TEMPLATE Template ID

_STREAM Query stream ID

_LIMITA,_LIMITB,_LIMITC Used for vendor specific syntax to limit the number of rows

_LIMIT Maximum number of rows to be returned by the query

Example 4 dog=TEXT({“German

sheppard”,1},{“poodle”,1},{“pug”,1});
Example 5 dog_color=TEXT({“brown”,6},{“black”,3},{“gre

y”,1});

Example 4 defines the tag dog, which generates values German Sheppard, poodle and
pug with the same likelihood. Example 5 defines dog colors to be brown, back or
grey. However, in this example the color brown gets picked six out of ten times, while
back gets picked three out of ten times and grey gets only picked one out of ten times.

By default, substitution tags produce singleton values. When combined with the
LIST or ULIST operators, each tag produces a list of <number> values that can be
referred to by adding a “.<n>”, suffix to the substitution tag. ULIST guarantees
uniqueness within the list of values, while the LIST operator does not. There are some
limitations to the ULIST operator. If the domain from which the ULIST operator
picks its value set is smaller than or equal to the size of the requested list (i.e.,
<number>), the ULIST operator behaves like the LIST operator.

DSQGEN recognizes some keywords and built-in functions as integer constants.
Table 1 summarizes some commonly used keyword substitutions and their values.
These constants are commonly used to instrument the query stream, provide unique
names for temporary table or view definitions, or to access vendor-specific syntax to
constrain the size of a result set. For instance, a vendor might need to define a
temporary view if they didn’t support SQL’s common-sub-expression syntax. In order
to distinguish the view name between streams, a unique identifier needs to be
assigned to it. The _STREAM keyword fulfills this requirement, and can be used in
the rewrite of Query 15 of TPC-H. Another example creates a predicate based on the
scale factor, which is used in Query 11 of TPC-H. Example 6 prints the number of
rows in the part table together with the scale factor.

Example 6 SELECT ‘part count at scale factor
[_SCALE]’|count(*)
FROM PART;

The built-in functions can also be used to access vendor-specific syntax to limit the
number of rows returned by a query. Vendors have dialect-specific extensions to SQL

106 J.M. Stephens Jr. and M. Poess

that control the number of rows returned by a query, and require those syntactic
changes at different points in the query. DSQGEN defines three possible additions
(_LIMITA, _LIMITB, and _LIMITC) that, in conjunction with a global limit to the
number of rows to be returned (_LIMIT) and vendor specific definitions, allow a
single query template to satisfy the requirements of all supported database dialects
(currently, ANSI, Oracle, DB2, Netezza, SqlServer). Example 7 shows a sample
usage of the LIMIT tags to return the 100 most frequent last names from a customer
table. Vendor-specific substitutions (__LIMITA, __LIMITB and __LIMITC) are
defined to limit the number of rows returned by a query (Example 7a). The query
template (Example 7b) needs only define the desired number of rows (via _LIMIT)
and include the potential syntax substitutions (_LIMITA, _LIMITB, _LIMITC). The
result is a single query template that can produce appropriate SQL for all defined
dialect, as illustrated for ANSI SQL (Example 7c). The call to generate the query is
shown in Example 7d.

Example 7 Implementation of the ANSI specific dialect
to limit the number of rows returned by a
query

7a: ansi.tpl

DEFINE __LIMITA = "";
DEFINE __LIMITB = "top %d";
DEFINE __LIMITC = "";

7b: query.tpl

DEFINE LIMIT=100;
[_LIMITA]
SELECT [_LIMITB] last_name, count(*) as name_count
FROM customer
GROUP BY name_count, order by name_count
[_LIMITC];

7c: query_0.sql

SELECT top 100 last_name, count(*) as name_count
FROM customer
GROUP BY name_count, order by name_count;

7d: Command line call to DSQEN for generating vendor specific syntax

DSQGEN –scale 1 –template query.tpl –dialect ansi.tpl

3.2 Generating Query Workloads

DSQGEN is capable of generating three different kinds of workload: Single-
Template, Single-Stream, and Multi-Stream. Each type of workload requires a set of
query templates to be defined. Each template must be stored in a separate file (e.g.
T1.tpl, T2.tpl,…,Tn.tpl). While a template can contain more than one SQL statement,
there can only be one set of substitution tag declarations for all queries included in a
given template, and they must occur before the first SQL statement. Having multiple

 Converting TPC-H Query Templates to Use DSQGEN for Easy Extensibility 107

SQL queries in one template allows for the implementation of business questions that
usually occur in the same sequence, such as drill down queries.

