
Provider-Composer Negotiations for Semantic
Robustness in Service Compositions�

Nikolay Mehandjiev, Freddy Lécué, and Usman Wajid

The University of Manchester
Booth Street East, Manchester, UK

(firstname.lastname)@manchester.ac.uk

Abstract. Research in automating service composition is rarely concerned with
service providers, apart from work in quality guarantees and contracts. This per-
spective is arguably valid for comparatively static and cheap web services, which
do not warrant continuous involvement of their providers in the process of service
procurement and use by service consumers. However, opportunities for optimi-
sation and fine-tuning of compositions are thus missed. We have created an ap-
proach which uses automated agent-based negotiation between service composer
and service providers to address the issue of semantic robustness in large-scale
service compositions by preventing cases where the wrong type of data is passed
on from one service to the next. Starting from a service composition template
which is not semantically robust, we allow the selection of semantically robust
combinations of actual services. The approach is characterised with a linear com-
plexity and also allows service providers to tune their services to the requirements
of service compositions which may be lucrative business opportunities.

Keywords: service composition, semantic services, semantic robustness, auto-
nomic agents, negotiation, template-based composition.

1 Introduction

Services are perceived as ubiquitous software-based units which can be procured by
their consumers at the point of need to deliver certain functionality [1]. When a con-
sumer desires functionality which cannot be provided by a single existing service, we
can either develop a new service “from scratch”, or attempt to compose one using ex-
isting services. Service composition is thus a valuable activity, and automating it has
become a popular topic for service researchers, which have created a bewildering vari-
ety of approaches and methods.

One such approach [2,3] uses formalised knowledge about generic problem-solving
approaches to break-up the desired functionality into a set of simpler units, called tasks.
These tasks are interlinked into a service composition template, and suitable services
are then sought for each task. If a number of services are found, one is selected aiming
to optimise the composition according to certain criteria. For example, [4] shows how
we can select a set of services which fit in terms of input and output data types.

� Foundation Project: Supported by European Commission VII Framework IP Project Soa4All.

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 205–220, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



206 N. Mehandjiev, F. Lécué, and U. Wajid

We say that such composition is semantically robust if we cannot have the wrong
type of data passed on from one service to the next. Reasoning about services in gen-
eral and semantic robustness in particular is greatly facilitated by tagging services with
formal semantic descriptions of their functionality, inputs, outputs, pre-conditions, etc.
These services are then known as Semantic web services [5].

Their formal semantic descriptions are based on Description Logics (DL) [6], such
as OWL-S [7], WSMO [8] or SA-WSDL [9] (through annotations). These are in gen-
eral specialisations of semantic tagging languages such as the Web Ontology Language
(OWL) [10]. The latter are used to provide semantic annotations for general web re-
sources, including documents and media streams, thus creating the Semantic Web [11].

The problem we address in this paper is how to achieve semantic robustness of the
service composition if the composition template we use is not semantically robust itself.
This may occur for a number of reasons, for example when we modify a semantically
robust template to include specialised functionality, or if the service composition tem-
plate is created manually by people. For brevity we will use “robust” instead of “se-
mantically robust” in the remainder of this paper. A non-robust template will specify
the desired services in a way which permits the selection of incompatible services, i.e.,
one service generates output which does not conform to the specifications for the input
of the follow-up service. For example, a voice transcription service may handle English
and German, whilst the follow-up grammar checking service may be specialised in En-
glish only. The latter will thus fail if it is given a German text as an input. The failure
could be at the level of functionality, in that it will detect all phrases as grammatically
incorrect, but it may also raise exception regarding bad input since the input string will
now have extra characters from the German language (e.g., ä, ü or ö) which are not
expected by an English grammar checker software.

There are several approaches to resolving this issue. For example, we can convert the
composition template to one which is robust by narrowing down the specifications of
the respective service outputs, and only then we start searching for candidate services.
This may exclude many valid compositions and produce sub-optimal results, especially
if some inputs are “over specified” unnecessarily. For example, there may be many
multi-lingual grammar checker services available to complement our example bilingual
voice transcription service and result in a robust composition.

Such combinations will be detected and used by an alternative approach which anal-
yses every combination from the two sets of candidate services in the hope of finding
robust matches. This will work for small numbers of candidate services, but its com-
plexity is exponential and thus not applicable for large-scale compositions. In addition,
the resulting combinations may deviate from the template prescriptions significantly,
impeding the straightforward substitution of a failing service in the future.

In this paper we address the issue of robustness by approaching it from a multi-
agent systems perspective which is rarely used in web service research. We involve the
service composer and the corresponding providers of the candidate services in a ne-
gotiation process aiming to result in a robust composition optimised according to their
perspectives. The composer and providers can be represented by autonomous software
entities, called agents, which are pre-programmed to negotiate according to the business



Provider-Composer Negotiations for Semantic Robustness in Service Compositions 207

interests of the organisations they represent, and to reason over the semantic specifica-
tions of requirements and candidate services.

