
R. Nambiar and M. Poess (Eds.): TPCTC 2009, LNCS 5895, pp. 18–30, 2009.
© Springer-Verlag Berlin Heidelberg 2009

The Art of Building a Good Benchmark

Karl Huppler

IBM Corporation
IBM MS XQK

3605 Highway 52 North
Rochester, MN 55901

huppler@us.ibm.com

Abstract. What makes a good benchmark? This is a question that has been
asked often, answered often, altered often. In the past 25 years, the information
processing industry has seen the creation of dozens of “industry standard”
performance benchmarks – some highly successful, some less so. This paper
will explore the overall requirements of a good benchmark, using existing
industry standards as examples along the way.

1 Introduction – Building a Good Benchmark

Why so many benchmarks? The cynic would say “They haven’t got it right, yet.” The
pessimist would say “They’ll never get it right, but they keep on trying.” The realist
knows “The computing industry is so vast and changes so rapidly that new
benchmarks are constantly required, just to keep up.”

 TPC-D

TPC-B

TPC-C

TPC-A

TPC-App

TPC-H

TPC-R

TPC-E

SPECint2000

SPECint2006

SPECint_rate2000

SPECfp_rate2006

SPECjbb2005 SPECjms2007

SPC-2C

SYSmark2007

SPC-1C

SPECsfs2008

SPECjms2007

SPECjvm2008 SPECmail2008

 The Art of Building a Good Benchmark 19

Unfortunately, just because a benchmark is
“new” doesn’t mean that it measures the “right
stuff.” The design and implementation of a
good performance benchmark is a complex
process – often compromising between
contrasting goals.

There are five key aspects that all good
benchmarks have, to some degree. It is not
necessary to be perfect in each of these. In
fact, it is impossible to be so. Most good
benchmarks have clear strengths in one or two areas, and accommodate the others.
The five characteristics are:

• Relevant – A reader of the result believes the benchmark reflects something
important

• Repeatable – There is confidence that the benchmark can be run a second
time with the same result

• Fair – All systems and/or software being compared can participate equally
• Verifiable – There is confidence that the documented result is real
• Economical – The test sponsors can afford to run the benchmark

Often, in order to satisfy the last four of these items, a benchmark developer must
choose to give up on some of the first. This is not all bad, as long as one understands
the choices being made. In fact, as we explore each of these items in greater detail,
along with discussions of compromise between them, we will also look at the dangers
of (believe it or not) doing too good a job in creating a benchmark.

Relevant

Repeatable

Fair

Verifiable

Economical

20 K. Huppler

2 Relevant

There are a number of characteristics that can make a benchmark relevant, or
irrelevant. Some of them are:

• Meaningful and understandable metric
• Stresses software features in a way that is similar to customer applications
• Exercises hardware systems in a way that is similar to customer applications
• Longevity – leading edge but not bleeding edge
• Broad applicability
• Does not misrepresent itself
• Has a target audience that wants the information

First, the metric of the benchmark must be understood by the reader – or at least be
perceived to be understood. For example, the metric of SPEC’s (Standard Performance
Evaluation Corporation) SPECjbb_2005 benchmark is “SPECjbb bops”. It isn’t difficult
for the casual reader to determine that the “ops” is “operations per second”, and they
might guess that it is “business operations per second”, there is no doubt that it is
“business operations per second as measured with the SPECjbb benchmark” and one
might even infer that the “jbb” stands for “java business benchmark”, even though you
won’t find this phrase in SPEC’s documentation for the benchmark. The view that this
is a throughput measure of merit for server-side transactional java where bigger is better
is quickly understood – and this is a strength of the benchmark.

It parallels another great benchmark, TPC Benchmark C (TPC-C), whose primary
performance metric is simply “tpmC” – transactions per minute in Benchmark C –
simple, yet elegant: This is a transactional benchmark, measuring throughput, where a
larger value is better. That the “C” stands for the third benchmark produced by the
Transaction Processing Performance Council (TPC) may be a little obscure, but this
can be forgiven for the most successful transactional database benchmark in the
industry. A student of the benchmark will find that “tpmC” is really a measure of
“New Order Transactions per minute”, where the New Order transaction is only one
of 5 business transactions in TPC-C, but this is fine, since the ratios of the transaction
mix are tightly controlled in the benchmark.

