

Lecture Notes in Computer Science 5900
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK

Josef Kittler, UK

Alfred Kobsa, USA

John C. Mitchell, USA

Oscar Nierstrasz, Switzerland

Bernhard Steffen, Germany

Demetri Terzopoulos, USA

Gerhard Weikum, Germany

Takeo Kanade, USA

Jon M. Kleinberg, USA

Friedemann Mattern, Switzerland

Moni Naor, Israel

C. Pandu Rangan, India

Madhu Sudan, USA

Doug Tygar, USA

Services Science

Subline of Lectures Notes in Computer Science

Subline Editors-in-Chief

Robert J.T. Morris, IBM Research, USA

Michael P. Papazoglou, University of Tilburg, The Netherlands

Darrell Williamson, CSIRO, Sydney, Australia

Subline Editorial Board

Boualem Bentallah, Australia

Athman Bouguettaya, Australia

Murthy Devarakonda, USA

Carlo Ghezzi, Italy

Chi-Hung Chi, China

Hani Jamjoom, USA

Paul Klingt, The Netherlands

Ingolf Krueger, USA

Paul Maglio, USA

Christos Nikolaou, Greece

Klaus Pohl, Germany

Stefan Tai, Germany

Yuzuru Tanaka, Japan

Christopher Ward, USA

Luciano Baresi Chi-Hung Chi
Jun Suzuki (Eds.)

Service-Oriented
Computing

7th International Joint Conference, ICSOC-ServiceWave 2009
Stockholm, Sweden, November 24-27, 2009
Proceedings

13

Volume Editors

Luciano Baresi
Politecnico di Milano
Dipartimento di Elettronica e Informazione
via Golgi, 40, 20133, Milano, Italy
E-mail: baresi@elet.polimi.it; lbareis@gmail.com

Chi-Hung Chi
Tsinghua University
School of Software
Main Building Room 818, 100084, Beijing, China
E-mail: chichihung@mail.tsinghua.edu.cn

Jun Suzuki
University of Massachusetts
Dept. of Computer Science
100 Morrissey Blvd., Boston, MA 02125-3393, USA
E-mail: jxs@cs.umb.edu

Library of Congress Control Number: 2009939278

CR Subject Classification (1998): D.2, C.2, H.3.5, J.1, K.6, B.8, C.4

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-642-10382-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-10382-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12797387 06/3180 5 4 3 2 1 0

Preface

Welcome to ICSOC-ServiceWave 2009. This volume contains the research and
demo papers selected for presentation at the Seventh International Conference on
Service-Oriented Computing, which was held in Stockholm, Sweden, November
24-27, 2009.

Continuing the tradition set in the previous six years, we are pleased to
present a high-quality technical program. This year ICSOC ServiceWave worked
together to convey a world-leading and unique opportunity for academic re-
searchers and industry practitioners to report their state-of-the-art research
findings in service-oriented computing. The joint conference aims to foster cross-
community scientific excellence by gathering experts from various disciplines
such as distributed systems, software engineering, computer networks, business
intelligence, service science, grid and cloud computing, and security.

Consistent with the high quality of the conference, we received 228 paper
submissions from a number of different disciplines. Thirty-seven papers were ac-
cepted as regular contributions, for a very competitive acceptance rate of 16%;
eight further submissions were accepted as short papers. The program also com-
prised nine demonstrations of innovative tools and prototypes. All these elements
contributed to a program that covered the many different areas of the discipline
and provided an up-to-date synthesis of the research on service-oriented systems
and applications.

Without the high-quality work of the authors of selected papers this volume
would have not been possible. We thank these researchers and practitioners for
the efforts and enthusiasm put in their contributions. We also appreciate the
hard work of the members of our Program Committee. Some 100 people were
involved in reviewing many good papers carefully and rigorously: it was our
privilege to work with these respected colleagues. These efforts were the key
elements for a program that represents a highly selective and high-quality set
of research results. A big thank you also goes to Springer, and in particular to
Ursula Barth, for helping us publish this volume.

It was our privilege and pleasure to compile these outstanding proceedings.
We sincerely hope that you find the papers in this volume as interesting and
stimulating as we did. Our last big thanks to all participants who, at the end of
the day, are what this is all about.

September 2009 Luciano Baresi
Chi-Hung Chi

Jun Suzuki

Organization

General Chairs

Mohand-Said Hacid Université de Lyon, UCBL, France (ICSOC)
Fernando Fournon Telefónica R&D Labs, Spain (ServiceWave)
Gunnar Landgren KTH, Sweden (Hosting partner)

Program Committee Chairs

Luciano Baresi Politecnico di Milano, Italy
Chi-Hung Chi Tsinghua University, China
Jun Suzuki University of Massachusetts, Boston, USA

Industry Program Chairs

Stefano De Panfilis Engineering Ingegneria Informatica, Italy
Santi Ristol ATOS Origin, Spain

Workshops Chairs

Asit Dan IBM Research, USA
Frédéric Gittler HP Labs
Farouk Toumani Université Blaise Pascal, France

PhD Symposium Chairs

Florian Daniel University of Trento, Italy
Fethi Rabhi UNSW, Australia

Demonstration Chairs

Hamid Motahari HP, USA
Julien Vayssiere CRC, Australia

Publicity Chairs

Fuyuki Ishikawa NII, Japan
Hamamache Kheddouci Université de Lyon, UCBL, France
Weider Yu San Jose State University, USA
Andrea Zisman City University London, UK

VIII Organization

Organizing Committee

Véronique Pevtschin Engineering Ingegneria Informatica, Italy
(Coordination)

Gunnar Landgren KTH, Sweden (Coordination)
Barbara Pirillo Engineering Ingegneria Informatica, Italy
Rikard Lingström KTH, Sweden
Mike Papazoglou Tilburg University, The Netherlands
Bernd Krämer ServTech, Germany
Samir Sebahi Lyon University, France (Webmaster)

Sponsoring

Bruno Fraņois-Marsal Thales, France

Scientific Program Committee

Marco Aiello University of Groningen, The Netherlands
Alvaro Arenas STFC Rutherford Appleton Laboratory, UK
Alistair Barros SAP, Australia
Samik Basu Iowa State University, USA
Boualem Benatallah University of New South Wales, Australia
Salima Benbernou University of Lyon, France
Djamal Benslimane University of Lyon, France
Elisa Bertino Purdue University, USA
Antonia Bertolino CNR, Italy
Walter Binder University of Lugano Switzerland
Athman Bouguettaya CSIRO, Australia
Christoph Bussler BEA, USA
Barbara Carminati University of Insubria, Italy
Manuel Carro Polytechnic University of Madrid, Spain
Fabio Casati University of Trento, Italy
Shiping Chen CSIRO, Australia
Lawrence Chung University of Texas at Dallas, USA
Emmanuel Coquery University of Claude Bernard, France
Paco Curbera IBM Research, USA
Vincenzo D’Andrea University of Trento, Italy
Flavio De Paoli University di Milano Bicocca, Italy
Frederic Desprez INRIA, France
Elisabetta Di Nitto Politecnico di Milano, Italy
Khalil Drira LAAS, Toulouse, France
Schahram Dustdar University of Technology Vienna, Austria
Elena Ferrari University of Insubria, Italy
Ioannis Fikouras Ericsson, Germany
Howard Foster Imperial College London, UK

Organization IX

Hiroaki Fukuda Keio University, Japan
Dragan Gašević Athabasca University, Canada
Carlo Ghezzi Politecnico di Milano, Italy
Paolo Giorgini University of Trento, Italy
Jeff Gray University of Alabama at Birmingham, USA
Mohand-Said Hacid University of Lyon, France
Valerie Issarny INRIA, France
Jan J. Jens Open University, UK
Ricardo Jimenez-Peris Technical University of Madrid, Spain
Dimka Karastoyanova University of Stuttgart Germany
Soo Dong Kim Soongsil University of Seoul, Korea
Jana Koehler IBM Zurich Research Lab, Switzerland
Bernd Kraemer Fernuniversitaet Hagen, Germany
Patricia Lago Free University Amsterdam, The Netherlands
Winfried Lamersdorf University of Hamburg, Germany
Alexander Lazovik University of Groningen, The Netherlands
Frank Leymann University of Stuttgart, Germany
Qianhui (Althea) Liang Singapore Management University of Singapore
Shiyong Lu Wayne State University, USA
Heiko Ludwig IBM Research, USA
Neil Maiden City University London, UK
Esperanza Marcos University Juan Rey Carlos, Spain
Michael Maximilien IBM Almaden, USA
Massimo Mecella University of Rome, Italy
Nikola Milanovic Berlin University of Technology, Germany
Michael Mrissa University of Lyon, France
Christos Nikolaou University of Crete, Greece
Olga Ormandjieva Concordia University, Canada
Michael Parkin Tilburg University, The Netherlands
Marco Pistore FBK, Italy
Wolfgang Reisig Humboldt University, Germany
Colette Roland University Paris 1, France
S. Masoud Sadjadi Florida International University, USA
Jakka Sairamesh CITRI University of California, Berkeley
Ignacio Silva-Lepe IBM, USA
George Spanoudakis City University London, UK
Bruce Spencer National Research Council, Canada
Stefan Tai University of Karlsruhe, Germany
Kenji Takahashi NTT, Japan
Farouk Toumani Blaise Pascale University, France
Paolo Traverso FBK, Italy
Jos van Hillegersberg University of Twente, The Netherlands
Changzhou Wang Boeing Phantom Works, USA
Michael Weiss Carleton University, Canada

X Organization

Mathias Weske Hasso Platner Institute, Germany
Andreas Wombacher University of Twente, The Netherlands
Chou Wu Avaya Laboratory, USA
Ramin Yahyapour University of Dortmund, Germany
Jian Yang Macquire University, Australia
Yelena Yesha University of Maryland, USA
Weider D. Yu San Jose State University, USA
Jia Zhang Northern Illinois University, USA
Yan Zheng Nokia Research, Finland
Andrea Zisman City University London, UK
Joe Zou IBM, Australia

Demonstration Program Committee

Claudio Bartolini HP Labs, USA
Paco Curbera IBM Research, USA
Vincenzo D’Andrea University of Trento, Italy
Gero Decker Hasso Plattner Institute, Germany
Keith Duddy Queensland University of Technology, Australia
Marlon Dumas University of Tartu, Estonia
Brian Elvesaeter SINTEF, Norway
Howard Foster Imperial College London, UK
Max Muhlhaeuser Technische Universität Darmstadt, Germany
Anna Liu University of New South Wales, Australia
Wasim Sadiq SAP Research, Australia
Halvard Skogsrud ThoughtWorks, Australia
Stefan Tai University of Karlsruhe, Germany
Rainer Ruggaber SAP Research, Germany
Liangzhao Zeng IBM Research, USA

Table of Contents

Composition

Facilitating Workflow Interoperation Using Artifact-Centric Hubs 1
Richard Hull, Nanjangud C. Narendra, and Anil Nigam

Aspect Orientation for Composite Services in the Telecommunication
Domain . 19

Jörg Niemöller, Roman Levenshteyn, Eugen Freiter,
Konstantinos Vandikas, Raphaël Quinet, and Ioannis Fikouras

Intelligent Overload Control for Composite Web Services 34
Pieter J. Meulenhoff, Dennis R. Ostendorf, Miroslav Živković,
Hendrik B. Meeuwissen, and Bart M.M. Gijsen

Discovery

Trust-Oriented Composite Service Selection and Discovery 50
Lei Li, Yan Wang, and Ee-Peng Lim

A Two-Tiered Approach to Enabling Enhanced Service Discovery in
Embedded Peer-to-Peer Systems . 68

Antonio Brogi, Sara Corfini, and Thaizel Fuentes

Web Service Selection with Incomplete or Inconsistent User
Preferences . 83

Hongbing Wang, Shizhi Shao, Xuan Zhou, Cheng Wan, and
Athman Bouguettaya

Design Principles

Energy-Aware Design of Service-Based Applications 99
Alexandre Mello Ferreira, Kyriakos Kritikos, and Barbara Pernici

Action Patterns in Business Process Models . 115
Sergey Smirnov, Matthias Weidlich, Jan Mendling, and
Mathias Weske

Artifact-Centric Workflow Dominance . 130
Diego Calvanese, Giuseppe De Giacomo, Richard Hull, and
Jianwen Su

XII Table of Contents

Customization and Adaptation

Requirements-Driven Collaborative Choreography Customization 144
Ayman Mahfouz, Leonor Barroca, Robin Laney, and Bashar Nuseibeh

An Automatic Approach to Enable Replacement of Conversational
Services . 159

Luca Cavallaro, Elisabetta Di Nitto, and Matteo Pradella

Towards Adaptable SOA: Model Driven Development, Context and
Aspect . 175

Valérie Monfort and Slimane Hammoudi

Negotiation, Agreements, and Compliance

Modeling Service Level Agreements with Binary Decision Diagrams 190
Constantinos Kotsokalis, Ramin Yahyapour, and
Miguel Angel Rojas Gonzalez

Provider-Composer Negotiations for Semantic Robustness in Service
Compositions . 205

Nikolay Mehandjiev, Freddy Lécué, and Usman Wajid

Evaluating Contract Compatibility for Service Composition in the
SeCO2 Framework . 221

Marco Comerio, Hong-Linh Truong, Flavio De Paoli, and
Schahram Dustdar

Explaining the Non-compliance between Templates and Agreement
Offers in WS-Agreement . 237

Carlos Müller, Manuel Resinas, and Antonio Ruiz-Cortés

Selection

A Probabilistic Approach to Service Selection with Conditional
Contracts and Usage Patterns . 253

Adrian Klein, Fuyuki Ishikawa, and Bernhard Bauer

ServiceTrust: Supporting Reputation-Oriented Service Selection 269
Qiang He, Jun Yan, Hai Jin, and Yun Yang

QoS Browsing for Web Service Selection . 285
Chen Ding, Preethy Sambamoorthy, and Yue Tan

Table of Contents XIII

Platforms and Infrastructures

An Orchestration as a Service Infrastructure Using Grid Technologies
and WS-BPEL . 301

André Höing, Guido Scherp, Stefan Gudenkauf, Dirk Meister, and
André Brinkmann

The FAST Platform: An Open and Semantically-Enriched Platform for
Designing Multi-channel and Enterprise-Class Gadgets 316

Volker Hoyer, Till Janner, Ivan Delchev, Andrea Fuchsloch,
Javier López, Sebastian Ortega, Rafael Fernández,
Knud Hinnerk Möller, Ismael Rivera, Marcos Reyes, and
Manuel Fradinho

Message-Oriented Middleware with QoS Awareness 331
Hao Yang, Minkyong Kim, Kyriakos Karenos, Fan Ye, and Hui Lei

Short Papers I

Learning the Control-Flow of a Business Process Using ICN-Based
Process Models . 346

Aubrey J. Rembert and Clarence (Skip) Ellis

Fine-Grained Recommendation Systems for Service Attribute
Exchange . 352

Christopher Staite, Rami Bahsoon, and Stephen Wolak

A Generative Framework for Service Process Composition 358
Rajesh Thiagarajan, Wolfgang Mayer, and Markus Stumptner

Achieving Predictability and Service Differentiation in Web Services 364
Vidura Gamini Abhaya, Zahir Tari, and Peter Bertok

Security

Incorporating Security Requirements into Service Composition: From
Modelling to Execution . 373

Andre R.R. Souza, Bruno L.B. Silva, Fernando A.A. Lins,
Julio C. Damasceno, Nelson S. Rosa, Paulo R.M. Maciel,
Robson W.A. Medeiros, Bryan Stephenson,
Hamid R. Motahari-Nezhad, Jun Li, and Caio Northfleet

End-to-End Security for Enterprise Mashups . 389
Florian Rosenberg, Rania Khalaf, Matthew Duftler,
Francisco Curbera, and Paula Austel

XIV Table of Contents

A Genetic Algorithms-Based Approach for Optimized Self-protection
in a Pervasive Service Middleware . 404

Weishan Zhang, Julian Schütte, Mads Ingstrup, and
Klaus M. Hansen

Short Papers II

Role of Process Modeling in Software Service Design 420
Susanne Patig and Harald Wesenberg

Assisting Trustworthiness Based Web Services Selection Using the
Fidelity of Websites . 429

Lijie Wang, Fei Liu, Ge Li, Liang Gu, Liangjie Zhang, and Bing Xie

Web Service Search on Large Scale . 437
Nathalie Steinmetz, Holger Lausen, and Manuel Brunner

Enabling Adaptation of Pervasive Flows: Built-in Contextual
Adaptation . 445

Annapaola Marconi, Marco Pistore, Adina Sirbu, Hanna Eberle,
Frank Leymann, and Tobias Unger

Modeling and Design

A Service-Oriented UML Profile with Formal Support 455
Roberto Bruni, Matthias Hölzl, Nora Koch, Alberto Lluch Lafuente,
Philip Mayer, Ugo Montanari, Andreas Schroeder, and
Martin Wirsing

Designing Workflows on the Fly Using e-BioFlow . 470
Ingo Wassink, Matthijs Ooms, and Paul van der Vet

Measuring the Quality of Service Oriented Design . 485
Renuka Sindhgatta, Bikram Sengupta, and Karthikeyan Ponnalagu

Validation and Verification

Specification, Verification and Explanation of Violation for Data Aware
Compliance Rules . 500

Ahmed Awad, Matthias Weidlich, and Mathias Weske

Generating Interface Grammars from WSDL for Automated Verification
of Web Services . 516

Sylvain Hallé, Graham Hughes, Tevfik Bultan, and Muath Alkhalaf

Satisfaction of Control Objectives by Control Processes 531
Daniela Marino, Fabio Massacci, Andrea Micheletti,
Nataliya Rassadko, and Stephan Neuhaus

Table of Contents XV

Reputation and Ranking

Effective and Flexible NFP-Based Ranking of Web Services 546
Matteo Palmonari, Marco Comerio, and Flavio De Paoli

Combining Quality of Service and Social Information for Ranking
Services . 561

Qinyi Wu, Arun Iyengar, Revathi Subramanian, Isabelle Rouvellou,
Ignacio Silva-Lepe, and Thomas Mikalsen

Web Services Reputation Assessment Using a Hidden Markov Model . . . 576
Zaki Malik, Ihsan Akbar, and Athman Bouguettaya

Service Management

MC-Cube: Mastering Customizable Compliance in the Cloud 592
Tobias Anstett, Dimka Karastoyanova, Frank Leymann,
Ralph Mietzner, Ganna Monakova, Daniel Schleicher, and
Steve Strauch

Another Approach to Service Instance Migration . 607
Nannette Liske, Niels Lohmann, Christian Stahl, and Karsten Wolf

Distributed Cross-Domain Configuration Management 622
Liliana Pasquale, Jim Laredo, Heiko Ludwig,
Kamal Bhattacharya, and Bruno Wassermann

Demonstrations

A Pluggable Framework for Tracking and Managing Faults in
Service-Oriented Systems . 637

Daniel Robinson and Gerald Kotonya

Distributed Access Control Management – A XACML-Based
Approach . 639

Erik Rissanen, David Brossard, and Adriaan Slabbert

Engage: Engineering Service Modes with WS-Engineer and Dino 641
Howard Foster, Arun Mukhija, David S. Rosenblum, and
Sebastian Uchitel

FAST-SE: An ESB Based Framework for SLA Trading 643
Jose Antonio Parejo, Antonio Manuel Gutiérrez,
Pablo Fernandez, and Antonio Ruiz-Cortes

Gelee: Cooperative Lifecycle Management for (Composite) Artifacts 645
Marcos Báez, Cristhian Parra, Fabio Casati, Maurizio Marchese,
Florian Daniel, Kasia di Meo, Silvia Zobele, Carlo Menapace, and
Beatrice Valeri

XVI Table of Contents

Hosted Universal Integration on the Web: The mashArt Platform 647
Florian Daniel, Fabio Casati, Stefano Soi, Jonny Fox,
David Zancarli, and Ming-Chien Shan

Sec-MoSC Tooling - Incorporating Security Requirements into Service
Composition . 649

Andre R.R. Souza, Bruno L.B. Silva, Fernando A.A. Lins,
Julio C. Damasceno, Nelson S. Rosa, Paulo R.M. Maciel,
Robson W.A. Medeiros, Bryan Stephenson,
Hamid R. Motahari-Nezhad, Jun Li, and Caio Northfleet

Services Inside the Smart Home: A Simulation and Visualization
Tool . 651

Elena Lazovik, Piet den Dulk, Martijn de Groote,
Alexander Lazovik, and Marco Aiello

SLA Management and Contract-Based Service Execution 653
Matthias Winkler, Josef Spillner, and Alexander Schill

Author Index . 657

Facilitating Workflow Interoperation Using
Artifact-Centric Hubs

Richard Hull1,�, Nanjangud C. Narendra2, and Anil Nigam3

1 IBM T.J. Watson Research Center, USA
hull@us.ibm.com

2 IBM India Research Lab, Bangalore, India
narendra@in.ibm.com

3 IBM T.J. Watson Research Center, USA
anigam@us.ibm.com

Abstract. Enabling interoperation between workflows, and between web
services, continues to be a fundamental challenge. This paper proposes a new
approach to interoperation based on hubs that are designed using “business arti-
facts”, a data-centric paradigm for workflow and business process specification.
The artifact-centric interoperation hubs are focused primarily on facilitating com-
munication and business-level synchronization between relatively autonomous
stakeholders (and stakeholder organizations). Interoperation hubs provide a cen-
tralized, computerized rendezvous point, where stakeholders can read or write
data of common interest and check the current status of an aggregate process, and
from which they can receive notifications about events of interest. The paper de-
scribes the approach, including an extended example, access restrictions that can
be placed on stakeholders, some preliminary theoretical results, and a discussion
of work towards a prototype system that supports interoperation hubs.

Keywords: Business Artifact, Interoperation, Service, Workflow.

1 Introduction

Enabling interoperation between workflows, and between web services, continues to
pose a fundamental challenge. Two traditional approaches to this challenge are orches-
tration and choreography [16]. Orchestration tackles interoperation by essentially creat-
ing an new application with a centralized set of goals to be achieved. The orchestrator is
typically designed to fit with the various workflows or services that are to interoperate,
thus limiting opportunities for re-use of the orchestration. Also, orchestrators become
the primary controllers of the interoperation, and as a result reduce the autonomy of the
different stakeholders (individuals and organizations) in acheiving their portions of the
aggregate goal. On the other hand, choreography embraces the autonomy of the stake-
holders, and attempts to enforce the achievement of aggregate goals by restricting how
messages can be passed between the stakeholder workflows or services. A weakness
of choreography, however, is that there is no single conceptual point or “rendezvous”
where stakeholders can go to find current status and information about the aggregate
process. This paper proposes a new approach to workflow and web service interoper-
ation, that largely preserves the autonomy of participating stakeholders, and provides

� This author partially supported by NSF grants IIS-0415195, CNS-0613998, and IIS-0812578.

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 1–18, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 R. Hull, N.C. Narendra, and A. Nigam

a single conceptual point where stakeholders can obtain current status and information
about a process, and can receive notifications about status changes of interest. We call
our approach interoperation hubs.

The interoperation hubs proposed here focus primarily on facilitating communica-
tion and business-level synchronization between relatively autonomous stakeholders.
The conceptual model used by the hubs is based on “business artifacts” [14,5,11], a
data-centric paradigm for workflow and business process specification. An interopera-
tion hub can be viewed as a stylized “whiteboard” for holding information relevant to
the stakeholder community as they participate in a consensus-based aggregate process.
The whiteboard is structured to ensure that certain constraints are satisfied about infor-
mation access, information update, and task sequencing. The hub is primarily passive
and re-active, allowing the stakeholder workflows to post new information of interest to
the stakeholder community. The hub is pro-active in only one regard: stakeholders can
subscribe for notification when certain steps of the aggregate process have occurred.

The interoperation hubs used here are fundamentally different from conventional
orchestrators. The difference stems from the fact that business artifacts, or simply “arti-
facts”, unlike BPEL, provide a holistic view of process and data. Artifacts are business-
relevant objects that are created, evolve, and (typically) archived as they pass through
the workflow. An artifact type includes both an information model (or “data schema”),
that can hold data about the business objects during their lifetime in the workflow, and
a lifecycle model (or “lifecycle schema”), that describes the possible ways and timings
that tasks (a.k.a. services) can be invoked to manipulate these objects. A prototypical
example of a business artifact type is “air courier package delivery,” whose informa-
tion model would include slots for data such as ID of the package, sender, recipient,
arrival times at different points along the way, time delivered, and billing information,
and whose lifecycle model would include the different ways that the package could be
delivered and paid for.

In the context of individual workflows, experiences reported [6,5,7] by the business
artifacts team at IBM Research show that an artifact-based perspective helps in im-
proving stakeholder understanding of the workflows, and often leads to new insights.
These experiences suggest that an artifact-based interoperation hub will be of significant
business value to the many people in the stakeholder organizations. More specifically,
it suggests that the business managers, business architects, and IT infrastructure spe-
cialists will be able to adapt their workflows, including both manual and automated
portions, to take advantage of the interoperation hub, to draw upon the information that
can be stored there, to write appropriate information there, and to help guide how the
artifacts move through their lifecycles.

In addition to presenting an extended example to illustrate our approach, the pa-
per includes formal definitions for three kinds of access restrictions. “Windows” pro-
vide a mechanism to restrict which artifacts a stakeholder can see; “views” provide a
mechanism to restrict what parts of an artifact a stakeholder can see; and a varation of
“Create-Read-Update-Delete (CRUD)” specifications is used to restrict the ways that
stakeholders can read and modify artifacts. The paper also studies the question of per-
sistent visibility of artifacts. An interoperation hub supports persistent visibility if, for
each stakeholder p and artifact a, if a becomes visible (based on the window restric-
tions) to p at some point, then a remains visible to p for the remainder of its evolution
through the workflow. In the general case testing this property is undecidable, but we
show that it is decidable for a natural class of window specifications.

Facilitating Workflow Interoperation Using Artifact-Centric Hubs 3

The approach of interoperation hubs can be used to facilitate interoperation
between different enterprises or organizations. Indeed, companies such as PayPal or
Salesforce.com can be viewed as providing massively scaled interoperation hubs, that
facilitate interoperation between largely autonomous stakeholders. Conference submis-
sion management sites such as ConfTool or EasyChair also provide application-specific
interoperation hubs. The framework and theoretical development of this paper provides
a formal basis for analyzing application-specific interoperation hubs, such as those just
mentioned.

Section 2 introduces an example of an interoperation hub along with its business ar-
tifacts. This example is used throughout the paper to illustrate different concepts related
to interoperation hubs. Section 3 presents a more formal description of the framework
for artifact-centric interoperation hubs. Section 4 incorporates various notions related to
access control, and presents some preliminary theoretical results about the framework.
Section 5 describes work towards a prototype implementation of interoperation hubs.
Section 6 describes related work, and Section 7 offers brief conclusions.

2 Representative Example

This section presents an illustration of an artifact-based interoperation hub, which will
be used through the rest of the paper. It is based on employee hiring an an enterprise.

2.1 Example Overview

Fig. 1 shows the six primary kinds of stakeholders and stakeholder organizations whose
interoperation around hiring will be supported, viz., Candidates, Human Resources Or-
ganization, Hiring Organizations, Evaluators, Travel Provider, Reimbursement. There
could be several hiring organizations, each with its own worklows for managing the
recruitment process. We assume that the enterprise has a single HR organization re-
sponsible for recruitment purposes.

Fig. 1. Six types of stakeholder organizations using the Hiring Interoperation Hub

4 R. Hull, N.C. Narendra, and A. Nigam

Participants can interact with the hub in several ways. For instance, a candidate may
choose to interact directly with the designated Travel Provider, perhaps through their
web-site, and create her itinerary. The hub can record the authorization for travel (per-
haps from HR or perhaps from the Hiring Organization). The Travel Provider can the
access the hub for the travel authorization, and place a link to the itinerary. This enables
the Hiring Organization and the Evaluators to access the itinerary when preparing for
interviews. Finally, the Reimbursement organization can access the airline and hotel
invoices when processing the travel reimbursement request from the candidate. These
interactions illustrate how an interoperation hub can facilitate information transfer be-
tween participant organizations, while giving them considerable autonomy and latitude
with regards to how and when they provide the information or accomplish tasks.

Fig. 2. Job Opening artifact type used in the Hiring interoperation hub

Our focus here is on the two primary artifact types of the Hiring interoperation hub
- Job Opening and Job Application (Figs. 2 and 3, respectively). Each artifact
type contains two primary components - the information model (or “data schema”),
that uses a variant of the nested relation model, and the lifecycle model (or “lifecycle
schema”), that uses a variant of finite state machines.

The Job Opening artifact type was designed on the premise that the enterprise
would negotiate with just one candidate at a time; a richer information model could be
used if simultaneous negotiations with multiple candidates are to be supported. Fig. 2
also depicts the six states that a Job Opening artifact can be in, including the inter-
state transitions. When the artifact moves to open state, summary information about
the candidates that apply can be stored into the candidate pool portion of the information
model. (However, the bulk of the candidate information will be stored in the correspond-
ing Job Application artifact instance.) In the evaluating state, one or more of

Facilitating Workflow Interoperation Using Artifact-Centric Hubs 5

Fig. 3. Job Application artifact type used in the Hiring interoperation hub

the applicants might start through the evaluation process. In the negotiating state,
one candidate has been shortlisted for selection, and undergoes salary negotiations with
the HR organization. At any point of time, HR or the Hiring Organization can cancel
the job opening by moving the artifact instance to cancelled state.

The information model for Job Opening consists of the following attribute clus-
ters - an ID, job details (job description, offering manager, etc.), candidate pool (sum-
mary of each applicant being considered), negotiation details (current candidate, offered
salary, start date), finalization (salary, start date, hiring manager, etc.). Similarly, the life-
cycle specification of Job Opening is specified as the states - creating, open,
evaluating,negotiating, finalizing, cancelled - and transitions
between them. Each stakeholder is responsible for adding appropriate information to
the Job Opening in some state and might also move it to the next state.

The Job Application artifact type is intended to track job candidates from when
the enterprise first thinks of someone as a potential recruit, through the formal applica-
tion process, to the point of hiring, rejection, or the candidate withdrawing her appli-
cation. As noted previously, the interoperation hub should be viewed as an electronic
repository of selected information relevant to the stakeholders involved with a given
applicant; it is not required that all information exchanged between the stakeholders be
formally recorded into the hub. For example, the candidate and the travel provider might
interact directly, and then have the travel provider record the planned itinerary into the
interoperation hub. This illustrates another aspect of the flexibility in communication
and business-level synchronization enabled with using interoperation hubs.

As per Fig. 3, a candidate can either apply formally (applying state) or come into
informal contact with the Hiring Organization (informal contact state). The rest
of the state machine is self-explanatory.

6 R. Hull, N.C. Narendra, and A. Nigam

2.2 Design Considerations

The design of the artifact types in an interoperation hub may involve both top-down
and bottom-up thinking and analysis. For the top-down, the designer thinks in terms
of the artifact types needed to support the common process, whereas for the bottom-
up, the designer considers the artifact types that are explicit or implicit in the stake-
holder organizations. We first describe the design of artifact types in general, and then
consider the top-down and bottom-up approaches for interoperation hubs in
particular.

The basic guideline for designing an artifact type is that it should provide a tangible
means for tracking a specific business goal. The business goal provides clues as to the
information that ought to be maintained by the business artifact, i.e., its information
model. Next considering the operations that fill in this information incrementally, the
goal provides the basis for the applicable states and transitions, i.e., the lifecycle model.
This approach can used, in a top-down manner, either as a starting point or during re-
finement in the design of artifact types of an interoperation hub.

We now illustrate how the bottom-up approach can help in the design of hub ar-
tifacts. For each stakeholder, we briefly review their goals and the artifacts that can
track these goals. It should be noted that the stakeholder workflows do not need them-
selves to be artifact-centric; the determination of artifacts that capture their goals and
behaviors is a useful thought exercise that contributes to the design of the hub. Candi-
dates strive to obtain suitable employment at the best terms; they will think primarily
in terms of Job Application artifact type of the Hiring hub. HR employees are fo-
cused on ensuring that the hiring policies are followed; towards this end their artifacts
will also be based on Job Opening and Job Application. Hiring Organizations
are primarily interested in recruiting highly qualified applicants who will be productive
contributors in their organization; their artifacts would be Prospects (or “Leads”), which
in some cases lead to the creation of Job Application. Evaluators focus on pro-
viding effective input on the capabilities of Prospects/Candidates. The Travel Provider
works to provide a friendly and effective service to help candidates finalize their travel
arrangements, and as such is focused on managing the Itinerary. Reimbursement strives
to reimburse applicants for travel expenses incurred, accurately and in a timely manner,
and their primary artifact is an Expense Report.

Considering the goals that need to be tracked, the Job Application artifact type
addresses the needs of Hiring Organization and Candidates alike. It also incorporates
information relevant to Evaluators, the Travel Provider, and Reimbursement. Addition-
ally, the Job Opening artifact can serve to track a union of the goals of HR and the
Hiring Organizations with regards to Candidates and Prospects, respectively. A final
observation is that both artifact types of the Hiring hub is of interest to more than one
stakeholder; this makes the case for an interoperation hub that houses the aggregate
process. As we will see later, each stakeholder will have differing abilities to view and
modify the information in these artifacts.

3 A Framework for Artifact-Centric Interoperation Hubs

This section presents a succinct description of the framework for interoperation hubs,
and illustrates the framework in terms of the Hiring example. Due to space limitations,
only the most essential definitions are given in detail. For this formalism, we use the

Facilitating Workflow Interoperation Using Artifact-Centric Hubs 7

terms ‘data schema’ and ‘lifecycle schema’ rather than ‘information model’ and ‘life-
cycle model’, to be more consistent with the database and workflow literature.

3.1 Nested Data and Artifact Types

The information model for the artifacts in interoperation hubs is based on nested data
types, based on a nested relation model. These are built up using scalars and four types
of identifier, namely artifact ID, participant ID, stakeholder org ID,
and state name (described below), and the record (formed with attribute names) and
set constructs. We permit the use of an undefined value, denoted as ⊥, for any type. We
consider only nested data types that are in Partitioned Normal Form (PNF) [17,2], that
is, so that for each set of (nested) tuples, the set of non-nested attributes forms a key for
the overall set of tuples.

An artifact data schema is a nested record type of the form

D = 〈ID : artifact ID, state : state name, A1 : T1, . . . , An : Tn 〉

(where the Tj’s range over nested data types). Intuitively, in an instance of an artifact
data schema, the first field will hold a unique ID for the artifact being represented, and
the second field will hold the state in the lifecycle that the artifact is currently in. We
use the term snapshot to refer to instances of an artifact data schema; this is to reflect
the intuition that artifacts persist as they evolve through a workflow, and pass through
a sequence of “snapshots” over this time period. We informally use the term “artifact
instance” to refer to the persisting object that underlies a sequence of artifact snapshots
all having the same artifact ID.

An artifact lifecyle schema is a pair (S,E) where

1. S is a finite set of states, which includes the designated states source and sink.
2. E is a set of directed edges (ordered pairs over S), such that there are no in-edges

into source and there are no out-edges from sink.

Intuitively, on a move from source to another state an artifact instance is created, and
on a move from a state into sink an artifact instance is archived and effectively taken
out of further evolution or participation in the workflow.

An artifact type is a triple R = (R,D,L) where R is the name of the type (a
character string), D is an artifact data schema and L is an artifact lifecycle schema.
Suppose that L = (S,E). A snapshot of R is a snapshot of D such that the ID and
state attributes are defined, and the state attribute is an element of S − {source}.

3.2 Artifact Schemas and Hub Schemas

An artifact schema is a collection S = {R1, . . . , Rn} of artifact types that have
pairwise distinct names R1, . . . , Rn. If PID is a set of participant IDs and OID a set
of stakeholder organization IDs, then a snapshot of S over PID,OID is a function
I : {R1, . . . , Rn} → sets of artifact snapshots that use participant (organization) IDs
from PID (OID), where I[Rj] is a set of artifact snapshots of type Rj , j ∈ [1..n]; there
are no pairs s1, s2 of distinct snapshots in ∪jI(Rj) with s1.ID = s2.ID; and for each
artifact ID g occurring in any artifact snapshot of I , there is a snapshot s occurring in I
with s.ID = g.

8 R. Hull, N.C. Narendra, and A. Nigam

Job Opening ID State Applicants and Date ...
J312 negotiating A567 4/15/09

C123 3/10/09
B647 4/10/09

Job App ID State Name ...
A567 evaluating Alice
C123 evaluating Carl
B647 offer preparation Bob

(a) Partial snapshot of a Job Opening artifact (b) Partial snapshots of Job Application artifacts

Fig. 4. Partial snapshot of the artifact schema from the Hiring example

Example 1. An example snapshot from the Hiring example is depicted in Fig. 4 (only
some of the attributes are shown). Part (a) depicts a snapshot of a single Job Opening
artifact with ID of J312. This artifact instance is in the negotiating state, indicating
that one candidate has been short-listed. Part (b) shows a portion of the snapshots of
three artifact instances of type Job Application, all of whom applied for opening
J312. One of them, corresonding to Bob, is in the offer preparation state. �

A hub schema is a pair H = (S,Org) where S is an artifact schema and Org is a finite
set of stakeholder organization types. In the Hiring example, Org has six types.

Let H = (S,Org) be a hub schema. A snapshot of H is a 5-tuple

H = (Iart,OID,PID, Iorg, Ipart)

where

1. Iart is a snapshot of S over OID,PID.
2. OID is a finite set of organization IDs.
3. PID is a finite set of participant IDs.
4. Iorg : OID → Org is the organization to organization type mapping.
5. Ipart : PID(→ 2O − {∅}) is the participant to role mapping.

Here, each stakeholder organization in OID is associated with exactly one stakeholder
organization type in Org, and each participant in PID is a member of at least one, but
possibly more than one, stakeholder organization in OID.

Example 2. Returning to our running example, two stakeholder organizations of the
same type could be Software Group and Research Division, both acting as Hiring Or-
ganizations. As an example of a participant belonging to more than one stakeholder
organization, an employee might be a member of Research Division and involved with
overseeing the recruiting for a staff researcher position, and also serve as an Evaluator
for a candidate being considered by Software Group. �

We now consider how the contents of an interoperation hub can evolve over time. Let
H = (S,Org) be a hub schema, and let H,H ′ be two snapshots of H. Then H transi-
tions to H ′, denoted H→HH

′, if one of the following holds

1. (New artifact instance:) H ′ is the result of adding a single, new artifact shapshot
s to H , and the state of that snapshot is one state away from the source node of the
state machine of the artifact schema of s.

2. (Update to artifact instance:) H ′ is the result of replacing a single snapshot s of
H by a new snapshot s′ having the same type, where s.ID = s′.ID and s.state =
s′.state, and for at least one top-level attribute A, s.A 	= s′.A.

Facilitating Workflow Interoperation Using Artifact-Centric Hubs 9

3. (Change state of artifact instance:) H ′ is the result of replacing a single snapshot
s of H by a new snapshot s′ having the same artifact type A = (D,L), where
s.ID = s′.ID, (s.state, s′.state) is a transition in L, and for each other attribute A,
s′.A = s.A.

4. (Modify participants or stakeholder organizations:) H ′ is the result of adding
or dropping an element to OID or PID, or making a change to the function Iorg

that impacts a single organization, or making a change to the function Ipart that
impacts a single participant.

3.3 Adding a Condition Language

We shall use a logic-based expression language for nested data types, that can be used
to express conditions and queries on snapshots of artifact and schema snapshots. The
language is modeled after the calculus defined in [1], and we provide here only the
most salient details. Variables are typed using the nested complex types. Terms include
τ.A for record type term τ and attribute name A. Constructors are provided to create
record- and set-typed terms. Atomic formulas include R(τ) for artifact schema name
R, τ = τ ′ for scalar or ID types (but not set types), τ ∈ τ ′ where the type of τ ′ is
set of the type of τ . It also includes atomic formulas of the form τ ∈ τ ′ where τ has
type participant ID and τ ′ has type organization ID. Query expressions are
created in the manner of relational calculus queries.

4 Views and Access Rights

An important component of the interoperation hub vision is that typically, stakeholders
will not be able to see entire artifacts, nor will they be able to make arbitrary updates
to them. This section introduces the notion of views of artifact schemas and snapshots
which restrict what participants from a given organization type can see, windows into
the set of artifacts that a given participant can see, and also access rights for making
updates against them based on a generalization of “CRUD” restrictions. These notions
embody an important aspect of the utility of interoperation hubs in facilitating commu-
nication and business-level synchronization between organizations, because they pro-
vide mechanisms for ensuring that information and events that should be kept private
are indeed being kept private.

The section also develops a family of simple theoretical results, including a decid-
ability result concerning whether an artifact, once visible to a participant, remains vis-
ible to the participant for the rest of its lifecycle.

4.1 Views

We begin with an example of the views presented to one kind of stakeholder.

Example 3. Figures 5 and 6 show the views ofJob Opening andJob Application,
respectively, that are made available to Candidates in the Hiring example. In these views,
some of the attributes of the data schema are grayed out, because the view prevents a can-
didate from seeing those attributes. In terms of the lifecycle, some states are collapsed
or “condensed” together. (These are shown as solid disks.) For example, in the view

10 R. Hull, N.C. Narendra, and A. Nigam

Fig. 5. The view of the Job Opening artifact type that would be visible to Candidates

Fig. 6. The view of the Job Application artifact type that would be visible to Candidates

Facilitating Workflow Interoperation Using Artifact-Centric Hubs 11

of Job Application, the enterprise will typically want to hide from the candidate
whether it is in the evaluating, on hold, or preparing offer state. Similarly,
as shown in the view of Job Opening several states are collapsed into the two states
open and closed. (The specific mapping of states to open and closed would de-
pend on the business policy to be followed.) �
With regards to artifact types, the notion of view includes two components: a restriction
on the attributes that can be seen, and a restriction on the set of states that can be
seen. The first case will be achieved using projection, and the second by using node
condensation.

Let R = (R,D,L) be an artifact type, where D = 〈ID : artifact ID, state :
state name, A1 : T1, . . . , An : Tn 〉. A projection mapping over D is an expression
of the form πJ where J is a subset of A1, . . . , An. Projection mappings operate at both
the data schema level and the snapshot level in the natural manner. A condensation
mapping over a lifecycle schema L = (S,E) is an expression γf where f is a surjective
function f : S → S′, where S′ is a set of state names, such that

1. source , sink ∈ S′.
2. γ(source) = source and γ(sink) = sink

(Note that multiple states of S might map into source or sink.) A condensation mapping
works on the meta-data of a lifecycle schema; specifically, in the above case γf (L) =
(S′, E′) where E′ = {(γ(σ1), γ(σ2) | (σ1, σ2) ∈ E}.

A view on R = (R,D,L) is an ordered pair ν = (πJ , γf) where πJ is a projection
mapping over D and γf is a condensation mapping over L. The result of applying ν
to a snapshot s of R is defined in the natural manner. For an artifact schema S =
{R1, . . . ,Rn}, with artifact type names R1, . . . , Rn, a view mapping of S is a function
ν with domain {R1, . . . , Rn} such that ν[Rj] is a view on Rj for j ∈ [1..n]. We use
ν(S) to denote the schema {νR1, . . . , νRn}, and for a snapshot I of S,
ν[I] is a snapshot of ν(S) defined in the natural manner. Finally suppose now that
H = (S,Org) is a hub schema. A view mapping for H is a function ν with domain
Org, such that for each stakeholder organization typeO in Org, ν[O] is a view mapping
of S.

Example 4. The projection mapping of Job Opening artifact for an Evaluator would
include all of the attributes depicted in Fig. 5, except for Offer salary. The con-
densation mapping, however, would include all states in the Job Opening
artifact. �
If ν is a view mapping, and there is a participant p who is a member of two or more or-
ganizations of different types, then ν[R](p) can be defined using a union on the projec-
tions and a variant of the cross-product construction for the condensations. The details
are omitted due to space limitations.

Given a view mapping and an organization type O, we ask: when does it make sense
for participants in an organization of type O to be able to request a transition in a life-
cycle in their view? Let H = (S,Org) by an interoperation hub, ν be a view mapping,
and R = (R,D, (S,E)) be an artifact type in S. An edge e = (σ1, σ2) ∈ E is el-
igible in H if for some O ∈ Org with ν[O](R) = (πJ , γf) we have: for each state
σ′

1 ∈ f−1(f(σ1)) there is exactly one state σ′
2 ∈ f−1(f(σ2)) such that (σ′

1, σ
′
2) ∈ E

Intuitively, this means that if a participant p in an organization of type O requests a

12 R. Hull, N.C. Narendra, and A. Nigam

transition in p’s view from f−1(σ1) to f−1(σ2), then there is no ambiguity with regards
to which transition in the base state machine (S,E) should be taken.

Although not done here due to space limitations, it is straightforward to charac-
terize, given an interoperation hub H and view mapping ν, the full set of transitions
→H,ν between snapshots of H that can be achieved by participants working through
their views.

4.2 Windows

The notion of “window mapping” is used to restrict which artifact instances a par-
ticipant can see. Recall the condition language from Section 3. Suppose that S =
{R1, . . . ,Rn} is an artifact schema with artifact type names R1, . . . , Rn. For j ∈
[1..n], a queryQϕ(x,y) is a window mapping for Rj using x for participant IDs and y for
artifact IDs if

1. x has type participant ID,
2. y has type artifact ID, and
3. ϕ has the form ∃z(Rj(z) ∧ z.ID = y ∧ ψ(x, z)) for some formula ψ.

When a window mapping Qϕ(x,y) for Rj is applied to a snapshot I of S, the result is
Qϕ(x,y)(I) = {(p, g) | I |= ϕ[x/p, y/g]}. Note that in each element of the answer, the
second coordinate will be the ID of an artifact snapshot in I[Rj]. Analogous to view
mappings, a window mapping ω for an interoperation hub H = (S,Org) is a function
that maps a pair O,R (for O ∈ Org and R the name of some R in S) to a window
mapping ω[O,R] for R.

Example 5. In the running example, the window query for Hiring Organizations might
permit them to see only Job Applications that are targeted at Job Openings
sponsored by that Hiring Organization. For the snapshot of Fig. 4, Software Group
would see all three candidates, but Research would see none of them. �

In many cases, a window mapping will focus on whether a certain pattern of values is
found in the current snapshot. For example, an evaluator might be permitted to “see”
all Job Application artifact instances for which he is named in the evaluators
attribute. Happily, the class of such window mappings, which have no negation and
only existential quantifiers, correspond closely to the conjunctive queries with union in
the relational model, about which many properties are known.

To illustrate, we briefly study the question of whether one window mapping ω is less
restrictive than another one ω′. Let H = (S,Org) be an interoperation hub. We say
that ω dominates ω′, denoted ω′ � ω, if for each instance I of H and each artifact
type R = (R,D,L) of H, ω′[O,R](I) ⊆ ω[O,R](I). Using the fact that our nested
types are in Partitioned Normal Form, the correspondance with conjunctive queries with
union, and results from [18] we obtain the following.

Proposition 6. Let H be an interoperation hub, and assume that ω and ω′ are window
mappings based on queries that have no negation and only existential quantifiers. Then
it is decidable whether ω′ � ω, and this decision problem is NP-complete.

Facilitating Workflow Interoperation Using Artifact-Centric Hubs 13

4.3 Access Rights and CRUDAE

Windows and views give a first-tier, rather coarse-grained mechanism for specifying the
access rights of participants to the contents of an interoperation hub. Following in the
spirit of [19,8,10], we now introduce a finer-grained mechanism, that is based on pro-
viding “Create-Read-Update-Delete-Append (CRUDA)” and “Execute” permissions to
a participant p, depending on what type of stakeholder organization(s) p is in, and what
state an artifact instance is in. (More precisely, this is based on the state in p’s view of
the artifact instance.)

Suppose that R = (R,D,L) is an artifact schema, whereD = 〈ID : artifact ID,
state : state name, A1 : T1, . . . , An : Tn 〉 and L = (S,E). A simple CRUDAE
specification for R is a mapping α with domain {A1, . . . , An} ∪ {’E’} and where

• α : {A1, . . . , An} → 2{‘C’,‘R’,‘U’,‘D’, ‘A’}

• α(‘E’) ⊆ E (i.e., the set of edges in L)

Intuitively, if ’C’ ∈ α(Aj), this indicates that under α, a participant can “create” a value
for Aj(e.g.,, provide a value to a previously undefined attribute) and similarly for cases
of ’R’ ∈ α(Aj), ’U’ ∈ α(Aj), ’D’ ∈ α(Aj) and ’A’ ∈ α(Aj); and α(E) indicates the
set of edges that the participant can request a transition along.

In general, we associate a simple CRUDAE specification to each state of an artifact
lifecycle, reflecting the intuition that access rights typically change based on state. A
CRUDAE specification for R = (R,D, (S,E)) is a mapping β with domain S, such
that β[σ] is a simple CRUDAE specification for R for each state σ ∈ S. Intuitively, for
state σ ∈ S, β[σ] is intended to indicate the access rights that a participant will have
when the artifact instance is in state σ. Suppose that σ ∈ S, and consider β[σ](E). It is
natural to assume that each edge e ∈ β[σ](E) has σ as source.

Suppose now that H = (S,Org) is a hub schema, where S = (R1, . . . ,Rn)
with artifact type names (R1, . . . , Rn). Suppose further that ν is a view mapping for
H. A CRUDAE specification for the pair (H, ν) is a mapping δ with domain Org ×
{R1, . . . , Rn}, such that

1. δ[O,Rj] is a CRUDA specification for ν[O](Rj), for eachO ∈ Org and j ∈ [1..n].
2. δ[O,Rj](E) ⊆ {e | e is an eligible edge in the lifecycle of ν[O](Rj)

To understand this intuitively, think of a stakeholder organization type O ∈ Org. Recall
that a participant p in an organization o of type O cannot “see” all of S, but rather can
“see” only ν[O]. Furthermore, δ[O,Rj] will indicate, for each state in the lifecycle of
ν[O](Rj), which attributes of ν[O](Rj) can be created, read, updated, or deleted by p,
and also which transitions in the lifecycle of ν[O](Rj) can be invoked by p.

Example 7. We recall that a candidate can view at most one Job Application
artifact instance, namely,, the one that the candidate created. For this instance, the can-
didate has Update permission only for attributes such as Degree level, vita, experience,
and only Read permission for the other attributes depicted in Fig. 6. The candidate
will have execute permission to bring about a move his Job Application artifact
from evaluating’ to withdrawn state, by withdrawing his/her application from
consideration for the job opening. �

14 R. Hull, N.C. Narendra, and A. Nigam

Finally, an extended hub schema is a tuple H = (S,Org, ω, ν, δ) where

1. (S,Org) is a hub schema.
2. ω is a window mapping for (S,Org)
3. ν is a view mapping for (S,Org)
4. δ is a CRUDAE specification for (S,Org)

The notion of transitions between snapshots of a hub schema can be genealized to ex-
tended hub schemas in the natural manner, taking into account the restrictions on par-
ticipants, based on the view they can “see”, the artifacts accessible through the window
mapping, and the CRUDAE mapping. For an extended hub schema H, this relation is
denoted by →H .

4.4 Persistence of Visibility

We conclude the section by studying the question: Given an extended interoperation
hub H = (S,Org, ω, ν, δ), and a participant p and artifact instance a, is it possible that
p can “see” a at some point but not “see” a at a later point.

More precisely, let I = I0→HI1→H . . .→HIn be a sequence of snapshots of H
satisyfing the →H relation as indicated, where I0 is the empty snapshot, and in which
there are no transitions involving changes to the particpants or the organizations. Sup-
pose that for some participant ID p, artifact ID g, artifact type R with name R, and
index j, we have (p, g) ∈ ω[O,R](Ij), and j is the first index with this property. Then
g has persistent visibility for p in I if (p, g) ∈ ω[O,R](Ik) for each k ∈ [j + 1, n].
The sequence I has persistent visibility if each artifact ID occurring in I has persistent
visibility for each participant occurring in I . H has persistent visibility if each such
sequence I has persistent visibility.

In some cases it may be natural to not have persistent visibility. For example, a candi-
date p may see a Job Opening while it is still in the Open state (in the view provided
to candidates). If p did not apply for this particular opening, and if the Job Opening
moves to the Closed state, then it may be appropriate to hide this job opening from the
candidate. An alternative, that might be more convenient to users so that things don’t
unexpectedly disappear, would be to still show the artifact instance to the candidate, but
grayed out.

In other contexts, it may be desirable to ensure that a given artifact type has persistent
visibility for a given stakeholder organization type. The following result states that this
is decidable if the window queries correspond to conjunctive queries.

Proposition 8. Let H = (S,Org, ω, ν, δ) be an extended interoperation hub, and sup-
pose that ω has no negation, no disjunction, and only existential quantifiers. Then it is
decidable whether H has persistent visibility. This problem is in PSPACE in terms of the
size of H.

Although space limitations prevent inclusion of the proof, we note that the result is
demonstrated by showing that it suffices to look at a small set of sequences of snapshots,
which are constructed from a bounded active domain and have bounded length.

This result leaves several questions open, including finding a tight bound for the
complexity of testing persistent visibility under the assumptions of the proposition, and
finding the limits of decidability.

Facilitating Workflow Interoperation Using Artifact-Centric Hubs 15

In the case of no negation and only existential quantifiers, a straightforward sufficient
condition can be developed, that guarantees persistent visiblity. The basic idea is that
if some value in a field A of some artifact instance b is used as a witness for p to see
an artifact a, then we need to ensure that for the state that b is in, and any state that it
can reach from there, the field A can be read (and appended if it is of set type), but not
created, deleted or updated.

5 Towards a Prototype Implementation

It is natural to ask how difficult it would be to build a system that supports the creation
and deployment of artifact-centric interoperation hubs. It appears that such a system can
be constructed in a straightforward manner from an artifact-centric workflow engine.
To verify this conjecture, we have been working to create a generic interoperation hub
capability on top of the Siena prototype system [8,10]. (As an alternative, one could
use the BELA tool developed at IBM Research [19], which operates on top of IBM’s
WebSphere product line.)

The Siena system includes a user interface for designing artifact-based workflow
schemas (that use a state-machine based lifecycle model), a capability to represent
the workflow schemas as an XML file along with some XSDs for holding the arti-
fact information models, and an engine that directly executes against the XML file in
response to incoming events and tasks being performed. As described in [8], Siena
schemas can be specified in Microsoft Powerpoint. To permit easier access to Siena
schemas by multiple designers, the Siena team at IBM Research is currently developing

Fig. 7. Screen shot of Siena’s web-based GUI, used here to specify the Hiring artifact schema

16 R. Hull, N.C. Narendra, and A. Nigam

a web-browser-based tool for specifying artifact schemas. A screen shot of this inter-
face, showing part of the artifact schema for the Hiring example, is shown in Fig. 7.

Siena provides REST and WSDL interfaces so that outside services can invoke the
Siena capabilities, including changes to artifact values, and moving artifacts along their
lifecycle. Siena provides the capabilities of sending notifications on a selective basis
on entry into states, and of showing artifact instances to users, restricted according to a
global, role-based specification of Read permissions, and it supports role-based access
control based on CRUDE at the state level. (Restrictions on “append” capabilities are
not currently supported.) Siena also provides numerous hooks for triggering of events
and behaviors, along with guards on transitions and state entry. The main steps in creat-
ing a system for supporting inteoperation hubs on top of Siena include (i) enriching the
current capability in Siena to recognize roles, so that participants, stakeholder organiza-
tions, and stakeholder organization types can all be specified and used during runtime;
(ii) modifying the view of snapshots provided to participants to reflect the condensation
of states in interoperation hub views; and (iii) incorporating the ability to specify access
controls based on windows. Creating these extensions is a work in progress.

6 Related Work

Nigam and Caswell [15] present one of the earliest discussions of the artifact-centric
model its application to business modelling. Here, we extend [15] to show how services
and applications can interoperate using the artifact-centric approach. In [13], Nandi and
Kumaran introduce the concept of Adaptive Business Objects (ABO) to integrate peo-
ple, processes, information and applications. ABO presents an abstraction of a business
entity with explicitly managed state and an associated programming model. In contrast,
our interoperation hub model is at a higher abstraction level, understandable by those
without IT expertise. Citation [19] describes how the artifact-centric technique has been
incorporated into IBM’s SOMA method for the design and deployment of business pro-
cesses. In [12], Müller et al. present data-driven process structures in which Object Life
Cycles (OLC) of different objects are linked through OLC dependencies. This approach
enables adaptations of data-driven process structures at both design and run time.

Traditional approaches to service composition [9,4,3], use languages such as BPEL1

to model low-level service interactions. Such implementations focus on the sequence
of Web services to be invoked to reach a state goal, and do not explicitly specify how
the underlying data is manipulated, or how that data constrains the operation. As a re-
sult, the approach is less intuitive than using business artifacts, especially in the case
of large shared business processes. In the business process space, [20] models a busi-
ness process as a collection of interacting process fragments called “proclets”. Each
proclet is autonomous enough to decide how to interact with the other proclets, and this
provides flexibility in workflow execution. In that work, similar to choreography, the
interoperation of proclets is not managed or facilitated by a centralized hub.

7 Conclusions

In this paper, we have illustrated how the artifact-centric approach can be used to cre-
ate hubs that facilitate the interoperation of multiple automonous stakeholders who

1 http://www-128.ibm.com/developerworks/library/specification/ws-bpel/

Facilitating Workflow Interoperation Using Artifact-Centric Hubs 17

have a common goal. Because the basic building block of the artifact-centric approach,
namely “business artifacts”, combine data and process specification into a single unit,
it is straightforward to incorporate three natural forms of access control into the frame-
work, namely, windows (that restrict which artifact instances a participant can see),
views (that restrict which attributes and states of an artifact a participant can see), and
CRUDAE (a variant of the classical CRUD notion, that restricts the kinds of reads and
updates a partipant can perform, based on the current state of an artifact).

The formal framework developed in the paper was used to develop results concern-
ing some of the global implications of placing these access restrictions on a hub, and a
prototyping effort indicates that these hubs can be created through a straightforward ex-
tension of an artifact-centric workflow engine. This paper provides the starting point for
a rich exploration into this new style of interoperation hub. Some theoretical questions
of particular interest involve the interplay of, on the one hand, the views and windows
exposed to participants and, on the other hand, the sets of achievable sequencs of hub
snapshots and integrity constraints on them.

Acknowledgements. The authors thank the extended ArtiFactTM team at IBM Re-
search for many informative discussions about the artifact-centric approach and its ap-
plication in business contexts. The authors are also very grateful to Fenno (Terry) Heath
III, Florian Pinel, and Sridhar Maradugu for facilitating the use of the Siena prototype
system [8,10].

References

1. Abiteboul, S., Beeri, C.: The power of languages for the manipulation of complex values.
The VLDB Journal 4(4), 727–794 (1995)

2. Abiteboul, S., Bidoit, N.: Nonfirst normal form relations: An algebra allowing data restruc-
turing. Journal of Computer and System Sciences 33, 361–393 (1986)

3. Agarwal, V., Chafle, G., Mittal, S., Srivastava, B.: Understanding Approaches for Web Ser-
vice Composition and Execution. In: Proc. of Compute 2008, Bangalore, India (2008)

4. Barros, A.P., Dumas, M., Oaks, P.: Standards for web service choreography and orchestra-
tion: Status and perspectives. In: Bussler, C.J., Haller, A. (eds.) BPM 2005. LNCS, vol. 3812,
pp. 61–74. Springer, Heidelberg (2006)

5. Bhattacharya, K., Caswell, N.S., Kumaran, S., Nigam, A., Wu, F.Y.: Artifact-centered opera-
tional modeling: Lessons from customer engagements. IBM Systems Journal 46(4), 703–721
(2007)

6. Bhattacharya, K., et al.: A model-driven approach to industrializing discovery processes in
pharmaceutical research. IBM Systems Journal 44(1), 145–162 (2005)

7. Chao, T., et al.: Artifact-based transformation of IBM Global Financing: A case study, 2009.
To appear Intl. Conf. on Business Process Management (BPM) (September 2009)

8. Cohn, D., Dhoolia, P. (Terry) Heath III, F.F., Pinel, F., Vergo, J.: Siena: From powerpoint to
web App in 5 minutes. In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008.
LNCS, vol. 5364, pp. 722–723. Springer, Heidelberg (2008)

9. Decker, G., Zaha, J.M., Dumas, M.: Execution semantics for service choreographies. In:
Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184, pp. 163–177.
Springer, Heidelberg (2006)

10. (Terry) Heath III, F.F., Pinel, F.: Siena user’s guide (2009) (in preparation)
11. Hull, R.: Artifact-centric business process models: Brief survey of research results and chal-

lenges. In: Meersman, R., Tari, Z. (eds.) OTM 2008, Part I. LNCS, vol. 5331, pp. 1152–1163.
Springer, Heidelberg (2008)

18 R. Hull, N.C. Narendra, and A. Nigam

12. Müller, D., Reichert, M., Herbst, J.: A New Paradigm for the Enactment and Dynamic Adap-
tation of Data-Driven Process Structures. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008.
LNCS, vol. 5074, pp. 48–63. Springer, Heidelberg (2008)

13. Nandi, P., Kumaran, S.: Adaptive Business Objects - A New Component Model for Business
Integration. In: Proceedings of ICEIS 2005, Miami, FL, USA (2005)

14. Nigam, A., Caswell, N.S.: Business artifacts: An approach to operational specification. IBM
Systems Journal 42(3), 428–445 (2003)

15. Nigam, A., Caswell, N.S.: Business Artifacts: An Approach to Operational Specification.
IBM Systems Journal 42(3) (2003)

16. Peltz, C.: Web services orchestration and choreography. IEEE Computer 36(10), 46–52
(2003)

17. Roth, M.A., Korth, H.F., Silberschatz, A.: Extended algebra and calculus for nested relational
databases. ACM Trans. Database Syst. 13(4), 389–417 (1988)

18. Sabiv, Y., Yannakakis, M.: Equivalences among relational expressions with the union and
difference operators. Journal of the ACM 27(4), 633–655 (1980)

19. Strosnider, J.K., Nandi, P., Kumarn, S., Ghosh, S., Arsanjani, A.: Model-driven synthesis of
SOA solutions. IBM Systems Journal 47(3), 415–432 (2008)

20. van der Aalst, W.M.P., Barthelmess, P., Ellis, C.A., Wainer, J.: Proclets: A framework for
lightweight interacting workflow processes. Int. J. Cooperative Inf. Syst. 10(4), 443–481
(2001)

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 19–33, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Aspect Orientation for Composite Services
in the Telecommunication Domain

Jörg Niemöller, Roman Levenshteyn, Eugen Freiter, Konstantinos Vandikas,
Raphaël Quinet, and Ioannis Fikouras

Ericsson GmbH
Ericsson Allee 1, 52134 Herzogenrath, Germany

{joerg.niemoeller,roman.levensteyn}@ericsson.com,
{eugen.freiter,konstantinos.vandikas}@ericsson.com,

{raphael.quinet,ioannis.fikouras}@ericsson.com

Abstract. Telecommunication network operators have specific requirements on
services offered through their network, which are frequently independent of the
core business logic of the service. As an example, these requirements ensure
monitoring of user activities for charging purposes or allow controlling parame-
ters that influence the quality of service. In order to satisfy these demands, ser-
vices are typically tailor-made to support these supplementary features next to
their core business logic. As a result, their implementation becomes tangled and
specialized. This is identified as a major obstacle for efficient service composi-
tion, because more specialized services are less suitable for being reused in dif-
ferent contexts. This paper describes an approach to introduce concepts of
aspect-oriented programming to service composition in order to keep the im-
plementations of telecommunication-specific requirements separated from the
core business function of a service.

Keywords: AOP, IMS, Service Composition, Telecommunication.

1 Introduction

Telecommunication network operators aim for a service infrastructure that allows a
converged usage of heterogeneous services. They rely on cost-efficient and rapid
design of new applications by re-use of already existing services. Another goal is
differentiation form the competition by integrating telecommunication services with
popular community services from the internet, because these services provide users
with a new style of communication and social interaction. Service composition is a
key technology for reaching the desired convergence within a heterogeneous service
environment. This paper is based on an approach for service composition [1] that
supports multiple service technologies to be used within a single composite service.

Typically, operators from the telecommunication domain require support for spe-
cific supplementary functions from all services provided through their network. These
functions, for example, allow charging for service usage, collect statistics or help
controlling the service quality.

20 J. Niemöller et al.

This paper analyzes the design of converged composite services that need to con-
sider specific requirements of the telecommunication domain. Furthermore, this paper
outlines that these requirements often imply cross-cutting implementations, therefore
they are a severe obstacle for efficient composition of services. A solution is pre-
sented that combines data-driven composition of heterogeneous services with tech-
niques from aspect oriented programming (AOP). This includes weaving based on the
unique elements of the composition environment. The paper explores a solution in
which aspects are modeled as services and selected through constraint-based service
selection, thus concepts known from the underlying service composition approach are
applied to AOP.

2 Related Work

The central problem of composing applications according to cross-cutting concerns is
motivated in [2]. That paper defines common concepts and terminology of the AOP
domain like cross-cutting concerns, aspects, point-cut, advice, and weaving. In our
paper we follow this terminology.

AspectJ [3] was one of the first implementations of the AOP paradigms as
proposed in [2]. AspectJ extends the Java language by new elements that allow the
definition of point-cuts and advice code. Weaving is performed prior to execution,
resulting in a regular Java application including injected advice code.

JBOSS-AOP [4] introduces weaving on byte-code level rather than on source code.
This allows online weaving at runtime rather than offline weaving that is performed
prior to runtime, like for example in AspectJ. In this paper we apply online weaving,
since the dynamic run-time behavior of composite services means that information for
effective identification of relevant join-points is not available at design time.

AO4BPEL [5] is an aspect-oriented extension for business process execution lan-
guage (BPEL) [6], [7]. Online weaving is used in order to dynamically add or remove
aspects from a BPEL process. Each activity within a BPEL workflow process can
serve as join-point. Point-cuts can span over multiple BPEL processes and attributes
of the BPEL processes can be used in order to identify relevant join-points.

A framework that uses aspect orientation for dynamic selection of web services is
presented in [9]. The goal here is to dynamically select the web services to be used
within client-applications. An intermediate layer for managing web services and de-
coupling them from applications is introduced based on AOP principles. Aspects are
used in order to flexibly redirect web service invocations to alternative services, thus
flexibly binding web services to clients.

This paper is based on the service composition technology described in [1]. Ac-
cording to this approach [1], an abstract description of constituent services function
and capabilities is the base of composition. Service templates are used to describe
which constituent services shall be used as components of the composition. This is
achieved by using constraints for specifying the properties a service required to be
selected for execution. The constituent services to be used as components of a com-
posite application are therefore selected according to their abstract description, rather
than pointing directly to a concrete service. A service skeleton represents a model of a

 Aspect Orientation for Composite Services in the Telecommunication Domain 21

composite service. It combines service templates with control elements that steer the
composition process.

In order to execute the composite service, the skeleton is executed step-by-step by
a composition engine. In this process, constituent services are selected by satisfying
the constraints specified by a service template. These constraints perform a selection
among the descriptions of all available services, stored in a service repository. The
service descriptions contain abstract descriptions of the service function and capabili-
ties, coupled with binding information. For example, a service that provides the geo-
graphical location of a subscriber might be described by its function “positioning” and
by its capability to provide the position with certain accuracy. The composition is
session based and all services within a composition session have access to a shared
state, which can be used for data exchange between services.

3 Crosscutting in the Telecommunication Domain

The requirements of a telecommunication network operator are mainly driven by
business models, legal requirements and standardization. Besides the functionality
offered as end-user services to their subscribers, multiple supplementary functions are
usually required. Examples include the collection of information for charging and
billing purposes, or monitoring and control of service quality. Support for this kind of
functionality is usually an integral part of a service that targets a telecommunication
network, but it considerably increases the costs for service design and modification.
Thus, methods reducing the investments into system integration, customization and
new design are of particular importance for operators.

Furthermore, services from third-party providers often do not meet the very spe-
cific requirements of a network operator. Customization of these services is usually
not feasible and not desired as this would create very specialized services that are not
suitable for broad re-use in new contexts.

Service composition allows the creation of new applications by re-using existing
constituent services. A composition technology like the one described in [1] provides
simple tools that allow the creation and modification of composite applications in a
very cost efficient way. Fig.1 shows a simplified skeleton of a composite service that
provides a weather forecast for the user’s geographical location. It combines services
that retrieve the user position with a weather forecast service. Depending on the user
preferences, further services might generate a map illustrating the forecast and finally
send an SMS or MMS to the user.

When offering this service through a telecommunication network, the operator
usually requires support for charging. In addition, logging of all used services for
statistical purposes might be required as well as setting and monitoring of service
quality parameters. These supplementary features do not provide a service directly to
the end-user, but they help the operator controlling service and network operation. For
this reason they are often referred to as non-functional requirements.

Using the design methods of service composition, the supplementary functions
could be implemented by selecting only those constituent services that already contain
support for such functions. Alternatively, additional services can be included into the

22 J. Niemöller et al.

composition, which contribute only the supplementary features to the overall compos-
ite service. The resulting composite service is depicted in Fig. 1 on the right side.

One observation is that additional services providing supplementary functions
spread across the whole composition. They cannot be implemented within a single,
well encapsulated entity due to their inherent need to interact with the constituent
services throughout the whole composite application. These supplementary functions
show a property that is referred to as cross-cutting in AOP terminology. Cross-cutting
caused by supplementary functions is typical for telecommunication services. Al-
though it is not further investigated within the scope of this paper, a similar observa-
tion can be made for the domain of enterprise applications.

Activity
Logging

Charging

Get User
Position

Get Weather
Forecast

Get User
Preferences

Send SMS

Send MMS

Generate
Weather Map

QoS Setting
and

Monitoring

Get User
Position

get Weather
Forecast

Get User
Preferences

Send SMS Generate
Weather Map

log activity

log activity

log activity

log activity

quality settings

refine quality
settings

charging

charging

Send SMS

log activity

charging

report quality

charging

report quality

report quality

charging

Composite Service
implementing the core

business logic

Supplementary features Resulting composite
service

Fig. 1. Adding supplementary features to a composite service

The described method for service composition [1] is based on modules that are
products of functional decomposition of an intended application. In this respect, it is
not different than procedural or object oriented programming languages and equally
affected from cross-cutting as described in [2]. Its advanced features like constraint-
based service selection and service modeling based on abstract service descriptions
are designed to handle services that are strongly encapsulated functional entities.

 Aspect Orientation for Composite Services in the Telecommunication Domain 23

Therefore, they are weakly entangled with other services. As a result, the features of
service composition do not help handling cross-cutting.

Another observation is that certain services have already included the support for
supplementary features. In Fig. 1, for example, the support for charging was imple-
mented into the service “get Weather Forecast”. A service like this is multi-
functional, which increases its specialization. It is tailor-made for certain scenarios
and might not fit in other scenarios. Some of the multiple functions it provides might
interfere with other services or it would need to operate differently. For example, the
charging enhanced weather forecast service cannot be used if a different charging
method needs to be applied although its basic function alone, the weather forecast,
might fit.

Composite services can be created with comparably small investments into service
design together with short lead-times. This cost efficiency of composite services de-
pends to a great extent on the availability of constituent services that can be flexibly
re-used in different contexts. Such a service is virtually lean and functionally pure,
thus it focuses on its single main function. The more specialized a service is, the less
suitable it becomes for broad use within composition.

Aspect orientation of the composition environment reduces the need for imple-
menting supplementary functions into constituent services or into composition skele-
tons. They can be implemented separately and applied if needed. The following
chapter outlines an AOP enhanced composition environment.

4 AOP for Composite Services

Aspect orientation is proposed to become an integral part of the composition engine
that executes a composite service by interpreting the respective service skeletons. This
integration is practical as most join-points lie within the execution steps of the compos-
ite service. In order to catch relevant join-points, a weaving function allocated within
the composition engine monitors the skeleton execution and applies advice when nec-
essary. This process is steered by point-cut definition expressed within a weaving
language that is tailor-made for the underlying service composition technology.

Execution of composite services as described in [1] is based on service selection at
runtime leading to late-binding of constituent services. Furthermore, the requirements
and conditions for service selection, which are expressed in terms of constraints, are
dynamic. They might, for example, depend on services that were executed previously
within the same composition session. As this dynamic service selection is the central
process of the described service composition technology, many useful join-points
originate within this service selection process and are in turn volatile and dynamic.
Thus, weaving prior to the execution of a composite service is in many cases not
possible. For this reason an event driven online weaving approach was chosen.

4.1 Weaving Definition and Join-Points

Weaving refers to composing an application from a target application where an addi-
tional function and aspects are desired that implement this function. The base and
target of the proposed aspect enabled environment is the step-by-step execution of

24 J. Niemöller et al.

composite service skeletons. At each step of the execution where a potential join-
point resides, point-cut definitions are interpreted in order to identify and execute
those point-cuts that apply here. If advice is defined for the currently reached point-
cut, it is executed. The elements of the skeleton and therefore the steps in the execu-
tion of a composite service represent the source for join-points and the target for
point-cuts and advices. Basic join-points in this environment are for example:

• The start and end of a skeleton execution. This join-point would allow to execute
an advice prior to or after the execution of the actual composite service.

• The start of a service selection. This join-point would allow to analyze the starting
of service selection and to influence it by e.g. the addition of constraints.

• A list of services that satisfy the constraints was returned from the service reposi-
tory. This join-point occurs as one step within the constituent service selection. A
list of all services that qualify for being selected according to constraints is avail-
able. This join-point is helpful if, for example, advice needs to further prioritize
certain services.

• A service is invoked. This join-point marks the invocation of a selected service.
Advice can be used here for example to influence the parameters that are used in
the service call.

• A return value is received. This join-point marks the return of a result from an
invoked service. Here an evaluation of the result is possible before it is processed
by the target composite service.

• A message is received. This join-point marks the reception of a message from an
external protocol in the composition engine, for example a SIP message.

Some of the aforementioned basic join-points correspond to the elements of the skele-
ton language like, for example, the start element or the service template, and some
originate in the end-to-end communication session, like the SIP message reception.
Furthermore, events from the composition environment and events in the composite
service execution are reflected uniformly within the weaving language by considering
that reaching a new execution step and sub-step is an event in itself.

It is important to note that weaving instructions are stored and managed separately
from composite services. This way, they can be applied and modified separately,
without opening the target service. Thus, aspects can be added or removed independ-
ently of composite service design.

The weaving language is kept simple and intuitive and it allows the definition of
point-cuts by means of weaving instructions. These weaving instructions consist of
condition, control instructions and advice.

IF(<condition>) DO <control instructions> <advice>

Reaching a potential join-point in the skeleton execution triggers an event. If such an
event occurs, the applied weaving instructions are evaluated. At this point it is impor-
tant to highlight that multiple, independently specified sets of weaving instructions
might be applicable. All of them are considered.

The keyword “IF” marks the start of a weaving instruction and precedes the condi-
tion element. The purpose of the condition element is to verify if this particular weav-
ing instruction matches the currently considered event representing a join-point.

 Aspect Orientation for Composite Services in the Telecommunication Domain 25

Furthermore, it specifies if and which advice shall be executed. A central element
here is the join-point or event type that triggers the weaving. Additionally, further
conditions might exist, that evaluate variables stored in the shared state of the compo-
sition session. Depending on the event type, further data might be subject to condi-
tions. For example, for join-points that reside within the context of service selection,
the condition might be defined based on currently used selection constraints. If a
condition cannot be evaluated because data is not available in the current context, this
particular weaving instruction is ignored and weaving proceeds.

If the condition is found to be true, the respective advice is executed. The defini-
tion of advice and its mode of execution are specified after the keyword “DO” within
a weaving instruction.

It is important to note that some combinations of join-points and additional condi-
tions might fail. For example a condition based on constituent service selection com-
bined with the event for skeleton start might never be evaluated because the required
information is not available in this context. This weaving instruction will never apply.

By means of the optional control instruction, the execution of the advice code can
be steered. By default the advice code is executed synchronously by halting the skele-
ton execution at the join-point. Skeleton execution resumes after the advice execution
has been finished. By means of the control instruction, asynchronous advice execution
can be selected (keyword “ASYNC”). Furthermore the advice execution can be de-
layed after the action in the skeleton execution that is marked by the join-point (Key-
word “AFTER”). With this behavior, the start of the advice execution can for example
wait for results of the action that is connected to the join-point. The default is to exe-
cute advice immediately at reaching the join-point.

4.2 Advice Selection and Execution

The presented approach allows different ways to implement advice:

• As separate composition skeleton
• As inline command within the weaving instruction
• As external service

If advice is implemented as separate skeleton, the weaving instruction explicitly refers
to this skeleton. In the following example the join-point is the execution of a service
template (event SERVICESELECT).

IF(event=SERVICESELECT, constraint=”srv=user_profile”)
DO AFTER SKELETON(alt_user_profile)

Here, the weaving only applies if this service template contains a selection constraint
requiring a service that is described as “user_profile”. This service, for example, loads
a profile of the user from an external database into the shared state of the composition
session. The weaving instruction specifies that once the service template is finished,
thus after the selected service was executed, a skeleton called “alt_user_profile” is
started as advice. This advice skeleton might, for example, contain functionality that
processes and modifies user profile information. The composition engine continues
execution within the advice skeleton. If the advice skeleton is finished, the execution

26 J. Niemöller et al.

resumes in the original skeleton. Being implemented as skeleton, advice can in turn be
subject to further weaving when being executed.

Another possibility to implement advice would be an inline command given from
within the weaving instruction. This way, simple operations like a change within a
shared state variable can be initiated without the overhead of an external implementa-
tion of such a basic operation. The following example shows the usage of commands
as advice:

IF(event=SKELETONSTART, $SIP.METHOD=”INVITE”) DO
COMMAND($PRIORITY=2)

At skeleton start and if a SIP INVITE message was received according to the value of
a shared state variable $SIP.METHOD, the command sets the shared state variable
$PRIORITY to the value 2.

The most flexible possibility to implement advice would be to implement it as an
external service, for example as a web service. This separates the advice implementa-
tion from the implementation of the targeted composite services. Services are self
contained entities with strongly encapsulated functions that interact through well
defined APIs and protocols. Using an external service as advice implies the invoca-
tion of this advice service at join-points. Thus, a service invocation is directly weaved
into the target application rather than the advice itself, which stays a separate process.

In the simplest cases, an external service could be used as advice by directly and
statically addressing it from the weaving instruction.

Tooling of the underlying service composition environment provides an even more
dynamic and flexible method.. The model-driven composition approach and in par-
ticular the data and constraint based selection of services may be applied to the selec-
tion of services that implement an aspect. For this purpose, the weaving instruction
specifies selection constraints rather than pointing statically to an advice. Like any
other service in the composition environment, services that implement advices are
formally described within a service repository. Thus, aspects are implemented and
exposed in the same way as the constituent services that are used in skeleton based
composition.

The service description contains binding information and abstract description of
the service function and capabilities. Being based on constraints, advice selection in
the weaving process is based on abstract properties. The same constraint expressions
that are used in skeleton controlled composition apply in weaving instructions.

The following example of a weaving instruction adds functionality to count the
number of skeleton starts within the environment to composite services.

IF(event=SKELETONSTART) DO SELECT(srv=”skeleton_count”)

The keyword “SELECT” instructs to use the following parameters as constraints for
service selection in order to find the advice to be executed. In this example, the con-
straint demands to use a service that is described by the property “srv” as “skele-
ton_count”. This constraint is matched against the service repository in order to find
applicable advice. The aspect is applied by executing the selected advice service.

In this example, the same function could be added to a skeleton by inserting an ad-
ditional service template directly after the skeleton start element. Even the same con-
straint for service selection can be used, potentially finding and invoking the same

 Aspect Orientation for Composite Services in the Telecommunication Domain 27

service. This means that a service could be used either as a constituent service within
a composition or the same service could serve as advice within aspect weaving.

The skeleton counting example above describes a typical supplementary function
within a network. Its conventional implementation with additional service templates
would cross-cut throughout all composite services. By means of the weaving instruc-
tions, an alternative mechanism is available that complements the composition with-
out changing in the composition skeleton. In this respect, it is important to note that
both the skeleton based composition and the weaving are based on the same enablers
like constraint based service selection, abstract description of the services and the
shared state of the composition session.

The underlying composition environment supports services from various service
technology worlds. Currently, next to SIP and Web Services, AJAX services can be
used and Enterprise Service Buses (ESBs) are supported. The composition core proc-
ess of constraint based service selection is agnostic of the technology of constituent
services due to using abstract description of a service’s functional properties rather
than the technological details of its implementation. For the application of aspects this
means in principle, advice can be implemented based on any service technology that
is supported by the composition environment. In practice, some service technologies
like IMS/SIP, where services are persistent within end-to-end user communication
sessions, is less suitable for advice implementation. Instead, aspects can be imple-
mented using technologies like web services or AJAX, which are based on request-
response usage schemes.

4.3 Data Exchange with Advice Services

An important issue is how access to data is granted to the advice. There are two phi-
losophies for data handling: the full direct access to all data from the advice code or
the encapsulation of the advice in a way that allows data exchange with the target
application only through dedicated APIs. The presented approach uses both methods
depending on the advice implementation.

If an aspect is implemented as separate skeleton, this skeleton would be executed
as integral part of the target skeleton and within the same composition session. This
implies full access to all run-time data of the composition.

If an aspect is implemented as separate external service, it is encapsulated and
needs to exchange data through dedicated APIs. For this purpose, two possibilities are
available:

• Data exchange through an API exposed by the composition environment.
• Data exchange defined in weaving instruction using the service API.

For the first alternative, access to shared state is provided through an external API of
the composition engine. This API allows reading and writing shared state variables.
This method requires the advice service to use this particular API.

The latter alternative takes into account that advice invocations are service calls,
which can be parameterized and which might provide a return value. The service
parameters to be applied to the advice service invocation are defined in the weaving
instruction. The values used in parameters can for example originate in shared state
variables within the composition session. Furthermore, the return-value of the advice

28 J. Niemöller et al.

service can be connected with a shared state variable. The following example shows
the concept:

IF(event=SKELETONSTART) DO
SELECT(srv=”userlog”)($SIP.invite.userid,”24”)
->$SERVICEUSEDCOUNT

Here, at every start of a skeleton, a service shall be called, that logs the skeleton usage
per user. The user address, as received from SIP, was stored within a shared state vari-
able and it is used here as first parameter. The second parameter is a constant that
specifies the time interval for logging. Here 24 hours is used. As return value, the ser-
vice provides the number of skeleton invocations by this user within the specified time
interval. This return value is directed into the shared-state variable $SERVICEUSED-
COUNT and available for further processing within the composition session. This
processing might be implemented e.g. by further aspects applied to this composition.
As shown above, shared state can be used by aspects for exchanging data between each
other. Furthermore, shared state can be used to share data with the target application.
The target application is not aware of the presence of aspects but it considers the vari-
ables that are used by the aspects as part of the run-time environment.

Data exchange through the weaving instruction and the API of the advice service
allows implementing aspects without considering additional APIs that are specific to
the composition environment. The resulting services are more generic, thus more
suitable to be used in different contexts.

5 Example

This example demonstrates the addition of functionality that logs constituent service
usage to a composite service. As a base, the service that was already outlined in Fig. 1
is used. It provides an automatically localized weather forecast service. Additionally,
the service takes into account user preferences regarding the delivery of results.

Fig. 2 shows the composition skeleton that implements this service. The white
boxes in the skeleton are service templates, which imply constraint based selection of
services. They are complemented by structural elements that mark the start and end of
the skeleton and provide conditional branching of the execution.

The function to be added is logging of constituent service usage. Implementing this
within the skeleton would mean adding an additional service template after each al-
ready existing service template. This additional service is shown on the right side in
Fig. 2. It shows the six locations in the skeleton where this service template would
need to be added.

The same result can be achieved by means of weaving without changing the origi-
nal skeleton. The following weaving instruction inserts the logging service at all six
join-points:

IF(event=SERVICESLECT) DO AFTER
SELECT(srv=”logging”)($USERID, $LASTCONSTRAINT.SRV)
->$NUMBER

 Aspect Orientation for Composite Services in the Telecommunication Domain 29

Get User Position
Constraint:srv=‘user_position’
Parameters:user=$USERID

Return:$POSITION

Get Weather Forecast
Constraint:srv=‘weather’

Parameters:location=$POSITION
Return:$FORECAST

Get User Preferences
Constraint:srv=‘user_info’

Parameters:user=$USERID
Return:$USERPREF

Message to be sent ?
$USERPREF.MESSAGETYPE

Send SMS
Constraint:srv=‘sms’

Parameters:user=$USERID,
text=$FORECAST.INFO

Generate Weather Map
Constraint:srv=‘weather_map’

Parameters:data=$FORECAST
Return:$MAP

SMS MMS

Send MMS
Constraint:srv=‘sms’

Parameters:user=$USERID,
picture=$MAP, text=$FORECAST.INFO

end

end

start
Skeleton: localized_weather

Log Service Usage
Constraint:srv=‘logging’

Parameters:user=$USERID,
service=$LASTCONSTRAINT.SRV

Return:$NUMBER

Fig. 2. Example skeleton implementing location based weather forecast service

The aspect shall be applied after each service selection. The respective join-points
correspond to the event SERVICESELECT. The keyword ‘AFTER’ instructs to wait
with the advice execution until the execution of the skeleton selected service was
finished.

This example shows the similarities in the skeleton controlled composition and
weaving of aspects. The selection of the additional logging service is based on the
same constraint regardless if it is applied through additional service templates added
to the skeleton or by means of weaving. The parameters for service invocation and the
return value are connected to the same shared state variables. Nevertheless, the aspect
oriented approach implies two important advantages. It does not modify the original
service skeleton and it can easily be applied to multiple composite services at once. It
therefore helps to keep the service lean and it allows a broad deployment and distribu-
tion of additional functionality within a service domain.

6 Summary and Discussion of the Approach

The presented approach uses dynamic weaving at run-time, based on intercepting
events, which reflect the process of composition execution or originate in the run-time

30 J. Niemöller et al.

environment. Weaving is applied conditionally, depending on the state of the compos-
ite service execution. Selection of advice is dynamic and steered by constraints. Fur-
thermore, the addition of aspects is decoupled from the design of a composite service.
As a result, aspects not only improve the modularity, but allow integration of an exist-
ing service into a network environment by adding specific functions that are required
within this network domain.

In the presented approach, an aspect can be any service that is formally described
and exposed within the composition environment through a service repository. In
principle, this means that the same service can be used as constituent service in skele-
ton based composition as well as being applied as aspect through weaving. In either
way, it contributes to the overall composition of an application. Weaving is in this
respect an additional composition mechanism that complements the skeleton based
approach. In this sense, point-cuts, as expressed in the weaving instructions, can be
considered to constitute a new type of structural constraint for the overall composition
that comprises skeleton execution and weaving.

The skeleton provides a model of the composite service by means of constraints in
the same way as the weaving instructions, being based on constraints, provide an
aspect model. Thus, not only skeleton based service composition was enhanced by
concepts of AOP. By adding aspect orientation to the composition environment as
presented in this paper, also aspect weaving was enhanced by techniques that origi-
nate in data-driven service composition. This implies that characteristics of the com-
position environment, like late-binding and loose-coupling of constituent services, can
be applied to aspects. The just-in-time selection of aspects results in late-binding. The
selection being based on abstract constraints means loose coupling of aspects.

In the presented approach, activities like constraint based service selection and ser-
vice invocation are treated as join-points regardless if they occur in the execution of
skeletons or weaving instructions. This implies that weaving execution might in turn
be subject to further weaving. Furthermore, a service being invoked as advice does
not differ from a service being invoked from skeleton execution. Thus, the activities
of an aspect service might be subject to further weaving.

Being implemented and exposed as services, aspects, as described in this paper, are
strongly encapsulated entities in the sense of SOA (Service Oriented Architectures).
They offer their function through clearly defined APIs, but they are in principle not
dedicated to a certain application use-case scenario. The application of aspects is kept
separate and it is entirely done within the weaving instruction. As a result, aspects are
implemented in a generic way considering as less information about a specific appli-
cation scenario as possible. Thus they are re-useable in many contexts. This is in
contrast to aspects known from other AOP approaches like AspectJ and JBOSS-AOP,
where an aspect itself often contains information about where and under which condi-
tions it can be applied.

In many scenarios, AOP is used by a single developer who implements the target
application along with the implementation and application of aspects. The presented
approach additionally allows using AOP for target applications that might be provided
by a different administrative domain, for example, a 3rd party service provider. In this
context, the described aspect orientation concepts can be used as tools for system
integration.

 Aspect Orientation for Composite Services in the Telecommunication Domain 31

The composition engine is based on a separation of service selection and service
execution. Thereby, it becomes service technology agnostic to a great extent. The
described weaving approach inherits this characteristic by selecting and executing
advice similar to constituent services. Thus, weaving becomes as technology agnostic
regarding the used aspects as the skeleton based composition is agnostic regarding
constituent services. Aspects can be implemented with a different programming lan-
guage or even based on a different service technology than the target application or
other aspects used within the same environment. In general, aspects can be imple-
mented based on any of the various service technologies that are supported by the
composition environment. It is possible to replace an aspect by another one that is
implemented using a different service technology without the need to change the
composition skeleton or the weaving instructions. Both the skeleton and the weaving
instructions can accommodate changes in the available services. They can be de-
ployed in a different environment with different services and work unchanged
changes as long as services that satisfy the constraints are available. In this respect,
the presented approach differs from other AOP enhanced environments like, for ex-
ample, AO4BPEL [5]. In AO4BPEL the composition mechanism and the aspects are
mostly based on BPEL workflow processes and web service technology. Aspects are
not selected as dynamically as presented here though abstract modeling based on
constraints.

Furthermore, the approach presented in this paper differs from the framework that
was proposed in [9]. Rather than using aspects to modify the binding of web services
and client applications as proposed in [9], services are considered to be the aspects
themselves. In our approach, the binding flexibility lies within the expressiveness of
the weaving instructions and the constraint based selection of advice implementing
services.

Regular expressions in the weaving language, as they are known for example from
JBOSS-AOP [4], would provide expressiveness to the join-point selection that is
useful if complex language constructs are the base for point-cuts. Within the proposed
skeleton based environment such a powerful mechanism is not needed due to the
limited complexity of the join-point model based on skeleton elements and events.

The presented way of online weaving implies that the selection of aspects at differ-
ent join points is decoupled from each other while alternative aspects for the same
functionality are available. This might for example lead to the problem that whenever
a logging aspect has to be applied, a different one is selected and the complete log-
ging becomes inconsistent. In order to address this problem, we are working on coor-
dination in-between the aspect selections.

The described online weaving evaluates the weaving instructions at every potential
join point. If extensive collections of weaving instructions are applicable, this ap-
proach might considerably impact performance of the composite service execution. In
order to improve in this respect and improve run-time performance of the composite
application, static offline weaving might be applied if possible. Due to the dynamic
nature of the weaving concept that is characterized by weaving instructions based on
run-time conditions and dynamic constraint based advice selection, a full offline
weaving is usually not possible, but partial weaving might be possible offline. It can
be applied as pre-processing that optimizes the overall composition process.

32 J. Niemöller et al.

In order to allow design, deployment and application of aspects in a user-friendly
way, we are currently integrating the development of weaving instructions and the
management of aspects into the existing development and management tools for com-
posite services.

7 Conclusion

In this paper, we have identified how frequently required supplementary functions,
which are essential in the telecommunication domain, affect service composition. We
have outlined the cross-cutting nature of many of these supplementary functions. If
these supplementary functions are implemented directly into the services, they lead to
complex, multi-functional and therefore specialized services.

One major benefit promised by service composition is fast and cost-efficient de-
sign cycles enabled by re-using service components to a great extent. In order to reach
this goal, service composition relies on the availability of lean constituent services.
We have outlined how aspect oriented software design helps keeping services lean as
it allows separating these cross-cutting supplementary functions from the core func-
tion of the service. This is achieved by the introduction of aspect weaving in the com-
position environment.

Furthermore, this paper has not only applied aspect oriented design principles to a
new domain of composite services based on its specific composition paradigm and
language. It has rather shown that aspect weaving can reside as an additional and
complementary composition method besides a skeleton based approach. We have
shown that aspects can be implemented as services and added to a composition fol-
lowing the same constraint based mechanism that is used for skeleton driven selection
of constituent services. The implementation of the presented concepts is ongoing.

We have outlined that the described methodology does not only support the com-
posite service designer, but it allows broad application and management of additional
functions, e.g. applied to multiple services within a domain. Aspects can be applied to
a number of applications at once and automatically. This way, services that are avail-
able from third-party providers could be adapted without changes. This feature is
especially interesting for telecommunication network operators, considering their
specific needs regarding supplementary functions. In this respect, the global manage-
ment of weaving instructions deserves further investigation in order to control how
new functions are distributed to multiple applications.

References

1. Dinsing, T., Eriksson, G., Fikouras, I., Gronowski, K., Levenshteyn, R., Pettersson, P.,
Wiss, P.: Service composition in IMS using Java EE SIP servlet containers. Ericsson Re-
view 84(3), 92–96 (2007)

2. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M., Irwin, J.:
Aspect-Oriented Programming. In: Aksit, M., Matsuoka, S. (eds.) ECOOP 1997. LNCS,
vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

 Aspect Orientation for Composite Services in the Telecommunication Domain 33

3. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An Overview
of AspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, p. 327. Springer, Hei-
delberg (2001)

4. Burke, B., Flury, M.: JBOSS-AOP,
http://www.jboss.org/developers/projects/jboss/aop.jsp

5. Charfi, A., Mezini, M.: Aspect-Oriented Web Service Composition with AO4BPEL. In:
Zhang, L.-J., Jeckle, M. (eds.) ECOWS 2004. LNCS, vol. 3250, pp. 168–182. Springer,
Heidelberg (2004)

6. Web Services Business Process Execution Language (WSBPEL), OASIS (2007),
http://www.oasis-open.org/committees/
tc_home.php?wg_abbrev=wsbpel

7. Khalaf, R., Mukhi, N., Weerawarana, S.: Service-Oriented Composition of Web Services
(WS4BPEL). In: WWW 2003 Conference, Budapest, Hungary (2003)

8. Charfi, A., Mezini, M.: AO4BPEL: An Aspect-oriented Extension to BPEL. World Wide
Web Journal 10(3), 309–344 (2003)

9. Cibran, M.A., Verheecke, B., Vanderperren, W., Suvee, D., Jonkers, V.: Aspect-Oriented
Programming for Dynamic Web-Service Selection. World Wide Web Journal 10(3),
212–242 (2003)

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 34–49, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Intelligent Overload Control for Composite Web Services

Pieter J. Meulenhoff1, Dennis R. Ostendorf2, Miroslav Živković1,
Hendrik B. Meeuwissen1, and Bart M.M. Gijsen1

1 TNO ICT, P.O. Box 5050, 2600 GB Delft, The Netherlands
{pieter.meulenhoff,miroslav.zivkovic}@tno.nl,

{erik.meeuwissen,bart.gijsen}@tno.nl
2 Quintiq, 's-Hertogenbosch, The Netherlands

Abstract. In this paper, we analyze overload control for composite web ser-
vices in service oriented architectures by an orchestrating broker, and propose
two practical access control rules which effectively mitigate the effects of se-
vere overloads at some web services in the composite service. These two rules
aim to keep overall web service performance (in terms of end-to-end response
time) and availability at agreed quality of service levels. We present the theo-
retical background and design of these access control rules as well as perform-
ance evaluation results obtained by both simulation and experiments. We show
that our access control rules significantly improve performance and availability
of composite web services.

Keywords: Availability, Performance, Quality of Service, Service Oriented
Architecture, Web Admission Control, Web Service Composition, Web Service
Orchestration.

1 Introduction

Service oriented architectures (SOAs), based on Web Service technology, are becom-
ing increasingly popular for the development of new applications due to the promises
of easier development and shorter time-to-market. These so-called SOA-based com-
posite services are offered by service providers, and typically consist of multiple web
services, developed by third parties, which are executed in multiple administrative
domains.

Currently, service developers and providers focus on the functional aspects of
composite web services. However, too little attention is paid to the non-functional
aspects of composite web services such as availability, performance, and reliability.