To drive the negotiation dialogue, we use a formal model of semantic robustness [12]
described in Section 2. The model allows us to analyse each data link between tasks
in our template, and for those links which are not robust, calculate precise semantic
specifications of the extra description necessary for these links to become robust.

The negotiation process is guided by negotiation protocols, involving the service
composer agent and the agents providing candidate services for every two tasks linked
by a non-robust link. An informal outline of the protocols, together with overall ap-
proach proposed here, is described in Section 3, whilst the formal details of sub-protocols
and negotiation strategies are specified in Section 4.

The combination of agent-based negotiation with semantic reasoning results in an in-
novative solution to the problem of robust service composition. Section 5 demonstrates
how the approach can be used in a specific case study, delivering results with greater
flexibility than the approaches based on centralised reasoning. Section 6 compares the
approach with related work in the area, and Section 7 concludes this paper.

2 Preliminaries

This section describes in further detail the overall ideas of template-based service com-
position, and proceeds to define the formal model of their semantic robustness.

2.1 Template-Based Service Composition

An intuitive view to service composition would see it as an activity which aims to satisfy
the need for a (non-existing) service by bringing together existing ones. For example, if
we need a letter dictation service we can bring together a voice transcription service, a
grammar checker service, a letter layout service and a printing service.

This integration activity can be done manually, yet automating it makes it more in
tune with the vision of composing services at the point of need [1]. Automating can be
done using program synthesis and AI planning techniques [13], employing reasoning
over the pre- and post-conditions of available services, trying to create a plan of putting
them together to jointly achieve the aim of the target composite service. This approach
starts “from scratch” every time, yet significant performance improvements may be
offered by reusing composition results as a template for new compositions, or creating
such a template through the use of domain-specific knowledge about how the problem
addressed by the sought service would decompose into sub-problems [14].

We follow this template-based composition, and focus on the stage of template in-
stantiation [2,3], where we need to allocate a specific service for each the generic “ser-
vice slots” in the template. From the perspective of template instantiation, we use the
specification of each task Ti,1≤i≤n to procure a set of candidate services sj,1≤j≤m for
this task, and to select one of these services to instantiate the task. The precise manner
in which we propose to implement both the procurement and selection activities so that
we achieve semantically robust composition even in the cases where the template itself
is not semantically robust, will be described in Section 3.



208 N. Mehandjiev, F. Lécué, and U. Wajid

2.2 Formal Semantic Model

Using tasks specifications of inputs, outputs, pre- and post-conditions of templates, we
should be able to infer additional dependencies between tasks, for example we can infer
data flow dependencies between tasks using their input and output specifications.

In the following we present such dependencies as semantic links [15] between ser-
vices. Then we define the concept of their robustness and finally we describe semantic-
link-based web service composition.

Semantic Links. Since input and output parameters of semantic web services are spec-
ified using concepts from a common ontology1 or Terminology T (an example of such
is given in Figure 2), retrieving links between output parameters Out si ∈ T of ser-
vices si and input parameters In sj ∈ T of other services sj could be achieved by
using some DL reasoner such as Fact++2 [16]. Such a link, also known as semantic link
[15] sli,j (Figure 1) between two functional parameters of si and sj is formalized as

〈si, SimT (Out si, In sj), sj〉 (1)

Thereby si and sj are partially linked according to a matching function SimT . This
function expresses which matching type is employed to chain services. The range of
SimT is reduced to the four well known matching type introduced by [17] and the
extra type Intersection [18]:

– Exact. If the output parameter Out si of si and the input parameter In sj of sj are
equivalent; formally, T |= Out si ≡ In sj .

– PlugIn. If Out si is sub-concept of In sj; formally, T |= Out si � In sj .
– Subsume. If Out si is super-concept of In sj ; formally, T |= In sj � Out si.
– Intersection. If the intersection of Out si and In sj is satisfiable; formally, T �|=

Out si � In sj � ⊥.
– Disjoint. If Out si and In sj are incompatible i.e., T |= Out si � In sj � ⊥.

Output ParameterService Input Parameter

ServiceService

Inn sj

Semantic Link sl

sjOut si
si

In0 si

Ink si

Inn si

(SimT (Out si, In sj))

In sj

Out sj

Semantic Link sli,j
Out0 si In0 sj

Outn si

Fig. 1. A Semantic Link sli,j

In the same way as semantic links sli,j between web services si and sj , we define
abstract semantic links slAi,j between tasks Ti and Tj . In the following we extend the
definition of semantic link by introducing its concrete form (Definition 1).

1 Distributed ontologies are not considered here but are largely independent of the problem
addressed in this work.

2 http://owl.man.ac.uk/factplusplus/



Provider-Composer Negotiations for Semantic Robustness in Service Compositions 209

Definition 1 (Concrete Semantic Link)
A concrete semantic link slα,β

i,j is a concretization of its abstract form slAi,j if and only if
sα and sβ can respectively concretize tasks Ti and Tj .

