
R. Nambiar and M. Poess (Eds.): TPCTC 2009, LNCS 5895, pp. 253–266, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

An Approach of Performance Evaluation in Authentic 
Database Applications 

Xiaojun Ye, Jingmin Xie, Jianmin Wang, Hao Tang, and Naiqiao Du 

Key Laboratory for Information System Security, Ministry of Education 
Tsinghua National Laboratory for Information Science and Technology 

School of Software, Tsinghua University, Beijing 100084, China 
{yexj, jimwang}@tsinghua.edu.cn 

Abstract. This paper proposes a benchmark test management framework 
(BTMF) to simulate realistic database application environments based on TPC 
benchmarks. BTMF provides configuration parameters for both test system 
(TS) and system under test (SUT), so a more authentic SUT performance can be 
obtained by tuning these parameters. We use Petri net and transfer matrix to 
describe the intricate testing workload characteristics, so configuration 
parameters for different database applications can easily be determined. We 
conduct three workload characteristics experiments basing on the TPC-App 
benchmark to validate the BTMF and the workload modeling approach.  

Keywords: Performance testing, benchmarking, test framework. 

1   Introduction 

In the field of IT systems performance evaluation, testers and hardware/software 
manufacturers usually focus on different purposes to publish the performance of their 
IT products with various environments [5]. For example, testers incline to grasp 
detailed and authentic system status such as its performance, resource utilization or 
dependability. However, manufacturer’s testing purposes are more likely to obtain the 
performance result of their own product that is comparable with other similar ones. In 
order to make the evaluation result creditable, tester need to define extremely detailed 
testing requirements, for example, more authentic business workload, different 
network delay and every possible think time for each user. It would cost a lot to 
realize all the detailed requirements modeling in real database systems. On the 
contrary, some non-profit organizations release performance benchmarks with a high 
degree of standardization to simplify the testing process and make the performance 
testing results comparable [12]. These benchmarks not only limit the test database and 
the database transaction workload, but also the associated performance metrics. 

To achieve multiple goals at the same time, emulating test systems, which are close 
to real database application scenarios and capable to seize comparable performance 
testing measures, become important for IT system performance evaluation. Two types 
of approaches are proposed for performance evaluation of emulating systems. One is 
using general stress testing tools to simulate user requests and responses by invoking 



254 X. Ye et al. 

scripts recorded by testers, and then analyze system performance through the number 
of concurrent users and maximum throughput [6]. The other type is benchmark testing 
[12]. Compared with the former, the latter is widely accepted in industry. However, 
performance benchmarks give too many constraints on the definition of their test 
database, workload characteristics, performance metrics and SUT (system under test), 
and benchmark results are rough estimates and only serve the purpose of relative 
comparison for real systems [10]. To make these components visualized and 
dynamically configured to satisfy various testing purposes and evaluation targets of 
different real system characteristic requirements, a domain-independent and model-
driven benchmark test management framework (BTMF) emerges from this practice. 

Authenticity of simulating different realistic application environments and 
comparability of various testing results both become important, and this paper aims to 
find a bridge between them. To better simulate realistic systems based on TPC 
benchmarks, our BTMF provides configuration parameters in multiple dimensions, so 
that by tuning these parameters, we can get a more authentic performance result [13]. 
At the same time, we use Petri net and transfer matrix to describe the intricate and 
concurrent performance testing workload from business views, various granularity 
measures and their relationships in real systems under test [3]. With the expandable 
definition of performance measures [8], customized metrics described by modeling 
languages, the workload characterization semantics in different test system 
implementations are explicitly modeled, which is helpful to predict, compare and 
analyze their corresponding system testing results. 

In the next section, we discuss related work of model-driven performance testing 
and configurable system optimization. In Section 3, the architecture of BTMF is 
proposed and main components to meet different testing purposes and real system 
testing environment simulation objectives are detailed. We describe general workload 
characterization with formal modeling language for simulating different realistic 
environments in Section 4, and give experimental examples to verify our approach in 
Section 5. Finally, Section 6 outlines our future considerations. 

2   Related Work 

Database system performance benchmarking is a well-established area led by 
Transaction Processing Council (TPC) [12]. With the advance of web technologies 
and new database application requirements, many benchmarks are updated or 
replaced in time. For example, TPC-E may supersede the well-known TPC-C lately, 
and TPC-App derived from TPC-W started to be well accepted by companies [7].  

