
An Automatic Approach to Enable Replacement
of Conversational Services�

Luca Cavallaro1, Elisabetta Di Nitto1, and Matteo Pradella2

1 Politecnico di Milano, DEI, Piazza L. Da Vinci, 32, 20133 Milano, Italy
{cavallaro,dinitto}@elet.polimi.it

2 CNR IEIIT-MI, Via Golgi, 40, 20133 Milano, Italy
pradella@elet.polimi.it

Abstract. In Service Oriented Architectures (SOAs) services invoked in a com-
position can be replaced by other services, which are possibly discovered and
bound at runtime. Most of the research efforts supporting this replacement as-
sume that the interface of the interchangeable services are the same and known
at design time. Such assumption is not realistic since it implies that providers of
the same kinds of services agree on the interfaces the services offer. By interface
mapping we mean the class of approaches aiming at relaxing this assumption.
Most of those approaches available in the literature focus on stateless services and
simply address mapping operation names and data structures. Instead, this paper
focuses on conversational services for which the sequence of required operation
calls, i.e., the interaction protocol, matters. We use model checking to automati-
cally identify the interaction protocols mapping. We validate our technique both
by applying it to the invocation of two real services (Flickr and Picasa), and by
quantitatively comparing it to a related approach.

1 Introduction

Service oriented architectures (SOAs) offer the mechanisms to build software systems
integrating loosely coupled services, possibly made available by third party vendors.
As services may be controlled by third parties, they may be out of service consumers
control. This means that the traditional closed world assumption, which mandates that
developers know a priori all the components involved in the system and can model
and plan their interactions, is no more verified [1] because services involved in the
composition may change during the system life cycle to react to failures and service
unavailabilities. When this happens, a new service semantically equivalent to the one
not responding properly could be discovered and bound to the composition. When this
replacement occurs at runtime, the composition (or the framework where the compo-
sition is running) should be able to perform the replacement requiring as little human
intervention as possible.

In recent years, research about service oriented architectures produced many frame-
works that can provide run time reconfigurations of service compositions (see for in-
stance [2], [3]), but most of them make the hypothesis that all semantically equivalent

� This research has been funded by the European Community’s FP7/2007-2013 Programme,
grant agreement 215483 (S-Cube), and IDEAS-ERC Programme, Project 227977 (SMSCom).

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 159–174, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

160 L. Cavallaro, E. Di Nitto, and M. Pradella

services have the same interface. This hypothesis, however, is not realistic as services
can be released by independent vendors. Therefore in common practice interfaces lack
standardization. Consequently there is no guarantee that services discovered and bound
at runtime can perfectly fit in a preexistent composition.

To address this problem, in a previous work [4], we have developed an approach to
allow invocation of services whose interfaces and behaviors differ from each other. The
approach was based on the definition of proper mapping scripts that, when interpreted
at runtime, could solve complex mismatches and perform the needed adaptations.

In this paper we extend the previous work by providing an approach and a tool to
support the automation of the mapping scripts definition. The approach is able to handle
conversational services, that is, services whose operations are expected to be called in
some specific sequences, which define the services interaction protocols. We assume
that, when developing a service composition, a service integrator uses the component
services that are available at the time he/she is developing the system. We call these
abstract services to highlight the fact that they are not necessarily the ones that will be
actually used at runtime, which we call concrete services. We also assume that services
are described not only in terms of their syntactic interface (i.e., their WSDL or any
equivalent description), but also in terms of a model that defines the order in which
service operations need to be invoked.

Given these assumptions and given a certain sequence of operations to be invoked
on an abstract service, our approach is able to propose a possible mapping of this se-
quence to a sequence of operations on a concrete service. The result of this analysis is
a mapping script fragment that, combined with other fragments that deal with data and
operation names mappings, allows us to actually adapt abstract service invocations to
their concrete implementations. Data and operation names mappings are disregarded in
this paper as they appear to be much simpler than the mapping of interaction protocols
and are covered in [5] and in other approaches in the literature (see Section 2).

The rest of the paper is organized as follows: Section 2 presents the current state of
the art and highlights some open issues. Section 3 presents a real world example that
motivates our work, Section 4 summarizes the background work that has been devel-
oped in [4], Section 5 discusses our approach to support semi-automatic generation of
mapping scripts for what concerns protocol-level mismatches and refines the execution
model associated to this specific case of mismatches. Section 6 evaluates our approach
quantitatively and qualitatively, and, finally, Section 7 draws some conclusions.

2 Related Work

The approaches that support interface mapping can be categorized in those that require
human intervention in the definition of mapping scripts or equivalent mechanisms (see
for instance [6], [7], [8] and [9]) and those that offer some automatic tool.