Two more benchmark metric examples: The TPC-H benchmark performance
metric is “QphH@xxxGB” where “xxx” is a value that represents the database size
that was measured. One can infer that this is also a throughput measure, one of
queries per hour in Benchmark H (No, the “H” doesn’t represent the 8th benchmark
produced by the TPC – it stands for “ad Hoc”). If you study the benchmark, you find
that the metric isn’t the actual
number of queries that are
executed per hour, because the
metric is actually the geometric
mean of the throughput measure
times the database size and the database size divided by the geometric mean of the
individual query times - - Confused? Sure, but for the casual reader, QphH@dbsize
means it is a measure of throughput capacity in Benchmark H for queries run against
a particular size of database - - - and for all intentional muddying of the formula, here,
it truly does relate to that very thing!

 The Art of Building a Good Benchmark 21

My final example is the SPECcpu2006 suite (SPECfp2006, SPECfp_rate2006,
SPECint2006 and SPECint_rate2006). Here, the metric is - - - a number. There are no
units, because this metric is essentially a ratio of the ability of the system under test to
perform in a suite of intensive processor-oriented operations and functions in
comparison to a reference point. To make matters more obscure, there are potentially
8 numbers, for “base” and “peak” measures of each of the two ways to run each of the
two independent suites in the benchmark suite. One might ask “How can something
that seems to measure something so esoteric be a good benchmark?” The answer is
that the SPECcpu suite is so overwhelmingly strong in other aspects that it is far and
above the most popular performance benchmark in the world.

The next “relevance” point is the use of software features in a realistic way. This
can be one of the most challenging aspects of a benchmark, and one that leads to a
fairly short life-span for benchmark relevance – because software is constantly
evolving. As each software supplier delivers features and functions on an independent
schedule, it can also run directly against the “fair” requirement for benchmarks.

The appropriate use of software features is perhaps the most important
requirement of benchmark development, even though it is also one of the least
obvious to the casual observer. It is easy enough to tag a benchmark with terms like
“Database”, “OLTP”, “Decision Support”, “Numeric Intensive”, “Compute Intensive”
and the like. Such terms may make a benchmark appear to be exercising relevant
software paths. However, if the benchmark does not use software features in the way

that a “typical” customer application will, it
can prevent computer providers from deliver-
ing optimal solutions to their customers. If
a benchmark becomes popular, computer
providers will invest skills and money to
improve the benchmark results. If the bench-
mark uses a very limited software path or if
the benchmark uses a path that is seldom
used by consumers, this investment is made
at the expense of development that might
improve real consumer applications.

On the other hand, when a benchmark
exercises features realistically, it can be an
absolute boon for consumers, because it
gives development organizations the
incentive to optimize paths that the
consumer wants to take. The hallmark
example of this is TPC-C. When it was
delivered in 1992, it represented database
transaction processing in a way that many,
many consumers accomplished that function. At that time, I examined a database that
IBM maintained that had performance data from thousands of AS/400 customers
(running the operating system that was the predecessor to the IBM i operating system
that is one of the options on IBM Power Systems, today.) The assessment showed that
the overall path length of a TPC-C New Order was at approximately the 70th
percentile of IBM AS/400 customer applications and exercised database and

22 K. Huppler

workstation features in a way that was very similar to our customer’s OLTP
applications. TPC-C has enabled the industry to provide customers with optimizations
that are important to their applications, such as improved logging, improved
serialization locking, optimal transaction processing paths, optimal transaction control,
task/resource affinity, optimal interaction between customer workstations, middle-tier
servers and database servers and overall improved path length for many key transaction
processing functions. On several occasions, I have observed customer applications that
had expanded with customer growth that would have experienced bottlenecks that
would slow them down, except that our development team had already removed those
bottlenecks to help optimized TPC-C. The relevant paths of the benchmark allowed us
to optimize features ahead of when our customers needed them, helping them to expand
without stressing the computer systems that they relied on to run their businesses.

