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Abstract. Extraction–Transform–Load (ETL) processes comprise complex data 
workflows, which are responsible for the maintenance of a Data Warehouse. A 
plethora of ETL tools is currently available constituting a multi-million dollar 
market. Each ETL tool uses its own technique for the design and 
implementation of an ETL workflow, making the task of assessing ETL tools 
extremely difficult. In this paper, we identify common characteristics of ETL 
workflows in an effort of proposing a unified evaluation method for ETL. We 
also identify the main points of interest in designing, implementing, and 
maintaining ETL workflows. Finally, we propose a principled organization of 
test suites based on the TPC-H schema for the problem of experimenting with 
ETL workflows. 
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1   Introduction 

Data warehousing is a technology that enables decision-making and data analysis in 
large organizations. Several products are available in the market and for their 
evaluation, the TPC-H benchmark has been proposed as a decision support 
benchmark [16]. TPC-H focuses on OLAP (On-Line Analytical Processing) queries 
and it mainly deals with the data warehouse site. Another version termed TPC-DS has 
been around for the last few years, but this version is still in a draft form [11, 15]. 
TPC-DS considers a broader picture than TPC-H including the whole flow from the 
sources to the target data warehouse. However, it partially covers the data warehouse 
maintenance part, considering only simple mechanisms for inserting and deleting 
tuples. 

To populate a data warehouse with up-to-date records extracted from operational 
sources, special tools are employed, called Extraction – Transform – Load (ETL) 
tools, which organize the steps of the whole process as a workflow. To give a general 
idea of the functionality of these workflows we mention their most prominent tasks, 
which include: (a) the identification of relevant information at the source side; (b) the 
extraction of this information; (c) the transportation of this information to the Data 
Staging Area (DSA), where most of the transformation usually take place; (d) the 
transformation, (i.e., customization and integration) of the information coming from 
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multiple sources into a common format; (e) the cleansing of the resulting data set, on 
the basis of database and business rules; and (f) the propagation and loading of the 
data to the data warehouse and the refreshment of data marts. 

Due to their importance and complexity (see [2, 12] for relevant discussions and 
case studies), ETL tools constitute a multi-million dollar market. There is a plethora 
of commercial ETL tools available. The traditional database vendors provide ETL 
solutions along with the DBMS’s: IBM with InfoSphere Information Server [7], 
Microsoft with SQL Server Integration Services (SSIS) [9], and Oracle with Oracle 
Warehouse Builder [10]. There also exist independent vendors that cover a large part 
of the market (e.g., Informatica with Powercenter [8] and Ab Initio [1]). Nevertheless, 
an in-house development of the ETL workflow is preferred in many data warehouse 
projects, due to the significant cost of purchasing and maintaining an ETL tool. The 
spread of existing solutions comes with a major drawback. Each one of them follows 
a different design approach, offers a different set of transformations, and provides a 
different internal language to represent essentially similar functions.  

Although Extract-Transform-Load (ETL) tools are available in the market for more 
than a decade, only in the last few years have researchers and practitioners started to 
realize the importance that the integration process has in the success of a data 
warehouse project. There have been several efforts towards (a) modeling tasks and the 
automation of the design process, (b) individual operations (with duplicate detection 
being the area with most of the research activity) and (c) some first results towards the 
optimization of the ETL workflow as a whole (as opposed to optimal algorithms for 
their individual components). For lack of space, we refer the interested reader to [12] 
for a detailed survey on research efforts in the area of ETL tools.  

The wide spread of industrial and ad-hoc solutions combined with the absence of a 
mature body of knowledge from the research community is responsible for the ab-
sence of a principled foundation of the fundamental characteristics of ETL workflows 
and their management. A small list of shortages concerning such characteristics 
include: no principled taxonomy of individual activities exists, few efforts have been 
made towards the optimization of ETL workflows as a whole, and practical problems 
like recovering from failures and handling evolution have mostly been ignored. Thus, 
a commonly accepted, realistic framework for experimentation is also absent. 

Contributions. In this paper, we aim at providing a principled categorization of test 
suites for the problem of experimenting with a broad range of ETL workflows. First, 
we provide a principled way for constructing ETL workflows (Section 2). We identify 
the main functionality provided by representative commercial ETL tools and 
categorize the ETL operations into abstract logical activities. Based on that, we 
propose a categorization of ETL workflows, which covers frequent design cases. 
Then, we describe the main configuration parameters and a set of measures to be 
monitored for capturing the generic functionality of ETL tools (Section 3). Finally, 
we provide specific ETL scenarios based on the aforementioned analysis, which can 
be used as an experimental testbed for the evaluation of ETL design methods or tools 
(Section 4). 
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2   Problem Formulation  

In this section, we introduce ETL workflows as graphs. Then, we zoom in the micro-
level of ETL workflows inspecting each individual activity in isolation and then, we 
return at the macro-level, inspecting how individual activities are “tied” altogether to 
compose an ETL workflow. Finally, we discuss the characteristics of ETL execution 
and we tie them to the goals of the proposed benchmark. 

2.1   ETL Workflows 

An ETL workflow is a design blueprint for the ETL process. The designer constructs 
a workflow of activities (or operations), usually in the form of a graph, to specify the 
order of cleansing and transformation operations that should be applied to the source 
data, before being loaded to the data warehouse. In what follows, we use the term 
recordsets to refer to any data store that obeys a schema (such as relational tables and 
record files) and the term activity to refer to any software module that processes the 
incoming data, either by performing any schema transformation over the data or by 
applying data cleansing procedures. Activities and recordsets are logical abstractions 
of physical entities. At the logical level, we are interested in their schemata, 
semantics, and input-output relationships; however, we do not deal with the actual 
algorithm or program that implements the logical activity or with the storage 
properties of a recordset. When in a later stage, the logical-level workflow is refined 
at the physical level a combination of executable programs/scripts that perform the 
ETL workflow is devised. Then, each activity of the workflow is physically 
implemented using various algorithmic methods, each with different cost in terms of 
time requirements or system resources (e.g., CPU, memory, disk space, and disk I/O).  