Among the approaches in the first category, we mention here the one in [7] as it of-
fers a model checking approach to verify the correctness of adaptation contracts that
are manually defined by humans, and the one in [9] as it assists humans in the interface
adapters development by offering a tool that provides hints about possible mismatches
between an abstract and a concrete service interface. Both approaches, however, assume

An Automatic Approach to Enable Replacement of Conversational Services 161

that, before execution, a developer can identify all potential pairs of abstract and con-
crete services and specify all needed adapters. This may not work properly in the cases
of systems supporting run-time substitutions of services as the substitutions could have
not be foreseen in advance.

Automated approaches try to solve this issue by generating adapters that are inferred
from specifications associated to services. Many of these approaches are based on the
use of ontologies. Among the others, our previous work [5] and [10] exploit a domain
ontology (specified in SAWSDL1) to annotate service interfaces. At run-time, when
a service bound to a composition needs to be substituted, a software agent generates
a mapping by parsing the ontological annotations in the interfaces. SCIROCO [11]
offers similar features focusing on stateful services. It requires all services to be an-
notated with both a SAWSDL description and a WS-ResourceProperties2 document,
which represents the state of the service. When an invoked service becomes unavail-
able, SCIROCO exploits the SAWSDL annotations to find a set of candidates that ex-
pose a semantically matching interface. Then, the WS-ResourceProperties document
associated to each candidate service is analyzed to find out if it is possible to bring the
candidate in a state that is compatible with the state of the unavailable service. If this
is possible, then this service is selected for replacement of the one that is unavailable.
All of these three approaches offer full run-time automation for service substitution, but
can address only those mismatches that concern data and operation names while they
disregard those concerning the interaction protocol.

An approach that generates adapters covering the case of interaction protocols mis-
matches is presented in [12]. It assumes to start from a service composition and a service
behavioral description both written in the BPEL language [13]. These are then trans-
lated in the YAWL formal language [14] and matched in order to identify an invocation
trace in the service behavioral description that matches the one expected by the service
composition. The matching algorithm is based on graph exploration and considers both
control flow and data flow requirements.

The approach presented in [15] offers similar features and has been implemented in
an open source tool.3 While both these approaches appear to fulfill our need for sup-
porting interaction protocol mapping, they may present some shortcoming in terms of
performances due to the high cost of exhaustive graph exploration algorithms that could
prevent their usage in on-the-fly mapping derivation. While no data about performances
are available for the approach in [12], we could exploit the tool offered by [15] to verify
our guess. As discussed in Section 6, the processing time required by the tool is remark-
ably high in complex cases. Our goal is, therefore, to exploit some alternative technique
to significantly improve these performances.

3 Motivating Example

To motivate our work we refer to an example based on some significant conversational
services available on the Internet. Our example application is a photo management tool

1 http://www.w3.org/2002/ws/sawsdl/
2 http://docs.oasis-open.org/wsrf/wsrf-ws resource properties-1.2-spec-os.pdf
3 http://sourceforge.net/projects/dinapter

162 L. Cavallaro, E. Di Nitto, and M. Pradella

designed for working on a mobile phone. A user can take some photos with his mobile,
upload them to the web, and share them with his friends using an external service.

The tool expects to interact with the Flickr service4. Flickr makes available to its
users a space where to upload photos and a REST[16] service to access it. Photos can
have assigned one of the following levels of visibility: public, private, and family, where
the latter lets only some members see the photos uploaded by a user. Once the user has
uploaded some photos the service lets him group (part of) them in sets. Of course it is
always possible to change the visibility of a photo or of a set.

Flickr is not the only service offering a photo repository. Another analogous service
is called Picasa5. Flickr and Picasa are equivalent in a broad sense, but analyzing their
interfaces in more detail some differences emerge. In particular, Picasa does not support
the upload of photos if they are not grouped in a set. For this reason a user should first
create a set and then upload pictures directly into the created set. In addition, while
Flickr identifies three levels of visibility for photos and sets, Picasa only supports two
(private and public) and, given the central role of sets, associates these levels only to
sets and not directly to photos. Of course, other differences concern the names and the
parameters of the equivalent operations made available by the two services. For instance
the operation addToSet of Flickr and the operation createPhoto of Picasa both add a
photo to a set, but they show different names and accept different input parameters
(Tables 1 and 2 summarize the Flickr and Picasa operations we focus on.

Even if our photo management tool is built to be used with Flickr, many users may
be subscribed to Picasa or to any other popular photo sharing service. In order to allow
them to use any of these alternative services, either we hardcode in our tool the in-
structions to interact with any possible service, or we build a mapping mechanism that
handles the mismatches on our behalf. Such mapping mechanism could state, for exam-
ple, that the sequence of Flickr operations uploadPriv, addToSet, makeSetPub maps on
the following sequence of Picasa operations: createPublicSet and createPhoto, which
can therefore be invoked to obtain the required behaviour. The approach we discuss in
this paper is focusing specifically on how to automatically and efficiently infer such
kinds of mapping without or with limited human intervention.

