


Lecture Notes in Computer Science 5895
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Raghunath Nambiar Meikel Poess (Eds.)

Performance Evaluation
and Benchmarking

First TPC Technology Conference, TPCTC 2009
Lyon, France, August 24-28, 2009
Revised Selected Papers

13



Volume Editors

Raghunath Nambiar
Hewlett-Packard Company
11445 Compaq Center Dr W
Houston, TX 77070, USA
E-mail: raghu.nambiar@hp.com

Meikel Poess
Oracle Corporation
500 Oracle Parkway
Redwood Shores, CA 94065, USA
E-mail: meikel.poess@oracle.com

Library of Congress Control Number: 2009938720

CR Subject Classification (1998): C.4, D.2.8, D.2, D.4.8, H.3.4, K.6.2

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-642-10423-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-10423-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12792528 06/3180 5 4 3 2 1 0



Preface

First established in August 1988, the Transaction Processing Performance Council 
(TPC) has shaped the landscape of modern transaction processing and database 
benchmarks over two decades. Now, the world is in the midst of an extraordinary 
information explosion led by rapid growth in the use of the Internet and connected 
devices. Both user-generated data and enterprise data levels continue to grow expo-
nentially. With substantial technological breakthroughs, Moore's law will continue for 
at least a decade, and the data storage capacities and data transfer speeds will continue 
to increase exponentially. These have challenged industry experts and researchers to 
develop innovative techniques to evaluate and benchmark both hardware and software 
technologies. 

As a result, the TPC held its First Conference on Performance Evaluation and 
Benchmarking (TPCTC 2009) on August 24 in Lyon, France in conjunction with the 
35th International Conference on Very Large Data Bases (VLDB 2009). TPCTC 2009 
provided industry experts and researchers with a forum to present and debate novel 
ideas and methodologies in performance evaluation, measurement and characteriza-
tion for 2010 and beyond.  

This book contains the proceedings of this conference, including 16 papers and 
keynote papers from Michael Stonebraker and Karl Huppler. 

A number of people have contributed to the success of this conference. I would like 
to thank the members of TPC and the organizers of the VLDB 2009 conference for 
their support and sponsorship. I would also like to thank members of the Program 
Committee, Publicity Committee, the authors and the conference participants for their 
contributions in making this conference a big success.   

November 2009 Raghunath Nambiar 
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About the TPC 

Introduction to the TPC 

The Transaction Processing Performance Council (TPC) is a non-profit organization 
that defines transaction processing and database benchmarks and distributes vendor-
neutral performance data to the industry. Over the past two decades, the TPC has had 
a significant impact on industry and on expectations around benchmarks. Vendors and 
end users rely on TPC benchmarks to provide real-world data that are backed by a 
stringent and independent review process. 

TPC Memberships  

Full Members 

Full Members of the TPC participate in all aspects of the TPC's work, including de-
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Fax: 415-561-6120 
Email: info@tpc.org 
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Abstract. The Transaction Processing Performance Council (TPC) [1] is a non-
profit corporation founded to define transaction processing and database 
benchmarks and to disseminate objective, verifiable TPC performance data to 
the industry. Established in August 1988, the TPC has been integral in shaping 
the landscape of modern transaction processing and database benchmarks over 
the past twenty years. Today the TPC is developing an energy efficiency metric 
and a new ETL benchmark, as well as investigating new areas for benchmark 
development in 2010 and beyond. 

Keywords: Industry Standard Benchmark. 

1   Industry Standard Benchmarks 

Historically, robust and meaningful benchmarks have been crucial to the advancement 
of the computing industry. Without them, assessing relative performance between 
disparate vendor architectures is virtually impossible. Demands for audited and 
verifiable benchmarks have existed since buyers were first confronted with a choice 
between purchasing one piece of hardware over another, and have been driven by 
their desire to compare price and performance on an apples-to-apples basis.  

Over the years, benchmarks have proven useful to both systems/software vendors 
and purchasers. Vendors use benchmarks to demonstrate performance competitiveness 
for their existing products and to improve/monitor performance of products-under-
development; in addition, many buyers reference benchmark results when considering 
new equipment. Finally, benchmarks help vendors improve their products through 
competition. 

The two most prominent industry standard benchmark organizations to emerge 
from the 1980’s are the Transaction Processing Performance Council (TPC) and 
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Systems Performance Evaluation Corporation (SPEC) [2]. The TPC’s primary focus 
is total system performance under a database workload, including: hardware, 
operating system, and I/O system. All results have a price-performance metric audited 
by an independent TPC certified auditor. Like the TPC, SPEC “develops suites of 
benchmarks intended to measure computer performance. These suites are packaged 
with source code and tools and are extensively tested for portability before release.”7 
Unlike the TPC, SPEC results are peer audited.  

2   Transaction Processing Performance Council  

The TPC is a non-profit corporation founded to define vendor-neutral transaction 
processing benchmarks and to disseminate objective, verifiable performance data to 
the industry. Omri Serlin and Tom Sawyer founded the TPC  in 1988 as a response to 
the growing problem of “benchmarketing,” the inappropriate use of questionable 
benchmark results in marketing promotions and competitive comparisons. At the 
time, two frequently referenced benchmarks were the TP1 benchmark, originally 
developed by IBM, and the debit-credit benchmark, which appeared in a 1985 
Tandem Computers Inc. technical article that was published by a team led by Jim 
Gray.  With no standard body oversight, vendors took such liberties with these 
benchmarks that muddied the waters even further [3]. 

The TPC’s first benchmark was TPC-A, which was a formalization of the TP1 and 
Debit/Credit benchmarks. However, while a formal and accepted benchmark for 
system performance now existed, there continued to be many complaints of 
benchmarketing.  In response, the TPC initiated a review process wherein each 
benchmark test had to be extensively documented and then carefully vetted by an 
independent auditor before it could be published as a formal TPC benchmark result. 
Today, all published results of TPC benchmarks have been audited and verified by 
TPC certified auditors.  

2.1   User and Vendor Benefits 

Over the past two decades, the TPC has had a significant impact on the industry and 
expectations around benchmarks. TPC benchmarks have permanently raised the bar; 
vendors and end users rely on TPC benchmarks to provide real-world data that is 
backed by a stringent and independent review process. The main user and vendor 
benefits of TPC benchmarks are listed below. 

• A trusted and respected auditing process. TPC-certified independent 
auditors verify all results as a requirement for publishing a benchmark 
result.  Additionally, after a benchmark result is published the TPC allows 
for a peer review process –for 60 days every company in the TPC has the 
right to challenge any published result based on technical correctness. 

• An objective means of comparing price and price/performance. The TPC 
has been the most successful benchmarking group in developing a standard 
means of comparing the price and price/performance of different systems. 
All TPC testing requires vendors to detail their hardware and software 
components, along with the associated costs and three years of maintenance 
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fees, in order to provide the industry's most accurate price and price/ 
performance metrics. 

• Standard benchmarks for corporate and governmental acquisitions.  
Typically, as corporations and governments develop their request for 
proposals(RFPs) to purchase new systems, they scramble to find an objective 
means of evaluating the performance of different vendor architectures, 
technologies and products. Prior to the TPC, these users would spend 
enormous time and resources trying to define a custom benchmark and 
convincing the vendor community that it was technically sound and fair to all 
parties. Using a TPC benchmark already accepted by the user and vendor 
communities eliminates much of this wasted time and resources. 

• Complete system evaluation vs. subsystem or processor evaluation. The  
TPC benchmarking model has been the most successful in modeling and 
benchmarking a complete end-to-end business computing environment. This has 
helped TPC benchmarks gain recognition as credible, realistic workloads. Most 
past and many current benchmarks only measure the hardware performance 
(processor and memory subsystem). TPC benchmarks have led the way in 
developing a benchmark model that most fully incorporates robust software 
testing. 

• Objective engineering tools which spur real hardware and software 
improvements. TPC benchmarks, especially TPC-C and TPC-H, are well-
understood, stable workloads that engineers use on a continuous basis to 
eliminate hardware and software bottlenecks that lead to real-world performance 
improvements for users. 

2.2   What Makes the TPC Unique? 

Since its formation, the TPC has had a marked impact on the server performance 
industry. It boasts a membership that is who-is-who in the computer industry. These 
companies can be considered to be business rivals and yet they willingly work 
together to showcase and compare their products using the TPC organization. Given 
the marketing stakes, why do companies trust the TPC to fairly validate their claims? 
What makes the TPC unique? 

First of all the TPC provides cross-platform performance and technology 
comparisons. The organization provides, manages, and maintains the benchmark 
specification. The results’ sponsors independently decide on the best test configuration 
to showcase their system as long as it complies with the benchmark specification. This 
has enabled fair and verifiable cross-platform and technology comparisons. 

The TPC is the only benchmark organization that requires price/performance 
scores across all of its benchmarks. This is a realization of the fact that performance 
has its costs and those costs have to be declared. The price/performance metric has 
encouraged test sponsors to be more realistic in their test configurations because cost 
affects purchasing decisions. The availability date of all components of the test 
configurations has to be declared. These components have to be orderable at the time 
the result is published. This has limited test configurations to commercially available 
and viable products. 



4 R.O. Nambiar et al. 

Furthermore, all results have to be verified and certified by an independent Auditor 
prior to publication.  Next, a 60-day peer review period begins where the result can be 
challenged. 

All tests require full documentation of the components, applications under test and 
benchmark procedures to enable test replication by any interested party. This full 
disclosure makes it possible to question and challenge a result and ensures that all 
published results are credible and verifiable. 

The TPC is the foremost database performance verifying organization. Most of its 
benchmarks are database-centric and database agnostic and a wide variety of  
databases have been showcased and compared.   

Furthermore, all TPC benchmarks demand that a system support ACID (atomicity, 
consistency, isolation, and durability) requirements for the database system to 
demonstrate they can meet the reliability and security features required for real 
systems. Each benchmark defines a series of tests that are administered by the auditor 
before each benchmark result is published. 

In 2006 TPC introduced a common pricing specification across all its benchmarks 
that is designed to allow a fair and honest comparison for customers to review. It was 
created in order to guide the customer, the vendors implementing a benchmark, and 
the auditors on what is acceptable pricing for the purposes of publication.  

The TPC pricing specification does not attempt to dictate or exclude business 
practices in the marketplace. There may be some restrictions on pricing for 
publication (such as excluding sales and closeouts) that are different from some 
business transactions that actually take place in the marketplace, but those restrictions 
are intended to make publication both tractable and comparable during the lifetime of 
the publication for the majority of customers and vendors. 

Several factors make TPC’s pricing specification unique and creditable. Pricing 
must be based upon some pricing model that the sponsoring company actually 
employs with customers. Furthermore, the published price must be a price that any 
customer would pay for the priced configuration, and the methodology used must 
generate a similar price for a similar configuration for any customer. 

Pricing must also be verifiable. In a competitive environment, aggressive 
discounting may occur in certain situations, so the pricing model employed for TPC 
Benchmark publications might not represent the best or lowest price some customer 
would pay. It must, however, represent the pricing that could be obtained by any 
customer in a request for bid to a single vendor.  

Situations that occur when requests for bids go out to multiple vendors, and then 
those bids are used in multiple negotiations to get a better price, are not represented. 

2.3   TPC Organization 

At the helm of the TPC organization is the General Council, which is composed of all 
member companies. To expedite the work of the TPC, the General Council has 
created two types of subcommittees: standing and technical subcommittees. Standing 
subcommittees are permanent committees that supervise and manage administrative, 
public relations, and documentation issues for the TPC. The technical subcommittees 
are formed to develop a benchmark proposal, maintain the benchmark, and evolve the 
benchmark after development work is complete. 
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• General Council: All major decisions are made by the General Council. 
Each member company of the TPC has one vote, and a two-thirds vote is 
required to pass any motion. 

• Steering Committee: Consists of five representatives, elected annually, 
from member companies. The Steering Committee is responsible for 
overseeing TPC administration, supporting activities, and providing overall 
direction and recommendations to the General Council. The General 
Council, however, has the final decision in all substantive TPC matters. 

• Technical Advisory Board: This subcommittee is tasked with maintaining 
document and change control over the complex benchmark proposals and 
methodologies. In addition, the TAB studies issues involving interpretation/ 
compliance of TPC specifications and makes recommendations to the 
Council. 

• Public Relations Committee: This subcommittee is tasked with promoting 
the TPC and establishing the TPC benchmarks as industry standards.  

• Technical Subcommittees 

o Benchmark Development Subcommittees: A development 
subcommittee is the working forum within the TPC for development 
of a Specification. 

o Benchmark Maintenance Subcommittees: A maintenance 
subcommittee is the working forum within the TPC for developing 
and recommending changes to an approved TPC Benchmark 
Standard. 

The TPC organization adheres strictly to the TPC Bylaws [4] and the TPC Policies [5]. 

2.4   TPC Membership and Benefits 

The TPC has two classes of members, full members and associate members. While 
only select organizations are eligible for associate membership, all members enjoy the 
rights and benefits detailed in the TPC bylaws and policies. The following types of 
organizations are eligible for associate membership: non-profit organizations, 
educational institutions, market researchers, publishers, consultants, governments, and 
organizations and businesses that do not create, market or sell computer products or 
services [6]. 

Benefits of membership include: 

• Influence in the TPC benchmarking development process. Given the 
TPC's tremendous influence on the competitive arena, members have an 
opportunity to help the TPC decide which benchmarks to consider for future 
development, and how the current set of benchmarks should evolve. TPC 
member participation also provides advance, detailed knowledge of 
upcoming changes to the TPC benchmarking process. These changes can 
have a profound impact on how the market perceives products and product 
performance. Members gain insight into how products will be measured in 
advance of actual benchmark publication. 
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• Timely access to ongoing proceedings. The TPC's membership roster is 
virtually a “Who's Who” list of commercial computing, featuring many 
prominent computer system vendors, software database vendors, market 
research firms and systems integrators. TPC membership provides access to 
the TPC's internal Web site, which contains all day-to-day rulings, along 
with ongoing discussions and member proposals. 

• Product Improvement. Some organizations participate in the TPC’s 
benchmarking process for the same reasons car companies participate in 
Formula 1 racing. In the world of racing, many of the new components and 
technologies applied to producing the fastest Formula 1 cars are incorporated 
into consumer car design. Similarly, the TPC testing process enables 
members to produce more robust, higher performing retail products. TPC 
benchmarks are designed to put systems under maximum stress. Since TPC 
benchmarks model the basic types of operations that a typical transaction 
processing system might use, they have a wide-range of applicability to 
customers’ environments. 

Since the inception of the TPC, the organization’s membership roster has grown 
substantially. In 1988, the TPC had eight members, while in 1994 the organization 
had 45 members. After many acquisitions and mergers, the TPC now has 25 full 
members and three associate members. 

3   TPC Benchmark Standards: Past and Present 

Over the past two decades, the TPC has had a significant impact on the industry and 
expectations around benchmarks. Prior to the late 1980’s, the industry lacked 
objective, verifiable benchmarks that were relevant to real world computing. TPC 
benchmarks quickly raised the bar for what the industry came to expect in terms of 
benchmarks themselves.  

Vendors and end users now rely on TPC benchmarks to provide real-world data 
that is backed by a stringent and independent review process. TPC benchmarks have 
encouraged the comparison of price and price/performance on an apples-to-apples 
basis. 

3.1   TPC Benchmark Standards Overview 

The TPC’s primary focus has been on online transaction processing (OLTP) 
benchmarks. Over the years, the original TPC benchmarks evolved into new 
benchmarks or were ultimately retired. The chart below, created by TPC associate 
member IDEAS International, illustrates the progression of TPC’s benchmarks over 
the past 20 years. 

TPC Evolving Benchmarks 
• TPC-A evolved into TPC-B, and was ultimately replaced by TPC-C.  
• TPC-E is a new OLTP benchmark, which currently coexists with TPC-C.   
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Fig. 1. TPC Benchmark Lifespans [7] 

• TPC-D was the first Decision Support benchmark, which as evolved into 
TPC-H and TPC-R.  

• The TPC also developed a web server benchmark, TPC-W, which was later 
replaced by TPC-App.  

TPC Retired Benchmarks 

• TPC-R and TPC-W were retired due to lack of industry acceptance. 
• TPC-S, TPC-Enterprise and TPC-CS benchmark development efforts were 

aborted due to lack of support.  

TPC “Undecided” Benchmarks 

• TPC-DS is the next generation Decision Support benchmark designed to 
overcome some of the limitations of TPC-H but TPC is unable to reach 
consensus on TPC-DS. 

TPC Current Benchmarks 

• TPC-C and TPC-E for OLTP workloads. 
• TPC-H for decision support workloads. 
• TPC-App for Application Server and Web services. 

The TPC-C and TPC-H benchmarks continue to be a popular yardstick for comparing 
OLTP performance and Decision Support performance respectively. The longevity of 
these benchmarks means that hundreds of results are publicly available over a wide 
variety of systems. TPC-E is also gaining momentum. 

3.2   TPC Current Developments 

Since 1988, the TPC has developed nine benchmarks, each addressing requirements 
of industry demands. Currently, the TPC’s metrics-under-development include the 
TPC Energy Specification and the TPC-ETL benchmark [8].  
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3.2.1   The TPC Energy Specification 
Performance and price/performance metrics are key criteria in data center purchasing 
decisions, but the demands of today's corporate IT environment also include energy 
consumption as one of the most important considerations. Energy efficiency has 
become one of the most significant factors in evaluating computing hardware. To 
address this shift of IT purchasers' priorities, the TPC is developing a new Energy 
Specification to enhance its widely used benchmark standards. The addition of energy 
consumption metrics to the TPC's current arsenal of price/performance and 
performance benchmarks will help buyers identify the energy efficiency of computing 
systems to meet their computational and budgetary requirements.  

The TPC Energy metrics will provide an additional dimension to computing 
systems' performance and price. As with the TPC's price/performance metrics, which 
rank computing systems according to their cost-per-performance, the TPC Energy 
metrics will rank systems according to their energy-consumption-per-performance 
rates, and will take the form of watts/performance. The ranking of the Top Ten 
energy/performance systems will be available on the TPC website. 

Buyers now demand an objective method of comparing all three factors to select 
equipment that best meets their changing requirements, and the TPC's Energy 
Specification is being carefully designed to address this need. Like the TPC Pricing 
Specification, the TPC Energy Specification is a supplement to existing TPC 
benchmark standards, rather than a standalone measurement framework. This means 
that it is intended to be compatible with TPC benchmark standards currently in use, 
including TPC-App, TPC-C, TPC-E and TPC-H. The result will be metrics that 
enable comparison of systems on all three axes: price, performance and energy 
consumption.  

3.2.2   The TPC-ETL Benchmark 
The TPC-ETL (extract, transform and load) benchmark committee was formed in 
November 2008. The TPC’s intent is to develop an ETL environment workload, 
which manipulates a defined volume of data, preparing the data for use in a traditional 
data warehouse (DW). In particular, data extracted from an online transaction 
processing (OTLP) system is transformed along with data from ancillary data sources 
(including database and non-database sources), and loaded into a data warehouse.  
The source and destination schemas, data transformations and implementation rules 
have been designed to be broadly representative of modern ETL systems. The TPC is 
encouraging companies interested in participating in the development of this 
benchmark to join the TPC.  

4   Benchmark Development Process 

The TPC encourages industry experts and the research community to submit draft 
standard specifications in a format similar to other TPC benchmark standards.  The 
proposal can be a new benchmark in a new domain (e.g. TPC-ETL), a new 
benchmark in an existing domain (e.g. TPC-E in OLTP domain where TPC-C is a 
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standard) or a refinement of an existing benchmark (e.g. TPC-Energy initiative, 
adding and energy metric to all TPC benchmarks). 

After the TPC Steering Committee reviewed all submitted benchmark proposals 
for contents, applicability and viability it presents recommendations to the TPC 
General Council, identifying advantages/disadvantages for each submission and a 
proposed course of action. The TPC General Council may then vote to formally 
accept the proposal for future work.  

If approved, the TPC General Council establishes and empowers a subcommittee 
to develop a formal benchmark specification. To speed up the benchmark 
development cycle, the subcommittee is empowered to brief non-members on their 
benchmark in order to obtain timely feedback. 

At each General Meeting, the subcommittee provides a status update on its work, 
including a working draft of the specification. The TPC General Council may provide 
direction and feedback to the subcommittee to further their work. 

The TPC General Council may also authorize the release of a draft specification to 
the public.  Principal goals include encouraging companies to implement the draft 
specification, gathering more experimental data, and speeding up specification 
approval. 

Once the specification is of sufficient quality, the subcommittee will submit it to 
the General Council for formal review and approval. During this phase, the 
specification will be made available to all members and the public. All comments and 
proposed changes will be posted to the TPC’s private Web site and considered by the 
subcommittee for resolution. 

The subcommittee will propose resolution of comments as an updated 
specification, which is then reviewed by the General Council.  The General Council 
approves the updated specification by voting to send the specification out for mail 
ballot. To become a benchmark standard, the specification must be approved by a 
mail ballot in accordance with policies.  

After the specification has been approved by mail ballot, the General Council will 
establish a corresponding maintenance subcommittee, which will automatically 
supersede the development subcommittee. Results on different versions of a TPC 
benchmark standard are considered comparable unless the General Council stipulates 
restrictions for publicly comparing older version results with newer version results. 

Such complex development and approval processes are necessary to the benchmark 
development process. Creating carefully designed, robust metrics takes a considerable 
amount of time and resources, and the TPC’s extensive review process is designed to 
minimize potential future revisions.  

5   A Look Ahead 

The world is in the midst of an extraordinary information explosion, and the need for 
industry standard benchmarks remains crucial to the computing industry. To meet 
industry demands, the TPC is exploring potential areas for benchmark development in 
2010 and beyond.   
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The following areas are considered high-priority for future benchmark exploration:  
 

• Appliance 
• Business Intelligence 
• Cloud computing 
• Complex event processing 
• Database performance 

optimizations 
• Green computing 
• Data compression 
• Disaster tolerance and recovery 
• Energy and space efficiency 

 

• Hardware innovations 
• High speed data generation 
• Hybrid workloads or operational 

data warehousing 
• Unstructured data management 
• Software management and 

maintenance 
• Virtualization 
• Very large memory systems  

 

In the 1980’s, the TPC established the basic framework for price and price/ 
performance metrics based on industry need, and ultimately many of the TPC’s 
original benchmarks have evolved and are still in widespread use today.  Now, with 
its first ever Technology Conference on Performance Evaluation and Benchmarking, 
the TPC is again laying a basic framework for the development of future benchmarks. 
This conference is meant to solicit new ideas and to provide a discussion forum for 
the research community and industry experts. The TPC’s Technology Conference on 
Performance Evaluation and Benchmarking is a concrete step towards identifying and 
fostering the development of the benchmarks of the future. Tomorrow’s metrics will 
likely have as profound an impact on systems/software vendors and purchasers, as the 
TPC’s price and price/performance benchmarks have today.  
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Abstract. This paper gives the author’s opinion concerning the contributions 
the Transaction Processing Council (TPC) has made in the past, how it is 
viewed in the present by me and my colleagues, and offers some suggestions on 
where it should go in the future.  In short, TPC has become vendor-dominated, 
and it is time for TPC to reinvent itself to serve its customer community. 
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1   Introduction 

TPC has now been in existence for more than 20 years. It started its existence serving 
a great need of the user community on a problem of great relevance to them, as we 
will see in Section 2. Moreover, TPC-A encouraged the vendors to improved 
performance dramatically on OLTP. As such, it was a client-focused benchmark 
oriented toward encouraging vendors to improve their products. 

Over time, TPC appears to have been taken over by the commercial vendors. At 
the present time, most of TPC’s benchmarks have been politically engineered through 
vendor negotiation, and therefore lack relevance to any real world problem.  
Moreover, TPC has become slow moving and ponderous. Instead of encouraging the 
vendor community to do better, they are oriented toward preserving the positions of 
the current vendors. As such I conclude that TPC has “lost its way”, as will be 
explored in more detail in Section 3. 

In contrast, there are many areas crying out for either different DBMS features or 
better DBMS performance. In this paper I will highlight traditional areas (data 
warehousing and OLTP) as well as a couple of new ones, including science 
applications and RDF. This discussion appears in Section 4. 

As such, the recommendation of this paper is that TPC reorient its mission back to its 
roots; namely finding areas where there is significant pain in the user community and 
then constructing benchmarks that encourage the vendor community to address these 
needs. In other words, TPC should become customer-focused and not vendor-focused. 
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2   A Look at TPC History 

I want to note clearly that this is my interpretation of events from a long time ago, and 
others may have a different recollection. In 1985 Jim Gray did two terrific things.  
First, he wrote down a debit-credit benchmark, and then got all his friends to be 
coauthors on this paper [1]. This benchmark was a reasonable approximation to 
cashing a check at a bank, and resonated clearly with users and researchers alike. It 
was simple, consisting of 5 commands that could be coded up quickly in most any 
system. Lastly, at the time Jim could not find a DBMS that could execute more than 
25 debit-credit transactions per second, obviously a paltry number. At the time it was 
obvious that the user community wanted something much better.  

The second terrific thing Jim did was to start the High Performance Transaction 
Processing Workshop (HPTS) at Asilomar as a forum to discuss ideas for making 
DBMSs faster on OLTP. The goal of HPTS was to figure out how to achieve 1000 
transactions per second, at the time a factor of 40 better than could currently be done.  
I remember thinking at the time that this was an unbelievably aggressive number.  

The first few HPTSs generated lots of ideas on how to go faster on “bread and 
butter” OLTP.  DBMS vendors started touting benchmark numbers on debit-credit, 
which were obviously never “apples-to-apples”. As a direct result of Jim’s efforts, the 
Transaction Processing Council (TPC) was created three years later. TPC set about 
firming up the specifications for debit-credit, which would ultimately become TPC-A.   

Within a few years, performance on TPC-A leaped from 25 per second to 1000 per 
second, mostly by using techniques such as group commit and multiple lock tables, 
that were stimulated by HPTS. 

I consider the early work of TPC on debit-credit to be noteworthy for the following 
reasons: 

1) There was a pressing user need 
2) TPC benchmarks were simple and relevant to the user need 
3) The result was a 40-fold improvement in OLTP performance over a few 

years 

In effect, TPC found a user pain, publicized the pain and encouraged the vendor 
community to fix it.  Although Jim Gray had a lot to do with this early process, 
nevertheless, I believe that the path he put TPC onto is the right one, and is the most 
effective way to encourage vendor improvement. 

3   The Current Situation 

I will now take a quick look at TPC-H, TPC-DS and TPC-C on the three scales 
mentioned above; namely user need, user-relevance, and simplicity. 

3.1   TPC-H 

There is clear and obvious pain in the user community in the data warehousing area. 
In my opinion, this comes in six areas: 
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a) Users are forced into dividing the day into a load window followed by a 
query window. This “batch processing” operation is forced on them by the 
structure of the current products from the major vendors. Specifically, all 
current systems allow simultaneous read and update, and have a lock 
management system to sort out transaction management. Read operations set 
read locks while write operations set write locks. A transaction must block if 
it cannot acquire the lock for an object it wants to read or write.  Business 
intelligence queries tend to entail substantial numbers of reads. Data loads 
are similarly substantial numbers of writes. If both are run concurrently, the 
chances of a lock conflict are high. In this case, one or more transactions will 
block, holding substantial numbers of locks. If this occurs the data base will 
likely “freeze”, i.e. nobody will be able to get any work done. A primitive 
solution is to force a static division of the day into a read phase and a write 
phase.   

b) In addition, business analysts want to run collections of “what if” scenarios 
on the same data set. For example, in a retail scenario, an analyst might want 
to compare sales of certain items today against comparable sales yesterday.  
Receiving the answer, he might be inclined to ask the same question about 
other items. The goal is to have the two answers be comparable – i.e. 
computed from the same data. However, if the data can change between 
successive queries, then the results cannot be compared “apples-to-apples”.    

A batch load window solves this problem, by ensuring there are no 
updates between successive reads. However, there are much more elegant 
options, including named versions and time travel. Such advanced features 
are not in the products from most vendors, so batch operation is forced on 
users. 

c) As a result of a) and b), many users are in pain because they are having 
trouble loading their data within the batch load window allotted. Even if a 
user can currently load his data, the future is often problematic. Data 
volumes are increasing at most data warehouses, while the load window is 
fixed, which indicates trouble is coming. I have talked to numerous users 
who can predict within few days when they will hit the “load window wall”. 

d) Business analysts are relentless in their desire for more complex queries on 
more data. The correlations that analysts want to run are moving from 
ordinary statistics queries to more complex clustering and data mining tasks.  
Moreover, users are relentless in their desire to correlate more data elements.  
This is one of the reasons data warehouse sizes are going up so rapidly. 

As a result, most warehouse hardware configurations cannot keep up. 
Warehouse administrators are in pain because they must say “no” to user 
requests for service. 

e) Scalability. Several data base offering from major vendors have serious 
scalability problems, that limit the ability of users to add processing 
horsepower to current configurations. These tend to be vendors that are 
running on shared memory multiprocessor or shared disk configurations.  
For users of these products, there is a “query processing wall”. 

In contrast, “shared nothing (or MPP) vendors tend to scale much better 
than vendors on older architectures. 
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f) The “out of box” experience is awful for most current products. It is too hard 
to install the system, too hard to design a schema, too hard to load data, and 
too hard to learn and manipulate the tuning knobs to optimize performance.  
My experience with the major vendor’s products is that it takes weeks to 
months to perform the above steps. It should take less than one day. Also, the 
current tuning aids do not appear to be very helpful in the systems I have 
used. 

TPC-H has no data loading, and therefore there is no test for load performance or 
consistent read in a “trickle load” environment.  There is no focus on “out-of box” 
experience. There is no requirement to test scalability.  Moreover, test configurations 
for TPC-H tend to have absurd numbers of disks for the data stored.  For example, a 
recent published test used a disk system with 32 times the disk space required for the 
benchmark; i.e. TPC-H is being run on a hardware environment that no user in his 
right mind would set up. 

Moreover, the schema for TPC-H is well known as an example of terrible schema 
design [2]. Lastly, TPC-H has been “jiggered” (presumably by the vendors) to 
disallow materialized views, one of the very common ways to improve query 
performance in data warehouses.  

As such TPC-H is a bad schema with no data load and materialized views 
disallowed. As such, it is hardly relevant to any real world problem.   

Although it consists of only 22 queries, TPC-H is not simple. Explaining some of 
these queries to undergraduates in a DBMS course is not a trivial task. In my opinion, 
it could be a lot simpler.   

Although these problems with TPC-H have been known for years, TPC has been 
very slow to do anything about them. More ominously, their recent response (to start 
exploring TPC-DS) is a step in the wrong direction. It still does not have a 
requirement for incremental load and has been ballooned to 99 queries (the last time I 
looked), hardly responsive to user relevance or simplicity. Also, TPC-DS has been in 
the works for years, hardly an example of a speedy response to a problem. 

As such, I consider TPC to have lost its way in the warehousing space. The way 
forward, in my opinion, would be put the user community in control of the process, 
not the vendor community. 

3.2   TPC-C 

I want to make 2 very brief comments about TPC-C. First, the record holder for 
performance on TPC-C is running more than 6M new orders per minute; i.e. about 
100,000 new orders per second. I know of no retailer on the planet running at this 
volume of orders. Hence, performance on the benchmark has exceeded the needs of 
retail users in its current form. As such, it addresses no real world pain issue. 

Second, the schema does not conform to any real world problem I know of. Again, 
the schema has been “jiggered” by the vendors, presumably for political compromise.   

Notice clearly that I am not saying there is no OLTP pain; quite the contrary. Most 
“web 2.0” companies are in major pain in the OLTP area. One company has major 
needs in the multi-tenancy area, which are not addressed by any TPC activity.  
Several other companies are “sharding” (partitioning) their data in user-level code to 
get their OLTP performance requirements met. The reason for user-level sharding is 
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either because the multi-node performance of their chosen DBMS is unacceptable or 
because their chosen DBMS has no multi-node support. However, no TPC activity 
(that I am aware of) is addressing either of these issues. 

In addition, every OLTP application I am aware of wants 7 x 24 x 365 x 10 years.  
I.e they want their application to never fail. Twenty years ago this was too expensive 
to contemplate; now applications are happy to pay for the data redundancy and 
network bandwidth to achieve non-stop operation. However, this universal 
requirement is not reflected in TPC benchmarks. 

In addition, high volume retailers on the web are building high performance OLTP 
systems that look nothing like TPC-C. They are willing to sacrifice transactional 
consistency in favor of eventual consistency [3] so as to achieve high availability.  
Again, this is an ominous sign that TPC-C is no longer relevant. 

3.3   Summary 

In this section I want to make a collection of comments, that should cause TPC to 
reassess its mission. 

Current TPC rules make it very expensive to run the benchmark. Hence, this 
discourages small vendors from participating, and most do not. Hence, TPC is 
becoming a club open only to large vendors. 

The major data warehouse vendor (Teradata) does not use TPC-H. In fact, the 
majority of the data warehouse DBMS vendors do not run TPC-H, obviously because 
their customers have decided it is not relevant to their decision making process. This 
is a sign that TPC has lost its relevance in the data warehouse sector. 

A similar comment can be applied to the OLTP sector.   
Lastly, more than one analyst has decided that TPC is no longer relevant to user 

needs [4, 5].   
One option would be for TPC to “declare success” in accomplishing its mission, 

and cease operation. However, there are a substantial collection of good things TPC 
could choose to focus on. The next section offers some ideas on future directions for 
TPC to address the issues above. 

4   What Should TPC Do? 

I have two suggestions for TPC in this section, one concerning traditional markets, 
and one concerning new applications. 

4.1   Traditional Markets 

In both the data warehouse and OLTP markets, there is considerable pain that is not 
being addressed by TPC. There are also plenty of smart people who can articulate this 
pain. In the warehouse space, to be relevant, the following are required: 

a) one button install 
b) much better “out-of-box” experience 
c) schemas that make sense 
d) trickle load 
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e) “what if” scenarios on consistent data 
f) failover on crashes, including a “pull the plug” stress test 
g) petabyte workloads 
h) scalability to 100 nodes now, more in the future 

In the OLTP area, unmet needs exist in the area of: 

a) multi-tenancy 
b) failover 
c) disaster recovery 
d) parallelism to 10’s of nodes 
e) relaxed consistency rules 

Most of the vendor products are not very good at these features, and TPC could play a 
major role in articulating these needs and encouraging the vendors to do much better.  
I. e. TPC could play the same role they played 20 years ago with TPC-A. To move in 
this direction, a new political process would have to be constructed. This process 
would have to represent user requirements rather than vendor wishes. 

4.2   New Areas 

As I wander through the world, I am constantly struck by the number of users with 
incredibly hard data management problems. These exist both in areas that the current 
vendors pay attention to and in new areas.  Recently, I spoke with a financial services 
firm who wanted to compute the real time value of credit derivatives (called “toxic” 
assets here in the US) for 30,000 such instruments. The computation and data 
management scale of this problem is mind-boggling. Multiple financial services firms 
desperately want to solve this problem, so they can manage the financial strategy of 
their firm to acceptable risk levels. 

TPC should be actively trolling for the “new problems” in traditional areas, such as 
this one. 

Secondly, consider science data bases. It is hard for me to find a science person 
who is happy with relational data bases. Most refuse to use them, relying on “bare 
metal” solutions instead. This is true in big science projects, such as the Large Hadron 
Collider (LHC) as well as in smaller ones. Under Jim Gray’s guidance, the astronomy 
community has put the Sloan digital sky survey into a DBMS, and the results have 
been noteworthy. However, even in astronomy, there are many unmet needs [6].   

If the planet is going to be saved, it will be the science community which leads the 
way. Our DBMS community has pretty much ignored their requirements. TPC should 
do its part in defining and publicizing this unmet need. 

A similar comment can be made about RDF data in the bio-pharm community. 

4.3   A Call to Action 

In my opinion, it is time for TPC to reinvent itself. Instead of continuing with the 
current political process of slow moving benchmarks that are complex and not 
relevant to user needs, TPC should return to its roots of looking for user pain and then 
publicizing this pain to the vendor community, so that future systems will be better 
than current ones. Obviously, this requires a change in the current TPC process. 
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In addition, TPC must move at the speed of the industry today. From beginning to 
end a standard should consume not more than 6 months, a radical improvement from 
today’s process. Presumably this will require benchmarks to have champions of the 
stature that Jim Gray brought to TPC-A. 

In addition, TPC should reach out to the research community, which has extensive 
experience in designing benchmarks for a variety of purposes, to get their 
involvement. This workshop is a good step in the right direction. For example, there is 
at least one science DBMS benchmark that TPC might be able to leverage [7].  
Similarly, there are at least a couple of RDF benchmarks [8] and a Hadoop-oriented 
benchmark [9]. Put differently, the research community is working on cutting edge 
applications, and TPC should take careful note of these efforts. 

Moreover, the research community often has talent (e.g. graduate students) which 
TPC could leverage under certain circumstances. This could move benchmark 
activities forward at a quicker rate. 

My hope is that this workshop will spend at least part of its time on how to address 
this call to action. 
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Abstract. What makes a good benchmark? This is a question that has been 
asked often, answered often, altered often. In the past 25 years, the information 
processing industry has seen the creation of dozens of “industry standard” 
performance benchmarks – some highly successful, some less so. This paper 
will explore the overall requirements of a good benchmark, using existing 
industry standards as examples along the way. 

1   Introduction – Building a Good Benchmark 

Why so many benchmarks? The cynic would say “They haven’t got it right, yet.” The 
pessimist would say “They’ll never get it right, but they keep on trying.” The realist 
knows “The computing industry is so vast and changes so rapidly that new 
benchmarks are constantly required, just to keep up.”  
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Unfortunately, just because a benchmark is 
“new” doesn’t mean that it measures the “right 
stuff.” The design and implementation of a 
good performance benchmark is a complex 
process – often compromising between 
contrasting goals.   

There are five key aspects that all good 
benchmarks have, to some degree. It is not 
necessary to be perfect in each of these. In 
fact, it is impossible to be so. Most good 
benchmarks have clear strengths in one or two areas, and accommodate the others. 
The five characteristics are: 

• Relevant – A reader of the result believes the benchmark reflects something 
important 

• Repeatable – There is confidence that the benchmark can be run a second 
time with the same result 

• Fair – All systems and/or software being compared can participate equally 
• Verifiable – There is confidence that the documented result is real 
• Economical – The test sponsors can afford to run the benchmark 

Often, in order to satisfy the last four of these items, a benchmark developer must 
choose to give up on some of the first. This is not all bad, as long as one understands 
the choices being made. In fact, as we explore each of these items in greater detail, 
along with discussions of compromise between them, we will also look at the dangers 
of (believe it or not) doing too good a job in creating a benchmark. 
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2   Relevant 

There are a number of characteristics that can make a benchmark relevant, or 
irrelevant. Some of them are: 

• Meaningful and understandable metric 
• Stresses software features in a way that is similar to customer applications 
• Exercises hardware systems in a way that is similar to customer applications 
• Longevity – leading edge but not bleeding edge 
• Broad applicability 
• Does not misrepresent itself 
• Has a target audience that wants the information 

First, the metric of the benchmark must be understood by the reader – or at least be 
perceived to be understood. For example, the metric of SPEC’s (Standard Performance 
Evaluation Corporation) SPECjbb_2005 benchmark is “SPECjbb bops”. It isn’t difficult 
for the casual reader to determine that the “ops” is “operations per second”, and they 
might guess that it is “business operations per second”, there is no doubt that it is 
“business operations per second as measured with the SPECjbb benchmark” and one 
might even infer that the “jbb” stands for “java business benchmark”, even though you 
won’t find this phrase in SPEC’s documentation for the benchmark. The view that this 
is a throughput measure of merit for server-side transactional java where bigger is better 
is quickly understood – and this is a strength of the benchmark.  

It parallels another great benchmark, TPC Benchmark C (TPC-C), whose primary 
performance metric is simply “tpmC” – transactions per minute in Benchmark C – 
simple, yet elegant: This is a transactional benchmark, measuring throughput, where a 
larger value is better. That the “C” stands for the third benchmark produced by the 
Transaction Processing Performance Council (TPC) may be a little obscure, but this 
can be forgiven for the most successful transactional database benchmark in the 
industry. A student of the benchmark will find that “tpmC” is really a measure of 
“New Order Transactions per minute”, where the New Order transaction is only one 
of 5 business transactions in TPC-C, but this is fine, since the ratios of the transaction 
mix are tightly controlled in the benchmark.  

Two more benchmark metric examples: The TPC-H benchmark performance 
metric is “QphH@xxxGB” where “xxx” is a value that represents the database size 
that was measured. One can infer that this is also a throughput measure, one of 
queries per hour in Benchmark H (No, the “H” doesn’t represent the 8th benchmark 
produced by the TPC – it stands for “ad Hoc”). If you study the benchmark, you find 
that the metric isn’t the actual 
number of queries that are 
executed per hour, because the 
metric is actually the geometric 
mean of the throughput measure 
times the database size and the database size divided by the geometric mean of the 
individual query times - - Confused? Sure, but for the casual reader, QphH@dbsize 
means it is a measure of throughput capacity in Benchmark H for queries run against 
a particular size of database - - - and for all intentional muddying of the formula, here, 
it truly does relate to that very thing!  
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My final example is the SPECcpu2006 suite (SPECfp2006, SPECfp_rate2006, 
SPECint2006 and SPECint_rate2006). Here, the metric is - - - a number. There are no 
units, because this metric is essentially a ratio of the ability of the system under test to  
perform in a suite of intensive processor-oriented operations and functions in 
comparison to a reference point. To make matters more obscure, there are potentially 
8 numbers, for “base” and “peak” measures of each of the two ways to run each of the 
two independent suites in the benchmark suite. One might ask “How can something 
that seems to measure something so esoteric be a good benchmark?” The answer is 
that the SPECcpu suite is so overwhelmingly strong in other aspects that it is far and 
above the most popular performance benchmark in the world.  

The next “relevance” point is the use of software features in a realistic way. This 
can be one of the most challenging aspects of a benchmark, and one that leads to a 
fairly short life-span for benchmark relevance – because software is constantly 
evolving. As each software supplier delivers features and functions on an independent 
schedule, it can also run directly against the “fair” requirement for benchmarks.  

The appropriate use of software features is perhaps the most important 
requirement of benchmark development, even though it is also one of the least 
obvious to the casual observer. It is easy enough to tag a benchmark with terms like 
“Database”, “OLTP”, “Decision Support”, “Numeric Intensive”, “Compute Intensive” 
and the like. Such terms may make a benchmark appear to be exercising relevant 
software paths. However, if the benchmark does not use software features in the way 

that a “typical” customer application will, it 
can prevent computer providers from deliver- 
ing optimal solutions to their customers. If  
a benchmark becomes popular, computer 
providers will invest skills and money to 
improve the benchmark results. If the bench- 
mark uses a very limited software path or if 
the benchmark uses a path that is seldom 
used by consumers, this investment is made 
at the expense of development that might 
improve real consumer applications.  

 

On the other hand, when a benchmark 
exercises features realistically, it can be an 
absolute boon for consumers, because it 
gives development organizations the 
incentive to optimize paths that the 
consumer wants to take. The hallmark 
example of this is TPC-C. When it was 
delivered in 1992, it represented database 
transaction processing in a way that many, 
many consumers accomplished that function. At that time, I examined a database that 
IBM maintained that had performance data from thousands of AS/400 customers 
(running the operating system that was the predecessor to the IBM i operating system 
that is one of the options on IBM Power Systems, today.) The assessment showed that 
the overall path length of a TPC-C New Order was at approximately the 70th 
percentile of IBM AS/400 customer applications and exercised database and 
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workstation features in a way that was very similar to our customer’s OLTP 
applications. TPC-C has enabled the industry to provide customers with optimizations 
that are important to their applications, such as improved logging, improved 
serialization locking, optimal transaction processing paths, optimal transaction control, 
task/resource affinity, optimal interaction between customer workstations, middle-tier 
servers and database servers and overall improved path length for many key transaction 
processing functions.  On several occasions, I have observed customer applications that 
had expanded with customer growth that would have experienced bottlenecks that 
would slow them down, except that our development team had already removed those 
bottlenecks to help optimized TPC-C.  The relevant paths of the benchmark allowed us 
to optimize features ahead of when our customers needed them, helping them to expand 
without stressing the computer systems that they relied on to run their businesses.  

There are other examples of similar improvements that benchmarks have provided 
for consumers: TPC-H provided opportunities to greatly improve parallel processing 
for large queries. The SPECcpu suite helps to improve compilers, arithmetic 
operations, string operations, and others. Versions of SPECjbb help with just-in-time 
(JIT) compilation for Java code. The list goes on.   

Next on the “relevance list” is the use of hardware in a manner that is similar to 
consumer environments. As with software, it is important that a benchmark exercise 
hardware components and subsystems in a meaningful way, but it is even more 
important that a benchmark does not exercise hardware in ways that are not realistic. 
For example, a benchmark that does nothing but exercise a floating point accelerator 
might cause undue investment in that area, at the expense of investments in more 
general hardware improvements. On the other hand, a benchmark that exercises a 
mixture of floating point arithmetic, integer arithmetic, cache, memory, string 
manipulation and vector manipulation might provide a very satisfactory measure of 
the processor and related components in a system.  

The benchmark of reference is, again, the SPECcpu suite of benchmarks. The 
members of the Open Systems Group CPU 
(SPECcpu) committee within SPEC spend a great 
deal of time and effort making sure that the 
individual test cases used within the suite stress a 
variety of  relevant hardware and software functions 
within the processor nest. This is not to say that the 
benchmark tests that make up the SPECcpu suite are 
the end-all measure of hardware functions. In fact, 
these benchmarks do not exercise all hardware 
functions – by design. This leads, briefly, into a discussion of appropriate 
representation. A strength of the SPECcpu suite is that it says what it does and it 
does what it says. There is no implication that superior performance in 
SPECint_rate2006, for example, will translate to superior performance in an 
environment that requires massive numbers of user-tasks simultaneously competing 
for processor, memory, cache and I/O resources on the system – but there is a strong 
indication that it will work well for the portions of the processing that require 
substantial time to be spent manipulating integers in a variety of ways.  

For focus on a broader spectrum of hardware components in an environment with 
massive numbers of competing tasks that exercise processor, memory, cache, NUMA 
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characteristics, network I/O and storage I/O, the 
benchmark of choice has, for years, been TPC-C. One 
could argue that the sands of time have eroded the 
software relevance of TPC-C. Applications of today 
are far more complex than those developed in 1992, 
when TPC-C was first introduced. However, TPC-C 
continues to be a premier engineering tool for ensuring 
that an overall hardware design (and the associated 
firmware and OS kernels that run on it) is capable of 
supporting robust multi-user, multi-tasking environ- 
ments. In this regard, the TPC’s two transaction 
processing benchmarks compliment each other, with 
TPC-C enabling and encouraging strong affinity and 

non-uniform allocation of system resources and TPC-E requiring a more uniform 
allocation of resources across the entire system with less focus on affinity. Both 
environments are important to consumers, and a combination of the two benchmarks can 
lead to strong innovation in processor technology and associated hardware components.  

Another aspect of appropriate representation is taking the steps necessary to 
ensure that the benchmark is not misused to represent something that was not 
intended. This can be a challenge, since one of the strengths of a benchmark is to 
deliver a metric and exercise software and hardware in ways that are meaningful. The 
natural inclination of a user of the benchmark is to generalize this to assume that the 
benchmark represents everything associated with the environment that it emulates.  

I recently had an experience with 
SPECjbb2005 that highlighted this. The 
benchmark is “server-side java” and 
“transactional”, with a metric that includes 
“operations per second”. The inclination is to 
assume that it can be used to represent all 
transactional java environments that run on a 
server with multiple users – even though the 
benchmark intentionally does not include 
network I/O, storage I/O, database or a user 
interface. In the situation I encountered, 
someone was attempting to use SPECjbb2005 
to examine power management routines when 
the system is not running at full speed. The 
way to reduce system utilization with 
SPECjbb2005 is to run fewer jobs than there 
are logical processors – which focused some 
jobs on processors running at nearly 100% 
utilization while other processors sat idle. 
Clearly, this is not the way that a real transactional environment would work at 
moderate system utilization, and the result of the experiment were not what would be 
expected in a real environment. I should note that SPEC’s SPECpower committee 
addressed this very point when creating SPECpower_ssj2008. This committee used 
the SPECjbb2005 application as a base for the SPECpower_ssj2008 benchmark, but 

We’ve measured the 
fuel use of the truck 

when it is standing idle 

So, that tells us how fast 
it will travel when fully 

loaded, right? 

(Engineering) 

(Sales) 
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altered it to more appropriately distribute work across the entire system at lower 
utilization points.  

The next item on my “relevance” list is longevity. A benchmark whose usefulness 
lasts only one year is not a benchmark – it is a workload for a white paper. To a large 
degree, longevity is accomplished by creating a successful benchmark with other 
qualities described in this paper. In addition to satisfying these requirements “today”, 
however, there needs to be a perception that the benchmark will satisfy them 
“tomorrow”. In order to build a base of comparative performance information, a 
benchmark needs to be relevant for several years. This means that the software 
concepts that are exercised must be modern enough that they will still seem current 5 
years hence, but not so modern that they will go through rapid change as they mature – 
The benchmark must be leading edge, but not bleeding edge. It also means that 
benchmark development must be accomplished in a reasonable time. Innovations in 
computing technology will likely stay current for five years and may stay current for 
ten, but if it takes seven years to develop a benchmark, chances are the opportunity 
for the benchmark to remain relevant over time is very limited.  

There is another way to look at longevity – that being the longevity of the 
benchmark suite. Both the SPEC and TPC organizations have recognized that as 
technology changes, benchmarks may need to change with it. SPEC, in particular, has 
done an excellent job of initiating discussions for the next version of a benchmark 
almost as soon as a new version is released. Thus, while the results from the 
SPECcpu95 suite are not comparable with those of SPECcpu2000 or SPECcpu2006, 
the concept of what the benchmark is trying to achieve has been retained, maintaining 
longevity while upgrading the currency of the benchmark suite. The TPC has done 
this to some degree, too, with changes to the pricing and storage rules for TPC-C and 
the growth of TPC-D into TPC-R and TPC-H, although one could argue that the next 
change is overdue.  

There are two items left in the “relevant” list: broad applicability and having a 
strong target audience. Both seem simple and straightforward, but both create 
challenges.  

Certainly a benchmark application that focuses on the electronic examination of 
dental x-rays would not be considered to have a broad interest base, and yet if it does 
not include some of the functions that are important for this, the target audience may 
not include dentists who are looking to upgrade their information technology. On the 
other hand, a benchmark that makes use of a variety of imaging techniques could 
build a target audience that includes dentists, physicians, x-ray specialists, 
meteorologists, seismologists, geologists, natural resource engineers, crime 
investigators, and security specialists. The key is to retain sufficient specific use of 
hardware and software functions and features to stay “real”, while broadening the 
application to be appropriate for a wide number of uses.  

A couple more points on the identification of a strong target audience: The target 
audience must be interested in receiving the information. Suppose the key selection 
criteria for a computer solution for the groups listed above center around software 
functionality, hardware stability and customer service, with the assumption that the 
application design and hardware capacity are capable of handling the required  
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workload. If the target audience doesn’t need the information to help with their 
purchase decisions, the benchmark is of little use.  

Finally, I must note that the “target audience” does not need to be “customers”. 
Taking advantage of the many strengths that are listed throughout this paper, the 
SPECcpu suite has developed a huge audience – in the very people who run the 
benchmark – engineers, programmers, scientists, academics. Because the benchmark 
does not require sophisticated software support, it is also an outstanding tool for early 
processor development. While the benchmarks within the suite are most certainly 
used to help sell systems, this is almost an afterthought, once the real audience for the 
benchmark results completes its study.  

3   The Other Side of the Coin 

Thus far, I have spent a good deal of time on the need for performance benchmarks to 
be relevant. Indeed, without relevance, the benchmark will be worthless, at best, and 
at the worst will cause damage by forcing bad investments. However, just being 
relevant is insufficient to label a benchmark as “a good benchmark.”  

An often used phrase is “The best benchmark is the customer’s application”. This 
may be true as long as one accepts a target audience of one, but it may not be true, 
even then. The other four main criteria also enter in. If the benchmark results cannot 
be repeated again and again, the value of the measurement information is in question. 
Often a customer environment has data that change in a nonuniform way, making it 
difficult to run the benchmark over and over without doing a full system save/restore 
operation. If the benchmark cannot be run on different systems with different software 
packages driving it, it cannot be used to fairly evaluate different solutions. If there is 
no way to verify that the results are accurate and the benchmark was run correctly, 
the confidence in the result is questionable. If the benchmark cannot be run 
economically, without making a massive investment, there is little incentive to run it.  

It is well worth discussing these four criteria further, including some examples of 
how successful benchmarks have implemented them.  

3.1   Repeatable  

It sounds so simple – You run the same code on the same system, so you should get 
the same answer, right? In most cases, this is not so. Database applications grow (or 
shrink) data and consequently grow and change indices, which means “identical” 
queries have different paths and process different numbers of rows. Java applications 
can JIT repeatedly, causing the identical 
“code” to perform more effectively over time, 
but they also build up garbage in the java 
heap that must be cleaned out. Even physical 
entities are not immune: rotating disk can 
become less efficient when filled, because seek times will be longer and writes to 
newly formatted solid state storage are typically faster than over-writes of space that 
has been previously used to store information.  
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Benchmark designers must trade some aspects of “reality” to ensure repeatability 
and consistency – both from run to run and from minute to minute. One of these 
trade-offs is the creation of a steady-state period within the benchmark. Real 
applications are hardly steady in the way that they generate work on the system, but a 
benchmark where results will be compared requires either that the application and 
associated performance does not change over a period of time (such as with TPC-C, 
SPECjbb_2005 and SPECweb2005) or that the exact same (or nearly exact same) 
“dynamic” work flow runs for each iteration of the benchmark (such as with the 
SPECcpu suite and TPC-H) In TPC-H, updates are made to tables, but in key ranges 
that do not affect the queries that are the main focus of the benchmark, and in a way 
that lock contention from the inserts does not affect the read-only queries. In TPC-C, 
although the History, Order and Order_Line tables continue to grow throughout the 
benchmark run, empirical data demonstrates that they do not grow so much as to 
affect the processing of the benchmark application. And, while the TPC-C 
New_Order table is increased at the same rate that rows are removed by the Delivery 
transaction, care is taken to reset the database at least after every 12 hours of 
benchmark execution, because that is the point when the Delivery transaction will 
begin to process new orders that were created during the benchmark run, rather than 
the nicely compressed and ordered information that comes in the prebuilt database.  

3.2   Fair/Portable 

This is another requirement that seems 
blatantly obvious, but is truly a challenge to 
accomplish. Portability is less of an issue 
today that it was two decades ago when the 
primary benchmark consortias were formed. 
The use of standard C, C++ and Java 
languages and the use of standard SQL data 
access methods allows benchmark applications 
to be run on a wide variety of platforms. However, being “portable” does not mean 
that the benchmark is automatically “fair”.  

Consider the wide variety of database products that exist in today’s market – from 
traditional row-oriented structures, to newer columnar organization, to in-memory 
environments, to database accelerator appliances – each with specific strengths and 
potential weaknesses. How, then, can any single application fairly represent the 
ability of each of these products to perform in a more general environment? The 
answer is, of course, “It can’t.” However, benchmark implementers can make 
compromises that help the situation.  

At the extreme, these compromises can take a benchmark to a “lowest common 
denominator” situation, where they include only tried and true functions that almost 
all products have had a chance to optimize already. This can be self-defeating, making 
the benchmark old before it is even introduced. The key is to select functions that are 
viewed as important in the environment that the benchmark attempts to emulate and 
to assume that, for products that are weak in some areas, the benchmark can be used 
to help optimize those products for the general benefit of their customers. The phrase 
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on application currency, “leading edge but not bleeding edge,” also applies to the 
creation of fair benchmarks.  

Another aspect of fairness comes, not with the specific benchmark design, but with 
the designers. If a benchmark is developed and prototyped only on one operating 
environment, it will naturally tend to be optimized for that environment, at the 
expense of others. This has been true for some benchmarks from SPEC’s 
Java/ClientServer committee in the past, which focused initially on UNIX-related 
environments and the TPC’s TPC-App benchmark, where development was focused 
on Windows environments. These benchmarks naturally flowed toward the 
environments of choice for the benchmark developers, and were not necessarily “fair” 
to the other environments – even though part of this is because of the choice of the 
specific vendors involved to simply not participate.  

Some compromises can be avoided by not relying on a single benchmark, but 
instead using multiple benchmarks that may appear to operate in the same space. As 
previously mentioned, TPC-C is structured to stress features that can take advantage 
of partitioning and strong affinity between processes and the data they manipulate, 
whereas TPC-E is structured to reflect applications that are not as easily divided. 
TPC-E uses standard SQL with portions of the application logic being dictated by the 
benchmark, much like a business management software package might run, whereas 
TPC-C allows a broader range of data access methods and complete control over the 
transaction application code, much like a custom “roll your own” application would 
use. TPC-H focuses on ad-hoc queries, while its prior sister benchmark, TPC-R, 
focused on the kind of report generation that can be achieved with pre-defined 
materialized views that are formed with prior knowledge of the kind of queries that 
will execute. (TPC-R was retired by the TPC, not because it was poorly implemented, 
but because it did not generate a sufficient target audience to warrant active 
continuation of the benchmark.) This is also one of the reasons there is a 
SPECint2006 and a SPECfp2006 instead of a SPECcpu benchmark.  

3.3   Verifiable 

A benchmark result is not very useful if there is not a high degree of confidence that it 
represents the actual performance of the system under test. 
Simple benchmarks can be self-verifying, providing high 
confidence as soon as the result is delivered. More complex 
“system level” benchmarks have greater requirements for 
verification because there are more things that can change. One 
possible answer is to take the route that the TPC has taken, 
requiring benchmark results to be reviewed by a TPC-certified 
auditor who is very familiar with the benchmark and can identify 
when an implementation does not follow the benchmark requirements.  

SPEC’s approach is to simplify benchmarks when possible, to provide automatic 
verification routines when possible, and to assign final verification to the committee 
that created the benchmark and is charged with considering revisions in the future.  

Both approaches are designed to deliver confidence to the receiver of benchmark 
results and both have merit. The TPC could learn from SPEC in the creation of self 
verification routines and the simplification of benchmarks when complexity is not 
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required. As SPEC works toward more complex environments, such as Service 
Oriented Architecture and Virtualization, they may find that volunteer reviews of 
results are insufficient without the benefit of the dedicated scrutiny of an independent 
professional.  

3.4   Economical  

This is the final item in my list of primary criteria. It is too 
often overlooked during initial benchmark development, 
because the initial phases of development are focused on 
emulating reality to provide the necessary relevance for the 
benchmark. Indeed, to be relevant, one might expect a 
benchmark to be realistic; and to be realistic often means to 
be complex; and to be complex invariably means to be 
expensive. This is clearly another opportunity for 
compromise, if one wants to create a successful benchmark.  

The term, “economical”, does not mean “cheap”, but rather “worth the 
investment”. Consider IBM’s leading TPC-C result (6,085,166 tpmC, 
$2.81USD/tpmC, available December 10, 2008) which employed the use of 11,000 
disk drives and 128 middle-tier client systems. Clearly, the return on the investment 
was worth it. The benchmark was implemented and the result published, after all. On 
the other hand, it isn’t something one wants to do every week! In fact, as systems 
become more and more powerful, the cost of supporting equipment in the TPC-C 
benchmark has been one of the contributing factors in a decline in benchmark 
publishes. 

Other benchmarks, like TPC-E, TPC-H, SPECjAppServer2004, SPECweb2005 
and some SPEC and TPC benchmarks that are currently under development require 
robust system configurations that will require investments to run them. However, as 
with TPC-C, the existence of storage, memory and networking components is key to 
the business model for these benchmarks, so the trade-off must be the degree to which 
the business model is satisfied. 

In contrast, SPECjbb2005 and SPECfp2006/SPECint2006 enjoy large numbers of 
benchmark publishes – in part because it is not necessary to establish a massive data 
center to support them. College students can run these benchmarks on their laptops. 
They might not want to play too many video games while they wait for SPECfp2006 
to complete, but the point is that the benchmarks are very affordable. Both 
benchmarks make conscious trade-off decisions – They select only a slice of the 
computing industry’s “total reality”, in return for the appeal of being inexpensive to 
run, easy to run and easy to verify. As long as they are not used out of the context of 
their intent, they also meet the requirements for relevance, fairness and repeatability.   

4   You Don’t Want All Items Satisfied 

Can a benchmark be too perfect? I think so. When TPC-C was introduced in 1992, it 
satisfied a hunger for a meaningful, robust benchmark that was representative of the 
kind of database transaction processing that existed in the industry. It had (and still 
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has) a business model that was easily understood. It used software and hardware in a 
representative way. It was (and is) verifiable. It was (and is) repeatable. At the time, it 
was relatively economical (The first benchmark results topped out at 33.81 tpmC and 
54.14 tpmC, requiring somewhat fewer resources than the results of today.) The target 
audience was - - - Everyone! Many companies do different things with their 
computing technology, but ALL businesses must do some kind of database 
transaction processing to run their business. TPC-C grew to be the premier benchmark 
of the industry. Marketing teams and customers asked for results in TPC-C first and 
considered other benchmarks as an afterthought.  

TPC-C became such a force in performance benchmarks 
that it was extraordinarily difficult to change or introduce 
new, “competing” benchmarks. It became an almost generic 
measure of computer power, regardless of whether a target 
application was similar to the TPC-C business model or not. 
The TPC had several development efforts that would have 
built on the strengths of TPC-C, while upgrading the 
characteristics of the benchmark to keep pace with the 
times. Of these, the newest TPC benchmark, TPC-E, was 
the only successful one, and although the rate of publishes 
of TPC-E has now exceeded those of TPC-C, one could 
argue that they continue to be slowed by the continued 
strength of the TPC-C benchmark.  

In contrast, while SPEC benchmarks were far from obscure, these benchmarks 
have not been viewed under the brightest of spotlights that was, for a time, reserved 
for TPC-C, and the engineers who created them have enjoyed the freedom to maintain 
currency by reviewing and revising them.  

5   In Summary 

What can we learn from all of this? The first point is that benchmark developers must 
keep these five primary criteria in mind from the beginning of the development 
process. Benchmarks must have some component of relevance, repeatability, fairness, 
verifiability and economy. Perhaps more important is the reality that all of these 
should not (and likely cannot) be totally satisfied. It is more important to understand 
the compromises made to enable one strength over another than it is to satisfy every 
possible criterion.  

It is equally important to ensure that the consumers of benchmark information 
understand the strengths and limitations of each benchmark. It may be better to spend 
2 years developing a benchmark that stresses a single subsystem than it is to spend 6 
years developing a total system benchmark, but not if the subsystem benchmark is 
used to represent the “total system.” 

The industry continues to move rapidly, which implies that new benchmarks are 
needed and old ones should be considered for retirement. There will likely be some 
mainstays – Linpack, for one, TPC-C for another, but there is also a need for new tools 
to evaluate and optimize the features and functions that are growing in importance in 
today’s environment.  

How many TPC-C’s 
does it take to run that 
geothermal analysis 

application? 
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Finally, we need to learn from each other. The TPC has an outstanding reputation 
for building robust, full system benchmarks. As SPEC moves in that direction 
(particularly with their efforts in virtualization), they could learn a few things from 
the TPC. SPEC has an outstanding reputation for “rapid” (still measured in years) 
development and enhancement of benchmarks, and for making conscious 
compromises I recommend to make benchmarks more manageable in scope and 
therefore more readily accepted by those who are interested in using them to measure 
computer systems. The TPC could well learn from this example.  

Trademarks: TPC and TPC Benchmark are copyrights of the Transaction Processing 
Performance Council. The SPEC logo, SPEC, SPECjbb, SPECsfs, SPECmail, 
SPECint, SPECfp, SPECweb, SPECjAppServer, SPECjms and SPECjvm are 
registered trademarks of the Standard Performance Evaluation Corporation. BAPco 
and SYSmark are registered trademarks of the Business Applications Performance 
Corporation. SPC Benchmark is a trademark of the Storage Performance Council. 
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Abstract. The success of Business Intelligence (BI) applications depends on 
two factors, the ability to analyze data ever more quickly and the ability to 
handle ever increasing volumes of data. Data Warehouse (DW) and Data Mart 
(DM) installations that support BI applications have historically been built 
using traditional architectures either designed from the ground up or based on 
customized reference system designs. The advent of Data Warehouse 
Appliances (DA) brings packaged software and hardware solutions that address 
performance and scalability requirements for certain market segments. 
The differences between DAs and custom installations make direct comparisons 
between them impractical and suggest the need for a targeted DA benchmark. 
In this paper we review data warehouse appliances by surveying thirteen 
products offered today. We assess the common characteristics among them and 
propose a classification for DA offerings. We hope our results will help define a 
useful benchmark for DAs. 

Keywords: Appliances, Benchmark Development, Databases, Data Warehousing, 
Database Systems Standard. 

1   Introduction 

Business Intelligence continues to be a top priority of Chief Information Officers 
today because organizations gain a competitive edge by successfully leveraging 
integrated enterprise business intelligence. This capability helps them better 
understand customers, streamline their supply chain, and improve financial 
performance. Enterprise BI systems require larger data warehouses to support them, 
meaning more data, tables, users and query complexity. In today’s market vendors 
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offer three types of data warehouse configurations: traditional custom configurations, 
reference architectures configurations and data warehouse appliances.  

Traditional data warehouse systems are custom-built to meet individual customer 
requirements. Such configurations are highly flexible and provide high performance 
to meet demanding data warehouses while providing for potentially unlimited 
scalability for future growth. Custom-built configurations have a high pre-sale, 
implementation and support price tags. 

Reference architecture configurations are best practice building blocks that are pre-
tested and documented. Such components are typically designed to support varying 
scenarios at multiple levels of data and query scaling. Some immediate benefits for 
deploying data warehouse solutions based on reference configurations include: 

• Simplified product selection and sizing process 
• A predefined set of core components to simplify purchasing 
• Simplified, rapid deployment with predictable performance 
• Off-the-shelf components to enable repurposing and lower risk  

Alternatively, data warehouse appliances are designed around scalable design 
principles, delivered with preconfigured hardware and software pre-installed, and are 
ready to run at a specified performance level out of the box.  

In this paper we attempt to analyze the product offerings, not as a marketing 
exercise, but to attempt and discern the properties that data warehouse appliance 
vendors themselves offer and believe are lacking in the traditional offerings. The 
remainder of section one covers a brief history of how database appliances have been 
portrayed by analysts and vendors. Section two is an analysis of the common 
properties of database appliances based on a market survey conducted by the authors 
of appliances available today. The survey is included in full as Appendix. Section 
three attempts to classify and construct a test for what customers may consider an 
appliance. Section four describes future work including the need for an industry 
standard benchmark by which the market can assess key properties that are unique to 
appliances.  