The Single-Template Workload generates one or multiple versions of the same
query. It can be used to stress test the execution of a single query with multiple
substitution parameters. This is especially useful to test the query optimizer’s ability
to generate the most optimal execution plan for every query that can be generated
from one template. The syntax to generate 500 queries for scale factor 100 using
query template T1 in the ANSI SQL syntax is:

DSQGEN –scale 100 -template T1.tpl
 –count 500 -dialect ansi.tpl

For the Single-Stream Workload, fully qualified paths to a set of template files are
listed in an ASCII meta-file (e.g. MF.txt). This workload generates one query for
every template included in the meta-file. The Single-Stream query workload is
identical to the workload used in TPC-H’s Power-Test.

The Multi-Stream Workload simulates n users, each running a unique permutation
of the query templates defined in a meta-file. The following command line generates
n files, query_0.sql through query_<n-1>.sql, each containing a different permutation
of the queries defined in M.tpl according to the vendor-specific dialect defined in
dialect.tpl:

DSQGEN –input M.tpl –stream <n> -dialect <dialect.tpl>

4 Modeling Existing TPC-H Queries with DSQGEN

4.1 Substitution Analysis

The 22 TPC-H queries use the substitution parameters listed in Table 2. After
eliminating duplicates, we are able to classify all substitutions into the 10 types as
listed in the third column.

The Type 1 substitution type randomly selects one or more numbers from a dense
interval. Most queries use substitutions of integer numbers, a straightforward use of
the RANDOM function. Query 16 concatenates two independently selected values in
[1..5] to identify a value for P_BRAND (Type 1a). Query 6 requires random floating
value between 0.02 and 0.09 to build a selectivity predicate on L_DISCOUNT (Type
1b). Another variant of Type 1 is used in Query 16, which applies an in-list predicate
on P_SIZE.

The Type 2 substitution type randomly selects one or more strings from a list of
possible items.

The Type 3 substitution type randomly selects a date. The desired value may be a
random day in a static month and year (Type 3a), a static day of a random month and
year (Type 3b), a static day of a random month between the January of a static year
and October of a static year (Type 3c), or the first of January of a random year (Type
3d).

The Type 4 substitution type selects the scale factor of the database being queried.
The Type 5 substitution type selects the number of rows to be returned by the top

most SQL statement.

108 J.M. Stephens Jr. and M. Poess

Table 2. TPC-H parameter substitutions and their characterization into types

Table Column Substitution Domain Type Query
P_BRAND 'Brand#MN' where MN is a two character string representing two

numbers randomly and independently selected within [1...5]
1a 16

N/A Randomly selected within [60 ... 120] 1a 16
C_PHONE Randomly selected within [11 … 35] 1a 16
L_QUANTITY Randomly selected within [312 … 315] 1a 16
L_DISCOUNT Randomly selected within [0.02 ... 0.09] 1b 6
P_SIZE Randomly selected within [1 … 50] 1a 16
P_SIZE 8 numbers randomly selected within [1 … 50] (no duplicates) 1c 16
P_NAME Randomly selected from the list of P_NAMEs 2 16
P_CONTAINER Randomly selected from the list defined for P_CONTAINER 2 16
N_NAME Randomly selected within the list of N_NAME 2 16
R_NAME Randomly selected within the list of R_NAME 2 16
C_MKT_
SEGMENT