Since several composite web services can make use of the same web services,
these popular web services used by multiple composite web services may experience
high demand, resulting in more requests than they can handle, leading to degradation
of all services that rely on these web services. These overload situations lead to re-
duced availability as well as higher response times, resulting in degraded quality as
perceived by end users.

This paper concentrates on improving performance and availability of composite
web services. In particular, a solution is proposed to improve the quality as perceived

 Intelligent Overload Control for Composite Web Services 35

by end users by increasing the average number of successfully served requests per
second. This solution is based on intelligently preventing overload on any one of the
services in the composition, by denying service to specific requests based on dynamic
admission control rules.

To illustrate our problem setting, Fig. 1 shows a simplified SOA architecture with
an orchestrating web service, also referred to as an orchestrating broker. Let us sup-
pose that the composite web service consists of three web services identified by W1
thru W3.

The broker consists of a scheduler and a controller. The scheduler determines the
order of the jobs submitted to web services W1 thru W3, since it may be different per
client. Each web service, W1 thru W3, has implemented the Web Admission Control
(WAC) mechanism. The broker’s controller keeps track of the total request execution
time, and decides if the latency is within the required limit.

W1

W2

W3

Client 1

Client N

…

Orchestrating
Broker

Controller

Scheduler

1

2, 12

3, 13

4

5

8, 14

9, 15

11

14, 16

10

requests jobs

Fig. 1. Jobs for client requests are routed through a network of web services (W1, W2 and W3)
by an orchestrating broker

To illustrate normal operation, let us suppose that a request from Client 1 (#1) arrives
at the broker. The scheduler analyses the request, and determines that the web service
W1, W2, and W3 should be invoked in that order. If the total execution time of the
request is less than the required limit, the job is delegated to component W1 (#2).
Before actually executing the job in W1, the WAC mechanism decides that W1 is not
in overload and executes the job. On the response (#3) from W1, the scheduler checks
with the controller that the total latency is less than the required limit and invokes the
next job at W2 (#4). This is repeated until all web services are invoked, and the re-
sponse (#10) to Client 1 is given within a maximum amount of time.

To illustrate an overload situation, let us suppose that a request from Client N
(#11) arrives at the broker. The scheduler analyses the request, and determines that
the web services W1 and W2 should be invoked in that order. When the job is dele-
gated to web service W1 (#12), the WAC mechanism in W1 decides that W1 is not
in overload and the job is executed. On the response (#13) from W1, the scheduler

36 P.J. Meulenhoff et al.

delegates the next job to W2 (#14). The WAC mechanism in W2 denies the job as W2
is in overload, and an unavailable message is returned to the broker (#15). As a result,
the broker is able to respond to Client N with a service unavailable message (#16)
within the maximum amount of time as well as to prevent escalation of the overload
situation of W2. Obviously, in this described overload situation resources of web
service W1 have been wasted.

Providers of web services W1 thru W3 may apply different state-of-the-art tech-
niques, such as overdimensioning of computing resources, load balancing, and cach-
ing, to prevent overload in their own domain. In this paper we focus on the use of
admission control in the web services in combination with a simple response time
limit check in the orchestrating broker to prevent the composite web service from
becoming generally unavailable in an overload situation. Admission control is al-
ready widely used in telecommunications. Research has also been performed on the
use of admission control for Web Servers; see for instance [1]-[3], [7]. The use of
WAC to prevent overload for stand alone Web Services has been discussed in [4]-[5].
In the field of composite web services several contributions have been made more
recently, focusing on web service scheduling; for instance in [8]-[9]. However, to the
best of the knowledge of the authors admission control schemes that include aware-
ness of the state of the workflow in a composition of web services, have not been
published yet.

Specifically, we investigate how each individual web service can intelligently deny
service to some of the jobs in the system in order to maximize the number of client
requests for which the entire composite web service is available with a given maximal
response time. Each composite web service is responsible for preventing it from col-
lapsing in overload situations, and with it the entire composite web service. We
thereby assume that the broker is not a single point of failure, i.e. that it can instantly
serve and process all requests and jobs. In our solution to control quality of composite
web services, mathematically derived using queuing theory, denial of service will
typically occur when the number of active jobs at specific web services reaches the
allowed maximum. As a result, we serve as many client requests as possible with the
requested end-user perceived quality, including a guarantee on the maximum response
time.

The rest of the paper is organized as follows. In Section 2, we define the mathemati-
cal foundation of the admission control problem. In Sections 3 and 4, two algorithms
for admission control by the web services are derived from the results in Section 2. In
Section 5, the simulation setup to investigate our solutions is described as well as two
simulation cases. In Section 6, the results of an experimental validation are described.
In Section 7, we end with conclusions and suggestions for the future work.

2 Mathematical Foundation for Admission Control

In this section, we will derive a queueing model of an composition of web services,
including an orchestrating web service (broker), see Fig. 1. This queueing model
forms the mathematical foundation for our access control rules.

Let us suppose that the composite web service consists of web services from the
set W = {W1, W2, …, WN}. In general, the Wj ∈ W may be composite web services

 Intelligent Overload Control for Composite Web Services 37

themselves. The incoming client requests at the broker are composed of jobs to be
sequentially executed by a chain of web services from the set W. Thus, each job
within the request is served by a single web service. Since the broker controls differ-
ent composite web services, the order in which jobs are executed may differ per client
request. The broker tracks job execution on a per request basis.

In practice, web services serve jobs using threading, which could be modeled using
a round-robin (RR) service discipline in which jobs are served for a small period of
time (δ→0) and are then preempted and returned to the back of the queue. Since δ →
0, assuming there are n jobs with the same service rate μw, the per job service rate is
μw/n. To simplify analysis, this process is modeled as an (egalitarian) processor shar-
ing (PS) service discipline.

The service time distribution of web service Wj is assumed to be exponential with
parameter μj. Jobs arrive at web service Wj with arrival rate λj and the web service
load is defined as ρj= λj/μj.

We define the latency Li of an incoming client request i as the total time it takes for
a request to be served. The sojourn time (i.e. time spent in the system) of job j at web
service Wj from request i is denoted by Sij. We ignore possible delay due to network
traffic and broker activity, so it holds that

∑=
j

iji SL (1)

The clients are willing to wait only a limited amount of time for the request(s) to the
composite web service to be completed. Within the SOA architecture, Service Level
Agreements (SLAs) can be defined between the clients and the provider of the com-
posite web service in order to quantify whether a request has been successful or not.
For example, the SLA may contain the description that a client request i is considered
successful when its latency Li is smaller than maximum latency Lmax. The maximum
latency tolerated by clients may depend on the application itself. Some studies [6]
show that users are on average willing to wait up to eight to ten seconds for the re-
sponse from a website. However, atomic commercial transactions may require laten-
cies that are much shorter [1]. The same SLA negotiation can be done between the
broker and each composite service. An existing standard that serves as inspiration is
WS Reliability [10]. Using the WS Reliability standard it is possible to give jobs so
called ‘expiry times’, which define the maximum time it may take to receive a re-
sponse.

We denote by cj a maximum number of jobs allowed to be served simultaneously
by web service Wj. When cj requests are served and the next job arrives it is denied
service by the admission control rules at the web service. This admission control rule
for web service Wj can be modeled by the blocking probability pcj. Since our objective
is to serve as many requests as possible (within Lmax) in an overload situation, our
goal is to find the optimal values of the cj.

To further simplify analysis, we assume that the web services Wj have the same
values of cj, λj, pcj, and μj, denoted as c, λ, pc and μ, respectively. We address this
optimization problem by modeling the web services Wj ∈ W as an M/M/1/c Processor

38 P.J. Meulenhoff et al.

Sharing Queue (PSQ). It is generally known that the blocking probability of the
M/M/1/c PSQ equals

∑ =

= c

k

k

c

cp
0
ρ

ρ
 (2)

And that the expected sojourn time at each of the web services equals

)1(1
/1

)(
cp

SE
−−

=
ρ

μ
 (3)

In the subsequent sections, two dynamic admission control algorithms S and D are
derived from the model discussed in this section.

3 Dynamic Admission Control Algorithm S

The basic underlying principle of algorithm S is that the expected sojourn time E(S)
of a job in a web service should be less than or equal to the average available time for
the jobs within the request. Thus, the problem of serving the client request within Lmax
is split up in consecutive steps. In each step, a limit on the expected sojourn time is
calculated in the following way.

The broker, which is the only component that `knows' the structure of the request,
divides the total allowed latency Lmax over all jobs. The moment t* when a request
enters the broker the due date for the next job j* is calculated. First, the total remain-

ing time for this request, i.e. ∑ −

=
− 1

1max

*

L
j

j ijS , is determined. Then, it is divided

over all remaining jobs in proportion to their service requirements. Let Dij* be the due
date of job j* from request i, let Ji be the total number of jobs from request i, let t* be
the time at which the due date for job j* is calculated, and let υij denote the expected
service time of job j from request i. Now the following relation holds:

∑
∑

=

−

= ⎟
⎠
⎞⎜

⎝
⎛ −+=

iJ

jj ij

ijj

j ijij
StD

*

**

*

1

1max
* L

ν

ν

As a result, the remaining time for job j from request i at time t is given by Rij (t) =
Dij - t. When the total remaining time of a request is less than zero, the request is dis-

carded by the broker and the client is notified. Let R denote the average remaining
available service time of all jobs in the Web Service Rij (t). Now dynamic admission

control algorithm S is derived based on the following constraint: the expected so-
journ time E(S) of a job in a web service should be less than or equal to the average
available time. Now our optimization problem is defined as follows:

 Intelligent Overload Control for Composite Web Services 39

{ }RSEc
c

≤)(:max (4)

In (4), both c and R are time-dependent, but we omit this to simplify our notation.

Computation of R is straightforward since due times of all jobs within the composite
service are known.

Substituting (3) in (4) yields:

⎭
⎬
⎫

⎩
⎨
⎧

≤
−−

R
p

c
c

c)1(1
/1

:max
ρ

μ
 (5)

Substituting (2) in (5) yields:

{ } 1))1(1(log:max >−+≤ ρρμρ forRcc
c

 (6)

Therefore, the admission control algorithm S is now defined as:

Allow arriving jobs service if ρ<1 or))1(1log(−+≤ ρμ Rn still holds after the

new job is allowed service.

In the remainder of this section, we discuss two issues of algorithm S. In order to
compute c the value of ρ is needed and thus the values of λ and μ as well. It is as-
sumed that the service requirement rate μ is known, but the value of λ is not. The
arrival process (of a web service) will in reality not be known and thus must be esti-
mated. Therefore, the question arises what is the time period to estimate λ and how to
estimate this value.

Another issue is that the arrival rate is explicitly used to estimate the value of c. In-
tuitively the number of jobs, which can be simultaneously served, does not depend on
the number of jobs which arrive at the system. The web service is capable of simulta-
neously serving c jobs. The blocking probability corrects for this fact, but further
investigation of this issue is required.

In the next section, an alternative dynamic admission control rule is derived, in
which the arrival rate λ (and hence ρ) is not used to determine the maximum value of
the number of jobs allowed.

4 Dynamic Admission Control Algorithm D

The goal of algorithm D is to implement admission control without knowledge of the
arrival rate λ. This algorithm is based on the relaxed constraint that only the average
job has to be completed on time. Theoretically, the average job completes on time
when the number of jobs in the system remains the same for the entire service time of
each job. Although jobs may enter the jobs may enter the system or depart from the
system, we investigate whether effective admission control is possible under the
assumption that the number of jobs remains the same.

40 P.J. Meulenhoff et al.

When the number of jobs n in the queue is assumed to be constant, the expected so-
journ time for a job equals n/μ. When all jobs must be served before their due dates
the problem is defined as follows:

{ }serviceinjobsallfor,)(:max ij
c

RSEc ≤ (7)

In our case E(S) equals c/μ, and ijR is replaced by R , where R determines the aver-

age remaining available service time for all jobs in service. These relaxations lead to
the following optimization problem:

,:max
⎭
⎬
⎫

⎩
⎨
⎧ ≤ R

c
c

c μ
 (8)

The solution of this trivial problem yields Rc μ= . Hence we define the more practi-

cal admission control algorithm D as follows:

Allow arriving jobs service if Rn μ≤ still holds after the arriving job is allowed

service.

Note that for the calculation of the admission control parameter c, the arrival rate (and
thus ρ) is not needed. This is a major advantage from a practical point of view com-
pared to algorithm S.

5 Simulation Setup

A discrete-event simulation model is constructed to evaluate the proposed admission
control algorithms. The model is implemented using the software package eM-Plant
see [11]. The simulation model basically consists of four components, see Fig. 2.
Component ‘Client’ generates new requests according to a Poisson process with rate λ.
Requests are dispatched through the network by component ’Broker’. After a request
has been generated a request type is randomly assigned, to indicate which web services
need to be visited. Each web service is an instance of component ‘WS’. The completed
or denied requests arrive at component ‘Output’, where relevant data is collected.

When a job is sent to one of the web services in the composition, the web service
checks whether it is allowed or denied service. In case admission control is not used,
all incoming jobs are allowed. When admission control is used, the web service uses
an access control rule to decide whether the incoming job may be served or not. Fig. 3
illustrates the flowchart of the broker component in case of admission control. When
a new request comes in, the broker determines whether the latency of this request has
already reached its limit, i.e. the remaining time for the request is less than zero. If the
limit is reached, the request is denied service and sent to the output component. It may
happen that the request has been allowed by the broker, but still the web service itself
can not serve the request. Even when the remaining time is greater than zero, the
broker determines whether the request has previously been denied service by the web

 Intelligent Overload Control for Composite Web Services 41

Fig. 2. Overview of the simulation model

Fig. 3. Flowchart of the broker component in case of admission control

service component. If so, the request is also sent to the output component. If neither
the latency limit has been reached nor the request has been denied service previously,
the next web service needed to complete the request is determined. The web service
calculates the due time for the next job, and then sends the job to the determined web
service. For this calculation the total remaining time for the request is divided over all
remaining jobs in proportion to their service requirements. When all jobs in the re-
quest are served, the request is sent to the output component as well.

Two simulation cases were designed to be used to compare the proposed admission
control algorithms:

Case 1: The web services are placed in a specific order i.e. if web service X is before
web service Y in one request type, it will be in every request type (in which both web
services are present).

42 P.J. Meulenhoff et al.

Case 2: There is no specific order of web services, but almost all request types make
use of two specific web services.

Both cases are identified by

• the (order of) web services which need to be used by each request type.
• the distribution of requests over the different request types.
• the (required) service rates of all web services.

Note that the arrival rate λ is not part of the case characteristics, nor is the maximum
allowed latency, Lmax. These are considered to be parameters within a given case.

There are two performance indicators for the given admission control algorithms
that we observed in greater detail

• Number of successfully served requests
• Goodput, which is defined as the average number of successfully served requests

per second.

All simulations are executed on a desktop computer with a dual Pentium IV 3.2GHz
processor and 1GB RAM memory. Unfortunately, the simulation package eM-Plant7
is not capable of using both processors. A bootstrap period (used to estimate λ) of 15
minutes is chosen as well as a simulation time of 15 minutes. A total of 15 simula-
tions per case have been run.

Simulation Case 1

In the first case a total of 11 web services W1, W2, …, W11 and 10 different request
types r1, r2, …, r10 were used. Most requests start in W1 or W5 and finish in W10 or
W11. The characteristics of this case are as follows:

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

10

3/10

10

10

5

5

3/10

5

5

3/10

5

,

02.0

03.0

05.0

40.0

10.0

05.0

05.0

05.0

20.0

05.0

,

4

2

119861

105

119841

109841

109821

1098721

1098321

11987321

10

9

8

7

6

5

4

3

2

1

μp

W

W

WWWWW

WW

WWWWW

WWWWW

WWWWW

WWWWWW

WWWWWW

WWWWWWW

r

r

r

r

r

r

r

r

r

r

Y

In this notation Y is a matrix which shows the (order of) web services which need to
be used by each request. The vector p denotes the distribution of requests over the
different types and vector μ denotes the (required) service rates of all web services.
Using test runs, the system (with Lmax=8s) is found to get in overload around λ=3s-1.
Therefore arrival rates around λ=3s-1 were investigated as well as other extreme val-
ues. Without WAC, the simulation runtime rapidly increases as λ increases. For λ=1s-

1 the runtime (without WAC) is about half a minute. For λ=10s-1 the runtime has in-
creased to about 45 minutes. To keep simulation run times acceptable, the extreme

 Intelligent Overload Control for Composite Web Services 43

arrival rates are not investigated for the situation without admission control. It is ex-
pected that the fraction of successfully served request and the goodput both have
value 0 in these situations. Total simulation time of this case was approximately 8
hours. Simulation results are summarized in Fig. 4, including 99.7% individual confi-
dence intervals. Notice that the scale of the horizontal axis changes after λ=10s-1.

It can be seen that both admission control rules have a positive effect on goodput.
Both admission control schemes seem to perform equally well. Only at extreme arri-
val rates the difference with the theoretical maximum increases. Goodput drops when
admission control is not used. However, when admission control is not used, there is a
slight increase in goodput between λ=5s-1 and λ= 9s-1. Especially at λ=9s-1 the per-
centage of successful requests is much larger than expected. Given the (very small)
confidence intervals it seems unlikely that this is due to the stochastic nature of the
experiment results. This phenomenon will be called the arrival paradox and is ex-
plained by the following example:

Consider three web services, W1, W2 and W3 (see Fig. 5) each with service rate 5.
Requests go from W1 or W2 to W3. If both W1 and W2 are not overloaded, the goodput

1 2 3 4 5 6 7 8 9 10 50 100 300

Arrival rate (requests/second)

0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
 s

uc
ce

ss
fu

l

Succes (NoWAC)
Succes (Priorities - WAC S)
Succes (Priorities - WAC D)
Late
Denied

1 2 3 4 5 6 7 8 9 10 50 100 300

Arrival rate (requests/second)

0

2

4

6

8

10

12

14

16

18

G
oo

dp
ut

 (
re

qu
es

ts
/s

ec
on

d)

Upper Bound
NoWAC
Priorities - WAC D
Priorities - WAC S

Fig. 4. Simulation results for Case 1

44 P.J. Meulenhoff et al.

from these web services equals the arrival rate of these web services. Therefore the
arrival rate at W3 equals the sum of the arrival rates at W1 and W2 and hence W3 is in
overload and its goodput drops to zero. When the arrival rates are doubled, one of the
web services W1 and W2 may get overloaded. Because admission control is not used,
sojourn times will explode and requests will exceed their maximum allowed latencies.
Recall that late requests are preempted at the broker. Therefore the arrival rate at web
service W3 decreases due to the higher overall arrival rate and W3 no longer is in over-
load, hence its goodput increases.

4
W1
(5)

W2
(5)

W3
(5)2

4

2

0

8
W1
(5)

W2
(5)

W3
(5)4

0

4

4

Fig. 5. Example of the arrival paradox, where web services in grey indicate overload

Simulation Case 2

In this case there are 10 request types and 9 web services. Most requests will visit W5
and/or W6, but these web services are not on a specific location in the chain, nor is
there any other general sequence in which web services are called. The characteristics
of Case 2 are as follows (using the same notation as in Case 1).

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

5

5

10

4

4

10

4

5

5

,

05.0

15.0

1.0

05.0

05.0

2.0

1.0

05.0

1.0

15.0

,

21891

456

9385

5198

53647

6195287

195578

62734

167325

268

10

9

8

7

6

5

4

3

2

1

μp

WWWW

WWW

WWWW

WWWW

WWWWW

WWWWWWW

WWWWWW

WWWWW

WWWWWW

WWW

r

r

r

r

r

r

r

r

r

r

Y

In Case 1 it could be argued that some web services would never get in overload. For
Case 2 this cannot be argued. Requests start in web services W1, W4, W5, W6, W7 or
W8, thus these web services will get in overload if the arrival rate is high enough. For
the other web services the line of reasoning used in Case 1 cannot be followed. This is
because Case 2 lacks the structure like Case 1 has. Therefore it seems that each web
service may get in overload. Total simulation time of this case was approximately 11
hours. Simulation results are summarized in Fig. 6. Just as in the previous case, the
differences between the admission control algorithms seem almost negligible. The

 Intelligent Overload Control for Composite Web Services 45

only (relevant) difference occurs in terms of goodput for high arrival rates. For low
arrival rates (λ<5s-1) the D rule results in a slightly worse situation than if admission
control is not used. In all other cases the admission control rules both behave better
than when admission control is not used.

The difference between the theoretical maximum for the goodput and the observed
goodput is larger compared to case 1, even for small values of λ. In case 1 the good-
put kept increasing, even at high arrival rates. In this case however, the goodput de-
creases after λ=12s-1.

Fig. 6. Simulation results for Case 2

6 Experimental Validation

Besides theoretical analysis and simulation of admission control, an empirical ex-
periment is set up to validate the simulations. Concrete web services were built and
the results are compared to the simulation results. For this purpose of comparison it
does not matter what function the web services perform. In addition, for setting up the
tests it is convenient if the CPU demand of executing a web service can be controlled.
Therefore, we implemented web services that calculate a specific Fibonacci number
(each service has its own number to calculate) according to a CPU consuming

1 2 3 4 5 6 7 89 39 899 199

Arrival rate (requests/second)

9

0

2

4

6

89

G
oo

dp
ut

 (
re

qu
es

ts
/s

ec
on

d)

Upper Bound
NoWAC
Priotities - WAC D
Priorities - WAC S

1 2 3 4 5 6 7 89 88 80 39 899 839

Arrival rate (requests/second)

9%

09%

29%

49%

69%

899%

Pr
ec

en
ta

ge
 S

uc
ce

ss
fu

l

Success (NoWAC)
Success (Priorities - WAC S)
Success (Priorities - WAC D)
Late
Denied

46 P.J. Meulenhoff et al.

algorithm. By choosing the Fibonacci number the CPU consumption of this web ser-
vice can be influenced. During the experiments two scenarios were evaluated: One
where admission control rule D is enabled (WAC D); the other where admission con-
trol is disabled (NOWAC). To obtain the results from the web service the software
package JMeter [12] was used. A global overview of the experimental setup is given
in Fig. 7.

Fig. 7. System setup for empirical validation of admission control

The orchestrating broker (see Fig. 3) and the individual web services (W1 thru W5) are
implemented following the design and implementation of the corresponding compo-
nents in the simulations. All software was written in Java and executed on Tomcat
[13] extended with Axis2 [14] for web service functionality. The case used in these
experiments resembles the first case, where the web services are placed in a specific
order. The characteristics of the web services are as follows (using the same notation
as in Case 1):

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

,

43

52

431

531

541

21

5421

54321

4

1

10

9

8

7

6

5

4

3

2

1

p

WW

WW

WWW

WWW

WWW

WW

WWWW

WWWWW

W

W

r

r

r

r

r

r

r

r

r

r

Y

Note that no values for the service rate of each web service are given. All web ser-
vices were configured to calculate the same Fibonacci number. Both the JMeter and
the Broker run on the system equipped with 2GB RAM and single Pentium IV proc-
essors clocked at 3.2GHz. The web services W1,…, W5 run on systems equipped with
0.5GB, 1GB, 1GB, 0.5GB, 0,5GB and with Pentium IV processors at 1GHz, 2.4GHz,

JMeter

W1 W2 W3 W4 W5

Broker

 Intelligent Overload Control for Composite Web Services 47

2.4Ghz, 1GHz, 1GHz respectively. JMeter was configured to generate the requests r1,
r2, …, r10 based on the probabilities p1, p2, …, p10. In each run of JMeter a fixed num-
ber of threads (between 1 and 200) were active. Each run used a warm-up time of 15
minutes, and a test time of 15 minutes; the latter has been used to gather the results
shown here.

In any composite web service the orchestrating broker is a suspect to become a per-
formance bottleneck and should therefore be kept light. In our case the admission
control rules are executed by the web services, and the broker is only responsible for
service orchestration and tracking total latency of a composite request. In our experi-
mental validation the orchestration is implemented in such a way, that performing
admission control does not add a bottleneck to the composite web service. If, the
broker would become the bottleneck in the system due to its orchestration function,
then it would be possible to distribute the work by using more brokers. This is possi-
ble since the admission control rules are implemented in the web services. An over-
view of the experimental results is given in Fig. 8.

Fig. 8. Results of the empirical tests

The empirical and simulation results correlate well. Using WAC the overall goodput
was noticeably higher than the NOWAC scenario. The NOWAC scenario reaches a
maximum goodput when there are a little bit more than 4 requests per second at 15
concurrent threads. The WAC scenario seems to level between 6 to 7 requests per
second at 50 concurrent threads.

7 Concluding Remarks

In this paper two different overload control algorithms for composite web services in
service oriented architectures, were derived. These algorithms, S and D, were derived
based on a M/M/1/c Processor Sharing Queue. In addition, a simulation model was

0 50 100 150 200

Number of concurrent client threads

0

1

2

3

4

5

6

7

G
oo

dp
ut

 (
re

qu
es

ts
/s

ec
on

d)

Priorities - WAC D
NoWAC

48 P.J. Meulenhoff et al.

constructed and used to conduct simulations with these two rules and a benchmark
(in which no admission control rule is used). Moreover, an experimental setup was
constructed to conduct an empirical evaluation of rule D and the benchmark.

Based on simulation results, we conclude that in most situations both admission
control rules S and D resulted in a higher objective value (measured in goodput) than
the benchmark. While the difference is small, rule S does perform better than rule D.
However, it can be observed that the results are dependent on the case, the structure
and interaction patterns of the used web service components. The experimental
evaluation of rule D gives similar results to the simulations performed for this rule.

To achieve further improvements, the empirical experiments should be scaled up to
evaluate a broader range of different and larger service oriented infrastructures. Such
experiments would be primarily focused on obtaining the most optimum goodput as
well as incorporating business objectives in the admission control rules.

Another area of research is to extend the proposed admission control mechanisms
in more complex environments, e.g. when the sequence of composite services is not
known in advance, or when there is more variation in the resource requirements of
each composite service.

Ackowledgement

Part of this work has been carried out in the context of the IOP GenCom project Ser-
vice Optimization and Quality (SeQual), which is supported by the Dutch Ministry of
Economic Affairs via its agency SenterNovem.

References

1. Gijsen, B.M.M., Meulenhoff, P.J., Blom, M.A., van der Mei, R.D., van der Waaij, B.D.:
Web admission control: Improving performance of web-based services. In: Proceedings of
Computer Measurements Group, International Conference, Las Vegas, USA (2004)

2. Xu, Z., Bochmann, G.V.: A Probabilistic Approach for Admission Control to Web Serv-
ers. In: Proceedings of Intern. Symp. on Performance Evaluation of Computer and Tele-
communication Systems, SPECTS 2004, San Jose, California, USA, July 2004, pp. 787–
794 (2004) ISBN 1-56555-284-9

3. Elnikety, S., Nahum, E., Tracey, J., Zwaenepoel, W.: A Method for Transparent Admis-
sion Control and Request Scheduling in E-Commerce Web Sites. In: Proceedings of the
13th international conference on World Wide Web, New York, USA, pp. 276–286 (2004)
ISBN:1-58113-844-X

4. Urgaonkar, B., Shenoy, P.: Cataclysm: Scalable Overload Policing for Internet Applica-
tions. Journal of Network and Computer Applications (JNCA) 31, 891–920 (2008)

5. Xi, B.: Quality of service (QoS) for web-based applications. Technical report, TNO-ICT
and Eindhoven University of Technology (2007)

6. Bouch, A., Kuchinsky, A., Bhatti, N.: Quality is in the eye of the beholder: Meeting user’s
requirements for internet quality of service. In: Proceedings of CHI 2000 Conference on
Human Factors in Computing Systems (2000)

 Intelligent Overload Control for Composite Web Services 49

7. Abdelzaher, T., Bhatti, N.: Web server QoS management by adaptive content delivery.
In: Proceedings of the International Workshop on Quality of Service, London, UK
(June 1999)

8. Dyachuk, D., Deters, R.: Scheduling of Composite Web Services. In: Meersman, R., Tari,
Z., Herrero, P. (eds.) OTM 2006 Workshops. LNCS, vol. 4277, pp. 19–20. Springer,
Heidelberg (2006)

9. Dyachuk, D., Deters, R.: Improving Performance of Composite Web Services. In: Pro-
ceedings of IEEE International Conference on Service-Oriented Computing and Applica-
tions, June 2007, pp. 147–154 (2007) ISBN 0-7695-2861-9

10. Iwasa, K., Durand, J., Rutt, T., Peel, M., Kunisetty, S., Bunting, D.: Web Services Reliable
Messaging TC, WS-Reliability 1.1. (2004),
http://docs.oasis-open.org/wsrm/ws-reliability/v1.1/

11. Tecnomatix, eM-Plant 7.0 Manual. Tecnomatix GmbH (2004)
12. Apache JMeter, http://jakarta.apache.org/jmeter
13. Apache Tomcat, http://tomcat.apache.org
14. Apache Axis2, http://ws.apache.org/axis2/

Trust-Oriented Composite Service
Selection and Discovery

Lei Li1, Yan Wang1, and Ee-Peng Lim2

1 Department of Computing, Macquarie University, Sydney, Australia 2109
2 School of Information Systems, Singapore Management University, Singapore 178902

{leili,yanwang}@science.mq.edu.au,
eplim@smu.edu.sg

Abstract. In Service-Oriented Computing (SOC) environments, service clients
interact with service providers for consuming services. From the viewpoint of
service clients, the trust level of a service or a service provider is a critical is-
sue to consider in service selection and discovery, particularly when a client is
looking for a service from a large set of services or service providers. However,
a service may invoke other services offered by different providers forming com-
posite services. The complex invocations in composite services greatly increase
the complexity of trust-oriented service selection and discovery. In this paper,
we propose novel approaches for composite service representation, trust evalua-
tion and trust-oriented service selection and discovery. Our experiments illustrate
that compared with the existing approaches our proposed trust-oriented service
selection and discovery algorithm is realistic and more efficient.

1 Introduction

In recent years, Service-Oriented Computing (SOC) has emerged as an increasingly
important research area attracting much attention from both the research and industry
communities. In SOC applications, a variety of services across domains are provided to
clients in a loosely-coupled environment. Clients can look for preferred and qualified
services via a discovery service of registries, invoke and receive services from the rich
service environments [18].

In SOC, a service can refer to a transaction, such as selling a product online (i.e.
the traditional online service), or a functional component implemented by Web service
technologies [18]. However, when a client looks for a service from a large set of services
offered by different providers, in addition to functionality, the reputation-based trust is
also a key factor for service selection. It is also a critical task for service registries to
be responsible for maintaining the list of reputable and trustworthy services and service
providers, and bringing them to clients [19].

Trust is the measure by one party on the willingness and ability of another party to
act in the interest of the former party in a situation [11]. Trust is also the subjective
probability by which, party A expects that another party B performs a given action if
the trust value is in the range of [0,1] [8].

Different from P2P information-sharing networks or eBay reputation management
system, where a binary rating system is used [25], in SOC environments, a trust rating
is usually a value in the range of [0,1] [19,20,21] given by a service client, representing

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 50–67, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Trust-Oriented Composite Service Selection and Discovery 51

the subjective belief of the service client on the satisfaction of a service or a service
provider. The trust value of a service or a service provider can be calculated by a trust
management authority based on the collected trust ratings representing the reputation
of the service or the service provider.

However, trust management is a very complex issue in SOC environments. To sat-
isfy the specified functionality requirement, a service may have to invoke other ser-
vices forming composite Web services with complex invocations and trust dependencies
among services and service providers [16]. Meanwhile, given a set of various services,
different compositions may lead to different service structures. Although these certainly
enrich the service provision, they greatly increase the computation complexity and thus
make trustworthy service selection and discovery a very challenging task.

In the literature, there are some existing studies for service composition and quality
driven service selection [3,16,24,28,30]. However, for trust-oriented composite service
selection and discovery, some research problems remain open.

1. The definition of a proper graph representation of composite services including
both probabilistic invocations and parallel invocations is still lacking. The corre-
sponding data structure is also essential. Both of them are fundamental and impor-
tant for deploying the global trust evaluation of composite services.

2. From the definitions in [8,11], trust can be taken as the subjective probability, i.e.
the degree of belief an individual has in the truth of a proposition [4,5], rather than
the objective probability or classical probability, which is the occurrence frequency
of an event [5]. A subjective probability is derived from an individual’s personal
judgment about a specific outcome (e.g. the evaluation of teaching quality or service
quality). It differs from person to person. Hence, the classical probability theory
does not fit for trust evaluation. Instead, subjective probability theory deals with
subjective probability [4,5] and should be adopted for trust evaluation.

3. Although there are a variety of trust evaluation methods in different areas [19,21,25],
no proper mechanism exists for evaluating the global trust of a composite service
with a complex structure from the trust values of all service components.

4. Taking trust evaluation and the complex structure of composite services into ac-
count, effective algorithms are needed for composite service selection and discov-
ery, and are expected to be more efficient than the existing approaches [16,28].

In this paper, we first present the service invocation graph and service invocation matrix
for composite service representation. In addition, we propose a trust evaluation method
for composite services based on Bayesian inference, which is an important component
in subjective probability theory. Furthermore, we propose a service selection and dis-
covery algorithm based on Monte Carlo method. Experiments have been conducted on
composite services with various sizes to compare the proposed model with the exist-
ing exhaustive search method [16]. The results illustrate that our proposed algorithm is
realistic and more efficient.

This paper is organized as follows. Section 2 reviews existing studies in service com-
position, service selection and trust. Section 3 presents our proposed composite services
oriented service invocation graph and service invocation matrix. Section 4 presents
a novel trust evaluation method for composite services. In Section 5, a Monte Carlo
method based algorithm is proposed for trust-oriented composite service selection and

52 L. Li, Y. Wang, and E.-P. Lim

discovery. Experiments are presented in Section 6 for further illustrating the properties
of our models. Finally Section 7 concludes our work.

2 Related Work

In SOC environments, the composition of services offered by different providers
enriches service provision and offers flexibility to service applications. In [14,15], Med-
jahed et al present some frameworks and algorithms for automatically generating com-
posite services from specifications and rules.

In real applications, the criteria of searching services should take into account not
only functionalities but also other properties, such as QoS (quality of service) and trust.
In the literature, a number of QoS-aware Web service selection mechanisms have been
developed, aiming at QoS improvement in composite services [3,24,30]. In [30], Zeng
et al present a general and extensible model to evaluate the QoS of composite services.
Based on their model, a service selection approach has been introduced using linear pro-
gramming techniques to compute optimal execution plans for composite services. The
work in [3] addresses the selection and composition of Web services based on functional
requirements, transactional properties and QoS characteristics. In this model, services
are selected in a way that satisfies user preferences, expressed as weights over QoS and
transactional requirements. In [24], Xiao et al present an autonomic service provision
framework for establishing QoS-assured end-to-end communication paths across do-
mains. Their algorithms can provide QoS guarantees over domains. The above works
have their merits in different aspects. However, none of them has taken parallel in-
vocation into account, which is fundamental and one of the most common existing
invocations in composite services [16,28].

Menascé [16] adopts an exhaustive search method to measure service execution time
and cost involving probabilistic, parallel, sequential and fastest-predecessor-triggered
invocations. However, the algorithm complexity is exponential. Yu et al [28] study the
service selection problem with multiple QoS constraints in composite services, and
propose two optimal heuristic algorithms: the combinatorial algorithm and the graph-
based algorithm. The former one models the service selection as a multidimension mul-
tichoice 0-1 knapsack problem. The latter one can be taken as a multiconstraint optimal
path problem. Nevertheless, none of these works addresses any aspect of trust.

The trust issue has been widely studied in many applications. In e-commence envi-
ronments, the trust management system can provide valuable information to buyers and
prevent some typical attacks [20,29]. In Peer-to-Peer information-sharing networks, bi-
nary ratings work pretty well as a file is either the definitively correct version or not
[27]. In SOC environments, an effective trust management system is critical to identify
potential risks, provide objective trust results to clients and prevent malicious service
providers from easily deceiving clients and leading to their huge monetary loss [19].

In general, the trust from a service client on a service or a service provider can
be taken as an extent with which the service client believes that the service provider
can satisfy the client’s requirement with desirable performance and quality. Thus, as
we point out in Section 1, trust is a subjective belief and it is better to adopt subjective

Trust-Oriented Composite Service Selection and Discovery 53

probability theory [5] to deal with trust. In contrast, classical probability theory is ac-
tually more suitable to deal with objective occurrence frequency of an event.

There are some works to deal with subjective ratings [7,22]. Jøsang [7] describes a
framework for combining and assessing subjective ratings from different sources based
on Dempster-Shafer belief theory. Wang and Singh [22] set up a bijection from sub-
jective ratings to trust values with a mathematical understanding of trust in a variety of
multiagent systems. However, their models use either a binary rating (positive or neg-
ative) system or a triple rating (positive, negative or uncertain) systems that are more
suitable for security-oriented or P2P file-sharing trust management systems.

As pointed in [27], in richer service environments such as SOC or e-commerce, a rat-
ing in [0, 1] is more suitable. In [26], Xu et al propose a reputation-enhanced QoS-based
Web service discovery algorithm for service matching, ranking and selection based on
existing Web service technologies. Malik et al [13] propose a set of decentralized tech-
niques aiming at evaluating reputation-based trust with the ratings from peers to facil-
itate trust-based selection and composition of Web services. However, in these works,
no service invocation and composite service structure are taken into account. Taking the
complex structure of composite services into account, effective algorithms are needed
for trust-oriented composite service selection and discovery.

3 Service Invocation Model

In this section, we present the definitions of our proposed service invocation graph and
service invocation matrix for representing the complex structures of composite services.
They are essential for our trust-oriented composite service selection and discovery al-
gorithm to be introduced in Section 5.

3.1 Composite Services and Invocation Relation

A composite service is a conglomeration of services with invocation relations between
them. Six atomic invocations [16,28] are depicted as follows and in Fig. 1.

• Sequential Invocation: A service S invokes its unique succeeding service A. It is
denoted as Se(S : A) (see Fig. 1(a)).

• Parallel Invocation: A service S invokes its succeeding services in parallel. E.g., if
S has successors A and B, it is denoted as Pa(S : A,B) (see Fig. 1(b)).

• Probabilistic Invocation: A service S invokes its succeeding service with a proba-
bility. E.g., if S invokes successors A with the probability p and B with the proba-
bility 1 − p, it is denoted as Pr(S : A|p,B|1 − p) (see Fig. 1(c)).

• Circular Invocation: A service S invokes itself for n times. It is denoted as Ci(S|n)
(see Fig. 1(d)). A circular invocation can be unfolded by cloning itself n times [28].
Hence, it can be replaced by Se in advance.

• Synchronous Activation: A service S is activated only when all its preceding ser-
vices have been completed. E.g., if S has synchronous predecessors A and B, it is
denoted as Sy(A,B : S) (see Fig. 1(e)).

• Asynchronous Activation: A service S is activated as the result of the completion of
one of its preceding services. E.g., if S has asynchronous predecessors A and B, it
is denoted as As(A,B : S) (see Fig. 1(f)).

54 L. Li, Y. Wang, and E.-P. Lim

(b)

AS

(a)
Se(S;A)

S

(d)
Ci(S;n)

A

B
S

(e)
Sy(A,B;S)

A

B
S

(f)
As(A,B;S)

A

B

S

Pa(S;A,B)

A

B

S

(c)
Pr(S;A|p,B|1-p)

Fig. 1. Atomic invocations

A

BS

(b)

C

Pr(S;Pa(S;A,B)|p,C|1-p)

A

BS

(a)

C

Pa(S;Pr(S;A|p,B|1-p),C)

S

A

B

C

(c)
Sy(A,As(B,C;S);S)

S

A

B

C

(d)
As(A,Sy(B,C;S);S)

Fig. 2. Complex invocations examples

With atomic invocations, some complex invocations can be depicted as Fig. 2, which
are not clearly introduced in the existing works.

• Probabilistic inlaid parallel invocation, denoted as Pa(S : Pr(S : A|p,B|1− p),C).
• Parallel inlaid probabilistic invocation, denoted as Pr(S : Pa(S : A,B)|p,C|1− p).
• Asynchronous inlaid synchronous activation, denoted as Sy(A,As(B,C : S) : S).
• Synchronous inlaid asynchronous activation, denoted as As(A, Sy(B,C : S) : S).

3.2 An Example: Travel Plan

Here we introduce an example of composite services.
Smith in Sydney, Australia is making a travel plan to attend an international con-

ference in Stockholm, Sweden. His plan includes conference registration, airline from
Sydney to Stockholm, accommodation and local transportation.

Regarding conference registration Reg, Smith could pay Online or by Fax with a
credit card Ccard. Regarding accommodation reservation Acc, Smith could make a
reservation at Hotel Ha, Hb or Hc with credit card Ccard. According to the hotel choice,
Smith could arrange the local transportation, e.g. take a Taxi to Ha, take a Taxi or a Bus
to either Hb or Hc. Regarding airplane booking Air, Smith could choose from Airlines
Aa, Ab and Ac with the credit card Ccard for the payment. Smith chooses the services
according to their trust values. He will have a higher probability to choose the service
with a better trust value.

In this example, with a starting service START and an ending service END, the com-
posite services consisting of all possibilities of the travel plan can be depicted by a
service invocation graph (SIG) (Fig. 3). One of all feasible travel plans is a service
execution flow as depicted in Fig. 4.

3.3 Service Invocation Graph

The structure of a composite service can be represented by a service invocation graph
(SIG), with the initial definition as follows.

Trust-Oriented Composite Service Selection and Discovery 55

START

Reg

Online

Ac

Air

Acc

Ccard
Fax

Ha

Hb

Hc

Taxi

Bus

Aa

Ab

END

Fig. 3. The SIG for the travel plan of Smith

START

Reg Online

Air

Acc

Ccard

Ha

Taxi

Aa

END

Fig. 4. A service execution flow

Definition 1. The service invocation graph (SIG) is a directed graph G = (V,E,R),
where V is a finite set of vertices, E is a finite set of directed edges and R is the set
of atomic invocations Se, Pa, Pr, Ci, Sy and As. In G, each vertex v ∈ V represents a
service. ∀e = (v1, v2) ∈ E (v1, v2 ∈ V) is a directed edge, where v1 is the invoking
vertex and v2 is the invoked vertex. Here v1 is the direct predecessor of v2 and v2 is the
direct successor of v1. It is denoted as v1 � v2.

Definition 2. Given a service invocation graph G = (V, E,R), vertex v2 ∈ V is
invocational from vertex v1 ∈ V if (v1, v2) ∈ E or there is a directed path P in G
where v1 is the staring vertex and v2 is the ending vertex. If v2 is invocational from v1,
it is denoted as v1 � v2.

In addition, if v1 � v2, v1 is the predecessor of v2 and v2 is the successor of v1.
Obviously, the invocational relation is transitive, i.e. if v1 � v2, v2 � v3, then v1 � v3.

Definition 3. In a service invocation graph, the service invocation root is the entry
vertex without any predecessors, and the service invocation terminal is the exit vertex
without any successors.

Based on the above definitions, SIG is well-defined as follows.

56 L. Li, Y. Wang, and E.-P. Lim

Definition 4. A composite service can be represented by a service invocation graph

SIG = (V, Ip, Rp, Is, Rs), (1)

where

– In an SIG, there are only one service invocation root START and only one service
invocation terminal END;

– V = {vi|vi is a vertex, vi =START or START � vi};
– Ip = {Ipi} and Ipi is a set of direct predecessors invoking vi, i.e. Ipi = {pij|pij , vi ∈
V and pij � vi};

– Rp represents a set of activation relations between Ip and V , which includes atomic
activations Sy and As;

– Is = {Isi} and Isi is a set of direct successors invoked by vi, i.e. Isi = {sij |vi, sij ∈
V and vi � sij};

– Rs represents a set of invocation relations between V and Is, which includes atomic
invocations Se, Pa, Pr and Ci.

Let ∅ denote the empty invocation relation set. In an SIG, if Ipi = ∅, then vi = START.
Similarly, if Isi = ∅, then vi = END.

Definition 5. A service execution flow (SEF) of an SIGG is a graphG′ = (V ′, E′, R′),
where R′ contains Se, Pa, Sy and Ci, V ′ ⊆ V and E′ ⊆ E. In addition, ∀v′ ∈ V ′, v′ is
invocational from service invocation root START of G, and service invocation terminal
END of G is invocational from v′.

3.4 Service Invocation Matrix

In Section 3.3, SIG provides a clear picture of service invocation relations in composite
services. However, an underneath data structure is essential to represent and store ver-
tices and invocation relations. Here we propose service invocation matrix - an algebraic
representation of composite services.

Definition 6. A composite service can be represented by a service invocation matrix

SIM = (Mij)1≤i≤n,1≤j≤n, (2)

where

– n is the number of vertices in the composite services;
– Mij = 0 iff there is no invocation from vertex i to vertex j;

– Mij =<M
(1)
ij ,M

(2)
ij , . . . ,M

(k)
ij > (i 	= j) represents the invocations from vertex i

to vertex j, and k is the number of all invocations from i to j;
– M

(h)
ij (1 ≤ h ≤ k) is an integer which represents an invocation type from vertex i

to vertex j;
– If it is a parallel invocation,M (h)

ij = 2m1 (m1 = 1, 2 . . .), where m1 increases
from 1 continuously and different m1 values indicate different parallel invoca-
tions Pas;

Trust-Oriented Composite Service Selection and Discovery 57

– If it is a probabilistic invocation, M (h)
ij = 2m2 − 1 (m2 = 1, 2 . . .), where

m2 increases from 1 continuously and different m2 values indicate different
probabilistic invocations Prs;

– Mii is an integer to represent the number of circular times of Ci in vertex i.

According to Definition 6, we have the following property.

Property 1. < M
(1)
ij ,M

(2)
ij >=< M

(2)
ij ,M

(1)
ij >

Taking Travel Plan (Fig. 3) in Section 3.2 as an example, non-zero entities of the SIM
are listed in Table 1. Our proposed SIM can cover all atomic invocation structures and
the complex invocation structures derived from them.

Table 1. Non-zeros of SIM in Travel Plan

i j Mij i j Mij i j Mij i j Mij

START Reg < 2 > Air Ab < 1 > Hc Ccard < 2 > Fax Ccard < 1 >

START Acc < 2 > Air Ac < 1 > Hc Taxi < 2, 1 > Ha Ccard < 1 >

START Air < 2 > Reg Online < 1 > Hc Bus < 2, 1 > Ha Taxi < 1 >

Acc Ha < 1 > Reg Fax < 1 > Aa Ccard < 1 > Ccard END < 1 >

Acc Hb < 1 > Hb Ccard < 2 > Ab Ccard < 1 > Taxi END < 1 >

Acc Hc < 1 > Hb Taxi < 2, 1 > Ac Ccard < 1 > Bus END < 1 >

Air Aa < 1 > Hb Bus < 2, 1 > Online Ccard < 1 >

4 Trust Evaluation in Composite Services

In this section, we introduce our trust evaluation models for composite services. In
Section 4.1, a trust estimation model is proposed to estimate the trust value of each
service component from a series of ratings according to Bayesian inference[4,5], which
is an important component in subjective probability theory. These ratings are provided
by service clients and stored by the service trust management authority. In Section 4.2,
a global trust computation model is proposed to compute the global trust value of a
composite service based on the trust values of all service components.

4.1 Trust Estimation Model

Since subjective probability is a person’s degree of belief concerning a certain event
[4,5], the trust rating in [0, 1] of a service given by a service client can be taken as
the subjective possibility with which the service provider can perform the service sat-
isfactorily. Hence, subjective probability theory is the right tool for dealing with trust
ratings. In this paper, we adopt Bayesian inference, which is an important component
in subjective probability theory, to estimate the trust value of a provided service from a
set of ratings. Each rating is a value in [0, 1] evaluated from the subjective judgements

58 L. Li, Y. Wang, and E.-P. Lim

of a service client on multiple attributes of the provided service, such as availability,
security, execution time and cost [8,23].

The primary goal of Bayesian inference [4,5] is to summarize the available informa-
tion that defines the distribution of trust ratings through the specification of probability
density functions, such as: prior distribution and posterior distribution. The prior dis-
tribution summarizes the subjective information about the trust prior to obtaining the
ratings sample x1, x2, . . . , xn. Once the sample is obtained, the prior distribution can
be updated. The updated probability distribution on trust ratings is called the posterior
distribution, because it reflects probability beliefs posterior to analyzing ratings.

According to [6], if all service clients give ratings for the same service, the pro-
vided ratings conform to normal distribution. The complete set of ratings can be col-
lected based on honest-feedback-incentive mechanisms [9,10]. Let μ and σ denote the
mean and the variance of ratings in the normal distribution. Thus, a sample of ratings
x1, x2, . . . , xn (xi ∈ [0, 1]) has the normal density with mean μ and variance σ. In
statistics, when a ratings sample with size n is drawn from a normal distribution with
mean μ and variance σ, the mean of the ratings sample also conforms to a normal dis-
tribution which has mean μ and variance σ/

√
n [4]. Let δ ∈ [0, 1] denote the prior

subjective belief about the trust of a service that a client is requesting for. We can as-
sume that the prior normal distribution of μ has mean δ and variance σ/

√
n, i.e.

f(μ) =

{ √
n

σ
√

2π
e

n(μ−δ)2

−2σ2 , 0 < μ < 1;
0, otherwise.

(3)

Given μ, the joint conditional density of the ratings sample is

f(x1, x2, . . . , xn|μ) =
1

σn(2π)
n
2
e

Σ(xi−μ)2

−2σ2 =
1

σn(2π)
n
2
e

Σx2
i −2μΣxi+nμ2

−2σ2 . (4)

Hence, the joint density of the ratings sample and μ is

f(x1, . . . , xn;μ) =
√
n

σn+1(2π)
n+1

2

e
Σx2

i −2μnx̄+nμ2+n(μ−δ)2

−2σ2 . (5)

Based on Eq. (5), the marginal density of the ratings sample is

f(x1, x2, . . . , xn) =
√
n

σn+1(2π)
n+1

2

e
Σx2

i +nδ2

−2σ2

∫ ∞

−∞
e

nμ2−(nx̄+nδ)μ
−σ2 dμ

=
√
n

σn+1(2π)
n+1

2

e
Σx2

i +nδ2− n(x̄+δ)2
2

−2σ2

∫ ∞

−∞
e

n(μ− x̄+δ
2)2

−σ2 dμ

=
1√

2σn(2π)
n
2
e

Σx2
i +nδ2− n(x̄+δ)2

2
−2σ2 , (6)

since a normal density has to integrate to 1.
Thus, the posterior density for μ is

f(μ|x1, x2, . . . , xn)=
f(x1, x2, . . . , xn;μ)
f(x1, x2, . . . , xn)

=
√
n

σ
√
π
e

n(μ− x̄+δ
2)2

−σ2 . (7)

Trust-Oriented Composite Service Selection and Discovery 59

Therefore, the posterior distribution of μ is normal with mean x̄+δ
2 and varianceσ/

√
2n.

If the loss function is squared error [4,5], the mean of the posterior normal distribution
can be used as the estimation of trust value from ratings. Hence,

Theorem 1. The Bayesian estimation of the trust value of a service with n ratings
x1, x2, . . . , xn (xi ∈ [0, 1]) is

T (x1, x2, . . . , xn, δ) =
x̄ + δ

2
=

Σn
i=1xi + nδ

2n
, (8)

where δ ∈ [0, 1] denotes the requesting client’s prior subjective belief about the trust.

If the requesting client has no prior subjective information about the trust of the re-
quested service, by default, let δ = 1

2 since 1
2 is the middle point of [0, 1] representing

the neutral belief between distrust and trust. After the Bayesian inference, the Bayesian
estimation of the trust can be taken as the requesting client’s prior subjective belief
about the trust for the Bayesian inference next time.

Now we can estimate the trust of a requested service by combining the requesting
client’s prior subjective belief about the trust and ratings. Since trust is subjective, it is
more reasonable to include the requesting client’s prior subjective belief about the trust.

4.2 Global Trust Computation in Composite Services

Our goal is to select the optimal one from multiple SEFs (service execution flows) in
an SIG aiming at maximizing the global trust value of SEF, which is determined by the
trust values of vertices and invocation relations between vertices in the SEF.

According to Definition 5, in SEF we only need consider Se (Fig. 1 (a)), Pa (Fig. 1
(b)) and Sy (Fig. 1 (e)) . From Se and Pa, Sy in SEF can be determined. Due to space
constraint, the details are omitted. Hence, there are two kinds of atomic structures to
determine the trust value of an SEF: Se and Pa. Se in the SEF can be selected from the
service invocation relation Se (Fig. 1(a)) or Pr (Fig. 1(c)) in the SIG. Pa in the SEF can
be selected from the service invocation relation Pa (Fig. 1 (b)) in the SIG.

Definition 7. The global trust value Tg of an Se structure where service S uniquely
invokes service A (see Fig. 1 (a)) can be computed by

Tg = TS · TA, (9)

where TS and TA are the trust values of S and A respectively, which are evaluated from
Theorem 1. Since S and A are independent, the probability that S and A both occur is
equal to the product of the probability that S occurs and the probability that A occurs.

Definition 8. The global trust value Tg of a Pa structure where service S invokes ser-
vices A and B in parallel (see Fig. 1 (b)) can be computed from TS and the combined
trust value TAB by Definition 7, and

TAB =
ω1

ω1 + ω2
· TA +

ω2

ω1 + ω2
· TB, (10)

where TS, TA and TB are the trust values of S, A and B respectively, which are evalu-
ated from Theorem 1. ω1 and ω2 are weights for A and B respectively which are spec-
ified in a requesting client’s preference or specified as the default value by the service
trust management authority according to QoS.

60 L. Li, Y. Wang, and E.-P. Lim

According to Definitions 7 & 8, each atomic structure Se or Pa can be converted to
a single vertex. Hence, in the process of trust computation, an SEF consisting of Se
and Pa structures can be incrementally converted to a single vertex with its trust value
computed as the global trust. Due to space constraint, we briefly introduce the following
global trust computation algorithm. For details, please refer to [12].

Global Trust Computation Algorithm. In order to obtain the global trust value of an
SEF, firstly the trust value of each atomic Se structure in the SEF should be computed
by Definition 7. Each computed atomic Se structure is then taken as a vertex in the
SEF. After that, the trust value of each atomic Pa structure is computed by Definition
8. Similarly, each computed atomic Pa structure is then taken as a vertex in the SEF.
Thus, the computation can repeat until the final SEF is simplified as a vertex, and the
global trust value is obtained.

5 Composite Service Selection and Discovery

Here we assume that a service trust management authority stores a large volume of ser-
vices with their ratings. In response to a client’s request, the service trust management
authority first generates an SIG containing all relevant services and invocation relations.
Then, the trust-oriented service selection and discovery algorithm is applied to find the
optimal SEF with the maximized global trust value.

5.1 Longest SEF Algorithm

If there are only Pr (probabilistic invocation) structures in an SIG (i.e. there are only
Se (sequential invocation) structures in the SEF), the SEF is a path in the SIG. In this
case, the longest SEF algorithm is applied for searching the optimal SEF. By extending
Dijkstra’s shortest path algorithm [1], the longest SEF algorithm is to find an execution
flow (path) from START to END so that the multiplication of trust values of all vertices
in the path is the maximal according to Definition 7. Formally, given a weighted graph
consisting of set V of vertices and set E of edges, find a flow (path) P from the service
invocation root START ∈ V to the service invocation terminal END ∈ V so that∏

vj∈P,vj∈V

(T (x1(vj), x2(vj), . . . , xn(vj), δj)) (11)

is the maximal among all flows (paths) from START to END, where xi(vj) denotes a
rating for vertex vj and δj denotes the requesting client’s prior subjective belief about
the trust of vertex vj . Due to space constraint, we ignore the details of this algorithm.

5.2 Monte Carlo Method Based Algorithm (MCBA)

If there are only Pa structures in an SIG, the unique SEF is the same as the SIG.
If an SIG consists of both Prs and Pas, finding the optimal SEF is an NP-complete

problem [28], and we propose a Monte Carlo method based algorithm (MCBA) to find
the optimal SEF.

Trust-Oriented Composite Service Selection and Discovery 61

Algorithm 1. MCBA for Composite Service Selection and Discovery

Input: Simulation times l; SIM, and service ratings Reputation.
Output: The optimal SEF with maximum global trust value Trustglobal.
1: Let Trust be the trust value for each service evaluated from Reputation by Theorem 1;
2: for all i such that 1 ≤ i ≤ l do
3: Initialize active = [root], SEF= [root];
4: while active �= ∅ do
5: Select a vertex vertex from active, and remove vertex from active;
6: Let vectors Pr and Pa be the Pr and Pa structures from vertex;
7: if vector Pa �= ∅ then
8: if vertex is in SEF then
9: for all Pa(j) in Pa do

10: if Pa(j) is not in SEF then
11: Add Pa(j) into SEF
12: end if
13: end for
14: end if
15: for all Pa(j′) in Pa(j) do
16: if Pa(j′) is not terminal and Pa(j′) is not in active then
17: Add Pa(j′) into active
18: end if
19: end for
20: end if
21: if vector Pr �= ∅ then
22: if vertex is in SEF then
23: if none of Pr is in SEF then
24: for all Pr(k) in Pr do
25: Generate a uniform distributed random number rand in [0, 1];
26: Select the smallest k′ such that rand <Trust(k′)/sum(Trust(k))
27: end for
28: Add Pr(k′) in SEF
29: end if
30: end if
31: if Pr(k′) is not terminal and Pr(k′) is not in active then
32: Add Pr(k′) into active
33: end if
34: end if
35: end while
36: Let TrustSEF be the trust value of SEF according to Global Trust Computation Algorithm
37: Trustglobal = max TrustSEF;
38: end for
39: return Optimal SEF and Trustglobal.

Monte Carlo method [2] is a computational algorithm which relies on repeated ran-
dom sampling to compute results. It tends to be adopted when it is infeasible to compute
an exact result with a deterministic algorithm. Monte Carlo method is useful for model-
ing phenomena with significant uncertainty in inputs, such as the calculation of risk in
business [2]. The specific areas of application of the Monte Carlo method include com-
putational physics, physical chemistry, global illumination computations, finance and
business, and computational mathematics (e.g. numerical integration and numerical op-
timization) [2,17]. It is also one of the techniques for solving NP-complete problems
[2,17]. Generally, Monte Carlo method consists of four steps: (1) defining a domain
of inputs, (2) generating inputs randomly, (3) performing a computation on each input,
and (4) aggregating the results into the final one.

The main strategy in MCBA is as follows. In an SIG, the direct successors of a service
need to be selected according to their trust values. Usually, the direct successor with a
larger trust value is preferred, which indicates higher probability to be invoked, and
vice versa. Then, according to this, a uniform distributed random number is generated
to decide which succeeding service is selected.

When determining the optimal SEF from an SIG, we only need MCBA for Pr struc-
tures. Let’s take Pr in Fig. 1(c) as an example to explain the details of our MCBA. If

62 L. Li, Y. Wang, and E.-P. Lim

successor A has a trust value TA from Theorem 1 and successor B has a trust value TB

from Theorem 1, the probability for vertex S to choose successor A is

PA =
TA

TA + TB
. (12)

Similarly, the probability to choose successor B is

PB =
TB

TA + TB
. (13)

Obviously, 0 < PA, PB < 1. Then a uniform distributed random number r0 in (0, 1)
is generated to decide which successor is chosen. In detail, if r0 < PA, successor A is
chosen; If PA < r0 < PA + PB = 1, successor B is chosen.

Therefore, given an SIG, an SEF could be obtained by repeating MCBA from the ser-
vice invocation root START until the service invocation terminal END is reached. Once
an SEF is generated, its global trust value can be calculated by global trust computation
algorithm in Section 4.2. By repeating this process for l simulation times, a set of SEFs
can be generated, from which the locally optimal SEF with the maximal global trust
value can be obtained. A high value of l is necessary to obtain the optimal solution.
MCBA for composite service selection and discovery is illustrated in Algorithm 1.

In Theorem 1, the trust estimation algorithm has a complexity ofO(n) with n ratings.
Hence, in global trust computation algorithm in Section 4.2, the complexity of trust
evaluation for a composite service with N services is O(nN). Therefore, MCBA with l
simulations incurs a complexity of O(nlN).

6 Experiments

In this section, we will illustrate the results of conducted experiments for studying our
proposed MCBA.

6.1 Comparison on Travel Plan Composite Services

In this experiment, we compare our proposed MCBA with the exhaustive search method
by applying them to the travel plan composite services (with 16 vertices and 30 SEFs).
The corresponding ratings and Smith’s prior subjective belief of each service compo-
nent are listed in Table 2. The weights of service components in all Pa structures of the
composite services are listed in Table 3.

The exhaustive search method is inefficient as it aims to enumerate all solutions.
In the work by Menascé [16], the exhaustive search method is adopted to calculate
execution time and cost of all SEFs in a composite service.

According to global trust computation algorithm in Section 4.2, the global trust value
Ti of SEF i (i = 1, 2, . . . , 30) can be calculated. Let trust-based SEF optimality be

OT (Ti) =
Ti

max(Ti)
. (14)

Trust-Oriented Composite Service Selection and Discovery 63

Table 2. Ratings and subjective belief of each service component in the travel plan

Reg Acc Air Online Fax Ha Hb Hc Aa Ab Ac Ccard Taxi Bus
x1 0.88 0.83 0.78 0.92 0.51 0.17 0.35 0.89 0.30 0.95 0.25 0.95 0.94 0.32
x2 0.84 0.82 0.87 0.92 0.38 0.18 0.32 0.86 0.36 0.98 0.30 0.95 0.86 0.37
x3 0.97 0.85 0.77 0.94 0.25 0.22 0.46 0.82 0.34 0.91 0.24 0.96 0.86 0.34
x4 0.87 0.82 0.83 0.96 0.40 0.12 0.34 0.87 0.29 0.91 0.31 0.96 0.89 0.18
x5 0.91 0.74 0.79 0.95 0.41 0.16 0.28 0.88 0.41 0.97 0.29 0.96 0.90 0.35
δ 0.92 0.85 0.91 0.95 0.32 0.20 0.50 0.91 0.32 0.92 0.51 0.98 0.89 0.33

Table 3. Weights of service components in Pa

Reg Acc Air Ccard Taxi Ccard Bus
0.1 0.3 0.6 0.6 0.4 0.6 0.4

The corresponding histograph of OT (Ti) values of 30 SEFs is plotted in Fig. 5. From it,
we can observe that 80% of OT (Ti) values are less than 0.8, implying that if we choose
an SEF randomly, it is very likely to obtain an SEF with a low trust value .

In MCBA, there are multiple simulations, in each of which an SEF is generated and
its global trust value is calculated. After l simulations, a locally optimal SEF can be
obtained from l generated SEFs. In order to study the distribution of global trust of
locally optimal SEFs, we take l simulations as a repetition and repeat for m times.

Our experiments are using Matlab 7.6.0.324 (R2008a) running on a Dell Vostro
V1310 laptop with an Intel Core 2 Duo T5870 2.00GHz CPU and a 3GB RAM. l,
the number of simulation times, is set from 1 to 100. m, the number of repetition times,
is set from 1 to 100. The experiment results are plotted in Fig. 7. We could observe that
with a fixed number of repetitions, the more simulations, the closer to 1 OT becomes.
Namely more simulations lead to a higher probability to obtain the optimal SEF.

Furthermore, we compare the execution time of MCBA with that of the exhaus-
tive search method. Each CPU time in this paper is the average of ten independent

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

1

2

3

4

5

6

O
T

F
re

qu
en

cy

Fig. 5. Histograph of OT for each SEF

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Simulation times

C
P

U
 ti

m
e

(s
)

MCBA
Exhaustive Search Method

Fig. 6. CPU time of simulation times

64 L. Li, Y. Wang, and E.-P. Lim

0
20

40
60

80
100

0

20

40

60

80

100

0.4

0.5

0.6

0.7

0.8

0.9

1

Simulation timesRepetition times

O
T

Fig. 7. OT in the travel plan example Fig. 8. OT in composite service of 100 vertices

executions. In Fig. 6, we can observe that when the number of simulation times l ≤ 82,
our MCBA is faster than the exhaustive search method. From Figs 6 and 7, we can see
that the probability to obtain the optimal SEF is 97% when there are 20 simulations.
Meanwhile, the execution time of our MCBA is 27% of the one of the exhaustive search
method. According to Table 2, theoretically the probability to obtain the optimal SEF
for each simulation in MCBA is 17.8%, due to SIG and the strategy in MCBA in Section
5.2. Hence after 20 simulations theoretically MCBA has the probability of 98.04% to
obtain the optimal SEF. Hence the experiment result about the probability to obtain the
optimal SEF confirms to the theoretical conclusion.

With this simple travel plan example, MCBA outperforms the exhaustive search
method. More significant performance differences can be observed with some complex
composite services to be introduced in the next section.

6.2 Comparison on Complex Composite Services

In this experiment, we further compare our proposed Monte Carlo method based al-
gorithm (MCBA) and the exhaustive search method on three more complex composite
services. The number of vertices of these composite services is 35, 52 and 100 respec-
tively. The numbers of Ses, Pas, Prs, Sys, Ass and SEFs in corresponding composite
services are listed in Table 4.

Table 4. Structure of complex composite services

Number of vertices Ses Pas Prs Sys Ass SEFs
35 17 8 11 4 11 1.8 × 103

52 24 13 16 7 16 5.4 × 104

100 51 24 32 12 32 2.92 × 109

Trust-Oriented Composite Service Selection and Discovery 65

Table 5. CPU time in seconds of different examples

Number of vertices 16 35 52 100
Probability to obtain the optimal SEF for each simulation 17.84% 14.31% 5.71% 0.33%

Number of simulation times in MCBA 20 20 52 925
Probability to obtain the optimal SEF for MCBA 98.04% 95.45% 95.29% 95.12%

CPU time (seconds) of MCBA 0.0695 0.3219 0.8625 34.51
CPU time (seconds) of exhaustive search method 0.2578 17.09 – –

In this experiment, we use the same platform as the experiment in Section 6.1. In
the case of composite service with 35 vertices, the MCBA takes 0.3219 second to finish
20 simulations with the probability of 95.45% to obtain the optimal SEF, while the ex-
haustive search method uses 17.09 seconds. When the number of vertices becomes 52,
our MCBA takes 0.8625 second to finish 52 simulations, with which the probability to
obtain the optimal SEF is 95.29%. However, when taking the same time, the exhaustive
search method can only search 0.42% of 5.4×104 SEFs. When taking 1000 times of the
MCBA CPU time, it can only search approximately 1% of all SEFs. We further apply
our MCBA to a composite service with 100 vertices. It takes 34.51 seconds to finish 925
simulations with a probability of 95.12% to obtain the optimal SEF. In contrast, when
taking the same time, the exhaustive search method can only search (9.56× 10−6)% of
2.92 × 109 SEFs. When taking 100 times of the MCBA CPU time, it can only search
(1.01 × 10−5)% of all SEFs. The above results are listed in Table 5.

In the case of composite service with 100 vertices, the results of MCBA are plotted in
Fig. 8. When there are l = 925 simulation times, MCBA can reach the optimal solution
with the probability 95.2% . Also it has a great chance to obtain the near-optimal one,
even when l is as small as 200. For example, in Fig. 8, when l is 200, the probability for
the trust-based SEF optimality to be OT ≥ 0.82 is about 95.7%.

In summary, our proposed MCBA can obtain a near-optimal SEF after some sim-
ulations. As the CPU time for a single simulation in MCBA is extremely short, our
experiments have illustrated that the overall performance of MCBA is good even with
complex composite services. In addition, MCBA is suitable for parallel computing since
each simulation in MCBA is independent. This can greatly speed up computations and
shorten the overall CPU time. Thus, our proposed MCBA is realistic and efficient.

7 Conclusions

In this paper, we first propose our service invocation graph and service invocation ma-
trix for composite service representation. In addition, a novel trust evaluation approach
based on Bayesian inference has been proposed that can aggregate the ratings from
other clients and the requesting client’s prior subjective belief about the trust. Based on
them, a Monte Carlo method based trust-oriented service selection and discovery algo-
rithm has been proposed. Experiments have illustrated that our proposed approach can
discover the near-optimal composite services efficiently.

66 L. Li, Y. Wang, and E.-P. Lim

In our future work, strategies for optimizing the Monte Carlo method based algo-
rithm will be studied to further improve the efficiency. We will also study some heuristic
approaches for trust-oriented optimal service selection and discovery.

References

1. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathe-
matik 1, 269–271 (1959)

2. Gentle, J., Härdle, W., Mori, Y.: Handbook of Computational Statistics. Springer, Heidelberg
(2004)

3. Haddad, J.E., Manouvrier, M., Ramirez, G., Rukoz, M.: QoS-driven selection of web services
for transactional composition. In: ICWS 2008, pp. 653–660 (2008)

4. Hamada, M.S., Wilson, A.G., Reese, C.S., Martz, H.F.: Bayesian Reliability. Springer, Hei-
delberg (2008)

5. Hines, W.W., Montgomery, D.C., Goldsman, D.M., Borror, C.M.: Probability and Statistics
in Engineering. John Wiley & Sons, Inc., Chichester (2003)

6. Hu, N., Pavlou, P.A., Zhang, J.: Can online reviews reveal a product’s true quality?: empirical
findings and analytical modeling of online word-of-mouth communication. In: ACM EC
2006, pp. 324–330 (2006)

7. Jøsang, A.: Subjective evidential reasoning. In: IPMU (2002)
8. Jøsang, A., Ismail, R., Boyd, C.: A survey of trust and reputation systems for online service

provision. Decision Support Systems 43(2), 618–644 (2007)
9. Jurca, R., Faltings, B.: Collusion-resistant, incentive-compatible feedback payments. In:

ACM EC 2007, pp. 200–209 (2007)
10. Jurca, R., Faltings, B.: Minimum payments that reward honest reputation feedback. In: ACM

EC 2006, pp. 190–199 (2006)
11. Knight, D.H., Chervany, N.L.: The meaning of trust. Technical Report WP9604, University

of Minnesota, Management Information Systems Research Center (1996)
12. Li, L., Wang, Y.: Trust evaluation in composite services selection and discovery. In: SCC

2009, Bangalore, India, September 21-25 (2009)
13. Malik, Z., Bouguettaya, A.: RATEWeb: Reputation assessment for trust establishment

among web services. VLDB J. 18(4), 885–911 (2009)
14. Medjahed, B., Bouguettaya, A.: A multilevel composability model for semantic web ser-

vices. IEEE Trans. Knowl. Data Eng. 17(7), 954–968 (2005)
15. Medjahed, B., Bouguettaya, A., Elmagarmid, A.K.: Composing web services on the semantic

web. VLDB J. 12(4), 333–351 (2003)
16. Menascé, D.A.: Composing web services: A QoS view. IEEE Internet Computing 8(6), 88–

90 (2004)
17. Morton, D.P., Popova, E.: Monte-Carlo simulations for stochastic optimization. In: Encyclo-

pedia of Optimization, pp. 2337–2345. Springer, Heidelberg (2009)
18. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented computing: a re-

search roadmap. Int. J. Cooperative Inf. Syst. 17(2), 223–255 (2008)
19. Vu, L.-H., Hauswirth, M., Aberer, K.: QoS-based service selection and ranking with trust

and reputation management. In: Meersman, R., Tari, Z. (eds.) OTM 2005. LNCS, vol. 3760,
pp. 466–483. Springer, Heidelberg (2005)

20. Wang, Y., Lim, E.-P.: The evaluation of situational transaction trust in e-service environ-
ments. In: ICEBE 2008, pp. 265–272 (2008)

21. Wang, Y., Lin, K.-J., Wong, D.S., Varadharajan, V.: Trust management towards service-
oriented applications. Service Oriented Computing and Applications journal 3(1) (2009)

Trust-Oriented Composite Service Selection and Discovery 67

22. Wang, Y., Singh, M.P.: Formal trust model for multiagent systems. In: Proceedings 20th
International Joint Conference on Artificial Intelligence (IJCAI 2007), pp. 1551–1556 (2007)

23. Wang, Y., Wong, D.S., Lin, K.-J., Varadharajan, V.: Evaluating transaction trust and risk
levels in peer-to-peer e-commerce environments. Inf. Syst. E-Business Management 6(1),
25–48 (2008)

24. Xiao, J., Boutaba, R.: QoS-aware service composition and adaptation in autonomic commu-
nication. IEEE Journal on Selected Areas in Communications 23(12), 2344–2360 (2005)

25. Xiong, L., Liu, L.: PeerTrust: Supporting reputation-based trust for peer-to-peer electronic
communities. IEEE Trans. Knowl. Data Eng. 16(7), 843–857 (2004)

26. Xu, Z., Martin, P., Powley, W., Zulkernine, F.: Reputation-enhanced QoS-based web services
discovery. In: ICWS 2007, pp. 249–256 (2007)

27. Yu, B., Singh, M.P., Sycara, K.: Developing trust in large-scale peer-to-peer systems. In:
2004 IEEE First Symposium on Multi-Agent Security and Survivability, pp. 1–10 (2004)

28. Yu, T., Zhang, Y., Lin, K.-J.: Efficient algorithms for web services selection with end-to-end
Qos constraints. TWEB 1(1) (2007)

29. Zacharia, G., Maes, P.: Trust management through reputation mechanisms. Applied Artificial
Intelligence 14(9), 881–907 (2000)

30. Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., Sheng, Q.Z.: Quality driven web ser-
vices composition. In: WWW 2003, pp. 411–421 (2003)

A Two-Tiered Approach to Enabling Enhanced
Service Discovery in Embedded Peer-to-Peer

Systems�

Antonio Brogi, Sara Corfini, and Thaizel Fuentes

Department of Computer Science, University of Pisa, Italy
{brogi,corfini,fuentes}@di.unipi.it

Abstract. Recent technology advances are pushing towards a full in-
tegration of low-capacity networked devices in pervasive embedded P2P
systems. One of the challenges of such integration is to allow low-capacity
devices both to invoke and to provide services, while featuring enhanced
service discovery mechanisms that are necessary to automate service in-
vocation in pervasive environments. In this paper we present a two-tiered
approach to enabling enhanced service discovery in embedded P2P sys-
tems. We first present a super-peer based overlay network featuring a
matching capability aware routing of messages, and saving the resource
consumption of low-capacity devices while keeping the overall network
traffic low. We then present a service discovery protocol that exploits
such underlying overlay network to suitably distribute service contracts
on devices capable of analysing them, thus enabling enhanced service
discovery even in nets mainly formed by low-capacity devices. Finally,
we discuss some experimental results that confirm the viability of the
proposed approach.

1 Introduction

Recent advances in hardware and wireless technologies have paved the way for
a full integration of low-capacity networked devices in pervasive embedded P2P
systems. In this perspective, Service-oriented Computing [1] has proven to pro-
vide suitable abstractions to master the complexity of large applications. The
notion of service is used to represent sets of functionalities offered by a peer1,
service providers publish into service registries contracts describing the provided
services, while service consumers query service registries to locate the services
they need to interact with.

To achieve truly automated pervasive systems, service discovery and invoca-
tion should be entirely automated, which means that enhanced service discovery
mechanisms should be featured to reduce the possibility of failures in automated
discover-and-invoke steps. In particular, one of the desired enhancements in the

� Research partially supported by EU FP6-IST STREP 0333563 SMEPP.
1 In this paper we will use the terms “peer” and “device” interchangeably.

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 68–82, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Two-Tiered Approach to Enabling Enhanced Service Discovery 69

service discovery process concerns the quality of the results of the discovery pro-
cess. Indeed while the need of including signature information in service contracts
to enable interoperability is universally accepted (e.g., WSDL has prominently
emerged as the de facto standard for defining the syntax of the functionalities
featured by Web services), signature information is not enough to fully automate
the discover-and-invoke step. For this reason, ontological annotations —to over-
come non-relevant differences in the syntactic description of services— as well
as behavioural information —to verify that service interactions will not lock—
are starting to be included in service contracts of embedded P2P systems [2].

Achieving an effective implementation of enhanced service discovery is how-
ever one of the critical issues in pervasive embedded P2P environments for var-
ious reasons:

– Service registries cannot be centralised for obvious scalability and reliability
reasons, thus service contracts have to be suitably distributed among the
peers participating in the application.

– A distributed implementation of the service discovery process should aim at
saving the resource consumption of low-capacity devices, which could other-
wise consume all their resources by participating in the discovery protocol
and then become unavailable when other peers will invoke the services they
offered.

– Intuitively, contracts of services published by low-capacity devices should
hence better be stored by higher-capacity devices. The implementation of
such a policy is however complicated by the fact that devices storing con-
tracts may (unexpectedly) disconnect from the network (e.g., because of
mobility or battery exhaustion reasons). Also, not all devices are in general
capable of analysing all types of information contained in service contracts.

Various service discovery architectures for (pervasive) P2P environments have
been proposed over the last years. Those architectures are however typically tai-
lored to efficiently deal with contracts and queries describing a specific type of
information (e.g., [3,4,5] focus on syntactic information, while [6,7,8] focus on
ontology-annotated queries), and they cannot be straightforwardly exploited to
efficiently implement discoveries based on other types of information. Consider a
query specifying both ontology-based and behaviour requirements. One could ex-
ploit for instance the approach of [6] to locate the service contracts matching the
ontology-based requirements, and then check whether the partially matched ser-
vices also satisfy the behaviour requirements of the query. The service contracts
found by [6] may be however hosted by peers which do not feature behaviour-
aware matching algorithms, and in those cases it would be necessary to discover
other peers capable of performing a behaviour-aware analysis of contracts and to
move the candidate contracts there to complete the matching. However, moving
sets of contracts across a P2P network would seriously increase net traffic and
severely affect the efficiency of the resulting discovery process.

In this paper we present a two-tiered approach to enabling enhanced service
discovery (taking into account different types of information contained in service
contracts) in embedded P2P systems for pervasive environments. We first present

70 A. Brogi, S. Corfini, and T. Fuentes

a super-peer based overlay network featuring a matching-capability aware rout-
ing of messages, capable of (o1) saving the resource consumption of low-capacity
devices and (o2) keeping the overall network traffic low. We then present a service
discovery protocol that exploits such underlying overlay network to (o3) suitably
distribute service contracts on devices capable of analysing them, thus enabling
enhanced service discovery even in nets mainly formed by low-capacity devices.
Finally, we discuss some experimental results to assess the level of achievement
of objectives (o1), (o2), and (o3) and to confirm the viability of the proposed
approach.

The proposed overlay network is a slight extension of the classical super-peer
model [9], where a set of connected (super) peers acts as servers for the rest of
(client) peers. One of the novelties of our overlay network is the introduction
of the notion of assistant peers, which can provide functionalities (matching
functionalities, in our context) not provided by the super peers. While assistant
peers may not own enough resources to play the role of super peers, these can
exploit assistant peers to provide the functionalities they cannot provide by
themselves. A suitable ranking function is introduced to rank peers (and classify
them as client, assistant or super peers) with respect to the provided matching
functionalities and their physical resources.

The rest of the paper is organised as follows. Sections 2 and 3 present the over-
lay network and the service discovery protocol, respectively. Section 4 discusses
some optimisations which mainly concern the maintenance of the overlay net-
work. Some experimental results are discussed in Section 5, while related work
is discussed in Section 6. Finally, Section 7 presents some concluding remarks.

2 Overlay Network

As anticipated in Section 1, the overlay network proposed in this paper slightly
extends the classical super peer model by introducing the notion of assistant
peers (Fig. 1). Intuitively, an assistant peer is a peer which provides some (match-
ing) functionalities, yet not owning enough physical resources to be a super peer.
A super peer can exploit assistant peers in its vicinity to provide its client peers
with functionalities it cannot provide by itself. In order to classify a peer as
super, assistant or client peer we introduce a ranking function ρ which ranks
peers by taking into account the features (i.e., physical resources and provided
functionalities) described in peer advertisements.

Specifically, an advertisement AP of a peer P is a tuple

AP = 〈WLP , CPUP , RAMP ,MOBP , POWP ,MFP 〉

where WLP ∈ [0..1] denotes the current workload of the peer in terms of both
the number of contracts stored by P and the requests managed in the last time
interval (i.e., 1 denotes an overloaded peer, 0 an idle peer), CPUP and RAMP

respectively denote the CPU speed and the RAM capacity of the peer, MOBP ∈
{stationary, moving} describes whether the peer is moving or not, POWP ∈
{power plugged, on battery} describes whether the peer is plugged to the power

A Two-Tiered Approach to Enabling Enhanced Service Discovery 71

Fig. 1. Overlay network topology

or not, and MFP = MFself(P) ∪ MFassistants(P) denotes the functionalities
that the peer provides either by itself (MFself(P)) or through its assistant peers
(MFassistants(P)).

The functionalities MFP described in a peer advertisement are precisely the
matching functionalities that the peer is able to provide. A matching functional-
ity is a type of matching algorithm. The group of matching functionalities that we
consider are 〈syntactic〉, 〈syntactic, ontological〉, 〈syntactic, light-behavioural2〉,
〈syntactic, behavioural〉, 〈syntactic, ontological, light-behavioural〉 and 〈syntactic,
ontological, behavioural〉.

A ranking function ρ : ADV×N −→ R is used to rank peers. A peer Q ranks a
peer P by computing the value ρ(AP , DPQ), where AP is the advertisement of P
and DPQ is the distance (i.e., number of physical hops) from P to Q. Intuitively,
when ranking peers featuring similar physical resources, ρ ranks higher peers
providing more matching functionalities. On the other hand, peer that advertise
no matching functionalities (viz., MFP = ∅) are always ranked 0, independently
of their physical resources.The values computed by ρ are also inversely propor-
tional w.r.t. the second parameter (i.e., ρ(AP , DPQ)>ρ(AP , DPQ + ε)) to take
into account the physical vicinity among peers.

A peer Q can exploit ρ to classify a peer P (possibly itself) as client, assistant
or super peer, as follows:

– P is a client peer if ρ(AP , DPQ) = 0,
– P may act as assistant peer if ρ(AP , DPQ) > 0, and
– P may act as super peer if ρ(AP , DPQ) > t

where t is a threshold to establish whether a peer can be a super peer or not,
and DPQ = 0 if Q = P . As illustrated in Fig. 1, client peers connect to a (single)

2 We distinguish light-behavioural matching algorithms (checking the “may”-
compatibility of service protocols, i.e., the existence of at least one successful interac-
tion trace) from full behavioural matching algorithms (checking the full compatibility
of service protocols, i.e., that all interaction traces are successful).

72 A. Brogi, S. Corfini, and T. Fuentes

nearby super peer, while – differently from the classical super peer model – a
super peer may exploit assistant peers in its vicinity to provide the matching
functionalities that it cannot provide by itself.

2.1 Network Maintenance

A peer Q acting as super peer maintains a list of fingers to other super peers
in its vicinity and a list of its current assistants. Both lists contain tuples of the
form 〈AP , DPQ, t〉, where t is the time at which Q received advertisement AP

from P . A peer that does not act as super peer maintains only one super peer
tuple, corresponding to the chosen super peer.

The core functionality of the overlay network can be summarised as follows:

– Each peer enters the net as a client peer, and it remains idle until it receives
a routing request (from one of its upper layer protocols) or it receives a
message from some other peer.

– When a client peer C needs to route a message, if it has not yet chosen its
super peer then it broadcasts to its vicinity a SuperPeerDiscovery message
carrying its advertisement AC .

– When a peer P receives a SuperPeerDiscovery message from C:
• If P is acting as super peer then P unicasts its advertisement AP to C.
• If P is not acting as super peer but ρ(AP , 0) > t or ρ(AP , DCP) ≥
ρ(AC , DCP) then P unicasts AP to C and self promotes itself to super
peer.

– When a client peer C receives an advertisement AP from P at time t:
• If C does not have a super peer and ρ(AC , 0) < ρ(AP , DPC) then C

chooses P as its super peer and stores 〈AP , DPC , t〉 as its super tuple.
• The same happens if C has a super peer S 	= P but ρ(AP , DPC) >
ρ(AS , DSC) + Δ

• If P was already the super peer chosen by C then C simply updates its
super tuple into 〈AP , DPC , t〉.

In any case, if C provides some matching functionality which is not provided
by P , then C unicasts its advertisement AC to P .

– A client C which has broadcasted a SuperPeerDiscovery message and which
has not received any advertisement AP such that ρ(AC , 0) < ρ(AP , DPC)
self promotes itself to super peer after a timed wait.

Super peers periodically broadcast their advertisements to their vicinity and
unicast their fingers list to the super peers in such a list. When a super peer
receives an advertisement or the list of another super peer, it updates its own
finger and assistant lists by exploiting the ranking function ρ. Note that a super
peer can be chosen as an assistant by another super peer.

2.2 Message Routing Protocol

The objective of the overlay network is to deliver messages to the peers which
provide the required matching functionalities. The overlay network routes each

A Two-Tiered Approach to Enabling Enhanced Service Discovery 73

message with respect to an associated key k = 〈MFS ,MFG〉, which specifies
the set MFS of matching functionalities which must be strictly provided by the
target peer, and the set MFG of the matching functionalities which should be
greedily provided by the target peer.

If the sender of the message is a client peer, the message is first routed to
the super peer of the sender (if any, otherwise the sender peer broadcasts a
SuperPeerDiscovery message to choose a super peer). If the target super peer
provides the required matching functionalities, the message and – possibly – the
link(s) to the assistant peer(s) necessary to satisfy 〈MFS ,MFG〉, are dispatched
to the upper service discovery layer. The super peer may also forward the message
to those super peers in its fingers table which match the received key k. The
radius of such forwarding is set by the service discovery layer.

3 Service Discovery Protocol

The service discovery layer features a service discovery protocol by storing service
contracts in super peers and by exploiting matching functionalities provided by
super and assistant peers to match contracts with queries.

The service discovery protocol exploits the overlay network to publish and to
search for service contracts by passing a publication or query message and a key
k = 〈MFS ,MFG〉 to the overlay network. As described in the previous section,
the key specifies the matching functionalities that the target peer(s) must provide
(viz., MFS) and should greedily provide (viz., MFG). For instance, a message
associated with the key 〈{〈syntactic, light-behavioural〉}, {〈syntactic, ontological,
light-behavioural〉}〉 will be received by super peers capable of performing (possi-
bly with the help of their assistants) both syntactic and light-behavioural match-
ing and optionally, also ontological matching.

When a (service discovery) message and the associated key k are received by
a target super peer, the overlay network dispatches the message, and the link(s)
to the assistant peer(s) possibly necessary to satisfy the matching functionalities
〈MFS ,MFG〉, to the service discovery layer. If the message is a publication
message the (discovery layer of the) target super peer stores the contract of
the published service. If the message is a query, the (discovery layer of the)
target super peer first matches the contracts that it stores locally. If the super
peer can provide all the required matching functionalities MFS by itself, it
returns the matched contracts to the peer that generated the request, otherwise,
it forwards the query and the (partially matched) contracts to (some of) its
assistant peers. Assistant peers match the received contracts by executing the
matching functionalities requested by k, and return the matched contracts the
peer that generated the request.

As anticipated in the previous section, the service discovery layer can specify
the radius of the forwarding of messages among super peers. A peer can hence
decide for instance to publish and search services only in its super peer.

Summing-up, the service discovery protocol (SDP) publishes and searches
service contracts by invoking the overlay network (ON). To do this, the former

74 A. Brogi, S. Corfini, and T. Fuentes

invokes the later with calls of the form: route(m,k,forwardHops) where m is either
publish(contract) or query(contractTemplate) and where k=〈MFS,MFG〉. Sup-
pose that the service discovery protocol of a peer Q invokes such a call. Then
the behaviour of the overlay network of Q can be synthesised as follow:

If Q is not super peer Then {
If � super peer Then Q starts discovering a super peer
<m,k,forwardHops> is sent to the ON of the super peer of Q

}
Else { // this branch is also the code to be executed when a ON component receives a

// message from another ON component
If MFQ ⊇ MF S Then {

If MFself(Q) � MF S AND m=query(ct) Then

m is dispatched to the SDP (of Q), together with a subset H of the assistants of
Q such that (∪h∈HMFh ∪ MFself(Q)) ⊇ MF S∧

∀h ∈ H (∪k∈H\{h}MFk ∪ MFself(Q)) � MF S

Else m is dispatched to the SDP (of Q)
dispatched = true

}
Else dispatched = false

// to forward message m

If (dispatched is false) OR (forwardHops > 0) Then {
If (dispatched is true) Then forwardHops=(forwardHops−1)
<m,k,forwardHops> is sent to all R in the fingers of Q such that MFR ⊇ MF S

}
}

4 Optimisations

To simplify the reading, in Section 2 we have presented the core aspects of our
overlay network. There are, however several important optimisations that have
been implemented to reduce the number of messages exchanged for network
maintenance and routing.

– Limited broadcast. We have seen that super peers periodically broadcast
their advertisement. To control the number of potential clients, super peers
dynamically update the radius of such broadcast according to their own
current workload and available resources.

– Passive mode. If an (active) super peer does not receive routing message for
a while, it switches to passive mode and stop periodically broadcasting its
advertisement – until it will receive a routing message and switch back to
active mode.

– Checking the aliveness of super peers. Whenever a peer routes a message to
a super peer A, it firstly checks the time tA when it received the advertise-
ment from A. If tA is up-to-date (i.e., the advertisement has been received
recently), the message is sent asynchronously to the super peer. Otherwise,
if tA is out-of-date, the message is sent synchronously to the super peer, in

A Two-Tiered Approach to Enabling Enhanced Service Discovery 75

order to get an acknowledgement from it. If an acknowledgement is received,
tA is updated, otherwise A is not considered a valid super peer any more.

– Avoiding network partitioning. Network partitioning may especially occur
in networks of mobile, limited-resource devices, where super peers advertise
themselves in a short vicinity. To avoid that, whenever a peer chooses a new
super peer, it notifies its old super peer (if any) of the availability of the new
super peer, thus facilitating the inter-connection among super peers.

5 Evaluation

In order to assess the viability of the proposed overlay network and service dis-
covery protocol, we analysed their behaviour with PlanetSim[10], an extensible
discrete-event Java simulator for key-based routing protocols in P2P overlay
networks.

We run a set of simulations for networks populated by heterogeneous peers,
randomly distributed and moving in a 600 × 600m2 area and capable of com-
municating within a 100m range. The matching functionalities provided by each
peer were obtained according to the peer’s randomly generated capabilities, and
peers could unexpectedly leave the network due to battery exhaustion. In all the
simulations, first all peers join the network, then 40% of peers (randomly chosen)
started publishing service contracts, and then 60% of peers (randomly chosen)
started issueing queries to discover services. The simulations were run by scaling
the number n of peers from 10 to 150 (with a pace of 10), and for each n the re-
sult was obtained by taking the average of the results of 15 different tests run for
200 units of simulation time. In each test 20% of peers (randomly chosen) were
high-capacity devices and 10% of peers (randomly chosen) were mobile devices,
(randomly) moving in their vicinity during the entire simulation.

The first set of simulations was run to assess the degree with which the pro-
posed service discovery protocol accomplished objective (o3) set in the Intro-
duction, namely “to suitable distribute service contracts on devices capable of
analysing them”.

The metric we used to measure the accomplishment level of (o3) was the
percentage of published contracts matching a query q that were successfully
located by the service discovery protocol on devices capable of analysing them.

Formally, let q be a query, let k be the key used to route q and let MFS(q)
be the set of required matching functionalities specified with q. Then for each
query q we computed the ratio:

�{ch | ∃P : P stores ch ∧ h �� k ∧ q hits P ∧MFP ⊇ MFS(q)}
�{ch | ∃P : P stores ch ∧ h �� k} (1)

where ch denotes a contract that was published with key h, h �� k denotes that
the key h and k match, and MFP denotes the set of matching functionalities
provided by peer P (possibly with the help of its assistants).

Fig. 2 illustrates the results of the simulation, with only 1-hop routing for-
warding among super peers. We can observe that even with a little percentage

76 A. Brogi, S. Corfini, and T. Fuentes

Fig. 2. Testing the ability of locating contracts on devices capable of analysing them

of high-capacity devices (20%), the accuracy of the discovery is very high up to
100 peers. After that it starts to decrease because of the incompleteness inher-
ent to the super peer model (exacerbated here by considering only 1-hop routing
forwarding among super peers).

The second set of simulations was run to assess the degree with which the
proposed overlay network accomplishes objective (o1) set in the Introduction,
namely “saving the resource consumption of low-capacity devices”.

The first metric we used to measure this was the percentage of (overlay)
messages received by low-capacity devices w.r.t the overall number of messages
exchanged due to routing activities (Fig. 3(a)). We compared our proposal with
a basic implementation of the super-peer model (similar to [3]3) and with the im-
plementation of Chord DHT[11] provided by PlanetSim, customised to support
mobility and to fit our statistics outputs.

We observed in Fig. 3(a) that, while Chord does not take into account device
capabilities, when the number of peer grows, our proposal reduces the percentage
of messages received by low-capacity devices w.r.t the basic super peer imple-
mentation.

The saving of resource consumption of low-capacity devices achieved by our
proposal is even better highlighted in Fig. 3(b), where the used metric is directly
the number of low-capacity devices still alive4 at the end of the simulation.

A further set of simulations was done to assess the degree with which the
proposed overlay network accomplishes objective (o2) set in the Introduction,
namely “keeping the overall network traffic low”.

We first measured the number of (overlay network) messages generated by
network maintenance activities. We can observe in Fig. 4(a) how the optimi-
sations implemented in our proposal (Section 4) allow to reduce the network

3 Super peer advertises right after joining the net, maintains a registry of their clients,
and client requests are routed to super peers with compatible (numeric) keys.

4 The simulation decrements the battery of a device every time it receives a message
at the physical level (either for network maintenance or for routing).

A Two-Tiered Approach to Enabling Enhanced Service Discovery 77

(a) Percent of messages received by low-
capacity devices during routing

(b) Number of low-capacity devices alive
at the end of the simulation

Fig. 3. Testing resource consumption of low-capacity devices

(a) Traffic due to network maintenance (b) Traffic due to routing

Fig. 4. Testing network traffic

traffic generated for network maintenance by the basic super peer model. The
numerical values for Chord –which generates only O(log2

2(N)) messages during
network maintenances[11]– are not plotted in Fig. 4.

We then measured the number of (overlay network) messages generated by
routing activity. Fig.4(b) shows that our proposal generates, as expected, quite
more traffic for routing than the basic super peer implementation. The reason for
this is that the implementation of our overlay network used in the experimenta-
tion routes messages with the objective of hitting devices providing the desired
matching functionalities, but it does not take into account the other information
included in contracts and queries (whose analysis is to be entirely performed by
the upper service discovery level). A more fair comparison of the two approaches
should consider an implementation of our overlay network capable of exploit-
ing such information to reduce the number of fingers and assistants to which
messages are routed. Such an implementation could be obtained by allowing the

78 A. Brogi, S. Corfini, and T. Fuentes

Fig. 5. Overlay/physical messages ratio

service discovery level to suitably configure the type of filters to be exploited by
the overlay network. This is precisely one of our planned future works.

In order to get an estimation of the actual traffic generated at the physical
level, we measured the ratio (Fig. 5) between the number of messages (both for
routing and network maintenance) at the overlay level and the corresponding
messages at the physical level5. Fig. 5 shows that the ratio of our proposal is
better that Chord (which is not topology-aware), but worse than the basic super-
peer model, as our ranking function ρ privileges the availability of (matching)
functionalities to physical vicinity.

6 Related Work

To overcome the serious limitations —scalability and reliability (single point
of failure)— of the first P2P architectures that relied on a centralised server
(e.g., like in Napster’s original design), a number of decentralised architectures
have been proposed for P2P systems. These can be roughly partitioned into
unstructured, structured and semi-structured architectures.

A main drawbackof unstructured architectures (like Gnutella[12], JXTA[13,14])
is message explosion, caused by the use of message flooding to route messages.
Moreover, each peer –target of a message routing– executes its own matching al-
gorithm(s) without exploiting enhanced matching algorithms possibly provided
by higher-capacity peers. This makes unstructured architectures unsuitable to im-
plement enhanced service discovery mechanisms for embedded P2P systems.

Structured architectures, such as Distributed Hash Tables (DHTs [4,5]), sen-
sibly reduce the number of (overlay) messages. However, the unawareness of the
underlying physical topology and of peers’capacities make DHTs unsuitable to
implement enhanced service discovery mechanisms for embedded P2P systems.
5 The simulator determined the number of physical messages corresponding to an

overlay message sent from A to B by counting one physical hop every 100m over the
Euclidean distance between A and B.