Along with the improvement of performance benchmarks, a variety of performance 
evaluation methods and techniques ranging from analytical modeling to simulation 
approaches are designed, including those fault-relevant evaluation methods that 
focused on specific domains [1, 2], database replay utilities for specific DBMS 
applications [4]. Therefore, manufacturers need to develop their own performance 
testing tools for domain-dependent benchmarking, which will add more difficulty for 
the comparability of the result of test system with other similar products [3, 10]. 

Literature [10] proposed an application-independent synthetic workload model 
from the perspective of user’s requirements. A high-level specification language, a 



 An Approach of Performance Evaluation in Authentic Database Applications 255 

translator of the language, and a set of generators were created to compose diverse 
test databases and test transactions of different synthetic database benchmarks. We 
learn this model-driven method from the perspective of the user’s requirements for 
test database, workload characterization, workload deployment, and collected 
measures configuration in the benchmark test management framework. 

In performance tuning domain of database application systems, literature [9] 
proposed an algorithm called Quick Optimization via Guessing (QOG). They 
formally specified how to guess at the performance and when to terminate 
measurement, and proved that QOG can find a nearly-best configuration with a high 
probability under common conditions that are frequently assumed in the literature. 
The idea of measuring the performance of web systems to optimize configuration 
parameters can be used in performance optimization area [11, 14]. Hence, our BTMF 
with flexible configurations are significant during test run since the optimal 
configuration has been a time-consuming task due to the long measurement time 
needed to evaluate the performance of a given configuration [13], we propose to use 
formal language to describe high-level workload characterization in order to predict 
testing system performance. 

Inspired by the model-driven thought and the idea of guessing at the performance 
in parameter tuning, this paper proposes a configurable BTMF: (1) by means of 
flexible configurations of the data model, workload characterization and deployment, 
different granularity measures, this framework can be applied for both benchmark and 
customized applications performance testing; (2) besides, the approaches of using 
Petri net or transfer matrix to describe workload configurations (which model real 
system’s business processes), database transactions and performance measures, 
visualize those intricate relationships and make testing result understandable and 
comparable in performance metric analysis; (3) since the performance can be guessed 
based on the similar workload configurations, we can predict the performance of a 
specific test system configuration according to the formal workload descriptions. 

3   Benchmark Test Management Framework 

3.1   BTMF Design Philosophy 

BTMF architecture consists of a test system (TS) and a system under test (SUT). The 
TS emulates the user-endpoints which issue requests to the SUT. The SUT in turn 
responds to these transaction requests. Therefore, we can abstract these components, 
which are either defined by TPC benchmark standard, or customized by external 
standards or user-requirements, in BTMF with diverse configuration parameters 
basing on the model-driven concept. So BTMF components can be customized in 
these dimensions with predefined parameters for the real application simulation.  

In the high-level view of the BTMF, TS includes database manager, workload 
dispatcher, client emulators and performance measure collector, separately manage 
test database and generate test data, control user requests dispatching, collect and 
analyze the performance measures produced by the SUT in terms of the system 
parameters predefined in BTMF configuration files; SUT includes database, 
transaction and DB engines in terms of the system parameters predefined in BTMF 
 



256 X. Ye et al. 

 

Fig. 1. BTMF design philosophy  

configuration files. Therefore, using the model-driven method, we can describe our 
BTMF design philosophy of SUT and TS as shown in Figure 1.  

This architecture is a logical architecture; it does not map functional elements to 
hardware or software components. Proceeding from these components description to a 
real IT systems test requires the presence of a complete description of all aspects of 
the subsystem relevant to the benchmark’s performance. This description is called the 
test system configuration, or the system under test (SUT) configuration. 

3.2   BTMF Implementation 

The overall components for BTMF implementation include six main modules as 
shown in Figure 2. Controller, Workload Manager, Statistic Collector and Data 
Generator belong to TS, and Database component belong to SUT. Transactions 
component with different granularity measures definition may be in TS or SUT, 
depending on real system architectures or testing purposes, as we see in different TPC 
benchmarks. Therefore, BTMF configuration files described by using a high-level 
language (XML) include configuration parameters for describing workload 
characteristics, test database, and various measures derived from transactions. These 
parameters would be analyzed and implemented by the corresponding modules and 
then be parsed and interpreted by the Controller during the testing process. 