Formally, we model an ETL workflow as a directed acyclic graph G(V,E). Each 
node v∈V is either an activity a or a recordset r. An edge (a,b)∈E is a provider 
relationship denoting that b receives data from node a for further processing. Nodes a 
and b are the data provider and data consumer, respectively. The following well-
formedness constraints determine the interconnection of nodes in ETL workflows: 

− Each recordset r is a pair (r.name, r.schema), with the schema being a finite list 
of attribute names. 

− Each activity a is a tuple (N,I,O,S,A). N is the activity’s name. I is a finite set of 
input schemata. O is a finite set of output schemata. S is a declarative description 
of the relationship of its output schema with its input schema in an appropriate 
language (without delving into algorithmic or implementation issues). A is the 
algorithm chosen for activity’s execution. 

− The data consumer of a recordset cannot be another recordset. Still, more than 
one consumer is allowed for recordsets. 

− Each activity must have at least one provider, either another activity or a 
recordset. When an activity has more than one data providers, these providers can 
be other activities or activities combined with recordsets. 

− The data consumer of an activity cannot be the same activity. 
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2.2   Micro-level Activities 

At a micro level, we consider three broad categories of ETL activities: (a) extraction 
activities, (b) transformation and cleansing activities, and (c) loading activities. 

Extraction activities extract the relevant data from the sources and transport them 
to the ETL area of the warehouse for further processing (possibly including 
operations like ftp, compress, etc.). The extraction involves either differential data 
sets with respect to the previous load, or full snapshots of the source. Loading 
activities have to deal with the population of the warehouse with clean and 
appropriately transformed data. This is typically done through a bulk loader program; 
nevertheless the process also includes the maintenance of indexes, materialized views, 
reports, and so on. Transformation and cleansing activities can be coarsely 
categorized with respect to the result of their application to data and the prerequisites, 
which some of them should fulfill. In this context, we discriminate the following 
categories of operations:  
− Row-level operations, which are locally applied to a single row. 
− Router operations, which locally decide, for each row, which of the many 

(output) destinations it should be sent to. 
− Unary Grouper operations, which transform a set of rows to a single row. 
− Unary Holistic operations, which perform a transformation to the entire data set. 

These are usually blocking operations. 
− Binary or N-ary operations, which combine many inputs into one output. 

All frequently built-in transformations in the majority of commercial solutions fall 
into our classification (see for example Figure A3 – in the appendix). 

2.3   Macro Level Workflows 

The macro level deals with the way individual activities and recordsets are combined 
together in a large workflow. The possibilities of such combinations are infinite. 
Nevertheless, our experience suggests that most ETL workflows follow several high-
level patterns, which we present in a principled fashion in this section.  

We introduce a broad category of workflows, called Butterflies. A butterfly (see 
also Figure 1) is an ETL workflow that consists of three distinct components: (a) the 
left wing, (b) the body, and (c) the right wing of the butterfly. The left and right wings 
(separated from the body with dashed lines in Figure 1) are two non-overlapping 
groups of nodes which are attached to the body of the butterfly. Specifically: 
− The left wing of the butterfly includes one or more sources, activities and 

auxiliary data stores used to store intermediate results. This part of the butterfly 
performs the extraction, cleaning and transformation part of the workflow and 
loads the processed data to the body of the butterfly. 

− The body of the butterfly is a central, detailed point of persistence that is 
populated with the data produced by the left wing. Typically, the body is a 
detailed fact or dimension table; still, other variants are also possible. 

− The right wing gets the data stored at the body and utilizes them to support 
reporting and analysis activity. The right wing consists of materialized views, 
reports, spreadsheets, as well as the activities that populate them. In our setting, 
we abstract all the aforementioned static artifacts as materialized views. 
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left wing  body right wing 

Fig. 1. Butterfly configuration 

Balanced Butterflies. A butterfly that includes medium-sized left and right wings is 
called a Balanced butterfly and stands for an ETL scenario where incoming source 
data are merged to populate a warehouse table along with several views or reports 
defined over it. Figure 1 is an example of this class of butterflies. This variant 
represents a symmetric workflow (there is symmetry between the left and right 
wings). However, this is not always the practice in real-world cases. For instance, the 
butterfly’s triangle wings are distorted in the presence of a router activity that 
involves multiple outputs (e.g., copy, splitter, switch, and so on). In general, the two 
fundamental wing components can be either lines or combinations. In the sequel, we 
discuss these basic patterns for ETL workflows that can be further used to construct 
more complex butterfly structures. Figure 2 depicts example cases of these variants. 

Lines. Lines are sequences of activities and recordsets such that all activities have 
exactly one input (unary activities) and one output. Lines form single data flows.  

Combinations. A combinator activity is a join variant (a binary activity) that merges 
parallel data flows through some variant of a join (e.g., a relational join, diff, merge, 
lookup or any similar operation) or a union (e.g., the overall sorting of two 
independently sorted recordsets). A combination is built around a combinator with 
lines or other combinations as its inputs. We differentiate combinations as left-wing 
and right-wing combinations. 

Left-wing combinations are constructed by lines and combinations forming the left 
wing of the butterfly.  The left wing contains at least one combination. The inputs of 
the combination can be: 

− Two lines. Two parallel data flows are unified into a single flow using a 
combination. These workflows are shaped like the letter ‘Y’ and we call them 
Wishbones. 

− A line and a recordset. This refers to the practical case where data are processed 
through a line of operations, some of which require a lookup to persistent 
relations. In this setting, the Primary Flow of data is the line part of the 
workflow. 

− Two or more combinations. The recursive usage of combinations leads to many 
parallel data flows. These workflows are called Trees. 

Observe that in the cases of trees and primary flows, the target warehouse acts as the 
body of the butterfly (i.e., there is no right wing). This is a practical situation that 
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covers (a) fact tables without materialized views and (b) the case of dimension tables 
that also need to be populated through an ETL workflow. In some cases, the body of 
the butterfly is not necessarily a recordset, but an activity with many outputs (see last 
example of Figure 2). Then, the main goal of the scenario is to distribute data to the 
appropriate flows; this task is performed by an activity serving as the butterfly’s body.   