Robust Semantic Link. The matching function SimT of semantic links enables, at
design time, determining the degree of semantic compatibility among independently
defined web service descriptions, from the strongly compatible Exact through PlugIn,
Subsume and Intersection to the strongly incompatible Disjoint. However, as empha-
sized by [19], the matching types Intersection and Subsume need some refinements to
be usable for semantic-links-based web service composition.

Example 1 (Semantic Link & Subsume Matching Type)
Suppose T1 and T2 are two tasks such that the output parameter
NetworkConnection of T1 is semantically linked to the input parameter
SlowNetworkConnection of T2. According to the example ontology in Figure
2, this abstract semantic link slA1,2 is valued by a Subsume matching type since
NetworkConnection � SlowNetworkCon-nection. It is obvious that such an
abstract semantic link should not be directly applied in a service composition since
the NetworkConnection is not specific enough to be used by the input param-
eter SlowNetworkConnection, which may cause data-based exception during
execution. Indeed the output parameter NetworkConnection requires further
restrictions to ensure a data-robust composition of T1 and T2.

A semantic link valued by the Intersection matching type requires a comparable refine-
ment. In this direction, [19] defined a robust semantic link and their composition.

Definition 2 (Robust Semantic link)
A semantic link 〈si, SimT (Out si, In sj), sj〉 is robust iff the matching type between
Out si and In sj is either Exact or PlugIn.

NetworkConnection ≡ ∀netPro.Provider � ∀netSpeed.Speed

V eryRestrictedNetworkConnection ≡ NetworkConnection � ∀netSpeed.AdslV eryRestricted

LimitedNetworkConnection ≡ NetworkConnection � ∀netSpeed.AdslLimited

SlowNetworkConnection ≡ NetworkConnection � ∀netSpeed.Adsl1M

FastNetworkConnection ≡ NetworkConnection � ∀netSpeed.AdslMax

AdslV eryRestricted ≡ Speed � < 1mBytes

AdslLimited ≡ Speed � ≥ 0.5 mBytes� ≤ 1.5mBytes

Adsl1M ≡ Speed � ≥ 1mBytes

AdslMax ≡ Speed � ≥ 8mBytes

AdslSuperMax ≡ Speed � ≥ 16mBytes

Address � �, IPAddress ≡ Address � ∀protocol.IP

V oIPId ≡ Address � ∀network.Telecom

Fig. 2. Sample of an ALN Terminology T



210 N. Mehandjiev, F. Lécué, and U. Wajid

A possible way to replace an Intersection-, or Subsume-type link 〈si, SimT (Out si,
In sj), sj〉 with its robust form consists of computing the information (as DL-based
description) contained in the input parameter In sj and not in the output parameter
Out si. This information is then used as an additional restriction on the Out si data
type when a suitable web service is procured. We say that adding this latter restriction
”transforms” the non-robust semantic link in its robust form. To do this, we apply initial
ideas of [12], which adapt a non standard inference matching type i.e., the Abduction
operation [20] (Definition 3) for comparing ALN DL-based descriptions.

Definition 3 (Concept Abduction)
Let L be a DL, C, D be two concepts in L, and T be a set of axioms in L. A Concept
Abduction Problem (CAP), denoted as 〈L, C, D, T 〉 aims at finding Extra Description,
as a the most general concept HC,D ∈ L such that T |= C � HC,D � D.

According to Definition 3, a compact representation of “difference” HOut si,In sj

(henceforth Hsi,sj ) between DL-based descriptions Out si and In sj of a seman-
tic link sli,j can be computed. Such a description Hsi,sj can be formally defined by
T |= Out sj � Hsi,sj � In si as a solution of the Concept Abduction problem
〈L, Out si, In sj, T 〉. In other words the Extra Description Hsi,sj refers to informa-
tion required by In sj but not provided by Out si to ensure a correct data flow between
web services si and sj .

In the same way robustness can be computed in template-based composition e.g., in
case of non robust abstract semantic links slAi,j between tasks Ti and Tj . In the following
HTi,Tj will refer to Extra Description between Ti and Tj in template-based composition
(with non robust abstract semantic links).

Example 2 (Robustness and Extra Description)
Suppose the abstract semantic link slA1,2 in Example 1. The additional restriction which
has to be provided to the NetworkConnection if this output is to be used by the
input parameter SlowNetworkConnection is referred by the Extra Description
HT1,T2 of the Concept Abduction Problem 〈L, NetworkConnection, SlowNetwork-
Connection, T 〉 i.e., ∀netSpeed.Adsl1M (see Figure 2).

In other words, we can turn non-robust semantic links into robust ones by retrieving
their Extra Description.

Semantic Link Composition Model. Here, we aggregate the concept of web service
composition and semantic link in a same model. Therefore the process model of web
service composition and its semantic links is specified by a directed graph which has
the web service specifications si as its nodes, and the semantic links sli,j (data depen-
dencies) as its edges. In the same way a template-based composition, pre-computed
for instance by template-based and parametric-design-based approaches [2,3], has the
tasks specifications Ti as its nodes, and abstract semantic links slAi,j as its edges.

Given a template-based composition and an approach to compute robust semantic
links (Definition 3), we address the issue of automating robustness in web service com-
position by using agent-based negotiation.