4 Adaptation Approach: Overview

In order to describe possible differences that can arise between an abstract and a con-
crete service we need to define our model of a service. A service can be described as a
Labeled Transition System (LTS) characterized by tuple P = (S, O, τ), where:

– S is the set of states the service can go through.
– O is the set of operations that can be invoked on the service together with the

corresponding parameters. In formal terms, this is the input alphabet of the LTS.
– τ is the transition function τ : S × O → 2S that describes how the service can

evolve from state to state when operations are invoked. 2s indicates that the transi-
tion function can non-deterministically lead the service to different states depend-
ing on the context (e.g., a state representing a correct functioning of the service

4 http://www.flickr.com/services/api/
5 http://code.google.com/apis/picasaweb/overview.html

An Automatic Approach to Enable Replacement of Conversational Services 163

Table 1. A subset of Flickr operations and required data

Operation name Parameters Return value Description

uploadPub photo success Uploads a photo with public visibilityphotoName

uploadPriv photo success Uploads a photo with private visibilityphotoName

uploadFam photo success Uploads a photo with family visibilityphotoName
makePhotoPub photoName Makes a photo visibility public
makePhotoPriv photoName Makes a photo visibility private
makePhotoFam photoName Makes a photo visibility family

addToSet albumName success Adds a previously uploaded photo to a
photoName (new or existent) set

makeSetPub albumName Makes a set visibility public
makeSetPriv albumName Makes a set visibility private
makeSetFam albumName Makes a set visibility family

Table 2. A subset of Picasa operations and required data

Operation name Parameters Return value Description
createPublicSet albumName success Creates a photo set with public visibility
createPrivateSet albumName success Creates a photo set with private visibility

createPhoto
albumName

success Uploads a new photo and adds it to an existent setphotoName
photo

makePub albumName Makes a set visibility public
makePriv albumName Makes a set visibility private

can be reached only after the user has been identified, otherwise an error state has
to be reached), or on possible service failures (e.g., when an a timeout expires the
corresponding transition leads to an error state).

Each operation o ∈ O is a triple 〈name, in, out〉, where name is the operation name,
in and out are possibly empty multisets of data the operation requires as input and
returns as output, respectively. A datum is a triple 〈name, type, value〉. name is the
name of the datum, type is the type of the datum and value is the value that the datum
assumes.

Given an abstract and a concrete service, we say that a mismatch occurs when an
operation request expressed in terms of the abstract interface cannot be understood by
the concrete service that should handle it. We distinguish between two mapping classes:

– Interface-level mismatches concern differences between names of operations ex-
posed by an abstract and a concrete service and parameters of these operations.

– Protocol-level mismatches concern differences in the order the operations offered
by an abstract service and by its concrete representation are expected to be invoked.

As discussed in Section 2, interface-level mismatches have been threated in the litera-
ture and addressed either through methodological approaches involving human design-
ers [9] or through automatic approaches able to reason in the presence of some reference
ontology [10,11]. Thus, we do not go into further details on this aspect and handle it by
exploiting the approach we reported in [5].

164 L. Cavallaro, E. Di Nitto, and M. Pradella

Protocol-level mismatches are those we want to focus on in this paper. As mentioned
before, they apply to stateful conversational services for which the sequence in which
operations are invoked matters. In this case, we can distinguish between the following
classes of mismatches:

– One to one binding: an operation in the abstract service has a direct counterpart
in the concrete service that can replace it. This case is addressed directly as an
interface-level mismatch and therefore is not further considered in this paper.

– One to many binding: an operation in the abstract service does not have a direct
counterpart in the concrete service but it can be mapped into two or more of its
operations.

– Many to one binding: two or more operations in the abstract service do not have
a direct counterpart in the concrete services, but, all together, can be mapped into
one operation of the concrete service.

– Many to many binding: a sequence of operations on the abstract service can be
mapped into a different sequence of operations on the concrete service.

Our aim is to focus on the general case of many to many binding and, based on it,
deal also with the simpler cases. In particular, we aim at defining mapping scripts that
contain histories which associate sequences of operations on the abstract services into
sequences of operations on the corresponding concrete services.

At runtime, the mapping scripts are interpreted by adapters that are then able to in-
voke concrete services thus overcoming their mismatches with respect to the abstract
services. Figure 1 shows the main components of our runtime infrastructure. Also, it
shows how these components interact when a service composition tries to call a se-
quence of operations of an abstract service S1 and this sequence is then translated into
a sequence of operations on a concrete service S2 that shows a different interaction
protocol. The sequence of calls from the composition is intercepted by a proxy that
passes it to an adapter. This last one, by interpreting the mapping script, translates it
into a sequence of calls on S2 and returns the results back to the proxy. The runtime
infrastructure shown in the figure is part of the SCENE framework [17] that, thanks to
the intermediation of proxies, supports dynamic binding of services to a certain service
composition. SCENE has been originally designed under the hypothesis that all services
would exhibit identical interfaces or protocols. In our extension this limiting hypothesis
is overcome by the introduction of the adapter, a piece of software integrated in SCENE
proxy that supports mismatches solution by interpreting some mapping scripts. These
scripts can be manually provided by a system integrator, as described in [4], or can be
automatically generated by the proxy when the service to be bound to the composition
is selected. Next section provides details about automatic generation of mapping scripts.