Right-wing combinations are created by lines and combinations on the right wing 
of the butterfly. These lines and combinations form either a flat or a deep hierarchy. 

− Flat Hierarchies. These configurations have small depth (usually 2) and large 
fan-out. An example of such a workflow is a Fork, where data are propagated 
from the fact table to the materialized views in two or more parallel data flows. 

− Right - Deep Hierarchies. We also employ configurations with right-deep 
hierarchies. These configurations have significant depth and medium fan-out. 

A more detailed description of the above structures is given in Section 4.2.  
Butterflies are important for benchmarking at least in the following ways. Since 

such constructs are based on the classification of ETL activities discussed before, they 
form a taxonomy as aid for designing or understanding complex ETL workflows. In 
particular, we can use them for constructing more complex ETL workflows in a 
principle way. For example, if we need a memory intensive workflow, we should 
consider using tree or fork flows, which include routers/joins and a significant number 
of sorting or aggregating operations. If we wish to examine pipelining as well, we 
may consider extending these flows with line workflows (we need to tune the 
distribution of blocking and non-blocking operations in these flows too). In addition, 
to further enrich our workflows, we may also consider having multiple “bodies” in 
our design, which can represent not necessarily data warehouse tables, but ETL 
activities as well.  

Moreover, having in hand such categorization one may decompose existing 
complex ETL workflows into sets of primitive constructs for getting insight into their 
functionality. This decomposition can be used for optimization purposes too. We can 
study the behavior of the abovementioned ETL patterns in isolation, and then, we can 
use our findings for optimizing and tuning the whole workflow for performance, 
maintainability or some other quality. For example, the performance of a complex 
workflow can be derived from the performance of the component primitive ones.  

2.4   Goals of the Benchmark 

The design of a benchmark should be based upon a clear understanding of the 
characteristics of the inspected systems that do matter. Therefore, we propose a 
configuration that covers a broad range of possible workflows (i.e., a large set of 
configurable parameters) and a limited set of monitored measures. 

The goal of this benchmark is to provide the experimental testbed to be used for the 
assessment of ETL engines and design methods concerning their basic behavioral 
properties (measures) over a broad range of ETL workflows. 

This benchmark’s goal is to study and evaluate workflows as a whole. Here, we are 
not interested in providing specialized performance measures for very specific tasks 
in the overall process. We are not interested either, in exhaustively enumerating all 
the possible alternatives for specific operations. For example, this benchmark is not 



 Benchmarking ETL Workflows 205 

intended to facilitate the comparison of alternative methods for duplicate detection in 
a data set, since it does not take the tuning of all the possible parameters for this task 
under consideration. On the contrary, this benchmark can be used for the assessment 
of the integration of such methods in complex ETL workflows, assuming that all the 
necessary knobs have been appropriately tuned. 

There are two modes of operation for ETL workflows: off-line (batch) and active 
(or continuous or real-time) modes. In the off-line mode, the workflow is executed 
during a specific time window (typically at night), when the systems are not servicing 
their end-users. Due to the low load of both the source and warehouse systems, the 
refreshment of data and any other administrative activities (cleanups, auditing, and so 
on) are easier to complete. In the active mode, the sources continuously try to send 
new data to the warehouse. This is not necessarily done instantly; rather, small groups 
of data are collected and sent to the warehouse for further processing. The two modes 
do not differ only on the frequency of the workflow execution, but also on how the 
workflow execution affects the load of the systems too. 

Independently of the mode under which the ETL workflow operates, the two 
fundamental goals that should be reached are effectiveness and efficiency. Hence, 
given an ETL engine or a specific design method to be assessed over one or more 
ETL workflows, these fundamental goals should be evaluated. 

Effectiveness. Our extensive discussions with ETL practitioners and experts have 
verified that in real-life ETL projects performance is not the only objective. On the 
contrary, other optimization qualities are of interest as well. We refer to these 
collectively as QoX [6]. The QoX metric suite is incorporated at all stages of the 
design process, from high-level specifications to implementation. A non-exhaustive 
list of metrics that can be used to guide optimization include: performance, 
recoverability, reliability, freshness, maintainability, scalability, availability, 
flexibility, robustness, affordability, consistency, traceability, and auditability. Some 
metrics are quantitative (e.g., reliability, freshness, cost) while other metrics may be 
difficult to quantify (e.g., maintainability, flexibility). Also, there are significant 
tradeoffs that should be taken under consideration, since an effort for improving one 
objective may hurt another one [13]. For example, improving freshness typically hurts 
recoverability, since considering recovery points on the way to the warehouse may be 
prohibitive in this case; on the other hand, having redundancy may be an interesting 
solution for achieving fault-tolerance. Due to space consideration, we do not elaborate 
on all the abovementioned measures (for a more detailed discussion we refer to [13]).  

However, the main objective is to have data respect both database and business 
rules. We believe that the following (non-exhaustive) list of questions should be 
considered in the creation of an ETL benchmark: 

Q1. Does the workflow execution reach the maximum possible level of data 
freshness, completeness, and consistency in the warehouse within the necessary 
time (or resource) constraints? 

Q2. Is the workflow execution resilient to occasional failures? 

Q3. Is the workflow easily maintainable? 

Freshness. A clear business rule is the need to have data as fresh as possible in the 
warehouse. Also, we need all of the source data to be eventually loaded at the 
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warehouse; the update latency depends on the freshness requirements. Nevertheless, 
the sources and the warehouse must be consistent at least at a certain frequency (e.g., 
at the end of a day).  

Missing changes at the source. Depending on what kind of change detector we have 
at the source, it is possible that some changes are lost (e.g., if we have a log sniffer, 
bulk updates not passing from the log file are lost). Also, in an active warehouse, if 
the active ETL engine needs to shed some incoming data in order to be able to 
process the rest of the incoming data stream successfully, it is imperative that these 
left-over tuples need to be processed later.  

Recovery from failures. If some data are lost from the ETL process due to failures, 
then, we need to synchronize sources and warehouse and compensate the missing 
data. Of course, tuples from aborted transactions that have been sent to the warehouse 
(or they are on their way to it) should be undone. 