Randomly selected within the list of Segments 2 16,3

L_SHIPMODE Randomly selected within the list of values defined for Modes 2 16
P_TYPE Made of the first 2 syllables of a string randomly selected within

the list of 3-syllable strings defined for Types
2 16

P_TYPE Randomly selected within the list Syllable 3 defined for Types 2 16
O_COMMENT Randomly selected of “special”, “pending”, “unusual”, “express” 2 16
DATE Randomly selected day [1995-03-01 ... 1995-03-31]. 3a 3
DATE The first day of a random month of years [1993 ... 1997]. 3b
DATE The first day of a random month between the first month of 1993

and the 10th month of 1997.
3c 4

DATE The first of January of a random year within [1993 ... 1997]. 3d 6
N/A Chosen as 0.0001 / SF. 4 11
N/A Limit the number of rows to <n> 5 3

In the following sections, we will use these query substitution types to translate

representative TPC-H query templates into the DSQGEN syntax. The accompanying
figures outline the QGEN syntax for a given query include the substitution definitions
used for that query, but it is worth noting that the substitution definition is not
included in the template in the actual QGEN template. The substitution definitions
would only be clear to a user who was able to access and understand the source code
of QGEN itself. While this paper does not illustrate the translation of the entire TPC-
H query set, the process outlined here can be applied to all queries defined for TPC-H.

4.2 Query 16

Query 16 finds out how many suppliers can supply parts with given attributes. It
might be used, for example, to determine whether there are a sufficient number of
suppliers for heavily ordered parts. Query 16 is an example that uses the substitution
types: 1, 1c and 2 (see Table 2).

SELECT p_brand ,p_type ,p_size
 ,count(distinct ps_suppkey) as supplier_cnt
FROM partsupp, part
WHERE p_partkey = ps_partkey
 AND p_brand <> ':1'
 AND p_type not like ':2%'
 AND p_size in (:3, :4, :5, :6, :7, :8, :9, :10)

Fig. 5. Query 16 of TPC-H in QGEN Syntax

 Converting TPC-H Query Templates to Use DSQGEN for Easy Extensibility 109

 AND ps_suppkey not in (SELECT s_suppkey
 FROM supplier
 WHERE s_comment like
 '%Customer%Complaints%’)
GROUP BY p_brand ,p_type, p_size
ORDER BY supplier_cnt desc, p_brand, p_type, p_size;

Fig. 5. (continued)

:1 (p_brand) is substituted as Brand#MN, where M and N are two single character
strings representing two numbers randomly and independently selected within [1 .. 5];

:2 (p_type) is made of the first 2 syllables of a string randomly selected within the
list of 3-syllable strings “STANDARD", "ANODIZED", "TIN", "SMALL",
"BURNISHED", "NICKEL", "MEDIUM", "PLATED", "BRASS", "LARGE",
"POLISHED", "STEEL", "ECONOMY", "BRUSHED", "COPPER", "PROMO”

:3 to :10 (p_size) are eight randomly selected as a set of different values of
[1...50];

Query 16 can be rewritten in DSQGEN syntax by utilizing the RANDOM and
TEXT substitution types and the ULIST operator as follows.

DEFINE PBRAND_A = RANDOM(1,5,uniform);
DEFINE PBRAND_B = RANDOM(1,5,uniform);
DEFINE PTYPE = LIST(TEXT({"STANDARD",1},{"ANODIZED",1}
 ,{"TIN",1},{"SMALL",1}
 ,{"BURNISHED",1},{"NICKEL",1}
 ,{"MEDIUM",1},{"PLATED",1}
 ,{"BRASS",1},{"LARGE",1}
 ,{"POLISHED",1},{"STEEL",1}
 ,{"ECONOMY",1},{"BRUSHED",1}
 {"COPPER",1},{"PROMO”,1}),8);
DEFINE SIZE = ULIST(RANDOM(1,50,uniform),8);