Provider-Composer Negotiations for Semantic Robustness in Service Compositions 211

3 Negotiating Robust Interfaces with Candidate Service Providers

In an ideal template-based service composition, all semantic links between tasks (ser-
vice placeholders) would be semantically robust. In practice this may not be the case,
for example because the template has been created manually, or a generic template such
as “object loan” has been modified with a domain-specific task such as checking credit
record (for high-value objects such as expensive cars).

In such cases, we propose an agent-based approach to achieve robust instantiation of
the non-robust template, which uses the formal model of semantic composition defined
in the previous section. The approach is based on the following:

1. Every service provider and the service composer are represented by software
agents.

2. The service composer agent “advertises” the service composition template on a
shared notice board. It also calculates which semantic links in the template are not
robust.

3. Service provider agents monitor the notice board. When they see requirements (task
specifications) which one of their services can satisfy, they would “bid” for their
service to instantiate the task.

4. Once the bids have been placed, the service composer agent initiates a three-phase
negotiation protocol for each non-robust abstract link slAi,j in the template. The pro-
tocol involves the providers of services si and sj which are candidates to instantiate
the tasks Ti and Tj , respectively. The protocol should select services which provide
robust instantiation of the semantic link.

5. The service composer agent can now instantiate the remaining tasks in the template
by choosing the most appropriate service (in term of its semantic links with other
services) for each such task.

In the remainder of this section, we will detail the suitability criteria used by service
provider agents, followed by details of the three-phase negotiation protocol detailed in
Step 4 above.

3.1 Service Suitability

Here we consider that a task T of a template can be instantiated by a service s if and
only if the following conditions are true:

1. The service s achieves the same goal as T , assuming an ontology of goals [8].
2. The pre-conditions of s are implied by the pre–conditions of T .
3. The post-conditions of s imply the post-conditions of T .
4. The matching type between the input specification In T of T and the input speci-

fication In s of s i.e., SimT (In T, In s) is PlugIn.
5. The matching type between the output specification Out s of s and the output

specification Out T of T i.e., SimT (Out s, Out T ) is PlugIn.

Conditions (1) to (3) above ensure the candidate service s has the desired effect of the
target task T , whilst conditions (4) and (5) ensure the semantic (functional) fit between



212 N. Mehandjiev, F. Lécué, and U. Wajid

Ti Tj

Candidate

Services

Candidate

Services

Composition Template

3,2

,i jsl

,
A

i jsl

3_ iOut s
2_ iOut s
1_ iOut s

3_ jOut s

1_ jOut s

2_ jOut s

3_ jIn s

1_ jIn s

2_ jIn s

3_ iIn s

1_ iIn s

2_ iIn s

_ iIn T _ jIn T_ iOut T
_ jOut T

1

jS

3

iS
2

iS
1

iS

3

jS
2

jS

Fig. 3. Links between Tasks and Their Candidate Services

the candidate service and the target task. Condition (4) ensures that all the data which
can be passed onto T can be processed by s. Condition (5) ensures that the output of s
fits within the output specifications of T . Fig. 3 demonstrates the nature of the semantic
fit between tasks and their candidate services.

Example 3 (Tasks and Suitable Services)
We illustrate our approach by considering two different tasks T1 and T2 such that:

– AdslEligibility task T1, starting from a PhoneNum, a ZipCode and an
Email address, returns the NetworkConnection of a desired geographical
zone;

– VoiceOverIP task T2, starting from a PhoneNum and a SlowNetworkCon-
nection, returns the VoIPId of the ADSL line a Telecom operator needs to
install the line;

On the one hand T1 can be concretized by three services:

– s1
1, s2

1 and s3
1, that, starting from a PhoneNum, a ZipCode and an Email ad-

dress, returns respectively a SlowNetworkConnection,VeryRestricted-
NetworkConnection and LimitedNetworkConnection of the desired
geographical zone;

On the other hand T2 can be concretized by two services:

– s1
2 and s2

2, that, respectively starting from a NetworkConnection and Slow-
NetworkConnection, returns the VoIPId of the ADSL line a Telecom opera-
tor needs to install the line;

Note that s1
1, s2

1 and s3
1 are suitable services for achieving task T1 since they fulfil

conditions (1), (2), (3) and (4). In the same way s1
2 and s2

2 are suitable services for
T2. In the rest of the paper we will focus on concretizing tasks by adequate services to
achieve semantically robust links.



Provider-Composer Negotiations for Semantic Robustness in Service Compositions 213

3.2 Negotiation Protocol

The service composer agent has identified all non-robust abstract semantic links slAi,j
between tasks Ti and Tj in the composition template. The composer agent has also
calculated HTi,Tj for each non-robust link. Once all the bids to instantiate the tasks
involved in these links with services have come through (say an announced deadline for
bidding has passed), the service composer will initiate a 3-phase negotiation protocol
with the service providers for each non-robust link as follows.