Maintainability. In addition, keeping the ETL workflow maintainable is crucial for 
the cost of ETL lifecycle. A number of parameters may affect the maintainability of 
the system. Here, we focus on parameters indicating the cost of handling evolution 
events during the ETL lifecycle. Ideally, a simple ETL design is more maintainable, 
whereas in a complex one it is more difficult to keep track of a change. 

Efficiency. Efficiency is an important aspect of ETL design. Since typically ETL 
processes should run within strict time windows, performance does matter. In fact, 
achieving high performance is not only important per se, it can also serve as a means 
for enabling (or achieving) other qualities as well. For example, a typical technique 
for achieving recoverability is to add recovery points to the ETL workflow. However, 
this technique is time-consuming (usually, the i/o cost of maintaining recovery points 
is significant), so in order to meet the execution time requirements, we need to boost 
ETL performance. Typical questions need to be answered are as follows: 

Q4. How fast is the workflow executed? 

Q5. What degree of parallelization is required? 

Q6. How much pipelining does the workflow use? 

Q7. What resource overheads does the workflow incur at the source, intermediate 
(staging), and warehouse sites? 

Parallelization. The configuration in terms of parallelism plays an important role for 
the performance of an ETL process. In general, there exist two broad categories of 
parallel processing: pipelining and partitioning. In pipeline parallelism, the various 
activities are operating simultaneously in a system with more than one processor. This 
scenario performs well for ETL processes that handle a relative small volume of data. 
For large volumes of data, a different parallelism policy should be devised: the 
partitioning of the dataset into smaller sets. Then, we use different instances of the 
ETL process for handling each partition of data. In other words, the same activity of 
an ETL process would run simultaneously by several processors, each processing a 
different partition of data. At the end of the process, the data partitions should be 
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merged and loaded to the target recordset(s). Frequently, a combination of the two 
policies is used to achieve maximum performance. Hence, while an activity is 
processing partitions of data and feeding pipelines, a subsequent activity may start 
operating on a certain partition before the previous activity had finished. 

Minimal overheads at the sources and the warehouse. The production systems are 
under continuous load due to the large number of OLTP transactions performed 
simultaneously. The warehouse system supports a large number of readers executing 
client applications or decision support queries. In the offline ETL, the overheads 
incurred are of rather secondary importance, since the contention with such processes 
is practically non-existent. Still, in active warehousing, the contention is clear. 

− Minimal overhead of the source systems. It is imperative to impose the minimum 
additional workload to the source, in the presence of OLTP transactions. 

− Minimal overhead of the DW system. As the warehouse is populated by loading 
processes, other processes ask data from it. Then, the desideratum is that the 
warehouse operates with the lightest possible footprints for the loading processes 
as well as the minimum possible delay for incoming tuples and user queries. 

3   Benchmark Parameters 

In this section, we propose a set of configuration parameters along with a set of 
measures to be monitored in order to assess the fulfillment of the benchmark goals. 

Experimental Parameters. The following problem parameters are of particular 
importance to the measurement of ETL workflows: 

P1. the size of the workflow (i.e., the number of nodes contained in the graph),  
P2. the structure of the workflow (i.e., the variation of the nature of the involved 

nodes and their interconnection as the workflow graph), 
P3. the size of input data originating from the sources,  
P4. the workflow selectivity, based on the selectivities of the workflow activities,  
P5. the values of probabilities of failure, 
P6. the latency of updates at the warehouse (i.e., it captures freshness requirements), 
P7. the required completion time (i.e., this reflects the maximum tolerated execution 

time window),  
P8. the system resources (e.g., memory and processing power), and 
P9. the “ETL workload” that determines an execution order for ETL workflows and 

the number of instances of the workflows that should run concurrently (e.g., for 
evaluating parallelization in an ETL engine, one may want to run first a complex 
ETL workload composed of a high number of line workflows that should run in 
parallel, and then, a smaller set of tree workflows for merging the former ones). 

Measured Effects. For each set of experimental measurement, certain measures need 
to be assessed, in order to characterize the fulfillment of the aforementioned goals. In 
the sequel, we classify these measures according to the assessment question they are 
employed to answer. 
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Q1. Measures for data freshness and data consistency. The objective is to have data 
respect both database and business rules. Also, we need data to be consistent with 
respect to the source as much as possible. The latter possibly incurs a certain time 
window for achieving this goal (e.g., once a day), in order to accommodate high 
refresh rates in the case of active data warehouses or failures in the general case. 
Concrete measures are: 

− (M1.1) Percentage of data that violate business rules. 

− (M1.2) Percentage of data that should be present at their appropriate warehouse 
targets, but they are not. 

Q2. Measures for the resilience to failures. The main idea is to perform a set of 
workflow executions that are intentionally abnormally interrupted at different stages 
of their execution. The objective is to discover how many of these workflows were 
successfully compensated within the specified time constraints. For achieving 
resilience to failures, we consider two strategies or quality objectives: recoverability 
and redundancy. For the former, the most typical technique is to enrich the ETL 
process with recovery points (used for intermediate staging of data processed up to 
that point), so that after a failure the process may resume from the latest recovery 
point. However, where to put such points is not a straightforward task. Redundancy 
can be achieved with three techniques: replication, diversity or fail-over. For lack of 
space, here we refer only to replication, which involves multiple instances of the same 
process (or of a part of it) that run in parallel. Concrete measures are: 

− (M2.1) Percentage of successfully resumed workflow executions. 
− (M2.2) MTBF, the mean time between failures. 
− (M2.3) MTTR, mean time to repair. 
− (M2.4) Number of recovery points used. 
− (M2.5) Resumption type: synchronous or asynchronous. 
− (M2.6) Number of replicated processes (for replication). 
− (M2.7) Uptime of ETL process. 

Q3. Measures for maintainability. Maintainability is a qualitative objective and 
finding measures to evaluate it is more difficult than the other quantitative objectives 
(e.g, performance or recoverability). An approach to this, is to consider the effort for 
modifying the process after a change has been occurred either at the SLA’s (service 
level agreements) or the underlying systems (e.g., after adding, renaming or deleting 
an attribute or a table at a source site). Concrete measures are: 

− (M3.1) Length of the workflow or in other words, the length of its longest path 
(i.e., how far in the process a change should be propagated). 