Data Generator 
Data generator mainly has two tasks. One is to model real system data structure by 
creating divers relations and their semantic restrictions in configuration files, and 
translate them into real DBMS objects in the form of tables and constraints.  

The other task is to generate test database conforming to the data model and data 
feature definition. We suppose that each independent attribute has a data generation 
method according to data characteristics predefined in test system (generation rules or 
user-defined plug-in functions). Like other data generators, BTMF decouples data 
generation details from user-defined plug-in functions or data generation rules with 
corresponding configurations in BFM configuration files.  

Before populating database, data generator will first analysis table dependence 
based on foreign key constraints and attribute dependence among attributes of tables 
 



 An Approach of Performance Evaluation in Authentic Database Applications 257 

 

Fig. 2. The benchmark test management framework implementation architecture 

based on column level constraints. The connections between output attributes and 
corresponding input attributes are called as data dependences. Before generating test 
database, the topological structure of these dependences should first be established 
automatically in order to keep the data semantic. Besides, the acyclic graph of 
topological structure is divided into several sub-graphs disjointed with each other. 
Each sub-graph will represent one data generation thread in Data generator that 
BTMF could use to populate table attribute data in order. 

The process of database populating has two levels – table level and attribute level. 
Taking Figure 3 as an example, A, B, and C are tables; ai, bi, and ci are attributes of 
tables; the solid and dashed arrows represent dependences between attributes or 
tables, for example a1->b1 means the value of attribute b1 depends on the value of 
attribute a1. 

1) Table level: Data generator creates the acyclic graph and topological structure 
of tables, which are listed in Figure 3 (b). Learning from its sub-graphs, BTMF 
will create two threads to populate data in table A, B and C separately. 
Considering the broken line in Figure 3 (b), if a2 depends on b3, there will be a 
cycle between table A and table B. In such case, Data generator should remove 
the dependence between a2 and b3 first, and then after table A and B is 
populated, it will recalculate all the values of attribute a2. 

2) Attribute level: When populating data in database tables, the topological 
structure of all attributes, which represents the order of attributes that the data 
load module should deal with in each table, should be first established (such as 
A is listed in Figure 3 (c)). Since there will not be a cycle among these attributes 
in this example, it is easy for Data generator to populate data in order. 

Workload Manager 
The workload in database systems can be viewed in two levels. The lower level is 
manifested by transactions which represent simple business logic unit such as the 
 



258 X. Ye et al. 

 

                                                    (a)                                (b)                      (c) 

Fig. 3. An example for data generator 

“create order” web service in TPC-App benchmark. In this level, the workload is the 
mixed ratios of transactions, which is an important constraint for TPC benchmark 
testing requirements. The higher level is manifested by transactional workflows which 
comprise several tasks with stepwise processes (such as choice, iteration and 
concurrent execution). The mapping between workflow workloads used in real 
systems and synthetic transaction workloads used in current benchmarks should be 
taken into consideration together [3]. By considering more workload characteristics, 
including the transaction distribution with probabilities, the transaction dependency 
condition, the input data requirements, etc., the scenarios such as DBMS cache tuning 
and SQL query optimization during testing process can be more meaningful for real 
systems performance turning. 

As shown in Figure 2, Workload manager mainly includes two functions. First, 
create multi threads to simulate concurrent remote clients to invoke business 
processes which may be comprised of workflows or transactions. These workflows or 
transactions are encapsulated in DLL, web service or script according to the realistic 
environments of simulating systems and the purpose of the comparability of testing 
results. Second, the mixing ratio of educed database transactions derived from the 
workflow workload is performed by the Controller. These workload characterizations 
are predefined in configuration files before testing and dynamically invoked by 
Controller during performance evaluation process. 

Statistic Collector 
During the execution of workflows or transactions, Statistic collector will gather 
performance measures as many as possible, such as begin and end time of a request, 
submitting number, and throughput. Collected data with the same measure name are 
connected by a linked list and ordered by submitting time as shown in Figure 4. The 
linked lists are sorted by hash table. In this way, Workload dispatcher can append a 
line of measure data to the Statistic collector and Controller can easily get the sorted 
data from it. With the definition of metrics in configuration files, Statistic collector 
can be also expandable for other specific evaluating purposes. 