Phase 1: In this phase all agents operate on the basis that they may achieve robust com-
position “for free” (i.e. without the use of extra services or modifying the behaviour of
the ones proposed), using differences in specifications between a task and its candidate
services (c.f. Section 3.1). We start by contacting all providers of services si for task Ti

(on the left of Figure 3) sending them HTi,Tj . They compare it with their output speci-
fication as detailed in Section 4.1 to check if their (more specific) outputs turn sli,j into
a robust link. This is feasible since for each such output we have Out si � Out Ti. If
one or more service providers confirm this is indeed the case, the composer agent can
terminate the protocol and, using the same selection criteria as the ones applied for a
robust link, select one of them, and also any service provider for Tj . The actual selec-
tion criteria for choosing an instantiation could be based on a number of configurable
parameters such as price, quality guarantees, etc. and will be application-specific. Alter-
natively, some service provider agents can provide their precise output specifications, if
they have satisfiable intersection with the request (see Section 4).

In the second step of this phase, the service composer circulates the counter-offers
(Out si) to all providers of services sj for task Tj (on the right of Figure 3), to check
if their In sj (which subsume the input specification of their task In Tj), covers at
least one of the counter-offers in a PlugIn type of link and thus make the link robust. If
SimT (Out si, In sj) is of PlugIn type for at least one pair of candidate services, the
respective service provider for sj will respond to the service composer, and the protocol
will terminate with success. Otherwise each service provider will return a counter-offer
which is the extra description required for this concrete semantic link sli,j i.e., T |=
Out si � Hsi,sj � In sj .

Phase 2: In this phase all agents operate on the basis that additional services will be
required to make the link robust, and that the service consumer will have to pay addi-
tional usage fees for these extra services. They attempt to find just a single additional
service per non-robust link, and to avoid having to modify or create services. This phase
starts with the service composer contacting the service providers si (“on the left”), with
either the specific “paired” counter-offers Hsi,sj generated from Phase 1, or, where the
agent has not secured such a “paired” offer, with the general HTi,Tj .

The service providers then try to find the extra service (possibly in coalition with
another service provider), which provides the missing semantic information and thus
can narrow Out si and thus convert SimT (Out si, In sj) into the robust PlugIn type.
If they succeed, they will respond with the cost of using this extra service. In this case
the service composer agent will terminate the protocol, and select one of the services
with such offers, using its usual criteria. Therefore, in that specific case, the agent does



214 N. Mehandjiev, F. Lécué, and U. Wajid

not actively modify the service behaviour, but rather finds new services that support this
extra description to ensure compliance to the restriction at run-time.

If no such offer is received, the service composer agent will contact all service
providers “on the right”, asking them to consider finding extra services which can act
in parallel with their offerings and extend their specification of In sj to a degree where
there is a PlugIn relationship with any of the Out si. If no such offers are found, the
negotiation proceeds to Phase 3.

Phase 3: At this phase all agents operate on the basis that some degree of service adap-
tation and/or development is necessary to achieve robustness of the specific semantic
link, and the expectations of monetary values are thus also increased. Again we use the
pairs of offers and counter-offers derived in the previous phases, and we contact in turn
agents “on the left” and then the ones “on the right” to negotiate the best conditions
(price, quality, etc.) needed to turn the specific link into a robust form.

Formal details of the agent protocol driving this approach are described in Section 4,
whilst an example of its operation is found in Section 5.

4 Details of Protocol and Agent Decisions

In the previous section we have introduced a multi-phase negotiation mechanism to
enable service composer agent to manage several negotiation processes (with providers
of services si and sj). The details described here relate to a single non-robust link only.
Interdependencies between non-robust links are not considered in this work.

4.1 Phase 1

We start with the service composer agent calculating HTi,Tj .

Step 1: The first negotiation step comprises one-shot interaction between the service
composer and all providers of services si, triggered by a Call-for-Proposals message
from the service composer, which has HTi,Tj as its content. The negotiation protocol
is shown in Figure 4 a). The type of response generated by service providers in the
protocol is based on the following conditions.

a) Proposal: Each service provider will check if T |= Out si � HTi,Tj � Out Ti.
If so, that provider will respond positively and the process will terminate.

b) Refuse: Alternatively, services for which T |= Out si � HTi,Tj � ⊥ will be
deemed unsuitable for further negotiation and their providers will refuse participat-
ing in the negotiation.

c) Counter-Proposal: If there is satisfiable intersection, i.e., T �|= Out si �
HTi,Tj � ⊥, these providers will respond to the service composer with their output
specifications Out si.



Provider-Composer Negotiations for Semantic Robustness in Service Compositions 215

Service
 Composer

Providers
of Services

Call-for-Proposal

Proposal

Refuse

Counter Proposal

is
Service

 Composer
Providers

of Services

Call-for-Proposal

Proposal

Counter Proposal

js

(A) (B)

Fig. 4. Protocols to Support First Phase of Negotiation

Step 2: In case Step 1 ends up with counter proposals from providers of si, the service
composer will use the negotiation protocol shown in Figure 4 b) to initiate negotiation
with the providers of services sj , sending them a Call-for-Proposals message with the
set of all counter-proposals Out si from Step 1 as its content. Step 2 can result in a
robust composition if any of the services sj has an input In sj which subsumes any
of the counter-offers. The following response options are available to service provider
agents.

a) Proposal: if SimT (Out si, In sj) is of a PlugIn type, the agent responds posi-
tively;

b) Counter-Proposal: If SimT (Out si, In sj) is an Intersection type, the agent
responds with a counter-proposal which is the extra description required for this
concrete semantic link sli,j i.e., T |= Out si � Hsi,sj � In sj . Below we refer to
this as a “paired offer” between two provider agents.