− (M3.2) Complexity of the workflow refers to the amount of relationships that 
combine its components [3]. 

− (M3.3) Modularity (or cohesion) refers to the extent to which the workflow 
components perform exactly one job; thus, a workflow is more modular if it 
contains less sharable components. Modularity imposes some interesting tradeoffs, 
for example with parallelization.  
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− (M3.4) Coupling captures the amount of relationship among different recordsets or 
activities (i.e., workflow components). 

Q4. Measures for the speed of the overall process. The objective is to perform the 
ETL process as fast as possible. In the case of off-line loading, the objective is to 
complete the process within the specified time-window. Naturally, the faster this is 
performed the better (especially, in the context of failure resumption). In the case of 
active warehouse, where the ETL process is performed very frequently, the objective 
is to minimize the time that each tuple spends inside the ETL module. Concrete 
measures are: 

− (M4.1) Throughput of regular workflow execution (this may also be measured as 
total completion time). 

− (M4.2) Throughput of workflow execution including a specific percentage of 
failures and their resumption. 

− (M4.3) Average latency per tuple in regular execution. 

Q5. Measures for partitioning. The partitioning parallelism is affected by a set of 
choices. Partitioning a flow is not straightforward, since the splitting and especially, 
the merging operations required for the partitioning do not come without a cost. 
Concrete measures are: 

− (M5.1) Partition type (e.g., round-robin, hash-based, follow-database-partitioning, 
and so on), which should be chosen according the characteristics of the workflow. 
For example, a flow heavy on sort-based operations may consider hash-based 
partitioning instead of round-robin. 

− (M5.2) Number and length of workflow parts that use partitioning. 
− (M5.3) Number of partitions. 
− (M5.4) Data volume in each partition (this is related to partition type too). 

Q6. Measures for pipelining. The pipelining parallelization is affected by parts of the 
workflow that contain (or not) blocking operations (e.g., transformations based on 
sort or aggregation). Concrete measures are: 
− (M6.1) CPU and memory utilization for pipelining flows or for individual 

operation run in such flows. 
− (M6.2) Min/Max/Avg length of the largest and smaller paths (or subgraphs) 

containing pipelining operations. 
− (M6.3) Min/Max/Avg number of blocking operations. 

Q7. Measured Overheads. The overheads at the source and the warehouse can be 
measured in terms of consumed memory and latency with respect to regular 
operation. Concrete measures are: 

− (M7.1) Min/Max/Avg/ timeline of memory consumed by the ETL process at the 
source system. 

− (M7.2) Time needed to complete the processing of a certain number of OLTP 
transactions in the presence (as opposed to the absence) of ETL software at the 
source, in regular source operation. 
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− (M7.3) The same as 7.2, but in the case of source failure, where ETL tasks are to 
be performed too, concerning the recovered data. 

− (M7.4) Min/Max/Avg/ timeline of memory consumed by the ETL process at the 
warehouse system. 

− (M7.5) (active warehousing) Time needed to complete the processing of a certain 
number of decision support queries in the presence (as opposed to the absence) of 
ETL software at the warehouse, in regular operation. 

− (M7.6) The same as M7.5, but in the case of any (source or warehouse) failure, 
where ETL tasks are to be performed too at the warehouse side. 

4   Specific Scenarios 

A particular problem that arises in designing a test suite for ETL workflows concerns 
the complexity (structure and size) of the employed workflows. A means to deal with 
this is to construct a workflow generator, based on the aforementioned disciplines. 
Another means is to come up with an indicative set of ETL workflows that serve as the 
basis for experimentations. For space consideration, here we present the latter and we 
propose a small, exemplary set of specific ETL flows based on the TPC-H [16]. 

4.1   Database Schema 

The information kept in the warehouse concerns parts and their suppliers as well as 
orders that customers have along with demographic data for the customers. The 
scenarios used in the experiments clean and transform the source data into the desired 
warehouse schema. The sources for our experiments are of two kinds, the storage 
houses and sales points. Every storage house keeps data for the suppliers and parts, 
while every sales point keeps data for the customers and the orders. (The schemata of 
the sources and the data warehouse are depicted in Figure A1 – in the appendix.) 

 

4.2   ETL Scenarios 

We consider the butterfly cases discussed in Section 2 to be representative of a large 
number of ETL scenarios and thus, we propose a specific scenario for each kind. Due 
to space limitation, here we provide only small-size scenarios indicatively (e.g., a 
right-deep scenario is not given). However, as we discussed, one may create larger 
scenarios based on these exemplary structures. The scenarios are depicted in Figure 2 
(their detailed descriptions can be found in the appendix of this paper). 

The line workflow has a simple form since it applies a set of filters, 
transformations, and aggregations to a single table. This scenario type is used to filter 
source tables and assure that the data meet the logical constraints of the data 
warehouse.  

A wishbone workflow joins two parallel lines into one. This scenario is preferred 
when two tables in the source database should be joined in order to be loaded to the 
data warehouse or in the case where we perform similar operations to different data 
that are later joined. In our exemplary scenario, we track the changes that happen in a 
 



 Benchmarking ETL Workflows 211 

 
Line 

 

 

Wishbone 

 

Primary Flow 

 

 
Tree 

Fig. 2. Specific ETL workflows 
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Fig. 2. (continued) 
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source containing customers. We compare the customers of the previous load to the 
ones of the current load and search for new customers to be loaded in the warehouse. 

The primary flow scenario is a common scenario in cases where the source table 
must be enriched with surrogate keys. This exemplary primary flow that we use has as 
input the Orders table. The scenario is simple: all key-based values (“orderstatus”, 
“custkey”, “orderkey”) pass through surrogate key filters that lookup (join) the 
incoming records in the appropriate lookup table. The resulting rows are appended to 
the relation DW.Orders. If incoming records exist in the DW.Orders relation and they 
have changed values then they are overwritten (thus, the Slowly Changing Dimension 
Type 1 tag in the figure); otherwise, a new entry is inserted in the warehouse relation. 