A Two-Tiered Approach to Enabling Enhanced Service Discovery 79

Also, DHTs are not particularly well-suited for mobile environments, where fre-
quent unexpected (dis)connections would cause frequent costly reorganisation of
the overlay network. It is worth mentioning [15], an extension of Pastry DHT
[16] which takes into account static physical capabilities of peers (viz., cpu speed,
ram, etc.), but does not consider dynamic properties like vicinity, workload or
battery consumption, and [17], which extends Chord’s identifiers [11] to take
into account any type of information regarding the service provider. Both [15]
and [17] however present the other general drawbacks of DHTs.

Semi-structured architectures (like our proposal) set up a backbone of super
peers which act as mini-servers for the other peers in the network. While they
do not present the drawbacks of unstructured and structured approaches, net-
work partitioning and cyclic message forwarding may occur in semi-structured
approaches like [18], where peers autonomously choose their links to other peers.
[7] and [19] build an overlay network among peers “sharing common interests”
(e.g., semantic concepts or types of services). In [7] peers are organised in clus-
ters, each mapping a semantic concept and storing “similar” files, while queries
are forwarded to clusters that feature compatible concepts. In [19], each cluster
has a coordinator, coordinators are linked one another, and coordinators do not
take into account the physical capabilities of peers. Data-centered approaches
like [7] and [19] are however tailored to handle specific types of data, and they
cannot straightforwardly exploited to efficiently implement discoveries based on
other types of information, as we already mentioned in the Introduction. In [20]
super peers exchange a hierarchical XML representation of the data they store
and use path expressions to process incoming queries. Such an approach cannot
be however exploited in networks consisting of low-capacity devices only, because
of the resources needed to process path expressions.

In [21] and [22], super peers constitute a DHT. In [21] low-capacity devices
connect to a bootstrap node, which is chosen as super peer. If the chosen super
peer is overloaded, the client is redirected to a non-overloaded super peer in the
(Chord) ring, and service publication and discovery is based on keywords. In [22]
peers discover and connect to super peers via JXTA protocols [13], and peers
discover services by sending trivial semantic-based queries (a single taxonomy of
types of services is considered) to super peers. Both [21] and [22] are not however
well-suited for mobile networks of low-capacity devices, and they suffer from the
previously discussed general drawbacks of structured architectures.

The approaches [23,24,25,3,6] are the most related with our proposal. In de-
signing our architecture, we followed the guideline of [9] on how super peers
can be selected, and we extended the concrete, yet partially defined, super peer
network protocol of FastTrack [23] (inspired by Kazaa, http://www.kazaa.com).
[24] ranks peers considering their static and dynamic capabilities. Super peers
are dynamically elected in order to keep bounded the ratio between the number
of clients peers and the number of super peers. Each super peer periodically
compares its ranking against the ranking of its clients (and vice-versa). If the
number of highest-ranked client peers exceeds a predefined threshold, then the
super peer downgrades to client peer while the best ranked client peer promotes

80 A. Brogi, S. Corfini, and T. Fuentes

as super peer. In [25] super-peers are elected considering mainly the distance
(measured as communication latency). Moreover, [25] deactivates super peers
when they do not register clients, but (active) super peers advertise themselves
even if they are not receiving queries from their clients. Instead, our proposal
deactivates super peers when they do not receive service discovery messages for a
while, thus saving network traffic. Differently from [24] and [25], we choose super
peers by taking into account their matching functionalities mainly, but also our
super peers do not register their clients to save memory consumption. Differently
from [25], our proposal also dynamically sets the advertisement radius of super
peers (i.e., the radius within which the super peers advertise themselves) with
respect to their current capabilities, helping to keep bounded the ratio between
client peers and super peers, similar to [24]. In the approaches [3] and [6], peers
are organised into a semi-structured network similar to [25]. Super peers store
service contracts and match them syntactically [3] and semantically [6]. The
main novelty of our proposal with respect to [3] and [6] is that our architecture
supports any matching approach, strengthened by the introduction of assistant
peers, which are the key ingredient to implement an efficient and accurate service
discovery mechanism capable of matching any type of query.

Last, but not least, we mention [26] that provides a high-level service discov-
ery architecture enabling the coexistence of different contracts languages and
(legacy) matching algorithms and allowing low-level communication among dif-
ferent (multi-radius) networks.

Different contract and query description languages and different matching
algorithms are used in pervasive environments, ranging from syntactic [5], to
semantics-based [8,27], to behaviour-based [28] service discovery. [26] provides a
high-level service discovery architecture enabling the coexistence of such (legacy)
matching algorithms. Our proposal can be integrated as a (vertical) middle-
layer in multi-tiered architectures like[26]: We locate –and route messages to–
devices capable to perform required matching functionalities, abstracting on the
underlying multi-radius network –provided by [26]– and perimetrically w.r.t.
both the contract (query) languages and the (legacy) matching algorithms, which
will be locally provided by systems like [26].

7 Concluding Remarks

We have presented a two-tiered approach to enabling enhanced service discov-
ery in embedded P2P systems. As we have seen, the proposed service discov-
ery protocol exploits an overlay network featuring a matching capability aware
routing of messages to suitably distribute service contracts on devices capable
of analysing them, thus enabling enhanced service discovery even in nets mainly
formed by low-capacity devices. We have also analysed the collected experimen-
tal data to assess the level of achievement of the three objectives that we set in
the Introduction —(o1) saving the resource consumption of low-capacity devices,
(o2) keeping the overall network traffic low, and (o3) suitably distributing service
contracts on devices capable of analysing them— yielding a confirmation of the
viability of the proposed approach.

A Two-Tiered Approach to Enabling Enhanced Service Discovery 81

Our plans for future work include to integrate first in our overlay network
key-based data filters (such those employed in [6,8]) to drive message routing, as
we already mentioned in Section 5. Then we plan to develop a full-fledged ser-
vice discovery system where existing (both ontology-based and behaviour-aware)
matchers can be plugged-in, so as to be able to start a thorough assessment of
the versatility of the proposed overlay network and a comparative assessment at
the service discovery level.

References

1. Papazoglou, M.P., Georgakopoulos, D.: Service-Oriented Computing. Communica-
tions of the ACM 46(10), 24–28 (2003)

2. Benigni, F., Brogi, A., Corfini, S., Fuentes, T.: Contracts in a Secure Middleware
for Embedded Peer-to-Peer Systems. In: Proc. of the 2nd Workshop on Formal
Languages and Analysis of Contract-Oriented Software (FLACOS) (2008)

3. Sailhan, F., Issarny, V.: Scalable Service Discovery for MANET. In: 3rd IEEE Int.
Conf. on Pervasive Computing and Communications (PerCom), pp. 235–244. IEEE
Computer Society, Los Alamitos (2005)

4. Lua, E.K., Crowcroft, J., Pias, M., Sharma, R., Lim, S.: A Survey and Comparison
of Peer-to-Peer Overlay Network Schemes. IEEE Communications Surveys and
Tutorials 7(2), 72–93 (2005)

5. Louati, W., Zeghlache, D.: SPSD: A Scalable P2P-based Service Discovery Archi-
tecture. In: IEEE Wireless Communications and Networking Conference (WCNC),
pp. 2588–2593 (2007)

6. Mokhtar, S.B., Preuveneers, D., Georgantas, N., Issarny, V., Berbers, Y.: EASY:
Efficient semAntic Service discoverY in pervasive computing environments with
QoS and context support. Journal of Systems and Software 81(5), 785–808 (2008)

7. Garcia-Molina, H., Crespo, A.: Semantic Overlay Networks for P2P Systems. Stan-
ford InfoLab, Technical Report 2003-75 (2003)

8. Skoutas, D., Sacharidis, D., Kantere, V., Sellis, T.K.: Efficient Semantic Web Ser-
vice Discovery in Centralized and P2P Enviroments. In: Sheth, A.P., Staab, S.,
Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC
2008. LNCS, vol. 5318, pp. 583–598. Springer, Heidelberg (2008)

9. Yang, B., Garcia-Molina, H.: Designing a Super-Peer Network. In: Proc. of the
19th Int. Conf. on Data Engineering (ICDE), pp. 49–60. IEEE Computer Society,
Los Alamitos (2003)

10. Pujol Ahulló, J., Garćıa López, P., Sànchez Artigas, M., Arrufat Arias, M., Paŕıs
Aixalà, G., Bruchmann, M.: PlanetSim: An extensible framework for overlay net-
work and services simulations. Universitat Rovira i Virgili, Tech. Rep. DEIM-RR-
08-002 (2008)

11. Stoica, I., Morris, R., Karger, D.R., Kaashoek, M.F., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for internet applications. In: ACM Conference
on Applications, Technologies, Architectures, and Protocols for Computer Com-
munication (SIGCOMM), pp. 149–160 (2001)

12. Gnutella team, Gnutella discovery protocol,
http://www9.limewire.com/developer/gnutella_protocol_0.4.pdf

13. JXTA team, Jxta specification, https://jxta-spec.dev.java.net/
14. Srirama, S.N., Jarke, M., Zhu, H., Prinz, W.: Scalable Mobile Web Service Discov-

ery in Peer-to-Peer Networks. In: 3rd Int. Conf. on Internet and Web Application
and Services (ICIW), pp. 668–674. IEEE Computer Society, Los Alamitos (2008)

http://www9.limewire.com/developer/gnutella_protocol_0.4.pdf
https://jxta-spec.dev.java.net/

82 A. Brogi, S. Corfini, and T. Fuentes

15. Liang, Q.A., Chung, J.-Y., Lei, H.: Service Discovery in P2P Service-oriented En-
vironments. In: Proc. of the 8th Int. Conf. on E-Comemerce Technology and of the
3rd Int. Conf. on Enterprise Computing, E-Commerce, and E-Services (CEC/EEE).
IEEE Computer Society, Los Alamitos (2006)

16. Rowstron, A., Druschel, P.: Pastry: Scalable, Decentralized Object Location, and
Routing for Large-Scale Peer-to-Peer Systems. In: Guerraoui, R. (ed.) Middleware
2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)

17. He, Q., Yan, J., Yang, Y., Kowalczyk, R., Jin, H.: Chord4S: A P2P-based Decen-
tralised Service Discovery Approach. In: IEEE Int. Conf. on Services Computing,
pp. 221–228. IEEE Computer Society, Los Alamitos (2008)

18. Kobayashi, H., Takizawa, H., Inaba, T., Takizawa, Y.: A Self-Organizing Overlay
Network to Exploit the Locality of Interests for Effective Resource Discovery in
P2P Systems. In: Proc. of the 2005 Symposium on Applications and the Internet
(SAINT), pp. 246–255. IEEE Computer Society, Los Alamitos (2005)

19. Doulkeridis, C., Nørv̊ag, K., Vazirgiannis, M.: DESENT: decentralized and dis-
tributed semantic overlay generation in P2P networks. IEEE Journal on Selected
Areas in Communications 25(1), 25–34 (2007)

20. Thilliez, M., Delot, T.: A Localization Service for Mobile Users in Peer-to-Peer
Environments. In: Crestani, F., Dunlop, M.D., Mizzaro, S. (eds.) Mobile HCI In-
ternational Workshop 2003. LNCS, vol. 2954, pp. 271–282. Springer, Heidelberg
(2004)

21. Hofstätter, Q., Zöls, S., Michel, M., Despotovic, Z., Kellerer, W.: Chordella – A
Hierarchical Peer-to-Peer Overlay Implementation for Heteregeneous, Mobile En-
vironments. In: 8th Int. Conf. on Peer-to-Peer Computing (P2P), pp. 75–76. IEEE
Computer Society, Los Alamitos (2008)

22. Ayorak, E., Bener, A.B.: Super Peer Web Service Discovery Architecture. In: Proc.
of the 23rd Int. Conf. on Data Engineering (ICDE), pp. 1360–1364. IEEE, Los
Alamitos (2007)

23. FastTrack team, FastTrack protocol,
http://cvs.berlios.de/cgi-bin/viewcvs.cgi/gift-fasttrack/

giFT-FastTrack/PROTOCOL?revision=1.19

24. Xiao, L., Zhuang, Z., Liu, Y.: Dynamic Layer Management in Superpeer Architec-
tures. IEEE Trans. on Parallel and Distributed Systems 16(11), 1078–1091 (2005)

25. Jesi, G.P., Montresor, A., Babaoglu, O.: Proximity-Aware Superpeer Overlay
Topology. IEEE Tran. on Network and Service Management 4(2), 74–83 (2007)

26. Caporuscio, M., Raverdy, P.-G., Moungla, H., Issarny, V.: ubiSOAP: A Service
Oriented Middleware for Seamless Networking. In: Bouguettaya, A., Krueger, I.,
Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364, pp. 195–209. Springer, Heidel-
berg (2008)

27. Zhou, G., Yu, J., Chen, R., Zhang, H.: Scalable Web Service Discovery on P2P
Overlay Network. In: IEEE Int. Conf. on Services Computing (SCC), pp. 122–129.
IEEE Computer Society, Los Alamitos (2007)

28. Shen, Z., Su, J.: Web Service Discovery Based on Behavior Signatures. In: Proc.
of the 2005 IEEE Int. Conf. on Services Computing (SCC), pp. 279–286. IEEE
Computer Society, Los Alamitos (2005)

http://cvs.berlios.de/cgi-bin/viewcvs.cgi/gift-fasttrack/giFT-FastTrack/PROTOCOL?revision=1.19
http://cvs.berlios.de/cgi-bin/viewcvs.cgi/gift-fasttrack/giFT-FastTrack/PROTOCOL?revision=1.19

Web Service Selection with Incomplete
or Inconsistent User Preferences

Hongbing Wang1, Shizhi Shao1, Xuan Zhou2,
Cheng Wan1, and Athman Bouguettaya2

1 School of Computer Science and Engineering,
Southeast University, China
{hbw,szs,chw}@seu.edu.cn

2 CSIRO ICT Centre, Australia
{xuan.zhou,athman.Bouguettaya}@csiro.au

Abstract. Web service selection enables a user to find the most desir-
able service based on his / her preferences. However, user preferences
in real world can be either incomplete or inconsistent, such that service
selection cannot be conducted properly. This paper presents a system
to facilitate Web service selection in face of incomplete or inconsistent
user preferences. The system utilizes the information of historical users
to amend the active user’s preference, so as to improve the results of
service selection. We present a detailed design of the system and verify
its efficiency through extensive experiments.

1 Introduction

As an increasing number of Web services have been deployed on the Web, service
selection is becoming an important technique for helping users identify desirable
Web services. To conduct effective service selection, we need (1) a model to
adequately describe users’ requirements or preferences over the nonfunctional
properties of services, such as Quality of Web Service, and (2) an intelligent
algorithm to select services according to a user’s preferences. In recent years, a
number of solutions have been proposed to address these two issues.

Most of existing solutions perform service selection based on quantitative
criteria, such as a utility function [1,2]. These quantitative approaches are com-
putationally efficient. However, they offer limited usability to end users, as it is
difficult for users to express their preferences using quantitative metrics [2], such
as Utility(Qantas Airline)=0.9 and Utility(Thai Airline)=0.7. In many cases,
users tend to express their preferences in a qualitative way, such as “I prefer
Qantas Airline to Thai Airline”. To obtain better usability, a number of qual-
itative methods [3,4] have recently been proposed to model users’ preferences
and to perform service selection.

Qualitative Web service selection is faced with a number of challenges as
well. On the one hand, users may not provide complete descriptions of their
preferences, such that service selection may produce too many results. On the
other hand, as users are not completely rational, they may provide inconsistent

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 83–98, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

84 H. Wang et al.

descriptions of their preferences, such that no result will be obtained. According
to [5,6], these cases are quite common in real life. To perform effective service
selection, we need an intelligent system that is able to automatically complement
users’ incomplete preferences and remove inconsistencies.

This paper proposes a system for conducting qualitative Web service selection
in face of incomplete or conflicting user preferences. To enable effective service
selection, it finds a number of historical users with similar preferences, and uses
their preferences to amend the preference of the active user. Then, it conducts
service selection using the amended preferences to obtain improved results. This
approach is in spirit similar to that of recommender systems [7,8]. We present a
detailed design of this service selection scheme, which include the technique for
finding similar users and the scheme for preference amendment. An experimental
evaluation has been conducted to verify its efficiency and effectiveness.

The rest of the paper is organized as follows. Section 2 gives some background
on qualitative service selection and recommender system. Section 3 presents our
general service selection framework. Section 4 presents the heuristics and the
algorithms for amending users’ preferences. Section 5 gives the results of our
experimental evaluation. Finally, Section 6 provides a conclusion.

2 Background

We first give a brief overview of Web service selection, and proceed to review the
technologies of Conditional Preference Network (CP-Net) [10] and Recommender
System.

2.1 Web Service Selection

In a typical scenario of service discovery, a user describes a desired service, and
an agent identifies the relevant services or service compositions that satisfies
the user’s requirements. The entire process actually consists of two steps, as
illustrated in Fig. 1. First, an abstract service or abstract service composition
is identified, which offers the conceptual functionality required by the user. For
example, if a user requests a service to store a data set, this step would returns
an abstract service called Data Storage. If the user requires that her information
be stored securely, this step would return an abstract composition consisting of a
Data Encryption service and a Data Storage service. While the abstract service
or composition is correct in functionality, it is not executable. In the second step,
a set of concrete services are selected to turn the abstract service or composi-
tion into executable process. For example, either Faidu File System or Doogle
Database can be selected to provide Data Storage service. Either Universal Pro-
tection or PGP Cypher can be selected to provide the Data Encryption service.
Service selection, also known as service optimization [9], refers to the second step.
Its objective is to select the concrete services which can best satisfy the user. The
level of satisfaction of a user is mostly determined by a service’s nonfunctional
features, such as reliability, latency and etc. Therefore, service selection always

Web Service Selection with Incomplete or Inconsistent User Preferences 85

Fig. 1. Example of Service Selection

focuses on comparing the nonfunctional attributes of concrete services. However,
as different users have different options on services’ goodness, users’ preferences
are important information for conducting effective service selection.

2.2 CP-Net

Conditional Preference Network (CP-Net) [10,11] is a widely used model for
qualitatively representing users’ preferences. This model can be briefly defined
as follows.

Definition 1 (CP-net). Let V = {X1, ..., Xn} be a set of attributes of Web
services. A CP-net over V is a directed graph G (called dependency graph) over
X1, ..., Xn, in which each node is annotated with a Conditional Preference Table,
denoted by CPT (Xi). Each conditional preference table CPT (Xi) associates a
total order of Xi’s values with each instantiation of Xi’s parents. �
We illustrate the semantics of CP-net using the example in Fig. 2. A Data Stor-
age service can be described by a number of attributes. They include Platform,
which can be a file system or a database, Location, which can be USA or China,
and Provider, which can be a private company or a public organization. As shown
in Fig. 2 (a), the user has an unconditional preference on Platform. As indicated
by the corresponding CPT, she always prefers databases to file systems. The
user’s preference on Location, however, depends on the platform she chose. As
a file system offer less data processing capability than a database, the user may
consume much more I/O traffics when using a file system. If the user is located
in China, most likely she would like the file system to be located in China too.
On the other hand, if the platform is a database, she prefers it to be located
in USA, as she believes that database technologies in USA are more sophisti-
cated. Moreover, the user’s preference on Provider depends on the location of
the service. For service providers in USA, she believes that private companies are
more trustworthy than public organizations. For service providers in China, she
believes that public sectors are more trustworthy than private companies. Based
on the CP-net presentation of the user’s reference, we can deduce the detailed
preference graph of her, which gives the user’s explicit preferences among all

86 H. Wang et al.

Fig. 2. Examples: (a) CP-net, (b) Induced Preference Graph, (c) Inconsistent CP-net

types of services. This induced preference graph is shown in Fig. 2 (b). Database
services provided by private companies in USA are the user’s first choice.

In real-world settings, a user may not want or be able to give a complete
CP-net presentation of her preferences. For instance, the user’s preference over
platform in Fig. 2 (a) can be missing. In this situation, FS∧China∧Public and
DB∧USA∧Private become incomparable. When preference specifications in a
CP-net are sparse, service selection may not be useful anymore, as there can be
too many candidate services that are possibly optimal. In a worse case, a user’s
specifications in the CP-net can be semantically inconsistent. As illustrated in
Fig. 2 (c), a user may specify that the attributes Location and Provider are
mutually dependent, and give four conditional preferences. However, based on
the user’s specification, we find conflicts in the induced preferences. (We can
deduce both China ∧ Public � USA ∧ Private and USA ∧ Private � China ∧
Public.) In this case, no optimal service can be found. According to [5,6], as
users are not complete rational, such cases are very common.

Existing techniques for service selection are unable to deal with the above sce-
narios. In this paper, we provide solutions to service selection when information
of user preferences is incomplete or conflicting.

2.3 Recommender System

Recommender system [7,8] is a technology attempting to select information items
that are likely to be interesting for users. It analyzes a user’s profile and pre-
dicts the user’s interests through statistical methods. We found that similar
approaches can be applied to complement a user’s incomplete preferences or to

Web Service Selection with Incomplete or Inconsistent User Preferences 87

Fig. 3. Process of Service Selection

fix a user’s inconsistent preferences. The most typical technique used in recom-
mender system is collaborative filtering [12]. Collaborative filtering utilizes the
regular pattern that like-minded users tend to have similar interest. It compares
users’ profiles to select users who share similar characteristic with the active
user. Then it aggregates the interests of these like-minded users to predicate the
possible interests of the active user. The method has been successfully applied to
a number of leading commercial Web-sites, such as Amazon and Ebay. To solve
the problems in service selection, we borrow the idea of collaborative filtering.
We find historical users who share similar preferences with the active user, and
use their preferences to amend the active user’s preferences, such that service
selection can be successfully conducted. In the following, we present a detailed
design of this approach.

3 Service Selection Framework

The complete process of service selection in our system is shown in Figure 3.
Upon receiving a user’s preference description, the system first checks its con-
sistency. If it contains conflicts, which are represented as cycles in the induced
preference graph, a conflict removal process is conducted to remove all conflicts
(cycles). The amended preference description is then passed to the service selec-
tor to retrieve the user’s favorite Web services. If the result set is too big to be
handled by the user, which means that the user’s preferences is under-specified,
the preference description is passed to the preference complementation process,

88 H. Wang et al.

which will find some additional preferences the user would probably agree. Fol-
lowing that, service selection is performed again to refine the result set. This
process can be repeated until the result set is manageable or no more comple-
mentation can be made.

The figure also shows the sub-steps of conflict removal and preference com-
plementation. Both processes utilize the profiles of historical users. To remove a
conflict, it first finds the users that are most similar to the active user. Then, a
voting process is conducted among these users to identify the most unimportant
preference involved in the conflict. This unimportant preference is thus removed
to break the conflict. To complement a user’s preferences, instead, the most
important preference is selected and added to the active user’s preferences.

4 Preference Amendment

Our approach of service selection is based on a single pattern – similar users
tend to have similar preferences. Hence, the key issues of preference amendment
include (1) how to find similar users and (2) how to amend a user’s preferences
based on the other users’ profiles.

4.1 Similar User Detection

To identify similar users, we compare the current user’s preferences against the
preferences of other users. The users with the most similar preferences are se-
lected. As introduced in Section 2, we describe a user’s preferences using CP-net.
Thus the similarity between two users can be measured by the similarity between
their CP-nets. An intuitive measure of this similarity is defined as follows.

Definition 2 (Distance between CP-nets). Let A and B be two CP-nets of an
abstract service composition. Let P (A) and P (B) be the induced preference
graphs of A and B respectively. Let e denote an edge in a preference graph.
Thus, the distance from B to A is calculated as:

Dis(A : B) =
|{e : e ∈ P (A) ∧ e ∈ P (B)}|

|{e : e ∈ P (A) ∨ e ∈ P (B)}| − |{e : e ∈ P (A) ∧ e ∈ P (B)}|

�

According to Definition 2, the distance between CP-net B and CP-net A can
be measured by the size of the overlap between A and B’s induced preference
graphs (as illustrated in Fig. 2 (b)) divided by the size of the non-overlapping
parts. While this measure of distance is intuitive, its computation can be very
expensive. According the definition of CP-net, the size of an induced preference
graph grows exponentially with the number of attributes of services. Therefore,
when a large number of attributes are considered in service selection, it will be
infeasible to use Definition 2 to compute users’ similarity. Fortunately, we can
largely reduce the cost by utilizing the characteristics of CP-nets.

Web Service Selection with Incomplete or Inconsistent User Preferences 89

Given a particular abstract service or service composition, we assume that dif-
ferent users’ CP-nets share the same dependency graph. This assumption is based
on two facts. First, the dependencies among the attributes of a certain service
type are usually determined by the inherent characteristics of these attributes
themselves. For instance, as illustrated in Fig. 2, the dependency between Loca-
tion and Provider is determined by the correlation between the quality of service
and these two attributes. In contrast, it is difficult to argue that a dependency
exists between Location and Platform. As another example, Destination and
Hotel are two attributes of a Travel service. It is easy to understand that Ho-
tel depends on Destination, as a tourist a choice of hotel usually depends on
where he is visiting. However, it is difficult to justify that Destination depends
on Hotel. Second, even when users specify different dependency graphs in their
CP-nets, we can create a common dependency graph for them by combining
their dependency graphs into one. The users’ CP-nets can be adjusted accord-
ingly to fit the more complex common dependency graph, without varying their
semantics. When CP-nets share a common dependency graph, their distances
can be directly calculated from their CPTs.

Lemma 1. Let {X1, ..., Xn} be the attributes of an abstract service S. Let D(Xi)
denote the set of attributes which Xi depends on. Let R(Xi) be the set of values
that can be assigned to Xi. Then, given a CP-net, each conditional preference in
CPT (Xi) forms

∏
Xj /∈D(Xi) |R(Xj)| edges in the induced preference graphs. �

For instances, in Fig. 2, the preference Database � File System determines four
edges in the induced preference graph, while the preference China: Public �
Private determines two edge in the induced preference graph. According Lemma
1, we can compute the distance between two CP-nets using the following formula.

Theorem 1. Let {X1, ..., Xn} be the attributes of an abstract service S. Let A
and B be two CP-nets of S which share the same dependency graph. Let D(Xi)
denote the set of attributes which Xi depends on. Let R(Xi) be the set of values
that can be assigned to Xi. Then, the distance from B to A can be calculated
by:

Dis(A : B) = ∑
Xi

(
|CPTA(Xi) ∩ CPTB(Xi)| ×

∏
Xj /∈D(Xi)

|R(Xj)|
)

∑
Xi

(
|CPTA(Xi) ∪ CPTB(Xi) − CPTA(Xi) ∩ CPTB(Xi)| ×

∏
Xj /∈D(Xi)

|R(Xj)|
)
�

As discussed previously, it is expensive to compute the distance between CP-nets
by counting the overlapped edges in the induced preference graphs. By applying
Theorem 1, the computational cost can be reduced to the order of the size of CP-
nets. Specifically, the cost is linear with the number of conditional preferences
in the CPTS.

90 H. Wang et al.

4.2 Preference Voting

Using distances between CP-nets, we can identify users with similar preferences.
When a user’s preference is incomplete or inconsistent, it can be amended using
the preferences of his / her like-minded users. As we assume that different users’
CP-nets share a common dependency graph, by incompleteness or inconsistency,
we always refer to the conditional preferences in the CPTs. We apply the idea
of collaborative filtering. If a user’s preferences, i.e., the conditional preferences
in her CPTs, is incomplete, we add to it some additional preferences which are
most supported by the like-minded users. If a user’s preferences contain a conflict,
we find all the preferences involved in the conflict, and remove the one that is
least supported by the like-minded users. To measure how much an individual
preference is supported by a group of users, an voting scheme is utilized. If the
preference can be deduced from a user’s CP-net, we regard that the user votes
for this preference. In the end, the preferences with the most votes are candidates
for complementing an incomplete CP-net. The preferences with the least vote
are candidates to be removed to break a conflict.

4.3 Conflict Removal

To remove conflicts from a CP-net, we need to first identify conflicts, which
are actually cycles in the induced preference graph of the CP-net. As a number
of algorithms for conflict detection or consistency check in CP-nets have been
proposed [13,14], our system directly reuses them to detect conflicts (cycles).
Once a cycle in the induced preference graph is detected, we go through its edges
to find the corresponding conditional preferences in the CPTs. These preferences
are candidates to be removed from the CP-net. Finally, our voting scheme is
applied to determine the final preference to be removed.

According to Lemma 1, a conditional preference in a CPT can correspond
to more than one edges in the induced preference graph. When choosing the
most suitable conditional preference to remove, we consider two factors. First,
the preference should be supported by as less like-minded users as possible.
This indicates that the preference is likely to be a incorrect one, as most like-
minded users do not have it. Second, the preference should correspond to as
less edge in the induced preference graph as possible. This ensures that removal
of the preference would not affect the user’s preference graph too much. Let P
be a conditional preference in the CPT of the attribute X . Let R(X) be the
attributes which X depends on. Let V otes(P) be the number of votes P receives
from the like-minded users. We use the following score to measure the suitability
of removing P from the CP-net.

Score(P) = V otes(P) ×
∏

Xj /∈D(Xi)

|R(Xj)| (1)

The score is actually the production of the two factors mentioned above. Our
system always chooses the preference with the lowest score to remove.

Web Service Selection with Incomplete or Inconsistent User Preferences 91

Fig. 4. Example of Conflict Removal

An example of conflict removal is shown in Fig. 4. The CP-net in the figure
is inconsistent, as its induced preference graph contains a cycle, as shown on
left of Fig. 4. The edges of the cycle, i.e. e1, e2, e3, e4, are induced from the
conditional preferences B1 : C1 � C2, A2, C2 : B1 � B2, B2 : C2 � C1 and
A2, C1 : B2 � B1, respectively. Thus, these preferences are candidates to be
removed from the CP-net. Based on Formula 1, the scores of the preferences are:

Score(B1 : C1 � C2) = 3 × 2 = 6,
Score(A2, C2 : B1 � B) = 3 × 1 = 3,
Score(B2 : C2 � C1) = 2 × 2 = 4,
Score(A2, C1 : B2 � B1) = 5 × 1 = 5.

Based on the scores, A2, C2 : B1 � B2 is finally removed from the CP-net. As
we can see, even though B2 : C2 � C1 got the least votes, because it is a more
significant preference, our conflict removal algorithm did not choose to remove it.

4.4 Preference Complementation

To complement a CP-net, we consider the unknown conditional preferences in the
CPTs. Based on the voting of the like-minded users, the conditional preferences
with the most votes is chosen to be added to the current CP-net. When adding
a conditional preference in CPTs, it is important to ensure that the resulting
CP-net should not contain conflicts. The conditional preferences that will form
cycles in the induced preference graph are not considered in preference comple-
mentation. Preference complementation is an incremental process, in which one
conditional preference is added to the CPT-net at a time. The process stops
until the number of services returned by service selection is sufficiently small
(e.g., less than 20 services) or no more preference can be added to the current
CP-net.

92 H. Wang et al.

Fig. 5. Example of Preference Complementation

Fig. 5 shows an example of preference complementation. Three conditional
preferences, i.e., A1, C1 : B1?B2, A2, C1 : B1?B2 and B2 : C1?C2, are unknown
in the CPTs. Based on the voting results, which are shown on the left of Fig.
5, B2 : C2 � C1 is the most common preference among the like-minded users.
Then, it is first chosen to be added to the current CP-net. If the results of service
selection are still not satisfactory, the preference with the second highest votes
is considered, and so on. As shown in Fig. 4, because A2, C1 : B2 � B1 will
cause conflict, although it has many votes, we have to ignore it in preference
complementation. Instead, A1, C1 : B1 � B2 is used to further complement the
CP-net.

5 Experiment

As it is difficult to find sufficient real-world services and user records, we per-
formed simulation to evaluate the efficiency and effectiveness of our approach.
This section presents our results.

5.1 Simulation Setup

We simulated the scenario of service selection using randomly generated ser-
vices and user preferences. To simulate different types of services, we varied the
number of attributes and the number of possible values of each attribute. For
each type of service we randomly generated 10,000 concrete services, which have
different attribute values. To simulate user preferences, we generated random
CP-nets. As mentioned previously, for each type of services, all users’ CP-nets
share a common dependency graph. In our simulation, we generated a random
graph to represent each of the dependency graphs. Based on the dependency
graph, we generate 5,000 sets of random CPTs to represent 5,000 historical
users. Each CPT is filled with random conditional preferences, each of which
is a random order of the attribute values. To simulate real-world situations, we

Web Service Selection with Incomplete or Inconsistent User Preferences 93

(a) 2 values for each attribute (b) 4 values for each attribute

(c) 8 values for each attribute (d) 16 values for each attribute

Fig. 6. Efficiency of Conflict Removal

divided the 5,000 users into 10 groups. Each group of users was based on a sin-
gle CP-net with complete CPTs. We duplicated the CP-net for 500 times, and
randomly varied and removed the conditional preferences in their CPTs, to ob-
tain 500 incomplete CP-nets. Each CP-net then represented a user within that
group. As a result, the users in a single group were similar to each other, and
those from different groups were different. This enabled our system to easily find
like-minded users.

To perform service selection, we randomly picked a service type and randomly
selected a user from the 5,000 historical users, and executed the process in Fig. 3
to select the optimal service for that user. We repeated the whole process for
multiple times, and recorded the average execution time of each step as well as
the statistics of the result sets.

We implemented the service selection system using Java. The processes of
conflict removal and preference complementation were based on Section 4. We
reused the algorithm of [4] to perform CP-net based service selection. Our sim-
ulation was conducted in a personal computer with a CPU of 1.79GHz and a
RAM of 768M. The operating system was Windows XP.

94 H. Wang et al.

5.2 Efficiency of Conflict Removal

In the first set of experiments, we assessed the efficiency of conflict removal. We
varied the number of service attributes involved in a conflict from 2 to 6, and
the number of attribute values from 2 to 16. We repeated the process of service
selection for 100 times and calculated the average execution time for each conflict
removal step. The results are shown in Fig. 6.

As shown in the results, the performance of conflict removal is scalable with
respect to the number of attributes and the number of attribute values. Ac-
cording to Fig. 3, the process of conflict removal consist of two steps, that is,
identifying similar users and removing the least supported preference. As dis-
cussed in Section 4.1, the cost of computing CP-net distance is linear with the
size of CP-net. Thus, the cost of identifying similar users is also linear with the
size of CP-net. To remove the least supported preference, the system needs to go
through all the conditional preferences involved in the conflict. Its cost is there-
fore linear with the size of CP-net too. When the number of attributes and the
number of possible values increase, the size of CP-net normally does not increase
significantly. Therefore, the execution time does not increase significantly too.
This justifies the performance shown in Fig. 6.

5.3 Efficiency and Effectiveness of Preference Complementation

In the second set of experiments, we assessed the effectiveness and efficiency of
preference complementation. We varied the number of service attributes from 6
to 15, and the number of attribute values from 2 to 16. We also varied the de-
gree of completeness of user preferences. When the number of attributes is 6, we
set users’ CP-nets to be 50% complete. When the number of attributes is 10, we
set users’ CP-nets to be 20% complete. When the number of attributes is 15, we set
users’ CP-nets to be 10% complete. We repeated the process of service selection
for 100 times. We recorded the average execution time for each complementation
step and the number of selected services after each step.

Fig. 7 shows the numbers of services returned by service selection before and
after each step of preference complementation. We assumed that preference com-
plementation stops when less than 20 services are returned. We can see that when
a user’s preference description is incomplete, the number of services returned by
service selection can be too many for the user to evaluate. When additional
preferences are added to the description, the result set of service selection can
be significantly reduced. As shown in Fig. 7 (a), by adding 3 preferences, the
result set were reduced from 800 to only 20. The experiment results indicate
that preference complementation is effective in pruning services.

Fig. 8 shows the efficiency of preference complementation. According to Fig. 3,
the process of preference complementation consist of two steps, that is, identify-
ing similar users and adding the most supported preference to the user’s CP-net.
As discussed previously, the cost of both steps is linear with the size of CP-net.
When we increase the number of attributes and the number of possible attribute
values, the size of CP-net normally does not increase significantly. Therefore, the

Web Service Selection with Incomplete or Inconsistent User Preferences 95

(a) 2 values for each attribute (b) 4 values for each attribute

(c) 8 values for each attribute (d) 16 values for each attribute

Fig. 7. Effectiveness of Preference Complementation

performance of preference complementation is scalable with the number of at-
tributes and the number of attribute values.

6 Related Work

Service selection aims at helping user select the optimal service from the list of
results returned by service discovery. It is an important process, when (1) users’
queries are ambiguous or (2) there are too many services that meet the user’s
basic requirements. One approach to service selection is to provide interactive
interfaces for users to refine their selection criteria. For instance, in [15] the
authors proposed form based interfaces that allow user to refine the results of
service discovery. In [16], the authors proposed to cluster services based on their
various properties, so that users can prune services by choosing appropriate clus-
ters. Another approach to service selection is to rank services according to users’
preferences or utilities functions. The work of [1,2,4] as well as our approach fall
in the second types of approach. To the best of our knowledge, little work has
considered the case when users’ qualitative preferences are faulty or incomplete.
As this case can be common in real world, this paper proposes techniques to
enable service selection in face of inconsistent or incomplete preferences.

96 H. Wang et al.

(a) 2 values for each attribute (b) 4 values for each attribute

(c) 8 values for each attribute (d) 16 values for each attribute

Fig. 8. Efficiency of Preference Complementation

Application of recommender system in service selection is not new. In [17],
the authors proposed a scheme which applies collaborative filtering to facilitate
service selection. Their approach directly works on services rather than user
preferences. It utilizes users’ ratings on various services to identify like-minded
users and predicate user desired services. When the number of services is large
and users’ ratings are insufficient, this approach can be ineffective. In contrast,
our approach utilizes users’ preferences to identify like-minded users and se-
lect services. As user preferences, e.g. CP-nets, are described in the conceptual
level, it requires much less information to be effective. Moreover, it can work on
arbitrarily large repositories of services.

In [4], the authors proposed an algorithm for performing service selection
with incomplete preferences. While the algorithm enable service selection to be
correctly conducted using incomplete preferences, it may return too many results
to be handled by the user, especially when preferences are under-specified. Our
approach utilizes the preferences of historical users to complement an incomplete
preference, so as to reduce the result set to a manageable size.

Web Service Selection with Incomplete or Inconsistent User Preferences 97

7 Conclusion

In this paper, we present an approach of service selection that can handle in-
complete and inconsistent user preferences. Our approach uses CP-nets to model
user preferences. It utilizes the preferences of historical users to predicate and
amend the active user’s preference, so that service selection can be performed
properly. We conducted simulation to test our approach. The simulation results
verified the effectiveness and efficiency of our techniques in conflict removal and
preference complementation.

Acknowledgement. This work is partially supported by NSFC of China (No.
60473091 and No. 60673175).

References

1. Yu, T., Lin, K.J.: Service selection algorithms for composing complex services with
multiple qos constraints. In: Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC
2005. LNCS, vol. 3826, pp. 130–143. Springer, Heidelberg (2005)

2. Lamparter, S., Ankolekar, A., Studer, R., Grimm, S.: Preference-based selection of
highly configurable web services. In: WWW, pp. 1013–1022 (2007)

3. Balke, W.T., Wagner, M.: Towards personalized selection of web services. In:
WWW (Alternate Paper Tracks) (2003)

4. Wang, H., Xu, J., Li, P.: Incomplete preference-driven web service selection. IEEE
SCC (1), 75–82 (2008)

5. Tversky, A.: Contrasting rational and psychological principles of choice. In: Zeck-
hauser, R.J., Keeney, R.L., Sebenius, J.K. (eds.) Wise Choices. Decisions, Games,
and Negotiations, pp. 5–21. Harvard Business School Press, Boston (1996)

6. Mellers, B.A., Schwartz, A., Cooke, A.D.J.: Judgment and decision making. Annual
Review of Psychology 49, 447–477 (1998)

7. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender sys-
tems: A survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl.
Data Eng. 17(6), 734–749 (2005)

8. Burke, R.D.: Hybrid recommender systems: Survey and experiments. User Model.
User-Adapt. Interact. 12(4), 331–370 (2002)

9. Yu, Q., Bouguettaya, A.: Framework for web service query algebra and optimiza-
tion. TWEB 2(1) (2008)

10. Boutilier, C., Brafman, R.I., Hoos, H.H., Poole, D.: Reasoning with conditional
ceteris paribus preference statements. In: UAI, pp. 71–80 (1999)

11. Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: Cp-nets: A tool
for representing and reasoning with conditional ceteris paribus preference state-
ments. J. Artif. Intell. Res. (JAIR) 21, 135–191 (2004)

12. Sarwar, B.M., Karypis, G., Konstan, J.A., Riedl, J.: Item-based collaborative fil-
tering recommendation algorithms. In: WWW, pp. 285–295 (2001)

13. Wilson, N.: Extending cp-nets with stronger conditional preference statements. In:
AAAI, pp. 735–741 (2004)

14. Goldsmith, J., Lang, J., Truszczynski, M., Wilson, N.: The computational com-
plexity of dominance and consistency in cp-nets. In: IJCAI, pp. 144–149 (2005)

98 H. Wang et al.

15. Sirin, E., Parsia, B., Hendler, J.: Filtering and selecting semantic web services with
interactive composition techniques. IEEE Intelligent Systems 19(4), 42–49 (2004)

16. Abramowicz, W., Haniewicz, K., Kaczmarek, M., Zyskowski, D.: Architecture for
web services filtering and clustering. In: Second International Conference on Inter-
net and Web Applications and Services, ICIW 2007, p. 18 (2007)

17. Manikrao, U.S., Prabhakar, T.V.: Dynamic selection of web services with recom-
mendation system. In: NWESP 2005: Proceedings of the International Conference
on Next Generation Web Services Practices, Washington, DC, USA, p. 117. IEEE
Computer Society, Los Alamitos (2005)

Energy-Aware Design of Service-Based
Applications

Alexandre Mello Ferreira, Kyriakos Kritikos, and Barbara Pernici

Dipartimento di Elettronica e Informazione
Politecnico di Milano, Italy

{ferreira,kritikos,pernici}@elet.polimi.it

Abstract. The continuous increase in electrical and computational
power in data centers has been driving many research approaches un-
der the Green IT main theme. However, most of this research focuses
on reducing energy consumption considering hardware components and
data center building features, like servers distribution and cooling flow.
On the contrary, this paper points out that energy consumption is also a
service quality problem, and presents an energy-aware design approach
for building service-based applications. To this effect, techniques are pro-
vided to measure service costs combining Quality of Service (QoS) re-
quirements and Green Performance Indicators (GPI) in order to obtain a
better tradeoff between energy efficiency and performance for each user.

1 Introduction

Considering the arising amount of energy consumed in IT and the arising prices
of electrical energy, strategies to achieve energy efficiency have been seen more
attractive than ever as a way of cutting costs [1]. The US Department of Energy
(DOE), for instance, reported that data centers consumed 1.5% of the total
electricity in 2006 and it’s projected to double up until 2011 [2]. Furthermore, it
is expected that energy costs will exceed the hardware costs by 2015 according
to the Efficient-Servers project (www.efficient-servers.eu).

In the last years, IT systems and Data Centers are moving towards the adop-
tion of a Service-based Model, in which the available computing resources are
shared by several different users or companies. In such systems, the software is
accessed as-a-service and computational capacity is provided on demand to many
customers who share a pool of IT resources. The Software-As-A-Service model
can provide significant economies of scales, affecting to some extent the energy
efficiency of data centers. Services and their composition, both at the providers’
side (to provide new value-added services), and at the users’ side (with mash-
ups of services composed by the users themselves), are becoming more and more
widespread in a variety of application domains. Hence, since the service-oriented
approach is steadily increasing for many application domains, its impact on data
and service centers will become more and more significant.

In order to develop and use computer resources efficiently, a new research
field is growing under the denomination of Green Computing (GC). Essentially,

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 99–114, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

www.efficient-servers.eu

100 A. Mello Ferreira, K. Kritikos, and B. Pernici

GC focuses on sustainable computer resources development and usage through
using less hazardous materials, maximizing energy efficiently, and promoting
recyclability [3]. The Natural Edge Project (www.naturaledgeproject.net),
for instance, presents an overall seven-step process to create and maintain data
centers using minimal energy consumption with high quality, which includes
airflow optimization and virtualization techniques.

Despite the substantial research work already performed in GC, most of this
work relies on a very generic approach, trying to provide a holist view on the
problem, or focuses only at the infrastructure layer, especially on hardware is-
sues. This paper, on the other hand, tackles the data center energy efficiency
problem at the service level as a nonlinear Service Concretization (SC) problem,
taking into account infrastructure characteristics and service requirements. To
this end, a new approach to design service-based processes in huge data centers
is devised that takes into account both Key Performance Indicators (KPIs) and
Green Performance Indicators (GPIs), expressed as user preferences, in order to
obtain a better tradeoff between performance and energy efficiency. A new GPI
metric is defined, namely service energy efficiency (ee), and its computation is
based on classical service quality attributes like execution time (et) and physical
energy measures like energy consumption (ec).

By being able to compute both quality and energy metrics for each service, a
service-based process is designed by executing a novel constraint-based quality
and energy-aware service composition algorithm that advances the state-of-the-
art by: a) taking into account not only single (average or minimum) values of
independent quality and energy metrics but a range of values, while also depen-
dency functions are used in order to express tradeoffs between these metrics; b)
using loop peeling [4] to transform an abstract execution plan into several exe-
cution paths and trying to satisfy all of the global constraints in every execution
path and not in specific ones; c) producing a concrete execution plan even if the
requirements set by the user are over-constrained through the use of appropriate
normalization functions; d) allowing for the use of non-linear functions in the
optimization (QoS-based Service Composition) problem to be solved.

The rest of this paper is organized as follows. Section 2 introduces the ser-
vice energy efficiency metric, proposes a way to compute it, and correlates it
with other known quality and energy attributes. Section 3 introduces our novel
constraint-based quality and energy-aware service composition approach for the
design of energy-aware Service-Based Applications (SBAs). Section 4 provides a
motivating example that highlights the benefits of our approach. Finally, Section
5 concludes the paper and draws direction for further research.

2 Service Energy Efficiency Computation

Green IT techniques have to be taken in a holistic approach, in which the whole
data center is considered, such as layout, airflow, cooling techniques, power man-
agement, eco-friendly IT equipments, virtualization, and service requirements.
Although efforts have been performed to measure and control these items (mainly

www.naturaledgeproject.net

Energy-Aware Design of Service-Based Applications 101

to measure energy efficiency on IT equipments), there is no widely accepted met-
ric, which makes it difficult to compare the results of these efforts [5].

Even though metrics to measure data center electrical efficiency proposed
by Green Grid, Uptime Institute, Lawrence Berkeley National Laboratory, and
Greenpeace are quite similar, the comparison of their results should be made with
caution. For instance, one of the most used metric to measure electrical efficiency
is the Data Center infrastructure Efficiency (DCiE), in which a percentage ex-
presses how much power consumed by the data center is being delivered to IT
loads. In this way, higher percent number means higher energy efficiency, where
100% is the perfect efficiency.

Considering that energy efficiency is directly proportional to IT loads and
most data center servers remain running at low utilization rates or in idle mode
for a considerable amount of time, it seems consistent to balance their workload
in such way to increase the utilization of low power servers, whenever is possible.
Indeed, this impact will be reflected into all the other facility components, since
less power will be needed to cooling, for example. Some crucial issues come up,
the most important of which are the way service efficiency is measured and which
standards are used to classify both services and servers.

Real data centers use many different IT equipments, where each equipment
has different characteristics concerning electrical and computational power. For
this reason, each server can be classified into a certain class, from the slowest
to the fastest, at different energy consumption levels. For instance, Zenker [6]
assumes that by using a multi-dimensional coefficient it is possible to compare
results among different environments.

Based on the aforementioned fact, the first important assumption adopted
during this paper is that energy consumption is directly proportional to com-
putational power performance [7]. Although this is not true in all cases - e.g.
very old equipments with low computational and high electrical power - we sus-
tain that all the heterogeneous servers considered are new and are therefore
homogeneous with respect to this aspect. According to this basic assumption,
three classes of servers have been created that can be separated according to
their performance and electrical power. This partition of servers into classes
was inspired from Koomey’s report [8], in which, servers were divided into: vol-
ume, mid-range, and high-end according to their overall system costs. Table 1
presents theses classes of servers (slow, average, high) and their weighs with re-
spect to electrical power during three different utilization periods (idle, normal,
and burst) that were measured in Watts. The latter numbers were derived from
measurements performed by [9,10,11,8].

By inspecting the data shown in Table 1, the energy efficiency (ee) metric of
a single service is computed based on which server class the service is executed,
taking into account possible server modes during a fixed time period. Despite the
fact that Table 1 presents the burst column with the maximum power, we will not
consider these values for the following reasons: (a) the usage of a simple admis-
sion control scheme [12] is assumed, which is responsible to maintain the number
of execution services under the normal utilization level by dropping the overload

102 A. Mello Ferreira, K. Kritikos, and B. Pernici

Table 1. Classes of servers and their power for each utilization period

Server Class Idle Normal Burst
(0–0.12) (0.13–0.67) (0.68–1)

Slow 178 222 266
Average 486 607 728

High 6,485 8,106 9,727

requests; (b) beyond the normal utilization limit, although the energy efficiency
will increase, the boundary of accepted performance, which involves execution
time for example, will be exceeded. Energy efficiency can be computed by formula
(1). According to this formula, the ee eeΔt

j of the service sj executing in server class
class(j) is computed by dividing the amount of energy consumption of the real ex-
ecution of the service (i.e., when server is in normal mode) with the total energy
consumed by the server in our specific unit of time reference.

eeΔt
j =

ecnormal
class(j) · tnormal

j

ecidle
class(j) · tidle

j + ecnormal
class(j) · tnormal

j

(1)

For example, suppose we want to calculate the energy efficiency of service s1
that is executed in a slow server in one specific time unit, where 45 percent of
the time is executed in normal mode and 55 percent in idle mode. Then, from
formula (1) and Table 1 we will have that : eeΔt

1 = 222·0.45
178·0.55+222·0.45 = 0.505.

As can be easily seen from formula (1), there is a direct relationship between
energy consumption, service execution time, and energy efficiency. The object
of research is how to exactly compute this quantitative dependency based on
formula (1). After a small analysis, formula (2) was derived from formula (1) by
relying on the fact that the execution time of the service is measured according
to our time unit reference and that the service is executed in a specific server
class. The numerator of formula (2) calculates a service’s total energy consumed
in normal mode by multiplying the power in this mode (ecnormal

class(j)) with the total

time spent by this service in this mode (
ecj−ecidle

class(j)·etj

ecnormal
class(j)−ecidle

class(j)
) with respect to its

total execution time etj . The denominator of formula (2) is the total energy
consumed ecj by this service. In other words, formula (2) has the same physical
meaning as formula (1), as it calculates the percentage of energy consumed by a
service in normal mode with respect to the total energy consumed by this service.
Moreover, this new formula expresses our inquired quantitative dependency as
it dictates the way the energy efficiency of a single service can be computed by
measuring its execution time and its total energy consumption. The latter two
metrics can be computed for each service through a monitoring layer [13], which
provides information on the fly about application workload, resource utilization
and power consumption. As far as a composite service is concerned, its energy
efficiency can be computed by taking the average from the energy efficiency of
all its service components.

Energy-Aware Design of Service-Based Applications 103

eej =

⌈
ecnormal

class(j) ·
ecj−ecidle

class(j)·etj

ecnormal
class(j)−ecidle

class(j)

ecj
· 100

⌉
(2)

In addition to the aforementioned dependency, other types of dependencies and
constraints can be derived from a service’s past execution (in all classes of
servers) and from its specification in a service profile. Without considering other
quality attributes like availability and reliability, we can have constraints (3) and
(4) on execution time and energy consumption defining the range of admissible
values of these two dimensions. Equality constraint (5) defines how the price of
the service is produced from a cost model that takes into account the service’s
execution time and energy consumption. We assume that the cost of a service
depends linearly on the time it needs to execute and on the amount of energy
consumed, where the first partial cost depends also on the server class (see con-
stant αclass(j)). Of course, apart from linear, other types of functions could be
used instead [14].

etmin
class(j) ≤ etj ≤ etmax

class(j) (3)

ecmin
class(j) ≤ ecj ≤ ecmax

class(j) (4)
prj = αclass(j) · etj + β · ecj (5)

Based on the above analysis, a service can operate in different quality and energy
levels and constraints can be used to capture the service’s performance and
energy efficiency in all these levels. Then, according to the application domain
that this service is used, user preferences can be issued in the form of constraints
and a service discovery process can be executed in order to select those services
that satisfy the user needs.

3 Service-Based Application Design

While in the previous section the problem of energy and quality-aware selec-
tion of single services was analyzed, we consider now the case of composite
services, for which a service is built from other services at runtime when the
user’s requirements are issued to a broker or service composition engine. The
composite service construction is separated into two sequential phases: a) an
abstract execution plan is built; b) one service is selected for each abstract task
of the execution plan. Various techniques have been proposed for automatically
or semi-automatically creating an abstract execution plan of a composite service
based on the functional needs of the user and the functional capabilities of avail-
able services in the system’s registry. This paper does not deal with this phase
and regards that the execution plan is already in place as an outcome of the first
phase or as a product of an expert that designs the process (e.g., in the form of
Abstract BPEL).

In the second phase, based on the abstract execution plan, for each abstract
service a set of functionally-equivalent services are selected as candidate services

104 A. Mello Ferreira, K. Kritikos, and B. Pernici

which implement the same functionality but differ in their non-functional char-
acteristics, i.e, quality (and energy in our case). The functional selection of these
candidate services is a very well known problem that has been efficiently solved
with approaches like the one of Pernici and Plebani [15]. The final goal of this
phase is achieved by solving the well-known Service Concretization (SC) or QoS-
based Service Composition problem and is the focus of our paper. According to
this problem, the best service available at runtime has to be selected among all
candidate ones for each abstract service, taking into consideration the global and
local quality (and energy in our case) constraints given by the user. It must be
noted that by a user we mean specialized users like a service designer or provider
or Data Center administrator and not simple users, as energy is usually not a
concern of them. However, we do not rule out the fact that in the near future
even simple users will be more concerned about energy issues and may provide
energy constraints apart from those given for QoS and cost.

In order to guarantee the fulfilment of global constraints, SC approaches use
optimization techniques like MIP [16,17] or Genetic Algorithms (GAs) [18]. How-
ever, most of these approaches usually consider the worst or most common case
scenario for the composite service (that concerns the longest or hottest execution
path, respectively) [16,18] or they satisfy the global constraints only statistically
(by reducing loops to a single task) [19]. So they are either very conservative or
not very accurate.

Moreover, most of these approaches present the following disadvantages, which
will be solved by the approach proposed below: a) they do not allow non-linear
constraints like the ones we have outlined in the previous section; b) they do not
produce any solution when the requirements of the user are over-constrained,
while we adopt soft constraints in order to allow constraint violations in less
likely compositions; c) they are very conservative concerning the fact that all
execution paths have to satisfy the global constraints – even the longest ones
that are not so probable have to satisfy all of the global constraints so some
good solutions are removed when these constraints are very tight – while we
allow constraint violations for the improbable execution paths; d) they take into
account only the worst or average value of a metric for each service and they
also regard that all metrics are independent, while we allow ranges of possible
values and metric dependencies; e) they do not take into account energy metrics,
while we do.

Our proposed approach is analyzed in the following two subsections. Sub-
section 3.1 provides the main definitions and assumptions we make on the SC
problem, while Subsection 3.2 defines our approach for solving this problem.

3.1 Main Definitions and Assumptions

The first main assumption is that a composite service is characterized by a single
initial and end task and that the composition of tasks follows a block structure.
In this way, only structured loops can be defined, i.e., loops with only one entry
and exit point. We name each abstract service of the composite service with
the term task (ti), while the set of services Si to be executed for this task are

Energy-Aware Design of Service-Based Applications 105

called candidate services (sj). We symbolize with I the total number of tasks of
the composite service specification and with J the number of candidate services
retrieved from the system’s registry. The goal of the process that solves the SC
problem is to find the optimum execution plan OEL∗ of the composite service,
i.e., the set of ordered couples {(ti, sj)}, indicating that task ti is executed by
invoking service sj for all tasks of the composite service, such as that the overall
trade-off between energy and quality is achieved by satisfying all the global con-
straints set by the user. The latter constraints are either explicitly specified by
the user or can be implicit in the user profile. We assume that these constraints
are expressed by the following upper or low bounds (depending on the mono-
tonicity of the attribute) ET , PR, EE, and EC for the four quality dimensions
under consideration, respectively.

Based on the past execution of the composite service stored in system logs
or from the designer’s experience, the following two types of information can be
derived and evaluated [16,18,17]:

– Probability of execution of conditional branches. For every switch s, we sym-
bolize with NBs the number of disjoint branch conditions of s and with ps

h

the probability of execution of each disjoint conditional branch. For all these
probabilities, the following constraint must hold:

∑NBs

h=1 ps
h = 1.

– Loop constraints. For every loop l, we define the expected maximum number
of iteration IN l as well as the probability pl

h for every number of iteration
h of the loop. For all these probabilities, the following constraint must hold:∑IN l

h=0 p
l
h = 1. A loop cannot have infinite number of iterations, otherwise

the composite service could not be optimized since infinite resources might
be needed and consequently global constraints cannot be guaranteed [16].

These two types of information can be used to transform the abstract execution
plan of a composite process to a Directed Acyclic Graph (DAG) through the
use of loop peeling [4]. The latter method is a form of loop unrolling in which
loop iterations are represented as a sequence of branches whose branch condition
evaluates if loop l has to continue with the next iteration (with probability {pl

h})
or it has to exit.

After loop peeling, from the transformed DAG, we can derive a set of K
execution paths epk that identify all possible execution scenarios of the composite
service. An execution path is a set of tasks {t1, t2, . . . , tl} where t1 and tI are the
initial and final tasks, respectively, and no tasks ti1 and ti2 belong to alternative
branches. Every execution path epk has an associated probability of execution
freqk that can be evaluated as the product of the probability of execution of
the branch conditions included in the execution path. Moreover, we associate to
each execution path epk a set Ak of the indices of the tasks included in it. In
addition, each execution path epk has a set of subpaths that are indexed by m
and denoted by spk

m. A subpath of an execution path contains those tasks of the
execution path, from the initial to the end task, so that it does not contain any
parallel sequence. For every possible concrete execution plan CEP (including
the optimum one), we evaluate the quality dimensions under consideration under

106 A. Mello Ferreira, K. Kritikos, and B. Pernici

the hypothesis that the composite service is executed along the corresponding
execution path using the aggregation patterns that will be analyzed below.

Every service sj is selected as a candidate service based on its advertised
service profile spj that is stored in the system’s registry. In this service profile,
the functional, quality and energy capabilities of the service are defined based
on information submitted by the service provider and the past execution of the
service. Moreover, this service profile specifies the server class class(j) on which
the service sj executes. If the service runs also in a different server class class(j

′
),

then it is considered as a different service sj′ and its capabilities are stored in a
different service profile spj′ . It must be noted that each service profile will contain
an attribute run indicating if the corresponding service is currently running on
the designated service class. In this way, our proposed SC approach will fetch
only those services from the service profiles stored in the system’s registry that
run on their corresponding server classes at that time. Thus, we accommodate
for the case where the resources are dynamically allocated in a hosting site, as if
a service stops running on a service class and starts running on a different class,
then the corresponding service profiles of this (abstract) service will be updated
according to their run attribute.

According to our approach described in Section 2, a service profile does not
advertise only one quality and energy level of a service performance in a specific
service class by storing only one (average or minimum) value for every possible
quality and energy dimension but all the possible levels through the use of the
constraint set we have introduced in the previous section. Thus, in our approach,
the service profile spj of a service sj contains a set of constraints that involve
variables qdn

j that are associated to the quality and energy dimensions qdn (N
is the total number of dimensions).

In this paper, we have considered two of the most representative quality di-
mensions, namely execution time and price, and two energy dimensions, namely
energy efficiency and energy consumption. For these four dimensions, we consider
the following information as relevant for them:

– Execution time is the expected duration in time that a service spends to fulfill
a service request. For each service sj it is represented as an integer variable
etj that takes values from the following domain of values: [etmin, etmax]. It
is measured in a specific time unit like seconds.

– Price is the fee/cost that a service requester has to pay to the service provider
for the service invocation. For each service sj it is represented as an in-
teger variable prj that takes values from the following domain of values:
[prmin, prmax]. It is measured in euros. This dimension depends both on the
execution time and energy consumption dimensions, as it was highlighted in
Section 2.

– Energy efficiency is a measure of how efficiently a service uses energy (an-
alyzed in the previous section). For each service sj it is represented as an
integer variable eej that takes values from the following domain of values:
[eemin, eemax]. It depends on both execution time and energy consumption
dimensions.

Energy-Aware Design of Service-Based Applications 107

– Energy consumption is a measure of the total energy consumed by the service
during its execution. For each service sj it is represented as an integer vari-
able ecj that takes values from the following domain of values: [ecmin, ecmax].
It is usually measured in Watts-hours or Kilowatts-hours.

The aggregation pattern for each of these four dimensions for every execution
path is given in Table 2. Execution time of a composite service is computed by
the maximum execution time calculated in all possible subpaths of the execution
path. For each subpath, the execution time is calculated as the sum of all the
execution times of the services that are contained in it. The price of a composite
service is computed by the sum of prices of all component services contained in
the execution path. The energy efficiency of a composite service is computed by
the average of the energy efficiency value of each component service contained
in the execution path. Finally, the energy consumption of a composite service is
computed by adding the energy consumption of all component services contained
in the execution path.

Table 2. Aggregation patterns for each considered dimension

Dimension Aggregation Function
Execution Time etk (CEP) = maxspk

m∈ epk

∑
ti∈ spk

m

(ti,sj)∈ CEP

etj

Price prk (CEP) =
∑

ti∈ epk

(ti,sj)∈ CEP

prj

Energy Efficiency eek (CEP) = 1
|Ak|

∑
ti∈ epk

(ti,sj)∈ CEP

eej

Energy Consumption eck (CEP) =
∑

ti∈ epk

(ti,sj)∈ CEP

ecj

3.2 Proposed Approach

In this subsection, we formulate the SC problem as a Constraint Satisfaction
Optimization Problem (CSOP) [20]. The main decision variables of our problem
are the following:

zi,j := equals 1 if the task ti is executed by service sj, j ∈ Si; 0 otherwise

The goal of the SC problem is to maximize the aggregated quality and energy
value by considering all possible execution paths epk of the abstract execution
plan and their corresponding probability of execution freqk. To this end, we
have used the following optimization function for defining our problem:

max
K∑

k=1

freqk · sck

In this way, we try to find the solution that is the best at least for the most
frequent execution paths.

108 A. Mello Ferreira, K. Kritikos, and B. Pernici

According to the above optimization function, a score sck is produced from
the aggregated quality and energy value for each execution path. This score is
obtained by applying the Simple Additive Weighting (SAW) technique [21] to the
list of considered dimensions. According to this technique, the raw aggregated
values for each dimension are first normalized through the use of a corresponding
evaluation function that is specific for each dimension and then multiplied by the
weight (i.e., the impact) of this dimension. This weight is either given explicitly
by the user or is obtained from his profile. So by denoting the aggregated value of
each dimension along a specific execution path epk with qk

n and the user-provided
weights of this dimension as wn, the score of epk is obtained from the following
equation:

sck =
N∑

n=1

wn · fn

(
qk
n

)
Based on the above equation, different evaluation functions can be used to nor-
malize the values of different dimensions. We have carefully chosen a specific type
that allows the use of soft instead of hard global constraints for restricting the
aggregated values for each dimension and for each execution path. Depending
on the monotonicity of the dimension, we have used the following two (denoted
by (6) and (7)) evaluation functions for negative and positive dimensions, re-
spectively:

fn (x) =

⎧⎪⎪⎨
⎪⎪⎩
an + qmax

n −x
qmax

n −qmin
n

· (1 − an) , qmin
n ≤ x ≤ qmax

n

max
(
an − qmin

n −x
qmax

n −qmin
n

· (1 − an) , 0
)
, x < qmin

n

max
(
an − x−qmax

n

qmax
n −qmin

n
· (1 − an) , 0

)
, x > qmax

n

(6)

fn (x) =

⎧⎪⎪⎨
⎪⎪⎩
an + x−qmin

n

qmax
n −qmin

n
· (1 − an) , qmin

n ≤ x ≤ qmax
n

max
(
an − qmin

n −x
qmax

n −qmin
n

· (1 − an) , 0
)
, x < qmin

n

max
(
an − x−qmax

n

qmax
n −qmin

n
· (1 − an) , 0

)
, x > qmax

n

(7)

where qmin
n is either the minimum domain value for this dimension or a user-

provided bound, qmax
n is either the maximum domain value for this dimension

or a user-provided bound, x is the value to be normalized, and an is a number
between 0.0 and 1.0 given by the user or the composite service designer in order to
allow values outside the ranges specified within the constraints. In order to give
a more specific example, the evaluation function of the execution time quality
dimension is given by the following formula:

fet (x) =

⎧⎪⎪⎨
⎪⎪⎩
aet + ET−x

ET−qmin
et

· (1 − aet) , qmin
et ≤ x ≤ ET

max
(
aet − qmin

et −x

ET−qmin
et

· (1 − aet) , 0
)
, x < qmin

et

max
(
aet − x−ET

ET−qmin
et

· (1 − aet) , 0
)
, x > ET

In this case, we can have that: qmin
et = etmin, or the user also provides another

bound for the highest level (lowest value) of this dimension that is: qmin
et = ET

′
.

Energy-Aware Design of Service-Based Applications 109

As it can be observed from the latter equation, the aggregated dimension’s
value is allowed to take values outside the user requested bound or range of values
but the produced normalized value decreases and gets to zero when the aggre-
gated value’s distance from the bound increases. Actually, from which starting
normalized value and how quickly this value decreases depends on both the de-
sign parameter an and the distance between the two bound values. For instance,
if aet = 0.8, ET − qmin

et = 5 and ET = 7, then if x ∈ (12, 17], it will get a nor-
malized value in [0.0,0.4); otherwise if x ∈ (7, 12], it will get a normalized value
in [0.4, 0.8); and if x ∈ [2, 7], it will get a normalized value in (0.8, 1.0]. So if we
want to allow a very small amount of values outside the user requested bound,
we have to use small values of the an parameter, depending also on the min
and max bound values and their distance. It must be noted that the value of an

can be predefined or produced from a predefined table that maps the distance
between the min and max values of a dimension to the value of an. Similarly, the
weights given to each dimension can be all equal. In this way, the user quantifies
only the bounds of the dimensions and not any other parameter, so there is no
cognitive overload for him.

The reason for using the above type of evaluation functions is because we
do not want to rule out solutions that do not violate in a significant way the
user’s global constraints. In this way, if the SC problem is over-constrained,
a solution can be found that violates in the smallest possible way the least
number of global constraints. Of course, in the way the SC problem is formed,
if this problem is not over-constrained, then violating solutions will always get
a lower score than the correct solutions. Moreover, as the approach [17] we are
extending is very conservative concerning the fact that all execution paths, even
the longest non-probable ones, have to satisfy the global constraints, we relax this
assumption by allowing solutions that violate some of the global constraints of
the SC problem for the non-probable execution paths. In this way, solutions that
satisfy the global constraints only for probable execution paths are not ruled out
from the result set but they get a smaller score with respect to those solutions
that satisfy the global constraints for all execution paths. We achieve this goal
by using appropriate evaluation functions that return a zero normalized value
for undesired aggregated dimension values and the following set of constraints:
[sck > 0, ∀k] that rule out those solutions that have a zero score for at least one
execution path.

Based on the above analysis, the SCOP that has to be solved in order to
determine the optimum execution plan OEP ∗ is the following:

max
K∑

k=1

freqk · sck (8)

sck = wet · fet (etk) + wpr · fpr (prk) + wee · fee (eek) + wec · fec (eck) , ∀k (9)

sck > 0, ∀k (10)

110 A. Mello Ferreira, K. Kritikos, and B. Pernici

fet (x) =

⎧⎪⎪⎨
⎪⎪⎩
aet + ET−x

ET−qmin
et

· (1 − aet) , qmin
et ≤ x ≤ ET

max
(
aet − qmin

et −x

ET−qmin
et

· (1 − aet) , 0
)
, x < qmin

et

max
(
aet − x−ET

ET−qmin
et

· (1 − aet) , 0
)
, x > ET

(11)

fpr (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
apr + PR−x

PR−qmin
pr

· (1 − apr) , qmin
pr ≤ x ≤ PR

max
(
apr −

qmin
pr −x

PR−qmin
pr

· (1 − apr) , 0
)
, x < qmin

pr

max
(
apr − x−PR

PR−qmin
pr

· (1 − apr) , 0
)
, x > PR

(12)

fee (x) =

⎧⎪⎪⎨
⎪⎪⎩
aee + x−EE

qmax
ee −EE · (1 − aee) , EE ≤ x ≤ qmax

ee

max
(
aee − EE−x

qmax
ee −EE · (1 − aee) , 0

)
, x < EE

max
(
aee − x−qmax

ee

qmax
ee −EE · (1 − aee) , 0

)
, x > qmax

ee

(13)

fec (x) =

⎧⎪⎪⎨
⎪⎪⎩
aec + x−EC

qmax
ec −EC · (1 − aec) , EC ≤ x ≤ qmax

ec

max
(
aec − EC−x

qmax
ec −EC · (1 − aec) , 0

)
, x < EC

max
(
aec − x−qmax

ec

qmax
ec −EC · (1 − aec) , 0

)
, x > qmax

ec

(14)

∑
j∈Si

zij = 1 , ∀i (15)

eti =
∑
j∈Si

zij · etj , ∀i (16)

xi2 − (eti1 + xi1) ≥ 0, ∀ti1 → ti2 (17)∑
i∈spk

m

eti ≤ etk , ∀k (18)

prk =
∑
i∈Ak

∑
j∈Si

zij · prj , ∀k (19)

eek =
1

|Ak|
·
∑
i∈Ak

∑
j∈Si

zij · eej , ∀k (20)

eck =
∑
i∈Ak

∑
j∈Si

zij · ecj , ∀k (21)

etmin
class(j) ≤ etj ≤ etmax

class(j) , ∀j (22)

ecmin
class(j) ≤ ecj ≤ ecmax

class(j) , ∀j (23)

eej =
ecnormal

class(j) ·
ecj−ecidle

class(j)·etj

ecnormal
class(j)−ecidle

class(j)

ecj
, ∀j (24)

prj = αclass(j) · etj + β · ecj , ∀j (25)

Energy-Aware Design of Service-Based Applications 111

etmin ≤ etj ≤ etmax , ∀j (26)
etmin ≤ etk ≤ etmax , ∀k (27)
etmin ≤ eti ≤ etmax , ∀i (28)
prmin ≤ prj ≤ prmax , ∀j (29)
prmin ≤ prk ≤ prmax , ∀k (30)
eemin ≤ eej ≤ eemax , ∀j (31)
eemin ≤ eek ≤ eemax , ∀k (32)
ecmin ≤ ecj ≤ ecmax , ∀j (33)
ecmin ≤ eck ≤ ecmax , ∀k (34)

The optimization function (8) and the constraints (9) and (10) have already been
explained. The equation set from (11) to (14) defines the evaluation functions
of the four quality and energy dimension under consideration. Constraint set
(15) enforces the fact that only one candidate service should be selected for each
task. Constraint set (16) expresses that the execution time for each task is the
execution time of its selected service. Constraint set (17) represents precedence
constraints for subsequent tasks in the abstract execution plan. To explain, if
ti1 → ti2 , i1, i2 ∈ I, then the task ti2 is a direct successor of task ti1 so the execu-
tion of the former should start after the termination of the latter. The variable xi

denotes the starting time point of task ti. Constraint set (18) expresses that the
execution time of every execution path is obtained by calculating the maximum
execution time of all corresponding execution subpaths of this path. Constraint
sets (19-21) express the price, energy efficiency, and energy consumption of every
execution path, respectively, based on the aggregation rules highlighted in Ta-
ble 2. Constraints sets (22-25) express the constraints obtained from the service
profile of every candidate service for the four considered dimensions. Finally,
constraints sets (26-34) define those variables of the problem that are related to
the considered dimensions and are specific for each service, task and execution
path.

Local constraints can be easily added in the above definition of the SC problem
as they predicate on properties of a single task. For instance, if the ee for a task
ty has to be greater than or equal to a specific given value v, then the following
constraint should be added to the above definition:∑

j∈Sy

zyj · eej ≥ v

Based on the above analysis, we have shown that the SC problem for a composite
process with a block structure can be mapped to a SCOP. Unfortunately, solving
SCOP is NP-hard. Thus, we have to experimentally evaluate our approach in
order to discover if the solving time is very big in most of the cases. If this is
true, then we may have to relax this problem, use heuristics or investigate if only
linear constraints can be used in the problem so as to use MIP that is better than
CSOP in problems with linear constraints. If this is not true, then our approach
is appropriate for solving the energy-aware SC problem. Even if the solving time

112 A. Mello Ferreira, K. Kritikos, and B. Pernici

is big and we cannot find a way to reduce it, our approach can be used in the
case of relatively stable compositions that are very resource demanding and for
which any delta in optimization could have a benefit.

4 Motivating Example

In this section, we provide a proof-of-concept example that highlights the sig-
nificance of our approach. In this example, our service-based process, under
consideration, consists of six tasks, namely t0, t1, t2, t3, t4 and t5. According to
this process, task t0 runs first, then there is a split where tasks t1 and t2 run
in parallel. After t1 is executed, then we have a conditional branch, where t3 is
executed with probability 0.8 or t4 is executed with probability 0.2. In the end,
when either t3 or t4 and t2 are executed, there is a join and the last task, t5 is exe-
cuted. Thus, this process has two execution paths, namely ep1 = {t0, t1, t2, t3, t5}
and ep2 = {t0, t1, t2, t4, t5}, that have the corresponding probabilities of execu-
tion freq1 = 0.8 and freq2 = 0.2, respectively. Execution path ep1 has two
subpaths, namely sp1

1 = {t0, t1, t3, t5} and sp1
2 = {t0, t2, t5}. Similarly, execution

path ep2 has two subpaths, namely sp2
1 = {t0, t1, t4, t5} and sp2

2 = {t0, t2, t5}.
As can be easily seen, we have that sp1

2 = sp2
2.

Moreover, for the sake of simplicity, we assume that there are three ser-
vices that can be used to execute any of the six tasks, where service s1 runs
in the slow server class (class(1) = slow), s2 runs in the average server class
(class(2) = average), and s3 runs in the fast server class (class(3) = fast). For
service s1 we assume that we can derive the following information from its pro-

file: 7 ≤ et1 ≤ 10, 1275.4 ≤ ec1 ≤ 2088, ee1 =

⌈
222· ec1−178·et1

222−178
ec1

· 100

⌉
. Similarly,

for services s2 and s3 we have the following information: 4 ≤ et2 ≤ 7, 1992.4 ≤

ec2 ≤ 3994.9, ee2 =

⌈
607· ec2−486·et2

607−486
ec2

· 100

⌉
and 1 ≤ et3 ≤ 4, 6647.1 ≤ ec3 ≤

30478.8, ee3 =

⌈
8106· ec3−6485·et3

8106−6485
ec3

· 100

⌉
, respectively. In addition, we assume the

following information: αclass(1) = 10, αclass(2) = 50, αclass(3) = 250, β = 0.5,
so the cost models of the services will be: pr1 = 10 ∗ et1 + 0.5 ∗ ec1, pr2 =
50 ∗ et2 + 0.5 ∗ ec2, and pr3 = 100 ∗ et1 + 0.5 ∗ ec3, respectively.

The last assumptions made in this example concern the value domain of the
quality and energy variables, the normalization functions and their weights, and
the user constraints. Concerning the variables, we assume that all execution time
variables etx have the domain [1, 10], all price variables prx have the domain
[500, 20000], all energy efficiency variables eex have the domain [0,100], and all
energy consumption variables ecx have the domain [1000, 31000]. Moreover, we
assume that all dimensions are equally important and should be evaluated in
the same way, so we have that: aet = apr = aee = aec = 0.4, wet = wpr = wee =
wec = 0.25. Finally, we assume that the user provides the following constraints:
ET = 27, PR = 2400, EE = 0.55, EC = 6000.

Energy-Aware Design of Service-Based Applications 113

Based on the user-supplied information, it is easy to see that the problem
is over-constrained, so all of the current approaches would fail and not return
any solution. However, our approach does not fail and produces the following
solution z0,1 = z1,1 = z2,1 = z3,1 = z4,1 = z5,1 = 1, which has the highest
score (0.2825) and violates in the least possible way the user constraints. In
other words, all tasks of the process have been assigned to the first service,
which is the cheapest and less energy consuming. Based on this solution, both
execution paths will have the following values for their aggregated dimensions:
et = 28, pr = 3770, ee = 0.45, ec = 6840.

5 Concluding Remarks

Approaching the problem to find out the best tradeoff between performance and
energy consumption, this paper presents a novel energy-aware and quality-based
technique in order to solve the SC problem taking into account non-functional
characteristics through a global approach. Hence, a new energy efficiency metric
for a single service is introduced, which maps directly the relationship between
energy consumption and execution time. The energy dimension requires to con-
sider novel aspects for service quality evaluation. In particular, the proposed
method considers soft constraints, nonlinear relationships among quality dimen-
sions, and ranges for quality values.

As future work, we intend to develop a more detailed and easy-to-use frame-
work tool for data centers, in which possible burst periods have to be taken
into consideration, adding, thus, new elements into our energy efficiency metric.
Furthermore, techniques to measure real electrical power consumed by a single
server according to its workload will be used as well.

Acknowledgement. The research leading to these results has received funding
from the European Community’s Seventh Framework Programme FP7/2007-
2013 under grant agreement 215483 (S-Cube) and the MIUR Tekne FIRB project.

References

1. GreenBiz.com. In Economic Downturn, Energy Efficiency and IT Take on Green
Sheen (February 2009),
http://www.greenbiz.com/news/2009/02/26/

economic-energy-efficiency-green-it

2. Tschudi, W.: Save Energy Now – Data Center Briefing. Technical report, Lawrence
Berkeley National Laboratory (October 2008)

3. Schmidt, N.H., Erek, K., Kolbe, L.M., Zarnekow, R.: Towards a Procedural Model
for Sustainable Information Systems Management. In: HICSS 2009: Proceedings of
the 42nd Hawaii International Conference on System Sciences, Hawaii, USA, pp.
1–10. IEEE Computer Society, Los Alamitos (2009)

4. Bacon, D.F., Graham, S.L., Sharp, O.J.: Compiler Transformations for High-
Performance Computing. ACM Computing Surveys 26(4), 345–420 (1994)

http://www.greenbiz.com/news/2009/02/26/economic-energy-efficiency-green-it
http://www.greenbiz.com/news/2009/02/26/economic-energy-efficiency-green-it

114 A. Mello Ferreira, K. Kritikos, and B. Pernici

5. Williams, J., Curtis, L.: Green: The New Computing Coat of Arms? IT Profes-
sional 10(1), 12–16 (2008)

6. Zenker, N., Rajub, J.: Resource Measurement for Services in a heterogeneous Envi-
ronment. In: ICTTA 2008: Proceedings of the 3rd International Conference on In-
formation and Communication Technologies: From Theory to Applications, Dam-
ascus, Syria, IEEE Communications Society, pp. 1–15 (2008)

7. Barroso, L.A., Hölzle, U.: The Case for Energy-Proportional Computing. Com-
puter 40(12), 33–37 (2007)

8. Koomey, J.: Estimating total power consumption by servers in the U.S. and the
world. Technical report, Analytics Press (February 2007),
http://enterprise.amd.com/Downloads/svrpwrusecompletefinal.pdf

9. Orgerie, A.C., Lefèvre, L., Gelas, J.P.: Save Watts in Your Grid: Green Strategies
for Energy-Aware Framework in Large Scale Distributed Systems. In: ICPADS
2008: Proceedings of the 2008 14th IEEE International Conference on Parallel and
Distributed Systems, Melbourne, Victoria, Australia, pp. 171–178. IEEE Computer
Society, Los Alamitos (2008)

10. U.S. Environmental Protection Agency (EPA): Report to Congress on Server and
Data Center Energy Efficiency – Public Law 109-431. Technical report (August
2007)

11. Wang, D.: Meeting Green Computing Challenges. In: HDP 2007: Proceedings of the
International Symposium on High Density packaging and Microsystem Integration,
Shanghai, China, pp. 1–4. IEEE Computer Society, Los Alamitos (2007)

12. Xue, J.W.J., Chester, A.P., He, L.G., Jarvis, S.A.: Model-driven Server Allocation
in Distributed Enterprise Systems. In: ABIS 2009: Proceedings of the 3rd Interna-
tional Conference on Adaptive Business Information Systems, Leipzig, Germany
(March 2009)

13. Liu, L., Wang, H., Liu, X., Jin, X., He, W.B., Wang, Q.B., Chen, Y.: GreenCloud:
a new architecture for green data center. In: ICAC-INDST 2009: Proceedings of the
6th international conference industry session on Autonomic computing and commu-
nications industry session, Barcelona, Spain, pp. 29–38. ACM, New York (2009)

14. Comuzzi, M., Pernici, B.: A Framework for QoS-Based Web Service Contracting.
ACM Transactions on the Web (June 2009)

15. Plebani, P., Pernici, B.: URBE: Web Service Retrieval Based on Similarity Evalu-
ation. IEEE Transactions on Knowledge and Data Engineering (2009)

16. Zeng, L., Benatallah, B., Ngu, A.H., Dumas, M., Kalagnanam, J., Chang, H.: QoS-
Aware Middleware for Web Services Composition. IEEE Transactions on Software
Engineering 30(5), 311–327 (2004)

17. Ardagna, D., Pernici, B.: Adaptive Service Composition in Flexible Processes.
IEEE Transactions on Software Engineering 3(6), 369–384 (2007)

18. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: QoS-Aware Replanning of
Composite Web Services. In: ICWS 2005: Proceedings of the IEEE International
Conference on Web Services, Orlando, FL, USA, pp. 121–129. IEEE Computer
Society, Los Alamitos (2005)

19. Jaeger, M.C., Mühl, G., Golze, S.: QoS-Aware Composition of Web Services: A
Look at Selection Algorithms. In: ICWS 2005: IEEE International Conference on
Web Services, Orlando, FL, USA, pp. 807–808. IEEE Computer Society, Los Alami-
tos (2005)

20. Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming. Elsevier
Science Inc., New York (2006)

21. Hwang, C., Yoon, K.: Multiple Criteria Decision Making. LNEMS (1981)

http://enterprise.amd.com/Downloads/svrpwrusecompletefinal.pdf

Action Patterns in Business Process Models

Sergey Smirnov1, Matthias Weidlich1, Jan Mendling2, and Mathias Weske1

1 Hasso Plattner Institute, Potsdam, Germany
{sergey.smirnov,matthias.weidlich,mathias.weske}@hpi.uni-potsdam.de

2 Humboldt-Universität zu Berlin, Germany
jan.mendling@wiwi.hu-berlin.de

Abstract. Business process management experiences a large uptake by
the industry, and process models play an important role in the analysis
and improvement of processes. While an increasing number of staff be-
comes involved in actual modeling practice, it is crucial to assure model
quality and homogeneity along with providing suitable aids for creating
models. In this paper we consider the problem of offering recommenda-
tions to the user during the act of modeling. Our key contribution is a
concept for defining and identifying action patterns - chunks of actions
often appearing together in business processes. In particular, we specify
action patterns and demonstrate how they can be identified from exist-
ing process model repositories using association rule mining techniques.
Action patterns can then be used to suggest additional actions for a pro-
cess model. Our approach is challenged by applying it to the collection
of process models from the SAP Reference Model.

1 Introduction

Business process management experiences a large uptake by the industry, as
more and more companies analyze and improve their processes to stay competi-
tive. Process models, being formal representations of business processes, facilitate
many tasks in the domain of business process management. Thereby, instead of
being an art of a few specialists, process modeling becomes a daily routine of of-
fice staff. This development implies several challenges in terms of an efficient and
effective modeling support. In particular, many staff members have low modeling
competence and model only on an irregular basis [20]. For this reason, process
modeling tools have to incorporate techniques to help these casual modelers to
conduct their work in a productive way.

Business process modeling research has revealed several approaches to make
modeling more efficient. This research can be classified into two main categories.
On the one hand, reference modeling aims to increase productivity based on
the reuse principle: models are created for a specific domain and are meant to
be customized in different application projects. On the other hand, different
types of patterns describe recurring situations in a domain independent way.
The potential of both approaches is hardly reflected by current tool features.
Whilst most of the pattern sets for processes and workflows are mainly used for

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 115–129, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

116 S. Smirnov et al.

model verification and modeling language analysis, the existing reference models
are tightly coupled with their partial domain and can hardly be used in other
settings. Against this background, we define a concept of action patterns. In
contrast to well known workflow patterns, action patterns are closely related to
semantic content of a process model. Meanwhile, unlike reference models, action
patterns are abstract enough to be applicable in various domains. In this context,
the term action essentially refers to the verb that describes the work content of
a textual activity label.

The contribution of this paper is a formal description of action patterns and
an approach for identification of patterns in existing process model collections
based on association rules mining. The mined action patterns can be used to
suggest additional activities to the modeler during a modeling act. We specify
two classes of patterns. Co-occurrence action patterns signify sets of actions that
are likely to appear jointly in a model. Behavioral action patterns describe how
co-occurring actions are related to each other in terms of behavioral constraints.
This information allows us to identify the control flow position where an activity
has to be added.

The rest of the paper is structured as follows. Section 2 provides a motivating
example to illustrate our approach. Section 3 formalizes the action pattern con-
cept and presents two classes of action patterns: co-occurrence action patterns
and behavioral action patterns. Section 4 describes the evaluation of our ap-
proach by deriving action patterns from the SAP Reference Model. In Section 5
we present an outlook of the related work. Section 6 concludes the paper.

2 Motivating Example

An intrinsic complexity of business processes together with process models het-
erogeneity, originating from a variety of stakeholders and modeling purposes,
calls for sophisticated support for process modeling. We distinguish two impor-
tant drivers for such modeling support. On the one hand, the support aims
at facilitating the design of a standalone process model. This kind of model-
ing support includes means to accelerate process model creation, assure correct
model execution semantics, and increase model conciseness. However, the focus
is purely on the isolated creation of a dedicated model: the application domain
of this model is not taken into account. On the other hand, the rationale behind
modeling support might be homogeneity of the modeling efforts. Process models
created within a certain domain, might it be an organizational unit or a process
model collection, should be modeled in a consistent and similar manner. In this
case the emphasis is on avoiding redundancies and contradictions, as well as on
enforcing modeling guidelines.

We illustrate the use case of domain-aware modeling support by means of the
example in Fig. 1, which shows fragments of two EPCs from the SAP Reference
Model [9]. Both business processes originate from the SAP material management
and describe production planning. We see that the processes have a similar struc-
ture and semantics. For the long-term planning (Fig. 1(a)), as well as for the

Action Patterns in Business Process Models 117

V

Long-term
planning
total planning

Long-term
planning
single item

Dependent
requirement
created

V

MRP list is
created

Planned order
created

automatically

X

Planning results of
stock/requirements
simulation are
processed

V

Long-term
planning:
evaluation

(a) Long-term planning

V

Master
production
scheduling
total planning

Dependent
requirement
created

V

MRP list is
created

Planned order
created

automatically

X

Master
production
scheduling:
evaluation

V

Master
production
scheduling
interactive

Master
production
scheduling
single item

Planning results or
stock/requirements
simulation are
processed

(b) Master production scheduling

Fig. 1. Fragments of two similar planning processes from the SAP Reference Model

master production scheduling (Fig. 1(b)), two similar planning steps are per-
formed concurrently, and in both cases are succeeded by an evaluation. In Fig. 1
we highlight the activities which are interesting for us with grey color. Given
these models, the creation of a model for a related process, e.g., a short-time
production planning, might be supported as follows. After the modeler creates a
function Short-Term Planning - Total Planning, we suggest to insert a concurrent
function Short-Term Planning - Single Item on the fly. This recommendation
can be derived from the analysis of the already existing models. We might also
alert the modeler if he saves the model for short-term planning without having
inserted a function for planning evaluation. The modeler might reconsider the
modeling decisions and insert such a function, or rename an existing function,
which has been intended to model the evaluation step, but was labeled differently
(e.g., function planning calculation can be renamed to planning evaluation).

For obvious reasons, such domain-aware modeling support has to take into
account semantics of existing process models. In this case semantics is not re-
stricted to the model execution semantics. Instead, semantics has to be given in
terms of concepts of the application domain. Applied to Fig. 1, a dependency

118 S. Smirnov et al.

between the planning steps (total planning vs. single-item), as well as their rela-
tion to the planning evaluation, are examples of semantic dependencies specific
for an application domain. The question how to derive a formalization of domain
knowledge is crucial for a domain-aware modeling support.

To formalize domain knowledge, one might apply semantic annotations for all
elements of the process. In this case, semantic information is represented in a
structural way. This enables straight-forward processing and simplifies the usage
for modeling support. However, this approach has an obvious drawback, since
it requires semantic annotation of all model elements as a preliminary step. For
a large collection of process models such a preliminary step requires enormous
efforts and, thus, might not be feasible.

Therefore, we follow another approach relying on the analysis of model element
labels. The goal of this analysis is to understand the meaning of labels and
extract domain knowledge out of an existing process model collection. Such an
approach has to deal with the high ambiguity of a natural language. However,
our experience (see [19]), as well as the experience of other researchers (see [4]),
proves that label analysis is feasible. Besides, to simplify model comprehension
for humans, modelers often stick to one schema when labeling model elements.
An example is verb + noun schema employed for activity labeling. Analysis of
such labels can be seen as an automated operation. The analysis outcome is the
mapping of each activity to an action for which the activity stays in the model.
For instance, from an activity labeled with send notification one can derive that
action send is performed on object notification.

In this paper we focus on supporting the modeler with recommendations on
actions potentially missing in a process model. While such recommendations
depend on various model elements and other factors in the general case, we focus
on the analysis of activities. There are two major drivers for our work. First,
giving recommendations on the missing actions (i.e., activities on the model
level) requires exhaustive investigation of the existing ones. Second, a lion’s
share of business process model semantics is given by the activities. Hence, we
formulate the recommendations based on the analysis of activities. To formalize
the knowledge extracted from a process model collection we propose to use the
notion of action patterns—groups of actions which often appear together in
business processes. In the next section we elaborate on the concept of action
patterns. However, before we proceed with action patterns discussion, we would
like to summarize the assumptions used in this work:
Assumption 1. A process model collection is large enough to extract domain

knowledge.
Assumption 2. An activity label signifies an action.
Assumption 3. There is a mechanism interpreting an activity label as an

action.

3 Action Patterns

In general, a pattern is a concept that organizes knowledge related to “a problem
which occurs over and over again in our environment, and then describes the core

Action Patterns in Business Process Models 119

solution to that problem, in such a way that you can use this solution a million
times over, without ever doing it the same way twice” [3]. While originally defined
for architecture, this concept was adapted to software engineering in the 1990s
(see [6]). In business process management, patterns have been defined, among
others, for control flow [25], data flow [21], resources [22], and collaboration [15].
Also the MIT Process Handbook [16] can be related to the idea of describing a
core solution to a recurring problem.

This section discusses the notion of actions patterns in order to meet the
requirements for modeling support outlined above. First, Section 3.1 presents our
formal framework for action patterns. Then, Section 3.2 defines co-occurrence
action patterns. Finally, Section 3.3 specifies behavioral action patterns based
on behavioral profiles.

3.1 Formal Framework

In order to formalize the concept of an action pattern we need to introduce a
number of auxiliary concepts. First, we postulate Γ to be the universal alphabet
of labels. Based thereon, we define the notion of a process model enriched with
labeling information.

Definition 1 (Process Model). A tuple PM = (A,G, F, s, e, t, l) is a process
model , where:
– A is a finite nonempty set of activities;
– G is a finite set of gateways;
– A ∩G = ∅ and N = A ∪G is a finite set of nodes;
– F ⊆ N ×N is the flow relation, such that (N,F) is a connected graph;
– s ∈ A is the only start activity, such that •s = ∅, where •n =

{n′ ∈ N |(n′, n) ∈ F} for node n;
– e ∈ A is the only end activity, such that e• = ∅, where n• =

{n′ ∈ N |(n, n′) ∈ F} for node n;
– t : G �→ {and, xor, or} is a mapping that assigns type to each gateway;
– l : A �→ Γ is a mapping assigning to each activity a label.

In the remainder, we do not formalize the execution semantics of a process
model, but assume an interpretation of the model following on common execution
semantics. Such semantics, in particular for the OR construct, has been presented
in the existing work (see [17] as an example for EPCs).

To grasp the meaning of activities humans interpret their labels. In the context
of this work interpretation of labels has great importance. Hence, we formalize it,
introducing an alphabet of action terms T and a label interpretation function.

Definition 2 (Action Function). For a given process model PM =
(A,G, F, s, e, t, l), the action function v : Γ �→ T derives an action from a label.
As a shorthand notation, we introduce va : A �→ T for deriving an action from a
label of an activity a ∈ A, i.e., va(a) = v(l(a)). We also use VPM =

⋃
a∈A{va(a)}

to denote the set of all actions of a process model.

120 S. Smirnov et al.

Revisiting the example containing the label send notification, application of the
action function v yields the action send. We also formalize the notion of a process
model collection as follows.

Definition 3 (Process Model Collection). A tuple C = (PM, V) is a
process model collection , where:
– PM is a nonempty finite set of process models with elements PMi =

(Ai, Gi, Fi, si, ei, ti, li), where i = 1, 2, . . . , |PM|;
– V =

⋃
i=1,2,...,|PM| VPMi is the set of all actions in the model collection.

It is natural to expect that in a large collection of process models one can ob-
serve sustainable relations between actions (action patterns). Recognition of ac-
tion patterns resembles uncovering patterns in large data collections. The latter
problem is in the focus of data mining. In particular we are interested in associa-
tion rule learning—a well established technique for discovering relations between
variables in large databases. An example of an association rule in a commerce
domain is a statement that if customers buy coffee and milk, they usually buy
sugar as well. Association rule learning enables discovery of such statements from
the analysis of basket data in supermarkets. The initial idea of association rule
learning was presented by Agrawal, Imielinski, and Swami in [1]. More advanced
algorithms were presented in [2].

Further, the generic formalism of association rule learning is adapted for both
co-occurrence and behavioral action patterns. We introduce the set of items I.
Let us observe a collection of transactions C, where each transaction T is a set
of items, i.e., T ⊆ I. Given a set of items X ⊆ I, we say that transaction T
satisfies X , if X ⊆ T . An association rule in a collection C is an implication of
the form X ⇒ Y , where X ∩ Y = ∅ and X,Y ⊂ I.

Based thereon, two elementary notions can be defined, i.e., support and confi-
dence. A set X ⊆ I has support n in a collection C, if n transactions satisfy set
X . We denote the support for set X with supp(X). Support can be related to
statistical significance. In the context of action pattern retrieval we are interested
in sets that have high support. Let us require the minimum level of support for
sets to be minsup. Then X is called a large set if supp(X) ≥ minsup (and a
small set otherwise). An association rule X ⇒ Y holds in transaction collection
C with confidence c = supp(X∪Y)

supp(X) , if at least c share of transactions satisfying X ,
satisfies Y as well. The confidence for a rule X ⇒ Y is denoted as conf(X ⇒ Y).
A rule confidence reflects its strength. As in the case with support, we are inter-
ested in the rules with high confidence values. Hence, we introduce the minimal
accepted level of confidence—minconf . Following [1], we claim that we are inter-
ested in the rules X ⇒ Y for which X

⋃
Y is large and the confidence is greater

than user specified minconf .

3.2 Co-occurrence Action Patterns

The first class of action patterns is co-occurrence action patterns. Nomen est
omen, these patterns capture sets of actions which often co-occur together in

Action Patterns in Business Process Models 121

business processes, ignoring any ordering relations between these actions. In
terms of association rules learning, we interpret actions as items and process
models as transactions. Hence, a model collection is a collection of transactions.
We say that a process model PM = (A,G, F, s, e, t, l) satisfies an action set X , if
X ⊆ VPM . A co-occurrence action pattern is defined as an association rule on the
domain of actions V associated with values for minimal support and confidence.