There are other examples of similar improvements that benchmarks have provided
for consumers: TPC-H provided opportunities to greatly improve parallel processing
for large queries. The SPECcpu suite helps to improve compilers, arithmetic
operations, string operations, and others. Versions of SPECjbb help with just-in-time
(JIT) compilation for Java code. The list goes on.

Next on the “relevance list” is the use of hardware in a manner that is similar to
consumer environments. As with software, it is important that a benchmark exercise
hardware components and subsystems in a meaningful way, but it is even more
important that a benchmark does not exercise hardware in ways that are not realistic.
For example, a benchmark that does nothing but exercise a floating point accelerator
might cause undue investment in that area, at the expense of investments in more
general hardware improvements. On the other hand, a benchmark that exercises a
mixture of floating point arithmetic, integer arithmetic, cache, memory, string
manipulation and vector manipulation might provide a very satisfactory measure of
the processor and related components in a system.

The benchmark of reference is, again, the SPECcpu suite of benchmarks. The
members of the Open Systems Group CPU
(SPECcpu) committee within SPEC spend a great
deal of time and effort making sure that the
individual test cases used within the suite stress a
variety of relevant hardware and software functions
within the processor nest. This is not to say that the
benchmark tests that make up the SPECcpu suite are
the end-all measure of hardware functions. In fact,
these benchmarks do not exercise all hardware
functions – by design. This leads, briefly, into a discussion of appropriate
representation. A strength of the SPECcpu suite is that it says what it does and it
does what it says. There is no implication that superior performance in
SPECint_rate2006, for example, will translate to superior performance in an
environment that requires massive numbers of user-tasks simultaneously competing
for processor, memory, cache and I/O resources on the system – but there is a strong
indication that it will work well for the portions of the processing that require
substantial time to be spent manipulating integers in a variety of ways.

For focus on a broader spectrum of hardware components in an environment with
massive numbers of competing tasks that exercise processor, memory, cache, NUMA

 The Art of Building a Good Benchmark 23

characteristics, network I/O and storage I/O, the
benchmark of choice has, for years, been TPC-C. One
could argue that the sands of time have eroded the
software relevance of TPC-C. Applications of today
are far more complex than those developed in 1992,
when TPC-C was first introduced. However, TPC-C
continues to be a premier engineering tool for ensuring
that an overall hardware design (and the associated
firmware and OS kernels that run on it) is capable of
supporting robust multi-user, multi-tasking environ-
ments. In this regard, the TPC’s two transaction
processing benchmarks compliment each other, with
TPC-C enabling and encouraging strong affinity and

non-uniform allocation of system resources and TPC-E requiring a more uniform
allocation of resources across the entire system with less focus on affinity. Both
environments are important to consumers, and a combination of the two benchmarks can
lead to strong innovation in processor technology and associated hardware components.

Another aspect of appropriate representation is taking the steps necessary to
ensure that the benchmark is not misused to represent something that was not
intended. This can be a challenge, since one of the strengths of a benchmark is to
deliver a metric and exercise software and hardware in ways that are meaningful. The
natural inclination of a user of the benchmark is to generalize this to assume that the
benchmark represents everything associated with the environment that it emulates.

I recently had an experience with
SPECjbb2005 that highlighted this. The
benchmark is “server-side java” and
“transactional”, with a metric that includes
“operations per second”. The inclination is to
assume that it can be used to represent all
transactional java environments that run on a
server with multiple users – even though the
benchmark intentionally does not include
network I/O, storage I/O, database or a user
interface. In the situation I encountered,
someone was attempting to use SPECjbb2005
to examine power management routines when
the system is not running at full speed. The
way to reduce system utilization with
SPECjbb2005 is to run fewer jobs than there
are logical processors – which focused some
jobs on processors running at nearly 100%
utilization while other processors sat idle.
Clearly, this is not the way that a real transactional environment would work at
moderate system utilization, and the result of the experiment were not what would be
expected in a real environment. I should note that SPEC’s SPECpower committee
addressed this very point when creating SPECpower_ssj2008. This committee used
the SPECjbb2005 application as a base for the SPECpower_ssj2008 benchmark, but

We’ve measured the
fuel use of the truck

when it is standing idle

So, that tells us how fast
it will travel when fully

loaded, right?