The primary motivation of this study is to determine what features data appliances 
have in common in order to facilitate the process of defining a data appliance. 
Wikipedia proposes the following definition for a data warehouse appliance: “a data 
appliance consists of an integrated set of servers, storage, operating system(s), DBMS 
and software specifically pre-installed and pre-optimized for data warehousing.” [1] 
They go on crediting Teradata and Britton-Lee as the first appliances on the market – 
both companies were founded on 1979. Britton-Lee was acquired by Teradata which 
itself was acquired later on by AT&T/NCR and then spun off. The company who can 
be credited with “popularizing” the concept of data appliance is Netezza in the early 
2000s. There has been a flurry of start-ups in the current decade most benefiting from 
open source PostgreSQL or Ingres. They implement traditional relational 
architectures or vertical technologies. All traditional database vendors have recently 
joined the bandwagon with special-purpose bundles either software running on some 
specific vendor hardware or proprietary hardware/software combinations. 

Numerous analysts as well as vendors have attempted to find a single definition for 
a database appliance (or an IT appliance in general). Foster Hinshaw, arguably the 
father of the modern data warehouse appliance, used the benefits of an appliance to 
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attempt a definition [2]. Gartner in 2006 found that vendors began misusing the word 
appliance starting in the late 1990s and created a set of questions to evaluate an 
appliance [3]. Microsoft published a review of many database appliances in the 
market in the context of comparing them to SQL Server 2008 using openness and 
cost-effectiveness as their criteria [4]. The whitepaper is a market positioning paper 
that argues that systems from older vendors such as Teradata, IBM and Oracle are 
costly to operate. The paper further maintains that newer systems are too specialized 
and immature, and vendors have provided little or no public support network. The 
whitepaper fails to acknowledge or analyze market demands driving appliance 
vendors to introduce new products that address limitations in traditional data 
warehousing solutions.  

These definitions are relatively recent, but already appear to be outdated as the 
pace of new product offerings continues to develop. The increasing number of 
vendors offering dedicated appliances or appliance variations of their solutions makes 
it clear there is a wide market demand for an alternative to classic “do it yourself” 
data warehouse solutions. Despite some common characteristics across the vendors 
described in this paper, the rapid progress of appliance market presence continues 
without clear industry wide technology convergence. 

2   Survey Analysis 

Surveying the vendor offerings available in the market today we distilled a catalog 
of common properties attribute by the various vendors to their appliance offerings. 
We describe these properties and introduce a matrix (see Table 1) that summarizes 
which solutions offer each property. This analysis is not a validation of the 
properties that each vendor promotes, rather an extrapolation of how vendors 
perceive appliance offerings differently from custom configurations and reference 
configurations. This classification is also not intended as an exhaustive 
enumeration of the properties that the market demands of data warehouse 
appliances. This list does highlight some of the key properties which are later 
analyzed in the context of existing benchmarks. 

2.1   Efficiency and Energy Efficiency 

Data warehouse appliances are preconfigured not only for performance and cost, but 
also for energy efficiency and physical size. Many appliances are designed to offer 
"out of the box" efficiency relieving the user of balancing different hardware and 
software configurations. Whereas an assembled system may have additional CPU that 
the software cannot take advantage of or more disks that are necessary for the 
workload, appliances are balanced to maximize resources. For example, a system that 
requires ten disks for warehouse type workloads on 1TB of data would ship with ten 
appropriately configured disks of the correct capacity and speed. A custom-built 
system could easily be over or under provisioned leading to degradation in 
performance or unnecessary space and power consumption.  
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2.2   Large Volumes/Capacity of Data 

Data warehouse appliances are primarily geared towards large volumes of data. While 
some appliances focus at smaller volumes (less than 1TB) or medium volumes (1-
10TB), many are designed for environments with 100s of terabytes. Constructing data 
warehouses at the larger scales is a complex project that can consume system design 
resources over an extended period of time. To date only the most sophisticated 
organizations have been able to construct 100TB warehouses, always with substantial 
assistance from hardware and software vendors. As smaller organizations look to 
store and analyze more data, an appliance model - pre configured and tested at scale 
can be very attractive. A pre-built system with a shipping capacity of 100TB 
simplifies much of the provisioning, design and installation required in a self-built 
system. 

2.3   Expandable in Modular Units 

Data warehouse appliances are designed with integrated modular components. An 
expandable appliance is well suited to environments where data volume, numbers of 
users, workload or performance requirements grow over time. Some appliances are 
complete (closed) configurations that have fixed capacity with limited or no 
expansion capability. Other appliances are designed for limited or continual modular 
expansion at the storage system, server or rack level. A modular system allows 
expansion starting at a smaller size such as 1TB system all the way up to some 
maximum capacity such as 100TB or even 1PB+. Similar to the advantages of a fixed 
appliance configuration, an expandable appliance alleviates the ongoing system 
design burden from the user that needs to scale the system. 

2.4   Single SKU 

While it may appear trivial, the value of a single SKU when assembling a complex 
data warehousing system can greatly simplify the purchasing and maintenance 
process for a large system. Ordering separate hardware and software can often lead to 
weeks of analysis, comparing the different components that are available at any given 
point in time. Often times the disks, additional CPUs and memory upgrades are priced 
separately. Some RDBMS software requires packages on top of the base software 
when deploying specifically for data warehousing. Similarly when upgrading a 
system, different components may be available resulting in dozens of changes to a 
purchase order. 

2.5   Single Vendor/Support 

Traditional data warehouse systems are composed of various combinations of 
hardware and software components. For instance, a general purpose RDBMS may run 
on any suitable hardware/OS platform chosen by the user. In a single-vendor system 
the hardware and the software are sold by the same vendor. The single vendor is 
responsible for the entire system delivery and support. A single-vendor system 
resolves many of the contentious issues that can arise when troubleshooting a large 
complex system. For example, data warehouse workloads often involve large disk 
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scans. Poor performance may result from a software issue that has incorrectly laid out 
data on disk, a disk firmware issue that is incorrectly buffering data. A single vendor 
takes responsibility for resolution regardless of the source of the issue. 

2.6   Specialized Hardware 

While some data warehouse appliances are constructed using industry standard 
hardware that is also used for other applications, some appliances are constructed with 
specialized hardware. This may be a chip that is designed specifically for 
warehousing queries or a disk that is programmed to primarily read and write data 
sequentially. Since the specialized hardware is design and built specifically for the 
appliance it is typically not sold as a separate component. For certainly types of 
workloads, specialized hardware may provide a particular advantage or may 
complement the software provided in the appliance. 

2.7   Specialized Software 

General purpose DBMS software is designed to run on a variety of different types of 
hardware. This flexibility in software that can run on a variety of hardware platforms 
can lead to missed opportunities to optimize for a specific tested configuration. Some 
data warehouse appliances offer specialized software, designed only for their 
appliance offerings. The specialized software is tuned and embedded into a custom 
hardware design to maximize performance and scalability of the appliance solution. 
The specialized software is not available other then as part of the data warehouse 
appliance. 

2.8   Special Purpose or Purpose Built 

Often Data warehouse appliances are specifically designed to handle certain types of 
workloads. For example data warehouses usually have large volumes of data, are 
primarily ready only, compared to transaction processing systems, and handle 
workloads ranging from reporting to ad-hoc analytic queries. To accommodate these 
use cases, some appliances are designed from scratch or tuned in such a manner that 
the software and hardware configuration is optimized for warehousing workloads. 
This may require sacrificing performance for non-warehousing workloads, such as 
transaction processing. 

2.9   Pre-installed 

Different major versions and minor revisions of database software, operating system, 
drivers and interoperability can cause confusion and interoperability challenges. 
Specific bug fixes addressed by software may be unnecessary following hardware 
revisions (and vice versa). Commonly with data warehouse appliances, all software 
and hardware components are pre-installed and tested for compatibility with specific 
version of each component. While not necessarily an official certification, the 
packaging of each version combined with the support (and presumably quality 
assurance tests) result in a higher guarantee of function and performance for the 
appliance user. 
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2.10   Pre-configured or Fast Deployment 

Custom Data Warehouses and warehouses built from reference architectures require 
significant planning, design and implementation effort. The larger the system the 
more complex these requirements become and the longer they will take to design and 
implement. Most data warehouse appliances are delivered as configurable software or 
complete software/hardware systems that require only basic connection and setup 
installation. Unlike traditional custom-built data warehouse configurations, data 
warehouse appliance hardware is pre-installed (servers, storage, disk arrays) to 
specification from the factory and shipped directly to the customer. Pre-configured 
application software may be bundled with the system, as well. The complete 
appliance speeds everything from provisioning to installation and deployment. 

2.11   Massively Parallel 

Massively parallel processing refers to a system in which independent units execute 
operations on separate data in parallel. In the context of a database system MPP 
generally equates to a "shared-nothing" architecture where units have their own 
memory and their own data on disk. For redundancy purposes however, certain 
processing units and I/O subsystems can be arranged in clusters sharing data. A 
combination of modularity and scalability, MPP is a common architecture for data 
warehousing and data warehouse appliances. 

2.12   Packaged Database and Application 

Data warehouse solutions require not only hardware, operating system and database 
software, but also application software to load and query the database. A few data 
warehouse appliances have entered the market with combined database and 
application software. These are sometimes loosely coupled with joint marketing, 
packed together and per-configured. Others have specific optimizations and are sold 
as a single turnkey system. 

2.13   Packaged Database and Hardware 

Most Data warehouse appliances are pre-packaged with database software, operating 
system and hardware. From design through sales, marketing and support these 
appliances function as a single solution rather than a combination of products. 

2.14   Bundled Solution vs. Appliance Only 

Data warehouse appliances may be configured and delivered the pre-installed OS and 
database product components. Bundled solutions extend beyond the basic appliance to 
include general purpose or pre-configured vertical product software. These may 
include general or specialty applications, connection/interface components for 
variable data environments or external storage components. Appliance only solutions 
are comprised of components that are not sold separately. Often appliance only 
solutions include specialized hardware and software. 
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2.15   Self Managing or Self Tuning 

While the data warehouse appliance that arrives from the factory is tuned for a 
specific size and workload. Both the composition of the appliance and the target 
workload may change over time. A self-managing system is able to re-balance based 
on changing workloads and data. Similar to a device that can self-align, the self 
managing or self tuning appliance stand in contrast to a user assembled data 
warehouse that often requires manual maintenance and tuning both out of the box and 
as an ongoing task. 

2.16   Bundled Pricing 

Bundled pricing refers to a commercial practice whereby a single line item is 
provided to the client for the entire system including hardware, software and 
maintenance. The appliance bundle can be accompanied by a detailed list of items 
that constitute the bundle (a requirement for TPC pricing for example) though not 
necessarily for single-vendor bundles. A typical bundle could be for instance: System 
X with software version Y and 3-year maintenance for Z dollars. 

Table 1. Analysis of different appliances 

A. Greenplum/Sun H. Microsoft/DATAllegro 
B. HP/Neoview I.  Netezza 
C. HP/Oracle J.  Oracle 
D. HP/Vertica K.  ParAccel 
E. IBM L.  Sybase 
F. Ingres M.  Teradata 
G. Kickfire N.  Vertica 

 
System Characteristics A B C D E F G H I J K L M N 

Efficiency and Energy Efficiency X X  X  X X    X X  X 

Large Volumes/Capacity of Data  X X X X X  X X X X X  X X 

Expandable in modular units X X X X X   X X  X  X X 

Single SKU X X X    X X X  X  X X 

Single Vendor/Single Support X X  X X X X X X  X X X X 

Specialized hardware   X    X X X    X  

Specialized software   X   X  X X  X  X  

Special purpose or purpose built X X X X  X X X X X X X X X 

Pre-installed X X X X X X X X X X X X X X 

Pre-configured / Fast deployment X X X X X X X X X X X X X X 

Massively Parallel X X X X    X X X X  X X 

Packaged database plus application      X     X X   

Packaged database plus hardware X X X X X  X X X X X X X  

Bundled Solution vs. Appliance   X X   X     X X   

Self managing or self tuning   X     X X X   X 

Bundled pricing X X  X       X X   
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3   A Data Warehouse Appliance Test 

In the first two sections of this paper we reviewed the existing market demand for 
data warehouse appliances, appliance offerings from over a dozen vendors and the 
properties that each of these vendors ascribed to their appliance offerings. In this 
section we extrapolate from these properties a test that consumers can use to identify 
whether an offering meets a commonly accepted criterion for an appliance. We do not 
claim an absolute definition of a data warehouse appliance rather we have relied on 
the collective research of these vendors to make our assessment.  

A brief glance at table 1 shows some clear consensus among vendors as to the 
qualities of a data warehouse appliance. DAs are targeted at large volumes starting at 
100GB or greater and expandable in modular units. Appliance vendors provide a 
single source of support or at least a single point of contact for purchase and return. 
Most appliances are specially designed or customized for data warehousing and all 
are pre installed and pre configured for warehousing type workloads. Finally, nearly 
all appliances are offered as packaged database and hardware. 

While these seven most popular criteria are not an absolute definition of an 
appliance, it seems that most consumers expect the scalability and simplicity of an 
appliance to include most if not all of these features. Where vendors differ is in the 
nine other properties – either due to design decisions or to offer competitive 
differentiation. For example, a common but not universal property of data warehouse 
appliances is massively parallel processing. Ten out of fourteen solutions employ this 
architecture in their appliance offerings. Similarly, seven vendors have some 
specialized software or hardware that is designed specifically for their appliance 
solution while only three vendors offer additional bundled application software that is 
not included in their non-appliance offering. Though bundled pricing is not espoused 
as an appliance feature, an informal inquiry revealed that discounts among appliances 
are common. 

The trend among these key properties is that at first glance most are not easily 
compared quantitatively. Yet the quantitative measures tested in existing benchmarks 
including performance and price/performance are absent from the list of key 
appliance properties. While many data warehouse vendors often claim price and 
price/performance measures of their custom-built configurations, only those that 
exclusively sell appliances do so of their DA offerings. This dichotomy leads us to 
speculate that there is a need for some evaluation of the defining properties for data 
warehouse appliances. 

Existing benchmarks such as the TPC-H decision support benchmark and its 
predecessors emphasize query performance and overall price performance. These 
benchmarks require that submitters record load times but do not factor them into the 
results. Nor do the benchmarks measure setup time or scalability of a single solution. 
In fact, comparison across scales is expressly forbidden [15]. While we cannot claim  
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that existing benchmarks provide a disincentive to run appliances, it is telling that 
only three appliances have been run since the concept first became popularized ten 
years ago. In particular vendors who sell both appliance and non-appliance solutions 
have generally opted to run their non-appliance solutions. 

4   Need for a Data Warehouse Appliance Benchmark  
Specification 

The distinguishing factors in data warehouse appliances fall under two broad 
categories: scalability and simplicity. The consensus among vendors appears to be 
that the market demands a solution that can grow in modular units from 100s of 
gigabytes to 100s of terabytes or greater by simply plugging in new components 
purchased from a single vendor. The proliferation of data warehouse appliances from 
both new and established vendors indicates that this demand is not met by traditional 
custom configurations or even reference configurations. 

We believe there is a strong market demand for a suite of tests that benchmark data 
warehouse appliances. The warehousing decision support benchmarks that exist 
today, while satisfactory for comparing custom and reference configurations do not 
test for the properties that embody data warehouse appliances. Rather than focus 
exclusively on traditional workloads and timing aspects, this assessment should also 
focus on appliance specific factors and account for the properties outlined in this 
paper. 

A simple proposal could begin with extending or supplementing an existing 
benchmark to create quantitative measures that capture the essence of scalability and 
simplicity. For example, the TPC-H benchmark could be augmented to encourage 
comparisons across scale as a measure of modularity and change in price/performance 
across different volumes of data. Scalability testing might be performed without 
reloading instead appending new data as a customer would. Simplicity could be 
measured by including the load timings, including a random query generation phase 
or even comparing the amount of configuration information provided to the system 
for setup. 

We encourage bodies such as the TPC to take on this future work to define a  
data warehouse appliance benchmark specification that assess scalability and 
simplicity of a packaged solution. The benchmark should also definitively articulate 
the un-measurable qualities of an appliance solution to facilitate evaluation by 
consumers. 
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Appendix Data Warehouse Appliance Survey 

This section surveys an array of solutions that may be viewed as appliances in today‘s 
market place. In order to perform an unbiased survey we contacted twelve vendors 
and their partners to contribute a one-page description of their appliance solution, 
which have been included in unedited form, except for formatting changes to comply 
with publisher guidelines. 
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Table A.1. Contacted Vendors/Partners and Products offered 

Vendor/Partner Product Offering 
Greenplum/Sun The Greenplum Data Warehouse Powered by Sun 
Hewlett Packard HP Neoview Enterprise Data Warehouse 
Hewlett Packard/Oracle HP Oracle Database Machine 
Hewlett Packard/Vertica The Vertica Analytic Database Appliance 
IBM IBM InfoSphere Balanced Warehouse 
Ingres Ingres Icebraker Appliance 
Kickfire Kickfire Analytic Appliance for the Data 

Warehouse Mass Market 
Microsoft DATAllegro Appliance 
Netezza Data Warehouse Appliance 
Oracle Oracle Optimized Warehouse 
ParAccel ParAccel Analytic Database 
Sybase Sybase Analytic Appliance 
Teradata Teradata Data Warehouse Appliance 
Vertica The Vertica Virtualized Analytic Database 

We received product descriptions from Hewlett Packard, IBM, Kickfire, Oracle, 
ParAccel, Sybase, Teradata and Vertica. For those vendors who did not contribute a 
description we have researched their website and press releases and compiled a short 
description. These descriptions may not fully reflect the features and capabilities of 
these products. The intention is to come up with a list of appliance properties 
commonly claimed by vendors. 

A.1   The Greenplum Data Warehouse Powered by Sun 

Sun-Greenplum Data Warehouse Appliance [5] is open source software and general 
purpose systems powered by the Solaris 10 Operating System (OS) and PostgreSQL. 
The solution combines Sun Fire X4500 data server powered by dual-core AMD 
Opteron processors with Greenplum's massively parallel distribution of PostgreSQL, 
Bizgres MPP, in a single turnkey appliance. With its Query-In-Storage design, the 
solution is capable of scanning 1 terabyte of data in 60 seconds and can scale to 
hundreds of terabytes of usable database capacity. Sun claims the data warehouse 
system is one of the most energy efficient solutions in the industry, at only 90W per 
terabyte. The solution offers the following key attributes:  

• Performance - Massively parallel processing, made possible by the 
performance scalability of the AMD Opteron processor with Direct Connect 
Architecture, leverages a high-performance interconnect and moves 
processing to where the data resides.  

• Openness - Powered by open source software including the Solaris Operating 
System, PostgreSQL, and Solaris ZFS. Supports industry standards and 
interfaces (SQL, ODBC, JDBC).  
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• Value - An acquisition and ongoing administration cost of less than $20,000 
per usable terabyte. Small footprint (up to 50 TB per rack) and low power 
requirements (4.5 kW per rack) reduce operating costs.  

• Ease-of-use - Integrated and turnkey appliance reduces system complexity, 
for easy implementation and maintenance.  

A.2   HP Neoview Enterprise Data Warehouse 

HP Neoview enterprise-class data warehousing platform [6] is designed to meet the 
needs of a 24x7 operational BI environment, where massive amounts of information 
are analyzed in seconds. This pre-configured, pre-integrated and pre-tested platform is 
built to help simplify the deployment process. It includes startup and deployment 
services that enable users to begin loading data as soon as the system is powered up. 

Table A.2. Neoview features and benefits 

Neoview feature Key customer benefit 
Parallel execution across hundreds of 
servers 

Handles complex queries, mixed workloads, and 
high concurrency 

Massive scaling to hundreds of terabytes Allows complete analysis of large volumes of data, 
maximizing business insight from all information 
assets 

Innovative optimization engine Delivers unparalleled performance 
Built-in system-wide fault tolerance Provides mission-critical 24x7 capabilities and 

mitigates risk 

Remote management and monitoring 
from HP 

Simplifies administration and reduces maintenance 
costs 

Single vendor solution Provides accountability and simplicity so that you 
achieve your goals and mitigate risk 

Priority driven workload execution and 
user defined service levels and rules 

Gives consistent performance to meet service levels 
of varied mixed workloads 

Industry-standard components Protects investment and facilitates data center inte- 
gration. Allows component reuse. 

Completely integrated and preconfigured 
hardware, software, and services 

Assures faster time to operation. Provides simplicity 
that lowers cost of operations. 

Fully compatible with leading data inte-
gration, ETL, query, analysis, and 
reporting tools 

Allows easy integration into an existing environment 
and preserves investment in tools, training, and 
process 

 
There are fourteen HP Neoview platform models. The Cxxx model family uses 146 

GB user data disks and the Exxx model family uses 300 GB user data disks. 

A.3   HP Oracle Database Machine 

The HP Oracle Database Machine [7] is a complete system, including software, 
servers, networking and storage designed to run multi-terabyte data warehouses. At 
the heart of this system, is the HP Oracle Exadata Storage Server, which has smart 
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storage software that offloads data-intensive query processing from database servers 
closer to the data. This results in much less data getting sent over fast InfiniBand  
interconnects, dramatically improving both query performance and concurrency. It's 
simple and fast to implement, very cost-effective, and can linearly scale storage 
capacity, processing power and network bandwidth as your data warehouse grows. 

HP Oracle Database Machine is pre-configured for performance, pre- tuned, and 
certified for Oracle Business Intelligence Enterprise Edition tools and Oracle Real 
Application Clusters. Complete configurations can be ordered from Oracle, with 
hardware support by HP. The HP Oracle Database Machine is a high-performance 
system configured for data warehousing that includes a grid of eight database servers 
featuring: 64 Intel processor cores, and Oracle Enterprise Linux; and a grid of 14 HP 
Oracle Exadata Storage Servers that include up to 168 terabytes of raw storage and 14 
GB/sec data bandwidth to the database servers, when accessing compressed data, the 
effective throughput for a single rack can be 50 GB per second or more. Up to eight 
Database Machines can be networked together without requiring additional 
InfiniBand switches, and larger configurations can be built with the addition of 
external switches. 

A.4   HP Vertica Analytic Database Appliance 

The HP Vertica Analytic Database appliance [8] is a pre-configured HP c-class 
BladeSystem delivered as a single unit with integrated compute and storage blades. 
The HP BladeSystem c3000 or c7000 enclosure is designed as a balanced system with 
either 4 or 8 database nodes, each comprised of a compute blade paired with a storage 
blade. The Vertica software and RedHat Linux operating system are pre-installed and 
configured, delivering an instant out of the box database experience. In addition to the 
benefits of a single fully configured system, the HP Vertica appliance also delivers a 
dense and efficient real time data warehousing solution. A single c3000 can 
accommodate up to 20TB of user data with a c7000 scaling to 40TB or approximately 
2TB per 1U of rack space1. 

The HP c-class BladeSystems are expandable by simply plugging in new pairs of 
blades or new enclosures and registering them with the running system. For example, 
a c7000 enclosure can be purchased with half capacity (c3000 equivalent) and then 
expanded by adding compute and storage blade pairs. A full c3000 or c7000 based 
Vertica Appliance can be connected over Ethernet or InfiniBand to any number of 
additional appliances for additional capacity. Since each enclosure is self contained, 
each compute blade and storage blade forms a single unit and each Vertica nodes 
functions in a shared-nothing configuration, appliances can be sized as small or as 
large as the customer requires, up to four c7000 enclosures or 32 Vertica nodes per 
full rack capable of warehousing a full 160TB of user data. 

As with all configurations of the Vertica Analytic Database, the HP Vertica 
appliance is designed to be always on. Since each of the nodes functions as a peer in 
the database operation so users can connect to any node and see a single system 
image, regardless of the number of nodes. The nodes all support high availability so 

                                                           
1 20TB c3000 or 40TB c7000 is fully configured with pairs of BL460c and an SB40c with 6x 

300GB SFF SAS. 
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that one or more blade failures do not bring down ten rest of the cluster. When adding 
and removing nodes or while the database is self-tuning, users can continuous load 
and query data against the appliance.  

A.5   IBM InfoSphere Balanced Warehouse 

The IBM® InfoSphere Balanced Warehouse™ is the complete data warehousing 
solution comprised of pre-tested, scalable and fully-integrated system components of 
InfoSphere Warehouse, Server and Storage. It takes the best attributes of appliance-
like solutions, while still maintaining the flexibility of typical relational database 
servers. Like an appliance it offers the ease of deployment and configuration. The 
building-block approach in Balanced Warehouse™ allows for easy growth to handle 
additional workload and data in a data warehouse. This is unlike many “appliance” 
data warehouse solutions. And, while the configuration comes with a set of tools 
designed to make the implementation and maintenance of a data warehouse easy to 
accomplish, the customer also has the complete power of DB2 available to use as they 
need. Included in the IBM® InfoSphere Balanced Warehouse™ are: 

• InfoSphere Warehouse software: Including tooling and infrastructure to help 
data warehouse architects and administrators efficiently design, deploy and 
maintain an enterprise data warehouse. 

• A preconfigured, fully installed server 
• A fully installed storage subsystem 

- Currently, the IBM® InfoSphere™ Balanced Warehouse™ has three basic 
building blocks: 

• IBM® InfoSphere™ Balanced Warehouse™ C4000, comprised of: 
- InfoSphere Warehouse Intermediate Edition software 
- IBM System x3850 M2 
- IBM System Storage DS3200 
- Optional EXP3000 Storage 

• The IBM® InfoSphere Balanced Warehouse™ D5100 includes: 
- InfoSphere Warehouse software 
- IBM System x 3650 
- IBM System Storage DS3400 
- Optional EXP3000 Storage 

• The IBM® InfoSphere Balanced Warehouse™ E7100 includes: 
- InfoSphere Warehouse software 
- IBM System p 570 (on POWER6) 
- IBM System Storage DS4800 
- Optional EXP810 Storage 

The D5100 and E7100 are available in the form of five flexible modules, designed to 
deliver affordable scaling that meets a customer’s needs:  

• Foundation (includes all the function needed to manage the data warehouse)  
• Data (for flexible scaling of data and data access capabilities) 
• User (for extending the user access capabilities) 
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• Failover (for high availability solutions) 
• Application (portals to a variety of data warehousing applications) 

For more information on the IBM® InfoSphere Balanced Warehouse™ see [10][11]. 

A.6   Ingres Icebraker ECM Appliance 

Ingres web site states that today’s general-purpose databases and operating systems 
include a huge array of features, most of which are not used by all applications. 
Features that are not marketed as optional are included in products by default. 
Customers have to pay, install and maintain them. This may contribute not only to an 
unnecessarily high license fee, but also to an increased cost for deployment, 
configuration maintenance and security.  

The Icebreaker Software Appliances try to simplify installation, reduce security 
risks and, simplify deployment to improvements in efficiency and cost savings. 
Simplicity is achieved by reducing the layers in the appliance to the bare essentials. 
Additionally, Ingres takes responsibility for the integration of the various components 
within the appliance. The provided setup utility installs and configures the complete 
set of technologies as one unit. Ingres provides maintenance for the entire Icebraker 
Appliance. 

Reducing the components used in a database reduces the risk of exposure to 
security vulnerabilities. Additionally, securing the environment is greatly simplified 
because of less number of components that may interact. Lastly, the Ingres Icebraker 
Appliance only opens ports that it requires, only creates the minimum number of 
accounts and only starts the services and demons that are required. 

Being designed from the ground up, Ingres’ Software Appliances take advantage of 
the latest advances in hardware and software solutions, which are preinstalled and 
configured on a particular hardware configuration. 

Ingres’ appliances take advantage of Virtualization Technologies resulting in high 
efficient systems while also reducing cost. Especially since they are supplied as a unit, 
they greatly reduce the cost of installing, configuring, deploying and maintaining 
these solutions. 

A.7   Kickfire Analytic Appliance for the Data Warehouse Mass Market 

Kickfire™, Inc., delivers the first analytic appliance that affordably delivers the high-
performance capabilities of large commercial database systems to the mass market. 
The data warehousing mass market constitutes those deployments in the gigabytes to 
low terabytes which, according to IDC, represent over three quarters of the total 
market. 

This market presents significant challenges to traditional vendors. Customers need 
performance but are very price-sensitive. They have limited data warehousing 
expertise and few IT resources with which to deploy solutions. Finally early-stage 
data warehousing deployments, typical in the mass market, often include mixed 
workload characteristics.  

Kickfire has addressed these challenges the first analytic solution based on a 
parallel-processing SQL chip. Kickfire chose to package the solution as an appliance 
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because this has proven to be an attractive deployment model for customers in the 
mass market. The key characteristics of the Kickfire appliance are summarized below. 

Kickfire’s appliance combines the industry’s first SQL chip, which packs the 
power of 10’s of CPUs, and an advanced column-store engine with full ACID 
compliance, it achieves low price/performance based on rigorous benchmark tests and 
ensures complete data integrity. The small form factor and low power consumption of 
the device are designed for today’s cost- and green-conscious customers. Some 
properties of Kickfire’s appliance are: 

• An integrated and optimized solution down to the operating system level 
with features like Active System Monitor which notifies users of any 
potential system anomaly.  

• Runs standard MySQL Enterprise™.  
• Built to scale to the needs of the mass market in terms of data volumes, user 

concurrency and workload type, handping data sizes from the gigabytes to 
the terabytes.  

• Offers high-user concurrency on a single node, supporting 100 concurrent 
users and 1,000 active users.  

• Fast bulk loading as well as fast incremental loading to handle traditional as 
well as operational workloads. 

As highlighted above, Kickfire’s solution delivers all the benefits of an appliance, 
namely price/performance, ease of use, and manageability. Additionally, the Kickfire 
Appliance enables the mass market to scale in terms of data capacity, user 
concurrency, and workload type. 

A.8   Microsoft DATAllegro Appliance 

Prior to acquisition by Microsoft in July of 2008, DATAllegro sold a data-warehouse 
appliance named DATAllegro v3 [12].The DATAllegro appliance was created to 
enable rapid deployment of hundreds of terabytes of data at relatively low cost. The 
architecture was designed to offer both flexibility and scalability using a modular and 
open, standards-based technology. DATAllegro v3 utilized EMC storage, Dell servers 
and Cisco InfiniBand switches. Each server contained Intel multi-core CPUs and was 
powered by the Ingres open source database. Combined, these technologies allowed 
DATAllegro to offer a low cost, high performance appliance as well as a reliable and 
scalable solution. 

Traditionally, SAN based data warehouse storage solutions offers slow query 
performance and reduced disk space available for user data. This is because 
traditional warehouses were optimized to put data only on the fastest parts of the disk 
and to deploy as many small capacity spindles as possible to maximize IOPs. 
DATAllegro employed at RAIDW technology to maximize overall I/O performance 
as well as provide built in fault tolerance across all system components, not just the 
storage. 

The disk patters underlying most data warehouse solutions resemble random I/O, 
requiring a high number of IOPs, achieved with a very large number of spindles. This  
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is due to the number of indexes, and the complex disk infrastructure required to 
support different hard ware platforms and operating systems. By developing Direct 
Data Streaming technology, DATAllegro was able to optimize query execution to use 
sequential disk I/O and minimize the need for tuning. 

DATAllegro also reduced network traffic using their USN parallel database design. 
USN configured the database to maximize co-located joins across all nodes in the 
system. This minimizes network traffic and improves performance for most query 
types. Additionally, the use of multi-level partitioning reduces the amount of data 
read for each query. DATAllegro also supported indexes as required for queries that 
accessed a small number of rows each. 

A.9   Netezza 

Netezza Performance Server is a data warehouse appliance combining database, 
server, and storage, based on Linux and PostgreSQL. It uses a patented massively 
parallel architecture. The following is a copy the first page of Netezza’s description of 
a data warehouse appliance [13]: “To eliminate the need for constant tuning and the 
technology bottlenecks caused by slow disk transfer I/O rates, slow network transfer 
rates and inefficient caching, Netezza developed a system designed specifically for 
analytical processing on extremely large amounts of data. We call our system an 
“appliance” because, like a network or storage device, it was designed to do one thing 
extremely well. It is very straightforward – when you plug it in and load your data, it 
analyzes it very fast. And because the Netezza appliance is an integrated database-
server-storage system, you are no longer faced with building your own system out of 
disparate components, or maintaining these different piece parts. 

Netezza’s patented massively parallel architecture takes a different approach than 
traditional database architectures to processing queries. Where standard computing 
architectures are targeted at operations on individual data elements, the Netezza 
architecture is all about "streaming" processing. Rather than shuttling data between 
disk and memory for processing once a query comes in, which creates the bottleneck, 
data streams off the disk and through query logic loaded into an FPGA (field 
programmable gate array). The FPGA and processor (a PowerPC chip), together with 
400 GB of disk storage, reside on each of the massively parallel nodes that Netezza 
calls snippet processing units (SPUs). Each of our Netezza racks contains 112 of these 
SPUs. Queries are optimized across the SPUs for maximum performance and power 
efficiency A Linux host server aggregates SPU results and manages query workload 
and the results are returned to the user. It is this different approach to the growing 
analytic processing challenge that provides our customers with a high-performance 
database engine that brings simplicity to what has become a very complicated 
process. 

The Netezza 10000 product line starts with the 10050 with 56 SPUs (half a 
cabinet) rated at 6.25 TB of user data (12TB with compression). A basic 10100 (one 
cabinet) is rated at 12.5TB of user data with 112 SPUs. The other models are 
multipliers of the 10100 – a 10x00 with x=2, 4, 6 or 8 is composed of x 10100 
cabinets and the number of SPUs and the amount of user data are x times that of the 
10100. In summary Netezza emphasizes modularity, ease of use and lack of tuning 
chores 
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A.10   Oracle Optimized Warehouse Initiative 

The Oracle Optimized Warehouse Initiative is a joint development between Oracle 
and its partners to provide customers with a choice of easy-to-implement, high 
performance and scalable data warehousing solutions. It provides optimized data 
warehouses that combine the world’s most popular database for data warehouses, 
Oracle Database, with server, storage and networking components from HP, IBM, 
SUN, Dell, EMC and SGI. The Oracle Optimized Warehouse Initiative provides 
customers flexibility of choice to meet their different scale of requirements: 

• Reference Configurations are a best practice guide to choosing the right 
server, storage and networking components to build an Oracle data 
warehouse. These best practice guides help customers take the risk out of 
implementing a data warehouse as Oracle and its partners have encapsulated 
years of configuration expertise. 

• Oracle Optimized Warehouses provide customers with a pre-built, optimized 
data warehouse, complete with Oracle software, servers, storage and 
networking components ready to load data and run queries and reports. 
Available from Oracle’s partners, Optimized Warehouses have been fully 
tested and validated. 

There are a wide range of Reference Configurations available from HP, IBM, SUN, 
Dell, EMC and SGI to suit the different needs of all customers. These range in scale 
from 500GB to over 100TB data warehouses available on single and clustered servers 
to support tens to thousands of users with a wide choice of operating systems 
including Linux and Unix depending on specific partner reference configurations and 
Oracle Optimized Warehouses available. 

Configurations and Oracle Optimized Warehouses are designed with modular 
scalability in mind to incrementally add more storage and processing power as 
demand grows.  

Any Business Intelligence tool that is supported with Oracle Database can be used 
with the Optimized Data Warehouse. These include, OLAP, Data Mining, Oracle 
Business Intelligence Enterprise and Standard Editions, Hyperion, Business Objects, 
Cognos and many more. 

Oracle Warehouse Builder, a feature of Oracle Database, is a core component of 
Oracle Optimized Warehouse Initiative enabling transformation of raw data from 
disparate sources into high-quality information for business reporting and analytics. 

Oracle Enterprise Manager Database Control, a feature of Oracle Database, is used 
in the Oracle Optimized Warehouse Initiative solutions to automatically monitor the 
data warehouse environment and to help proactively resolve issues before they turn 
into emergencies. 

The HP Oracle Exadata Storage Server, a combination of the HP DL180 G5 
storage server and smart software from Oracle optimized for use with Oracle 
Databases, is part of the Oracle Optimized Warehouse Initiative. Its massively parallel 
architecture delivers outstanding query performance for data warehousing 
applications. 
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A.11   ParAccel Analytic Database 

The ParAccel Analytic Database (PADB) is a purpose-built analytic DBMS that is 
available as both traditional enterprise software or as a software appliance that can be 
implemented on a variety of configurations of any brand of industry standard 
hardware. The Ultra-Fast Data Warehouse powered by Sun and ParAccel, was the 
world’s first analytic appliance to publish TPC-H benchmarks (October 2007). 

As a software appliance, PADB offers both the flexibility of server choice that 
people enjoy with traditional DBMSs and the convenience of a purpose-built 
appliance with its simplicity and lower cost of ownership (e.g., load-and-go 
installation, single point of contact for troubleshooting, etc.). 

PADB installs with minimal setup overhead in environments with data volumes 
ranging from 100s of gigabytes to multi-terabytes, on configurations with variable 
numbers of servers based on standard multi-core x86 compatible CPUs. Despite the 
variable degree of configuration options, PADB uses a failover strategy that 
minimizes downtime and guarantees data integrity through intelligent mirroring, and 
the appliance’s integrated SAN storage option. The SAN configuration also offers 
guaranteed disaster recovery capability in the unlikely event of multiple simultaneous 
systems failures. 

PADB differs from most traditional DBMSs in that it assumes an analytic 
processing environment. PADB is built on a linearly scalable MPP shared-nothing 
architecture that uses columnar storage to optimize query performance, and data 
compression to minimize storage and access overhead. PADB includes support for 
advanced analytics defined by the SQL 2003 standard, complex multi-level 
aggregations, correlated sub-queries, and a patent-pending join strategy that allows 
the system to handle hundreds of tables in a single query. Another difference between 
PADB and many traditional DBMSs is that they were often designed for operational 
work and thus require many redundant structures or specialized design techniques 
(star schema, materialized view, indexes, summaries) to offer reasonable analytic 
query ability. PADB does not require these performance enhancement and tuning 
mechanisms to deliver record-setting performance for applications based on a wide 
range of schema, data and query requirements.  

ParAccel is also available as vertical application appliance (e.g., Autometrics 
Pulse). Finally, PADB differs from all other databases (appliance and non-appliance) 
in how it integrates into SAN environments. Patent-pending blended scan features 
leverage both server- and SAN-based storage for higher overall performance than 
either storage type alone. The scalable analytical appliance (SAA), bundled with 
SAN, is available as a single SKU. 

A.12   Sybase 

In the analytics space, Sybase offers both an appliance and a software-only solution. 
Sybase opted for this route to cater to what they believe are two almost independent 
markets. Increasingly, some customers are exploring “black-box” solutions to analytic 
and data mart types of use cases. Sybase believes there are several value propositions, 
which are driving some of their customers to choose an appliance solution over 
separate components. Briefly, these are: 



50 O. Trajman et al. 

• Faster time to “Value” 
- No system integration work required, especially with respect to storage; 

• Full solution stack: 
- the server and storage appliance already appropriately sized & configured 

(multiple options available based on data volumes and concurrent user 
estimates; 

- the DBMS software appropriately sized & configured; 
- Data modeling and development software to automate modeling and 

acquisition of source schemas as well as the creation of target schemas 
within the appliance; 

- ETL software to automate the extraction, transfer and load of production 
data into the appliance; 

- Top business intelligence tool to gain immediate business insight from the 
data; 

- a unified systems management console for the entire appliance. 
• Single vendor support model: 

- No additional database tuning required 
- One vendor services the entire solution 

Sybase also believe this market is particularly well suited to column-based RDBMS 
products because the vast majority of customers are really trying to get solutions to 
the business faster than IT can deliver. In these environments, Sybase find that the 
degree of ad-hoc, what-if scenario queries is significantly higher than in data 
warehouse / data mart use cases with traditional IT-based (non-COTS) applications. 
Column-stores inherent “index-everything” model is generally better suited to these 
types of environments. 

A.13   Teradata 

Teradata entered the appliance market in 1984 with the original Teradata DBC/1012, 
a Database Computer with integrated storage, servers, and RDBMS all supplied by a 
single vendor and purpose built for Decision Support processing. Today, although 
best known for the customized Active Data Warehouse 5550 platform, Teradata 
offers three appliance models.  

• Data Mart Appliance 551P, suitable for entry-level data warehousing, data 
mart, or test and development systems up to 2.6 TB user data.  

• Extreme Data Warehouse 1550, designed for very high-volume (100+ TB), 
non-enterprise data/analysis requirements for a small number of power users.  

• Data Warehouse Appliance 2550, designed for entry-level data warehouses 
or analytical data marts.  

Although all run the same Teradata RDBMS and SuSE Linux OS, each appliance has 
different disk subsystems and packaged software to suit their different purposes. All 
Teradata appliances are pre-configured and staged for quick installation. System 
options are minimized and simplified for easy configuration and ordering.  
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A.14   Vertica Analytic Database 

The Vertica Analytic Database is a high performance SQL database, written from 
scratch to provide the best performance possible for data warehousing, business 
intelligence and analytic applications. Vertica’s database management system is a 
massively parallel, compressed columnar system with a sophisticated design that 
provides built in high availability, continuous load and query capabilities and self-
tuning technologies in an always-on system. 

Vertica offers two version of the Vertica Analytic Database configured as a 
database appliance. Vertica’s Analytic Database Appliance is a pre-configured system 
that includes industry standard hardware from vendors such as HP, Dell or Sun with 
an operating system and the Vertica Analytic Database pre-installed. Customers can 
purchase the Vertica Analytic Database Appliance and experiences a plug and play 
high performance database. Additional capacity can be added on the fly but plugging 
in new appliance nodes and registering them with the system. 

The Vertica Virtualized Analytic Database is a VMware virtual machine image that 
includes a pre-installed copy of the Vertica Analytic Database. With a pre-installed 
operating system, a fully configured Vertica Analytic Database and the Vertica 
Webmin Administration tools, customers can deploy a full database solution near 
instantly. Using VMware vSphere, users can easily add capacity by starting new 
virtual machines. 

Vertica’s Web-based administration tools allow point and click addition of new 
nodes to the cluster – either physical or virtual. Adding and removing nodes is a fully 
on-line operation and data can be loaded, offloaded and segmented across the cluster 
all while users are continuously loading and querying data. As a shared nothing 
database, each Vertica nodes is connected to independent storage. This is directly 
attached to the nodes of a Vertica Analytic Database Appliance and provisioned at 
deployment time for the Vertica Virtualized Analytic Database. 

All versions of the Vertica Analytic database include the automatic Database 
Designer, which creates an optimized physical designs using the data and query 
workloads as users begin to load and query data. The designer can run in the 
background as users continue to manage data and will optimize for new data or new 
workload patterns. 

The Vertica Analytic Database appliances also include built in management and 
monitoring tools. With SNMP for critical events and remote monitoring capabilities, 
the Vertica Analytic Database appliance runs in a completely headless configuration. 
Vertica requires little to no administration and can be backed up using standard 
enterprise backup solutions. 
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Abstract. To address the server industry’s marketing focus on performance, 
benchmarking organizations have played a pivotal role in developing 
techniques to determine the maximum achievable performance level of a 
system. Generally missing has been an assessment of energy use to achieve that 
performance. The connection between performance and energy consumption is 
becoming necessary information for designers and operators as they grapple 
with power constraints in the data center. While industry and policy makers 
continue to strategize about a universal metric to holistically measure IT 
equipment efficiency, existing server benchmarks for various workloads could 
provide an interim proxy to assess the relative energy efficiency of general 
servers. This paper discusses ideal characteristics a future energy-performance 
benchmark might contain, suggests ways in which current benchmarks might be 
adapted to provide a transitional step to this end, and notes the need for multiple 
workloads to provide a holistic proxy for a universal metric. 

1   Introduction 

All day, every day, servers process and deliver increasing quantities of video, voice, 
and data through a vast global network to several billion devices, where that data is 
consumed and often stored for posterity. In this context, if computing is the heartbeat 
of a global network, servers are the muscle. It can be argued that the quality of life for 
the billions of people who rely upon ubiquitous computing would suffer without 
access to continually evolving computing technology. A variety of industries have 
invested tremendous resources to enhance the reach, richness, and speed of digital 
information, but the rapid growth of energy consumption by these enhanced services 
warrants increased scrutiny. As broad segments of the world economy increase their 
focus on energy efficiency, this scrutiny will help to ensure that continued increases 
in computing performance can be achieved without a run away increase in energy 
consumption.  

The current market shows a discernable trend towards the improvement of 
operational productivity of computing systems, and data center operators around the 
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world are taking an increased interest in energy performance when procuring IT 
equipment. While this has not yet become a universal management imperative, there 
is little doubt that organizations that embrace an energy efficiency strategy will 
minimize future risks to their business with the most sustainable data center 
operations. Building on the substantial progress made in this industry to date, 
additional tools are needed to uniformly assess and improve the efficiencies of IT 
equipment. One such tool would be a universal metric for server efficiency which is 
applicable to a majority of the server market. Such a generalized metric would 
provide end users with a window into the energy performance of systems under 
consideration and provide the data center industry with a stepping stone toward the 
smarter procurement of efficient servers.  

1.1   Energy Constraints in the Current Data Center 

The energy efficiency of information technology (IT) equipment and data center 
facilities has dramatically increased in importance over the past decade in response to 
the rapid growth in the number and size of data centers and the power and cooling 
constraints of the associated infrastructure. Consider the following: 

• Rising Data Center Costs. McKinsey Consulting estimates that the cost of running 
data centers is increasing by as much as 20 percent a year, while overall IT 
spending is increasing by only 6 percent.1  

• Power Grid Capacity. In a report to Congress, the EPA estimated that ten new 
power plants would be required to meet the additional energy demand from data 
centers by 2011.2 Evidence of this trend is already mounting; a utility provider in 
Virginia estimates that by 2012, 10 percent of all the energy it supplies to northern 
Virginia will be consumed by data centers.3 

• Load and Demand. EPA estimates 6X growth in server capacity and 69X growth in 
storage capacity in this decade.4 

 

Available energy at the server-, rack-, row-, or building-level is often a bottleneck that 
hinders an organization’s ability to meet the computing capacity demands of an 
increasingly digital economy. Ample supply of electricity is an important prerequisite 
for selecting the location of a new data center facility. Existing facilities can be 
haunted by the risk of grid congestion and peak power concerns. Moreover, if variable 
real time electricity pricing becomes commonplace data center operational expenses 
could rise well above current levels, especially during peak periods. While server 
compute performance may continue to be defined using contemporary rating systems, 
a clear metric for the work performed per unit of energy consumption has yet to be 
universally established. The development and adoption of such standard metrics 
would greatly improve the ability of data center operators to increase efficiency by 
maximizing the work completed by servers for a given energy consumption. 
Furthermore, greater access to detailed power information would facilitate better 

                                                           
1 Forrest 2008. 
2 US EPA 2007. 
3 Garber 2009. 
4 US EPA 2007. 
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capacity planning for increased efficiencies in data centers.  Breaking down the 
barriers obscuring this information is essential in order to provide clear indications of 
the energy-performance balance rather than the perceptions often reported on the 
market today. 

1.2   Benchmarks, Metrics and Reducing the Total Cost of Ownership 

The computing industry has long used software benchmarks as a basis for comparing 
the performance of competing server products. Such software benchmarks are 
developed to measure the output of servers as they perform standardized, 
representative workloads. The results of these benchmark tests allow products to be 
directly compared in a way not easily achieved in an actual operating environment. 
Software benchmarks output a metric indicating the server’s ability to complete the 
workload’s tasks, typically represented by the system’s speed (e.g. operations per 
second). The resulting data provides the industry with a meaningful tool to compare 
competing systems or quantify improvements on a single system.  

The rising cost of energy and corresponding increases in energy consumption 
together drive the need for server benchmarks with a broad focus on both speed-
oriented performance and associated energy consumption. Existing benchmark 
methodologies vary in their ability to meet this need. Maximized computational 
performance will remain an important goal for server development, but a benchmark 
that solely focuses on compute performance does not easily fit into the total cost of 
ownership (TCO) calculation. In this case, analysis of both performance and energy 
require additional end user research or testing.  

As an alternative to strict performance-based metrics, a second benchmark 
approach present on the market compares computational performance to a measure of 
TCO only including hardware and maintenance costs. This approach, which provides 
insight into how a server meets the day to day operational needs of the data center, 
makes it possible to compare cost-effective performance of various products. Still, 
this risks the under-representation of the broader operational cost of running a server; 
energy remains a missing component, and a significant omission: the 2007 EPA 
Report to Congress on Server and Data Center Energy Efficiency noted at that time 
that server energy costs would exceed the hardware purchase cost of a server by 
2008.5  

The addition of standardized energy measurement during benchmark testing 
expands the scope of a benchmark to include a more holistic view of the server in 
operation. A number of benchmarking organizations have undertaken efforts to 
include energy measurement methodologies within their processes; a few examples 
will be discussed in Section 4. The existence of these efforts points not only to the 
market’s desire for this information, but also to the intrinsic strength of benchmarking 
organizations as trusted information resources. As performance benchmarks have 
evolved over time to serve a competitive and diverse market seeking standardized test 
methodologies, the development processes surrounding them have incorporated 
characteristics that support expansion into meaningful energy comparison: 

                                                           
5 US EPA 2007. 



 The State of Energy and Performance Benchmarking for Enterprise Servers 55 

• Consortium-based development processes provide input into workload 
development by a range of industry stakeholders with knowledge of available 
technologies, industry trends and developments in the market. 

• Pre-determined and transparent testing methodologies ensure comparable results 
using agreed upon procedures for standardized energy measurements.  

• Structured versioning and revision schedules allow for periodic updates to ensure 
continued applicability of energy metrics as technologies mature and change.  

• Established presence in the market with well-understood workloads that provide 
context to associated energy measurements.  

 

With these building blocks in place, there is clear context to provide the needed tools 
to address server efficiency and to contribute to the reduction of energy consumption, 
thereby reducing the long term TCO.  

2   Current State of Server Performance Metrics and Benchmarks 

2.1   Traditional Benchmarking: Determining Maximum Capability 

Server benchmarks set a proxy by which computing performance can be consistently 
measured, quantified and understood. Benchmarks also facilitate ranking systems 
based on stable underlying testing conditions and settings. These two roles are closely 
tied. Though a particular workload may either be synthesized to exercise hardware 
under artificial conditions (synthetic workload) or designed to run a series of 
processes based on an end-use application mix (application-based workload), the 
repeatability and standardization of the process allows for direct comparisons of 
relative performance.  

The proxy and ranking functions have traditionally been associated with 
maximized performance conditions. Vendors have responded by developing and 
aggressively marketing servers which can attain the highest benchmark scores. This 
focus leads to an emphasis on the highest achievable result instead of the actual 
performance that may be observed in a real end-use application in the data center. 
Though these benchmarks effectively illustrate maximum performance potential, they 
underemphasize the performance (and efficiency) of products as they would actually 
be used in the market. The maximum case does little for an end user seeking 
information on expected performance of the system once installed at their facility.  

2.2   The Future Role of Benchmarks: Incorporating Both Efficiency and 
Performance  

Integration of efficiency measurements into performance benchmark results can 
effectively extend the applicability of existing benchmarks to more realistic end-use 
scenarios. In the hypothetical example presented in Table 1, three systems have 
completed a benchmark where data is presented in terms of performance (completed 
operations), efficiency (operations per watt consumed), and average idle power 
measurements. Server 1 is the clear winner in terms of pure computational 
performance. However, a closer look at the data presented in this manner shows that 
Server 2 produced the more efficient completion of the workload per watt of power 
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Table 1. Example of holistic benchmark results 

 Completed 
Operations  

@ 100% 
Utilization 

Completed 
Operations 
per Watt 

Average 
Server Idle 

Power 

Best-Suited 
Use 

Server 1 400,000 1000 165 Maximum 
Performance 

Server 2 250,000 1200 110 Efficient 
Operation 

Server 3 200,000 950 70 Underutilized 
Applications 

 
consumed. Server 3 was inferior to 1 and 2 in both completed operations and 
operations per watt but had a significantly lower idle power measurement. 

While hypothetical, this example illustrates how unique selection criteria by 
different audiences may yield diverse interpretations of the same set of data. An end 
user with business needs driven solely by computing performance might select  
Server 1, though they will have been made aware of the energy consumption penalties 
associated with this choice. A second user with similar computational needs but a 
tight power or density budget might choose Server 2, since it provides the best 
balance of energy use to workload performance. Finally, a third user with light 
application loads who expects long periods of idle time might find that Server 3 
provides acceptable performance while also minimizing power consumption in the 
most common mode for expected applications. All three of these audiences are able to 
act on the cost-performance analysis most appropriate to their specific business needs. 

With the growing emphasis on both energy and performance in the data center, the 
measurement of energy for existing benchmarks will be necessary to meet end-user 
expectations. Rather than highlighting only the fastest systems, there will also be 
demand to identify the most efficient systems, including models or configurations 
previously overlooked in benchmark results or by industry marketers. From a 
benchmark development organization’s perspective, a greater demand for 
benchmarking data may result from a new audience looking for efficiency data rather 
than just maximum performance data. It is illustrative to consider a future scenario in 
which such benchmark development might result in a universal or generalized, metric 
for server efficiency. In the next section, ideal characteristics of such a unified 
approach are considered. 

3   Development of a Generalized Energy and Performance 
Benchmark  

In this section we consider a few important considerations for the development of a 
generalized metric for server energy efficiency and computing performance. These 
considerations include discussions of power versus energy measurement, synthetic 
versus application-based workloads, and other factors.   
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3.1   Power versus Energy Measurements 

It is important to contextualize the differences between instantaneous power 
measurements, time-scaled energy measurements, and averaged values of each 
measurement as important elements of a power and performance benchmark. 
Marketing claims regarding energy efficiency for IT equipment are more prevalent in 
recent years; and while such efforts may meet the information needs of end users, 
marketing materials often use the terms energy and power interchangeably. It is 
important that the implications of each term are understood as they apply to 
benchmarks and metrics.  

It is potentially less complicated to use instantaneous power measurements when 
performing a benchmark test, yet care must be taken to properly frame the periodic 
nature of a typical computing workload. Averaged power reporting over time can be 
effective as a proxy for the expected power consumption of a workload exhibiting 
stabilized or cyclic behavior. Selecting an appropriate sampling rate for power 
measurements is critical to the quality of the measurement; if readings are not taken 
frequently enough, one risks overlooking important system events that have a 
significant effect on average power consumption.  

In contrast, measuring energy accumulated over time requires either (1) that 
instantaneous readings be abstracted to apply to an expected usage case, or (2) that the 
selected workload is truly representative of actual server operation. One risk with the 
accumulated energy approach is that end users may make incorrect assumptions about 
the relationship between watt-hour output and utility pricing. To mitigate this risk, 
data on the time taken to complete the workload and the instantaneous power 
consumption during the test should be provided along with the accumulated energy 
data to ensure that the test results are taken in proper context.  

In general, it is critical to the success of the benchmark metric that workload 
weightings and measurement inputs are made available to the end user. Transparency 
preserves the context of the data and enables end users to assess the relevance of the 
results to their specific application environment. As an example, the Version 5.0 
ENERGY STAR Computer Specification includes an efficiency metric based on kWh 
ratings.6 In addition to publishing the calculated kWh “score,” the ENERGY STAR 
program makes transparent the equation used to calculate the score and requires 
vendors to report the measured power inputs entered into this calculation. While the 
standard efficiency equation is weighted based on statistically relevant data, this 
transparent reporting structure provides a means for end users to estimate their own 
energy costs based on the specifics of their application. 

3.2   Synthetic versus Application-Based Workloads 

Two common workload structures for benchmarks are synthetic workloads that drive 
the server to complete as many artificially-derived tasks as possible in a given amount 
of time, and application-based workloads that measure the server’s ability to 
complete predetermined operations based on real applications. A generalized server 
efficiency benchmark could make use of either type of workload, but any results 
would have to be carefully annotated to ensure that they are interpreted properly by 
 

                                                           
6 ENERGY STAR 2009. 
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Table 2. Comparison of different benchmark characteristics 

 Synthetic Workload Application-Based Workload 
Power 
Measure-
ment  

• Opportunity to meet the steady-state 
condition necessary to support averaged 
power measurement. 

• The number of operations most likely 
varies between tests. It is reasonable 
to report averaged power, but also 
to frame the power levels with 
information on utilization during the 
test. 

• May not meet the steady state condition 
since transitions between applications or 
the realistic variations in power necessary 
to complete tasks will vary from test to 
test. 

• The number of operations may vary 
similarly to the situation for a synthetic 
workload. Averaged power is again 
useful to report. Associating the average 
power measurements to the applications 
in the workload can provide insight into 
architecture’s ability to handle elements 
within the workload. 

Energy  
Measure-
ment 

• A set time period can provide 
structure to energy measurement, but 
results are best weighted with the 
number of operations completed 
during the time period. 

• Since operations vary from test to test, 
this workload structure is not easily 
positioned to report a generalized 
“expected energy consumption.”  

• As systems improve in performance, a 
task may initiate and conclude too 
rapidly to derive a meaningful energy 
measurement.  

• Since the server is completing the same 
set of tasks and may vary in utilization 
during the workload, energy data provides 
more of the expected variety important for 
development of a generalized energy 
consumption model. 

 
end users. The impact of each structure on the marketing of power and energy results 
is considered in Table 2.  

3.3   The Use of a Generalized Server Efficiency Benchmark 

Widely used server performance benchmarks typically mimic or replicate intended 
workloads in the data center. An effective generalized benchmark – one applicable for 
a wide variety of system applications – should give end users an indication of how a 
particular server ranks compared to others in general operation through an assessment 
relevant to different workload types. Because workloads within data centers vary 
widely, there will never be a perfect correlation between the work performed in a 
benchmark workload and that which is performed in an end-use application. There is 
no true substitution for testing a server with an actual application workload, but for 
buyers without the resources to conduct such in-depth testing, an effective generalized 
benchmark should provide insight into server performance under a variety of 
operating conditions.    

Examples of typical workloads run by servers and represented by available 
benchmarks are high performance computing (HPC), web services or other accessed 
services, email services, database management, and shared file services. These five 
categories represent a broad cross-section of server uses and illustrate the types of 
workloads that could be assessed by a generalized benchmark. Examples of benchmarks 
used to approximate these workloads are available in Section 4. Although these 
workloads are expected to cover the majority of the server market, other common and 
niche application workloads may exist.  
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Fig. 1. Hierarchy of Different Benchmarking Approaches 

An available benchmark that produces general indication of broad-based server 
efficiency and performance is currently missing from the market. Such a benchmark – 
capable of representing more than one workload type – might be thought of as a first-
order approximation of the energy efficiency of a server; benchmarks based on one of 
the five referenced workload types might be thought of as a second-order 
approximation, providing greater accuracy for a specific workload type. A third-order 
approximation of energy efficiency could be achieved by testing a server in its 
intended application, affording more precision at the cost of additional testing 
resources. Server purchasers might rely on a mix of first, second, and third-order 
approximations depending on available resources. 

For example, large organizations might use a first-order approximation to narrow 
down a list of hardware platforms for more detailed benchmarking or application 
testing, while a smaller buyer looking for a general workhorse server to run a number 
of different applications might use a first-order approximation as their sole purchasing 
criteria.  

3.4   Technical Characteristics of a Generalized Benchmark 

Most servers can be thought of as consisting of a few key components and capabilities 
that will affect the performance and energy consumption of that server, which have 
been summarized in Table 3.  

Table 3. Capability factors in server performance benchmarks 

Capability Component(s) Description 
Compute Processors and system 

memory 
Performing operations, i.e. 
switching 1s and 0s 

Storage Hard drives, solid state 
drives, etc. 

Long term storage of data, i.e. 
keeping 1s and 0s 

Input and 
Output (I/O) 

Network cards, RAID/SAS 
controllers, etc. 

Transferring data in and out of 
devices, i.e. moving 1s and 0s 
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Fig. 2. Capability factors in server performance benchmarks 

Different workloads require a different mix of these basic capabilities. For 
example, an HPC application will be almost all compute, while file services, in 
contrast, will be very storage and I/O intensive. A conceptual illustration of this 
concept is included in Figure 2. 

A truly generalized benchmark would test relative energy and performance 
efficiency for each of the three factors, using a combination of the relative efficiencies 
of each capability to arrive at a generalized system efficiency. A server with high 
compute efficiency (e.g., with high efficiency processors and/or memory) and a low 
efficiency I/O device would receive a moderate efficiency rating on the generalized 
scale, while a server with high efficiency in all three factors would rate much higher. 
If the specific efficiencies of each capability could be separately assessed, this 
benchmark could also be used to identify servers ideal for more specific workload 
scenarios. A generalized benchmark capable of evaluating a server in this way could 
be developed with either a synthetic benchmark designed to stress each factor in turn, 
or with a carefully-selected set of application code designed to concurrently assess the 
performance of each factor.  

3.5   Other Important Elements of a Generalized Power and Performance 
Benchmark   

A benchmark is only useful if there is a low barrier to entry for its use and it is 
adopted by a large segment of the industry it is intended to serve – there must be a 
critical mass of test results available to allow purchasers to make meaningful 
comparisons to support their purchasing decisions. To lower this barrier to entry, 
there are many other criteria a successful benchmark must meet to maximize its 
effectiveness in the market: 
 

• Able to operate on a wide variety of system architectures and operating systems. 
• Low cost to run and report data in a standard way. 
• Scalable with system size. 
• Easily configured for consistent, repeatable results. 
• Consistent with current standards for operation of equipment in data centers.  
• Able to assess the relative efficiency of multi-node and blade systems. 
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4   Using Existing Benchmarks to Assess Generalized Server 
Efficiency 

Many benchmarks exist in the current market to measure the performance of systems 
under various workloads. This section will focus on benchmarks intended for general 
servers and how such benchmarks might be combined to create a generalized metric 
for server efficiency. 

4.1   Selection of Current Benchmarking Organizations  

Transaction Processing Council (TPC) 
TPC is a non-profit corporation and industry consortium which focuses on 
benchmarks for data base systems and transaction processing. Transactions measured 
and tested by TPC involve common business processes. A typical transaction, as 
defined by the TPC, would include the updating of information in a database system 
for purposes such as inventory control, airline reservations, or banking transfers. 
Systems relevant to TPC benchmarks are often large database systems composed of 
many subcomponents (e.g., servers, external storage, and networking) which create 
the larger systems. Certain TPC benchmarks already include metrics for $/operation, 
and the organization is currently engaged in ongoing efforts to include energy 
measurements for the benchmarks, so that their metrics include a true measure of 
TCO (including energy costs) for all benchmarks. Draft energy measurements are 
expected in 2009.7 Further information on TPC and their benchmarks can be found at 
www.TPC.org. 
 
Standard Performance Evaluation Corporation (SPEC) 
SPEC is a non-profit corporation and industry consortium which focuses on the creation 
of server benchmarks for a variety of standard data center applications. The SPEC 
benchmarks are typically aimed at individual server systems and specific subsystems. A 
SPEC subcommittee has recently developed a standard protocol for measuring and 
reporting power consumption as part of the measurement and reporting process for its 
benchmarks. SPEC released the first such benchmark (SPECpower_ssj2008) in 2008 and 
the second (SPECweb_2009) in 2009, and will continue to revise its other benchmarks to 
include power consumption measurements.8 Further information on SPEC and their 
benchmarks can be found at www.SPEC.org. 
 
Green 500 
The Green 500 is a ranking of the most energy efficient super computers in the world. The 
Green 500 uses the LINPACK benchmark along with associated power measurement 
techniques to measure floating point operations per watt.9 Further information on Green 
500 and their benchmarks can be found at http://www.green500.org/ 

                                                           
7 Transaction Processing Performance Council. 
8 Standard Performance Evaluation Corporation. 
9 The Green500. 
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4.2   Available Benchmarks by Data Center Workload Category 

Table 4. Typical data center workloads and available benchmarks. Additional details of the 
available benchmarks are included in Appendix A of this report. 

Data Center Workload Category Available Benchmarks 
High performance computing 
(HPC) 

LINPACK, Green 500*, SPEC_CPU2006 

Web services or other accessed 
services 

SPECpower_ssj2008*, SPECweb2009*, 
TPC-App 

Email services SPECmail2009 
Database management NNA Server Power Efficiency*, NNA 

Server Transaction Throughput Benchmark, 
TPC-C, TPC-E, TPC-H 

Shared file services SPECsfs2008 
 (*) denotes benchmarks that currently integrate power measurement into results/procedures. 

4.3   Measuring Power Using Existing Benchmarks 

If existing benchmarks are to be used as a proxy to measure the energy efficiency 
of servers, it will be necessary to develop standardized procedures for adding 
power and/or energy measurements to some existing benchmarks. The EPA set the 
stage for this work in the 2006 release of an initial Server Energy Measurement 
Protocol10 and in the 2009 release of the ENERGY STAR Test Procedure for 
Determining the Power Use of Computer Servers at Idle and Full Load, as 
Appendix A to the ENERGY STAR specification for Computer Servers11. As 
described in the SPEC procedures and Server Energy Measurement Protocol, 
benchmark tests should, where possible, be performed at a number of different 
load points, including at a minimum full load (100%) and idle (0%), in order to 
allow for the development of a power and performance load curve. An example 
load curve from a SPECpower_ssj2008 result has been included in Figure 3 to 
illustrate this approach. In order to use existing benchmarks to assess generalized 
server efficiency, more investigation may be necessary to ensure that existing 
practices can be applied to some current benchmarks which do not yet include 
energy or power measurements. 

4.4   Creating a Generalized Server Efficiency Metric from Existing Benchmarks 

The development of an ideal generalized efficiency benchmark for servers as 
described in Section 3 could be a lengthy and challenging process. However, the 
recent emphasis on efficiency and energy management in the data center illustrates 
that there is momentum in both the manufacturer and end-user communities to 
support such an effort. 

                                                           
10 Koomey, et al 2006. 
11 ENERGY STAR 2009. 
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Fig. 3. Example SPECpower_ssj2008 result showing a measured load curve12 

In the short term, this suggests an opportunity to bring together the efficiency 
metrics referenced above to develop a hybrid metric to assess server energy 
efficiency. Since servers can be expected to operate under a variety of applications 
and workloads, this hybrid metric would integrate elements from a variety of 
workloads. These workloads, as well as appropriate benchmarks which act as proxies 
to server performance, could be chosen from Table 4 in Section 4.2. A possible 
scenario would be to select a single, representative benchmark from each category for 
inclusion in the hybrid metric; this scenario would minimize the testing burden on 
manufacturers and ensure uniformity in results between systems. Once a list of 
appropriate workloads and benchmarks was selected, data could be collected to assess 
different options for a generalized efficiency metric. The following approaches could 
be considered:  
 

• Measure the relative efficiency of each benchmark separately, to allow end users to 
determine which metric is most suited to their particular application; 

• Weight each benchmark to calculate a single hybrid efficiency metric based on the 
combined test results; or 

• Identify a preferred benchmark that served as the best proxy for all additional 
benchmarks (i.e. select the single benchmark that best preserves the relative ranking 
of server efficiency for all benchmarks). 