Definition 4 (Co-occurrence Action Pattern)
CAP = (R,minsup,minconf) is a co-occurrence action pattern in process
model collection C = (PM, V), where:
– R is an association rule X ⇒ Y , where X,Y ⊂ V ;
– minsup is the value of the required minimal support;
– minconf is the value of the required minimal confidence.

From a user perspective such a pattern recommends the actions which are ex-
pected to appear in the process model given the current constellation of actions.

Mining of co-occurrence action patterns has two phases. In the first phase we
seek for association rules X ⇒ Y , such that X

⋃
Y is a large set. In the second

phase the mined large sets are used for derivation of patterns—rules that have
a high confidence level.

A search for large sets is a computationally intensive task. In this paper we
set our choice on Apriori algorithm, since it is efficient and simple [2]. In terms
of large action sets this algorithm works as follows. As the input the algorithm
takes the process model collection C = (PM, V) and the minimal support value
minsup. For every action v ∈ V , a one element action set is constructed, {v}.
Then, for each action set, the algorithm checks its support. If the support is not
less than minsup, the set is large. The derived 1-large sets are used as the input
for the next step. In the k-th step the algorithm constructs sets of size k from
k − 1 large sets and checks if they are large. The algorithm terminates, once all
the large sets are found. Table 1 illustrates the first (see Table 1(b)) and the
second steps (see Table 1(c)) of Apriori work for the model collection captured
in Table 1(a) given minsup = 5.

After large sets have been retrieved, the second phase explores each large
set for rules with high confidence level. A rule A ⇒ B is defined by two sets:
antecedent (A) and consequent (B). We consider all possible partitions of a
large set into two sets, one of them to become an antecedent and the other—a
consequent. For each partitioning we check, if it results in a rule with a confidence
level greater than minsup.

3.3 Behavioral Action Patterns

Co-occurrence action patterns do not provide information about how the missing
actions have to be introduced into the process model. As the next step, we
consider action patterns that are enriched with information on relations between
actions. First, we present preliminaries on behavioral relations and afterwards
introduce the notion of a behavioral action pattern.

122 S. Smirnov et al.

Table 1. Derivation of large action sets in a process model collection given minsup = 5

(a) Process model collection

Model Actions

A allocate analyze calculate collect evaluate settle summarize
B allocate analyze asses calculate distribute entry evaluate reconcile repost

settle split
C allocate analyze calculate cost settle
D allocate analyze calculate evaluate settle
E allocate analyze collect calculate distribute evaluate settle summarize
F allocate budget calculate copy define evaluate plan reconcile settle split

transfer
G allocate budget calculate copy cost define plan reconcile settle split transfer

(b) Large action sets of size 1

Set Support

{allocate} 7
{analyze} 5
{calculate} 7
{evaluate} 5
{settle} 7

(c) Large action sets of size 2

Set Support

{allocate, analyze} 5
{allocate, calculate} 7
{allocate, evaluate} 5
{allocate, settle} 7
{analyze, calculate} 5
{analyze, settle} 5
{calculate, evaluate} 5
{calculate, settle} 7
{evaluate, settle} 5

Behavioral Relations. In order to capture behavioral aspects of a process on
the level of pairs of activities, we apply the notion of behavioral profiles [27]. Al-
though Definition 1 does not specify execution semantics, we impose syntactical
requirements for the definition of all complete traces of a process model to define
its behavioral profile. That is, the (potentially unbounded) set of complete pro-
cess traces TPM for a process model PM = (A,G, F, s, e, t, l) is a set of lists of
the form s ·A∗ ·e, such that a list entry contains the execution order of activities.
Further on, we use a ∈ σ with σ ∈ TPM to denote that an activity a ∈ A is a part
of a complete process trace. The behavioral profile is grounded on the notion of
weak order. Two activities of a process model are in weak order, if there exists
a trace in which one node occurs after the other.

Definition 5 (Weak Order Relation). Let PM = (A,G, F, s, e, t, l) be a
process model, and TPM—its set of traces. The weak order relation �PM ⊆
(A × A) contains all pairs (x, y), such that there is a trace σ = n1, . . . , nm in
TPM with j ∈ {1, . . . ,m− 1} and j < k ≤ m for which holds nj = x and nk = y.

Depending on how two activities of a process model are related by weak order,
we define three relations forming the behavioral profile.

Action Patterns in Business Process Models 123

Definition 6 (Behavioral Profile). Let PM = (A,G, F, s, e, t, l) be a process
model. A pair (x, y) ∈ (A×A) is in one of the following relations:
– strict order relation �PM , if x �PM y and y 	�PM x;
– exclusiveness relation +PM , if x 	�PM y and y 	�PM x;
– observation concurrency relation ||PM , if x �PM y and y �PM x.

The set of all three relations is the behavioral profile of PM .

We illustrate the behavioral profile by means of the model in Fig. 2. For
instance, (Template allocation) � (Overhead calculation) holds as there ex-
ists no trace, such that the latter function occurs before the former. With
�−1

PM as the inverse relation for �PM , (Revaluation completed) �−1
PM (Tem-

plate allocation) also holds. It is worth to mention that �PM ,�−1
PM ,+PM , and

||PM partition the Cartesian product of activities A × A for a process model
PM = (A,G, F, s, e, t, l).

Settle ...

Action: settle

Template
allocation
(sales order)

Process costs
were allocated

Revaluation of
actual prices

Revaluation
completed

Overhead
calculation

(manufacturing
order)

Action: allocate

Action: calculate

Co-occurrence action pattern:

{allocate, calculate} => {settle}

Behavioral action pattern:

{allocate calculate} =>
{allocate settle, calculate settle}

Fig. 2. Exemplary suggestion based
on action patterns

The Concept of Behavioral Action Pat-
terns. We introduce behavioral action pat-
terns as a mechanism enabling suggestions on
how the missing actions should be introduced
in an existing process model. Such patterns
provide more information to the user than
co-occurrence action patterns. However, we
perceive behavioral patterns not as a mech-
anism replacing co-occurrence patterns, but
rather as a complimentary mechanism: while
co-occurrence action patterns suggest which
actions are missing, behavioral action pat-
terns hints on action relations. Assume a user
designs a process model containing actions
allocate and calculate; co-occurrence action
pattern {allocate, calculate} ⇒ {settle} is
available (see Fig. 2). This pattern suggests
to add action settle in the process model.
Then, we can look up a suitable behavioral
action pattern describing relations between
these three actions. Behavioral action pat-
tern {allocate � calculate} ⇒ {allocate �
settle, calculate � settle} provides a desired
recommendation.

To formalize the concept of relations between actions, we propose to adapt the
behavioral relations between activities introduced earlier. We say that actions
v1 and v2 are in relation R in a process model PM = (A,G, F, s, e, t, l), if there
are two activities a, b ∈ A, such that (a, b) ∈ R∧va(a) = v1∧va(b) = v2. Within
one process model a pair of actions (v1, v2) may be in more than one relation.
This holds if there are several activities that signify action v1, or action v2, or
both actions.

124 S. Smirnov et al.

Definition 7 (Behavioral Action Pattern). BAP = (R,minsup,minconf)
is a behavioral action pattern in process model collection C = (PM, V), where:
– R is a rule X ⇒ Y , where X,Y ⊂ V × {�,�−1,+, ||} × V , i.e., X and Y

constitute of pairs of actions for which behavioral relations are specified;
– minsup is the value of the required minimal support;
– minconf is the value of the required minimal confidence.

Mining of behavioral action patterns resembles the approach introduced for co-
occurrence action patterns. In the first phase we seek for large action sets. In the
second phase we inspect the relations between the actions of each large set. In
terms of association rules derivation, action relations are treated as items, while
large action sets are interpreted as collections. Provided minsup and minconf
values, we can derive behavioral action patterns.

4 Evaluation Based on the SAP Reference Model

To validate the proposed concepts and algorithms, we have conducted an exper-
iment. The goals of the experiment were: 1) to check if it is possible to derive
action patterns from a collection of process models and 2) to learn which support
and confidence values are encountered in practice. The experiment consists of
two parts: in the first part co-occurrence action patterns have been studied, in
the second—behavioral action patterns.

The experiment studies the SAP Reference Model [9], a process model col-
lection that has been used in several works on process model analysis [17]. The
collection captures business processes that are supported by the SAP R/3 soft-
ware in its version from the year 2000. It is organized in 29 functional branches
of an enterprise, like sales or accounting, that are covered by the SAP software.
The SAP Reference Model includes 604 Event-driven Process Chains (EPCs).
All of these models have been considered in the first part of experiment for de-
riving co-occurrence patterns. In the second part, inspecting behavioral action
patterns, the number of models was 421. The decrease in the model number is
due to the exclusion of models with ambiguous instantiation semantics (see [5])
or behavioral anomalies (see [17]). At this stage we derived actions from activity
labels manually. We foresee that this step can be automated in the future and
are currently investigating techniques enabling the automation.

In the first part of the experiment, we have derived co-occurrence action pat-
terns. The first question to be answered is which values of support and confidence
indicate relevant patterns. While higher values indicate that the pattern is more
reliable, we aim to understand which values can be expected. In the SAP Ref-
erence Model the support value for all action sets is under 10, which is quite
low given the fact that some actions appear several hundred times [18]. As the
minimally acceptable confidence level is hard to predict, we conducted a set of
experiments varying the level of support from 2 to 9 and the level of confidence
from 0.5 to 0.95. Table 2 summarizes the results of these experiments. It shows
that there is almost half a million patterns with support 2, 17 patterns with sup-
port of 9, and not a single pattern has support 10. To illustrate how the derived

Action Patterns in Business Process Models 125

Table 2. Dependency of co-occurrence pattern number in the SAP Reference Model
on minsup and minconf values

minconf
minsup

2 3 4 5 6 7 8 9

0.50 522396 7395 2353 680 563 41 29 17
0.55 511373 6979 2247 665 550 34 23 13
0.60 510517 6123 2089 610 504 33 22 12
0.65 510498 6104 2070 591 497 26 16 9
0.70 484061 5569 1535 563 469 20 12 6
0.75 483415 4923 1477 505 421 19 11 6
0.80 483176 4684 1238 501 417 15 10 5
0.85 483135 4643 1197 460 417 15 10 5
0.90 483095 4603 1157 420 377 7 3 2
0.95 483093 4601 1155 418 375 5 1 0

Table 3. Derived behavioral profiles for action set {allocate, calculate, settle}

Model
Action pair

(allocate, calculate) (allocate, settle) (calculate, settle)

A � � �
B � � �
C � � �
D � � �

patterns look like, we zoom into one cell of the table and list the patterns with
minsup = 7 and minconf = 0.95:
– {pick} ⇒ {process}
– {level} ⇒ {evaluate}
– {permit} ⇒ {process}
– {archive, enter} ⇒ {process}
– {allocate, calculate} ⇒ {settle}

The results show that for the studied model collection the maximum support value
is small. On the one hand, this is caused by unsystematic usage of labels: often
the derived actions are semantically close, but are treated as different actions. On
the other hand, this fact can be explained by the heterogeneity of process models.
The presence of process variants in the collection leads to the fact that some action
patterns, especially of size 5-7, identify these variants in the model set.

Behavioral action patterns originate from the inspection of behavioral con-
straints between actions in large action sets. Hence, derivation of behavioral
patterns is possible only after minsup for action sets is given. In the experiment
we considered those process models from the SAP Reference Model that can be
mapped to free-choice Petri nets. Table 3 provides an example of relations for
actions allocate, calculate, settle. Table 4(a) shows the number of patterns that

126 S. Smirnov et al.

Table 4. Dependency of behavioral action patterns number for 2 action sets on minsup
and minconf values

(a) Action set {allocate, calculate, settle}

minconf
minsup

2 3 4 5

0.50 12 12 12 0
0.55 12 12 12 0
0.60 12 12 12 0
0.65 12 12 12 0
0.70 12 12 12 0
0.75 12 12 12 0
0.80 12 12 12 0
0.85 12 12 12 0
0.90 12 12 12 0
0.95 12 12 12 0

(b) Action set {analyze, allocate, settle}

minconf
minsup

2 3 4 5 6

0.50 170 12 4 2 0
0.55 161 12 4 2 0
0.60 157 8 3 2 0
0.65 157 8 3 2 0
0.70 130 8 3 2 0
0.75 129 7 2 1 0
0.80 129 7 2 1 0
0.85 129 7 2 1 0
0.90 129 7 2 1 0
0.95 129 7 2 1 0

can be derived for this set depending on the minsup and minconf values for
relations. A more vivid example is the action set {analyze, allocate, settle}, for
which the number of behavioral patterns varies greatly (see Table 4(b)). A con-
crete example of a behavioral action pattern which can be derived from Table 3
is {allocate � calculate} ⇒ {allocate � settle, calculate � settle}. This pat-
tern prescribes that the three actions are sequentially constrained. They should
appear in the process model such that first it is allocated, then calculated, and
finally settled, which is a standard sequence of activities for financial assets.

5 Related Work

Our work can be related to different contributions to business process modeling.
We focus on the three areas, i.e., patterns for business processes, intelligent
modeling support, and research on activity labels.

There is a wide variety of patterns proposed for business processes and busi-
ness process modeling. On the technical level, the workflow pattern initiative
has identified various patterns for the specification of control flow [25], data flow
[21], and resources [22] in workflow management systems. On a more concep-
tual level, Lonchamp proposed a set of collaboration patterns defining abstract
building blocks for recurrent situations [15]. Tran et al. formalize process pat-
terns using UML concepts [24]. Most closely related to our work is the research
by Thom et al. [23]. The authors identify so-called activity patterns that spec-
ify eight different types of micro workflows, like approval or decision. Further,
in [14] the authors describe a method for patterns derivation. While [14,23] op-
erates directly with activities, we use the concept of actions. As in real world
models activities with different labels often signify the same action, usage of
actions facilitates pattern derivation. Next, instead of direct analysis of a model

Action Patterns in Business Process Models 127

graph structure, we rely on the concept of behavioral profiles. As relations cap-
tured by behavioral profiles are weaker than those defined by process models,
[14] discovers only a subclass of behavioral action patterns.

The potential of improving business process modeling using intelligent support
and recommendations has been recognized only recently. Hornung et al. define a
concept to provide recommendations to the modeler based on search techniques
[8]. The idea is to find similar models in the process repository and propose them
as extensions to a process being currently modeled. This idea is in line with our
approach, but requires a match not only in terms of actions, but also business ob-
jects and other textual content. We deem our approach to be more flexible and
applicable across different modeling contexts. Further experiments are needed
to check comparative strengths and weaknesses. A different stream of research
investigates how far social software and Web 2.0 applications can provide recom-
mendations to the modeler. Koschmider et al. propose a solution that enables col-
laborative modeling and user recommendations [11,12]. In contrast to our work,
the approach builds on behavior and suggestions of other modelers. Control flow
correctness issues are addressed in [13], where the authors offer continuous verifi-
cation of process models during modeling. In [10] the authors study how coopera-
tive modeling is supported by fragment-driven modeling approach. However, this
paper primary focuses on describing the infrastructure for cooperative modeling,
but not on the derivation of fragments (or action patterns). Gschwind et al. em-
ploy control flow patterns to accelerate business process modeling and minimize
the number of modeling errors [7]. The authors develop a suggestion mechanism
considering structural patterns and the model structure at hand.

Recent contributions identify a textual analysis of activity labels as an im-
portant step to improve the pragmatic quality of process models. For instance,
different labeling schemata and their impact on model understanding have been
analyzed in [19]. Textual labels are also used for matching and comparing process
models [8,26]. Recent works by Becker et al. reuse parsing techniques from com-
puter linguistics to efficiently identify the various parts of an activity label [4].
While we have derived the actions manually for our experiment reported in this
paper, we are currently working on automating this step by using the approach
taken by Becker et al.

6 Conclusion

In this paper we have addressed the challenge of assisting the designer in model-
ing a process. We defined the concept of action patterns, capturing co-occurrences
of actions in existing process model collections. Our contribution is an approach
based on association rules mining that identifies sets of actions that likely imply
further actions. In this way, action patterns can be used to suggest additional ac-
tivities to the modeler. Furthermore, we utilize behavioral profiles to capture be-
havioral relations between co-occurring actions. Therefore, we also provide infor-
mation on how the additional action should be included in the process model. Our
approach has been validated using the SAP Reference Model.

128 S. Smirnov et al.

We assume that a mapping of an activity label to an action is given. However,
derivation of actions from labels is a challenging research topic and is in the focus
of our future work. Further, we analyze activity labels to derive actions only. We
do not consider business objects referenced in the labels of model elements as well.
While this might be regarded as a limitation, we made this design choice to identify
recurring patterns holding for different business objects. Taking business objects
into account offers several advantages, including object life cycle mining. A mined
object life cycle is a helpful tool as it facilitates advanced modeling support. An-
other potential direction of the future work involves synonym recognition. Usage
of thesauri, like WordNet, would allow to cluster actions that are closely related
and gain stronger support for related patterns. In this context, one might also con-
sider action hierarchies like the one developed for the MIT Process Handbook.

As process model collections are often incremented with new models, meth-
ods for action patterns derivation have to be efficient and adaptive. While in
this paper derivation of action patterns relies on Apriori algorithm, there is a
potential to improve the performance by substituting Apriori algorithm with a
more efficient one. In addition, efficient strategies for adjusting the set of action
patterns after creation of new process models have to be evaluated. Obviously,
support and confidence values of existing patterns might easily be adapted. How-
ever, the detection of additional patterns, which have been ignored due to low
support and confidence values before the model collection has been incremented,
remains a serious issue. All these directions are rather unexplored for process
models, and are on our future research agenda.

References

1. Agrawal, R., Imielinski, T., Swami, A.N.: Mining Association Rules between Sets
of Items in Large Databases. In: COMAD, Washington, D.C, pp. 207–216 (1993)

2. Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules in Large
Databases. In: VLDB, pp. 487–499. Morgan Kaufmann Publishers Inc., San Fran-
cisco (1994)

3. Alexander, C., Ishikawa, S., Silverstein, M.: A Pattern Language: Towns, Buildings,
Construction. Oxford University Press, New York (1977)

4. Becker, J., Delfmann, P., Herwig, S., Lis, L., Stein, A.: Towards Increased Compa-
rability of Conceptual Models - Enforcing Naming Conventions through Domain
Thesauri and Linguistic Grammars. In: ECIS (June 2009)

5. Decker, G., Mendling, J.: Instantiation Semantics for Process Models. In: Dumas,
M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 164–179.
Springer, Heidelberg (2008)

6. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison-Wesley,
Boston (1995)

7. Gschwind, T., Koehler, J., Wong, J.: Applying Patterns during Business Process
Modeling. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS,
vol. 5240, pp. 4–19. Springer, Heidelberg (2008)

8. Hornung, T., Koschmider, A., Lausen, G.: Recommendation Based Process Model-
ing Support: Method and User Experience. In: Li, Q., Spaccapietra, S., Yu, E., Olivé,
A. (eds.) ER 2008. LNCS, vol. 5231, pp. 265–278. Springer, Heidelberg (2008)

Action Patterns in Business Process Models 129

9. Keller, G., Teufel, T.: SAP(R) R/3 Process Oriented Implementation: Iterative
Process Prototyping. Addison-Wesley, Reading (1998)

10. Kim, K.-H., Won, J.-K., Kim, C.-M.: A Fragment-Driven Process Modeling
Methodology. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P.,
Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3482, pp. 817–826.
Springer, Heidelberg (2005)

11. Koschmider, A., Song, M., Reijers, H.A.: Social Software for Modeling Business
Processes. In: Ardagna, D., et al. (eds.) BPM 2008 Workshops. LNBIP, vol. 17, pp.
642–653. Springer, Heidelberg (2009)

12. Koschmider, A., Song, M., Reijers, H.A.: Advanced Social Features in a Recommen-
dation System for Process Modeling. In: Abramowicz, W. (ed.) BIS 2009. LNBIP,
vol. 21, pp. 109–120. Springer, Heidelberg (2009)

13. Kühne, S., Kern, H., Gruhn, V., Laue, R.: Business Process Modelling with Con-
tinuous Validation. In: MDE4BPM, September 2008, pp. 37–48 (2008)

14. Lau, J.M., Iochpe, C., Thom, L., Reichert, M.: Discovery and Analysis of Activity
Pattern Cooccurrences in Business Process Models. In: ICEIS, pp. 83–88. Springer,
Heidelberg (2009)

15. Lonchamp, J.: Process Model Patterns for Collaborative Work. In: Telecoop (1998)
16. Malone, T.W., Crowston, K., Herman, G.A.: Organizing Business Knowledge: The

MIT Process Handbook, 1st edn. The MIT Press, Cambridge (2003)
17. Mendling, J.: Metrics for Process Models: Empirical Foundations of Verification,

Error Prediction, and Guidelines for Correctness. In: Mendling, J. (ed.) Metrics for
Process Models. LNBIP, vol. 6, pp. 1–15. Springer, Heidelberg (2008)

18. Mendling, J., Recker, J.: Towards Systematic Usage of Labels and Icons in Business
Process Models. In: EMMSAD, June 2008, vol. 337, pp. 1–13. CEUR Workshop
Proceedings (2008)

19. Mendling, J., Reijers, H.A., Recker, J.: Activity Labeling in Process Modeling:
Empirical Insights and Recommendations. Information Systems (to appear, 2009)

20. Rosemann, M.: Potential Pitfalls of Process Modeling: Part A. Business Process
Management Journal 12(2), 249–254 (2006)

21. Russell, N., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: Workflow
Data Patterns. Technical Report FIT-TR-2004-01, QUT (2004)

22. Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M., Edmond, D.: Workflow
Resource Patterns. Technical Report WP 126, Eindhoven University of Technology
(2004)

23. Thom, L.H., Reichert, M., Chiao, C.M., Iochpe, C., Hess, G.N.: Inventing
Less, Reusing More, and Adding Intelligence to Business Process Modeling. In:
Bhowmick, S.S., Küng, J., Wagner, R. (eds.) DEXA 2008. LNCS, vol. 5181, pp.
837–850. Springer, Heidelberg (2008)

24. Tran, H.N., Coulette, B., Dong, B.T.: Broadening the Use of Process Patterns for
Modeling Processes. In: SEKE, July 2007, pp. 57–62. Knowledge Systems Institute
Graduate School (2007)

25. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Work-
flow Patterns. Distrib. Parallel Databases 14(1), 5–51 (2003)

26. van Dongen, B., Dijkman, R., Mendling, J.: Measuring Similarity between Busi-
ness Process Models. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS,
vol. 5074, pp. 450–464. Springer, Heidelberg (2008)

27. Weidlich, M., Mendling, J., Weske, M.: Computation of Behavioural Profiles of
Process Models. Technical report, HPI (June 2009),
http://bpt.hpi.uni-potsdam.de/pub/Public/MatthiasWeidlich/

behavioural_profiles_report.pdf

http://bpt.hpi.uni-potsdam.de/pub/Public/MatthiasWeidlich/behavioural_profiles_report.pdf
http://bpt.hpi.uni-potsdam.de/pub/Public/MatthiasWeidlich/behavioural_profiles_report.pdf

Artifact-Centric Workflow Dominance

Diego Calvanese1, Giuseppe De Giacomo2, Richard Hull3, and Jianwen Su4

1 KRDB Research Centre
Free University of Bozen-Bolzano

I-39100 Bolzano, Italy
calvanese@inf.unibz.it

2 Dipartimento di Informatica e Sistemistica
Sapienza Università di Roma

I-00185 Roma, Italy
degiacomo@dis.uniroma1.it

3 IBM T.J. Watson Research Center
Yorktown Heights, NY, U.S.A.

hull@us.ibm.com
4 Department of Computer Science

University of California at Santa Barbara
Santa Barbara, CA, U.S.A.

su@cs.ucsb.edu

Abstract. In this paper we initiate a study on comparing artifact-
centric workflow schemas, in terms of the ability of one schema to emulate
the possible behaviors of another schema. Artifact-centric workflows are
centered around “business artifacts”, which contain both a data schema,
which can hold all of the data about a key business entity as it passes
through a workflow, along with a lifecycle schema, which specifies the
possible ways that the entity can evolve through the workflow. In this
paper, the data schemas for artifact types are finite sets of attribute-value
pairs, and the lifecycle schemas are specified as sets of condition-action
rules, where the condition is evaluated against the current snapshot of
the artifact, and where the actions are external services (or “tasks”),
which read a subset of the attributes of an artifact, which write onto a
subset of the attributes, and which are performed by an entity outside
of the workflow system (often a human). The services are also charac-
terized by pre- and post-conditions, in the spirit of semantic web ser-
vices. To compare artifact-centric workflows, we introduce the notion of
“dominance”, which intuitively captures the fact that all executions of a
workflow can be emulated by a second workflow. (In the current paper,
the emulation is focused only on the starting and ending snapshots of
the possible enactments of the two workflows.) In fact, dominance is a
parametric notion that depends on the characterization of the policies
that govern the execution of the services invoked by the workflows. In
this paper, we study in detail the case of “absolute dominance”, in which
this policy places no constraints on the possible service executions. We
provide decidability and complexity results for bounded and unbounded
workflow executions in the cases where the values in an artifact range
over an infinite structure, such as the integers, the rationals, or the reals,
possibly with order, addition, or multiplication.

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 130–143, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Artifact-Centric Workflow Dominance 131

1 Introduction

The importance of automation of workflow and business processes continues to
increase, with a world economy moving towards increased globalization and the
drive for more efficiency. A fundamental problem in workflow management is to
understand when one workflow (schema) can emulate another one. At a prac-
tical level, this is important for workflow evolution and workflow integration,
where one might need to verify that the new workflow can faithfully emulate
the old workflow(s). Emulation has been studied in considerable depth in the
form of simulation for process algebras, which can be viewed as an abstraction
of process-centric workflow models. In the past several years a data-centric ap-
proach to modeling workflows has emerged, in which both data and process are
tightly coupled in the basic building blocks of workflows. One class of data-
centric workflow models is centered around “business artifacts” [12,16], which
are augmented data records that correspond to key business-relevant entities,
their lifecycles, and how/when services (a.k.a. tasks) are invoked on them. This
“artifact-centric” approach provides a simple and robust structure for workflow,
and has been demonstrated in practice to permit efficiencies in business transfor-
mation [2,3]. In the artifact-centric approach obviously the process is of interest,
but differently from process-centric workflows the data play a key role.

This paper provides a first investigation into workflow emulation in the con-
text of artifact-centric workflows. In particular, we develop a basic framework for
characterizing when one artifact-centric workflow “dominates” another one, and
then provide decidability and complexity results for bounded and unbounded
workflow executions for a particular kind of dominance, called “absolute domi-
nance.”

In our formal model, which follows the spirit of [4,7], the artifact “data
schema” is a set of attribute-value pairs, which is used to hold relevant informa-
tion about the artifact as it passes through the workflow. The values range over
an infinite structure, such as the integers, the rationals, or the reals, possibly
with order, addition, or multiplication. The “lifecycle schema”, which is used
to specify the possible ways that the artifact can pass through the workflow,
is specified as a set of condition-action rules, where the condition is evaluated
against the current snapshot of the artifact, and where the actions are services
(a.k.a. “tasks”), which read a subset of the attributes of an artifact, which write
onto a subset of the attributes, and which are performed by an entity outside
of the workflow system (often a human). Similar to the context of semantic web
services [11], the behaviors of the services used here are characterized using pre-
and post-conditions. The notion of dominance studied in the current paper fo-
cuses on the initial and final snapshots of the artifact as it passes through a
workflow; in particular, workflow W1 dominates workflow W2 if for each execu-
tion of W2 on a given initial snapshot, there is an execution of W1 on that initial
snapshot that yields the same final snapshot. This notion of dominance is in fact
a parametric notion that depends on the characterization of the policies of the
performers that execute the services invoked by the workflows. In this paper, we
study in detail the case of “absolute dominance”, in which this policy places no

132 D. Calvanese et al.

constraints on the possible executions. Alternative policies, which are the topic
of future studies, might require that the service executions be deterministic, or
that they be generic in the sense of database queries.

This paper develops results concerning absolute dominance for several vari-
ations of the underlying workflow model, based primarily on logical structure
of the underlying domain of values. In the case of bounded-length executions,
deciding absolute dominance can be reduced to first-order logic reasoning, which
yields decidability if the underlying logical structure is, the integers with addi-
tion (+) and order (<), the rationals with addition and order, or the real closed
field. For the unbounded case, we show that dominance is decidable if the logical
structure has no function symbols and permits quantifier elimination, but it is
undecidable for the cases of integers, rationals, or reals mentioned above.

Additional decidability results are obtained by focusing on FO logic/structures
that have equality, order, and no function symbols. We borrow techniques from
the powerful framework of Datalog with order constraints [9] to obtain decid-
ability of absolute dominance in this case. In particular, we show decidability of
absolute dominance for the cases of the integers with discrete order, and for ra-
tionals and reals with dense order. In all of these cases, we show that decidability
is in exponential time.

Organizationally, Section 2 defines the formal model of artifact-centric work-
flow used in the paper, Section 3 defines the general notion of dominance, and
absolute dominance in particular. Section 4 presents the theoretical results and
Section 5 provides brief conclusions.

2 Artifact-Centric Workflows

In this paper we make use of a specific form of artifact-centric workflows, which
we introduce in the following. We use a first-order logic L with equality, with
predicates, constants, and possibly function symbols, over interpreted struc-
tures with a non-empty, possibly infinite domain. Examples of such interpreted
structures are a dense or discrete order (<), Presburger arithmetic, or a real
(closed) field. We will denote a structure S with domain ΔS over function sym-
bols f1, f2, . . . , and predicate symbols p1, p2 . . . , as S = (ΔS, f1, f2 . . . , p1, p2 . . .).
We will assume to have one constant for each element of ΔS, hence we usually
omit constants (i.e., 0-ary functions) in the list of function symbols.

We assume an infinite alphabet AN of attribute names, which are also used
as variables in logic formulas in L interpreted over S. In the following, we use a,
b for attribute names, c, d for values from the domain, and x, y, z for generic
variables in formulas, all possibly with subscripts. Given a structure S with
domain ΔS, an attribute-map (w.r.t. S), shortened as amap, is a total function
from a finite set X ⊆ AN of attribute names into ΔS ∪ {⊥}, where the special
symbol ⊥ (which is not in ΔS) has the intended meaning that the attribute is
“undefined”. Specifically, to represent that an attribute has an undefined value
in an amap, i.e., has value equal to ⊥, in formulas we shall use a syntactic
shorthand: we introduce for each attribute name a an additional attribute ā,

Artifact-Centric Workflow Dominance 133

and use ā = 0 to indicate that a is undefined, where 0 (zero) is a distinguished
constant of L. Then, in formulas, we write a = ⊥ as a shorthand for ā = 0 and,
e.g., R(a1, . . . , an) as a shorthand for ā1 	= 0∧· · ·∧ ān 	= 0∧R(a1, . . . , an), where
R is any predicate symbol, including equality.

Definition 1. An artifact (data schema) is a non-empty set A of attribute
names. The names are partitioned into the following three sets:
– the set IA of input attributes,
– the set TA of temporary attributes, and
– the nonempty set OA of output attributes.

A snapshot σ of A is an amap whose domain is A. σ is initial if σ(a) 	= ⊥ for
each a ∈ IA and σ(a) = ⊥ for each a ∈ A \ IA. σ is complete if σ(a) 	= ⊥ for
each a ∈ OA.

If A is an artifact, σ a snapshot of A, and X ⊆ A, then the projection of σ onto
X , denoted σ|X , is the function from X to ΔS defined by σ|X(x) = σ(x), for
each x ∈ X .

A fundamental concept in the workflow model is that an artifact gets modified
by a service in a single step (see later). To model this, we also allow primed
attribute names as variables in our logic, which are used to represent the artifact
after the modification. Let ϕ be a formula in which each free variable is an
unprimed or primed attribute name. Let X contain the set of attribute names
that occur unprimed in ϕ and Y ′ contain the set of attribute names that occur
primed in ϕ. Let σX be an amap with domain X and σY ′ be an amap with
domain Y ′. In this case, (σX , σY ′) models ϕ in S, denoted (σX , σY ′) |=S ϕ if ϕ is
true in S under the assignment that maps each unprimed attribute name x ∈ X
to σX(x), and each primed attribute name y′ ∈ Y ′ to σY ′(y′).

It is clear that the notion of a pair (σ, σ′) of snapshots over an artifact A
modeling a formula ϕ can be used whenever the set of attribute names occurring
in ϕ is contained in A. If one thinks of σ as a snapshot preceding σ′, then we
are following the tradition of using unprimed variables to indicate a “current”
state and primed variables to indicate a “next” state.

We introduce now services, which are the atomic units that progress a system.

Definition 2. Given an artifact A, a service (specification) for A is a 4-tuple
S = (IS , OS , δS , ξS) where

– IS ⊆ IA ∪ TA is called the input of S.
– OS ⊆ TA ∪OA is called the output of S.
– δS, the pre-condition of S, is a formula in L where each free variable is an

unprimed attribute name from IS.
– ξS, the post-condition of S, is a formula in L where each free variable is an

unprimed attribute name from IS or a primed attribute name from OS .

The frame formula of S is the formula ΦS ≡
∧

a∈A\OS
(a = a′).

Intuitively, we require that a service takes its inputs either from the inputs to
the workflow (i.e., the input attributes IA of the artifact), or from the temporary

134 D. Calvanese et al.

attributes TA of the artifact. The latter can be written by a service, together
with the outputs of the workflow (i.e., the output attributes OA of the artifact).

Definition 3. Given an artifact A and a service S = (IS , OS , δS , ξS) for A, an
execution of S is a pair (σ, σ′) of snapshots of A such that (σ, σ′) |=S δS∧ξS∧ΦS .

Note that σ is in fact independent from σ′ and that the frame formula ΦS requires
that in an execution (σ, σ′) of S, each attribute not in OS has in σ′ the same
value that it had in σ. Also, executions are in general non-deterministic, i.e., a
service may have two executions (σ, σ′) and (σ, σ′′), with σ′ 	= σ′′.

We are interested in sequences of service executions that, from an initial snap-
shot of an artifact A may lead to a complete snapshot, i.e., one where all output
attributes of A are defined. To formalize this notion, we first introduce the notion
of (artifact-centric) pre-workflow (schema), which is simply a pair P = (A,S),
where S a finite set of services for the artifact A. Each (initial, complete) snap-
shot of A is also an (initial, complete, resp.) snapshot of P . We can then provide
the following definition of enactment.

Definition 4. Given a pre-workflow P = (A,S), an enactment E of P (of
length n) is a sequence

σ0, S1, σ1, . . . , Sn, σn

where

– σ0 is an initial snapshot of P,
– σi is a snapshot of P, for i ∈ [1..n],
– Si ∈ S, for i ∈ [1..n],
– (σi−1, σi) is an execution of Si, for i ∈ [1..n].

The enactment E is complete if σn is complete. The I/O-pair of a complete
enactment E is the pair IO(E) = (σ0|IA , σn|OA).

Observe that σ0|IA = σn|IA since the input attributes IA of the artifact cannot
be changed by services (see Definition 2)

We now introduce business rules, which specify the conditions under which
a service may be executed. Given a pre-workflow P = (A,S), a (business) rule
ρ for P is an expression of the form “(if α allow S)” where α is a formula
in which each free variable is an unprimed attribute name from A, and S ∈ S.
With this notion in place, we are ready to provide the definition of artifact-centric
workflows.

Definition 5. Given a structure S, a(n) (artifact-centric) workflow (schema)
over S is a triple W = (A,S,R) where (A,S) is a pre-workflow and R is a finite
set of rules for (A,S). An enactment of W is an enactment of its pre-workflow
(A,S)

σ0, S1, σ1, . . . , Sn, σn

such that for each i ∈ [1..n], there is a rule “(if α allow Si)” in R where
σi−1 |=S α.

In the following, we will omit the specification of the structure S when it is clear
from the context.

Artifact-Centric Workflow Dominance 135

3 Dominance

Intuitively, services are executed by a performer. Performers are often humans,
but they could also be software components. In this paper we do not address
different “roles” that different performers might have. Performers choose how a
service is executed. Indeed, as mentioned for a given service S and a snapshot σ
there may be executions (σ, σ′) and (σ, σ′′), with σ′ 	= σ′′. This non-determinism
corresponds to the possibility that the performer may execute the same service
on the same inputs differently. Intuitively, this might be because the performer is
exercising human judgement, or because there is information about the snapshot
σ that is not modeled within the formal system, or both.

In order to capture formally the above intuitions on performers, we introduce
the notion of a “performance policy”, which specifies the possible behaviors of
the performers of the services of a workflow. Given a set of attributes X , We
denote with M[X] the set of amaps over X .

Definition 6. A performance policy for a workflow W = (A,S,R) is a function
π whose domain is S. The value of π on S=(IS , OS , δS, ξS) ∈ S, denoted π[S],
is a subset of M[IS] × M[OS] such that, if (μ, ν) ∈ π[S], then μ |=S δS and
(μ, ν) |=S ξS. An execution (σ, σ′) of S is compliant with π if (σ|IS , σ

′|OS) ∈
π[S]. An enactment of W is compliant with π if each execution in the enactment
is compliant with π.

With the notion of performance policy at hand, we can now compare two artifact-
centric workflows. In particular, we are interested in comparing two workflows
in terms of how values for the input attributes are mapped into values for the
output attributes. Also, we ignore the order in which the output attributes are
written in one enactment versus the other enactment. For this, we say that two
workflows W1 = (A1,S1,R1) and W2 = (A2,S2,R2) are compatible if IA1 = IA2

and OA1 = OA2 . Note that the temporary attributes (TA1 and TA2) may be
different.

Definition 7. Let W1 = (A1,S1,R1) and W2 = (A2,S2,R2) be two compatible
workflows and Π a class of performance policies. Then W1 is Π-dominated by
W2, denoted W1 �Π W2, if the following holds. For each perfomance policy
π1 ∈ Π for W1 there exists a performance policy π2 ∈ Π for W2 such that: for
every enactment E1 of W1 compliant with π1 there is an enactment E2 of W2
compliant with π2 such that IO(E1) = IO(E2).

We consider also the case where we compare two workflows only w.r.t. enact-
ments of bounded length. To this purpose we introduce the notion of
k-dominance between two compatible workflows, denoted W1 �k

Π W2, whose
definition is analogous to the one above, except that we consider only enact-
ments whose length is � k.

This framework permits us to study a variety of behaviours of performers,
i.e., of performance policies, including, e.g., policies where π[S] is required to
satisfy certain properties, such as being computable or tractable. In this paper

136 D. Calvanese et al.

we concentrate on the most general performance policy, which states that the
performers may use any execution of a service within the workflow (i.e., any
execution that satisfies the pre- and post-conditions of the service), without
further restrictions. We call this notion of dominance absolute dominance.

4 Absolute Dominance

We study now the problem of checking absolute dominance and absolute k-
dominance. Let Abs denote the class of all performance policies. We say that
W1 is (k-)dominated absolutely by W2 if W1 �Abs W2 (resp., W1 �k

Abs W2).

4.1 Enactments of Bounded Length

We deal first with the case of bounded absolute dominance, and show that we
can characterize in a closed form the set of realizable I/O-pairs.

Lemma 1. LetW = (A,S,R) be a workflow with service pre- and post-conditions
and rule conditions expressed in FOL with equality. Let k be a positive integer. Then
there is a FOL formula Ψk

W whose free variables are the input (IA) and output (OA)
attributes of A, that characterizes the set of all I/O-pairs of complete enactments
of W compliant with Abs, for enactments whose length is bounded by k.

Proof. We consider all possible sequences of services (possibly with repetitions)
that may appear in enactments of length n � k, and characterize their I/O-pairs
by means of a FOL formula.

Let p = S1, . . . , Sn be such a sequence of services. Then, for i ∈ [1..n], let

αp
i =

(∨
(if α allow Si)∈R α

)
[a/ai−1 | a ∈ A],

δp
i = δSi [a/a

i−1 | a ∈ A],
ξp
i = ξSi [a/ai−1 | a ∈ ISi][a′/ai | a ∈ OSi],

Φp
i = ΦSi [a/ai−1 | a ∈ (A \OSi)][a′/ai | a ∈ (A \OSi)],

where ϕ[a/b | a ∈ X] denotes the formula obtained from ϕ by renaming each
(occurrence of) attribute a ∈ X to b. Using such formulas, we build inductively,
for each i ∈ [0..n], the “cumulative post-condition”, denoted ξ̂p

i as follows:

– ξ̂p
i = true,

– ξ̂p
i = ∃{ai−1 | a ∈ A}(ξ̂p

i−1 ∧ αp
i ∧ δp

i ∧ ξp
i ∧ Φp

i), for i ∈ [1..n].

Note that ξ̂p
i , for i ∈ [1..n], is a formula whose free variables are among {ai | a ∈

A}. It remains to project away the temporary attributes of the last step, and to
impose that all output attributes are defined. Hence, we define

Ψp
W =

(
∃{an | a ∈ TA}(ξ̂p

n ∧
∧

a∈OA an 	= ⊥)
)

[an/a | a ∈ IA ∪OA].

Artifact-Centric Workflow Dominance 137

By quantifying over all possible sequences of services of length up to k, we obtain
the desired formula

Ψk
W =

∨
S1, . . . , Sn,

for Si ∈ S, i ∈ [1..n], n � k

ΨS1,...,Sn

W .

It is not difficult to prove by induction on k that Ψk
W characterizes the set of

all I/O-pairs of complete enactments of W compliant with Abs , for enactments
whose length is bounded by k.

Using the above characterization of I/O-pairs, we can determine absolute k-
dominance W1 �k

Abs W2 between two compatible workflows W1 = (A1,S1,R1)
and W2 = (A2,S2,R2), where I = IA1 = IA2 and O = OA1 = OA2 , by simply
checking whether the following formula is true in S:

∀{a ∈ I ∪O}(Ψk
W1

→ Ψk
W2

). (�)

Hence, in all those cases where FOL over S is decidable, we obtain decidability
of absolute k-dominance for workflows over S.

Theorem 1. For each positive integer k, absolute k-dominance between work-
flows over S is decidable for the following structures:

1. (Z,+, <), integers with additions.
2. (Q,+, <), rational numbers with additions.
3. (R,+,×, <), real numbers with additions and multiplications (the real closed

field).

Proof (Sketch). By Lemma 1, absolute k-dominance between two workflows
holds if and only if the formula shown in Equation (�) is true in the underlying
structure. Thus the decidability results follow immediately from the decidabil-
ity results for Presburger arithmetic [13] (Case 1) and the real closed field [17]
(Cases 2 and 3).

We discuss briefly the complexity of the decisions problems. Given two workflows
of length �, the formula in Equation (�) has length at most O(kk+1�). For the
domain of integers with additions, since the complexity of Presburger arithmetic
is double exponential [6], it follows that the absolute k-dominance problem has
complexity double expential in � and triple exponential in k. On the other hand,
since the complexity of the FO theory for the real closed field is exponential
[1,14], the dominance problem is exponential in � and double exponential in
k. Note that the above analysis puts coarse upper bounds in the most general
situations. If we focus on restricted classes, such as services only having quantifier
free formulas as pre- and post-conditions, and put bounds on the number of
temporary variables they can use, the complexity upper bounds can be refined.

138 D. Calvanese et al.

ioPairs(I,O1) ← initial(I, T, O), transStar (I, T, O, I1, T1, O1),
complete(I1, T1, O1).

initial(I, T, O) ← defined(I),undefined (T, O).
complete(I, T, O) ← defined(O).

transStar (I, T, O, I, T, O).
transStar (I, T, O, I2, T2, O2) ← trans(I, T, O, I1, T1, O1),

transStar (I1, T1, O1, I2, T2, O2).
trans(I, T, O, I1, T1, O1) ← transByS1 (I, T, O, I1, T1, O1).

. . .
trans(I, T, O, I1, T1, O1) ← transBySn (I, T, O, I1, T1, O1).

transBySi (I, T, O, I1, T1, O1) ← δSi(I, T, O), rulesAllowSi(I, T, O),
nextSnapshotBySi (I, T, O, I1, T1, O1).

nextSnapshotBySi (I, T, O, I1, T1, O1) ← ξSi(I, T, O, I1, T1, O1), ΦSi(I, T, O, I1, T1, O1).
rulesAllowSi(I, T, O) ← α1

i (I, T, O).
. . .

rulesAllowSi(I, T, O) ← αmi
i (I, T, O).

Fig. 1. Constraint Datalog program PW capturing the I/O-pairs of a workflow W for
enactments of unbounded length

4.2 Enactments of Unbounded Length

We now turn to enactments of unbounded length. Oone might think that when
the FO logic over the structure S admits quantifier elimination, the character-
ization in Lemma 1 could be extended to enactments of unbounded length. In
general, it is not clear how this can be possibly done. In fact, the following can
be established.

Theorem 2. Absolute dominance between two workflows is undecidable for the
following structures:

1. (Z,+, <), integers with additions.
2. (Q,+, <), rational numbers with additions.
3. (R,+,×, <), real numbers with additions and multiplications (the real closed

field).

Proof (Sketch). The proofs are accomplished by reductions from Hilbert’s 10th
problem (computing integer roots of polynomials with integer coefficients), which
is known to be undecidable (see [10]). Roughly, the idea of the reduction is to
guess potential (integer) solutions (with a simple increment service) and then
verify if they are indeed solutions. Over the given structures, one can easily
compute multiplications with repeated additions. Thus, the verfication can also
be expressed with a workflow.

In the following, we explore more restricted FO logic/structures that consists of
equality and order and without any functions. We borrow techniques from the

Artifact-Centric Workflow Dominance 139

powerful framework of Datalog with order constraints [9] to show that absolute
dominance can still be decidable for these structures.

Specifically, we focus on workflows whose service pre- and post-conditions
and rule conditions are quantifier free formulas over equality (=) and order (<)
constraints. Given a workflow W = (A,S,R), we construct a constraint Dat-
alog program PW as shown in Figure 1, which views service pre- and post-
conditions and rule conditions as constraint relations [9]. In the specification of
the program, we have assumed that S = {S1, . . . , Sn}, and that for i ∈ [1..n],
(if α1

i allow Si), . . . , (if αmi

i allow Si) are all rules having Si as consequent. Such
a program provides a characterization of the set of all I/O-pairs of W under Abs
for enactments of unbounded length. We briefly comment on the rules of PW .

– ioPairs(I,O1) ← initial (I, T,O), transStar(I, T,O, I1, T1, O1),
complete(I1, T1, O1).

Generates all I/O-pairs of complete compliant enactments. Here, I, T , and
O stand respectively for the input, temporary, and output attributes of the
artifact in the initial snapshot. Similarly, I1, T1, and O1 stand for the same
attributes in the complete snapshot at the end of the enactment.

– initial (I, T,O) ← defined(I), undefined(T,O).
States when a snapshot is initial, i.e., all input attributes are defined, and
all temporary and output attributes are undefined.

– complete(I, T,O) ← defined(O).
States when a snapshot is complete, i.e., all output attributes are defined.

– transStar(I, T,O, I, T,O).
transStar(I, T,O, I2, T2, O2) ← trans(I, T,O, I1, T1, O1),

transStar(I1, T1, O1, I2, T2, O2).
Compute the reflexive transitive closure of trans, defined below.

– trans(I, T,O, I1, T1, O1) ← transByS1 (I, T,O, I1, T1, O1).
. . .

trans(I, T,O, I1, T1, O1) ← transBySn(I, T,O, I1, T1, O1).
State that transition can be made by (and only by) services.

– transBySi(I, T,O, I1, T1, O1) ← δSi(I, T,O), rulesAllowSi(I, T,O),
nextSnapshotBySi(I, T,O, I1, T1, O1).

States that a transition is made by service Si when its preconditions hold
and the rules allow Si to execute. The service produces the next snapshot.

– nextSnapshotBySi(I, T,O, I1, T1, O1) ← ξSi(I, T,O, I1, T1, O1),
ΦSi(I, T,O, I1, T1, O1).

States that the execution of Si produces the next snapshot on the basis of
the service post-conditions and its frame formula. Note that ξSi and ΦSi

together constrain all variables I1, T1, O1 w.r.t. I, T , and O, either with
effect ξSi or with the frame formula ΦSi .

– rulesAllowSi(I, T,O) ← α1
i (I, T,O).

. . .
rulesAllowSi(I, T,O) ← αmi

i (I, T,O).
State that Si is allowed to be executed.

140 D. Calvanese et al.

We can show the following property regarding PW .

Lemma 2. Given a workflow W = (A,S,R) over S, let PW be the constraint
Datalog program constructed from W as specified above. Then an I/O-pair
(σI , σO) is an I/O-pair of a complete enactment of W if and only if (σI , σO)
is returned by the above constraint Datalog program when it is evaluated over S.

Proof (Sketch). The proof can be done via an induction argument on the length
of the enactment producing the I/O-pair.

We note here that the above construction is rather general, and that the resulting
Datalog program may not always terminate when the logic language includes at
least one function symbol, regardless of whether the language/structure admits
quantifier elimination.

We now exploit results on constraint Datalog with order constraints that
state, for some specific structures S, that a constraint Datalog program P can
be evaluated in closed form over S to produce a FOL formula ϕP over S (with
the output variables of P as free variables). The resulting FOL formula is in fact
equivalent to the Datalog program [9,15]. Specifically, from the results in [9,15]
it follows that the program PW is equivalent to a formula of L over the structure
S having I and O1 as free variables, in the cases where the logic L is FOL with
equality, and S is a dense order over the rationals or reals (with all rationals as
constants), or a linear order over the integers (with all integers as constants).
Hence, extending Lemma 2, we obtain the following result.

Lemma 3. Let W = (A,S,R) be a workflow over a structure S with service pre-
and post-conditions and rule conditions expressed as quantifier-free formulas in
FOL. For each of the following structures, there is a quantifier-free FOL-formula
ΨW whose free variables are the input (IA) and output (OA) attributes of A, that
characterizes the set of all I/O-pairs of complete enactments of W compliant with
Abs:

– (Z, <), integers with the discrete order.
– (Q, <), rational numbers with the dense order.
– (R, <), real numbers with the dense order.

Proof (Sketch). Clearly, for each service S, we can construct a constraint rela-
tion (quantifier-free formula in disjunctive normal form) [9] that represents its
set of input and output pairs allowed by the pre- and post-conditions. Similarly,
each rule condition can also be represented as a constraint relation. Let the con-
straint database consist of the constraint relations representing services and rule
conditions. The Datalog program constructed above can then be evaluated as a
query against the constraint database. Results from [9,15] state that the query
answer can be computed effectively and represented as a constraint relation. The
constraint relation is in fact a quantifier-free FOL formula.

Artifact-Centric Workflow Dominance 141

For each structure listed in Lemma 3, we can proceed as for the case of bounded
enactments, and exploit the formulas ΨW1 and ΨW2 to rephrase, also for un-
bounded enactments, absolute dominance between two workflows W1 and W2
over S in terms of evaluation over S of the FOL formula

∀{a ∈ I ∪O}(ΨW1 → ΨW2).

From the decidability of FOL with equality over S, we get the following result.

Theorem 3. Absolute dominance between workflows over S is decidable in the
following cases:

– (Z, <), integers with discrete order.
– (Q, <), rational numbers with dense order.
– (R, <), real numbers with dense order.

The argument for the above theorem is similar to Theorem 1. We now briefly dis-
cuss the complexity of the above decision problems. Note that the query evalua-
tion of the Datalog program can be done in exponential time and the size of the
constraint relations that represent all possible enactments are of exponential size
in the terms of the input workflow [9,15]. Applying known complexity of results in
logic, checking the FOL formula that characterizes the dominance would add one
additional level of exponentiation (in the cases of (R, <) and (Q, <)) or two ad-
ditional levels of exponentiation (in the case of (Z, <)). However, this complexity
for all three cases can be improved to overall single exponential time; we outline
the algorithms in the following.

We call a conjunction of constraints primitive if it is satisfiable but not log-
ically implied by but not equivalent to another conjunction. It is easy to see
that for a given (finite) number of variables and a given finite set of constants,
the number of pairwise non-equivalent primitive constraints is also finite (but
exponential in terms of the total number of variables and constants.

For a given pair of workflows W1, W2, let V be the set of constants occurring in
either W1 or W2. We convert the results of the Datalog program for W1 and W2
into two sets of primitive conjunctions of constraints, for W1 and W2, resp., of
form “xθv” or “xθy” where v is in V and θ is either “=” or “<”. We then remove
each unsatisfiable primitive conjunction, which can be done in PTime [8]. It can
be shown that dominance holds for the workflows iff the containment of two sets
of primitive conjunctions holds. Since the number of primitive conjunctions is
exponential in the size of input, so is the complexity of the algorithms.

5 Conclusions

In this paper we have addressed the problem of comparing artifact-centric work-
flows by introducing a general notion of dominance between workflows. Such a
notion is parametric with respect to a class of policies adopted by the perform-
ers of the services that are invoked by the workflow. Here we have focused on
the most general type of performers, which may use any execution of a service

142 D. Calvanese et al.

within the workflow, resulting in the notion of “absolute dominance”. We and
have provided decidability and complexity results for this case.

The framework and results reported in this paper provide a basis and starting
point for a rich study of dominance between artifact-centric workflows, and leave
many questions yet to be explored. As noted above, our notion of dominance is
focused only on the initial and final snapshots of a workflow execution; it would
be useful to understand a richer notion of dominance that incorporates the order
in which output values of the workflow execution are created. Also, the model
used here assumes that all relevant data is held within the artifact. A useful
extension would be to study the natural case in which there is also an external,
basically fixed database that the conditions can refer to (for example, in the spirit
of [5]). It is also of interest to study other types of performers, characterized by
restrictions on the policy they may adopt. A notable case is the one where the
performance policy is a deterministic function from the input attributes to the
output attributes of the service. In other words, a performer deterministically
takes its decision considering only the values of the input attributes of the service
it is executing, and hence, if it re-executes a services with the same inputs, it takes
the same decision, producing the same outputs, as in the previous execution.

References

1. Ben-Or, M., Kozen, D., Reif, J.: The complexity of elementary algebra and geom-
etry. J. of Computer and System Sciences 32(2), 251–264 (1986)

2. Bhattacharya, K., Caswell, N.S., Kumaran, S., Nigam, A., Wu, F.Y.: Artifact-
centered operational modeling: Lessons from customer engagements. IBM Systems
Journal 46(4), 703–721 (2007)

3. Bhattacharya, K., et al.: A model-driven approach to industrializing discovery pro-
cesses in pharmaceutical research. IBM Systems Journal 44(1), 145–162 (2005)

4. Bhattacharya, K., Gerede, C., Hull, R., Liu, R., Su, J.: Towards formal analysis of
artifact-centric business process models. In: Alonso, G., Dadam, P., Rosemann, M.
(eds.) BPM 2007. LNCS, vol. 4714, pp. 288–304. Springer, Heidelberg (2007)

5. Deutsch, A., Hull, R., Patrizi, F., Vianu, V.: Automatic verification of data-
centric business processes. In: Proc. of the 12th Int. Conf. on Database Theory
(ICDT 2009), pp. 252–267 (2009)

6. Fischer, M.J., Rabin, M.O.: Super-exponential complexity of Presburger arith-
metic. In: SIAM-AMS Proceedings, vol. 7, pp. 27–41 (1974)

7. Fritz, C., Hull, R., Su, J.: Automatic construction of simple artifact-based work-
flows. In: Proc. of the 12th Int. Conf. on Database Theory (ICDT 2009), pp.
225–238 (2009)

8. Guo, S., Sun, W., Weiss, M.A.: Solving satisfiability and implication problems in
database systems. ACM Trans. on Database Systems 21(2), 270–293 (1996)

9. Kanellakis, P.C., Kuper, G.M., Revesz, P.Z.: Contraint query languages. J. of Com-
puter and System Sciences 51, 26–52 (1995)

10. Matiyasevich, Y.: Hilbert’s 10th Problem. The MIT Press, Cambridge (1993)
11. Narayanan, S., McIlraith, S.: Simulation, verification and automated composition

of web services. In: Proc. of the 11th Int. World Wide Web Conf. WWW 2002
(2002)

Artifact-Centric Workflow Dominance 143

12. Nigam, A., Caswell, N.S.: Business artifacts: An approach to operational specifi-
cation. IBM Systems Journal 42(3), 428–445 (2003)

13. Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arith-
metik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt.
In: Comptes rendus du premier Congrès des Mathématiciens des Pays Slaves,
Warszawa, pp. 92–101 (1929)

14. Renegar, J.: On the computational complexity and geometry of the first-order
theory of the reals. Journal of Symbolic Computation 13, 255–352 (1992)

15. Revesz, P.Z.: A closed-form evaluation for Datalog queries with integer (gap)-order
constraints. Theoretical Computer Science 116, 117–149 (1993)

16. Strosnider, J., Nandi, P., Kumarn, S., Ghosh, S., Arsanjani, A.: Model-driven syn-
thesis of SOA solutions. IBM Systems Journal 47(3), 415–432 (2008)

17. Tarski, A.: A Decision Method for Elementary Algebra and Geometry. University
of California Press, Berkeley (1951)

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 144–158, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Requirements-Driven Collaborative Choreography
Customization

Ayman Mahfouz, Leonor Barroca, Robin Laney, and Bashar Nuseibeh

Computing Department, The Open University,
Walton Hall, Milton Keynes, MK7 6AA, UK

amahfouz@gmail.com,
{L.Barroca,R.C.Laney,B.A.Nuseibeh}@open.ac.uk

Abstract. Evolving business needs call for customizing choreographed interac-
tions. However, conventional choreography description languages provide only
a partial view of the interaction. Business goals of each participant and organ-
izational dependencies motivating the interaction are not captured in the speci-
fication of messaging. Absence of this critical business knowledge makes it
hard to reason if a particular customization satisfies the goals of participants.
Furthermore, there is no systematic means to assess the impact of change in one
participant’s process (local view) on the choreography (global view) as well as
on other participants’ processes. To this end, we argue for the benefits of repre-
senting choreography at the level of requirements motivating the interaction.
We propose a framework that allows participants to collaborate on customizing
choreographed interactions, while reconciling their competing business needs.
To bridge the worlds of messaging and requirements, we employ an automated
technique for deriving a choreography description from the customized
requirements.

Keywords: Choreography, Requirements, Evolution, Viewpoints.

1 Introduction

A choreography description specifies the behavioral contract of participants in an
electronic interaction from a neutral point of view [1]. Mutual obligations of the par-
ticipants are specified in terms of constraints on the sequences of messages they can
exchange. Using a choreography description language (CDL), such as WS-CDL[2], is
becoming a de facto way for describing the “global” view of service-oriented interac-
tion protocols.

However, these languages focus almost entirely on operational aspects such as data
formats and control flow. They fall short of capturing the business-domain knowledge
behind the interaction. In particular, both the strategic motivations driving the partici-
pants to interact and the physical activities they are required to perform in order to
fulfill their obligations are not directly represented in choreography.

This deficiency becomes critical when the choreography has to be customized to
cater for emergent business needs. It is hard to ensure that a particular choice of cus-
tomization to an existing choreography satisfies the business goals of participants.

 Requirements-Driven Collaborative Choreography Customization 145

To this end, we propose an approach for customizing choreographed interactions at
the level of organizational requirements that motivate the interaction. Organizational
requirements models capture intentions of the participants, strategic dependencies
driving them to interact, and all activities they undertake during the interaction. This
knowledge is essential for rationalizing customizations made to the interaction.

Since business goals of one participant (local view) are often conflicting with those
of other participants, a particular choice of customization of the choreography (global
view) may not be agreeable to all participants. Hence, we propose a framework that
allows participants to collaborate on finding an alternative for customizing the inter-
action agreeable to all of them.

Our framework adopts Tropos [3] for representing organizational requirements.
Tropos provides suitable notations for capturing and reasoning about a choreographed
interaction in stakeholder-friendly terms. Furthermore, whereas leading CDLs have
been criticized for inadequate formal grounding [4], the Tropos framework employs
the formal notations of Formal Tropos (FT) [5] for precisely describing constraints
that govern the behavior of participants in the interaction.

The formality of FT allows us to maintain consistency between the two representa-
tions, organizational requirements and the choreographed-messaging specification.
We have previously shown [6] how organizational dependencies motivate choreo-
graphed conversations. We have also detailed how choreographed messaging can be
derived from requirements [7]. In this paper we build on this work by proposing a
framework that bridges global and local views of the interaction. The framework
guides the collaborative customization of the interaction protocol through an automat-
able process.

The rest of the paper is organized as follows: Section 2 introduces the notion of
choreography customization and Abstract CDL (ACDL) using our running example.
Section 3 motivates our work and gives an overview of our approach. Section 4 shows
how we use Tropos to represent organizational requirements for an interaction. Sec-
tion 5 outlines how we support impact analysis and traceability. Our customization
process is detailed in section 6 and validated in section 7. Related work is discussed in
section 8. Section 9 concludes and outlines future work.

2 Choreographed Interactions

A choreography description specifies a contract between a group of interacting roles
in terms of sequences of messages they are allowed to exchange, i.e. it specifies a
protocol. Messaging between actual participants that play the choreographed roles at
runtime has to abide by this contract. For example, consider the three roles: a patient,
a medical provider (MP), and an in insurance company (IC). One potential interaction
between these roles can be choreographed as follows:

A patient who needs to visit an MP must get an authorization from her IC first.
When the patient receives an authorization number from the IC, she requests an
appointment from the MP. After getting the confirmation the patient visits the MP
to get examined by a doctor who later sends a prescription. The MP then bills the
IC and gets back an electronic payment (Figure 1).

146 A. Mahfouz et al.

Fig. 1. Example choreographed medical interaction and its ACDL representation

In this paper we use a simple pseudo-language for representing choreography in order
to focus on our approach without distracting the reader by the quirky details of a par-
ticular CDL. Nevertheless, ACDL constructs are directly drawn from the leading
CDL, WS-CDL [2], which makes the mapping to WS-CDL constructs almost trivial.

The three ACDL constructs used in this paper are: “Send” message activity to rep-
resent a message sent by a participant, a “Sequence” of activities that have to execute
in order, and a “Parallel” composition of activities that can proceed simultaneously.
The grammar of the language is given in Figure 2 (terminal symbols in bold). The
version of ACDL used here does not include constructs for representing repetition or
conditional choice between alternative execution branches.

Fig. 2. Abstract Choreography Description Language (ACDL) grammar

Message sending activities specify the participant who sends the message, P1, the

participant who receives it, P2, and a literal “Message Name” that describes the mes-
sage. All activities in a “Sequence” have to execute in order, where an activity cannot
start unless the previous activity has completed. A “Sequence” activity is completed
when the last activity in the sequence is completed. Individual branches of a “Paral-
lel” can proceed concurrently. A “Parallel” activity is only completed when all
branches are completed. The NoOp activity is a “do-nothing” activity. Figure 1
shows the ACDL for the medical example. Indentation represents nesting of activities.

3 Customizing Choreographed Interactions

We now motivate our work and present an overview of our approach.

Insurance
Company

1. Request authorization

2.Authorize
treatment

3. Request appointment

4. Confirm appointment
5. Prescribe medication

7. Payment

6. Bill

Patient
Medical
Provider

Sequence
Patient Send AuthRequest To IC
IC Send TreatmentAuth To Patient
Patient Send AppointmentRequest To MP
MP Send AppointmentConfirm To Patient
Parallel
 MP Send Prescription To Patient
 Sequence
 MP Send Bill To IC
 IC Send Payment To MP

Choreography Activity
Activity Message | Sequence | Parallel | NoOp
Message P1 Send Message Name To P2
Sequence Sequence Activity *
Parallel Parallel Activity *

 Requirements-Driven Collaborative Choreography Customization 147

3.1 The Problem

It is inevitable that the business requirements driving the interaction will change. As a
result, the choreography description needs to be customized (adapted) to reflect the
new contract.

For example, consider an emergent need for the IC to protect itself from abuse of
coverage. To protect its assets, the IC needs to ensure that it only covers treatment
expenses for eligible patients. One way to achieve this goal is to require the MP to
verify the insurance coverage of each admitted patient. The MP is thus required to
submit the patient’s insurance information to the IC so that the IC checks the validity
of the patient’s insurance policy. The IC will not hold itself liable for covering treat-
ment expenses unless the MP verifies the patient information before submitting a bill.
This requirement imposes a constraint on the order in which the MP performs its
activities. A naïve realization of this added requirement is to have the MP send a
“Verify coverage” message before sending the billing message. With conventional
choreography descriptions we face two challenges:

1. It is hard to rationalize this, or any other, choice for capturing the customization
without considering how well it satisfies the emergent business need.

2. It is not clear how to assess the impact of any suggested change to the choreogra-
phy (global view) on the process of each participant (local view). For a partici-
pant, e.g. the patient, to agree on the change they have to assess its impact on
their business goals.

These issues are exacerbated by the lack of representation of physical activities in
choreography descriptions. Physical activities that are part of the interaction contract
have to be taken into account when assessing a change.

3.2 Messaging Specification vs. Requirements

To rationalize a customization, it is crucial to consult problem-domain knowledge.
However, choreographed messaging descriptions are operational in nature. They do
not reveal much of the business rationale behind the interaction but rather focus on
how the interaction is to be carried out, i.e. the control flow between activities. On the
other hand, organizational requirements provide more abstract descriptions that focus
on the why and what aspects of the interaction. We argue that Models of
Organizational Requirements (MOR) are superior to messaging descriptions with
respect to four representational areas, each of which is crucial to assessing alternative
ways for capturing the required customization. These namely are:

1. Intention and Motivation: MOR for the interaction embody essential knowledge
about motivations driving each participant including:

• Goals the participants wants to achieve
• Dependencies between participants enabling them to achieve their goals
• Risks and liabilities introduced by the dependencies

2. Refinement Mechanisms: MOR allow for refining high level goals into activities
thereby providing rationalization of activities undertaken during the interaction.
Refinement relates different levels of abstraction thereby providing traceability all the
way down to the messaging specification.

148 A. Mahfouz et al.

3. Physical Activities: Electronic messaging is only part of the realization of the full
interaction. Physical activities that the participants are obliged to perform as part of
the interaction contract are not necessarily manifested in the messaging specification.
For example, the patient’s visit to the MP and its relation to other activities are not
captured in the choreography description in Figure 1.

4. Behavioral Contract: MOR can be annotated with precise specification of partici-
pants’ obligations. We employ these behavioral annotations to guide the refinement of
models [7]. Furthermore, the use of formal logic enables automatic checking for the
satisfaction of participants’ goals.

3.3 Our Proposed Approach

We propose a framework for customizing choreographed interactions that combines
the benefits of organizational requirements with the standards-based choreographed
messaging descriptions.

While allowing the participants to collaborate on customizing the choreography
(global view), our framework allows each participant to evaluate the impact of the
customization on their individual business needs (local view). This dichotomy results
in the four views (quadrants) of figure 3. We elaborate on Q1 and Q2 in section 4.

Our choreography customization framework entails: representing choreographed
interactions at the level of organizational requirements models, performing required
customizations to these models in a collaborative manner that benefits from the em-
bodied domain knowledge, and deriving the resulting choreography description in an
automated manner.

Fig. 3. The four views of our choreography customization framework

4 Modeling Interaction Requirements

Tropos [3] is an agent-oriented software development methodology with a focus on
organizational requirements at various levels of abstraction. We use Tropos for mod-
eling interaction requirements as it provides a suitable framework for representing and

 Global Local

R
eq

u
ir

em
en

ts
 Actor-Dependency Model

Q1
Actors, high-level goals, and organizational

dependencies

Goal-Activity Models
Q2

Goal-activity refinement for one actor

M
es

sa
g

in
g

 Choreography
Q3

Observer point-of-view messaging
specification

Business Process
Q4

Specification of messages sent/received by
one actor

 Requirements-Driven Collaborative Choreography Customization 149

reasoning about the business context for a choreographed interaction. Its models cap-
ture goals of participants (actors) in the interaction, mutual dependencies that moti-
vate them to interact, and activities they undertake to fulfill their goals. We introduce
how we model the global view of a choreographed interaction using Actor-
Dependency (AD) models, how we model the local view using Goal-Activity (GA)
models, and how behavioral dynamics of the model are described using FT.

4.1 Global View: AD Modeling

Actor-Dependency (AD) models provide a notation for representing the global view
of the interaction at a high-level of abstraction by capturing the actors (participants) in
the interaction, their high-level goals, and the inter-dependencies driving them to
interact. Figure 4 is an AD model representing the medical interaction at a high-level.
An actor is an active entity that performs actions to achieve its goals. The patient, the
MP, and the IC are all actors. Model elements can either be internal to an actor (inside
the dotted ellipse) or define dependencies whose fulfillment is delegated to other
actors. An actor may depend on another for fulfilling a goal, performing an activity,
or making some resource available.

A goal is a state of the world desired by one of the actors. For example, the “Get
Treated” goal represents the patient’s desire to get cured from an ailment. An activity
is an abstraction of a course of action with well-defined pre- and post-conditions. The
patient is required to perform the “Appear for Exam” activity to visit the MP’s office.
A resource is an informational or physical entity. For example, the “Payment” re-
source represents the compensation that the MP gets from the IC in return for provid-
ing services to the patient.

Fig. 4. Actor-Dependency model for the medical interaction

4.2 Local View: GA Modeling

To detail the specification of the interaction, we successively refine AD models into
Goal-Activity (GA) models [3]. Each GA model represents an actor’s local view of
the interaction. In the process, goals are refined into sub-goals and eventually realized
by activities. Each actor considers and evaluates refinement alternatives based on how
well they satisfy their goals [8]. Activities can be further refined into sub-activities
that are either implemented by a service or carried out by a human agent.

Facilitate Treatment

PaymentAuthorize
Treatment

IC

Depender

Dependee

Dependency
Patient MP

Appear
for Exam

Get Treated
Profit from
Treatment

Appointment

Prescription

Actor

Goal

 Resource Activity

150 A. Mahfouz et al.

Figure 5 shows the GA model of both the MP and the patient. Goals and activities
internal to an actor are refined inside the dotted ellipse for that actor. Each actor takes
responsibility for carrying out their internal activities during the interaction. For ex-
ample, the “Get Treated” goal was refined into activities to get an authorization from
the IC followed by getting a prescription from the MP. The latter is further refined
into activities for setting up an appointment followed by visiting the MP and then
receiving a prescription from the MP.

The business goals of participants may dictate some ordering of activities. For ex-
ample, in the analysis process the MP realized the need to manage office schedule.
Hence, the MP requires every patient to setup an appointment before they visit. Also,
physical activities may impose ordering. For example, the MP has to examine the
patient before prescribing treatment.

Fig. 5. Partial Goal-Activity diagram for the medical interaction

4.3 Behavioral Specification: Formal Tropos

Behavioral obligations of participants can be captured in formal annotations used by
the formal counterpart of Tropos, Formal Tropos (FT). Each activity, goal, resource,
and dependency in the model is represented as an FT class, of which many instances
may be created during an “execution” of the model. An execution of an FT model
corresponds to a possible progression of the interaction. Model execution is useful for
verifying that an interaction will proceed as designed. A partial FT specification for
the “MakeAppointment” activity and the “Appointment” dependency classes is shown
in figure 6, parts of which can be deduced by applying some heuristics [5].

Each class has attributes that define associations with other instances in the model.
For example, the “Appointment” class has “makeApp” attribute that references the
associated instance of “MakeAppointment” class.

Valid progressions of the interaction are specified by constraining the lifecycle
of model elements using temporal logic. Creation and Fulfillment conditions
define when an instance of a class is created (instantiated) and when it becomes
fulfilled.

Patient

Get Treated

Get
Authorized

Obtain
Prescription

Make
Appointment

Visit
MP

MP

Appointment

Prescription

Profit from
Treatment

Collect
Payment

Schedule
Appointment

Appear
for

Exam

Examine
Patient

Receive
Prescription

Treat
Patient

Prescribe
Treatment

Precedes Refines

 Requirements-Driven Collaborative Choreography Customization 151

4.3.1 Creation
Creation of a goal or a dependency is interpreted as the moment at which the actor
begins to desire the goal or need the dependency to be fulfilled. For example, an “Ap-
pointment” dependency will be created if there is an instance of “MakeAppointment”
activity that needs to be fulfilled. For an activity, creation is the moment at which the
actor has to start performing it. Note how FT specifies that “MakeAppointment” is
created when its “super” activity, “Obtain Prescription”, needs to be fulfilled thereby
bridging two levels of abstraction. We use Cr(X) to denote the creation event of X.

4.3.2 Fulfillment
Fulfillment condition marks the end of the lifecycle of an instance. Fulfillment condi-
tion should hold whenever a goal is achieved, an activity is completed, or a resource
is made available. For example, the “MakeAppointment” activity is fulfilled when the
associated “Appointment” dependency has been fulfilled (i.e. appointment confirma-
tion was received by the patient) whereas an instance of “Appointment” is fulfilled
when the MP has completed the activity of scheduling an appointment. We use Fi(X)
to denote the fulfillment event of X.

Fig. 6. FT specification of “Appointment” and “MakeAppointment “

5 Traceability and Impact Analysis

Our goal here is twofold: first, facilitate collaboration between participants to find a
customization on which they all agree and second: systematically determine the mes-
saging specification resulting from customization of requirements models.

5.1 Impact Analysis: Bridging Local and Global Views

To allow participants to assess the suitability of a customization (from their point of
view) we must be able to determine the effect of a change in the choreography on any
participant’s process. Conversely, we need to determine the impact of changes in any
of the participant’s local model on the choreography so that other participants get to
assess suggested customizations to the choreography from their point of view.

We employ dependencies to link GA and AD models. GA models explicate which
specific activities are at both ends of each dependency, thereby providing linkage
between the local view of each participant with the global view of the interaction.

Dependency Appointment
Depender Patient
Dependee MP
Attribute makeApp: MakeAppointment
Creation condition ¬Fulfilled(makeApp)
Fulfillment condition

∃ schedAp:SchedulApp
 (schedAp.actor = dependee ∧ Fulfilled(sa))

Activity MakeAppointment
Actor Patient
Creation condition ¬Fulfilled(super)
Fulfillment condition

∃ a:Appointment
 (a.depender = actor

 ∧ a.makeApp = self ∧ Fulfilled(a))

152 A. Mahfouz et al.

FT precisely relates the lifecycle of dependencies to that of activities at both ends of a
dependency. For example, in figure 6, note how the state of “Appointment” depend-
ency determines the state of “MakeAppointment” activity. The patient cannot make
progress on their internal process flow unless “Appointment” dependency is fulfilled.
On the other hand, the “Appointment” dependency is only fulfilled when the MP have
complete the “ScheduleAppointment” activity.

5.2 Traceability: Bridging Requirements to Messaging

Using FT to relate the lifecycle of activities to their “super” activity enables us to
bridge requirements models to messaging specification. We exploit this traceability
mechanism to show how dependencies drive the interaction thereby outlining an ab-
stract view of the choreography [6]. For example, “Appointment” dependency indi-
cates that the patient depends on the MP for obtaining an appointment, which implies
that both actors need to interact to fulfill the dependency.

We have exploited these semantics to automate the generation of choreographed
messaging from requirements models [7]. First, we infer the set of choreographed
events from creation/fulfillment events of activities and dependencies. Then, we use
the semantics of refinement, dependencies, and precedence between activities to come
up with a partial ordering relation over these events. Finally, from the ordering rela-
tion, we generate a choreography description that satisfies the requirements [7].

Even though GA modeling details the activities of the interaction, it provides an
important flexibility. It defers the choice of the medium through which activities are
carried out. For example, the choreography designer may choose to include the “Pre-
scription” in choreographed messaging or have it be fulfilled otherwise, e.g. paper
documents, fax, etc. We take advantage of this by including all activities, including
physical activities, in the customization process.

6 Choreography Customization Process

Bridging requirements to choreography allows us to perform required customizations
to requirements models then derive the customized messaging. On the other hand,
bridging the local and global views helps ensure that customizations to a choreogra-
phy description do not violate the goals of any participant. Thus, our proposed cus-
tomization process covers the 4 quadrants of figure 3.

The driver behind choreography customization is to satisfy an emergent business
need. Several customization alternatives that satisfy this need may exist. Our process
enables participants to collaborate on finding an alternative acceptable to all of them.
Each participant gets to evaluate the suitability of alternatives from their local point of
view as well as suggest other alternatives.

An advantage of our process is that it has no fixed starting point. Customization
may start in any of the four quadrants of figure 3 and move between them. Consider
the following example manifestation of the process:

1. Participant P1 identifies an emergent business need.
2. P1 considers a change in their GA model (which is in Q2) to fulfill that need.

 Requirements-Driven Collaborative Choreography Customization 153

3. To determine the effect of the suggested change on the global view we use de-
pendencies to relate P1 GA model to the AD model (moving from Q2 to Q1).

4. The change in the AD model may imply (again Q1 to Q2) changes to another
participant’s, P2, GA model.

5. P2 evaluates suggested change from their point of view (Q2 again – but for P2).
6. P2 deems the suggested change unacceptable and suggests an alternative way

for fulfilling P1’s need.
7. The effect of the alternative on the AD model is worked out (Q2 to Q1).
8. A change in the AD model implies a change in the GA model of P1 (Q1 to Q2).
9. P1 agrees to the suggested alternative.
10. The choreographed messaging is then derived from the customized AD and GA

models [7] (moving from Q1 to Q3).

Each step of the process involves one of the following:

1. Switch Views. To assume one of the four views of figure 3 our customization
framework allows moving between its four quadrants as follows:

• Q1-Q3: Choreographed messaging constraints obtained from AD models as per [7].
• Q1-Q2: Ends of every dependency appearing in the AD model are activities appear-

ing in a GA model, as in section 5.
• Q2-Q4: Ordering of messages sent and received by one participant is constrained

by refinement and precedence between the activities of that participant as per [7].
• Q3-Q4: Messages sent/received by every participant appear in the choreographed

messaging specification. For example, as in [9], [10]

2. Evaluate Alternative. Each participant needs to ensure that a suggested customiza-
tion is acceptable from their local point of view. When a change is suggested to their
GA model (e.g. to reflect a change in the AD model), a participant can verify that the
customized model still achieves their business goals. A systematic way to evaluate a
GA model is by executing it using a simulator [5] and checking whether every possi-
ble execution state is acceptable. If the participant deems one of the states unaccept-
able, they can then suggest an alternative customization.

3. Suggest Alternative. To aid a participant suggest an alternative customization, we
provide systematic ways for finding alternatives for certain classes of customizations.
For example, by bridging requirements to messaging as in section 5, we can auto-
enumerate all possible alternatives for a customization that requires adding an event
to the choreography along with an ordering constraint [6].

4. Perform Customization. Customizations that we tackle here are those that result
from incremental, rather than radical, changes to requirements. Section 7 shows ex-
amples of adding a dependency, an activity, and a precedence constraint.

5. Agree on an Alternative. The customization process concludes when none of the
participants objects to the candidate customization alternative. However, there is no
guarantee that a solution agreeable to all participants will be found. If a point is
reached where at least one of the participants objects to the last remaining candidate
solution, the requested customization may be deemed unreasonable. An alternative
may then be sought at a higher level requirements model, e.g. as in [3] and [8].

154 A. Mahfouz et al.

7 Validation

We now demonstrate how our framework allows participants to collaborate on adapt-
ing the choreography to meet their emergent needs. Revisiting the medical example,
we start the process from the customization to messaging as suggested by the IC in
section 3.1. We arbitrarily break down the customization process into stages for read-
ability:

Stage 1: The IC requests being asked to verify patient coverage
1. The IC suggests a customization where they get a message asking them to verify

a patient’s coverage prior to receiving a bill (Q4 in figure 3 for IC).
2. This translates (Q4-Q3) to adding a “verify coverage” message that precedes the

billing message in the protocol.
3. Consequently (Q3-Q4 for the MP), the MP becomes obliged to send a “verify

coverage” message before sending the billing message (Q3).
4. The added “verify coverage” request-response messages imply (through Q3-Q1)

an added organizational dependency.

Stage 2: Adding the “Verification” dependency and required activities
5. We add a “Verification” dependency to the AD model (Q1).
6. To initiate the fulfillment of the dependency (Q1-Q2) the MP has to perform a

“Verify Coverage” activity (Q2 for MP).
7. We add the new activity to the GA model of MP. From the original requirement

imposed by the IC, the activity has to precede “Collect Payment” (see figure 5).
8. We have now found the first candidate solution which is to have the new activ-

ity immediately precede “Collect Payment”.
9. The MP analyzes the suggested solution through simulation (Q2). The MP de-

termines that the solution allows sending a prescription to a patient whose insur-
ance information has not been verified. This state is deemed undesirable
because if the coverage is not eventually verified, the MP will not get paid.

10. To find an alternative point for performing the “Verify Coverage” activity, the
MP explores other alternatives [6]. Rather than directly preceding the billing ac-
tivity, “Verify Coverage” can be made to precede any other activity that transi-
tively-precedes the billing activity.

11. One such alternative is to have the “Verify Coverage” activity precede “Issue
Prescription”. But again, an execution of the model (Q2) deems this unaccept-
able as it allows a state where a doctor wastes his time examining the patient
only to find later that she is not covered by the IC.

12. Continuing in the same manner, the MP finds the first viable solution which is
to have “Verify Coverage” precede “Examine patient”.

Stage 3: Adding the “Coverage” dependency and required activities
13. The MP adds a “Get Coverage Info” activity (Q2) which entails (Q1-Q2) adding

a “Coverage Info” dependency (Q1). The MP requests that the patient provides
coverage information prior to the examination,.

14. The patient adds “Provide Coverage” as a sub-activity of “Obtain Prescription”.
The new activity is assigned to fulfill “Coverage Info” dependency (Q1-Q2).

 Requirements-Driven Collaborative Choreography Customization 155

15. The first point “Get Coverage Info” can be performed is right before
Cr(Examine Patient) and right after Fi(Visit). This implies that the patient will
physically carry the coverage information to the MP office.

16. The patient finds this option undesirable as an execution of the model (Q2 for
patient) shows that she may go through the trouble of visiting the MP but not
get examined, e.g. if verification fails due to some system outage.

17. Continuing as specified in [6], a viable solution is found where verification is
made to precede the Fi(Appointment). Thus, the patient suggests providing cov-
erage information prior to getting the appointment confirmation.

Stage 4: Agreeing on a customization and concluding the process
18. To add “Get Coverage Info” right before Fi(Appointment) the MP makes it a

sub- activity of “Schedule Appointment”.
19. The MP agrees the patient’s suggestion.
20. All participants agree to the suggested solution.
21. Having agreed on a customization, the choreography messaging is then derived

automatically from the Tropos models.

Fig. 8. Choreography description derived from the customized requirements model

Coverage Info

 Patient
Obtain

Prescription

Provide

Coverage
Info

 IC

MP

Verification Provide
Coverage

Verification

Verify

Coverage

Collect
Payment

Get

Coverage
Info

Fig. 7. Summary of the customizations made to the requirements model

 Schedule
Appointment

Sequence
 Patient Send AuthRequest To IC
 IC Send TreatmentAuth To Patient
 Patient Send AppointmentRequest To MP
 MP Send GetCoverageInfo To Patient
 Patient Send CoverageInfo To MP
 MP Send VerifyCoverage To IC
 IC Send CoverageVerification To MP
 MP Send AppointmentConfirm To Patient
 Parallel
 MP Send Prescription To Patient
 Sequence
 MP Send Bill To IC
 IC Send Payment To MP

156 A. Mahfouz et al.

Figure 7 summarizes customizations made to the Tropos models. By feeding our
choreography derivation tool [7] the Tropos model as input it outputs the ACDL de-
scription shown in figure 8. Note that a design decision was made to realize “Prescrip-
tion” as a messaging, rather than physical, activity.

8 Related Work

Most of the research on choreography has focused on representation [11], generating
process skeletons [12], and verifying the compliance of the collective behavior of a
set of processes with a choreography description [13]. While highly-dynamic service
interactions have been a long-sought goal [14], choreography customization is an
emerging area [15] with little support for business-level reasoning [4].

Although, our work shares the spirit of attempts to integrate commitments with
Tropos [16] [17], our structured customization process and automatic derivation set
our approach apart, especially that it is not clear in [17] how activities can be related
to messaging. The Amoeba methodology [18] for evolving cross-organizational inter-
action is promising, albeit it does not adequately distinguish between the local and
global views of the interaction thereby obscuring the needs of each participant.

Attempts to adapt service interactions focused mostly on adapting orchestrations
[19] [20] or dealing with changes in service interfaces, rather than adapting choreo-
graphed protocols. More importantly, with the exception of [21], the business needs
driving the interaction are not addressed.

Representing organizational requirements for distributed actors is well-established
[22], and also is evolution in agent-oriented systems [23]. However, both were yet to
be applied to choreographed service interactions in a way that explicates the multiple
views on the interaction. Our work is consistent with the dichotomy given in [24],
albeit that work does not address customization. Otherwise, relating viewpoints in
service interactions was established only at the messaging level [9]. Attempts to relate
choreography to business rules have also only addressed operational aspects [25].

Finally, although UML activity diagrams [26] are widely used to represent choreo-
graphed interactions, the formality and the levels of abstractions of Tropos [3] make
it superior for analyzing business goals and reasoning about their satisfaction.

9 Conclusions and Further Work

Ever-changing business needs call for adaptable choreographies. Conventional CDLs
are not well-suited for adaptation as they embody little of the domain knowledge
required to reason about participants’ needs. In particular, the business goals of par-
ticipants and strategic dependencies motivating the interaction are not explicitly
represented. We proposed representing choreographed interactions at the level of
organizational requirements. Tropos models embody knowledge about the goals of
the participants, the dependencies driving the interaction, and all activities performed
during the interaction including physical activities not represented in conventional
CDLs.

 Requirements-Driven Collaborative Choreography Customization 157

We proposed a framework that enables participants to collaborate on customizing
the choreography (global view) while at the same time ensuring their individual busi-
ness needs (local view) are satisfied. We utilized the formality of FT to analyze the
impact of choreography customization on each participant’s processes. We provided
systematic ways for finding customization alternatives and evaluating them.

Once participants have agreed on an alternative, we use our automated technique to
derive the customized messaging specification from Tropos models. Using an exam-
ple, we demonstrated how our framework exploits domain knowledge embodied in
requirements models to decide how the required customization is to be performed.

The generated ACDL is a skeleton that needs to be refined in a design phase, e.g.
by specifying message data types. In particular, ACDL employs request-response
messaging whereas more complex patterns may realistically be needed. We will ex-
ploit the FT for inferring more detailed messaging, such as repetition and branching.
Furthermore, we plan formalize data flow aspects of our analysis.

References

[1] Peltz, C.: Web Services Orchestration and Choreography. IEEE Computer 36, 46–52
(2003)

[2] Web Services Choreography Description Language Version 1.0. W3C (2005),
http://www.w3.org/TR/ws-cdl-10/

[3] Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An
Agent-Oriented Software Development Methodology. Journal of Autonomous Agents
and Multi-Agent Systems 8, 203–236 (2004)

[4] Barros, A., Dumas, M., Oaks, P.: Standards for Web Service Choreography and Orches-
tration: Status and Perspectives. In: Bussler, C.J., Haller, A. (eds.) BPM 2005. LNCS,
vol. 3812, pp. 61–74. Springer, Heidelberg (2006)

[5] Fuxman, A., Liu, L., Mylopoulos, J., Pistore, M., Roveri, M., Traverso, P.: Specifying
and analyzing early requirements in Tropos. RE Journal 9, 132–150 (2004)

[6] Mahfouz, A., Barroca, L., Laney, R., Nuseibeh, B.: Customizing Choreography: Deriv-
ing Conversations from Organizational Dependencies. Presented at Enterprise Distrib-
uted Object Computing Conference (EDOC), Munich, Germany (2008)

[7] Mahfouz, A., Barroca, L., Laney, R., Nuseibeh, B.: From Organizational Requirements
to Service Choreography. In: Congress on Services - I, pp. 546–553 (2009)

[8] Giorgini, P., Mylopoulos, J., Nicchiarelli, E., Sebastiani, R.: Formal Reasoning Tech-
niques for Goal Models. In: Spaccapietra, S., March, S., Aberer, K. (eds.) Journal on
Data Semantics I. LNCS, vol. 2800, pp. 1–20. Springer, Heidelberg (2003)

[9] Dijkman, R.M., Dumas, M.: Service-Oriented Design: A Multi-Viewpoint Approach. In-
ternational Journal of Cooperative Information Systems 13, 337–368 (2004)

[10] Zaha, J. M., Dumas, M., ter Hofstede, A.H.M., Barros, A.P., Decker, G.: Service Interac-
tion Modeling: Bridging Global and Local Views. Presented at EDOC, China (2006)

[11] Zaha, J.M., Barros, A.P., Dumas, M., ter Hofstede, A.H.M.: Let’s Dance: A Language
for Service Behavior Modeling. In: Meersman, R., Tari, Z. (eds.) OTM 2006. LNCS,
vol. 4275, pp. 145–162. Springer, Heidelberg (2006)

[12] Mendling, J., Hafner, M.: From Inter-Organizational Workflows to Process Execution:
Generating BPEL from WS-CDL. Presented at ACM / IEEE 8th International Confer-
ence on Model Driven Engineering Languages and Systems, Montego Bay, Jamaica
(2005)

158 A. Mahfouz et al.

[13] Foster, H., Uchitel, S., Magee, J., Kramer, J.: Model-based Verification of Web Service
Compositions. Presented at 18th International Conference on Automated Software Engi-
neering, ASE 2003 (2003)

[14] Nitto, E.D., Ghezzi, C., Metzger, A., Papazoglou, M.P., Pohl, K.: A journey to highly
dynamic, self-adaptive service-based applications. Automated Software Engineering 15,
313–341 (2008)

[15] Rinderle, S., Wombacher, A., Reichert, M.: On the Controlled Evolution of Process Cho-
reographies. Presented at 22nd International Conference on Data Engineering (ICDE
2006), Atlanta, GA, USA (2006)

[16] Mallya, A.U., Singh, M.P.: Incorporating Commitment Protocols into Tropos. In:
Müller, J.P., Zambonelli, F. (eds.) AOSE 2005. LNCS, vol. 3950, pp. 69–80. Springer,
Heidelberg (2006)

[17] Telang, P.R., Singh, M.P.: Enhancing Tropos with Commitments: A Business Meta-
model and Methodology. Presented at Conceptual Modeling: Foundations and Applica-
tions (2009)

[18] Desai, N., Chopra, A.K., Singh, M.P.: Amoeba: A Methodology for Modeling and Evo-
lution of Cross-Organizational Business Processes. ACM Transactions on Software En-
gineering and Methodology (TOSEM) 19 (2009)

[19] Charfi, A., Mezini, M.: Aspect-Oriented Web Service Composition with AO4BPEL. In:
Zhang, L.-J., Jeckle, M. (eds.) ECOWS 2004. LNCS, vol. 3250, pp. 168–182. Springer,
Heidelberg (2004)

[20] Orriëns, B., Yang, J.: A Rule Driven Approach for Developing Adaptive Service Ori-
ented Business Collaborations. Presented at IEEE International Conference on Services
Computing (SCC), Chicago, Illinois, USA (2006)

[21] Kazhamiakin, R., Pistore, M., Roveri, M.: A Framework for Integrating Business Proc-
esses and Business Requirements. Presented at Enterprise Distributed Object Computing
Conference (EDOC 2004), Monterey, California, USA (2004)

[22] Yu, E.: Towards Modeling and Reasoning Support for Early-Phase Requirements Engi-
neering. Presented at 3rd IEEE Int. Symp. on Requirements Engineering, Washington
D.C., USA (1997)

[23] Khallouf, J., Winikoff, M.: Goal-Oriented Design of Agent Systems: A Refinement of
Prometheus and its Evaluation. International Journal Agent-Oriented Software Engineer-
ing 3, 88–112 (2009)

[24] Traverso, P., Pistore, M., Roveri, M., Marconi, A., Kazhamiakin, R., Lucchese, P.,
Busetta, P., Bertoli, P.: Supporting the Negotiation between Global and Local Business
Requirements in Service Oriented Development. ITC-irst, Trento, Italy (2004)

[25] Berry, A., Milosevic, Z.: Extending Choreography With Business Contract Constraints.
International Journal of Cooperative Information Systems (IJCIS) 14, 131–179 (2005)

[26] Vitolins, V., Kalnins, A.: Semantics of UML 2.0 Activity Diagram for Business Model-
ing by Means of Virtual Machine. Presented at EDOC 2005, Enschede, The Netherlands
(2005)

An Automatic Approach to Enable Replacement
of Conversational Services�

Luca Cavallaro1, Elisabetta Di Nitto1, and Matteo Pradella2

1 Politecnico di Milano, DEI, Piazza L. Da Vinci, 32, 20133 Milano, Italy
{cavallaro,dinitto}@elet.polimi.it

2 CNR IEIIT-MI, Via Golgi, 40, 20133 Milano, Italy
pradella@elet.polimi.it

Abstract. In Service Oriented Architectures (SOAs) services invoked in a com-
position can be replaced by other services, which are possibly discovered and
bound at runtime. Most of the research efforts supporting this replacement as-
sume that the interface of the interchangeable services are the same and known
at design time. Such assumption is not realistic since it implies that providers of
the same kinds of services agree on the interfaces the services offer. By interface
mapping we mean the class of approaches aiming at relaxing this assumption.
Most of those approaches available in the literature focus on stateless services and
simply address mapping operation names and data structures. Instead, this paper
focuses on conversational services for which the sequence of required operation
calls, i.e., the interaction protocol, matters. We use model checking to automati-
cally identify the interaction protocols mapping. We validate our technique both
by applying it to the invocation of two real services (Flickr and Picasa), and by
quantitatively comparing it to a related approach.

1 Introduction

Service oriented architectures (SOAs) offer the mechanisms to build software systems
integrating loosely coupled services, possibly made available by third party vendors.
As services may be controlled by third parties, they may be out of service consumers
control. This means that the traditional closed world assumption, which mandates that
developers know a priori all the components involved in the system and can model
and plan their interactions, is no more verified [1] because services involved in the
composition may change during the system life cycle to react to failures and service
unavailabilities. When this happens, a new service semantically equivalent to the one
not responding properly could be discovered and bound to the composition. When this
replacement occurs at runtime, the composition (or the framework where the compo-
sition is running) should be able to perform the replacement requiring as little human
intervention as possible.

In recent years, research about service oriented architectures produced many frame-
works that can provide run time reconfigurations of service compositions (see for in-
stance [2], [3]), but most of them make the hypothesis that all semantically equivalent

� This research has been funded by the European Community’s FP7/2007-2013 Programme,
grant agreement 215483 (S-Cube), and IDEAS-ERC Programme, Project 227977 (SMSCom).

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 159–174, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

160 L. Cavallaro, E. Di Nitto, and M. Pradella

services have the same interface. This hypothesis, however, is not realistic as services
can be released by independent vendors. Therefore in common practice interfaces lack
standardization. Consequently there is no guarantee that services discovered and bound
at runtime can perfectly fit in a preexistent composition.

To address this problem, in a previous work [4], we have developed an approach to
allow invocation of services whose interfaces and behaviors differ from each other. The
approach was based on the definition of proper mapping scripts that, when interpreted
at runtime, could solve complex mismatches and perform the needed adaptations.

In this paper we extend the previous work by providing an approach and a tool to
support the automation of the mapping scripts definition. The approach is able to handle
conversational services, that is, services whose operations are expected to be called in
some specific sequences, which define the services interaction protocols. We assume
that, when developing a service composition, a service integrator uses the component
services that are available at the time he/she is developing the system. We call these
abstract services to highlight the fact that they are not necessarily the ones that will be
actually used at runtime, which we call concrete services. We also assume that services
are described not only in terms of their syntactic interface (i.e., their WSDL or any
equivalent description), but also in terms of a model that defines the order in which
service operations need to be invoked.

Given these assumptions and given a certain sequence of operations to be invoked
on an abstract service, our approach is able to propose a possible mapping of this se-
quence to a sequence of operations on a concrete service. The result of this analysis is
a mapping script fragment that, combined with other fragments that deal with data and
operation names mappings, allows us to actually adapt abstract service invocations to
their concrete implementations. Data and operation names mappings are disregarded in
this paper as they appear to be much simpler than the mapping of interaction protocols
and are covered in [5] and in other approaches in the literature (see Section 2).