(Engineering)

(Sales)

24 K. Huppler

altered it to more appropriately distribute work across the entire system at lower
utilization points.

The next item on my “relevance” list is longevity. A benchmark whose usefulness
lasts only one year is not a benchmark – it is a workload for a white paper. To a large
degree, longevity is accomplished by creating a successful benchmark with other
qualities described in this paper. In addition to satisfying these requirements “today”,
however, there needs to be a perception that the benchmark will satisfy them
“tomorrow”. In order to build a base of comparative performance information, a
benchmark needs to be relevant for several years. This means that the software
concepts that are exercised must be modern enough that they will still seem current 5
years hence, but not so modern that they will go through rapid change as they mature –
The benchmark must be leading edge, but not bleeding edge. It also means that
benchmark development must be accomplished in a reasonable time. Innovations in
computing technology will likely stay current for five years and may stay current for
ten, but if it takes seven years to develop a benchmark, chances are the opportunity
for the benchmark to remain relevant over time is very limited.

There is another way to look at longevity – that being the longevity of the
benchmark suite. Both the SPEC and TPC organizations have recognized that as
technology changes, benchmarks may need to change with it. SPEC, in particular, has
done an excellent job of initiating discussions for the next version of a benchmark
almost as soon as a new version is released. Thus, while the results from the
SPECcpu95 suite are not comparable with those of SPECcpu2000 or SPECcpu2006,
the concept of what the benchmark is trying to achieve has been retained, maintaining
longevity while upgrading the currency of the benchmark suite. The TPC has done
this to some degree, too, with changes to the pricing and storage rules for TPC-C and
the growth of TPC-D into TPC-R and TPC-H, although one could argue that the next
change is overdue.

There are two items left in the “relevant” list: broad applicability and having a
strong target audience. Both seem simple and straightforward, but both create
challenges.

Certainly a benchmark application that focuses on the electronic examination of
dental x-rays would not be considered to have a broad interest base, and yet if it does
not include some of the functions that are important for this, the target audience may
not include dentists who are looking to upgrade their information technology. On the
other hand, a benchmark that makes use of a variety of imaging techniques could
build a target audience that includes dentists, physicians, x-ray specialists,
meteorologists, seismologists, geologists, natural resource engineers, crime
investigators, and security specialists. The key is to retain sufficient specific use of
hardware and software functions and features to stay “real”, while broadening the
application to be appropriate for a wide number of uses.

A couple more points on the identification of a strong target audience: The target
audience must be interested in receiving the information. Suppose the key selection
criteria for a computer solution for the groups listed above center around software
functionality, hardware stability and customer service, with the assumption that the
application design and hardware capacity are capable of handling the required

 The Art of Building a Good Benchmark 25

workload. If the target audience doesn’t need the information to help with their
purchase decisions, the benchmark is of little use.

Finally, I must note that the “target audience” does not need to be “customers”.
Taking advantage of the many strengths that are listed throughout this paper, the
SPECcpu suite has developed a huge audience – in the very people who run the
benchmark – engineers, programmers, scientists, academics. Because the benchmark
does not require sophisticated software support, it is also an outstanding tool for early
processor development. While the benchmarks within the suite are most certainly
used to help sell systems, this is almost an afterthought, once the real audience for the
benchmark results completes its study.

3 The Other Side of the Coin

Thus far, I have spent a good deal of time on the need for performance benchmarks to
be relevant. Indeed, without relevance, the benchmark will be worthless, at best, and
at the worst will cause damage by forcing bad investments. However, just being
relevant is insufficient to label a benchmark as “a good benchmark.”