 

Data gathered during the development and implementation of a metric based on 
existing benchmarks could then form the basis for development of a more advanced 
generalized efficiency metric that meets the intent and ideal requirements identified in 
Section 3. 
                                                           
12

 Standard Performance Evaluation Corporation. SPEC and the benchmark name 
SPECpower_ssj2008 are registered trademarks of the Standard Performance Evaluation 
Corporation. For the latest SPECpower_ssj2008 benchmark results, visit  

     http://www.spec.org/power_ssj2008/results/ 
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Regardless of the approach used to leverage existing benchmarks, a new emphasis 
should be placed on testing a wider variety of servers, as configured for shipment to 
the end customer, with their associated benchmark scores disclosed. Greater 
disclosure of consistent, accurate performance data – including energy consumption – 
across a diverse set of server product lines will enable smarter procurement practices 
and stimulate competition while continually propelling market transformation.  

5   Conclusion 

Performance benchmarks have traditionally focused on measuring maximum 
computing performance without regard to energy efficiency. However, the importance 
of environmental issues related to computing is prominently discussed in the business 
community today. While the use of TCO as a purchasing tool has increased, more 
transparency is needed to identify operating costs that are specifically attributable to 
energy consumption, and to highlight the role of inefficient computing practices in 
exacerbating these costs.  

The community responsible for server performance benchmarks is well-positioned 
to contribute to the development of new metrics which include energy efficiency in 
addition to computing performance. The consortium-based development structures 
and open process for sharing performance data that are the hallmarks of performance 
metrics would also serve the development of energy efficiency metrics. Numerous 
benchmark organizations have already recognized this opportunity by developing 
independent methods to collect energy or power information as a standard practice. 

This paper reviewed the current state of server energy and performance 
benchmarking, highlighting important issues for consideration in further benchmark 
development. The server industry as a whole, however, continues to focus primarily 
on setting new benchmark records for maximized workloads. By incorporating energy 
measurement into benchmark results, the industry can help mainstream product 
configurations become more competitive in the marketplace based on optimized 
operational and efficiency performance.  

While it can be argued that data derived from a discrete set of workloads is not 
representative of actual server performance in all cases, the very nature of 
benchmarks as a standardized evaluative set of methodologies does provide a means 
for end users to make meaningful comparisons of different server products. It will be 
important for benchmark development organizations to continue efforts to standardize 
energy measurement methodologies in a manner that is consistent with how products 
are actually operated in the field, so that benchmark results are repeatable and relevant 
to real world conditions.  

A generalized benchmark, applicable for a wide variety of data center applications, 
will remain a valuable objective for the server industry. Current and forthcoming 
efforts to enhance existing performance benchmarks will provide the foundation on 
which to build a generalized assessment tool, and will provide an ongoing catalyst for 
continued energy efficiency improvements in servers. The benchmark community 
should continue to seek out opportunities to integrate energy measurement into 
standard benchmark procedures, and should standardize the collection of power 
and/or energy data in benchmarking procedures. By making energy measurements a 
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common and accepted part of performance measurement, the benchmarking 
community will be able to reach a wider audience, broaden the scope of systems that 
can be measured with existing benchmarks, and serve their customers needs for 
insight into expected energy performance. 
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Appendix A: Available Performance Benchmarks 
Benchmark Name 

(Organization) 
Intended Workload Workload 

Category 
Performance 

Metric 
Power/ 
Energy 
Meas.?* 

LINPACK (N/A – 
Public) 

Floating point operations High Per-
formance 
Computing 
(HPC) 

MFLOPs No 

LINPACK (Green 
500) 

Floating point operations 
per Watt 

HPC MFLOPs / Watt 
(peak perform-
ance divided by 
average power) 

Yes 

NNA Power-
Efficiency Bench-
mark (Neal Nelson 
and Associates) 

WWW transaction re-
quests 

Database  
Management 

Watts for a given 
transaction rate 

Yes 

NNA Server Trans-
action Throughput 
Benchmark (Neal 
Nelson and Associ-
ates) 

WWW transaction re-
quests 

Database  
Management 

Transactions / 
minute 

No 

SPEC_CPU2006 
(SPEC) 

Integer speed (SPE-
Cint2006), integer rate 
(SPECint_rate2006) and 
floating point speed 
(SPECfp2006), floating 
point throughput 
(SPECfp_rate2006)  

HPC N/A – unitless 
mix of various 
performance 
measurements 
from multiple 
workloads  

No 

SPECmail2009 
(SPEC) 

Corporate mail server 
workloads based on 
number of users 

Email 
Services 

Sessions / hour No 

SPECsfs2008 
(SPEC) 

File server throughput 
and response time 

Shared File 
Services 

Throughput 
(ops/sec), 
response time 
(msec) 

No 

SPECpower_ssj2008 
(SPEC) 

Java based applications Web/Accessed 
Services 

Operations / watt 
(ssj_ops/watt) 

Yes 

SPECweb2009 
(SPEC) 

Http transactions includ-
ing: Banking, ecom-
merce and support 

Web/Accessed 
Services 

Simultaneous user 
sessions (SUS) / 
watt 

Yes 

TPC-App (TPC) Application server and 
web services 

Web/Accessed 
Services 

Web Service In-
teractions / sec-
ond (SIPS), price 
/ interaction 
($/SIPS) 

Pending 

TPC-C (TPC) New-order transactions  Database 
Management 

Transactions / 
minute (tpmC),  
price / transaction 
($/tpmC) 

Pending 

TPC-E (TPC) On-Line Transaction 
Processing (OLTP): 
workload of a brokerage 
firm 

Database 
Management 

Transactions / 
second (tpsE), 
price / transaction 
($/tpsE) 

Pending 

TPC-H (TPC) Decision support bench-
mark of business ori-
ented queries 

Database 
Management 

Query-per-Hour 
(QphH@Size), 
price / query 
($/QphH@Size) 

Pending 

* Denotes status of power/energy measurement as an integral methodology within the benchmark. 
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Abstract. The work on performance benchmarking has started long ago. 
Ranging from simple benchmarks that target a very specific system or 
component to very complex benchmarks for complex infrastructures, 
performance benchmarks have contributed to improve successive generations of 
systems. However, the fact that nowadays most systems need to guarantee high 
availability and reliability shows that it is necessary to shift the focus from 
measuring pure performance to the measurement of both performance and 
dependability. Research on dependability benchmarking has started in the 
beginning of this decade, having already led to the proposal of several 
benchmarks. However, no dependability benchmark has yet achieved the status 
of a real benchmark endorsed by a standardization body or corporation. In this 
paper we argue that standardization bodies must shift focus and start including 
dependability metrics in their benchmarks. We present an overview of the state-
of-the-art on dependability benchmarking and define a set of research needs and 
challenges that have to be addressed for the establishment of real dependability 
benchmarks. 

Keywords: Benchmarking, dependability, performance, metrics. 

1   Introduction 

The ascendance of networked information in our economy and daily lives has 
increased the awareness of the importance of dependability features. In fact, due to 
the impressive growth of the Internet, some minutes of downtime in a server 
somewhere may be exposed as loss of service to thousands of users around the world. 

Computer benchmarks are standard tools that allow comparing different systems or 
components according to specific characteristics (performance, robustness, 
dependability, etc). Computer systems industry holds a reputed infrastructure for 
performance evaluation and the set of benchmarks managed by TPC (Transaction 
Processing Performance Council [1]) and by SPEC (Standard Performance Evaluation 
Corporation [2]) are recognized as the most successful benchmarking initiatives. 
However, dependability evaluation and comparison have been absent from the TPC 
and SPEC benchmarking efforts. 

Performance benchmarks have contributed to improve peak performance of 
successive generations of systems, but in many cases the systems and configurations 
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used to achieve the best performance are very far from the systems that are actually 
used in the field. The major problem is that the results tend to portrait rather artificial 
scenarios, as dependability-related mechanisms are not adequately configured (or are 
configured for the minimum impact on performance) and the characterization of the 
effectiveness of dependability features is totally disregarded.  

The fact that many businesses require very high dependability for their systems 
shows that it is necessary to shift the focus from measuring pure performance to the 
measurement of both performance and dependability. This way, the tight dependence 
between performance and dependability in modern systems urge the definition of 
benchmarks to compare different products in a more realistic scenario. Above all, it is 
important to include in the benchmarks new measures that show the benefit of adding 
better mechanisms in the system or configuring the available mechanisms to achieve 
the best performance and dependability. 

Research on dependability benchmarking started in the beginning of this decade, 
having already led to the proposal of several benchmarks (see Section 4). However, in 
spite of the pertinence of having dependability benchmarks for computer systems, the 
reality is that no dependability benchmark has yet achieved the status of a real 
benchmark endorsed by a standardization body or corporation, in a clear contrast with 
performance benchmarking, where TPC and SPEC have very successful initiatives.  

In this paper we argue that standardization bodies must include dependability 
characterization in their benchmarking initiatives. A dependability benchmark is a 
specification of a standard procedure to measure both the dependability and 
performance of computer systems or components. Comparing to typical performance 
benchmarks, which consist mainly of a workload and a set of performance measures, 
a dependability benchmark adds two key elements: 1) measures related to 
dependability; and 2) a faultload that emulates real faults experienced by systems in 
the field.  

In the same way performance benchmarks have contributed to improve peak 
performance of successive generations of systems, we believe that dependability 
benchmarking represents a possible way to improve dependability of future systems. 
In fact, a dependability benchmark shall be largely useful in several scenarios: 

1. Help end-users and system administrators to choose the system that best fit their 
requirements by comparing the dependability features of alternative systems. 

2. Assist system vendors in promoting their products. In addition, a dependability 
benchmark may be a very important tool to help the system vendors to detect 
possible dependability problems on their computer systems/components. 

3. Help system integrators to choose the best components for a given solution. 
4. Provide researchers a tool to evaluate new prototypes. 

The outline of this paper is as follows. Section 2 presents basic concepts on computer 
benchmarking. Section 3 introduces the well-established performance-benchmarking 
field. Section 4 discusses the dependability-benchmarking concept and presents an 
overview of the state-of-the-art on dependability benchmarking. Section 5 presents an 
example of a dependability benchmark for transactional systems and Section 6 
proposes a set of research needs and challenges that have to be addressed for the 
establishment of real dependability benchmarks. Finally, Section 7 concludes the 
paper. 
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2   The Computer Benchmarking Concept 

Computer benchmarking is primarily an experimental approach. As an experiment, its 
acceptability is largely based on two salient facets of the experimental method: 1) the 
ability to reproduce the observations and the measurements, either on a deterministic 
or on a statistical basis, and 2) the capability of generalizing the results through some 
form of inductive reasoning. The first aspect (ability to reproduce) gives confidence in 
the results and the second (ability to generalize) makes the benchmark results 
meaningful and useful beyond the specific setup used in the benchmarking process.  

In practice, benchmarking results are normally reproducible in a statistical basis. On 
the other hand, the necessary generalization of the results is inherently related to the 
representativeness of the benchmark experiments. The notion of representativeness is 
manifold and touches almost all the aspects of benchmarking, as it really means that the 
conditions used to obtain the measures are representative of what can be found in the 
real world.  

The key aspect that distinguishes benchmarking from existing evaluation and 
validation techniques is that a benchmark fundamentally represents an agreement 
(explicit or tacit) that is accepted by the computer industry and by the user 
community. This technical agreement is in fact the key that turns a benchmark into a 
standard. In other words, a benchmark is something that the user community and the 
computer industry accept as representative enough of a given application domain to 
be deemed useful and to be generally used as a (standard) way of measuring specific 
features of a computer system and, consequently, a way to compare different systems. 

The concept of benchmarking can then be summarized in three words: 
representativeness, usefulness, and agreement. A benchmark must be as 
representative as possible of a given domain but, as an abstraction of that domain, it 
will always be an imperfect representation of reality. However, the objective is to find 
a useful representation that captures the essential elements of the application domain 
and provides practical ways to characterize the computer features that help the 
vendors/integrators to improve their products and help the users in their purchase 
decisions. 

To achieve acceptance by the computer industry or by the user community a 
benchmark should fulfill a set of key properties: representativeness, portability, 
repeatability, scalability, non-intrusiveness, and simplicity of use. These properties 
must be taken into account from the beginning of the definition of the benchmark 
components and must be validated after the benchmark has been completely defined. 

The work on performance benchmarking has started long ago. Ranging from 
simple benchmarks that target a very specific hardware system or component to very 
complex benchmarks focusing complex systems (e.g., database management systems, 
operating systems), performance benchmarks have contributed to improve successive 
generations of systems. Research on dependability benchmarking boosted in the 
beginning of this decade, having already led to the proposal of several dependability 
benchmarks. Several works have been carried out by different groups and following 
different approaches (e.g., experimental, modeling, fault injection). 
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3   Performance Benchmarking: A Well Established Field 

Performance benchmarks are standard procedures and tools aiming at evaluating and 
comparing different systems or components according to specific performance 
measures. The work on performance benchmarking as started many decades ago and 
the two most prominent organizations currently working on the performance 
benchmarking business are TPC (Transaction Processing Performance Council) [1] 
and SPEC (Standard Performance Evaluation Corporation) [2]. 

Whetstone programs, the first general-purpose benchmarks that did set industry 
standards for computer system performance, started almost four decades ago with the 
HJC11 benchmark [3], which was written in Algol 60 in 1972 at the National Physical 
Laboratory in the United Kingdom. Whetstone is a very well known synthetic 
benchmark for evaluating the performance of computers in terms of instructions 
executed per second. 

Several performance benchmarking initiatives were launched in the 70’s and 80’s. 
The Wisconsin benchmark [4] was launched in 1983 and marked the beginning of a 
new generation of performance benchmarks targeting complex database systems. In 
fact, the work on performance benchmarking of database systems (and transactional 
systems in general) boosted, and two years after the Wisconsin benchmark, the TP1 
and Gray’s DebitCredit [5] benchmarks were launched. These benchmarks settled the 
foundations for the Transactions Processing Performance Council (TPC) 
benchmarking initiative, which started in 1988, when the TPC organization has been 
formed [1]. 

The Transaction Processing Performance Council (TPC) is a non-profit 
organization whose goal is to define and disseminate benchmarks for databases and 
transactional systems in general. TPC also verifies the results announced by 
benchmark performers in order to make those results official. TPC is composed by the 
major vendors of systems and software from the transaction processing and database 
markets (detailed information on TPC can be obtained at [1]), and has currently four 
active benchmarks: TPC-C and TPC-E for OLTP (On-Line Transaction Processing) 
systems, TPC-App for application servers and web services, and TPC-H for decision 
support systems. These benchmarks measure performance in terms of how many 
operations or transactions a given system can execute per unit of time. 

The Standard Performance Evaluation Corporation (SPEC) is a non-profit 
organization that establishes and maintains a set of benchmarks in several domains. 
SPEC develops suites of benchmarks and reviews and publishes submitted results. 
SPEC is an organization made of three different groups (detailed and updated 
information on SPEC organization, groups, and benchmarks, can be obtained from 
SPEC web-site [2]): the Open Systems Group (OSG), which focus on component-
level and systems-level benchmarks for desktop systems, workstations and servers 
running open operating system environments; the High Performance Group (HPG), 
which establishes, maintains and supports a set of performance benchmarks for high 
performance system architectures, such as symmetric multiprocessor systems, 
workstation clusters, distributed memory parallel systems, and traditional vector and 
vector parallel supercomputers; and the Graphics & Workstation Performance Group 
(PEC/GWPG), which is the umbrella organization for autonomous groups that 
develop graphics and workstation benchmarks and performance reporting procedures. 
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A performance benchmark is typically provided as a computer program ready to be 
executed (as is the case of SPEC benchmarks) or as a document that specifies how the 
benchmark should be implemented and run (this is the case of TPC benchmarks) and 
is normally composed by three main elements: workload, measures, and rules. The 
workload defines the set of tasks that the system under benchmarking has to perform 
during the benchmark execution. The measures portray the time needed to execute 
the workload or, alternatively, the number of operations executed per unit of time. 
The purpose of the rules is to assure that the results from different executions of the 
benchmark are valid and comparable. 

4   Dependability Benchmarking: A Recent Research Field 

The notion of dependability and its terminology have been established by the 
International Federation for Information Processing (IFIP) Working Group 10.4 [6]. 
IFIP WG 10.4 defines dependability as “the trustworthiness of a computing system 
which allows reliance to be justifiably placed on the service it delivers”. 
Dependability is an integrative concept that includes the following attributes [7]: 
availability (readiness for correct service), reliability (continuity of correct service), 
safety (absence of catastrophic consequences on the user(s) and the environment), 
confidentiality (absence of unauthorized disclosure of information), integrity (absence 
of improper system state alterations), and maintainability (ability to undergo repairs 
and modifications). 

The main problem in measuring the dependability of a given computer system or 
component is that it is very dependent on many factors, either internal to the system 
(hardware and software) or external (environment or human made). Assessing system 
dependability is in fact a very difficult problem and has been addressed by using both 
model-based and measurement-based techniques. The former include analytical [8] 
and simulation [9] models and the latter include field measurement [10], fault 
injection [11],[12] and robustness testing [13],[14]. 

Dependability benchmarking is mainly inspired on measurement-based techniques. 
This way, a dependability benchmark can be defined as a specification of a standard 
procedure to assess dependability related measures of a computer system or computer 
component. The main components of a dependability benchmark are: measures 
(characterize the performance and dependability of the system), workload (work that 
the system must perform during the benchmark run), faultload (set of faults that 
emulate real faults experienced in the field), benchmark procedure and rules 
(description of the procedures and rules that must be followed to run the benchmark), 
and experimental setup (setup required to run the benchmark). 

We propose the following general steps to specify a dependability benchmark: 

1. The first step is the identification of the application area. The division of the 
application spectrum into well-defined application areas is necessary to cope with 
the huge diversity of systems and applications and to make it possible to make 
choices on the definition of benchmark components.  

2. The second step is the characterization of the SUB in terms of typical 
functionalities and features. Obviously, this characterization is of utmost 
importance to define the benchmark component. 
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3. The third step is the definition of the dependability benchmark measures, which 
is the first dependability benchmark component to be specified (because the 
definition of the other components is very dependent on what is being measured).  

4. The remaining components are defined in the last step. 

Two classes of measures can be considered in a dependability benchmark: 

− Conditional measures: measures that characterize the system in a relative fashion 
(i.e., measures that are directly related to the conditions disclosed in the benchmark 
report) and are mainly meant to compare alternative systems. 

− Unconditional measures on dependability attributes: measures that characterize 
the system in a global fashion taking into account the occurrence of the various 
events impacting its behavior. Some examples of dependability attributes include: 
reliability, availability, maintainability and safety [7]. 

The conditional measures are directly obtained as results of the benchmark 
experiments. The unconditional measures on dependability attributes have to be 
calculated using modeling techniques with the help of external data, such as fault 
rates, MTBF, etc. This external data could be provided from field data or based on 
past experience considering similar systems. Note that, models of complex systems 
may be very difficult to define and the external data difficult to obtain. 

Our proposal is to focus on direct measures (conditional measures), following the 
traditional benchmarking philosophy based on a pure experimental approach. These 
measures are related to the conditions disclosed in the benchmark report and can be 
used for comparison or for system/component improvement and tuning. This is 
similar to what happens with performance benchmark results, as the performance 
measures do not represent an absolute measure of system performance and cannot be 
used for capacity planning or to predict the actual performance of the system in field.  

The measures of a dependability benchmark should: 

− Be based on the service provided by the system during the benchmarking process 
and should be independent from the system structure (to allow comparison). 

− Focus on an end-to-end perspective (e.g., the point-of-view of the users). 
− Allow the characterization of both dependability and performance features. 
− Be easy to understand by users and administrators. 
− Not be extrapolated or inferred: measures must be directly computed based on the 

information collected during the benchmark execution. 

The faultload represents a set of faults that emulates real faults experienced by 
systems in the field. Among the main components needed to define a benchmark, the 
faultload is clearly the most obscure one due to the complex nature of faults. A 
faultload can be based on three major classes of faults: 

− Operator faults: operator faults are human mistakes. The great complexity of 
administration tasks in some systems and the need of tuning and administration in 
a daily basis, clearly explains why human faults (i.e., wrong human actions) should 
be considered in a dependability benchmark.  

− Software faults: software faults (i.e., program defects or bugs) are recognized as 
an important source of system outages, and given the huge complexity of today’s 
software the weight of software faults tends to increase. 
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− Hardware faults: includes traditional hardware faults, such as bit-flips and stuck-
at, and high-level hardware failures, such as hard disk failures or failures of the 
interconnection network. Hardware faults are especially relevant in systems prone 
to electrical interferences. 

Concerning the definition of the workload, the job is considerably simplified by the 
existence of workloads from performance benchmarks. Obviously, these already 
established workloads are the natural choice for a dependability benchmark. 
However, when adopting an existing workload some changes may be required in 
order to target specific system features. An important aspect to keep in mind when 
choosing a workload is that the goal is not only to evaluate the performance but also 
assess specific dependability features. 

The procedures and rules define the correct steps to run a benchmark and obtain 
the measures. These rules are, of course, dependent on the specific benchmark but the 
following points give some guidelines on specific aspects needed in most of the cases: 

− Procedures for “translating” the workload and faultload defined in the benchmark 
specification into the actual workload and faultload that will apply to the system. 

− Uniform conditions to build the setup and run the dependability benchmark. 
− Rules related to the collection of the experimental results. 
− Rules for the production of the final measures from the direct experimental results. 
− Scaling rules to adapt the same benchmark to systems of very different sizes.  
− System configuration disclosures required for interpreting the benchmark results. 
− Rules to avoid optimistic or biased results. 

In the following sections we present previous work on dependability benchmarking to 
demonstrate the relevance of the field. The works presented clearly support our claim 
that standardization bodies should start including dependability in their benchmarking 
initiatives. In fact, it is clear that both academia and industry regard dependability 
benchmarking as a mandatory path for research and practice. 

4.1   Special Interest Group on Dependability Benchmarking (SIGDeB) 

The Special Interest Group on Dependability Benchmarking (SIGDeB) was created 
by the International Federation for Information Processing (IFIP) Working Group 
10.4 [6] in 1999 to promote the research, practice, and adoption of benchmarks for 
computer-related systems dependability. The work carried out in the context of the 
SIGDeB is particularly relevant and merges contributions from both industry and 
academia.  

A preliminary proposal issued by the SIGDeB was in the form of a set of 
standardized classes for characterizing the dependability of computer systems [15]. 
The goal of the proposed classification was to allow the comparison among computer 
systems concerning four different dimensions: availability, data integrity, disaster 
recovery, and security. The authors have specifically developed the details of the 
proposal for transaction processing applications. This work proposes that the 
evaluation of a system should be done by answering a set of standardized questions or 
performing tests that validate the evaluation criteria.  
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A very relevant effort in the context of SIGDeB is a book on dependability 
benchmarking of computer systems [16]. This book presents several relevant 
benchmarking initiatives carried out by different organizations, ranging from 
academia to large industrial companies. 

4.2   The DBench Project 

The DBench project [17] was funded by the European Commission, under the 
Information Society Technologies Programme (IST), Fifth Framework Programme 
(FP5). The main goal was to devise benchmarks to evaluate and compare the 
dependability of COTS and COTS-based systems, in embedded, real time, and 
transactional systems. The following paragraphs summarize the work carried out in 
the project. 

The work presented in [18] and [19] address the problem of dependability 
benchmarking for general purpose operating systems (OS), focusing mainly on 
the robustness of the OS (in particular of the OS kernel) with respect to faulty 
applications. The measures provided are: 1) OS robustness in the presence of faulty 
system calls; 2) OS reaction time for faulty system calls; and 3) OS restart time after 
the activation of faulty system calls. Three workloads are considered: 1) a realistic 
application that implements the driver system of the TPC-C performance benchmark 
[20]; 2) the PostMark file system performance benchmark for operating systems; and 
3) the Java Virtual Machine (JVM) middleware. The faultload is based on the 
corruption of systems call parameters. 

The work presented in [21] is a preliminary proposal of a dependability 
benchmark for real time kernels for onboard space systems. This benchmark, 
called DBench-RTK, focuses mainly on the assessment of the predictability of 
response time of service calls in a Real-Time Kernel (RTK). The DBench-RTK 
benchmark provides a single measure that represents the predictability of response 
time of the service calls of RTKs used at space domain systems. The workload 
consists in an Onboard Scheduler (OBS). The faultload consists of faults injected into 
kernel functions calls by corrupting parameter values. 

The work presented in [22] represents a preliminary proposal of a dependability 
benchmark for engine control applications for automotive systems. This 
benchmark focuses the robustness of the control applications running inside the 
Electronic Control Units (ECU) with respect to transient hardware faults. This 
dependability benchmark provides a set of measures that allows the comparison of the 
safety of different engine control systems. The workload is based on the standards 
used in Europe for the emission certification of light duty vehicles. The faultload 
consists in transient hardware faults that affect the cells of the memory holding the 
software used in the engine control. 

The DBench-OLTP dependability benchmark [23] is a dependability benchmark 
for on-line transaction processing systems. The DBench-OLTP is presented in more 
detail in Section 5. 

In [24] it is presented a preliminary proposal of another dependability benchmark 
for on-line transaction processing systems. The measures provided by this 
dependability benchmark are the system availability and the total cost of failures. 
These measures are based in both measurements obtained from experimentation  
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(e.g., percentages of the various failure modes) and external data (e.g., the failure 
rates and the repair rates). The benchmark user must provide the external data used to 
calculate the measures. The workload was adopted from the TPC-C performance 
benchmark [20] and the faultload includes exclusively hardware faults, such as faults 
in the storage hardware and in the network. 

In [25] it is proposed a dependability benchmark for web-servers (the WEB-DB 
dependability benchmark). This dependability benchmark uses the basic experimental 
setup, the workload, and the performance measures specified in the SPECWeb99 
performance benchmark [26]. The measures reported by WEB-DB are grouped into 
three categories: baseline performance measures, performance measures in the 
presence of the faultload, and dependability measures. The WEB-DB benchmark uses 
two different faultloads: one based on software faults and another based on 
operational faults that emulate the effects of hardware and operator faults. 

4.3   Berkeley University 

The work developed at Berkeley University has highly contributed for the progress of 
research on dependability benchmarking in the last few years, principally in what 
concerns to benchmarking the dependability of human-assisted recovery processes. 

In [27] is introduced a general methodology for benchmarking the availability of 
computer systems. The workload and performance measures are adopted from 
existing performance benchmarks and the measure of availability of the system under 
test is defined in terms of the service provided by the system. The faultload (called 
fault workload by the authors) may be composed by a single-fault (single-fault 
workload) or by several faults (multi-fault workload). 

In [28] the human error is addressed as an important aspect in system 
dependability, and proposes that human behavior must be considered in dependability 
benchmarks and system designs. In [29] is proposed a technique to develop 
dependability benchmarks that capture the impact of human operators on the tested 
system. The workload and measures are adopted from existing performance 
benchmarks and the dependability of the system can be characterized by examining 
how the performance measures deviate from their normal as the system is perturbed 
by injected faults. In addition to faults injected using traditional fault injection, 
perturbations are generated by actions of human operators that actually participate in 
the procedure. 

In [30] are presented the first steps towards the development of a dependability 
benchmark for human assisted recovery processes and tools. This work proposes a 
methodology to evaluate human-assisted failure recovery tools and processes in 
server systems. This methodology can be used to both quantify the dependability of 
single recovery systems and compare different recovery approaches, and combines 
dependability benchmarking with human user studies. 

4.4   Sun Microsystems 

Research at Sun Microsystems has defined a high-level framework [31] specifically 
dedicated to availability benchmarking of computer systems. The proposed 
framework follows a hierarchical approach that decomposes availability into three 
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key components: fault/maintenance rate, robustness, and recovery. The goal was to 
develop a suite of benchmarks, each one measuring an aspect of the availability of the 
system. Within this framework, two benchmarks have already been developed.  

In [32] is proposed a benchmark for measuring a system's robustness (degree of 
protection against outage events) in handling maintenance events, such as the 
replacement of a failed hardware component or the installation of a software patch. 

In [33] it is proposed a benchmark for measuring system recovery in a non-
clustered standalone system. This benchmark measures three specific system events; 
clean system shutdown (provides a baseline metric), clean system bootstrap 
(corresponds to rebooting a system following a clean shutdown), and a system reboot 
after a fatal fault event (provides a metric that represents the time between the 
injection of a fault and the moment then system returns to a useful state). 

Another effort at Sun Microsystems is the Analytical RAS Benchmarks [34], 
which consists of three analytical benchmarks that examine the Reliability, 
Availability, and Serviceability (RAS) characteristics of computer systems: the Fault 
Robustness Benchmark (FRB-A) allows assessing techniques used to enhance 
resiliency, including redundancy and automatic fault correction; the Maintenance 
Robustness Benchmark (MRB-A) assesses how maintenance activities affect the 
ability of the system to provide a continuous service; and the Service Complexity 
Benchmark (SCB-A) examines the complexity of mechanical components 
replacement.  

4.5   Intel Corporation  

The work at Intel Corporation has focused on benchmarking semiconductor 
technology. The work in [35] shows the impact of semiconductor technology scaling 
on neutron induced SER (soft error rate) and presents an experimental methodology 
and results of accelerated measurements carried out on Intel Itanium® 
microprocessors. The proposed approach can be used as a dependability-
benchmarking tool and does not require proprietary information about the 
microprocessor under benchmarking. 

Another study [36] presents a set of benchmarks that rely on environmental test 
tools to benchmark undetected computational errors, also known as silent data 
corruption (SDC). In this work, a temperature and voltage operating test (known as 
the four corners test) is performed on several prototype systems. 

4.6   IBM Autonomic Computing Initiative 

At IBM, the Autonomic Computing initiative [37] is developing benchmarks to 
quantify a system's level of autonomic capability, which is defined as the capacity of 
the system to react autonomously to problems and changes in the environment. The 
goal is to produce a suite of benchmarks covering the four autonomic capabilities: 
self-configuration, self-healing, self-optimization, and self-protection. 

In [38] are described the first steps towards a benchmark for autonomic computing. 
The benchmark addresses the four attributes of autonomic computing and is able to 
test systems at different levels of autonomic maturity. 
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In [39] are identified the challenges and pitfalls that must be taken into account in 
the development of benchmarks for autonomic computing capabilities. This paper 
proposes the use of the workload and driver system from performance benchmarks 
and the introduction of changes into benchmarking environment in order to 
characterize a given autonomic capability of the system. Authors propose that 
autonomic benchmarks must quantify the level of the response, the quality of the 
response, the impact of the response on the users, and the cost of any extra resources 
needed to support the autonomic response. 

5   A Dependability Benchmark Example: DBench-OLTP 

To demonstrate the dependability benchmarking concept, in this section we present an 
example of a dependability benchmark for On-Line Transaction Processing (OLTP) 
systems. The DBench-OLTP dependability benchmark [23] was proposed in 2003 and 
was the first dependability benchmark for transactional systems known. It uses the 
basic setup, the workload, and the performance measures specified in TPC-C [20] and 
introduces two new components: measures related to dependability and the 
faultload. This section presents a short overview of the benchmark (see [23] for 
details). 

The main elements of the DBench-OLTP experimental setup are the System Under 
Benchmarking (SUB) and the benchmark management system (BMS). The SUB can 
be any system able to run the workload (a Database Management System (DBMS) in 
practice). The BMS emulates the client applications, inserts the faults, and control all 
the aspects of the benchmark run. 

The DBench-OLTP measures are divided in three groups:  

− The baseline performance measures are inherited from the TPC-C benchmark 
and are obtained during Phase 1 (see Fig. 1). Measures include the number of 
transactions executed per minute (tpmC) and price-per-transaction ($/tpmC). 

− The performance measures in the presence of the faultload, obtained during 
Phase 2 (see Fig. 1), include the number of transactions executed per minute (Tf) 
and the price-per-transaction ($/Tf) in the presence of faults. 

− The dependability measures (also obtained during Phase 2) consist of the number 
of data integrity errors detected by consistency tests and metadata tests (Ne), the 
availability from the SUB point-of-view (AvtS), and the availability from the end-
users (terminals) point-of-view (AvtC). Note that, AvtS and AvtC are given as a 
ratio between the amount of time the system is available and the Phase 2 duration. 

The benchmark includes three faultloads, each one based on a different class of faults, 
namely (see [23] for details): 1) operator faults (i.e., database administrator 
mistakes, such has dropping table, dropping user, deleting data file, shutting down the 
server); 2) software faults (i.e., software bugs at the operating system level); or 3) 
high-level hardware failures (e.g., hard disk failures, power failures, etc). 

DBench-OLTP has been used to compare a set of systems that represent quite 
realistic alternatives for small and medium size OLTP applications. Table 1 shows the 
systems under benchmarking. Two different versions of a leading commercial DBMS 
(DB-1 and DB-2), three different operating systems, and two different hardware 
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Fig. 1. The benchmark run includes two main phases. In Phase 1, which corresponds to a 
normal TPC-C execution (see [20]), the TPC-C workload is run without any faults, and the goal 
is to collect baseline performance measures. During Phase 2, the TPC-C workload is run in the 
presence of the faultload to measure the impact of faults on specific aspects of the target system 
dependability. As shown, several independent fault injection slots compose Phase 2. 

platforms have been used. We decided to keep as anonym the brand and the versions 
of the DBMS to assure neutrality and because commercial DBMS licenses do not 
allow in general the publication of performance results. Both DB-1 and DB-2 were 
used in two different configurations: Config. A and Config. B. 

Figure 2 presents a summary of the DBench-OLTP results (see [23] for the detailed 
analysis). As we can see, the baseline performance and the performance in the presence 
of faults are strongly dependent on the hardware platform and DBMS configuration 
used. The DBMS and operating system have a lower impact. An interesting result is 
that availability depends mainly on the DBMS configuration. In fact, systems with the 
same DBMS configuration present a similar level of availability, independently of the 
hardware platform, operating system and DBMS used. Another interesting result is that 
the availability from the clients point-of-view (AvtC) is always much lower than the 
availability from the server point-of-view (AvtS), which seems to be normal because 
some types of faults affect the system in a partial way. 

Table 1. Systems under benchmarking 

System OS DBMS Config. Hardware 
A Win 2000 Prof. SP 3 DB-1 Config. A 
B Win 2000 Prof. SP 3 DB-2 Config. A 
C Win Xp Prof. SP 1 DB-1 Config. A 
D Win Xp Prof. SP 1 DB-2 Config. A 
E Win 2000 Prof. SP 3 DB-1 Config. B 
F Win 2000 Prof. SP 3 DB-2 Config. B 
G SuSE Linux 7.3 DB-1 Config. A 
H SuSE Linux 7.3 DB-2 Config. A 

Processor: Intel Pentium III 800 MHz 
Memory: 256MB 
Hard Disks: Four 20GB / 7200 rpm 
Network: Fast Ethernet 

I Win 2000 Prof. SP 3 DB-1 Config. A 

J Win 2000 Prof. SP 3 DB-2 Config. A 

Processor: Intel Pentium IV 2 GHz 
Memory: 512MB 
Hard Disks: Four 20GB / 7200 rpm 
Network: Fast Ethernet 
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Fig. 2. DBench-OLTP results summary 

Table 2. Systems under benchmarking 

Criteria System Ranking (best to worst) 
Baseline performance (tpmC) J, I, D, B, C, A, G, H, F, E 
Performance with faults (Tf) J, I, B, D, C, A, G, H, F, E 
Availability (AvtS and AvtC) H, I, D, J, C, B, G, A, F, E 

 
Table 2 summarizes the ranking proposed according to several criteria. Concerning 

a global ranking, the analysis of Table 5 and all the results presented before allow us 
to propose the following order (from the best to the worst): I, J, D, B, C, H, G, A, F, 
and E. It is important to note that the global ranking always depends on the 
benchmark performer point-of-view (i.e., depends on what he is looking for). 

The results presented show clearly that it is possible to apply dependability 
benchmarks in complex systems, such as transactional systems, in a very successful 
way.  

6   Dependability Benchmarking Research Needs and Challenges 

Although many works have been conducted in the area of dependability 
benchmarking, it is clear that some key issues remain open. In this section we present 
the set of research needs and challenges we believed must be accomplished for the 
establishment of real dependability benchmarks. Among the main issues, we identify:  

− Availability of agreed dependability benchmarking measures.  
− Elaboration of adaptable benchmarking processes.  
− Development of benchmarking frameworks (reusable components and tools).  
− Integration of benchmarking with the design methodologies.  
− Proper maintenance of benchmarks to avoid negative effects. 
− Support from a standardization body or industry. 
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Table 3. Dependability benchmarking research needs and challenges 

Needs 
1. Agreed, cost effective, easy to use, fast and representative enough dependability 

benchmarks for well defined domains.  
2. Benchmark frameworks (components and tools) able to be reused to create bench-

marks in different benchmarking domains.  
3. Inclusion of adequate design methodologies to facilitate benchmark implementation 

and configuration in future components, systems, and infrastructures.  
4. Uniform (standardized) benchmarking process that can be applied by independent 

organizations to offer certification of the dependability of COTS products (like in 
the case of standards compliance testing). 

Challenges 
1. Defining benchmark domains (components, systems, application domains) in order 

to divide the problem space in adequate/tractable segments.  
2. Defining key benchmark elements such as measures, workload, faultload, attack-

load, models, to ensure the necessary properties (e.g., representativeness, portabil-
ity, scalability, repeatability) that allow agreement on benchmark proposals.  

3. Coping with highly complex, adaptable and evolving benchmark targets (compo-
nents, systems and services).   

4. Coping with human factors in the definition and execution of benchmarks.  
5. Assuring proper validation of dependability benchmarks in order to achieve the 

necessary agreement to establish benchmarks. This implies the validation of the 
different benchmark properties. 

6. Assuring reusability of benchmark frameworks (components & tools) to create 
benchmarks in different benchmarking domains.  

7. Defining and agreeing on a domain-specific dependability benchmarking process 
that can be accepted by the parties concerned (supplier, customer and certifier) and 
can be adapted to different products in the domain (e.g., in a product line). 

 
Due to space constraints, Table 3 just outlines the needs and challenges. Details can 
be found in [40], along with the actions to be conducted to tackle each challenge. 

7   Conclusions 

In this paper we have presented an overview of the state-of-the art on dependability 
benchmarking and defined the set of needs and challenges that have to be addressed 
for the acceptance of dependability benchmarks by researchers and practitioners. 

Unlike performance benchmarking, which is a well-established field, dependability 
benchmarking is a recent research field. However, as the many works conducted by 
academia and industry show, dependability benchmarking is a mandatory path. In 
fact, it is of utmost importance to shift the focus from measuring pure performance to 
the measurement of both performance and dependability. Only this way we will be 
able to make comparisons among systems in a more realistic manner. 
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In this paper we argued that standardization bodies like TPC and SPEC must start 
paying attention to dependability assessment and comparison. This is a key step for 
the establishment of real dependability benchmarks, which will for sure contribute to 
improve the dependability characteristics of future generations of systems. 
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Abstract. Set to replace the aging TPC-C, the TPC Benchmark E is the next 
generation OLTP benchmark, which more accurately models client database 
usage. TPC-E addresses the shortcomings of TPC-C. It has a much more 
complex workload, requires the use of RAID-protected storage, generates much 
less I/O, and is much cheaper and easier to set up, run, and audit. After a period 
of overlap, it is expected that TPC-E will become the de facto OLTP 
benchmark.  

Keywords: TPC-E, TPC-C, OLTP, database performance, benchmark. 

1   Introduction 

TPC BenchmarkTM E (TPC-E) is a database server benchmark that measures OLTP 
performance. The benchmark is one of several that have been produced by the 
Transaction Processing Performance Council (TPC), a non-profit corporation founded 
to define transaction processing and database benchmarks and to disseminate 
objective, verifiable TPC performance data to the industry. The TPC has many 
member companies such as IBM, Dell, HP, Intel, Oracle, Microsoft and AMD.  

The TPC-E benchmark uses a database to model a brokerage firm with customers 
who generate transactions related to trades, account inquiries, and market research. 
The brokerage firm in turn interacts with financial markets to execute orders on behalf 
of the customers and updates relevant account information.  

The benchmark is “scalable,” meaning that the number of customers defined for 
the brokerage firm can be varied to represent the workloads of different-size 
businesses. The benchmark defines the required mix of transactions the benchmark 
must maintain. The TPC-E metric is given in transactions per second E (tpsE). It 
specifically refers to the number of Trade-Result transactions the server can sustain 
over a period of time.  

The first section of this paper, “Why do we need a new OLTP benchmark?” 
compares and contrasts TPC-E and TPC-C, and discusses the benefits of the new 
benchmark. The second section, “Overview of TPC-E,” provides more detailed 
information about the benchmark, including a description of the business model used 
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for the benchmark, the kind of information stored in the database, and the types of 
transactions performed. The final section, “Transition to TPC-E,” briefly addresses 
the coexistence of the TPC-C and the TPC-E and the eventual sun setting of the TPC-
C benchmark once TPC members begin to publish results for the new benchmark. 

The overall goal is to introduce the audience to the new TPC-E benchmark. Some 
knowledge and understanding of the TPC-C benchmark on the reader’s part is 
assumed. Another goal is to help the audience understand how to use TPC-E 
benchmark results to evaluate the performance of database servers.  

For more detailed information about the TPC and the TPC-E benchmark, visit the 
TPC Web site at www.tpc.org.  

2   Why Do We Need a New OLTP Benchmark?  

Why TPC-E rather than TPC-C? Benchmarks have a life time. Good benchmarks 
drive industry and technology forward. At some point, all reasonable advances have 
been made using a particular benchmark. When that happens, benchmarks can 
become counterproductive by encouraging artificial optimizations. So, even good 
benchmarks become obsolete over time. The TPC-C Specification was approved July 
23, 1992. Since then, it has become the de facto industry-standard OLTP benchmark, 
but now TPC-C is roughly 17 years old. In “dog years” that’s 119. In “computer 
years,” it’s basically ancient! 

2.1   TPC-C: An Aging Benchmark Losing Relevance  

Static Transaction Profiles  
The benchmark is running the same workload today as when it was introduced in 
1992. TPC-C’s transactions are too “lightweight” by today’s standards, but it is not 
practical to modify the existing workload because that would break comparability. 
(The companies that published the benchmark results don’t want to lose their 
investment by losing comparability.) Those who run the benchmark have a very good 
understanding of the workload and how to super-tune it. 

Unbalanced System Configurations 
Over the years, with the advance of technology, we’ve seen that:  

• CPU performance has grown according to Moore’s Law.  
• Disk drive latencies have not improved substantially.  
• Memory has grown disproportionately to I/Os per system. 
• The TPC-C workload has not changed. 
• Ongoing improvements to software have led to increasingly higher TPC-C scores. 

As a result of these factors, running the benchmark requires larger and larger I/O 
subsystems, which in turn, increases the cost, which is borne entirely by the 
benchmark sponsor. For example, a recent TPC-C result on an IBM System x3850 
M2 used four processors, 256GB of memory, and 1,360 disk drives for the database. 
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Compare that to the results published in October 2000 for the IBM Netfinity 7600 
with four processors, 8GB of memory, and 236 drives.1   

Today the workload and configurations are less representative of clients’ 
environments than when the benchmark was first introduced. Because of the amount 
of hardware required, the benchmark has become too expensive and requires too 
much time to run and audit. 

2.2   TPC-E: A Benchmark More Relevant to Today’s Application Environment  

What is needed and what TPC-E delivers is a new OLTP database-centric benchmark 
that:  

• Provides comparable results (i.e., results from different vendors can be compared) 
• Represents a familiar business model that is easy to understand 
• Reduces the cost and complexity of running the benchmark 
• Enhances the complexity of the database schema 
• Encourages database uses that are more representative of client environments   

More Realistic Benchmark Configurations  
Configurations used to run the new benchmark should be more like actual client 
configurations. This means that the software and hardware configuration used in the 
benchmark should be similar or the same as what a client would use. The 
configuration should not have a large I/O subsystem if clients would not have a 
similarly large I/O subsystem. Having a benchmark configuration that more closely 
reflects the client’s application environment makes it easier to use benchmark results 
for capacity planning. Any improvements made to the hardware or software to 
improve the benchmark result would also benefit the client. This is not always the 
case now because TPC-C configurations do not reflect typical client configurations.  
The following table shows that TPC-E configurations more closely resemble client 
configurations.  

Table 1. Comparison of TPC-C and TPC-E  

Feature TPC-C Client TPC-E 
Drives/core 50 to 150 5 to 10 10 to 50 

Database layout Simple Complex Complex 
Database transactions Simple Complex Complex 
Database constraints None Enforced Enforced 
RAID-protected data No Yes Yes 

                                                           
1 IBM System x3850 M2 with the Intel Xeon Processor X7460 2.66GHz (4 processors/24 

cores/24 threads), 684,508 tpmC, $2.58 USD / tpmC, total solution availability of October 31, 
2008. Results referenced are current as of May 22, 2009. IBM Netfinity 7600 with Intel 
Pentium® III Xeon (4 processors/4 cores), 32,377 tpmC, $13.70 USD / tpmC, availability of 
October 25, 2000 (withdrawn).  
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2.3   TPC-E and TPC-C: Comparison of Key Features 

The following table shows the key characteristics of TPC-C and TPC-E side-by-side.  

Table 2. Comparison of TPC-C and TPC-E characteristics 

Characteristics TPC-C TPC-E 
Business model Wholesale supplier Brokerage house 

Number of database tables 9 33 
Number of database columns 92 188 
Minimum columns per table 3 2 
Maximum columns per table 21 24 

Datatype count 4 Many 
Primary keys 8 33 
Foreign keys 9 50 

Tables with foreign keys 7 27 
Check constraints 0 22 

Referential integrity No Yes 
Database content Unrealistic Realistic 

Ease of partitioning Unrealistically easy Realistic 
Database roundtrips per transaction One One or many 

Number of transactions 5 10 
Number of physical I/Os 3x to 5x x 
Client machines needed Many Fewer 

RAID requirements Database log only Everything 
Timed database recovery No Yes 

TPC-provided code No Yes 

Different Business Model 
The TPC-C business model is that of a wholesale supplier, and the database is 
organized by Warehouses, Districts and Customers. The TPC-E business model is a 
brokerage house, and the database is organized by Customers, Accounts and 
Securities. 

RAID Protection 
A common complaint about TPC-C is that it does not require RAID protection of the 
disk subsystem that contains the database. In the real world, clients cannot run their 
databases without some protection against drive failure. TPC-E requires RAID 
protection and tests how performance is affected when a drive is rebuilding.  

Timed Database Recovery 
TPC-E requires test sponsors to report how long it takes after a catastrophic failure to 
get the database back up and running at 95% of the reported throughput. This 
requirement means that test sponsors can no longer take shortcuts to improve 
performance while ignoring reliability. 
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Richer Database Schema and Transactions 
TPC-C has nine database tables and five transactions. TPC-E has 33 tables and 10 
transactions. TPC-E has many different data types, many primary keys, foreign keys, 
check constraints, and has referential integrity. TPC-C was very easy to partition 
because everything was keyed off of the warehouse ID. TPC-E is not unrealistically 
easy to partition, reflecting the issues clients see when they try to partition their data. 

When clients implement transactions in their applications, they often do many 
roundtrips to the database; that is, they get some data from the database, send the data 
back to the application, process the data in the application, and then go to the database 
again for some more data. In TPC-C, the application has been so tuned that all the 
processing is done in one roundtrip to the database because all the processing is done 
in a stored procedure in the database. In TPC-E some transactions have rules that the 
transaction cannot be implemented as a single stored procedure in the database. The 
rules force more roundtrips to the database. 

TPC-E has stricter database isolation requirements than TPC-C. This means that 
database vendors will have to work on improving database locking performance. 
Clients will see this performance improvement when they run their applications. 

The database schema and transactions for TPC-E are much richer than those of 
TPC-C. The richer schema means that there are lots of possible ways to optimize 
performance. Over the life of the benchmark, test sponsors will find ways to use 
secondary indexes to improve transaction performance. TPC-C has been around so 
long that all the SQL tuning has been found and done. 

Constraint Checking 
When TPC-C came out, database constraint checking was not a standard feature for 
all Database Management Systems; now it is, so constraint checking is enforced in 
TPC-E. 

Configuration Requirements 
The transactions in TPC-E are designed to do more logical fetches and consume more 
CPU time than the TPC-C transactions. Logical fetches are the number of rows a 
transaction has to read. The rows may already be in memory or they may be out on 
disk. If the rows are already in memory, then no physical I/O to the disk is required.  

During development, extensive prototyping was done to ensure that the TPC-E 
transactions used a lot of CPU and did some, but not too much, physical I/O. Too 
much physical I/O requires many more disk drives to ensure that the processor is 
never idle waiting for physical I/O. The result of this prototyping is that TPC-E does 
between three to five times less physical I/O than TPC-C. So even though TPC-E 
requires the disk drives to be RAID-protected, the benchmark still uses significantly 
fewer disk drives than a TPC-C configuration for the same server with the same 
number of processors and memory. This is good news for test sponsors. The disk I/O 
subsystem for TPC-C is incredibly expensive, which means that some hardware 
vendors cannot afford to run the TPC-C benchmark. TPC-E will be much less 
expensive to configure and run, so more hardware vendors will be able to publish 
results. Clients will benefit because they will be able to compare benchmark results 
from several vendors before deciding which vendor’s products they want to buy. 
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Table 3. Comparison of TPC-C and TPC-E configurations 

 TPC-C TPC-E 
System HP ProLiant DL370 G6 IBM System x3650 M2 

Total price $678,231 $302,146 
Score 631,766 tpmC 798.00 tpsE 

Price/performance $1.08/tpmC $378.63/tpsE 
Availability date 3/30/09 6/30/09 

Processors/cores/threads 2/8/16 2/8/16 
Database server memory 144GB 96GB 

Disks 1210 (RAID-0) 450 (RAID-10) 
RTEs 18 0 (N/A) 

Clients 8 2 
Total systems to setup and tune 27 3 

 
Another factor that makes TPC-E less expensive to run is that it requires fewer 

front-end systems because it focuses on benchmarking the database server. In 
contrast, TPC-C uses a Web page-based front-end, which emulates users keying in the 
Web page, and thinking. Here is a comparison of the TPC-C and TPC-E 
configurations for two very similar database servers. 

More Realistic Database Content 
TPC-C uses random numbers to pick string fragments and then concatenates the string 
fragments. TPC-E is populated with pseudo-real data. The distributions are based on: 

• 2000 U.S. and Canada census data2   

• Used for generating name, address, gender, etc. 
• Introduces natural data skew 

• Actual listings on the NYSE and NASDAQ 

The benefits of using pseudo-real data are that TPC-E has realistic-looking data that is 
compressible and can be used for backup testing. The data is closer match to the kind 
of data found in clients’ databases. 

Table 4. Sample data from TPC-C CUSTOMER table 

C_FIRST C_MIDDLE C_LAST C_STREET1 
RONpTGcv5ZBZO8Q OE BARBARABLE bR7QLfDBhZPHlyDXs 

e8u6FMxFLtt6p Q OE BARBARPRI eEbgKxoIzx99ZTD S 
bTUkSuVQGdXLjGe OE BARBARPRES QCGLjWnsqSQPN DS 
18AEf3ObueKvubUX OE BARBARESE JnBSg4RtZbALYu S 
mFFsJYeYE6AR bUX OE BARBARANTI MLEwwdy3dXfqngFcE 

 

                                                           
2 Only names from the 2000 census have been used—all other data are fictional and any 

similarities are purely coincidental. 
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Table 5. Sample data from TPC-E CUSTOMER table 

C_TAX_ID C_L_NAME C_F_NAME C_M_NAME C_DOB 
757FI2006HD923 Mexicano Courtney T 1997-11-30 
922SN3775RQ823 Udley Judith F 1954-09-27 
006GT3444BE624 Buchanan John R 1971-06-13 
181UZ4114LR434 Soloman Clinton D 1938-02-27 
355IE4773VF335 Orner Harry P 1974-11-15 

Provided Code 
TPC does not provide code for the TPC-C benchmark, but it does provide code for the 
TPC-E benchmark. The code provided is used to generate the data that is loaded into 
the database and to generate the transactions and the data for the transactions. By 
providing code, the TPC hopes that it will be easier for more member companies to 
set up and run the benchmark. The TPC’s intent is that test sponsors will spend time 
optimizing their products rather than coding and optimizing the driver for the 
benchmark. 

Similarities to TPC-C 
TPC-E is similar to TPC-C in these ways: 

• The primary metrics for TPC-E are tpsE, $/tpsE and availability date. These 
metrics correspond to those of TPC-C: tpmC, $/tpmC, and availability date. Also, 
neither TPC-C nor TPC-E uses a scale factor, as TPC-H does. 

• TPC-E and TPC-C both use an OLTP workload, although each is based on a 
different business model. 

• Portions of the database scale in a linear fashion in both benchmarks.  
• The transaction profile is held constant.  

3   Overview of TPC-E    

3.1   Brokerage Firm Model 

As Figure 1 illustrates, customers generate transactions related to trade requests, 
account inquiries and market research. The brokerage firm sends trades to the market. 
The market returns the results of the trades and also sends a constant stream of the 
latest price for each security being traded. The brokerage firm returns the results of 
transactions to the customers. 

Several models were considered for the workload. The brokerage firm model, 
which is based on input received from industry experts, such as Merrill-Lynch and 
Fidelity, was selected. This model met the volume/scaling and market relevance 
criteria for the benchmark. Industry analysts have mentioned that TPC-C, the current 
leading benchmark for database servers, is no longer as relevant to client OLTP 
workloads. One example of this lack of relevance is that for the current number one 
TPC-C result the database supported more customers than there are people on the 
planet. TPC-E needed to be able to have a meaningful number of customers in 
comparison to the performance of the database server being measured.  
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Fig. 1. TPC-E model – A Brokerage Firm 

Another criticism leveled at TPC-C is that it has too few transaction types and that 
the transactions are too simple compared to the type of transactions clients do now. 
As processing power has increased, clients have added complexity to their 
transactions. The brokerage firm model is rich enough to enable the TPC-E 
benchmark to have more transaction types and more database tables than used in 
TPC-C.  

There have been many technological advances since the TPC-C benchmark first 
came out roughly 17 years ago. The TPC-E workload is defined so that it can exercise 
some of these technological advances and features. The brokerage firm model lets us 
exercise features such as rich text from news articles about the companies whose 
securities are traded. Database Management System (DBMS) features (e.g., integrity 
constraints) that are commonly used today are also incorporated in the workload. 

3.2   TPC-E Database Information 

When loading the database for TPC-E, the benchmark sponsor chooses the number of 
customers based on the tpsE they are aiming for, keeping in mind that there are 500 
customers per single tpsE. Customers can be loaded only in blocks of 1,000. Some of 
the other TPC-E tables scale based on the number of customers chosen.  

The TPC provides code to generate the data for the TPC-E database. The TPC-E 
data generator uses names from a U.S. census and information from the New York 
Stock Exchange to generate people’s names and company information. This makes 
TPC-E data look like normal data. TPC-C data concatenates “foo,” “bar,” and so on to 
generate names, resulting in “unnatural” looking names. 

Trading in TPC-E is done by Accounts. Accounts belong to Customers. Customers 
are serviced by Brokers. Accounts trade Securities that are issued by Companies. 

The total set of Securities that can be traded and the total set of Companies that 
issue Securities scales along with the number of Customers. For each unit of 1,000 
Customers, there are 685 Securities and 500 Companies (with Companies issuing one 
to five Securities, mostly common shares, but some preferred as well). 
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All Companies belong to one of the 102 Industries. Each Industry belongs to one 
of the 12 market Sectors. 

Each Account picks its average 10 Securities to trade from across the entire range 
of Securities. Securities to be traded can be identified by the security (ticker) symbol 
or by the company name and security issue. 

Differences between Customer Tiers 
The basic scaling unit of a TPC-E database is a set of 1,000 Customers. For each set 
of 1,000 Customers, 20% belong to Tier 1, 60% to Tier 2, and 20% to Tier 3. Tier 2 
Customers trade twice as often as Tier 1 Customers. Tier 3 Customers trade three 
times as often as Tier 1 Customers. In general, customer trading is non-uniform by 
tier within each set of 1,000 Customers. 

Tier 1 Customers have 1 to 4 Accounts (average 2.5). Tier 2 Customers have 2 to 8 
Accounts (average 5.0). Tier 3 Customers have 5 to 10 Accounts (average 7.5). 
Overall, there is an average of five Accounts per Customer. 

The minimum and maximum number of Securities traded by each Account varies 
by Customer Tier and by the number of Accounts for each Customer. The average 
number of Securities traded per Account is 10 (so the average number of Securities 
traded per Customer is 50). For each Account, the same set of Securities is traded for 
both the initial database population and for any benchmark run. 

Customer Partitioning 
TPC-E scales with Customers. It is conceivable that Customer information could be 
partitioned into groups of related Customers. This is called Customer Partitioning. 
The advantage of Customer Partitioning is that it increases locality of reference within 
each sub-group of Customers. Transactions relating to a particular set of Customers 
are directed to that set of Customers rather than to all Customers. 

Trade Types 
Trade requests are either Buy (50%) or Sell (50%). These are further broken down 
into Trade Types, depending on whether the request was a Market Order (60%) or a 
Limit Order (40%). 

For Market Orders, the two trade types are Market-Buy (30%) and Market-Sell 
(30%). For Limit Orders, the three trade types are Limit-Buy (20%), Limit-Sell (10%) 
and Stop-Loss (10%). 

Market-Buy and Market-Sell are trade requests to buy and sell immediately at the 
current market price, whatever price that may be. Limit-Buy is a request to buy only 
when the market price is at or below the specified limit price. Limit-Sell is a request 
to sell only when the market price is at or above the specified limit price. Stop-Loss is 
a request to sell only when (or if) the market price drops to or below the specified 
limit price. 

If the specified limit price has not been reached when the Limit Order is requested, 
it is considered an Out-of-the-Money request and remains “Pending” until the 
specified limit price is reached. Reaching the limit price is guaranteed to occur within 
15 minutes based on benchmark implementation details. The act of noticing that a 
“Pending” limit request has reached or exceeded its specified limit price and 
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submitting it to the market exchange to be traded is known as “triggering" of the 
pending limit order. 

Effects of Trading on Holdings 
For a given account and security, holdings will be either all long (positive quantities) 
or all short (negative quantities). 

Long positions represent shares of the security that were bought (purchased and 
paid for) by the customer for the account. The customer owns the shares of the 
security and may sell them at a later time (hopefully, for a higher price). 

Short positions represent shares of the security that were borrowed from the broker 
(or Brokerage) and were sold by the customer for the account. In the short-sale case, 
the customer has received the funds from that sell, but still has to cover the sell by 
later purchasing an equal number of shares (hopefully at a lower price) from the 
market and returning those shares to the broker. 

Before the database is loaded, there are no trades and no positions in any security 
for any account.  The TPC provides code to generate the data for the database. This 
data generation code simulates running the benchmark for 300 business days of initial 
trading, so that the initial database will be ready for benchmark execution. The data-
generation code also generates data for daily market closing price information for five 
years of five-day work weeks, and five years’ worth of quarterly report data for all the 
companies. 

If the first trade for a security in an account is a buy, a long position will be 
established (positive quantity in HOLDING row). Subsequent buys in the same 
account for the same security will add holding rows with positive quantities. 
Subsequent sells will reduce holding quantities or delete holding rows to satisfy the 
sell trade. All holdings may be eliminated, in which case the position becomes empty. 
If the sell quantity still is not satisfied, the position changes from long to short (see 
above). 

If the first trade for a security in an account is a sell, a short position will be 
established (negative quantity in HOLDING row). Subsequent sells in the same 
account for the same security will add holding rows with negative quantities. 
Subsequent buys will reduce holding quantities (toward zero) or delete holding rows 
to satisfy the buy trade. All holdings may be eliminated, in which case the position 
becomes empty. If the buy quantity still is not satisfied, the position changes from 
short to long.  

Database Tables 
TPC-C had only nine database tables. Most client databases have more than nine 
tables. TPC-E has many more tables than TPC-C. The TPC-E database tables can be 
grouped into four categories: 

• Customer – tables containing customer-related information 
• Broker – tables containing data related to the brokerage firm and brokers 
• Market – tables containing data related to the exchanges, companies, and securities 

that create the financial market 
• Dimension – tables containing generic information that is referenced by multiple 

fact tables 
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Table 6. Customer tables 

Customer Tables 
ACCOUNT_PERMISSION Who can execute trades for accounts 

CUSTOMER Customer information 
CUSTOMER_ACCOUNT Accounts for each customer 
CUSTOMER_TAXRATE Tax rates each customer pays 

HOLDING Customer account’s security holdings 
HOLDING_HISTORY History of how trades changed holding positions 

HOLDING_SUMMARY Aggregate of customer account’s security holdings 
WATCH_ITEM List of securities customers are tracking on their watch lists 
WATCH_LIST Customer’s security watch lists 

Table 7. Broker tables 

Broker Tables 
BROKER Broker information 

CASH_TRANSACTION Cash transaction information 
CHARGE Information about trade charges 

COMMISSION_RATE Commission rate information 
SETTLEMENT Trade settlement information 

TRADE Trade information 
TRADE_HISTORY History of each trade through various stages 
TRADE_REQUEST Pending limit trades 

TRADE_TYPE Valid trade types 

During the benchmark run: 

• All customer tables are read. 
• CUSTOMER_ACCOUNT balance is updated. 
• HOLDING_SUMMARY table is updated. 
• Records are appended to the HOLDING_HISTORY table. 
• Records are updated, deleted from and inserted in the HOLDING table. 

During the benchmark run: 

• All broker tables are read. 
• BROKER table is updated with the number of trades a broker has executed and the 

commission the broker has earned so far. 
• Records are appended to CASH_TRANSACTION, SETTLEMENT and 

TRADE_HISTORY tables. 
• Records are appended and updated in the TRADE table. 
• Records are inserted in and deleted from the TRADE_REQUEST table. 
During the benchmark run: 
• All market tables are read. 
• The LAST_TRADE table is updated many times a second. 
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Table 8. Market tables 

Market Tables 
COMPANY Information about companies with publicly traded securities 

COMPANY_COMPETITOR Information for the competitors of a given company and 
the industry in which the company competes 

DAILY_MARKET Daily market statistics for each security 
EXCHANGE Financial exchange information 
FINANCIAL Information about a company’s quarterly financial reports 
INDUSTRY Industry information 

LAST_TRADE Latest price and trading volume for each security 
NEWS_ITEM News items of interest 
NEWS_XREF Cross-reference of the news items to companies mentioned in 

the news item 
SECTOR Market sector information 

SECURITY Information about each security traded on any of the 
exchanges 

 
During the benchmark run, all the dimension tables are read. 

Table 9. Dimension tables 

Dimension Tables 
ADDRESS Address information 

STATUS_TYPE Status values 
TAXRATE Tax rate information 
ZIP_CODE Zip code information 

3.3   TPC-E Transactions 

TPC-C had only five transactions: New-Order (45% of the transaction mix), Payment 
(43%), Delivery (4%), Stock-Level (4%), and Order-Status (4%). The tpmC metric 
equaled the number of New-Order transactions done per minute. Because almost half 
of the transaction mix was New-Orders, configuration optimizations could change the 
metric significantly.  

TPC-E has 10 transactions that are part of the maintained transaction mix, and two 
other transactions. Trade-Result is the transaction that is counted for the tpsE metric. 
Trade-Result is only 10% of the transaction mix. The Data-Maintenance transaction, 
which runs once per minute, is not part of the maintained transaction mix. The Trade-
Cleanup transaction is only run once before starting a benchmark run. The following 
sections provide a short description of each transaction.  

Broker-Volume (4.9% of the Transaction Mix) 
The Broker-Volume transaction is designed to emulate a brokerage house’s “up-to-
the-minute” internal business processing. An example of a Broker-Volume 
transaction would be a manager generating a report on the current performance 
potential of various brokers. The transaction is a business intelligence type of query 
that only does reads and is CPU-heavy. 
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Customer-Position (13%) 
The Customer-Position transaction is designed to emulate the process of retrieving the 
customer’s profile and summarizing their overall standing based on current market 
values for all assets. This is representative of the work performed when a customer 
asks the question “What am I worth today?” The transaction is a read-only 
transaction. 

Market-Feed (1%) 
The Market-Feed transaction is designed to emulate the process of tracking the 
current market activity. This is representative of the brokerage house processing the 
“ticker-tape” from the market exchange. The transaction is a read/write transaction. 

Market-Watch (18%) 
The Market-Watch transaction is designed to emulate the process of monitoring the 
overall performance of the market by allowing a customer to track the current daily 
trend (up or down) of a collection of securities. The collection of securities being 
monitored may be based upon a customer’s current holdings, a customer’s watch list 
of prospective securities, or a particular industry. The transaction is a read-only 
transaction. 

Security-Detail (14%) 
The Security-Detail transaction is designed to emulate the process of accessing 
detailed information on a particular security. This is representative of a customer 
doing research on a security prior to making a decision about whether to execute a 
trade. The transaction is a read-only transaction. 

Trade-Lookup (8%) 
The Trade-Lookup transaction is designed to emulate information retrieval by either a 
customer or a broker to satisfy their questions regarding a set of trades. The various 
sets of trades are chosen such that the work is representative of: 

• Performing general market analysis 
• Reviewing trades for a period of time prior to the most recent account statement 
• Analyzing past performance of a particular security 
• Analyzing the history of a particular customer holding 

The transaction is a read-only transaction. This transaction generates a lot of disk IO 
because it looks for older records that don’t tend to be in memory because they were 
not used recently. 

Trade-Order (10.1%) 
The Trade-Order transaction is designed to emulate the process of buying or selling a 
security by a Customer, Broker, or authorized third-party. If the person executing the 
trade order is not the account owner, the transaction will verify that the person has the 
appropriate authorization to perform the trade order. The transaction allows the 
person trading to execute buys at the current market price, sells at the current market 
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price, or limit buys and sells at a requested price. The transaction also provides an 
estimate of the financial impact of the proposed trade by providing profit/loss data, 
tax implications, and anticipated commission fees. This allows the trader to evaluate 
the desirability of the proposed security trade before either submitting or canceling 
the trade. The transaction is a read/write transaction. 