The rest of the paper is organized as follows: Section 2 presents the current state of
the art and highlights some open issues. Section 3 presents a real world example that
motivates our work, Section 4 summarizes the background work that has been devel-
oped in [4], Section 5 discusses our approach to support semi-automatic generation of
mapping scripts for what concerns protocol-level mismatches and refines the execution
model associated to this specific case of mismatches. Section 6 evaluates our approach
quantitatively and qualitatively, and, finally, Section 7 draws some conclusions.

2 Related Work

The approaches that support interface mapping can be categorized in those that require
human intervention in the definition of mapping scripts or equivalent mechanisms (see
for instance [6], [7], [8] and [9]) and those that offer some automatic tool.

Among the approaches in the first category, we mention here the one in [7] as it of-
fers a model checking approach to verify the correctness of adaptation contracts that
are manually defined by humans, and the one in [9] as it assists humans in the interface
adapters development by offering a tool that provides hints about possible mismatches
between an abstract and a concrete service interface. Both approaches, however, assume

An Automatic Approach to Enable Replacement of Conversational Services 161

that, before execution, a developer can identify all potential pairs of abstract and con-
crete services and specify all needed adapters. This may not work properly in the cases
of systems supporting run-time substitutions of services as the substitutions could have
not be foreseen in advance.

Automated approaches try to solve this issue by generating adapters that are inferred
from specifications associated to services. Many of these approaches are based on the
use of ontologies. Among the others, our previous work [5] and [10] exploit a domain
ontology (specified in SAWSDL1) to annotate service interfaces. At run-time, when
a service bound to a composition needs to be substituted, a software agent generates
a mapping by parsing the ontological annotations in the interfaces. SCIROCO [11]
offers similar features focusing on stateful services. It requires all services to be an-
notated with both a SAWSDL description and a WS-ResourceProperties2 document,
which represents the state of the service. When an invoked service becomes unavail-
able, SCIROCO exploits the SAWSDL annotations to find a set of candidates that ex-
pose a semantically matching interface. Then, the WS-ResourceProperties document
associated to each candidate service is analyzed to find out if it is possible to bring the
candidate in a state that is compatible with the state of the unavailable service. If this
is possible, then this service is selected for replacement of the one that is unavailable.
All of these three approaches offer full run-time automation for service substitution, but
can address only those mismatches that concern data and operation names while they
disregard those concerning the interaction protocol.

An approach that generates adapters covering the case of interaction protocols mis-
matches is presented in [12]. It assumes to start from a service composition and a service
behavioral description both written in the BPEL language [13]. These are then trans-
lated in the YAWL formal language [14] and matched in order to identify an invocation
trace in the service behavioral description that matches the one expected by the service
composition. The matching algorithm is based on graph exploration and considers both
control flow and data flow requirements.

The approach presented in [15] offers similar features and has been implemented in
an open source tool.3 While both these approaches appear to fulfill our need for sup-
porting interaction protocol mapping, they may present some shortcoming in terms of
performances due to the high cost of exhaustive graph exploration algorithms that could
prevent their usage in on-the-fly mapping derivation. While no data about performances
are available for the approach in [12], we could exploit the tool offered by [15] to verify
our guess. As discussed in Section 6, the processing time required by the tool is remark-
ably high in complex cases. Our goal is, therefore, to exploit some alternative technique
to significantly improve these performances.

3 Motivating Example

To motivate our work we refer to an example based on some significant conversational
services available on the Internet. Our example application is a photo management tool

1 http://www.w3.org/2002/ws/sawsdl/
2 http://docs.oasis-open.org/wsrf/wsrf-ws resource properties-1.2-spec-os.pdf
3 http://sourceforge.net/projects/dinapter

162 L. Cavallaro, E. Di Nitto, and M. Pradella

designed for working on a mobile phone. A user can take some photos with his mobile,
upload them to the web, and share them with his friends using an external service.

The tool expects to interact with the Flickr service4. Flickr makes available to its
users a space where to upload photos and a REST[16] service to access it. Photos can
have assigned one of the following levels of visibility: public, private, and family, where
the latter lets only some members see the photos uploaded by a user. Once the user has
uploaded some photos the service lets him group (part of) them in sets. Of course it is
always possible to change the visibility of a photo or of a set.

Flickr is not the only service offering a photo repository. Another analogous service
is called Picasa5. Flickr and Picasa are equivalent in a broad sense, but analyzing their
interfaces in more detail some differences emerge. In particular, Picasa does not support
the upload of photos if they are not grouped in a set. For this reason a user should first
create a set and then upload pictures directly into the created set. In addition, while
Flickr identifies three levels of visibility for photos and sets, Picasa only supports two
(private and public) and, given the central role of sets, associates these levels only to
sets and not directly to photos. Of course, other differences concern the names and the
parameters of the equivalent operations made available by the two services. For instance
the operation addToSet of Flickr and the operation createPhoto of Picasa both add a
photo to a set, but they show different names and accept different input parameters
(Tables 1 and 2 summarize the Flickr and Picasa operations we focus on.

Even if our photo management tool is built to be used with Flickr, many users may
be subscribed to Picasa or to any other popular photo sharing service. In order to allow
them to use any of these alternative services, either we hardcode in our tool the in-
structions to interact with any possible service, or we build a mapping mechanism that
handles the mismatches on our behalf. Such mapping mechanism could state, for exam-
ple, that the sequence of Flickr operations uploadPriv, addToSet, makeSetPub maps on
the following sequence of Picasa operations: createPublicSet and createPhoto, which
can therefore be invoked to obtain the required behaviour. The approach we discuss in
this paper is focusing specifically on how to automatically and efficiently infer such
kinds of mapping without or with limited human intervention.

4 Adaptation Approach: Overview

In order to describe possible differences that can arise between an abstract and a con-
crete service we need to define our model of a service. A service can be described as a
Labeled Transition System (LTS) characterized by tuple P = (S,O, τ), where:

– S is the set of states the service can go through.
– O is the set of operations that can be invoked on the service together with the

corresponding parameters. In formal terms, this is the input alphabet of the LTS.
– τ is the transition function τ : S × O → 2S that describes how the service can

evolve from state to state when operations are invoked. 2s indicates that the transi-
tion function can non-deterministically lead the service to different states depend-
ing on the context (e.g., a state representing a correct functioning of the service

4 http://www.flickr.com/services/api/
5 http://code.google.com/apis/picasaweb/overview.html

An Automatic Approach to Enable Replacement of Conversational Services 163

Table 1. A subset of Flickr operations and required data

Operation name Parameters Return value Description

uploadPub photo success Uploads a photo with public visibilityphotoName

uploadPriv photo success Uploads a photo with private visibilityphotoName

uploadFam photo success Uploads a photo with family visibilityphotoName
makePhotoPub photoName Makes a photo visibility public
makePhotoPriv photoName Makes a photo visibility private
makePhotoFam photoName Makes a photo visibility family

addToSet albumName success Adds a previously uploaded photo to a
photoName (new or existent) set

makeSetPub albumName Makes a set visibility public
makeSetPriv albumName Makes a set visibility private
makeSetFam albumName Makes a set visibility family

Table 2. A subset of Picasa operations and required data

Operation name Parameters Return value Description
createPublicSet albumName success Creates a photo set with public visibility
createPrivateSet albumName success Creates a photo set with private visibility

createPhoto
albumName

success Uploads a new photo and adds it to an existent setphotoName
photo

makePub albumName Makes a set visibility public
makePriv albumName Makes a set visibility private

can be reached only after the user has been identified, otherwise an error state has
to be reached), or on possible service failures (e.g., when an a timeout expires the
corresponding transition leads to an error state).

Each operation o ∈ O is a triple 〈name, in, out〉, where name is the operation name,
in and out are possibly empty multisets of data the operation requires as input and
returns as output, respectively. A datum is a triple 〈name, type, value〉. name is the
name of the datum, type is the type of the datum and value is the value that the datum
assumes.

Given an abstract and a concrete service, we say that a mismatch occurs when an
operation request expressed in terms of the abstract interface cannot be understood by
the concrete service that should handle it. We distinguish between two mapping classes:

– Interface-level mismatches concern differences between names of operations ex-
posed by an abstract and a concrete service and parameters of these operations.

– Protocol-level mismatches concern differences in the order the operations offered
by an abstract service and by its concrete representation are expected to be invoked.

As discussed in Section 2, interface-level mismatches have been threated in the litera-
ture and addressed either through methodological approaches involving human design-
ers [9] or through automatic approaches able to reason in the presence of some reference
ontology [10,11]. Thus, we do not go into further details on this aspect and handle it by
exploiting the approach we reported in [5].

164 L. Cavallaro, E. Di Nitto, and M. Pradella

Protocol-level mismatches are those we want to focus on in this paper. As mentioned
before, they apply to stateful conversational services for which the sequence in which
operations are invoked matters. In this case, we can distinguish between the following
classes of mismatches:

– One to one binding: an operation in the abstract service has a direct counterpart
in the concrete service that can replace it. This case is addressed directly as an
interface-level mismatch and therefore is not further considered in this paper.

– One to many binding: an operation in the abstract service does not have a direct
counterpart in the concrete service but it can be mapped into two or more of its
operations.

– Many to one binding: two or more operations in the abstract service do not have
a direct counterpart in the concrete services, but, all together, can be mapped into
one operation of the concrete service.

– Many to many binding: a sequence of operations on the abstract service can be
mapped into a different sequence of operations on the concrete service.

Our aim is to focus on the general case of many to many binding and, based on it,
deal also with the simpler cases. In particular, we aim at defining mapping scripts that
contain histories which associate sequences of operations on the abstract services into
sequences of operations on the corresponding concrete services.

At runtime, the mapping scripts are interpreted by adapters that are then able to in-
voke concrete services thus overcoming their mismatches with respect to the abstract
services. Figure 1 shows the main components of our runtime infrastructure. Also, it
shows how these components interact when a service composition tries to call a se-
quence of operations of an abstract service S1 and this sequence is then translated into
a sequence of operations on a concrete service S2 that shows a different interaction
protocol. The sequence of calls from the composition is intercepted by a proxy that
passes it to an adapter. This last one, by interpreting the mapping script, translates it
into a sequence of calls on S2 and returns the results back to the proxy. The runtime
infrastructure shown in the figure is part of the SCENE framework [17] that, thanks to
the intermediation of proxies, supports dynamic binding of services to a certain service
composition. SCENE has been originally designed under the hypothesis that all services
would exhibit identical interfaces or protocols. In our extension this limiting hypothesis
is overcome by the introduction of the adapter, a piece of software integrated in SCENE
proxy that supports mismatches solution by interpreting some mapping scripts. These
scripts can be manually provided by a system integrator, as described in [4], or can be
automatically generated by the proxy when the service to be bound to the composition
is selected. Next section provides details about automatic generation of mapping scripts.

5 Generation of Adaptation Scripts for Protocol-Level Mismatches

In previous section we outlined how adaptation takes place once a mapping script is
provided. Building the script may be a hard task for humans and in [5] we proposed
an automated solution limited to interface level mismatches. In this section we focus on
protocol-level mismatches and on how to build, possibly in an automatic way, a suitable
adaptation script.

An Automatic Approach to Enable Replacement of Conversational Services 165

Service Compos i t ion

1) Request for o1 on S1

Proxy

3) Requests for
o1 and 02 on S1

4)Adapted Request for S2

Mapping

Script

S1 to S2: map

o1 and o2 on S1

to o1 on S2

Service
S2

Service
S1

5)Response from S2

6)Adapted Response
from S2

7)Adapted
Response

from S2

Operat ions: o1, o22) Request for o2 on S1

Adapter Opera t ion: o1

Inpu t

Fig. 1. The adaptation process

5.1 Problem Statement

We assume to know for each service the following information:

– A table which associates to each service operation its input and output parameters.
For the example of Section 3 this information is represented by Tables 1 and 2.

– A description of the LTS model associated to the service. This is used to derive the
order in which service operations may be invoked. A human-readable version of
the LTS models of Flickr and Picasa is shown in Figures 2 and 3.

We make the hypothesis that both these pieces of information come as a service de-
scription that can be accessed and interpreted by both a human or a machine service
requestor as facets (see [18] for details). The protocol mapping between an abstract
and a concrete service assumes that two compatibility relationships have been previ-
ously defined. The first relationship states the compatibility between states of two LTS
models. The second relationship concerns the compatibility between name and data as-
sociated to some operation oabs ∈ Oabs in the abstract service and those associated
to some operation o′conc ∈ Oconc in the concrete service. For the sake of simplicity,
we assume in this paper that compatible states, operation names, and data have been
already identified someway (for instance, as described in [5]). For this reason, the triple
〈name, type, value〉 fully characterizing each datum is synthesized here only by the
name element.

Given these definitions and considering the LTS models Pabs and Pconc, referring,
respectively, to an abstract and concrete service, we say that, given a sequence of oper-
ations in Pabs (let us call it seqabs), leading from a state si

abs to some state sf
abs, this can

be substitutable by another sequence of operations in Pconc, seqconc, provided that:

1. seqconc starts from a state si
conc compatible with si

abs and ends into a state sf
conc

compatible with sf
abs. Note that LTSs may be non-deterministic: in this case the

166 L. Cavallaro, E. Di Nitto, and M. Pradella

Fig. 2. A representation of the Flickr protocol

pub l icSet priva teSet

pub l icNonEmptySet priva teNonEmptySet

createPrivateSetcreatePub l icSet

makePub

makePriv

createPhoto
makePub

makePriv

createPub l icSet createPrivateSet

ini t

createPhoto

createPhoto
createPhoto

Fig. 3. A representation of the Picasa protocol

constraint is that at least one of the ending states sf1
conc . . . sfa

conc of the concrete
service is compatible to one of the ending states sf1

abs . . . sfb

abs of the abstract service.
From now on we will assume, without loss of generality, that both the LTSs are
deterministic.

2. For all operations of seqconc, all data parameters are compatible with those appear-
ing in seqabs.

On this basis we can build a reasoning mechanism that, given some seqabs = o1
abs . . . on

abs

returns a sequence of operations seqconc = o1
conc . . . om

conc that can replace the first one
according to the substitution relationship defined above. We use two different reason-
ing strategies for identifying seqconc, depending on whether the composition execution

An Automatic Approach to Enable Replacement of Conversational Services 167

environment supports a synchronous or an asynchronous request-reply semantics for
operation calls.

The synchronous semantics requires that in a sequence of operation calls not only
the operations are called in the required sequence, but also each operation call cannot
be performed before the previous one has returned its foreseen result. An example of
this semantics is offered by a BPEL sequence block. This mandates that the activities it
contains should be executed sequentially.

The asynchronous semantics does not prevent the execution of an operation call even
if the previous one has not returned the corresponding value yet, unless there is an ex-
plicit dependency between the two in terms of input parameters required by the oper-
ation to be started and output parameters produced by the previous operation. Using
again an example from BPEL, the asynchronous semantics can be mapped on a flow
block containing various invoke activities together with the corresponding receives.
In this case the BPEL executor interprets the flow block by spanning an independent
thread for each activity, still ensuring that each receive statement will be performed af-
ter the corresponding invoke, and, if dependent invokes are present, that their execution
is properly ordered as well.

The strategies adopted by the reasoning mechanism are then the following:

– Strategy 1 - Synchronous request-reply semantics. Given the initial state si
abs of the

abstract sequence seqabs and the corresponding compatible state in the concrete
LTS model si

conc, each transition departing from si
conc is considered as a candidate

to be the o1
conc operation in seqconc provided that all the data it requires as input can

be available at the time it will be executed, and the data o1
conc produces as output

include those expected by the consumer of o1
abs, if any. The same line of reasoning

is applied starting from any sx
conc until the state sf

conc is reached.
From the runtime perspective, this results in the fact that an operation oabs ∈ seqabs

can be invoked only if the previous one in the sequence has been completed, that is,
the corresponding counterpart in the concrete service has returned the proper value.

– Strategy 2 - Asynchronous request-reply semantics. Given the initial state si
abs of the

abstract sequence seqabs, the corresponding compatible state in the concrete LTS
model si

conc, and the final state sf
abs, the transitions o1

conc...o
m
conc are considered as

possible candidate operations for seqconc provided that:
1. all the data each operation in seqconc requires as input are available at the time

the operation is executed;
2. all the data expected as output by operations in seqabs will be produced by the

operations in seqconc by the time sf
conc is reached.

At runtime, this implies that, given an invoked operation oabs ∈ seqabs which re-
turns some data, the next operation in sequence can be invoked without necessarily
waiting that the result of oabs has been provided. Consequently, any kind of binding
can be established from some operations o1

abs...o
n
abs ∈ seqabs into one or more op-

erations in seqconc, since, for every x ∈ [1, n] the service consumer may invoke an
operation ox+1

abs even if ox
abs has not returned yet. Of course this statement is valid

if ox+1
abs does not require any of the return parameter of ox

abs as input.

Intuitively, the synchronous semantics limits the kind of mismatches for which a solu-
tion can be found. In this situation, many to one and many to many bindings can be

168 L. Cavallaro, E. Di Nitto, and M. Pradella

treated in the general case only if operations involved in the mismatch require no return
values. Consider for instance the example in Section 3. Given the trace: uploadPriv,
addToSet, makeSetPub departing from the init state on Flickr, there is no possibility to
build a mapping script allowing for the usage of Picasa in the synchronous case. In fact,
applying the synchronous request-reply semantics reasoning schema, the first operation
to be invoked on Picasa should accept as input a set of parameters included in those
provided to uploadPriv on Flickr, and should return at least all the parameters expected
in return by the same Flickr operation. Since all the operations outgoing from init on
Picasa require as input a albumName and this datum is not provided by uploadPriv, no
operation on Picasa is a valid candidate and, consequently, it is impossible to build a
mapping script.

In the case the asynchronous request-reply semantics schema is applied, a mapping
can be identified. In fact, addToSet in seqabs can be invoked even if the operation call
uploadPriv has not produced its return value yet as it does not have a direct coun-
terpart in seqconc. After addToSet is invoked, createPublicSet or createPrivateSet in
Picasa can be invoked as their input parameter (albumName) is available. Indeed, both
produce a success output, which is expected by the service requestor as output of one
of the invoked abstract operations. Assuming that createPublicSet is chosen for invo-
cation, there are two possible operations candidate for being part of the concrete se-
quence: makePriv and createPhoto. Between those createPhoto is chosen because it
is the only operation that returns the second success output, which is expected by the
service requestor. This last operation leads Picasa into the publicNonEmpty state that is
compatible with final state of the abstract sequence, that is, publicSet.

From the above examples the reader should notice that both strategies are based on
the assumption that the substitution is totally transparent to the service consumer, who
invokes the abstract service operations, provides input data for those operations and
expects some return data from them. The invocations performed to the abstract service
operations are translated into invocations to concrete service operations: input data pro-
vided by the consumer are used as input for the invoked concrete service operations
and return data provided by the invoked concrete operations are returned to the con-
sumer as needed. Any input parameter provided by the consumer is stored and can be
used as input for a concrete operation requiring it. When this happens the parameter is
removed from the storage. The same line of reasoning is valid for output parameters,
if we consider that they are provided by the concrete service and are returned to the
service consumer.

5.2 Implementation and Practical Issues

The reasoning mechanism has been formulated using the linear temporal logic lan-
guage TRIO [19]. Our model features some application-independent TRIO formulas
that represent the reasoning strategies as expressed in the previous section, and some
application-dependent formulas, which represent the interfaces and protocols of the ab-
stract and concrete services.

An Automatic Approach to Enable Replacement of Conversational Services 169

Given this model and an operations sequence seqabs, the approach formulates the
problem of finding a substitutable operation sequence seqconc. If this sequence exists,
a mapping script is generated. The script is executed by the adapter that, as shown in
Figure 1, receives the sequence of invocations that the service consumer expects to
perform and transforms them into invocations suitable for the concrete service.

We have chosen to implement the model of the reasoning mechanism using Zot6, an
agile and easily extensible bounded model- and satisfiability-checker. In general, Zot
returns a history (i.e., an execution trace of the specified system) which satisfies the
given model. The history contains a finite number of steps, each one consisting of a
possible configuration of the system.

In our approach the history returned by Zot is a mapping script that is then passed
as input to the adapter (see Section 4 for details). Each history step contains the state
in which each one of the analyzed LTS (the ones of the abstract and concrete services)
is, the operations in seqabs and in seqconc that should be invoked in that step, and the
exchanged data, if any. In the current implementation, we make the hypothesis that at
most one operation in seqabs and at most one in seqconc can be executed at each history
step.

Consider again the operations uploadPriv, addToSet, makeSetPub as seqabs depart-
ing from the init state on Flickr. Let us assume an asynchronous semantics and specify
as compatible the init states of the two services and the states publicSet of Flickr and
publicNonEmptySet of Picasa. In this case, a possible history returned by Zot is re-
ported in Table 3. In the first two steps the history only reports invocations on Flickr.
This means that the adapter only expects to receive invocations from the service con-
sumer and to keep trace of provided inputs and required outputs. On step 3 there are
enough data to invoke the operation createPublicSet on Picasa. The adapter performs
the invocation on the concrete service, uses as input for that invocation the albumName
stored in memory, and removes the parameter from storage. The success value returned
by this operation is forwarded to the service consumer. On step 4 the history reports
again an invocation on Flickr. In this case the adapter behaves exactly as in steps 1 and
2. Finally on step 5 the history mandates the invocation on Picasa of the operation cre-
atePhoto and on step 6 Flickr is in a state publicSet, considered final for the considered
sequence and Picasa is in a state compatible to publicSet.

6 Evaluation

The experiments were conducted to prove the effectiveness in solving protocol level
mismatches and the performance of the approach both as an interactive and on-line
solution to determine feasible mappings7. In particular, we conducted two classes of
experiments.

– We ran experiments with Flickr and Picasa trying to map various abstract se-
quences into some concrete ones in order to see if the approach was behaving as
expected in terms of the identification of correct mappings.

6 Zot can be downloaded from http://home.dei.polimi.it/pradella
7 The input set of experiments is available at http://home.dei.polimi.it/cavallaro/evaluation-

experimentsInputs.zip

170 L. Cavallaro, E. Di Nitto, and M. Pradella

Table 3. An history generated for the seqabs = uploadPriv, addToSet, makeSetPub

Step History Content

1

FlickrState = init; FlickrInvoke = uploadPriv
FlickrInput = photo, photoName; FlickrOutput = success
PicasaState = init

2

FlickrState = privatePhoto; FlickrInvoke = addToSet
FlickrInput = albumName, photoName; FlickrOutput = success
PicasaState = init

3

FlickrState = privateSet
PicasaState = init; PicasaInvoke = createPublicSet
PicasaInput = albumName; PicasaOutput = success

4
FlickrState = privateSet; FlickrInvoke = makeSetPub
FlickrInput = albumName
PicasaState = publicSet

5

FlickrState = publicSet
PicasaState = publicSet; PicasaInvoke = createPhoto
PicasaInput = photo, photoName, albumName; PicasaOutput = success

6
FlickrState = publicSet
PicasaState = publicNonEmptySet

– We compared the performance of our approach with the one shown by a similar
approach found in the literature [15].

All the experiments had the goal of exploring the possibility for our tool to derive
(whenever possible) correct mappings between an abstract and a concrete service. The
experiments were conducted on a 2.5 Ghz Intel Core2 duo machine, equipped with 4
GBytes of memory, running Linux. The Common Lisp compiler used for running Zot
was SBCL, version 1.0.18.

The main inputs used in each experiment have been: a) the LTSs of the abstract ser-
vice and the candidate concrete service b) the associations between service operations
and their inputs and outputs; c) the compatibility relationship between the operation
names and parameters of the abstract and concrete services; and d) a possible seqabs.
The results obtained by the experiments have been a possible seqconc in the cases this
could have been identified by the tool as well as information about the time needed by
the tool to produce a result or to signal the impossibility of producing it.

As additional input, since Zot is based on a SAT-solver, it is necessary to set the
size k of the periodic temporal structure on which the verification is performed. In
this case, all the periodic behaviors of the system, with period up to k are considered
by the tool. The identification of a proper value for k is always a critical issue when
exploiting a SAT-solver. High values for k usually imply long execution times for the
tool while small values may result in the fact that the tool is not able to find a solution
that would have been identified if the considered temporal structure was longer. Our
approach is essentially based on constructing the product of the abstract and concrete
LTSs, hence the upper bound for non-cyclic behaviors is nsabs · nsconc − 1, where
nsabs and nconc are the number of states of the LTS models of the abstract and concrete

An Automatic Approach to Enable Replacement of Conversational Services 171

Table 4. Results for the experiments on examples in Section 3

Time (s)
Uploaded photos Sequence length ns ns 2ns 3ns 4ns

1 3 12 0.59 1.87 3.72 5.80
2 6 12 0.59 1.94 4.06 7.32
3 9 12 0.55 1.81 4.14 7.35
4 13 12 0.55 1.86 4.82 7.72

services, respectively. In practice, we empirically found that in most of the cases a good
estimate for k is ns = nsabs +nsconc. With k = 2ns we were able to find solutions for
every considered case. Therefore the algorithm first tries with k = ns, then considers
k = 2ns, and so on, keeping nsabs · nsconc as an upper bound. In the experiments we
considered four possible values for k: 2ns, 3ns, and 4ns, to see how the tool speed is
affected by increasing bounds.

Experiments with Flickr and Picasa. We ran the tool starting from the Flickr abstract
sequence we have used through this paper. Moreover, we have complicated it consider-
ing the case in which up to 4 pictures are uploaded (this results in the fact that the oper-
ations uploadPriv and addToSet are called more than one time. The results are reported
in Table 4. We started with a bound k = ns = 12. In the first two cases reported in the
table (upload of one and two pictures) we succeeded in determining a sequence with
ns, while in the last two cases we needed to use k = 2ns. The overheads introduced to
produce a working mapping script are between 0.59 and 1.86 seconds. This makes the
approach suitable for both on-line and off-line use at least in this specific case. The his-
tories produced by Zot were analyzed by a human to prove their correctness and were
executed by the adapter as mapping scripts. The performed tests succeeded in using
Picasa in place of Flickr.

Comparison with [15]. We compared our technique with the one presented in [15] and
summarized in Section 2. The tool is called Dinapter, and its package contains several
examples of abstract and concrete services. We took some of the most significant ones
and used them both with Dinapter and Zot.

In the original example, the tested services were all described using abstract BPEL.
They contain branches, loops and non-determinism. In order to use them with our tool
we translated the abstract BPEL description into LTS using the following criteria:

– For what concern the BPEL descriptions representing sequences of calls, we con-
sidered invoke activities as operation invocations, and receive activities associated
with invocations and featuring parameters as responses to the invoked operations.

– For BPEL description representing service interfaces, we considered receive activ-
ities as invocation expected by the service, and invoke operations featuring param-
eters and associated with the receives as issued responses.

– We considered those activities included in a BPEL sequence block as having a
synchronous semantics.

172 L. Cavallaro, E. Di Nitto, and M. Pradella

Table 5. Results of the comparison with [15]

[15] Our approach (Time (s))
Example name ns Time (s) ns 2ns 3ns 4ns

e001-ftp-tiny 6 1.4 0.06 0.34 0.54 0.9
e002-ftp-small 8 30.65 0.11 0.53 0.95 1.54
e002c-ftp-small 7 37.15 0.12 0.39 0.81 1.30
e003-ftp-full 8 Out of memory 0.17 0.26 0.48 0.75
e004-wich-Pick 10 45.10 0.75 2.37 4.81 8.60
e005-start-Switch 8 51.05 0.53 1.62 2.87 4.45
e010-Pick-Pick 12 6.01 0.64 2.09 3.51 7.03
e013-deceptive-Pick 12 54.90 0.68 2.01 3.47 6.95
e017-2Switch-2Pick-carry 10 Out of memory 0.34 0.91 1.92 3.49
vod-1 8 14.41 0.09 0.23 0.71 1.10

The results of the comparison are reported in Table 5. In each row, the name of the
example taken from the test set bundled with Dinapter is reported. The time needed
to run Dinapter (third column) is the one we calculated by executing the tool on our
reference machine. The other times in the last four columns are those referred to our
tool with the temporal structure bound k set to the first four multiples of ns, i.e., the
sum of the abstract and concrete LTSs states.

Our approach was able to find a solution in every case with the bound estimated as ns
and with an execution time shorter than 1 second (clearly the time increases for higher
values of the bound). This, again, is promising for on-line use of the tool. Moreover, our
approach outperformed Dinapter that in some cases has not been able to terminate with
success because of out of memory problems. The output sequences produced by Zot
were inspected by a human to verify correctness and, in those cases in which Dinapter
was able to produce a result, were compared with those produced by Dinapter and found
out to be equivalent.

7 Conclusion

In this work we presented an approach to identify an interaction protocol mapping be-
tween compatible conversational services. The mapping is deduced by using Zot, a
recent, efficient model checker based on a SAT-solver.

We validated our technique by considering two real-life services, Flickr and Pi-
casa, obtaining both correct protocol mappings between the two and good performance.
Moreover, we compared our approach with Dinapter [15] on some significant cases that
have been made available together with this last tool. Zot outperformed Dinapter in all
cases, with times suitable for on-line application of the technique. The research work is
currently ongoing and disregards some important aspects that need to be considered for
successful service replacement. Currently we analyzed only services featuring conver-
sations that can be represented by LTSs, while some real world cases need more power-
ful formalisms (e.g. services featuring branches executed in parallel, services featuring

An Automatic Approach to Enable Replacement of Conversational Services 173

not only a conversational state but also an internal state). Finally services are usually
invoked in complex processes that may feature a state or transactional support. Conse-
quently service substitution may require house keeping work of the running processes.
Thus, as future work we plan to extend our approach to allow consistent substitution of
stateful and transactional services.

References

1. Baresi, L., Nitto, E.D., Ghezzi, C.: Toward open-world software: Issue and challenges. IEEE
Computer 39(10), 36–43 (2006)

2. Verma, K., Gomadam, K., Sheth, A.P., Miller, J.A., Wu, Z.: The METEOR-S approach for
configuring and executing dynamic web processes. University of Georgia, Athens, Tech. Rep.
(June 2005)

3. Antonellis, V.D., Melchiori, M., Santis, L.D., Mecella, M., Mussi, E., Pernici, B., Plebani,
P.: A layered architecture for flexible web service invocation. Software Practice and Experi-
ence 36(2), 191–223 (2006)

4. Cavallaro, L., Di Nitto, E.: An approach to adapt service requests to actual service interfaces.
In: Proceedings of SEAMS (2008)

5. Cavallaro, L., Ripa, G., Zuccalà, M.: Adapting service requests to actual service interfaces
through semantic annotations. In: Proceedings of PESOS (2009)

6. Moser, O., Rosenberg, F., Dustdar, S.: Non-intrusive monitoring and service adaptation for
WS-BPEL. In: Proceedings of WWW (2008)

7. Mateescu, R., Poizat, P., Salaün, G.: Adaptation of service protocols using process algebra
and on-the-fly reduction techniques. In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.)
ICSOC 2008. LNCS, vol. 5364, pp. 84–99. Springer, Heidelberg (2008)

8. Dumas, M., Spork, M., Wang, K.: Adapt or perish: Algebra and visual notation for service
interface adaptation. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS,
vol. 4102, pp. 65–80. Springer, Heidelberg (2006)

9. Nezhad, H.R.M., Benatallah, B., Martens, A., Curbera, F., Casati, F.: Semi-automated adap-
tation of service interactions. In: Proceedings of WWW 2007 (2007)

10. Drumm, C.: Improving schema mapping by exploiting domain knowledge. Ph.D. disserta-
tion, Universitat Karlsruhe, Fakultat fur Informatik (2008)

11. Fredj, M., Georgantas, N., Issarny, V., Zarras, A.: Dynamic service substitution in service-
oriented architectures. In: Proceedings of SERVICES (2008)

12. Brogi, A., Popescu, R.: Automated generation of BPEL adapters. In: Dan, A., Lamersdorf,
W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 27–39. Springer, Heidelberg (2006)

13. WS-BPEL specification,
http://www.oasis-open.org/committees/tc_home.php?wg_
abbrev=wsbpel

14. van der Aalst, W.M.P., ter Hofstede, A.H.M.: Yawl: yet another workflow language. Infor-
mation Systems 30(4), 245–275 (2005)

15. Martı̀n, J.A., Pimentel, E.: Automatic generation of adaptation contracts. In: Proceedings of
FOCLASA (2008)

16. Fielding, R.T.: Architectural styles and the design of network-based software architectures.
Ph.D. dissertation, chair-Taylor, Richard N (2000)

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel

174 L. Cavallaro, E. Di Nitto, and M. Pradella

17. Colombo, M., Di Nitto, E., Mauri, M.: Scene: A service composition execution environment
supporting dynamic changes disciplined through rules. In: Dan, A., Lamersdorf, W. (eds.)
ICSOC 2006. LNCS, vol. 4294, pp. 191–202. Springer, Heidelberg (2006)

18. Colombo, M., Di Nitto, E., Penta, M.D., Distante, D., Zuccalà, M.: Speaking a common
language: A conceptual model for describing service-oriented systems. In: Benatallah, B.,
Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp. 48–60. Springer, Heidelberg
(2005)

19. Ghezzi, C., Mandrioli, D., Morzenti, A.: Trio: A logic language for executable specifications
of real-time systems. Journal of Systems and Software 12(2) (1990)

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 175–189, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Towards Adaptable SOA:
Model Driven Development, Context and Aspect

Valérie Monfort1,2 and Slimane Hammoudi3

1 Université Paris IX Dauphine LAMSADE
Place du Maréchal de Lattre Tassigny, Paris Cedex 16 France

2 Université Paris 1 - Panthéon –Sorbonne
Centre de Recherche en Informatique, France
3 ESEO 4, Rue Merlet de la Boulaye B.P. 926

49 009 ANGERS Cedex 01 France
valerie.monfort@univ-paris1.fr, slimane.hammoudi@eseo.fr

Abstract. Service-Oriented Architectures (SOA) are broadly used by compa-
nies to gain in flexibility. Web service is the fitted technical solution used to
support SOA by providing interoperability and loose coupling. However, there
is still much to be done in order to obtain a genuine flawless Web service, and
current market implementations still do not provide adaptable Web service be-
havior depending on the service contract. In this paper, we propose two differ-
ent approaches to increase adaptability of Web services and SOA. The first one
is based on a technical solution which considers Aspect Oriented Programming
(AOP) as a new design solution for Web services. We implemented an infra-
structure to enrich services with aspects and to dynamically reroute messages
according to changes, without redeployment. The second one combines Model
Driven Development (MDD) and Context-Awareness to promote reusability
and adaptability of Web services behavior depending on the service context.

Keywords: Aspect Based services, Meta Modeling, Model Composition.

1 Introduction

Economical context impacts companies and their Information System (IS). With SOA
(Service Oriented Architecture), each application owns interfaces, offering services
and masking implementation details. Applications are seen as black boxes independ-
ently connected to a middleware as Enterprise Application Integration bus (EAI) with
its connectors (connecting the bus to the applications). However, this integration solu-
tion does not allow connecting heterogeneous applications or infrastructures, as dis-
tant IS. Web services [4][10] are the cheapest and simplest technical solution to
resolve this problem. They offer interoperability because they are based on standards
as XML (eXtensible Markup Language) and allow loose coupling. Web services
(WS), like any other middleware technologies, aim to provide mechanisms to bridge
heterogeneous platforms, allowing data to flow across various programs. The WS
technology looks very similar to what most middleware technologies looks like. Con-
sequently, each WS possesses an Interface Definition Language, namely WSDL

176 V. Monfort and S. Hammoudi

(Web Service Description Language), which is responsible for the message payload,
itself described with the equally famous protocol SOAP (Simple Object Access Pro-
tocol), while data structures are explained by XML. Very often, WS are stored in
UDDI (Universal Description Discovery and Integration) registry. In fact, the winning
card of this technology is not its mechanism but rather the standards upon which it is
built. Indeed, each of these standards is not only open to everyone but, since all of
them are based on XML, it is pretty easy to implement these standards for most plat-
forms and languages. For this reason, WS are highly interoperable and do not rely on
the underlying platform they are built on, unlike many ORPC (object remote proce-
dure call). According to a vast majority of industrial leaders, WS is the best fitted
technology for implementing Service Oriented Architectures. With WSs, the message
contract (WSDL) is the central meeting point which connects applications. The
WSDL contract constitutes the design view upon which developers can generate both
client and server sides (proxy and stub).

We noticed code is very monolithic it encapsulates different concerns as business,
security… Moreover, we used to change Web service code according to new needs,
to redeploy Web service. Each change is time costly and Web service is not available.
So, flexibility to changes is not optimal. We proposed aspects based solutions to gain
in code simplicity without re deploying code with a non intrusive manner [3][22]. We
based our more recent approach on extended BPEL (Business Process Execution
Language) [2][18] and temporized automatons [1][15], that we prototyped by provid-
ing client, and server adaptability.
Nevertheless, we are convinced this pragmatic and efficient solution is too complex
for non expert users and developers and difficult to maintain, because it requires
strong technical knowledge.

Recently, we have investigated a model driven approach and context awareness to
provide developers mechanisms that allow them representing an application in ab-
stract way (in a model) and, then, automatically generating the corresponding code.
We broadly discussed about adaptability according to context in [23].

We aimed to explore adaptability and flexibility on a service platform using con-
text with the benefits of an MDD (Model Driven Development) [26] development
strategy. These benefits are related to productivity, quality, adaptability and mainte-
nance. Model Driven Architecture (MDA) is based on standards from the Object
Management Group (OMG); it proposes an architecture with four layers [24]: meta
meta model, meta model, model and information (i.e. an implementation of its
model). Object-oriented and component technology seem insufficient to provide satis-
factory solutions to support the development and maintenance of these systems. To
adapt to this new context, software engineering has applied an old paradigm, i.e.
models, but with a new approach, i.e. Model Driven Development (MDD). In this
new global trend, MDA is a particular variant. Adaptable Service platforms have
been proposed for the development of mobile context-aware applications.

The development of such platforms involves a number of challenges from which
we consider two main issues in the context of our approach of model driven develop-
ment : i) the definition of a meta model to describe the contextual domain in which a
given application or service is defined, ii) A mechanism to integrate the context into
the business application using a model driven approach.

 Towards Adaptable SOA: Model Driven Development, Context and Aspect 177

We propose to discuss about the pertinence to merge these two solutions. The sec-
tion 2 explains our technical approach based on services and aspects to implement
adaptability in Web services. The section 3 shows how our first step researches about
MDD approach assure service adaptability while using context mechanisms. The
section 4 comments the needs of merging and extending these two research works:
aspect based services and context modeling with parameterized transformation. It
launches our future research in this topic. Finally, we will discuss our solution and
conclude this work. Let us see now Aspect based services.

2 Aspects for Web Services Adaptability

2.1 Applying AOP to Web Services with ASW

Aspect Oriented Programming (AOP) is viewed as an answer to improve Web services
flexibility. AOP [5][20] is a paradigm that enables the modularization of crosscutting
concerns into single units called aspects, which are modular units of crosscutting im-
plementation. Aspect-oriented languages are implemented over a set of definitions:

1. Joinpoints: They denote the locations in the program that are affected by a particu-
lar crosscutting concern.
2. Pointcuts: They specify a collection of conditional joinpoints.
3. Advices: They are codes that are executed before, after or around a joinpoint.

In AOP, a tool named weaver takes the code specified in a traditional (base) pro-
gramming language, and the additional code specified in an aspect language, and
merges the two together in order to generate the final behavior. The weaving can
occur at compile time (modifying the compiler), load time (modifying the class
loader) or runtime (modifying the interpreter).

We developed an AOP based tool named Aspect Service Weaver (ASW) [3][18][22].
The ASW intercepts the SOAP messages between a client and an elementary Web ser-
vice, then verifies during the interaction if there is a new behavior introduced (advice
services). We use the AOP weaving time to add the new behavior (before, around or
after an activity execution). The advice services are elementary Web services whose
references are registered in a file called “aspect services file descriptor”. The pointcut
language is based on XPath [6]. XPath queries are applied on the service description
(WSDL) to select the set of methods on which the advice services are inserted. We
extended this approach to BPEL processes. The ASW controls the BPEL process execu-
tion instead of intercepting SOAP messages. It is integrated in the BPEL engine in order
to interpret the BPEL process and apply the aspect services. It verifies before the execu-
tion of each BPEL activity if some Aspect service has to be inserted. Then, it executes
the corresponding advice service. We also add a new functionality to the ASW. The tool
dynamically generates messages called execute messages, encapsulating the identifier
and the interaction protocol of the advice service. These messages are sent to the client
to advertise it about a new behavior inserted at runtime. This message is necessary since
the new behavior can require new information exchange involving messages not ex-
pected by the client, leading to execution failures. We defined a new process algebra

178 V. Monfort and S. Hammoudi

semantics that associates a timed automaton [1] with an abstract process as shown in
[13] . Let us see now related works.

2.2 Adaptability with Aspects Based Services : Related Works

In [3], the authors define specific AOP languages to add dynamically new behaviors
to BPEL processes. But, neither of these approaches addresses the client interaction
issue. The client has no mean to handle the interactions that can be added or modified
during the process execution. The Web Service Management Layer (WSML) [22] is
an AOP-based platform for Web services that allows a more loosely coupling be-
tween the client and the server sides. WSML handles the dynamic integration of new
Web services in client applications to solve client execution problems. WSML dy-
namically discover Web services based on matching criteria such as: method signa-
ture, interaction protocol or quality of service (QOS) matching. In a complementary
way, our work proposes to adapt a client to a modified Web services. Some proposals
have emerged recently to abstractly describe Web services, most of them [7][13] are
grounded on transition system models (Labeled Transition Systems, Petri nets, etc.).
[9] Introduces WComp middleware model, which federates three main paradigms:
event-based Web services, a lightweight component-based approach to design dy-
namic composite services, and an adaptation approach using the original concept
called Aspect of Assembly.

These paradigms lead to two ways to dynamically design ubiquitous computing
applications. The first implements a classical component-based compositional ap-
proach to design higher-level composite Web Services and then allow incrementing a
graph of cooperating services for the applications. This approach is well suited to
design the applications in a known, common, and usual context. The second way uses
a compositional approach for adaptation using Aspect of Assembly, particularly well-
suited to tune a set of composite services in reaction to a particular variation of the
context or changing preferences of the users. In these approaches adaptability is re-
solved with AOP and /or with specific middleware.

We noticed some research works propose to formally specify composite Web ser-
vices and handle the verification and the automatic composition issues. But, neither of
these works proposes to formalize the dynamics of SOA architectures and to handle
runtime interaction changes. Even if this solution addresses our (contextual) adapta-
bility and interoperability aims, nevertheless, it may be felt as complex by non expert
users or developers.

We are convinced adding an abstraction layer with metamodeling will facilitate us-
age of this technology and guaranty interoperability. We are also convinced param-
eterized Meta modeling is the fitted solution to our contextual adaptability need.

3 Context for Service Adaptability with Model Driven Approach

3.1 MDD and Context for Service Adaptability

3.1.1 A Context Meta Model with Example
Previous research works allowed us to define adaptability and context [23]. In the
MDD approach, the use of a metamodel not only guarantees a strong and focused

 Towards Adaptable SOA: Model Driven Development, Context and Aspect 179

semantics tied to a particular application domain, but also offers a precise abstract
syntax and a common representation to any developed model. We are interested in
our research in user centered mobile application [7][8]. Thus, we consider that the
defining context here is a set of information structured in three dimensions [26] :

- Actor: A person which is a central entity in our system.
- Environment: in which the person evolves and
- Computational entities which are used by a person to invoke services and capture
the different states of the environment.

All the information related to the three dimensions can also be shared by other mobile
applications. Figure 1 shows our context metamodel. Our metamodel identifies and
adds the most relevant and generic contextual entities that will be held in account in
modeling any mobile and context aware application. This context metamodel consists
of six generic contextual entities and four deduced entities specific to a category of
mobile applications. The class “ContextView” groups all contextual entities involved
in a given application. It is identified by name attribute and has two types of relation:
the aggregation “involves” and the association “belongsTo”. The first relation ex-
presses that a given “ContextView” is composed of many “ContextEntity” that are
involved in a context-aware application. The second relation “belongsTo” expresses
the use of historical context information. A given context entity may have participated
in different context views. This information can be helpful in the design of future
context views. The second generic entity of the metamodel is the “ContextEntity”. As
we see on the figure bellow, it is specialized in three generic entities: Actor, Compu-
tationalEntity and Environnement. Actor may be a person or another object that has a
state and profile. It evolves in an environment and uses computational devices to
invoke services. With the ComputationalEntity, the computational device is used by
the actor to access the services and to capture contextual information from the envi-
ronment. Usually, a mobile device is used in context aware mobile applications, and
can obtain information concerning the type of device it is (PDA, laptop, cellular
phone…), the application, the network, etc. The environment is constituted of all the
information surrounding the actor and its computational device that can be relevant
for the application. It includes different categories of information as :(i) Spatial con-
text information can be location, city, building, (ii) Temporal context information
comprises time, date, season, (iii) Climate can be temperature, type of weather…. The
last entity is a profile. We are convinced this entity is important in any user centred
context aware application. In fact, profile is strongly attached to the actor and contains
the information that describes it. An actor can have a dynamic and/or a static profile.
The static profile gathers information relevant for any mobile context-aware applica-
tion. It can be the “date of birth”, “name” or “sex”. On the opposite, dynamic profile
includes customized information depending on the specific type of application and/or
the actor. It can be goals, preferences, intentions, desires, constraints, etc. For exam-
ple the goal of a tourist searching for a restaurant is to have dinner. A profile in this
case can give information concerning culinary habitude or constraints of a tourist. Let
us see now the benefits of parameterized transformation for context binding.

180 V. Monfort and S. Hammoudi

Fig. 1. A context Meta Model

3.1.2 Parameterized Transformation for Context Binding
MOF (Meta Object Facility) is a standard from OMG for meta models specification.
The development is based on the separation of concerns (e.g. business and technical
concerns), which are afterwards transformed between them. So, business concerns are
represented using Platform-Independent Model (PIM), and technical concerns are
represented using Platform- Specific Model (PSM). PIM models are more stable over
time while PSM models are subject to frequent modification. So, this approach pre-
serves the business’s logic (i.e. PIM models) against the changes or evolutions of tech-
nologies (i.e. PSM models). The separation of concerns (business and context) is
emphasized at a model level of our approach where PIM and context models are de-
fined independently, and then merged by suitable transformation technique. Parameter-
ized transformation allows merging context information with business logic at model
level. We have investigated [12] this type of transformation which is not explored and
there is not a standard transformation language implementing it. We will discuss
shortly this type of transformation. A CPIM model (Contextual Platform Independent
Model) is then obtained and fits together business requirements with contextual data.
According to [25], “A parameter specifies how arguments are passed into or out of an
invocation of a behavioral feature like an operation. The type and multiplicity of a
parameter restrict what values can be passed, how many, and whether the values are
ordered”. In [12] David Frankel mentions the importance of parameterization in model
operations using the association of tagged values with PIM and PSM models. Tagging
model elements allows the model language to easily filter out some specific elements.

In our proposition these parameters are context or context-aware and after the
transformation the application will join the context information specified into the
parameters as illustrated in Figure 2. A PIM model can be developed without contex-
tual details. User name, profiles, device type, location can be added as parameters in
transformations. The same PIM can be re-transformed and refined many times adding,
deleting or updating context information. The designer has to specify into the applica-
tion model the elements that will receive the context information. A mark, identified
by the symbol #, is given for these elements to be recognized by the transformation

 Towards Adaptable SOA: Model Driven Development, Context and Aspect 181

Fig. 2. Parameterized Transformation

engine. The marked elements represent context-aware elements, in others words, the
model elements that can be contextualized.

The transformation language must support parameterization techniques. In our case
the parameters can be a Context Property and/or a Context Data Type. We use tem-
plates to specify which elements in application model are potentially context-aware as
depicted in Figure. 3.

Fig. 3. Parameterized Transformation for context binding

The transformation engine has to navigate into the PIM model verifying the pa-

rameters and the elements marked and then make the transformation which consists in
an update of contextual properties in a PIM. Template parameter [12] is an element
used to specify how classifiers, packages and operations can be parameterized. UML
2.0 presents that any model element can be templateable. For independent context-
aware models we need to identify context elements that could be parameterable.
A parameterable element is an element that can be exposed as a formal template

182 V. Monfort and S. Hammoudi

parameter for a template, or specified as an actual parameter in a binding of template.
Context parameter can be expressed as constraint and compared with the elements
signature in template parameter. This operation is named “matching operation”. UML
presents a Template Signature element that defines the signature for binding the tem-
plate. Lets us see now related works concerning this approach.

3.2 Adaptability with Context Based Services: Related Works

In [7], the authors propose an UML based context metamodel for the development of
context-aware mobile applications implemented on Web services platform. The pro-
posed metamodel does not refine contextual information and focuses on the associa-
tion between basic contextual structures with service invocation interfaces for both
contextual providers and context-aware applications. In [8], they have been applied
MDA in context-aware application development. They focus on the development of
context-awareness based on ontologies. However, nor context metamodel is proposed
neither transformation techniques are used. In [5] authors investigate a number of
context models described in the literature and propose a context metamodel based on
the main concepts and strengths found on these models. The metamodel is formally
described using MOF and has been used as a basis for the development of context-
aware applications and an associated service platform. All these works aim to explore
adaptability and flexibility on a service platform using context and models. But, nei-
ther of these works proposes an explicit approach to integrate context into business
logic. By the use of a parameterized transformation technique the contextual parame-
ter identified into the business logic model will be completed and contextualized with
the “parameterable elements” which represents context information.

While our approach allows binding contextual data at model level, it doesn’t take
into account service adaptability which deals with the execution level. In the follow-
ing section, we discuss this issue of service adaptability using aspect and context in a
model driven approach.

4 Towards Models, Context and Aspects for Service Adaptability

4.1 Global Approach

This section aims to present the two techniques of context and aspect could be com-
bined to achieve service adaptability using a model driven approach. Through Model
Driven Development, context models are built as independent pieces of application
and at different abstraction levels then attached by suitable transformation techniques
called parameterized transformation. Context model specify contextual entities that
are involved in a given context aware application. From a context model, an aspect
model is derived. This aspect model specifies the behaviors linked to the context
model. Figure 4 illustrates the main models and transformations techniques involved
in our MDD approach. Five main objectives are illustrated:

- A separation between Context Model information (CM) and business logic (PIM) in
individual models,

 Towards Adaptable SOA: Model Driven Development, Context and Aspect 183

- The derivation of an Aspect Model (AM) from a context model. A Context Model
specify the contextual entities with their properties (static view), while the aspect
model specify behaviors (dynamic view).
- The integration of the Context Model into the business logic using parameterized
transformation techniques. At this stage, the CPIM model is enriched by contextual
data but the behavior part for adaptability at execution level is missing.
- The Weaving process add adaptability mechanism producing a CPSM model (Con-
text Platform Specific Model) .
- Finally, a CPSM model is mapped into a service platform for future execution of
context-aware services.

Fig. 4. Models, context and aspect for service adaptability

4.2 Concrete Examples

Figure 5 shows a simplified Business Model (BM) that is underlined. It is comes from
a genuine industrial feedback. The company uses to let apartments for holidays (sea
side, country side, mountain). If the client chooses an apartment a contract is estab-
lished according to client profile and apartment characteristics. According to client
profile, apartment availability, date in the location schedule, a specific offer may be
proposed to the client. So, price will dynamically change according to these parame-
ters. Moreover, Location Manager component will expose an interface with public
methods as “ToSelectAppartment” and “ToContract”. These methods are services and
may be invoked through the Web as Web services in future implementations. Figure 6
expresses a part of an Aspect Model (AM). An aspect includes advices and pointcuts
that include pointcut expressions. JoinPoints denote the locations in the program that
are affected by a particular crosscutting concern. Advices implements Crosscutting
concerns.

184 V. Monfort and S. Hammoudi

 Fig. 5. Business Model including Context Fig. 6. Partial view of an Aspect Model

4.3 Dynamic Rerouting Modeling (CPIM)

Services are modeled to be orchestrated according to BPMN (Business Process Mod-
eling Notation). On figure 7, we notice “To select apartment” service invokes “To
contract” service, but according to previous research works [22] we have to extend
BPMN semantics to introduce aspect paradigm and to express:

- Contextual parameters and variability as with vacancy and season parameters
- Message rerouting according to parameters evaluation and context. Here, invocation
is dynamically rerouted via “To give up” service.

CPSM includes paradigms of the chosen platform. We chose to extend and ESB
(Enterprise Service Bus), an open source called MULE. This ESB will be extended
with ASW techniques. We have to develop this modeling and mapping rules still
remain to do.

4.4 Model Transformation

Previous research works [26] proposed a static solution by extending OCL (Object
Constraint Language) language to adapt some model transformation operations used
to attach context into application models. Differently from traditional model trans-
formations, the parameterized one has as source model a set of contextual parameters
and as target model the PIM marked model. The designer determines which model

 Towards Adaptable SOA: Model Driven Development, Context and Aspect 185

Fig. 7. Dynamic services orchestration models approach

element will be transformed by tagging parameters. The match operation is realized
before the transformation one. The match binds and checks the concerned (marked)
elements that will be transformed. It is also responsible for determining if a param-
eterable element is compatible with another one. Semantical interpretation among
these elements can be supplied by the ontologies use. Our context meta model is on-
tology supported by the RDF interpretation. According to W3C RDF Semantic a RDF
logical semantic is identified by a triple(x,y,z) where x and z are semantical elements,
data types or resources in our case (represented by a string), and y is the relation be-
tween them. The context can be represented by N-triples in URI references. Neverthe-
less, previous research work propose a semantic solution for context representation;
Aspect based services are not taken into account. Dynamicity and adaptability have to
be added. The Match class, as illustrated in Figure 8, is responsible for navigating
over models. The OCL Rules class specifies the navigation rules using OCL. OCL
permits filter expressions to add platform requirements and context information. The
match operation generates the correspondences between the elements of the Param-
eterable Element and its correspondents into the Template Parameter. This can be
realized by the use of the new SQL queries supported by OCL 2.0. OCL owns a set of
types and operations defined in its OCL Library. Some of the types are integer, string,
real and boolean. Although, OCL is easily adapted for new types insertion and pro-
vides mechanisms for language extension. For example, the let expression permits
definitions of variables and expressions. OCL also allows attachment of the new vari-
ables defined to a method or property. In [26] we defined extensions with the pres-
ence of the match operation. As aforementioned, the match operation checks the
correspondence of the elements evolved in the parameterized transformation. The
return value can be a type, property or N-triple. The match navigates over the model
searching the marked elements and their correspondences. We are convinced Aspect
Based Services Weaving refers to related works in dynamic models composition. We
know many questions are till now unresolved as :

- The complete formal description of our meta models.
- The complete specification of our model transformations including context pa-

rameters.
- The study of the dynamic models composition including CPIM and AM.

186 V. Monfort and S. Hammoudi

- The dynamicity and event modeling with sequence diagrams, event based model-
ing.

- The temporized automatons to be generated from BPEL/BPMN as in our previ-
ous research works.

- The prototype on a genuine models composition platform.
Let us see now related works.

Fig. 8. Parameterized Transformation Metamodel

4.4 Related Works and Discussion

We noticed several related research works and also very interesting approaches to
consolidate our work.

For instance [19], have a simpler approach as us. They notice behavioral meta
modeling languages were fitted and powerful to perform aspects weaving. They de-
fine a semantic-based aspect weaving algorithm for Hierarchical Message Sequence
Charts (HMSCs). The algorithm proposed uses a set of transformations that take into
account the compositional semantics of HMSCs to weave an initial HMSC and a
behavioural aspect expressed with scenarios and with UML sequence diagrams. Other
research works about reactive objects, as Hennicker and al [16][17], allow to model
synchronous and asynchronous messages by making a clear distinction between inac-
tive (stable) states and activations occurring in different activation phases that follow
as a reaction to synchronous operation call. His approach is activity-driven in the
sense that during the transformation process different activations occurring in differ-
ent scenarios but following the same incoming message (in the same state) are inte-
grated into one single activity which models the behavior of an operation across many
scenarios. For the integration of the asynchronous scenarios different strategies have
been proposed and future work aim to merge these approaches. Context can be stored
and recovered as stored variables. This approach seems to be interesting to express
services orchestration and context recovering.

 Towards Adaptable SOA: Model Driven Development, Context and Aspect 187

[14] notices in software engineering everything evolves very fast: user require-
ments, technologies, methodologies and applications. Software Product Lines (SPL)
modeling technology together with source-code generative tools seem fitting to man-
age diverse environments with complex, constantly changing relationships. In the
context of SPL, they propose an approach based on SmartModels, They propose a
meta model to describe business models and a mechanism to compose them. One of
the originalities of the meta model is that the designer of the business model can use
descriptions of generic entities with a genericity degree which is defined during the
model design. Meta-Object Protocol (MOP) which lays the foundation of SmartMod-
els is a mechanism to fill the gap between the semantics and the reification of a model
entity. SmartModels may also use AOP paradigm. AOM (Aspect Oriented Modeling)
[21] is used to compose models introducing cross cutting concerns in business models
to generate with mapping rules aspects based Java code. The aim is to simplify
change management with models composition. These research works may be possibly
taken into account in the future evolutions of our approach.

5 Conclusion and Future Works

Service-oriented architecture brings new perspectives not only to software architec-
ture but also to enterprise business processes. SOA promotes the use of loosely cou-
pled services to automate business processes. The automation of business processes
raises several challenges for enterprises. One of those challenges relates to the how to
adapt existing business processes, possibly even at run-time. Thus, changing a col-
laborative business process can have an impact on the contract specified between the
parties involved. Thus, a business process may need to adapt to meet a new contract.
We have proposed two different approaches aiming to support service and business
process adaptability; however, they both suffer from two important weaknesses:

- Aspect oriented approach, even pragmatic and efficient solution is too complex for
non expert users and developers, because it requires strong technical knowledge.
- Context_aware model driven development, using parameterized transformation
techniques, is suitable for a contextualization of a service model defined as a PIM.
However, it doesn’t take into account service orchestration which deals more with a
dynamic part and interactions between services.

To overcome the above mentioned limitations, we propose in our future work to mix
the two approaches. We propose a Model Driven Development Context_Aware Ser-
vice Aspect approach with the following features:

- Context modeling allows providing information and situation which intervene in the
process of service adaptability.
- Services are unaware of their context and the aspects adapt them to the current envi-
ronment according to the current context. Context-dependant behaviors are extracted
into aspects and weaved with the base service during execution.
- Using model driven development, context models are built as independent pieces of
application models and at different abstraction levels then attached by suitable trans-
formation techniques.

188 V. Monfort and S. Hammoudi

- Parameterized transformation technique allows binding context information to a
service at a model level, and therefore, which aspect should be weaved at execution
level.

We are developing CPSM part and we are working now on the mapping rules
definition.

References

[1] Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126(2),
183–235 (1994)

[2] Andrews, T., et al.: Business Process Execution Language for Web Services. 2nd public
draft release, Version1.1 (2003), http://www.ibm.com/developerworks/

[3] Baligand, F., Monfort, V.: A concrete solution for Web Services adaptability using poli-
cies and aspects. In: ACM-International Conference on Service Oriented Computing
(ICSOC), New York, USA (2004)

[4] Tidwell, D.: Web services: The web’s next revolution (2000)
[5] Charfi, A., Mezini, M.: Aspect-oriented Web service composition with AO4BPEL. In:

Zhang, L.-J., Jeckle, M. (eds.) ECOWS 2004. LNCS, vol. 3250, pp. 168–182. Springer,
Heidelberg (2004)

[6] Clark, J., DeRose, S.: XML path language (xpath) ver. 1.0 (1999),
http://www.w3.org/tr/xpath

[7] Strang, T., Linnhoff-Popien, C.: A Context Modeling Survey. In: First International
Workshop on Advanced Context Modelling, Reasoning and Management, UbiComp
(2004)

[8] De Farias, C.R.G., Pires, L.F., van Sinderen, M.: A MOF Metamodel for the Develop-
ment of Context-Aware Mobile Applications. In: Proceeding of the 22nd ACM Sympo-
sium on Applied Computing SAC 2007 (2007)

[9] Tigli, J.Y., Lavirotte, S., Rey, G., Hourdin, V., Cheung-Foo-Wo, D., Callegari, E.,
Riveill, M.: WComp Middleware for Ubiquitous Computing: Aspects and Composite
Event-based Web Services. Annals of Telecommunications 64(3-4), 197 (2009)

[10] Staab, S., van der Aalst, W., Benjamins, V.R.: Web services: been there, done that?
IEEE Intelligent Systems [see also IEEE Intelligent Systems and Their Applica-
tions] 18(1), 72–85 (2003)

[11] Ferrara, A.: Web services: a process algebra approach. In: ICSOC 2004: Proceedings of
the 2nd international conference on Service oriented computing, pp. 242–251. ACM
Press, New York (2004)

[12] David, F.S.: Model Driven Architecture: Applying MDA to Enterprise Computing.
Wiley Publishing, Inc., Chichester (2003)

[13] Gottschalk, F., van der Aalst, W.M.P., Jansen-Vullers, M.H., La Rosa, M.: Configurable
Workflow Models. International Journal of Cooperative Information Systems, IJCIS
(2008)

[14] Ţundrea, E., Lahire, P., Pescaru, D., Chirila, C.B.: SmartModels — an MDE platform for
the management of software product lines Automation, Quality and Testing, Robotics.
In: IEEE International Conference on AQTR 2008, May 22-25, vol. 3, pp. 193–199
(2008)

 Towards Adaptable SOA: Model Driven Development, Context and Aspect 189

[15] Haddad, S., Moreaux, P., Rampacek, S.: Client synthesis for web services by way of a
timed semantics. In: Proceedings of the 8th Int. Conf. on Enterprise Information Systems
(ICEIS 2006), pp. 19–26 (2006)

[16] Henricksen, K., Indulska, J., Rakotonirainy, A.: Modeling context information in perva-
sive computing systems. In: Mattern, F., Naghshineh, M. (eds.) PERVASIVE 2002.
LNCS, vol. 2414, p. 167. Springer, Heidelberg (2002)

[17] Hennicker, R., Knapp, A.: Activity-Driven Synthesis of State Machines. In: Dwyer,
M.B., Lopes, A. (eds.) FASE 2007. LNCS, vol. 4422, pp. 87–101. Springer, Heidelberg
(2007)

[18] Hmida, M.B., Tomaz, R.F., Monfort, V.: Applying AOP concepts to increase web ser-
vices flexibility. Journal of Digital Information Management (JDIM) 4(1), 37–43 (2006)

[19] Klein, J., Hélouet, L., Jézéquel, J.M.: Semantic-based weaving of scenarios. In: Proceed-
ings of the 5th International Conference on Aspect-Oriented Software Development
(AOSD 2006), Bonn, Germany. ACM, New York (2006)

[20] Kiczales, G., Lamping, J., Maeda, C., Lopes, C.: Aspect-oriented programming. In: Ak-
sit, M., Matsuoka, S. (eds.) ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer,
Heidelberg (1997)

[21] Lundesgaard, S., Solberg, A., Oldevik, J., France, R., Oyvind Aagedal, J., Eliassen, F.:
Construction and Execution of Adaptable Applications Using an Aspect- Oriented and
Model Driven Approach. In: Indulska, J., Raymond, K. (eds.) DAIS 2007. LNCS,
vol. 4531, pp. 76–89. Springer, Heidelberg (2007)

[22] Tomaz, R.F., Hmida, M.B., Monfort, V.: Concrete solutions for web services adaptabil-
ity using policies and aspects. The International Journal of Cooperative Information Sys-
tems (IJCIS) 15(3), 415–438 (2006)

[23] Monfort, V., Hammoudi, S.: On the Challenge of Adaptable SOA: Model Driven Devel-
opment, context and Aspect Oriented Programming. In: Proceedings of the second Inter-
national conference on Web and Information Technologies, ICWIT 2009, ACM SI-
GAPP, June 12-14, Kerkennah Island Sfax Tunisia (2009)

[24] OMG. Model driven architecture. Document ormsc/2001-07-01 (2001)
[25] OMG. QVT-Merge Group. Query, View and Transformations for MOF 2.0. OMG

(2005)
[26] Vale, S., Hammoudi, S.: Model Driven Development of Context-aware Service Oriented

Architecture. In: PerGrid 2008, São Paulo – Brazil, July 16-18 (2008)

Modeling Service Level Agreements with Binary
Decision Diagrams

Constantinos Kotsokalis, Ramin Yahyapour, and Miguel Angel Rojas Gonzalez

Dortmund University of Technology, Germany
constantinos.kotsokalis@udo.edu, ramin.yahyapour@udo.edu,

miguel.rojas@udo.edu

Abstract. The vision of automated service composition for enabling
service economies is challenged by many theoretical and technical limi-
tations of current technologies. There is a need for complete, dependable
service hierarchies created on-the-fly for critical business environments.
Such automatically-constructed, complex and dynamic service hierar-
chies imply a similarly automated process for establishing the contracts
that specify the rules governing the consumption of services; and for
binding them into respective contract hierarchies. Deducing these re-
quired contracts is a computationally challenging task. This also applies
to the optimization of such contract sets to maximize utility. We propose
the application of (Shared) Reduced Ordered Binary Decision Diagrams,
a suitable graph-based data structure well-known in the area of Elec-
tronic Design Automation. These diagrams can be used as a canonical
representation of SLAs, thus allowing their efficient and unambiguous
management independent of their structure’s specifics. As such, this rep-
resentation can facilitate the process of negotiating SLAs, subcontracting
parts of them, optimizing their utility, and managing them during run-
time for monitoring and enforcement.1

1 Introduction

Recent trends in service computing are lead by the vision of an Internet of
Services, a marketplace without boundaries where service economies can flour-
ish through composition and re-use. Suitable mechanisms, and the automation
achieved through smart agents, will be the key enabler for this goal. It is antic-
ipated that, eventually, full potential can be achieved through the automation
of contracting for such services. More specifically, it is desired that service con-
sumption can be enabled with determinism, under well-specified contracts that
define all parameters and govern the use of a service by its customer.

Such a contract is encoded in a Service Level Agreement (SLA). A SLA is
essentially a set of facts, and a set of rules. Facts are globally (with respect
to the contract) applicable truths, such as parties involved, monetary unit, etc.
Rules include:
1 The research leading to these results is supported by the European Community’s

Seventh Framework Programme (FP7/2007-2013) and the SLA@SOI project under
grant agreement no.216556.

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 190–204, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Modeling Service Level Agreements with Binary Decision Diagrams 191

1. the conditions that must hold for a certain clause to be in effect;
2. the clause itself, typically describing the expected result that the customer

wishes to receive – and which is usually referred to as Service Level Objective
(SLO); and

3. a fall-back clause in the case that the aforementioned clause is not honored.

As an example, for the condition “time of day is after 08:00”, the clause could
be “response time is less than 5 seconds”, and the fall-back clause could be an
applicable penalty. This kind of format actually reflects real-life contracts and
their if-then-else structure, which might apply either as the default or as the
exception to such default respectively.

In this paper we propose that a graph-based data structure, well-known in the
domain of Computer Aided Design (CAD) for Very Large Scale Integrated (VLSI)
circuits, is suitable for modeling SLAs in a way which is both expressive enough,
and very efficient. Reduced Ordered Binary Decision Diagrams (ROBBDs) were
introduced by R. Bryant in 1986 [1] as an evolution of C.Y. Lee’s [2] and S.
Akers’ [3] work on BDDs. The hardware industry race has further contributed
to the optimization of the structure itself with a significant amount of relevant
research, and a large number of methods already exist for taking advantage of
ROBDDs’ inherent properties.

The essential reason that ROBDDs are useful for modeling SLAs, is that they
are canonical representations generated on the grounds of if-then-else rules.
As such, they can express SLAs unambiguously: equivalent SLAs which are
structurally different, are eventually represented by the same ROBDD. On the
contrary, using formats developed for on-the-wire representation such as WS-
Agreement [4] or WSLA [5] does not guarantee this property. We propose that
ROBDDs are used internally in systems which have to manage SLAs, as a repre-
sentation that facilitates their management. Suitable interpreters should then be
developed to convert from standardized, interchangeable formats such as WS-
Agreement and WSLA, to this more convenient data structure and vice-versa.

This paper continues with Section 2, which is discussing related work on SLA
representation, management of hierarchies, and previous efforts to relate them
to Logic. Following, Section 3 elaborates on (Shared) ROBDDs. Section 4 details
their relationship with SLAs and the specific proposal on how to use them for
our purposes. Section 5 illustrates initial experimental results. Finally, Section 6
concludes the paper with a summary of core results, and an outlook to future
work.

2 Related Work

BDDs are classified as a tool in the area of symbolic model checking. This is
the scientific discipline looking into the problem of verifying that a given system
satisfies specific requirements, given any kind of input. To our best knowledge,
this is the first work that uses BDDs to model and verify SLAs and SLA de-
pendencies. That said, BDDs have been used in service computing before, albeit
in very few occasions. In [6] the authors are using a special form of BDDs,

192 C. Kotsokalis, R. Yahyapour, and M.A. Rojas Gonzalez

called Zero-Suppressed BDDs, to create compact digests of service advertise-
ments. Then, the digests are distributed to interested parties which use them for
their service composition needs. In [7], the authors are using BDDs for matching
service advertisements in publish-subscribe systems (making use of equivalence
checking).

As regards SLA modeling in general, the most well-known efforts are WS-
Agreement and WSLA. As also mentioned in the previous section, the focus of
these specifications is on-the-wire representations for enabling interoperability
between independent agents. This is an area we are not targeting with the work
presented in this paper; rather, our focus is a system-internal representation,
that will enable efficient mechanisms for decision making.

With regards to applying logic-based approaches to the topic of SLA manage-
ment, the work which comes closest to ours is the one described in [8]. There, the
authors look at the problem in more detail, defining constructs also for things
such service description, pricing, QoS, etc. On the other hand, we face everything
in an abstract way here, and assume external syntactical definitions and appro-
priate architectural patterns for applying these definitions. Additional differences
include our explicit focus on managing hierarchies of SLAs and associations be-
tween them as such. The necessary constructs for this kind of functionality also
exist in [8], however there is no mention of essential facilities such as equivalence
checks and translation between different vocabularies for different layers of a
complete IT stack.

3 Binary Decision Diagrams

This section serves as a general, high-level introduction to BDDs and their basic
properties. Motivated readers are encouraged to consult with the bibliography for
in-depth material. Most of the definitions provided in this section, are summaries
of the definitions that can be found in [9].

A BDD is a graph-based representation of one or more boolean functions.
This kind of diagram is based on Shannon’s decomposition theorem [10], which
states that, assuming a boolean function f : Xn → Xm, where Xn = {x1, ..., xn}
and Xm = {x1, ..., xm}, then for any boolean variable xi, i ≤ 1 ≤ n:

f = xi · fxi=1 + xi · fxi=0 (1)

What Equation 1 provides, is the if-then-else representation we are looking for:
If xi is true, then fxi=1 must be evaluated, or else fxi=0 must be evaluated. A
BDD then, is a directed acyclic graph G = (V,E), where V denotes the vertices
(nodes) and E the edges. Vertices can be either terminal (i.e. their out-degree is
equal to zero), or non-terminal. The former can carry a value of either 1 (true)
or 0 (false). The latter are labelled with a variable xi ∈ Xn; if u is the node, the
variable xi is referred to as var(u). Of the two children nodes, the one followed
if xi evaluates to true is referred to as then(u), and the other as else(u).

An illustrative example can be found in [9]. This example is shown in Fig-
ure 1(a), where we see a BDD representation of the boolean function f =

Modeling Service Level Agreements with Binary Decision Diagrams 193

x1 ·x2 + x1 ·x3. We typically use solid lines for the edge between u and then(u),
and dashed lines for the edge between u and else(u). Additionally, non-terminal
nodes are denoted as circles, while terminal nodes as squares.

Let π be an ordering of the boolean variables involved in the function to
represent. Then, the pair (π,G) is the Ordered BDD (OBDD) representation of
the function, as long as (additionally to simple BDD definitions) it is true that
on each path from the root to a terminal node the variables are encountered
at most once and in the same order. Looking into the previous example, Fig-
ure 1(b) is illustrating exactly this ordering of variables, and how it affects the
diagram. A diagram with more than one roots (i.e., representing more than one
boolean functions which depend on the same boolean variables) is a Shared BDD
(SBDD). It must be noted that a root node here does not necessarily imply that
the in-degree of this node is equal to zero. For a specific function within a BDD
or a SBDD, a path is a subset of G which connects the root with a terminal
node, without any duplicate occurrences of a node or an edge. We denote the
set of all paths for function f as Γf .

1

f

x2

x3 x3 x2 x2

x3

x1

0

(a)

1

f

x2

x3 x3 x3 x3

x2

x1

0

(b)

Fig. 1. Simple/Ordered BDD representations of f = x1 · x2 + x1 · x3

Last before looking at how this kind of diagrams facilitates our work for SLAs,
is a short introduction to their operations for reduction. BDDs can be reduced
in two ways:

1. Deletion: If for a non-terminal node u of G it is true that then(u) = else(u) =
u′, the node can be removed from the graph. All edges pointing to it, if any,
must now point to u′, and if u was a root node, then u′ must be upgraded
to a root node.

2. Merging: If for two non-terminal nodes u and u′ it is true that var(u) =
var(u′), then(u) = then(u′) and else(u) = else(u′), then it is possible to
remove u and have all edges pointing to it redirected to point to u′. Addi-
tionally, if u is a root node, then u′ must be made into a root node.

Remark. In the text that follows, we will use the term BDD universally, to refer
to Reduced Ordered BDDs. Also, we will not distinguish between single-rooted

194 C. Kotsokalis, R. Yahyapour, and M.A. Rojas Gonzalez

and shared diagrams. Whenever single-rooted BDDs are explicitly excluded, we
will denote that by pre-pending “shared” or just the letter “S”.

4 SLAs as BDDs

4.1 A Motivating Scenario

Let us now consider a somewhat typical (albeit reduced, for this example) sce-
nario, where SLA management is necessary. We are assuming an Infrastructure
as a Service (IaaS) provider; a Software as a Service (SaaS) provider which is
also a customer to the IaaS provider; and an end-customer of the SaaS provider.
We are therefore working on the assumption that the SaaS provider has no
infrastructure of its own, therefore all operations are outsourced to the IaaS
provider who owns the infrastructure for the software to be executed. This kind
of business scenario involves two SLAs, as shown in Figure 2. The first (SLA-1)
is established between the end-customer and the SaaS provider, to govern their
interactions and apply guarantees. The second (SLA-2) is established between
the SaaS and the IaaS providers for the same purpose.

End-

Customer

SaaS

Provider

IaaS

Provider
SLA-1 SLA-2

Fig. 2. A scenario with a SaaS and an IaaS provider

The end-customer certainly is not interested in the physical or virtual re-
sources that the software will execute on, in order to receive performance which
is acceptable. Therefore, the customer would try to engage in a SLA with the
SaaS provider, which would involve –for instance– metrics for service availability,
and service invocations completion time (CT). The SaaS provider would typi-
cally have some understanding about the software based on modeling principles
or historical monitoring evidence, starting from which it can derive expected
resource requirements, possibly varying throughout a day’s, month’s or other
period. The infrastructure resource requirements, on the other hand, would be
the guarantees that the SaaS provider’s SLA with the IaaS provider would need
to include. Our example SLAs are described as follows:

SLA-1: For service “Service-1”, and given that business hours are between 09:00
and 17:00: During business hours, operation “Operation-1” must complete
within 5 seconds, and the service’s availability must be more than 99%.
Outside business hours, completion time for the same operation can be up
to 10 seconds, and the service’s availability must be more than 95%.

SLA-2: For service “VMpool”, and given that business hours are between 09:00
and 17:00: During business hours, 10 virtual machines must be allocated to
this contract. Outside business hours, 5 virtual machines must be allocated.

Modeling Service Level Agreements with Binary Decision Diagrams 195

Table 1. Example clauses

SLA Variable Proposition Proposition type
SLA-1 x1 ServiceName = ’Service1’ Fact
SLA-1 x2 BusinessHours = 09:00 - 17:00 Fact
SLA-1 x3 TimeOfDay in BusinessHours Condition
SLA-1 x4 ’Operation1’ CT < 5 sec Clause
SLA-1 x5 Service1 availability > 99% Clause
SLA-1 x3 TimeOfDay not in BusinessHours Condition
SLA-1 x6 ’Operation1’ CT < 10 sec Clause
SLA-1 x7 Service1 availability > 95% Clause
SLA-2 y1 ServiceName = ’VMpool’ Fact
SLA-2 y2 BusinessHours = 09:00 - 17:00 Fact
SLA-2 y3 TimeOfDay in BusinessHours Condition
SLA-2 y4 Number of VMs = 10 Clause
SLA-2 y3 TimeOfDay not in BusinessHours Condition
SLA-2 y5 Number of VMs = 5 Clause

Table 1 illustrates the set of facts and clauses that we will use for this example
scenario. It is straightforward to see that, given these facts and clauses in the
form of boolean variables which evaluate to true or false, the SLAs can also eval-
uate correctly if they are modeled according to Equations 2 and 3 respectively.
In the upcoming Section 4.2 we will formalize the problem of expressing SLAs as
boolean functions. Then in Section 4.3 we will show how these specific example
SLAs map to BDDs.

f = x1 · x2 · (x3 · x4 · x5 + x3 · x6 · x7) (2)
g = y1 · y2 · (y3 · y4 + y3 · y5) (3)

4.2 SLAs and SLA Hierarchies

In Section 1 we referred briefly to service hierarchies and the corresponding SLA
hierarchies. Each SLA governs the consumption of one or more services, by one
or more consumers. Involved parties have specific obligations to comply with
and/or specific gains to expect. In order to carry out its obligations, a service
provider involved in a SLA may have to subcontract, that is to establish one or
more additional SLAs with parties not directly involved in the initial one. This
kind of dependency between the original contract and the subcontracts may take
many different forms. It may be related to capacity, functionality limitations, fail-
over capabilities, or may represent some other aspect of the provider’s modus
operandi and business model. As such, it is very generic and makes it difficult
to identify exactly how the state of one contract affects the state of another.

We formulate a proposed SLA representation as follows: Let Φn be the universe
of facts applicable to contracts as indisputable truth, Φn = {φ1, ..., φn}. Also let

196 C. Kotsokalis, R. Yahyapour, and M.A. Rojas Gonzalez

Y m be the universe of clauses which can be evaluated to either true or false,
Y m = {y1, ..., ym}. A Service Level Agreement is the boolean function f :

f : F k ∪ Z l → {0, 1} (4)

where F k ⊆ Φn, F k = {φ1, ..., φk} and Zl ⊆ Y m, Z l = {z1, ..., zl}.
We therefore have a representation of a SLA as a boolean function, taking

advantage of a SLA’s binary nature upon evaluation as possible / impossible
to satisfy (at negotiation time) or honored / violated (at runtime, i.e. while
the service is being consumed). The variable terms of a SLA are taking values
from Z l, while pre-agreed understanding and in general facts about the world is
encoded in facts accepting values from F k. This definition is broad enough to en-
compass various previous definitions, both conceptual (e.g. [11]) and syntactical
(e.g. WS-Agreement).

We are now ready to codify SLA dependencies in a generic way, that allows
enough flexibility to describe any such kind. Let:

– f : F k ∪ Z l → {0, 1}, the dependent SLA
– fi : F ki ∪ Z li → {0, 1}, i ∈ N, the depending SLAs
– F ki ⊆ Φn, F ki = {φ1i, ..., φki}
– Zli ⊆ Y m, Z li = {z1i, ..., zli}

We define the dependency of f upon {fi} (and therefore the resulting hierarchy)
as a function g:

g : Z l → ∪i(Z li)|F k ∪i (F ki) (5)

Simply said, a function of any number of variable terms from SLA f equals
a function of any number of variable terms from one or more SLAs fi, under
the circumstances defined by the relevant fact sets. Operating under this highly
abstract definition allows us the required flexibility to describe contracts with
dependencies of any kind, as long as each of them does eventually evaluate to
either true, or false.

4.3 BDD Mapping

We now have a formal representation of SLAs (Equation 4) and SLA depen-
dencies (Equation 5). The gain in using BDDs lies in reduction. Through this
process, a BDD becomes a canonical representation of the boolean function it
describes, as proven in [1]. Therefore, a SLA described as a boolean function in
the form of a BDD takes a unique, well-specified and minimal form, eliminating
redundancy and allowing to make the mapping which describes SLA dependen-
cies far more efficient than what it would be if we operated on complete graphs.
Additionally, the canonical form of the SLAs allows objective evaluation and
comparison for maximizing utility.

The exact method to construct a BDD from a SLA depends on the format
in which this SLA is originally expressed, and therefore it cannot be algorithmi-
cally defined in a universal way. In the case of WS-Agreement we would use the

Modeling Service Level Agreements with Binary Decision Diagrams 197

Context and Service Description Terms as facts; Qualifying Conditions
as conditions; Guarantee Terms as clauses; and Term Compositor Terms could
be classified as either conditions or clauses. In fact, WS-Agreement’s Term Com-
positor Terms are essentially boolean operators: All (AND), OneOrMore (OR),
ExactlyOne (XOR). Using this pre-defined knowledge for such a specific SLA
language, it is straightforward to implement a parser that can read the docu-
ments and construct a (Reduced Ordered) BDD on-the-fly as described in [12]
with the revised “APPLY” operation.

To illustrate the reduced form of BDDs representing SLAs, we will use the
example scenario from Section 4.1. As mentioned, Equations 2 and 3 represent
the two example SLAs as boolean functions of the variables from Table 1. Then,
assuming an ordering corresponding to the numbering of the variables, the two
resulting BDDs would be as in Figure 3.

x1

1 0

x2

x3

x4

x5

x6

x7

y1

1 0

y2

y3

y4

y5

(a) (b)

f

g

Fig. 3. The BDDs corresponding to functions from Equations 2 and 3

The main deficiency of BDDs is their reliance on the ordering of the variables.
The size of a BDD for the same function may vary from linear to exponential,
depending on how variables are ordered [1]. Generic algorithms for near-optimal
orderings of variables during or after BDD construction have been researched
extensively in the past (e.g. [13,14]). Our application to the domain of SLA
management and the involvement of facts as variables, whose else edge always
points directly to terminal node 0, provides already a possibility for optimizing
the BDD by pushing all facts to the top of the diagram. Although this kind of
ordering does not reduce the total number of nodes, it allows us to ensure that
indisputable facts are honored by all parts of the SLA, otherwise it will evaluate
to false at runtime (i.e. it is violated). Also, at negotiation time, this ordering

198 C. Kotsokalis, R. Yahyapour, and M.A. Rojas Gonzalez

may speed up the negotiation process significantly, since the first thing to be
confirmed as acceptable (or not) is the agreement of the involved parties on the
essentials of the contract (for instance, monetary unit). It should be underlined,
at this point, that facts are propositions which apply to the complete contract,
and govern all terms included. Therefore, in certain cases, additional attention is
required for choosing what is a fact and what is not. Let us consider, for instance,
the case of a two-party contract with two sections describing the obligations of
each party, starting each section with an indication as to which party it applies.
The statement “section (a) describes the obligations of party (A)” is certainly
true for the complete contract. Nevertheless, if reference to the section includes
some contract-locality constraint, e.g. “this section describes the obligations of
party (A)”, then this causes ambiguity and cannot apply to the whole contract
any more – therefore should be modeled as a condition.

Having ordered facts at the beginning of the diagram, we assume some BDD
method to optimize the ordering of conditions and clauses. Additionally to
generic methods described in relevant literature, a kind of structural optimiza-
tion that takes advantage of the semantics of SLAs and may be applied here is
one that considers what is more crucial to the user. Certain SLA representations
contain sections on Business Values, that may reference specific terms as regards
their importance. Given proper formalization of such sections, a constructor of
BDDs from SLAs can take them into account and order clause variables from
maximum to minimum importance, thus allowing faster evaluation of business-
critical terms.

We can now discuss principles for the SLA application domain, and for out-
sourcing parts or all of the contract. Starting from the very semantics of SLAs
represented as BDDs, we have to distinguish between the meaning of a boolean
variable (and the whole diagram) during negotiation time, and during runtime.

4.4 Negotiation Time Operations

During negotiation time, the evaluation of a fact variable to true or false shows
whether the fact is recognized as such from the receiving party. For conditions
and clauses, it indicates whether there is any reachable state based on assign-
ments of respective variables, so that the condition / clause under examination
can eventually evaluate to true. Extending this to the complete diagram, at nego-
tiation time we are interested to see if there exist, in general, truth assignments
for the whole set F k ∪Zl which satisfy the diagram and lead to 1. At this point
lies an implicit decision. The party that receives the offer needs to have some
certainty that it can honor it after signing. It is a policy issue if this certainty
needs to be 100%, or near that, or even much lower (perhaps indicating a high-
risk strategy). Whatever the policy, the decision will have to be taken based on
some objective criteria. A certainty of 100% would mean that paths of the BDD
must be checked for tautology, that is, any truth assignment for a path will lead
to terminal node 1. If tautology applies for a single path, that should be enough
to accept the offer. If not, it is necessary to make an educated guess whether the
offer is acceptable, and whether some part needs to be subcontracted.

Modeling Service Level Agreements with Binary Decision Diagrams 199

A simple calculation that can be performed, is the following: Let Γ 1
f be the

set of all paths for f that connect the root to terminal node 1, and Γ 0
f the

respective set of paths leading to terminal node 0. We assume that by means
of historical monitoring information, forecasting, or simply common sense (e.g.
time of day) there is assigned to each node ui in h ∈ Γ 1

f a probability P ′(ui)
to evaluate to a result so that node ui+1 is (also) on the same path, and 1 − p
to evaluate otherwise. If the variables of the nodes in the path are dependent,
then we need to take this into account and calculate the conditional probability
of each variable, given the evaluation of all previous variables on this path:

P (ui+1) = P ′(ui+1|u1 ∩ u2 ∩ ... ∩ ui) (6)

In somewhat less formal notation, we have represented the variables (and the
events of them taking a value of true or false) by the names of their nodes. If
the variables are independent, then P (ui) = P ′(ui), ∀i. The probability ph that
the complete path evaluates to true, is

ph =
∏
u

P (u)|u ∈ h (7)

Then, the total probability that the SLA can be honored if established, is

C =
∑

h

(ph)|h ∈ Γ 1
f (8)

Assuming that the acquisition of this probability per node can be performed
in constant time, then the complexity of estimating this probability per path
is O(n). The consequent requirement to minimize the total number of paths at
construction time or variable ordering time, should also be taken into account.

A negotiating party will want C to exceed some threshold, in order to agree
to an offer that was received. If this is not the case, then the party (typically, a
service provider) will have to either reject the offer, or try to increase C by sub-
contracting one or more paths and thus increasing their contribution to the total
success probability. Representing SLAs as BDDs is most useful at this point: The
canonical and reduced form of a BDD produces a tractable list of options with
regard to what we can assign to subcontractors. For items in such a list, due to
the specific ordering of variables, we can devise unique and unambiguous signa-
tures. The latter may then be associated to different boolean functions, which
represent candidate subcontracts. Domain-specific intelligence can be applied
by area experts before operation starts, and define the dependencies of certain
variables on others for subcontracts. Then, a system based on these principles
can make use of this knowledge, and construct proper offers towards third par-
ties. As long as these offers are accepted, and the respective second-level SLAs
are established, it should be the case that the corresponding path has increased
certainty to complete successfully as regards honoring the first-level SLA. The
negotiating party has a choice, according to policies and strategies, to modify the
offer and return it with specific values for the variables of that path (practically

200 C. Kotsokalis, R. Yahyapour, and M.A. Rojas Gonzalez

suggesting the SLA equivalent of the path), or to accept the complete SLA as
long as the increase in C is sufficient.

Coming back to the example scenario from Section 4.1, we can see two possible
ways where this kind of subcontracting is / may be needed. The first, is the explic-
itly mentioned subcontracting from the SaaS to the IaaS provider. Conceptually,
since the SaaS provider has no infrastructure, they cannot offer the service at all
unless they subcontract for infrastructure. Terms x4, x5, x6 and x7 would always
evaluate to false unless infrastructure resources are available for the software to
execute on. As such, the SaaS provider has to go through this translation process
in any case, to calculate infrastructure requirements and make a respective offer
to the IaaS provider. If an agreement with the IaaS provider already exists, the
contracting system in use should find this automatically after the translation oc-
curs, try to reuse it if possible, otherwise resolve to making a new offer. It must
be noted here that, since the outsourcing concerns paths, the SaaS provider may
just as well make two different offers to two different infrastructure providers (one
for each of the two paths in Γ 1

f), or can make a single offer to one infrastructure
provider for both paths (this is our assumption in the example scenario).

The second case, is if it so happens that the IaaS provider cannot satisfy the
incoming offer – for instance, does not have the resources to offer the requested
performance during business hours. This means that, according to its estimation,
y4 would evaluate to false most of the times, and therefore path y1−y2−y3−y4−1
would contribute minimally or not at all to the whole agreement’sC-value. In this
case, the IaaS provider can reject the offer, or —depending on projected utility—
try to outsource this path to another IaaS provider. Further translation of the
terms may occur or not in this case, depending on the structural and qualitative
agreement properties that are accepted by the second IaaS provider.

It should be mentioned that an offer may be for a single SLA, or for multiple
SLAs (typically for different services or groups of services) in the form of a
Shared BDD. Our working assumption of an offer for a single SLA does not
affect generality.

Another relevant point is that we are referring to SLA terms in a most ab-
stract way, and that is on purpose in order to define a generic model. However,
from an implementation point of view, we need to define proper term signatures
(term templates), and to select “good” values to replace in them. For example,
the expression “completion time < 5 seconds” evaluates to true or false and
therefore can be modeled as a single boolean variable. Yet, if we assume that
the expression “completion time < 4 seconds” is a term with a different sig-
nature, then naturally the complexity of mapping between different signatures
increases enough to make the problem unfeasible. Therefore, from an imple-
mentation point of view, we need a single signature like “completion time <
duration”, allowing to set duration to a preferred (“good”) value as mentioned
before. Here, “good” has to do with the notion that there is some utility coming
out of each SLA, and this utility we wish to maximize. Structural optimization
of the SLA’s BDD supports better decisions from a SLA computability point
of view, and possibly reduces time to reach an agreement. However, the utility

Modeling Service Level Agreements with Binary Decision Diagrams 201

itself is domain-specific again, and falls into the same realm with choosing a
“SLA probability to succeed” threshold over which an offer is acceptable.

Solutions to the open issues elaborated in the previous paragraph are outside
the scope of the work presented in this paper. Technology mapping [15,16] is a con-
cept which matches the problem of templating terms and their combinations, and
provides a starting point for further research. The topic of selecting values that
increase total utility falls under multi-objective optimization [17]. As a matter of
fact, the optimization logic may affect the negotiation process itself. An entity
negotiating over a set of variables may find that small modifications to the nego-
tiating party’s requirements may increase significantly the resulting utility. In this
case, it may just as well modify the proposed term slightly, and return a counter-
offer which does not match the other entity’s requirements, but may provide much
better results if accepted. Such negotiation-time risk-taking attitudes can be mod-
eled with game theory methods [18,19]. Technologies from all three areas will be
tested in the future as part of this work and a complete implementation.

4.5 Runtime Operations

For this part of our work, we are assuming a monitoring subsystem that can
capture service execution-related events from various sources and detect if some
SLA term is being violated. The process actually starts much earlier, during
negotiation. At that time already, we must verify that terms of an agreement
can actually be monitored [20]. Following this verification step, as part of the
negotiation process, a SLA may be formally established, perhaps relying on other
SLAs for its existence.

While the service is being consumed, incoming events are processed and terms
(in the form of boolean variables of the BDD) are examined to see if a violation
has occurred. The ordering of the variables allows the linear-time confirmation,
starting from the root and traversing the diagram towards terminal nodes. As
each variable evaluates to true or false, the respective child (then/else) is followed
until a terminal node is reached. If that node is 0, then there exists a violation,
and the reason of failing at that specific part of the SLA must be assessed.
Depending on whether this failure happened on a path which was outsourced, or
not, there may be a re-negotiation initiated, penalties claimed, or simply adjust
the method to estimate success probabilities for different paths. Additionally to
corrective actions, such an event must be logged to be reused in next negotiation
cycles.

The exact methodology to use in order to avoid unnecessary evaluations of
the complete diagram, depends on the monitoring system, the way to evaluate
each variable, and the acceptable time thresholds for reaction to violations. A
complete definition of such methodologies is out of scope for this work.

5 Experimental Verification

As a proof of concept, we built a very simple prototype that accepts a SLA al-
ready expressed as a boolean function in Reverse Polish Notation (RPN) form,

202 C. Kotsokalis, R. Yahyapour, and M.A. Rojas Gonzalez

produces a BDD from it and assigns probabilities to the nodes in a semi-random
way. Then, it calculates the paths leading to 1, their probabilities to be followed
and the total probability that the SLA can be honored without any subcontract-
ing. We experimented with a single SLA offer, which was crafted not to contain
dependent variables, according to the following description:

The SLA concerns service “Service-1” (fact). Business hours are
set to 09:00-17:00 (fact). The whole system must run in isolation from
other customers of the service provider (fact). If the operation invoked is
“Operation-1” (condition), and time is within business hours (condition),
then: completion time should be less than 5 seconds (clause); availability
should be more than 99% (clause); and throughput should be more than
100 operations per minute (clause). For times outside business hours:
completion time should be less than 10 seconds, availability should be
more than 95%, and throughput should be more than 50 operations per
second. For operations other than “Operation-1”, invocations should be
authenticated (clause) and availability should be more than 98%.

With regard to the assignment of probabilities to the nodes and the paths to
follow, we assigned a probability equal to 1.0 to facts and to the proposition of
authenticated invocations (this being a functional requirement that the provider
should be aware of). We then assumed that invocations of “Operation-1” are
one out of three, i.e. a probability of roughly 0.33, and the same for the time of
day being within business hours – so we imply that invocations of the service
are equally distributed throughout the day. Finally, for the propositions of com-
pletion time, availability and throughput, we randomly assigned on each node
a probability between 0.8 and 1.0 that the provider can satisfy it or will fail (a
second random number indicates which of the two applies). In a real scenario,
the provider would calculate these probabilities based on monitoring, forecasting
or other information. Eventually, we run this simple scenario 10000 times, to see
under these semi-random conditions how the SLA success estimations behave.
Constructing the BDD for this specific SLA took place in a mere 2.2 seconds.
Running the 10000 probability tests took approximately 4 seconds on a 2.4 GHz
processor. The diagram contained 16 levels, excluding terminal nodes. Of the
21 paths leading to terminal node 1, the shortest was 6-nodes long (excluding
1), and the longest was 13-nodes long. Figure 4 illustrates the overall calculated
probability that the SLA will be successful if established.

From this preliminary evaluation, the feasibility and validity of the approach is
exhibited for all SLAs that consist of propositions evaluating to true or false. As
long as all invariable statements of a SLA (e.g. references to other SLAs) can be
expressed as facts, and all variable statements can be expressed as conditions and
clauses, this assumption is valid for any SLA. In this experiment, a simple but
not trivial expression was built fairly quickly, producing a vector of 21 paths to
evaluate and monitor. Allowing some certainty for individual terms (80%-100%
probability of success or failure) results in a clear gap between SLAs projected
to fail, and those projected to succeed. This is an indication that, using BDDs

Modeling Service Level Agreements with Binary Decision Diagrams 203

 0

 50

 100

 150

 200

 250

 300

 0 0.2 0.4 0.6 0.8 1

N
um

be
r

of
 h

its

Overall success probability

Fig. 4. Experimental result

in this context and under such circumstances, we can calculate in only a few
milliseconds and with a reasonable amount of certainty, whether the complete
SLA can be satisfied or not. Future application of this methodology on real-world
use cases will allow for further evaluation.

6 Conclusions and Future Work

In this paper we presented a novel application of (Shared) Reduced Ordered
Binary Decision Diagrams, for representing and managing SLAs, as well as fa-
cilitating the construction of SLA hierarchies. BDDs are graph-based structures
which have been used for decades in the field of VLSI design and verification,
with particular success. They are one of the main tools of the VLSI industry
for testing prototypes, and therefore BDDs are a topic under heavy research for
decades. The depth and breadth of existing ideas and research can be applied to
SLA management for further advancement of this complex service management
area. In this particular work we elaborated on the representation through a for-
mal definition of SLAs as boolean functions and from there as BDDs; explained
the advantages of this approach; and showed how such kind of use is possible
for negotiating SLAs, subcontracting (leading to implicit SLA hierarchies) and
detecting SLA violations. Finally, we briefly discussed the encouraging experi-
mental results of applying BDDs to SLA representation.