An often used phrase is “The best benchmark is the customer’s application”. This
may be true as long as one accepts a target audience of one, but it may not be true,
even then. The other four main criteria also enter in. If the benchmark results cannot
be repeated again and again, the value of the measurement information is in question.
Often a customer environment has data that change in a nonuniform way, making it
difficult to run the benchmark over and over without doing a full system save/restore
operation. If the benchmark cannot be run on different systems with different software
packages driving it, it cannot be used to fairly evaluate different solutions. If there is
no way to verify that the results are accurate and the benchmark was run correctly,
the confidence in the result is questionable. If the benchmark cannot be run
economically, without making a massive investment, there is little incentive to run it.

It is well worth discussing these four criteria further, including some examples of
how successful benchmarks have implemented them.

3.1 Repeatable

It sounds so simple – You run the same code on the same system, so you should get
the same answer, right? In most cases, this is not so. Database applications grow (or
shrink) data and consequently grow and change indices, which means “identical”
queries have different paths and process different numbers of rows. Java applications
can JIT repeatedly, causing the identical
“code” to perform more effectively over time,
but they also build up garbage in the java
heap that must be cleaned out. Even physical
entities are not immune: rotating disk can
become less efficient when filled, because seek times will be longer and writes to
newly formatted solid state storage are typically faster than over-writes of space that
has been previously used to store information.

26 K. Huppler

Benchmark designers must trade some aspects of “reality” to ensure repeatability
and consistency – both from run to run and from minute to minute. One of these
trade-offs is the creation of a steady-state period within the benchmark. Real
applications are hardly steady in the way that they generate work on the system, but a
benchmark where results will be compared requires either that the application and
associated performance does not change over a period of time (such as with TPC-C,
SPECjbb_2005 and SPECweb2005) or that the exact same (or nearly exact same)
“dynamic” work flow runs for each iteration of the benchmark (such as with the
SPECcpu suite and TPC-H) In TPC-H, updates are made to tables, but in key ranges
that do not affect the queries that are the main focus of the benchmark, and in a way
that lock contention from the inserts does not affect the read-only queries. In TPC-C,
although the History, Order and Order_Line tables continue to grow throughout the
benchmark run, empirical data demonstrates that they do not grow so much as to
affect the processing of the benchmark application. And, while the TPC-C
New_Order table is increased at the same rate that rows are removed by the Delivery
transaction, care is taken to reset the database at least after every 12 hours of
benchmark execution, because that is the point when the Delivery transaction will
begin to process new orders that were created during the benchmark run, rather than
the nicely compressed and ordered information that comes in the prebuilt database.

3.2 Fair/Portable

This is another requirement that seems
blatantly obvious, but is truly a challenge to
accomplish. Portability is less of an issue
today that it was two decades ago when the
primary benchmark consortias were formed.
The use of standard C, C++ and Java
languages and the use of standard SQL data
access methods allows benchmark applications
to be run on a wide variety of platforms. However, being “portable” does not mean
that the benchmark is automatically “fair”.

Consider the wide variety of database products that exist in today’s market – from
traditional row-oriented structures, to newer columnar organization, to in-memory
environments, to database accelerator appliances – each with specific strengths and
potential weaknesses. How, then, can any single application fairly represent the
ability of each of these products to perform in a more general environment? The
answer is, of course, “It can’t.” However, benchmark implementers can make
compromises that help the situation.

At the extreme, these compromises can take a benchmark to a “lowest common
denominator” situation, where they include only tried and true functions that almost
all products have had a chance to optimize already. This can be self-defeating, making
the benchmark old before it is even introduced. The key is to select functions that are
viewed as important in the environment that the benchmark attempts to emulate and
to assume that, for products that are weak in some areas, the benchmark can be used
to help optimize those products for the general benefit of their customers. The phrase

 The Art of Building a Good Benchmark 27

on application currency, “leading edge but not bleeding edge,” also applies to the
creation of fair benchmarks.

Another aspect of fairness comes, not with the specific benchmark design, but with
the designers. If a benchmark is developed and prototyped only on one operating
environment, it will naturally tend to be optimized for that environment, at the
expense of others. This has been true for some benchmarks from SPEC’s
Java/ClientServer committee in the past, which focused initially on UNIX-related
environments and the TPC’s TPC-App benchmark, where development was focused
on Windows environments. These benchmarks naturally flowed toward the
environments of choice for the benchmark developers, and were not necessarily “fair”
to the other environments – even though part of this is because of the choice of the
specific vendors involved to simply not participate.