Trade-Result (10%) 
The Trade-Result transaction is designed to emulate the process of completing a stock 
market trade. This is representative of a brokerage house receiving from the market 
exchange the final confirmation and price for the trade. The customer’s holdings are 
updated to reflect that the trade has completed. Estimates generated when the trade 
was ordered for the broker commission and other similar quantities are replaced with 
the actual numbers, and historical information about the trade is recorded for later 
reference. The transaction is a read/write transaction and is counted as the tpsE 
metric. 

Trade-Status (19%) 
The Trade-Status transaction is designed to emulate the process of providing an 
update on the status of a particular set of trades. It is representative of a customer 
reviewing a summary of the recent trading activity for one of their accounts. The 
transaction is a read-only transaction. 

Trade-Update (2%) 
The Trade-Update transaction is designed to emulate the process of making minor 
corrections or updates to a set of trades. This is analogous to a customer or broker 
reviewing a set of trades, and discovering that some minor editorial corrections are 
required. The various sets of trades are chosen such that the work is representative of 
reviewing: 

• General market trends 
• Trades for a period of time prior to the most recent account statement 
• Past performance of a particular security 

The transaction is a read/write transaction. This transaction generates a lot of disk I/O 
because it looks for older records that don’t tend to be in memory because they were 
not used recently. 

Data-Maintenance (Runs Once per Minute) 
The Data-Maintenance transaction is designed to emulate the periodic modifications 
to data that is mainly static and used for reference. This is analogous to updating a 
customer’s e-mail address or other data that seldom changes. The transaction is a 
read/write transaction. 

Trade-Cleanup (Runs Only One Time Before the Benchmark is Started) 
The Trade-Cleanup transaction is used to cancel any pending or submitted trades from 
the database. The transaction is a read/write transaction. 
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4   Transition to TPC-E  

4.1   Current Landscape 

The momentum for TPC-E is increasing. To date, 26 TPC-E results have been 
published from six hardware vendors on systems ranging from 1 to 16 processors. 
During the year 2008, 17 TPC-C results were published from 7 different hardware 
vendors compared to 14 TPC-E results from 6 vendors- fairly even.  So far in 2009, 
there are 4 TPC-C publishes from 2 vendors compared to 6 TPC-E publishes from 5 
vendors. And TPC-E so far only has publishes on Microsoft Windows and SQL 
Server. Once the other database vendors get up to speed with TPC-E, the publications 
should really take off. 

4.2   Next Steps 

As expected, TPC-C and TPC-E results are coexisting. With the clear benefits of 
TPC-E, especially the much lower cost of benchmarking in this economy, it has good 
traction and is expected to supplant TPC-C. However, before that can happen, some 
non-SQL Server TPC-E publications are needed. This will take time. Even with the 
TPC-supplied benchmarking code, it takes quite some time to develop and test a 
benchmark kit and then use it to tune the hardware and software to get a good result. 
But this is exactly why TPC-E was developed. The hardware and software vendors 
are using it to help optimize their products for uses that more closely mimic those of 
typical clients. It may be a while, but the results of this work will be seen. Once 
results are published using other database products, expect to see back and forth result 
leadership as the hardware and software become more tuned for the benchmark.  

In the meantime, it may be tempting to try to compare TPC-C and TPC-E results. 
However, TPC-C and TPC-E results are not directly comparable. They are different 
workloads, and they each scale slightly differently. For instance, with TPC-C, greater 
performance gains are realized when memory is doubled—not so with TPC-E. But 
TPC-E does realize greater performance gains from increasing processor frequency or 
adding processors than does TPC-C. There is no magic formula to translate a database 
server's TPC-E score to a TPC-C score or vice versa. 
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Abstract. The ability to automatically generate queries that are not known a-
priory is crucial for ad-hoc benchmarks. TPC-H solves this problem with a 
query generator, QGEN, which utilizes query templates to generate SQL 
queries. QGEN’s architecture makes it difficult to maintain, change or adapt to 
new types of query templates since every modification requires code changes. 
DSQGEN, a generic query generator, originally written for the TPC-DS 
benchmark, uses a query template language, which allows for easy modification 
and extension of existing query templates. In this paper we show how the 
current set of TPC-H query templates can be migrated to the template language 
of DSQGEN without any change to comparability of published TPC-H results. 
The resulting query template model provides opportunities for easier 
enhancement and extension of the TPC-H workload, which we demonstrate.  

Keywords: Benchmark Development, Databases, Performance Analysis. 

1   Introduction 

TPC-H [4][6]has been a very successful benchmark for the Transaction Processing 
Performance Council (TPC), with 147 results published as of June 2009.  It relies on a 
pair of executables for data and query generation (DBGEN and QGEN, respectively) 
that were originally developed for its predecessor, TPC-D [5], which was released in 
1994. QGEN is a command-line utility that uses pattern matching to expand the 22 
query templates defined in TPC-H into fully qualified Structured Query Language 
(SQL). While the substitutions defined in the TPC-H query set have proven adequate, 
they have not been updated since five new templates were added in 1999, when TPC-
D morphed into TPC-H. Further, the substitutions are hard-coded into the QGEN 
executable. As a result, any refinement or expansion of the query set requires 
additional software development. The required costs for code modifications and code 
testing have hindered further evolution of the benchmark. 

The underlying design of QGEN remains valid. Its template-based query model 
and common and well-understood business questions provide TPC-H with a high 
degree of comparability between benchmark executions. At the same time the precise 
values or targets of a given instance of a query are random, assuring appropriate 
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variability and limiting the amount of foreknowledge that a test sponsor can employ. 
The result is a query set that provides consistent and meaningful results, while 
mimicking ad-hoc queries. However, the TPC-H query model has two inherent 
problems: The query substitutions are hard coded into the query generator and cannot 
be modified without additional software development and the query templates 
themselves use a narrow range of syntax and substitution types, and no longer capture 
the breadth of common decision support systems. 

This paper details the migration of the QGEN query template model to the 
DSQGEN query template model without any changes to TPC-H’s current query 
template set. This preserves the investment that test sponsors have made in TPC-H, 
and, simultaneously provides the opportunity for an updated query set which employs 
a richer set of query operations and syntax. In addition, it leaves further enhancement 
in the hands of the benchmark designers, without requiring further software 
development. 

The remainder of this paper is organized as follows: Section 2 gives a brief 
overview of TPC-H focusing on how queries are currently generated with QGEN; 
section 3 introduces the essential syntax of DSQGEN, including both functions 
needed to write current TPC-H query templates in DSQGEN’s query template 
language and additional functionality that exceeds the current needs of TPC-H; 
section 4 demonstrates the changes required to migrate the current set of 22 TPC-H 
queries to DSQGEN’s query template language; section 5 shows how the TPC-H 
query set can be extended using DSQGEN. 

2   TPC-H 

Since its introduction in 1999 by the Transaction Performance Council, TPC-H has 
been the industry standard benchmark for data warehouse applications. This section 
briefly introduces those elements of TPC-H, which are necessary for the 
understanding the next sections. 

2.1   Background 

TPC-H models the activity of any industry, which manages, sells, and distributes 
products worldwide (e.g., car rental, food distribution, parts, suppliers, etc.). It uses a 
3rd normal form schema consisting of eight base tables. They are populated with 
synthetic data, scaled to an aggregate volume or scale factor (SF). For example, in a 
database with SF=100, the base tables hold 100 gigabytes of generated data. Fig. 1 
illustrates the entity relationship (ER) diagram of the TPC-H schema. The two largest 
tables, Lineitem and Orders contain about 83 percent of the data. Sizes of all tables, 
except for nation and region scale linearly with the scale factor.  

The TPC-H workload consists of database load, execution of 22 read-only queries 
in both single and multi-user mode and two refresh functions. The queries are 
intended to test the most common query capabilities of a typical decision support 
system. In order to facilitate the understanding of TPC-H queries and the mapping of 
the benchmark queries to real world situations, each query is described in terms of a 
business question. This business question is formulated in English explaining the 
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Fig. 1. TPC-H Entity Relationship Diagram (Source: TPC-H Version 2.8.0) 

result of the query in context of TPC-H’s business model. The business questions are 
translated into functional query definitions that define the queries using the SQL-92 
query language. TPC-H queries are chosen to perform operations that are relevant to 
common data warehouse applications. Accordingly, the demands a query places on 
the hardware (processor, IO-subsystem) and software (Operating System, Database 
Management System) of the tested system varies from query to query. To assure that 
the benchmark remains dynamic, each TPC-H query contains substitution parameters 
that are randomly chosen by the benchmark driver immediately before its execution, 
to mimic ad-hoc workloads. 

One TPC-H performance run consists of one execution of a Power Test (see Clause 
6.3.3 of [6]), followed by one execution of a Throughput Test described (see Clause 
6.3.4. of [6]). The Power Test measures single-user performance. Single-user 
performance measures a systems ability to parallelize queries across all available 
resources (memory, CPU, I/O) in order to deliver the result in the least amount of time. 
In TPC-H’s Power Test the single-user performance measurement is implemented as 
one stream of queries. This stream contains all 22 queries in a pre-defined order (see 
Appendix A in [6]): The Throughput Test measures multi-user performance. A multi-
user test measures a system’s ability to execute multiple concurrent queries, allocate 
resources efficiently across all users to maximize query throughput. In TPC-H’s 
throughput test multi-user measurement is implemented with n concurrent streams. 
Each stream contains all 22 queries ordered in a different permutation. 

2.2   TPC-H Data Generator QGEN 

QGEN produces the query streams required by TPC-H. The templates each contain 
between one and five substitution tokens, each with a static set of possible values. 
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Fig. 2. Sample QGEN Template Usage 

QGEN replaces the substitution token with a randomly selected value from  
the permissible domain to produce fully qualified SQL. Fig. 2 illustrates  
the transformation of the query template of query 2 to a valid entry in a query 
stream. 

Clearly, QGEN depends heavily on the underlying data set defined for TPC-H. A 
query generator can only exploit data relationships that exist in its target data 
population. In QGEN, these relationships are captured in the source code of the query 
generator itself. This means that the query set cannot be modified without modifying 
the query generator, and that the relationships and domains employed by the queries 
can only be discovered by referring to the benchmark specification or to the source 
code of the query generator. Similarly, the query template permutations that define 
the benchmark’s query streams are hard-coded into QGEN itself, and rely on a static, 
hand-cobbled query ordering which cannot be extended without source code changes 
to QGEN. 
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3   Query Generator DSQGEN 

DSQGEN (a.k.a. QGEN2 see [6]) was developed by the TPC for a proposed decision 
support benchmark. It is a command-line utility that translates an arbitrary set of 
query templates into streams of valid SQL statements. Query templates are defined in 
a template language, and parsed using an LALR(1) grammar. DSQGEN provides a 
rich set of query template translation semantics that go far beyond what is required to 
support the TPC-H query set. For example, if DSQGEN is used in combination with 
DSDGEN (a.k.a. MUDD see [1][3]), distribution-based predicate substitutions can be 
defined. The distribution-related substitutions allow a template to use arbitrary 
distributions, encoded as ASCII histograms. The result is a tight linkage between data 
generation and query generation without requiring the template designer to know the 
specifics of the data distributions. For a detailed description of DSQGEN’s 
functionality, including its sophisticated template language, refer to [2]. The 
following sections only address those parts of the template language that are relevant 
to this paper. 

3.1   Query Template Grammar 

A query template is divided into two parts: substitution definitions and SQL Text. The 
substitution definitions specify the substitution rules for a query as a list of 
substitution tags.  These tags control the translation of the SQL Text portion of the 
template into a valid SQL query. Once defined, a substitution tag can be used 
throughout the query template. Each occurrence of the substitution tag is replaced by 
values generated according to the tag’s definition. Multiple occurrences of the same 
tag are replaced with the same value. If a substitution tag is post-fixed with a number, 
then each unique tag/number combination receives a unique value. A simplified 
grammar for substitution tag, limited to the <random> and <text> substitution types 
used in Section 4, is outlined in Fig. 3.  

<tag>= <exp>| 
       string[30]| 
       <substitution type>| 
       list(<substitution type>,<exp>)| 
       ulist(<substitution type>,<exp>); 
<substitution type>=<random> | <text> 
<random> = (<min>,<max>,uniform) 
<exp> = <exp>-<exp>|<exp>+<exp>|<exp>/<exp>| 
        <exp>*<exp>|<exp>%<exp>|<number>|<const> 
<number>=<number>|0|1|2|3|4|5|6|7|8|9 
<const>=_SCALE|_SEED|_QUERY|_TEMPLATE|_STREAM|_LIMIT 

Fig. 3. Basic Substitution Declaration Grammar 

The Random substitution type allows defining tags to use randomly-generated 
integers in an inclusive range [min, max] using a uniform distribution. The specific 
grammar for a <random> substitution tag is: 
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<random> = random(<exp>,<exp>,uniform); 

Let’s call the first expression min and the second expression max. The likelihood Pi of 
each value to be picked by DSQGEN is identical: 

 (1) 

The location parameter min and the scale parameter max must be picked such that 
min<max. The designer of a query template must assure that the values picked for min 
and max fall within the range of the data distribution of the targeted column. The 
following examples show how the random substitution tag can be used: 

Example 1 order_quantity = random (1, 10, uniform); 
Example 2 price_int=random(1,1000,uniform; 

price_frac=random(1,100,uniform); 
Example 3 birthday=random(“1929-01-01” 

               ,“2009-05-31”,uniform); 

Example 1 defines a tag, which randomly chooses a value between 1 and 10. This can 
be used as a projection predicate on a quantity column. Example 2 defines two tags, 
one to generate the integer portion of a price (price_int) and a second (price_frac) to 
generate the fraction of a price. The price can then be combined in the SQL text as: 
[price_int]+1/[price_frac]. Example 3 selects a random date between 2009 and 2029, 
with appropriate allowances for leap years. 

The TEXT substitution, which uses the grammar shown in Fig. 4, replaces a 
particular tag with one of a weighted set of ASCII strings. This substitution type can 
be employed in many different ways. In its basic form, this can be employed in a 
projection predicate such as: column_name = “<string>”, providing a crude 
form of text searching. The elements of a TEXT substitution tag must be distinct. The 
empty string is permissible. 

<text> =({<subelem>, <weight>}<subelem_weight>); 
<subelem_weight>=,{<subelem>, <weight>}|NULL 
<subelem> = string[100]; 
<weight>  = integer; 

Fig. 4. TEXT Substitution Type 

The likelihood of a particular “subelem” to be picked as a substitution parameter 
depends on the ratio of its weight (<subelem_weight>) to the sum of all weights. The 
probability of Si for the following definition with n elements tag=TEXT({“S1”, 
W1},…,{“S1”, W1}) is defined as : 
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Table 1. DSQGEN Build-In Functions 

Keyword   Value 

_SCALE Scale factor in GB, as set with -scale command line option 

_SEED Current random-number-generator seed 

_QUERY Sequence number within a query set 

_TEMPLATE Template ID 

_STREAM Query stream ID 

_LIMITA,_LIMITB,_LIMITC Used for vendor specific syntax to limit the number of rows 

_LIMIT Maximum number of rows to be returned by the query 

 
Example 4 dog=TEXT({“German 

sheppard”,1},{“poodle”,1},{“pug”,1}); 
Example 5 dog_color=TEXT({“brown”,6},{“black”,3},{“gre

y”,1}); 

Example 4 defines the tag dog, which generates values German Sheppard, poodle and 
pug with the same likelihood. Example 5 defines dog colors to be brown, back or 
grey. However, in this example the color brown gets picked six out of ten times, while 
back gets picked three out of ten times and grey gets only picked one out of ten times. 

By default, substitution tags produce singleton values. When combined with the 
LIST or ULIST operators, each tag produces a list of <number> values that can be 
referred to by adding a  “.<n>”, suffix to the substitution tag. ULIST guarantees 
uniqueness within the list of values, while the LIST operator does not. There are some 
limitations to the ULIST operator. If the domain from which the ULIST operator 
picks its value set is smaller than or equal to the size of the requested list (i.e., 
<number>), the ULIST operator behaves like the LIST operator.  

DSQGEN recognizes some keywords and built-in functions as integer constants. 
Table 1 summarizes some commonly used keyword substitutions and their values. 
These constants are commonly used to instrument the query stream, provide unique 
names for temporary table or view definitions, or to access vendor-specific syntax to 
constrain the size of a result set. For instance, a vendor might need to define a 
temporary view if they didn’t support SQL’s common-sub-expression syntax. In order 
to distinguish the view name between streams, a unique identifier needs to be 
assigned to it. The _STREAM keyword fulfills this requirement, and can be used in 
the rewrite of Query 15 of TPC-H. Another example creates a predicate based on the 
scale factor, which is used in Query 11 of TPC-H. Example 6 prints the number of 
rows in the part table together with the scale factor. 

Example 6 SELECT ‘part count at scale factor 
[_SCALE]’|count(*) 
FROM PART; 

The built-in functions can also be used to access vendor-specific syntax to limit the 
number of rows returned by a query. Vendors have dialect-specific extensions to SQL 
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that control the number of rows returned by a query, and require those syntactic 
changes at different points in the query. DSQGEN defines three possible additions 
(_LIMITA, _LIMITB, and _LIMITC) that, in conjunction with a global limit to the 
number of rows to be returned (_LIMIT) and vendor specific definitions, allow a 
single query template to satisfy the requirements of all supported database dialects 
(currently, ANSI, Oracle, DB2, Netezza, SqlServer). Example 7 shows a sample 
usage of the LIMIT tags to return the 100 most frequent last names from a customer 
table. Vendor-specific substitutions (__LIMITA, __LIMITB and __LIMITC) are 
defined to limit the number of rows returned by a query (Example 7a). The query 
template (Example 7b) needs only define the desired number of rows (via _LIMIT) 
and include the potential syntax substitutions (_LIMITA, _LIMITB, _LIMITC). The 
result is a single query template that can produce appropriate SQL for all defined 
dialect, as illustrated for ANSI SQL (Example 7c). The call to generate the query is 
shown in Example 7d. 

Example 7 Implementation of the ANSI specific dialect 
to limit the number of rows returned by a 
query 

7a: ansi.tpl 

DEFINE __LIMITA = ""; 
DEFINE __LIMITB = "top %d"; 
DEFINE __LIMITC = ""; 

7b: query.tpl 

DEFINE LIMIT=100; 
[_LIMITA] 
SELECT [_LIMITB] last_name, count(*) as name_count 
FROM customer 
GROUP BY name_count, order by name_count 
[_LIMITC]; 

7c: query_0.sql 

SELECT top 100 last_name, count(*) as name_count 
FROM customer 
GROUP BY name_count, order by name_count; 

7d: Command line call to DSQEN for generating vendor specific syntax 

DSQGEN –scale 1 –template query.tpl –dialect ansi.tpl 

3.2   Generating Query Workloads 

DSQGEN is capable of generating three different kinds of workload: Single-
Template, Single-Stream, and Multi-Stream. Each type of workload requires a set of 
query templates to be defined. Each template must be stored in a separate file (e.g. 
T1.tpl, T2.tpl,…,Tn.tpl). While a template can contain more than one SQL statement, 
there can only be one set of substitution tag declarations for all queries included in a 
given template, and they must occur before the first SQL statement. Having multiple 
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SQL queries in one template allows for the implementation of business questions that 
usually occur in the same sequence, such as drill down queries. 

The Single-Template Workload generates one or multiple versions of the same 
query. It can be used to stress test the execution of a single query with multiple 
substitution parameters. This is especially useful to test the query optimizer’s ability 
to generate the most optimal execution plan for every query that can be generated 
from one template. The syntax to generate 500 queries for scale factor 100 using 
query template T1 in the ANSI SQL syntax is: 

DSQGEN –scale 100 -template T1.tpl  
       –count 500 -dialect ansi.tpl 

For the Single-Stream Workload, fully qualified paths to a set of template files are 
listed in an ASCII meta-file (e.g. MF.txt). This workload generates one query for 
every template included in the meta-file. The Single-Stream query workload is 
identical to the workload used in TPC-H’s Power-Test. 

The Multi-Stream Workload simulates n users, each running  a unique permutation 
of the query templates defined in a meta-file. The following command line generates 
n files, query_0.sql through query_<n-1>.sql, each containing a different permutation 
of the queries defined in M.tpl according to the vendor-specific dialect defined in 
dialect.tpl:  

DSQGEN –input M.tpl –stream <n> -dialect <dialect.tpl> 

4   Modeling Existing TPC-H Queries with DSQGEN 

4.1   Substitution Analysis 

The 22 TPC-H queries use the substitution parameters listed in Table 2. After 
eliminating duplicates, we are able to classify all substitutions into the 10 types as 
listed in the third column.  

The Type 1 substitution type randomly selects one or more numbers from a dense 
interval. Most queries use substitutions of integer numbers, a straightforward use of 
the RANDOM function. Query 16 concatenates two independently selected values in 
[1..5] to identify a value for  P_BRAND (Type 1a). Query 6 requires random floating 
value between 0.02 and 0.09 to build a selectivity predicate on L_DISCOUNT (Type 
1b). Another variant of Type 1 is used in Query 16, which applies an in-list predicate 
on P_SIZE.  

The Type 2 substitution type randomly selects one or more strings from a list of 
possible items.  

The Type 3 substitution type randomly selects a date. The desired value may be a 
random day in a static month and year (Type 3a), a static day of a random month and 
year (Type 3b), a static day of a random month between the January of a static year 
and October of a static year (Type 3c), or the first of January of a random year (Type 
3d).  

The Type 4 substitution type selects the scale factor of the database being queried.  
The Type 5 substitution type selects the number of rows to be returned by the top 

most SQL statement. 
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Table 2. TPC-H parameter substitutions and their characterization into types 

Table Column Substitution Domain Type Query 
P_BRAND 'Brand#MN' where MN is a two character string representing two 

numbers randomly and independently selected within [1...5] 
1a 16 

N/A Randomly selected within [60 ... 120] 1a 16 
C_PHONE Randomly selected within [11 … 35] 1a 16 
L_QUANTITY Randomly selected within [312 … 315] 1a 16 
L_DISCOUNT Randomly selected within [0.02 ... 0.09] 1b 6 
P_SIZE Randomly selected within [1 … 50] 1a 16 
P_SIZE 8 numbers randomly selected within [1 … 50] (no duplicates) 1c 16 
P_NAME Randomly selected from the list of P_NAMEs  2 16 
P_CONTAINER Randomly selected from the list defined for P_CONTAINER 2 16 
N_NAME Randomly selected within the list of N_NAME 2 16 
R_NAME Randomly selected within the list of R_NAME 2 16 
C_MKT_ 
SEGMENT 

Randomly selected within the list of Segments 2 16,3 

L_SHIPMODE Randomly selected within the list of values defined for Modes 2 16 
P_TYPE Made of the first 2 syllables of a string randomly selected within 

the list of 3-syllable strings defined for Types 
2 16 

P_TYPE Randomly selected within the list Syllable 3 defined for Types 2 16 
O_COMMENT Randomly selected of ìspecial ”, “pending”, “unusual”, “express” 2 16 
DATE Randomly selected day [1995-03-01 ... 1995-03-31]. 3a 3 
DATE The first day of a random month of years [1993 ... 1997]. 3b  
DATE The first day of a random month between the first month of 1993 

and the 10th month of 1997. 
3c 4 

DATE The first of January of a random year within [1993 ... 1997]. 3d 6 
N/A Chosen as 0.0001 / SF. 4 11 
N/A Limit the number of rows to <n> 5 3  
 
In the following sections, we will use these query substitution types to translate 

representative TPC-H query templates into the DSQGEN syntax. The accompanying 
figures outline the QGEN syntax for a given query include the substitution definitions 
used for that query, but it is worth noting that the substitution definition is not 
included in the template in the actual QGEN template. The substitution definitions 
would only be clear to a user who was able to access and understand the source code 
of QGEN itself. While this paper does not illustrate the translation of the entire TPC-
H query set, the process outlined here can be applied to all queries defined for TPC-H. 

4.2   Query 16 

Query 16 finds out how many suppliers can supply parts with given attributes. It 
might be used, for example, to determine whether there are a sufficient number of 
suppliers for heavily ordered parts. Query 16 is an example that uses the substitution 
types: 1, 1c and 2 (see Table 2). 

SELECT p_brand ,p_type ,p_size 
      ,count(distinct ps_suppkey) as supplier_cnt 
FROM partsupp, part 
WHERE p_partkey = ps_partkey 
  AND p_brand <> ':1' 
  AND p_type not like ':2%' 
  AND p_size in (:3, :4, :5, :6, :7, :8, :9, :10) 
 

Fig. 5. Query 16 of TPC-H in QGEN Syntax 
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  AND ps_suppkey not in (SELECT s_suppkey 
                         FROM supplier 
                         WHERE s_comment like 
                               '%Customer%Complaints%’) 
GROUP BY p_brand ,p_type, p_size 
ORDER BY supplier_cnt desc, p_brand, p_type, p_size; 

Fig. 5. (continued) 

:1 (p_brand) is substituted as Brand#MN, where M and N are two single character 
strings representing two numbers randomly and independently selected within [1 .. 5]; 

:2 (p_type) is made of the first 2 syllables of a string randomly selected within the 
list of 3-syllable strings “STANDARD", "ANODIZED", "TIN", "SMALL", 
"BURNISHED", "NICKEL", "MEDIUM", "PLATED", "BRASS", "LARGE", 
"POLISHED", "STEEL", "ECONOMY", "BRUSHED", "COPPER", "PROMO” 

:3 to :10 (p_size) are eight randomly selected as a set of different values of 
[1...50]; 

Query 16 can be rewritten in DSQGEN syntax by utilizing the RANDOM and 
TEXT substitution types and the ULIST operator as follows. 

DEFINE PBRAND_A = RANDOM(1,5,uniform); 
DEFINE PBRAND_B = RANDOM(1,5,uniform); 
DEFINE PTYPE = LIST(TEXT({"STANDARD",1},{"ANODIZED",1} 
                        ,{"TIN",1},{"SMALL",1} 
                        ,{"BURNISHED",1},{"NICKEL",1} 
                        ,{"MEDIUM",1},{"PLATED",1} 
                        ,{"BRASS",1},{"LARGE",1} 
                        ,{"POLISHED",1},{"STEEL",1} 
                        ,{"ECONOMY",1},{"BRUSHED",1} 
                        {"COPPER",1},{"PROMO”,1}),8); 
DEFINE SIZE = ULIST(RANDOM(1,50,uniform),8); 

SELECT p_brand ,p_type ,p_size 
      ,count(distinct ps_suppkey) as supplier_cnt 
FROM partsupp ,part 
WHERE p_partkey = ps_partkey 
  AND p_brand <> '[PBRAND_A][PBRAND_B]' 
  AND p_type not like '[PTYPE]%' 
  AND p_size in ([SIZE.1],[SIZE.2],[SIZE.3],[SIZE.4] 
                ,[SIZE.5],[SIZE.6],[SIZE.7],[SIZE.8]) 
  AND ps_suppkey not in (SELECT s_suppkey 
                         FROM supplier 
                         WHERE s_comment like 
                               '%Customer%Complaints%’) 
GROUP BY p_brand ,p_type ,p_size 
ORDER BY supplier_cnt desc ,p_brand ,p_type, p_size; 

Fig. 6. Query 16 of TPC-H in DSQGEN Syntax 
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The substitution parameter for P_BRAND is essentially a two-digit number, each 
digit from the domain of [1,5]. It can be constructed from the two independent 
substitution tags PBRAND_A and PBRAND_B, each defined with the RANDOM 
substitution type as an integer between 1 and 5. The substitution parameter for 
P_TYPE is a random string from a list of 16 elements (see above). It can be 
implemented as a TEXT substitution of 16 elements, each with the same weight. 
P_SIZE requires 8 substitution parameters, each from the domain of [1,50]. 
Additionally the set of 8 parameters has to be unique. Hence, we implement the 
substitution parameter using a combination of the RANDOM substitution and the 
ULIST operator. 

4.3   Query 6 

Query 6 quantifies the amount of revenue increase for a given year that would have 
resulted from eliminating discounts.  Query 6 is an example that uses the substitution 
types: 1b and 3d (see Table 2). 

SELECT sum(l_extendedprice * l_discount) as revenue 
FROM   lineitem 
WHERE l_shipdate>= date ':1' 
  AND l_shipdate<add_months(date':1'+ interval '1' year 
  AND l_discount between :2 - 0.01 and :2 + 0.01 
  AND l_quantity < :3; 

Fig. 7. Query 6 of TPC-H with QGEN Syntax 

:1 DATE is the first of January of a randomly selected year within [1993 .. 1997];  
:2 DISCOUNT is randomly selected within [0.02 .. 0.09];  
:3 QUANTITY is randomly selected within [24 .. 25].  

Query 6 can be implemented solely with the RANDOM substitution type. The 
substitution tag on L_SHIPDATE, S_YEAR is implemented as a random number 
between 1993 and 1997. The month and day portion of the date are statically set to 
01. The substitution tag for L_DISCOUNT requires a fraction [0.02,0.09]. Since the 
RANDOM substitution type only allows for integer values, we use a random number 
tag between 2 and 9 and build the fraction by prefixing the number with “0.0”.  The 
substitution tag for L_QUANTITY is a simple random substitution of [24,25]. 

DEFINE SYEAR     = random(1993,1997,normal); 
DEFINE DF        = random(2,9,normal); 
DEFINE LQUANTITY = random(24,25,normal); 
SELECT sum(l_extendedprice * l_discount) as revenue 
FROM  lineitem 
WHERE l_shipdate>= date'[SYEAR]-01-01' 
  AND l_shipdate< date'[SYEAR]-01-01'+interval '1' year 
  AND l_discount between 0.0[DF]-0.01 and 0.0[DF]+0.01 
  AND l_quantity < [LQUANTITY]; 

Fig. 8. Query 6 of TPC-H with QGEN Syntax 
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4.4   Query 3 

Query 3 retrieves the ten unshipped orders with the highest value. It is an example 
that uses the substitution types: 2, 3a and 5 (see Table 2). 

SELECT l_orderkey 
      ,sum(l_extendedprice*(1-l_discount)) as revenue 
      ,o_orderdate ,o_shippriority 
FROM customer ,orders, lineitem 
WHERE c_mktsegment = ':1' 
  AND c_custkey = o_custkey 
  AND l_orderkey = o_orderkey 
  AND o_orderdate < date ':2' 
  AND l_shipdate > date ':2' 
GROUP BY l_orderkey, o_orderdate, o_shippriority 
ORDER BY revenue desc, o_orderdate; 
:n  

Fig. 9. Query 3 in TPC-H qgen sytax 

:1 is randomly selected within the list of values defined for Segments  
:2 is a randomly selected day within [1995-03-01 .. 1995-03-31].  
:n defines the maximum number of rows returned by the query (top) 

Query 3 uses the TEXT substitution type, the RANDOM substitution type and the 
build-in functions to limit the number of rows returned by the query. As in the 
P_TYPE substitution of Query 16, this query implements the substitution parameter 
for C_MKTSEGMENT using the TEXT substitution type with a four item list, each 
with the same likelihood. The substitution parameters O_ORDERDATE and 
L_SHIPDATE are implemented with the RANDOM substitution. Since both 
 

DEFINE SEGMENT=text({“AUTOMOBILE”,1},{“BUILDING”,1} 
                   ,{“FURNITURE”,1},{“MACHINERY”,1} 
                   ,{“HOUSEHOLD”}); 
DEFINE SHIPDAY = random(1,31,uniform); 
DEFINE _LIMIT=10; 
[_LIMITA] select [_LIMITB] l_orderkey 
      ,sum(l_extendedprice*(1-l_discount)) as revenue 
      ,o_orderdate, o_shippriority 
FROM customer, orders, lineitem 
WHERE c_mktsegment = '[SEGMENT]' 
  AND c_custkey = o_custkey 
  AND l_orderkey = o_orderkey 
  AND o_orderdate < date '1995-03-[SHIPDAY]' 
  AND l_shipdate > date '1995-03-[SHIPDAY]' 
GROUP BY l_orderkey, o_orderdate, o_shippriority 
ORDER BY revenue desc, o_orderdate 
[_LIMITC];  

Fig. 10. Query 3 in TPC-H DSQGEN syntax 
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substitution parameters are the same they can be implemented with the same 
substitution tag, SHIPDAY, which picks a day between 1 and 31 prefixed with the 
static string “'1995-03-“. This query also needs to limit the number of rows to be 
returned to ten. This is done with three substitution tags, _LIMITA, _LIMITB and 
_LIMITC. _LIMITA, _LIMITB and _LIMITC are defined in the vendor specific 
template _LIMIT is defined as 10. 

4.5   Query 4 

Query 4 determines how well the order priority system is working and gives an 
assessment of customer satisfaction. It is an example using the substitution type 3c. 

SELECT o_orderpriority, count(*) as order_count 
FROM orders 
WHERE o_orderdate >= date ':1' 
  AND o_orderdate < date ':1' + interval '3' month 
  AND exists (SELECT * FROM lineitem 
              WHERE l_orderkey = o_orderkey 
                AND l_commitdate < l_receiptdate) 
GROUP BY o_orderpriority ORDER BY o_orderpriority; 

Fig. 11. Query 4 in TPC-H QGEN syntax 

:1  is the first day of a randomly selected month between the first month of 1993 and 
the 10th month of 1997.  

Query 4 uses the RANDOM substitution type in combination with the build-in 
arithmetic capability of DSQGEN. There are 58 months between January 1993 and 
October 1997. In order to choose a random month between those dates, we first 
generate a random number between 0 and 58 (SEQMO). Then we divide that number 
by 12 to generate the year (YR). Please note that the result of the division is an 
integer. In order to generate the months, we take that number modulo 12 (MO). In the 
query we build the date by concatenating these numbers into: [YR]-[MO]-01 

DEFINE SEQMO = random(0,57,uniform); 
DEFINE YR    = ([SEQMO] / 12) + 1; 
DEFINE MO    = ([SEQMO] % 12) + 1; 
SELECT o_orderpriority, 
       count(*) as order_count 
FROM orders 
WHERE o_orderdate>=date'[YR]-[MO]-01' 
  AND o_orderdate<date'[YR]-[MO]-01'+interval '3' month 
  AND exists (SELECT * 
              FROM lineitem 
              WHERE l_orderkey = o_orderkey 
                AND l_commitdate < l_receiptdate) 
GROUP BY o_orderpriority 
ORDER BY o_orderpriority; 

Fig. 12. Query 4 in TPC-H DSQGEN syntax 
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5   Scope of Possible Expansions to the TPC-H Query Set 

Section 4, identified the substitution types that are found in the TPC-H query set. We 
have also shown that DSQGEN’s current functionality is sufficient to generate queries 
for all 22 TPC-H query templates. It is also possible to extend the TPC-H query set 
very elegantly using DSQGEN, well beyond the identified substitution types. Since 
DSQGEN uses textual substitutions, we are able to introduce aggregation 
substitutions, column substitutions and full date substitutions. In the following 
sections we will illustrate how new queries can be introduced into TPC-H, creating a 
new query using the existing substitution types, followed by examples using new 
substitution types: aggregation substitution,  and column substitution. Please note, we 
are not proposing new queries to TPC-H, but merely illustrating how new queries 
could be added to TPC-H’s query set without any modifications to the query 
generator. 

5.1   Query Using Existing Substitution Types 

The following query retrieves unshipped orders with the highest value for customers 
with specific account balances and located in specific nations. This query uses the 
SQL ROLLUP operator, grouping by any combination of customer name, customer 
nation, order date and ship priority. The query uses three substitutions. The ABAL 
substitution tag, used in a between predicate, is defined using the RANDOM 
 

DEFINE ABAL=random(0,9000,uniform); 
DEFINE NT=text({“ALGERIA”,1),{“ARGENTINA”,1},{“IRAQ”,1} 
              ,{“BRAZIL”,1},{“CANADA”,1},{“RUSSIA”,1} 
              ,{“ETHIOPIA”,1},{“FRANCE”,1},{“INDIA”,1} 
              ,{“GERMANY”,1},{“JORDAN”,1},{“KENYA”,1} 
              ,{“INDONESIA”,1},{“IRAN”,1},{“EGYPT”,1} 
              ,{“JAPAN”,1},{“MOROCCO”,1},{“ROMANIA”,1} 
              ,{“MOZAMBIQUE”,1},{“PERU”,1},{“CHINA”,1} 
              ,{“ROMANIA”,1},{“SAUDI ARABIA”,1} 
              ,{“VIETNAM”,1},{“UNITED KINGDOM”,1}); 
DEFINE _LIMIT=10; 
[_LIMITA] select [_LIMITB] c_name, c_nation 
      ,sum(l_extendedprice*(1-l_discount)) as revenue 
      ,o_orderdate, o_shippriority 
FROM customer, orders, lineitem, nation 
WHERE c_acctbal between [ABAL]-999.99 and [ABAL] 
  AND c_nationkey = n_nationkey 
  AND c_custkey = o_custkey 
  AND n_name = ‘[NT]’ 
  AND l_orderkey = o_orderkey 
GROUP BY ROLLUP (c_name, c_nation 
                ,o_orderdate, o_shippriority) 
ORDER BY revenue desc, o_orderdate, c_name, c_nation 
[_LIMITC];  

Fig. 13. Query Using Existing Substitution Types 
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substitution type. It chooses the upper boundary of the account balance from the interval 
[0..9000]. The lower boundary of the between predicate is computed by subtracting 
999.99 from ABAL. The second tag (NT) is used to choose a nation from a text list rather 
than the nation key. The last tag, _LIMIT, caps the number of rows returned to 10. 

5.2   Query Using Aggregate Substitutions 

The following query is based on Query 11 of TPC-H. It lists the most important 
subset of suppliers' stock in a given nation. In this context “importance” is based on 
the total, largest or smallest stocking cost. It uses the random substitution type for the 
NK substitution tag to implement a predicate on nation key. It uses the text 
substitution type to implement the AGG substitution tag, which chooses between the 
aggregation functions sum, min and max for calculating a supplier’s stock.  

DEFINE NK = random (0,31, uniform); 
DEFINE AGG= text({“sum”,1},{“min”,1},{“max”,1}); 
 
SELECT ps_partkey 
      ,[AGG](ps_supplycost * ps_availqty) as value 
FROM partsupp,supplier 
WHERE ps_suppkey = s_suppkey  
  AND s_nationkey = [NK] 
GROUP BY ps_partkey;  

Fig. 14. Query using aggregate substitution 

5.3   Query Column Substitutions and Full Date Substitution 

The final example query is based on Query 3 from TPC-H. It employs column 
substitution to randomly select the target of an aggregation from a set of statistically 
equivalent columns. The resulting queries generated by DSQGEN would exercise 
similar selectivity and computational load, but would increase the cost and 
complexity of maintaining summary tables or other auxiliary data structure, by 
increasing the randomness of the eventual SQL. 

DEFINE SHIPDATE = random(1,31,uniform); 
DEFINE LIMIT=10; 
DEFINE COL=text({“l_quantity”,1},{“l_discount”,1} 
                ,{“l_extendedprice”,1},{“l_tax”,1}); 
 
[_LIMITA] select [_LIMITB] l_orderkey 
      ,sum([COL]), o_orderdate, o_shippriority 
FROM customer, orders, lineitem 
WHERE c_custkey = o_custkey 
  AND l_orderkey = o_orderkey 
  AND o_orderdate < date '1995-03-[SHIPDAY]' 
  AND l_shipdate > date '1995-03-[SHIPDAY]' 
GROUP BY l_orderkey, o_orderdate, o_shippriority 
ORDER BY [COL] desc, o_orderdate 
[_LIMITC]; 

Fig. 15. Query using Column Substitutions 
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6   Conclusion 

This paper has demonstrated how the enhanced syntax available with the query 
generator developed for the proposed TPCDS benchmark, DSQGEN, can be used to 
express the queries defined for TPC-H, which currently uses the older, simpler query 
generator, QGEN. The migration from one query dialect to the other has no impact on 
the syntactic formulation of the queries, the selectivity of their predicates, the work 
they present to the system under test or the answer sets that will be returned. As such, 
the migration from the old query dialect to the new dialect can be accomplished 
without any impact on the viability or comparability of existing TPC-H results. 

At the same time, moving the TPC-H query set from the existing syntax to that 
provided by DSQGEN presents the TPC with a two-fold opportunity that could enrich 
the existing benchmark and extend its useful life. The rephrased queries would reduce 
the support burden borne by the TPC, since the query templates could be revised or 
corrected without the need to fund additional software development. The migration 
would also provide the TPC with the opportunity to explore, and potentially adopt, 
additional queries that broaden the scope of the functions tested by the TPC’s only 
decision support benchmark, expand the relevance of the workload to modern 
decision support customers, and increase the relevance of TPC-H results to customers 
faced with the complex and costly process of selecting a decision support solution, 
whether in hardware or software. 
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Abstract. A large body of research concerns the adaptability of data-

base systems. Many commercial systems already contain autonomic pro-

cesses that adapt configurations as well as data structures and data

organization. Yet there is virtually no possibility for a just measurement

of the quality of such optimizations. While standard benchmarks have

been developed that simulate real-world database applications very pre-

cisely, none of them considers variations in workloads produced by human

factors. Today’s benchmarks test the performance of database systems

by measuring peak performance on homogeneous request streams. Nev-

ertheless, in systems with user interaction access patterns are constantly

shifting. We present a benchmark that simulates a web information sys-

tem with interaction of large user groups. It is based on the analysis of a

real online eLearning management system with 15,000 users. The bench-

mark considers the temporal dependency of user interaction. Main focus

is to measure the adaptability of a database management system accord-

ing to shifting workloads. We will give details on our design approach

that uses sophisticated pattern analysis and data mining techniques.

Keywords: Benchmarking, Adaptability, Polynomial Approximation,

Time Series Generation.

1 Introduction

More and more database systems feature autonomic processes for optimization
and adaptation. Nearly all major database vendors offer offline database de-
sign advisors [1,2,3] and recent research considers the online tuning of database
systems [4,5]. Certainly the query workload is the most important variable for
physical tuning during runtime. New developments in database benchmarks start
to face this trend. For example, TPC-DS [6] features a new query generator that
allows to generate a large set of queries which are syntactically different but se-
mantically similar [7]. Still synthetic query streams are usually homogeneous in
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Fig. 1. Most accessed web sites in June 2008 per 6 hours

the frequency of queries and the ratio between different query types, while real
database workloads tend to be bursty [8]. Traditionally the workload is seen as a
set of SQL query classes and the physical design is tuned accordingly. However,
new approaches define it as a sequence [9] or chain [10] of statements. This offers
new opportunities to adapt the database system. Nevertheless, there is only lit-
tle research on how to analyze the efficiency of such systems. To the best of our
knowledge there is only one publication that introduces a benchmark for auto-
nomic database tuning [11], yet this benchmark also only features homogeneous
workloads.

Even though database access in most cases is triggered by human interaction,
programs generate the actual SQL code. Therefore most queries are very similar
and can be divided in relatively few distinct classes. Within these classes usually
only simple parameters, like predicates change. Due to user interaction the oc-
currence of the classes depends on timetables. The most important examples are
the day and night rhythm and the week cycle. In figure 1 this can be seen clearly
for the accesses of an online eLearning portal (see section 2 for more details).
It is easy to see that there is a daily and a weekly period. Each of the website
accesses displayed will generate at least one and in most cases a sequence of SQL
queries. For one website the queries will only differ in form of variables. Apart
from the workload difference between day and night and workday and weekend,
shifts in the workload between the single classes can also be seen. In figure 2 an
average of the days in the data above is pictured. Not all websites are accessed
in the same pattern. Thus, depending on the time of day the database will have
different access rates and different access patterns.

Similar access patterns can be seen for any user accessed information system,
see for example the access rates at the Wikimedia clusters1 in figure 3. This
periodic behavior gives chances for optimizations. On the one hand peak loads

1 The Wikimedia foundation is a non-profit organization that hosts various websites,

most notably the online encyclopedia Wikipedia.
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Fig. 3. Requests per second at the Wikimedia clusters in April 2009 in Eu-

rope (green) and the USA (blue) (image source: http://en.wikipedia.org/wiki/

Most_viewed_article)

get more predictable and in times of low access the database can be prepared for
the higher load. Such preparations could be index tuning or data restructuring.
On the other hand clusters can be scaled according the access rates, in order to
save energy or use the free capacity for other time-independent tasks.

In this paper we introduce a benchmark that is based on a real online in-
formation system. We designed it to test our dynamic allocation algorithms for
cluster databases [12]. The main design focus was to build a realistic workload
model that reflects user dependent workload patterns. The implemented query
generator is able to simulate realistic workloads that shift in quantity and ratio of
the statements. Another focus lay on the data generation. To generate datasets
in arbitrary sizes, we analyzed the value and reference distributions in the

http://en.wikipedia.org/wiki/Most_viewed_article
http://en.wikipedia.org/wiki/Most_viewed_article
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original database and built an data generator that supports different probability
distributions.

The rest of the paper is organized as follows, in section 2 we will give details
about the eLearning information system which is the basis of our benchmark
model. After that we will describe the benchmark database layout, query set and
workload definition. In section 4, we will show possible benchmarking objectives,
like measuring the adaptability of a database system, before concluding with
future work in section 5.

2 Application Domain

As the focus of the benchmark lies on changing workloads, online information
systems are a promising application domain. Usually it is very hard to get any
detailed information about the structure and especially the workload of such
systems, since they are treated as industrial secrets. We are in the fortunate
position to have access to a sufficiently large online eLearning platform that is
used at the University of Passau, which is therefore the basis of our benchmark.

Stud.IP2 is a popular eLearning management system. It started as a simple
forum and evolved into a full-featured Course and Campus Management System
over the years. The system supports the complete course life cycle, beginning
with creating the course, filling it with data, assigning times and rooms, specify-
ing application procedures and exporting the data into PDF or HTML. Online
communication and cooperation are encouraged by providing a forum for each
course, wiki, messaging system, chat and online material. Today, 38 universities
and 16 other institutes, are using Stud.IP3, one of them is the University of
Passau.

Stud.IP is written in PHP and uses a MySQL database. New functions can
easily be added by using the provided plug-in interface. The database schema
consists of 198 tables.

On a normal day during the semester, between 50 and 100 parallel users are
online at any given time. At the beginning of a new semester, this number is
drastically higher, normally there are about 200-300 users online at the same
time. The normal MySQL load is at about 1,200 database requests per second
as each PHP page generates several database requests.

In the spring semester of 2009, there are 1,734 courses with a total of 15,047
registered users of which 1,374 have a teacher role. Among those users, 672 teach-
ers and 7,072 users in student role logged in at least once during the semester.
6,921 of those student role users are registered in courses with a total of 63,895
course registrations.

Since the launch of Stud.IP in fall 2006, 8,907 courses were entered, 222,349
course registrations processed, 52,017 documents uploaded and 178,070 internal
messages sent. The database has 7,688,642 entries and is 1.3 GB in size.

2 Stud.IP - http://www.studip.de
3 http://www.studip.de/nbu.php?page_id=9cd4b3aac2bfe40abc26fcc0ba6254ce

http://www.studip.de
http://www.studip.de/nbu.php?page_id=9cd4b3aac2bfe40abc26fcc0ba6254ce
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3 Benchmark

The basic benchmark design is generic, so that a variety of database systems
could be modeled. The current implementation is based on the Stud.IP eLearning
platform. The database schema is a reduction of the original schema to the
core functionality. The data generation is hard coded to this database layout,
but it supports various database sizes. To generate realistic data the attribute
value and reference distributions were analyzed and modeled with probability
distributions.

The main contribution of the benchmark is the query generation. Since the
goal of the benchmark is to represent temporal dependencies in the database
access, attention was especially paid to modeling query streams. The benchmark
emulates the access behavior of students on Stud.IP based on web server logs
from the University of Passau. In the following we will detail on the analysis of
the original system and the according realization in the benchmark.

3.1 Database Design

The database schema is only a fraction of the Stud.IP schema as it is used
at the University of Passau. For simplicity reasons it is reduced to the core
functionality, thus it only consists of 25 tables compared to the nearly 200 tables
in the production system. The schema can be seen in figure 4. In the following,
we will give a brief explanation of the main tables and the relationship between
them.

The tables users and user info store all information about the users, which
may be students, teaching staff or employees. seminar contains information
about seminars, which may be lectures, tutorials or seminars. Which user is
registered in which seminars is stored in seminar user.

Each seminar has one or more courses, which are stored in courses. Each
course has one or more lecturers which are stored in course lecturer. In a
course students can work in teams, for example for assignments. Each team is
stored in teams. The relation courses user stores in which course and team a
student is.

The tables dokumente and folder represent all existing documents. These
documents and folders are linked to each other via eigeneDateien links. This
relation links seminars to their root folder, folders to subfolders and folders
to documents. The table permissions manages and stores user permissions to
documents and folders.

Each user has an inbox and an outbox which stores references to all mes-
sages he has received or sent. The messages themselves are stored in the table
messages.

All objects a user can visit, i.e. a document, a course, etc., are modeled in the
table objects. The last visits for each user are stored in object user visits.

The table user studiengang references the users to the table studiengaenge
in which all degree programs are stored. Therefore, it describes which user is
enrolled in which degree program.
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Fig. 4. The database schema of the benchmark

institute stores all institutions of the university. Each seminar belongs to
an institute and this association is stored in seminar institute.

A seminar can be credited for different degree programs, each of which can
have different versions of examination rules. These connections are stored in
the sem hierarchy table. The seminars are linked to this table via seminar-
sem hierarchy in order to define which seminar can be credited for which degree
program and which examination rule.

Additionally, there is a table which stores all information about Stud.IP plug-
ins called plugins. It contains the path of each plug-in, the name, if it is enabled
and an unique id.



122 T. Rabl et al.

3.2 Data Generation

To populate the schema above a generator for arbitrary sized data was im-
plemented. Different scaling factors can be specified for each table, to enable
non-linear scaling. The generated data has similar distribution properties to the
original data. To achieve this, we have analyzed the value and reference distribu-
tions between the tables. For the table seminar users a reference distribution
can be seen in figure 5. As described above this table stores the relationship be-
tween users and seminars. We use maximum likelihood estimation to fit standard
probability distributions to the data. For now our data generator only supports
normal and log-normal distributions, since they model most distributions suffi-
ciently (for a discussion about log-normal distribution see [13]). Figure 6 shows
that the distribution of the number of seminars a user is registered for can be
modeled by a log-normal distribution, even though a gamma distribution would
produce a better fit. The distribution of the number of users per seminar does
not match the log-normal distribution very good, but still sufficiently. This can
be seen in figure 7. Similar observations about reference distributions were made
by Hsu et al. in [8]. They used the Hill equation to model the references, which
is related to the log-logistic distribution.

Our data generation differentiates between entity and relationship tables ac-
cording to the entity-relationship modeling [14]. Entity tables can be generated
directly by the given distributions, while relationship tables are generated with
knowledge of the according entity tables. The basic entity data generation works
similar to dbgen or MUDD [15]. For each attribute we specify a domain and a
distribution. Whenever possible we use real data from the Stud.IP database or
other sources. Table user is for example defined as follows.

Each user gets a unique, consecutively numbered id first. The name of a user is
generated by selecting a first name and a last name randomly. These names can
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be listed in a separate configuration file. Additionally, each user gets a unique
username, which consists of his last name and a serial number. For his email
address, a domain is added to the username. A password is also generated for
every user by calculating the MD5 hash of the unique username. For a seminar,
the process is similar.

Relationship tables are generated based on the entity tables. Thus for each
referenced entity table the references are copied according to the modeled distri-
bution. Additional attributes are generated in the same way as for entity tables.
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3.3 Query Set

We extracted a set of 30 common queries from the original system. The queries
are different in their characteristics and workload. Yet all queries must be pro-
cessed within seconds. We changed the query syntax to comply with the SQL 92
standard. In the following we will give some examples of possible queries. The
first example selects information about a user. This is usually done at the login
for the users start page or if a user homepage is visited:

SELECT s . name , u . vorname , u . nachname , u i . address , u i . phone ,

u . emai l

FROM use r s u , u s e r i n f o ui , u se r s tud iengang us ,

stud iengaenge s

WHERE u . u s e r i d = ui . u s e r i d

AND us . u s e r i d = u . u s e r i d

AND us . s tud iengang id = s . s tud iengang id

AND u . u s e r i d = $u s e r i d ;

The next query is executed, if a user browses the seminars he is registered for.
This is one of the most common actions in Stud.IP. The query is rather expensive.

SELECT seminar . name , cour se s . weekday , cour se s . s ta r t t ime ,

cour se . endtime , user . vorname , user . nachname

FROM seminar user , seminare , o b j e c t u s e r v i s t s ,

s eminar sem tree

WHERE s eminar u se r . s eminar id = seminare . s eminar id

AND o b j e c t u s e r v i s t s . o b j e c t i d = seminar u se r . s eminar id

AND o b j e c t u s e r v i s t s . u s e r i d = serminar u se r . u s e r i d

AND s eminar sem tree . s eminar id = seminar u se r . s eminar id

AND s eminar u se r . u s e r i d = $u s e r i d

UNION
SELECT seminar . name , cour se s . weekday , cour se s . s ta r t t ime ,

cour se . endtime , user . vorname , user . nachname

FROM c ou r s e l e c t u r e r , courses , seminare , o b j e c t u s e r v i s t s ,

s eminar sem tree

WHERE c ou r s e l e c t u r e r . c ou r s e i d = cour se s . c ou r s e i d

AND seminare . s eminar id = course s . s eminar id

AND o b j e c t u s e r v i s t s . o b j e c t i d = seminar u se r . s eminar id

AND o b j e c t u s e r v i s t s . u s e r i d = serminar u se r . u s e r i d

AND s eminar sem tree . s eminar id = seminar u se r . s eminar id ;

AND c ou r s e l e c t u r e r . u s e r i d = $user . id ;

Additionally there are update queries, which are executed whenever an object,
i.e. a seminar, a document etc. is visited. As well as inserts, when new courses
or users are created. An example is the following query which is executed when
a user accesses an object.

UPDATE o b j e c t u s e r v i s i t s

SET l a s t a c c e s s = NOW()

WHERE u s e r i d = $u s e r i d

AND ob j e c t i d = $ob j e c t i d ;
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3.4 Query Generation

To benchmark our adaptation techniques we will generate sample query streams
that are artificial but reflect a realistic user behavior. For that purpose we pro-
pose a new kind of random generator for time series.

We start from the assumption that the essential shape of a time series can
be modeled by means of an approximating polynomial. Here, a time series de-
scribes the aggregated user behavior over one day, for instance, with values each
reflecting the number of accesses in a time interval of 60 minutes. Thus, we have
time series with 24 measurements starting at 5 am in the morning, for instance,
when the number of accesses is lowest (close to zero). That is, we are given a
time series consisting of N + 1 = 24 observations yn at points in time xn with
n ∈ {0, . . . , N}. These points are assumed to be equidistant in time. In general,
an optimally (in the least-squares sense) approximating polynomial pa of degree
K can be represented by a linear combination of K + 1 basis polynomials pk:

pa(x) =
K∑

k=0

akpk(x), (1)

with a weight vector a ∈ R
K+1, a = (a0, a1, . . . , aK)T, where T denotes the

transposition of the parameter vector.
In principle, the basis polynomials pk(x) (k ∈ {0, . . . , K}) could be monomi-

als. Here, however, we claim that they must have the following properties:

1. They must have different and ascending degrees 0, . . . , K.
2. The leading coefficient (coefficient of the monomial with the highest degree)

of each basis polynomial must be one.
3. Each pair of basis polynomials pk1 and pk2 (with k1 �= k2) must be orthogonal

with respect to the inner product

〈pk1 |pk2〉 =
N∑

n=0

pk1(xn)pk2(xn). (2)

That is, 〈pk1 |pk2〉 = 0 for all k1 �= k2.

It must be mentioned that the choice of these basis polynomials depends on
the points in time when samples are observed. If the observations were made at
equidistant points in time, the choice depends only on their number N + 1 if we
assume—without loss of generality—that the first observation is made at time
0—otherwise we simply shift the time series to this point.

In the context of a representation with orthogonal basis polynomials, the ak

are called orthogonal expansion coefficients. Each time series—or the polynomial
representing this time series, to be precise—can now be regarded as one point
in a particular space (we call it shape space) which is spanned by the orthogonal
expansion coefficients. Due to the particular representation of the approximating
polynomial sketched above, these orthogonal expansion coefficient can be inter-
preted as optimal (in the least-squares sense) estimators of average (a0), slope
(a1), curve (a2), change of curve (a3), etc. of the time series.
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The description of appropriate techniques for the determination of orthogonal
basis polynomials and the efficient computation of the orthogonal expansion
coefficients for a given time series is out of the scope of this article. We refer to our
previous work published in [16,17] which is based on mathematical background
outlined in [18,19].

Assume now, we want to construct a random generator for time series describ-
ing the user behavior on Mondays which are working days. Then, a set of sample
time series is needed to build this generator (ideally, about 25 or more). The time
series are all approximated as described above (e.g., with polynomials of degree
6). In our experiments it turned out that the representations of the sample time
series all originating from a particular kind of day (e.g., public holiday, working
Friday, etc.) can be regarded as being nearly normally distributed in the shape
space. More precisely, to model this distribution we need the functional form of
a multivariate Gaussian distribution

N (a|µ, Σ) =
1

(2π)(K+1)/2

1

|Σ|1/2
exp

{
−1

2
(a − µ)TΣ−1(a − µ)

}
(3)

with a (K+1)-dimensional center (or mean) µ and a (K+1)×(K+1)-dimensional
matrix Σ. To find the model parameters µ and Σ from a sample data set,
we assume that the points in the shape space are independent and identically
distributed and apply a standard maximum likelihood technique (cf., e.g., [20])
to determine their values.

A model for a specific set of time series can then be used as a random generator
for time series in the following way:

1. A random number generator parameterized by means of the multivariate
Gaussian is used to generate random numbers which are points in the shape
space distributed according to Eq. 3.

2. Using the (known) orthogonal basis polynomials, these points can be trans-
formed into the respective polynomials.

3. The polynomials can be evaluated at the desired points in time (e.g., at
points corresponding to time intervals of 60 minutes).

4. Random noise can be added, e.g., white noise with a standard deviation
corresponding to the average approximation error for the set of sample time
series.

Altogether, we obtain an arbitrarily large set of artificial time series which all
have an essential shape that is similar to the shapes of the time series contained
in the set of (real) samples which has been used to build the random generator.
An example of an polynomial approximation for Mondays during the lecture
period can be seen in figure 8.

Each day of the week has different access rates, which can be seen in figure 1.
We therefore build single models for every day of the week. This way we can also
easily simulate holidays and outliers with anomalous accesses.



Generating Shifting Workloads to Benchmark Adaptability 127

6 8 10 12 14 16 18 20 22 0 2 4
0

200

400

600

800

1000

1200
Most Likely Approximating Polynomial

Hours

P
ag

e 
H

its
Most Likely Polynomial
Average Monday
Monday 17−11−08
Monday 12−01−09

Fig. 8. The most likely approximating polynomial for Mondays during the lecture

period

3.5 Scaling Time

An important factor for the usability of a benchmark is its runtime [21]. The
smallest unit of time that has periodical access rates is usually one day. To test
adaptability several periods have to be processed. Since this is too long for most
benchmarking purposes, we propose to scale time. With a scaling factor of 1/7 a
complete week can be simulated within 24 hours. Depending on the application
under test, even smaller factors could be reasonable. An other possibility to
shorten runtime is to use a reduced week that only consists of three days.

Of course the system under test should be aware of the time scaling factor.
Since daily and weekly periods are usual in information systems, good tuning
processes will use this previous knowledge for periodical tasks.

4 Benchmarking Objectives

Depending on the benchmark objective, different test cases can be built. Shifting
workloads give lots of opportunities to test automatic and autonomic systems.
Usually the metric is transactions per second or average response time for a given
database size, depending on the optimization goal (e.g. the QphDS@SF metric
in TPC-DS [6]). It has to be mentioned that whichever is used, the other should
also be monitored. In the following we will give four examples on how we use
the benchmark.

4.1 Basic Performance

The most common benchmarking objective in database systems is to test the
speed, i.e. transactions per second or similar. A good baseline for such a test is the
peak performance of the system without any automatic tuning and without any
workload shifts. We concur with Bruno, who argues that only primary indexes
should be used for a reasonable baseline [22].

To test if the system can automatically produce a better throughput in a
real time environment, alternating workloads can be used. This way the system
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has phases of high load, which can be used to measure the peak performance. In
phases of low load, the system has time to optimize its table structure, scale itself
or tune the indices without risking serious performance bottlenecks. Throughout
the test the ratio of different query classes stay constant. After some periods
the peak performance should increase and should be better than the baseline
performance.

4.2 Adaptivity

As stated in the introduction a major goal was to measure adaptability. The
idea is to test how well a system can adjust itself to the workload. Partially this
is already tested by the throughput test above. But as we have shown before,
the rates of query classes change within a single day. This can be simulated by
shifting workloads. So different query sets are defined and for each set a separate
time series is generated. Also the workload is different for each day of the week.
Either a complete week can be simulated, or only a reduced week consisting only
of two working days and one weekend day, which should suffice in most cases.
With this test, a system under test that is aware of the temporal dependencies
in the workload, should get a better performance than a system that is not.

Changes in the workload behavior can be introduced to further test the adap-
tivity. In figure 9 the most frequently accessed websites in Stud.IP between
October 08 and May 09 can be seen. It is easy to see that there are sections with
very different characteristics. The diagram starts shortly after the beginning of
the lecture period, which lasts until the first week of February. The next lecture
period started at April 20. Additionally the Christmas break from December
24 until January 06 can be seen. So for an eLearning system at a university a
week can be classified in one of the three classes, lecture period, free period and
holidays. All three of these sections are well-defined and their limits are previous
knowledge. This form of test is in some respects already implemented in current
benchmarks, TPC-DS for example consists of four consecutive phases with very
different characteristics (i.e. load, query run, data maintenance, query run - cf.
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[23]). However, our form of query generation also makes it possible to model the
trends within one phase. Such a trend can be seen in the fall term 2008 where
the workload constantly decreases and then slightly increases at the end of the
term.

4.3 Robustness

To test the robustness of an autonomic system outliers can be introduced. In
figure 9 these can be seen in form of legal holidays on May 21 and June 1 and in
form of unpredictable outliers for example on February 11 (server maintenance)
or March 16 (unexpected user behavior). An autonomic system should be able
to identify such outliers and handle them correctly. So, it should not change its
configuration completely based on the single day. Yet it also must not have a
serious performance collapse. For legal holidays this could also be supported by
previous knowledge. Outliers can be modeled like other days and either triggered
randomly (maintenance) or at previously defined points in time. To test robust-
ness the performance before and after an outlier can be compared and the time
until the original performance is reached again. To find out if a system is over
adapted, the performance during an outlier day can be used.

4.4 Energy and Space Efficiency

The shifting workloads can of course be used to test the energy and space effi-
ciency of a system. An autonomic system might be able to reduce its space and
energy consumption in phases of low load. To measure the energy efficiency an
transaction per watt metric, as introduced in [24], can be used.

5 Conclusion

Autonomic tuning is an ongoing field of research in the database community,
new evaluation methods are therefore needed. The benchmark introduced in
this paper features a new way to model database workloads. With the poly-
nomial representation of every week-day a good compromise between realistic
access rates and comparable patterns is found. This opens new possibilities to
test automatic and autonomic tuning. The benchmark is based on an online
eLearning application that was analyzed extensively.

For future work we will first examine and tune the benchmark. We will im-
prove our eLearning benchmark and analyze how our techniques can be used in
other benchmarks as well (e.g. TPC-C, TPC-H). To ease the adaptation of our
benchmark we will implement more generic query and data generators. These
generators will be controlled by configuration files that make adoption of the
schema or value domains and distributions more easy. As online information
systems are usually evolving over their life time, an interesting extension will be
the introduction of schema evolution. We will include possibilities to alter the
current table definitions and add new tables. This will add further challenges to
physical design tuning. To learn about realistic schema evolution, we will further
monitor the development of the Stud.IP installation at the University of Passau.
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vol. 131, pp. 93–107. Birkhäuser, Basel (1999); (Proceedings of the Conference at

the Mathematical Research Institute Oberwolfach, Germany, March 22-28 1998)

20. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York

(2006)

21. Blackburn, S.M., McKinley, K.S., Garner, R., Hoffmann, C., Khan, A.M., Bentzur,

R., Diwan, A., Feinberg, D., Frampton, D., Guyer, S.Z., Hirzel, M., Hosking, A.L.,

Jump, M., Lee, H., Moss, J.E.B., Phansalkar, A., Stefanovic, D., Van Drunen,

T., von Dincklage, D., Wiedermann, B.: Wake up and smell the coffee: evaluation

methodology for the 21st century. Communications of the ACM 51(8), 83–89 (2008)

22. Bruno, N.: A critical look at the tab benchmark for physical design tools. SIGMOD

Record 36(4), 7–12 (2007)

23. Poess, M., Nambiar, R.O., Walrath, D.: Why you should run tpc-ds: A workload

analysis. In: VLDB 2007: Proceedings of the 33rd international conference on Very

large data bases, pp. 1138–1149. VLDB Endowment (2007)

24. Poess, M., Nambiar, R.O.: Energy cost, the key challenge of today’s data cen-

ters: A power consumption analysis of tpc-c results. Proceedings of VLDB Endow-

ment 1(2), 1229–1240 (2008)



R. Nambiar and M. Poess (Eds.): TPCTC 2009, LNCS 5895, pp. 132–145, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Measuring Database Performance in Online Services:  
A Trace-Based Approach 

Swaroop Kavalanekar1, Dushyanth Narayanan2, Sriram Sankar1, Eno Thereska2, 
Kushagra Vaid1, and Bruce Worthington1 

1 Microsoft Corporation, 1 Microsoft Way, Redmond WA 98052, USA 
2 Microsoft Research Ltd., 7 J J Thomson Avenue, Cambridge CB3 0FB, United Kingdom 

{swaroopk,dnarayan,srsankar,etheres,kvaid,bworth}@microsoft.com 

Abstract. Many large-scale online services use structured storage to persist 
metadata and sometimes data. The structured storage is typically provided by 
standard database servers such as Microsoft’s SQL Server. It is important to 
understand the workloads seen by these servers, both for provisioning server 
hardware as well as to exploit opportunities for energy savings and server 
consolidation. In this paper we analyze disk I/O traces from production servers 
in four internet services as well as servers running TPC benchmarks. We show 
using a range of load metrics that the services differ substantially from each 
other and from standard TPC benchmarks. Online services also show significant 
diurnal patterns in load that can be exploited for energy savings or 
consolidation. We argue that TPC benchmarks do not capture these important 
characteristics and argue for developing benchmarks that can be parameterized 
with workload features extracted from live production workload traces. 

Keywords: online services, TPC, benchmarks, storage traces, storage performance, 
data centers, capacity planning. 