5 Generation of Adaptation Scripts for Protocol-Level Mismatches

In previous section we outlined how adaptation takes place once a mapping script is
provided. Building the script may be a hard task for humans and in [5] we proposed
an automated solution limited to interface level mismatches. In this section we focus on
protocol-level mismatches and on how to build, possibly in an automatic way, a suitable
adaptation script.

An Automatic Approach to Enable Replacement of Conversational Services 165

Service Composition

1) Request for o1 on S1

Proxy

3) Requests for
o1 and 02 on S1

4)Adapted Request for S2

Mapping

Script

S1 to S2: map

o1 and o2 on S1

to o1 on S2

Service
S2

Service
S1

5)Response from S2

6)Adapted Response
from S2

7)Adapted
Response

from S2

Operations: o1, o22) Request for o2 on S1

Adapter Operation: o1

Input

Fig. 1. The adaptation process

5.1 Problem Statement

We assume to know for each service the following information:

– A table which associates to each service operation its input and output parameters.
For the example of Section 3 this information is represented by Tables 1 and 2.

– A description of the LTS model associated to the service. This is used to derive the
order in which service operations may be invoked. A human-readable version of
the LTS models of Flickr and Picasa is shown in Figures 2 and 3.

We make the hypothesis that both these pieces of information come as a service de-
scription that can be accessed and interpreted by both a human or a machine service
requestor as facets (see [18] for details). The protocol mapping between an abstract
and a concrete service assumes that two compatibility relationships have been previ-
ously defined. The first relationship states the compatibility between states of two LTS
models. The second relationship concerns the compatibility between name and data as-
sociated to some operation oabs ∈ Oabs in the abstract service and those associated
to some operation o′conc ∈ Oconc in the concrete service. For the sake of simplicity,
we assume in this paper that compatible states, operation names, and data have been
already identified someway (for instance, as described in [5]). For this reason, the triple
〈name, type, value〉 fully characterizing each datum is synthesized here only by the
name element.

Given these definitions and considering the LTS models Pabs and Pconc, referring,
respectively, to an abstract and concrete service, we say that, given a sequence of oper-
ations in Pabs (let us call it seqabs), leading from a state si

abs to some state sf
abs, this can

be substitutable by another sequence of operations in Pconc, seqconc, provided that:

1. seqconc starts from a state si
conc compatible with si

abs and ends into a state sf
conc

compatible with sf
abs. Note that LTSs may be non-deterministic: in this case the

166 L. Cavallaro, E. Di Nitto, and M. Pradella

Fig. 2. A representation of the Flickr protocol

publicSet privateSet

publicNonEmptySet privateNonEmptySet

createPrivateSetcreatePublicSet

makePub

makePriv

createPhoto
makePub

makePriv

createPublicSet createPrivateSet

init

createPhoto

createPhoto
createPhoto

Fig. 3. A representation of the Picasa protocol

constraint is that at least one of the ending states sf1
conc . . . sfa

conc of the concrete
service is compatible to one of the ending states sf1

abs . . . sfb

abs of the abstract service.
From now on we will assume, without loss of generality, that both the LTSs are
deterministic.

2. For all operations of seqconc, all data parameters are compatible with those appear-
ing in seqabs.

On this basis we can build a reasoning mechanism that, given some seqabs = o1
abs . . . on

abs

returns a sequence of operations seqconc = o1
conc . . . om

conc that can replace the first one
according to the substitution relationship defined above. We use two different reason-
ing strategies for identifying seqconc, depending on whether the composition execution

An Automatic Approach to Enable Replacement of Conversational Services 167

environment supports a synchronous or an asynchronous request-reply semantics for
operation calls.

The synchronous semantics requires that in a sequence of operation calls not only
the operations are called in the required sequence, but also each operation call cannot
be performed before the previous one has returned its foreseen result. An example of
this semantics is offered by a BPEL sequence block. This mandates that the activities it
contains should be executed sequentially.

The asynchronous semantics does not prevent the execution of an operation call even
if the previous one has not returned the corresponding value yet, unless there is an ex-
plicit dependency between the two in terms of input parameters required by the oper-
ation to be started and output parameters produced by the previous operation. Using
again an example from BPEL, the asynchronous semantics can be mapped on a flow
block containing various invoke activities together with the corresponding receives.
In this case the BPEL executor interprets the flow block by spanning an independent
thread for each activity, still ensuring that each receive statement will be performed af-
ter the corresponding invoke, and, if dependent invokes are present, that their execution
is properly ordered as well.