Statistic collector includes three basic functions: (1) before starting a real test, 
Statistic collector is initialized and ready to receive diverse performance measures 
from Client emulators driven by Controller; (2) within an execution, Workload 
dispatcher will add statistic records into Statistic collector measure buffer; (3) 
 



 An Approach of Performance Evaluation in Authentic Database Applications 259 

 

Fig. 4. The store structure and functions of statistic collector 

Controller timely gets statistic records from this collector, and then draws 
performance charts and writes metric data into corresponding BTMF statistic files. 

Controller 
Controller is used to activate different Client emulator’s workloads complying with a 
fixing ratio from the real system analysis. As listed in Figure 2, Controller has three 
basic functions: (1) getting, parsing and setting configuration parameters predefined 
by testers in configuration files; (2) starting and stopping data generating and testing 
execution process, and populating performance measures data in Statistic collector; 
(3) Receiving statistic records, drawing and displaying charts, and writing records into 
corresponding BTMF statistic files. 

The whole testing process of the BTMF includes three steps. First, describe the test 
database and then populate test data. Second, deploy workload in TS or SUT, design 
test plan with measures, and initialize Statistic collector measure buffer. According to 
BTMF configuring parameters in configuration files, the Controller starts the testing 
execution and Statistic collector records statistic measure data timely. 

Transactions, Measures, Database and Configuration Files 
Before executing test systems, the transactions and data generating functions should 
be encapsulated in DLL/web service/scripts programs and their deployed strategies 
should be described in configuration files in advance. The performance measures are 
also pre-developed in every workflow/transaction program and predefined in the 
BTMF functions configuration files.  

Apart from workload characterization, data model and feature, performance 
measures, the configuration items include environment-related parameters (such as 
database connection string, web service address of Statistic collector, store location of 
statistic files and so on) and testing-related parameters (such as the preheating time of 
execution, smooth running time etc. ). The main objective of configuration files is to 
build a semantic connection between SUT and TS, and lead our TS to invoke and test 



260 X. Ye et al. 

various SUTs with user-defined workload characterization, database models, various 
performance measures, and system deployment strategies, etc. 

4   Workload Modeling  

The workload of a database benchmark is the amount of transactions assigned to or 
performed by a database system in a given period of time. Understanding the nature 
of the workload and its intrinsic features can help to interpret benchmark performance 
measures. Transaction dependences are usually overlooked in current OLTP workload 
modeling. To simulate more realistic of real systems and get a comparable 
performance result from business views, an authentic and visualized workload would 
be more helpful. So a formal language is required for keeping the consistence 
between high-level semantic (workflow) invoked by the simulation client threads and 
low level transaction mixing ratio in OLTP performance benchmarks. In this section, 
we illustrate how to use workflow model to describe workload characterization in 
realistic systems and calculate the mixed ratios of their transactions executed in OLTP 
performance benchmarks from the high level formal model.  

4.1   Simple Workloads in Benchmarks 

Though TPC-App replaced TPC-W as the new B2B web service performance 
benchmark, business transactions, such as “create order”, “change payment”, and 
“new customer” transactions, are almost abstracted as database transactions 
workloads. Recursive calling transactions with mixed ratios (transaction distribution 
with probabilities) in benchmarks can be abstracted and demonstrated as shown in 
Figure 5 (a) with Petri net models.  

This modeling language provides us a practical view of how to construct and 
analyze the semantic and similarity of business workloads. For instance, the “create 
order” web service in TPC-App benchmark will asynchronously send a durable 
message to shipping process after creating an order in DBMS. Figure 5 (b) gives an 
abstract of the detailed processes of transaction t1 with an asynchronous process unit 
like “create order” transaction, which is often required in current benchmarks. 

4.2   Complex Workloads in Realistic Systems 

Workflow control patterns are used to better represent business process workloads, 
while transaction control patterns, where mixing ratio is used to keep the semantic 
workloads mapping with high-level workflow, are workloads for the current TPC 
benchmarks. In TPC-W benchmark, transfer matrix is adopted to describe the 
dependence of transactions. Two other kinds of approaches, by using Markov process 
and Petri-net, have been brought up to model the relationship among workflows and 
transactions [3]. With these formal models or languages, the connection of 
independent transactions in OLTP benchmark with the workflow characterizations to 
meet the user’s real workload modeling requirements can be established. These 
unambiguous and traceable mathematical descriptions of high-level workload 
characterization would help testers to calculate the mixed ratios of transactions for 
emulating database systems and then predict the result semantics of performance of 
 



 An Approach of Performance Evaluation in Authentic Database Applications 261 

0.2
0.3

0.5
0.2
0.3

0.5
t1

t2

t3

t1

t2

t3

p0 p0p1
p1

 

                                               (a)                                     (b) 

Fig. 5. Examples of simple workloads in performance benchmarks 

 

Fig. 6. An example of complex workloads (workflow) in realistic systems 

different workflow workloads with the transaction workload for different real 
systems.  