1   Introduction 

Companies such as Microsoft host a variety of large-scale online services in mega-
scale data centers. These services have unique workload attributes that need to be 
taken into account for optimal service scalability. Provisioning compute and storage 
resources to provide a seamless user experience is challenging, since customer traffic 
loads vary widely across time and geographies, and the servers hosting these 
applications have to be right-sized to provide performance both within the box and 
across the services cluster. 

These online services typically have a tiered architecture, with stateless higher tiers 
above structured and unstructured storage tiers. For the structured storage, 
Microsoft’s data centers use SQL Server since it provides a well-understood data 
model and a mature server engine. All the tiers present different provisioning and 
partitioning challenges: in this paper we focus on analyzing the structured storage tier. 
In this tier the most important resource for provisioning is usually I/O, and hence the 
I/O load at the structured storage tier is the focus of this paper. 
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We address the question: what are the I/O characteristics at the structured storage 
tier in production environments? We analyze I/O traces from live production servers 
in different online services, and compare them to each other and to standard TPC 
benchmarks. We compare a range of I/O metrics such as I/O rate, read/write ratio, and 
access locality. In addition we also examine the time variation in the online services 
workloads on a diurnal time scale. User-facing services often have strong diurnal 
patterns since users are not evenly distributed across time zones [1]. It is important to 
understand these patterns to improve performance, efficiency and responsiveness. 
Other opportunities include server consolidation, e.g., consolidating servers within a 
service or across services that have uncorrelated or even anti-correlated patterns. 

Based on our analyses, we observe that: 
 

1. When characterized using standard I/O metrics (e.g. IOPS/GB ratio, read/write 
ratios), online services workloads differ by orders of magnitude from TPC 
benchmarks even during phases of sustained peak activity. 

2. Online services workloads also differ from each other on many metrics, again 
by orders of magnitude. 

3. Some online services show distinct diurnal patterns in load level. 
 

These observations imply that standard TPC benchmarks are not well-suited to 
characterizing performance in these environments since they do not match the I/O 
characteristics of individual workloads; they do not capture the range and diversity of 
these workloads; and they do not model diurnal patterns of variation in load. 
Production server traces, on the other hand, accurately capture these workload-
specific features. In previous research[2, 3, 4], we have also seen that a trace-based 
approach allows evaluation of system designs and performance metrics that 
benchmarks alone do not allow. Based on these experiences we advocate widespread 
use of tracing to drive server performance evaluation. We also argue for the 
development of parameterized benchmarks that combine the advantages of 
benchmarks with the realism of live traces. 

The rest of the paper is organized as follows. Section 2 presents an analysis of four 
online services workloads, and a comparison of these workloads with TPC 
benchmarks. 

Section 3 briefly summarizes our previous research using I/O traces in the form of 
three case studies, each of which highlights a different advantage of traces vis-à-vis 
benchmarks. Section 4 provides practical guidelines to follow in tracing live 
production servers, based on our experiences.  Section 5 discusses the challenges and 
limitations of traces, and directions for future research including hybrid approaches 
that could combine the advantages of traces and benchmarks. Section 6 completes the 
paper with some conclusions and recommendations. 

2   Online Services Workload Analysis 

In this section we analyze and visualize storage workloads from four online services 
within Microsoft, comparing the production storage workloads against the storage 
workloads from three TPC benchmarks. We first provide some background and 
motivation for the core problem: that of right-sizing storage in online services. We 
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then describe the online services that we analyze in the paper and the low-overhead 
tracing technology used to trace production servers. We then present the results of our 
analysis. 

2.1   Right-Sizing Storage in Online Services 

Online services scale by partitioning and replicating data over a large number of 
commodity servers. It is important to optimize both the server design and the number 
of servers, since capital acquisition and power costs can quickly add up across a large 
server base. Increasingly, the aim is also to consolidate many different services onto a 
single infrastructure to improve utilization. Sets of consolidated services must scale 
across large deployments measured in hundreds of thousands of servers.  Server 
design and right-sizing strategies for such environments present a whole new set of 
challenges in optimizing performance per dollar and per watt. To implement a data-
driven methodology for server design, we have to ensure that applications are duly 
characterized and that the implications for various platform subsystems are well 
understood. 

While CPU processing power continues to increase at a tremendous rate, disk 
bandwidth and latency have not kept pace. To bridge this gap, typical enterprise 
server solutions are designed with large storage arrays that account for a major 
portion of server capital acquisition costs and consume significant power, even when 
idle. Emerging technologies such as Solid State Devices (SSDs) can bridge the 
performance gap, but are still too expensive (per byte) for broad deployments at 
datacenter scale[4]. Hence, the first optimizations for server right-sizing need to focus 
on the storage subsystem, to ensure optimal overall performance for a given design. 
Additionally, customer datasets in online services environments are usually 
partitionable.  Therefore, it is possible to design each service tier using commodity 
single- or dual-CPU socket platforms and then load-balance the traffic across multiple 
servers in the service cluster. In such scenarios, the approach is to disaggregate the 
customer dataset into small subsets, and to determine the right amount of capacity and 
I/O for hosting each subset. Ideally, identical self-contained server building blocks are 
used (e.g., a cluster of 2U servers with up to perhaps 24 drives each). This 
methodology enables a simpler storage subsystem design for optimal $/GB and 
$/IOPS. This also highlights a key difference in the service deployment strategy in an 
online services environment versus a typical enterprise where the dataset may be 
hosted on a single large server using scale-up platform technologies.  

2.2   Workloads Traced 

We chose four different web services for this analysis. Traces were captured from one 
representative database server from the structured storage tier of each service: 
 

1. IM-DB (Windows Live Messenger Database Server): Address Book Database 
machines store user profiles and instant messenger buddy lists.  They are 
essential to several online services related to social networking and interactions. 

2. MSN-DB (MSN Content Aggregation Database Server): This database hosts a 
content publishing system for the online portal front page and is updated by 
mainly editorial tools and feed management systems via web services. Most of 
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the stored data is actually unstructured in nature, consisting of either raw content 
or links to content on other partner sites.  

3. EMAIL-DB (Windows Live Email Database Server): This database hosts mail 
message metadata which maps online users to file stores. Incoming messages 
goes through a lookup process to determine which file server is hosting the 
receiving user’s email message store. The message is then deposited in the 
appropriate message store, and other metadata corresponding to the user account 
is updated. 

4. BLOB-DB (Windows Live Blob Metadata Server): These metadata lookup 
servers hold user account mappings for various blob storage services such as 
online photos, videos, social networking updates, etc. Each incoming request is 
looked up in this database to determine which back-end file server is hosting the 
appropriate content, and the user request is routed to that server for either storage 
or lookup of the content.  

 

In addition we also ran and traced the TPC-C, TPC-E, and TPC-H benchmarks. In this 
paper neither the online services nor the benchmarks correspond to “e-commerce” 
browsing/shopping applications; although e-commerce is certainly important it is only 
one of many possible applications. We are currently looking for block I/O traces from e-
commerce deployments and the corresponding benchmarks (TPC-W and TPC-App).  

 
Table 1. Workloads traced 

 

Workload Trace start (PDT) Trace length RAID arrays Disks 
IM-DB 03 Oct 2008, 12:47 25 min 5 x RAID-10 34 
MSN-DB 10 Mar 2009, 17:21 24 hrs 10 x RAID-10 46 
EMAIL-DB 04 Apr 2008, 00:00 2 hrs 4 x RAID-10 34 
BLOB-DB 26 Nov 2008, 14:00 24 hrs 10 x RAID-10 46 
TPC-C 19 Oct 2007, 15:52 6 min 14 x RAID-0 392 
TPC-E 18 Oct 2007, 17:46 17 min 12 x RAID-0 336 
TPC-H 20 May 2009, 17: 31 1.5 hrs 4 x RAID-0 36 

 
Table 1 summarizes the traces and the storage hardware on the traced servers.  All 

the servers are configured with multiple RAID arrays, with multiple partitions on each 
array. The data and log files are then balanced across these partitions. The traces 
include both  data and log file I/Os: generally the data file I/Os dominate the load. 
Log  I/Os were 11%—12%  of the total for BLOB-DB and MSN-DB, and less than 
2% for the others. 

2.3   Block-Level I/O Tracing 

Windows operating systems have included a built-in tracing capability called Event 
Tracing for Windows (ETW) since Windows 2000. Each subsequent Windows 
release has increased the breadth and depth of system instrumentation, including 
instrumentation in the Windows kernel. ETW provides a high performance, low 
overhead, and highly scalable tracing framework. It uses efficient buffering and non-
blocking logging mechanisms with per-CPU buffers written to stable storage by a 



136 S. Kavalanekar et al. 

separate thread.  ETW tracing is extensible and can also be extended to applications 
by application developers. Since Windows 2003, ETW tracing can be dynamically 
enabled or disabled without requiring a system reboot or an application restart. 
Typical ETW events are discrete time-stamped trace points, but sampling and 
statistical data captures are also possible. Storage related instrumentation includes, but 
is not limited to: initiation and completion disk events for reads, writes, and flushes; 
and file events for creates, deletes, reads, writes, and attribute queries and updates.  

There are several tools that can use ETW events to capture and correlate 
information about system activity. Since Windows 2008, the performance monitor 
built into Windows (PerfMon.exe) can capture ETW events. Another powerful tool 
designed specifically for system analysis using ETW is the Windows Performance 
Tools kit (WPT), which is an extensible performance analysis toolset that provides 
high level control and decoding of ETW events. It provides a controller that can be 
used to enable and disable ETW event capture. It understands the relationship 
between different ETW events in the system and presents a comprehensive visual 
representation of captured events. This allows detailed analyses of a wide range of 
system activities. WPT provides powerful interactive summary tables and graphs with 
dynamic grouping, sorting, and aggregation capabilities. WPT can also dump a trace 
in a text format that other analysis tools can consume. 

The ETW traces referenced in this paper contain “Disk I/O” ETW events from the 
Windows kernel. The traces were broken into intervals to reduce the size of individual 
traces as well as to make analysis and visualization easier. The interval size was 
determined heuristically based on the storage activity of the workload. A post-
processing script library was used to extract the workload characteristics and metrics 
reported in this paper. The traces analyzed for this paper contain only events related to 
the disk subsystem and do not have any information that can be related to the end-
user; i.e., the disk traces used for our analysis are by definition anonymized from an 
end-user standpoint. 

2.4   Trace Analysis Results 

Given a block-level I/O trace, we summarize the trace by computing a number of 
standard metrics.  Table 2 shows the most important summary metrics for the 
different workloads. The main load metric is IOPS: I/Os per second issued by the 
workload.  IOPS is computed for each 1-second interval in the trace; we then show 
the mean over all the intervals, as well as the peak, defined as the 99th percentile of 
load seen during the trace. In general we use the peak IOPS value to compare 
workloads, since servers are provisioned for this load. Further, unlike TPC 
benchmarks, online services have high peak-to-mean ratios and hence comparing 
them to benchmarks using mean IOPS would be misleading. 

R/W is the read/write ratio of the I/Os seen in the workload. Seq is the fraction of 
I/Os that were considered sequential, i.e., the logical blocks read or written were 
contiguous to the immediately previous I/O. Finally GB is the size of the data set 
accessed by the workload, which we estimate as the highest logical block number 
accessed expressed in units of GB. Capacity usage (GB) is important because, unlike 
benchmarks, provisioning for some online services can be capacity-bound rather than 
I/O-bound. Further, these services are scaled out and load-balanced over many  
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Table 2. Summary of workload metrics 

Workload M ean IOPS Peak IOPS R/W Seq GB
IM-DB 3386 4038 6.19 0.02 101
EMAIL-DB 59 610 0.69 0.00 2608
BLOB-DB 299 1030 1.67 0.11 265
MSN-DB 1056 3830 1.91 0.11 399
TPC-C 49757 52800 1.80 0.02 873
TPC-E 112654 186568 8.34 0.02 321
TPC-H 2228 11801 29.94 0.35 260  
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Fig. 1. Peak IOPS and capacity Fig. 2. Scaled IOPS and MB/s 

servers, and different services have different provisioning (e.g. number of spindles) 
per server as well as different numbers of servers. Hence, we cannot directly compare 
the raw IOPS rate across these servers.  Instead, we use capacity as scaling factor, i.e., 
we compare “IOPS per GB of data” instead of “IOPS per server”. 

In addition to I/O rate we also measured the mean and peak transfer rate (measured 
in MB/s). However as we will see later transfer rate is in general highly correlated to 
I/O rate due to the fixed transfer sizes used by SQL Server. For simplicity we do not 
show the transfer rate in Table 2. 

From Table 2, we can already see that the online services workloads differ widely 
both among themselves and from the TPC benchmarks. We now show this visually by 
plotting the workloads as points in two dimensions, using two workload metrics at a 
time. Note that all the graphs use log-log scales to capture the wide variation across 
workloads. 

Figure 1 shows the workloads along the axes of capacity and peak I/O rate. We see 
that TPC-C and TPC-E do have much higher I/O rates relative to capacity than the 
other workloads, and in general there are order-of-magnitude differences between 
workloads. However, the absolute value of I/O rate is affected by the provisioning of 
the specific server; as we saw in Table 1, the different servers are provisioned with 
different numbers of disks. Hence when a server is part of a scale-out configuration, it 
is more useful to look at a scaled metric of load, i.e., I/O rate relative to the amount of 
data stored on that server.  Figure 2 shows the I/O rate and transfer rate metrics scaled 
by the data size, i.e. the capacity in GB. We see here that there is indeed a very wide  
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variation between the online services workloads, and that they also differ substantially 
from TPC benchmarks. Thus for a server storing a given amount of data, for example, 
IM-DB sees an order of magnitude less I/O load than TPC-E. We also see that the 
ratio of transfer rate and I/O rate is similar for most of the workloads, with the 
exception of TPC-H. This ratio is just the most common transfer size used by SQL 
Server for its I/O request, i.e. 8 KB; for TPC-H large sequential scans also result in 
larger transfer sizes for some I/Os. 

Figure 3 shows the peak-to-mean ratio for I/O rate and transfer rate. We see that in 
general the TPC benchmarks and IM-DB have far lower variability than the other 
three. Interestingly BLOB-DB and MSN-DB have much higher variability in transfer 
rate than in I/O rate. 

Figure 4 shows the metrics Seq (fraction of I/Os that are sequential) and R/W 
(read/write ratio). Here again we see a wide variation, with most workloads being 
read-dominated except EMAIL-DB which is write-dominated. EMAIL-DB stores e-
mail metadata and thus issues several write I/Os for each metadata update. We also 
see a wide variation in sequentiality: ranging from TPC-H (35% sequential) to 
EMAIL-DB. The latter is 0% sequential (shown as 0.1% sequential to accommodate 
the data point on a log scale). 

Finally, we are interested in diurnal patterns shown by our workloads, since these 
are important for server consolidation and energy savings. Clearly the notion of 
diurnal variation is not meaningful for TPC benchmarks, since the benchmarks do not 
specify any such variation. However, for two of our online services workloads –– 
BLOB-DB and MSN-DB –– we have 24-hour traces and hence can examine them for 
diurnal patterns. 

Figures 5 and 6 show load over time for BLOB-DB and MSN-DB. We see that 
BLOB-DB shows a clear variation over a 24-hour period, indicating the concentration 
of users in different time zones. It also shows a second periodic behavior with a 1-
hour period. For MSN-DB although there is substantial variation, i.e., burstiness, it is 
harder to identify any clear periodic behavior. 

2.5   Trace Analysis Summary 

In this section we compared online services workloads with TPC benchmarks across a 
range of I/O related metrics. We showed that they workloads vary widely among 
themselves –– by orders of magnitude in many cases –– and also differ from the TPC  
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benchmarks. We also showed that some workloads have periodic variations in load, 
and these are not captured by today’s benchmarks. 

3   Research Case Studies 

In the previous section we analyzed I/O traces from live productions servers 
supporting online services. These traces were key to understanding these workloads, 
which differ considerably from standard benchmark workloads. In addition, traces 
also allow us to evaluate new designs, features, and research systems with more 
realistic workloads. In this section we summarize briefly the results from three 
different research projects[2, 3, 4] at Microsoft Research Cambridge. In each case we 
highlight how production workload traces allowed us to evaluate metrics and test 
hypotheses where benchmark-based evaluation would not have sufficed. 

The research described in this section predates the traces described in Section 2, 
and was not specifically focused on online services. It was based on a previously 
collected set of traces from small and medium enterprise servers[2, 5]. The traces are 
ETW disk I/O traces as described in Section 2.3. 

3.1   Disk Spin-Down for Energy Savings 

In this study we examined the potential for saving energy in enterprise storage by 
powering down storage hardware during periods of idleness[2]. Previous work had 
claimed that there was little scope for power savings in enterprise storage since server 
I/O workloads had little idle time[6]. However, based on I/O traces from a range of 
small/medium enterprise servers, there is substantial idle time, mostly at night. This 
diurnal pattern reflects the user-driven load on the servers.  

During periods of low load, idle times are further lengthened by write off-
loading[2]: temporarily logging writes from several spun-down storage volumes to a 
single spun-up volume. With write off-loading, spinning disks down during idle 
periods saves 45-60% of the disk power. However, there is a response time penalty 
for requests to a powered-down volume, which must be spun up to service read 
requests.   This happens rarely in the traces, but the penalty is large. 

Both the costs and benefits of write off-loading depend on the variation in I/O load 
over time, specifically the existence of large amounts of idle time. Standard 
benchmarks do not capture this property and would not tell us anything about 
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potential energy savings for real workloads. For example, TPC-C is a saturation 
benchmark and hence by design has little idle time at the storage level[6] (TPC-C’s 
successor, TPC-E, has a similar, albeit lighter, steady-state I/O load). 

3.2   Burst Absorption 

Write off-loading can also be used during periods of high load, i.e. bursts[3]. Here the 
aim is not energy savings but reducing the high I/O response times seen during such 
bursts. A volume under heavy load can temporarily off-load writes to lightly loaded 
volumes: this improves performance both for writes (since they are redirected) and for 
reads (since they see less contention from writes. When the volume’s load level 
subsides, the off-loaded data is reclaimed and subsequently deleted from the remote 
volumes.  If bursts are short and have sufficient idle time in between, only a small 
amount of capacity is used on the remote volumes, and only for a small amount of 
time. 

An evaluation of this technique using disk I/O traces from a large Exchange server 
with over 100 spindles, showed a 1.4 to 70 times reduction in response times at peak 
load. Note that the evaluation is only meaningful when both bursts in I/O load as well 
as the idle periods following them, are correctly captured. Further, the performance 
benefits depend on the read/write mix and the access locality of I/O during the burst. 
Thus the performance is strongly tied to workload-specific behavior, which is best 
captured by a trace.  

3.3   Evaluating Solid-State Disks (SSDs) 

We have also used disk I/O traces to drive a cost-benefit analysis of the potential uses of 
SSDs in enterprise storage[4]. The analysis is based on a tool that computes the cheapest 
storage configuration that will satisfy all the requirements for a given workload: 
capacity, random-access I/O, sequential I/O, and fault-tolerance. It considers disk-only 
configurations, SSD-only configurations, and hybrid configurations where SSDs are 
used as an intermediate tier. 

To adequately provision storage for a workload, we must satisfy several 
requirements: capacity, random-access I/O rate, and sequential  bandwidth. The best 
configuration is the one that satisfies all workload requirements at the lowest cost. 
SSDs score much higher than disks on some metrics (e.g. IOPS/$) but much lower on 
others (GB/$). Thus the provisioning decision depends on the demand for the 
different metrics, which we estimated from production workload traces. Thus while a 
TPC-C benchmark is always configured to be “IOPS-bound”, we found that most real 
workloads become capacity-bound when using SSDs, due to the very high cost per 
GB of SSDs. Overall, we found that few workloads had a sufficiently high IOPS/GB 
ratio to warrant replacing disks by SSDs at current prices. 

In this research we also observed one disadvantage of evaluation based on disk I/O 
traces. Trace replay relies on an "open loop" assumption, i.e., an assumption that the 
rate of I/O requests would be the same no matter what storage was used. From an 
open-loop I/O model we cannot compute the effect of alternate storage configurations 
on higher-level application performance metrics such as transaction rate. Benchmarks, 
on the other hand, can give these higher-level performance metrics, but do not 
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realistically model the application. Thus we need a hybrid approach that combines the 
realism of traces with the "end-to-end" measurement given by benchmarks.  We will 
explore this idea further in Section 5. 

4   Tracing Guidelines 

The value of tracing production servers is that they provide a very realistic picture of 
real user-driven workloads. However this also presents a challenge: the tracing must 
be done without impacting the efficient operation of the service. This section provides 
some recommended techniques and processes that can be used for collecting traces 
from production servers. 

The first step in tracing production servers is establishing communication with the 
people who can authorize trace collection, demonstrating the value of tracing to them, 
and convince them of low impact on the operations team. Also one needs to find a 
sponsor with sufficient influence to get past the inevitable initial negative reaction, 
and convince the legal group that the rewards outweigh the risks.  The primary legal 
concerns will be safeguarding company IP and anonymizing any personally 
identifiable information (PII). For ETW traces of storage activity, we have already 
convinced Microsoft Legal that traces can be sufficiently sanitized to remove PII, and 
thus have a very useful precedent for others to reference. Once collection has been 
authorized, the people gathering the actual traces must be provided with sufficient 
detail about the "How-To" and logistics of tracing (e.g., where to store traces, how to 
sanitize and transfer them). Having a clear set of guidelines and instructions as well 
having an automated process for tracing goes a long way to smooth this process. 

Once you have one or more precedents of successful tracing efforts, convincing the 
next set of participants is much easier.  However, it takes only one instance of a 
negative impact from tracing to make it extremely difficult to obtain future traces. 
Thus, it is wise to be very conservative during the initial phases of collecting traces – 
e.g., by collecting traces for shorter durations or at lower rates, by directly monitoring 
the performance impact of tracing, and by providing precise  guidelines to the 
operations team. Production environments often run “stress” benchmarks for testing 
their deployments. Sample traces from the stress environment can help to estimate the 
worst case impact of tracing.  Also make sure to be sensitive and responsive to the 
concerns expressed by the operations staff.  At least initially, tracing is an imposition 
on their work schedule, perhaps with no proven upside and a nontrivial potential for a 
job-threatening downside. 

When actually collecting traces there are several factors to consider: here we 
describe the most important ones and some guidelines to address each. 

Performance Impact 
Typically, the runtime tracing overhead as well as logistics such as trace size and 
available space need to be considered. It is a recommended best practice to take a 
sample trace on any production server before deployment. It is also recommended to 
store the trace on a separate disk or network share, if available, so tracing activity 
does not impact the storage I/O traffic of the real workload. In cases where this is not 
possible, the tracing-related I/Os can be filtered out during post processing.  
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For the worst case scenario, factors to consider include the maximum peak 
workload, the possibility of system failures, and the ability to stop trace collection in 
case of a real or perceived emergency. For example, ETW tracing can be stopped 
either programmatically or from the command line at any time during the trace 
collection process.  

Operations Impact 
Providing automated scripts for capturing traces and setting up a process for 
transferring the traces from the production environment reduces the actual time an 
operations engineer has to spend collecting the traces. The operations engineers will 
also need to provide information about the system configuration, especially the 
storage subsystem hardware, which may not be available directly to the operating 
system (e.g., any hardware RAID configuration, storage cache configuration, and the 
number of physical spindles). It is useful to know if a backup, replication, or 
rebalancing operation is in progress during the trace capture, or if the workload has 
innate periodic or phased behavior that can be tagged during trace post-processing. 
Long enough traces should be captured since periodic activity can have a significant 
impact on the characteristics of the workload. 

Security and Access 
The security of the production servers as well as the trace content must be considered. 
Typically kernel level trace collection tools need administrator privileges on servers, 
and they should come from a trusted source (e.g. via digital signatures).  The traces 
may contain personally identifiable information (PII) in the form of filenames, 
directory paths, or process names.  These same fields could also expose confidential 
application or hardware configuration detail. All information captured by the trace 
events should be disclosed beforehand and cleared by the appropriate parties. Post 
processing tools can sanitize and encrypt the traces or selected portions after they are 
captured.   

Most production servers are insulated from the other systems on the corporate 
network. They can be accessed only from dedicated systems such as boundary servers 
that have additional access restrictions. If any of the servers along this chain do not 
have enough space to store the traces, then transferring them becomes more difficult. 
In one case we encountered, a boundary server had no available permanent storage 
space at all. This was by design, for security. The transfer of traces had to be done 
serially from the temporary drive of the boundary server via an automated script to 
iteratively check available space and transfer files one at a time. If systems along the 
path are under the control of different administrators with different access rights, 
coordinating trace transfers can be challenging. 

Excessive Tracing 
Sometimes trace providers can be too aggressive in collecting traces. We encountered 
one case where the operations team collected day-long traces from a large number of 
servers, exhausting the space on the trace storage server. This experience taught us to 
carefully select representative servers to avoid the storage and processing overhead of 
tracing servers with basically identical workloads. 
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5   Challenges 

Although block I/O tracing is a very valuable tool for understanding workload 
performance as well as server provisioning, it is not a panacea. Here we discuss 
several challenges, limitations, and directions for future research. 

5.1   End-to-End Tracing 

Trace replay at the block I/O level is generally performed open-loop. This ignores 
feedback effects, e.g., a faster storage system could have higher overall throughput 
and as a result receive a higher request rate.  Thus while I/O tracing can help to size 
the storage layer to avoid overload and give good response times, it cannot predict 
overall server throughput. Depending on the provisioning task, traces from other 
components, such as the main memory buffer cache, CPU scheduler, and network 
stack may also be required.  Ideally, all the individual resource utilizations of each 
request (e.g., SQL statement) are captured, from the moment the request enters the 
system until it exits. Such end-to-end tracing is very useful for holistic system 
analysis. For example, we built a Resource Advisor prototype for SQL Server that, 
given an end-to-end trace, can answer “what-if” questions about upgrading system 
resources[7].  E.g., "What would be the throughput of transaction type X if the 
amount of memory in the system were doubled?"  

In general, the idea of end-to-end tracing is that traces be collected simultaneously 
from multiple levels of the system. This allows maximum flexibility in characterizing 
the workload and its use of different system resources such as CPU, memory, 
network, and disk I/O. For example: 

 

1. Traces at the SQL statement level can be used to evaluate the overall 
throughput of a proposed configuration. 

2. Correlated traces of CPU, network, and disk usage can be used to find out 
which of the resources dominates throughput and latency, as well as evaluate 
“what-if” questions about bottleneck shifts for entire workload or a part of the 
workload. 

3. SQL buffer cache traces can address “what-if” questions about memory sizing. 
 

Our experience indicates that the overhead of collecting large amount of traces varies 
widely based on the number of events captured, the hardware configuration, the 
specific type of workload, and the workload intensity. The overhead can be reduced 
arbitrarily through sampling, i.e. selective enabling of events at runtime. 

Much, though not all, of the support for end-to-end tracing on a single machine 
already exists today. For example, both Windows and SQL Server can post thread 
context switch events to ETS to enable tracking of CPU usage and control flow of 
concurrent threads. True end-to-end tracing would also track requests as they move 
across different tiers and machines on the network. This could require modification of 
standard network protocols to enable matching requests and events across systems, or 
perhaps a new layer in the network driver stack to communicate end-to-end metadata 
for individual requests. 
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5.2   Scaling and Sampling 

A second limitation of trace-based evaluation is the difficulty of scaling trace replay 
up or down. This limitation is shared by most benchmarks. For example, in the 
evaluation of Everest (Section 3.2), our test bed was too small to accommodate the 
traces from all volumes collected. Hence, we had to "scale down" the tracing by 
making a decision as to which traces to incorporate (three of the volumes were 
chosen). Scaling up is similarly difficult. For example, if one collects traces from 
three volumes and has a testbed of 1000 machines, one might use some mixture or 
permutation of the traces from the three volumes and duplicate it 997 times. It is 
unclear that such scaling reflects reality. 

Large-scale online services have a single application that is load-balanced across a 
large number of servers. Thus a good approach to scaling would be to apply statistical 
tests to capture similarities between traces from many servers. This would ensure that 
the traces remain representative. The challenge is to devise the appropriate tests for 
any given purpose, e.g., provisioning, simulation of new system design, etc. 

5.3   Workload Model Extraction 

Trace replay and simulation is more effective for capturing workload specifics than 
benchmarks. However, benchmarks are standardized, simple, and scalable (although 
typically only linearly along one dimension). To ideally represent a workload class, 
we would extract key features of workloads and use them to construct a parameterized 
workload model and hence a representative custom benchmark. The parameter values 
may be based actual trace characteristics, or on hypothetical workloads. 

A production workload typically contains a variety of asynchronous and 
synchronous activities occurring in parallel. Thus a key component of modeling this 
complex activity is identifying the sub-workloads. As an example, a workload may 
consist of periods of heavy as well as light activity. These may be further divided into 
regions of read-heavy versus write-heavy activity, which may be further divided into 
sequential and random activity. Time-varying characteristics include not only the 
well-known concept of burstiness (i.e., workload intensity variations at short time 
scales) but also periodicity at different time scales, e.g. diurnal patterns.  

Finer granularity leads to better simulation but also increases the complexity of  
the benchmark. It is essential to identify the point of diminishing returns, where the 
simulated benchmark is "close enough" to the real workload and provide the 
necessary level of accuracy. Tools can be written to automatically extract sub-
workloads based on heuristics; to simulate these workloads through a I/O request 
generator; and, to compare and contrast various load metrics produced by the 
simulated workload against the original trace[8]. 

6   Conclusion 

We analyzed  I/O workload trace from the structured storage tier in four online 
services. Our analysis shows that real-world workloads have very different 
characteristics from TPC benchmarks in terms of basic metrics such as IOPS/GB and 
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read/write ratios, as well as in time-varying characteristics such as peak-to-mean 
ratios and diurnal patterns. 

We believe there is a need for greater use of traces when designing benchmarks 
and also when designing systems for deployment. Benchmarks should derive 
burstiness metrics, request mixes, and think times from real traces. They should also 
mimic the periodic load variations found in real workloads. This calls for more 
flexible and tunable benchmarks.  In addition, it would be advantageous for the 
research community to have access not only to more realistic benchmarks, but also to 
the traces upon which such benchmarks are based. For example, the TPC could create 
and maintain a database trace repository similar to that maintained by the Storage 
Networking Industry Association (SNIA)[9]]. The traces used for the research 
described in Section 3 have been contributed to the SNIA repository. Hence, we call 
on the TPC to create such a repository and encourage enterprises to trace their 
productions systems and to make the traces (suitably anonymized and obfuscated) 
available for research purposes. 
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Abstract. It is true that a metric can influence a benchmark but will esoteric 
metrics create more problems than they will solve? We answer this question 
affirmatively by examining the case of the TPC-D metric which used the much 
debated geometric mean for the single-stream test. We will show how a simple 
choice influenced the benchmark and its conduct and, to some extent, DBMS 
development. After examining other alternatives our conclusion is that the 
“real” measure for a decision-support benchmark is the arithmetic mean.  

1   Introduction 

The purpose of this paper is to examine a basic problem facing benchmark designers 
when selecting a metric in the context of a decision-support benchmark. Once the 
database has been populated and the queries defined comes the apparently simple task 
to define a metric i.e. a single number that will summarize the elapsed times. The 
most natural way to accomplish that is to use the arithmetic mean. But, since no 
benchmark participant has run all the queries at this stage of the game, the usual 
nagging question comes up: “What if one query dominates the entire set?”  To solve 
the outlier problem, although it has not appeared yet, a potential solution would be to 
define a rule such as “throw away one” by which benchmark participants would be 
allowed to remove their worst query time from the final result set. 

Another approach to the problem of aggregating highly skewed observations could 
be to select a different metric that would hopefully use all the queries without being 
dominated. In this paper we examine potential ways to define a priori a metric to 
summarize a set of raw observations when potentially large discrepancies could occur 
in the value set as is potentially the case in a decision-support benchmark. In 
particular we will look into the choice made by the subcommittee who designed the 
TPC-D benchmark in tackling with this problem. We will also show that the only 
valid a priori metric for a decision-support benchmark is the arithmetic mean.   

The paper is organized in 6 sections including this introduction. In section 2 we 
provide background information on the problem of choosing a metric. Section 3 
examines potential solutions to the general problem while section 4 looks at the actual 
metric used by the TPC-D and examines some of the consequences of this choice. In 
section 5 we make the case for the arithmetic mean being the only valid alternative for 
a single-stream decision-support metric. Finally, a short section summarizing the 
conclusions of this study is provided. 
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2   Background 

In the case of TPC-D, the subcommittee in charge of defining the benchmark chose an 
interesting approach for the definition of the single-stream metric based on the 
geometric mean but with a twist. The TPC-D benchmark specification including the 
metric is described in [1]. The TPC-D benchmark (now obsolete and replaced by the 
TPC-H benchmark) was defined in the early nineties and, at this time, the geometric 
mean enjoyed a deserved popularity as a metric in benchmarks. This popularity can 
be traced to a paper in which the authors showed that the only correct metric to 
summarize normalized benchmark results is the geometric mean [2]. The key here is 
“normalized”. The numbers to be summarized in the case of a single-steam decision-
support benchmark such as TPC-D are elapsed times i.e. raw numbers and therefore 
not normalized. In [5] for instance, it is argued that the arithmetic mean should be 
used when averaging times. Therefore the use of the geometric mean in this case 
cannot be justified on this basis unlike for the Spec benchmark (see [3] for a 
discussion on the relative merits of the arithmetic mean, geometric mean and 
harmonic mean in this context). 

Aside for the so-called lack of sensitivity to outliers the geometric mean has an 
interesting property established in section 3. It treats all relative changes in the same 
way – for instance, if an observation varies by 10% the relative change in the 
geometric mean is the same whether the observation is large or small.  The arithmetic 
mean has the same property but only for “absolute” improvements.  

The subject of finding a single measure of performance has been debated for quite 
a while in the area of computer performance (see [2], [6], [7] and [8]) but the issue is 
eventually resolved by paying attention at the type of data is under review.  The 
particular subject of decision-support metrics has been examined in [4]. 

3   Characteristics of Central Tendency 

There are three basic metrics that are commonly used, (1) the arithmetic mean or 
simple average, (2) the geometric mean and (3), the harmonic mean – they are usually 
associated with basic operations namely addition, multiplication and division In this 
paper we will place things in a more general context. First we start with a set of n 
positive numbers (elapsed times) x1, x2, up to xn. We assume that these observations 
will be weighted equally in all cases. We usually denote the arithmetic mean as m, the 
geometric mean as g and the harmonic mean as h. The usual formulas for these 
metrics are 
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Given a monotonic function φ one can define a measure of central tendency 
associated with this function as follows (see also [4] and [9]) called phi-average: 
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The formulas for the usual metrics can be represented this way using the function 

φ(x)=xr hence we will name the phi-average associated with r-th power function the 
r-th power average. The arithmetic mean is obtained for r=1, the harmonic mean for 
r=-1 and the geometric mean is obtained as a limit case for r=0. Taking the logarithm 
in both sides of equation 2 we obtain an equivalent expression for the geometric 
mean; 
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To see how this formula is a limit case of equation 4 with φ(x) being x to the power r 
when r tends toward zero use the fact that 

)(log1log roxrex xrr ++==  (6) 

Assume that all observations in (5) are constant except say xk and take the derivative 
on both sides. We get dg/g=(1/n)(dxk/xk) and the results still holds approximately  
when the differentials dg and dxk are replaced by  finite quantities. This establishes 
the geometric mean property mentioned in section 2 that a relative variation in an 
observation will result in the same overall variation of the geometric mean whether 
the observation is small or large. 

Also, it can readily be established that the r-th power average is an increasing 
function of r so that the geometric mean is always lower than the arithmetic mean [2]. 
Whether we look at formula 2 or formula 5 we see that there is a very undesirable 
property of the geometric mean. If just one observation is equal to zero the geometric 
average of all the quantities is equal to zero. In other words the geometric mean puts 
overwhelming emphasis on small observations in cases where large or regular values 
are mixed with very small values. In order to solve the problem and as suggested in 
[4] we could use any r-th power average with r between 0 and 1 – for instance r=1/2. 
The corresponding formula for the one-half power average s is 

( )221 ... nxxxs ++=  (7) 

While s avoids the pitfall of the discontinuity for small values exhibited by the 
geometric mean and reduces the influence of outliers in the high end, it is not familiar 
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like the harmonic mean, the geometric mean, the arithmetic mean or even the 2-nd 
power or square power average which is so popular in Statistics. Also, it does not 
have meaning in terms of the problem at hand since it has the dimension of a time 
(like the geometric mean) but it is not a time (also like the geometric mean). 

Another way to deal with the basic problem exhibited by the geometric mean with 
observations close to zero is to avoid those observations by adding a small positive 
quantity to all observations e.g. 1/1000 or 1/100. We can define a log-based mean 

within the framework of the φ-average by using the function φ(x)=log(x+a) where a 
is a fixed positive integer. This new measure of central tendency ga is called the  
a-displaced geometric mean and is given by the formula: 
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n
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If a is very small, this new average has “almost” all the interesting properties of the 
geometric mean and avoids its unpleasant pitfall. In [4] we have shown that, for a 
given set of observations, the a-displaced geometric mean is an increasing function of 
a. So for any positive a it will be always larger than the geometric mean g. Also the 
arithmetic mean is a limit case for the a-displaced average when a becomes very 
large. Factoring a out of all quantities under the log in equation 8 and remembering 
that, when x is small log(1+x) is equivalent to x leads to (9) when a tends toward 
infinity: 
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Therefore, when a becomes large, the a-displaced average tends toward the arithmetic 
mean. In summary the a-displaced mean is an increasing function of a and is always 
between the geometric mean and the arithmetic mean. This makes this metric a 
perfect alternative among log-based measures. 

4   The TPC-D Single-Stream Metric 

The TPC-D benchmark consisted of 17 queries numbered Q1 through Q17 and two 
refresh functions UF1 and UF2. The single-stream metric is a “query per hour” rate 
using the inverse of the geometric mean of the query times. However, the TPC 
subcommittee in charge of developing the benchmark realized that very small query 
times would pose a problem opted for the following solution: the minimum query 
elapsed time that can be reported cannot be less than the largest observed query time 
divided by 1000. The a-displaced geometric mean was considered but not retained 
because it used values that were not observed (“measured” plus the displacement 
would be actually used instead of the “measured” values).  
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Very soon after the TPC-D benchmark became official, vendors started noticing 
that it was more advantageous to get better performance from the small queries. As a 
result, to get a good number one would need to have a lot of very small elapsed times 
in order to boost the power number based on the geometric mean. In order to increase 
TPC-D power stream results, a number of techniques were developed such as 
semantic query optimization, materialized join structures and finally aggregated 
single table and aggregated join structures. The use of materialized aggregated 
structures eventually made the benchmark useless and it was retired in 1999 leading 
to the TPC-H benchmark that prevents the use of materialized structures.  Even 
though the “minimum query time” rule is still in vigor in the TPC-H benchmark it 
never applied since the inception of the benchmark. 

Both the a-displaced average and the TPC-D single-stream metric are geometric- 
based and provide undue advantage to very small query times although they avoid the 
main pitfall. The TPC-D metric gives extra incentive to lowering the largest query but 
either one would be very harmful in the following case. Let us consider a real-life 
case of an optimization of TPC-D benchmark query 1, a full scan of the lineitem table 
with a large aggregation. With an easily defined pre-aggregated structure the query is 
reduced to scan of the structure. At scale factor 100 the size of the table is about 600 
million rows while the structure is only a few thousand rows. As a result, the elapsed 
time goes from minutes to less than a second while the updating of the small structure 
has virtually no impact on the inserts (UF1) and deletes (UF2). To illustrate the 
impact of the approach assume for the sake of argument that all query times are 100 
seconds. With query 1 time going to 0.2 second the arithmetic mean goes from 100 
second to 95 seconds – a 5% improvement - while the geometric mean goes from  
100 seconds to 72 seconds – a 28% improvement. Had the arithmetic mean been used, 
the hyper-inflation in single-stream metric may not have occurred and it is even 
possible that the relative rankings of the results would have been the same – this point 
is made in a different context in [5]. 

5   The Case for the Arithmetic Mean 

In addition to its hyper-sensitivity to small values the geometric mean is difficult to 
“sell” especially in the context of a decision-support benchmark. The first difficulty is 
its relatively complicated formula. But the main problem is that it does not relate to a 
physical quantity that can be readily understood by users. In the context of decision-
support, elapsed times are what a system is measured against. In a single-stream 
context where a number of queries are run back to back only the total elapsed time 
and the average query elapsed time have physical meaning. Elapsed times are 
absolute numbers and the only operations that make sense for users in this context are 
additions. In the sequel we show that under these conditions the only valid metric is 
the arithmetic mean.   

In [2] the authors demonstrated that the geometric mean was the only valid metric 
to summarize normalized numbers. Using a similar argument we will show here that 
the only valid metric to summarize single-stream elapsed times in the context of a 
decision-support benchmark is the arithmetic mean. We will first establish properties 
that such a metric f(x1,x2,..,xn) should have.   



 Issues in Benchmark Metric Selection 151 

If all observations are equal to some value a then the metric itself must be equal to 
a. In other words, whatever the value of a 

aaaaf =),...,,(  (11) 

Since all queries must be treated equally then any permutation of the values x1, x2,..,xn 
must provide the same value, i.e. for all permutations ai1, ai2, .. ain. 

),..,,(),..,,( 2121 ninii aaafaaaf =  (12) 

Finally, we want the metric to have meaning in the context of absolute elapsed times 
i.e. we want an additive property. Indeed, if we were to run the same benchmark on 
two machines, then, to aggregate the results we should be able to add the individual 
metrics obtained on the individual machines, i.e.   

),...,,(),..,,(),...,,( 21212211 nnnn bbbfaaafbababaf +=+++  (13) 

Using the properties above it is very easy to see that 

),...,0,0(...)0,..,0,,0()0,..,0,(),...,,( afafafaaafa +++==  (14) 

Hence 
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and consequently, the metric is equal to the arithmetic mean. 

6   Conclusion 

In this paper we have summarized the arguments for and against the arithmetic mean 
and the geometric mean. We have also provided esoteric metrics similar to the 
geometric mean – some new - but we made the case for simplicity and meaning. In 
the context of decision-support we have shown through the example of the TPC-D 
single stream metric that a choice made a priori due to the nature of industry 
standard benchmarks led to unexpected results. Finally, we hope to have shown that 
the best way to handle a metric for a decision-support benchmark is the arithmetic 
mean. 
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Abstract. Benchmarks that focus on running queries on a well-tuned

database system ignore a long-standing problem: adverse runtime con-

ditions can cause database system performance to vary widely and un-

expectedly. When the query execution engine does not exhibit resilience

to these adverse conditions, addressing the resultant performance prob-

lems can contribute significantly to the total cost of ownership for a

database system in over-provisioning, lost efficiency, and increased hu-

man administrative costs. For example, focused human effort may be

needed to manually invoke workload management actions or fine-tune

the optimization of specific queries.

We believe a benchmark is needed to measure query execution robust-

ness, that is, how adverse or unexpected conditions impact the perfor-

mance of a database system. We offer a preliminary analysis of barriers

to query execution robustness and propose some metrics for quantify-

ing the impact of those barriers. We present and analyze results from

preliminary tests on four real database systems and discuss how these

results could be used to increase the robustness of query processing in

each case. Finally, we outline how our efforts could be expanded into a

benchmark to quantify query execution robustness.

Keywords: robust query processing, robust query execution, data ware-

houses, operational business intelligence.

1 Introduction

Database system performance may vary widely and unexpectedly in response
to runtime conditions. We understand robustness as the ability of the database
to perform well under a variety of conditions, including adverse runtime con-
ditions such as unexpected data skew or resource contention. While traditional
benchmarks run specific queries on well-tuned databases and measure their raw
performance, we believe that measuring robustness is as or more important: it
is seldom possible to tune a database for all of the runtime conditions that will
be encountered. Quantifying how performance degrades across a wide variety of
conditions highlights situations where a small increase in adversity results in an
inordinate impact on performance.

We distinguish three types of robustness. Query optimizer robustness is the
ability of the optimizer to choose a good plan as expected conditions change,
for example, as statistics change to reflect a growing database. Query execution
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robustness is the ability of the query execution engine to process a given plan
efficiently under different runtime conditions. It can be used to examine a single
plan or operator or to compare different algorithms for the same logical operator,
such as join or sort, and identify opportunities for algorithmic improvements.
Workload management robustness characterizes how vulnerable database system
performance is to unexpected query performance. For example, if skew causes a
query to use a thousand times more resources than expected, what is the impact
on the system as a whole? In this paper, we focus on how to test for query
execution robustness.

Encountering unexpected and adverse conditions has become more and more
common recently. Anecdotal reports from multiple database vendors and cus-
tomers indicate that the same query often performs differently when run at
different times: different times of day, concurrently with different other queries,
or sometimes even when conditions appear to be the same. The varying per-
formance usually comes as an unexpected and often unpleasant surprise. As
data warehouses become more operational, mixing transactions, report queries,
maintenance, and ad hoc queries in increasing numbers, the number of surprises
is increasing, too. The goal of robustness testing is to get a handle on these
surprises — and eliminate as many as possible.

Database software developers who measure the impact of adverse conditions
can focus on making their algorithms more robust and on containing the sever-
ity of performance problems. They can use robustness tests to motivate, track,
and protect algorithmic improvements. Database hardware vendors can use ro-
bustness tests to improve their sizing and provisioning tools: by gauging the
cost of not having enough resources, they can make intelligent decisions about
how much hardware is needed for a given workload. Finally, customers can use
robustness results to choose databases with reliable performance, knowing that
they will be able to add or change their workloads at will without significantly
increasing their total cost of ownership.

Measuring robustness is difficult. To evaluate robustness, we need to run the
same query using the same physical implementation under many different sets
of conditions.

Traditional performance measures focus on the impact that a system config-
uration has on performance. For example, potential customers might use TPC
benchmark results in order to derive a performance per dollar spent on software
and hardware metric for comparing the performance of databases from various
vendors. Our intent is to consider the administrative price for performance — to
develop a metric that captures the relationship between cost of ownership and
database performance. Our hope is that future database benchmarks include
measures of query robustness.

The rest of the paper is structured as follows. In Section 2, we describe existing
benchmarks and how they differ from a robustness benchmark, as well as other
work in robustness. In Section 3, we identify the different types of adverse condi-
tions that can affect query execution robustness and how to vary them together
to measure robustness. We present several metrics for quantifying robustness in
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Section 4. We then present robustness results for sort queries on three different
database systems in Section 5. Finally, in Section 6, we offer our conclusions
about the importance of measuring and achieving robust query processing. We
hope that future benchmarks will include measures of robustness.

2 Related Work

2.1 Current Benchmarks

We want to measure how database execution is impacted by adverse condi-
tions. Current benchmarks measure how fast a database can complete some
well-defined mix of queries under a single set of conditions. For example, the
TPC suite of commercial database benchmarks specifies standard workloads and
scenarios that can be used to provide relative price/performance comparisons of
database systems [14,15]. However, by reporting the speed for compiling and
running each query, these benchmarks do not isolate query processing perfor-
mance: they combine the effects of the query optimizer, the query execution
engine, and the hardware into a single number. We control for the effects of the
query optimizer by forcing a particular plan. Although the hardware affects the
performance, we are more concerned with the shape of the performance curve
than the actual speed numbers. Different scale factors of these benchmarks can
be used to control the amount of data processed, but there are no controls for
resource availability, e.g., the mount of memory or I/O contention.

2.2 Query Processing Robustness

A number of researchers evaluate the runtime performance of implementations of
individual operators but do not attempt to use this information to compare how
performance degrades as conditions change. For example, Schneider and DeWitt
analyze and compare four parallel join algorithms under a variety of conditions,
including a comparison of how their performance changes with varying amounts
of available memory [18]. Gupta et al. compare the performance of property map
and bitmap indexing techniques, including a discussion of how parameters such
as block size, selectivity, and cardinality impact performance [7]. Cole and Graefe
define primitives that enable dynamic plans to be constructed at compile-time
while postponing certain decisions until run-time so as to accommodate errors in
selectivity estimation, unknown run-time bindings for host variables in embedded
queries, and unpredictable availability of resources [3,5]. However, the focus of
such efforts is entirely on the run-time behavior of the operators themselves,
as opposed to our own goal of enabling the evaluation and comparison of the
robustness characteristics of different operator implementations.

2.3 Query Optimizer Robustness

Many researchers focus on the query optimizers compile-time choices and pro-
pose methods by which the query optimizer can detect and compensate for errors



156 J.L. Wiener, H. Kuno, and G. Graefe

in cardinality estimation. Systems like COMET and the IBM LEO (LEarning
Optimizer) and, more recently, Microsoft SQL Server use monitoring and feed-
back to repair incorrect cardinality estimates and statistics [12,19,20]. Babu,
Bizarro, Kabra, Markl, and their co-authors propose different ways to recover
from bad cardinality estimates by dynamically re-optimizing or otherwise dy-
namically changing the query’s plan [1,2,13]. Similarly, Ioannidis et al. propose
parametric query optimization methods whereby multiple alternative plans are
identified at compile-time, after which an actual plan is selected at run-time
when the actual parameter values are known [10].

2.4 Database System Robustness

There are also related efforts to achieve database system robustness that treat
query processing internals as a black box. Robust physical design endeavors
to make good physical design decisions despite uncertain information about
workload characteristics [4]. Workload management creates policies to cope with
unpredictable queries while still meeting service level objectives, but does not
modify the database engine [11].

2.5 Visualizing Robustness

Haritsa et al. [9,8,16,17] visualize query optimizer robustness. Their papers graph
the compile-time choices of database query optimizers over the relational selec-
tivity space. They then examine the area each query plan covers as well as the
estimated cost of those plans. In [9], they explore how to identify ”robust” plans,
by which they mean a single plan whose estimated cost is within a certain thresh-
old (e.g., 20%) of all of the ”best” plans across the entire selectivity space. If no
single plan meets that threshold, then they would ”fail” to find a robust plan
and stick with the original plan.

Our interest, on the other hand, started with capturing and visualizing query
execution robustness. In [6] we graph runtime measurements of how a simple
selection query plans performance degrades as work increases or resources de-
crease. In this paper, we extend the work to more formal metrics to evaluate the
robustness of a plan and to more types of queries.

3 Adverse Runtime Conditions

Robustness tries to quantify how algorithms degrade under adverse runtime
conditions. In this section, we spell out the different kinds of adverse conditions.
We then consider how to vary these conditions individually and together to
understand their impact on an algorithm’s performance.

3.1 What Are They?

Adverse conditions fall into three broad categories. The first, the size of the input,
stems solely from the database contents. The other two occur when multiple
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queries are run simultaneously. Any two queries (or any other programs run
on the same machine as the database system) may create resource contention.
Concurrency conflicts occur only when two simultaneous queries require the same
data. We discuss each category in turn.

Different Input Sizes. Some algorithms are reputed to run in O(n) (or O(nlogn)
or O(n2)) time, where n is the number of rows in the input data. Testing for ro-
bustness aims to confirm that the algorithm’s actual performance curve is linear
(or logarithmic, etc) — and if not, where it deviates from linear and by how much.
We therefore need to run the algorithm for multiple values of n.

Scan is an example of an algorithm whose behavior is usually, but not necesar-
ily always, linear. Read-ahead or sharing among concurrent scans might break
down depending on table or index sizes. Such break-downs might lead to very
surprising query performance. Its input size can be controlled either by changing
the size of the scanned table or by controlling the fraction of the table that is read
(using query selectivity). Note that varying selectivity to control the amount of
data needs to be done carefully: if non-contiguous rows are required or an index
is used, the effect is different than that of simply scanning a smaller table. In
our experiments in Section 5.2, we use tables of different scale factors to vary
the input size.

To test the robustness of an operator with two inputs, such as join, it is
necessary to vary both input sizes, preferably independently.

Resource Contention. Resource contention also affects the execution time of
an algorithm. For example, a sort algorithm that has enough memory to hold
all of its input will run much faster than the same algorithm given half as much
memory as input data. The amount of memory available for an operator to
use, the number of pages in the buffer pool that it can use, and the available
I/O bandwidth may all be constrained by other queries executing concurrently.
(They may also be affected by other processes on the same machine(s) as the
database system.) To test robustness against resource availability, it is necessary
to contrain artificially the amount of the resource available. For example, in some
databases, we can constrain the total size of the buffer pool. We therefore run
the query in isolation multiple times, each time with a different size buffer pool.

Concurrency Conflicts. Concurrency conflicts occur when a query prevents
another query from making progress. Lock conflicts are the most common exam-
ple, other than resource conflicts, which are covered above. In read only scenarios,
lock conflicts are not an issue. However, even data warehouses are moving to-
ward continuous incremental appending and updating of data. So far, we have
been concentrating on measuring the robustness of queries run in isolation. We
therefore do not discuss how to measure lock conflicts here.

3.2 How to Explore Their Impact?

Ideally, we would like to acquire a full picture of how the operators implemented
by the query executor perform across the full spectrum of possible runtime
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conditions. To do this, one could run the same individual test query many times,
systematically varying each potentially adverse condition in turn. In reality, a
benchmark can include only a finite number of queries, and these must complete
in a determinate amount of time. Also, with some database systems, it may be
difficult to control certain runtime conditions.

Our approach is to identify the regions of the space of possible runtime adverse
conditions that are likely to contain features of interest, and to focus our queries
in those regions, while also providing enough coverage over the rest of the space
to acquire a baseline for assessing performance degradation.

In the experiments we present here, we have thus far focused on the relation-
ship between input size and memory contention. Our hypothesis is that memory
contention and disk usage are both heavily influenced by this relationship.

4 Robustness Metrics

We argue that future TPC benchmarks should include “robustness” in their
characterizations of database performance. In the previous section, we discussed
barriers to query execution robustness. In this section, we propose metrics to
characterize how resilient database systems are to these barriers and discuss
how to interpret them.

Traditional performance measures focus on the impact that a system config-
uration has on performance. For example, potential customers sometimes use
TPC benchmark results in order to derive a performance per dollar metric for
comparing the performance of databases from various vendors. Analyzing perfor-
mance per dollar can yield a marginal utility function that indicates how much
additional performance another dollar will purchase for any given price point.
For example, if the data accessed by a set of queries fits into 200 MB of memory,
then the first 200 MB of memory allocated to the workload will result in a much
bigger performance payoff than the second.

Our intent is to develop similar trade-offs for decisions that lead to query
execution robustness. In particular, we focus on how to measure the following
characteristics of query execution robustness:

– Optimality. How much does performance vary between the algorithms used
to implement a given function or plan fragment? How does the cost function
of the implementation being evaluated compare to that of the best known
implementation for any given set of data and runtime resource availability
conditions?

– Consistency. How much does performance of a given implementation of a func-
tionor plan fragmentvaryacrosswidelydiffering runtimeconditions?Are there
regions of runtime conditions where performance is markedly sub-optimal?

– Graceful degradation. To what degree can minor differences in runtime condi-
tions significantly impact performance? For example, is it difficult to make re-
source allocation decisions based on performance expectations because there
are regions where a small change in input cardinality will have an inordi-
nately large impact on performance?
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Fig. 1. Elapsed execution times for three methods of selecting rows from a table. The

amount of memory is fixed. If it were not, we would plot (number of rows) / (amount

of memory) on the x axis.

In order to evaluate these characteristics, we create a set of database query
plans and run each plan repeatedly while varying input sizes and runtime condi-
tions and collecting performance statistics. We then plot absolute performance
against runtime conditions for each plan (e.g., elapsed time against work done
and resources used).

For example, the graph in Figure 1 shows execution times for selecting rows
from a table (TPC-H line items, about 60M rows) for a variety of selectivities
(result sizes) on a well-known database system. Selectivities and execution times
both use logarithmic scales. Query result sizes differ by a factor of 2 between
data points. We will use this experiment as a running example through the rest
of this section.

The performance of three query execution plans is shown. One plan is a tradi-
tional table scan. Its performance is constant across the entire range of selectivi-
ties but for small result sizes it is unacceptably slow compared to the index scans,
which touch only a few pages rather than the whole table. The traditional index
scan, retrieves each row (in random order) as soon as it retrieves its row id from
the index. It is unacceptably slow for moderate and large result sizes because it
needs so many random reads. Its cost is so high that it is not even shown across
the entire range of selectivities. The “improved” index scan algorithm first re-
trieves all of the row ids from the index, then sorts them, then retrieves the rows
in sequential order. The cost of the improved index scan remains competitive
with the table scan for much longer, as long as the set of row ids retrieved from
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the index fits in memory. When that set does not fit in memory, which happens
at the 1/12 selectivity point on the x axis in this experiment, the sort spills to
disk and the elapsed time rises with the amount of data retrieved.

4.1 Optimality

To measure optimality, we plot the best performance of all known algorithms
at each point in the search space. Then, for each algorithm, we calculate the
geometric mean of the algorithm’s performance divided by the best seen perfor-
mance for each measurement point. For example, Figure 2 shows the geometric
mean computed for three query execution plans shown in Figure 1.

Figure 2 shows that traditional index scan performs about ten times worse
than optimal, when averaged over the search space. The improved index scan
and table scan are both, on average, about double the best time (averaged using
geometric mean). This factor of two indicates that there is still significant room
for improvement in the existing algorithms. The improved index scan appears
better than the table scan. However, had we experimented with much larger
input sizes, it is likely that the improved index scan’s performance would have
degraded rapidly as its sort spilled to disk.

4.2 Consistency

To measure consistency, we calculate the variance of the performance of each algo-
rithm and compare it to the variance of the best case performance. For example,
Figure 3 shows the variance of the three execution plans shown previously.
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4.3 Graceful Degradation

In order to evaluate how gracefully performance is impacted as conditions de-
grade, we calculate the marginal utility function, which measures the curva-
ture of the performance graph. Marginal utility lets us answer the question:
how much would a given change in runtime conditions impact performance for
various starting system conditions?

We calculate the first and second derivative of each algorithm’s performance
curve to get its marginal utility. The first derivative captures the impact of
changes in runtime conditions on performance. The second derivative indicates
the rate at which performance changes across runtime conditions. A monotoni-
cally non-increasing marginal utility function indicates a steady rate of change.
However, an ill-shaped (e.g., convex) utility function or an increasing marginal
utility function can indicate an irregularly-spaced search space with local min-
ima that can be expensive to explore. Ill-shaped functions increase the chances
that the query optimizer will select an inappropriate implementation for runtime
conditions.

5 Experiments

To develop our approach, we ran experiments testing the query execution robust-
ness of operator implementations on four instances of three different database
systems. In earlier work [6], we reported on the robustness of selection queries
that used the scan and index-scan operators (and sometimes forms of join to
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combine multiple index scans) of these same database systems. In this paper, we
report briefly on the robustness of sort operators.

The most important factor for the performance of any sort operator is the
ratio of input size to memory. If input data completely fits in memory, then
quicksort can be used; if not, then an external sort incurs I/O costs.

The metrics we described in Section 4 were chosen to answer questions
such as:

– How optimal is performance in various regions? How does each implemen-
tation’s performance compare to that of other implementations in similar
circumstances? How much better could the execution be under a set of given
runtime conditions with a different implementation of sort?

– How consistent is performance across runtime conditions? How does the
number of rows sorted per second vary with input size?

– How gracefully does the sort implementation’s performance degrade as input
data size exceeds allocated memory? If the input data size contains just a
few more rows than fit into memory, does performance plunge?

5.1 Set Up

We wanted to run each query on each system while tightly controlling input sizes
and resource availability. However, it was difficult to control memory allocation:
in one system, the “knob” for memory did not work properly, and in another,
the file system buffered the database I/O, so that the effects of restricting the
database memory where shielded. We therefore held the memory and buffer pool
sizes constant as best we could and cleared the buffer pools (both database and
file system) between queries.

For each system, we ran each query in isolation so that there was no resource
contention. We varied the input sizes such that the smallest input size fit in
the operator’s allocated memory and the maximum size input tested was bigger
than the total memory for the machine. For systems where we could dictate
how much memory was available to sort, we ran each query in isolation while
systematically varying input sizes and allocated memory.

For the first system tested, our data was the TPC-H lineitem table, which we
created at scale factors 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, and 10. The scale
factor 1 table is approximately 1 GB in each database system.

We ran the query select * from lineitem $sf order by $skey asc for each scale
factor sf and for the two sort keys l partkey and l comment, an integer and a
string, respectively. We used each database’s variant of last with the queries to
avoid trying to write or store in memory the entire output of sort.

For the second system we wanted to use the same tables and queries (and
will have done so by the time this paper is published). However, we did not
have the opportunity to load those tables. Instead, we ran queries of the form
select * from facttable where facttable.clusteredindexcolumn < constant order by
facttable.nonindexedcolumn against a custom fact table that was designed to
facilitate testing of this nature. We used the selectivity of the clustered index
column to control the amount of data being sorted.
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5.2 Results for Sort Operator

Figure 4 shows the sort performance on one system as we vary the table size.
The two curves show sorting on the integer vs. string sort keys. Memory was held
constant at 4 MB and the sort implementation spills all of the data to external
runs as soon as the data does not fit in memory. We expected to see a sharp
increase in elapsed time between the approximately 3 and 10 MB tables (scale
factors 0.003 and 0.01). However, the performance curve clearly appears linear.
Why? The answer lies in the file system buffering. Although we were able to
restrict the memory used by the database, the database runs on top of the file
system. The file system automatically used as much of the machine’s 8 GB of
memory as it could to buffer the sort runs. The file system’s buffering degrades
gracefully, spilling just one more page to disk as the runs overflow its buffer pool,
which causes the linear performance curve.

Figure 5 shows the sort performance for a different sort implementation on a
different database system and with a different data schema. For this system, note
the dramatic drop in performance when the data no longer fits in memory. This
cliff indicates that there is a great risk in underestimating the amount of data
and hence amount of memory that the sort needs: being wrong by only a few rows
could cause the sort operation to take nearly five times longer than expected.
Furthermore, while the query optimizer can anticipate such a cliff, its exact
location depends on the amount of memory, which is not known until runtime,
and the amount of data, which is subject to errors in cardinality estimation.
Resource contention can reduce the amount of available memory to a small
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Since we could control memory allocation on this system, we also ran the
sort queries with different memory allocations. Figure 6 shows how performance
degrades as available memory decreases. It illustrates how memory contention
changes the location of the critical point where a small increase in data size
causes a major drop in performance.

6 Conclusions and Future Work

Database administrators today spend a significant amount of time and effort
resolving problems caused by adverse runtime conditions. We propose that future
database benchmarks should consider including robustness in their performance
measures.

Fundamentally, we identify three types of robustness: query optimizer robust-
ness, query execution robustness, and workload managment robustness. Our
focus here is on how to measure and evaluate query execution robustness, which
we define as the ability of the query execution engine to process a given plan
efficiently under a spectrum of runtime conditions.

We have run preliminary tests on a number of different systems, and present
results and initial conclusions. We discuss how to use our measures to evaluate
various aspects of robustness. For example, if you care about how predictable
performance is (e.g., can a small error in estimated cardinality have a large
impact on performance?), look at the curvature of the degradation function. If
you care about the degree to which performance depends on conditions (e.g.,
does performance change dramatically with resource availability?) look at the
slope of the function. If you care about the degree to which performance depends
on the optimizer’s plan choices, compare the performance curves of various plans
for the same query.

We intend that database software developers should be able to use query exe-
cution robustness measures to motivate, track, and protect algorithmic improve-
ments, and that database hardware vendors will be able to use robustness tests
to improve their sizing and provisioning tools. We also believe that execution
robustness measures can inform workload management systems. Last, but not
least, we hope that customers will eventually be able to use robustness measures
to gain an understanding of the total cost of ownership that their workloads will
incur on various database systems.
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Abstract. Data center consolidation, for power and space conservation, has 
driven the steady development and adoption of virtualization technologies. This 
in turn has lead to customer demands for better metrics to compare 
virtualization technologies. The technology industry has responded with 
standardized methods and measures for benchmarking hardware and software 
performance with virtualization. This paper compares the virtualization 
technologies available today and existing benchmarks to measure them. We 
describe some real-life data center scenarios that are not addressed by current 
benchmarks and highlight the need for virtualization workloads that incorporate 
database-heavy computing needs. We present data from experiments running 
existing TPC database workloads in a virtualized environment and demonstrate 
that virtualization technologies are available today to meet the demands of the 
most resource–intensive database application. We conclude with ideas to the 
TPC for a benchmark that can effectively measure database performance in a 
virtual environment. 

Keywords: virtualization technology, virtual machines, virtual machine 
monitors, server consolidation, software systems, performance, benchmarking. 

1   Introduction 

Data centers are adopting virtualization technologies for the many benefits they offer: 
power and space consolidation, live migration, high availability, and fault tolerance. 
A growing number of users are running resource-intensive database applications 
inside virtual machines (VM). Not surprisingly, there is now a critical need for 
benchmarks to evaluate the database performance in a virtual environment.  

In this paper, we explore how virtualization has evolved from being a platform to 
host multiple operating environments on proprietary hardware into a technology 
which supports vendor-independent operating systems on generic x86 servers. We 
show how virtualization technologies are used and how this in turn has triggered 
innovations in hardware, operating system and application software technology.  

We present an overview of benchmarks available for evaluating virtualized 
performance and highlight what is needed to effectively benchmark databases in a 
virtual environment. We present results that show that current virtualization 
technologies can provide excellent performance to VMs running intensive database 
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workloads. Based on this experience, we conclude with ideas to the Transaction 
Processing Council (TPC) for databases benchmarks for virtual environments. 

2   Evolution of Virtualization 

IBM’s VM operating system [4] permitted the execution of a variety of IBM 
operating systems in multiple virtual machines on a single hardware platform. 
Virtualization on the Intel x86 architecture was introduced in the late 1990s [5, 9, 12]. 
What started out as a means of allowing multiple Linux and Windows operating 
systems to execute simultaneously on a single PC has evolved into the availability of 
enterprise-class hypervisor operating systems from multiple vendors, including 
VMware, Microsoft, Xen, KVM, Virtual Iron, etc., enabling users to serve multiple 
operating environments on a single enterprise-class server.  

2.1   Virtualization Technologies 

Virtualization technologies available today vary in how they exploit the 
virtualization-specific hardware features in the latest generation of x86 processors and 
non-x86-based processors, their reliance on paravirtualization (see section 2.3), the 
number of supported guest operating systems, and the richness of the ecosystems 
around the hypervisor. In this paper, we will limit ourselves to x86-based 
virtualization technologies and solutions. 

2.2   How Virtualization Is Used Today 

Originally x86 virtualization allowed a computing enthusiast to run multiple operating 
systems concurrently on a single PC. Virtualization has now grown into an 
indispensible technology and is used to gain improved business efficiencies such as: 

• Consolidating multiple operating environments onto one server. Each VM 
utilizes a fraction of the computing resources of a server, drastically reducing 
capital expenditure. Power, cooling, and space costs are a major concern and 
reducing the number of physical servers also results in lower operating expenses. 