If the second step ends up with counter-proposals rather than proposals, the composer
will initiate the second phase of negotiation.

4.2 Phases 2 and 3

Step 1: In the second and third phase of negotiation the service composer uses the
protocol shown in Figure 5, to solicit offers of using additional services (in Phase 2),
or adapting or even developing services (in Phase 3), which can turn the particular link
in its robust form. These phases build on the data about semantic fit gathered during
Phase 1, in a way of a matrix linking service providers for sj as rows and service
providers for si as columns. The matrix, an example of which is shown in Table 1,
contains the specific “paired offer” Extra Descriptions Hsi,sj in the respective cells, and
the abstract Extra Description HTi,Tj elsewhere. The initial Call-for-Proposals
message will refer to this matrix in its contents.

In response to the CFP the negotiation protocol presents the following response options.



216 N. Mehandjiev, F. Lécué, and U. Wajid

Service
 Composer

Providers
of Services

Call-for-Proposal

Failure

Statement-of-Interest

Propose

Fig. 5. Protocol to Support Second Phase of Negotiation

a) Statement-of-Interest: This is an optional response option. The service
provider can send a Statement-of-Interest to buy time for finding other
service providers (or coalition formation) that can help in delivering the required
information.

b) Proposal: A service provider agent may use one of their services, or employ coali-
tion formation techniques [21,22] and enlist a service from other agents for provid-
ing the needed additional specification. If these attempts succeed, the provider will
responds positively with a proposal. For Phase 3, the service provider may propose
adaptation of their service to provide the required specification, or the development
of the extra filters required.

c) Failure: It is possible that the service provider agent is not able to form a coali-
tion, in this case the service provider will responds with Failure.

Table 1. Matrix for Advertising Paired Services

s1
1 s2

1 s3
1

s1
2 HT1,T2 HT1,T2 HT1,T2

s2
2 HT1,T2 Hs3,s2 HT1,T2

If any proposals are received, the service provider agent can terminate the protocol and
select the best proposal. Otherwise they initiate Step 2.

Step 2: The service composer will initiate the negotiation with providers of services sj

using the same protocol (shown in Figure 5). The service providers are presented with
the relevant specifications Out si, gathered during Phase 1, and with the same response
options. In Phase 2, the providers of services sj should find extra services which can act
in parallel with their offering to achieve a PlugIn relationship in relation to Out si. In
Phase 3, the providers should consider the costs and feasibility of adapting their services
to handle the inputs specified by Out si.



Provider-Composer Negotiations for Semantic Robustness in Service Compositions 217

In case the protocol ends with a Failure then the negotiation proceeds to the third
phase, where the service composer agent uses the same protocol template to check
whether service providers are willing/able to develop new service that can complement
their services for robust composition.

5 An Example Negotiation

Here we demonstrate how our approach can be applied to the example service com-
position covered in the Examples 1 to 3. We are focusing on the semantic link slA1,2

in Example 1, which is non-Robust. The Service Composer Agent will calculate
HT1,T2 ≡ ∀netSpeed.Adsl1M (Example 2).

5.1 Phase 1

The Service Composer Agent will issue a CFP with an objective of HT1,T2 to all
providers of candidate services for T1, namely s1

1, s2
1, and s3

1.
According to Example 3, we have T |= Out s1

1 � HT1,T2 � Out T2. Therefore
the agent providing s1

1 will respond with Proposal message, where they specify the
conditions (price, QoS,etc.) for using their service. The agent providing s2

1 will respond
with Refuse message since, according to Example 3: T |= Out s2

1 � HT1,T2 � ⊥.
And the agent providing s3

1 will respond with Counter-Proposal(Out s3
1) since

T �|= Out s3
1 � HT1,T2 � ⊥ (Example 3).

Having received all three responses, the Service Composer Agent will choose s1
1

and terminate the negotiation over this semantic link. If the system did not con-
tain s1

1 or its service provider agent did not send a response, the Service Composer
Agent will take the payload of the Counter-Proposal message Out s3

1 and send it as
the objective of a CFP message to the agents providing services s1

2 and s2
2. Since

SimT (Out s3
1, In s1

2) is of PlugIn matching type (Example 3), the provider of s1
2 will

respond with Proposal message, where they specify the conditions (price, QoS,etc.)
for using their service.