The strategies adopted by the reasoning mechanism are then the following:

– Strategy 1 - Synchronous request-reply semantics. Given the initial state si
abs of the

abstract sequence seqabs and the corresponding compatible state in the concrete
LTS model si

conc, each transition departing from si
conc is considered as a candidate

to be the o1
conc operation in seqconc provided that all the data it requires as input can

be available at the time it will be executed, and the data o1
conc produces as output

include those expected by the consumer of o1
abs, if any. The same line of reasoning

is applied starting from any sx
conc until the state sf

conc is reached.
From the runtime perspective, this results in the fact that an operation oabs ∈ seqabs

can be invoked only if the previous one in the sequence has been completed, that is,
the corresponding counterpart in the concrete service has returned the proper value.

– Strategy 2 - Asynchronous request-reply semantics. Given the initial state si
abs of the

abstract sequence seqabs, the corresponding compatible state in the concrete LTS
model si

conc, and the final state sf
abs, the transitions o1

conc...o
m
conc are considered as

possible candidate operations for seqconc provided that:
1. all the data each operation in seqconc requires as input are available at the time

the operation is executed;
2. all the data expected as output by operations in seqabs will be produced by the

operations in seqconc by the time sf
conc is reached.

At runtime, this implies that, given an invoked operation oabs ∈ seqabs which re-
turns some data, the next operation in sequence can be invoked without necessarily
waiting that the result of oabs has been provided. Consequently, any kind of binding
can be established from some operations o1

abs...o
n
abs ∈ seqabs into one or more op-

erations in seqconc, since, for every x ∈ [1, n] the service consumer may invoke an
operation ox+1

abs even if ox
abs has not returned yet. Of course this statement is valid

if ox+1
abs does not require any of the return parameter of ox

abs as input.

Intuitively, the synchronous semantics limits the kind of mismatches for which a solu-
tion can be found. In this situation, many to one and many to many bindings can be

168 L. Cavallaro, E. Di Nitto, and M. Pradella

treated in the general case only if operations involved in the mismatch require no return
values. Consider for instance the example in Section 3. Given the trace: uploadPriv,
addToSet, makeSetPub departing from the init state on Flickr, there is no possibility to
build a mapping script allowing for the usage of Picasa in the synchronous case. In fact,
applying the synchronous request-reply semantics reasoning schema, the first operation
to be invoked on Picasa should accept as input a set of parameters included in those
provided to uploadPriv on Flickr, and should return at least all the parameters expected
in return by the same Flickr operation. Since all the operations outgoing from init on
Picasa require as input a albumName and this datum is not provided by uploadPriv, no
operation on Picasa is a valid candidate and, consequently, it is impossible to build a
mapping script.

In the case the asynchronous request-reply semantics schema is applied, a mapping
can be identified. In fact, addToSet in seqabs can be invoked even if the operation call
uploadPriv has not produced its return value yet as it does not have a direct coun-
terpart in seqconc. After addToSet is invoked, createPublicSet or createPrivateSet in
Picasa can be invoked as their input parameter (albumName) is available. Indeed, both
produce a success output, which is expected by the service requestor as output of one
of the invoked abstract operations. Assuming that createPublicSet is chosen for invo-
cation, there are two possible operations candidate for being part of the concrete se-
quence: makePriv and createPhoto. Between those createPhoto is chosen because it
is the only operation that returns the second success output, which is expected by the
service requestor. This last operation leads Picasa into the publicNonEmpty state that is
compatible with final state of the abstract sequence, that is, publicSet.

From the above examples the reader should notice that both strategies are based on
the assumption that the substitution is totally transparent to the service consumer, who
invokes the abstract service operations, provides input data for those operations and
expects some return data from them. The invocations performed to the abstract service
operations are translated into invocations to concrete service operations: input data pro-
vided by the consumer are used as input for the invoked concrete service operations
and return data provided by the invoked concrete operations are returned to the con-
sumer as needed. Any input parameter provided by the consumer is stored and can be
used as input for a concrete operation requiring it. When this happens the parameter is
removed from the storage. The same line of reasoning is valid for output parameters,
if we consider that they are provided by the concrete service and are returned to the
service consumer.

5.2 Implementation and Practical Issues

The reasoning mechanism has been formulated using the linear temporal logic lan-
guage TRIO [19]. Our model features some application-independent TRIO formulas
that represent the reasoning strategies as expressed in the previous section, and some
application-dependent formulas, which represent the interfaces and protocols of the ab-
stract and concrete services.

An Automatic Approach to Enable Replacement of Conversational Services 169

Given this model and an operations sequence seqabs, the approach formulates the
problem of finding a substitutable operation sequence seqconc. If this sequence exists,
a mapping script is generated. The script is executed by the adapter that, as shown in
Figure 1, receives the sequence of invocations that the service consumer expects to
perform and transforms them into invocations suitable for the concrete service.