• The ability to migrate a VM [10] to a new physical server while the applications on 
the VM continue to be in use, freeing the original server for maintenance operations 

• The ability to migrate VMs live between hosts allows for a rich set of load 
balancing and resource management features. Virtualization is the fundamental 
enabling technology behind cloud computing. 

• Achieving high availability (HA) by allowing a VM to be restarted on a new 
server if the server running the VM fails [14]. Virtualization-enabled HA allows a 
few generic servers to act as the backup for a large number of active servers 
because the properties of the operating environment are captured in the VM. 

• Fault-tolerance on generic servers without hardware fault-tolerance features [17]. 
Two VMs are run in lockstep as is done in traditional hardware fault-tolerant 
architectures. The Virtual Machine Monitor (VMM) ensures externally-visible 
output, e.g., network packets, are sent out from only one VM, but all VMs 
receive copies of incoming external stimuli, e.g., reads from disk. 
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2.3   Virtualization-Motivated Technology Development 

The x86 architecture was not designed with virtualization in mind. Thus, the earliest 
virtualization technologies relied exclusively on Binary Translation (BT). Later 
advances in the x86 architecture have introduced hardware features that provide 
significant performance improvements over binary translation for many workloads. 

2.3.1   Binary Translation 
VMware’s Binary Translation technology (BT) [2,6], pioneered in 1998, runs the 
guest instructions through a just-in-time binary translator in the VMM. To optimize 
performance, the VMM enables direct execution of the guest’s user mode instructions 
by the processor. User mode instructions should run as fast as they would on native 
hardware. Kernel mode instructions have to be inspected and translated by the VMM 
before execution. Although the term binary translation might suggest a low-
performance, interpretive execution mode, in practice most guest instructions are 
executed without intervention from the VMM. Performance can be well over 90% of 
native performance for guest applications that execute mostly in user mode. 

2.3.2   Hardware Support for Instruction Set Virtualization 
As the popularity of virtualization increased, x86 vendors introduced virtualization 
support features. VT-x from Intel and AMD-V from AMD increased the number of 
guest operating system instructions that can be executed without VMM intervention. 
With VT-x and AMD-V, the processor runs the guest’s instructions without an initial 
inspection by the VMM. When one of the privileged instructions is encountered, the 
execution stops, and control is passed to the VMM to emulate the instruction against 
the VM state, then the processor resumes executing the guest instructions directly. 

Hardware assist is not only a great contributor to performance, it can simplify the 
implementation of the virtualization infrastructure.  However, HV mode has not 
replaced BT completely. One reason is that HV mode is not always faster than binary 
translation. Switching from direct execution mode to giving the control back to the 
VMM (a VM exit) is an expensive operation [1]. So for certain applications, binary 
translation may be faster than HV. Also, on some older hardware platforms, binary 
translation is the only available option.  

2.3.3   Hardware Support for Memory Virtualization 
The dependence of DBMS workload performance on good memory management is 
well understood and accounted for in DBMS software design. Adding the hypervisor 
in the software stack has a significant impact in this area: the guest OS no longer 
directly controls physical machine memory and the hypervisor is responsible for 
managing how this memory is shared by several VMs [18,21]. This has lead to the 
evolution of hardware support for memory features in current processors. 

Operating systems translate virtual addresses to physical addresses (VA to PA) 
using page tables. But the guest VM’s PAs have to further be translated to the host 
system’s Machine Addresses (MA). To facilitate this additional step without hardware 
support, traditional VMMs maintain a set of shadow page tables that map the VA 
directly to MA. The VMM loads the VA-MA translation into the TLB such that when 
the guest is running, a TLB hit on a memory access will result in the direct generation 
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of the MA, and the correct host memory location is accessed. This is done without the 
intervention of the VMM except for certain manipulations of the guest page tables. 
However, handling of these rare cases by the VMM is expensive.  

Intel’s EPT and AMD’s RVI allow the VMM to maintain a nested page table of 
PA to MA mappings, and expose that to the hardware. On a TLB miss, the processor 
uses both the guest VM’s page table  and the VMM’s nested page table to service the 
miss. This drastically reduces the need for the VMM to intervene in the manipulation 
of page tables. The need to walk two page tables increases the cost of TLB miss 
processing. For most application, the net is a positive gain in performance [16]. 

2.3.4   Paravirtualization 
While it is possible to run an unmodified guest operating system in a VM, it may not 
always have the best performance. Modification of the guest operating system for 
better performance is called paravirtualization. 

A common use of paravirtualization is in the design and implementation of 
virtualization-aware device drivers. In VMware ESX environments, for example, 
users typically load paravirtualized drivers for the mouse, keyboard, screen, and the 
networking interface card [19]. There is also a paravirtualized HBA driver available 
within VMware vSphere 4. Microsoft Hyper-V features Integrations Components 
such as VMBUS (transport for Synthetic devices), Time Sync (used to keep VM 
clocks in sync with the root partition sometimes called the host), Video Driver, 
Network Driver, and Storage Driver [8]. 

Another use of paravirtualization is modifying the guest kernel to insert hypercalls 
to pass critical information to the VMM. Microsoft Windows Server 2008, as a guest, 
has Enlightenment features that allow it to use hypercalls to optimize its performance 
on top of the Hyper-V hypervisor. VMI for Linux SLES 10 from VMware is a similar 
feature. The Xen hypervisor also uses paravirtualization for high performance [22]. 

Paravirtualized guests enable virtualization of a guest in the absence of hardware 
support for instruction execution, and can have better performance. This requires that 
the guest operating system be available in paravirtualized form for the hypervisor. 

3   Benchmarking Virtualization Technologies 

The popularity of virtualized systems has engendered a need for benchmarks designed 
specifically to measure performance in such environments. Traditional benchmarks 
are typically not good choices to measure the performance of a virtual server. To see 
why, consider what makes virtual servers useful. A typical server in a virtual 
environment runs multiple applications, under a variety of operating systems, with 
none of the applications fully utilizing the server. In contrast, traditional benchmarks 
aim to maximize the performance of the server by fully utilizing the server under a 
single operating system, typically with a single application. A virtualization system 
benchmark needs to provide a measure of how well the system performs in the 
environment that makes a virtual server valuable. 
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3.1   What’s Available Today? 

Server consolidation typically collects several diverse workloads onto a single 
physical server. This approach ensures that all system resources such as CPU, 
network, and disk are more efficiently utilized. In fact, virtual environments tend to 
function more smoothly when resource demands are balanced across multiple 
resources. Several benchmarks have been developed or proposed for virtual systems. 
Below is a survey of these benchmarks, and their strengths and weaknesses. 

3.1.1   VMmark 
VMware’s VMmark was developed and launched in 2007 [13] and is designed to 
benchmark the performance of virtualization software and hardware. It is not 
designed as a benchmark of any other software component. The strength of VMmark 
is its public acceptance, and its ability to capture some important benefits of 
visualization technology: consolidation of applications, and the ability to measure the 
performance of a heterogeneous environment.  

The unit of work for a benchmark of virtualized consolidation environments can be 
naturally defined as a collection of VMs executing a set of diverse workloads. The 
VMmark Benchmark refers to this unit of work as a tile. The total number of tiles that 
a physical system can accommodate gives a coarse-grain measure of that system's 
consolidation capacity. This concept is similar to some server benchmarks, such as 
TPC-C, which scale the workload in a step-wise fashion to increase the system load. 

Tiles are relatively heavyweight objects that cannot by themselves capture small 
variations in system performance. To address this, both the number of tiles and the 
performance of each individual workload determine the overall benchmark score. 

When a tile is added, workloads in existing tiles might measure lower performance, 
but if the system has not been overcommitted, the aggregate score, including the new 
tile, should increase. The result is a flexible benchmark metric that provides a 
measure of the total number of workloads that can be supported by a particular system 
as well as the overall performance level within the VMs. 

Table 1. VMmark Workload Summary 

Workload Application Virtual Machine Platform 
Mail server Exchange 2003 Windows 2003, 2 CPU, 1GB RAM, 24GB disk 
Java server SPECjbb®2005-based  Windows 2003, 2 CPU, 1GB RAM, 8GB disk 
Standby server None  Windows 2003,1 CPU, 256MB RAM, 4GB disk 
Web server SPECweb®2005-based SLES 10, 2 CPU, 512MB RAM, 8GB disk 
Database server MySQL  SLES 10, 2 CPU, 2GB RAM, 10GB disk 
File server dbench SLES 10, 1 CPU, 256MB RAM, 8GB disk 

3.1.2   SPECvirt 
SPECvirt, a virtualization benchmark, is under development by the Standard 
Performance Evaluation Corporation (SPEC), a standards organization established in 
1988. SPEC is a successful standards body publishing hundreds of results annually 
with their various benchmarks. SPEC is quick to respond with the development and 
launch of new benchmarks as new technologies have emerged. Some examples are 
SPECweb, SPECjAppserver and SPECpower.  
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SPECvirt is SPEC’s latest endeavor to address the need for a virtual benchmark. 
SPECvirt aims to be a benchmark that will model server consolidation of commonly 
virtualized systems such as mail servers, database servers, application servers, web 
servers, and file servers, providing a means to fairly compare server performance 
while running a number of VMs, producing a benchmark designed to scale across a 
wide range of systems and supporting hardware virtualization, operating system 
virtualization, and hardware partitioning schemes for server consolidation scenarios.  

Though the details of the SPECvirt specification aren’t public, information has 
been presented that shows SPECvirt will use a tile concept similar to VMmark.   
SPECvirt has some clear advantages over VMmark – it is developed and governed 
under a standards body.  Since it is being based on SPEC workloads that use open 
standards it may address scenarios not covered by the current VMmark benchmark. 
SPECvirt is expected to launch in the second half of 2009. 

3.1.3   vConsolidate 
IBM and Intel developed vConsolidate [3] in 2007 as a benchmark for virtualization 
users. vConsolidate runs multiple instances of consolidated database, mail, Web and 
JAVA workloads in multiple virtual CPU (vCPU) partitions on Intel-based System x 
servers. A fifth, idle VM is also present during test. vConsolidate refers to a single 
collection of these five VMs as a consolidate stack unit (CSU). Depending on the type 
of server and its available resources, testers can choose to run one or more CSUs. 

The typical goal, as in VMmark also, is to run enough CSUs to push the server 
under test to its maximum capacity by consuming 100 percent of the CPU capacity or 
very close to it. The vConsolidate workload comes with four sets of VM specification, 
which it calls profiles. These profiles define key factors for each workload VM 
including virtual CPUs, virtual RAM, etc. 

3.1.4   Other 
vApus Mark I developed and introduced earlier this year by Sizing Server Lab is run 
internally only by the developer and another collaborating company and not available 
to the general public. With one OLAP workload, one DSS workload and two heavy 
website workloads combined in one tile, vApus Mark attempts to focus on heavier 
service oriented applications. Also worth mentioning is vServCon developed for 
internal use by Fujitsu Siemens Computers. vServCon uses a framework that is 
similar to vConsolidate and consolidates already established benchmarks in order to 
simulate the load of a virtualized consolidated server environment. Three proven 
benchmarks are used, which cover database, application server and web server 
application scenarios.  

3.2   TPC’s Role in Benchmarking 

The TPC has been in existence since 1988. Over the last 20 years the TPC has been 
successful in creating benchmarks that have been primarily focused on the 
performance of computer systems and databases. Its online transaction processing 
(OLTP) benchmarks and Decision Support benchmarks (TPC-C and TPC-H being the 
most popular) have been successfully used by top computer system and database 
vendors to showcase the steady development of technology in various areas. These 
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benchmarks have a performance component and a price component as part of the end 
result which are two key data points that help customers make an objective decision 
when purchasing these systems.  

The first TPC-C result published in September, 1992 measured 54 tpmC 
(transactions per minute for the C benchmark) with a cost per tpmC of $188,562. As 
of June 2009 the top result is 6,085,166 tpmC at $2.81 per tpmC. These results 
demonstrate the technological advances in computer systems and databases in terms 
of real world performance and the cost improvements of these systems. A similar 
explosion can also be seen in the number of results for the TPC-H benchmark. The 
intelligent and well thought-out design of these benchmarks supports  the scaling of 
workloads as servers grow in power. The scaling factors built into these benchmarks, 
such as number of users and the size of the database tables, increase proportionally 
with the increasing power of the system to produce higher transaction rates. 

Both TPC-C and TPC-H have gained widespread acceptance as the industry's 
premier benchmarks in their respective fields (OLTP and Decision Support). But as 
the challenges in the industry take a turn from a demand for higher performance to 
consolidation of power and space, computer vendors have responded with newer 
technologies like virtualization. Once again the TPC has an opportunity to formulate a 
workload to address benchmarking needs in the virtualized environment.  

3.3   What’s Missing? 

Benchmarks and workloads must continually be enhanced to keep them relevant to 
real world environments, which today include virtual environments. Most virtual 
benchmarks today cover consolidation cases; none are aimed at transaction processing 
or decision support applications, the traditional areas addressed by TPC benchmarks. 
These areas are a large segment of the application space being virtualized today.  The 
challenge is no longer successful consolidation of a set of applications running on 
lightly loaded physical servers. The new frontier is virtualization of resource-intensive 
workloads, including those which are distributed across multiple physical servers. 
None of the above virtual benchmarks available today measure the database-centric 
properties that have made TPC benchmarks the industry standard that they are today. 

4   Benchmarking Database Workloads  

Ideas and possibilities for benchmarking database-heavy workloads in a virtualized 
environment abound. In DBMS intensive applications, Business Intelligence (BI) and 
On Line Transaction Processing (OLTP) workloads lead the list in IT spend value. BI 
is a broad category of applications and technologies for gathering, storing, analyzing, 
and providing access to data to help enterprise users make better business decisions. 
BI applications include the activities of decision support systems, query and reporting, 
online analytical processing (OLAP), statistical analysis, forecasting, and data mining.  

Similarly in a classic 2-tier data warehouse architecture, the source data warehouse 
is on an enterprise-class server and the many less demanding data marts, specific 
snapshots of the data warehouse, are on smaller servers. As these configurations move 
towards server consolidation, virtualization of all data marts on a single virtualized 
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system is often an option. Consolidation of the source data warehouse with a selection 
of data marts on a single server, based on locality requirements, is another option. 

Given the volatility of data in data warehouses, Operational Business Intelligence 
(OBI) is now a much needed capability for many businesses. OBI is the ability to 
perform action on data that makes sense to the business, when it makes sense to 
perform that action. This involves technology that assures right-time data arrival, 
coupled with neural nets to put the current transaction into "context", and then 
produce an actionable result for the business to operate from. Research and innovation 
in the area of dynamic creation of VMs [7] makes it possible for data marts to be 
created on VMs dynamically on an as-needed basis.  

A large percentage of database applications have a multi-tiered structure. TPC-App 
models one such class of applications. When each tier is mapped to a single VM this 
results in great flexibility with respect to the physical location of the entire 
application. To generalize further, this applies to any application or workflow with 
multiple distinct and serial steps. For example, data is periodically pulled from 
operational databases and piped to warehouses. Operational data may simply be rolled 
up into summary form for storage in the warehouse but often undergoes other, more 
complex, transformation. The operational and warehouse databases are most likely to 
be on different servers. When run within VMs, each tier or phase in a workflow can 
be isolated and yet run on the same physical server. This is a special case of 
consolidation: the difference is presence of the data traffic between VMs. Current 
virtualization benchmarks do not take this aspect of virtualization into account. 

5   Performance Evaluation of Database Workloads 

This section presents results from benchmarking database applications at VMware. 
We used workloads derived from TPC benchmarks to compare the performance of 
virtual systems to physical machines, and to showcase the consolidation benefits of 
virtualization. We used non-comparable implementations of the TPC-C1 and TPC-E1 
benchmarks that we refer to as the order entry workload and the brokerage workload.  

The test cases are classified based on the number of VMs run on the server (single 
vs. multiple VMs) and the total resources consumed by the VMs (under committed vs. 
fully committed). Table 2 summarizes the test environments (For detailed descriptions 
of the test environment, see [15,20]): 

The following metrics were used as indicators of VM performance 

• Ratio-to-native: throughput of a single VM as a percentage of the throughput 
on a physical environment  

 
                                                           
1 The Order-Entry benchmark is a non-comparable implementation of the TPC-C business 

model; our results are not TPC-C compliant, and not comparable to official TPC-C results. 
TPC requires that we disclose deviations from the benchmark specification. The deviations 
from the specification are: batch implementation and an undersized database for the observed 
throughput. The Brokerage benchmark is a non-comparable implementation of the TPC-E 
business model; our results are not TPC-E compliant, and not comparable to official TPC-E 
results. Deviations from the TPC-E specification:  an undersized database for the observed 
throughput in the multi-VM experiments.  
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Table 2. Configuration used for order entry and brokerage workload experiments 

Order entry 
workload 

8-core server with Intel processors 
Oracle 11g R1 DBMS; RHEL 5.1; VMware ESX 4.0 

Brokerage 
workload 

8-core server with AMD processors 
MS Windows Server 2008; MS SQL Server 2008; VMware ESX 4.0 

 

Fig. 1. Brokerage workload throughput of under committed single VM 

• Fairness: throughput distribution for individual VMs in a multi-VM test  
• Scale-out performance: cumulative throughput of VMs in a multi-VM test  

5.1   Under-Committed Single VM 

Hypervisors can offload the processing of tasks such as networking and storage I/O to 
idle processors. Running an under-committed single VM highlights this capability. 

As an example, running the order entry benchmark on a 4 vCPU VM delivers ~8% 
higher throughput than in the fully-committed case. The brokerage workload running 
on a 2 vCPU (virtual CPU) VM on an 8 pCPU (physical CPU) host performs at 92% 
of physical machine performance. Figure1 shows the performance relative to native 
for 1,2 and 4 vCPU VMs running the brokerage workload on an 8 pCPU server. 

5.2    Fully Committed Single VM  

In this section, we describe results from a fully committed VM containing 8 vCPUs. 
On an 8 vCPU virtual running the order entry workload, we achieved 85% of native 
performance. Similarly an 8 vCPU VM using the brokerage workload performed at 
86% of native performance. Figure 2 represents the performance relative to native for 
a 1, 2 and 4 vCPU VM running the order entry workload on a physical system booted 
with 1 , 2 and 4 pCPUs.  
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Fig. 2. Order Entry workload throughput of fully committed single VM 

Table 3. Native and VM order entry workload profiles in the 8 CPU configuration 

Metric Physical Machine Virtual Machine 
Throughput in business 
transactions per minute  

293K  250K 

Disk IOPS 71K 60K  
Disk bandwidth  305MB/s  258MB/s 
Network packets/s  12K/s receive; 19K/s send 10K/s receive; 17 K/s send 
Network bandwidth 25 Mb/s receive; 66 Mb/s 

send 
21 Mb/s receive; 56 Mb/s 
send 

Table 4. Native and VM brokerage workload profiles in the 8 CPU configuration 

Metric  Physical Machine  Virtual Machine 
Throughput in transactions 
per second* 

3557  3060 

Average response time of 
all transactions**  

234 ms  255 ms 

Disk I/O throughput (IOPS)  29 K  25.5 K 
Disk I/O latencies  9 ms  8 ms 
Network packets/s receive 10 K/sec 8.5 K/sec 
Network packets/s send 16K/sec 8 K/sec 
Network bandwidth 11.8 Mb/sec receive 

123 Mb/sec send 
10 Mb/sec receive 
105 Mb/sec send 

   * Workload consists of a mix of 10 transactions. Metric reported is the aggregate of all transactions. 
** Average of the response times of all 10 transactions in the workload. 
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System metrics from the two environments in Table 3 and Table 4 demonstrate that 
current VM software can handle the needs of these resource intensive workloads. 

5.3    Under Committed Multiple VMs 

We simulated multiple backend database servers being consolidated onto VMs on the 
same host by running the brokerage workload on multiple homogenous VMs and 
report the aggregate throughput metric. We also report the throughput of individual 
VMs and their contribution to the overall metric (See Figure 3). The under committed 
host uses the spare cycles to run more VMs or perform other tasks.  

Each VM uses 15% of the physical CPU; the aggregate throughput scales linearly 
with the number of VMs. Figure 4 shows resources are distributed fairly across VMs. 

 

Fig. 3. Consolidation of Multiple SQLServer VMs  

 

Fig. 4. Throughput distribution for under committed VMs 
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5.4    Over Committed Multiple VMs 

Virtualization platforms have the ability to run VMs where the total number of vCPUs 
exceeds the number of pCPUs. This is called “Over commitment”. 

Table 5 highlights the resource intensive nature of the 8 VMs. 

Table 5. Aggregate System metrics for 8 SQLServer VMs 

Aggregate 
throughput in 
transactions 
per second 

Host CPU 
Utilization 

Disk I/O 
throughput 
(IOPS) 

Network 
packet rate 

Network 
bandwidth 

2760 100% 23K 
8K/s receive 
7.5K/s send 

9Mb/s receive 
98Mb/s send 

 
As the graph in Figure 5 shows, throughput increases linearly as we add up to 4 

VMs (8 vCPUs). As we overcommit the physical cpus by increasing the number of 
VMs from 4 to 6 (factor of 1.5), the aggregate throughput increases by a factor of 1.4 
at 90% physical CPU utilization. Adding 8 VMs to this saturates the physical CPUs 
on this host. ESX 4.0 now schedules 16 vCPUs onto 8 pCPUs yet the benchmark 
aggregate throughput increases a further 5%. 

The throughput contribution of each VM is approximating 12.5% of the aggregate 
throughput as shown in Figure 6.  

Based on our benchmarking experience, we have found the following factors to be 
reliable indicators of virtualized performance: 

• the degree to which CPU resources are over or under committed  
• comparison of physical and virtual machine using scale-up data, based on the 

# of CPUs configured 

 

Fig. 5. Consolidation of Multiple SQLServer Virtual Machines 
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Fig. 6. Over-commit fairness for 8VMs 

• fair sharing of resources among VMs using scale-out experiments, based on 
the individual and cumulative performance of a number of VMs 

6   Proposals 

Many scenarios of virtualization of database-intensive applications exist and some of 
them have been discussed in this paper. Data from experiments conducted on 
VMware running OLTP workloads show that virtualization technology today is ready 
to be challenged with database-intensive workloads.  

In developing a new virtualization benchmark that emphasizes database and server 
performance what should we consider? We recommend that the following scenarios 
be considered in any benchmark designed to evaluate virtualized database 
performance. They specify broad rules for the software configurations of such a 
benchmark as well as some practical considerations that the TPC might view as 
strengths and weaknesses of each approach.  

6.1   Scenario 1: Comprehensive Database Virtualization Benchmark 

• Virtual machine Configuration: 

o System should contain a mix of at least two multi-way CPU 
configurations, for example an 8-way server result might contain 2x2 
vCPU and 1x4 vCPU VMs.  

o Measure the cpu overcommitment capabilities in hypervisors by 
providing an overcommitted result along with a fully committed result. 

o  Both results should report throughput of individual VMs.  
• Workloads used  

o Each VM runs homogenous or heterogeneous workloads of a mix of 
database benchmarks, e.g., TPC-C, TPC-H and TPC-E.  

o Consider running a mix of operating systems and databases. 
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• Run rules and reporting 

o Throughput of individual VMs. 
o  Virtual results can only be compared against each other and not with 

physical machine results. 
• Advantages 

o Comprehensive database consolidation benchmark 
• Disadvantages 

o Complex benchmark rules may be too feature-rich for an industry 
standard workload. 

6.2   Scenario 2: Virtualization Extension of an Existing Database Benchmark 

• Virtual Machine configuration: 

o System contains a mix of homogenous VMs, for example an 8-way 
server might contain 4x2 vCPU VMs. 

o The number of vCPUs in a VM would be based on the total number of 
cores and the cores/socket on a given host. 

o The benchmark specification would prescribe the number of VMs and 
number of vCPUs in each VM for a given number of cores. 

• Workloads used 

o Homogeneous database workload, e.g., TPC-E, in each VM  
• Run rules and reporting 

o Aggregate throughput from all VMs. 
o Individual throughput for a fairness comparison across VMs. 
o Virtual results can only be compared against each other and not with 

physical machine results. 
• Advantages 

o Simple approach provides the audience of the benchmark result with a 
wealth of information about virtualized environments that they do not 
have currently. 

o The simplicity of the extension will make it possible to develop a new 
benchmark in a short amount of time, which is critical if the benchmark 
is to gain acceptance. 

• Disadvantages 

o Unlike Scenario 1, this approach does not have consolidation scenarios. 
o Features of virtual environments such as over-commitment not part of 

the benchmark definition. 

6.3   Scenario 3 Benchmarking Multi-tier/Multi-phase Applications 

The basic premise is to map each step in a workflow (or, each tier in a multi-tier 
application) to a VM. (For large-scale implementations, the mapping may instead be 
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to a set of identical/homogeneous VMs.) From a benchmark design perspective, this 
would be a challenging exercise and there are a number of open questions, e.g.: 

• Does the benchmark specify strict boundaries between the tiers?  
• Are the size and number of VMs in each layer parts of the benchmark spec? 
• Does the entire application have to be virtualized? Or, would benchmark 

sponsors have freedom in choosing the components that are virtualized? This 
question arises due to the fact that support and licensing restrictions often lead to 
parts not being virtualized. 

In the near term, Scenarios 1 & 2 have the most potential to result in a viable and 
useful benchmark. Scenario 3 has interesting possibilities and could form the basis for 
future virtualization-aware benchmarks. 

7   Conclusion 

The objective of this paper is to show that virtualization technology is fairly mature 
today and is capable of handling database-intensive workloads. Today’s benchmarks 
in general don’t facilitate the development of future efficient architectural design of 
systems for the common–case usage [11]. However, TPC benchmarks have in the past 
not only provided a means of objectively comparing products across computer 
systems and databases, but have also proven to drive system-level technology further. 
The authors of this paper urge the TPC to respond to the growth in virtualization 
technology and capture some of the common-case usage of virtualization with 
database workloads, in a well-designed benchmark for the virtual environment.  
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Abstract. Conditions in the marketplace for ETL tools suggest that an industry 
standard benchmark is needed. The benchmark should provide useful data for 
comparing the performance of ETL systems, be based on a meaningful 
scenario, and be scalable over a wide range of data set sizes. This paper gives a 
general scoping of the proposed benchmark and outlines some key decision 
points. The Transaction Processing Performance Council (TPC) has formed a 
development subcommittee to define and produce such a benchmark. 
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1   Introduction 

ETL is an acronym for Extract, Transform, Load [1]. It is a process of obtaining data 
from one or more data sources, performing various manipulations on the data, and 
placing it in one or more destination locations. Most commonly – but certainly not 
exclusively – ETL is used to extract data from data sources, perform data integration 
functions, and load a data warehouse. Some people consider “Data Integration” to be 
a broader term that encompasses ETL [2]. While ETL as a discipline lacks the shared 
conceptual framework that relational databases benefit from, there is an increasing 
amount of common understanding in the industry [3]. 

Sometimes ETL functionality is created simply by developing programs or 
database procedures to read and transform data, but there is also a significant market 
for ETL tools which can make the job easier or more efficient. The most common 
reason for choosing specialized ETL tools is that they enhance developer productivity 
and ease maintenance, by expressing data manipulation tasks in a form that is easier 
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to express and visualize. However, ETL tools can often also increase the speed of 
such operations by providing facilities that would be difficult for developers to 
reproduce. Obviously it is theoretically possible for developers to write specialized 
code that would outperform general purpose ETL tools, but consider that it’s also 
theoretically true that a machine-language developer can write code that outperforms 
compiler-generated code. Just as compilers are better suited for most programming 
tasks, ETL tools often are better suited for data transformation and integration. 

The last 10 years have seen significant evolution of ETL tools and growth of the 
market. Section 2 shows some of the competition and performance claims that have 
resulted from this market. An amazing number of “world record” claims have been 
made, but while they provide good marketing material for the vendors, there has been 
little of real value for customers to evaluate. In April of 2008 the TPC formed a 
Working Group to assess the purpose and scope of an ETL benchmark. As a result of 
this assessment, the TPC formed an ETL Benchmark Development Subcommittee in 
November of 2008 to undertake the definition and implementation of a standard ETL 
benchmark. 

This paper relates the work of the subcommittee so far. There are aspects of the 
work where the subcommittee believes it has a consensus, and aspects of the work 
that are still under consideration. Where it appears that a consensus exists, the paper 
will describe our understanding at this time. It must be noted that as a work in 
progress, nothing about the benchmark is actually final until the benchmark is ratified 
by the TPC as a whole. For areas that are still under consideration, and there are 
significant ones, the main alternatives will be presented.   

The authors represent three companies that are members of the ETL Benchmark 
Development Subcommittee, but we acknowledge that the paper builds on work by all 
thirteen member companies, and we thank them for their support. We hope they feel 
this paper does their work justice. 

2   Market/Industry Conditions 

The existence of performance claims from many vendors suggests that there is 
competition in a market, and the lack of a meaningful way to compare the claims 
suggests a need for a standard benchmark. For example, in the 1980s significant 
competition evolved between vendors in the emerging relational database market, and 
from that, benchmarks like DebitCredit led to the immensely successful Transaction 
Processing Performance Council (TPC) benchmarks. There are significant parallels 
between the developing market for OLTP systems in the 1980s and the ETL market in 
the 2000s. Table 1 illustrates these parallels, where the 1980s information is excerpted 
from “The History Of DebitCredit and the TPC” by Omri Serlin [4]. Table 2 provides 
evidence of the diverse ETL vendor claims made in the 2000s. 

These tables show vendors competing aggressively in an area that lacks common 
ground rules for evaluating the performance of the products. The lack of a standard 
benchmark allows vendors to make almost any claim they wish, and market pressures 
drive them to make the biggest claim they can. This may be good for marketing 
purposes, but it is not very helpful to customers. 
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Table 1. Parallels between the 1980s OLTP market and the 2000s ETL market 

 1980s 2000s 
Interest Interest in characterizing the 

performance of OLTP systems 
Interest in characterizing the 
performance of ETL systems  

Driving Factor Driven by … increased 
demand for very high 
performance  

Driven by increased demand 
for performance with high 
data volumes  

Measures No agreement on exactly how 
TPS ratings were to be derived 

No agreement on how to 
measure ETL performance  

Comparability While plenty of TPS claims 
were being unleashed, it 
wasn't at all clear whether any 
of the published TPS ratings 
were in any sense comparable  

While plenty of ETL claims 
are being unleashed, it is clear 
that they are not comparable  

Vendor Claims [Before the TPC] vendors … 
claim performance under the 
"industry standard 
benchmark"  

Vendors claim  
“record performance”  
under different conditions  

Table 2. Examples of ETL vendor claims 

Date Claim 
May 2001 Informatica demonstrates massive scalability, powerful 

performance of its data integration platform on HP servers… three 
complex data mappings representing typical business scenarios [5]. 

Feb. 2002 Ascential shatters data integration performance record; outperforms 
competitors' published benchmark results by more than 500 percent 
… working under the same parameters of prior benchmarks 
announced by competitors [6]. 

March 2005 New release of SAS® Enterprise ETL Server sets performance 
world record [7]. 

April 2005 Unisys and SAS deliver record-breaking ETL benchmark result [8]. 
June 2005 Informatica and Sun achieve record-setting results In data 

integration performance and scalability test … Data sets for the 
tests were generated by the industry-standard TPC-H utility dbgen 
[9] 

April 2006 Sunopsis Data Conductor demonstrates indisputable superiority for 
high volumes, complex transformations [10]. 

May 2006 SAS, Sun Microsystems establish new data integration performance 
world record [11]. 

Aug. 2006 Informatica sets world record data integration performance [12]. 
Jan. 2007 Jaspersoft launches Jasperetl…Performance tests indicate 

performance up to 50% faster than other leading commercial ETL 
tools [13]. 
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Table 2. (continued) 

April 2007 SAS smashes ETL world record while establishing new, real-world 
benchmarks [14]. 

Feb. 2008 ETL World Record … SSIS … Over 1 TB of TPC-H data was 
loaded in under 30 minutes [15]. 

Dec. 2008 Syncsort and Vertica Shatter Database ETL World Record [16] 

3   Purpose and Benefits of an ETL Benchmark 

A well designed benchmark is beneficial to customers evaluating systems and also to 
the vendors of those systems. Once there is a common basis for comparing ETL tools, 
vendors will improve their products to compete on the basis of the benchmark.   

An ETL benchmark will give customers reliable, comparable performance 
information based on a meaningful scenario. Following the model of all TPC 
benchmarks, the ETL benchmark will present a realistic business task for the tools to 
implement. While a single scenario cannot represent all applications of ETL 
technology, a well chosen scenario will be sufficiently meaningful so that many 
customers can learn from the benchmark results. 

Also following the model of all TPC benchmarks, a “Full Disclosure Report” will 
be required for every benchmark result. This will allow customers to understand how 
a certain result was achieved, so they can use the same methods if desired. Full 
disclosure also provides transparency in case vendors might create unrealistic 
implementations solely for the sake of benchmarking. 

In addition to creating better performing products, vendors will also benefit from 
greater credibility of the ETL market, as a result of a recognized industry organization 
setting the ground rules. 

3.1   ETL vs. ELT 

For purposes of this benchmark, we take the term ETL to define a business task, 
namely the obtaining of data from multiple sources, integrating it together in a way 
appropriate to the business, and placing it in a data warehouse. We specifically do not 
mean to suggest that the term ETL requires a certain order of doing things (extract, 
transform and then load). There are some tools in the market that prefer to define 
themselves as ELT tools, because they load data into the destination database and 
then use database functionality to perform the transformations. The ELT model is 
explicitly allowed in the benchmark. 

4   Providing the Benchmark with a Business Context 

Each TPC benchmark has an underlying scenario which provides a foundation for the 
requirements of the benchmark. TPC-C models an order-entry environment. The most 
recent benchmark, TPC-E, models the OLTP system operated by a brokerage house 
[17]. The TPC-E schema represents a schema such as a brokerage OLTP system 
might use, the transactions are units of work similar to those in a brokerage, and the 



 Principles for an ETL Benchmark 187 

data sets are similar to financial data. As a whole the benchmark gains credibility and 
understandability by having a coherent underlying model. 

Similarly, an ETL benchmark should have an underlying scenario to provide 
coherence and credibility. This inherently means that the benchmark does not 
represent all usage models – no benchmark can do that – but the model it does follow 
must have enough characteristics of real-world systems so that it is credible. The 
scenario that is being developed by the ETL Benchmark Development Subcommittee 
is based on loading data into the data warehouse of a brokerage company.  The data is 
modeled as coming from multiple sources, including the brokerage OLTP system, a 
human resources (HR) database, and an external source with marketing information 
on prospective clients. This scenario was chosen because integrating and loading data 
from operational systems into a data warehouse is one very common usage pattern for 
ETL tools. Data from these sources is initially stored in a staging area, and from the 
staging area it must be integrated together according to rules appropriate to the 
business, transformed according to defined business rules, and loaded into the data 
warehouse. The benchmark measures the performance of the system while reading 
from the staging area, doing transformations, and writing to the data warehouse, as 
illustrated in Figure 1. 

 

Fig. 1. Logical flow of the ETL benchmark 

The availability of the TPC-E schema provided one source of data for the ETL 
benchmark. This does not mean that running the ETL benchmark requires running 
TPC-E, only that the schema was used as a starting point.  In fact, the ETL benchmark 
is expected to model the presence of a Change Data Capture (CDC) system [18] [19] 
[20] used in conjunction with the OLTP database, which is not part of the TPC-E 
benchmark. When regular updates are being made to the data warehouse from the 
OLTP system, CDC allows the ETL process to begin with only the data that was 
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altered since the last update. The model is that the output of the CDC system will be 
text files that are read by the ETL process. 

The ETL benchmark scenario will also model data sourced from a human 
resources (HR) database and an external source of marketing data. The HR database 
is used to obtain supplemental information on brokers, data that was not in the OLTP 
system. The HR database does not support CDC, so for each incremental update the 
ETL process must determine what changes have occurred since the last update.  
Extracts from the HR database are in an XML format. The marketing data source 
contains names, addresses and demographic data for prospective customers, such as a 
company might purchase from a syndicated data provider. This data arrives in a 
comma separated value (CSV) file format, this being the lowest common denominator 
of information exchange.  The prospect list is updated with each incremental update. 

When the data sources are determined there are still many possibilities for the data 
warehouse schema and the types of transformations to be carried out in the ETL 
process. To give the benchmark realism, the committee hypothesized the kinds of 
business questions a relational data warehouse might be used to answer, and designed 
the data warehouse schema accordingly. The design process was analogous to one 
that a “real” data warehouse design team might follow. A dimensional data warehouse 
design approach [21] was followed. 

In a dimensional model, dimension tables describe entities of interest to the 
business. Examples include the broker dimension table, which lists all the brokers and 
their attributes of interest, the customer dimension, the security dimension, etc. Fact 
tables describe events of interest, such as a trades table recording all stock purchases 
and sales, or a security history table which lists the closing prices and trade volumes 
of all the securities. Foreign key relationships provide the connection between events 
and the entities involved in the events. For example a trade is executed by a particular 
broker on behalf of a particular customer, involving a particular security. The ETL 
Benchmark Development Subcommittee is considering a schema using approximately 
eight dimension tables and about six fact tables, plus potentially a small number of 
additional special purpose tables. 

Once the data warehouse schema was determined, the remaining design task is to 
specify the data mappings and transformations that occur as data is integrated from 
the data sources and placed in the data warehouse. Here the subcommittee is 
considering variations in the design, because one goal is to represent a diverse set of 
typical operations. For example, the HR database is modeled as not having a business 
key in common with the broker table from the OLTP database. In order to match 
broker information with the corresponding HR data, the records must be matched on 
the broker name – requiring a string comparison. At the time of writing this paper, the 
complete set of transformation rules is still being determined.   

Another aspect of the benchmark related to the business context is the frequency 
with which the data warehouse is updated. The ETL system must provide for both 
historical loads and incremental updates. A historical load occurs when a “full” load 
of all data into the data warehouse is needed; this is required when the data warehouse 
is initially created or when a major change is made, such as an incompatible schema 
change. Incremental updates occur when new data is added to the data warehouse.  
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Typically this is at some regular interval which can vary widely between businesses.  
There are businesses that update their warehouses only weekly or monthly; others 
require near-real-time data streams. Daily updates are common in businesses today.  
Since this fits well with the daily closing cycles that are common in a brokerage, it 
seems likely that daily incremental updates will be the model for the ETL benchmark. 

The authors have noted feedback from some parties that near-real-time updates are 
very important, and recognize that this is an increasingly common business 
requirement. However, the technologies commonly used for near-real-time data 
integration are somewhat different than the more batch-oriented tools typically 
thought of as ETL tools. We believe that a different, but possibly similar, benchmark 
is needed for continuous data integration. 

5   Scope of the System under Test (SUT) 

While the application of ETL technologies has extended beyond its origins in data 
warehousing into more general data integration applications, the fundamental 
elements of its roots -- Extract, Transform, and Load – are still the pillars of the ETL 
industry. The data that an ETL tool transforms comes from somewhere and goes 
somewhere, and it is within the scope of the ETL tool to get this data from the source 
and put this data into the target. The benchmark must take each of these aspects into 
consideration as they are integral parts of the work performed by ETL tools. 

5.1   Extract: Scope of the Source 

There are a wide variety of data sources for ETL applications. These sources range 
from general purpose and specialty databases to various types of data files, including 
binary and text, fixed and variable length, hierarchical and flat, to message queues 
and web services. A common task of an ETL application is to combine data from 
different sources as part of the transformation process. 

While it is desirable to extract data from widely varied sources in the ETL 
benchmark, there are complications in doing so. Simply including database sources 
presents several issues. First, it is not practical to require benchmark sponsors to run 
databases from multiple vendors to serve as data sources for the benchmark. The 
potential costs involved with acquiring, configuring, and tuning multiple databases 
appropriately may be prohibitive for some sponsors. Second, using multiple database 
vendors complicates the evaluation of test results. If one sponsor uses a different set 
of databases than another sponsor, it is difficult to determine what performance 
differences are due to the ETL tools, since the source databases can greatly affect the 
overall result. One way to establish comparability would be to require the same set of 
database products for all benchmark tests, but no single set of database choices will be 
acceptable to all database and ETL tool vendors. Lastly, using any database as the 
source is also not desirable because it could allow ETL tools to “cheat” the 
benchmark by passing work off to the source database. While this practice can be 
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useful in the real world in certain situations, the intent of the benchmark should be to 
test the ETL tool’s performance, not the source database.  

One solution to the source database issue is to extract data from files instead of 
databases. The ability of an ETL tool to obtain, interpret, and operate on varied source 
data can still be exercised, without the complications introduced by source databases. 
Given the variety of possible file formats and data representations, reading source 
files can pose significant challenges. The ETL benchmark will use file data sources, 
and use different formats to represent data obtained from different data sources that 
must be combined in the ETL process.  

A common practice in data warehousing applications is to extract data from OLTP 
systems into a staging area. This staging area serves to isolate the OLTP system from 
the ETL processing. The extract can be done at a time that is most convenient for the 
OLTP system, and the ETL processing can work on the data when it needs, without 
affecting the performance of the online system. The extract also provides a backup of 
the data and a starting point in the event the ETL process needs to be restarted.  

Following this practice, the benchmark will use the source files to represent a 
staging area. Some files will be representative of the output of a change data capture 
system on the OLTP database. Additional files will be included in the staging area to 
represent other sources of data. The system under test will begin with the staging area. 
The data generator provided for the benchmark will generate these source data files. 
Any movement, modification, or processing of the data in these files is part of the 
SUT, and therefore must be measured as part of the benchmark. 

5.2   Transform: Scope of the Transformations 

One of the problems with many of the non-standard ETL benchmarks that have been 
used by vendors in the past is that there were few or no transformations involved. An 
ETL benchmark must include actual data transformations in order to truly evaluate an 
ETL tool’s performance. Certain functionality, such as lookups and joins, as well as 
string and date manipulations, are extremely common and must play a prominent role. 

Since the benchmark scenario is based on realistic source and target data models, 
simply mapping the source schema to the target schema results in some reasonable 
approximation of the transformations involved in real world ETL workloads. At the 
current time, the complete set of source to target mappings has not been defined.  It is 
likely that adjustments will need to be made to the initial source or target schemas to 
refine the transformations required in the benchmark. However, rooting the 
benchmark in realistic sources, targets, and methodologies provides a solid basis to 
build upon. 

The benchmark scenario includes both the historical loading and incremental 
updating of the warehouse. In the historical load, the data warehouse is initially empty 
and it is common to have a relatively large data volume because the data represents a 
long time period. In the incremental update scenario, ETL tools are used to perform 
ongoing updates to the warehouse tables. While some of the transformations are the 
same as in the initial load, the interaction with the target database is more complicated 
and requires additional transformations because the target tables may require updates, 
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inserts, or deletes.  Data volumes for incremental updates tend to be relatively smaller 
than for historical loads. 

5.3   Load: Scope of Target 

The ultimate destination in most ETL scenarios is a target database. In many 
applications, the target database also plays a role in the transformation process. Data 
that has already been loaded will often serve as reference data that is required to load 
other related tables. Star schema fact and dimension tables are a good example. 
Dimension data must first be loaded into a target table. In order to load an associated 
fact table, the dimension table must be used as a reference to obtain the surrogate 
keys. It is also common that target tables need to be updated, not just appended.  

Some tools operate by first loading data into the target, then performing the data 
transformations using the target database. In an environment like this, it is virtually 
impossible to separate transformation workload from database workload. It is the 
intent of the ETL benchmark committee to define the benchmark in such a way as to 
allow these “ELT” style tools to participate. 

For both of these reasons, the benchmark will include the target database in the 
system under test. In some respects, including the database target in the benchmark 
carries some of the same complications for a benchmark sponsor as including source 
databases. However, given the interdependency between the target database and the 
transformation process, it is not practical to exclude it without trivializing the 
benchmark scenario and possibly excluding “ELT” style vendors. 

6   Functionality to Be Measured 

The ETL benchmark being defined is a performance benchmark. It is not meant to test 
the ease of use of the development environment of the ETL tools, or every possible 
feature and function. Further, it is the intent of the benchmark subcommittee not to 
exclude ETL tools by requiring specialized functionality that would not be common 
to most tools. Instead, the transformations involved will be representative of common 
ETL tasks which are assumed to be achievable by a majority of ETL tools. 

6.1   Common Transformations 

The committee has not defined the complete set of transformations for the benchmark 
at this time. However, it is expected that the following types of transformations will 
be part of the workload: 

• Parse and validate input data. The source data will be in files. A record 
structure will be defined for each file that describes what the data in the file 
represents. Each record type will contain of variety of data types, including 
string, numeric, date, and time. More than one basic file format will be used 
(e.g. XML, CSV). The ETL tools must read and validate data from these 
various file types. 
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• String, date, time and numeric transformations. The source data will contain 
fields using a variety of data types. The transformation process will require a 
wide range of operations to be performed, including string manipulations, date 
and time processing, numeric calculations, and data type conversions. 

• Lookups and joins. Lookups and joins are functionally similar in that they are 
both means of combining sets of data. There are some differences in behavior, 
particularly in the handling of duplicate matches and non-matched records, 
and may vary from one tool to another. The benchmark will require that source 
and target data be combined for various purposes, but will not specify how this 
must be accomplished. It is expected that implementations will use the 
technique that is most appropriate for the ETL tool in use. One characteristic 
of a star schema data model, such as the one created for the target of the 
benchmark, is the use of surrogate keys to identify and reference dimension 
records. Surrogate keys do not exist in the source data; they are generated 
during the ETL process and stored in the warehouse tables. In order to 
transform a source record, the ETL process often needs to determine if a 
record already exists in the warehouse, and if so, obtain its surrogate key. This 
is typically done via a key lookup. Since surrogate keys are required for most 
operations on the warehouse, this will result in benchmark implementations 
making extensive use of key lookups as part of the transformation process. 

• Conditional processing. It is a common element of ETL processing that some 
aspect of the source to target transformation varies, depending on the data. 
This may include performing the same basic transformation on all rows of the 
data, but only performing certain transformations in specific cases. For 
example, products could be obtained from suppliers or be developed in-house, 
and require different steps to obtain supplier information. Transformations 
may also vary when splitting source records to populate different targets, 
performing error handling, on field level transformations, and so on. The 
benchmark will include a variety of source to target mappings and business 
rules that will require conditional processing. 

• Aggregations. An aggregation is essentially a grouping of records based on 
some condition, with a function to be applied to the group. SQL uses 
aggregate functions (e.g SUM) and GROUP BY clauses to specify 
aggregations on database tables. ETL tools are often used to aggregate data in 
order to pre-compute results for common warehouse queries. In some cases, 
ETL tools are used to calculate aggregations that go beyond what can be done 
in a single SQL statement. For example, sales transaction amounts might need 
to be summarized by month, quarter, and year. The ETL benchmark will 
include aggregations as part of the transformations. 

• Data cleansing. Data cleansing includes a broad range of functionality, so 
much so that an entire market exists for tools that specialize in just data quality 
and cleansing. These tools typically specialize in very complex data cleansing 
processes such as name or address validation, matching, and standardization. 
While some ETL tools have integrated these capabilities or have relationships 
with vendors of these tools, the benchmark committee does not want 
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complicate the benchmark by requiring the sort of data cleansing that would 
require the use of a data quality tool. However, it is common practice for ETL 
tools to handle more straightforward data cleansing. This would include fixing 
‘dirty’ data and standardizing values. For example, a simple one-character 
gender field could contain M,F,m,f,0,1. The ETL tool could standardize this 
data, so in the data warehouse the values are all ‘FEMALE’ and ‘MALE’. The 
data generator for the benchmark will generate ‘dirty’ data in certain source 
fields. The business rules specified in the benchmark will define how this data 
should be handled by the ETL process. 

• Database load, update, insert, and delete. An important element of the ETL 
process is the interaction with the target base. Initially, the transformed data 
must be put into the data warehouse. Then the ETL tool must be able to 
maintain the warehouse by performing subsequent lookups, inserts, updates, 
and deletes of the target database tables. The ETL benchmark specifies both an 
historical load scenario and an incremental update scenario to cover these 
cases. 

6.2   Error Processing 

There are many types of data inconsistencies and anomalies that can arise in the 
transformation process. In some cases, these are handled directly in the course of the 
transformation – these cases fall into the ‘data cleansing’ class of transformation 
described above. Cases that are not handled by the transformation logic become error 
conditions.  

In the ETL benchmark, error conditions represent cases the ETL process does not 
resolve automatically (via transformation). These may be cases that are unaccounted 
for in the transformation (e.g. Gender field contains ‘U’) or other cases that would 
require human intervention to reconcile. 

The benchmark will define the error conditions that can arise, and a standard 
behavior for processing the error records. The data generator for the benchmark will 
generate data that matches these error conditions, but the ratio of “good” data to “bad” 
data is not yet determined. 

7   Reliability Requirements 

ETL has become an integral part of the day to day operations of IT departments.  In 
order for an ETL implementation to be considered a legitimate alternative, it must 
operate at a certain level of reliability. The exact requirements for reliability differ 
from one application to another, and therefore can be somewhat elusive to define in a 
general way. Despite the difficulty of defining ETL reliability, it is still an important 
aspect of the ETL processing and must be considered in the benchmark. 

The development subcommittee intends to include some aspect of reliability into 
the benchmark. Beyond that, no substantive decisions have been reached at this time. 
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This section reflects the thoughts and opinions of the authors, not the subcommittee as 
whole. 

Fundamentally, reliability relates to the correctness and predictability of the 
ETL implementation in both normal operation and failure conditions. The ETL 
tools and benchmark implementations should demonstrate these properties in both 
situations. 

Under normal conditions, the ETL implementation should complete successfully 
with correct results. Given the same initial state and same set of inputs, two runs of 
the ETL process should produce the same result, with the caveats that the order of the 
rows in the result set may be different, and values generated by the ETL process itself 
may differ, provided the integrity of the results is maintained. For example, generated 
surrogate key values may be different, as long as they still uniquely identify rows in 
the result set, and references to those rows are set correctly. It should be possible to 
perform a standard series of checks to ensure the correctness of the results at the 
completion of each run. 

Failure conditions may unexpectedly interrupt the ETL process. These are 
situations that are beyond the control of the ETL process, but cause an abnormal 
termination of the ETL process. Examples of failure conditions would be the user 
terminating the process, loss of connectivity to the target database, or a power 
failure. Note that this differs from data error handling. The benchmark 
specification will define the error handling behavior for data errors, and these will 
not cause the ETL process to abort. When an ETL process is interrupted, it should 
be able to be completed later, or restored to the starting point and re-run in its 
entirety. This implies that the original source data must remain intact, and the 
target database must not be left in an unusable or unrecoverable state. There are 
many approaches that can be taken to meet these reliability requirements; some 
may be automated and some may require manual intervention. It is not necessary 
for the benchmark to define the exact approach for implementations to follow, only 
the requirement that an interrupted run must ultimately be able to be completed 
with correct results. 

The existence of the target database in the system under test raises additional 
questions about the reliability aspect of the benchmark. Should the benchmark 
also define reliability conditions for the target database to demonstrate? Being an 
ETL benchmark, this does not seem necessary. The benchmark should focus on 
aspects that are specific to the ETL process. In most cases, the ETL 
implementations will rely on the ACID properties of the database to meet the 
reliability requirements, and so these features will be indirectly demonstrated to 
some extent. 

There are different approaches to incorporating reliability into the benchmark. It 
could be included as part of the overall metric, or simply demonstrated during the 
execution of the benchmark as a basic requirement, but not included in the actual 
measurements. However this is handled, the benchmark should at least require that 
the reliability requirements be met, and require disclosure of how the reliability of the 
ETL implementation was achieved. 
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8   Measuring ETL Performance  

An ETL performance metric should be reflective of ETL processes and report 
parameters that are relevant for a prospective ETL customer. Ideally it would be a 
metric similar to what many customers already use to evaluate system performance. 
The metric should be simple to understand and explain. 

As an industry-standard benchmark the metric must provide an easy and reliable 
way to compare system performance. Like other TPC benchmarks we expect to 
provide a single primary performance metric which will represent all aspects of the 
performance of a system. Multiple performance metrics would make the results 
difficult to compare. As a result the performance metric must measure overall system 
performance rather than individual components. 

The metric must be able to appropriately reflect the performance of a wide range of 
systems from an entry-level single processor machine to a high-end multi-processor 
system and from a single node machine to a multi-node cluster. The metric must 
continue to be valid as system architectures evolve over time. 

The business context section noted that the benchmark will involve a historical 
load ETL process and an incremental update ETL process. The performance metric 
must account for both processes. 

There are two primary ways of measuring system performance, which we refer to as 
“time-based” and “workload-based.” TPC-C [22] and TPC-E [17] are examples of 
time-based workloads. Using a time-based method, the timeframe to measure a 
system’s performance is chosen and the measurement is based on how many 
operations the system is able to process in that timeframe. Higher performing systems 
will process a higher number of operations. This type of measurement is similar to 
situations where a limited time is available to execute the ETL process. Time-based 
measurements also provide predictability for benchmark sponsors since the time to run 
the benchmark is the same regardless of the size and performance of system under test. 

TPC-H [23] and TPC-DS [24] are examples of workload-based benchmarks. Using 
this method the workload is fixed – for example a known set of operations against a 
known size of database – and the time to execute the workload is measured. Higher 
performing systems will process the same workload faster. This approach is similar to 
situations where the data warehouse must be completely updated and other work will 
be delayed until ETL process finishes. The need to use different workload sizes in 
order to properly exercise faster systems can provide a challenge when comparing 
results across differing systems. Results using different workload sizes cannot 
properly be compared. 

There could be other measurement options, including a blend of the time-based and 
workload-based approaches. At this time the ETL benchmark development 
subcommittee has not chosen a method. 

TPC benchmarks provide added value to customers by including a price-
performance metric in addition to the pure performance metric, and soon an energy 
metric will be included as well. The price-performance metric is the ratio between the 
three year total cost of ownership (TCO) of the system and the primary performance 
 



196 L. Wyatt, B. Caufield, and D. Pol 

metric. TPC pricing guidelines [25] apply to all TPC benchmarks and include the cost 
for hardware, software and maintenance. The definition of the energy metric for TPC 
benchmarks is nearing completion and will provide information about power 
consumption in relation to system performance in addition to other useful power 
usage information [26]. 

9   Scaling the Benchmark 

As data volumes increase in databases everywhere, data volumes that must be 
handled by ETL processes are increasing as well. This is one of the key concerns 
that ETL customers have, so the method of scaling the ETL benchmark is a critical 
design point. The benchmark must be highly scalable to have a reasonable 
lifespan. At the same time, benchmark scaling is highly interconnected with the 
measurement method.  As seen in the previous section a workload-based metric 
would result in a fundamentally different scaling approach compared to a time-
based metric.  

Workload-based metrics could present some interesting challenges in order to 
make all results comparable. For example, a workload that is appropriate for a small 
server might fit entirely in the cache of a much larger server, resulting in an 
unrealistic comparison. On the other hand, creating multiple sizes of workloads leads 
to non-comparable results, as happens with TPC-H results today, where results at 
different scale points cannot be compared.   

Regardless of the approach taken to measure the performance, there are certain 
aspects of reality to observe in designing the scaling method. For example a country 
field should not scale to such a size that it exceeds the number of countries that exist.  
Likewise, dimension tables generally grow more slowly than fact tables, and this 
behavior should be modeled. The same principle applies to historical load versus 
incremental load: While the historical load will probably contain data spanning years, 
the incremental load would contain data representing a shorter period. 

Scaling increment granularity should be chosen with care to allow for linear 
performance scaling. For example, setting the scaling granularity too big can lead to 
clusters of results grouped around certain scale increments. The usual approach is to 
focus on a dimension table that expresses a key component of the business process – 
for example the Customer table – and assign cardinality to the other tables in relation 
to this main table. There are a few dimension tables, such as a table of dates, which 
contain static information and will not scale with the rest of the tables. 

10   Conclusion 

Much work remains to complete the ETL benchmark. This paper has examined the 
need for and benefits of the benchmark, outlined what the ETL Benchmark 
Development Subcommittee has in place, and shown the areas that are still under 
discussion. The areas of apparent consensus include: the need for an ETL benchmark, 
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the general scoping of the benchmark and the System Under Test, the scenario on 
which the benchmark will be based, the definitions of the source and destination data 
models, the general types of transformations, and the idea that the benchmark must 
include both a historical load and incremental updates. The areas still under 
discussion include: the reliability requirements to be specified, the definition of the 
benchmark metrics, and the method of scaling the benchmark. When these issues are 
settled, the data generator needs to be developed and the benchmark needs to be tested 
before it can be ratified. 

Since ETL is a new area for the TPC, it is likely that some readers will have 
comments or feedback. Comments may be directed to the subcommittee chair at this 
address: LenWy@Microsoft.com. To follow the progress of the benchmark, check the 
TPC web site http://www.tpc.org.  

The authors would like to thank the members of the subcommittee for their efforts 
and we look forward to working with them to complete the ETL benchmark. 
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Abstract. Extraction–Transform–Load (ETL) processes comprise complex data 
workflows, which are responsible for the maintenance of a Data Warehouse. A 
plethora of ETL tools is currently available constituting a multi-million dollar 
market. Each ETL tool uses its own technique for the design and 
implementation of an ETL workflow, making the task of assessing ETL tools 
extremely difficult. In this paper, we identify common characteristics of ETL 
workflows in an effort of proposing a unified evaluation method for ETL. We 
also identify the main points of interest in designing, implementing, and 
maintaining ETL workflows. Finally, we propose a principled organization of 
test suites based on the TPC-H schema for the problem of experimenting with 
ETL workflows. 

Keywords: Data Warehouses, ETL, benchmark. 

1   Introduction 

Data warehousing is a technology that enables decision-making and data analysis in 
large organizations. Several products are available in the market and for their 
evaluation, the TPC-H benchmark has been proposed as a decision support 
benchmark [16]. TPC-H focuses on OLAP (On-Line Analytical Processing) queries 
and it mainly deals with the data warehouse site. Another version termed TPC-DS has 
been around for the last few years, but this version is still in a draft form [11, 15]. 
TPC-DS considers a broader picture than TPC-H including the whole flow from the 
sources to the target data warehouse. However, it partially covers the data warehouse 
maintenance part, considering only simple mechanisms for inserting and deleting 
tuples. 

To populate a data warehouse with up-to-date records extracted from operational 
sources, special tools are employed, called Extraction – Transform – Load (ETL) 
tools, which organize the steps of the whole process as a workflow. To give a general 
idea of the functionality of these workflows we mention their most prominent tasks, 
which include: (a) the identification of relevant information at the source side; (b) the 
extraction of this information; (c) the transportation of this information to the Data 
Staging Area (DSA), where most of the transformation usually take place; (d) the 
transformation, (i.e., customization and integration) of the information coming from 
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multiple sources into a common format; (e) the cleansing of the resulting data set, on 
the basis of database and business rules; and (f) the propagation and loading of the 
data to the data warehouse and the refreshment of data marts. 

Due to their importance and complexity (see [2, 12] for relevant discussions and 
case studies), ETL tools constitute a multi-million dollar market. There is a plethora 
of commercial ETL tools available. The traditional database vendors provide ETL 
solutions along with the DBMS’s: IBM with InfoSphere Information Server [7], 
Microsoft with SQL Server Integration Services (SSIS) [9], and Oracle with Oracle 
Warehouse Builder [10]. There also exist independent vendors that cover a large part 
of the market (e.g., Informatica with Powercenter [8] and Ab Initio [1]). Nevertheless, 
an in-house development of the ETL workflow is preferred in many data warehouse 
projects, due to the significant cost of purchasing and maintaining an ETL tool. The 
spread of existing solutions comes with a major drawback. Each one of them follows 
a different design approach, offers a different set of transformations, and provides a 
different internal language to represent essentially similar functions.  

Although Extract-Transform-Load (ETL) tools are available in the market for more 
than a decade, only in the last few years have researchers and practitioners started to 
realize the importance that the integration process has in the success of a data 
warehouse project. There have been several efforts towards (a) modeling tasks and the 
automation of the design process, (b) individual operations (with duplicate detection 
being the area with most of the research activity) and (c) some first results towards the 
optimization of the ETL workflow as a whole (as opposed to optimal algorithms for 
their individual components). For lack of space, we refer the interested reader to [12] 
for a detailed survey on research efforts in the area of ETL tools.  

The wide spread of industrial and ad-hoc solutions combined with the absence of a 
mature body of knowledge from the research community is responsible for the ab-
sence of a principled foundation of the fundamental characteristics of ETL workflows 
and their management. A small list of shortages concerning such characteristics 
include: no principled taxonomy of individual activities exists, few efforts have been 
made towards the optimization of ETL workflows as a whole, and practical problems 
like recovering from failures and handling evolution have mostly been ignored. Thus, 
a commonly accepted, realistic framework for experimentation is also absent. 

Contributions. In this paper, we aim at providing a principled categorization of test 
suites for the problem of experimenting with a broad range of ETL workflows. First, 
we provide a principled way for constructing ETL workflows (Section 2). We identify 
the main functionality provided by representative commercial ETL tools and 
categorize the ETL operations into abstract logical activities. Based on that, we 
propose a categorization of ETL workflows, which covers frequent design cases. 
Then, we describe the main configuration parameters and a set of measures to be 
monitored for capturing the generic functionality of ETL tools (Section 3). Finally, 
we provide specific ETL scenarios based on the aforementioned analysis, which can 
be used as an experimental testbed for the evaluation of ETL design methods or tools 
(Section 4). 
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2   Problem Formulation  

In this section, we introduce ETL workflows as graphs. Then, we zoom in the micro-
level of ETL workflows inspecting each individual activity in isolation and then, we 
return at the macro-level, inspecting how individual activities are “tied” altogether to 
compose an ETL workflow. Finally, we discuss the characteristics of ETL execution 
and we tie them to the goals of the proposed benchmark. 

2.1   ETL Workflows 

An ETL workflow is a design blueprint for the ETL process. The designer constructs 
a workflow of activities (or operations), usually in the form of a graph, to specify the 
order of cleansing and transformation operations that should be applied to the source 
data, before being loaded to the data warehouse. In what follows, we use the term 
recordsets to refer to any data store that obeys a schema (such as relational tables and 
record files) and the term activity to refer to any software module that processes the 
incoming data, either by performing any schema transformation over the data or by 
applying data cleansing procedures. Activities and recordsets are logical abstractions 
of physical entities. At the logical level, we are interested in their schemata, 
semantics, and input-output relationships; however, we do not deal with the actual 
algorithm or program that implements the logical activity or with the storage 
properties of a recordset. When in a later stage, the logical-level workflow is refined 
at the physical level a combination of executable programs/scripts that perform the 
ETL workflow is devised. Then, each activity of the workflow is physically 
implemented using various algorithmic methods, each with different cost in terms of 
time requirements or system resources (e.g., CPU, memory, disk space, and disk I/O).  

Formally, we model an ETL workflow as a directed acyclic graph G(V,E). Each 
node v∈V is either an activity a or a recordset r. An edge (a,b)∈E is a provider 
relationship denoting that b receives data from node a for further processing. Nodes a 
and b are the data provider and data consumer, respectively. The following well-
formedness constraints determine the interconnection of nodes in ETL workflows: 

− Each recordset r is a pair (r.name, r.schema), with the schema being a finite list 
of attribute names. 

− Each activity a is a tuple (N,I,O,S,A). N is the activity’s name. I is a finite set of 
input schemata. O is a finite set of output schemata. S is a declarative description 
of the relationship of its output schema with its input schema in an appropriate 
language (without delving into algorithmic or implementation issues). A is the 
algorithm chosen for activity’s execution. 

− The data consumer of a recordset cannot be another recordset. Still, more than 
one consumer is allowed for recordsets. 

− Each activity must have at least one provider, either another activity or a 
recordset. When an activity has more than one data providers, these providers can 
be other activities or activities combined with recordsets. 

− The data consumer of an activity cannot be the same activity. 
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2.2   Micro-level Activities 

At a micro level, we consider three broad categories of ETL activities: (a) extraction 
activities, (b) transformation and cleansing activities, and (c) loading activities. 

Extraction activities extract the relevant data from the sources and transport them 
to the ETL area of the warehouse for further processing (possibly including 
operations like ftp, compress, etc.). The extraction involves either differential data 
sets with respect to the previous load, or full snapshots of the source. Loading 
activities have to deal with the population of the warehouse with clean and 
appropriately transformed data. This is typically done through a bulk loader program; 
nevertheless the process also includes the maintenance of indexes, materialized views, 
reports, and so on. Transformation and cleansing activities can be coarsely 
categorized with respect to the result of their application to data and the prerequisites, 
which some of them should fulfill. In this context, we discriminate the following 
categories of operations:  
− Row-level operations, which are locally applied to a single row. 
− Router operations, which locally decide, for each row, which of the many 

(output) destinations it should be sent to. 
− Unary Grouper operations, which transform a set of rows to a single row. 
− Unary Holistic operations, which perform a transformation to the entire data set. 

These are usually blocking operations. 
− Binary or N-ary operations, which combine many inputs into one output. 

All frequently built-in transformations in the majority of commercial solutions fall 
into our classification (see for example Figure A3 – in the appendix). 

2.3   Macro Level Workflows 

The macro level deals with the way individual activities and recordsets are combined 
together in a large workflow. The possibilities of such combinations are infinite. 
Nevertheless, our experience suggests that most ETL workflows follow several high-
level patterns, which we present in a principled fashion in this section.  

We introduce a broad category of workflows, called Butterflies. A butterfly (see 
also Figure 1) is an ETL workflow that consists of three distinct components: (a) the 
left wing, (b) the body, and (c) the right wing of the butterfly. The left and right wings 
(separated from the body with dashed lines in Figure 1) are two non-overlapping 
groups of nodes which are attached to the body of the butterfly. Specifically: 
− The left wing of the butterfly includes one or more sources, activities and 

auxiliary data stores used to store intermediate results. This part of the butterfly 
performs the extraction, cleaning and transformation part of the workflow and 
loads the processed data to the body of the butterfly. 

− The body of the butterfly is a central, detailed point of persistence that is 
populated with the data produced by the left wing. Typically, the body is a 
detailed fact or dimension table; still, other variants are also possible. 