This is not the case for the provider of s2
2, where SimT (Out s3

1, In s2
2) is of

Intersection matching type. This provider will calculate Hs3
1,s2

2
using the following:

T |= Out s3
1 � Hs3

1,s2
2
� In s2

2 which results in the NetworkConnection to be
∀netSpeed.Adsl1M � ∀netSpeed.AdslLimited (speed limited between 1mBytes
and 1.5mBytes).

The provider will then respond with this value as contents (payload) in a Counter-
Proposal message.

Upon receiving all responses, the Service Composer agent will accept the best of all
Proposal messages (the first and only one here). If such messages are not returned,
the Service Composer agent will initiate the second phase of the negotiation, using the
results Hs1

1,s1
2

from the first phase.

5.2 Phases 2 and 3

In the second phase, the Service Composer will ask the candidate service providers
if they can provide an additional service (that provides the missing description H) to



218 N. Mehandjiev, F. Lécué, and U. Wajid

ensure the semantic link is robust. The phase starts by the Service Composer issuing
a CFP message to the providers of s1, where the content of the message refers to the
matrix shown on Table 1. The matrix will contain HT1,T2 for all pairs of candidate ser-
vices apart from the cell (s3

1, s
2
2), where the content will be Hs3,s2 based on the “paired”

counter-proposal reached at the end of Phase 1. Service providers will attempt to find
additional services by potentially building coalitions and send either an agreement or a
rejection. If the service composer does not receive any agreements, they will contact the
two providers of s2 with a CFP message, containing the output specifications received
in the first phase of the negotiation. The two service providers will attempt to find an
additional service to handle these output specifications, and respond accordingly. The
third phase will repeat the interaction pattern of the second phase.

6 Related Work

We review some works related to our main contributions i.e., i) Robustness in semantic
web service composition and ii) Agent-based Negotiation for service composition.

6.1 Robustness in Composition

An intuitive method [12] to immediately retrieve the Extra Description consists in dis-
covering services that return this description as output parameters. Such a solution can
be employed and implemented in any composition approach. In case of a non-robust se-
mantic link, the Extra Description is exposed to a Web service discovery process which
is in charge of retrieving relevant Web services. The latter services are able to provide
the Extra Description as output parameters. The Extra Description can be reached by
one or a conjunction of Web services, depending on the Extra Description and the dis-
covery process. In contrast we use agent based negotiation for obtaining robust compo-
sitions of web services. This reduced the complexity of the whole approach by assuming
agents interfacing sets of services that can resolve robustness of some semantic links.
In more particular the proposed approach is of linear complexity i.e., each (distributed)
agent only needs to look through several options/counter-offers.

Alternatively the set of Extra Descriptions is suggested to the end user in order to be
relaxed in [23]. This user is then responsible of providing the Extra Description that the
system needed to elaborate the final composition. The new information that end users
will provide to the system is necessary to compute and elaborate a robust composition
of web services, hence satisfying the initial user request. The suggested method has the
advantage of relaxing constraints on the end user. In contrast we suggest an automated
approach which does not require any end user support.

6.2 Agent-Based Negotiation

Agent-based approaches have recently been used to provide effective automated solu-
tions to web service composition. This is partly because agent negotiations provide an
effective way of addressing the complete issues associated with automated service com-
position [23]. Negotiation between software agents is one of the fundamental research
issues in multi-agent systems. In this respect, this paper introduces several negotiation



Provider-Composer Negotiations for Semantic Robustness in Service Compositions 219

processes that an be employed by agents to manage different issues within a service
composition problem. The negotiation processes range from simple one-shot interac-
tions to handling counter proposals across different processes and facilitating agent-
based coalition-formation. The subject of coalition-formation is explored in [22] and
agent-based coalition formation for service composition is discussed in [21]. In future
we intend to focus on the coalition formation strategies and the trade-offs that can be
offered to service provider agents within the service composition problem.

7 Conclusion

Ensuring robust semantic links between elements of composite services is very impor-
tant in real scenarios of composition, and a mechanism to achieve this in an automated,
effective and efficient fashion is needed for scalable and practical applications of web
service composition. In this paper we propose such an automated approach which uses
a formal model of semantic robustness, and agent-based negotiation protocol to ensure
automation, effectiveness and efficiency. As shown by the example application and the
specification of the approach, it can find automated solutions without involving humans,
and also satisfy the criteria for effectiveness since innovative solutions can be found us-
ing coalition formation, and agents can customize services for lucrative opportunities
of use. The dynamic nature of the negotiation protocol results in a number of require-
ments (in real-world scenarios) on the service providers side i.e., their willingness to
create a new service on demand or to customize an existing service according to the
composer’s requirements. Finally, the approach is designed to ensure efficiency by ex-
ploring the free solutions first, then the low-cost use-based solutions, and only at last
resort it considers service adaptation and development.

Our approach goes beyond the prevalent one-shot procedure (sending request and col-
lecting results) by allowing agents to play a more active role in the composition process.
The main direction for future work is to consider robustness in more expressive compo-
sition of web services (e.g., in case of conditional branching: multiple successors for on
task with different input parameters). In addition, since running the negotiation protocol
process during composition instantiation will affect the composition performance, some
heuristics-based experiments on that specific point need to be driven. Finally optimiza-
tion of robustness along web service composition needs to be investigated.