The tree scenario joins several source tables and applies aggregations on the result 
recordset. The join can be performed over either heterogeneous relations, whose 
contents are combined, either over homogeneous relations, whose contents are 
integrated into one unified (possible sorted) data set. In our case, the exemplary 
scenario involves three sources for the warehouse relation PartSupp.  

The fork scenario applies a set of aggregations on a single source table. First the 
source table is cleaned, just like in a line scenario and the result table is used to create 
a set of materialized views. Our exemplary scenario uses the Lineitem table as the 
butterfly’s body and starts with a set of extracted new records to be loaded. 

The most general-purpose scenario type is a butterfly scenario. It joins two or 
more source tables before a set of aggregations is performed on the result of the join. 
The left wing of the butterfly joins the source tables, while the right wing performs 
the desired aggregations producing materialized views. Our first exemplary scenario 
uses new source records concerning Partsupp and Supplier as its input. A second 
exemplary scenario introduces a Slowly Changing Dimension plan, populating the 
dimension table PART and retaining its history at the same time.  

5   Related Work 

Several benchmarks have been proposed in the database literature, in the past. Most of 
the benchmarks that we have reviewed make careful choices: (a) on the database 
schema & instance they use, (b) on the type of operations employed and (c) on the 
measures to be reported. Each benchmark has a guiding goal, and these three parts of 
the benchmark are employed to implement it.  

As an example, we mention two benchmarks mainly coming from the Wisconsin 
database group. The OO7 benchmark was one of the first attempts to provide a 
comparative platform for object-oriented DBMS’s [4]. The OO7 benchmark had the 
clear target to test as many aspects as possible of the efficiency of the measured 
systems (speed of pointer traversal, update efficiency, query efficiency). The BUCKY 
benchmark had a different viewpoint: the goal was to narrow down the focus only on 
the aspects of an OODBMS that were object-oriented (or object-relational): queries 
over inheritance, set-valued attributes, pointer navigation, methods and ADTS [5]. 
Aspects covered by relational benchmarks were not included in the BUCKY 
benchmark.  
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TPC has proposed two benchmarks for the case of decision support. The TPC-H 
benchmark [16] is a decision support benchmark that consists of a suite of business-
oriented ad-hoc queries and concurrent data modifications. The database describes a 
sales system, keeping information for the parts and the suppliers, and data about 
orders and the supplier's customers. The relational schema of TPC-H consists of eight 
separate tables with 5 of them being clearly dimension tables, one being a clear fact 
table and a couple of them combinations of fact and dimension tables. Unfortunately, 
the refreshment operations provided by the benchmark are primitive and not 
particularly useful as templates for the evaluation of ETL scenarios.  

TPC-DS is a new Decision Support (DS) workload being developed by the TPC 
[11, 15]. This benchmark models the decision support system of a retail product 
supplier, including queries and data maintenance. The relational schema of this 
benchmark is more complex than the schema presented in TPC-H. There are three 
sales channels: store, catalog and the web. There are two fact tables in each channel, 
sales and returns, and a total of seven fact tables. In this dataset, the row counts for 
tables scale differently per table category: specifically, in fact tables the row count 
grows linearly, while in dimension tables grows sub-linearly. This benchmark also 
provides refreshment scenarios for the data warehouse. Still, all these scenarios 
belong to the category of primary flows, in which surrogate and global keys are 
assigned to all tuples. Recently, a new effort has been started driven by the TPC-ETL 
committee, but so far, concrete results have not been reported [15]. 

An early version of this paper was presented in [17]; due to lack of formal 
proceedings, please refer to the online version. 

6   Conclusions 

In this paper, we have dealt with the challenge of presenting a unified experimental 
playground for ETL processes. First, we have presented a principled way for 
constructing ETL workflows and we have identified their most prominent elements. 
We have classified the most frequent ETL operations based on their special 
characteristics. We have shown that this classification adheres to the built-in operations 
of three popular commercial ETL tools; we do not anticipate any major deviations for 
other tools. Moreover, we have proposed a generic categorization of ETL workflows, 
namely butterflies, which covers frequent design cases. We have identified the main 
parameters and measures that are crucial in ETL environment and we have discussed 
how parallelism affects the execution of an ETL process. Finally, we have proposed 
specific ETL scenarios based on the aforementioned analysis, which can be used as an 
experimental testbed for the evaluation of ETL methods or tools. 

Open issues involve (a) the handling of non-relational data, the treatment of near 
real time ETL, (c) the tuning of several parameters of the benchmark with values that 
reflect real-world applications, (d) the handling of indexes, materialized views and 
auxiliary data structures at the target side of the warehouse, and (e) the treatment of 
platform and hardware characteristics. Extra care should be taken also for the control 
flow part of ETL processes. 

The main message from our work is the need for a commonly agreed benchmark 
that reflects real-world ETL scenarios, both for research purposes and, ultimately, for 
the comparison of ETL tools. Feedback is necessary for further tuning the benchmark. 
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Appendix 

The schemata of the sources and the data warehouse are depicted in Figure A1. 