In the near future we will fully implement these ideas as part of a more general
SLA management design. It is our purpose to explore the topic of BDD structural
optimization, in addition to that of multi-objective optimization, the latter being
necessary for increasing a SLA’s utility. Technology mapping appears to fit well
the requirement to translate between abstract logic representations, and game
theory is suitable for negotiation mechanisms. These technologies will also be
evaluated and possibly applied to our implementation.

204 C. Kotsokalis, R. Yahyapour, and M.A. Rojas Gonzalez

References

1. Bryant, R.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers C-35(8), 677–691 (1986)

2. Lee, C.: Representation of switching circuits by binary decision diagrams. Bell
System Technical Journal (38), 985–999 (1959)

3. Akers, S.: Binary Decision Diagrams. IEEE Transactions on Computers C-27(6),
509–516 (1978)

4. Open Grid Forum: Web Services Agreement Specification, WS-Agreement (2007)
5. Keller, A., Ludwig, H.: The WSLA Framework: Specifying and Monitoring Service

Level Agreements for Web Services. Journal of Network and Systems Manage-
ment 11(1), 57–81 (2003)

6. Binder, W., Constantinescu, I., Faltings, B.: Scalable Automated Service Compo-
sition Using a Compact Directory Digest. Database and Expert Systems Applica-
tions, 317–326 (2006)

7. Campailla, A., Chaki, S., Clarke, E., Jha, S., Veith, H.: Efficient filtering in publish-
subscribe systems using binary decision diagrams. In: ICSE 2001: Proc. 23rd In-
ternational Conference on Software Engineering, pp. 443–452 (2001)

8. Paschke, A., Bichler, M.: Knowledge representation concepts for automated SLA
management. Decision Support Systems 46(1), 187–205 (2008)

9. Ebendt, R., Drechsler, R., Fey, G.: Advanced BDD optimization. Springer, Heidel-
berg (2005)

10. Shannon, C.E.: A symbolic analysis of relay and switching circuits. AIEE (57),
713–723 (1938)

11. Bhoj, P., Singhal, S., Chutani, S.: SLA management in federated environments.
Computer Networks 35(1), 5–24 (2001)

12. Bryant, R.E.: Symbolic Boolean manipulation with ordered binary-decision dia-
grams. ACM Comput. Surv. 24(3), 293–318 (1992)

13. Friedman, S., Supowit, K.: Finding the optimal variable ordering for binary decision
diagrams. IEEE Transactions on Computers 39(5), 710–713 (1990)

14. Rudell, R.: Dynamic variable ordering for ordered binary decision diagrams. In:
ICCAD 1993: Proc. 1993 IEEE/ACM international conference on Computer-aided
design, pp. 42–47. IEEE Computer Society Press, Los Alamitos (1993)

15. Keutzer, K.: DAGON: Technology Binding and Local Optimization by DAG
Matching. In: 24th Conference on Design Automation, June 1987, pp. 341–347
(1987)

16. Detjens, E., Rudell, R., Gannot, G., Wang, A., Sangiovanni-Vincentelli, A.: Tech-
nology mapping in MIS. In: Proc. International Conference on Computer Aided
Design, November 1987, pp. 116–119 (1987)

17. Ehrgott, M.: Multicriteria Optimization. Springer, Heidelberg (2005)
18. Fatima, S., Wooldridge, M., Jennings, N.: A Comparative Study of Game Theoretic

and Evolutionary Models of Bargaining for Software Agents. Artificial Intelligence
Review 23(2), 187–205 (2005)

19. Figueroa, C., Figueroa, N., Jofre, A., Sahai, A., Chen, Y., Iyer, S.: A Game Theo-
retic Framework for SLA Negotiation. Technical report, HP Laboratories (2008)

20. Comuzzi, M., Kotsokalis, C., Spanoudakis, G., Yahyapour, R.: Establishing and
Monitoring SLAs in Complex Service Based Systems. In: ICWS 2009: Proceedings
of the 2009 IEEE International Conference on Web Services, pp. 783–790 (2009)

Provider-Composer Negotiations for Semantic
Robustness in Service Compositions�

Nikolay Mehandjiev, Freddy Lécué, and Usman Wajid

The University of Manchester
Booth Street East, Manchester, UK

(firstname.lastname)@manchester.ac.uk

Abstract. Research in automating service composition is rarely concerned with
service providers, apart from work in quality guarantees and contracts. This per-
spective is arguably valid for comparatively static and cheap web services, which
do not warrant continuous involvement of their providers in the process of service
procurement and use by service consumers. However, opportunities for optimi-
sation and fine-tuning of compositions are thus missed. We have created an ap-
proach which uses automated agent-based negotiation between service composer
and service providers to address the issue of semantic robustness in large-scale
service compositions by preventing cases where the wrong type of data is passed
on from one service to the next. Starting from a service composition template
which is not semantically robust, we allow the selection of semantically robust
combinations of actual services. The approach is characterised with a linear com-
plexity and also allows service providers to tune their services to the requirements
of service compositions which may be lucrative business opportunities.

Keywords: service composition, semantic services, semantic robustness, auto-
nomic agents, negotiation, template-based composition.

1 Introduction

Services are perceived as ubiquitous software-based units which can be procured by
their consumers at the point of need to deliver certain functionality [1]. When a con-
sumer desires functionality which cannot be provided by a single existing service, we
can either develop a new service “from scratch”, or attempt to compose one using ex-
isting services. Service composition is thus a valuable activity, and automating it has
become a popular topic for service researchers, which have created a bewildering vari-
ety of approaches and methods.

One such approach [2,3] uses formalised knowledge about generic problem-solving
approaches to break-up the desired functionality into a set of simpler units, called tasks.
These tasks are interlinked into a service composition template, and suitable services
are then sought for each task. If a number of services are found, one is selected aiming
to optimise the composition according to certain criteria. For example, [4] shows how
we can select a set of services which fit in terms of input and output data types.

� Foundation Project: Supported by European Commission VII Framework IP Project Soa4All.

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 205–220, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

206 N. Mehandjiev, F. Lécué, and U. Wajid

We say that such composition is semantically robust if we cannot have the wrong
type of data passed on from one service to the next. Reasoning about services in gen-
eral and semantic robustness in particular is greatly facilitated by tagging services with
formal semantic descriptions of their functionality, inputs, outputs, pre-conditions, etc.
These services are then known as Semantic web services [5].

Their formal semantic descriptions are based on Description Logics (DL) [6], such
as OWL-S [7], WSMO [8] or SA-WSDL [9] (through annotations). These are in gen-
eral specialisations of semantic tagging languages such as the Web Ontology Language
(OWL) [10]. The latter are used to provide semantic annotations for general web re-
sources, including documents and media streams, thus creating the Semantic Web [11].

The problem we address in this paper is how to achieve semantic robustness of the
service composition if the composition template we use is not semantically robust itself.
This may occur for a number of reasons, for example when we modify a semantically
robust template to include specialised functionality, or if the service composition tem-
plate is created manually by people. For brevity we will use “robust” instead of “se-
mantically robust” in the remainder of this paper. A non-robust template will specify
the desired services in a way which permits the selection of incompatible services, i.e.,
one service generates output which does not conform to the specifications for the input
of the follow-up service. For example, a voice transcription service may handle English
and German, whilst the follow-up grammar checking service may be specialised in En-
glish only. The latter will thus fail if it is given a German text as an input. The failure
could be at the level of functionality, in that it will detect all phrases as grammatically
incorrect, but it may also raise exception regarding bad input since the input string will
now have extra characters from the German language (e.g., ä, ü or ö) which are not
expected by an English grammar checker software.

There are several approaches to resolving this issue. For example, we can convert the
composition template to one which is robust by narrowing down the specifications of
the respective service outputs, and only then we start searching for candidate services.
This may exclude many valid compositions and produce sub-optimal results, especially
if some inputs are “over specified” unnecessarily. For example, there may be many
multi-lingual grammar checker services available to complement our example bilingual
voice transcription service and result in a robust composition.

Such combinations will be detected and used by an alternative approach which anal-
yses every combination from the two sets of candidate services in the hope of finding
robust matches. This will work for small numbers of candidate services, but its com-
plexity is exponential and thus not applicable for large-scale compositions. In addition,
the resulting combinations may deviate from the template prescriptions significantly,
impeding the straightforward substitution of a failing service in the future.

In this paper we address the issue of robustness by approaching it from a multi-
agent systems perspective which is rarely used in web service research. We involve the
service composer and the corresponding providers of the candidate services in a ne-
gotiation process aiming to result in a robust composition optimised according to their
perspectives. The composer and providers can be represented by autonomous software
entities, called agents, which are pre-programmed to negotiate according to the business

Provider-Composer Negotiations for Semantic Robustness in Service Compositions 207

interests of the organisations they represent, and to reason over the semantic specifica-
tions of requirements and candidate services.

To drive the negotiation dialogue, we use a formal model of semantic robustness [12]
described in Section 2. The model allows us to analyse each data link between tasks
in our template, and for those links which are not robust, calculate precise semantic
specifications of the extra description necessary for these links to become robust.

The negotiation process is guided by negotiation protocols, involving the service
composer agent and the agents providing candidate services for every two tasks linked
by a non-robust link. An informal outline of the protocols, together with overall ap-
proach proposed here, is described in Section 3, whilst the formal details of sub-protocols
and negotiation strategies are specified in Section 4.

The combination of agent-based negotiation with semantic reasoning results in an in-
novative solution to the problem of robust service composition. Section 5 demonstrates
how the approach can be used in a specific case study, delivering results with greater
flexibility than the approaches based on centralised reasoning. Section 6 compares the
approach with related work in the area, and Section 7 concludes this paper.

2 Preliminaries

This section describes in further detail the overall ideas of template-based service com-
position, and proceeds to define the formal model of their semantic robustness.

2.1 Template-Based Service Composition

An intuitive view to service composition would see it as an activity which aims to satisfy
the need for a (non-existing) service by bringing together existing ones. For example, if
we need a letter dictation service we can bring together a voice transcription service, a
grammar checker service, a letter layout service and a printing service.

This integration activity can be done manually, yet automating it makes it more in
tune with the vision of composing services at the point of need [1]. Automating can be
done using program synthesis and AI planning techniques [13], employing reasoning
over the pre- and post-conditions of available services, trying to create a plan of putting
them together to jointly achieve the aim of the target composite service. This approach
starts “from scratch” every time, yet significant performance improvements may be
offered by reusing composition results as a template for new compositions, or creating
such a template through the use of domain-specific knowledge about how the problem
addressed by the sought service would decompose into sub-problems [14].

We follow this template-based composition, and focus on the stage of template in-
stantiation [2,3], where we need to allocate a specific service for each the generic “ser-
vice slots” in the template. From the perspective of template instantiation, we use the
specification of each task Ti,1≤i≤n to procure a set of candidate services sj,1≤j≤m for
this task, and to select one of these services to instantiate the task. The precise manner
in which we propose to implement both the procurement and selection activities so that
we achieve semantically robust composition even in the cases where the template itself
is not semantically robust, will be described in Section 3.

208 N. Mehandjiev, F. Lécué, and U. Wajid

2.2 Formal Semantic Model

Using tasks specifications of inputs, outputs, pre- and post-conditions of templates, we
should be able to infer additional dependencies between tasks, for example we can infer
data flow dependencies between tasks using their input and output specifications.

In the following we present such dependencies as semantic links [15] between ser-
vices. Then we define the concept of their robustness and finally we describe semantic-
link-based web service composition.

Semantic Links. Since input and output parameters of semantic web services are spec-
ified using concepts from a common ontology1 or Terminology T (an example of such
is given in Figure 2), retrieving links between output parameters Out si ∈ T of ser-
vices si and input parameters In sj ∈ T of other services sj could be achieved by
using some DL reasoner such as Fact++2 [16]. Such a link, also known as semantic link
[15] sli,j (Figure 1) between two functional parameters of si and sj is formalized as

〈si, SimT (Out si, In sj), sj〉 (1)

Thereby si and sj are partially linked according to a matching function SimT . This
function expresses which matching type is employed to chain services. The range of
SimT is reduced to the four well known matching type introduced by [17] and the
extra type Intersection [18]:

– Exact. If the output parameter Out si of si and the input parameter In sj of sj are
equivalent; formally, T |= Out si ≡ In sj .

– PlugIn. If Out si is sub-concept of In sj; formally, T |= Out si � In sj .
– Subsume. If Out si is super-concept of In sj ; formally, T |= In sj � Out si.
– Intersection. If the intersection of Out si and In sj is satisfiable; formally, T 	|=
Out si � In sj � ⊥.

– Disjoint. If Out si and In sj are incompatible i.e., T |= Out si � In sj � ⊥.

Output ParameterService Input Parameter

ServiceService

Inn sj

Semantic Link sl

sjOut si
si

In0 si

Ink si

Inn si

(SimT (Out si, In sj))

In sj

Out sj

Semantic Link sli,j
Out0 si In0 sj

Outn si

Fig. 1. A Semantic Link sli,j

In the same way as semantic links sli,j between web services si and sj , we define
abstract semantic links slAi,j between tasks Ti and Tj . In the following we extend the
definition of semantic link by introducing its concrete form (Definition 1).

1 Distributed ontologies are not considered here but are largely independent of the problem
addressed in this work.

2 http://owl.man.ac.uk/factplusplus/

Provider-Composer Negotiations for Semantic Robustness in Service Compositions 209

Definition 1 (Concrete Semantic Link)
A concrete semantic link slα,β

i,j is a concretization of its abstract form slAi,j if and only if
sα and sβ can respectively concretize tasks Ti and Tj .

Robust Semantic Link. The matching function SimT of semantic links enables, at
design time, determining the degree of semantic compatibility among independently
defined web service descriptions, from the strongly compatible Exact through PlugIn,
Subsume and Intersection to the strongly incompatible Disjoint. However, as empha-
sized by [19], the matching types Intersection and Subsume need some refinements to
be usable for semantic-links-based web service composition.

Example 1 (Semantic Link & Subsume Matching Type)
Suppose T1 and T2 are two tasks such that the output parameter
NetworkConnection of T1 is semantically linked to the input parameter
SlowNetworkConnection of T2. According to the example ontology in Figure
2, this abstract semantic link slA1,2 is valued by a Subsume matching type since
NetworkConnection � SlowNetworkCon-nection. It is obvious that such an
abstract semantic link should not be directly applied in a service composition since
the NetworkConnection is not specific enough to be used by the input param-
eter SlowNetworkConnection, which may cause data-based exception during
execution. Indeed the output parameter NetworkConnection requires further
restrictions to ensure a data-robust composition of T1 and T2.

A semantic link valued by the Intersection matching type requires a comparable refine-
ment. In this direction, [19] defined a robust semantic link and their composition.

Definition 2 (Robust Semantic link)
A semantic link 〈si, SimT (Out si, In sj), sj〉 is robust iff the matching type between
Out si and In sj is either Exact or PlugIn.

NetworkConnection ≡ ∀netPro.Provider � ∀netSpeed.Speed

V eryRestrictedNetworkConnection ≡ NetworkConnection � ∀netSpeed.AdslV eryRestricted

LimitedNetworkConnection ≡ NetworkConnection � ∀netSpeed.AdslLimited

SlowNetworkConnection ≡ NetworkConnection � ∀netSpeed.Adsl1M

FastNetworkConnection ≡ NetworkConnection � ∀netSpeed.AdslMax

AdslV eryRestricted ≡ Speed � < 1mBytes

AdslLimited ≡ Speed � ≥ 0.5 mBytes� ≤ 1.5mBytes

Adsl1M ≡ Speed � ≥ 1mBytes

AdslMax ≡ Speed � ≥ 8mBytes

AdslSuperMax ≡ Speed � ≥ 16mBytes

Address � �, IPAddress ≡ Address � ∀protocol.IP

V oIPId ≡ Address � ∀network.Telecom

Fig. 2. Sample of an ALN Terminology T

210 N. Mehandjiev, F. Lécué, and U. Wajid

A possible way to replace an Intersection-, or Subsume-type link 〈si, SimT (Out si,
In sj), sj〉 with its robust form consists of computing the information (as DL-based
description) contained in the input parameter In sj and not in the output parameter
Out si. This information is then used as an additional restriction on the Out si data
type when a suitable web service is procured. We say that adding this latter restriction
”transforms” the non-robust semantic link in its robust form. To do this, we apply initial
ideas of [12], which adapt a non standard inference matching type i.e., the Abduction
operation [20] (Definition 3) for comparing ALN DL-based descriptions.

Definition 3 (Concept Abduction)
Let L be a DL, C, D be two concepts in L, and T be a set of axioms in L. A Concept
Abduction Problem (CAP), denoted as 〈L, C,D, T 〉 aims at finding Extra Description,
as a the most general concept HC,D ∈ L such that T |= C �HC,D � D.

According to Definition 3, a compact representation of “difference” HOut si,In sj

(henceforth Hsi,sj) between DL-based descriptions Out si and In sj of a seman-
tic link sli,j can be computed. Such a description Hsi,sj can be formally defined by
T |= Out sj � Hsi,sj � In si as a solution of the Concept Abduction problem
〈L, Out si, In sj, T 〉. In other words the Extra Description Hsi,sj refers to informa-
tion required by In sj but not provided by Out si to ensure a correct data flow between
web services si and sj .

In the same way robustness can be computed in template-based composition e.g., in
case of non robust abstract semantic links slAi,j between tasks Ti and Tj . In the following
HTi,Tj will refer to Extra Description between Ti and Tj in template-based composition
(with non robust abstract semantic links).

Example 2 (Robustness and Extra Description)
Suppose the abstract semantic link slA1,2 in Example 1. The additional restriction which
has to be provided to the NetworkConnection if this output is to be used by the
input parameter SlowNetworkConnection is referred by the Extra Description
HT1,T2 of the Concept Abduction Problem 〈L, NetworkConnection, SlowNetwork-
Connection, T 〉 i.e., ∀netSpeed.Adsl1M (see Figure 2).

In other words, we can turn non-robust semantic links into robust ones by retrieving
their Extra Description.

Semantic Link Composition Model. Here, we aggregate the concept of web service
composition and semantic link in a same model. Therefore the process model of web
service composition and its semantic links is specified by a directed graph which has
the web service specifications si as its nodes, and the semantic links sli,j (data depen-
dencies) as its edges. In the same way a template-based composition, pre-computed
for instance by template-based and parametric-design-based approaches [2,3], has the
tasks specifications Ti as its nodes, and abstract semantic links slAi,j as its edges.

Given a template-based composition and an approach to compute robust semantic
links (Definition 3), we address the issue of automating robustness in web service com-
position by using agent-based negotiation.

Provider-Composer Negotiations for Semantic Robustness in Service Compositions 211

3 Negotiating Robust Interfaces with Candidate Service Providers

In an ideal template-based service composition, all semantic links between tasks (ser-
vice placeholders) would be semantically robust. In practice this may not be the case,
for example because the template has been created manually, or a generic template such
as “object loan” has been modified with a domain-specific task such as checking credit
record (for high-value objects such as expensive cars).

In such cases, we propose an agent-based approach to achieve robust instantiation of
the non-robust template, which uses the formal model of semantic composition defined
in the previous section. The approach is based on the following:

1. Every service provider and the service composer are represented by software
agents.

2. The service composer agent “advertises” the service composition template on a
shared notice board. It also calculates which semantic links in the template are not
robust.

3. Service provider agents monitor the notice board. When they see requirements (task
specifications) which one of their services can satisfy, they would “bid” for their
service to instantiate the task.

4. Once the bids have been placed, the service composer agent initiates a three-phase
negotiation protocol for each non-robust abstract link slAi,j in the template. The pro-
tocol involves the providers of services si and sj which are candidates to instantiate
the tasks Ti and Tj , respectively. The protocol should select services which provide
robust instantiation of the semantic link.

5. The service composer agent can now instantiate the remaining tasks in the template
by choosing the most appropriate service (in term of its semantic links with other
services) for each such task.

In the remainder of this section, we will detail the suitability criteria used by service
provider agents, followed by details of the three-phase negotiation protocol detailed in
Step 4 above.

3.1 Service Suitability

Here we consider that a task T of a template can be instantiated by a service s if and
only if the following conditions are true:

1. The service s achieves the same goal as T , assuming an ontology of goals [8].
2. The pre-conditions of s are implied by the pre–conditions of T .
3. The post-conditions of s imply the post-conditions of T .
4. The matching type between the input specification In T of T and the input speci-

fication In s of s i.e., SimT (In T, In s) is PlugIn.
5. The matching type between the output specification Out s of s and the output

specification Out T of T i.e., SimT (Out s,Out T) is PlugIn.

Conditions (1) to (3) above ensure the candidate service s has the desired effect of the
target task T , whilst conditions (4) and (5) ensure the semantic (functional) fit between

212 N. Mehandjiev, F. Lécué, and U. Wajid

Ti Tj

Candidate

Services

Candidate

Services

Composition Template

3,2

,i jsl

,
A

i jsl

3_ iOut s
2_ iOut s
1_ iOut s

3_ jOut s

1_ jOut s

2_ jOut s

3_ jIn s

1_ jIn s

2_ jIn s

3_ iIn s

1_ iIn s

2_ iIn s

_ iIn T _ jIn T_ iOut T
_ jOut T

1

jS

3

iS
2

iS
1

iS

3

jS
2

jS

Fig. 3. Links between Tasks and Their Candidate Services

the candidate service and the target task. Condition (4) ensures that all the data which
can be passed onto T can be processed by s. Condition (5) ensures that the output of s
fits within the output specifications of T . Fig. 3 demonstrates the nature of the semantic
fit between tasks and their candidate services.

Example 3 (Tasks and Suitable Services)
We illustrate our approach by considering two different tasks T1 and T2 such that:

– AdslEligibility task T1, starting from a PhoneNum, a ZipCode and an
Email address, returns the NetworkConnection of a desired geographical
zone;

– VoiceOverIP task T2, starting from a PhoneNum and a SlowNetworkCon-
nection, returns the VoIPId of the ADSL line a Telecom operator needs to
install the line;

On the one hand T1 can be concretized by three services:

– s11, s21 and s31, that, starting from a PhoneNum, a ZipCode and an Email ad-
dress, returns respectively a SlowNetworkConnection,VeryRestricted-
NetworkConnection and LimitedNetworkConnection of the desired
geographical zone;

On the other hand T2 can be concretized by two services:

– s12 and s22, that, respectively starting from a NetworkConnection and Slow-
NetworkConnection, returns the VoIPId of the ADSL line a Telecom opera-
tor needs to install the line;

Note that s11, s21 and s31 are suitable services for achieving task T1 since they fulfil
conditions (1), (2), (3) and (4). In the same way s12 and s22 are suitable services for
T2. In the rest of the paper we will focus on concretizing tasks by adequate services to
achieve semantically robust links.

Provider-Composer Negotiations for Semantic Robustness in Service Compositions 213

3.2 Negotiation Protocol

The service composer agent has identified all non-robust abstract semantic links slAi,j
between tasks Ti and Tj in the composition template. The composer agent has also
calculated HTi,Tj for each non-robust link. Once all the bids to instantiate the tasks
involved in these links with services have come through (say an announced deadline for
bidding has passed), the service composer will initiate a 3-phase negotiation protocol
with the service providers for each non-robust link as follows.

Phase 1: In this phase all agents operate on the basis that they may achieve robust com-
position “for free” (i.e. without the use of extra services or modifying the behaviour of
the ones proposed), using differences in specifications between a task and its candidate
services (c.f. Section 3.1). We start by contacting all providers of services si for task Ti

(on the left of Figure 3) sending them HTi,Tj . They compare it with their output speci-
fication as detailed in Section 4.1 to check if their (more specific) outputs turn sli,j into
a robust link. This is feasible since for each such output we have Out si � Out Ti. If
one or more service providers confirm this is indeed the case, the composer agent can
terminate the protocol and, using the same selection criteria as the ones applied for a
robust link, select one of them, and also any service provider for Tj . The actual selec-
tion criteria for choosing an instantiation could be based on a number of configurable
parameters such as price, quality guarantees, etc. and will be application-specific. Alter-
natively, some service provider agents can provide their precise output specifications, if
they have satisfiable intersection with the request (see Section 4).

In the second step of this phase, the service composer circulates the counter-offers
(Out si) to all providers of services sj for task Tj (on the right of Figure 3), to check
if their In sj (which subsume the input specification of their task In Tj), covers at
least one of the counter-offers in a PlugIn type of link and thus make the link robust. If
SimT (Out si, In sj) is of PlugIn type for at least one pair of candidate services, the
respective service provider for sj will respond to the service composer, and the protocol
will terminate with success. Otherwise each service provider will return a counter-offer
which is the extra description required for this concrete semantic link sli,j i.e., T |=
Out si �Hsi,sj � In sj .

Phase 2: In this phase all agents operate on the basis that additional services will be
required to make the link robust, and that the service consumer will have to pay addi-
tional usage fees for these extra services. They attempt to find just a single additional
service per non-robust link, and to avoid having to modify or create services. This phase
starts with the service composer contacting the service providers si (“on the left”), with
either the specific “paired” counter-offers Hsi,sj generated from Phase 1, or, where the
agent has not secured such a “paired” offer, with the general HTi,Tj .

The service providers then try to find the extra service (possibly in coalition with
another service provider), which provides the missing semantic information and thus
can narrow Out si and thus convert SimT (Out si, In sj) into the robust PlugIn type.
If they succeed, they will respond with the cost of using this extra service. In this case
the service composer agent will terminate the protocol, and select one of the services
with such offers, using its usual criteria. Therefore, in that specific case, the agent does

214 N. Mehandjiev, F. Lécué, and U. Wajid

not actively modify the service behaviour, but rather finds new services that support this
extra description to ensure compliance to the restriction at run-time.

If no such offer is received, the service composer agent will contact all service
providers “on the right”, asking them to consider finding extra services which can act
in parallel with their offerings and extend their specification of In sj to a degree where
there is a PlugIn relationship with any of the Out si. If no such offers are found, the
negotiation proceeds to Phase 3.

Phase 3: At this phase all agents operate on the basis that some degree of service adap-
tation and/or development is necessary to achieve robustness of the specific semantic
link, and the expectations of monetary values are thus also increased. Again we use the
pairs of offers and counter-offers derived in the previous phases, and we contact in turn
agents “on the left” and then the ones “on the right” to negotiate the best conditions
(price, quality, etc.) needed to turn the specific link into a robust form.

Formal details of the agent protocol driving this approach are described in Section 4,
whilst an example of its operation is found in Section 5.

4 Details of Protocol and Agent Decisions

In the previous section we have introduced a multi-phase negotiation mechanism to
enable service composer agent to manage several negotiation processes (with providers
of services si and sj). The details described here relate to a single non-robust link only.
Interdependencies between non-robust links are not considered in this work.

4.1 Phase 1

We start with the service composer agent calculating HTi,Tj .

Step 1: The first negotiation step comprises one-shot interaction between the service
composer and all providers of services si, triggered by a Call-for-Proposals message
from the service composer, which has HTi,Tj as its content. The negotiation protocol
is shown in Figure 4 a). The type of response generated by service providers in the
protocol is based on the following conditions.

a) Proposal: Each service provider will check if T |= Out si � HTi,Tj � Out Ti.
If so, that provider will respond positively and the process will terminate.

b) Refuse: Alternatively, services for which T |= Out si � HTi,Tj � ⊥ will be
deemed unsuitable for further negotiation and their providers will refuse participat-
ing in the negotiation.

c) Counter-Proposal: If there is satisfiable intersection, i.e., T 	|= Out si �
HTi,Tj � ⊥, these providers will respond to the service composer with their output
specifications Out si.

Provider-Composer Negotiations for Semantic Robustness in Service Compositions 215

Service
 Composer

Providers
of Services

Call-for-Proposal

Proposal

Refuse

Counter Proposal

is
Service

 Composer
Providers

of Services

Call-for-Proposal

Proposal

Counter Proposal

js

(A) (B)

Fig. 4. Protocols to Support First Phase of Negotiation

Step 2: In case Step 1 ends up with counter proposals from providers of si, the service
composer will use the negotiation protocol shown in Figure 4 b) to initiate negotiation
with the providers of services sj , sending them a Call-for-Proposals message with the
set of all counter-proposals Out si from Step 1 as its content. Step 2 can result in a
robust composition if any of the services sj has an input In sj which subsumes any
of the counter-offers. The following response options are available to service provider
agents.

a) Proposal: if SimT (Out si, In sj) is of a PlugIn type, the agent responds posi-
tively;

b) Counter-Proposal: If SimT (Out si, In sj) is an Intersection type, the agent
responds with a counter-proposal which is the extra description required for this
concrete semantic link sli,j i.e., T |= Out si �Hsi,sj � In sj . Below we refer to
this as a “paired offer” between two provider agents.

If the second step ends up with counter-proposals rather than proposals, the composer
will initiate the second phase of negotiation.

4.2 Phases 2 and 3

Step 1: In the second and third phase of negotiation the service composer uses the
protocol shown in Figure 5, to solicit offers of using additional services (in Phase 2),
or adapting or even developing services (in Phase 3), which can turn the particular link
in its robust form. These phases build on the data about semantic fit gathered during
Phase 1, in a way of a matrix linking service providers for sj as rows and service
providers for si as columns. The matrix, an example of which is shown in Table 1,
contains the specific “paired offer” Extra DescriptionsHsi,sj in the respective cells, and
the abstract Extra Description HTi,Tj elsewhere. The initial Call-for-Proposals
message will refer to this matrix in its contents.

In response to the CFP the negotiation protocol presents the following response options.

216 N. Mehandjiev, F. Lécué, and U. Wajid

Service
 Composer

Providers
of Services

Call-for-Proposal

Failure

Statement-of-Interest

Propose

Fig. 5. Protocol to Support Second Phase of Negotiation

a) Statement-of-Interest: This is an optional response option. The service
provider can send a Statement-of-Interest to buy time for finding other
service providers (or coalition formation) that can help in delivering the required
information.

b) Proposal: A service provider agent may use one of their services, or employ coali-
tion formation techniques [21,22] and enlist a service from other agents for provid-
ing the needed additional specification. If these attempts succeed, the provider will
responds positively with a proposal. For Phase 3, the service provider may propose
adaptation of their service to provide the required specification, or the development
of the extra filters required.

c) Failure: It is possible that the service provider agent is not able to form a coali-
tion, in this case the service provider will responds with Failure.

Table 1. Matrix for Advertising Paired Services

s1
1 s2

1 s3
1

s1
2 HT1,T2 HT1,T2 HT1,T2

s2
2 HT1,T2 Hs3,s2 HT1,T2

If any proposals are received, the service provider agent can terminate the protocol and
select the best proposal. Otherwise they initiate Step 2.

Step 2: The service composer will initiate the negotiation with providers of services sj

using the same protocol (shown in Figure 5). The service providers are presented with
the relevant specificationsOut si, gathered during Phase 1, and with the same response
options. In Phase 2, the providers of services sj should find extra services which can act
in parallel with their offering to achieve a PlugIn relationship in relation to Out si. In
Phase 3, the providers should consider the costs and feasibility of adapting their services
to handle the inputs specified by Out si.

Provider-Composer Negotiations for Semantic Robustness in Service Compositions 217

In case the protocol ends with a Failure then the negotiation proceeds to the third
phase, where the service composer agent uses the same protocol template to check
whether service providers are willing/able to develop new service that can complement
their services for robust composition.

5 An Example Negotiation

Here we demonstrate how our approach can be applied to the example service com-
position covered in the Examples 1 to 3. We are focusing on the semantic link slA1,2
in Example 1, which is non-Robust. The Service Composer Agent will calculate
HT1,T2 ≡ ∀netSpeed.Adsl1M (Example 2).

5.1 Phase 1

The Service Composer Agent will issue a CFP with an objective of HT1,T2 to all
providers of candidate services for T1, namely s11, s21, and s31.

According to Example 3, we have T |= Out s11 � HT1,T2 � Out T2. Therefore
the agent providing s11 will respond with Proposal message, where they specify the
conditions (price, QoS,etc.) for using their service. The agent providing s21 will respond
with Refuse message since, according to Example 3: T |= Out s21 � HT1,T2 � ⊥.
And the agent providing s31 will respond with Counter-Proposal(Out s31) since
T 	|= Out s31 �HT1,T2 � ⊥ (Example 3).

Having received all three responses, the Service Composer Agent will choose s11
and terminate the negotiation over this semantic link. If the system did not con-
tain s11 or its service provider agent did not send a response, the Service Composer
Agent will take the payload of the Counter-Proposal message Out s31 and send it as
the objective of a CFP message to the agents providing services s12 and s22. Since
SimT (Out s31, In s12) is of PlugIn matching type (Example 3), the provider of s12 will
respond with Proposal message, where they specify the conditions (price, QoS,etc.)
for using their service.

This is not the case for the provider of s22, where SimT (Out s31, In s22) is of
Intersection matching type. This provider will calculate Hs3

1,s2
2

using the following:
T |= Out s31 � Hs3

1,s2
2
� In s22 which results in the NetworkConnection to be

∀netSpeed.Adsl1M � ∀netSpeed.AdslLimited (speed limited between 1mBytes
and 1.5mBytes).

The provider will then respond with this value as contents (payload) in a Counter-
Proposal message.

Upon receiving all responses, the Service Composer agent will accept the best of all
Proposal messages (the first and only one here). If such messages are not returned,
the Service Composer agent will initiate the second phase of the negotiation, using the
results Hs1

1,s1
2

from the first phase.

5.2 Phases 2 and 3

In the second phase, the Service Composer will ask the candidate service providers
if they can provide an additional service (that provides the missing description H) to

218 N. Mehandjiev, F. Lécué, and U. Wajid

ensure the semantic link is robust. The phase starts by the Service Composer issuing
a CFP message to the providers of s1, where the content of the message refers to the
matrix shown on Table 1. The matrix will contain HT1,T2 for all pairs of candidate ser-
vices apart from the cell (s31, s

2
2), where the content will beHs3,s2 based on the “paired”

counter-proposal reached at the end of Phase 1. Service providers will attempt to find
additional services by potentially building coalitions and send either an agreement or a
rejection. If the service composer does not receive any agreements, they will contact the
two providers of s2 with a CFP message, containing the output specifications received
in the first phase of the negotiation. The two service providers will attempt to find an
additional service to handle these output specifications, and respond accordingly. The
third phase will repeat the interaction pattern of the second phase.

6 Related Work

We review some works related to our main contributions i.e., i) Robustness in semantic
web service composition and ii) Agent-based Negotiation for service composition.

6.1 Robustness in Composition

An intuitive method [12] to immediately retrieve the Extra Description consists in dis-
covering services that return this description as output parameters. Such a solution can
be employed and implemented in any composition approach. In case of a non-robust se-
mantic link, the Extra Description is exposed to a Web service discovery process which
is in charge of retrieving relevant Web services. The latter services are able to provide
the Extra Description as output parameters. The Extra Description can be reached by
one or a conjunction of Web services, depending on the Extra Description and the dis-
covery process. In contrast we use agent based negotiation for obtaining robust compo-
sitions of web services. This reduced the complexity of the whole approach by assuming
agents interfacing sets of services that can resolve robustness of some semantic links.
In more particular the proposed approach is of linear complexity i.e., each (distributed)
agent only needs to look through several options/counter-offers.

Alternatively the set of Extra Descriptions is suggested to the end user in order to be
relaxed in [23]. This user is then responsible of providing the Extra Description that the
system needed to elaborate the final composition. The new information that end users
will provide to the system is necessary to compute and elaborate a robust composition
of web services, hence satisfying the initial user request. The suggested method has the
advantage of relaxing constraints on the end user. In contrast we suggest an automated
approach which does not require any end user support.

6.2 Agent-Based Negotiation

Agent-based approaches have recently been used to provide effective automated solu-
tions to web service composition. This is partly because agent negotiations provide an
effective way of addressing the complete issues associated with automated service com-
position [23]. Negotiation between software agents is one of the fundamental research
issues in multi-agent systems. In this respect, this paper introduces several negotiation

Provider-Composer Negotiations for Semantic Robustness in Service Compositions 219

processes that an be employed by agents to manage different issues within a service
composition problem. The negotiation processes range from simple one-shot interac-
tions to handling counter proposals across different processes and facilitating agent-
based coalition-formation. The subject of coalition-formation is explored in [22] and
agent-based coalition formation for service composition is discussed in [21]. In future
we intend to focus on the coalition formation strategies and the trade-offs that can be
offered to service provider agents within the service composition problem.

7 Conclusion

Ensuring robust semantic links between elements of composite services is very impor-
tant in real scenarios of composition, and a mechanism to achieve this in an automated,
effective and efficient fashion is needed for scalable and practical applications of web
service composition. In this paper we propose such an automated approach which uses
a formal model of semantic robustness, and agent-based negotiation protocol to ensure
automation, effectiveness and efficiency. As shown by the example application and the
specification of the approach, it can find automated solutions without involving humans,
and also satisfy the criteria for effectiveness since innovative solutions can be found us-
ing coalition formation, and agents can customize services for lucrative opportunities
of use. The dynamic nature of the negotiation protocol results in a number of require-
ments (in real-world scenarios) on the service providers side i.e., their willingness to
create a new service on demand or to customize an existing service according to the
composer’s requirements. Finally, the approach is designed to ensure efficiency by ex-
ploring the free solutions first, then the low-cost use-based solutions, and only at last
resort it considers service adaptation and development.

Our approach goes beyond the prevalent one-shot procedure (sending request and col-
lecting results) by allowing agents to play a more active role in the composition process.
The main direction for future work is to consider robustness in more expressive compo-
sition of web services (e.g., in case of conditional branching: multiple successors for on
task with different input parameters). In addition, since running the negotiation protocol
process during composition instantiation will affect the composition performance, some
heuristics-based experiments on that specific point need to be driven. Finally optimiza-
tion of robustness along web service composition needs to be investigated.

Acknowledgments

This work is conducted within the European Commission VII Framework IP Project
Soa4All (Service Oriented Architectures for All) (http://www.soa4all.eu/), Contract
No. IST-215219.

References

1. Bennett, K., Munro, M., Xu, J., Gold, N., Layzell, P., Mehandjiev, N., Budgen, D., Brereton,
P.: Prototype implementations of an architectural model for service-based flexible software.
In: Hawaii International Conference on System Sciences, vol. 3, p. 76b (2002)

2. Wielinga, B., Schreiber, G.: Configuration-design problem solving. IEEE Expert: Intelligent
Systems and Their Applications 12(2), 49–56 (1997)

220 N. Mehandjiev, F. Lécué, and U. Wajid

3. Motta, E.: Parametric Design Problem Solving - Reusable Components for Knowledge Mod-
elling Case Studies. IOS Press, Amsterdam (1999)

4. Lécué, F., Mehandjiev, N.: Towards scalability of quality driven semantic web service com-
position. In: ICWS (2009)

5. Sycara, K.P., Paolucci, M., Ankolekar, A., Srinivasan, N.: Automated discovery, interaction
and composition of semantic web services. J. Web Sem. 1(1), 27–46 (2003)

6. Baader, F., Nutt, W.: The Description Logic Handbook: Theory, Implementation, and Appli-
cations (2003)

7. Ankolenkar, A., Paolucci, M., Srinivasan, N., Sycara, K.: The owl-s coalition, owl-s 1.1.
Technical report (2004)

8. Fensel, D., Kifer, M., de Bruijn, J., Domingue, J.: Web service modeling ontology submis-
sion, w3c submission (2005)

9. Sivashanmugam, K., Verma, K., Sheth, A., Miller, J.: Adding semantics to web services
standards. In: ICWS, pp. 395–401 (2003)

10. Smith, M.K., Welty, C., McGuinness, D.L.: Owl web ontology language guide. W3c recom-
mendation, W3C (2004)

11. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American 284(5), 34–
43 (2001)

12. Lécué, F., Delteil, A., Léger, A.: Applying abduction in semantic web service composition.
In: ICWS, pp. 94–101 (2007)

13. McIlraith, S.A., Son, T.C.: Adapting golog for composition of semantic web services. In:
KR, pp. 482–496 (2002)

14. ten Teije, A., van Harmelen, F., Wielinga, B.: Configuration of web services as parametric de-
sign. In: Motta, E., Shadbolt, N.R., Stutt, A., Gibbins, N. (eds.) EKAW 2004. LNCS (LNAI),
vol. 3257, pp. 321–336. Springer, Heidelberg (2004)

15. Lécué, F., Léger, A.: A formal model for semantic web service composition. In: Cruz, I.,
Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.)
ISWC 2006. LNCS, vol. 4273, pp. 385–398. Springer, Heidelberg (2006)

16. Horrocks, I.: Using an expressive description logic: Fact or fiction? In: KR, pp. 636–649
(1998)

17. Paolucci, M., Kawamura, T., Payne, T., Sycara, K.: Semantic matching of web services ca-
pabilities. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 333–347.
Springer, Heidelberg (2002)

18. Li, L., Horrocks, I.: A software framework for matchmaking based on semantic web tech-
nology. In: WWW, pp. 331–339 (2003)

19. Lécué, F., Delteil, A.: Making the difference in semantic web service composition. In: AAAI,
pp. 1383–1388 (2007)

20. Colucci, S., Noia, T.D., Sciascio, E.D., Donini, F., Mongiello, M.: Concept abduction
and contraction for semantic-based discovery of matches and negotiation spaces in an e-
marketplace. In: ECRA, vol. 4, pp. 41–50 (2005)

21. Muller, I., Kowalczyk, R., Braun, P.: Towards agent-based coalition formation for service
composition. In: IAT 2006: Proceedings of the IEEE/WIC/ACM international conference on
Intelligent Agent Technology, Washington, DC, USA, pp. 73–80. IEEE Computer Society,
Los Alamitos (2006)

22. Shehory, O., Kraus, S.: Methods for task allocation via agent coalition formation. Artif. In-
tell. 101(1-2), 165–200 (1998)

23. Hassine, A.B., Matsubara, S., Ishida, T.: A constraint-based approach to horizontal web ser-
vice composition. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P.,
Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 130–143. Springer, Hei-
delberg (2006)

Evaluating Contract Compatibility for Service
Composition in the SeCO2 Framework�

Marco Comerio1, Hong-Linh Truong2, Flavio De Paoli1,
and Schahram Dustdar2

1 University of Milano - Bicocca, Milano, Italy
{comerio,depaoli}@disco.unimib.it

2 Distributed Systems Group, Vienna University of Technology
{truong,dustdar}@infosys.tuwien.ac.at

Abstract. Recently, the Software-as-a-Service (SaaS) model has been
increasingly supported, becoming a major part of the new emerging cloud
computing paradigms. Although SaaS exists in different forms, support-
ing and providing SaaS developed based Web services has attracted a
large effort from industries and academics because this form of SaaS
allows software to be easily composed and integrated to offer new ser-
vices for customers. Even though various service composition techniques,
based on functional and non-functional parameters, have been proposed,
the issue of service contract compatibility has been neglected. This is-
sue is of paramount importance in the Web services-based SaaS model
because services are provided by different providers, associated with dif-
ferent contracts which are defined by different specifications. This paper
proposes techniques for supporting service composers to deal with the
heterogeneity of service contracts in service composition. We describe a
novel approach for modeling and mapping different service contract spec-
ifications, and a set of techniques for evaluating service contract compat-
ibility. Our techniques consider contract terms associated with data and
control flows, as well as composition patterns. Illustrating scenarios are
proposed to demonstrate the efficiency of our techniques.

1 Introduction

We have recently observed the rise of cloud computing and SaaS as a part of
the cloud computing paradigm [1]. In particular, many providers have provided
SaaS using the Web services model. This form of SaaS has been widely supported
because it enables service composition and integration.

Techniques supporting service composition and integration have been de-
veloped for a long time. It is important that when services are selected and
composed from different SaaS providers, their contracts, which govern how the
services should be used, have to be compatible. We need to support both, users
and tools, to deal with issues related to service contracts. This support is of
� This work is partially supported by the European Union through the FP7-216256

project COIN.

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 221–236, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

222 M. Comerio et al.

paramount importance because how services are used is bound to the service
contract. However, there is a lack of supporting tools to deal with the evaluation
of service contract compatibility, which is actually just one of many open ques-
tions about the relationship between service contracts and service composition
discussed in [2]. Current techniques, such as service license compatibility [3], are
not suitable because they assume that service contracts follow the same specifi-
cation and they do not support service contracts for service compositions. To our
best knowledge, until now, there is no work supporting service contract compat-
ibility that takes into account the heterogeneity of service contract specifications
and different aspects associated with data and control flows of the composition.

In this paper, we present an overview of SeCO2, a novel framework for sup-
porting service composers to deal with the heterogeneity of service contracts in
service compositions. The framework is a part of tools and systems for support-
ing the life-cycle management of the ecosystem of service contracts. Within this
paper we present the following contributions: (i) a novel approach for modeling
and mapping different service contract specifications, and (ii) a set of techniques
for service contract compatibility evaluation. Our techniques consider contract
terms associated with data and control flows, as well as composition patterns.

The rest of this paper is structured as follows: Section 2 elaborates the con-
text, motivation, and related work of this paper. We discuss our approach and
give an overview of SeCO2 in Section 3. We present techniques to achieve the
modeling and mapping of service contract specifications in Section 4. We present
the compatibility evaluation in Section 5. Experiments are presented in Section
6. We conclude the paper and give an outlook to the future work in Section 7.

2 Motivation and Related Work

2.1 Motivation

The main motivation of our work is, in general, how to ensure the compatibility
of service contracts for service compositions. In the current service composition
landscape there is the need to compose different services to provide converged
services. In the SaaS model it is assumed that the service customer uses the soft-
ware deployed as a service. This model allows service providers to combine differ-
ent services, potentially characterizing by different service contracts specified by
different languages. With the techniques developed so far, it is not so difficult for
consumers to compose different services based on published service interfaces.
For example, existing platforms like The Process Factory1 and Boomi2 provide
different connectors for consumers to compose their services from various SaaS
providers. However, the consumers need to ensure that the service compositions
do not include conflicting service contracts. This assurance cannot be given by a
single SaaS provider and currently is not available in existing composition tools.

In the SaaS and cloud computing model, no single specification would be
agreed by all, making the service contract compatibility evaluation hard. Past
1 http://www.theprocessfactory.com
2 http://www.boomi.com

http://www.theprocessfactory.com
http://www.boomi.com

Evaluating Contract Compatibility for Service Composition 223

research has neglected contracts of composite services when performing service
composition by considering only functional parameters (service interfaces) or
assume that contracts associated with services being composed are described
by a single language. Furthermore, past research has not focused on tools and
algorithms dealing with contract compatibility evaluation when combining dif-
ferent services from different providers. Typically, they deal with only contract
negotiation between consumer and service in a point-to-point manner.

Service contract compatibility is also strongly dependent on the structure of
composition. This is related to not only control flows but also data flows and
composition patterns. While certain works address QoS-based compatibility for
control flows, currently there is a lack of a good understanding of how to check
contract compatibility for data, the input/output of services, whose contract
terms are not always the same to that of the service operations. We stress that
contract terms associated with the use of service and the use of data are different
and our objective is to address the compatibility for both data and service.

2.2 Related Work on Service Contract Compatibility

As stated in [2], the understanding between a service consumer and a service
provider can be established using different approaches (e.g., policies, licenses, ser-
vice level agreements). Even if some philosophical differences exist among these
approaches, in this paper we identify them under the common term service con-
tract which specifies conditions that a service consumer and a service provider
agree. Besides functional terms, a service contract is composed of the specifica-
tion of Quality of Service (QoS), Business, Service Context and License terms of
a service. QoS terms (e.g., response time) represent technical aspects of the ser-
vice. Business terms (e.g., service price) describe financial terms and conditions.
Service Context terms (e.g., service delivery location) define the characteristics
of the context associated with the service. Finally, License terms (e.g., limitation
of liabilities and usage permissions) state responsibilities among involved parties
and conditions on service usage.

Currently, service contracts can be described using several specifications, such
as ODRL-S [4], WSLA [5], and WSOL [6]. Even though these specifications have
some common parts, there exists no reference ontology/thesaurus for describing
contract properties. This means that service consumers and providers specify
their service contracts as they wish, causing many issues when multiple services
governed by different contracts are utilized (e.g., in a composition). Until now we
are not aware of any work dealing with the definition of techniques to evaluate
the compatibility among contract terms specified in different languages.

The most cited works [7,8,9] are related to contract-based service composition
and reduce the problem to the evaluation of QoS constraints among composite
services and user requirements. The AgFlow framework [7] evaluates the QoS
of composite services with an extensible multidimensional quality model and
considering the control flow of the service composition. Other examples of QoS-
based composition are in [8] that aims at defining composition rules to evaluate
global values of QoS dimensions according to specific workflow patterns. The

224 M. Comerio et al.

constraint-driven Web service composition tool presented in [9] reduces the ser-
vice composition problem to a constraint satisfaction problem focusing on busi-
ness and process constraints. These works consider only a small set of service
contract terms (i.e., QoS). The evaluation of qualitative properties (e.g., license
terms) are not tackled. Moreover, they assume that property descriptions are
always available and specified using a common language.

3 Overview of the SeCO2 Framework

The objective of the SeCO2 framework is to support service composers to deal
with the heterogeneity of service contracts in service composition. In this paper
we focus on techniques used by SeCO2 to support the modeling and mapping
of service contracts defined using different specification languages and the eval-
uation of the compatibility among these service contracts. Figure 1 provides an
overview of actors and data involved in these activities.

Fig. 1. The SeCO2 Framework

The SeCO2 framework overcomes the heterogeneity in service contract spec-
ifications using the SeCO Reference Ontology containing semantic descriptions
of service contract properties and the Contract term knowledge-base specifying
additional information about these properties. The SeCO Reference Ontology is
built based on the Policy-Centered Metamodel (PCM) [10]. The PCM offers (i)
the concept of Policy that aggregates property descriptions into a single entity
with an applicability condition, and (ii) a set of constraint operators that allows
for the description of both qualitative and quantitative properties.

The SeCO2 framework deals with service contracts specified in different lan-
guages (e.g., ODRL-S, WSLA and WSOL). In this paper we assume that SeCO2

Evaluating Contract Compatibility for Service Composition 225

receives these contracts from service providers and we show how it makes them
comparable by wrapping them into SeCO Policies. In order to do this, Language
Experts analyze language specifications and create, modify, update and delete
the knowledge stored in the SeCO Reference Ontology and in the Contract term
knowledge-base. The mapping between ontological concepts and contract-specific
terminologies is defined by Language Experts, Service Providers and Consumers
with mapping rules. In order to define techniques for service contract compatibil-
ity evaluation, the SeCO2 framework supports Domain Experts in the definition
of compatibility evaluation rules by means of the SeCO2 Reference Ontology
and the Contract term knowledge-base. Mapping rules and compatibility eval-
uation rules, as well as the SeCO Reference Ontology and the Contract term
knowledge-base, are shared information for the users. This aspect reduces the
effort for their definition and improves reusability. These rules allow SeCO2 to
receive Service contracts and Composition descriptions as inputs, perform the
wrapping to SeCO policies and verify the compatibility among them.

One of the most innovative characteristics of our framework is how the com-
patibility evaluation is performed. Currently, there is no distinction between
the description of properties related to service usage (e.g., Request Limit) and
properties related to the data produced by the service (e.g., Data Ownership).
This produces ambiguities in service contract specifications. As an example, the
property Price can refer to the amount of money needed for invoking a ser-
vice or it can refer to the amount of money needed for receiving an amount of
data from a service. This distinction is critical for the service contract compat-
ibility evaluation. The SeCO2 framework performs the compatibility evaluation
considering both the control flow and the data flow of the service composition.
Dependencies between each service contract property and control and data flow
are identified and considered during the definition of compatibility evaluation
rules. Furthermore, another characteristics of the service contract compatibility
evaluation performed by SeCO2 is that it is not limited to QoS but it is also
extended to other types of property that can be included in a service contract
like Business, Service Context and License terms. Table 1 shows the influences
between each identified service contract property type and control and data flow.

Table 1. Data and control flows in contract compatibility evaluation

control flow data flow independent

Quality of Service (QoS) X
Service Context X
Business X X
License X X

4 Modeling and Mapping Service Contract Specifications

The first step in order to achieve the service contract compatibility is that
we have to develop techniques to map different service contracts described in

226 M. Comerio et al.

different specifications and terminologies. In our view, the mapping of service
contract specifications are not a static, but a dynamic process because speci-
fications and terminologies as well as knowledge about them change over the
time.

4.1 Typology of Contract Specifications

Starting from the analysis of ODRL-S, WSLA and WSOL we have identified
three types of languages for the specification of service contract properties:

– Type A: includes languages allowing the specification of predefined properties.
In this type, e.g., ODRL-S, the properties that can be specified are known
by the Language Expert.

– Type B: includes languages allowing the specification of user-defined proper-
ties. In this type, e.g., WSLA, the Language Expert knows only the structure
of the specification but the properties are defined by the Service Provider.

– Type C: includes languages allowing the specification of properties defined in
user ontologies. In this type, e.g., WSOL, the Language Expert knows only
the structure of the specification while the properties are specified by the
Service Provider using external ontologies.

We use the SeCO Reference Ontology for mapping different specifications and
for allowing compatibility evaluation. This ontology is composed of: (i) a core
part containing the specification of common properties (e.g., QoS) and (ii) a
plug-in part that can be enriched by Language Experts with new properties.

Languages in Type A (e.g., ODRL-S) are characterized by profile models de-
scribing all the properties that can be included in a service contract. In this
case, the Language Expert enriches the plug-in part to model all the properties
not included in the ontology. Moreover, the Language Expert can define fixed
mapping rules between properties and ontological concepts.

Languages in Type B (e.g., WSLA) allow new properties to be defined. This
characteristic limits the possibility to perform the modeling and mapping of
properties in these languages into SeCO2 in advance. Thus, interactions to the
Service Providers are still needed when wrapping a concrete service contract
into SeCO policies. However, users of the same domain (e.g., the logistic oper-
ator domain) typically utilize common terminologies, e.g., logistic operator ser-
vice providers utilize the term Shipping Location in their specifications which
has the same meaning of the property Service Delivery Location available
in the core part of the SeCO Reference Ontology. Common terminologies and
domain-specific knowledge are used by Language Experts and Domain Experts
to define customized mapping rules which will reduce the interactions needed
for the wrapping of service contracts.

Languages in Type C (e.g., WSOL) are similar to the ones in Type B but
here the properties are semantically described in external ontologies. Thus, the
possibility to perform the modeling and mapping activities is limited and we
need to define customized mapping rules between concepts in the most common
user ontologies and concepts specified in the SeCO Reference Ontology.

Evaluating Contract Compatibility for Service Composition 227

Since contract specifications use different representations, ontology alignment
tools [11,12,13], which supports mappings between concepts defined in different
ontologies, cannot be used to fully automate the mapping between different
specifications. Furthermore, as the interpretation of contract terms may vary
from different service providers, fully automatically generation of mapping rules
cannot be achieved. However, these tools can support the definition of mapping
rules when we deal with ontology-based specifications. In this paper, we consider
the use of these tools as external activities triggered by the user of SeCO2.

4.2 Modeling and Mapping Service Contract Terminologies into the
Reference Ontology

When an XML-based profile model defining properties is available (i.e., Lan-
guages in Type A), a set of general rules is used to extract properties from
XML-based specifications and semantically describe them into the SeCO Ref-
erence Ontology. General rules link an XML-structure to a proper PCM-based
description. The same structure can be associated with several rules because
also the nature of the property must be considered. Examples are: (i) the XML-
structure in which an element C1 has a set of sub-elements can be linked to the
InstanceOf-rule that consider each sub-element as possible values assumed by
C1 ; (ii) the XML-structure in which different elements (e.g., C2 and C3) have
the same sub-element C1 is linked to the IsA-rule that considers C2 and C3 as
specializations (i.e., sub-concepts) of C1.

To illustrate the above-mentioned techniques, we focus on modeling and map-
ping ODRL-S terminology. Figure 2 shows how general rules can be used to
model ODRL-S properties into the SeCO Reference Ontology. The following
ODRL-S terms [4] are considered: (i) Permission Rights: defines types of uses
of the service, such as Adaptation, Composition and Derivation; (ii) Payment:
describes the financial terms assuming values, such as PrePay and PostPay.

Fig. 2. Modeling ODRL-S properties in the SeCO Reference Ontology

228 M. Comerio et al.

In ODRL-S, Adaptation, Composition and Derivation are sub-elements
of Permission. For this property the ODRL-S Language Expert uses the
InstanceOf-rule to define a new concept Permissions in the ontology which
can assume a fixed set of values (i.e., pcm#hasParameters impliesType
PermissionValue) that are Adaptation, Composition and Derivation. PrePay
and PostPay are super-elements for Payment. In this case the IsA-rule is applied
considering them as specializations of the term Payment. A new concept Payment
and two sub-concepts (PrePayPayment and PostPayPayment) are added to the
ontology.

After the modeling of a property in the SeCO Reference Ontology, the Lan-
guage Expert defines a mapping rule between the property and the related onto-
logical concept; the rule is used in the wrapping of service contract specifications
to SeCO Policies. Moreover, the Language Expert stores information into the
Contract term knowledge-base about the influences of the property on the data
and control flows of the composition. This information is used by Domain Ex-
perts for the definition of the related compatibility evaluation rule.

4.3 Wrapping Service Contract Specifications to SeCO Policy

A proper technique for each type of language must be defined to perform the
wrapping from service contracts to SeCO Policy specifications. The wrapping of
specifications in Type A language is directly performed by applying the mapping
rules defined by Language Experts. For what concern specifications in Type B
and Type C languages the wrapping activity may require interactions with the
Service Providers to handle the absence of knowledge (i.e., mapping rules) on
specified properties. The Service Providers must define the mapping between
their properties (i.e., text labels for Type B and ontological concepts for Type
C) and concepts available in the SeCO Reference Ontology.

For what concern specifications in Type B languages, lexical databases like
WordNet support Service Providers to define mapping rules identifying syn-
onyms between text labels and ontological concepts defined in the SeCO Refer-
ence Ontology. Different types of ontology alignment tools can be also used to
support the wrapping of specifications in Type C languages: (i) tools for defin-
ing a mapping between concepts in two different ontologies by finding pairs of
related concepts (e.g., ANCHORPROMPT [11]) or by evaluating semantic affinity be-
tween concepts (e.g., H-MATCH [12]) and (ii) tools for defining mapping rules to
relate only relevant parts of the source ontologies (e.g., ONION [13]).

In this section, we describe a solution for the wrapping of a WSLA specifica-
tion. The procedure used by SeCO2 is the following: (i) parse the specification
in order to detect properties (i.e., SLAParameters); (ii) search the availability
of customized mapping rules related to the detected properties; (iii) if mapping
rules are not identified, use WordNet to identify a possible mapping between the
SLAParameters and concepts available in the SeCO Reference Ontology and ask
confirmation about the correctness of the mapping to the Service Provider; and
(iv) if the mapping is not correct or not available, ask to the Service Provider
to perform the mapping manually.

Evaluating Contract Compatibility for Service Composition 229

Figure 3 illustrates the above-mentioned steps when wrapping a WSLA-
based service contract consisting PrePayment = 9.99 Euros and ServiceUsage
= ’’adaptation’’. In this example, a customized mapping rule for PrePayment
is identified. On the contrary, the term ServiceUsage is not known and no rules
are available. Moreover, no synonym relations are specified in WordNet between
ServiceUsage and terms defined in the SeCO Reference Ontology. In order to
handle this absence of knowledge, the Service Provider is asked to navigate the
ontology and map the SLAParameter ServiceUsage to any ontological concept.
The result is the mapping of ServiceUsage with Permissions.

Fig. 3. Mapping between WSLA and SeCO Policy

After this preliminary step, the mapping proceeds considering the
Expressions defined in each Service Level Objective of the WSLA speci-
fication. Each Expression follows the first order logic, including predicates and
logic operators. According to the logic operators, different mapping rules can be
applied. The simplest form of a logic expression is a plain predicate. The mapping
to a SeCO policy includes the following steps: (i) the mapping rule is used to iden-
tify in the SeCO Reference Ontology the concept related to the SLAParameter
specified by the Service Provider; (ii) a new instance of this concept is created.
It must be characterized by an expression having constraint operator and pa-
rameter equals to Type and Value of the Service Level Objective; (iii) a new
SeCO Policy containing the concept instance is created.

In Figure 3, the logic operator ”And” is used to specify the aggregation of
two plain predicates stating conditions on PrePayment and ServiceUsage. The
mapping to a SeCO Policy consists in defining the concept instances related to
all the plain predicates. The final result for the considered example is a SeCO
Policy containing: (i) an instance of Permissions characterized by an expression
stating that the value adaptation is assumed (i.e., pcm#hasOperator hasValue
pcm#all; pcm#hasParameters hasValue adaptation) and (ii) an instance of

230 M. Comerio et al.

PrePayPayment stating that the amount is equal to 9.99 Euros (i.e., pcm#hasOper
ator hasValue pcm#equal; pcm#hasParameter hasValue 9.99; pcm#hasUnit
hasValue euro).

5 Contract Compatibility Evaluation for Service
Composition

The service contract compatibility evaluation supported by the SeCO2 frame-
work accepts a full or part of a full description of service compositions, e.g., the
complete structure of a composite service or a workflow region.

5.1 Contract Compatibility Evaluation Rules

The evaluation of service contract compatibility is based on rules defined for
service contract properties. As described in [10], service contract properties can
be classified into qualitative and quantitative properties. Moreover, as shown in
Table 1, properties can differently influence control and data flows.

Qualitative properties must be evaluated considering the relations stored in
the SeCO Reference Ontology. Examples of compatibility evaluation rules are:

– ”Relation-based” rule: it is applicable to properties assuming values charac-
terized by semantic relations among them. Examples are partnership (i.e.,
values characterized by partOf relations) and subsumption (i.e., values char-
acterized by isA relations). These relations are checked to verify the com-
patibility among values associated to a property.

– ”Compatible value list” rule: it is applicable to properties assuming a small
set of possible values. The compatibility list among these values is stored
into the reference ontology by the definition of isCompatibleWith relations.

Quantitative properties must be evaluated considering the constraint operators
used to specified the offered values. As described in [10], constraint operators
can be binary (e.g., =,≤,≥) or ternary (e.g., range of values). ”Binary operator”
and ”Ternary operator” rules (see [14] for details) evaluate a numeric values in
the range [0..1] stating the degree of compatibility between two offered values
and the overlap between ranges of values respectively.

Table 2 presents some common rules for the evaluation. We explain some
of them in the following. The Service Delivery Location property is inde-
pendent from data and control flows since its value must be checked in all the
contracts of the services involved in the composition. The compatibility is eval-
uated applying a ”Relation-based” rule focusing on partnership relations (�). In
particular, services s1 and s2 are compatible if s1.value � s2.value or s2.value
� s1.value. For example, let us assume that s1 delivers in the Worldwide,
s2 in Europe and s3 in the US. The following partnership relations are hold:
Worldwide�Europe and Worldwide�US. Thus, services s2 and s3 cannot be
included in the same composition since their provision is limited to different
geographical area.

Evaluating Contract Compatibility for Service Composition 231

Table 2. Examples of common rules

Property Type Data Flow Control Flow Rule
Service Delivery Location Service Context partnership
Pricing Business X compatible value list
Payment (for data usage) Business X binary, ternary
Payment (for service usage) Business X binary, ternary
Scalability QoS X binary, ternary
Request Limit QoS X binary, ternary
Availability Time Range QoS X ternary
Data Ownership License X compatible value list
Permissions License X subsumption

The compatibility on Pricing terms in service contracts is checked consider-
ing the data flow. The evaluation is performed using a ”Compatible value list”
rule stating the compatibility among possible pricing models. For example, flat
rate is compatible with pay per use with subscription but it is incompat-
ible with free per use.

The property Scalability is checked considering the composition patterns
included in the control flow specification and applying a ”Binary operator” rule.
For example, assume that service s1 and s2 follow a sequential execution and
that s1 and s2 have Scalability = sc1 and Scalability = sc2, respectively.
Services s1 and s2 are compatible if sc1 ≤ sc2.

5.2 An Algorithm for Contract Compatibility Evaluation

Let S = {s1, s2, · · · , sm} denote the set of services involved in the composition.
Each service is characterized by a service operation associated with one or more
SeCO Policies. Let P (si) = {p1, p2, · · · , pn} indicate the set of policies associated
to service si. Each policy is composed of one or more offered properties. Let
PR(pi) = {pr1, pr2, · · · , prw} be the set of properties offered by policy pi. Each
property is specified by: (i) a name stating the related ontological concept; (ii) a
type defining if the property is CF-inf (i.e., influence the control flow), DF-inf
(i.e., influence the data flow) or F-ind (i.e., flow independent); (iii) an operator;
(iv) a value and (v) a unit of measure.

Let CF (si) = {cf1, cf2, · · · , cfm} denote the control flow where each cfj in
CF (si) specifies the composition pattern between si and sj . Possible values are
sequential, parallel and conditional execution. Let DF (si) = {df1, df2, · · · , dfm}
denote the data flow where each dfj in DF (si) specifies if there is a dependency
in data provisioning between si and sj.

Our service contract compatibility algorithm is listed in Algorithm 1. The
algorithm evaluates the compatibility among all the policies of all the couples of
services available in the composition. Line 3 defines Ω(si, sj) as a set of triples.
Each triple will contain a policy pw associated to si, a policy pz associated to
sj , and the result of the compatibility evaluation λ(pw , pz) among them. The
evaluation of λ(pw, pz) starts in Line 7 defining Υ (pw, pz) as a set of compara-
ble properties [pr1, pr2] specified in pw and pz. Υ (pw, pz) is populated by the
Matching procedure (Line 8) that applies matching rules similar to the ones

232 M. Comerio et al.

Algorithm 1. Compatibility Evaluation
1: for all si ∈ S do
2: for all sj ∈ S(j 	= i) do
3: Ω(si, sj) = φ where Ω(si, sj) is a set of triples [pw, pz, λ(pw, pz)]
4: for all pw ∈ P (si) do
5: for all pz ∈ P (sj) do
6: λ(pw, pz) = φ, where λ(pw, pz) is a set of triples [pri, prj , result]
7: Υ (pw, pz) = φ, where Υ (pw, pz) is a set of comparable properties [pr1, pr2]

8: Υ (pw, pz) = Matching(pw, pz)
9: for all [pr1, pr2]∈ Υ (pw, pz) do

10: rule = Extract(pr1.name)
11: if pr1.type =′ CF − inf ′ then
12: λ(pw, pz) = λ(pw, pz) ∪ EvalRuleF (rule, pr1, pr2, cfj ∈ CF (si))
13: else
14: if pr1.type =′ DF − inf ′ then
15: λ(pw, pz) = λ(pw, pz) ∪ EvalRuleF (rule, pr1, pr2, dfj ∈ DF (si))
16: else
17: λ(pw, pz) = λ(pw, pz) ∪ EvalRule(rule, pr1, pr2)
18: end if
19: end if
20: end for
21: Ω(si, sj) = Ω(si, sj) ∪ [pw, pz, λ(pw, pz)]
22: end for
23: end for
24: end for
25: end for

shown in [10]. For each identified couple [pr1, pr2] of comparable properties, the
algorithm retrieves the related evaluation rule using the procedure Extract and
specifying the property name (Line 10). As stated above, at this point the eval-
uation proceeds considering the property type. If the property is CF-inf then
procedure EvalRuleF is invoked specifying the retrieved rule, the two compa-
rable properties [pr1, pr2] and the control flow information about the services
si, sj that offer the properties (Line 12). If the property is DF-inf then the same
procedure EvalRuleF is invoked but specifying the data flow information about
the services si, sj (Line 15). Finally, if the property is F-ind then the procedure
EvalRule that does not consider composition flows is invoked (Line 17). The re-
sult of the evaluation is saved in λ(pw , pz) that contains the evaluation of all the
comparable properties in pw and pz. Finally, the triple [pw, pz, λ(pw, pz)] is saved
in Ω(si, sj) (Line 21) that contains the evaluation for all the policies offered by
si and sj.

6 Illustrating Scenarios

In order to demonstrate the contract compatibility evaluation techniques pro-
posed in Section 5, we consider a process of purchase data analysis inside a supply

Evaluating Contract Compatibility for Service Composition 233

chain management scenario. This process involves multiple services collaborating
with each others: (i) a Request Service (RS) issuing a purchase request; (ii) a
Purchase Processing Service (PPS) managing the standard e-commerce pro-
cess; (iii) a Merchant Validation Service (MVS) verifying and providing data
about a shopping merchant; (iv) a Payment Verification Service (PS) vali-
dating data related to the payment (e.g., the credit card number); (v) Shipping
Evaluation Service (SES) calculating shipping charges and (vi) a Purchase
Validation Service (PVS) analyzing data and validating the purchase. These
services can be composed using different control and data flows. Figure 4 shows
two different possible composition structures.

Fig. 4. Different composition structures for the Purchase Data Analysis service

Let us assume that a service consumer wants to create a Purchase Data
Analysis (PDA) service by composing his/her RS with the following Web ser-
vices: (i) Yahoo! Shopping Web Service3 as MVS; (ii) XWebCheckOut Web Ser-
vice4 as PPS; (iii) Aivea Shipping Web Service5 as SES; (iv) ValidateCreditCard
Web Service6 as PS and (v) DOTS Lead Validation Web Service7 as PVS. For
our experiments, we focus only on service contracts. Thus, let us assume that
these Web services match the functionalities required for the PDA service.

The selected Web services are characterized by service contracts available only
as HTML texts in their Websites (i.e., ODRL-S, WSLA and WSOL specifications
are not available). Moreover, these contracts are unclear, ambiguous and limited
to few information. This forces the service consumer to manually compare them
and, often, further information from the service providers are needed. Modeling
and mapping techniques presented in Section 4 are not applicable due to the
absence of structured specifications. In order to overcome this strong limitation,
we produce SeCO Policies using information described in the HTML texts and
3 http://developer.yahoo.com/shopping/V1/merchantSearch.html
4 http://www.xwebservices.com/Web Services/XWebCheckOut/
5 http://www.aivea.com/shipping-web-service.htm
6 http://www.webservicex.net/WCF/ServiceDetails.aspx?SID=14
7 http://www.serviceobjects.com/products/composite/lead-validation

234 M. Comerio et al.

Table 3. Contracts offered by services involved in the composition

Del.Loc. Data Own. Request Limit Pricing Scalability
Request Service (RS) US personal-use unlimited free 100tr/min
Yahoo! Shopping (MVS) Worldwide copyrighted 5000q/day free 100tr/min
XWebCheckOut (PPS) Worldwide free-distrib. unlimited 100$/year 100tr/min
Aivea Shipping (SES) Europe free-distrib. unlimited 49$/month 100tr/min
ValidateCreditCard (PS) Worldwide free-distrib. unlimited free 500tr/min
DOTS Lead Valid. (PVS) Worldwide free-distrib. unlimited free 500tr/min

Fig. 5. Resulting compatibility evaluation for Composition a (Figure 4(a))

Fig. 6. Resulting compatibility evaluation for Composition b (Figure 4(b))

inserting realistic properties in case of limited descriptions. These policies are
summarized in Table 3. For each selected Web service, we consider the properties
Service Delivery Location, Pricing and Scalability described in Section
5. Moreover, we consider Data Ownership (a license term stating how the data
produced by the service are protected) and Request Limit (a license term defin-
ing the maximum number of requests that a user can submit to the service in a
day).

Applying evaluation rules like the ones described in Section 5, the compatibil-
ity evaluation results produced by our SeCO2 framework are given in Figures 5
and 6. The following results must be underlined: (i) incompatibility on Service
Delivery Location is found in both the compositions since the property is inde-
pendent from data and control flows; (ii) incompatibility on Pricing is found in
both the compositions because both are characterized by a data flow from RS and
PPS; (iii) incompatibility on Request Limit is found in both the compositions
but between different services. This is determined by the different data flows in-
volving MVS; (iv) incompatibility on Scalability is found only in composition
a. This result depends on the different control flows (i.e., in composition a SES

Evaluating Contract Compatibility for Service Composition 235

is invoked after PS instead in composition b it is invoked after PPS); (v) in-
compatibility on Data Ownership is found only in composition b. This result
depends on the different data flows (i.e., in composition a MVS data are man-
aged by RS instead in composition b they are managed by PVS).

7 Concluding Remarks

In this paper, we have presented our approach to checking service contract com-
patibility for service compositions. Our SeCO2 framework provides support to
define, update, and share knowledge about service contracts specified by different
specifications. Our work can map different service contracts and determined the
compatibility based on control and data flows, as well as composition patterns.

Our approach is currently tested with ODRL-S, WSLA, and WSOL. There
is no way to automatically determine the typology of a language, thus mapping
rules still involve domain experts. We think that it is inevitable, unless termi-
nologies are well-defined and agreed by all service providers. Currently, we do not
consider the dynamic changes of contracts during the composition. For exam-
ple, when performing the composition, the customer and service providers might
negotiate the contracts, as the contract changes certain steps have to be rerun.
However, currently we consider this change can be solved only by re-running the
compatibility checking. Our future work includes enhancing this dynamic in-
teraction among actors when dealing with service contracts. Furthermore, data
specific contract compatibility will be improved.

References

1. Armbrust, M., Fox, A., Grifth, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: Above the clouds: A berkeley
view of cloud computing. Technical report, University of California at Berkeley
(2009)

2. Truong, H.-L., Gangadharan, G.R., Treiber, M., Dustdar, S., D’Andrea, V.: On rec-
onciliation of contractual concerns of web services. In: NFPSLASOC 2008 (2nd Non
Functional Properties and Service Level Agreements in SOC Workshop), Dublin,
Ireland (2008)

3. Gangadharan, G.R., Weiss, M., D’Andrea, V., Iannella, R.: Service License Com-
position and Compatibility Analysis. In: Krämer, B.J., Lin, K.-J., Narasimhan, P.
(eds.) ICSOC 2007. LNCS, vol. 4749, pp. 257–269. Springer, Heidelberg (2007)

4. Gangadharan, G.R., D’Andrea, V., Iannella, R., Weiss, M.: ODRL Service Li-
censing Profile (ODRL-S). In: Proceedings of the 5th International Workshop for
Technical, Economic, and Legal Aspects of Business Models for Virtual Goods
(2007)

5. Ludwig, H., Keller, A., Dan, A., King, R., Franck, R.: Web Service Level Agreement
(WSLA) Language Specification. IBM Coporation (2003)

6. Tosic, V., Pagurek, B., Patel, K., Esfandiari, B., Ma, W.: Management Applications
of the Web Service Offerings Language (WSOL). Information Systems 30(7), 564–
586 (2005)

236 M. Comerio et al.

7. Zeng, L., Benatallah, B., Ngu, A., Dumas, M., Kalagnanam, J., Chang, H.: Qos-
aware middleware for web services composition. IEEE Trans. Softw. Eng. 30(5),
311–327 (2004)

8. Jaeger, M., Rojec-Goldmann, G., Muhl, G.: Qos aggregation for web service com-
position using workflow patterns. In: EDOC 2004: Proceedings of the Enterprise
Distributed Object Computing Conference, Eighth IEEE International, Washing-
ton, DC, USA, pp. 149–159. IEEE Computer Society, Los Alamitos (2004)

9. Aggarwal, R., Verma, K., Miller, J., Milnor, W.: Constraint driven web service
composition in meteor-s. In: Proceedings of the 2004 IEEE International Confer-
ence on Services Computing (SCC 2004), pp. 23–30 (2004)

10. De Paoli, F., Palmonari, M., Comerio, M., Maurino, A.: A Meta-Model for Non-
Functional Property Descriptions of Web Services. In: Proceedings of the IEEE
International Conference on Web Services (ICWS), Beijing, China (2008)

11. Noy, N.F., Musen, M.A.: The prompt suite: Interactive tools for ontology merging
and mapping. International Journal of Human-Computer Studies 59 (2003)

12. Castano, S., Ferrara, A., Montanelli, S.: H-match: an algorithm for dynamically
matching ontologies in peer-based systems. In: Proc. of the 1st VLDB Int. Work-
shop on Semantic Web and Databases (SWDB 2003), Berlin, Germany (2003)

13. Mitra, P., Wiederhold, G., Decker, S.: A scalable framework for the interoperation
of information sources, Stanford University, pp. 317–329 (2001)

14. Comerio, M., De Paoli, F., Maurino, A., Palmonari, M.: NFP-aware Semantic Web
Services Selection. In: Proceedings of the 11th IEEE International Enterprise Dis-
tributed Object Computing Conference, EDOC (2007)

Explaining the Non-compliance between
Templates and Agreement Offers

in WS-Agreement*�

Carlos Müller, Manuel Resinas, and Antonio Ruiz-Cortés

Dpto. Lenguajes y Sistemas Informáticos
ETS. Ingeniería Informática - Universidad de Sevilla (Spain - España)

41012 Sevilla (Spain - España)
{cmuller,resinas,aruiz}@us.es

Abstract. A common approach to the process of reaching agreements
is the publication of templates that guide parties to create agreement
offers that are then sent for approval to the template publisher. In such
scenario, a common issue the template publisher must address is to
check whether the agreement offer received is compliant or not with
the template. Furthermore, in the latter case, an automated explanation
of the reasons of such non-compliance is very appealing. Unfortunately,
although there are proposals that deal with checking the compliance, the
problem of providing an automated explanation to the non-compliance
has not yet been studied in this context. In this paper, we take a subset of
the WS-Agreement recommendation as a starting point and we provide
a rigorous definition of the explanation for the non-compliance between
templates and agreement offers. Furthermore, we propose the use of con-
straint satisfaction problem (CSP) solvers to implement it and provide
a proof-of-concept implementation. The advantage of using CSPs is that
it allows expressive service level objectives inside SLAs.

Keywords: Service Level Agreement, SLA, WS-Agreement, Compliance
Checking, Debugging, Quality of Service, Explanations.

1 Introduction

A common approach to the creation of agreements is by means of templates. For
instance WS-Agreement specification [5] defines an XML-based language and a
protocol for advertising the capabilities and preferences of services providers in
templates, and creating agreements based on them. Specifically, WS-Agreement
allows to specify templates that are published by a responder party, for instance
an Internet service provider could have two public templates for a “basic” and

� This work has been partially supported by the European Commission (FEDER),
Spanish Government under the CICYT projects Web-Factories (TIN2006-00472),
and SETI (TIN2009-07366); and project P07-TIC-2533 funded by the Andalusian
local Government.

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 237–252, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

238 C. Müller, M. Resinas, and A. Ruiz-Cortés

a “premium” Internet service. A typical interaction process using templates and
offers could be as follows: (1) an initiator party take a public template from a
responder party, describing the agreement terms and some variability that must
be taken into account by initiator in order to achieve an agreement; (2) an agree-
ment offer may be sent to the responder party, including several changes, or not,
into the initial template; (3) finally, the responder party may accept or not the
agreement offer received. To use such approach of templates and offers, once
established that the agreement offer is consistent [15], the problem is to ensure
the compliance between agreement templates and offers. Some proposals such as
[13,19] focus on checking whether an SLA is compliant with another one, and,
hence, they could be adapted to check the compliance between agreement tem-
plates and offers. However, if they are not compliant, an explanation would make
it easier to solve problems between parties. This explanation may be provided as
the subset of terms of both template and agreement offer, that causes the non-
compliance. For example, the Internet service provider could establish inside a
template the bandwidth limit, allowing the user to customise of download and
upload speeds as follows:

– Template: {t1 : downloadSpeed > 5Mb, t2 : uploadSpeed < 0.768Mb,
t3 : downloadSpeed+ uploadSpeed < 5.768Mb}

– Agreement Offer: {o1 : downloadSpeed = 10Mb, o2 : uploadSpeed = 0.7Mb}

The explanation for the non-compliance of the previous example would be the
following set of terms: {t3, o1, o2}.

Generally speaking, finding an explanation for the non-compliance is not as
easy as in previous example. It is especially complex when a high expressiveness
of the language used to specify the service terms is needed.

Solution overview and contribution: This paper is focused on providing
explanations of the non-compliance between templates and agreement offers. To
this end, we take our previous work in [15], in which we detail an approach to
explain the inconsistencies in one SLA, as a starting point and we extend it to
enable the checking of the compliance between templates and agreement offers
and to provide explanations of the non-compliance.

Specifically, we extend the definition of the WS-Agreement subset of [15] to
provide rigorous definitions of templates, the compliance between templates and
offers and the explanation for the non-compliance. Then, we use such definitions
to map agreement offers and templates into constraint satisfaction problems
(CSPs) [21]. The CSP is sent to a constraint solver with an explanation engine
[8,20] to get the terms that are causing the non-compliance. The advantage of
using CSPs is that it allows the use of expressive assertions inside SLA terms,
including arithmetic, comparison and logic operations such as +,−, ∗,÷, >,≥, <
,≤,→, Furthermore, we have developed a proof-of-concept which is available
for testing at http://www.isa.us.es/wsag.

The remainder of the paper is organized as follows: Section 2 describes the
used subset of WS-Agreement in Section 2.1, rigorous definitions for agreement
offers and templates in Section 2.2, the compliance between WS-Agreement*

http://www.isa.us.es/wsag

Explaining the Non-compliance between Templates and Agreement Offers 239

templates and offers in Section 2.3, and the explanation for the non-compliance
between templates and offers in Section 2.4; Section 3 describes the process of
explaining the non-compliance of WS-Agreement* templates and offers using
CSP; Section 4 informs about the related work; and finally Section 5 conclude
this paper anticipating some future work.

2 WS-Agreement*-Non-compliant Offers and Templates

2.1 WS-Agreement* Offers and Templates

Due to the flexibility and extensibility of WS-Agreement, we focus on WS-
Agreement*, which is a subset of WS-Agreement (cf. http://www.isa.us.es/
wsag, for details about these differences). WS-Agreement* just imposes sev-
eral restrictions on some elements of WS-Agreement but it keeps the same syn-
tax and semantics, therefore any WS-Agreement document that follows these
restrictions is a WS-Agreement* document. Furthermore, note that, although
WS-Agreement* is not as expressive as WS-Agreement, it does allow to express
complex agreement documents as those in Figure 1, in which the elements of
several WS-Agreement* documents in a computing services providing scenario
are depicted. The complete XML documents are available at
http://www.isa.us.es/wsag.

– Name & Context identifies the agreement and other information such as
a template name and identifier, if any, referring to the specific name and
version of the template from which the current agreement is created. For
instance, context of Figure 1(c) refers to Template of Figure 1(a).

– Terms can be composed using the three term compositors described in [5]:
All (∧), ExactlyOne (⊕), and OneOrMore (∨). All terms in the document
must be included into a main All term compositor. Figure 1(a) includes All
and ExactlyOne term compositors. Terms can be divided into:
Service Terms including:
• Service properties must define all variables that are used in the guar-

antee terms and other agreement elements, explained later. In Figure
1(a), the variables defined are the availability of the computing service
(Availability), the mean time between two consecutive requests of the ser-
vice (MTBR), and the initial cost for the service (InitCost). The type
and general range of values for each variable is provided in an external
document such as the ad-hoc XML document depicted in Figure 1(b).

• Service description terms provide a functional description of a ser-
vice, i.e. the information necessary to provide the service to the con-
sumer. They may set values to variables defined in the service properties
(e.g. InitCost=20 in Figure 1(a)) or they may set values to new variables.
Type and domains are defined in external files such as XML Schemas
(e.g. CPUsType=Cluster in Figure 1(a)).

Guarantee terms describe the service level objectives (SLO) that a spe-
cific obligated party must fulfill, and a qualifying condition that specifies the

http://www.isa.us.es/wsag
http://www.isa.us.es/wsag
http://www.isa.us.es/wsag

240 C. Müller, M. Resinas, and A. Ruiz-Cortés

validity condition under which the SLO is applied. For instance the Lower-
Availability guarantee term included in Figure 1(a).

In [5], a WS-Agreement template is an agreement document with the structure of
a WS-Agreement document described above, but including agreement creation
constraints that should be taken into account during the agreement creation
process. These Creation Constraints describe the variability allowed by the
party who makes the template public. They include (1) general Constraints in-
volving the values of one or more terms, for instance the FinalCost definition of
“Constraint 1” of Figure 1(a); or (2) Items specifying that a particular variable
of the agreement must be present in the agreement offer, typically as a service
description term, and its range of values. For instance, the item elements of Fig-
ure 1(a) define three variables: the number of Dedicated Central Processing Units
(CPUs), the increase of the cost due to the selected MTBR (ExtraMTBRCost),
and the final cost for the service (FinalCost).

2.2 What’s in WS-Agreement*?

To automate the explaining of the non-compliance, it is necessary to define
the compliance between template and agreement offers and provide a rigorous
definition of the explaining for the non-compliance. A first step toward this goal is
to extend the definition of WS-Agreement* in [15] to provide rigorous definitions
of templates, the compliance between templates and offers and the explanation
for the non-compliance.

Definition 1 (A WS-Agreement* agreement offer). A WS-Agreement*
agreement offer α is a three-tuple composed of the variables defined in service
properties and service description terms, their domains and a set of terms:

α = (υα, δα, Tα) , where

– υα = υα
p ∪ υα

d �= ∅ is the finite set of variables defined in service properties
(υα

p), and in service description terms (υα
d), respectively.

– δα = δα
p ∪ δα

d �= ∅ is the finite set of domains for those variables.
– Tα = {tαi }n

i=1 �= ∅ is a finite set of terms, including service description
terms, guarantee terms and terms compositors as follows:

where tαi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λα = (υi, value(υi)) if tαi is a service description term (1)
γα = (κα(υ), σα(υ)) if tαi is a guarantee term (2)
(tαi1 ∧ . . . ∧ tαim) if tαi is an All term compositor
(tαi1 ⊕ . . . ⊕ tαim) if tαi is an ExactlyOne term compositor
(tαi1 ∨ . . . ∨ tαim) if tαi is an OneOrMore term compositor

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Where Clause (1) defines the value of variable (value(υi)), υi ∈ υα, value(υi)
∈ δi; and Clause (2) defines a guarantee term which includes:

κα(υ) =
{
true if there is no qualifying condition or (∀υi ∈ υα) satisfies it
false otherwise

}

Explaining the Non-compliance between Templates and Agreement Offers 241

MetricXML
Percentage: integer [1,100]

MTBR: integer [1,]

Cost: integer [1,]

(a) A WS-Agreement template with
general and item constraints.

(b) Content of the ad-hoc XML document for the

Template id:Template

(c)

AgreementOffer id:CompliantOffer

(d) A Non-
demanding more dedicated CPUs.

Name 5CPUsAllowed

Context AgInitiator: INeedComputing Corp.
ServiceProvider: AgreementResponder

CreationConstraints

Item 1

Constraint 1
FinalCost = InitCost + ExtraMTBRCost + CPUs x 10

A
ll

(a
nd

)

ServiceDescriptionTerm
InitCost
CPUsType = Cluster

ServiceProperties
Availability metricXML:Percentage

metricXML:MTBR
InitCost metricXML:Cost

GuaranteeTerm GuaranteedMTBR
SLO: MTBR >= 5 & MTBR <= 60

Name I Agree

Context
AgInitiator & ServiceProvider same as in template
TemplateID: Template v1.0
TemplateName: 5CPUsAllowed

A
ll

(a
nd

)

ServiceProperties same as in template

AgreementOffer id:Non-CompliantOffer

Name More CPUs Demanded

Context
AgInitiator & ServiceProvider same as in template
TemplateID: Template v1.0
TemplateName: 5CPUsAllowed

A
ll

(a
nd

)

Ex
ac

tl
y

O
ne

(x
or

) GuaranteeTerm LowerAvailability

QualifCondition: MTBR >= 10
SLO: Availability >= 90 & <= 100

GuaranteeTerm HigherAvailability

QualifCondition: MTBR < 10
SLO: Availability >= 95 & <= 100

ServiceDescriptionTerm
InitCost = 20
MTBR = 5
CPUs = 3
ExtraMTBRCost = 15
FinalCost = 65 (20 + 15 + 3 x 10)
CPUsType = Cluster

GuaranteeTerm GuaranteedMTBR
SLO: MTBR >= 5 & MTBR <= 60

ServiceProperties same as in template

ServiceDescriptionTerm
InitCost = 20
MTBR = 50
CPUs = 10
ExtraMTBRCost = 0
FinalCost = 120 (20 + 0 + 10 x 10)
CPUsType = Cluster

Constraint 2
MTBR < 10 ExtraMTBRCost = 15

Constraint 3
MTBR >= 10 ExtraMTBRCost = 0

GuaranteeTerm HigherAvailability

QualifCondition: MTBR < 10
SLO: Availability >= 95 & <= 100

GuaranteeTerm GuaranteedMTBR
SLO: MTBR >= 5 & MTBR <= 60

GuaranteeTerm LowerAvailability

QualifCondition: MTBR >= 10
SLO: Availability >= 90 & <= 100

Item 2

Item 3

CPUs: integer [1,5]

ExtraMTBRCost: integer

FinalCost: integer

Fig. 1. Template and Offers WS-Agreement* documents

242 C. Müller, M. Resinas, and A. Ruiz-Cortés

σα(υ) =
{
true if (∀υi ∈ υα) satisfies the SLO
false otherwise

}

For the scenario of Figure 1(c), υα
p = { Availability, MTBR, InitCost }, with

theirs domains δα
p defined in Figure 1(b); υα

d = { CPUsType } with a domain
δα
d defined in an XML-Schema (cf. Section 2.1); and Tα = { λα

1 :InitCost=20
∧ λα

2 :MTBR=5 ∧ λα
3 :CPUs=3 ∧ λα

4 :ExtraMTBRCost=15 ∧ λα
5 :FinalCost=65 ∧

λα
6 :CPUsType=Cluster ∧ γα

1 :(κα
1 = ∅) ⇒ (σα

1 = MTBR >= 5 & MTBR <=
60) ∧ γα

2 :(κα
2 = MTBR < 10) ⇒ (σα

2 = Availability >= 95 & Availability <=
100) }.
Following definition 1, we can define a WS-Agreement* template, excluding name
and context elements, as follows:

Definition 2 (A WS-Agreement* template). A WS-Agreement* template
θ is a four-tuple of the form:

θ =
(
υθ, δθ, T θ, φθ(υθ)

)
, where

– υθ = υθ
p ∪ υθ

d ∪ υθ
c �= ∅ is the finite set of variables defined in service prop-

erties (υα
p), and in service description terms (υα

d), and in items of creation
constraints (υθ

c), respectively.
– δθ = δθ

p ∪ δθ
d ∪ δθ

c �= ∅ is the finite set of domains for those variables.
– T θ = {tθi }n

i=1 �= ∅ is a finite set of terms ≡ Tα but applied to templates
instead of agreement offers.

– φθ : (δθ
1 × . . . × δθ

n) → {true, false} is a function defined as follows:

φθ(υ1, . . . , υn) =
{
true if (υ1, . . . , υn) satisfies all constraints
false otherwise

}

For the scenario of Figure 1(a), υθ
p = { Availability, MTBR, InitCost }, with

theirs domains δθ
p defined in Figure 1(b); υθ

d = { CPUsType } with a domain δθ
d

defined in an XML-Schema; υθ
c = { CPUs, ExtraMTBRCost, FinalCost } with

its domain δθ
c defined in each item; T θ = { λθ

1:InitCost=20 ∧ λθ
2 :CPUsType =

Cluster ∧ γθ
1 :(κθ

1 = ∅) ⇒ (σθ
1 = MTBR >= 5 & MTBR <= 60) ∧ (γθ

2 :(κθ
2 =

MTBR >= 10) ⇒ (σθ
2 = Availability >= 90 & Availability <= 100) ⊕

γθ
3 :(κθ

3 = MTBR < 10) ⇒ (σθ
3 = Availability >= 95 & Availability <= 100)

)}; and φθ(υθ) = Constraint1 ∧ Constraint2 ∧ Constraint3 = (FinalCost =
InitCost+ExtraMTBRCost+CPUs×10)∧(MTBR < 10 ⇒ ExtraMTBRCost
= 15) ∧ (MTBR >= 10 ⇒ ExtraMTBRCost = 0).

2.3 Compliance between Templates and Agreement Offers

In WS-Agreement [5] the compliance of offers with templates is defined as follows:

“Agreement template compliance: An agreement offer is compliant with a
template advertised by an agreement responder if and only if each term of ser-
vice described in the Terms section of the agreement offer complies with the term

Explaining the Non-compliance between Templates and Agreement Offers 243

constraints expressed in the CreationConstraints section of the agreement tem-
plate. In addition, in the Context of the offer, the Agreement Responder value
must match the value specified in the template; and the Template Id must ex-
actly match the name provided in the template document against which compli-
ance is being checked.”

This compliance is summarised with discontinuous arrows in Figure 2. Note
that this definition of compliance does not state anything about the terms of
the template. In other words, the party that creates the agreement offer may
ignore the terms specified in the template. The problem with this definition is
that the template creator can specify terms in the template, but the party that
creates the agreement offer cannot do anything with them because the definition
of compliance does not provide any semantics with regard to them. Thus, it is
unknown for the party that creates the agreement offer whether the terms of the
template specify default values, or preferred values, or mandatory values that
could not be expressed by means of creation constraints, or any other meaning.

To solve this issue, we provide an extended definition of compliance, the so-
called t-compliance, that extends the previous definition of compliance with the
requirement that the terms of the agreement offer must be compliant with the
terms of the template. This is depicted in Figure 2 by means of continuous
arrows.

This new notion of compliance raises another issue: does the compliance be-
tween the terms of the agreement offer and the terms of the template implies
that agreement offer terms must syntactically match with template terms or they
must match semantically?

A syntactic match means that terms that appear in the template must appear
as is in the agreement offer, perhaps after selecting some of the alternatives
provided by the term compositors. For instance, the guarantee terms of the
agreement offer of Figure 1(c) syntactically matches the guarantee terms of the
template of Figure 1(a).

A semantic match means that all possible assignment of values to the variables
that satisfies the terms of the template must satisfy the terms of the agreement
offer. as well. For instance, the guarantee term MTBR >= 3 & MTBR <= 60
semantically matches the guarantee term GuaranteedMTBR of the template. In
this paper we choose the semantic match because syntactic match is just a
particular case of semantic match.

Then, assuming the context compliance between documents, we can define
the compliance and t-compliance between WS-Agreement* offers and templates.
But previously we define an auxiliary operation to represent if a vector of value
assignments to all variables satisfies a concrete term.

Definition 3 (Satisfies Operation: satisfies(ti, υ))
We define operation satisfies(ti, υ), as a function such that, given a term ti
and a vector (υ1, . . . , υn) of value assignments to all variables, it returns true if
(υ1, . . . , υn) satisfies the term and false, otherwise:

satisfies : T × (δ1 × . . . × δn) → {true, false}, where

244 C. Müller, M. Resinas, and A. Ruiz-Cortés

WS-Agreement
template compliance
definition

Extending
WS-Agreement
template compliance
definition

Fig. 2. Summary of Compliance between WS-Agreement templates and offers

satisfies(ti, υ) ⇔

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

υi = value(υi) (1)
σ(υ) (2)
κ(υ) ⇒ σ(υ) (3)∧n

i=1 satisfies(ti, υ) (4)∧n
i=1 satisfies(ti, υ) ⇔ (

∧k
j=1\j �=i ¬satisfies(ti, υ)) (5)∨n

i=1 satisfies(ti, υ) (6)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

Clause (1) is applied when ti is a service description term λ = (υi, value(υi)).
Clause (2) is applied if ti is a guarantee term without qualifying condition γ =
(∅, σ). Clause (3) is applied if ti is a guarantee term with qualifying condition γ =
(κ, σ). And Clauses (4, 5, and 6) are applied if ti is an All(∧), ExactlyOne(⊕),
and OneOrMore(∨) term compositor, respectively.

Definition 4 (WS-Agreement* template compliance)
A WS-Agreement* offer α = (υα, δα, Tα) is compliant with a WS-Agreement*
template θ =

(
υθ, δθ, T θ, φθ(υθ)

)
, iff the following operation is true:

compliance(α, θ) ⇔

⎧⎨
⎩

υθ
p = υα

p ∧ δθ
p = δα

p ∧ (1)
∧ υα

d = υθ
c ∪ υθ

d ∧ δα
d = δθ

c ∪ δθ
d ∧ (2)

∧ matches(Tα, φθ) (3)

⎫⎬
⎭

where matches(Tα, φθ) ⇔ ∀v ∈ (δ1 × . . . × δn), φθ(v) = true ⇒ (∀ti ∈ Tα,
matches(ti, υ)).