Figure 6 illustrates an example of transactional workflows with a choice of 
database transaction execution and a concurrent database transaction execution. From 
the Petri net model, we can calculate that the mixed ratio of transaction t1, t2, t3 and t4 
is 1:1:2:2. In the next section, implementations with different workflows described by 
Petri net and transfer matrix are tested and analyzed. 

4.3   Workload Modeling with Granularity Measures 

There are various definitions of the term performance in the ISO9126 standard [8]. 
The most commonly used performance metrics are response time, throughput and 
utilization. Response Time is defined as the time interval between a user request of a 
service and the response of the system. Some metrics related to response time are 
turnaround time, reaction time and stretch factor [8]. Throughput is defined as the 
rate at which tasks can be handled by a system, and is measured in tasks per time. For 
most IT systems, utilization is defined as the ratio of busy time of a resource and the 
total elapsed time of the measurement period.  

In most existing benchmarks, performance metrics are predefined with detailed 
mathematical formulas, which should not be changed when test systems are 
developed. In our BTMF implementation, we decide to parameterize these collected 
measures and use mark transitions from Petri Net to formally denote different 
granularity measures for business blocks in the workflow model.  

Along with the workflows in Figure 6, measures for high level workloads could be 
added as showing in Figure 7, where three mark transitions for business blocks 
represented by shadow rectangles are drawn in Petri net graph. We can obtain one 
performance metric between mark 1 and mark 2, the other one between mark 2 and 
 



262 X. Ye et al. 

 
Fig. 7. An example of complex workloads (workflow) with two granularity measures 

mark 3. At the appropriate time, these workflow measures data will be sent to Statistic 
collector asynchronously, and high level metrics can be derived timely. 

5   Performance Test Result Analysis 

In order to validate our BTMF for real database applications, we developed a 
benchmark test management framework prototype with data models and features, and 
transaction characteristics derived from TPC-App benchmark [12]. 

First, we deploy the same database model, transaction characteristics and 
performance measures as TPC-App benchmark and compare the results with different 
active EBs, configured EBs and mixed ratio of transactions. Then, based on the 
transactions of TPC-App, we add another two transaction processes based on Petri net 
and transfer matrix separately. Through the formal modeling language, we predict the 
performance results of them and prove them by using real testing results derived from 
our BTMF implemented prototype tool. Detailed information for database systems 
testing environment is listed in Table 1. 

The test procedure is carried out as follows:  

1) Testers perform TS and SUT component configuration, which is the 
sequence of actions required to perform a benchmark, including TS and 
SUT software deployment, OS parameter adjustment, etc.  

Table 1. The configuration of testing environment 

environments configurations 
Intel® Core™2 Quad CPU Q6600 2.40GHz 

8G memory，1T hard disk 
Microsoft Windows Server 2003 R2  

Controller 
Machine 

(Controller and 
Web Server 1) Internet Information Server (IIS) 6.0 

Test 
system 
(TS) 

Web Server 1 (for 
Statistics) 

Intel® Core™2 Quad CPU Q6600 2.40GHz 

8G memory，1T hard disk 
Microsoft Windows Server 2003 R2  

Web Server 2 
Machine 

Internet Information Server (IIS) 6.0 
Web Server 2 (for 

Transactions) 
Intel® Xeon® CPU E5420 2.50GHz 

8G memory，1T hard disk 
Microsoft Windows Server 2003 R2  

Database Server 
Machine 

Oracle Database 10g home1 v10.2.0 

System 
Under Test 

(SUT) 

Database Server Microsoft Visual Studio 2005，C# 
Microsoft .NET Framework SDK v2.0 

Platform Development 
Platform  



 An Approach of Performance Evaluation in Authentic Database Applications 263 

2) Test database initialization, in which we use database generator to create test 
database structure and populate test database according the data 
characteristics predefined in BTMF configure files. 

3) Workload configuration, which is the set of transactions that simulated users 
database request during test run, together with the relative frequency and 
relationship with which transactions occur during the test run. 