We have chosen to implement the model of the reasoning mechanism using Zot6, an
agile and easily extensible bounded model- and satisfiability-checker. In general, Zot
returns a history (i.e., an execution trace of the specified system) which satisfies the
given model. The history contains a finite number of steps, each one consisting of a
possible configuration of the system.

In our approach the history returned by Zot is a mapping script that is then passed
as input to the adapter (see Section 4 for details). Each history step contains the state
in which each one of the analyzed LTS (the ones of the abstract and concrete services)
is, the operations in seqabs and in seqconc that should be invoked in that step, and the
exchanged data, if any. In the current implementation, we make the hypothesis that at
most one operation in seqabs and at most one in seqconc can be executed at each history
step.

Consider again the operations uploadPriv, addToSet, makeSetPub as seqabs depart-
ing from the init state on Flickr. Let us assume an asynchronous semantics and specify
as compatible the init states of the two services and the states publicSet of Flickr and
publicNonEmptySet of Picasa. In this case, a possible history returned by Zot is re-
ported in Table 3. In the first two steps the history only reports invocations on Flickr.
This means that the adapter only expects to receive invocations from the service con-
sumer and to keep trace of provided inputs and required outputs. On step 3 there are
enough data to invoke the operation createPublicSet on Picasa. The adapter performs
the invocation on the concrete service, uses as input for that invocation the albumName
stored in memory, and removes the parameter from storage. The success value returned
by this operation is forwarded to the service consumer. On step 4 the history reports
again an invocation on Flickr. In this case the adapter behaves exactly as in steps 1 and
2. Finally on step 5 the history mandates the invocation on Picasa of the operation cre-
atePhoto and on step 6 Flickr is in a state publicSet, considered final for the considered
sequence and Picasa is in a state compatible to publicSet.

6 Evaluation

The experiments were conducted to prove the effectiveness in solving protocol level
mismatches and the performance of the approach both as an interactive and on-line
solution to determine feasible mappings7. In particular, we conducted two classes of
experiments.

– We ran experiments with Flickr and Picasa trying to map various abstract se-
quences into some concrete ones in order to see if the approach was behaving as
expected in terms of the identification of correct mappings.

6 Zot can be downloaded from http://home.dei.polimi.it/pradella
7 The input set of experiments is available at http://home.dei.polimi.it/cavallaro/evaluation-

experimentsInputs.zip

170 L. Cavallaro, E. Di Nitto, and M. Pradella

Table 3. An history generated for the seqabs = uploadPriv, addToSet, makeSetPub

Step History Content

1

FlickrState = init; FlickrInvoke = uploadPriv
FlickrInput = photo, photoName; FlickrOutput = success
PicasaState = init

2

FlickrState = privatePhoto; FlickrInvoke = addToSet
FlickrInput = albumName, photoName; FlickrOutput = success
PicasaState = init

3

FlickrState = privateSet
PicasaState = init; PicasaInvoke = createPublicSet
PicasaInput = albumName; PicasaOutput = success

4
FlickrState = privateSet; FlickrInvoke = makeSetPub
FlickrInput = albumName
PicasaState = publicSet

5

FlickrState = publicSet
PicasaState = publicSet; PicasaInvoke = createPhoto
PicasaInput = photo, photoName, albumName; PicasaOutput = success

6
FlickrState = publicSet
PicasaState = publicNonEmptySet

– We compared the performance of our approach with the one shown by a similar
approach found in the literature [15].

All the experiments had the goal of exploring the possibility for our tool to derive
(whenever possible) correct mappings between an abstract and a concrete service. The
experiments were conducted on a 2.5 Ghz Intel Core2 duo machine, equipped with 4
GBytes of memory, running Linux. The Common Lisp compiler used for running Zot
was SBCL, version 1.0.18.

The main inputs used in each experiment have been: a) the LTSs of the abstract ser-
vice and the candidate concrete service b) the associations between service operations
and their inputs and outputs; c) the compatibility relationship between the operation
names and parameters of the abstract and concrete services; and d) a possible seqabs.
The results obtained by the experiments have been a possible seqconc in the cases this
could have been identified by the tool as well as information about the time needed by
the tool to produce a result or to signal the impossibility of producing it.