Data Warehouse:
PART(rkey s_partkey,name,mfgr,brand,type,size,container,comment) 
SUPPLIER (s_suppkey, name, address, nationkey, phone, acctbal, comment, totalcost) 
PARTSUPP(s_partkey, s_suppkey,availqty,supplycost, comment) 
CUSTOMER (s_custkey, name, address, nationkey, phone, acctball, mktsegment, comment) 
ORDER (s_orderkey, custkey, orderstatus, totalprice, orderdate, orderpriority, clerk, shippri-

ority, comment) 
LINEITEM (s_orderkey, partkey, suppkey, linenumber, quantity, extendedprice, discount, 

tax, returnflag, linestatus, shipdate, commitdate, receiptdate, shipinstruct, ship-
mode, comment, profit) 

Storage House:
PART (partkey,name,mfgr,brand, type, size, container, comment) 
SUPPLIER (suppkey, name, address, nationkey, phone, acctbal, comment) 
PARTSUPP (partkey, suppkey, availqty, supplycost, comment) 
Sales Point:
CUSTOMER (custkey, name, address, nationkey, phone, acctball, mktsegment, comment) 
ORDER (orderkey, custkey, orderstatus, totalprice, orderdate, orderpriority, clerk, shippri-

ority, comment) 
LINEITEM (orderkey, partkey, suppkey, linenumber, quantity, extendedprice, discount, tax, 

returnflag, linestatus, shipdate, commitdate, receiptdate, shipinstruct, shipmode, 
comment) 

 

Fig. A1. Database schemata 

Detailed Description of Scenarios 

Line. In the proposed scenario, we start with an extracted set of new source rows 
LineItem.D+ and push them towards the warehouse as follows: 

1. First, we check the fields "partkey", "orderkey" and "suppkey" for NULL values. 
Any NULL values are replaced by appropriate special values. 

2. Next, a calculation of a value "profit" takes place. This value is locally derived 
from other fields in a tuple as the amount of "extendedprice" subtracted by the 
values of the "tax" and "discount" fields. 

3. The third activity changes the fields "extendedprice", "tax", "discount" and 
"profit" to a different currency.  

4. The results of this operation are loaded first into a delta table DW.D+ and 
subsequently into the data warehouse DWH. The first load simply replaces the 
respective recordset, whereas the second involves the incremental appending of 
these rows to the warehouse. 

5. The workflow is not stopped after the completion of the left wing, since we would 
like to create some materialized views. The next operation is a filter that keeps 
only records whose return status is "False". 

6. Next, an aggregation calculates the sum of "extendedprice" and "profit" fields 
grouped by "partkey" and "linestatus". 

7. The results of the aggregation are loaded in view View01 by (a) updating existing 
rows and (b) inserting new groups wherever appropriate. 
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8. The next activity is a router, sending the rows of view View01 to one of its two 
outputs, depending on the "linestatus" field has the value "delivered" or not. 

9. The rows with value “delivered” are further aggregated for the sum of "profit" and 
"extendedprice" fields grouped by "partkey". 

10. The results are loaded in view View02 as in the case for view View01. 

11. The rows with value different than “delivered” are further aggregated for the sum 
of "profit" and "extendedprice" fields grouped by "partkey". 

The results are loaded in view View03 as in the case for view View01. 

Wishbone. The scenario evolves as follows: 

1. The first activity on the new data set checks for NULL values in the "custkey" 
field. The problematic rows are kept in an error log file for further off-line 
processing. 

2. Both previous and old data are passed through a surrogate key transformation. 
We assume a domain size that fits in main memory for this source; therefore, the 
transformation is not performed as a join with a lookup table, but rather as a 
lookup function call invoked per row.  

3. Moreover, the next activity converts the phone numbers in a numeric format, 
removing dashes and replacing the '+' character with the "00" equivalent. 

4. The transformed recordsets are persistently stored in relational tables or files 
which are subsequently compared through a difference operator (typically 
implemented as a join variant) to detect new rows.  

5. The new rows are stored in a file C.D+ which is kept for the possibility of failure. 
Then the rows are appended in the warehouse dimension table Customer. 

Tree. The scenario evolves as follows: 

1. Each new version of the source is sorted by its primary key and checked against its 
past version for the detection of new or updated records. The DIFFI,U operator 
checks the two inputs for the combination of pkey, suppkey matches. If a match is 
not found, then a new record is found. If a match is found and there is a difference 
in the field “availqty” then an update needs to be performed. 

2. These new records are assigned surrogate keys per source 
3. The three streams of tuples are united in one flow and they are also sorted by 

“pkey” since this ordering will be later exploited. Then, a delta file PS.D is 
produced. 

4. The contents of the delta file are appended in the warehouse relation DW.PS. 

At the same time, the materialized view View04 is refreshed too. The delta rows are 
summarized for the available quantity per pkey and then, the appropriate rows in the 
view are either updated (if the group exists) or (inserted if the group is not present). 

Fork. The fork scenario evolves as follows: 

1. Surrogate keys are assigned to the fields "partkey", "orderkey" and "suppkey". 
2. We convert the dates in the "shipdate" and "receiptdate" fields into a “dateId”, a 

unique identifier for every date. 
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3. The third activity is a calculation of a value "profit". This value is derived from 
other fields in every tuple as the amount of "extendedprice" subtracted by the 
values of the "tax" and "discount" fields. 

4. This activity changes the fields "extendedprice", "tax", "discount" and "profit" to a 
different currency. The result of this actvity is stored at a delta table D+.LI. The 
records are appended to the data warehouse LineItem table and they are also 
reused for a number of aggregations at the right wing of the butterfly. All records 
pushed towards the views, either update or insert new records in the views, 
depending on the existence (or not) of the respective groups. 

5. The aggregator for View05 calculates the sum of the "profit" and "extendedprice" 
fields grouped by the "partkey" and "linestatus" fields. 

6. The aggregator for View06 calculates the sum of the "profit" and "extendedprice" 
fields grouped by the "linestatus" fields. 

7. The aggregator for View07 calculates the sum of the "profit" field and the average 
of the "discount" field grouped by the "partkey" and "suppkey" fields. 

8. The aggregator for View08 calculates the average of the "profit" and 
"extendedprice" fields grouped by the "partkey" and "linestatus" fields. 

Butterfly. The first scenario uses Partsupp and Supplier as its input. 

1. Concerning the Partsupp source, we generate surrogate key values for the 
"partkey" and "suppkey" fields. Then, the "totalcost" field is calculated and added 
to each tuple. 

2. Then, the transformed records are saved in a delta file D+.PS and appended to the 
relation DW.Partsupp. 

3. Concerning the Supplier source, a surrogate key is generated for the “suppkey” 
field and a second activity transforms the "phone" field. 

4. Then, the transformed records are saved in a delta file D+.S and appended to the 
relation DW.Supplier. 

5. The delta relations are subsequently joined on the "ps_suppkey" and "s_suppkey" 
fields and populate the view View09, which is augmented with the new records. 
Then, several views are computed from scratch, as follows. 