SELECT p_brand ,p_type ,p_size
 ,count(distinct ps_suppkey) as supplier_cnt
FROM partsupp ,part
WHERE p_partkey = ps_partkey
 AND p_brand <> '[PBRAND_A][PBRAND_B]'
 AND p_type not like '[PTYPE]%'
 AND p_size in ([SIZE.1],[SIZE.2],[SIZE.3],[SIZE.4]
 ,[SIZE.5],[SIZE.6],[SIZE.7],[SIZE.8])
 AND ps_suppkey not in (SELECT s_suppkey
 FROM supplier
 WHERE s_comment like
 '%Customer%Complaints%’)
GROUP BY p_brand ,p_type ,p_size
ORDER BY supplier_cnt desc ,p_brand ,p_type, p_size;

Fig. 6. Query 16 of TPC-H in DSQGEN Syntax

110 J.M. Stephens Jr. and M. Poess

The substitution parameter for P_BRAND is essentially a two-digit number, each
digit from the domain of [1,5]. It can be constructed from the two independent
substitution tags PBRAND_A and PBRAND_B, each defined with the RANDOM
substitution type as an integer between 1 and 5. The substitution parameter for
P_TYPE is a random string from a list of 16 elements (see above). It can be
implemented as a TEXT substitution of 16 elements, each with the same weight.
P_SIZE requires 8 substitution parameters, each from the domain of [1,50].
Additionally the set of 8 parameters has to be unique. Hence, we implement the
substitution parameter using a combination of the RANDOM substitution and the
ULIST operator.

4.3 Query 6

Query 6 quantifies the amount of revenue increase for a given year that would have
resulted from eliminating discounts. Query 6 is an example that uses the substitution
types: 1b and 3d (see Table 2).

SELECT sum(l_extendedprice * l_discount) as revenue
FROM lineitem
WHERE l_shipdate>= date ':1'
 AND l_shipdate<add_months(date':1'+ interval '1' year
 AND l_discount between :2 - 0.01 and :2 + 0.01
 AND l_quantity < :3;

Fig. 7. Query 6 of TPC-H with QGEN Syntax

:1 DATE is the first of January of a randomly selected year within [1993 .. 1997];
:2 DISCOUNT is randomly selected within [0.02 .. 0.09];
:3 QUANTITY is randomly selected within [24 .. 25].

Query 6 can be implemented solely with the RANDOM substitution type. The
substitution tag on L_SHIPDATE, S_YEAR is implemented as a random number
between 1993 and 1997. The month and day portion of the date are statically set to
01. The substitution tag for L_DISCOUNT requires a fraction [0.02,0.09]. Since the
RANDOM substitution type only allows for integer values, we use a random number
tag between 2 and 9 and build the fraction by prefixing the number with “0.0”. The
substitution tag for L_QUANTITY is a simple random substitution of [24,25].

DEFINE SYEAR = random(1993,1997,normal);
DEFINE DF = random(2,9,normal);
DEFINE LQUANTITY = random(24,25,normal);
SELECT sum(l_extendedprice * l_discount) as revenue
FROM lineitem
WHERE l_shipdate>= date'[SYEAR]-01-01'
 AND l_shipdate< date'[SYEAR]-01-01'+interval '1' year
 AND l_discount between 0.0[DF]-0.01 and 0.0[DF]+0.01
 AND l_quantity < [LQUANTITY];

Fig. 8. Query 6 of TPC-H with QGEN Syntax

 Converting TPC-H Query Templates to Use DSQGEN for Easy Extensibility 111

4.4 Query 3

Query 3 retrieves the ten unshipped orders with the highest value. It is an example
that uses the substitution types: 2, 3a and 5 (see Table 2).