As additional input, since Zot is based on a SAT-solver, it is necessary to set the
size k of the periodic temporal structure on which the verification is performed. In
this case, all the periodic behaviors of the system, with period up to k are considered
by the tool. The identification of a proper value for k is always a critical issue when
exploiting a SAT-solver. High values for k usually imply long execution times for the
tool while small values may result in the fact that the tool is not able to find a solution
that would have been identified if the considered temporal structure was longer. Our
approach is essentially based on constructing the product of the abstract and concrete
LTSs, hence the upper bound for non-cyclic behaviors is nsabs · nsconc − 1, where
nsabs and nconc are the number of states of the LTS models of the abstract and concrete

An Automatic Approach to Enable Replacement of Conversational Services 171

Table 4. Results for the experiments on examples in Section 3

Time (s)
Uploaded photos Sequence length ns ns 2ns 3ns 4ns

1 3 12 0.59 1.87 3.72 5.80
2 6 12 0.59 1.94 4.06 7.32
3 9 12 0.55 1.81 4.14 7.35
4 13 12 0.55 1.86 4.82 7.72

services, respectively. In practice, we empirically found that in most of the cases a good
estimate for k is ns = nsabs +nsconc. With k = 2ns we were able to find solutions for
every considered case. Therefore the algorithm first tries with k = ns, then considers
k = 2ns, and so on, keeping nsabs · nsconc as an upper bound. In the experiments we
considered four possible values for k: 2ns, 3ns, and 4ns, to see how the tool speed is
affected by increasing bounds.

Experiments with Flickr and Picasa. We ran the tool starting from the Flickr abstract
sequence we have used through this paper. Moreover, we have complicated it consider-
ing the case in which up to 4 pictures are uploaded (this results in the fact that the oper-
ations uploadPriv and addToSet are called more than one time. The results are reported
in Table 4. We started with a bound k = ns = 12. In the first two cases reported in the
table (upload of one and two pictures) we succeeded in determining a sequence with
ns, while in the last two cases we needed to use k = 2ns. The overheads introduced to
produce a working mapping script are between 0.59 and 1.86 seconds. This makes the
approach suitable for both on-line and off-line use at least in this specific case. The his-
tories produced by Zot were analyzed by a human to prove their correctness and were
executed by the adapter as mapping scripts. The performed tests succeeded in using
Picasa in place of Flickr.

Comparison with [15]. We compared our technique with the one presented in [15] and
summarized in Section 2. The tool is called Dinapter, and its package contains several
examples of abstract and concrete services. We took some of the most significant ones
and used them both with Dinapter and Zot.

In the original example, the tested services were all described using abstract BPEL.
They contain branches, loops and non-determinism. In order to use them with our tool
we translated the abstract BPEL description into LTS using the following criteria:

– For what concern the BPEL descriptions representing sequences of calls, we con-
sidered invoke activities as operation invocations, and receive activities associated
with invocations and featuring parameters as responses to the invoked operations.

– For BPEL description representing service interfaces, we considered receive activ-
ities as invocation expected by the service, and invoke operations featuring param-
eters and associated with the receives as issued responses.

– We considered those activities included in a BPEL sequence block as having a
synchronous semantics.

172 L. Cavallaro, E. Di Nitto, and M. Pradella

Table 5. Results of the comparison with [15]

[15] Our approach (Time (s))
Example name ns Time (s) ns 2ns 3ns 4ns

e001-ftp-tiny 6 1.4 0.06 0.34 0.54 0.9
e002-ftp-small 8 30.65 0.11 0.53 0.95 1.54
e002c-ftp-small 7 37.15 0.12 0.39 0.81 1.30
e003-ftp-full 8 Out of memory 0.17 0.26 0.48 0.75
e004-wich-Pick 10 45.10 0.75 2.37 4.81 8.60
e005-start-Switch 8 51.05 0.53 1.62 2.87 4.45
e010-Pick-Pick 12 6.01 0.64 2.09 3.51 7.03
e013-deceptive-Pick 12 54.90 0.68 2.01 3.47 6.95
e017-2Switch-2Pick-carry 10 Out of memory 0.34 0.91 1.92 3.49
vod-1 8 14.41 0.09 0.23 0.71 1.10

The results of the comparison are reported in Table 5. In each row, the name of the
example taken from the test set bundled with Dinapter is reported. The time needed
to run Dinapter (third column) is the one we calculated by executing the tool on our
reference machine. The other times in the last four columns are those referred to our
tool with the temporal structure bound k set to the first four multiples of ns, i.e., the
sum of the abstract and concrete LTSs states.

Our approach was able to find a solution in every case with the bound estimated as ns
and with an execution time shorter than 1 second (clearly the time increases for higher
values of the bound). This, again, is promising for on-line use of the tool. Moreover, our
approach outperformed Dinapter that in some cases has not been able to terminate with
success because of out of memory problems. The output sequences produced by Zot
were inspected by a human to verify correctness and, in those cases in which Dinapter
was able to produce a result, were compared with those produced by Dinapter and found
out to be equivalent.

7 Conclusion

In this work we presented an approach to identify an interaction protocol mapping be-
tween compatible conversational services. The mapping is deduced by using Zot, a
recent, efficient model checker based on a SAT-solver.