6. View View10 calculates the maximum and the minimum value of the "supplycost" 
field grouped by the "nationkey" and "partkey" fields.  

7. View12 calculates the maximum and the minimum of the "supplycost" field 
grouped by the "partkey" fields. 

8. View11 calculates the sum of the "totalcost" field grouped by the "nationkey" and 
"suppkey" fields. 

9. View13 calculates the sum of the "totalcost" field grouped by the "suppkey" field. 

The second butterfly scenario concerns Slowly Changing dimensions, populating 
the dimension table PART and retaining its history at the same time. The trick is 
found in the combination of the “rkey”, “s_partkey” attributes. The “s_partkey” 
assigns a surrogate key to a certain tuple (e.g., assume it assigns 10 to a product 
X). If the product changes in one or more attributes at the source (e.g., X’s “size” 
changes), then a new record is generated, with the same “s_partkey” and a 
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different “rkey” (which can be a timestamp-based key, or similar). The scenario 
works as follows: 

1. A new and an old version of the source table Part are compared for changes. 
Changes are directed to P.D++ (for new records) and P.DU for updates in the 
fields “size” and “container” 

2. Surrogate and recent keys are assigned to the new records that are propagated to 
the table PART for storage. 

3. An auxiliary table MostRecentPART holding the most recent “rkey” per 
“s_partkey” is appropriately updated. 

Observe that in this scenario the body of the butterfly is an activity. 

Statistics 

Figure A2 presents summarized statistics of the constituents of the ETL workflows 
depicted in Figure 2. Such statistics reveal the functionality (i.e., the nature) of 
each workflow. (The numbers L+R refer to the left (L) and right (R) wings, 
respectively.) 

 Filters Functions Routers Aggr Holistic 
f.

Joins Diff Unions Load 
Body 

Load 
Views 

Line 1+1 2+0 0+1 0+3     INCR INCR 
Wishbone 1+0 4+0    1+0   INCR - 
Pr. Flow      3+0   I/U - 
Tree    0+1 1+0 1+0  1+0 I/U I/U 
Fork  3+0  0+4     INCR INCR 
BB(1)  4+0  0+4  1+0   INCR FULL 
BB(2)  0+2     1  - I/U 

2+1 13+2 0+1 0+12 1+0 6+0 1 1+0    

Fig. A2. Statistics of the proposed ETL workflows  

Taxonomy of Activities 

Figure A3 presents a taxonomy of activities at the micro level and similar built-in 
transformations provided by commercial ETL tools. For each category of activities 
presented in Section 2.2, a representative set of transformations, which are 
provided by three popular commercial ETL tools, is presented. The figure is 
indicative and in many ways incomplete. The goal is not to provide a comparison 
among the three tools. On the contrary, we would like to stress out the genericity 
of our classification. For most ETL tools, the set of built-in transformations is 
enriched by user defined operations and a plethora of functions. Still, as figure A3 
shows, all frequently built-in transformations existing in commercial solutions fall 
into our classification. 

 
 



220 A. Simitsis et al. 

Transformation 
Category*

SQL Server Informa-
tion Services SSIS 

DataStage  Oracle Warehouse 
Builder  

Row-level: Func-
tion that can be 
applied locally to a 
single row 

− Character Map 
− Copy Column 
− Data Conversion 
− Derived Column 
− Script Component 
− OLE DB Command 
− Other filters (not 

null, selections, etc.) 

− Transformer (A ge-
neric representative of 
a broad range of func-
tions: date and time, 
logical, mathematical, 
null handling, num-
ber, raw, string, util-
ity, type conver-
sion/casting, routing.) 

− Remove duplicates 
− Modify (drop/keeps 

columns or change 
their types) 

− Deduplicator (distinct) 
− Filter 
− Sequence 
− Constant 
− Table function (it is 

applied on a set of 
rows for increasing 
the performance) 

− Data Cleaning Opera-
tors (Name and Ad-
dress, Match-Merge) 

− Other SQL transfor-
mations (Character, 
Date, Number, XML) 

Routers: Locally 
decide, for each row, 
which of the many 
outputs it should be 
sent to 

− Conditional Split 
− Multicast 

− Copy 
− Filter 
− Switch 

− Splitter 

Unary Grouper:
Transform a set of 
rows to a single row 

− Aggregate 
− Pivot/Unpivot 

− Aggregator  
− Make/Split subrecord 
− Combine/Promote 

records 
− Make/Split vector 

− Aggregator 
− Pivot/Unpivot 

Unary Holistic:
Perform a transfor-
mation to the entire 
data set (blocking) 

− Sort 
− Percentage Sam-

pling 
− Row Sampling 

− Sort (sequential, 
parallel, total) 

− Sorter 

T
ra

ns
fo

rm
at

io
n 

an
d 

C
le

an
si

ng
 

Binary or N-ary:
Combine many 
inputs into one 
output 

Union-like: 
− Union All 
− Merge  
Join-like: 
− Merge Join (MJ) 
− Lookup (SKJ) 
− Import Column 

(NLJ) 

Union-like: 
− Funnel (continuous, 

sort, sequence) 
Join-like: 
− Join 
− Merge 
− Lookup 
Diff-like: 
− Change capture/apply 
− Difference (record-

by-record) 
− Compare (column-by-

column) 

Union-like: 
− Set (union, union all, 

intersect, minus) 
Join-like: 

− Joiner 
− Key Lookup (SKJ) 

E
xt

r.
 

− Import Column 
Transformation 

− Compress/Expand 
− Column import 

− Merge 
− Import 

L
oa

d 

− Export Column 
− Slowly Changing 

Dimension 

− Compress/Expand 
− Column import/export 

− Merge 
− Export  
− Slowly Changing 

Dimension  
 * All ETL tools provide a set of physical operations that facilitate either the extraction or the loading phase. 

Such operations include: extraction from hashed/sequential files, delimited/fixed width/multi-format flat 
files, file set, ftp, lookup, external sort, compress/uncompress, and so on. 

Fig. A3. Taxonomy of ETL activities 
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