SELECT l_orderkey
 ,sum(l_extendedprice*(1-l_discount)) as revenue
 ,o_orderdate ,o_shippriority
FROM customer ,orders, lineitem
WHERE c_mktsegment = ':1'
 AND c_custkey = o_custkey
 AND l_orderkey = o_orderkey
 AND o_orderdate < date ':2'
 AND l_shipdate > date ':2'
GROUP BY l_orderkey, o_orderdate, o_shippriority
ORDER BY revenue desc, o_orderdate;
:n

Fig. 9. Query 3 in TPC-H qgen sytax

:1 is randomly selected within the list of values defined for Segments
:2 is a randomly selected day within [1995-03-01 .. 1995-03-31].
:n defines the maximum number of rows returned by the query (top)

Query 3 uses the TEXT substitution type, the RANDOM substitution type and the
build-in functions to limit the number of rows returned by the query. As in the
P_TYPE substitution of Query 16, this query implements the substitution parameter
for C_MKTSEGMENT using the TEXT substitution type with a four item list, each
with the same likelihood. The substitution parameters O_ORDERDATE and
L_SHIPDATE are implemented with the RANDOM substitution. Since both

DEFINE SEGMENT=text({“AUTOMOBILE”,1},{“BUILDING”,1}
 ,{“FURNITURE”,1},{“MACHINERY”,1}
 ,{“HOUSEHOLD”});
DEFINE SHIPDAY = random(1,31,uniform);
DEFINE _LIMIT=10;
[_LIMITA] select [_LIMITB] l_orderkey
 ,sum(l_extendedprice*(1-l_discount)) as revenue
 ,o_orderdate, o_shippriority
FROM customer, orders, lineitem
WHERE c_mktsegment = '[SEGMENT]'
 AND c_custkey = o_custkey
 AND l_orderkey = o_orderkey
 AND o_orderdate < date '1995-03-[SHIPDAY]'
 AND l_shipdate > date '1995-03-[SHIPDAY]'
GROUP BY l_orderkey, o_orderdate, o_shippriority
ORDER BY revenue desc, o_orderdate
[_LIMITC];

Fig. 10. Query 3 in TPC-H DSQGEN syntax

112 J.M. Stephens Jr. and M. Poess

substitution parameters are the same they can be implemented with the same
substitution tag, SHIPDAY, which picks a day between 1 and 31 prefixed with the
static string “'1995-03-“. This query also needs to limit the number of rows to be
returned to ten. This is done with three substitution tags, _LIMITA, _LIMITB and
_LIMITC. _LIMITA, _LIMITB and _LIMITC are defined in the vendor specific
template _LIMIT is defined as 10.

4.5 Query 4

Query 4 determines how well the order priority system is working and gives an
assessment of customer satisfaction. It is an example using the substitution type 3c.

SELECT o_orderpriority, count(*) as order_count
FROM orders
WHERE o_orderdate >= date ':1'
 AND o_orderdate < date ':1' + interval '3' month
 AND exists (SELECT * FROM lineitem
 WHERE l_orderkey = o_orderkey
 AND l_commitdate < l_receiptdate)
GROUP BY o_orderpriority ORDER BY o_orderpriority;

Fig. 11. Query 4 in TPC-H QGEN syntax

:1 is the first day of a randomly selected month between the first month of 1993 and
the 10th month of 1997.

Query 4 uses the RANDOM substitution type in combination with the build-in
arithmetic capability of DSQGEN. There are 58 months between January 1993 and
October 1997. In order to choose a random month between those dates, we first
generate a random number between 0 and 58 (SEQMO). Then we divide that number
by 12 to generate the year (YR). Please note that the result of the division is an
integer. In order to generate the months, we take that number modulo 12 (MO). In the
query we build the date by concatenating these numbers into: [YR]-[MO]-01

DEFINE SEQMO = random(0,57,uniform);
DEFINE YR = ([SEQMO] / 12) + 1;
DEFINE MO = ([SEQMO] % 12) + 1;
SELECT o_orderpriority,
 count(*) as order_count
FROM orders
WHERE o_orderdate>=date'[YR]-[MO]-01'
 AND o_orderdate<date'[YR]-[MO]-01'+interval '3' month
 AND exists (SELECT *
 FROM lineitem
 WHERE l_orderkey = o_orderkey
 AND l_commitdate < l_receiptdate)
GROUP BY o_orderpriority
ORDER BY o_orderpriority;