4) Performance test process: obtain a reliable result within an acceptable period. 

5.1   BTMF Usability Analysis 

The configuration parameters, such as client number, transaction workload, test 
database model and scale, supporting our BTMF to test diverse scenarios of web 
database applications, are based on TPC-App benchmark scenarios. Figure 8 
shows the result comparison with different active EBs, configured EBs and mixed 
ratios. 

From the left chart of Figure 8 we can find that along with the larger number of 
active EBs, the value of SIPS/EB metrics (line ‘SIPS/EB’ and line ‘SIPS/EB with 
different mixed ratios’) is smaller and the values of RT metrics (line ‘90%RT’ and 
line ‘50%RT’) are larger, which means the performance of SUT is lower. At the same 
time, in the right chart, the performance does not change much along with the larger 
of configured EBs. 

With different mixed ratios of transactions, the performance of SUT may change a 
lot. The mixed ratios of [new products], [product detail], [new customer], [create 
order], [order status], [change payment] and [change item] web service transactions 
are respectively 7:30:1:50:5:5:2 as TPC-App defined and 3:5:10:60:10:10:2 as the 
author customized, and the performance of them is shown as line ‘SIPS/EB’ and line 
‘SIPS/EB with different mixed ratios’. Since the [new customer], [create order], 
[order status] and [change payment] web services cost more time to be executed than 
the others, the performance of the latter SUT with user-defined mixed ratios is much 
lower than the standard mix ratios in TPC-App benchmark. 

 

Fig. 8. In the left chart, the x axis represents the number of active EBs, while in the right one 
the x axis represents the number of configured EBs. The unit of response time (RT) is second. 



264 X. Ye et al. 

5.2   Workload Characterization Analysis 

In the following, we define three workload scenarios, one is from TPC-App workload 
model, as shown in Figure 9 (a), one is a transactional workflow with choice and 
concurrent processes defined by authors described with Petri net as Figure 9 (b), and 
the third one is a transactional workflow using transfer matrix like Figure 9 (c).  

Detailed transfer matrix is shown in Table 2, where the symbol t1-t7 represent [new 
products], [product detail], [new customer], [create order], [order status], [change 
payment] and [change item] web service in TPC-App. Different workload 
characterizations, which are represented by Petri net model in Figure 9 (b), transfer 
matrix model in Figure 9 (c) and Table 2, assures that every web service in each 
scenarios is still having the same mixed ratios as defined Figure 9 (a). Each value in 
Table 2 means that when the web service in its row is finished, there will be 
corresponding possibility to execute the web service in its column, where the blank 
means that the web service will not be executed after the web service in its row. 

We describe these high-level workloads with predefined workflow process 
definition languages and executed by our BTMF as defined. At the same time, in 
transaction level, from the mathematic analysis of three types of workloads discussed 
above (see Figure 9.), we can see that they all have the same mixed ratios of seven 
types of web services. Table 3 gives the comparable implementation testing results of 
them. Since they all have the same mixed ratios of the same types of web services, we 

 

 

                     (a)                                        (b)                                                   (c) 

Fig. 9. Three types of workflow workloads with the same mixed ratios of transactions  

Table 2. Transfer matrix based on the seven web services in TPC-App benchmark 

 t1 t2 t3 t4 t5 t6 t7 

t1 0.02 0.02  0.1    
t2    0.3   0.05 
t3 0.2 0.3  0.1    
t4 0 0  0.1 0.02 0.03  
t5        
t6 0.2 0.13   0.04   
t7  0.4      

Mixed ratio 0.07 0.30 0.01 0.50 0.05 0.05 0.02 
 



 An Approach of Performance Evaluation in Authentic Database Applications 265 

Table 3. Results with different transaction workflows 

Workload models 

Scenarios in 

TPC-App 

benchmark 

Scenarios described 

by Petri net 
Scenarios with 

transfer matrix 

Configured EBs 10 10 10 

Active EBs 100 100 100 

SIPS 157.97 159.19 161.11 

SIPS/EB 1.5797 1.5919 1.6111 

90%RT(s) 2.04 2.05 2.05 

50%RT(s) 0.64 0.64 0.65 

 
can predict that the performance result should be the same or at least very similar. 
From Table 3 we can see that our prediction comes true, ‘SIPS/EB’, ‘90%RT’ and 
‘50%RT’ metrics are almost the same despite the fact that the implementations have 
different transactional workflows in high level. 