Explaining the Non-compliance between Templates and Agreement Offers 245

Clause (1) means that variables and domains defined inside service proper-
ties of a compliant agreement offer must be the same as defined inside template.
Clause (2) ensures that all variables and domains defined inside service descrip-
tion term of a compliant agreement offer are defined inside service description
term of template or inside item element of template creation constraints. This
does not allow to add any more variables and domains inside service description
terms of a compliant agreement offer to such defined in template. Finally, Clause
(3) means that each terms of a compliant agreement offer must match general
constraints of template creation constraints.

Definition 5 (WS-Agreement* template t-compliance)
A WS-Agreement* offer α = (υα, δα, Tα) is t-compliant with a WS-Agreement*
template θ =

(
υθ, δθ, T θ, φθ(υθ)

)
, iff the following operation is true:

t-compliance(α, θ) ⇔ compliance(α, θ) AND matches(Tα, T θ)

where matches(Tα, T θ) ⇔ ∀ v ∈ (δ1× . . .×δn), (∀tj ∈ T θ, matches(tj , υ)) ⇒ (
∀ti ∈ Tα, matches(ti, υ)). In other words, each term of a compliant agreement
offer must match template terms.

Figure 1(c) and 1(d) depict two possible responses for the agreement template
of Figure 1(a). Figure 1(c) is a compliant agreement offer because all template
general constraints are taken into account for the agreement offer service de-
scription term specification (clause (3) of compliance definition); and it is a
t-compliant offer because it does not include neither different value definitions
for variables, nor any term which were not semantically matched with template
terms (t-compliance definition). However, Figure 1(d) depicts a non-compliant
agreement offer, and the explanation for such non-compliance must be provided.
Note that we do not detail yet the explanation for the non-compliance to high-
light the advantages of having a system capable of providing them.

2.4 Explaining the Non-compliance

We consider an explanation for a non-compliance between agreement offers and
templates as a minimum set of terms of both agreement offer and template that
makes them not compliant. However, before defining rigorously the explanation,
we must define two auxiliary operations.

Definition 6 (Closure of a set of terms: T ∗)
The closure of a terms set (T ∗) is the set of all possible agreements that can
be obtained after selecting all the alternatives provided by the term compositors
(All, ExactlyOne, and OneOrMore). T ∗ can be obtained by appliying the closure
to non-composite terms (t∗i), All term compositor (AND∗), ExactlyOne term
compositor (XOR∗), and OneOrMore term compositor (OR∗) as follows:

T ∗ ⇔

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t∗i = {{ti}}
AND∗(t1, . . . , tn) = {{i1 ∪ . . . ∪ in}|i1 ∈ t∗1 ∧ . . . ∧ in ∈ t∗n}
XOR∗(t1, . . . , tn) =

⋃n
i=1 t

∗
i

OR∗(t1, . . . , tn) =
⋃

p∈P ({t1,...,tn})−∅{{i1 ∪ . . . ∪ in}|
|i1 ∈ p∗1 ∧ in ∈ p∗n ∧ p = {p1, . . . pn}}

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

246 C. Müller, M. Resinas, and A. Ruiz-Cortés

Where P(S) is the power set of S.

For example, the closure of template of Figure 1(a) is: T θ∗ = {{ Init-
Cost=20, CPUsType=Cluster, GuaranteedMTBR, LowerAvailability }{ Init-
Cost=20, CPUsType=Cluster, GuaranteedMTBR, HigherAvailability }}.

Definition 7 (Terms Extraction Operation: terms(T))
We define operation terms(T), where T is a set of terms including service de-
scription terms, guarantee terms, and term compositors; as an operation which
obtain the set of service descriptions and guarantee terms of T .

This operation applied to template of Figure 1(a) is: terms(T θ) = { InitCost=20,
CPUsType=Cluster, GuaranteedMTBR, LowerAvailability, HigherAvailability}.

Finally, the explanation could be rigorously defined, using the closure defi-
nition and terms(T) operation, as follows:

Definition 8 (Explanation for WS-Agreement* template non-
compliance)
Given a WS-Agreement* offer α = (υα, δα, Tα) which is non-compliant with a
WS-Agreement* template θ =

(
υθ, δθ, T θ, φθ(υθ)

)
(i.e. ¬compliance(α, θ)), the

explanation (E) is a minimal subset of terms defined as follows:
E = εα ∪ εθ ∪ εφ, where εα ∈ P (terms(Tα) − ∅), εα ⊆ n ∈ Tα∗, and εθ ∈

P (terms(T θ) − ∅), εθ ⊆ n ∈ T θ∗, and εφ ∈ P (φθ). Where P(S) is the power set
of S.

In other words, E is a minimal subset of conflictive terms extracted from the
agreement offer terms, template terms and template creation constraints.

In the non-compliance between Figures 1(a) and 1(d), the resulting explanation
would be: εφ = {Item 1}, and εα = {CPUs=10}. In such term the consumer
is demanding more dedicated CPUs than the allowed by the provider template.
Such underlined terms and the domain defined inside “Item 1” are the origin for
the non-compliance situation and they are considered as the explanation for
the non-compliance between such offer and template.

Other examples of non-compliance in the example of Figure 1(a) and 1(d),
would be the following: (a) if we change the value of CPUsType inside the agree-
ment offer there will be two different values for the same variable; (b) if we
change the value of ExtraMTBRCost inside service description term of the agree-
ment offer, it there will be in conflict with the Constraint 3 of template; if we
change the guarantee term MTBRDomain in the agreement offer, there will be in
conflict with such guarantee term definition inside template.

The complexity of automating the search for explanations depends on the
expressiveness of the language used to specify the agreement terms. An approach
to automate this search is by means of constraint satisfaction problems (CSPs)
and it is detailed in the following section.

Explaining the Non-compliance between Templates and Agreement Offers 247

3 Explaining the Non-compliance Using CSPs

3.1 Preliminaries

Constraint Satisfaction Problems. Constraint Satisfaction Problems (CSP)
[21] have been an object of research in Artificial Intelligence over the last few
decades. A CSP is a three–tuple of the form (V,D,C) where V �= ∅ is a fi-
nite set of variables, D �= ∅ is a finite set of domains (one for each vari-
able) and C is a constraint defined on V . Consider, for instance, the CSP:
({a, b}, {[0, 2], [0, 2]}, {a+ b < 4}). The solution of such CSP is whatever valid
assignment of all elements in V that satisfies C. (2, 0) is a possible solution of
previous example since it verifies that 2 + 0 < 4.

3.2 Mapping WS-Agreement* Templates onto CSP

In [15] we define the mapping (μ) of a WS-Agreement* offer document (α) onto
an equivalent CSP, (ψα). The variables (υ) defined inside the service properties
are the CSP variables; the variable domains (δ) included in the document spec-
ified by the metric attribute are the CSP variable domains; and the constraints
from the service description terms (λυ), guarantee terms (γ) and term compos-
itors (∧ as a logic “AND”, ⊕ as logic “XOR”, and ∨ as logic “OR”) are the CSP
constraints.

Then, we have to study now how the creation constraints mapping should be
included in order to get a complete WS-Agreement* template to CSP mapping.
Figure 3 summarizes how the creation constraints, expressed as items are mapped
as CSP variables (υc) and domains (δc); and expressed as general constraints (φ)
are mapped as CSP constraints.

Thus, in general, our WS-Agreement* template to CSP mapping can be de-
fined as follows:

Definition 9 (Mapping an WS-Agreement* template to CSP). The
mapping (μ : θ → ψ) of a WS-Agreement* template (θ) to a CSP (ψ) can
be defined as follows:

μ(θ) = μ (υi, δi, Ti, φi) = ({υi} , {δi} , {μT (Ti)} , {μφ(φi)}) = ψθ

where μφ : φ → C is a direct mapping function of WS-Agreement* general
constraints into constraints, defined as follows: μφ ≡ {φ}, and where μT : T → C
is a mapping function of terms into constraints defined in [15].

Using the previous mapping, the ψθ for the template of Figure 1(a) is mapped as
follows: (1) a set of variables where the three last are mapped from the creation
constraints { Availability, MTBR, InitCost, CPUsType, CPUs, ExtraMTBR-
Cost, FinalCost }; (2) a set of domains for such variables { [1 . . . 100], [1 . . .
∞), [1 . . . ∞), [Cluster, Multicore, Distributed], [1 . . . 5], [1 . . . ∞), [
1 . . . ∞) }; and (3) a set of constraint where the three last are mapped from
the creation constraints { InitCost = 20, CPUsType = Cluster, MTBR ≥ 5 ∧

248 C. Müller, M. Resinas, and A. Ruiz-Cortés

CSP
variables

= (Equivalent CSP)

CSP
variable
domains

CSP
constraints

1,
…,

n,

1,
…,

n,

1,
…,

s

{{

{{

{

(

(

{

MetricXML

WS Agreement* Template

Item – c: c

Constraint
–

CreationConstraints

The same mapping
as in WS Ag* offers

ServiceDescriptionTerm (1)

ServiceProperties

GuaranteeTerm “ 1” (2)

GuaranteeTerm “ m” (s)

A
ll

or
or

V

c n+1

c n+1

Fig. 3. Summary of WS-Agreement* template to CSP mapping

MTBR ≤ 60, ((MTBR ≥ 10) ⇒ (Availability ≥ 90 ∧ Availability ≤ 100)) ⇔
¬ ((MTBR < 10) ⇒ (Availability ≥ 95 ∧ Availability ≤ 100)) ∧ ((MTBR <
10) ⇒ (Availability ≥ 95 ∧ Availability ≤ 100)) ⇔ ¬ ((MTBR ≥ 10) ⇒ (Avail-
ability ≥ 90 ∧ Availability ≤ 100)), FinalCost = InitCost + ExtraMTBRCost
+ CPUs × 10, (MTBR < 10) ⇒ (ExtraMTBRCost = 15), (MTBR ≥ 10) ⇒
(ExtraMTBRCost = 0) }.

3.3 Explaining the Non-compliance between WS-Agreements*
Documents

To perform the explaining of the Non-Compliance between templates and agree-
ment offers, we have developed aa proof-of-concept implementation which is
available at http://www.isa.us.es/wsag. The input to the system is threefold:
the WS-Agreement* offer, the WS-Agreement* template, and the XML docu-
ment with the metrics of service properties. The whole process implemented by
the proof-of-concept involves four parts:

1. A simple checking of the document contexts is carried out to ensure that the
offer refers to the template that has been provided. If an error is returned,
it must be reported to user.

2. Each WS-Agreement* documents are mapped into a CSP: (1) the CSP
mapped from the WS-Agreement* offer (V α, Dα, Cα), as defined in [15];
and (2) the CSP mapped from the WS-Agreement* template (V θ, Dθ, Cθ),
as defined in Section 3.2. To explain the non-compliance between both
CSPs we have to join them in an unique CSP as it is described in [19]:

http://www.isa.us.es/wsag

Explaining the Non-compliance between Templates and Agreement Offers 249

(V α ∪ V θ, Dα ∪Dθ, Cθ → Cα). Once the joined CSP is generated, we can
check if it can be solved or not using CSP solvers. In the former case both
documents are compliant.

3. An explanation engine obtains the explanations for the unsolved CSP and
they are sent to the last part of our process.

4. Finally, a tracing component converts the explanations into the equivalent
original agreement terms in order to classify the error to be reported to the
user. The possible types of errors returned are:
– If the explanations involve terms from both documents, then there is a

non-compliance between them.
– If the explanations involve terms from only one document, then this

document is inconsistent.

For instance, if we check the disagreement between the non-compliant agreement
offer of Figure 1(d) and the template of Figure 1(a), the first part would be
passed due to the correct offer context. However, the explainer part will return,
a minimal subset of the conflicting elements. Such elements are the underlined
service description term of the offer against the item element of template creation
constraint which detail the possible values for the dedicated CPUs. Then, the
minimal subset of the example would be “CPUs = 10” and “CPUs >= 1 and
CPUs <= 5”. Each previous constraint would be traced back to its respective
agreement element. In this case the constraints are traced back to the CPUs
service description term inside offer and the CPUs item element inside template.
Since the two conflictive elements come from the two agreement documents, the
type of error occurred is a non-compliance between them.

4 Related Work

As far as we know, there are no proposals that deal with providing explanations
for the non-compliance between agreement documents. This paper extends with
template elements the definition of the WS-Agreement subset of [15] in which
a first approach to explaining SLA inconsistencies was proposed. Previously, in
[19], we studied mapping SLAs to CSPs, aimed at checking their consistency
and conformance, which is a synonym of compliance. However, in that paper no
explanation about the inconsistency or non-conformance of the documents was
provided. In addition, [19] dealt with its own SLA specification instead of using
a proposed standard format such as WS-Agreement.

Some proposals with similarities with our paper in their problem domain
are the following ones: (1) The closest problem tackled in a research work is
[16], in which Oldham et al. create a description logic-based ontology of WS-
Agreement that could be used to check consistency and conformance of SLAs
using a description logic reasoner. However, the authors do not detail what
the consistency or conformance checking process is. Furthermore, they do not
support the explanations for the inconsistent or non-conform terms. (2) A second
group of proposals with some similarities in their problem domain deal with
web service monitoring. For instance [22] checks the SLA compliance of web

250 C. Müller, M. Resinas, and A. Ruiz-Cortés

services compositions at a design time, but only for concrete types of SLOs
and without providing any explanation for the non-compliance; [7] proposes a
framework to audit if the execution of a web service is compliant with an unique
SLA; [4] proposes the use of aspect oriented programming to monitor a concrete
type of variables of an SLA; and [12] proposes a solution for managing SLAs
in composite services. However, neither of them provide any explanation for the
non-compliance. (3) Finally, [18] deals with the problem of compliance between
SLOs and penalty clauses of an SLA, classifying the possible situations and using
WS-Agreement as case study, but again without providing any explanations for
the non-compliance.

Other proposals with similarities with our paper but in their solution do-
mains are the following: (1) The closest solution used in a research work is [1],
in which Aiello et al. uses rigorous definitions about WS-Agreement element
such as terms, agreement, and several states because they study the different
agreement states of an agreement process. (2) There are many authors that deal
with constraint-based paradigms to tackle different SLA aspects as for instance:
in [9,10] constraint-based problem are used to solve web services requests in a
web services interaction process; in [3] a constraint-based language is proposed
to specify SLAs; in [2] constraints are used to optimize web services composi-
tion taking into account quality of service. However the scope of these works is
completely different in comparison with this paper because they do not provide
any explanation for the non-compliance between agreement documents. (3) A
third group of proposals deal with explanation-based solution for the following
problems: [17] proposes an explanation-based tool to be integrated into solvers
and make the detection of conflicts more user-friendly, and [6,11] improves the
use of explanations to perform the solution of CSPs more efficient.

5 Conclusions and Future Work

In this paper we have motivated the need for explaining the non-compliance
between WS-Agreement documents and we have presented a first approach to
reach this goal in an automated manner. More specifically, we present the prob-
lem of explaining the non-compliance in an implementation-independent manner
using rigorous definitions for agreement offers, templates, their compliance, and
the explanation for their non-compliance. Then we propose to map templates
and agreement offers into a constraint satisfaction problem (CSP), in order to
use a CSP solver together with an explanation engine to perform the compliance
checking and return the non-compliant terms in an automated manner.

In summary, this paper provides the following contributions:

1. A rigorous definition of compliance between WS-Agreement* templates and
offers. Additionally, the rigorous definition of compliance has allowed us to
extend template compliance definition of WS-Agreement.

2. A rigorous definition of explanations for the non-compliance between WS-
Agreement* templates and offers.

Explaining the Non-compliance between Templates and Agreement Offers 251

3. A description of a process that materialises the previous definitions by means
of a constraint satisfaction problem (CSP) solver combined with an expla-
nation engine.

Finally, we have developed a proof-of-concept implementation that is available
at http://www.isa.us.es/wsag.

However, there are still some open issues that require further research: first, ex-
tending the rigorous definitions and the mapping to CSPs to full WS-Agreement
specification; second, checking the consistency and compliance of WS-Agreement
documents with the temporal extension we detailed in [14].

References

1. Aiello, M., Frankova, G., Malfatti, D.: What’s in an Agreement? An Analysis and
an Extension of WS-Agreement. In: Benatallah, B., Casati, F., Traverso, P. (eds.)
ICSOC 2005. LNCS, vol. 3826, pp. 424–436. Springer, Heidelberg (2005)

2. Alrifai, M., Risse, T.: Combining global optimization with local selection for effi-
cient qos-aware service composition. In: 18th WWW Conf., p. 881 (2009)

3. Buscemi, M.G., Montanari, U.: Cc-pi: A constraint-based language for specifying
service level agreements. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
18–32. Springer, Heidelberg (2007)

4. Chen, C., Li, L., Wei, J.: Aop based trustable sla compliance monitoring for web
services, October 2007, pp. 225–230 (2007)

5. Andrieux, et al.: OGF Grid Resource Allocation Agreement Protocol WG. Web
Services Agreement Specification (WS-Agreement), v. gfd.107 (2007)

6. Grimes, D.: Automated within-problem learning for constraint satisfaction prob-
lems (2008)

7. Hasan, Stiller, B.: Auric: A scalable and highly reusable sla compliance auditing
framework, pp. 203–215 (2007)

8. Jussien, N., Barichard, V.: The PaLM system: explanation-based constraint pro-
gramming. In: Proceedings of TRICS, pp. 118–133 (2000)

9. Lazovik, A., Aiello, M., Gennari, R.: Encoding requests to web service compositions
as constraints. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 782–786.
Springer, Heidelberg (2005)

10. Lazovik, A., Aiello, M., Gennari, R.: Choreographies: using constraints to satisfy
service requests, February 2006, p. 150 (2006)

11. Lecoutre, C., Sais, L., Tabary, S., Vidal, V.: Recording and minimizing nogoods
from restarts. JSAT 1(3-4), 147–167 (2007)

12. Ludwig, A., Francyk, B.: COSMA - An Approach for Managing SLAs in Composite
Services. In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS,
vol. 5364, pp. 626–632. Springer, Heidelberg (2008)

13. Martín-Díaz, O., Ruiz-Cortés, A., Durán, A., Müller, C.: An approach to temporal-
aware procurement of web services. In: Benatallah, B., Casati, F., Traverso, P.
(eds.) ICSOC 2005. LNCS, vol. 3826, pp. 170–184. Springer, Heidelberg (2005)

14. Müller, C., Martín-Díaz, O., Ruiz-Cortés, A., Resinas, M., Fernández, P.: Im-
proving Temporal-Awareness of WS-Agreement. In: Krämer, B.J., Lin, K.-J.,
Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 193–206. Springer, Hei-
delberg (2007)

http://www.isa.us.es/wsag

252 C. Müller, M. Resinas, and A. Ruiz-Cortés

15. Müller, C., Ruiz-Cortés, A., Resinas, M.: An Initial Approach to Explaining SLA
Inconsistencies. In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008.
LNCS, vol. 5364, pp. 394–406. Springer, Heidelberg (2008)

16. Oldham, N., Verma, K., Sheth, A., Hakimpour, F.: Semantic WS-Agreement Part-
ner Selection. In: 15th International WWW Conf., pp. 697–706. ACM Press, New
York (2006)

17. Ouis, S., Tounsi, M.: An explanation-based tools for debugging constraint satisfac-
tion problems. Applied Soft Computing 8(4), 1400–1406 (2008)

18. Rana, O.F., Warnier, M., Quillinan, T.B., Brazier, F., Cojocarasu, D.: Managing
violations in service level agreements, pp. 349–358 (2008)

19. Ruiz-Cortés, A., Martín-Díaz, O., Durán, A., Toro, M.: Improving the Automatic
Procurement of Web Services using Constraint Programming. Int. Journal on Co-
operative Information Systems 14(4) (2005)

20. Schiex, T., Verfaillie, G.: Nogood recording for static and dynamic constraint sat-
isfaction problems. In: Proceedings of the Fifth International Conference on Tools
with Artificial Intelligence, TAI 1993, November 8-11, pp. 48–55 (1993)

21. Tsang, E.: Foundations of Constraint Satisfaction. Academic Press, London (1995)
22. Xiao, H., Chan, B., Zou, Y., Benayon, J.W., O’Farrell, B., Litani, E., Hawkins, J.:

A framework for verifying sla compliance in composed services, September 2008,
pp. 457–464 (2008)

A Probabilistic Approach to Service Selection
with Conditional Contracts and Usage Patterns

Adrian Klein1,2,3, Fuyuki Ishikawa4, and Bernhard Bauer1

1 University of Augsburg, Germany
bauer@informatik.uni-augsburg.de

2 Technical University Munich, Germany
3 Ludwig-Maximilians-University Munich, Germany

adrian.klein@campus.lmu.de
4 National Institute of Informatics, Tokyo, Japan

f-ishikawa@nii.ac.jp

Abstract. Service selection is a central challenge in the context of a
Service Oriented Architecture. Once functionally sufficient services have
been selected, a further selection based on non-functional properties
(NFPs) becomes essential in meeting the user’s requirements and pref-
erences. However, current descriptions of NFPs and approaches to NFP-
aware selection lack the ability to handle the variability of NFPs, that
stems from the complex nature of real-world business scenarios. There-
fore, we propose a probabilistic approach to service selection as follows:
First, to address the inherent variability in the actual values of NFPs at
runtime, we treat them as probability distributions. Then, on top of that,
we tackle the variability needed in describing NFPs, by providing condi-
tional contracts. Finally, from usage patterns, we compute user-specific
expectations for such NFPs. Further, we depict a typical scenario, which
serves both as a motivation for our approach, and as a basis for its eval-
uation.

1 Introduction

A Service Oriented Architecture (SOA) lays the ground for loose coupling of
interoperable services [1]. In a SOA, there are service providers, that offer services
under certain conditions, and service users, that need services that fulfill certain
criteria. Service contracts provide the basis necessary for the interaction between
both of them, by describing the functional and non-functional properties (NFPs)
[2] of a service. Service selection deals with finding the service that best matches
the user’s criteria and, as such, is a central challenge in the context of any
SOA. The selection process is usually twofold: First, consider only the services
matching the functional criteria. Then, to find the best one, rank those services
according to which extent they fulfill the non-functional criteria.

While functional matching is a necessary part of any service selection, it has
already been studied intensively [3]. On the other hand, matching based on NFPs
such as price, response time, availability, or reliability has been drawing more

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 253–268, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

254 A. Klein, F. Ishikawa, and B. Bauer

and more attention, but it is far from being as well-understood. Sure, there
is a consensus on the need for Service Level Agreements (SLAs), and several
standards, like WSML [4] or WSLA [5], exist to define SLAs. Still, we think
that probabilistic aspects are not covered in the necessary detail at the moment.
Therefore, we want to focus on the aspect of variability found both in NFPs’
values and their contractual descriptions.

(a) Response time (b) Usage patterns

Fig. 1. Examples

The values of a lot of NFPs exhibit an inherent variability. For instance,
response time is not a constant value at all. Yet, in typical contracts, NFPs
are represented by their maximum value only, whereas probability distributions
would be much more accurate. As you can see in Fig. 1(a), the distributions of
two services regarding response time can be quite different, though they share
the same maximum value. This means that different users might prefer one over
the other, which we think should be reflected in the selection. We therefore
propose using probability distributions throughout the whole selection process.

The description itself also often exhibits variability. Commonly, in a contract,
there is only one description for each NFP, specifying its value(s). A provider
can, of course, offer multiple contracts, but, since customization is not possible,
cannot really tailor a single contract for a specific kind of user. For example,
if we take a look at mobile phone providers: They succeeded in catering to
specific kinds of users, because what is charged per minute depends on several
conditions, enabling each user to find a contract that best matches his needs. We
think that, in a SOA, this possibility for providers to differentiate themselves
is becoming increasingly important, as more and more functionally equivalent
services are made available. We therefore propose the concept of conditional
contracts. Providers can specify several descriptions of each NFP in a contract,
and conditions according to which one of them will be chosen. Additionally, to

A Probabilistic Approach to Service Selection 255

help users finding the service that best matches their needs, the selection process
should be adapted accordingly by taking usage patterns into account: A usage
pattern tells us how and when a service is expected to be used by a user, and, as
such, can be represented by a probability distribution. For instance, consider a
contract for a service s that, compared to the average, is very expensive during
the week, yet very cheap during the weekend: Given two users u1 and u2 and
their corresponding usage patterns from Fig. 1(b), that tell us exactly which
days of the week they usually use s, it is clear that u1 should use s, whereas an
average service would be a better choice for u2.

In a nutshell, we propose a probabilistic approach to leverage the variability
of NFPs: we use conditional contracts and usage patterns, while treating NFPs
as probability distributions throughout the whole selection process. This gives
providers an opportunity to differentiate themselves and users a very easy way to
find the best match. Our evaluation shows that not only does our approach make
novel kinds of scenarios possible, it also allows for better selection in existing
scenarios.

The structure of this paper is as follows: Section 2 gives an overview over
related work. Section 3 introduces a realistic scenario. Section 4 describes our
approach. Section 5 evaluates our approach against our scenario, and finally
Section 6 concludes the paper.

2 Related Work

In this section we survey work that is related to ours. We show both the impact
and the differences in relation to our work.

Regarding NFPs, while, in general, there is a lot of research out there, prob-
abilistic approaches are less common. Probability distributions for NFPs have
mainly been used in computing the NFPs of service compositions with different
kinds of techniques: Dynamic programming and the greedy method [6], as well
as Monte-Carlo simulations [7] have been applied for this purpose. This gives
us confidence that using probability distributions for NFPs is feasible, because
even calculating those for composed services works reasonably well. Besides, to
the best of our knowledge, there is no work that uses probabilistic NFPs directly
for service selection, as we do in our approach.

While we have not seen conditional contracts, as such, there exists an ap-
proach [8] that formalizes the obligations of a service provider as logical rules,
which are specified with the Web Service Modeling Language (WSML) [4]. This
allows to use reasoning on top of those rules to compute the actual NFPs for a
specific service request. In a way, this is quite similar to what you can do with
conditional contracts, yet we found two important differences: First, there ex-
ists no designated way to use such logical rules in conjunction with probabilistic
computations. Second, given the possible complexity of such rules in WSML, it
might not be feasible to derive direct conditions that imply certain values for
NFPs. As we will see, both are strictly necessary for our approach. Hence, we
deem conditional contracts a better choice for our purposes.

256 A. Klein, F. Ishikawa, and B. Bauer

Concerning usage patterns, there seems to be little research besides the intro-
duction of the notion to refer to patterns in how users usually compose services
[9]. On the contrary, we only refer to usage patterns in how a single service is
used, e.g. at which day of the week, or at which time, a user usually calls a
service

In conclusion, our contribution does not only lie in defining conditional con-
tracts and usage patterns, but in combining them together with probability dis-
tributions into a probabilistic approach, which leverages the variability of NFPs
both in their values and descriptions.

3 Scenario

Now, we start by depicting a realistic scenario to illustrate the real-world prob-
lems that we are trying to solve. First, we describe the setting, the service in
question and the assumed infrastructure in a general overview. Then, we give
detailed descriptions of the involved providers and users. Finally, we pinpoint
the challenges that arise from this scenario.

3.1 Overview

Our overall setting is the stock market. The service we envision provides mobile
news about companies listed in the stock market. A stock market, in general, is
only open on certain days of the week during specific time slots. For our means,
we assume a stock market that is open from Monday to Friday during 9 and 17
o’clock. Consequently, the demand for the service is generally highest when the
stock market is open, and lowest on the weekend.

Through their mobile clients, users can request news when and how often they
want. Payment is specified per service request. The service discovery happens
through brokers, that are commonly found in a SOA. These brokers have access
to all service contracts available from different providers. Furthermore, brokers
not only provide service discovery, but can also compute the contract that best
matches a user’s requirements and preferences. However, as consulting the broker
incurs a notable fee, the users’ clients usually only update their contracts once
in a while, e.g. once a month.

3.2 Providers

Providers all offer functionally equivalent services. Therefore, they differentiate
themselves only through the NFPs defined in their contract(s). Though, to make
things comparable, all providers have agreed on a common pricing schema. First,
to distinguish them based on their quality, providers are classified into different
service classes A,B, . . . according to their maximum response times. For those
classes, base prices are fixed. Starting from the best service class, A, for each
class the maximum response times increases, while the base price decreases.

A Probabilistic Approach to Service Selection 257

Then, to cater to specific kinds of users or to differentiate themselves, providers
can introduce as many different service options as needed. These options modify
the base price, given by the service class, depending on the time of usage, which
can be classified into: Stock market open (Mo-Fr 9-17), during the week (Mo-Fr
else), and during the weekend (Sa-Su). While this discretization of the time of
usage is standardized, the providers are free to choose the according prices.

Therefore, the final price for the user is calculated by multiplying the base
price, determined by the service class, with a constant factor, determined by the
service option.

3.3 Users

As for the users, of course, each of them has different needs and uses the service
differently. Nevertheless, most can either be categorized as business users, that
deal with the stock market for a living, or as casual users, that engage in the
stock market as a hobby.

The most essential difference is the time when they use the service. Business
users mostly use the service when the stock market is open, sometimes during
the rest of the week, and only rarely on the weekend. Casual users, on the other
hand, use the service rarely when the stock market is open, also sometimes
during the rest of the week, but mostly on the weekend.

Additionally, they have different needs, resulting in different requirements and
preferences that mainly relate to the following two NFPs: Response time and
price. Regarding response time, both value the response time in terms of the
throughput, which means the number of news updates they can receive in a
certain time interval. Also, both have an optimal throughput that allows them
to make the best use of the service, and a minimum throughput that is the
limit of what is actually usable or tolerable for them in terms of productivity
or patience. Naturally, business users have much higher requirements for the
throughput than casual users. Regarding the price, both, similarly, have optimal
and maximum values, and, as expected, casual users are more price sensitive
than business users. Throughput and price each contribute a part to the overall
utility of the service for the users: Business users value throughput the most,
while casual users are more concerned about price.

3.4 Challenges

So far, we have described the scenario, but not yet analyzed what actually is chal-
lenging about it. On a top level, we identify two areas that pose new challenges:
The definition and the selection of contracts.

Definition. The definition of contracts that meet the needs of the providers
is the first challenge, because, with normal contracts, it is not possible to real-
ize the service options mentioned: Representing an option as a separate contract

258 A. Klein, F. Ishikawa, and B. Bauer

would only allow to realize a base option that offers a constant price. On the
other hand, any meaningful option would have to specify multiple alternatives at
least for the price, depending on the time of the usage of the service. Otherwise,
there would be no way for the service providers to cater to business or casual
users by tailoring their contracts.

Selection. Selecting the best contract that accurately matches the users’ needs
poses the second challenge. While choosing the right service class according to its
maximum response time is not that hard, choosing the best contract of providers
from the same class is. The same maximum response time tells us nothing about
the actual distribution of the response time’s values: What is the average value,
or how probable is an interval of values that is of special interest to the user? So
selecting the best contract by choosing the right service class and service option
is not trivial, because not only the needs, but also the usage patterns of users
might differ, which might have a high impact on selection. Hence, accurately
taking the long term prospect of a contract for a user into account is not easy,
but especially important, as the contract can only be changed so often, because
of the incurred fee when invoking the broker.

4 Approach

In this section we introduce our approach. While we want to illustrate how it can
solve the challenges posed by the scenario, we first present it in its generality here,
and then adapt it specifically to our scenario later on in the evaluation. First, we
introduce our notions of conditional contracts, usage patterns and probability
distributions, before going into the details of our probabilistic approach.

4.1 Conditional Contracts

First, we need contracts that allow us to express the services of our scenario.
As already mentioned, we could model each service option with a separate con-
tract, but we also would have to model the conditional pricing for each option.
Therefore, we propose conditional contracts.

Definition 1. A conditional contract (cc ∈ CC) consists of a conditional state-
ment. A conditional statement (cs ∈ CS) can either be a statement (s ∈ S) or
a tuple of a condition (c ∈ C) and two conditional statements, of which the first
corresponds to the condition being true and the second to it being false.

< cc > ::= < cs >
< cs > ::= < s > | (< c >, < cs >, < cs >) (1)

As syntax we propose something similar to typical programming languages, so
a sample conditional contract could look like this:

A Probabilistic Approach to Service Selection 259

contract {
i f t ime . weekDay = Monday

i f 8 <= t ime . hour <= 9
p r i c e = 4

else
p r i c e = 2

else
p r i c e = 1

}

The semantics are also similar to what one would expect in a typical program-
ming language, so by evaluating the conditions, one can easily deduce which
statement actually holds when a service is called.

4.2 Usage Patterns

Then, to select the best service option for a user, we need to know how he uses
the service. Thus, we introduce usage patterns.

Definition 2. A usage pattern function up takes a condition c ∈ C as a param-
eter and returns a probability between 0 and 1 for the likeliness that c is true.

up : C → [0, 1] (2)

For a given user, we compute1 his usage pattern function, so we can evaluate
the contracts for him.

4.3 Probability Distributions

Finally, to find the best provider not only on a service class level, but also within
a service class, we treat all our NFPs as probability distributions. This way, we
can later differentiate even between providers within the same service class.

Given an utility function, instead of applying it only to maximum values, we
can apply it first to the values of the probability distributions themselves, be-
fore aggregating everything into a single utility value. To aggregate these utility
values properly, we need the probability for each combination of values for the
NFPs involved. Therefore, we introduce a NFP function.

Definition 3. A NFP function nfp defined for several NFPs P1, . . . , Pn ∈ NFP
takes possible values for those NFPs as parameters and returns a probability
between 0 and 1 for the likeliness of this combination of values.

nfp : P1 × · · · × Pn → [0, 1] (3)

1 There are many ways how to compute or approximate such a usage pattern function,
e.g. one could compute it from the history of the user’s previous requests.

260 A. Klein, F. Ishikawa, and B. Bauer

4.4 Probabilistic Selection

Now, that we have introduced our notions of conditional contracts, usage pat-
terns and probability distributions, we can introduce our probabilistic approach
in its entirety. In the following we layout the steps of our approach one by one.

Setup. Our approach finds the best contract ccu for a given user u from a given
list of contracts CCa ⊆ CC. For that, we only consider a limited number of NFPs,
Pa := {P1, . . . , Pn} ⊆ NFP , for which we also define the following notation:

−→
Pa := P1 × · · · × Pn (4)

To compute the utility of a contract cc, we need the user’s utility function utilu
that implies certain values for our NFPs Pa:

utilu :
−→
Pa → IR (5)

Compute Conditions. As a first computation step, we compute all “full”
conditions that directly determine if statements in the given contracts hold or
not. For this, we need the following auxiliary function ac:

ac(cc, cctx) :=

⎧⎨
⎩

{cctx} for cc = s
ac(cs1, cctx ∧ c)

∪ ac(cs2, cctx ∧ ¬ c) for cc = (c, cs1, cs2)
(6)

Then, we compute the relevant conditions RCa for all given contracts, as follows:

RCa :=
⋃

cc∈CCa

ac(cc, true) (7)

Compute Usage Patterns. The next step is to compute2 the user’s usage
pattern. While the usage pattern function may only be partial, it is important
that it is defined for all relevant conditions:

∀c ∈ RCa . upu(c) is defined (8)

Compute NFPs. In the next step, we compute the user-specific probability
distributions of all NFPs for each contract cc. In order to do this, we determine
the relevant statement that corresponds to a given condition c with an auxiliary
function rs:

rs(cc, cx, cctx) :=

⎧⎪⎪⎨
⎪⎪⎩

{s} for cc = s ∧ cx = cctx

{} for cc = s ∧ cx �= cctx

rs(cs1, cx, cctx ∧ c)
∪ rs(cs2, cx, cctx ∧ ¬ c) for cc = (c, cs1, cs2)

(9)

2 There are several ways to compute this, but we do not focus on this in our approach.

A Probabilistic Approach to Service Selection 261

Furthermore, for all statements s of cc, we compute3 the NFP function nfpcc,s

that returns the likeliness of a combination of values under the assumption that
statement s holds:

nfpcc,s :
−→
Pa → [0, 1] (10)

Given all this, we can now compute the probability distribution for NFPs spec-
ified in cc, as follows:

nfpcc,u(#p) =
∑

c∈ac(cc,true)
s∈rs(cc,c,true)

upu(c) · nfpcc,s(#p)
(11)

Compute Utility. As a last step, we compute the utility of the contract cc
for the user u, using the utility function utilu. As already explained, we first
apply the function to the values of the probability distributions itself, before
aggregating everything into one utility value uv to make full use of the probability
distributions:

uvu(cc) :=
∑

�p ∈ −→
Pa

nfpcc,u(#p) · utilu(#p) (12)

Thus, we can compute the utility value for any given contract, and then select
the contract ccu with the highest utility value for our user u.

5 Evaluation

In this section, we evaluate our approach against the scenario introduced before.
The goal is to show two points:

1. Applying our approach to existing scenarios improves selection.
2. Using our approach allows for selection in novel scenarios.

Response time is a suitable NFP to show (1), because its variability is already
inherent, independent of any scenario. So we take our scenario without its pricing
aspects and show that applying our approach improves selection. Because our
results do not depend on introducing novel pricing schemes, they can be generally
applied to existing scenarios.

Price, on the other hand, is a NFP for which we can clearly show (2), di-
rectly following our scenario. Nevertheless, because of the prominence of pricing
schemes, we think our results can be easily transfered to other scenarios as well,
given some domain specific adaptation.

Hence, we conduct our evaluation in two parts, focusing on response time in
the first part and on price in the latter to show (1) and (2), respectively.

3 The complexity of the computation mainly depends on what kind of statements are
allowed. For example, computation of nfpcc,s should be easy when directly assigning
constant values or probability distributions to specific NFPs.

262 A. Klein, F. Ishikawa, and B. Bauer

5.1 Response Time

In order to evaluate our approach for the NFP response time, we first define
concrete providers and users. Then, we compute the utility of the providers for
each user.

Users. We have four users: u1, u2, u3 and u4. Out of them, u1 and u2 are
business users, and u3 and u4 are casual users. Therefore, u1 and u2 have sharper
requirements regarding response time, meaning a higher optimal and minimum
throughput.

(a) Utility functions (b) Usage patterns

Fig. 2. Users

In Fig. 2(a) we see the corresponding utility functions for them4, that are of
the following form5, similar to those described in [10]:

f(x) := 1
1+ea(x+c) (13)

Additionally, our users have usage patterns, as seen in Fig. 2(b), that are typical
for business and casual users, respectively. Two aspects are of special interest:
First, while the usage pattern of u1 directly corresponds to the load of p1, u2’s
usage pattern is still similar, but slightly different. Second, while both u3 and
u4 represent casual users, only u4 uses the service solely on the weekend.

Providers. We have two providers, p1 and p2, with the same maximum response
time. This implies, they are in the same service class and therefore share the
same base price. Thus, it makes sense to compare them just in terms of their
response time. The probability distributions of their (aggregated) response times
are shown in Fig. 3.
4 The utility functions of u1 and u2 are identical. The same is valid for u3 and u4.
5 Both a and c can be computed from the optimal and minimum throughput.

A Probabilistic Approach to Service Selection 263

(a) Provider p1 (b) Provider p2

Fig. 3. Aggregated response time

(a) Response time (b) Load

Fig. 4. Provider p1

As you can see, for p2 the probability distribution follows a simple normal
distribution, while for p1 it seems to follow no obvious pattern. That is, because,
contrary to p2, the response time of p1 is dependent on the load, which varies
throughout the week, as shown in Fig. 4(b). So actually, the distribution of p1 is
made up of all the normal distributions from Fig. 4(a), that, when aggregated,
result in the distribution from Fig. 3(a).

Selection. Now, we compute the utility of each provider for each user, using
four different methods: max, avg, prob, and cond. This yields the results seen in

264 A. Klein, F. Ishikawa, and B. Bauer

Fig. 5. First, as a baseline we compute the utility using the maximum response
time of the providers (max). This yields a utility of 0% for both providers, as
their maximum response time corresponds to a throughput that is lower than
the users’ minimum throughput. We proceed by computing the utility using the
average response time (avg), which is already better, because we get utilities
greater than 0% for the providers.

Next, we compute the utility using the probability distribution of the (aggre-
gated) response time (prob), and compare prob to avg. For p1, we see that there
is quite a notable difference for all users. Interestingly, while for u1 and u2 the
utility increases with prob, for u3 and u4 it decreases. This shows using avg can
serve neither as a lower nor as an upper bound for the utility computed using
the inherent probability distributions.

(a) Provider p1 (b) Provider p2

Fig. 5. Utility values

Finally, we compute the utility using our full approach with conditional con-
tracts and usage patterns (cond), and look at the difference between prob and
cond. This means that instead of just having one probability distribution for the
aggregated response time in each provider’s contract, we give three conditional
definitions with different distributions, one for each time of usage. In the case of
p1, those conditional definitions correspond to the probability distributions given
in Fig. 4(a). For p2, on the other hand, there is just a single distribution from
Fig. 3(b), so introducing conditions in p2’s contract does not change anything.
This explains why the utility of p2 does not change for a single user, as, with-
out conditions, the usage patterns have no impact on the utility computation.
So for p1, we can see differences for all users, except for u1, which is because
of the correspondence of the load of p1 and the usage pattern of u1: The different

A Probabilistic Approach to Service Selection 265

normal distributions of p1’s response time are aggregated according to p1’s load,
and each distribution corresponds to conditions in the contract; the same condi-
tions the usage patterns correspond to. Hence, the bigger the difference between
usage pattern and load, the bigger the difference in utility. For u1 this means
no difference, for u2 a slight difference, and for u3 and u4 big differences, as
their usage patterns are quite different from p1’s load. Overall, the comparison
between max and cond shows quite remarkable differences in utility, especially
regarding p1: For u3 and u4 the utility goes up from 0% to over 40%, and for u3
and u4 it even goes up from 0% to over 90%.

5.2 Price

In order to evaluate our approach for the NFP price, we first refine the concrete
providers and users, we already introduced. Then, we again compute the utility
of the providers for each user, now considering price and response time.

Users and Providers. In order to compute the utility of a provider for our
users, we first define the additional utility functions you can see in Fig. 6.6

Fig. 6. Utility functions

Then, we use a typical weighted sum, as for instance used in [8] and [11], to
combine the utilities for response time and price. Figure 7(a) shows the corre-
sponding weights for each user, which reflect that u1 and u2 are business, and
u3 and u4 are casual users. As you can see in Fig. 7(b), similar to response time,
the price for p1 also depends on the load, while p2’s price is constant.7

6 Both u1 and u2 have the same utility function.
7 The aggregated average price (according to the load) for p1 is equal to p2’s price.

266 A. Klein, F. Ishikawa, and B. Bauer

(a) Weights (b) Price

Fig. 7. Distributions

(a) Provider p1 (b) Provider p2

Fig. 8. Utility values

Selection. Again, we compute the utility of each provider for each user. The
results from Fig. 8 are interesting in many respects, but we will pick just some
observations: Comparing p1’s utility for u4 to the previous evaluation, we see
that, while the max utility is not 0% anymore, it is still less than 30%.

Also there is a sharp drop-off in avg and prob utility, that is not visible in
the cond utility, which still is over 90%. The utilities for p2, on the other hand,
are not that much different, except that you can clearly see the different price
expectations of u3 and u4 reflected in the increase of utility for u3 and decrease
for u4, who is more price sensitive.

A Probabilistic Approach to Service Selection 267

6 Conclusion

In this paper, we have proposed a probabilistic approach that leverages the
variability of NFPs by using conditional contracts and usage patterns, together
with probability distributions. We also have described a realistic scenario to
illustrate the settings in which such variabilities occur. Furthermore, we have
evaluated our approach against this scenario, with concrete examples, focusing
on the two NFPs response time and price. The results of our evaluation show
that our approach improves selection for existing scenarios and makes selection
for novel scenarios possible.

Applying our approach in practice could yield some insights into how different
ways of computing usage patterns or utility functions would fare, or what the
impact of introducing conditional contracts in existing systems would be.

Last but not least, our work could also be extended in several ways. First, if
anyone is going to use conditional contracts, the question is how to best formalize
them, which could e.g. be done using WSLA [5]. Second, while we introduced
conditional contracts, our approach could also, more generally, be applied to
conditional descriptions of NFPs that are not necessarily contained in a contract.
This also leaves the questions how to get such descriptions, and from where
and from whom to get them. Finally, we have only looked into selection so
far, but applying our approach to adaptation could be very interesting, because
conditional descriptions of NFPs, and usage patterns could probably change at
runtime.

References

1. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented com-
puting. Communications of the ACM 46, 25–28 (2003)

2. O’Sullivan, J., Edmond, D., Ter Hofstede, A.: What’s in a Service? Distributed
and Parallel Databases 12(2-3), 117–133 (2002)

3. Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.P.: Semantic Matching of
Web Services Capabilities. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS,
vol. 2342, pp. 333–347. Springer, Heidelberg (2002)

4. de Bruijn, J., Lausen, H., Krummenacher, R., Polleres, A., Predoiu, L., Kifer,
M., Fensel, D., Toma, I., Steinmetz, N., Kerrigan, M.: The Web Service Modeling
Language WSML. Technical report, WSML, WSML Final Draft D16.1v0.3 (2007),
http://www.wsmo.org/TR/d16/d16.1/v0.3/

5. Ludwig, H., Keller, A., Dan, A., King, R., Franck, R.: Web Service Level Agree-
ment (WSLA) Language Specification, Version 1.0, IBM Corporation (2003),
http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf

6. Hwang, S., Want, H., Tang, J., Srivastava, J.: A probabilistic approach to modeling
and estimating the QoS of web-services-based workflows. Information Sciences: an
International Journal 177(23), 5484–5503 (2007)

7. Rosario, S., Benveniste, A., Haar, S., Jard, C.: Probabilistic QoS and Soft Contracts
for Transaction-Based Web Services Orchestrations. IEEE Transactions on Services
Computing 1(4), 187–200 (2008)

http://www.wsmo.org/TR/d16/d16.1/v0.3/
http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf

268 A. Klein, F. Ishikawa, and B. Bauer

8. Toma, I., Roman, D., Fensel, D., Sapkota, B., Gomez, J.M.: A Multi-criteria Ser-
vice Ranking Approach Based on Non-Functional Properties Rules Evaluation. In:
Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp.
435–441. Springer, Heidelberg (2007)

9. Balke, W., Wagner, M.: Towards Personalized Selection of Web Services. In: WWW
2003 (May 2003)

10. Menasce, D.A., Dubey, V.: Utility-based QoS Brokering in Service Oriented Archi-
tectures. In: ICWS 2007, July 2007, pp. 422–430 (2007)

11. Haddad, J.E., Manouvrier, M., Ramirez, G., Rukoz, M.: QoS-Driven Selection of
Web Services for Transactional Composition. In: ICWS 2008, September 2008, pp.
653–660 (2008)

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 269–284, 2009.
© Springer-Verlag Berlin Heidelberg 2009

ServiceTrust: Supporting Reputation-Oriented
Service Selection

Qiang He1,2, Jun Yan3, Hai Jin1, and Yun Yang2

1 School of Computer Science and Technology
Huazhong University of Science and Technology, Wuhan, 430074, China

hjin@hust.edu.cn
2 Faculty of Information and Communication Technologies

Swinburne University of Technology, Melbourne, Australia 3122
qhe@ict.swin.edu.au, yyang@swin.edu.au

3 School of Information Systems and Technology
University of Wollongong, Wollongong, Australia 2522

jyan@uow.edu.au

Abstract. Service transactions, although attached with service level agree-
ments, may still fail due to various reasons, intentionally or accidentally, in the
open and volatile service-oriented environment. In service selection, consumers
often need to estimate the trustworthiness of the provider with limited prior ex-
perience and knowledge about them. Moreover, the service-oriented environ-
ment exposes consumers to unique threats including malicious reputation
manipulation and quality-of-service (QoS) abuse. This paper presents Service-
Trust – a novel trust management approach to support reputation-oriented ser-
vice selection by quantifying and comparing the trustworthiness of providers
based on their historic performance over service transactions. ServiceTrust
combines a consumer’s and other consumers’ personal trust to estimate the pro-
vider’s trust value. Our experimental results demonstrate that ServiceTrust can
significantly increase the success rate of service transactions and is effective in
resisting malicious reputation manipulation and QoS abuse.

Keywords: Service-oriented computing, Web services, service selection, trust,
service reputation.

1 Introduction

Service-oriented computing (SOC) has been attracting tremendous attention from both
the academic and industrial communities. Using SOC, various services across a spec-
trum of domains can be provided to service consumers over the Internet. Service
consumers can look for preferred and qualified services through service registries,
invoke services in a loosely coupled manner, and receive desired outcomes from in-
voked services. Moreover, services from distributed locations can be composed to
create new value-added composite services. In the service-oriented environment,
services are essentially considered merchandises so that service level agreements

270 Q. He et al.

(SLAs) can be established between service consumers and providers to specify mutu-
ally-agreed understandings and expectations of the quality-of-service (QoS) [10].

However, service providers would not always successfully enforce the SLAs due to
various reasons. SLA violations occur from time to time, intentionally or accidentally.
For example, malicious service providers may strategically fail service transactions
despite of the penalty specified in the previously established SLA. Service providers’
failures to enforce SLAs may result in unpredictable consequences and noncom-
pensable loss which cannot be specified in SLAs beforehand. In service selection, the
QoS can be negotiated over, but the success rate of the service transaction cannot be
provided by the service providers. This problem is especially severe in the service
composition scenarios where the composite services are composed of several compo-
nent services. The failure of an individual component service in this scenario may
result in exceptions in the composite service. When searching for service providers,
service consumers usually prefer those who are most likely to successfully enforce the
SLAs.

In addition, the open and volatile service-oriented environment exposes service
consumers to various threats. A widely recognised one is that malicious service pro-
viders manipulate service consumers to report incorrect feedbacks in order to boost
their reputations or to ruin their competitors’ reputations [13]. Another major threat is
QoS abuse, where service providers strategically alter their QoS offering behaviour
and then provide fraudulent services in order to earn profits [24].

Due to the above issues, in service selection, solutions should be provided to help
the service consumers estimate the trustworthiness of the service providers, as sug-
gested but not specified by [1, 12, 28]. However, it is difficult for a service consumer
to determine how much it can trust a service provider due to the lack of sufficient
experience and knowledge about the service provider. A direct approach to address
this issue is to use a reputation system which collects and processes feedback about
service providers’ past behaviour [11, 18, 20, 25]. To the best of our knowledge, no
reputation system has been tailored for service selection in the service-oriented envi-
ronment and the threats described earlier have not been properly addressed.

Furthermore, the service providers in the service-oriented environment usually
have unique identifications in order to allow the service consumers to identify their
services. In contrast, the peers in the P2P environment are usually anonymous. This
feature makes it difficult to stimulate the peers to develop and maintain long-term
reputations. Therefore, existing trust and reputation systems in the P2P environment,
which usually put a lot of effort in maintaining peers’ anonymity property, are some-
how unsuitable to be directly applied in the service-oriented environment where long-
term reputation is desirable.

This paper proposes ServiceTrust, a novel reputation-based trust approach which
supports reputation-oriented service selection by estimating service consumers’ trust
over service providers based on their historic performance for SLA enforcement.
ServiceTrust can improve the success rate of service transactions by helping service
consumers identify trustworthy service providers in the open and volatile service-
oriented environment. Through analysing service providers’ long-term performance,
ServiceTrust can effectively resist malicious reputation manipulation. In addition,
ServiceTrust can effectively resist QoS abuse by calculating transactional trust in
consideration of the QoS of the past successful service transactions that a service

 ServiceTrust: Supporting Reputation-Oriented Service Selection 271

provider has performed. ServiceTrust is independent of the underlying communica-
tion model so that it can be applied to different distributed computing architecture
such as client-server and P2P.

The rest of the paper is organised as follows. Section 2 analyses the requirements
of a reputation-oriented trust management approach for the service-oriented environ-
ment. Section 3 introduces the ServiceTrust mechanisms. After that, section 4 demon-
strates the performance of the proposed ServiceTrust mechanisms with experimental
evaluation. Section 5 introduces the major related work, and finally, section 6 summa-
rises the key contribution of this paper and outlines the future work.

2 Requirements Analysis

To design a trust approach that supports reputation-oriented service selection, the
following two threats that exist in the service-oriented environment must be ad-
dressed.

Malicious reputation manipulation. Malicious service providers may manipulate
service consumers through techniques such as bribery to provide incorrect ratings in
order to boost their reputations or to ruin their competitors’ reputations. Malicious
service providers can also inject incorrect ratings by faking service consumers.

QoS abuse. Malicious service consumers and providers may strategically alter their
behaviour in QoS offering in order to obtain profits. For example, malicious service
providers may use successful service transactions with small amounts to obtain ser-
vice consumers’ trust and then defraud the service consumers of their money with
fraudulent service transactions with large amounts. Genuine service providers may
also strategically alter their behaviour under certain circumstances, e.g. given an order
of a service transaction with an unusually large amount; a genuine service provider
might make the transition into being a malicious service provider and then provide a
fraudulent service transaction.

To resist the threat of malicious reputation manipulation, service consumers’ trust
over service providers should be built on service providers’ long-term reputations
which are evaluated based on service providers’ long-term performance. Long-term
reputations can smooth out short-term fluctuations and highlight long-term trends of
service providers’ reputations. Another benefit of basing service consumers’ trust on
service providers’ long-term reputation is that it encourages service providers’ trust-
worthy and consistent behaviour at present.

To resist the threat of QoS abuse, when evaluating service consumers’ trust for in-
dividual service transactions, namely transactional trust, the QoS of the past success-
ful service transactions that the service providers have performed must be taken into
account. By doing so, potential fraudulent service transactions can be identified and
avoided.

3 ServiceTrust Mechanisms

The reasons why long-term reputation can help the service consumer with evaluating
the trustworthiness of the service providers are twofold. First, service consumers can

272 Q. He et al.

obtain information to estimate service providers’ abilities to successfully perform the
forthcoming service transactions. Second, service providers’ expectation of long-term
reputations creates an incentive for their good performance at present. In this section,
we will introduce a hierarchical trust structure which consists of local transactional
rating, local trust, global trust and transactional trust, and the supporting mecha-
nisms.

3.1 Generating Local Transactional Ratings

A local transactional rating describes a service consumer’s experience of an individ-
ual service transaction with a service provider. Some early works [11, 25, 27], which
use binary rating systems for calculating peers’ reputations, prove that binary-value
ratings work well for file-sharing systems, in which a file is either a complete or an
incomplete version. An SLA in the service-oriented environment can be seen as an
equivalent of a file in a file-sharing system because an SLA also only has two final-
ised status: fulfilled or unfulfilled, representing a successful service transaction or a
failed one. Using binary values to rate service transactions is simple and does not
require service consumers’ physical participation. Another advantage of adopting
binary-value ratings is that the ratings are explicit – a service transaction is either
successful or unsuccessful in fulfilling the attached SLA. However, some recent
works [23, 26] adopt numeric rating systems, in which the ratings are in a certain
interval, e.g. [0, 1]. Compared to binary-value ratings, numeric-value ratings can
model more accurately a service consumer’s experience of a service transaction. But
it requires service consumers’ direct participation in the rating process which might
become an obstacle to the extensive use of the application. Moreover, service con-
sumers’ lack of incentive and knowledge to report authentic and accurate ratings over
service transactions may result in undesired, inaccurate or even incorrect ratings.

To give application developers flexible choices, ServiceTrust supports both binary-
value and numeric ratings. For binary-value ratings, 0 represents a failed service
transaction and 1 represents a successful one. The definition of service consumer i’s
local transactional rating over the nth service transaction with service provider j, de-
noted as (n)

i , jr , is defined as follows:

 (n)
i , j

0 service transaction failed

1 service transaction succeeded
r

⎧⎪
⎨
⎪⎩

= (1)

Service consumer can also rate service transactions using a value in the interval of
[0, 1], with 0 and 1 representing complete dissatisfaction and complete satisfaction
respectively. Considering that service consumers might lack the knowledge of QoS
satisfaction, it is advisable for application developers to provide the service consum-
ers with necessary assistance in the rating process.

3.2 Aggregating Local Transactional Ratings

To obtain a service consumer’s local trust over a service provider, local transactional
ratings generated from the service consumer’s past service transactions with the ser-
vice provider need to be aggregated. In the aggregation, we consider the temporal

 ServiceTrust: Supporting Reputation-Oriented Service Selection 273

dimension when evaluating the credibility of the local transactional ratings. It is not
only their values that matter, but also at what time they are recorded – we assume that
the local transactional ratings are recorded upon the completion of the service transac-
tions. The credibility of a local transactional rating diminishes as time elapses. The
ratings over a service consumer’s recent service transactions with a service provider
are more credible than the old ones. Also, when combining a service consumer’s and
other service consumers’ personal local trust (as detailed in Section 3.3), the recent
ratings provided by one service consumer are more credible than the old ones pro-
vided by another service consumer.

We use exponential moving average (EMA) scheme [3] to aggregate a service con-
sumer’s local transactional ratings over a service provider. Weights are computed to
represent the credibility of the ratings according to how old the ratings are. The
weight of each older rating decreases exponentially, giving more credibility to recent
ratings whilst not entirely discarding older ratings. By doing so, short-term fluctuation
of ratings can be smoothed out and long-term trend can be highlighted. Since the
threshold between short-term and long-term is application specific, ServiceTrust uses
parameter θ , as a time window, to specify valid ratings when aggregating the local
transactional ratings. Ratings lying outside ofθ are considered obsolete and thus dis-
carded in the aggregation. θ can be set accordingly by the application developers to
meet the requirements of applications.

The elapsed time since a service transaction has been performed is used to express
how old the corresponding rating is. In order to compute the elapsed time of the rat-
ings, ServiceTrust requires the rating time, i.e. the time when the transaction is rated,
to be recorded along with the rating in the form of 2-tuple: (n) (n)

i , j i , j(r ,t) .

The process of calculating service consumer i’s local trust over service provider j
by aggregating the series of local transactional ratings over the past service transac-
tions between them, i.e. (1) (1)

i , j i , j[(r ,t), (2) (2) (n) (n)

i , j i , ji , j i , j(r ,t),...,(r ,t)] , consists of the following

five steps.
1. Compute the elapsed time, denoted as (n)

i , jet , since each transaction was rated.

The series of local transactional ratings becomes:
(1) (1) (2) (2) (n) (n)

i , j i , j i , ji , j i , j i , j[(r ,et),(r ,et),...,(r ,et)] ;

2. Determine the value of the time window, θ ;
3. Divide the time frame confined by θ into s time slots;
4. Compute the arithmetic average value of the local transactional ratings in each

time slot, denoted as (1) (2) (s)

i , j i , j i , jr rar ,a ,...,a ;

5. Aggregate (1) (2) (s)

i , j i , j i , jr rar ,a ,...,a to obtain service consumer i’s local aggregated

rating over service provider j, denoted as i , jR , using exponential averaging

scheme as follows:

 R
s

(k)k
i , j i , j

k 1

R (1) arα α
=

= −∑ (2)

where 0 1α< < controls how fast the credibility of the ratings decreases over time.
Besides θ , two other parameters, s andα , are manoeuvrable. They can be set by

application developers to control the weight decrease in order to meet application

274 Q. He et al.

specific requirements. The bigger s andα are, the faster the weight decreases, mean-
ing the faster the old ratings in θ become incredible.

3.3 Combining Personal Trust

The local trust introduced in Section 3.2 reflects a service consumer’s personal opin-
ion of a service provider. To comprehensively evaluate a service consumer’s global
trust over a service provider, the service consumer’s local trust should be combined
with other service consumer’s local trust. By doing so, the service consumer can ob-
tain a global and comprehensive view of the service provider. A simple approach to
the combination is to simply average all the local trust. An advanced approach is to
compute a weighted average of all the local trust, where the weights represent the
credibility of the local trust.

The credibility of a service consumer’s local trust over a service provider depends
not only on how old the local transactional ratings are (see Section 3.1), but also on
how long the service consumer has had interactions with the service provider. Experi-
ence with the service provider in the longer-term gives the service consumer more
information and knowledge about the service provider, thus enabling the service con-
sumer to predict the service provider’s ability and behaviour better [6, 21]. It also
provides a firmer basis for calculating the credibility of the service consumer’s local
trust over the service provider. Therefore, when incorporating other service consum-
ers’ local trust into evaluating a service consumer’s global trust over a service pro-
vider, we consider the relationship duration between the service consumers and the
service provider, measured by the number of past service transactions between them.
The longer relationship duration a service consumer has with the service provider, the
more credible its local trust over the service provider is.

We adopt Rayleigh cumulative distribution functions [19] to calculate the weights
according to the number of a service consumer’s past service transactions with the
service provider. The credibility of service consumer i’s local trust over service pro-
vider j, denoted as i , jβ , is calculated as follows:

2

i , j 2

x
1 exp() (0)

2
β σ

σ
−

= − > (3)

whereσ is a parameter that inversely controls how fast i , jβ increases as the number of

interactions, denoted as x, increases.σ can be set by the application developers, from
0 to theoretically ∞ , to capture the characteristics of different application scenarios.

Compared to other service consumers’ local trust, a service consumer can choose to
trust its own local trust more or less when evaluating its global trust over the service
provider. To reflect this nature, the weight assigned to the service consumer’s own
local trust over the service provider, denoted as i , jβ ′ , is computed as follows:

2

2i , j

x
1 exp() () 0

2()
β σ ε

σ ε
−′ = − + >

+
 (4)

where x is the number of service transactions that service consumer i has had with
service provider j and ε specifies how much more (using a negative number) or how

 ServiceTrust: Supporting Reputation-Oriented Service Selection 275

much less (using a positive number) the service consumer trusts its own local trust
over service provider j than other service consumers’.

Then service consumer i’s global trust over service provider j, denoted as i , jR% , can

be calculated as follows:

 i , j k , j k , j
k

i , j i , jR R Rβ β′ ′= ⋅ + ⋅∑% (5)

where i , jR′ is service consumer i’s own local trust over service provider j and
k , j

R is the

kth other service consumer’s local trust over service provider j.

3.4 Evaluating Transactional Trust

The scheme presented in this section can be applied to prevent various types of QoS
abuse, e.g. execution time, availability and throughput, etc. Since transaction amount
is usually one of a service consumer’s most important concerns about the service in
the service-oriented environment, we present the solution to transaction amount abuse
for demonstration.

To prevent service consumers from transaction amount abuse, we incorporate the
transaction amount into estimating service consumers’ transactional trust for individ-
ual service transactions. We define transactional trust as the probability at which a
service consumer believes the service provider will perform an individual service
transaction and deliver expected outcomes specified in the attached SLA.

Transaction amount abuse usually consists of two steps. First, the malicious service
provider fulfils service transactions with relatively small amounts in order to obtain a
service consumer’s trust. Second, the malicious service provider entices the service
consumer to give it an order for a service transaction with a large amount, and then
defrauds the customer with fraudulent service transactions or inferior goods after-
wards. Under other circumstances, a fraudulent service transaction might also be
performed, e.g. a genuine service provider may make the transition into being mali-
cious when it gets an order for a service transaction with an unusually large amount
which reaches or crosses its threshold for being genuine.

We address this issue by evaluating the transactional trust in consideration of the
similarity between the quote on the forthcoming service transaction and the average
transaction amount of the successful service transactions the service provider has
performed. The base for this approach is the spirit of situational trust [15]: experience
from situations of a similar nature will give a means of determining risk accurately.
When evaluating the transactional trust, we consider two factors:

1. The average amount of successful service transactions that the service pro-
vider has performed. In general, the larger the quote on a service transaction is
than the average amount of its past successful service transactions, the more
likely that the service provider will provide a fraudulent service transaction.

2. The extent of amounts of successful service transactions that the service pro-
vider has performed. If a service provider has a large extent of amounts
of successful service transactions, the chance that it will provide a fraudulent
service transaction is slim.

276 Q. He et al.

Combining the considerations on the above two factors, we evaluate service consumer
i’s transactional trust for a forthcoming service transaction provided by service pro-
vider j, denoted as i , jR , using formula (6).

i , j i , jR Rγ= ⋅ % (6)

k
2

1
()γ

Δ
= (7)

new
ave

jj

q 1

cva
Δ = ⋅ (8)

M
m ave 2
j j

m 1
j ave

j

(a a)

cv
a

=

−
=
∑

 (9)

where γ is the transactional amount impact factor, k is the parameter that controls

how fast the transactional trust decreases as Δ increases, newq is the quote on the forth-

coming service transaction, ave

j
a is the average amount of the successful service trans-

actions provider j has performed, m

j
a is the amount of the thm successful service transac-

tion provider j has performed, and jcv is the coefficient of variation

of 1 2 m M

j j j j
a ,a ,...,a ,...,a . Parameter k can be set by application developers according to the

requirements of the applications. For example, in the scenario where the fluctuation of
prices is relatively violent, such as the global crude oil market, a small k is advisable.

Usually the smaller the transaction amount is, the better it is for the service con-
sumers. However in relation to some QoS such as availability and throughput, the
higher the better it is for the service consumers. In those cases, formula (10) can be
used to replace formula (8):

ave
j

new j

a 1

q cv
Δ = ⋅ (10)

3.5 Initial Trust for New Services

In the discussion so far, we assume that a service provider provides one type of ser-
vice. However, in the service-oriented environment, a service providers might be able
to provide multiple types of services with respective service identifications. Accord-
ingly, in ServiceTrust, a service consumer’s trust over a service provider is service
specific, and is estimated based on the service provider’s historic performance over an
individual type of services. It is possible that when a service provider starts offering a
new service, there is no historic performance information about the new service for
service consumers to refer to. In this case, a service consumer’s trust for this new
service cannot be evaluated as described above.

The development of a service consumer’s initial trust for a new service usually
goes through two stages: an exploratory stage and a commitment stage, which reflect

 ServiceTrust: Supporting Reputation-Oriented Service Selection 277

the general belief in the trust literature [2]. At the exploratory stage, the service pro-
vider’s reputation will influence the service consumer’s intention to trust the service
provider. At the commitment stage, experience-based knowledge will readily replace
the tentative trust built at the exploratory stage [16]. Another factor that influences a
service provider’s tentative trust over a service provider is its familiarity with the
service provider [7, 14]. Familiarity is referred to as the understanding of the context
which the service transaction is involved, and hence is considered the precondition for
tentative trust [14].

From the perspectives of both reputation and context, we assume that a service
provider with good reputation obtained from its existing services tends to provide the
new service at a high success rate. This assumption is acceptable at least at the early
stage of the new service’s appearance because the service provider has to cater for the
service consumers in order to quickly develop its reputation for the new service and to
attract more potential service consumers [17]. Therefore, a service consumer’s initial
trust for a new service can be estimated through looking into the service provider’s
global reputation which is obtained by aggregating its reputations for its other ser-
vices. And the estimation of a service consumer’s initial trust for the new service is
based on the service provider’s global reputation. After interacting with the service
provider, the service consumer can gradually incorporate its own experience and
knowledge into developing its trust for the service following the procedure presented
above (Sections 3.1-3.4). In ServiceTrust, service consumer i’s global trust over ser-
vice provider j, denoted as

i , j
R̂ , based on its trust for service provider j’s N individual

existing services is calculated as:

N

(n)

i , j i , j
n 1

1
R̂ R

N =

= ∑ %

(11)

where (n)

i , jR% is service consumer i’s trust for the nth individual existing service provided

by service provider j.

4 Experiments

In this section, we will assess the effectiveness of ServiceTrust as compared to a ran-
dom service selection with no trust and reputation systems enabled. And then we will
demonstrate our approach’s resistibility against the threats of malicious reputation
manipulation and QoS abuse. The issue of initial trust for new services is not directly
related to either effectiveness on service selection or resistibility against threats and
hence is not included in the experiments.

4.1 Experiments Configuration

Network model. We set up a service-oriented environment based on our previous
work [8] in which peers look up each other in an efficient decentralised way. The
simulation environment consists of 2000 service consumers and 200 service provid-
ers. Service consumers can request for services and service providers respond to these
requests. Service consumers can access all the information about service providers’
historic performance.

278 Q. He et al.

Node model. 20 types of services are provided by the 200 service providers, 10 for
each. Each service provider has an inherent success rate randomly picked from a cer-
tain interval for its past and forthcoming service transactions. Different intervals for
inherent success rates, including [0.9, 1], [0.8, 1] [0.7, 1], [0.6, 1], [0.5, 1] and [0.4, 1],
are used to describe different volatile environments, [0.9, 1] being the best and [0.4, 1]
being the worst. Throughout all experiments, service providers perform service trans-
actions at their inherent success rates except under threat model #5. In the experiments
with ServiceTrust enabled, genuine service consumers select the available service
provider they have the highest trust over (global trust in experiments #1 to #5 and
transactional trust in experiment #6), and rate service transactions honestly. Malicious
service consumers select service providers and rate service transactions under corre-
sponding threat models. The threat models are detailed in Table 1. In experiments
where ServiceTrust is disabled, service consumers randomly select service providers.

Table 1. Threat models

Malicious Service Consumers Threat
Models

Malicious Service
Providers Service Selection Rating

Threat
Model #1

NA
randomly select
service providers

rate 1 over all service
transactions with
malicious service
providers

Threat
Model #2

NA
select only malicious
service providers

rate 1 over all service
transactions with
malicious service
providers

Threat
Model #3

NA
randomly select
service providers

rate 0 over all service
transactions with genuine
service providers

Threat
Model #4

NA
select only genuine
service providers

rate over to all service
transactions with genuine
service providers

Threat
Model #5

provide fraudulent
services at the
probability of 1 λ−

NA NA

ServiceTrust parameters. Table 2 summarises the parameters carefully chosen for
the simulation in order to calculate service consumers’ trust over service providers
based on their historic performance in the long term.

Simulation execution. The simulation proceeds in simulation cycles. Each simulation
cycle is subdivided into an evaluation cycle, a transaction cycle and a rating cycle. In
an evaluation cycle, service consumers look up service providers and then evaluate

Table 2. ServiceTrust parameters used in simulation

α θ s σ ε k
0.1 10 simulation cycles 10 15 -5 1/7

 ServiceTrust: Supporting Reputation-Oriented Service Selection 279

their global trust or transactional trust over the service providers. In a transaction
cycle, each service consumer requests one service based on the results from trust
evaluation in the evaluation cycle. Service providers correspond and complete service
transactions. In each simulation cycle, each service provider can accommodate up to a
maximum of 40 service consumers. If a service provider is fully loaded, the service
consumer will turn to the service provider it has the next highest trust over. In a rating
cycle, service consumers rate the service transactions honestly or under corresponding
threat models. Binary rating values, described in Section 3.1, are used1. Upon the
completion of each simulation cycle, statistics are collected at each service consumer.
Each experiment is run 20 times and the results of all runs are averaged. We analyse
the statistics to assess ServiceTrust by measuring the average success rates of overall
service transactions.

4.2 Experimental Results

In experiment #1, we compare the average success rates of overall service transac-
tions with ServiceTrust enabled against disabled in volatile environments without
malicious service consumers and providers.

Figure 1 depicts results from experiment #1, showing that ServiceTrust can signifi-
cantly increase the average success rates of overall service transactions in different
volatile experiments. As the environment gets more volatile, the average success rate
decreases drastically in the absence of ServiceTrust. However, with ServiceTrust en-
abled, even when different service providers’ success rates vary in the large interval, i.e.
[0.4, 1], the average success rate of overall service transactions still remains at 93%.

Fig. 1. Increase of average success rates of overall service transactions with ServiceTrust
enabled

Then we conduct experiments #2-# 5 to evaluate ServiceTrust’s resistibility against
the threats of malicious reputation manipulation. Malicious reputation manipulation
includes patterns described by four threat models: individual and collective malicious
reputation boost, individual and collective malicious reputation ruin (threat
models #1-#4). As shown in Figures 2-5, the experimental results demonstrate that

1 We choose not to use numeric ratings to avoid unnecessary issue of modeling service

consumer’s satisfaction from QoS.

280 Q. He et al.

ServiceTrust can well protect the trust management from being undermined by these
four threats in the long term.

Finally we test ServiceTrust’s resistibility against the threats of QoS abuse (threat
model #5) via experiment #6. This threat model describes the providers’ strategic
change of behaviour in QoS offering. We simulated the scenarios in which malicious
service providers provide fraudulent services at the probability of 1 γ− . The results, as
depicted in Figure 6, show that ServiceTrust can almost perfectly protect the consum-
ers from being deceived by QoS abuse. In the most volatile environment with 70%

Fig. 6. Average success rate in different volatile environments under threat model #5

Fig. 2. Average success rates in different
volatile environments under threat model #1

Fig. 3. Average success rates in different
volatile environments under threat model #2

Fig. 4. Average success rates in different
volatile environments under threat model #3

Fig. 5. Average success rates in different
volatile environments under threat model #4

 ServiceTrust: Supporting Reputation-Oriented Service Selection 281

malicious service consumers and providers, the average success rate is still above
99%. The reason is that when the QoS is unusually better than the normal QoS that a
service provider used to provide, the service consumer’s transactional trust over that
service provider drops immediately and drastically. The chance is very slim that a
malicious service provider will be selected by a service consumer.

5 Related Work

Reputation-based trust research is being carried out in several distinct areas, most
notably computer science and economics. An overview of many trust systems for
online service provision can be found in [9]. And many key issues in reputation-based
trust evaluation mechanisms in e-commerce environments are discussed in [22].

In the domain of distributed computing, several reputation systems have been pro-
posed. Cornelli et al. [4] proposes P2PRep, a P2P protocol which complements
Gnutella - an existing P2P file-sharing protocol. In P2PRep, peers can keep track of
and share information about other peers’ reputation. However, there are no formalised
approaches to evaluate the reputation and credibility of the peers and no experimental
evaluation is provided. Damiani et al. [5] enhance their previous work in [4] by intro-
ducing XRep, a distributed polling protocol that inquires the P2P network for peers’
opinions (votes) on targeted resources. Votes are clustered based on IP address to
prevent Sybil and collaboration attack. XRep focuses on supporting anonymous and
secure services while preserving anonymity to a degree. Kamvar et al. [11] proposes
EigenTrust, a distributed method for P2P file-sharing networks. Unique global trust
values are computed and assigned to each peer in the network. EigenTrust requires
pretrusted peers in the network to address the collusion problem. The limitation of
their approach is that pretrusted peers may not always be available in all cases. Xiong
et al. [25] proposes PeerTrust, a feedback based trust management system. PeerTrust
incorporates three basic trust parameters (the feedback, the total number of transac-
tions a peer performs and the credibility of the feedback sources) and two adaptive
factors (transaction context factor and the community context factor) into computing
the trustworthiness of peers. However, the solution adopted to measure feedback
credibility, namely Trust-Value based credibility Measure (TVM), assumes that trust-
worthy nodes be more likely to be honest on the feedback they provide. This assump-
tion is not generally true because peers may send incorrect feedbacks to ruin the
reputations of its competitors. Srivatsa et al. [20] proposes TrustGuard, a safeguard
framework in decentralised overlay networks, aiming at countering various vulner-
abilities in reputation management. In TrustGuard, a peer rates credibility of feedback
from other peers using a personalised similarity measure (PSM). Feedbacks that are
similar to the peer’s own are considered more credible. This method is limited in the
cases where peers with long-term reputation are preferable and credible. For example,
if a provider peer delivers a bad service transaction to a consumer peer by accident,
malicious peers can flood bad feedbacks to rapidly ruin the consumer peer’s trust over
the provider peer.

Wang et al. [24] presents a model which incorporates transaction amount into trust
evaluation. A simple method is proposed to measure the difference between old and

282 Q. He et al.

new transaction amounts. However, no amount-related malicious behaviour is mod-
elled and no experimental results are presented to validate their approach.

Our work focuses on the crossroad of SOC, electronic ecommerce and distributed
computing, and differs from the above works in a number of ways. First, ServiceTrust
evaluates service consumers’ trust over service providers based on their performance
over past service transactions in the long term. Second, the temporal factor and rela-
tionship duration between a service consumer and a service provider are taken into
account when evaluating the credibility of the service consumer’s local trust of the
service provider. Third, we address two unique and critical threats faced by reputation-
based trust systems in the service-oriented environment, namely, malicious reputation
manipulation and QoS abuse. Finally, we implement ServiceTrust and demonstrate the
effectiveness of ServiceTrust on service selection, and the resistibility against the two
threats.

6 Conclusions and Future Work

We have presented ServiceTrust – a novel trust management approach to support
reputation-oriented service selection. The proposed approach aims at addressing
unique threats in the service-oriented environment including malicious reputation
manipulation and QoS abuse. In ServiceTrust, we evaluate a consumer’s trust over a
provider based on the provider’s historic performance over service transactions in the
long term. A consumer’s local trust over a provider is combined with other consum-
ers’ to evaluate the consumer’s global trust over the provider. The credibility of a
consumer’s local trust over a provider is calculated by considering the temporal factor
and the relationship duration between the consumer and the provider. In order to resist
QoS abuse, the comparison between the QoS of the forthcoming service transaction
and the QoS of the successful service transactions that a provider has performed is
taken into account when calculating a consumer’s transactional trust. We have demon-
strated experimental results which show that ServiceTrust can significantly improve
the average success rate of service transactions by facilitating reputation-oriented
service selection. In addition, experimental results show that ServiceTrust can well
resist the following malicious threats: 1) individual malicious reputation boost; 2)
collective malicious reputation boost; 3) individual malicious reputation ruin; 4) col-
lective malicious reputation ruin; and 5) QoS abuse.

In the future, we will develop a complementary scheme to offer incentive to
consumers to participate in ServiceTrust and provide correct ratings over service
transactions. The resistibility against more threats will be further investigated in
ServiceTrust.

Acknowledgement

This work is partly funded by the Australian Research Council Discovery Project
Scheme under grant No.DP0663841, National Science Foundation of China under
grant No.90412010 and ChinaGrid project from Ministry of Education of China. We
are grateful for S. Hunter’s help with conducting the experiments.

 ServiceTrust: Supporting Reputation-Oriented Service Selection 283

References

1. Ardagna, D., Pernici, B.: Adaptive Service Composition in Flexible Processes. IEEE
Transactions on Software Engineering 33(6), 369–384 (2007)

2. Blau, P.: Exchange and Power in Social Life. John Wiley & Sons, New York (1964)
3. Chou, Y.-l.: Statistical Analysis: With Business and Economic Applications. Holt,

Rinehart and Winston (1969)
4. Cornelli, F., Damiani, E., di Vimercati, S.D.C., Paraboschi, S., Samarati, P.: Choosing

Reputable Servents in a P2P Network. In: Proceedings of 11th International Conference on
World Wide Web, pp. 376–386. ACM Press, Honolulu (2002)

5. Damiani, E., Vimercati, D.C.D., Paraboschi, S., Samarati, P., Violante, F.: A Reputation-
Based Approach for Choosing Reliable Resources in Peer-to-Peer Networks. In: Proceed-
ings of 9th ACM Conference on Computer and Communications Security, pp. 207–216.
ACM Press, Washington (2002)

6. Doyle, S.X., Roth, G.T.: Selling and Sales Management in Action: The Use of Insight
Coaching to Improve Relationship Selling. Journal of Personal Selling & Sales Manage-
ment 12(1), 59–64 (1992)

7. Gefen, D.: E-Commerce: the Role of Familiarity and Trust. Omega 28(6), 725–737 (2000)
8. He, Q., Yan, J., Yang, Y., Kowalczyk, R., Jin, H.: Chord4S: A P2P-based Decentralised

Service Discovery Approach. In: Proceedings of IEEE International Conference on Ser-
vices Computing, pp. 221–228. IEEE Computer Society, Honolulu (2008)

9. Jøsang, A., Ismail, R., Boyd, C.: A Survey of Trust and Reputation Systems for Online
Service Provision. Decision Support Systems 43(2), 618–644 (2007)

10. Jin, L.-j., Machiraju, V., Sahai, A.: Analysis on Service Level Agreement of Web Services.
Technical Report, HP Laboratories (2002),
http://www.hpl.hp.co.uk/techreports/2002/HPL-2002-180.pdf

11. Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The EigenTrust Algorithm for Reputa-
tion Management in P2P Networks. In: Proceedings of 12th International World Wide
Web Conference, pp. 640–651. ACM Press, Budapest (2003)

12. Ko, J.M., Kim, C.O., Kwon, I.-H.: Quality-of-Service Oriented Web Service Composition
Algorithm and Planning Architecture. Journal of Systems and Software 81(11), 2079–2090
(2008)

13. Lam, S.K., Riedl, J.: Shilling Recommender Systems for Fun and Profit. In: Proceedings
of 13th International Conference on World Wide Web, pp. 393–402. ACM Press, New
York (2004)

14. Luhmann, N.: Trust and Power. Wiley, Chichester (1979)
15. Marsh, S.P.: Formalising Trust as a Computational Concept, in Department of Mathemat-

ics and Computer Science Stirling, Scotland, UK, University of Stirling (1994)
16. McKnight, D.H., Choudhury, V., Kacmar, C.: Trust in E-Commerce Vendors: A Two-

Stage Model. In: Proceedings of 21st International Conference on Information Systems,
pp. 532–536. ACM Press, Brisbane (2000)

17. Mitchell, W.: Dual Clocks: Entry Order Influences on Incumbent and Newcomer Market
Share and Survival When Specialized Assets Retain Their Value. Strategic Management
Journal 12(2), 85–100 (1991)

18. Resnick, P., Kuwabara, K., Zeckhauser, R., Friedman, E.: Reputation Systems. Communi-
cations of the ACM 43(12), 45–48 (2000)

19. Ross, S.M.: Introduction to Probability and Statistics for Engineers and Scientists.
Academic Press, Cleveland (2000)

284 Q. He et al.

20. Srivatsa, M., Xiong, L., Liu, L.: TrustGuard: Countering Vulnerabilities in Reputation
Management for Decentralized Overlay Networks. In: Proceedings of 14th International
Conference on World Wide Web, pp. 422–431. ACM Press, Chiba (2005)

21. Swan, J.E., Nolan, J.J.: Gaining Customer Trust: A Conceptual Guide for the Salesperson.
Journal of Personal Selling & Sales Management 5(2), 39–48 (1985)

22. Wang, Y., Lin, K.-J.: Reputation-Oriented Trustworthy Computing in E-Commerce Envi-
ronments. IEEE Internet Computing 12(4), 55–59 (2008)

23. Wang, Y., Varadharajan, V.: A Time-Based Peer Trust Evaluation in P2P E-commerce
Environments. In: Zhou, X., Su, S., Papazoglou, M.P., Orlowska, M.E., Jeffery, K. (eds.)
WISE 2004. LNCS, vol. 3306, pp. 730–735. Springer, Heidelberg (2004)

24. Wang, Y., Wong, D.S., Lin, K.-J., Varadharajan, V.: Evaluating Transaction Trust and
Risk Levels in Peer-to-Peer E-Commerce Environments Information Systems and
E-Business Management 6(1), 25–48 (2008)

25. Xiong, L., Liu, L.: PeerTrust: Supporting Reputation-Based Trust for Peer-to-Peer Elec-
tronic Communities. IEEE Transactions on Knowledge and Data Engineering 16(7), 843–
857 (2004)

26. Yu, B., Singh, M.P., Sycara, K.: Developing Trust in Large-Scale Peer-to-Peer Systems.
In: Proceedings of 1st IEEE Symposium on Multi-Agent Security and Survivability, pp. 1–
10. IEEE CS Press, Philadelphia (2004)

27. Yu, B., Singh, M.P., Sycara, K.: A Reputation-Based Approach for Choosing Reliable Re-
sources in Peer to Peer Networks. In: Proceedings of 9th ACM Conference on Computer
and Communications Security, pp. 207–216. ACM Press, Washington DC (2002)

28. Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., Sheng, Q.Z.: Quality Driven Web
Services Composition. In: Proceedings of 12th International Conference on World Wide
Web, Budapest, Hungary, pp. 411–421 (2003)

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 285–300, 2009.
© Springer-Verlag Berlin Heidelberg 2009

QoS Browsing for Web Service Selection

Chen Ding1, Preethy Sambamoorthy1, and Yue Tan2

1 Department of Computer Science, Ryerson University, Canada
2 School of Software, Tsinghua University, China

cding@scs.ryerson.ca, preethy.sambamoorthy@ryerson.ca

Abstract. In most of current research works on Quality of Service (QoS) based
web service selection, searching is usually the dominant way to find the desired
services. However, sometimes, requestors may not have the knowledge of the
available QoS attributes and their value ranges in the registry, or they may only
have vague QoS requirements. Under this situation, we believe that browsing is
a more appropriate way to help the QoS-based service selection process. In this
paper, we propose an interactive QoS browsing mechanism to first show an
overview of the QoS value distribution to requestors and then gradually present
more and more detailed views on some requestor interested value ranges. We
find that interval data (or more generally symbolic data) is a more proper type
to represent the QoS value, compared with the single valued numerical data. So
we use interval clustering algorithms to implement our browsing system. The
experiment compares the performance of using different distance measures and
shows the effectiveness of the interval clustering algorithm we use. We also use
a sample data set to illustrate the interactive QoS browsing process.

1 Introduction

Web service discovery and selection have been extensively studied in recent years.
There are two major categories of approaches. The first one is based on the functional
descriptions of web services and usually the syntactic or semantic matching is done
[9] [18]. The second category is based on the non-functional properties of services,
such as various QoS attributes and trust and reputation measurements [1] [3] [12] [14]
[15] [19] [21]. QoS values can be obtained from publishers’ descriptions, signed con-
tracts between publishers and requestors such as Service Level Agreement (SLA), and
monitoring engines set up by the service registry or a third party. Trust and reputation
[20] value is calculated based on previous requestors’ experiences of using those
services or dealing with those providers. It could also be considered as a special type
of QoS attributes, and therefore, in this paper, we simply refer to this category of
approaches as the QoS-based selection method. In QoS-based service selection, re-
questors submit their QoS requirements, then services are chosen based on the ob-
tained QoS data, which is usually a multi-factor decision making process.

There is one fundamental problem in this QoS-based selection process. Most of
current approaches assume that requestors can formulate a QoS query correctly,
which might not be true sometimes. Requestors may not have the knowledge about
which QoS attributes are measured by the registry, or more commonly, what are the

286 C. Ding, P. Sambamoorthy, and Y. Tan

exact value ranges of those QoS attributes, which usually leads to an unsuccessful
search. For instance, a service requestor wants to find a service with a high reliability
level, and thus he puts the request as “reliability>99%”, however, none of the services
in the registry achieves this level, and the maximum reliability is 97%. In this case, no
matching result could be returned, but when no other choices are available, the re-
questor can accept a service with reliability 97%. This example shows the problem
with searching when improper query is submitted. Also many of the QoS require-
ments are considered as soft constraints, which means requestors only have a fuzzy
requirement on QoS values and it is often negotiable. For this kind of QoS require-
ments, searching on a fixed value is not a good option.

Information seeking on the web [5] is usually considered as an integrated activity
of browsing and searching. When users have a particular information need, searching
is a better way of finding information; when users don’t have a clear idea about what
they are looking for until the available options are presented, or users don’t know how
to formulate a query properly due to the lack of knowledge on the vocabulary or the
corpus, browsing is a better way. Browsing is also better on keeping the relevant
context information, which is crucial in some information seeking tasks.

We believe that QoS-based service selection should also be an integration of
browsing and searching. Based on requestors’ QoS requirements and their knowledge
level, sometimes searching is a better choice, and sometimes browsing is a better
choice. When a requestor first enters a service registry, browsing is the most appro-
priate way to navigate through a set of services which implement the similar functio-
nalities. After the requestor gains some knowledge on the QoS value distribution in
the registry, a QoS query could be formulated in a more accurate way and thus the
subsequent searching could be more accurate. The requestor can also continue the
interactive browsing until the desired service is identified. One advantage of the inter-
active browsing over searching is that requestors can be more actively involved in the
whole selection process, which is especially helpful for vague and negotiable QoS
requirements. In this paper, we focus more on the browsing part.

Since interval data is a more proper type to represent QoS values, compared with
the single valued numerical data, we propose to use interval clustering to group ser-
vices together based on their QoS values, and present the QoS clusters to requestors
so that they could have a better knowledge on the QoS value distribution pattern in
the registry. Based on the initial clustering, requestors could choose a few clusters
they are interested in, then the system would re-cluster this subset and present the re-
clustered results, and it could repeat until requestors find their desired services. Dur-
ing this process, searching is always an alternative route of selecting services.

There are three major contributions of the paper. Firstly, to the best of our know-
ledge, it is a novel idea of considering QoS-based service selection as an integrated
activity of searching and browsing and proposing an interactive QoS browsing me-
chanism. Secondly, we use an efficient clustering algorithm iteratively to help reques-
tors get more refined and focused view of their interested QoS values in the interac-
tive browsing process. Thirdly, we represent the QoS data for each service as a vector
of interval data, which is more accurate, and use interval clustering instead of the
traditional clustering algorithms so as to avoid the loss of information.

The rest of the paper is organized as follows. Section 2 reviews the related works.
Section 3 describes the properties of the QoS data, explains the interval clustering

 QoS Browsing for Web Service Selection 287

algorithm which we believe is the most appropriate clustering algorithm for QoS data,
and defines our interactive QoS browsing algorithm. Then in section 4, we explain
our experiment steps, analyze the results, and then use one example to illustrate the
interactive browsing procedure. Finally in section 5, we conclude the paper.

2 Related Works

There are three areas of research works we will review: QoS-based service selection,
information seeking and interactive browsing on the web, and interval clustering.

Web service selection is a two-step process: searching for services which could
match requestors’ functional requirements, and making a selection of services which
could also satisfy requestors’ non-functional (i.e. QoS) requirements. In the second
step, similar services are filtered on the hard-constraint QoS requirements, and then
ranked based on the soft-constraint QoS requirements. There are many issues in QoS-
based service selection. We mainly review the QoS models and selection algorithms.

Different QoS models have been proposed to include various QoS attributes. In
[15], the author defines four categories of QoS attributes: runtime related, transaction
support related, configuration management and cost related, and security related. In
[20], QoS attributes are categorized into four types: performance, dependability, secu-
rity, and finally the application-specific metrics. In many other papers [3] [12] [14],
the necessity to include domain specific QoS is also recognized, as well as the indi-
vidual requestor’s unique need on the QoS criteria.

There are many different QoS-based selection mechanisms. In [14], a fair and open
QoS computation model is proposed and implemented in a service registry. QoS val-
ues are normalized and similar qualities are grouped. Then a linear combination with
user preference based weights is used to calculate the final QoS value. They also
enforce a policing mechanism to prevent the manipulation of QoS values from re-
questors. In [12], optimal service selection is achieved through the multi-attribute
decision theory methods, the declarative logic-based matching rules are specified
instead of the hard-coded matching algorithms, and therefore the whole algorithm is
more flexible. In [19], for each service, based on the previously collected quality data
with its trustworthiness and credibility, a time series forecasting technique is used to
predict its future quality conformance level, and a simple additive weighting method
is used to calculate the final QoS value. In [3], the service domains and QoS specifi-
cations are treated as subspaces in a multidimensional space. The QoS parameters
published by providers are modeled as point data, whereas the requestor’s parameter
specifications are represented as constraints on these points. So the subspace cluster-
ing can be used to identify the matching services.

Browsing and searching are considered as two complementary ways of accessing
information on the web [5]. When users have specific information needs, they would
submit a query to a search engine such as Google, and then try to find the result from
the returned ranked list of web pages. When users are not looking for anything in
particular, or don’t know how to formulate a query properly, they could go to a direc-
tory site such as Yahoo, or use some navigation tools such as Scatter/Gather [6].

The basic idea of the Scatter/Gather browsing method [6] is that: given a document
collection, the system scatters it into a small number of clusters, and generates a

288 C. Ding, P. Sambamoorthy, and Y. Tan

summary for each cluster and presents to the user; the user can then select one or
more clusters for further study based on summaries; the selected clusters are gathered
together and the system then applies clustering again to scatter this sub-collection into
a small number of clusters and presents to the user; this process could continue until
the individual desired document is identified. Since the efficiency is really important
in this interactive browsing process, there are a few follow-up works such as [11]
trying to improve the efficiency of the on-the-fly clustering algorithm to make the
system more feasible for the real use.

Clustering is an unsupervised learning technique to identify the natural groupings
of data objects based on distance or similarity measures between them. There are two
types of clustering algorithms, namely, partitioning and hierarchical. The first type
generates flat clusters where each object is distinctly grouped into separate clusters by
iteratively relocating the cluster centers. The second type produces a tree like struc-
ture that progressively join the most similar data at each level of the hierarchy.

Most of the clustering algorithms deal with the vector data, and in the vector, each
item is a numerical value. There is a branch of clustering algorithms which specially
deal with the interval data or more generally symbolic data. Symbolic data analysis
[8] is a novel way of analyzing multi-valued data variables. It can handle variables of
type numerical, interval, categorical, enumeration and modal, in which interval data is
the most common type of study. For the interval data, interval clustering algorithms
could produce more accurate clustering results than applying traditional clustering
algorithms on representative single point values (e.g. midpoints of intervals), and
furthermore, the structure information of the interval data will not be lost.

In [7], a dynamic clustering algorithm is used for the interval data with a two-step
relocation process, which involves identification of prototypes representing each
cluster by the local optimization of an adequacy function, followed by the allocation
of data individuals to the correct clusters using their proximity from the prototypes.
The algorithm repeatedly re-identifies new cluster prototypes followed by the re-
allocation step until the adequacy function converges. The proximity is measured by
two adaptive versions of the city-block distance. In another paper [4], the dynamic
clustering algorithm is used with Hausdorff distance measure and the two-component
dissimilarity measure. Other than the partitioning algorithms discussed in above pa-
pers, the hierarchical clustering also can be used for interval data. In [10], an agglo-
merative algorithm for symbolic data based on the combined usage of similarity and
dissimilarity measures are presented, and these proximity measures are defined on the
basis of the position, span and content of symbolic objects. There are also various
other methods available for interval clustering, which are not reviewed here.

The work described in [13] is quite similar to ours because it also uses interval
clustering to group QoS data. But there are two key differences: firstly, it is more for
service providers, to present the clustered QoS values to them so that they could have
a better idea about what range of QoS values they should provide in order to attract
more requestors and compete with other providers, whereas our approach is more for
requestors to select desired services; secondly, it only considers a single QoS attribute
for clustering whereas our method considers QoS vectors which include the whole
range of QoS attributes.

 QoS Browsing for Web Service Selection 289

3 Interactive QoS Browsing for Service Selection

3.1 QoS Attributes of Web Services

There are many QoS attributes [15] [20] proposed for the web service selection. A few
common ones include response time, throughput, reliability, availability, scalability,
reputation, cost, and a few security properties such as authentication, confidentiality,
etc. In this paper, we consider three important quality attributes – reliability, response
time, and cost. Reliability is defined as the ability of a service to perform its required
function following the stated conditions for a specified time period. Response time is
defined as the difference between the time when a service is invoked and when the
service invocation is completed. And cost or price is given by the amount of money
paid by requestors to service providers on invoking and using the service successfully
or with failure depending on the terms signed in agreement documents. Although cost
is not part of QoS as specified in [20], it is considered as a QoS attribute in many
other papers. In this paper, for the simplicity reason, we still consider it as a QoS
attribute. Our proposed algorithm is flexible to include any number of quality
attributes. However, in the experiment, it is only tested on these three attributes.