Some compromises can be avoided by not relying on a single benchmark, but
instead using multiple benchmarks that may appear to operate in the same space. As
previously mentioned, TPC-C is structured to stress features that can take advantage
of partitioning and strong affinity between processes and the data they manipulate,
whereas TPC-E is structured to reflect applications that are not as easily divided.
TPC-E uses standard SQL with portions of the application logic being dictated by the
benchmark, much like a business management software package might run, whereas
TPC-C allows a broader range of data access methods and complete control over the
transaction application code, much like a custom “roll your own” application would
use. TPC-H focuses on ad-hoc queries, while its prior sister benchmark, TPC-R,
focused on the kind of report generation that can be achieved with pre-defined
materialized views that are formed with prior knowledge of the kind of queries that
will execute. (TPC-R was retired by the TPC, not because it was poorly implemented,
but because it did not generate a sufficient target audience to warrant active
continuation of the benchmark.) This is also one of the reasons there is a
SPECint2006 and a SPECfp2006 instead of a SPECcpu benchmark.

3.3 Verifiable

A benchmark result is not very useful if there is not a high degree of confidence that it
represents the actual performance of the system under test.
Simple benchmarks can be self-verifying, providing high
confidence as soon as the result is delivered. More complex
“system level” benchmarks have greater requirements for
verification because there are more things that can change. One
possible answer is to take the route that the TPC has taken,
requiring benchmark results to be reviewed by a TPC-certified
auditor who is very familiar with the benchmark and can identify
when an implementation does not follow the benchmark requirements.

SPEC’s approach is to simplify benchmarks when possible, to provide automatic
verification routines when possible, and to assign final verification to the committee
that created the benchmark and is charged with considering revisions in the future.

Both approaches are designed to deliver confidence to the receiver of benchmark
results and both have merit. The TPC could learn from SPEC in the creation of self
verification routines and the simplification of benchmarks when complexity is not

28 K. Huppler

required. As SPEC works toward more complex environments, such as Service
Oriented Architecture and Virtualization, they may find that volunteer reviews of
results are insufficient without the benefit of the dedicated scrutiny of an independent
professional.

3.4 Economical

This is the final item in my list of primary criteria. It is too
often overlooked during initial benchmark development,
because the initial phases of development are focused on
emulating reality to provide the necessary relevance for the
benchmark. Indeed, to be relevant, one might expect a
benchmark to be realistic; and to be realistic often means to
be complex; and to be complex invariably means to be
expensive. This is clearly another opportunity for
compromise, if one wants to create a successful benchmark.

The term, “economical”, does not mean “cheap”, but rather “worth the
investment”. Consider IBM’s leading TPC-C result (6,085,166 tpmC,
$2.81USD/tpmC, available December 10, 2008) which employed the use of 11,000
disk drives and 128 middle-tier client systems. Clearly, the return on the investment
was worth it. The benchmark was implemented and the result published, after all. On
the other hand, it isn’t something one wants to do every week! In fact, as systems
become more and more powerful, the cost of supporting equipment in the TPC-C
benchmark has been one of the contributing factors in a decline in benchmark
publishes.

Other benchmarks, like TPC-E, TPC-H, SPECjAppServer2004, SPECweb2005
and some SPEC and TPC benchmarks that are currently under development require
robust system configurations that will require investments to run them. However, as
with TPC-C, the existence of storage, memory and networking components is key to
the business model for these benchmarks, so the trade-off must be the degree to which
the business model is satisfied.

In contrast, SPECjbb2005 and SPECfp2006/SPECint2006 enjoy large numbers of
benchmark publishes – in part because it is not necessary to establish a massive data
center to support them. College students can run these benchmarks on their laptops.
They might not want to play too many video games while they wait for SPECfp2006
to complete, but the point is that the benchmarks are very affordable. Both
benchmarks make conscious trade-off decisions – They select only a slice of the
computing industry’s “total reality”, in return for the appeal of being inexpensive to
run, easy to run and easy to verify. As long as they are not used out of the context of
their intent, they also meet the requirements for relevance, fairness and repeatability.