Acknowledgments

This work is conducted within the European Commission VII Framework IP Project
Soa4All (Service Oriented Architectures for All) (http://www.soa4all.eu/ ), Contract
No. IST-215219.

References

1. Bennett, K., Munro, M., Xu, J., Gold, N., Layzell, P., Mehandjiev, N., Budgen, D., Brereton,
P.: Prototype implementations of an architectural model for service-based flexible software.
In: Hawaii International Conference on System Sciences, vol. 3, p. 76b (2002)

2. Wielinga, B., Schreiber, G.: Configuration-design problem solving. IEEE Expert: Intelligent
Systems and Their Applications 12(2), 49–56 (1997)



220 N. Mehandjiev, F. Lécué, and U. Wajid

3. Motta, E.: Parametric Design Problem Solving - Reusable Components for Knowledge Mod-
elling Case Studies. IOS Press, Amsterdam (1999)

4. Lécué, F., Mehandjiev, N.: Towards scalability of quality driven semantic web service com-
position. In: ICWS (2009)

5. Sycara, K.P., Paolucci, M., Ankolekar, A., Srinivasan, N.: Automated discovery, interaction
and composition of semantic web services. J. Web Sem. 1(1), 27–46 (2003)

6. Baader, F., Nutt, W.: The Description Logic Handbook: Theory, Implementation, and Appli-
cations (2003)

7. Ankolenkar, A., Paolucci, M., Srinivasan, N., Sycara, K.: The owl-s coalition, owl-s 1.1.
Technical report (2004)

8. Fensel, D., Kifer, M., de Bruijn, J., Domingue, J.: Web service modeling ontology submis-
sion, w3c submission (2005)

9. Sivashanmugam, K., Verma, K., Sheth, A., Miller, J.: Adding semantics to web services
standards. In: ICWS, pp. 395–401 (2003)

10. Smith, M.K., Welty, C., McGuinness, D.L.: Owl web ontology language guide. W3c recom-
mendation, W3C (2004)

11. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American 284(5), 34–
43 (2001)

12. Lécué, F., Delteil, A., Léger, A.: Applying abduction in semantic web service composition.
In: ICWS, pp. 94–101 (2007)

13. McIlraith, S.A., Son, T.C.: Adapting golog for composition of semantic web services. In:
KR, pp. 482–496 (2002)

14. ten Teije, A., van Harmelen, F., Wielinga, B.: Configuration of web services as parametric de-
sign. In: Motta, E., Shadbolt, N.R., Stutt, A., Gibbins, N. (eds.) EKAW 2004. LNCS (LNAI),
vol. 3257, pp. 321–336. Springer, Heidelberg (2004)

15. Lécué, F., Léger, A.: A formal model for semantic web service composition. In: Cruz, I.,
Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.)
ISWC 2006. LNCS, vol. 4273, pp. 385–398. Springer, Heidelberg (2006)

16. Horrocks, I.: Using an expressive description logic: Fact or fiction? In: KR, pp. 636–649
(1998)

17. Paolucci, M., Kawamura, T., Payne, T., Sycara, K.: Semantic matching of web services ca-
pabilities. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 333–347.
Springer, Heidelberg (2002)

18. Li, L., Horrocks, I.: A software framework for matchmaking based on semantic web tech-
nology. In: WWW, pp. 331–339 (2003)

19. Lécué, F., Delteil, A.: Making the difference in semantic web service composition. In: AAAI,
pp. 1383–1388 (2007)

20. Colucci, S., Noia, T.D., Sciascio, E.D., Donini, F., Mongiello, M.: Concept abduction
and contraction for semantic-based discovery of matches and negotiation spaces in an e-
marketplace. In: ECRA, vol. 4, pp. 41–50 (2005)

21. Muller, I., Kowalczyk, R., Braun, P.: Towards agent-based coalition formation for service
composition. In: IAT 2006: Proceedings of the IEEE/WIC/ACM international conference on
Intelligent Agent Technology, Washington, DC, USA, pp. 73–80. IEEE Computer Society,
Los Alamitos (2006)

22. Shehory, O., Kraus, S.: Methods for task allocation via agent coalition formation. Artif. In-
tell. 101(1-2), 165–200 (1998)

23. Hassine, A.B., Matsubara, S., Ishida, T.: A constraint-based approach to horizontal web ser-
vice composition. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P.,
Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 130–143. Springer, Hei-
delberg (2006)


	Provider-Composer Negotiations for Semantic Robustness in Service Compositions
	Introduction
	Preliminaries
	Template-Based Service Composition
	Formal Semantic Model

	Negotiating Robust Interfaces with Candidate Service Providers
	Service Suitability
	Negotiation Protocol

	Details of Protocol and Agent Decisions
	Phase 1
	Phases 2 and 3

	An Example Negotiation
	Phase 1
	Phases 2 and 3

	Related Work
	Robustness in Composition
	Agent-Based Negotiation

	Conclusion



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