6   Conclusion 

We proposed a model-driven benchmark test management framework (BTMF), in 
which Petri net and transfer matrix are used to describe workload characteristics. The 
configurable parameters for workload manager, statistic collector, and test database 
make our BTMF framework applicable for standard benchmarks and authentic 
applications performance evaluation. The testing results can be predicted according to 
the mapping of high-level and low-level formal workload descriptions, so the 
configuration parameters for different database applications can easily be determined. 

Both of multiple configuration parameters optimization approaches and workload 
mathematical modeling with Petri net and other statistical methods will be considered 
and emphasized in the future. Today’s benchmarks do not pay more attentions to the 
availability issues, such as fault tolerance and recovery cost, thereby, models for 
performability [8] and analytical method will also be considered together in the 
BTMS framework. 

Acknowledgment  

This work was supported by NSFC 60673140 and NHTP (2007AA01Z156, 
2008ZX01045-001,2009CB320706). 

References 

1. Buchacker, K., Tschaeche, O.: TPC Benchmark-c version 5.2 Dependability Benchmark 
Extensions (2004), 
http://www3.informatik.uni-erlangen.de/Research/FAUmachine/ 
papers/tpcc-depend.pdf (accessed in July 2009) 



266 X. Ye et al. 

2. Costa, D., Rilho, T., Madeira, H.: Joint Evaluation of Performance and Robustness of a 
COTS DBMS through Fault-Injection. In: The Proc. of DSN 2000, NY, USA (2000) 

3. Du, N.Q., Ye, X.J., Wang, J.M.: Toward Workflow-Driven Database System Workload 
Modeling. In: The Proc. of DBTest 2009, Providence, USA (2009) 

4. Galanis, L., et al.: Oracle Database Replay. In: The Proc. of ACM SIGMOD 2008, 
Vancouver, BC, Canada (2008) 

5. Gray, J. (ed.): The Benchmark Handbook for Database and Transaction Processing 
Systems. Morgan Kaufmann Publishers, San Francisco (1993) 

6. IBM. TPC BenchmarkTM App Full Disclosure Report for IBM® eServerTM xSeries® 
366 using Microsoft® .NET 1.1 TPC-App Version 1.1 Submitted for Review (June 21, 
2005)  

7. HP LoadRunner, http://www.hp.com (accessed in July 2009)  
8. Koziolek, H.: Introduction to Performance Metrics. In: Eusgeld, I., Freiling, F.C., 

Reussner, R. (eds.) Dependability Metrics. LNCS, vol. 4909, pp. 199–203. Springer, 
Heidelberg (2008) 

9. Osogami, T., Kato, S.: Optimizing System Configurations Quickly by Guessing at the 
Performance. In: The Proc. of SIGMETRICS 2007, San Diego, USA (2007) 

10. Seng, J.L., Yao, S.B., Hevner, A.R.: Requirements-Driven Database Systems Benchmark 
Method. Decision Support Systems 38, 629–648 (2005) 

11. Swisher, J.R., Jacobson, S.H., Yucesan, E.: Discrete-Event Simulation Optimization Using 
Ranking, Selection, and Multiple Comparison Procedures: A Survey. ACM Transactions 
on Modeling and Computer Simulation 13(2), 134–154 (2003) 

12. Transaction Processing Performance Council, TPC-C/App/E BENCHMARKTM Standard 
Specification, http://www.tpc.org (accessed in July 2009) 

13. Xie, J.M., Ye, X.J.: A Configurable Web Service Performance Testing Framework. In: 
Proc. of IEEE HPCC 2008, Dalian, China (2008) 

14. Zhang, Y., Qu, W., Liu, A.: Automatic Performance Tuning for J2EE Application Server 
Systems. In: Ngu, A.H.H., et al. (eds.) WISE 2005. LNCS, vol. 3806, pp. 520–527. 
Springer, Heidelberg (2005) 


	An Approach of Performance Evaluation in Authentic Database Applications
	Introduction
	Related Work
	Benchmark Test Management Framework
	BTMF Design Philosophy
	BTMF Implementation

	Workload Modeling
	Simple Workloads in Benchmarks
	Complex Workloads in Realistic Systems
	Workload Modeling with Granularity Measures

	Performance Test Result Analysis
	BTMF Usability Analysis
	Workload Characterization Analysis

	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