Fig. 12. Query 4 in TPC-H DSQGEN syntax

 Converting TPC-H Query Templates to Use DSQGEN for Easy Extensibility 113

5 Scope of Possible Expansions to the TPC-H Query Set

Section 4, identified the substitution types that are found in the TPC-H query set. We
have also shown that DSQGEN’s current functionality is sufficient to generate queries
for all 22 TPC-H query templates. It is also possible to extend the TPC-H query set
very elegantly using DSQGEN, well beyond the identified substitution types. Since
DSQGEN uses textual substitutions, we are able to introduce aggregation
substitutions, column substitutions and full date substitutions. In the following
sections we will illustrate how new queries can be introduced into TPC-H, creating a
new query using the existing substitution types, followed by examples using new
substitution types: aggregation substitution, and column substitution. Please note, we
are not proposing new queries to TPC-H, but merely illustrating how new queries
could be added to TPC-H’s query set without any modifications to the query
generator.

5.1 Query Using Existing Substitution Types

The following query retrieves unshipped orders with the highest value for customers
with specific account balances and located in specific nations. This query uses the
SQL ROLLUP operator, grouping by any combination of customer name, customer
nation, order date and ship priority. The query uses three substitutions. The ABAL
substitution tag, used in a between predicate, is defined using the RANDOM

DEFINE ABAL=random(0,9000,uniform);
DEFINE NT=text({“ALGERIA”,1),{“ARGENTINA”,1},{“IRAQ”,1}
 ,{“BRAZIL”,1},{“CANADA”,1},{“RUSSIA”,1}
 ,{“ETHIOPIA”,1},{“FRANCE”,1},{“INDIA”,1}
 ,{“GERMANY”,1},{“JORDAN”,1},{“KENYA”,1}
 ,{“INDONESIA”,1},{“IRAN”,1},{“EGYPT”,1}
 ,{“JAPAN”,1},{“MOROCCO”,1},{“ROMANIA”,1}
 ,{“MOZAMBIQUE”,1},{“PERU”,1},{“CHINA”,1}
 ,{“ROMANIA”,1},{“SAUDI ARABIA”,1}
 ,{“VIETNAM”,1},{“UNITED KINGDOM”,1});
DEFINE _LIMIT=10;
[_LIMITA] select [_LIMITB] c_name, c_nation
 ,sum(l_extendedprice*(1-l_discount)) as revenue
 ,o_orderdate, o_shippriority
FROM customer, orders, lineitem, nation
WHERE c_acctbal between [ABAL]-999.99 and [ABAL]
 AND c_nationkey = n_nationkey
 AND c_custkey = o_custkey
 AND n_name = ‘[NT]’
 AND l_orderkey = o_orderkey
GROUP BY ROLLUP (c_name, c_nation
 ,o_orderdate, o_shippriority)
ORDER BY revenue desc, o_orderdate, c_name, c_nation
[_LIMITC];

Fig. 13. Query Using Existing Substitution Types

114 J.M. Stephens Jr. and M. Poess

substitution type. It chooses the upper boundary of the account balance from the interval
[0..9000]. The lower boundary of the between predicate is computed by subtracting
999.99 from ABAL. The second tag (NT) is used to choose a nation from a text list rather
than the nation key. The last tag, _LIMIT, caps the number of rows returned to 10.

5.2 Query Using Aggregate Substitutions

The following query is based on Query 11 of TPC-H. It lists the most important
subset of suppliers' stock in a given nation. In this context “importance” is based on
the total, largest or smallest stocking cost. It uses the random substitution type for the
NK substitution tag to implement a predicate on nation key. It uses the text
substitution type to implement the AGG substitution tag, which chooses between the
aggregation functions sum, min and max for calculating a supplier’s stock.

DEFINE NK = random (0,31, uniform);
DEFINE AGG= text({“sum”,1},{“min”,1},{“max”,1});

SELECT ps_partkey
 ,[AGG](ps_supplycost * ps_availqty) as value
FROM partsupp,supplier
WHERE ps_suppkey = s_suppkey
 AND s_nationkey = [NK]
GROUP BY ps_partkey;

Fig. 14. Query using aggregate substitution

5.3 Query Column Substitutions and Full Date Substitution

The final example query is based on Query 3 from TPC-H. It employs column
substitution to randomly select the target of an aggregation from a set of statistically
equivalent columns. The resulting queries generated by DSQGEN would exercise
similar selectivity and computational load, but would increase the cost and
complexity of maintaining summary tables or other auxiliary data structure, by
increasing the randomness of the eventual SQL.