− The right wing gets the data stored at the body and utilizes them to support 
reporting and analysis activity. The right wing consists of materialized views, 
reports, spreadsheets, as well as the activities that populate them. In our setting, 
we abstract all the aforementioned static artifacts as materialized views. 
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left wing  body right wing 

Fig. 1. Butterfly configuration 

Balanced Butterflies. A butterfly that includes medium-sized left and right wings is 
called a Balanced butterfly and stands for an ETL scenario where incoming source 
data are merged to populate a warehouse table along with several views or reports 
defined over it. Figure 1 is an example of this class of butterflies. This variant 
represents a symmetric workflow (there is symmetry between the left and right 
wings). However, this is not always the practice in real-world cases. For instance, the 
butterfly’s triangle wings are distorted in the presence of a router activity that 
involves multiple outputs (e.g., copy, splitter, switch, and so on). In general, the two 
fundamental wing components can be either lines or combinations. In the sequel, we 
discuss these basic patterns for ETL workflows that can be further used to construct 
more complex butterfly structures. Figure 2 depicts example cases of these variants. 

Lines. Lines are sequences of activities and recordsets such that all activities have 
exactly one input (unary activities) and one output. Lines form single data flows.  

Combinations. A combinator activity is a join variant (a binary activity) that merges 
parallel data flows through some variant of a join (e.g., a relational join, diff, merge, 
lookup or any similar operation) or a union (e.g., the overall sorting of two 
independently sorted recordsets). A combination is built around a combinator with 
lines or other combinations as its inputs. We differentiate combinations as left-wing 
and right-wing combinations. 

Left-wing combinations are constructed by lines and combinations forming the left 
wing of the butterfly.  The left wing contains at least one combination. The inputs of 
the combination can be: 

− Two lines. Two parallel data flows are unified into a single flow using a 
combination. These workflows are shaped like the letter ‘Y’ and we call them 
Wishbones. 

− A line and a recordset. This refers to the practical case where data are processed 
through a line of operations, some of which require a lookup to persistent 
relations. In this setting, the Primary Flow of data is the line part of the 
workflow. 

− Two or more combinations. The recursive usage of combinations leads to many 
parallel data flows. These workflows are called Trees. 

Observe that in the cases of trees and primary flows, the target warehouse acts as the 
body of the butterfly (i.e., there is no right wing). This is a practical situation that 
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covers (a) fact tables without materialized views and (b) the case of dimension tables 
that also need to be populated through an ETL workflow. In some cases, the body of 
the butterfly is not necessarily a recordset, but an activity with many outputs (see last 
example of Figure 2). Then, the main goal of the scenario is to distribute data to the 
appropriate flows; this task is performed by an activity serving as the butterfly’s body.   

Right-wing combinations are created by lines and combinations on the right wing 
of the butterfly. These lines and combinations form either a flat or a deep hierarchy. 

− Flat Hierarchies. These configurations have small depth (usually 2) and large 
fan-out. An example of such a workflow is a Fork, where data are propagated 
from the fact table to the materialized views in two or more parallel data flows. 

− Right - Deep Hierarchies. We also employ configurations with right-deep 
hierarchies. These configurations have significant depth and medium fan-out. 

A more detailed description of the above structures is given in Section 4.2.  
Butterflies are important for benchmarking at least in the following ways. Since 

such constructs are based on the classification of ETL activities discussed before, they 
form a taxonomy as aid for designing or understanding complex ETL workflows. In 
particular, we can use them for constructing more complex ETL workflows in a 
principle way. For example, if we need a memory intensive workflow, we should 
consider using tree or fork flows, which include routers/joins and a significant number 
of sorting or aggregating operations. If we wish to examine pipelining as well, we 
may consider extending these flows with line workflows (we need to tune the 
distribution of blocking and non-blocking operations in these flows too). In addition, 
to further enrich our workflows, we may also consider having multiple “bodies” in 
our design, which can represent not necessarily data warehouse tables, but ETL 
activities as well.  

Moreover, having in hand such categorization one may decompose existing 
complex ETL workflows into sets of primitive constructs for getting insight into their 
functionality. This decomposition can be used for optimization purposes too. We can 
study the behavior of the abovementioned ETL patterns in isolation, and then, we can 
use our findings for optimizing and tuning the whole workflow for performance, 
maintainability or some other quality. For example, the performance of a complex 
workflow can be derived from the performance of the component primitive ones.  

2.4   Goals of the Benchmark 

The design of a benchmark should be based upon a clear understanding of the 
characteristics of the inspected systems that do matter. Therefore, we propose a 
configuration that covers a broad range of possible workflows (i.e., a large set of 
configurable parameters) and a limited set of monitored measures. 

The goal of this benchmark is to provide the experimental testbed to be used for the 
assessment of ETL engines and design methods concerning their basic behavioral 
properties (measures) over a broad range of ETL workflows. 

This benchmark’s goal is to study and evaluate workflows as a whole. Here, we are 
not interested in providing specialized performance measures for very specific tasks 
in the overall process. We are not interested either, in exhaustively enumerating all 
the possible alternatives for specific operations. For example, this benchmark is not 
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intended to facilitate the comparison of alternative methods for duplicate detection in 
a data set, since it does not take the tuning of all the possible parameters for this task 
under consideration. On the contrary, this benchmark can be used for the assessment 
of the integration of such methods in complex ETL workflows, assuming that all the 
necessary knobs have been appropriately tuned. 

There are two modes of operation for ETL workflows: off-line (batch) and active 
(or continuous or real-time) modes. In the off-line mode, the workflow is executed 
during a specific time window (typically at night), when the systems are not servicing 
their end-users. Due to the low load of both the source and warehouse systems, the 
refreshment of data and any other administrative activities (cleanups, auditing, and so 
on) are easier to complete. In the active mode, the sources continuously try to send 
new data to the warehouse. This is not necessarily done instantly; rather, small groups 
of data are collected and sent to the warehouse for further processing. The two modes 
do not differ only on the frequency of the workflow execution, but also on how the 
workflow execution affects the load of the systems too. 

Independently of the mode under which the ETL workflow operates, the two 
fundamental goals that should be reached are effectiveness and efficiency. Hence, 
given an ETL engine or a specific design method to be assessed over one or more 
ETL workflows, these fundamental goals should be evaluated. 

Effectiveness. Our extensive discussions with ETL practitioners and experts have 
verified that in real-life ETL projects performance is not the only objective. On the 
contrary, other optimization qualities are of interest as well. We refer to these 
collectively as QoX [6]. The QoX metric suite is incorporated at all stages of the 
design process, from high-level specifications to implementation. A non-exhaustive 
list of metrics that can be used to guide optimization include: performance, 
recoverability, reliability, freshness, maintainability, scalability, availability, 
flexibility, robustness, affordability, consistency, traceability, and auditability. Some 
metrics are quantitative (e.g., reliability, freshness, cost) while other metrics may be 
difficult to quantify (e.g., maintainability, flexibility). Also, there are significant 
tradeoffs that should be taken under consideration, since an effort for improving one 
objective may hurt another one [13]. For example, improving freshness typically hurts 
recoverability, since considering recovery points on the way to the warehouse may be 
prohibitive in this case; on the other hand, having redundancy may be an interesting 
solution for achieving fault-tolerance. Due to space consideration, we do not elaborate 
on all the abovementioned measures (for a more detailed discussion we refer to [13]).  

However, the main objective is to have data respect both database and business 
rules. We believe that the following (non-exhaustive) list of questions should be 
considered in the creation of an ETL benchmark: 

Q1. Does the workflow execution reach the maximum possible level of data 
freshness, completeness, and consistency in the warehouse within the necessary 
time (or resource) constraints? 

Q2. Is the workflow execution resilient to occasional failures? 

Q3. Is the workflow easily maintainable? 

Freshness. A clear business rule is the need to have data as fresh as possible in the 
warehouse. Also, we need all of the source data to be eventually loaded at the 
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warehouse; the update latency depends on the freshness requirements. Nevertheless, 
the sources and the warehouse must be consistent at least at a certain frequency (e.g., 
at the end of a day).  

Missing changes at the source. Depending on what kind of change detector we have 
at the source, it is possible that some changes are lost (e.g., if we have a log sniffer, 
bulk updates not passing from the log file are lost). Also, in an active warehouse, if 
the active ETL engine needs to shed some incoming data in order to be able to 
process the rest of the incoming data stream successfully, it is imperative that these 
left-over tuples need to be processed later.  

Recovery from failures. If some data are lost from the ETL process due to failures, 
then, we need to synchronize sources and warehouse and compensate the missing 
data. Of course, tuples from aborted transactions that have been sent to the warehouse 
(or they are on their way to it) should be undone. 

Maintainability. In addition, keeping the ETL workflow maintainable is crucial for 
the cost of ETL lifecycle. A number of parameters may affect the maintainability of 
the system. Here, we focus on parameters indicating the cost of handling evolution 
events during the ETL lifecycle. Ideally, a simple ETL design is more maintainable, 
whereas in a complex one it is more difficult to keep track of a change. 

Efficiency. Efficiency is an important aspect of ETL design. Since typically ETL 
processes should run within strict time windows, performance does matter. In fact, 
achieving high performance is not only important per se, it can also serve as a means 
for enabling (or achieving) other qualities as well. For example, a typical technique 
for achieving recoverability is to add recovery points to the ETL workflow. However, 
this technique is time-consuming (usually, the i/o cost of maintaining recovery points 
is significant), so in order to meet the execution time requirements, we need to boost 
ETL performance. Typical questions need to be answered are as follows: 

Q4. How fast is the workflow executed? 

Q5. What degree of parallelization is required? 

Q6. How much pipelining does the workflow use? 

Q7. What resource overheads does the workflow incur at the source, intermediate 
(staging), and warehouse sites? 

Parallelization. The configuration in terms of parallelism plays an important role for 
the performance of an ETL process. In general, there exist two broad categories of 
parallel processing: pipelining and partitioning. In pipeline parallelism, the various 
activities are operating simultaneously in a system with more than one processor. This 
scenario performs well for ETL processes that handle a relative small volume of data. 
For large volumes of data, a different parallelism policy should be devised: the 
partitioning of the dataset into smaller sets. Then, we use different instances of the 
ETL process for handling each partition of data. In other words, the same activity of 
an ETL process would run simultaneously by several processors, each processing a 
different partition of data. At the end of the process, the data partitions should be 
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merged and loaded to the target recordset(s). Frequently, a combination of the two 
policies is used to achieve maximum performance. Hence, while an activity is 
processing partitions of data and feeding pipelines, a subsequent activity may start 
operating on a certain partition before the previous activity had finished. 

Minimal overheads at the sources and the warehouse. The production systems are 
under continuous load due to the large number of OLTP transactions performed 
simultaneously. The warehouse system supports a large number of readers executing 
client applications or decision support queries. In the offline ETL, the overheads 
incurred are of rather secondary importance, since the contention with such processes 
is practically non-existent. Still, in active warehousing, the contention is clear. 

− Minimal overhead of the source systems. It is imperative to impose the minimum 
additional workload to the source, in the presence of OLTP transactions. 

− Minimal overhead of the DW system. As the warehouse is populated by loading 
processes, other processes ask data from it. Then, the desideratum is that the 
warehouse operates with the lightest possible footprints for the loading processes 
as well as the minimum possible delay for incoming tuples and user queries. 

3   Benchmark Parameters 

In this section, we propose a set of configuration parameters along with a set of 
measures to be monitored in order to assess the fulfillment of the benchmark goals. 

Experimental Parameters. The following problem parameters are of particular 
importance to the measurement of ETL workflows: 

P1. the size of the workflow (i.e., the number of nodes contained in the graph),  
P2. the structure of the workflow (i.e., the variation of the nature of the involved 

nodes and their interconnection as the workflow graph), 
P3. the size of input data originating from the sources,  
P4. the workflow selectivity, based on the selectivities of the workflow activities,  
P5. the values of probabilities of failure, 
P6. the latency of updates at the warehouse (i.e., it captures freshness requirements), 
P7. the required completion time (i.e., this reflects the maximum tolerated execution 

time window),  
P8. the system resources (e.g., memory and processing power), and 
P9. the “ETL workload” that determines an execution order for ETL workflows and 

the number of instances of the workflows that should run concurrently (e.g., for 
evaluating parallelization in an ETL engine, one may want to run first a complex 
ETL workload composed of a high number of line workflows that should run in 
parallel, and then, a smaller set of tree workflows for merging the former ones). 

Measured Effects. For each set of experimental measurement, certain measures need 
to be assessed, in order to characterize the fulfillment of the aforementioned goals. In 
the sequel, we classify these measures according to the assessment question they are 
employed to answer. 
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Q1. Measures for data freshness and data consistency. The objective is to have data 
respect both database and business rules. Also, we need data to be consistent with 
respect to the source as much as possible. The latter possibly incurs a certain time 
window for achieving this goal (e.g., once a day), in order to accommodate high 
refresh rates in the case of active data warehouses or failures in the general case. 
Concrete measures are: 

− (M1.1) Percentage of data that violate business rules. 

− (M1.2) Percentage of data that should be present at their appropriate warehouse 
targets, but they are not. 

Q2. Measures for the resilience to failures. The main idea is to perform a set of 
workflow executions that are intentionally abnormally interrupted at different stages 
of their execution. The objective is to discover how many of these workflows were 
successfully compensated within the specified time constraints. For achieving 
resilience to failures, we consider two strategies or quality objectives: recoverability 
and redundancy. For the former, the most typical technique is to enrich the ETL 
process with recovery points (used for intermediate staging of data processed up to 
that point), so that after a failure the process may resume from the latest recovery 
point. However, where to put such points is not a straightforward task. Redundancy 
can be achieved with three techniques: replication, diversity or fail-over. For lack of 
space, here we refer only to replication, which involves multiple instances of the same 
process (or of a part of it) that run in parallel. Concrete measures are: 

− (M2.1) Percentage of successfully resumed workflow executions. 
− (M2.2) MTBF, the mean time between failures. 
− (M2.3) MTTR, mean time to repair. 
− (M2.4) Number of recovery points used. 
− (M2.5) Resumption type: synchronous or asynchronous. 
− (M2.6) Number of replicated processes (for replication). 
− (M2.7) Uptime of ETL process. 

Q3. Measures for maintainability. Maintainability is a qualitative objective and 
finding measures to evaluate it is more difficult than the other quantitative objectives 
(e.g, performance or recoverability). An approach to this, is to consider the effort for 
modifying the process after a change has been occurred either at the SLA’s (service 
level agreements) or the underlying systems (e.g., after adding, renaming or deleting 
an attribute or a table at a source site). Concrete measures are: 

− (M3.1) Length of the workflow or in other words, the length of its longest path 
(i.e., how far in the process a change should be propagated). 

− (M3.2) Complexity of the workflow refers to the amount of relationships that 
combine its components [3]. 

− (M3.3) Modularity (or cohesion) refers to the extent to which the workflow 
components perform exactly one job; thus, a workflow is more modular if it 
contains less sharable components. Modularity imposes some interesting tradeoffs, 
for example with parallelization.  
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− (M3.4) Coupling captures the amount of relationship among different recordsets or 
activities (i.e., workflow components). 

Q4. Measures for the speed of the overall process. The objective is to perform the 
ETL process as fast as possible. In the case of off-line loading, the objective is to 
complete the process within the specified time-window. Naturally, the faster this is 
performed the better (especially, in the context of failure resumption). In the case of 
active warehouse, where the ETL process is performed very frequently, the objective 
is to minimize the time that each tuple spends inside the ETL module. Concrete 
measures are: 

− (M4.1) Throughput of regular workflow execution (this may also be measured as 
total completion time). 

− (M4.2) Throughput of workflow execution including a specific percentage of 
failures and their resumption. 

− (M4.3) Average latency per tuple in regular execution. 

Q5. Measures for partitioning. The partitioning parallelism is affected by a set of 
choices. Partitioning a flow is not straightforward, since the splitting and especially, 
the merging operations required for the partitioning do not come without a cost. 
Concrete measures are: 

− (M5.1) Partition type (e.g., round-robin, hash-based, follow-database-partitioning, 
and so on), which should be chosen according the characteristics of the workflow. 
For example, a flow heavy on sort-based operations may consider hash-based 
partitioning instead of round-robin. 

− (M5.2) Number and length of workflow parts that use partitioning. 
− (M5.3) Number of partitions. 
− (M5.4) Data volume in each partition (this is related to partition type too). 

Q6. Measures for pipelining. The pipelining parallelization is affected by parts of the 
workflow that contain (or not) blocking operations (e.g., transformations based on 
sort or aggregation). Concrete measures are: 
− (M6.1) CPU and memory utilization for pipelining flows or for individual 

operation run in such flows. 
− (M6.2) Min/Max/Avg length of the largest and smaller paths (or subgraphs) 

containing pipelining operations. 
− (M6.3) Min/Max/Avg number of blocking operations. 

Q7. Measured Overheads. The overheads at the source and the warehouse can be 
measured in terms of consumed memory and latency with respect to regular 
operation. Concrete measures are: 

− (M7.1) Min/Max/Avg/ timeline of memory consumed by the ETL process at the 
source system. 

− (M7.2) Time needed to complete the processing of a certain number of OLTP 
transactions in the presence (as opposed to the absence) of ETL software at the 
source, in regular source operation. 
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− (M7.3) The same as 7.2, but in the case of source failure, where ETL tasks are to 
be performed too, concerning the recovered data. 

− (M7.4) Min/Max/Avg/ timeline of memory consumed by the ETL process at the 
warehouse system. 

− (M7.5) (active warehousing) Time needed to complete the processing of a certain 
number of decision support queries in the presence (as opposed to the absence) of 
ETL software at the warehouse, in regular operation. 

− (M7.6) The same as M7.5, but in the case of any (source or warehouse) failure, 
where ETL tasks are to be performed too at the warehouse side. 

4   Specific Scenarios 

A particular problem that arises in designing a test suite for ETL workflows concerns 
the complexity (structure and size) of the employed workflows. A means to deal with 
this is to construct a workflow generator, based on the aforementioned disciplines. 
Another means is to come up with an indicative set of ETL workflows that serve as the 
basis for experimentations. For space consideration, here we present the latter and we 
propose a small, exemplary set of specific ETL flows based on the TPC-H [16]. 

4.1   Database Schema 

The information kept in the warehouse concerns parts and their suppliers as well as 
orders that customers have along with demographic data for the customers. The 
scenarios used in the experiments clean and transform the source data into the desired 
warehouse schema. The sources for our experiments are of two kinds, the storage 
houses and sales points. Every storage house keeps data for the suppliers and parts, 
while every sales point keeps data for the customers and the orders. (The schemata of 
the sources and the data warehouse are depicted in Figure A1 – in the appendix.) 

 

4.2   ETL Scenarios 

We consider the butterfly cases discussed in Section 2 to be representative of a large 
number of ETL scenarios and thus, we propose a specific scenario for each kind. Due 
to space limitation, here we provide only small-size scenarios indicatively (e.g., a 
right-deep scenario is not given). However, as we discussed, one may create larger 
scenarios based on these exemplary structures. The scenarios are depicted in Figure 2 
(their detailed descriptions can be found in the appendix of this paper). 

The line workflow has a simple form since it applies a set of filters, 
transformations, and aggregations to a single table. This scenario type is used to filter 
source tables and assure that the data meet the logical constraints of the data 
warehouse.  

A wishbone workflow joins two parallel lines into one. This scenario is preferred 
when two tables in the source database should be joined in order to be loaded to the 
data warehouse or in the case where we perform similar operations to different data 
that are later joined. In our exemplary scenario, we track the changes that happen in a 
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source containing customers. We compare the customers of the previous load to the 
ones of the current load and search for new customers to be loaded in the warehouse. 

The primary flow scenario is a common scenario in cases where the source table 
must be enriched with surrogate keys. This exemplary primary flow that we use has as 
input the Orders table. The scenario is simple: all key-based values (“orderstatus”, 
“custkey”, “orderkey”) pass through surrogate key filters that lookup (join) the 
incoming records in the appropriate lookup table. The resulting rows are appended to 
the relation DW.Orders. If incoming records exist in the DW.Orders relation and they 
have changed values then they are overwritten (thus, the Slowly Changing Dimension 
Type 1 tag in the figure); otherwise, a new entry is inserted in the warehouse relation. 

The tree scenario joins several source tables and applies aggregations on the result 
recordset. The join can be performed over either heterogeneous relations, whose 
contents are combined, either over homogeneous relations, whose contents are 
integrated into one unified (possible sorted) data set. In our case, the exemplary 
scenario involves three sources for the warehouse relation PartSupp.  

The fork scenario applies a set of aggregations on a single source table. First the 
source table is cleaned, just like in a line scenario and the result table is used to create 
a set of materialized views. Our exemplary scenario uses the Lineitem table as the 
butterfly’s body and starts with a set of extracted new records to be loaded. 

The most general-purpose scenario type is a butterfly scenario. It joins two or 
more source tables before a set of aggregations is performed on the result of the join. 
The left wing of the butterfly joins the source tables, while the right wing performs 
the desired aggregations producing materialized views. Our first exemplary scenario 
uses new source records concerning Partsupp and Supplier as its input. A second 
exemplary scenario introduces a Slowly Changing Dimension plan, populating the 
dimension table PART and retaining its history at the same time.  

5   Related Work 

Several benchmarks have been proposed in the database literature, in the past. Most of 
the benchmarks that we have reviewed make careful choices: (a) on the database 
schema & instance they use, (b) on the type of operations employed and (c) on the 
measures to be reported. Each benchmark has a guiding goal, and these three parts of 
the benchmark are employed to implement it.  

As an example, we mention two benchmarks mainly coming from the Wisconsin 
database group. The OO7 benchmark was one of the first attempts to provide a 
comparative platform for object-oriented DBMS’s [4]. The OO7 benchmark had the 
clear target to test as many aspects as possible of the efficiency of the measured 
systems (speed of pointer traversal, update efficiency, query efficiency). The BUCKY 
benchmark had a different viewpoint: the goal was to narrow down the focus only on 
the aspects of an OODBMS that were object-oriented (or object-relational): queries 
over inheritance, set-valued attributes, pointer navigation, methods and ADTS [5]. 
Aspects covered by relational benchmarks were not included in the BUCKY 
benchmark.  
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TPC has proposed two benchmarks for the case of decision support. The TPC-H 
benchmark [16] is a decision support benchmark that consists of a suite of business-
oriented ad-hoc queries and concurrent data modifications. The database describes a 
sales system, keeping information for the parts and the suppliers, and data about 
orders and the supplier's customers. The relational schema of TPC-H consists of eight 
separate tables with 5 of them being clearly dimension tables, one being a clear fact 
table and a couple of them combinations of fact and dimension tables. Unfortunately, 
the refreshment operations provided by the benchmark are primitive and not 
particularly useful as templates for the evaluation of ETL scenarios.  

TPC-DS is a new Decision Support (DS) workload being developed by the TPC 
[11, 15]. This benchmark models the decision support system of a retail product 
supplier, including queries and data maintenance. The relational schema of this 
benchmark is more complex than the schema presented in TPC-H. There are three 
sales channels: store, catalog and the web. There are two fact tables in each channel, 
sales and returns, and a total of seven fact tables. In this dataset, the row counts for 
tables scale differently per table category: specifically, in fact tables the row count 
grows linearly, while in dimension tables grows sub-linearly. This benchmark also 
provides refreshment scenarios for the data warehouse. Still, all these scenarios 
belong to the category of primary flows, in which surrogate and global keys are 
assigned to all tuples. Recently, a new effort has been started driven by the TPC-ETL 
committee, but so far, concrete results have not been reported [15]. 

An early version of this paper was presented in [17]; due to lack of formal 
proceedings, please refer to the online version. 

6   Conclusions 

In this paper, we have dealt with the challenge of presenting a unified experimental 
playground for ETL processes. First, we have presented a principled way for 
constructing ETL workflows and we have identified their most prominent elements. 
We have classified the most frequent ETL operations based on their special 
characteristics. We have shown that this classification adheres to the built-in operations 
of three popular commercial ETL tools; we do not anticipate any major deviations for 
other tools. Moreover, we have proposed a generic categorization of ETL workflows, 
namely butterflies, which covers frequent design cases. We have identified the main 
parameters and measures that are crucial in ETL environment and we have discussed 
how parallelism affects the execution of an ETL process. Finally, we have proposed 
specific ETL scenarios based on the aforementioned analysis, which can be used as an 
experimental testbed for the evaluation of ETL methods or tools. 

Open issues involve (a) the handling of non-relational data, the treatment of near 
real time ETL, (c) the tuning of several parameters of the benchmark with values that 
reflect real-world applications, (d) the handling of indexes, materialized views and 
auxiliary data structures at the target side of the warehouse, and (e) the treatment of 
platform and hardware characteristics. Extra care should be taken also for the control 
flow part of ETL processes. 

The main message from our work is the need for a commonly agreed benchmark 
that reflects real-world ETL scenarios, both for research purposes and, ultimately, for 
the comparison of ETL tools. Feedback is necessary for further tuning the benchmark. 
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Appendix 

The schemata of the sources and the data warehouse are depicted in Figure A1. 

Data Warehouse:
PART(rkey s_partkey,name,mfgr,brand,type,size,container,comment) 
SUPPLIER (s_suppkey, name, address, nationkey, phone, acctbal, comment, totalcost) 
PARTSUPP(s_partkey, s_suppkey,availqty,supplycost, comment) 
CUSTOMER (s_custkey, name, address, nationkey, phone, acctball, mktsegment, comment) 
ORDER (s_orderkey, custkey, orderstatus, totalprice, orderdate, orderpriority, clerk, shippri-

ority, comment) 
LINEITEM (s_orderkey, partkey, suppkey, linenumber, quantity, extendedprice, discount, 

tax, returnflag, linestatus, shipdate, commitdate, receiptdate, shipinstruct, ship-
mode, comment, profit) 

Storage House:
PART (partkey,name,mfgr,brand, type, size, container, comment) 
SUPPLIER (suppkey, name, address, nationkey, phone, acctbal, comment) 
PARTSUPP (partkey, suppkey, availqty, supplycost, comment) 
Sales Point:
CUSTOMER (custkey, name, address, nationkey, phone, acctball, mktsegment, comment) 
ORDER (orderkey, custkey, orderstatus, totalprice, orderdate, orderpriority, clerk, shippri-

ority, comment) 
LINEITEM (orderkey, partkey, suppkey, linenumber, quantity, extendedprice, discount, tax, 

returnflag, linestatus, shipdate, commitdate, receiptdate, shipinstruct, shipmode, 
comment) 

 

Fig. A1. Database schemata 

Detailed Description of Scenarios 

Line. In the proposed scenario, we start with an extracted set of new source rows 
LineItem.D+ and push them towards the warehouse as follows: 

1. First, we check the fields "partkey", "orderkey" and "suppkey" for NULL values. 
Any NULL values are replaced by appropriate special values. 

2. Next, a calculation of a value "profit" takes place. This value is locally derived 
from other fields in a tuple as the amount of "extendedprice" subtracted by the 
values of the "tax" and "discount" fields. 

3. The third activity changes the fields "extendedprice", "tax", "discount" and 
"profit" to a different currency.  

4. The results of this operation are loaded first into a delta table DW.D+ and 
subsequently into the data warehouse DWH. The first load simply replaces the 
respective recordset, whereas the second involves the incremental appending of 
these rows to the warehouse. 

5. The workflow is not stopped after the completion of the left wing, since we would 
like to create some materialized views. The next operation is a filter that keeps 
only records whose return status is "False". 

6. Next, an aggregation calculates the sum of "extendedprice" and "profit" fields 
grouped by "partkey" and "linestatus". 

7. The results of the aggregation are loaded in view View01 by (a) updating existing 
rows and (b) inserting new groups wherever appropriate. 
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8. The next activity is a router, sending the rows of view View01 to one of its two 
outputs, depending on the "linestatus" field has the value "delivered" or not. 

9. The rows with value “delivered” are further aggregated for the sum of "profit" and 
"extendedprice" fields grouped by "partkey". 

10. The results are loaded in view View02 as in the case for view View01. 

11. The rows with value different than “delivered” are further aggregated for the sum 
of "profit" and "extendedprice" fields grouped by "partkey". 

The results are loaded in view View03 as in the case for view View01. 

Wishbone. The scenario evolves as follows: 

1. The first activity on the new data set checks for NULL values in the "custkey" 
field. The problematic rows are kept in an error log file for further off-line 
processing. 

2. Both previous and old data are passed through a surrogate key transformation. 
We assume a domain size that fits in main memory for this source; therefore, the 
transformation is not performed as a join with a lookup table, but rather as a 
lookup function call invoked per row.  

3. Moreover, the next activity converts the phone numbers in a numeric format, 
removing dashes and replacing the '+' character with the "00" equivalent. 

4. The transformed recordsets are persistently stored in relational tables or files 
which are subsequently compared through a difference operator (typically 
implemented as a join variant) to detect new rows.  

5. The new rows are stored in a file C.D+ which is kept for the possibility of failure. 
Then the rows are appended in the warehouse dimension table Customer. 

Tree. The scenario evolves as follows: 

1. Each new version of the source is sorted by its primary key and checked against its 
past version for the detection of new or updated records. The DIFFI,U operator 
checks the two inputs for the combination of pkey, suppkey matches. If a match is 
not found, then a new record is found. If a match is found and there is a difference 
in the field “availqty” then an update needs to be performed. 

2. These new records are assigned surrogate keys per source 
3. The three streams of tuples are united in one flow and they are also sorted by 

“pkey” since this ordering will be later exploited. Then, a delta file PS.D is 
produced. 

4. The contents of the delta file are appended in the warehouse relation DW.PS. 

At the same time, the materialized view View04 is refreshed too. The delta rows are 
summarized for the available quantity per pkey and then, the appropriate rows in the 
view are either updated (if the group exists) or (inserted if the group is not present). 

Fork. The fork scenario evolves as follows: 

1. Surrogate keys are assigned to the fields "partkey", "orderkey" and "suppkey". 
2. We convert the dates in the "shipdate" and "receiptdate" fields into a “dateId”, a 

unique identifier for every date. 
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3. The third activity is a calculation of a value "profit". This value is derived from 
other fields in every tuple as the amount of "extendedprice" subtracted by the 
values of the "tax" and "discount" fields. 

4. This activity changes the fields "extendedprice", "tax", "discount" and "profit" to a 
different currency. The result of this actvity is stored at a delta table D+.LI. The 
records are appended to the data warehouse LineItem table and they are also 
reused for a number of aggregations at the right wing of the butterfly. All records 
pushed towards the views, either update or insert new records in the views, 
depending on the existence (or not) of the respective groups. 

5. The aggregator for View05 calculates the sum of the "profit" and "extendedprice" 
fields grouped by the "partkey" and "linestatus" fields. 

6. The aggregator for View06 calculates the sum of the "profit" and "extendedprice" 
fields grouped by the "linestatus" fields. 

7. The aggregator for View07 calculates the sum of the "profit" field and the average 
of the "discount" field grouped by the "partkey" and "suppkey" fields. 

8. The aggregator for View08 calculates the average of the "profit" and 
"extendedprice" fields grouped by the "partkey" and "linestatus" fields. 

Butterfly. The first scenario uses Partsupp and Supplier as its input. 

1. Concerning the Partsupp source, we generate surrogate key values for the 
"partkey" and "suppkey" fields. Then, the "totalcost" field is calculated and added 
to each tuple. 

2. Then, the transformed records are saved in a delta file D+.PS and appended to the 
relation DW.Partsupp. 

3. Concerning the Supplier source, a surrogate key is generated for the “suppkey” 
field and a second activity transforms the "phone" field. 

4. Then, the transformed records are saved in a delta file D+.S and appended to the 
relation DW.Supplier. 

5. The delta relations are subsequently joined on the "ps_suppkey" and "s_suppkey" 
fields and populate the view View09, which is augmented with the new records. 
Then, several views are computed from scratch, as follows. 

6. View View10 calculates the maximum and the minimum value of the "supplycost" 
field grouped by the "nationkey" and "partkey" fields.  

7. View12 calculates the maximum and the minimum of the "supplycost" field 
grouped by the "partkey" fields. 

8. View11 calculates the sum of the "totalcost" field grouped by the "nationkey" and 
"suppkey" fields. 

9. View13 calculates the sum of the "totalcost" field grouped by the "suppkey" field. 

The second butterfly scenario concerns Slowly Changing dimensions, populating 
the dimension table PART and retaining its history at the same time. The trick is 
found in the combination of the “rkey”, “s_partkey” attributes. The “s_partkey” 
assigns a surrogate key to a certain tuple (e.g., assume it assigns 10 to a product 
X). If the product changes in one or more attributes at the source (e.g., X’s “size” 
changes), then a new record is generated, with the same “s_partkey” and a 



 Benchmarking ETL Workflows 219 

different “rkey” (which can be a timestamp-based key, or similar). The scenario 
works as follows: 

1. A new and an old version of the source table Part are compared for changes. 
Changes are directed to P.D++ (for new records) and P.DU for updates in the 
fields “size” and “container” 

2. Surrogate and recent keys are assigned to the new records that are propagated to 
the table PART for storage. 

3. An auxiliary table MostRecentPART holding the most recent “rkey” per 
“s_partkey” is appropriately updated. 

Observe that in this scenario the body of the butterfly is an activity. 

Statistics 

Figure A2 presents summarized statistics of the constituents of the ETL workflows 
depicted in Figure 2. Such statistics reveal the functionality (i.e., the nature) of 
each workflow. (The numbers L+R refer to the left (L) and right (R) wings, 
respectively.) 

 Filters Functions Routers Aggr Holistic 
f.

Joins Diff Unions Load 
Body 

Load 
Views 

Line 1+1 2+0 0+1 0+3     INCR INCR 
Wishbone 1+0 4+0    1+0   INCR - 
Pr. Flow      3+0   I/U - 
Tree    0+1 1+0 1+0  1+0 I/U I/U 
Fork  3+0  0+4     INCR INCR 
BB(1)  4+0  0+4  1+0   INCR FULL 
BB(2)  0+2     1  - I/U 

2+1 13+2 0+1 0+12 1+0 6+0 1 1+0    

Fig. A2. Statistics of the proposed ETL workflows  

Taxonomy of Activities 

Figure A3 presents a taxonomy of activities at the micro level and similar built-in 
transformations provided by commercial ETL tools. For each category of activities 
presented in Section 2.2, a representative set of transformations, which are 
provided by three popular commercial ETL tools, is presented. The figure is 
indicative and in many ways incomplete. The goal is not to provide a comparison 
among the three tools. On the contrary, we would like to stress out the genericity 
of our classification. For most ETL tools, the set of built-in transformations is 
enriched by user defined operations and a plethora of functions. Still, as figure A3 
shows, all frequently built-in transformations existing in commercial solutions fall 
into our classification. 
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Transformation 
Category*

SQL Server Informa-
tion Services SSIS 

DataStage  Oracle Warehouse 
Builder  

Row-level: Func-
tion that can be 
applied locally to a 
single row 

− Character Map 
− Copy Column 
− Data Conversion 
− Derived Column 
− Script Component 
− OLE DB Command 
− Other filters (not 

null, selections, etc.) 

− Transformer (A ge-
neric representative of 
a broad range of func-
tions: date and time, 
logical, mathematical, 
null handling, num-
ber, raw, string, util-
ity, type conver-
sion/casting, routing.) 

− Remove duplicates 
− Modify (drop/keeps 

columns or change 
their types) 

− Deduplicator (distinct) 
− Filter 
− Sequence 
− Constant 
− Table function (it is 

applied on a set of 
rows for increasing 
the performance) 

− Data Cleaning Opera-
tors (Name and Ad-
dress, Match-Merge) 

− Other SQL transfor-
mations (Character, 
Date, Number, XML) 

Routers: Locally 
decide, for each row, 
which of the many 
outputs it should be 
sent to 

− Conditional Split 
− Multicast 

− Copy 
− Filter 
− Switch 

− Splitter 

Unary Grouper:
Transform a set of 
rows to a single row 

− Aggregate 
− Pivot/Unpivot 

− Aggregator  
− Make/Split subrecord 
− Combine/Promote 

records 
− Make/Split vector 

− Aggregator 
− Pivot/Unpivot 

Unary Holistic:
Perform a transfor-
mation to the entire 
data set (blocking) 

− Sort 
− Percentage Sam-

pling 
− Row Sampling 

− Sort (sequential, 
parallel, total) 

− Sorter 

T
ra

ns
fo

rm
at

io
n 

an
d 

C
le

an
si

ng
 

Binary or N-ary:
Combine many 
inputs into one 
output 

Union-like: 
− Union All 
− Merge  
Join-like: 
− Merge Join (MJ) 
− Lookup (SKJ) 
− Import Column 

(NLJ) 

Union-like: 
− Funnel (continuous, 

sort, sequence) 
Join-like: 
− Join 
− Merge 
− Lookup 
Diff-like: 
− Change capture/apply 
− Difference (record-

by-record) 
− Compare (column-by-

column) 

Union-like: 
− Set (union, union all, 

intersect, minus) 
Join-like: 

− Joiner 
− Key Lookup (SKJ) 

E
xt

r.
 

− Import Column 
Transformation 

− Compress/Expand 
− Column import 

− Merge 
− Import 

L
oa

d 

− Export Column 
− Slowly Changing 

Dimension 

− Compress/Expand 
− Column import/export 

− Merge 
− Export  
− Slowly Changing 

Dimension  
 * All ETL tools provide a set of physical operations that facilitate either the extraction or the loading phase. 

Such operations include: extraction from hashed/sequential files, delimited/fixed width/multi-format flat 
files, file set, ftp, lookup, external sort, compress/uncompress, and so on. 

Fig. A3. Taxonomy of ETL activities 
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Abstract. Event processing engines are used in diverse mission-critical 
scenarios such as fraud detection, traffic monitoring, or intensive care units. 
However, these scenarios have very different operational requirements in terms 
of, e.g., types of events, queries/patterns complexity, throughput, latency and 
number of sources and sinks. What are the performance bottlenecks? Will 
performance degrade gracefully with increasing loads? In this paper we make a 
first attempt to answer these questions by running several micro-benchmarks on 
three different engines, while we vary query parameters like window size, 
window expiration type, predicate selectivity, and data values. We also perform 
some experiments to assess engines scalability with respect to number of 
queries and propose ways for evaluating their ability in adapting to changes in 
load conditions. Lastly, we show that similar queries have widely different 
performances on the same or different engines and that no engine dominates the 
other two in all scenarios.  

Keywords: Benchmarking, Complex Event Processing, Micro-benchmarks. 

1   Introduction 

Complex Event Processing (CEP)1 has emerged as a new paradigm to monitor and 
react to continuously arriving events in (soft-)real time. The wide applicability of 
event processing has drawn increased attention both from academia and industry, 
giving rise to many research projects [1, 2, 7, 16] and commercial products. CEP has 
been used for several purposes, including fraud detection, stock trading, supply-chain 
monitoring, network management, traffic monitoring or intensive care units control. 

Most scenarios where event engines are being deployed are mission-critical 
situations with demanding performance requirements (e.g., high throughput and/or 
low latency). Interestingly, the range of scenarios is very broad and presents very 
different operational requirements in terms of throughput, response time, type of 
events, patterns, number of sources, number of sinks, scalability, and more. It is 
unclear what type of requirements demand more from engines, what happens when 
parameters are varied, or if performance degrades gracefully. To address the lack of 
event processing performance information, in this paper we make the following 
contributions: 
                                                           
1
 We use the terms “complex event processing”, "CEP" and "event processing" interchangeably. 
Likewise, we also use the terms "CEP system" and "CEP engine" interchangeably. 
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i. We present a number of micro-benchmarks to stress fundamental operations 
such as selection, projection, aggregation, join, pattern detection, and 
windowing (summarized in Section 3). 

ii. We perform an extensive experimental evaluation of three different CEP 
products (two commercial, one open-source), with varying combinations of 
window type, size, and expiration mode, join and predicate selectivity, tuple 
width, incoming throughput, reaction to bursts and query sharing (Section 4). 

2   Event Processing Overview 

Like Data Stream Management Systems (DSMS) [1, 2, 16], CEP systems are 
designed to handle real time data that arrive constantly in the form of event streams. 
CEP queries are continuous in the sense that they are registered once and then run 
indefinitely, returning updated results as new events arrive. Due to low-latency 
requirements, CEP engines manipulate events in main memory rather than in 
secondary storage media. Since it is not possible to keep all events in memory, CEP 
engines use moving windows to keep only a subset (typically the most recent part) of 
the event streams in memory. In addition to these features shared with DSMS, CEP 
engines also provide the ability to define reactive rules that fire upon detection of 
specific patterns. Ideally, CEP engines should be able to continuously adapt their 
execution to cope with variations (e.g., in arrival rate or in data distributions) and 
should be able to scale by sharing computation among similar queries. 

Section 2.1 lists the operations typically performed by CEP systems. We use these 
operations as the basis of the micro-benchmarks of Section 3. 

2.1   CEP Characterization 

A few event processing uses cases have been recently published [6], but it is still 
unclear which of them, if any, is representative of the field. There is, however, a core 
set of operations used in most scenarios and available, in one form or another, in all 
products:  

• Windowing;  • Filtering (Selection/Projection);  
• Transformation;  • Sorting/Ranking; 
• Aggregation/Grouping;  • Correlation/Enrichment (Join);  
• Merging (Union); • Pattern Detection. 

The performance of a CEP engine depends on: i) the algorithms implementing these 
basic operations; ii) parameters such as window type and size, and predicate 
selectivity; and iii) external parameters such as available resources, incoming data, 
and number and type of queries and rules.  

2.2   Window Policies  

Moving windows are fundamental structures in CEP engines, being used in many 
types of queries. Windows with different properties produce different results and have 
radically different performance behaviors. Window policies determine when events 
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are inserted and removed (expired) from moving windows and when to output 
computations. Three aspects define a policy [12]:  

i. Window Type: determines how the window is defined. Physical or time-
based windows are defined in terms of time intervals. Logical, count-based, 
or tuple-based are defined in terms of number of tuples2. 

ii. Expiration Mode: determines how the window endpoints change and which 
tuples are expired from the window. In sliding windows endpoints move 
together and events continuously expire with new events or passing time 
(e.g., “last 30 seconds”). In jumping or tumbling windows the head endpoint 
moves continuously while the tail endpoint moves (jumps) only sporadically 
(e.g. “current month”). The infrequent jump of the tail endpoint of jumping 
windows is said to close or reset the window, expiring all tuples at once. In a 
landmark window one endpoint is moving, the other is fixed, and events do 
not expire (e.g., “since 01-01-2000”). 

iii. Update Interval (Evaluation Mode): determines when to output results: 
every time a new event arrives or expires, only when the window closes (i.e., 
reaches its maximum capacity/age), or periodically at selected intervals. 

In general, commercial engines do not support all the combinations above. 

3   Dataset and Micro-benchmarks 

In this section we describe the dataset used in our tests and summarize the micro-
benchmarks in Table 2 (a detailed description of the queries appears in Section 4). 
We use a synthetic dataset because it allows exploring the parameter and performance 
space more freely than any single real dataset. The dataset schema is based on sample 
schemas available at the Stream Query Repository (SQR) [21]. In most application 
domains of SQR, event records consist in: i) an identifier for the entities in the 
domain (e.g., stock symbols in trading examples); ii) a set of domain-specific 
properties (e.g., “price”, “speed”, or “temperature”), typically represented as floating 
point numbers; and iii) the time when the event happened or was registered. 

Based on these observations, we define the generic dataset schema of Table 1. The 
ID field identifies the entity being reported in the stream. The number of different 
entities, MAX_ID (ranges from 10 to 5.000.000), can greatly affect performance in 
 

Table 1. Schema of the dataset used 

Field Type Domain 
ID int Equiprobable numbers in the range (1, MAX_ID) 
A1...AN double Random values following a uniform distribution U(1,100) 
TS long Timestamp. 

 

                                                           
2 There are also semantic windows whose contents depend on some property of the data (e.g., 

all events between events “login” and “logout”). We do not consider semantic windows in our 
study as none of the engines we tested implements them. 
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Table 2. Summary of micro-benchmarks 

 
joins, pattern matching queries, and aggregations. Tuple width is varied with the 
number of attributes Ai (from 1 to 125). The TS timestamp field is expressed in 
milliseconds and assigned by the load generator at runtime. 

4   Tests Specification and Results 

In this section we discuss the results obtained after running the micro-benchmarks on 
three CEP engines. We emphasize that it is not our intention to provide an in-depth 
comparison of existing CEP engines, but rather to give a first insight into the 
performance of current products as a way to identify bottlenecks and opportunities for 
improvement. We focus on analyzing general behavior and performance trends of the 
engines (e.g. variations with respect to window size, tuple width, or selectivity). 

4.1   Tests Setup 

The tests were performed on a server with two Intel Xeon E5420 (12M Cache, 2.50 
GHz, 1333 MHz FSB) Quad-Core processors (a total of 8 cores), 16 GB of RAM, and 
4 SATA-300 disks, running Windows 2008 x64 Datacenter Edition, SP2.  

We ran our queries on three CEP engines, two of which are developer’s editions of 
commercial products and the other is the open-source Esper [11]. Due to licensing 
restrictions, we are not allowed to reveal the names of the commercial products, and 
will call engines henceforth as “X”, “Y”, and “Z”. We tried multiple combinations of 

Query Factors under analysis Metrics 
Selection and 

Projection 
• Selectivity: [1%, 5%, 25%, 50%] 
• # attributes: [5, 10, 25, 50, 125] 

Throughput 

Aggregations
and Windows 

• Window size (tuples): 500 to 500K 
• Window expiration: [sliding, jumping] 
• Aggregations: [SUM, MAX, STDEV] 

Throughput 

Joins 

• Input Source: [stream, window, in-
 memory table, external table] 
• Input Size (# events): 500 to 100M 
• Join Selectivity: 0.01 to 10 

Throughput 

Pattern 
Detection 

• Window Size (secs): 10 to 600 
• MAX_ID: [100, 1k, 10k, 100k] 
• Predicate Selectivity: 0.1% to 10% 

Throughput 

Large Time-
Based Windows

• Injection Rate (events/sec): 500 to100K 
• Window Size: 10 minutes to 12 hours 

Throughput 
Memory consumption 

Adaptability ( See Section 4.8.) 

Maximum latency 
Latency degradation ratio 
Recovery Time 
Post-peak latency variation ratio 

Multiple 
queries 

• Number of Queries: [1, 4, 16, 64] 
• Window definition (size: 400k to 500k) 

Throughput  
Memory consumption 
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configuration parameters to tune each engine to its maximum performance (e.g., 
enabling buffering at client side, or using different event formats and SDK versions).  

Figure 1 shows the components involved in the performance tests. Two slightly 
different architectures were employed. In either case, the load generation component 
communicates with an intermediary process called Adapter via plain socket, and CSV 
text messages. The Adapter then converts these messages into the native format of CEP 
engines and transmits them using their respective application programming interfaces 
(API). The difference between the 
two architectures shown in  
Figure 1 is that engines X and Z 
are standalone applications 
(architecture 1), while engine Y 
consists in a .jar file that is 
embedded into an existing 
application (architecture 2). This 
means that X and Z, receive/send 
events/results using inter-process 
communication, while Y uses 
lower-latency local method calls. 

The input streams data were 
generated and submitted using the 
FINCoS framework [15], a set of benchmarking tools we have developed for 
assessing performance of CEP engines. Both the load generation components and the 
event processing engines under test ran in a single machine to eliminate network 
latencies and jitter. CPU’s affinity was set to minimize interferences between the load 
generator, adapters and CEP engines. For all tests, unless otherwise stated, CEP 
engines ran in a single dedicated CPU core3, while the load generator and Adapter ran 
in the remaining ones. 

4.2   Methodology  

Tests consisted in running a single continuous query at the CEP engine (except for the 
multiple-query tests of Section 4.9). They began with an initial 1 minute warm-up 
phase, during which the load injection rate increased linearly from 1 event per second 
to a pre-determined maximum throughput4. After warm-up, the tests proceeded for at 
least 10 minutes in steady state with the load generation and injection rate fixed at the 
maximum throughput. Tests requiring more time to achieve steady state (e.g. using 
long time-based windows) had a greater duration. All the measures reported represent 
averages of at least two performance runs after the system reaches a steady state. 

4.3   Test 1: Selection and Projection Filters 

This micro-benchmark consists in two queries that filter rows (selection) or columns 
(projection) using query Q1 of Figure 2 (written in CQL [16]): 

                                                           
3

 We verified that two of the engines did not automatically benefit from having more cores 
available. For the third engine, the version we tested was limited to use only one CPU core. 

4
 The maximum injection rate was determined by running successive tests with increasing 
throughputs until CPU utilization was maximized or some other bottleneck was reached. 

Fig. 1. Architecture of evaluation setup 
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Q1: SELECT ID, A1,…,Am, TS 
    FROM   stream1 
    WHERE  ID <= K   

Fig. 2. Filtering query  

The two data reduction queries vary the values of parameters K, N, and m (results in 
Figure 3). K is used to force desired selectivity, N is the number of input attributes and 
m is the number of projected output attributes (m≤N): 

i. Row selection: varies predicate selectivity 
from 1% to 50%; N=m=5; 

ii. Column projection: varies number of input 
attributes N from 5 to 125; m is fixed at 1 and 
row selectivity at 100%.     

The throughputs achieved in this test series were very 
high, in millions of events per second. As expected, 
more selective predicates allow higher throughputs. 
The acute drop in performance in the projection query 
as the number of input attributes increases shows that 
tuple-width greatly affects performance. Notice that in 
both tests, Engine X was not fully utilizing the 
available resources (utilization of its CPU was between 
50% and 90%) when its client API adapter became the 
bottleneck. Dedicating more CPU-cores to the adapter 
(up to 7) did not solve this issue. 

4.4   Test 2: Aggregation and Window Policy 

The second micro-benchmark (query Q2 in Figure 4) evaluates aggregations over 
different tuple-window configurations. (Time-based windows are tested in sections 
4.6 and 4.7.)  

Q2: SELECT ID, f(A1) 
    FROM   stream1 [ROWS R Slide S] 
    GROUP  BY ID 

Fig. 4. Aggregation Query, written in CQL [21] 

We vary window size (parameter R from 500 to 500K), window type (parameter 
S=1 implies sliding window and parameter S=R implies jumping window), and 
aggregation function (parameter f=MAX, AVG, STDDEV, MEDIAN). Note that some 
functions can be computed at fixed cost (STDDEV, AVG) while others become more 
expensive as the window gets larger (MAX on sliding windows, or MEDIAN). 
Regarding expiration mode, we expected sliding windows to be more expensive than 
jumping for two reasons. First, sliding windows expire tuples one-by-one while 
 

Fig. 3. Filtering tests: 
Selection and Projection 
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 (a) (b) (c) 

Fig. 5. Aggregations Tests: varying windows sizes and policies on (a) sliding windows and on 
(b) jumping windows. Graph (c) is the CPU utilization of engine X for jumping windows. 

jumping windows expire them in batches. Second, sliding windows might need to 
keep more in-memory state (to deal with tuple-by-tuple expirations) while jumping 
windows may keep only counters and small summary data. Results are summarized in 
Figure 5. 

Oddly, engine X had a worse performance with 
the jumping expiration mode than with sliding one. 
The cause seems to be inefficient batch-expiration 
of the jumping window tuples as shown by the 
peak CPU utilization coinciding with the periodic 
batch-expiration (Figure 5c). On engine Z, the 
performance difference between the two expiration 
modes was surprising: very high throughputs with 
jumping windows (the best of the three engines at 
around 550K tuples/second) but very low 
throughputs with sliding windows (the worse of 
the three, reaching only 50 tuples/second for 
windows of size 500K). For engine Y, results appears 
at first to meet our expectations, but in fact these two test cases are not directly 
comparable since Y’s sliding windows output updated results for every tuple while its 
jumping windows update results only on window reset. Indeed, jumping windows 
showed a better performance not due to an implementation that benefit from the 
characteristics of this expiration mode, but rather, to a reduced evaluation/output 
frequency – examining Y’s open-source code we observed that the MAX aggregation 
is always computed by keeping the events of the window in a sorted structure; while 
this is a reasonable approach for sliding windows, it is inefficient for jumping 
windows, where MAX could be computed at constant cost. Except for the 
aforementioned issue regarding computation of MAX on engine Y, varying the 
aggregation functions between AVG, STDEV and MAX generally had minor effects on 
performance of all engines. In contrast, all engines achieved considerably lower 
throughputs in the tests with the MEDIAN function. The MEDIAN function also 
showed to be more sensitive to window size than the other functions (e.g. see  
Figure 6). 

Fig. 6. Median vs. Sum 
aggregates on engine X 
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4.5   Test 3: Joins 

This micro-benchmark evaluates join performance of CEP engines. We define three 
test series, each with different data sources and factors under analysis:  

J1. Window-to-window join – joins two windows that are constantly being 
updated by event arrivals in the corresponding input streams; 

J2. Stream-to-in-memory-table – simulates the situation where the content of an 
input stream must be enriched with static data stored as an in-memory table;  

J3. Stream-to-DBMS-relation – table stored in an external database; 

J1: Window-to-Window 
The window-to-window join query is the following: 

Q3: SELECT * FROM  stream1 [ROWS S] AS S1, 
                   stream2 [ROWS S] AS S2 
    WHERE  S1.ID = S2.ID 

Fig. 7. Window-to-window Equi-Join Query 

J1 series is comprised of three different tests as described below: 

J1-1 Varying window size and join selectivity: parameter S varies from 500 to 
500k. MAX_ID is held constant at 50k (i.e., the join is more selective for 
smaller window sizes); 

J1-2 Varying window size and keeping join selectivity: parameters S and MAX_ID 
take the same values, from 500, to 500k, which ensures a fixed 100% join 
selectivity (each event finds a single match on the other window); 

J1-3 Varying join selectivity and keeping window size fixed: MAX_ID takes the 
values 5k, 50k, 500k, and 5M while parameter S is held at 50k (each  
event finds, on average, 10, 1, 0.1 and 0.01 matching events on the other 
window). 

Figure 8 below shows the results for this test series. 

      

Fig. 8. Tests Join: Window-to-window 
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In J1-1, the acute drop in throughput was expected (due to increases in join input 
and selectivity) although the performance of engine Z degraded much faster than the 
performance of other engines. (Recall that engine Z showed performance issues on 
previous tests with aggregations over sliding windows, which seems to indicate that it 
has some problems with this expiration mode.) 

Tests J1-2 and J1-3 reveal that engine X is more sensitive to window size while 
engine Y performs very well when join selectivity is low, but degrades more quickly 
when it gets close to or exceeds 1. For engine Z, we ran a modified version of J1-3, 
with a smaller window (size 500, not shown) in order to minimize the cost of window 
maintenance but there were no noticeable performance differences when varying the 
join selectivity, indicating again that sliding windows are not efficiently handled by Z. 

J2/J3: Stream-to-in-Memory-Table and Stream-to-DB-Relation 
The queries of tests J2 and J3 have the following format: 

Q4: SELECT * FROM   stream1 AS S, 
                    table1  AS T 
    WHERE  S.ID = T.ID 

Fig. 9. Stream-to-table Join Query 

Figure 10 shows the corresponding results. In 
both tests a stream “S” with 4 fields is joined with 
a static table with 10 fields. In J2 the CEP engine is 
responsible for maintaining the table in main 
memory and for performing the join. In J3 the table 
is stored in an external database, which becomes 
responsible for the join (every new event in stream 
S fires a parameterized query to the DBMS5). The 
number of records in the table ranged from 1k to 
10M (in-memory) and from 1k to 100M (DB); join 
selectivity is always 100% (every event in the 
stream is matched against one and only one record 
in the table).  

In series J2, engine Y could not complete the test 
with 10M because it ran out of memory (prolonged 
garbage collections made it unresponsive). It is also 
interesting to notice how Z had a better join 
performance when operating over a table rather 
than over sliding windows (see J1-2, in Figure 8). 
In J3, two facts are worth mentioning: first, neither 
the CEP engines nor the DBMS were in their 
processing limits; the bottleneck was primarily the 
communication between these two components. 
Second, the performance was virtually unaffected 

                                                           
5 We tested both with MS-SQL Server™ 2005 and Oracle™ 11g, and the results were similar. 

Fig. 10. Tests Join between 
stream and table (J2) in-
memory or (J3) in external 
database
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from 1k to 1M as the DBMS was able to buffer the entire table into main memory. 
From this point on, the presence of IO calls, significantly lowered the query 
throughput. 

4.6   Test 4: Pattern Matching and Negative Pattern Matching 

We used query Q5 and Q5n below to test pattern matching. Q5 searches for instances 
of two events with the same ID in a time-based window of size interval, where the 
“A1” attribute of the second event is above some constant K. Q5n searches for 
sequences of an event not followed by a corresponding event within an interval. 

Q5: PATTERN SEQ(A a1, A a2)   Q5n: PATTERN SEQ(A a1, ~(A a2)) 
    WHERE a1.id = a2.id AND         WHERE a1.id = a2.id AND 
          a2.A1 > K                       a2.A1 > K 
    WITHIN interval                 WITHIN interval 

Fig. 11. Sample Pattern Matching Queries (expressed using the SASE+ language [23]) 

The purpose of the “a2.A1>K” predicate is to verify that CEP engines indeed 
benefit of predicates in pattern detection by pushing them earlier in query plan 
construction. This micro-benchmark exercises three factors:  

i. Varying Window Size: parameter interval ranges from 10 to 600 seconds. 
MAX_ID is held constant at 10k and K ensures a selectivity of 0.1%; 

ii. Varying Cardinality of Attribute ID: MAX_ID ranges from 100 to 100k. 
interval was held constant at 1 minute and K ensures selectivity of 0.1%; 

iii. Varying Predicate selectivity: the predicate selectivity varied from 0.1% to 
10%, while interval was held at 1 minute and MAX_ID at 10k. 

Figure 12 show the results of Q5. In the first experiment, all the engines had a very 
similar decrease in throughput as interval got larger. We could not determine the 
performance of engine Z for windows of sizes above 5 minutes because it consumed 
all available memory before tests could reach steady state (the  edition we tested was 
limited to address at most 1.5GB of memory). As expected, increasing the cardinality 
of the correlation attribute ID decreases query cost, since less tuples pairs will have 
matching IDs. Similarly, more selective predicates (lower percentages) yield better 
performance as less tuples are considered as potential patterns matches.  

  
 (a) (b) (c) 

Fig. 12. Pattern matching Tests varying (a) window size; (b) #IDs; (c) predicate selectivity 
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Q5n showed to be less expensive than Q5. This difference has to do with the 
consumption mode [10] used in these tests (all-to-all): in the case of negative patterns 
a single occurrence of an event “a2” eliminates many potential matches. (results of 
tests with negative pattern have been omitted due to space constraints). 

4.7   Test 5: Large Time-Based Windows 

Large time-based windows over high throughout sources may quickly drain system 
resources if all incoming events need to be retained. For example, one hour of 20-
byte-size events on a 50k event/sec stream represents around 3.4 GB. Fortunately, 
certain applications require results to be updated only periodically, say every second, 
rather than for every new event (see Q6 bellow). In that case, for distributive or 
algebraic functions [14], Q6 can be rewritten in the equivalent query Q7. 

Q6: SELECT AVG(A1)  
   FROM   A [RANGE 1 HOUR] 
   OUTPUT EVERY 1 SECOND; 
 
Q7: SELECT SUM(s1)/SUM(c1) 

   FROM (SELECT SUM(A1) AS s1, COUNT(A1) AS c1 
         FROM A[RANGE 1 SECOND] 
         OUTPUT EVERY 1 SECOND 
         ) [RANGE 1 HOUR]; 

Fig. 13. Two versions of aggregation query over time-based window with controlled output 

Query Q7 computes 1-second aggregates on the inner query and 1-hour aggregates 
over the 1-second aggregates with the outer query. The space requirements of Q7 are: 

Inner window: (50000 events/second * 20bytes/event) * 1second  =  977KB +
Outer window: (1 tuple/second * 20bytes/tuple) * 3600 seconds    =    70KB   

This micro-benchmark runs Q6 and Q7 for large different window sizes and varying 
input rates. The goal is to verify if: i) Q6 is internally transformed into Q7; and ii) if 
not, to quantify the benefits of such transformation. The results of Q6 and Q7 for a 
10-minute window appear in Table 3. 

Table 3. Memory consumption (in MB) of CEP Engines for Q6 and Q7 (10-minute window) 

 Input Rate 
Engine/Query 500 5,000 50,000 100,000 
X, Q6 187 1,553 Out-of-memory Out-of-memory 

X, Q7 39 40 64 98 
Y, Q6 455 3,173 Out-of-memory Out-of-memory 

Y, Q7 139 141 1,610 1,652 

Z, Q6 56 64 56 55 
Z, Q7 69 68 77 91 
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Table 4. CEP Engines’ memory consumption for very large time-based windows (MB) 

 Window Size 
Engine/Query 20 min 1 hr. 2 hrs. 6 hrs. 12 hrs. 
X, Q7 114 128 141 146 147 
Y, Q7 5,275 5,303 5,232 5,362 5,279 
Z, Q7 70 73 55 58 52 
Z, Q6 63 58 46 48 48 

Observe that in engines X and Y query Q7 indeed reduced memory consumption 
when compared to Q6. In fact, Q6 showed a near-linear growth with respect to input 
rate and as such, engines X and Y exhausted memory (more than 13GB) for input 
rates above 50k events/sec even on small 10-minute windows. Engine Z had its 
memory consumption virtually unaffected by the input rate and almost identical in 
both query versions; these results made us suspect at first that Z could be the only 
engine applying the query transformation automatically. 

We then ran a second series of experiments with much larger windows. Input rate 
was kept at 100k events per second and window size was progressively increased up 
to 12 hours. The durations of these tests were always 1.5 times the window size. For 
engines X and Y, we ran the tests with Q7. For engine Z we tested both versions. 
Table 4 summarizes the results. 

This new experiment exposed a 
behavior of engine Z not revealed in 
previous tests. While in the first 
experiments Z was able to keep memory 
consumption roughly unaffected by the 
number of events in the window, in this 
second series of tests, the CPU utilization 
and consequently maximum throughput 
were severely affected by the window 
size. As shown in Figure 14, Q6 had a 
drastic drop in maximum throughput as 
window size was increased, while Q7 
showed a very steady throughput curve. It 
is worthy to point out that in the tests 
with Q6 CPU was pushed to its 
maximum (for windows of 20 min and beyond), while with Q7 CPU utilization stayed 
always around 1%. These numbers indicate that Z also does not perform the 
transformation mentioned above, but rather has an alternative implementation which 
sacrifices maximum throughput to keep memory consumption controlled.  

4.8   Test 6: Adaptability to Bursts 

The objective of this micro-benchmark is to verify how fast and efficiently the CEP 
engines adapt to changes in the load conditions. Although many factors may cause 

Fig. 14. Q6 and Q7 aggregations over large 
time-windows (engine Z) 



 A Performance Study of Event Processing Systems 233 

variations in the execution of continuous queries, here we focus solely on input rate. 
The tests of this series consist in: 

i. An 1-minute warm-up phase during which the injection rate is progressively 
increased until a maximum value λ that makes CPU utilization around 75%; 

ii. A 5-minute steady phase during which the injection rate is kept fixed at λ; 
iii. A  10-second “peak” phase during which the injection rate is increased 50% 

(to 1.5λ), making the system temporarily overloaded; 
iv. A 5-minute “recovery” phase in which the injection rate is again fixed at λ; 

The query used is Q2, shown in Figure 4. To characterize the adaptability of CEP 
systems we define the following metrics: 

• Maximum peak latency (Max_RTpeak): maximum latency either during or 
after the injection of the peak load; 

• Peak latency degradation ratio (RT_Degradationpeak): 99.9th-percentile 
latency of peak phase with respect to 99.9th-percentile latency of steady 
phase: 

99.9th_RTpeak/99.9th_RTsteady 
In other words, what is the increase in latency caused by the peak? 

• Recovery Time (∆τrecovery): 
τrecovery-τpeak 

where τrecovery represents the timestamp of the first output event after peak 
injection whose latency is less than or equal the average latency of the steady 
phase and τpeak is the timestamp of the last input event of the peak phase. 
That is, how long does it take for to return to the same latency levels? 

• Post-peak latency variation ratio: Average latency after recovery divided by 
the average latency during steady phase:  

RTafter_ecovery/RTsteady_phase 
That is, what is the state of the system after it recovers from the peak? 

Discussion: Blocking/Non-blocking API and Latency Measurement 
Recall from Figure 1 that events are sent to engines through API calls. On engine X, 
those API calls are non-blocking while on engines Y and Z they are blocking. In 
practice this means that X continues queuing incoming events even if overload while 
Y and Z prevent clients from submitting events at a higher rate than that they can 
process. As shown in Figure 15, there are 
multiple ways of computing latency. In 
order to properly measure latency for 
blocking calls, it is necessary to employ the 
“creation time” of input events instead of 
their “send time” – formula (3) in Figure 
15. This formula allows accounting for the 
delays introduced by the blocking 
mechanism of the client APIs, which 
otherwise would pass unnoticed if we 
employed the moment immediately before 
sending the event. Fig. 15. Latency Measurement 
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Results 
Table 5 and Figure 16 show the results of the adaptability test. Engine X, which 
adopts a non-blocking posture in the communication with clients, took much longer to 
recover from the peak and had a higher maximum latency than the two blocking 
engines, Y and Z. Nonetheless, after recovery, all engines returned to virtually the 
same latency level as that observed before the peak. 

Table 5. Results for Adaptability Tests 

 Engine 
Metric X Y Z 
Max_RTpeak (ms) 4.725,0 1.262,0 1.483,0 
RT_Degradationpeak 82,8 57,4 5,9 
∆τrecovery (ms) 43.039,0 1.308,0 1.544,0 
RT_Variationpost 1,0 0,9 1,0 

 

Fig. 16. Adaptability Test: Scatter plot of latency before, during and after the peak 

4.9   Test 7: Multiple Queries (Plan Sharing) 

The objective of this micro-benchmark is to analyze 
how the CEP engines scale with respect to the 
number of simultaneous similar queries. The query 
used in this experiment is a window-to-window join 
similar to Q3 (Figure 7). We tested two variations: 

• Test 1: Identical queries. In this test we 
focus on computation sharing and the main 
metric is hence throughput. Window size is 
fixed in 1000 rows. To keep output rate 
fixed (1 output per input event), all queries 
have a predicate whose  selectivity increases 
as we add more queries; 

• Test 2: Similar queries with different 
window sizes. In this test we focus on 
memory sharing, so windows are large 
enough to observe differences when we 
increase the number of queries (in the range 
[400k-500k events]) and the injection rate 
is low so that CPU does not become a 
bottleneck;  

Fig. 17. Multiple Queries Tests 
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The results of these two tests are shown in Figure 17. Engine X is the only one to 
implement some kind of query plan sharing: in the first test its throughput remained 
unaffected when the number of queries was increased. However, in the second test, in 
which queries were similar but different, it was not able share resources. Results also 
indicate that engines Y and Z do not implement query plan sharing. In fact, Y and Z 
could not finish some tests of the second series: Y ran out of memory for 64 queries 
and Z become unresponsive while the window was being filled. 