We validated our technique by considering two real-life services, Flickr and Pi-
casa, obtaining both correct protocol mappings between the two and good performance.
Moreover, we compared our approach with Dinapter [15] on some significant cases that
have been made available together with this last tool. Zot outperformed Dinapter in all
cases, with times suitable for on-line application of the technique. The research work is
currently ongoing and disregards some important aspects that need to be considered for
successful service replacement. Currently we analyzed only services featuring conver-
sations that can be represented by LTSs, while some real world cases need more power-
ful formalisms (e.g. services featuring branches executed in parallel, services featuring

An Automatic Approach to Enable Replacement of Conversational Services 173

not only a conversational state but also an internal state). Finally services are usually
invoked in complex processes that may feature a state or transactional support. Conse-
quently service substitution may require house keeping work of the running processes.
Thus, as future work we plan to extend our approach to allow consistent substitution of
stateful and transactional services.

References

1. Baresi, L., Nitto, E.D., Ghezzi, C.: Toward open-world software: Issue and challenges. IEEE
Computer 39(10), 36–43 (2006)

2. Verma, K., Gomadam, K., Sheth, A.P., Miller, J.A., Wu, Z.: The METEOR-S approach for
configuring and executing dynamic web processes. University of Georgia, Athens, Tech. Rep.
(June 2005)

3. Antonellis, V.D., Melchiori, M., Santis, L.D., Mecella, M., Mussi, E., Pernici, B., Plebani,
P.: A layered architecture for flexible web service invocation. Software Practice and Experi-
ence 36(2), 191–223 (2006)

4. Cavallaro, L., Di Nitto, E.: An approach to adapt service requests to actual service interfaces.
In: Proceedings of SEAMS (2008)

5. Cavallaro, L., Ripa, G., Zuccalà, M.: Adapting service requests to actual service interfaces
through semantic annotations. In: Proceedings of PESOS (2009)

6. Moser, O., Rosenberg, F., Dustdar, S.: Non-intrusive monitoring and service adaptation for
WS-BPEL. In: Proceedings of WWW (2008)

7. Mateescu, R., Poizat, P., Salaün, G.: Adaptation of service protocols using process algebra
and on-the-fly reduction techniques. In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.)
ICSOC 2008. LNCS, vol. 5364, pp. 84–99. Springer, Heidelberg (2008)

8. Dumas, M., Spork, M., Wang, K.: Adapt or perish: Algebra and visual notation for service
interface adaptation. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS,
vol. 4102, pp. 65–80. Springer, Heidelberg (2006)

9. Nezhad, H.R.M., Benatallah, B., Martens, A., Curbera, F., Casati, F.: Semi-automated adap-
tation of service interactions. In: Proceedings of WWW 2007 (2007)

10. Drumm, C.: Improving schema mapping by exploiting domain knowledge. Ph.D. disserta-
tion, Universitat Karlsruhe, Fakultat fur Informatik (2008)

11. Fredj, M., Georgantas, N., Issarny, V., Zarras, A.: Dynamic service substitution in service-
oriented architectures. In: Proceedings of SERVICES (2008)

12. Brogi, A., Popescu, R.: Automated generation of BPEL adapters. In: Dan, A., Lamersdorf,
W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 27–39. Springer, Heidelberg (2006)

13. WS-BPEL specification,
http://www.oasis-open.org/committees/tc_home.php?wg_
abbrev=wsbpel

14. van der Aalst, W.M.P., ter Hofstede, A.H.M.: Yawl: yet another workflow language. Infor-
mation Systems 30(4), 245–275 (2005)

15. Martı̀n, J.A., Pimentel, E.: Automatic generation of adaptation contracts. In: Proceedings of
FOCLASA (2008)

16. Fielding, R.T.: Architectural styles and the design of network-based software architectures.
Ph.D. dissertation, chair-Taylor, Richard N (2000)

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel

174 L. Cavallaro, E. Di Nitto, and M. Pradella

17. Colombo, M., Di Nitto, E., Mauri, M.: Scene: A service composition execution environment
supporting dynamic changes disciplined through rules. In: Dan, A., Lamersdorf, W. (eds.)
ICSOC 2006. LNCS, vol. 4294, pp. 191–202. Springer, Heidelberg (2006)

18. Colombo, M., Di Nitto, E., Penta, M.D., Distante, D., Zuccalà, M.: Speaking a common
language: A conceptual model for describing service-oriented systems. In: Benatallah, B.,
Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp. 48–60. Springer, Heidelberg
(2005)

19. Ghezzi, C., Mandrioli, D., Morzenti, A.: Trio: A logic language for executable specifications
of real-time systems. Journal of Systems and Software 12(2) (1990)

	An Automatic Approach to Enable Replacement of Conversational Services
	Introduction
	Related Work
	Motivating Example
	Adaptation Approach: Overview
	Generation of Adaptation Scripts for Protocol-Level Mismatches
	Problem Statement
	Implementation and Practical Issues

	Evaluation
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