4 You Don’t Want All Items Satisfied

Can a benchmark be too perfect? I think so. When TPC-C was introduced in 1992, it
satisfied a hunger for a meaningful, robust benchmark that was representative of the
kind of database transaction processing that existed in the industry. It had (and still

 The Art of Building a Good Benchmark 29

has) a business model that was easily understood. It used software and hardware in a
representative way. It was (and is) verifiable. It was (and is) repeatable. At the time, it
was relatively economical (The first benchmark results topped out at 33.81 tpmC and
54.14 tpmC, requiring somewhat fewer resources than the results of today.) The target
audience was - - - Everyone! Many companies do different things with their
computing technology, but ALL businesses must do some kind of database
transaction processing to run their business. TPC-C grew to be the premier benchmark
of the industry. Marketing teams and customers asked for results in TPC-C first and
considered other benchmarks as an afterthought.

TPC-C became such a force in performance benchmarks
that it was extraordinarily difficult to change or introduce
new, “competing” benchmarks. It became an almost generic
measure of computer power, regardless of whether a target
application was similar to the TPC-C business model or not.
The TPC had several development efforts that would have
built on the strengths of TPC-C, while upgrading the
characteristics of the benchmark to keep pace with the
times. Of these, the newest TPC benchmark, TPC-E, was
the only successful one, and although the rate of publishes
of TPC-E has now exceeded those of TPC-C, one could
argue that they continue to be slowed by the continued
strength of the TPC-C benchmark.

In contrast, while SPEC benchmarks were far from obscure, these benchmarks
have not been viewed under the brightest of spotlights that was, for a time, reserved
for TPC-C, and the engineers who created them have enjoyed the freedom to maintain
currency by reviewing and revising them.

5 In Summary

What can we learn from all of this? The first point is that benchmark developers must
keep these five primary criteria in mind from the beginning of the development
process. Benchmarks must have some component of relevance, repeatability, fairness,
verifiability and economy. Perhaps more important is the reality that all of these
should not (and likely cannot) be totally satisfied. It is more important to understand
the compromises made to enable one strength over another than it is to satisfy every
possible criterion.

It is equally important to ensure that the consumers of benchmark information
understand the strengths and limitations of each benchmark. It may be better to spend
2 years developing a benchmark that stresses a single subsystem than it is to spend 6
years developing a total system benchmark, but not if the subsystem benchmark is
used to represent the “total system.”

The industry continues to move rapidly, which implies that new benchmarks are
needed and old ones should be considered for retirement. There will likely be some
mainstays – Linpack, for one, TPC-C for another, but there is also a need for new tools
to evaluate and optimize the features and functions that are growing in importance in
today’s environment.

How many TPC-C’s
does it take to run that
geothermal analysis

application?

30 K. Huppler

Finally, we need to learn from each other. The TPC has an outstanding reputation
for building robust, full system benchmarks. As SPEC moves in that direction
(particularly with their efforts in virtualization), they could learn a few things from
the TPC. SPEC has an outstanding reputation for “rapid” (still measured in years)
development and enhancement of benchmarks, and for making conscious
compromises I recommend to make benchmarks more manageable in scope and
therefore more readily accepted by those who are interested in using them to measure
computer systems. The TPC could well learn from this example.

Trademarks: TPC and TPC Benchmark are copyrights of the Transaction Processing
Performance Council. The SPEC logo, SPEC, SPECjbb, SPECsfs, SPECmail,
SPECint, SPECfp, SPECweb, SPECjAppServer, SPECjms and SPECjvm are
registered trademarks of the Standard Performance Evaluation Corporation. BAPco
and SYSmark are registered trademarks of the Business Applications Performance
Corporation. SPC Benchmark is a trademark of the Storage Performance Council.

	The Art of Building a Good Benchmark
	Introduction – Building a Good Benchmark
	Relevant
	The Other Side of the Coin
	Repeatable
	Fair/Portable
	Verifiable
	Economical

	You Don’t Want All Items Satisfied
	In Summary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