5   Related Work 

Up to now, little previous work focused on the performance evaluation of event 
processing systems. White et al. [22] present a performance study which shows the 
latencies of a commercial CEP product while handling large volumes of events. 
Dekkers [8] carried out some tests for evaluating pattern detection performance in two 
open-source CEP engines. None of them characterize how query options such as 
window size and policy, or selectivity affects performance, nor covered more than 
one or two query type(s) or CEP product(s). 

Some benchmarks have been proposed in areas related to CEP such as the BEAST 
benchmark [5] for active databases, or the Linear Road [3] or NEXMark [17] 
benchmarks for data stream management systems. However, these benchmarks 
measure only steady state performance for a fixed number of queries, and do not 
consider issues such as adaptability and query plan sharing. SPECjms2007 [18] is a 
benchmark produced and maintained by the Standard Performance Evaluation 
Corporation (SPEC) aimed at evaluating the performance and scalability of JMS-
based messaging middlewares. SPECjms2007 thus focus on the communication side 
of event-driven systems rather than on query processing, which distinguishes it from 
our work. 

6   Conclusions and Future Work 

In this paper we presented a performance study of event processing systems. We 
proposed a series of queries to exercise factors such as window size and policy, 
selectivity, and event dimensionality and then carried out experimental evaluations on 
three CEP engines. The tests confirmed that very high throughputs can be achieved by 
CEP engines when performing simple operations such as filtering. In these cases the 
communication channel – in our tests, the client API – tends to be the bottleneck. We 
also observed that window expiration mode had a significant impact on the cost of 
queries. In fact, for one of the tested engines the difference in performance between 
jumping and sliding windows in one test was about 4 orders of magnitude. With 
respect to joins, tests revealed that accessing data stored in databases can significantly 
lower the throughput of a system. Pre-loading static data into CEP engine offers good 
performance and may thus solve this issue, but this approach is feasible only when 
data do not change often and fit in main memory. The tested engines had disparate 
adaptability characteristics. We observed that the approach used to receive events 
from clients – either blocking or non-blocking – plays a fundamental role on that 
aspect, although further investigation is still required to fully understand this topic 
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(e.g., testing bursts of variable amplitudes and durations or having changes in other 
parameters such as data distributions). Finally, the tests with multiple queries showed 
that plan sharing happened only in one CEP engine and only for identical queries (we 
still plan to broaden the investigation of this topic by incorporating tests with other 
classes of queries). It was also quite surprising and disappointing to realize that CEP 
engines were not able to automatically benefit from the multi-core hardware used in 
our tests. In general terms, we concluded that no CEP engine showed to be superior in 
all test scenarios, and that there is still room for performance improvements. 
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Abstract. We provide a benchmark measuring star schema queries retrieving 
data from a fact table with Where clause column restrictions on dimension 
tables. Clustering is crucial to performance with modern disk technology, since 
retrievals with filter factors down to 0.0005 are now performed most efficiently 
by sequential table search rather than by indexed access. DB2's Multi-
Dimensional Clustering (MDC) provides methods to "dice" the fact table along 
a number of orthogonal "dimensions", but only when these dimensions are 
columns in the fact table. The diced cells cluster fact rows on several of these 
"dimensions" at once so queries restricting several such columns can access 
crucially localized data, with much faster query response. Unfortunately, 
columns of dimension tables of a star schema are not usually represented in the 
fact table. In this paper, we show a simple way to adjoin physical copies of 
dimension columns to the fact table, dicing data to effectively cluster query 
retrieval, and explain how such dicing can be achieved on database products 
other than DB2. We provide benchmark measurements to show successful use 
of this methodology on three commercial database products. 

Keywords: Benchmark, Star Schema, Data Warehousing, Clustering,  
Multi-Dimensional Clustering, DB2, Oracle, Vertica. 

1   Introduction 

Our Star Schema Benchmark (SSB) was developed in 2006 to measure star schema 
query performance. A Data Warehouse is typically made up of a number of star 
schemas [7], and star schema queries typically retrieve data from a fact table with 
Where clause column restrictions on Dimension tables (Figure 1), although occasional 
restrictions may be on the fact table itself. The SSB is derived from the TPC-H 
benchmark, and we will show how the method employed illustrates how to turn a 
(partially) normalized schema into a star schema. 

The development of SSB was originally commissioned by Stonebraker's Vertica, 
which was compared to a number of commercial database systems with results 
published in [15]. The excellent Vertica performance displayed was achieved by a 
clever sort-order of columns in the fact table that resulted in a variant form of DB2's 
Multi-Dimensional Clustering (MDC) [1, 3, 4, 5, 6, 8, 13]. A comparable approach 
was applied to other database systems that were measured. Clustering data to reduce 
query access disk coverage has become the major way to improve query performance 
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Fig. 1. Point of Sale Star Schema 

since fast high-density disks have made regular indexed access inferior to sequential 
access for all but needle-in-a-haystack queries. The MDC approach uses conceptually 
orthogonal indexes that slice and dice the fact table into cells so that most SSB 
queries retrieve from only a small subset of localized cells. Surprisingly, MDC as well 
as the approach we took doesn't provide the necessary dicing on the fact table without 
an extra trick of creating a materialized view fact table that adjoins certain dimension 
columns to the fact table itself. This is necessary because MDC acting on the fact 
table can only cluster on columns that lie in the fact table, and the foreign keys to the 
dimensions are generally not sufficient for the necessary dicing. Yet we found no 
suggestions in DB2 literature to materialize dimension columns in the fact table for 
this purpose. 

We talked with a number of DB2 Universal Database (DB2 UDB) experts who 
suggested that the DB2 Design Advisor might recommend creating an MQT 
(Materialized Query Table, DB2's name for a Materialized View) that adjoined the 
fact table with versions of the dimension columns as we had done to achieve 
improved performance. But when we tried this, the Advisor materialized aggregated 
column data with group-by columns to answer each of the thirteen queries in SSB 
(allowing variation of all possible constants that might take the place of specific 
constants we used). Of course this solution did not provide answers for any type of 
drill-down queries that might be suggested by results in ad-hoc querying by 
knowledge workers.  

1.1   Contribution of This Paper 

1. In Section 2, we explain the design of a Star Schema benchmark (SSB) and explain 
some techniques that allow us to derive it from the normalized TPC-H benchmark.  

2. In Section 3, we explain why clustering data has become so important for 
performance and secondary column indexing less important. Then we show how 
high-level columns in commonly restricted hierarchies of dimension tables can be 
adjoined to the SSB fact table to speed up queries with predicates on these 
hierarchies. We refer to this approach as Adjoined Dimension Columns (ADC), and 
explain how it can be applied on three different commercial database products, with 
some minor flaws that can be addressed by simple design improvements in each 
DBMS. 

3. In Section 4, we provide experimental results of SSB and show the advantage of 
ADC on three anonymized database products. Then we discuss our use of the DB2 
Design Advisor materializes and what we see as its limitations. 



 The Star Schema Benchmark and Augmented Fact Table Indexing 239 

2   Star Schema Benchmark Specification 

The SSB is designed to measure performance of database products in support of 
classical data warehousing applications, and is based on the TPC-H benchmark [18], 
modified in a number of ways. We list below some of the schema changes we made to 
change the Normalized TPC-H schema (see Figure 2) to the efficient star schema 
form of SSB (see Figure 3). Many reasons for these changes are taken from [7], which 
we recommend. See [11] at http://www.cs.umb.edu/~poneil/StarSchemaB.pdf for a 
more detailed description of SSB. 

1. We combine the TPC-H LINEITEM and ORDERS tables into one sales fact 
table that we name LINEORDER.  This denormalization is standard in warehousing, 
as explained in [7], pg. 121, and makes many joins unnecessary in common queries. 

2. We drop the PARTSUPP table since it is actually inappropriate even in TPC-H. 
The ORDERS and LINEITEM tables have a Transaction Level temporal grain, while 
the PARTSUPP table has a Periodic Snapshot grain [7]. Even transactions that insert 
new orders do not modify rows in PARTSUPP, which is frozen in time. Query Q9, 
which retrieves, for each nation and year, the profits for certain parts ordered that 
year, calculates profit using l_extendedprice from LINEITEM and ps_supplycost 
from PARTSUPP. Of course it is impossible that ps_supplycost could have remained 
constant during all seven years of order history. This problem arises from the 
temporal grain mismatch. The presence of the PARTSUPP table in TPC-H seems 
suspicious anyway, as if placed there to require a non-trivial normalized join schema. 
It is what we would expect in an update transactional design, where in adding an 
order LINEITEM for some part, we would access PARTSUPP to find the minimal 
cost supplier in some region, and then correct ps_availqty after filling the order. But 
ps_availqty is never updated during the Refresh that inserts new ORDERS. In the Star 
Schema data warehouse, we remove the PARTSUPP table and create a column 
lo_supplycost for each LINEORDER Fact row to answer queries about profits. 

 

      Fig. 2. TPC-H Schema   Fig. 3. SSB Star Schema 
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3. We drop the comment attribute of a LINEITEM (27 chars), the comment for an 
order (49 chars), and the shipping instructions for a LINEITEM (25 chars), because a 
warehouse does not store such information in a fact table (it can’t be aggregated, and 
takes significant storage).  See [7], pg. 18.  

4. We drop the tables, NATION and REGION outboard to the dimensions 
CUSTOMER and SUPPLIER in TPC-H.  Such tables might be appropriate in an 
OLTP system to enforce integrity, but not in a warehouse system where the data is 
cleaned before being loaded and dimension tables are not so limited in space use as 
the fact table. We assume Nation and Region are added to the ADDRESS columns. 

5. We drop the dates (and attributes) of events added after the orderdate of an item, 
such as shipdate, receiptdate, and returnflag. Clearly the order information must be 
queryable after the order, and prior to the shipping event, receipt at destination, and 
possible return many days later. A sequence of dates such as this is normally handled 
in data warehousing by a sequence of tables: see [7], pg. 94. We retain the 
commitdate (commit to ship by given date) in SSB, since it is agreed to at order time. 

6. We add the DATE dimension table, as is standard for a warehouse on sales. 
7. The growth in size of the Part table for given Scale Factor has been reduced to 

logarithmic rather than linear, which seems more realistic. (Slower growth is also part 
of the TPC-DS benchmark [16, 17] proposal.) Also a new column named p_brand1 
with cardinality 1000 has been added to the p_mfgr/p_category hierarchy, since an 
upper bound of 50 on p_category seemed unrealistic for part breakdown. 

With changes described above, the SSB database at SF = 10 takes up about 7 
GBytes. The type, length and type of columns of SSB listed in Figure 3 is provided in 
Section 2.2 of [11]. Below, we list columns named in SSB queries and their 
cardinality. 

d_year  7 lo_discount  11 s_region  5 c_region 5 p_mfgr 5 
d_yearmonth 84 lo_quantity 50 s_nation 25 c_nation 25 p_category 25 
d_weeknuminyear 53 s_city 250 c_city 250 p_brand1 1000 

2.1   SSB Queries 

As in the Set Query Benchmark [9], we strive in SSB to provide functional coverage 
(different common types of Star Schema queries) and Selectivity Coverage (varying 
fractions of the LINEORDER table accessed as in drill-down queries). We only have 
a small number of flights to use to provide such coverage, but we do our best. Some 
model queries will be based on the TPC-H query set, but we need to modify these 
queries to vary the selectivity, resulting in what we call a Query Flight below. Other 
queries that we feel are needed will have no counterpart in TPC-H. 

Q1. We start with a query flight (of three queries Q1.1, Q1.2 and Q1.3) with 
restrictions on only one dimension and restrictions on the Fact table as well, based on 
TPC-H query TPCQ6. The query calculates the revenue increase that would have 
resulted by eliminating certain company-wide discounts in a given percentage range 
for products shipped in a given year. 

select sum(lo_extendedprice*lo_discount) as revenue  from LINEORDER, date 
 where lo_orderdate = d_datekey and d_year = [YEAR]  and lo_discount between  
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 [DISCOUNT] - 1 and [DISCOUNT] + 1 and lo_quantity < [QUANTITY]; 

Q1.1 d_year = 1993, lo_quantity < 25, lo_discount between 1 and 3. The Filter Factor 
(FF1) for this query is (1/7)(0.5)(3/11) = 0.0194805. 

Q1.2 d_yearmonth = 199401, lo_quantity between 26 and 35, lo_discount between 
4 and 6. FF = (1/84)(3/11)(0.2) = 0.00064935. 

Q1.3 d_weeknuminyear = 6 and d_year = 1994, lo_quantity between 36 and 40, 
lo_discount between 5 and 7. FF = (1/364)(3/11)(0.1) = .000075. 

Q2. For a second query flight, we want one with restrictions on two dimensions, not 
found in TPC-H. Q2 compares revenue for some product classes, for suppliers in a 
certain region, grouped by more restrictive product classes and all years of orders. 

select sum(lo_revenue), d_year, p_brand1 from LINEORDER, date, part, supplier 
 where lo_orderdate = d_datekey and lo_partkey = p_partkey  and lo_suppkey =  
 s_suppkey and p_category = 'MFGR#12' and s_region = 'AMERICA' 
  group by d_year, p_brand1 order by d_year, p_brand1; 

Q2.1 Q2 as written: p_category = 'MFGR#12', FF = 1/25; s_region, FF=1/5. So FF = 
(1/25)(1/5) = 1/125. 

Q2.2 Change p_category = 'MFGR#12' to p_brand1 between 'MFGR#2221' and 
'MFGR#2228' (or equivalent in-list) and s_region to 'ASIA'. FF = 1/625. 

Q2.3 Change p_category = 'MFGR#12' to p_brand1 = 'MFGR#2339' and s_region 
= 'EUROPE'. So FF = (1/1000)(1/5) = 1/5000. 

Q3. In this flight we place restrictions on three dimensions, including the remaining 
dimension, customer, based on query TPCQ5. It calculates revenue volume by 
customer nation, supplier nation and year within a given region, in a certain time 
period. 

 

select c_nation, s_nation, d_year, sum(lo_revenue) as revenue 
  from customer, LINEORDER, supplier, date 
 where lo_custkey = c_custkey and lo_suppkey = s_suppkey and lo_orderdate =
 d_datekey  and c_region = 'ASIA'  and s_region = 'ASIA' and d_year >= 1992 and
 d_year <= 1997 
  group by c_nation, s_nation, d_year order by d_year asc, revenue desc; 
 

Q3.1 Q3 as written: c_region = 'ASIA' so FF = 1/5, FF = 1/5 for supplier, and 6-year 
period FF = 6/7 for d_year; Thus FF = (1/5)(1/5)(6/7) = 6/175. 

Q3.2 Change restriction to a certain nation, and within that nation, revenue by 
customer city and supplier city, and year: FF is (1/25)(1/25)(6/7) = 6/4375. 

Q3.3 Change restriction to two cities in 'UNITED KINGDOM' for c_city and 
s_city and group by c_city, s_city and d_year. FF: (1/125)(1/125)(6/7) = 6/109375. 

Q3.4 Change date restriction to a specific d_yearmonth. FF = (1/125)(1/125)(1/84) 
= 1/1312500. 

                                                           
1 A Filter Factor (FF) was defined in [14] as the fraction of the table that is retrieved based on 

the combination of WHERE clause predicates, usually assumed to be indexed. 
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Q4. This query flight represents a "drill-down" sequence, starting (Q4.1) with a group 
by on two dimensions and rather weak constraints on three dimensions, measuring 
aggregate profit defined as (lo_revenue - lo_supplycost). 

select d_year, c_nation, sum(lo_revenue - lo_supplycost) as profit from date, 
  customer, supplier, part, LINEORDER 
 where lo_custkey = c_custkey and lo_suppkey = s_suppkey  and lo_partkey =  
 p_partkey and lo_orderdate = d_datekey  and c_region = 'AMERICA'  
 and s_region = 'AMERICA' and (p_mfgr = 'MFGR#1' or p_mfgr = 'MFGR#2') 
  group by d_year, c_nation order by d_year, c_nation 

Q4.1 Query Q4 as written, FF = (1/5)(1/5)(2/5) = 2/125. 
Q4.2 Drill down to restrict to years 1997 or 1998 and group by (and order by) 

p_category and s_nation instead of c_nation. FF = 2/7(2/125) = 4/875. 
Q4.3 Drill down: restrict c_nation & s_nation = 'United States' and p_category = 

'MFGR#14', group by d_year, s_city, p_brand1. FF: (1/5)(1/25)(2/7)(1/25) = 2/21875. 

3   Clustering for Query Performance 

Over the past twenty years, performance of indexed retrieval with a moderate sized 
filter factor [14] has lost its competitive edge compared to sequential scan of a table. 
We show this with a comparison of Set Query Benchmark (SQB) [9] measurements 
taken in 1990 on MVS DB2 with those taken in 2009 on DB2 UDB running on 
Windows Server 2003. 

The SQB was originally defined on a BENCH table of one million 200-byte rows, 
with a clustering column KSEQ having unique sequential values 1, 2, 3 ,…, and a 
number of randomly generated columns whose names indicate their cardinality, 
including: K4, K5, K10, K25, K100, K1K, K10K and K100K. Thus for example K5 
has 5 values, each appearing randomly on approximately 200,000 rows. Figure 4 
shows the form of query Q3B from the Set Query Benchmark. 

   select sum(K1K) from BENCH 
 where (KSEQ between 40000 and 41000 or KSEQ between 42000 and 43000 
 or KSEQ between 44000 and 45000 or KSEQ between 46000 and 47000 
 or KSEQ between 48000 and 50000) and KN = 3; -- KN from K5 to K100K      

Fig. 4. Query Q3B from SQB (Set Query Benchmark) 

In our 2009 measurement on a Windows system, we performed Query Q3B on 
DB2 UDB with a BENCH table of 10,000,000 rows (instead of the original 1,000,000 
rows). DB2 MVS and DB2 UDB results for query Q3B are given in Table 1. 

As indicated in Table 1, the query plans for DB2 MVS and DB2 UDB turn out to 
be identical for the KN cases K100K, K10K (where indexed access finds the single 
row for K100K = 3 and 10 rows for K10K = 3 in the million rows of DB2 MVS, and 
about ten times as many in the ten million rows of DB2 UDB), and in the KN case of 
K5 = 3, where both the old and new approaches perform sequential search on the five 
KSEQ ranges and simply test that K5 = 3 for each row. 
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Table 1. Q3B measures: 1990 & 2009 

KN Used
In Q3B 

Rows Read  
(of 1M) 

DB2 MVS      
Index usage 

DB2 UDB 
Index usage

DB2 MVS 
Time secs

DB2 UDB 
Time secs 

K100K 1 K100K K100K 1.4 0.7 

K10K 6 K10K K10K 2.4 3.1 
K100 597 K100, KSEQ KSEQ 14.9 2.1 

K25 2423 K25, KSEQ KSEQ 20.8 2.4 
K10 5959 K10, KSEQ KSEQ 31.4 2.3 

K5 12011 KSEQ KSEQ 49.1 2.1 

 
But there is a great change in query plans for the KN range K100, K25 and 

K10. In those ranges, 1990 DB2 MVS took a RID-list UNION of the five KSEQ 
ranges, ANDed that with the appropriate KN = 3 RID-list found by index search, 
then used list prefetch to access the resulting rows and sum the K1K values. The 
2009 DB2 UDB on the other hand, although capable of performing the same 
indexed access as DB2 MVS, chose instead to perform five sequential accesses on 
the clustered KSEQ ranges, and summing K1K for qualifying rows with KN = 3. 
This is the same plan used by DB2 UDB (and DB2 MVS) for K5, and DB2 UDB 
times for these cases are nearly independent in the range K100 down to K5 
compared to growing time for DB2 MVS. In fact, DB2 UDB could have chosen 
this plan for K10K as well, improving the elapsed time from 3.14 seconds down to 
about 2.1 seconds. Only at K100K does the use of the KN index actually improve 
the elapsed time today. 

We therefore claim that the K10K case (with filter factor 1/10,000) is near the 
"indifference point" at which DB2 UDB should start to switch over to a series of 
sequential scans, rather than using index access to AND these RID lists. With 
roughly 20 rows per page, a filter factor of 1/10,000 will pick up about one disk 
page out of 500. The MVS DB2 of 19 years ago had an indifference point between 
sequential access and indexed access at filter factors that picked up about one disk 
page out of 13; thus the usefulness of filter factor for indexed access has dropped 
by about a factor of 500/13 = 38.5 in this period, corresponding with the difference 
in speed of sequential access in the two Set Query cases, about 1.43 Mbytes/sec  
for DB2 MVS, and 60 Mbytes/sec for DB2 UDB, a ratio of 60/1.43 = 42.  
Indexed access performance has changed much less, causing the indifference point 
shift. 

We conclude that clustering, always an important factor for enhancing 
performance, has become much more important in the last 19 years. Currently, if we 
are retrieving 1 row out of a thousand from a table that covers an entire disk, 
sequential access will likely access the entire disk and secondary index access cannot 
improve on that, but if we have a way to cluster so that the rows we want to retrieve 
cover only 1/100 of the disk, then sequential fetch will take 1/100 as long. Secondary 
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index access is still useful only in “needle-in-haystack” queries, with very small filter 
factors, i.e., those below approximately 1/5,000. 

3.1   Single Dimensional and Multi-dimensional Clustering 

The concept of sorting table data to provide clustering on a column to accelerate 
queries with range restrictions on that column has been used for many years. In the 
1980s there were companies collecting marketing data for up to 80 million U.S. 
households (see [9], Section 6.1.2) and performing multiple queries to craft sales 
promotion mailings of the right size, typically for specific regions of the U.S. near 
Stores owned by a company. Data was sorted by zip code, and a typical direct mail 
query would be of the Q3B form shown in Figure 4, where KSEQ corresponds to zip 
code. Of course each zip code would lie on multiple rows in that case, but as in Q3B, 
each geographic region would typically correspond to a union of disjoint zip code 
ranges. Additional restrictions, on income class or hobby interests, for example, 
would correspond to the KN = 3 restriction. 

Many other companies used queries that accessed recent sales information or 
compared sales from the most recent month to the period a year earlier, so clustering 
sales information on order date was a clear winning strategy. Clustering by orderdate 
is still used in TPC-H benchmark design, though the time-ranges in TPC-H are 
surprisingly broad (frequently 5 out of 7 years). 

Single dimensional clustering does very well when there is one standout among 
columns to sort the data that will speed up most queries of interest. But what if there 
is not? The Star Schema pictured in Figure 3 has four dimensions: Date, Product, 
Store, and Promotion. Thus for SSB we need to consider if it is possible to cluster by 
multiple commonly restricted columns of these dimensions at the same time to reduce 
the disk space needed to access in the Fact table. Clustering by some single column of 
a dimension will not work since restrictions on individual dimensions are often 
dropped. 

DB2 was the first database product to specifically provide an ability to cluster by more 
than one column at a time, using Multi-Dimensional Clustering (MDC), introduced in 
2003 [1, 3, 4, 5, 6, 8, 13]. MDC partitions table data into cells (physically organized as 
Blocks in DB2), by treating some columns within the table as orthogonal axes of a cube, 
each cell corresponding to a different combination of individual values of these cube axis 
columns. The axes are declared as part of the Create Table statement with the clause 
ORGANIZE BY DIMENSIONS (col1, col2, …). A Block in MDC is a contiguous 
sequence of pages on disk identified with a table extent, and a block index is created for 
each dimension axis. Every value in one such block index is followed by a list of Block 
Identifiers (BIDs), forming what is called a Slice of the multi-dimensional cube 
corresponding to a value of one dimension. The set of BIDs in the intersections of slices 
for values on each axis is a Cell. 

We repeat that the "dimensions" used to cluster a table in MDC are columns within 
the table, not columns in the dimension tables of a star schema! We need to find a 
way to use MDC to improve performance of Star Schema queries, and indeed we 
have found an approach to doing this, which we introduce in Section 3.2. 

DB2 takes great care to make modifications to the table easy once it is in MDC 
form. A "Block Map" identifies blocks that are Free, and inserts of new rows into a 
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given cell will either use a block for that cell with space remaining or (in the overflow 
case) assign a new Free block to the cell. If a row is to be inserted into a new cell 
(e.g., because of a new month dimension value), the same approach is used to assign 
Free blocks.  MDC can recognize when a block becomes empty after a delete, and 
Free it. Indeed, it is also a feature that the oldest month slice of cells (say) can be 
dropped all at once with no cost, a capability known as Rollout [3, 6]. 

3.2   Adjoined Dimension Columns in LINEORDER Table 

Stonebraker and developers at Vertica [15] found a way to create a form of multi-
dimensional clustering on a number of other commercial database products, including 
Vertica and two others that are anonymous. For this paper we took independent 
measurements and did not measure Vertica; as in [15] we maintain anonymity for 
results of the three database products measured here. The approach to achieving 
MDC-like behavior adjoins copies of dimension columns to the LINEORDER table, 
often by creating a Materialized View (MV or in DB2 an MQT), as shown below, 
named MVLINEORD containing those columns and all data from LINEORDER. We 
choose columns at a rather high level in some hierarchy commonly restricted in 
queries, e.g., c_region or p_category. Since high-level hierarchy columns have low 
cardinality, this will generate an appropriately small number of conjoint values of the 
columns making up cells in MVLINEORD so as to ensure that the cells contain 
enough data that fast sequential disk access within a cell (mainly contiguous on disk) 
will swamp or at least equal inter-cell access time. The right number of cells depends 
on the size of the fact table and disk performance but the aim should be to create cells 
at least one megabyte in length. 

Applying ADC to DB2 MDC  
We can demonstrate that ADC Indexing works well with the native Block indexing of 
MDC, given defined block size limits of at least one megabyte. In the MDC user 
documentation it is noted that a monotonic hierarchy such as day-week-month-
quarter-year in the DATE dimension can have rollups functionally defined in 
LINEORDER based on lo_datekey, but we find no useful suggestions for how other 
dimensional hierarchies can be defined in LINEORDER. ADC addresses this 
difficulty, allowing multi-dimensional clustering by adjoined dimension columns in 
MVLINEORD. Recall that dimensional foreign keys of newly inserted rows in 
LINEORDER determine the values of adjoined columns, and once these values are 
known, MDC will always place new rows into an appropriate cell, both in the base 
table and the MQT named MVLINEORD. 

Applying ADC to Other DBMS Products 
The Oracle database product has a Partitioning feature [12] that supports dimensional 
cubing into cells. Various other products can support cubing if they have sufficiently 
precise indexing. It is simply necessary to create a load file for the LINEORDER data 
and adjoined columns, ordered by a concatenation of the desired adjoined columns; 
this can be done by executing a query to retrieve all columns in that order based on a 
join with dimensions and write it to a file. See Figure 5 for such a query. Then a load 
of a new LINEORDER table from that file will result in different combinations of 
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individual values of the columns that make up cells of the cube falling in contiguous 
bands placed in increasing dictionary order. Given rows sorted by four such columns, 
c1, c2, c3 and c4, we see the following situation. The leading column c1 in the 
concatenated order will generate long blocks in the sorted table, one for each 
increasing value of c1, while the second column c2 of the concatenated order will 
generate blocks for increasing values of c2 in the range of each individual value of c1, 
and so on up to column c4. The most finely divided bands will correspond to all 
combinations of individual columns; in other words they will define the cells of the 
cube. One can then define a materialized view MVLINEORD with adjoined 
dimension columns, and the cells will fall in the same order as the base table 
LINEORDER. 

Given an index on each of these adjoined columns, any query with Where Clause 
range restrictions on the hierarchy for the adjoined columns will select a number of 
cells comparable to the volume of the conjoined ranges compared to the total volume 
of the cube. While it might seem that a range of several values on column c1, for 
example, will select a wide band of fact table rows, efficient indexing will respond to 
ranges on c2, c3 and c4 by creating a very finely divided foundset to select only the 
rows that sit in or on the border of the intersection of ranges. This has been 
experimentally verified. Indeed, these individual column indexes correspond loosely 
with the Block indexes in MDC, and can be just as efficient if the index performs 
efficient intersections. Vertica and Sybase IQ are two examples of database products 
with such indexes. 

ADC Problems 
There are a number of problems that can arise in adjoining copies of dimension 
columns to the fact table or view when native support of various features are lacking 
from the DBMS. However these problems are not so serious that they cannot be dealt 
with in practice. We start with a listing of missing features and associated problems. 

1. When a new row is to be inserted in the LINEORDER table, DB2 and Oracle 
will materialize a corresponding row in MVLINEORD and place it in the appropriate 
cell or partition based on the adjoined columns of the view. But some other products 
will not be able to place the new row in the appropriate cell of MVLINEORD; indeed 
these rows are likely to end up in the rightmost extent of the materialized view where 
new inserts are accepted. The combined column indexes will account for the new 
newly inserted row so future queries will retrieve the proper rows, but the careful 
clustering we have built up will begin to fail and efficiency will be lost. But note that 
in an earlier DB2 design of Clustered Indexes [10] the same thing happened with new 
inserts, and a CLUSTERRATIO statistic was kept to measure this effect, with an 
advisory to reorganize the table when the statistic fell below 90% (below 80%, the 
table no longer assumed clustering in query plans). The Vertica product also provides 
continuously refreshed clustering, because newly inserted rows are kept in efficient 
memory structures, and are merged out to clustered disk form before the memory 
space runs out. 

2. At present, no database system seems able to keep track of column hierarchies 
(such as c_region, c_nation, c_city) and use them effectively in predicate AND 
processing, although this is a common capability in OLAP products (such as 
Express). If we restrict a query with the dimension value c_city = 'Rome', we must 
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add a restriction c_nation = 'Italy' (if c_nation is an adjoined column we use, or 
c_region = 'Europe' if that is the adjoined column). This is true in MDC tables, for 
example, even though there is no ambiguity in the name 'Rome' as a c_city value. 
Requiring users to specify a seemingly unnecessary column value in their query is 
unfortunate, but not such a serious problem that it cannot be dealt with in practice. 

3. For database products that don't provide sufficiently robust materialized views 
(as with one of the products we measured) we need to adjoin dimension columns to 
the actual base table. This leads to another problem. When a query to a given c_region 
value for example, we would instead need to restrict the adjoined LINEORDER 
column lo_cregion (the adjoined version) instead. This type of query modification 
compares with a need in point (2) for query modification in all database products that 
do not have native understanding of hierarchies. Furthermore, creating MVLINEORD 
while the base table LINEORDER still exists can lead to an enormous use of space, 
whereas adjoining dimension columns to the LINEORDER table will save this space. 
Indeed we load base tables in ADC form in the Experimental results below. We must 
also take care when inserting rows into this adjoined LINEORDER table that the 
adjoined values are added, but this can be done with a simple lo_insert( ) function. 

4   Experimental Results 

We measured three commercial database products, anonymized with names A, B and 
C, using star schema benchmark tables at Scale Factor 10 (SF = 10). These tests were 
run on a Dell 2900 running Windows Server 2003, with 8 GBytes of RAM, 4 dual-
core processors (3.20 GHz) and data on RAID0 with 4 Seagate 15000 RPM SAS 
disks, stripe size 64K. All Query runs were from cold starts. Parallelism to support 
disk read ahead was employed on all products to the extent possible. 

We measured two different forms of load for the LINEORDER table, one with no 
adjoined columns from the dimension tables (a regular load, known as the Base case), 
and one with four dimension column values adjoined to the LINEORDER table, 
d_year, s_region, c_region and p_category, with cardinalities 7, 5, 5, and 25, and 
LINEORDER data sorted in order by the concatenation of these columns (known as 
the ADC case). We started with a regular load of the LINEORDER table and ran the 
query in Figure 5, writing output to an OS file to achieve sorted order. 

select lineorder.*, d_year, s_region, c_region, p_category  
 from lineorder, customer, supplier, part, date 
  where lo_custkey = c_custkey and lo_suppkey = s_suppkey  
  and lo_partkey = p_partkey and lo_datekey = d_datekey  
 order by d_year, s_region, c_region, p_category; 

Fig. 5. Query to generate sorted data for load of fact table in ADC form 

The output data was then loaded into LINEORDER in ADC form, with new 
columns given names lo_year, lo_sregion, lo_cregion, lo_category; the data remained 
ordered as it was in the output. Note that in product A the sort was not needed to 
achieve performance improvements since the load into the clustering units provided a 
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relatively efficient bucket sort. Large enough extent size (1 MB or more) was 
important in A to keep the clustering units contiguous on disk.  

As explained above, the ADC form provides clustering support for improved 
performance of many queries of SSB. In the Base form, we clustered data by 
lo_datekey using native database clustering capabilities, but while this improved 
performance on Q1, it degraded performance on other query flights, so it was 
dropped. 

In the ADC form, the number of the most finely divided cells defined is 4375 (875 
in the product where p_mfgr replaced p_category). Since the SF10 LINEORDER 
table sits on 6 GBytes, this results in cell sizes of about 1.37 MBytes. Disk arm time 
between blocks was 3 ms on the disks used, and sequential access (on the RAID0 
disks) ran at 100-400 MBytes/second (on different products), so the 1.37 MByte cell 
will be scanned in at most 13.7 ms. Summing the seek and pickup time, each 1.37 
MByte block can be read in 3 + 13.7 = 16.7 ms, an average rate of 1.37 MByte/0.0167 
sec = 82 MByte/sec. For larger Scale Factors we could use more cells without 
increasing inter-cell access. 

There are two important points. First, the load of the ADC fact table, since it 
involves a join and in many cases a sort, will take a good deal longer than an 
unordered load of Base table. Second, since we adjoin clustering columns to the fact 
table in ADC, we will expect somewhat more space to be utilized. 

4.1   Query Performance 

Table 2 contains the Elapsed and CPU time for SSB Queries, with a Table Scan 
(Q_TS) at the top, originally reported in [2]. For product C, with is vertically 
partitioned, Q_TS scans a single column. We note in Table 2 that the ADC sorted fact 
table results, some with native clustering, support much faster execution of all queries 
on all products than the Base case. There was no native clustering capability available 
in Product C. All Elapsed and CPU time comparisons that follow reference the 
Geometric Means. For Product A the ratio of Base Elapsed time to ADC Elapsed time 
is 6.2 to 1; the CPU ratio is 5.8 to 1. For Product B, the Elapsed time ratio is 8.7 to 1 
and for CPU it is 5.8 to 1. For Product C, the Elapsed time ratio is 7.6 to 1 and for 
CPU it is 3.8 to 1. We note that the best Elapsed times occurred for product C, both in 
the Base Case and the ADC Case. Note that only a few columns were retrieved in 
most queries, and vertically partitioned products are known to have an advantage in 
such queries. In any event, the speedup of Product C going from the Base case to the 
ADC case is due entirely to the good indexing story; there was no native clustering 
capability in Product C. 

There were a number of cases where the Query Optimizers became confused in the 
ADC case, since the WHERE clause restrictions on columns in the dimensions could 
not be identified with the columns brought into the LINEORDER table. Accordingly, 
we modified queries to refer either to columns in the dimensions or in the 
LINEORDER table and chose the best performer. This would not normally be 
appropriate for ad hoc queries, only for canned queries, but we reasoned that a query 
optimizer upgrade to identify these columns was a relatively simple one, so our 
modification assumed that could be taken into account. 
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Table 2. Measured Performance of Queries on Products A, B and C in Seconds 

  A 
Base Case 

B 
Base Case 

C 
Base Case 

A 
ADC Case 

B 
ADC Case 

C 
ADC Case 

Query Elapsed CPU Elapsed CPU Elapsed CPU Elapsed CPU Elapsed CPU Elapsed CPU 

Q_TS 17.6 2.2 45 2.7 2.6 0.7 45.2 6.4 53.0 2.75 3.2 0.8 

Q1_1 19.7 2.1 43 2.6 10.1 1.9 5.8 0.5 7.9 0.49 2.4 0.7 

Q1_2 19.6 1.9 41 2.3 9.1 1.2 6.0 0.4 8.4 0.45 2.7 0.7 

Q1_3 19.4 1.9 37 0.5 7.0 1.1 6.0 0.4 8.1 0.4 2.7 0.7 

Q2_1 33.9 4.2 49 3.2 17.7 3.1 2.7 0.4 6.4 0.42 1.9 0.6 

Q2_2 24.3 2.8 45 2.8 17.4 2.7 2.6 0.3 5.9 0.35 1.2 0.5 

Q2_3 22.6 2.6 41 1.4 17.6 1.5 1.9 0.2 5.8 0.33 4.7 0.6 

Q3_1 38.5 5.1 58 3.5 16.6 4.9 9.1 1.2 7.8 0.72 4.7 1.3 

Q3_2 31.1 3.5 46 1.1 15.4 3.2 3.5 0.5 4.0 0.24 1.5 0.7 

Q3_3 11.8 0.2 15 0.4 16.9 1.8 3.0 0.4 3.5 0.18 3.3 0.7 

Q3_4 7.9 0.2  6 0.2 8.8 1.3 3.4 0.1 1.8 0.05 0.8 0.4 

Q4_1 40.9 5.6 58 3.5 22.8 5.2 7.0 1.0 3.3 0.29 1.7 0.6 

Q4_2 36.1 4.6 56 3.1 25.5 3.6 3.6 0.4 1.8 0.15 1.3 0.7 

Q4_3 31.7 3.6 49 1.6 27 4.0 1.5 0.1 1.0 0.07 0.8 0.4 

Geom.
Mean 

23.7 2.1 36.8 1.5 15.1 2.4 3.8 0.36 4.23 0.26 2.0 0.64 

 
In addition there were a few cases where clauses that restricted some dimension 

hierarchy column were not recognized as clustering within one of the columns on 
which the lineorder table was sorted (as when d_yearmonth = 199401 might not be 
recognized as falling in d_year = 1994). Clearly, such dimensional hierarchies should 
be a priority for query optimizers supporting data warehousing, and we added clauses 
in these few cases. It is particularly interesting that no such problem arose with 
Product C, which had such precise indexing that it invariably recognized what cells of 
the ADC various WHERE clause predicates were restricted to.  

Note that we got similar results in the SF100 case for two of the products A and C 
so far measured. We provide graphs of these cases in the slide show presented at the 
TPC Technical Conference at http://www.cs.umb.edu/~poneil/TPC_Talk082409.pdf.  

4.2   Results by Filter Factor 

In Figure 6, we plot elapsed time for the queries against the Filter Factor for the query 
(FF), plotted on a log-scale X-axis. At the low end of the FF Axis, with FF below 
1/10000, we see that secondary indexes are quite effective at accessing the few rows 
that qualify, so ADC holds little advantage over the Base case. For FF = 1, the 
tablescan case we measured under Q_TS: the whole table is read regardless of ADC, 
and the times again group together. For FF between 1/10000 and 1 where the vast 
majority of queries lie, ADC is usually quite effective at reducing query times 
compared to the Base case, from approximately tablescan-time down to a few seconds 
(bounded above by ten seconds). 
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Fig. 6. Query Times by Filter Factor 

4.3   Experiments with DB2 Design Advisor 

We spoke with a number of with a number of IBM DB2 experts to explain how ADC 
accelerated MDC performance, and the general reaction was mild interest along with 
a suggestion from a few people that the DB2 Design Advisor might recommend such 
a configuration. We explored this, and indeed when the Advisor was provided with 
the design of the Star Schema Benchmark it generated a number of MQTs that 
accelerated our queries. However these MQTs did not have any column values at all 
from the original LINEORDER table. Instead, the generated MQTs simply held 
aggregated values. Thus if we were to attempt any query with this set of MQTs that 
differed in a significant way from the SSB queries, a drill down or a restriction on a 
column not named in the original queries, the Design Advisor solution would have no 
way to respond. Indeed the MQTs that had been recommended merely materialized 
the original answers to the SSB, although they did generalize the values on the 
column restrictions, so if one of our queries restricted c_city to Rome, these MQTs 
would have answered queries that restricted c_city to any other city. 

We tried to specify a set of drill-down queries to add to SSB that would sway the 
Advisor from simple materialization of aggregate queries, but the Advisor gave no 
suggestions when we attempted this. We also found that if we requested any 
aggregates other than sums in a query, such as max or min, the Advisor gave no 
suggestion.  
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5   Conclusions and Future Work 

Our theory and measurements jibe to demonstrate the value of ADC in accelerating 
accesses of Star Schema queries, when the ADC columns used are carefully chosen to 
subdivide dimensional hierarchies commonly queried. Additional dimension columns 
can be brought into the fact table, but it is important to remember that the entire point 
of a star schema design is to support a reasonably thin fact table, which means 
keeping most columns in the dimension tables. Only the dimension-table columns 
used in clustering earn their place in the fact table. 

We should bear in mind that this Star Schema Benchmark is a simple one, with 
only four Query flights and four dimensions, with a rather simple roll-up hierarchy. 
With more complex schemas, a larger fraction of queries might fail to be accelerated 
on the basis of all their restrictions. Of course this has always been the case with 
clustering solutions: they don't improve performance of all queries. Still, there are 
many commercial applications where clustering is an invaluable aid. 

Our experience with DBAdvisor made us aware of one side effect of the simplicity 
of SSB: it can be "solved" by statically defined aggregation. However, such an 
aggregation removes the possibility of drilling down to lower level hierarchies and 
individual rows, as is expected in a data warehouse. We need to add requirements to 
SSB to ensure that users can drill down to lower level results of this kind. 

One reviewer of this paper suggested that a topic of our future research should be 
how the TPC could learn from the derivation of this benchmark from TPC-H and how 
to develop benchmark test patterns relevant to product capabilities and market 
demands. We appreciate the compliment this suggestion implied, but feel the 
problems encountered in developing TPC benchmarks are much greater than those we 
faced. The need to provide a bullet-proof benchmark that will stand up to attempts to 
gain unforeseen advantage is one such problem, and the requirement that the database 
companies that make up the TPC vote in favor of releasing each benchmark is 
another. It is easy for us to point out what we believe might be minor design flaws in 
a benchmark that has been used for many years, but clearly such benchmarks offer a 
useful workout of commercial products to compare their effectiveness. 

That said, if any of us can be any use to the TPC, we're happy to make the effort. 

Acknowledgement. We thank Mike Stonebraker for supporting this benchmark for 
Vertica and also thanks the reviewers for their comments on this paper. 
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Abstract. This paper proposes a benchmark test management framework 
(BTMF) to simulate realistic database application environments based on TPC 
benchmarks. BTMF provides configuration parameters for both test system 
(TS) and system under test (SUT), so a more authentic SUT performance can be 
obtained by tuning these parameters. We use Petri net and transfer matrix to 
describe the intricate testing workload characteristics, so configuration 
parameters for different database applications can easily be determined. We 
conduct three workload characteristics experiments basing on the TPC-App 
benchmark to validate the BTMF and the workload modeling approach.  

Keywords: Performance testing, benchmarking, test framework. 

1   Introduction 

In the field of IT systems performance evaluation, testers and hardware/software 
manufacturers usually focus on different purposes to publish the performance of their 
IT products with various environments [5]. For example, testers incline to grasp 
detailed and authentic system status such as its performance, resource utilization or 
dependability. However, manufacturer’s testing purposes are more likely to obtain the 
performance result of their own product that is comparable with other similar ones. In 
order to make the evaluation result creditable, tester need to define extremely detailed 
testing requirements, for example, more authentic business workload, different 
network delay and every possible think time for each user. It would cost a lot to 
realize all the detailed requirements modeling in real database systems. On the 
contrary, some non-profit organizations release performance benchmarks with a high 
degree of standardization to simplify the testing process and make the performance 
testing results comparable [12]. These benchmarks not only limit the test database and 
the database transaction workload, but also the associated performance metrics. 

To achieve multiple goals at the same time, emulating test systems, which are close 
to real database application scenarios and capable to seize comparable performance 
testing measures, become important for IT system performance evaluation. Two types 
of approaches are proposed for performance evaluation of emulating systems. One is 
using general stress testing tools to simulate user requests and responses by invoking 



254 X. Ye et al. 

scripts recorded by testers, and then analyze system performance through the number 
of concurrent users and maximum throughput [6]. The other type is benchmark testing 
[12]. Compared with the former, the latter is widely accepted in industry. However, 
performance benchmarks give too many constraints on the definition of their test 
database, workload characteristics, performance metrics and SUT (system under test), 
and benchmark results are rough estimates and only serve the purpose of relative 
comparison for real systems [10]. To make these components visualized and 
dynamically configured to satisfy various testing purposes and evaluation targets of 
different real system characteristic requirements, a domain-independent and model-
driven benchmark test management framework (BTMF) emerges from this practice. 

Authenticity of simulating different realistic application environments and 
comparability of various testing results both become important, and this paper aims to 
find a bridge between them. To better simulate realistic systems based on TPC 
benchmarks, our BTMF provides configuration parameters in multiple dimensions, so 
that by tuning these parameters, we can get a more authentic performance result [13]. 
At the same time, we use Petri net and transfer matrix to describe the intricate and 
concurrent performance testing workload from business views, various granularity 
measures and their relationships in real systems under test [3]. With the expandable 
definition of performance measures [8], customized metrics described by modeling 
languages, the workload characterization semantics in different test system 
implementations are explicitly modeled, which is helpful to predict, compare and 
analyze their corresponding system testing results. 

In the next section, we discuss related work of model-driven performance testing 
and configurable system optimization. In Section 3, the architecture of BTMF is 
proposed and main components to meet different testing purposes and real system 
testing environment simulation objectives are detailed. We describe general workload 
characterization with formal modeling language for simulating different realistic 
environments in Section 4, and give experimental examples to verify our approach in 
Section 5. Finally, Section 6 outlines our future considerations. 

2   Related Work 

Database system performance benchmarking is a well-established area led by 
Transaction Processing Council (TPC) [12]. With the advance of web technologies 
and new database application requirements, many benchmarks are updated or 
replaced in time. For example, TPC-E may supersede the well-known TPC-C lately, 
and TPC-App derived from TPC-W started to be well accepted by companies [7].  

Along with the improvement of performance benchmarks, a variety of performance 
evaluation methods and techniques ranging from analytical modeling to simulation 
approaches are designed, including those fault-relevant evaluation methods that 
focused on specific domains [1, 2], database replay utilities for specific DBMS 
applications [4]. Therefore, manufacturers need to develop their own performance 
testing tools for domain-dependent benchmarking, which will add more difficulty for 
the comparability of the result of test system with other similar products [3, 10]. 

Literature [10] proposed an application-independent synthetic workload model 
from the perspective of user’s requirements. A high-level specification language, a 
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translator of the language, and a set of generators were created to compose diverse 
test databases and test transactions of different synthetic database benchmarks. We 
learn this model-driven method from the perspective of the user’s requirements for 
test database, workload characterization, workload deployment, and collected 
measures configuration in the benchmark test management framework. 

In performance tuning domain of database application systems, literature [9] 
proposed an algorithm called Quick Optimization via Guessing (QOG). They 
formally specified how to guess at the performance and when to terminate 
measurement, and proved that QOG can find a nearly-best configuration with a high 
probability under common conditions that are frequently assumed in the literature. 
The idea of measuring the performance of web systems to optimize configuration 
parameters can be used in performance optimization area [11, 14]. Hence, our BTMF 
with flexible configurations are significant during test run since the optimal 
configuration has been a time-consuming task due to the long measurement time 
needed to evaluate the performance of a given configuration [13], we propose to use 
formal language to describe high-level workload characterization in order to predict 
testing system performance. 

Inspired by the model-driven thought and the idea of guessing at the performance 
in parameter tuning, this paper proposes a configurable BTMF: (1) by means of 
flexible configurations of the data model, workload characterization and deployment, 
different granularity measures, this framework can be applied for both benchmark and 
customized applications performance testing; (2) besides, the approaches of using 
Petri net or transfer matrix to describe workload configurations (which model real 
system’s business processes), database transactions and performance measures, 
visualize those intricate relationships and make testing result understandable and 
comparable in performance metric analysis; (3) since the performance can be guessed 
based on the similar workload configurations, we can predict the performance of a 
specific test system configuration according to the formal workload descriptions. 

3   Benchmark Test Management Framework 

3.1   BTMF Design Philosophy 

BTMF architecture consists of a test system (TS) and a system under test (SUT). The 
TS emulates the user-endpoints which issue requests to the SUT. The SUT in turn 
responds to these transaction requests. Therefore, we can abstract these components, 
which are either defined by TPC benchmark standard, or customized by external 
standards or user-requirements, in BTMF with diverse configuration parameters 
basing on the model-driven concept. So BTMF components can be customized in 
these dimensions with predefined parameters for the real application simulation.  

In the high-level view of the BTMF, TS includes database manager, workload 
dispatcher, client emulators and performance measure collector, separately manage 
test database and generate test data, control user requests dispatching, collect and 
analyze the performance measures produced by the SUT in terms of the system 
parameters predefined in BTMF configuration files; SUT includes database, 
transaction and DB engines in terms of the system parameters predefined in BTMF 
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Fig. 1. BTMF design philosophy  

configuration files. Therefore, using the model-driven method, we can describe our 
BTMF design philosophy of SUT and TS as shown in Figure 1.  

This architecture is a logical architecture; it does not map functional elements to 
hardware or software components. Proceeding from these components description to a 
real IT systems test requires the presence of a complete description of all aspects of 
the subsystem relevant to the benchmark’s performance. This description is called the 
test system configuration, or the system under test (SUT) configuration. 

3.2   BTMF Implementation 

The overall components for BTMF implementation include six main modules as 
shown in Figure 2. Controller, Workload Manager, Statistic Collector and Data 
Generator belong to TS, and Database component belong to SUT. Transactions 
component with different granularity measures definition may be in TS or SUT, 
depending on real system architectures or testing purposes, as we see in different TPC 
benchmarks. Therefore, BTMF configuration files described by using a high-level 
language (XML) include configuration parameters for describing workload 
characteristics, test database, and various measures derived from transactions. These 
parameters would be analyzed and implemented by the corresponding modules and 
then be parsed and interpreted by the Controller during the testing process. 

Data Generator 
Data generator mainly has two tasks. One is to model real system data structure by 
creating divers relations and their semantic restrictions in configuration files, and 
translate them into real DBMS objects in the form of tables and constraints.  

The other task is to generate test database conforming to the data model and data 
feature definition. We suppose that each independent attribute has a data generation 
method according to data characteristics predefined in test system (generation rules or 
user-defined plug-in functions). Like other data generators, BTMF decouples data 
generation details from user-defined plug-in functions or data generation rules with 
corresponding configurations in BFM configuration files.  

Before populating database, data generator will first analysis table dependence 
based on foreign key constraints and attribute dependence among attributes of tables 
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Fig. 2. The benchmark test management framework implementation architecture 

based on column level constraints. The connections between output attributes and 
corresponding input attributes are called as data dependences. Before generating test 
database, the topological structure of these dependences should first be established 
automatically in order to keep the data semantic. Besides, the acyclic graph of 
topological structure is divided into several sub-graphs disjointed with each other. 
Each sub-graph will represent one data generation thread in Data generator that 
BTMF could use to populate table attribute data in order. 

The process of database populating has two levels – table level and attribute level. 
Taking Figure 3 as an example, A, B, and C are tables; ai, bi, and ci are attributes of 
tables; the solid and dashed arrows represent dependences between attributes or 
tables, for example a1->b1 means the value of attribute b1 depends on the value of 
attribute a1. 

1) Table level: Data generator creates the acyclic graph and topological structure 
of tables, which are listed in Figure 3 (b). Learning from its sub-graphs, BTMF 
will create two threads to populate data in table A, B and C separately. 
Considering the broken line in Figure 3 (b), if a2 depends on b3, there will be a 
cycle between table A and table B. In such case, Data generator should remove 
the dependence between a2 and b3 first, and then after table A and B is 
populated, it will recalculate all the values of attribute a2. 

2) Attribute level: When populating data in database tables, the topological 
structure of all attributes, which represents the order of attributes that the data 
load module should deal with in each table, should be first established (such as 
A is listed in Figure 3 (c)). Since there will not be a cycle among these attributes 
in this example, it is easy for Data generator to populate data in order. 

Workload Manager 
The workload in database systems can be viewed in two levels. The lower level is 
manifested by transactions which represent simple business logic unit such as the 
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                                                    (a)                                (b)                      (c) 

Fig. 3. An example for data generator 

“create order” web service in TPC-App benchmark. In this level, the workload is the 
mixed ratios of transactions, which is an important constraint for TPC benchmark 
testing requirements. The higher level is manifested by transactional workflows which 
comprise several tasks with stepwise processes (such as choice, iteration and 
concurrent execution). The mapping between workflow workloads used in real 
systems and synthetic transaction workloads used in current benchmarks should be 
taken into consideration together [3]. By considering more workload characteristics, 
including the transaction distribution with probabilities, the transaction dependency 
condition, the input data requirements, etc., the scenarios such as DBMS cache tuning 
and SQL query optimization during testing process can be more meaningful for real 
systems performance turning. 

As shown in Figure 2, Workload manager mainly includes two functions. First, 
create multi threads to simulate concurrent remote clients to invoke business 
processes which may be comprised of workflows or transactions. These workflows or 
transactions are encapsulated in DLL, web service or script according to the realistic 
environments of simulating systems and the purpose of the comparability of testing 
results. Second, the mixing ratio of educed database transactions derived from the 
workflow workload is performed by the Controller. These workload characterizations 
are predefined in configuration files before testing and dynamically invoked by 
Controller during performance evaluation process. 

Statistic Collector 
During the execution of workflows or transactions, Statistic collector will gather 
performance measures as many as possible, such as begin and end time of a request, 
submitting number, and throughput. Collected data with the same measure name are 
connected by a linked list and ordered by submitting time as shown in Figure 4. The 
linked lists are sorted by hash table. In this way, Workload dispatcher can append a 
line of measure data to the Statistic collector and Controller can easily get the sorted 
data from it. With the definition of metrics in configuration files, Statistic collector 
can be also expandable for other specific evaluating purposes. 

Statistic collector includes three basic functions: (1) before starting a real test, 
Statistic collector is initialized and ready to receive diverse performance measures 
from Client emulators driven by Controller; (2) within an execution, Workload 
dispatcher will add statistic records into Statistic collector measure buffer; (3) 
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Fig. 4. The store structure and functions of statistic collector 

Controller timely gets statistic records from this collector, and then draws 
performance charts and writes metric data into corresponding BTMF statistic files. 

Controller 
Controller is used to activate different Client emulator’s workloads complying with a 
fixing ratio from the real system analysis. As listed in Figure 2, Controller has three 
basic functions: (1) getting, parsing and setting configuration parameters predefined 
by testers in configuration files; (2) starting and stopping data generating and testing 
execution process, and populating performance measures data in Statistic collector; 
(3) Receiving statistic records, drawing and displaying charts, and writing records into 
corresponding BTMF statistic files. 

The whole testing process of the BTMF includes three steps. First, describe the test 
database and then populate test data. Second, deploy workload in TS or SUT, design 
test plan with measures, and initialize Statistic collector measure buffer. According to 
BTMF configuring parameters in configuration files, the Controller starts the testing 
execution and Statistic collector records statistic measure data timely. 

Transactions, Measures, Database and Configuration Files 
Before executing test systems, the transactions and data generating functions should 
be encapsulated in DLL/web service/scripts programs and their deployed strategies 
should be described in configuration files in advance. The performance measures are 
also pre-developed in every workflow/transaction program and predefined in the 
BTMF functions configuration files.  

Apart from workload characterization, data model and feature, performance 
measures, the configuration items include environment-related parameters (such as 
database connection string, web service address of Statistic collector, store location of 
statistic files and so on) and testing-related parameters (such as the preheating time of 
execution, smooth running time etc. ). The main objective of configuration files is to 
build a semantic connection between SUT and TS, and lead our TS to invoke and test 
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various SUTs with user-defined workload characterization, database models, various 
performance measures, and system deployment strategies, etc. 

4   Workload Modeling  

The workload of a database benchmark is the amount of transactions assigned to or 
performed by a database system in a given period of time. Understanding the nature 
of the workload and its intrinsic features can help to interpret benchmark performance 
measures. Transaction dependences are usually overlooked in current OLTP workload 
modeling. To simulate more realistic of real systems and get a comparable 
performance result from business views, an authentic and visualized workload would 
be more helpful. So a formal language is required for keeping the consistence 
between high-level semantic (workflow) invoked by the simulation client threads and 
low level transaction mixing ratio in OLTP performance benchmarks. In this section, 
we illustrate how to use workflow model to describe workload characterization in 
realistic systems and calculate the mixed ratios of their transactions executed in OLTP 
performance benchmarks from the high level formal model.  

4.1   Simple Workloads in Benchmarks 

Though TPC-App replaced TPC-W as the new B2B web service performance 
benchmark, business transactions, such as “create order”, “change payment”, and 
“new customer” transactions, are almost abstracted as database transactions 
workloads. Recursive calling transactions with mixed ratios (transaction distribution 
with probabilities) in benchmarks can be abstracted and demonstrated as shown in 
Figure 5 (a) with Petri net models.  

This modeling language provides us a practical view of how to construct and 
analyze the semantic and similarity of business workloads. For instance, the “create 
order” web service in TPC-App benchmark will asynchronously send a durable 
message to shipping process after creating an order in DBMS. Figure 5 (b) gives an 
abstract of the detailed processes of transaction t1 with an asynchronous process unit 
like “create order” transaction, which is often required in current benchmarks. 

4.2   Complex Workloads in Realistic Systems 

Workflow control patterns are used to better represent business process workloads, 
while transaction control patterns, where mixing ratio is used to keep the semantic 
workloads mapping with high-level workflow, are workloads for the current TPC 
benchmarks. In TPC-W benchmark, transfer matrix is adopted to describe the 
dependence of transactions. Two other kinds of approaches, by using Markov process 
and Petri-net, have been brought up to model the relationship among workflows and 
transactions [3]. With these formal models or languages, the connection of 
independent transactions in OLTP benchmark with the workflow characterizations to 
meet the user’s real workload modeling requirements can be established. These 
unambiguous and traceable mathematical descriptions of high-level workload 
characterization would help testers to calculate the mixed ratios of transactions for 
emulating database systems and then predict the result semantics of performance of 
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Fig. 5. Examples of simple workloads in performance benchmarks 

 

Fig. 6. An example of complex workloads (workflow) in realistic systems 

different workflow workloads with the transaction workload for different real 
systems.  

Figure 6 illustrates an example of transactional workflows with a choice of 
database transaction execution and a concurrent database transaction execution. From 
the Petri net model, we can calculate that the mixed ratio of transaction t1, t2, t3 and t4 
is 1:1:2:2. In the next section, implementations with different workflows described by 
Petri net and transfer matrix are tested and analyzed. 

4.3   Workload Modeling with Granularity Measures 

There are various definitions of the term performance in the ISO9126 standard [8]. 
The most commonly used performance metrics are response time, throughput and 
utilization. Response Time is defined as the time interval between a user request of a 
service and the response of the system. Some metrics related to response time are 
turnaround time, reaction time and stretch factor [8]. Throughput is defined as the 
rate at which tasks can be handled by a system, and is measured in tasks per time. For 
most IT systems, utilization is defined as the ratio of busy time of a resource and the 
total elapsed time of the measurement period.  

In most existing benchmarks, performance metrics are predefined with detailed 
mathematical formulas, which should not be changed when test systems are 
developed. In our BTMF implementation, we decide to parameterize these collected 
measures and use mark transitions from Petri Net to formally denote different 
granularity measures for business blocks in the workflow model.  

Along with the workflows in Figure 6, measures for high level workloads could be 
added as showing in Figure 7, where three mark transitions for business blocks 
represented by shadow rectangles are drawn in Petri net graph. We can obtain one 
performance metric between mark 1 and mark 2, the other one between mark 2 and 
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Fig. 7. An example of complex workloads (workflow) with two granularity measures 

mark 3. At the appropriate time, these workflow measures data will be sent to Statistic 
collector asynchronously, and high level metrics can be derived timely. 

5   Performance Test Result Analysis 

In order to validate our BTMF for real database applications, we developed a 
benchmark test management framework prototype with data models and features, and 
transaction characteristics derived from TPC-App benchmark [12]. 

First, we deploy the same database model, transaction characteristics and 
performance measures as TPC-App benchmark and compare the results with different 
active EBs, configured EBs and mixed ratio of transactions. Then, based on the 
transactions of TPC-App, we add another two transaction processes based on Petri net 
and transfer matrix separately. Through the formal modeling language, we predict the 
performance results of them and prove them by using real testing results derived from 
our BTMF implemented prototype tool. Detailed information for database systems 
testing environment is listed in Table 1. 

The test procedure is carried out as follows:  

1) Testers perform TS and SUT component configuration, which is the 
sequence of actions required to perform a benchmark, including TS and 
SUT software deployment, OS parameter adjustment, etc.  

Table 1. The configuration of testing environment 

environments configurations 
Intel® Core™2 Quad CPU Q6600 2.40GHz 

8G memory，1T hard disk 
Microsoft Windows Server 2003 R2  

Controller 
Machine 

(Controller and 
Web Server 1) Internet Information Server (IIS) 6.0 

Test 
system 
(TS) 

Web Server 1 (for 
Statistics) 

Intel® Core™2 Quad CPU Q6600 2.40GHz 

8G memory，1T hard disk 
Microsoft Windows Server 2003 R2  

Web Server 2 
Machine 

Internet Information Server (IIS) 6.0 
Web Server 2 (for 

Transactions) 
Intel® Xeon® CPU E5420 2.50GHz 

8G memory，1T hard disk 
Microsoft Windows Server 2003 R2  

Database Server 
Machine 

Oracle Database 10g home1 v10.2.0 

System 
Under Test 

(SUT) 

Database Server Microsoft Visual Studio 2005，C# 
Microsoft .NET Framework SDK v2.0 

Platform Development 
Platform  
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2) Test database initialization, in which we use database generator to create test 
database structure and populate test database according the data 
characteristics predefined in BTMF configure files. 

3) Workload configuration, which is the set of transactions that simulated users 
database request during test run, together with the relative frequency and 
relationship with which transactions occur during the test run. 

4) Performance test process: obtain a reliable result within an acceptable period. 

5.1   BTMF Usability Analysis 

The configuration parameters, such as client number, transaction workload, test 
database model and scale, supporting our BTMF to test diverse scenarios of web 
database applications, are based on TPC-App benchmark scenarios. Figure 8 
shows the result comparison with different active EBs, configured EBs and mixed 
ratios. 

From the left chart of Figure 8 we can find that along with the larger number of 
active EBs, the value of SIPS/EB metrics (line ‘SIPS/EB’ and line ‘SIPS/EB with 
different mixed ratios’) is smaller and the values of RT metrics (line ‘90%RT’ and 
line ‘50%RT’) are larger, which means the performance of SUT is lower. At the same 
time, in the right chart, the performance does not change much along with the larger 
of configured EBs. 

With different mixed ratios of transactions, the performance of SUT may change a 
lot. The mixed ratios of [new products], [product detail], [new customer], [create 
order], [order status], [change payment] and [change item] web service transactions 
are respectively 7:30:1:50:5:5:2 as TPC-App defined and 3:5:10:60:10:10:2 as the 
author customized, and the performance of them is shown as line ‘SIPS/EB’ and line 
‘SIPS/EB with different mixed ratios’. Since the [new customer], [create order], 
[order status] and [change payment] web services cost more time to be executed than 
the others, the performance of the latter SUT with user-defined mixed ratios is much 
lower than the standard mix ratios in TPC-App benchmark. 

 

Fig. 8. In the left chart, the x axis represents the number of active EBs, while in the right one 
the x axis represents the number of configured EBs. The unit of response time (RT) is second. 
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5.2   Workload Characterization Analysis 

In the following, we define three workload scenarios, one is from TPC-App workload 
model, as shown in Figure 9 (a), one is a transactional workflow with choice and 
concurrent processes defined by authors described with Petri net as Figure 9 (b), and 
the third one is a transactional workflow using transfer matrix like Figure 9 (c).  

Detailed transfer matrix is shown in Table 2, where the symbol t1-t7 represent [new 
products], [product detail], [new customer], [create order], [order status], [change 
payment] and [change item] web service in TPC-App. Different workload 
characterizations, which are represented by Petri net model in Figure 9 (b), transfer 
matrix model in Figure 9 (c) and Table 2, assures that every web service in each 
scenarios is still having the same mixed ratios as defined Figure 9 (a). Each value in 
Table 2 means that when the web service in its row is finished, there will be 
corresponding possibility to execute the web service in its column, where the blank 
means that the web service will not be executed after the web service in its row. 

We describe these high-level workloads with predefined workflow process 
definition languages and executed by our BTMF as defined. At the same time, in 
transaction level, from the mathematic analysis of three types of workloads discussed 
above (see Figure 9.), we can see that they all have the same mixed ratios of seven 
types of web services. Table 3 gives the comparable implementation testing results of 
them. Since they all have the same mixed ratios of the same types of web services, we 

 

 

                     (a)                                        (b)                                                   (c) 

Fig. 9. Three types of workflow workloads with the same mixed ratios of transactions  

Table 2. Transfer matrix based on the seven web services in TPC-App benchmark 

 t1 t2 t3 t4 t5 t6 t7 

t1 0.02 0.02  0.1    
t2    0.3   0.05 
t3 0.2 0.3  0.1    
t4 0 0  0.1 0.02 0.03  
t5        
t6 0.2 0.13   0.04   
t7  0.4      

Mixed ratio 0.07 0.30 0.01 0.50 0.05 0.05 0.02 
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Table 3. Results with different transaction workflows 

Workload models 

Scenarios in 

TPC-App 

benchmark 

Scenarios described 

by Petri net 
Scenarios with 

transfer matrix 

Configured EBs 10 10 10 

Active EBs 100 100 100 

SIPS 157.97 159.19 161.11 

SIPS/EB 1.5797 1.5919 1.6111 

90%RT(s) 2.04 2.05 2.05 

50%RT(s) 0.64 0.64 0.65 

 
can predict that the performance result should be the same or at least very similar. 
From Table 3 we can see that our prediction comes true, ‘SIPS/EB’, ‘90%RT’ and 
‘50%RT’ metrics are almost the same despite the fact that the implementations have 
different transactional workflows in high level. 

6   Conclusion 

We proposed a model-driven benchmark test management framework (BTMF), in 
which Petri net and transfer matrix are used to describe workload characteristics. The 
configurable parameters for workload manager, statistic collector, and test database 
make our BTMF framework applicable for standard benchmarks and authentic 
applications performance evaluation. The testing results can be predicted according to 
the mapping of high-level and low-level formal workload descriptions, so the 
configuration parameters for different database applications can easily be determined. 

Both of multiple configuration parameters optimization approaches and workload 
mathematical modeling with Petri net and other statistical methods will be considered 
and emphasized in the future. Today’s benchmarks do not pay more attentions to the 
availability issues, such as fault tolerance and recovery cost, thereby, models for 
performability [8] and analytical method will also be considered together in the 
BTMS framework. 
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