DEFINE SHIPDATE = random(1,31,uniform);
DEFINE LIMIT=10;
DEFINE COL=text({“l_quantity”,1},{“l_discount”,1}
 ,{“l_extendedprice”,1},{“l_tax”,1});

[_LIMITA] select [_LIMITB] l_orderkey
 ,sum([COL]), o_orderdate, o_shippriority
FROM customer, orders, lineitem
WHERE c_custkey = o_custkey
 AND l_orderkey = o_orderkey
 AND o_orderdate < date '1995-03-[SHIPDAY]'
 AND l_shipdate > date '1995-03-[SHIPDAY]'
GROUP BY l_orderkey, o_orderdate, o_shippriority
ORDER BY [COL] desc, o_orderdate
[_LIMITC];

Fig. 15. Query using Column Substitutions

 Converting TPC-H Query Templates to Use DSQGEN for Easy Extensibility 115

6 Conclusion

This paper has demonstrated how the enhanced syntax available with the query
generator developed for the proposed TPCDS benchmark, DSQGEN, can be used to
express the queries defined for TPC-H, which currently uses the older, simpler query
generator, QGEN. The migration from one query dialect to the other has no impact on
the syntactic formulation of the queries, the selectivity of their predicates, the work
they present to the system under test or the answer sets that will be returned. As such,
the migration from the old query dialect to the new dialect can be accomplished
without any impact on the viability or comparability of existing TPC-H results.

At the same time, moving the TPC-H query set from the existing syntax to that
provided by DSQGEN presents the TPC with a two-fold opportunity that could enrich
the existing benchmark and extend its useful life. The rephrased queries would reduce
the support burden borne by the TPC, since the query templates could be revised or
corrected without the need to fund additional software development. The migration
would also provide the TPC with the opportunity to explore, and potentially adopt,
additional queries that broaden the scope of the functions tested by the TPC’s only
decision support benchmark, expand the relevance of the workload to modern
decision support customers, and increase the relevance of TPC-H results to customers
faced with the complex and costly process of selecting a decision support solution,
whether in hardware or software.

References

1. Stephens Jr., J.M., Poess, M.: MUDD: a multi-dimensional data generator. In: WOSP 2004,
pp. 104–109 (2004)

2. Poess, M., Stephens Jr., J.M.: Generating Thousand Benchmark Queries in Seconds. In:
VLDB 2004, pp. 1045–1053 (2004)

3. Poess, M.: Controlled SQL query evolution for decision support benchmarks. In: WOSP
2007, pp. 38–41 (2007)

4. Poess, M., Floyd, C.: New TPC Benchmarks for Decision Support and Web Commerce.
ACM SIGMOD RECORD 29(4) (2000)

5. TPC-D Version 2.1: http://www.tpc.org/tpcd/default.asp
6. TPC-H specification 2.8.0, http://www.tpc.org/tpch/spec/tpch2.8.0.pdf
7. Transaction Processing Performance Council Policies Version 5.17,

http://www.tpc.org/information/about/documentation/spec/
TPC_Policies_v5.17.pdf

	Converting TPC-H Query Templates to Use DSQGEN for Easy Extensibility
	Introduction
	TPC-H
	Background
	TPC-H Data Generator QGEN

	Query Generator DSQGEN
	Query Template Grammar
	Generating Query Workloads

	Modeling Existing TPC-H Queries with DSQGEN
	Substitution Analysis
	Query 16
	Query 6
	Query 3
	Query 4

	Scope of Possible Expansions to the TPC-H Query Set
	Query Using Existing Substitution Types
	Query Using Aggregate Substitutions
	Query Column Substitutions and Full Date Substitution

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