In many QoS selection papers [12] [15] [19] [21], QoS value is assumed to be nu-
merical. Below is a segment of a sample tModel with the QoS information [21]:

<keyedReference tModelKey= “uddi:uddi.org:QoS:Price”
keyName= “Price Per Transaction” keyValue= “0.01”>

<keyedReference tModelKey= “uddi:uddi.org:QoS:ResponseTime”
keyName= “Average Response Time” keyValue= “0.05”>

<keyedReference tModelKey= “uddi:uddi.org:QoS:Availability”
keyName= “Availability” keyValue= “99.99”>

<keyedReference tModelKey= “uddi:uddi.org:QoS:Throughput”
keyName= “Throughput” keyValue= “500”>

From this example, we could see that each QoS attribute is measured by a single nu-
merical value. However, it is only a simplified representation of the real values. For
instance, response time is usually different in different service invocations, and so an
average value like in this example can only approximate the actual delivered values. It
would be more useful if the requestor could know the provider-promised upper and
lower bound of this value. It is also more reasonable for providers to publish a value
range of the response time instead of an average value. Even as in this example, an
interval such as (0, 0.05) would be more clear. If we look at the availability, 99.99
refers to the minimum required availability, and in a more accurate way, availability
should be (99.99, 100). Similarly throughput is also represented using the minimum
value, it might be higher than this published value and the maximum possible value is
restricted by the system capacity. The observation on these QoS attributes is also true
for many other attributes, and therefore, we believe that the interval data should be a
more accurate type to represent the QoS attribute. Sometimes, if the range is only
fixed on one end (e.g. availability>99), it could be converted to two ends (e.g.
99<availability<100); or if the quality (e.g. price) is a single numerical value, it could
still be converted to the interval data with both ends equal to this value. As pointed
out in [3] [14], QoS values could also be Boolean or enumeration or other types. So

290 C. Ding, P. Sambamoorthy, and Y. Tan

the symbolic data is the most appropriate type to represent the QoS attribute. In this
paper, since the three QoS attributes we choose are all interval data, we use interval
data analysis instead of the more generic symbolic data analysis.

3.2 Iterative Clustering for QoS Browsing

In QoS-based web service selection, the main task for requestors is to find a service
among a set of functionally similar services which also satisfies their quality require-
ments. It is very likely that requestors may not have any knowledge about the QoS
value distribution in this set, and QoS offered by different providers might also
change over time. Due to requestors’ lack of knowledge and the dynamism of QoS
values, we propose an interactive QoS browsing mechanism which could guide re-
questors in this selection process. Pure browsing is not feasible for a big collection
such as the web, but for a smaller collection, it is an effective information seeking
approach, which in fact is the case for our study. Another reason we choose the inter-
active browsing approach is that QoS-based selection usually involves the decision-
making on the tradeoff among different QoS attributes, and it is more reasonable to
include requestors in this process than doing it automatically for them. Automatic
decision making algorithms need requestors to specify their preferences and con-
straints very clearly, which could be very hard for them due to their lack of know-
ledge or the vagueness of the QoS requirements. We believe that the user involvement
in this QoS selection process is very important to make the best decision.

Clustering could organize a big collection into a small number of clusters so that it
is more comprehensible. In this paper, we propose an interval cluster based interactive
browsing algorithm which implements the similar functionality as Scatter/Gather [6]
and is catered for the QoS data set instead of the document collection as in Scat-
ter/Gather. Since the QoS values are symbolic data, we are going to use symbolic
clustering algorithms or more specifically the interval clustering algorithms.

3.2.1 Interval Clustering
The input to our clustering algorithm is a set of QoS vectors, and each QoS vector
includes intervals of p QoS attributes. Let QS = {Q1, Q2, …, Qn} be a set of n QoS
vectors described by p interval variables. Each QoS vector Qi (i = 1, 2, …, n) is
represented as ([q1s,i, q1e,i], [q2s,i, q2e,i], …, [qps,i, qpe,i]) where qjs,i and qje,i (j = 1, 2, …,
p) represent the start and end points of interval values for the j-th QoS attribute of
this vector. In this paper, we choose three QoS attributes and so the value of p is 3.

Both partitioning and hierarchical algorithms can be used for the interval data clus-
tering. Through our preliminary experiment, we found that the partitioning algorithm
is more efficient and also more effective than the hierarchical algorithm for the inter-
val data. Therefore, we decide to use the partitioning interval clustering algorithm.
Among different partitioning algorithms, we choose to use the dynamic clustering
algorithm which is widely used in different interval clustering systems and known for
its ability to globally optimize the data using simulated annealing [4] [7].

According to the dynamic clustering algorithm, our method searches for a partition
P = (C1, C2, …, CK) of QS in K clusters and a set of cluster prototypes G = (G1, G2,
…, GK) which locally optimizes an adequacy criterion W(P, G) defined as,

 QoS Browsing for Web Service Selection 291

(,) (,) (1)

Where D(CQi, Gk) is a dissimilarity measure between a QoS vector CQi ϵ Ck and the
cluster prototype Gk of Ck.

We use two different distance measures namely, city block [7] or Hausdorff [4] to
calculate the dissimilarity between two QoS vectors. The city block distance and the
Hausdorff distance are defined respectively as,

, (| , , | | , , |) (2)

, max (| , , |, | , , |) (3)

We now discuss the steps of the dynamic interval clustering algorithm. It requires
user input in the form of K, the desired number of clusters in the result. The steps are
described below.

1. The algorithm is initialized by choosing a partition randomly, or choosing K
distinct QoS vectors as prototypes G1, G2, …, GK and then assigning the re-
maining vectors to the closest prototype to construct the initial partition.

2. The next step is to represent the cluster prototypes for the generated clusters as
the median of the intervals. Gk (k = 1, 2, …, K) is represented as ([gq1s,k,
gq1e,k], ([gq2s,k, gq2e,k], …, [gqps,k, gqpe,k]) where gqjs,k is the median of {cqjs,i,
CQi ϵ Ck} and gqje,k is the median of {cqje,i, CQi ϵ Ck} (j = 1, 2, …, p).

3. This step allocates all the QoS vectors to the closest prototypes to form the
new partitions.

4. The above two steps will be repeated until achieving the convergence of the
algorithm, when the adequacy criterion (formula 1) reaches a stable value.

At the end, all the web services are clustered according to their QoS attributes and the
result K clusters are presented to requestors.

3.2.2 Interactive Browsing
In order to implement the interactive browsing system, we use the dynamic interval
clustering algorithm repeatedly. The whole browsing procedure is explained below.

1. Assume that we have used some algorithms to find out all the web services sa-
tisfying requestors’ functional requirements. Given the QoS vectors of this set
of services as the input to the dynamic clustering algorithm, we could get an
initial clustering of all QoS vectors and these K clusters will be presented to
requestors along with the prototype for each cluster, the size of the cluster, and
the range of all QoS attribute values in the cluster. With these clusters and
their attached information, requestors could have a rough idea about how the
QoS values are distributed within the set.

292 C. Ding, P. Sambamoorthy, and Y. Tan

2. Based on requestors’ QoS requirements, they could choose one or more clus-
ters among these K groups. Then the selected QoS vectors are input to the dy-
namic clustering algorithm again, and requestors could see the newly formed
K1 clusters, with a finer view on their interested QoS vectors.

3. Step 2 could be repeated iteratively until a desired service is identified, or re-
questors have had enough knowledge to formulate a good QoS query so that
they could continue the selection process with searching. Each time, Ki (i = 2,
3, …) clusters are constructed and presented to requestors and requestors can
make their choices accordingly.

One of the problems we are facing is how we choose the K or Ki value. There are
many possibilities. We could let requestors choose this value each time, or fix it as a
pre-defined small number, or use some measurements to find an optimal value. In this
paper, we use nbclust method [8] which tries to find a value that optimizes three dif-
ferent statistical indices as listed below.

• C-H index: (B/(c−1))/(W/(n−c)), where n is the total number of QoS vectors,
and c is the number of clusters in the partition of the data set. B and W denote
the total between-cluster sum of squared distances (distance between cluster
prototypes) and the total within-cluster sum of squared distances, respectively.

• C-index: (V –Vmin)/(Vmax−Vmin), where V is the sum of within-cluster pair-wise
distance. Optimal K value is fixed for the best minimal value 0 for C-index.
This absolute minimum is attained when in a partition the biggest within-
cluster dissimilarity is less than the smallest between-cluster dissimilarity.

• Γ-index: (Γ+ − Γ−)/(Γ+ + Γ−). This measure compares the within-cluster and
between-cluster pair-wise distances. The comparison is consistent (Γ+) if with-
in-cluster distance is strictly smaller than between-cluster distance and is in-
consistent (Γ−) otherwise. The maximum value for the index indicates an op-
timal K value.

The combination of a greater value for C-H index, a value closer or equal to 0 for C-
index and a value closer or equal to 1 for Γ-index corresponds to the optimal K value.
We will explain more details in the experiment part.

Our work is inspired by the Scatter/Gather system. However, there are some key
differences between our approach and the Scatter/Gather method. Firstly, in Scat-
ter/Gather system, the item to be clustered is a document, and it is usually represented
as a vector of term weights which are numerical values. Whereas in our system, the
clustering unit is a vector of service QoS values, and oftentimes, the QoS attribute is
represented as symbolic data, or more commonly interval data. Secondly, the Scat-
ter/Gather method uses partitioning clustering algorithm to form clusters, and in order
to find seeds, they use two agglomerative hierarchical clustering algorithms: one is
Buckshot which is faster and used in the real-time clustering, and the other is Fractio-
nation which is more accurate and used in initial offline clustering. Whereas in our
system, we use the dynamic interval clustering algorithm in both initial offline and the
later iterative on-the-fly clustering and the seed points are chosen randomly. It is more
efficient than using the hierarchical clustering algorithm to choose the seed points as

 QoS Browsing for Web Service Selection 293

in Scatter/Gather, whereas the effectiveness is not sacrificed according to our experi-
ment results. Thirdly, the number of seeds in Scatter/Gather is a randomly chosen
small number, whereas in our system, an optimal K could be identified by optimizing
some statistical indices.

4 Experiments

There are two main purposes of the experiment: one is to show the effectiveness of
the dynamic clustering algorithm; the other is to illustrate the interactive QoS brows-
ing process with a sample data set, especially how iterative clustering can help zoom-
in to requestor selected QoS vectors.

4.1 Experiments on Interval Clustering Algorithm

Since there are no standard data sets of web service QoS values available, we con-
ducted our experiment on simulated data sets. In order to make sure the simulated
data is close to the real data, we referred to the value ranges and distribution patterns
of different QoS attributes in a real data set [1], and for service cost, we referred to a
few publicly available services [2] [16]. The data sets comprise a collection of inter-
val type vectors depicting various distribution patterns of QoS values, mainly for
scenarios when there are natural data groupings. When the data is otherwise distri-
buted, our approach may not work well. The data points are generated following a
multivariate normal distribution with the independent components using mean vectors
(μ) and covariance matrices (σ). Altogether we generated 15 data sets, representing
different distribution patterns, e.g. distinct clusters, overlapping clusters, clusters
close to each other, clusters far apart from each other, densely distributed clusters,
sparsely distributed clusters, etc. Some data sets also have noise data added to make
them closer to real data. Two representative data sets are shown in Table 1. The first
group consists of 300 data points that are spread across three distinct clusters while
the second group consists of 350 data points across three overlapping clusters.

Table 1. Distribution parameters for generating two data sets

 Input parameters
Data set 1: distinct clusters
Total # of points = 300
Total # of clusters = 3

Group 1: (# of points = 100)
μ1 = 155, μ2 = 700, μ3 = 180, σ1

2 = 64, σ2
2 =225, σ3

2 =144
Group 2: (# of points = 100)
μ1 = 170, μ2 = 770, μ3 = 210, σ1

2 = 25, σ2
2 =169, σ3

2 =196
Group 3: (# of points = 100)
μ1 = 180, μ2 = 840, μ3 = 240, σ1

2 = 9, σ2
2 =256, σ3

2 =169
Data set 2: overlapping
clusters (group 1 & 2 are
overlapping)
Total # of points = 350
Total # of clusters = 3

Group 1: (# of points = 150)
μ1 = 150, μ2 = 210, μ3 = 280, σ1

2 = 25, σ2
2 =16, σ3

2 =9
Group 2: (# of points = 100)
μ1 = 140, μ2 = 212, μ3 = 275, σ1

2 = 25, σ2
2 =16, σ3

2 =9
Group 3: (# of points = 100)
μ1 = 133, μ2 = 1745, μ3 = 90, σ1

2 = 0.5, σ2
2 =9, σ3

2 =4

294 C. Ding, P. Sambamoorthy, and Y. Tan

The data points generated are used as seed points to compute normally distributed
interval vectors using the equation: ([a-γ1/2, a+ γ1/2], [b-γ2/2, b+ γ2/2], [c-γ3/2, c+
γ3/2]) [7]. The variables γ1, γ2 and γ3 are values randomly drawn from predefined in-
tervals and a, b and c refer to the three attributes of the seed point vectors. We used
SODAS software [17] to run the clustering algorithm. A total of 50 replications per
data set are generated to run and evaluate the performance.

In order to measure the performance, we use the corrected Rand (CR) index [7]. It
compares the clusters produced in an a priori classification with the results of the
clustering algorithm. The a priori classification in our case refers to the partition in the
seed points generated, which equals to 3 for our data sets. CR index is a good choice
of assessment because it is insensitive to the number of clusters in a given partition
and to the distribution of data vectors within a cluster. The index value ranges from
either [0,1] or [-1,1], with values closer to 1 indicating the correctness of the cluster-
ing results and values closer to 0 or -1 indicating a lower level of agreement between
the clustering results and the prior classification.

First we compare the performance of dynamic clustering algorithm when using city
block and Hausdorff distance measures respectively. Table 2 shows CR index values
on two data sets when the value of K is set to 3. We could see that Hausdorff distance
yields a slightly better result for data set 1 (distinct clusters), and we get mixed results
for data set 2 (overlapping clusters). We conducted the same experiment on all 15
data sets, Hausdorff always performs better for distinct clusters, and when data over-
laps more, city block sometimes performs better. Usually there is no big difference
between their CR index values. It is also obvious that when the degree of overlapping
becomes higher, CR index is getting lower. When data is well separated, we can
achieve a very high CR index value.

Table 2. CR index for different distance measures on two data sets

Predefined intervals
Data set 1 Data set 2
City block Hausdorff City block Hausdorff

γ1= [1,4] γ2 = [1,8] γ3 = [1,8] 0.9899 0.9899 0.7456 0.7593
γ1 = [1,8] γ2 = [1,16] γ3 = [1,16] 0.9701 0.9701 0.7390 0.7390
γ1= [1,12] γ2 = [1,24] γ3 = [1,24] 0.9800 0.9899 0.7737 0.5287
γ1= [1,16] γ2 = [1,32] γ3 = [1,32] 0.9799 0.9799 0.4346 0.4806

We also tested whether we can find the optimal K value using the nbclust method.

The optimal K value found is always 3, which matches with the actual value for our a
priori partition. So it verifies the feasibility of using this method to find optimal K.
Efficiency-wise, in average, the time to run the dynamic clustering algorithm (by
using SODAS) is 5 seconds, and when nbclust method is used, the time is increased to
33 seconds, and we believe that both are acceptable for real-time usage.

4.2 Illustrating the Interactive QoS Browsing Process

The data set we used here is different from the previous ones. We generate 3 clusters,
within each cluster, there are 3 sub-clusters which follow the multivariate normal
distribution, and then we add some random points in each cluster and randomly in the

 QoS Browsing for Web Service Selection 295

whole space. With random points, we believe that it is closer to the real scenario.
Table 3 shows the input parameters and the min-max value ranges for generating
random points in the order of reliability, response time and price. The 3D representa-
tion of the data set is shown in Figure 1.

Table 3. Distribution parameters for generating data set 3

 Input parameters
Cluster 1 (150 points)

1: μ1 = 154, μ2 = 212, μ3 = 188, σ1
2 = 0.45, σ2

2 =6.5, σ3
2 =3

2: μ1 = 157, μ2 = 213, μ3 = 189, σ1
2 = 0.45, σ2

2 =7.25, σ3
2 =5

3: μ1 = 155, μ2 = 220, μ3 = 190, σ1
2 = 0.65, σ2

2 =10, σ3
2 =4

γ1 = [0.5, 1], γ2 = [1, 2] and γ3 = [1, 5]
Cluster 2 (140 points) 1: μ1 = 165, μ2 = 420, μ3 = 160, σ1

2 = 2.5, σ2
2 =6, σ3

2 =1.75
2: μ1 = 178, μ2 = 435, μ3 = 162, σ1

2 = 2.98, σ2
2 =3, σ3

2 =1.5
3: μ1 = 186, μ2 = 420, μ3 = 161, σ1

2 = 1.95, σ2
2 =6, σ3

2 =1.5
γ1 = [0, 1], γ2 = [1, 2] and γ3 = [2, 3]

Cluster 3 (150 points) 1: μ1 = 191, μ2 = 250, μ3 = 240, σ1
2 = 0.65, σ2

2 =6, σ3
2 =3

2: μ1 = 195, μ2 = 251, μ3 = 241, σ1
2 = 0.95, σ2

2 =8, σ3
2 =3

3: μ1 = 192, μ2 = 248, μ3 = 261, σ1
2 = 0.5, σ2

2 =6, σ3
2 =5

γ1 = [0, 1], γ2 = [3, 7] and γ3 = [5, 10]
Random set 1 (50) [(74-80), (75-81)], [(100-113), (102-114)], [(89-95), (93-99)]
Random set 2 (50) [(80-91), (89-100)], [(197-224), (205-225)], [(69-83), (78-91)]
Random set 3 (40) [(88-96), (97-105)], [(111-132), (118-136)], [(114-127), (124-138)]
Random set 4 (100) [(69-104), (82-116)], [(94-185), (120-210)], [(47-114), (59-127)]

Fig. 1. 3D representation of data set 3

296 C. Ding, P. Sambamoorthy, and Y. Tan

Now we illustrate the interactive QoS browsing using this data set. First the whole
data set is fed into the dynamic clustering algorithm. In order to find the optimal K,
we measure the three indices when 0 < K < 9, and the result is shown in Table 4. In
nbclust method, the ideal case is that we could find a K value which is consistently the
best for all three indices. If there is a conflict on the best K value for different indices,
we should try to find a K which performs the best for two indices, or the next optimal
option is a K which has a more obvious advantage on one index than the other two.
Following this principle, we choose optimal K as 6 because it is the best for C-index
and Γ-index, although it is not the best for C-H index.

After we set K as 6, we do the first iteration of clustering. Since we haven’t
implemented the full prototype yet, we just show the result in a table format. Table 5
shows the clustering result in the first level. For each cluster, we present its size

Table 4. C-H index, C-index and Γ-index for different K values in the first round

K C-H index C-index Γ-index
9 804.96862 0.01479 0.95104
8 910.78817 0.01091 0.94830
7 743.93457 0.02902 0.93490
6 1182.20291 0.00525 0.96293
5 1144.69582 0.01144 0.95409
4 1274.30594 0.02241 0.94014
3 1068.44013 0.08229 0.81188
2 1407.47450 0.04466 0.93666

Table 5. The first level clusters with K=6

 Size Prototype Value range Cluster composition

1 69 [95.75, 96.44],
[122.21, 125.8],
[125.98, 134.35]

[[95, 97], [96, 97]],
[[119, 125], [122, 128]],
[[124, 129], [132, 137]]

50 from sub-cluster 3 of cluster 3,
and 19 from random set 3

2 191 [88.66, 89.34],
[210.55, 212.16],
[79.27, 81.88]

[[80, 94], [80, 95]],
[[207, 213], [208, 215]],
[[77, 81], [80, 84]]

140 from cluster 2, 50 from
random set 2, and 1 from random
set 4

3 51 [84.52, 100.65],
[156.39, 174.20],
[84.19, 85.18]

[[69, 104], [82, 116]],
[[94, 185], [120, 210]],
[[47, 114], [59, 127]]

51 from random set 4

4 130 [96.02, 96.64],
[123.60, 126.84],
[116.04, 124.40]

[[88, 96], [97, 104]],
[[111, 131], [118, 135]],
[[114, 126], [125, 137]]

100 from sub-cluster 1 and 2 of
cluster 3, 21 from random set 3, 9
from random set 4

5 33 [82.36, 99.48],
[113.65, 175.93],
[84.00, 97.28]

[[69, 104], [82, 116]],
[[94, 185], [120, 210]],
[[47, 114], [59, 127]]

33 from random set 4

6 206 [77.29, 78.06],
[106.35, 107.98],
[92.82, 95.89]

[[75, 79], [76, 80]],
[[102, 113], [103, 114]],
[[89, 96], [92, 99]]

150 from cluster 1, 50 from
random set 1, 6 from random set 4

 QoS Browsing for Web Service Selection 297

(the number of points in the cluster), the prototype - [gq1s,k, gq1e,k], ([gq2s,k, gq2e,k],
[gq3s,k, gq3e,k]) (1 for reliability, 2 for response time and 3 for price, and k is from 1 to
6), the value range for each QoS attribute ([min-reliability, max-reliability] [min-time,
max-time] [min-price, max-price]), and the composition of the cluster. From this
table, we could see that all 3 clusters in the original data set have been correctly
identified, and the random data is clustered into different groups based on their
values.

By checking these clusters, suppose a requestor selects cluster 2 and 4 based on
price and reliability. Again we need to find optimal K for this level. Table 6 shows the
results for the 3 indices. We only show K values up to 5 due to the space constraint.

Table 6. C-H index, C-index and Γ-index for different K values in the second round

K C-H index C-index Γ-index
5 2090.66573 0.01459 0.78485
4 2615.39297 0.01775 0.78276
3 3763.48829 0.01364 0.85353
2 6961.86844 0.00002 1.00000

From the table, we could see that the optimal choice is K=2. But since we have 2

clusters already and we want to zoom in to see more details about these two clusters,
we would choose the second optimal choice instead, which is K=3. Now we set K as 3
and do the second iteration of clustering. Table 7 shows the clustering result in the
second level. We could see that sub-clusters have been successfully identified. If we
choose cluster 2 and continue the process, we could get results as shown in Table 8.

Table 7. The second level clusters with K=3

 Size Prototype Value range Cluster composition

1 44 [82.65, 83.13],
[209.00, 210.58],
[78.61, 81.13]

[[80, 85], [80, 86]],
[[207, 212], [209, 214]],
[[77, 81], [80, 83]]

40 from sub-cluster 1 of cluster 2,
3 from random set 2, and 1 from
random set 4

2 130 [96.02, 96.64],
[123.60, 126.84],
[116.04, 124.40]

[[88, 96], [97, 104]],
[[111, 131], [118, 135]],
[[114, 126], [125, 137]]

100 from sub-cluster 1 and 2 of
cluster 3, 21 from random set 3,
and 9 from random set 4

3 147 [89.50, 90.22],
[211.26, 212.87],
[79.51, 82.16]

[[80, 94], [80, 95]],
[[207, 213], [208, 215]],
[[77, 81], [80, 84]]

100 from sub-cluster 2 and 3 of
cluster 2, and 47 from random set
2

From these three rounds of running clustering algorithm, natural clusters existing

in the original data set could be identified, and we could also achieve the zoom-in
effect in the re-clustering step, which is very helpful to give requestors more and more
detailed views on their interested QoS values. In the above illustration, each time we
try to find the optimal K first, and then do the clustering. Alternatively, requestors
could specify a fixed K value, skip the step of finding optimal K and make the process

298 C. Ding, P. Sambamoorthy, and Y. Tan

Table 8. The third level clusters with K=4

 Size Prototype Value range Cluster composition

1 52 [82.65, 83.13],
[209.00, 210.58],
[78.61, 81.13]

[[94, 96], [95, 97]],
[[121, 127], [124, 130]],
[[113, 117], [121, 126]]

50 from sub-cluster 1 of cluster 3,
1 from sub-cluster 2 of cluster 3,
and 1 from random set 4

2 20 [96.02, 96.64],
[123.60, 126.84],
[116.04, 124.40]

[[88, 96], [97, 105]],
[[111, 132], [118, 136]],
[[114, 127], [124, 138]]

20 from random set 3

3 6 [89.50, 90.22],
[211.26, 212.87],
[79.51, 82.16]

[[69, 104], [82, 116]],
[[94, 185], [120, 210]],
[[47, 114], [59, 127]]

6 from random set 4

4 52 [89.50, 90.22],
[211.26, 212.87],
[79.51, 82.16]

[[96, 98], [97, 99]],
[[121, 128], [123, 130]],
[[114, 119], [122, 128]]

49 from sub-cluster 2 of cluster 3,
1 from random set 3, and 2 from
random set 4

faster. The problem is that user-defined K value might not work well for a tightly
formed cluster in which all data points are very close to each other, and in this case,
the cluster will be randomly partitioned into a few highly overlapping groups.

5 Conclusions

In this paper, we explain our idea of using interactive QoS browsing mechanism to
help the web service selection process. Because of requestors’ lack of knowledge on
QoS distributions in the registry, vagueness of the QoS requirements, and dynamism
of the QoS values offered by providers, we believe that browsing is necessary for
QoS-based service selection. Since most of the QoS data is interval data, or more
generally symbolic data, we propose using interval clustering algorithm for the QoS
browsing. Starting from the initial set of services with the similar functionality, we
apply the dynamic interval clustering algorithm on their QoS vectors to get the initial
clusters. Then with requestors’ selection on a subset of clusters and re-clustering on
this subset, they could have more and more detailed views on their preferred QoS
vectors. The experiment results show the effectiveness of the interval clustering algo-
rithm, and we also illustrate the process of the interactive QoS browsing.

There are a few directions we can work on in the future. We could implement a
prototype of the QoS browsing system. With a visual interface showing the distribu-
tion of data points in the clusters and related information such as prototypes, sizes,
value ranges, and deviation levels of the clusters, requestors could make a more in-
formed decision to choose the best service satisfying their QoS requirements. We are
aware that the proposed approach may not work well for all QoS data distribution
patterns, and therefore we would like to find out under what situations it works better.
In order to evaluate the performance, we could define some objective measurements
(e.g. the time or the path length of locating the desired service), or conduct a user
study to get users’ subject opinions on the performance. We would also like to apply
the more generic symbolic clustering algorithms and test the performance.

 QoS Browsing for Web Service Selection 299

Acknowledgments. This work is partially sponsored by Natural Science and Engi-
neering Research Council of Canada (grant 299021-07) and the 863 Program of China
under award 2008AA01Z12.

References

1. Al-Masri, E., Mahmoud, Q.H.: QoS-based Discovery and Ranking of Web Services. In:
6th International Conference on Computer Communications and Networks, pp. 529–534
(2007)

2. Amazon, http://aws.amazon.com
3. Bianchini, D., De Antonellis, V., Melchiori, M.: QoS in Ontology-based Service Classifi-

cation and Discovery. In: 15th International Workshop on Database and Expert Systems
Applications, pp. 145–150 (2004)

4. Chavent, M., De Carvalho, F.A.T., Lechevallier, Y., Verde, R.: New Clustering Methods
for Interval Data. Computational Statistics 21(2), 211–229 (2006)

5. Choo, C.W., Detlor, B., Turnbull, D.: Information Seeking on the Web – an Integrated
Model of Browsing and Searching. In: 62nd Annual Meeting of the American Society for
Information Science, pp. 3–16 (1999)

6. Cutting, D., Karger, D.R., Pederson, J., Turkey, J.: Scatter/Gather: A Cluster-based Ap-
proach to Browsing Large Documents. In: 15th Annual International ACM SIGIR Confe-
rence on Research and Development in Information Retrieval, pp. 318–329 (1992)

7. De Souza, R.M.C.R., De Carvalho, F.A.T.: Clustering of Interval Data Based on City-
Block Distances. Pattern Recognition Letters 25(3), 353–365 (2004)

8. Diday, E., Noirhomme-Fraiture, M.: Symbolic Data Analysis and the SODAS Software.
Wiley-Interscience, Hoboken (2008)

9. Dong, X., Halevy, A., Madhavan, J., Nemes, E., Zhang, J.: Similarity Search for Web Ser-
vices. In: 30th International Conference on Very Large Data Bases, pp. 372–383 (2004)

10. Gowda, K.C., Ravi, T.R.: Agglomerative Clustering of Symbolic Objects Using the Con-
cepts of Both Similarity and Dissimilarity. Pattern Recognition Letters 16(6), 647–652
(1995)

11. Ke, W., Sugimoto, C.R., Mostafa, J.: Dynamicity vs. Effectiveness: A User Study of a
Clustering Algorithm for Scatter/Gather. In: 32nd Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, pp. 19–26 (2009)

12. Lamparter, S., Ankolekar, A., Studer, R., Grimm, S.: Preference-based Selection of Highly
Configurable Web Services. In: 16th International Conference on World Wide Web, pp.
1013–1022 (2007)

13. Li, S.M., Ding, C., Chi, C.H., Deng, J.: Adaptive Quality Recommendation Mechanism for
Software Service Provisioning. In: IEEE International Conference on Web Services, pp.
169–176 (2008)

14. Liu, Y.T., Ngu, A.H., Zeng, L.Z.: QoS Computation and Policing in Dynamic Web Ser-
vice. In: 13th International Conference on World Wide Web, pp. 66–73 (2004)

15. Ran, S.: A Model for Web Services Discovery with QoS. ACM SIGecom Exchanges 4(1),
1–10 (2003)

16. Salesforce, http://www.salesforce.com
17. SODAS software, http://www.info.fundp.ac.be/asso/
18. Stroulia, E., Wang, Y.: Structural and Semantic Matching for Assessing Web-Service Si-

milarity. International Journal of Cooperative Information Systems, Special Issue: Service-
Oriented Computing 14(4), 407–437 (2005)

300 C. Ding, P. Sambamoorthy, and Y. Tan

19. Vu, L.H., Hauswirth, M., Aberer, K.: QoS-based Service Selection and Ranking with Trust
and Reputation Management. In: International Conference on Cooperative Information
Systems, pp. 446–483 (2005)

20. Wang, Y., Vassileva, J.: Toward Trust and Reputation Based Web Service Selection: A
Survey. International Transactions on Systems Science and Applications 3(2), 118–132
(2007)

21. Xu, Z., Martin, P., Powley, W., Zulkernine, F.: Reputation-Enhanced QoS-based Web Ser-
vices Discovery. In: IEEE International Conference on Web Services, pp. 249–256 (2007)

An Orchestration as a Service Infrastructure
Using Grid Technologies and WS-BPEL

A. Höing1, G. Scherp2, S. Gudenkauf2, D. Meister3, and A. Brinkmann3

1 Technische Universität Berlin, Complex and Distributed IT Systems,
Einsteinufer 17, 10587 Berlin, Germany

andre.hoeing@tu-berlin.de
2 OFFIS Institute for Information Technology, Technology Cluster EAI,

Escherweg 2, 26121 Oldenburg, Germany
{stefan.gudenkauf,guido.scherp}@offis.de

3 University of Paderborn, Paderborn Center for Parallel Computing,
Fürstenallee 11, 33100 Paderborn, Germany
{dmeister,brinkmann}@uni-paderborn.de

Abstract. The BIS-Grid project, as part of the German D-Grid initia-
tive, investigates service orchestration using Grid service technologies to
show how such technologies can be employed for information systems
integration, especially when crossing enterprise boundaries. Small and
medium enterprises will be enabled to integrate heterogeneous business
information systems and to use external resources and services with af-
fordable effort.

In this paper, we discuss our Orchestration as a Service (OaaS)
paradigm and present the BIS-Grid OaaS infrastructure. This infras-
tructure is based upon service extensions to the Grid middleware UNI-
CORE 6 to use an arbitrary WS-BPEL workflow engine and standard
WS-BPEL to orchestrate both plain Web services and stateful, WSRF-
based Grid services. We report on the evaluation scenarios at our indus-
trial application partners and on the applied service modeling
methodology.

1 Introduction

The integration of heterogeneous information systems, referred to as Enterprise
Application Integration (EAI), is crucial in order to map business processes to
the technical system level. To do so, integration is often achieved by service or-
chestration in service-oriented architectures (SOA). Web services are commonly
used to create SOA since they enable service orchestration and hide the under-
lying technical infrastructure. SOA and Web service technologies are also the
basic technologies for the newly emerging Cloud computing paradigm. Cloud
computing provides easy access to IT infrastructures, computing platforms, or
complete applications. This characteristics of cloud computing are also referred
to as Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Soft-
ware as a Service (SaaS). As example, Amazon offers its IaaS product Elastic

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 301–315, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

302 A. Höing et al.

Compute Cloud (EC2)1, but also others in the context of its Amazon Web Ser-
vices platform. An IaaS open source implementation using the same Web services
interfaces as EC2 is available from the eucalyptus project [9].

Cloud services are designed as on-demand services as they only charge what
users actually consume. Therefore, they are especially interesting for small,
medium, and start-up enterprises that need highly scalable IT infrastructures
and/or do not want to run the respective IT infrastructures on their own. How-
ever, such companies also have the need to map their business processes to the
technical system level, integrating outsourced cloud services as well as in-house-
hosted services. Nowadays, many companies offer consultant services supporting
small enterprises to identify their key business processes and to create inte-
grated IT environments by the introduction of in-house orchestration engines.
This brings up the idea of Orchestration as a Service (OaaS), meaning that the
orchestration engine is hosted in a cloud environment, directly to be maintained
by the OaaS provider. Considering the security and privacy of the deployed
workflows and their data, such an orchestration engine should be designed as a
multi-tenant service, decreasing costs since hardware can be shared over several
customers.

In the BIS-Grid project, we focus on realizing EAI using Grid service tech-
nologies. Our major objective is to proof that Grid technologies are feasible for
information systems integration, especially when traversing enterprise bound-
aries. Small and medium enterprises shall be enabled to integrate heterogeneous
business information systems and to use external resources and services with
affordable effort, even across company boundaries. To do so, we propose and re-
gard Orchestration as a Service (OaaS) as the primary infrastructure paradigm.
This paper is organized as follows. OaaS is discussed in Sec. 2, and the BIS-Grid
OaaS infrastructure is presented in Sec. 3, including our OaaS-capable workflow
engine and the general security infrastructure. Section 4 presents our applica-
tion scenarios and describes the applied service modeling methodology. After the
presentation of related work in Sec. 5 a conclusion is given in Sec. 6.

2 Orchestration as a Service

Integration is a topic for both industry and research for many years in order to
enable the seamless interaction of (heterogeneous) applications. Modern integra-
tion solutions adopted the service-oriented architecture (SOA) design paradigm
which is tightly coupled with the representation of business logic. This means
that all applications are encapsulated by enclosed, loosely coupled, often low-
level services which are composed to business processes. Such a business process,
often referred to as service orchestration, is often modeled graphically in order to
develop executable workflow representations. The Web Services Business Process
Execution Language (WS-BPEL) [10], an OASIS standard to orchestrate Web
services, is an example of such a representation. Commonly, it is regarded as a
key technology to build SOA, and to offer service orchestrations itself as Web
1 http://aws.amazon.com/ec2

An Orchestration as a Service Infrastructure 303

services. This enables the use of low-level processes to build complex services on
a higher level.

The use of loosely coupled services in SOA allows to dynamically switch the
location of invoked services in order to utilize services offered by an external
provider instead of local services. Thus, SOA can be considered as an enabling
technology to outsource IT infrastructure and corresponding services to reduce
IT costs. Grid and the upcoming Cloud technologies are examples for realizing
such outsourcing scenarios. Based on SOA and the rapid development of Inter-
net technologies several service providers emerged that offer services known as
Cloud. The general idea behind Cloud is that services can be accessed on demand
after a short setup time based on a pay-per-use utility model. As the range of
Cloud services is highly diverse a classification in the manner of “* as a Service”
is widely adopted at present. Such services can be divided into three categories:
Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software as
a Service (SaaS) [12]. In brief, IaaS represents the service-based access to (vir-
tualized) computing resources as storage and processing power, PaaS represents
the service-based access to a software platform that enables the custom devel-
opment of (scalable) applications that are normally executed on a virtualized
infrastructure. SaaS represents the service-based access to a specific software
product (e. g., ERP software) or a certain functionality (e. g., creditworthiness
check). Furthermore, in the following order, IaaS, PaaS, and SaaS are considered
as subsequent abstraction layers to the executing infrastructure. In our opinion
such services can also be provided by utilizing Grid technologies which are in
general highly related to Cloud technologies [12].

Microsoft BizTalk Server2 or SAP XI3 are actual commercial integration plat-
forms that can execute business processes and suitable for SOA integration. In
order to run such a platform costs such as licenses, hardware and system ad-
ministrators have to be considered. Many companies such as small and medium
enterprises (SMEs) are not able to finance or operate such an infrastructure al-
though they certainly have needs for integration. Even freely available products
like Sun’s OpenESB4 are hard to set-up and maintain in a productive manner.
Thus, our approach is to offer such an integration platform as an external ser-
vice which we call Orchestration as a Service(OaaS). Thereby, we regard OaaS
as a specialization of PaaS, as process developers are able to develop, deploy
and manage custom business processes, and SaaS, as end users can use the func-
tionality of deployed business processes as services. Our OaaS solution is build
upon the WS-BPEL-based BIS-Grid engine which is developed in the BIS-Grid
project and described in Sec. 3 in detail.

In summary, the described OaaS scenario must meet the requirements Grid
compatibility, SOA compatibility and WS-BPEL compatibility. Beside OaaS we
considered further deployment scenarios depending on the degree of Grid utiliza-
tion of the involved components, namely the BIS-Grid engine and orchestrated

2 http://www.microsoft.com/biztalk/en/us/default.aspx
3 http://www.sap.com/platform/netweaver/pdf/BWP SB ExchangeInfrastructure.pdf
4 https://open-esb.dev.java.net

304 A. Höing et al.

Fig. 1. Degree of Grid utilization

services as information systems. This ranges from (a) a pure in-house scenario,
in which all components are deployed within a company, up to (d) a complete
Grid scenario, in which each component is located in a Grid or Cloud infras-
tructure, see Fig. 1. The scenarios (b) and (c) are alternatives in which involved
components are partially outsourced. In our case the in-house scenario (a) and
the OaaS scenario (c) are currently regarded as most realistic since outsourc-
ing information systems to Grid or Cloud providers often raises serious security
concerns. So the philosophy is to keep all data services in-house and relevant
data for orchestration and integration may leave the company on demand under
ensuring certain security standards5, see Sec. 3.2.

3 BIS-Grid OaaS Infrastructure

This section describes the BIS-Grid engine that is used to realize the technical
side of the OaaS infrastructure. First, in Sec. 3.1 we describe the architecture
of the orchestration engine, including the components of the engine and how
they interact with each other. Second, we describe the security infrastructure
for authentication and authorization in Sec. 3.2, also addressing privacy issues
for realizing a multi-tenant environment.

3.1 BIS-Grid Engine Architecture

The BIS-Grid engine was designed with regard to its applicability in our OaaS
scenario, see Sec. 2. This means the engine meets the following requirements:

5 Beside the technical and organizational issues discussed in this paper, this also in-
volves legal issues to be covered which are not part of the BIS-Grid project.

An Orchestration as a Service Infrastructure 305

– Grid compatibility: The BIS-Grid engine is based on the Grid middleware
UNICORE 6.

– SOA compatibility: As UNICORE 6 is based on Web services which is a key
technology to build SOA.

– WS-BPEL compatibility: The BIS-Grid engine utilizes an arbitrary standard
WS-BPEL engine to execute workflows.

– Security: The BIS-Grid engine supports authorization and authentication
supporting a fine-grained role-based access control.

A more detailed view on the BIS-Grid engine’s architecture is depicted in Fig. 2.
The key concept is to use an arbitrary WS-BPEL engine, in our case Ac-
tiveBPEL, for workflow execution that is encapsulated by a Grid proxy based
on service extensions to UNICORE 6. These service extensions enable interop-
erability between WS-BPEL and Grid environments by the support of the Web
Service Resource Framework (WSRF) and Grid security. WSRF is an OASIS
standard developed by the Grid community in order to enable stateless Web
services to become stateful. This is essential, for instance, for job submission
and data transfer services since they have a state by nature. WSRF-based Web
services are also called Grid services, their states are represented by service in-
stances and are stored in so called resource properties. Such properties can be
accessed or manipulated by corresponding WSRF Web service methods. We dis-
cuss Grid security separately in Sec. 3.2.

The BIS-Grid service extensions mentioned above are the Workflow Manage-
ment Service and the Workflow Service which are both realized as Grid services.

Fig. 2. The BIS-Grid engine architecture

306 A. Höing et al.

The Workflow Management Service is initially deployed in the UNICORE 6
service container and provides methods for workflow management (i. e., de-
ployment, redeployment, and undeployment of workflows). When a WS-BPEL
workflow is deployed, a specialized version of the generic Workflow Service is cre-
ated on-demand and hot-deployed to the UNICORE 6 service container. Thus,
each deployed workflow in the WS-BPEL engine has a corresponding Workflow
Service in UNICORE 6. A Workflow Service provides the same interface as its
WS-BPEL workflow counterpart. The state of a workflow execution and addi-
tional configurations such as security credentials (see Sec. 3.2) are exposed by
the corresponding Grid service instance as resource properties according to the
WSRF standard. Since a workflow execution in the WS-BPEL engine is also re-
garded as an instance, each workflow execution is represented by two instances,
one Grid service instance in the UNICORE 6 service container of the BIS-Grid
engine, and one workflow instance in the WS-BPEL engine.

The communication between the BIS-Grid service extensions and the WS-
BPEL engine depends on the used functionality. For management functions
like workflow deployment and undeployment or workflow monitoring an engine-
specific adapter is used. This adapter is pluggable and can be exchanged to
support other WS-BPEL engines. The communication during workflow execu-
tion is based on standard Web service calls (SOAP) whereas outgoing messages
(i. e., the invocation of external services within the workflow) must be sent to a
HTTP proxy running in the UNICORE 6 container. Most Web service containers
should provide a HTTP proxy configuration. If supported, the secure HTTPS
protocol can be used, too. As each workflow execution has two instances, it is
ensured that outgoing messages that originate from a workflow instance and
that are sent to the HTTP(S) proxy, are forwarded to the correct Grid service
instance. Then, the Grid service instance performs the external service call. This
is especially important due to security concerns as certain credentials may be
used for a specific service invocation. Thus, these credentials can be configured
both globally at design time for a workflow and locally at runtime for a work-
flow’s Grid service instance. It is in the responsibility of the workflow designer
to ensure that ingoing messages (i. e., invocations of a workflow’s Web service
method), that primarily are send to a corresponding Workflow Service instance,
are forwarded to the correct workflow instance. This is based on the WS-BPEL
correlation concept. For more information about the described instance mapping
please refer to [5,6].

3.2 Security Infrastructure

Security is one of the most important issues when setting up a Cloud computing
environment like our OaaS infrastructure. Security can be achieved on different
ways. On the one hand, we could install one BIS-Grid engine for each customer
and use IP-based authentication. On the other hand, such a solution would
be very expensive. In this section, we propose a security infrastructure that
guarantees authentication, role based access control, and information privacy. To
lower start-up and maintenance costs, we require a solution with minimal costs

An Orchestration as a Service Infrastructure 307

and maintenance overhead. Furthermore, credential delegation is an urgently
needed feature. This enables the user to delegate rights to the OaaS environment
to invoke external services in his name meanwhile the OaaS provider himself has
naturally no access to that service.

Nowadays, Grid security is based on personalized X.509 certificates issued by
a Certificate Authority (CA). Everyone participating in the Grid must trust this
CA and authenticate himself with this CA or an associated Registration Au-
thority (RA). Rights are not granted on business roles but on membership to a
virtual organization. This scenario is not applicable for the business domain. A
company, possibly having several hundred employees and high employee fluctua-
tion can not send each new employee to a RA. To reduce maintenance overhead,
rights must be bound to business roles and not to organizational membership.
Hence, a distributed identity management system with the possibility to grant
or revoke role-based permissions in a short time is necessary for OaaS.

We decided to build the security infrastructure up on well-known standards.
SAML Assertions [11] are capable to fulfill most of our requirements. Arbitrary
attributes, as roles and affiliation, can be included into an assertion. Such as-
sertions are issued by an identity management system. SAML also provides the
capability to express fine-grained credential delegation rights, expressing what
entity is allowed to process what activity until what timestamp. For describing
rights, we use XACML Policies [8] that are also well-known and very flexible and
fine-grained if required. Access decisions can be described as rules, that define
the applicability of a rule by means of the user, targeted resource, and the de-
sired action. Furthermore, conditions that express dependencies between these
can be formulated. Users are identified by the sum of all attributes included in
the SAML assertion or/an via additional attributes requested during authoriza-
tion process. Therefore, the policy designer must be aware of the organizational
structures of the enterprises to describe the access rights correctly.

As technical infrastructure for an appropriate distributed identity manage-
ment system with low maintenance costs and the capability to integrate differ-
ent identity management systems we suggest the Shibboleth-based system6. This
solution prevents the users from all complex security configurations. In combi-
nation with Grid-Shib7, the system is able to automatically issue short-lived
certificates (SLC) together with a SAML assertion including the user’s business
roles. Welch et al. described such an architecture in more detail [13]. The SLC is
used to establish a SSL connection between the user and the BIS-Grid engine so
that transport layer security is guaranteed. The major advantage is the seamless
integration of existing identity management systems such as Active Directory or
OpenLDAP with the Shibboleth system. These internally hosted and maintained
systems can obtain and check credentials as well as supply attributes, so-called
campus attributes. SLCs only have short lifetimes, usually one million seconds
(circa 11 days), so that all roles and the connected rights are invalid after this
period.

6 http://shibboleth.internet2.edu/
7 http://gridshib.globus.org/

308 A. Höing et al.

Fig. 3. Interaction between the BIS-Grid engine and UVOS

Because of simplicity of the exemplary evaluation, we decided not to set up a
complete Shibboleth environment for our OaaS prototype but we use a similar
solution that also provides the urgently needed SAML Attribute Assertions. The
UNICORE Virtual Organisations System (UVOS)8 allows the administration of
user identities combined with arbitrary attributes for each identity. Additionally,
hierarchical organizations can be mapped to hierarchical organized groups as well
as attaching attributes to all members of a group. Groups or sub-groups members
and attributes can be managed by different administrators. All UVOS-managed
information can be queried by SAML2-compatible applications [3] and UVOS
answers with a signed SAML assertion including all attributes (groups affilia-
tions, group attributes, and global attributes). The combination of UVOS and
UNICORE 6 are fully integrated and well-tested in the Chemomentum project,
wherein UVOS was developed9.

UNICORE 6 (and for this reason the BIS-Grid engine, too) supports two
mechanism for assertion retrieval: push and pull. Push (cp. Fig. 3 A-C) means
that the user authenticates himself at the UVOS server and retrieves his signed
assertion that he attaches to the request to the BIS-Grid engine. Pull (cp. Fig. 3
1-3) uses the distinguished name of the user’s certificate to fetch the assertion
itself from the UVOS server. Nevertheless, there are two major disadvantages of
UVOS compared to the Shibboleth solution. First, the user does not obtain a
SLC for establishing TLS or for signing credential delegation assertions to del-
egate trust to the BIS-Grid workflow engine. Hence, each user must still own a
standard X.509 certificate. Second, there is no integration of local identity man-
agement systems. This means that all identity information must be maintained
a second time, beside the already existing company-local identity management
system, either by the OaaS provider or by the companies themselves.
8 http://uvos.chemomentum.org/
9 http://chemomentum.org/

An Orchestration as a Service Infrastructure 309

Hot deployment of Workflow Service also demands the hot deployment of
security policies. We established such a hot deployment of XACML policies by
adding new rules to the Policy Decision Point (PDP) that is part of the BIS-Grid
deployment package. However, the possibility to add new policies also brings up
the danger of misuse, for example, adding policies that affects other services. We
limit the degree of freedom of newly inserted XACML rules in such a way that
the rules must be limited to the newly created Workflow Service. Otherwise the
deployment of the policy will fail.

After discussing authentication and authorization, we have to consider pri-
vacy. If several companies work with the same OaaS infrastructure, it must be
ensured that only authorized users can see what workflows are deployed or what
workflows are currently running. Authorized, in this case, does not only mean
that the user must have the right to deploy a workflow but the system must also
distinguish between affiliations or even departments during information retrieval
operations. The same applies to running workflow instances.

We established means to filter information when discovery operations are used
that must be accessible from different companies due to architectural issues, for
example, creating new Workflow Management Service instances or searching for
already created instances. Therefore, we store enriched information about the
creator of an instance in the instances itself. As an example, instances of the
Workflow Management Service store the creator’s distinguished name, his affili-
ation, and his business role. When someone else searches for all deployed work-
flows, the BIS-Grid engine will only show deployed workflows matching the same
affiliation and business role. Both must be included in the signed SAML asser-
tion the requester presents. A similar filter also guarantees privacy for searching
for instances of a Workflow Service. All other information depends on WSRF
instances and are protected via the XACML policies.

4 Application Scenarios

We evaluate our OaaS approach in two business scenarios motivated by our
industrial project partners, CeWe Color10 and KIESELSTEIN Group11. CeWe
Color is the number one services partner for first-class trade brands on the Eu-
ropean photographic market supplying stores and internet retailers with photo-
graphic products, and KIESELSTEIN Group is one of the global market leaders
in the field of wire drawing and draw-peeling for the automotive industry. Both
partners have strong needs for enterprise application integration: CeWe Color to
integrate enterprise data for unified access for call center agents, and KIESEL-
STEIN Group to improve access to, and retrieval and maintenance of product
and project data. The overall goal of these application scenarios is to investigate
the feasibility of EAI based on Grid technologies and the OaaS paradigm by
prototypical realization.

10 http://www.cewecolor.de
11 http://www.kieselstein-group.com

310 A. Höing et al.

For CeWe Color, the impact of digital photography affected requirements to
business information systems (BIS) and processes, opened up new distribution
channels, and facilitated new product lines. Product mass customization and
the need to flexibly respond to market development demand BIS that can adapt
dynamically. Regarding the call center scenario, information of different sources
must be accessed by call center agents to provide feedback to customers, for
example about order status, production failures, or accounting data. This access
has to be provided unified and with hard constraints to the quality of the de-
manded services. For KIESELSTEIN Group, the main challenge is to integrate
enterprise resource planning (ERP) data and product (CAD/PDM) data that
are distributed across different sites. At these sites, BIS store information redun-
dantly, since KIESELSTEIN Group grew together from three different producing
factories, each providing their own information systems.

4.1 Workflow Modeling Methodology

Within the business application scenarios, we employed a top-down workflow
modeling methodology. Figure 4 presents an overview of this methodology. Within
a concrete workflow development process, the individual modeling activities may
be applied in different orders. The upper half of the picture shows the creative
part of the modeling methodology, and the lower half shows the components
during the operational service. Additionally, the business roles are annotated to
each component. The arrows depict main dependencies between the components.

Fig. 4. Overview of the workflow modeling methodology

The design of a workflow mainly depends on the process model of a business
analyst that uses BPMN as an high-level abstraction model to describe the
desired business process, and on a service developer to identify existing services
that can be reused or to design new services that have to be implemented and
deployed. Furthermore, there is also an information exchange between a business
analyst and a service developer, for example, to gain a common view of a global
data model. To provide executable workflows, the workflow must be deployed on

An Orchestration as a Service Infrastructure 311

the BIS-Grid engine and, of course, all used services must be available on their
service execution environments (cp. use-dependency in Fig. 4). Finally, users can
initiate workflows using an appropriate client application.

For the evaluation of our application scenarios, we used a top-down develop-
ment approach to identify, model, and deploy business workflows. The individual
process steps were as follows.

(1) Domain analysis. The respective business domain(s) had to be analyzed
to gain a thorough domain understanding. This included, for example, the
analysis of the current enterprise architecture, expert interviews, on-site
investigations, and requirements analysis.

(2) Control-flow modeling. This activity included the following sub-activities:
(a) The current business processes (as-is state) were described as diagrams

using the Business Process Modeling Notation (BPMN).
(b) From the as-is state a first version of the to-be processes were devel-

oped and described using the BPMN, too, representing the basis for the
realization of the prototype scenarios.

(c) Data sources and simple data-flows were annotated in the to-be BPMN
diagrams as far as possible using the BPMN (cp. Figure 5 lane 4).

(d) The to-be BPMN diagrams were iteratively expanded to regard different
layers of abstraction directly within the diagrams. Thereby, we focused
on the operational layer, the services layer, the business process layer,
and the consumer layer. We especially found this activity to be very
helpful in order to separate concerns at an early stage of development
(cp. SOA reference architecture in [4]). Figure 5 illustrates a such-layered
call center process for read-only data retrieval (layers are ordered from
the bottom to the top).

(3) Data structure modeling. Upon the relevant BIS and databases, the logi-
cal structure of the required information was modeled. To do so, we used
entity-relationship (ER) diagrams that represent the relevant data struc-
tures whereas the BIS/database origin of the structures was annotated.

(4) Data-flow modeling. In addition to control-flow modeling, we modeled the
data-flows of business processes using data flow diagrams (DFDs).

(5) Service signature description. Based upon the results of the previous activ-
ities, we textually described the signatures of the services of the respective
business processes as a basis for service interface definition.

(6) Service utilization description. In addition to signature description, we de-
scribed the usage protocol of the services regarded as black-boxes using
protocol state machines. Although representing an overhead for services
with small signatures, we think that this activity is of great importance
for services that provide several operations and where the operations have
strong service lifecycle dependencies.

(7) Service implementation. Starting with WSDL interface design, the services
were implemented by our partners.

312 A. Höing et al.

Fig. 5. A layered BPMN describing a call center process for read-only data retrieval
as a basis for customer orders feedback

An Orchestration as a Service Infrastructure 313

(8) Service deployment. The services were deployed by our partners under con-
sideration of the enterprise architecture and the scenario requirements, for
example, security requirements.

(9) Workflow design. Finally, we implemented WS-BPEL workflows for the
modeled business processes.

(10) Workflow use. Users can now execute workflows via appropriate client ap-
plications. Within the application scenarios, we developed a prototypical
user client on basis of the GridSphere Portal Framework12, and use Net-
Beans IDE13 as a workflow modeling tool.

5 Related Work

There are several upcoming and new projects regarding service orchestration
in cloud environments, proving the relevance of the Orchestration as a Service
paradigm. Unfortunately, these are all new projects and aim at commercial issues
and hence the infrastructures are not described neither scientifically nor in detail.
Here, we present some of these projects but also regard related work concerning
service orchestration in Grid environments.

For example, Microsoft is recently providing the .NET Workflow Service as
part of the .Net Services of the Azure Services Platform14 in order to execute
user-defined declarative workflows as lightweight service orchestrations. These
services facilitate the idea of an Internet Service Bus that addresses the need for
cross-enterprise service orchestration, supporting both the Software as a Service
paradigm as well as Microsoft’s Software-plus-Services strategy.

CSC15, as another example, recently announced Cloud Orchestration Services
and Trusted Cloud Services promising various features such as service level man-
agement, remote monitoring, reporting, data transparency, and security while
ensuring industry-specific compliance and auditing services. Thereby, Business
Process as a Service (BPaaS) is named as one category of Trusted Cloud Ser-
vices. Unfortunately, there is very little information on the concrete services,
their realization, and the respective Service Level Agreements.

As a third example, Cordys also promotes cloud-based service orchestra-
tion, called Enterprise Cloud Orchestration16. Thereby, they emphasize the still-
traditional nature of the SaaS distribution model in contrast to the Cloud idea
as a federation of different Clouds, that may range from general-purpose Clouds
to specialized Clouds in the future. Fundamentally this requires an orchestra-
tion layer in the Cloud to enable enterprises developing new business models and
facilitate Application Service Provisioning.

The Chemomentum project already provides workflow extensions for UNI-
CORE 6, consisting of two UNICORE 6 service containers. The first represents
12 http://www.gridsphere.org/
13 http://www.netbeans.org/
14 http://www.microsoft.com/azure/workflow.mspx
15 http://www.csc.com/cloud/
16 http://www.cordys.com/cordyscms com/enterprise cloud orchestration.php

314 A. Höing et al.

a workflow engine that processes workflows on a logical level, the second rep-
resents a service orchestrator that transforms so-called Work Assignments into
jobs, given in the Job Submission Description Language (JSDL) [1]. Both, this
UNICORE 6 workflow system and the BIS-Grid engine, are implemented as ser-
vice extensions to the UNICORE 6 service container. However, the UNICORE 6
workflow system does not support the integration of a WS-BPEL workflow en-
gine well-adopted in industry.

In [2], Amnuaykanjanasin and Nupairoj present a solution to orchestrate
Globus Toolkit services secured with the Grid Security Infrastructure. For each
Grid service, a proxy implementation is generated automatically when the user
requests one. To overcome the GSI, Proxy Certificates are requested dynamically
from a MyProxy implementation. This architecture aims on scientific workflows
without considering role-based access control or providing the workflow itself
securely.

Many other paper present the possibility to model and execute workflows in
Grid environments but without using the industrial de-facto standard WS-BPEL
nor addressing the new cloud computing paradigm (e. g., see [7,14]).

6 Conclusion

In this paper, we discussed our Orchestration as a Service (OaaS) paradigm as a
specialized form of PaaS. Since Oaas decreases the start-up costs for introducing
EAI and SOA by outsorcing the operation and maintenance of a service or-
chestration infrastructure, we regard it as a viable option for small and medium
enterprises. We also presented the BIS-Grid OaaS infrastructure, enabling enter-
prises to deploy workflows based on service-oriented architectures and opening
up new possibilities for outsourcing IT to Grid or Cloud providers. Thereby, we
regard different degrees of service outsourcing relying on the same technology
underlying. The definition of service-level agreements (SLA) that are adequate
to OaaS is future work.

Acknowledgement

The underlying work for this paper would not have been possible without the
support of and close cooperation with our project partners. We especially thank
our colleagues Herbert Nase, Manfred Neugebauer, and Christoph Rüger for
their engagement.

References

1. Job Submission Description Language (JSDL) Specification, Version 1.0 (Novem-
ber 2005), http://www.gridforum.org/documents/GFD.56.pdf

2. Amnuaykanjanasin, P., Nupairoj, N.: The BPEL Orchestrating Framework for
Secured Grid Services. In: International Conference on Information Technology:
Coding and Computing, vol. 1, pp. 348–353 (2005)

http://www.gridforum.org/documents/GFD.56.pdf

An Orchestration as a Service Infrastructure 315

3. Benedyczak, K.: UNICORE Virtual Organisations Service Overview. Technical
report, Interdisciplinary Centre for Mathematical and Computational Modelling
Warsaw University, Poland (2007)

4. Bieberstein, N., Laird, R.G., Jones, K., Mitra, T., Weisser, J.: A Methodology
for Service Modeling and Design. In: Executing SOA: A Practical Guide for the
Service-Oriented Architect, May 2008. DeveloperWorks Series, pp. 57–81. IBM
Press (2008); Dimensions 7x9-1/4 240 Edition: 1st. 0-13-235374-1 ISBN-13: 978-0-
13-235374-8

5. Brinkmann, A., Gudenkauf, S., Hasselbring, W., Höing, A., Kao, O., Karl, H.,
Nitsche, H., Scherp, G.: Employing WS-BPEL Design Patterns for Grid Service
Orchestration using a Standard WS-BPEL Engine and a Grid Middleware. In:
Bubak, M., Turala, M., Kazimierz, W. (eds.) CGW 2008 Proceedings, Cracow,
Poland, pp. 103–110 (2009); ACC CYFRONET AGH

6. Gudenkauf, S., Höing, A., Scherp, G.: Catalogue of WS-BPEL Design Patterns.
Technical report (May 2008)

7. Hoheisel, A.: User Tools and Languages for Graph-based Grid Workflows: Research
Articles. Concurr. Comput.: Pract. Exper. 18(10), 1101–1113 (2006)

8. Moses, T.: eXtensible Access Control Markup Language (XACML) Version 2.0
(February 2005),
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.

0-core-spec-os.pdf

9. Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youse, L.,
Zagorodnov, D.: The Eucalyptus Open-source Cloud-computing System. In: Pro-
ceedings of 9th IEEE International Symposium on Cluster Computing and the
Grid (2009)

10. OASIS WSBPEL Technical Committee. Web Services Business Process Execution
Language (WSBPEL) Primer (May 2007),
http://www.oasis-open.org/committees/download.php/23974/wsbpel-v2.

0-primer.pdf

11. Ragouzis, N., Hughes, J., Philpott, R., Maler, E., Madsen, P., Scavo, T.: Security
Assertion Markup Language (SAML) V2.0 Technical Overview, Working Draft
(February 2007),
http://www.oasis-open.org/committees/download.php/22553/

sstc-saml-tech-overview-2%200-draft-13.pdf

12. Vaquero, L.M., Rodero-Merino, L., Caceres, J., Lindner, M.: A Break in the Clouds:
Towards a Cloud Definition. SIGCOMM Comput. Commun. Rev. 39(1), 50–55
(2009)

13. Welch, V., Barton, T., Keahey, K., Siebenlist, F.: Attributes, Anonymity, and Ac-
cess: Shibboleth and Globus Integration to Facilitate Grid Colloboration. In: Pro-
ceedings of the 4th Annual PKI R&D Workshop (2005)

14. Yu, J., Buyya, R.: A Novel Architecture for Realizing Grid Workflow using Tuple
Spaces. In: GRID 2004: Proceedings of the 5th IEEE/ACM International Workshop
on Grid Computing, Washington, DC, USA, pp. 119–128. IEEE Computer Society,
Los Alamitos (2004)

http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://www.oasis-open.org/committees/download.php/23974/wsbpel-v2.0-primer.pdf
http://www.oasis-open.org/committees/download.php/23974/wsbpel-v2.0-primer.pdf
http://www.oasis-open.org/committees/download.php/22553/sstc-saml-tech-overview-2%200-draft-13.pdf
http://www.oasis-open.org/committees/download.php/22553/sstc-saml-tech-overview-2%200-draft-13.pdf

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 316–330, 2009.
© Springer-Verlag Berlin Heidelberg 2009

The FAST Platform: An Open and Semantically-
Enriched Platform for Designing Multi-channel

and Enterprise-Class Gadgets

Volker Hoyer1,6, Till Janner1,6, Ivan Delchev2, Andrea Fuchsloch1, Javier López4,
Sebastian Ortega4, Rafael Fernández4, Knud Hinnerk Möller5, Ismael Rivera5,

Marcos Reyes3, and Manuel Fradinho7

1 SAP Research St. Gallen, 9000 St. Gallen, Switzerland
2 SAP Research Zurich, 8000 Zurich, Switzerland

3 Telefonica I+D, 28043 Madrid, Spain
4 Universidad Politecnica de Madrid, 28660 Madrid, Spain

5 DERI, National University of Ireland, Galway
6 University of St. Gallen, =mcminstitute, 9000 St. Gallen, Switzerland

7 Cyntelix Corporation, Galway, Ireland
{volker.hoyer,till.janner}@sap.com,

{ivan.delchev,andrea.fuchsloch}@sap.com,
{jlopez,sortega,rfernandez}@fi.upm.es,
{knud.moeller,ismael.rivera}@deri.org,
mru@tid.es, mfradinho@cyntelix.com

Abstract. The transfer of the mashup paradigm in corporate environments
needs additional capabilities beyond those typically associated with consumer
mashups. In this paper, we present the architecture of the FAST platform which
allows creating enterprise-class and multi-channel visual building blocks (so
called gadgets) in an ad-hoc manner. The design of complex enterprise-class
gadgets is supported by an integrated semantic concept which hides the com-
plexity from the actual users. The architectural components of the platform, a
technical life cycle model for enterprise mashups, and the FAST gadget ontol-
ogy are presented. By means of a cross-organizational real-world scenario from
the marketing/ promotion event area, we demonstrate the value and potential of
the FAST platform.

Keywords: Enterprise Mashups, Gadgets, Situational Applications, Semantics,
Multi-Channel Visual Building Blocks, FAST Project.

1 Introduction and Motivation

After introducing transaction systems such as enterprise resource planning (ERP),
customer relationship management (CRM), or supply chain management (SCM) since
the beginning of 1990, a next wave in corporate technology adoption, the Web 2.0/
peer production philosophy, addresses ad-hoc and situational applications [1]. It
integrates actual end users in order to generate new information or edit the work of

 The FAST Platform: An Open and Semantically-Enriched Platform 317

others. Renowned management scholars such as Andrew McAfee and Don Tapscott
envision an Enterprise 2.0 [2, 3]. It leverages new consumer-driven technologies in
order to put people in the center of the information-centric work.

In this context, a new software development paradigm, known as enterprise mash-
ups, has gained momentum. At the core of the mashup paradigm are two aspects:
First, empowerment of the end user to cover ad-hoc and long tail needs by reusing
and combining existing software artefacts. Second, broad involvement of users based
on the peer production concept. In contrast to traditional software development con-
cepts aligned with Service-Oriented Architectures (SOAs), enterprise mashups usu-
ally aren’t constructed by a team of traditional software developers. Instead, they are
created by users from the business units characterized by no or limited programming
skills. They desire specific functionality that mainstream SOA-based enterprise appli-
cations don’t provide [4]. In this kind of grassroots computing [5, 6], the focus on
delivering a set of user friendly building blocks rather than finished applications en-
ables users to automate also tactical and opportunistic applications.

Fig. 1. From Automating Transactions to an Enterprise 2.0, adapted from [1]

Market research companies like Gartner [7], Forrester [8], or Economic Intelligence
Units [9], and leading management consulting firms like McKinsey [10], forecast a
growing practical relevance for the mashup paradigm over the next few years. Gartner
sees mashup applications at the mainstream adoption in less than two years in its hype
cycle for Web and user interaction technologies 2008 [7]. In addition, several mashup
tools came up in the recent years [11], i.e., IBM Mashup Center, Intel Mash Maker,
SAP Research RoofTop, Microsoft Popfly, Yahoo Pipes, etc. However, the transfer of
the consumer-driven mashup paradigm to corporate environments needs additional
capabilities beyond those typically associated with consumer mashup offerings.

The goal of this paper is to fill this gap by designing an open and semantically-
enriched platform which allows creating enterprise-class and multi-channel visual
building blocks (so called gadgets). In the course of the EU funded project FAST1, we
are currently implementing the platform. By means of a first cross-organizational

1 http://fast.morfeo-project.eu, last checked 2009-08-13

318 V. Hoyer et al.

real-world scenario from the marketing/ promotion event area, the platform and indi-
rectly the underlying concepts are evaluated.

The remainder of the article is structured as follows: After introducing the termi-
nology of enterprise mashups and elaborating on the requirements for corporate pur-
poses in section two, we present the FAST platform in section three. In particular a
life cycle for enterprise mashups, the architectural components, and the designed
FAST gadget onotology are presented. Section four includes a demonstration by
means of a first B2B mashup scenario. Finally, section five concludes with a brief
summary and provides an outlook on future work.

2 Related Work and Background

2.1 Enterprise Mashups – Definition and Terminology

In the literature, the exact definition of enterprise mashups is open to debate. In this
work, we refer to the definition of [12]: “An enterprise mashup is a Web-based re-
source that combines existing resources, be it content, data or application functional-
ity, from more than one resource by empowering the end users to create individual
information centric and situational applications”. By simplifying concepts of SOA
and by enhancing them with the Web 2.0 philosophy of peer production, enterprise
mashups generally focus on software integration on the user interface level instead of
traditional application or data integration approaches [13].

Fig. 2. Enterprise Mashup Development Layers, Terminology and User Roles

 The FAST Platform: An Open and Semantically-Enriched Platform 319

The relevant architectural components of the enterprise mashup paradigm can be
structured in an enterprise mashup stack comprising three main layers (mashup, wid-
get, resource) [5, 12]. On the gadget layer (visual building blocks), we introduce the
concepts of screens and screen-flows in order to create powerful gadgets for enter-
prise purposes. Fig. 1 depicts the resulting terminology which is applied in the FAST
project and in this paper. In addition, the relevant user roles including their tasks are
mapped to the different architectural terms.

Resources (services) contain content, data or application functionality and repre-
sent the core building blocks of enterprise mashups. They are encapsulated via well-
defined public interfaces (Application Programming Interfaces; i.e., WSDL, RSS,
Atom Feeds, etc.) allowing for a loose coupling of existing resources – an important
feature from the SOA paradigm. These resources are provided by enterprise systems
or by external Web providers (i.e., Amazon, Google, etc.) and are created by tradi-
tional developers who are familiar with development concepts.

The layer above contains gadgets or widgets which provide a simple user interac-
tion mechanism abstracting from the complexity of the underlying resources.
Thereby, the piping composition integrates heterogeneous resources by defining com-
posed data processing chains concatenating successive resources. Aggregate, trans-
form, filter or sort operations adapt, mix, and manipulate the content of the underlying
resources. A graphical user interface form is put on the composed resource. The com-
bination of a form and the piping composition is called a screen which is created by
the screen designer. This user role is characterized by basic programming skills in
order to bind the resources to user interfaces. Screens are fully functional by them-
selves, and their pre- and post-conditions drive the transitions between them to tie
them together, forming a screen-flow. A FAST gadget consists of various screens and
allows the handling of lots of information in several steps. In a similar way to the
resource, input and output ports of a gadget (so-called events and slots) can be defined
by a consultant (gadget developer). In addition, the user playing the consultant role is
able to deploy a gadget to different mashup platforms. A consultant plays a primary
role in IT departments and works quite closely together with key users from the busi-
ness units.

Now, a key user who understands the business challenge is able to combine such
visual gadgets in a mashup platform according to their individual business needs, thus
creating a mashup. This visual composition by linking the in-/ outports of a gadget is
called wiring and requires no programming skills. Finally, the end users consume and
run the created mashup scenario. If necessary, they are able to configure the mashup
to some extent, e.g. (de)activation of functionalities, moving gadgets, etc.

In summery, the composition principle of the resource layer of traditional SOA en-
vironments is transferred to the user interface level where the end users are empow-
ered to create an ad-hoc enterprise-class application. The power of the composition
and also the required IT skills are different. A first discussion regarding the composi-
tion pattern in enterprise mashup environments can be found at [14].

2.2 Requirements

The existing discussion of the mashup principle in the scientific community is driven
by technical aspects. In particular, several research activities deal with the lightweight

320 V. Hoyer et al.

provision of IT-enabled components [15, 16] as well as their composition on the re-
source layer [17, 18]. Coming instead from a business perspective, researchers also
started to analyse the underlying structure of the resulting open mashup ecosystem
[19] and derived first managerial implications for API providers.

However, the discussion about the layers on top of the resources is still missing. By
means of a literature analysis of market research institute reports [1, 4, 8, 20] and by
taking experiences from first mashup implementations into account [21, 22], we iden-
tify the following open challenges concerning the enterprise adoption of the mashup
paradigm. They are clustered in three dimensions: technical, organizational, and busi-
ness perspective.

Table 1. Challenges of Enterprise Mashups

Challenges Description
Technical Perspective
Interoperability Discovery and composition of gadgets

 Underlying information model for in-/ output parameters for
wiring gadgets

Gadget
Portability

 Moving gadgets between different mashup environments
 First standardization activities (e.g., OpenAjax, OpenSAM,

OpenSocial, DataPortability, etc.)
Information
Security

 Gadget-to-resource security
 Single Sign On (SSO) to multiple company internal and

external component sources
 AJAX Web browser-based mashup execution engine

Organizational Perspective
Availability of
Components

 Integration in the existing IT infrastructure (legacy enterprise
systems)

 Creation of enterprise-class gadgets representing the actual
content of enterprise mashup platforms

Governance Managing grassroots and community-driven mashup
environments

 Balancing between organization concerns such as
manageability and fostering user involvement

Culture Exploitation of enterprise mashups to the right user groups
 Users have a new kind of freedom

Business Perspective
Building the
Business Case

 Business value for enterprises and the users to introduce the
mashup paradigm

 Providing key performance indicators for the IT management
Use Cases Real-world scenarios demonstrating the potential

In course of this paper, we focus on the technical interoperability, gadget portabil-

ity, and the availablity of gadgets.

 The FAST Platform: An Open and Semantically-Enriched Platform 321

3 FAST Platform

3.1 Enterprise Mashup Life Cycle

Before elaborating on the actual architecture of the FAST platform, we introduce a
life cycle for enterprise mashups in order to understand how enterprise-class gadgets
are designed and executed. The model is organized by means of two dimensions.
First, according to the terminology as presented in Sect. 2, the relationship between
the mashable components and the related user roles are structuring the vertical axis.
Second, the horizontal axis focuses on the actual life cycle of mashable components.
Thereby, each component of the enterprise mashup stack (mashup, gadget, and re-
source) goes through the four phases design, store, deploy, and execution. The result-
ing enterprise mashup life cycle is depicted in the figure below.

Fig. 3. Enterprise Mashup Life Cycle

As already mentioned, the FAST platform leverages semantics in order to hide the
composition complexity from the users. Therefore, in a preparation phase, an ontol-
ogy engineer identifies relevant domain specific ontologies. After importing of and
mediating between existing ontologies, the FAST gadget ontology is used in the ac-
tual design phase by the users. On the other hand, users are able to extend the FAST
gadget ontology with new instances by using the FAST platform. Mashable compo-
nents can be annotated with additional semantics – in the FAST scope this is done by
the consultants (gadget developers) and the screen developers. After finishing the
design of a mashable components (screen-flow, screen design, form design, piping
operation, and service wrapper), the persistence is handled in the store phase. A cata-
logue provides a URI to access the components and also allows the reuse of it during

322 V. Hoyer et al.

the design phase. In order to consume one of the three executeable components (re-
source, gadget, mashup), the deployment phase takes care of the publication to exter-
nal platforms. In context of a gadget, the FAST platform provides a set of potential
target mashup environments (enterprise, social, mobile, and desktop environments).
Now, the key user is able to compose deployed gadgets with each other (design phase
of the mashup layer). Finally, in the execution phase, the gadget in a mashup scenario
is consumed.

As depicted in Fig. 3, the enterprise mashup life cycle is characterized by perma-
nent loops between the different phases of the life cycle. The result of the FAST plat-
form is self-contained gadget, i.e., a piece of code that is executeable without using
the infrastructure of the FAST platform in the execution phase.

3.2 FAST Gadget Ontology

One of the aspects that set FAST apart from other platforms is that the aim is to create
what we call intelligent or smart gadgets. This means that the individual gadgets, as
well as the reusable parts they are composed of, are formally described, using terms
from a common ontology, the FAST gadget ontology2. It addresses the interoperability
challenges as identified in the requirement section. These formal descriptions are
utilised in different ways. (i) The inputs and outputs (pre- and post-conditions, respec-
tively) of gadget components (e.g., screens) can be matched automatically. This en-
ables the FAST platform to suggest screens which can be connected to other screens,
or which screens are missing from a screen-flow in order to make it executable. (ii)
User preferences and current work context which are equally described in terms of
the ontology can be matched with the gadget and component descriptions, in order to
suggest the right building blocks for a given task. (iii) Descriptions of existing third-
party resources can be mapped to the FAST gadget ontology in order to make them
available to the FAST platform.

In terms of its domain model, the FAST gadget ontology covers components on all
levels of granularity – from complete screen-flows over screens and operators down
to individual UI elements (as outlined in Sec. 2) –, backend services which provide
data and functionality to screens and users of the FAST platform (see Fig. 2). The
ontology is formalised using the Resource Description Framework (RDF) with OWL-
DL semantics [23]. Classes and properties which are unique to the FAST platform
(e.g., screens and screen-flows) have been modelled in the dedicated FAST name-
space, whereas more generic terms (e.g., users, properties for annotation) have been
adopted from external vocabularies and ontologies, such as FOAF and Dublin Core.
For an in-depth discussion of the FAST gadget ontology we refer the reader to [24],
which includes details on the methodology adopted for its development, the scope and
domain model and a complete list of classes and properties with documentation.

However, at this point we would like to highlight a central feature of the ontology,
namely the modelling of pre- and post-conditions, which is crucial both for the com-
position of screen-flows, as well as their excecution. Each such condition is expressed
as a graph pattern, i.e., a set of one or more RDF triple patterns. The patterns of post-
conditions will be instantiated into a common RDF graph, while the patterns of

2 http://purl.oclc.org/fast/ontology/gadget, last checked 2009-08-13.

 The FAST Platform: An Open and Semantically-Enriched Platform 323

pre-conditions will be executed as SPARQL queries against this graph to determine if
they are fulfilled. For example, if the pre-condition of a product selection screen P is
that a user has successfully logged into the system, then this could be expressed as
simple graph pattern saying "There is a resource of type sioc:User" as follows3:

?user a sioc:User.

Now, if the post-condition of any screen currently present in the screen-flow contains
this pattern (e.g., from a login screen L), then P is executable. Obviously, graph pat-
terns can be more complex. We could imagine that the post-condition of the login
screen L is "There is a user resource which has an account name. There is also a
person resource which has a name, and which has the user resource as its online
account". Formally in FAST, this could be expressed as follows:

?user a sioc:User;
 foaf:accountName ?account_name.
?person a foaf:Person;
 foaf:holdsAccount ?user;
 foaf:name ?person_name.

In defining pre- and post-conditions of screens in this way, the FAST platform is
capable of suggesting to a user which screens out of the set of available screens could
be added to a given screen-flow during its development, or which of the screens al-
ready present in the screen-flow are executable or not.

3.3 Architecture

In order to support the presented enterprise mashup life cycle and FAST gadget on-
tology, we have designed a high level architecture of the FAST platform. By using the
Fundamental Modeling Notation (FMC), we model the architectural components,
their relationships and how the different user roles interact with the platform. In con-
trast to the technical-oriented UML notations, FMC focuses on human comprehension
of complex systems4.

Taking into account that the main objective of FAST is to allow users to compose
gadgets from reusable building blocks and deploy them on various mashup platforms,
the most natural mean is providing a rich internet application. Therefore, we have
devised a robust architecture comprising the FAST client running on a Web-based
FAST client, which deals with user interactions, and the FAST server, which takes
care of the semantics, the storage capabilities and the deployment to external parties.
Fig. 4 depicts the resulting FAST architecture.

The FAST client, which is called Gadget Visual Storyboard (GVS), consists of
three main architectural components.

Workspace Manager (GUI). This component is responsible for building and render-
ing the user interface and then populating it with the pieces required for designing an
enterprise-class gadget. The AJAX-based user interface is composed by several areas:
the building block palette, which shows a domain-specific subset of the existing
building blocks stored in the server-side catalogue; the design area, in which the user

3 Using SPARQL notation and terms from the SIOC and FOAF vocabularies.
4 http://www.fmc-modeling.org, last checked 2009-08-13.

324 V. Hoyer et al.

Fig. 4. FAST High Level Architecture (FMC Notation)

composes the gadget by mixing the pieces coming from the palette in a visual man-
ner; and finally, a number of property editors and inspectors which show to the user
the most relevant information about the screen-flow (or the screen). Fig. 6 in case
study section depicts a screenshot of the FAST GVS user interface.

Local Caching Catalogue. The local catalogue retrieves and caches building block
metadata coming from the FAST server metadata catalogue and being used for the
designing of a gadget (or another lower-level piece, such as a screen). Moreover, this
component provides the workspace manager with recommendations about what build-
ing blocks to use among other assistive features. These recommendations are pro-
vided by the server-side inference engine which is described below.

Semantic Editor. Building block reuse is empowered by the exploitation of seman-
tics. Therefore, during their design and creation, it is necessary to use the existing
semantic information and important to further enrich the elements being composed
with semantic annotations. The semantic editor component allows the user to perform
this duty in an integrated and user-friendly fashion.

 The FAST Platform: An Open and Semantically-Enriched Platform 325

The FAST server in the backend implements a REST API that offers the required
functionality to deal with building block management, workspace persistence, gadget
storage and its deployment. Additionally, the open APIs allow the integration of re-
quired third party tools (i.e., Protégé for managing domain-specific ontologies). In
order to request information about the mashable components, we provide JSON and
RDF/XML payloads. In particular, JSON reduces the programming effort in the
FAST client. The FAST server-side itself is modularized into several cohesive com-
ponents allowing independent development, even using different technologies. The
main components are explained below.

Metadata Catalogue. The FAST metadata catalogue is in charge of the storage and
indexing of information about every piece of a gadget, ranging from components such
as screens or screen-flows all the way down to ontology terms describing the scope of
a gadget. The structure of these components is formally defined in the FAST gadget
ontolgy. Hence, every element in the catalogue is an instance of a concept from the
FAST gadget ontology (or any other ontology), or indeed the ontology terms them-
selves. Consequently, its three main purposes are: (i) finding the most relevant build-
ing blocks for a given context (domain, user preferences and current workspace). (ii)
The support for social interactions allowing community enrichment of the mashable
component base (see semantic editor of the FAST client). (iii) The ability to deal with
different domain-specific building blocks allowing users to create enterprise-class
gadgets. In order to appropriately infer within those different domains, different on-
tologies must be used by the metadata catalogue. The main problem is that the most
valuable gadgets usually are created by mashing up several application domains, so
the catalogue component is also designed to manage the relationship between differ-
ent ontologies (i.e., using ontology mapping techniques). The metadata catalogue is
based on the RDF repository Sesame 2 which also provides a RESTful HTTP inter-
face for SPARQL Protocol for RDF. As an abstraction to access the triple store, the
RDF2Go library is integrated.

Inference Engine. Due to the importance of semantics, we distinguish the inference
engine as the sub-component responsible for reasoning. It allows extracting and deriv-
ing new information given a certain knowledge base. It interacts directly with the
triple store of the metadata catalogue and follows a forward-chaining policy, hence
whenever new data is added to the catalogue, it also triggers a set of rules, and newly
inferred data is added to the catalogue. Following a forward-chaining policy in the
metadata catalogue makes sense, because it allows for faster query answering which
is crucial for the performance of the overall FAST platform. Insertion of new data
which would be favoured by backward-chaining is much less crucial in FAST. The
set of rules being used by the inference engine is composed by a subset of the RDFS
entailment rules5 and the inverse of some of these rules.

Persistence Manager. The persistence manager is responsible for storing the relevant
information between different browsing sessions. It stores user information (e.g., user
profile) and settings, some usage statistics and user feedback, which can be used by
the metadata catalogue to retrieve building blocks more accurately. As indicated in
Fig. 4, data from external systems such as Google Analytics for monitoring designed

5 http://www.w3.org/TR/rdf-mt/#RDFSRules, last checked 2009-08-13.

326 V. Hoyer et al.

and deployed gadgets as well as user feedback from the runtime environments
(mashup platforms) is integrated in the persistence manager and therefore in the
FAST ecosystem.

Building Block Repository. Once a component, for instance a screen or a screen-
flow, is designed it must be stored in order to allow reuse at a later stage or even to
create gadgets. The building block repository component is responsible for managing
the existing building blocks’ implementation. The acutal metadata is stored in the
catalogue. By doing so, we separate between the actual code and metadata of the
mashable components in the FAST platform.

Gadget Builder. When consultants finish their work and decide to create a gadget to
be used in a mashup platform for execution, it is necessary to package the final
gadget’s code. It is the actual implementation of the designed functionality by using
the modelled building blocks. The gadget builder is triggerd by the workspace man-
ager of the FAST client and deals with this task. It processes each of the building
blocks to create its associate code, and setting the defined relationships between them.
The result is a self-contained, platform-independent gadget.

Gadget Storage and Deployment. The gadget code is stored and automatically
adapted to the different mashup environments and their specifics. By attaching to the
gadget’s code the platform-compliant implementation of the target gadget API, the
FAST gadget can be executed. The next section explains the FAST deployment con-
cept in more detail.

3.4 Deployment of Multi-channel Gadgets

The final output of the FAST gadget development process is a gadget, which needs to
be first stored and subsequently deployed to a chosen target destination, such as a start
page (e.g., Netvibes, iGoogle, etc), mobile device, social networking site (e.g, Face-
book, Bebo, etc), desktops of operating systems (e.g.: Windows Vista, Safari, etc) and
finally, enterprise mashups (EzWeb).

In order to allow gadget deployment in one or multiple target platforms we have
designed a flexible runtime gadget architecture. To achieve this platform independ-
ence, an important architectural design decision taken was to have the three layered
approach as depicted in Fig. 5: The first layer corresponds to the screen-flow imple-
mentation of a specific enterprise-class gadget created by a user. The FAST platform
empowers the user with the capability of emulating the runtime execution of the
screen-flows, thus allowing for the experimentation of the final gadget. However, it is
necessary the existence of a runtime execution environment, which corresponds to the
other depicted two layers:

• FAST Gadget Player. This player enables building block interactions and
guides the execution flow from one screen to another and keeps track of the
facts.

• FAST Gadget API. This layer is responsible for the actual abstraction of the
target destination mashup platforms.

 The FAST Platform: An Open and Semantically-Enriched Platform 327

Fig. 5. Multi-Channel Gadgets

The three step deployment process begins after the FAST gadget has been created:

• Build. The first phase consists of packaging the complex gadget, namely the
screen-flows and the corresponding resources, into a runtime environment that
will execute independent of the FAST platform.

• Storage. With regards to deployment, it is important to take into consideration
that most target destinations do not support the actual storage of gadgets.
Therefore, the target destination usually keeps track of the URL where the
gadget is stored. Consequently, once the gadget is built, it is placed within a
repository.

• Deployment. This phase focuses on the placement of the gadget within the
target designation platform, using the URL of where the gadget is stored. The
actual deployment can take two alternative paths. First, the gadget is installed
directly into the target destination platform by using an adapter. Second, the
gadget is deployed via a distribution platform (e.g, Beemway6), which trans-
parently installs the FAST gadget onto multiple destinations thus supporting
the paradigm of build once, run everywhere.

4 Case Study: Cross-Organizational Promotion Scenario

After elaborating on the technical issues of the innovative FAST platform, this section
is devoted to demonstrate the business value by means of a case study. Our demo
scenario covers the usage of the FAST platform during the design, storage and
deployment phase of the gadgets and the EzWeb7 mashup platform for the building
and execution of enterprise mashups in a cross-organizational context. The business
scenario is involving two companies: The first company is a promotion agency

6 http://www.beemway.com, last checked 2009-08-13.
7 http://ezweb.morfeo-project.eu, last checked 2009-08-13.

328 V. Hoyer et al.

PromoBueno, a SME company with 47 employees located in Madrid, Spain. The
company offers different services to its customers, i.e. the organization of promotion
activities at fairs/ events, brand promotion and marketing campaigns, etc. Pro-
moBueno uses the FAST platform to develop gadgets to make their internal work
more efficient and also to enable its customers to place promotion requests directly at
them by using FAST gadgets. The latter gadget will be developed and published to a
publicly available enterprise mashup platform, EzWeb, and allows interested custom-
ers of PromoBueno to create promotion requests and send them directly to Pro-
moBueno. Figure 6 depicts a screenshot of the FAST prototype on how to define a
screen-flow (in this case it consists of two screens - “available crew” and “incoming
request”) and on how to deploy the gaget to mashup platform (EzWeb).

Fig. 6. Design, Deployment, and Execution of an enterprise-class Gadget

Now, the second company in our scenario (AllSports) is a sports equipment and nu-
trition producer, a large enterprise with 3227 employees located in Hamburg, Ger-
many. Recently, AllSports created a new protein bar for high endurance athletes. The
sales and marketing departments arrange and organize so-called point-of-sale (POS)
promotion activities supported by different gadgets via the company internal enter-
prise mashup environment. When AllSports decides to introduce and sell their new
product in Spain, they are interested in collaborating with different promotion agen-
cies to request support for promotion activities at trade fair events. It is important for
them that they can quickly establish the promotion request process with new agencies,
as there are many available.

The created gadget can be used as follows to support the interconnection and col-
laboration between the two firms. A sales employee of AllSports has the need to
request a promotion crew for a sport event. As it is her first time of organizing a booth
at a fair in Spain, she needs the help of a local promotion agency. The sales employee
of AllSports searches the gadget catalogue of the EzWeb platform and finds the

 The FAST Platform: An Open and Semantically-Enriched Platform 329

published “Promotion Request Gadget” of PromoBueno. The integration of the new
“Promotion Request Gadget” is done by a key user of PromoBueno. The sales em-
ployee now carries out the POS process including the booking of the event and also
the staffing of the promotion crew directly via the gadget of the promotion agancy.
The promotion manager at PromoBueno gets the incoming request displayed at her
monitoring gadget and can send a confirmation back to AllSports.

5 Conclusion and Future Work

The aim of this paper is the design of an open and semantically-enriched platform
which allows creating enterprise-class and multi-channel gadgets. In order to achieve
this, first, we introduced the main terms related to enterprise mashups and identified
the challenges in order to transfer consumer-driven mashup paradigm to corporate
environments. In a second step, we present the FAST platform. By means of a life
cylce model, the relationship of the mashable components of an enterprise-class
gadget is described. The FAST gadget ontology and the resulting software architec-
ture are presented. Finally, a first implemented mashup scenario in the marketing/
promotion event area demonstrated the potential of the FAST platform.

Apart from other existing mashup and gadget platforms [4], the presented FAST
platform aims at providing intelligent or smart gadgets by leveraging semantics. The
followed multi-channel deployment approach allows the usage of designed FAST
gadgets in various environments. For example, users from the business unit are em-
powered to develop and publish gadgets on their daily portal environment (EzWeb)
and also on mobile devices without involving the IT department.

What is still missing is a general concept on how to integrate existing legacy enter-
prise systems in enterprise mashup environments. Currently, the consumed resources
from backend systems (SAP Enterprise Service) are integrated manually. Future re-
seach will also deal with the implementation of a complete version of the marketing/
promotion event scenario that covers the ad-hoc interaction between several parties
across company borders.

Acknowledgments. This work is supported in part by the European Commission
under the first call of its Seventh Framework Program (FAST STREP Project, grant
INFSO-ICT-216048) and in part by Science Foundation Ireland under Grant No.
SFI/08/CE/I1380 (Líon-2).

References

1. Chui, M., Miller, A., Roberts, R.P.: Six Ways to make Web 2.0 work. The McKinsey
Quarterly (February 2009)

2. McAfee, A.P.: Enterprise 2.0: The Dawn of Emergent Collaboration. MIT Sloan Manage-
ment Review 47(3), 21–28 (2006)

3. Tapscott, D., Williams, A.D.: Wikinomics: How Mass Collaboration Changes Everythink,
Portfolio, New York (2006)

4. Carrier, N., Deutsch, T., Gruber, C., Heid, M., Jarrett, L.L.: The Business Case for Enter-
prise Mashups, Web 2.0 Technology Solutions, IBM White Paper (2008)

330 V. Hoyer et al.

5. Hoyer, V., Stanoevska-Slabeva, K.: Towards a Reference Model for Grassroots Enterprise
Mashup Environments. In: Proceedings of the 17th European Conference on Information
Systems, Verona, Italy (2009)

6. Cherbakov, L., Bravery, A., Goodman, B.D., Pandya, A., Baggett, J.: Changing the Corpo-
rate IT Development Model: Tapping the Power of Grassroots Computing. IBM Systems
Journal 46(4), 743–751 (2007)

7. Gootzit, D., Phifer, G., Valdes, R., Drakos, N., Bradley, A., Harris, K.: Hype Cycle for
Web and User Interaction Technologies, Gartner Research G00159447 (2008)

8. Young, O.G.: The Mashup Opportunity: How to make Web 2.0 work, Forrester Resesarch,
May 6 (2008)

9. The Economist Intelligence Unit: Serious Business – Web 2.0 goes Corporate, Report of
the Economist Intelligence Unit (2008)

10. McKinsey Global Survey Results: Building the Web 2.0 Enterprise, The McKinsey Quar-
terly (2008)

11. Hoyer, V., Fischer, M.: Market Overview of Enterprise Mashup Tools. In: Bouguettaya,
A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364, pp. 708–721. Springer,
Heidelberg (2008)

12. Hoyer, V., Stanoevska-Slabeva, K., Janner, T., Schroth, C.: Enterprise Mashups: Design
Principles towards the Long Tail of User Needs. In: Proceedings of the IEEE International
Conference on Services Computing, Honolulu, Hawaii (2008)

13. Daniel, F., Matera, M., Yu, J., Benatalla, B., Saint-Paul, R., Casati, F.: Understadning UI
Integration. A Survey of Problems, Technologies, and Opportunities. IEEE Internet Com-
puting 11(3), 59–66 (2007)

14. Janner, T., Siebeck, R., Schroth, C., Hoyer, V.: Patterns for Enterprise Mashups B2B Col-
laborations to foster Lightweight Composition and End User Development. In: Proceed-
ings of the IEEE 7th International Conference on Web Services, L.A, CA (2009)

15. Abbott, R.: Open at the Top, Open at the Buttom; and continually (but slowly) evolving.
In: Proceedings of the IEEE Conference on Systems of System Engineering (2006)

16. Pautasso, C., Zimmermann, O., Leymann, F.: RESTful Web Services vs Big Web Ser-
vices: Making the Right Architectural Decision. In: Proceedings of the 17th International
World Wide Web Conference, Beijing, China (2008)

17. Maximilien, E.M., Hernan, W., Nirmit, D., Stefan, T.: A Domain-Specific Lanaguage for
Web APIs and Service Mashups. In: Proceedings of the 5th International Conference on
Service Oriented Computing (2007)

18. Rosenberg, F., Curbera, F., Duftler, M.J., Khalaf, R.: Composing RESTful Services and
Collaboration Workflows. IEEE Internet Computing 12(5), 24–31 (2008)

19. Yu, S.: Innovation in the Programmable Web: Characterizing the Mashup Ecosystem. In:
Proceedings of the 2nd International Workshop on Web APIs and Services Mashups (2008)

20. Bradley, A.: Addressing the Seven Primary Challenges to Enterprise Adoption of Mash-
ups, Gartner Research G00164390 (2009)

21. Hoyer, V., Gilles, J.T., Stanoevska-Slabeva, K.: SAP Research RoofTop Marketplace: Put-
ting a Face on Service-Oriented Architectures. In: Proceedings of the 7th IEEE Interna-
tional Conference on Web Services (ICWS), L.A., CA (2009)

22. Lizcano, D., Soriano, J., Reyes, M., Hierro, J.J.: EzWeb/FAST: Reporting on a Successful
Mashup-based Solution for Developing and Deploying Composite Applications in the Up-
coming Web of Services. In: Proceedings of the 10th International Conference on Informa-
tion Integration and Web-based Applications & Services, iiWAS (2008)

23. Patel-Schneider, P.F., Hayes, P., Horrocks, I.: OWL Web Ontology Language Semantic
and Abstract Syntax, Recommendation W3C (2004),
http://www.w3.org/TR/owl-semantics

24. Möller, K.: Ontology and conceptual model for the semantic characterisation of complex
gadgets, FAST Project Deliverable 2.2.1 (2009)

Message-Oriented Middleware with QoS
Awareness

Hao Yang, Minkyong Kim, Kyriakos Karenos, Fan Ye, and Hui Lei

IBM T. J. Watson Research Center
{haoyang,minkyong,kkarenos,fanye,hlei}@us.ibm.com

Abstract. Publish/subscribe messaging is a fundamental mechanism
for interconnecting disparate services and systems in the service-oriented
computing architecture. The quality of services (QoS) of the messaging
substrate plays a critical role in the overall system performance as per-
ceived by the end users. In this paper, we present the design and im-
plementation of Harmony, an overlay-based messaging system that can
manage the end-to-end QoS in wide-area publish/subscribe communica-
tions based on the application requirements. This is achieved through a
holistic set of overlay route establishment and maintenance mechanisms,
which actively exploit the diversity in the network paths and redirect
the traffic over links with good quality, e.g., low latency and high avail-
ability. In order to cope with network dynamics and failures, Harmony
continuously monitors the link quality and adapts the routes whenever
their quality deteriorates below the application requirements. Harmony
can operate on top of different data transport layers. When the transport
layer has built-in message scheduling capability, Harmony takes advan-
tage of it and utilizes a novel budget allocation scheme to control the
scheduling behavior. We have fully implemented the Harmony messaging
system, and our empirical experience has confirmed its effectiveness in
providing end-to-end QoS in dynamic wide-area network environments.

1 Introduction

We are witnessing major transformations to the enterprise computing landscape.
One of such transformations is the ever increasing awareness of the real-world
events and conditions through massive sensing, analytics and control capabil-
ities, leading to a proliferation of cyber–physical systems (CPS)[1]. Another
major transformation is the growing interconnection and interoperation of en-
terprise systems over a geographically distributed wide area, as triggered by
business practices like mergers and acquisitions, off-shoring, outsourcing, and
the formation of virtual enterprises. The second transformation has been driv-
ing an emerging engineering discipline around the system of systems (SoS) [2].
Message-oriented middleware (MOM) is widely recognized as a promising ap-
proach to the integration of both CPS and SoS, because messaging is a simple
and natural communication paradigm for connecting the loosely-coupled and
distributed components in those systems. However, CPS and SoS have also in-
troduced new non-functional requirements on MOM. Specifically, MOM must

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 331–345, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

332 H. Yang et al.

be aware of and satisfy the unique quality-of-service (QoS) needs of these new
systems in order for it to be practically useful.

Consider cyber physical systems being developed for a wide variety of appli-
cation domains ranging from the smart grid of electricity to environmental mon-
itoring and to intelligent transportation. Voluminous sensor event data needs
to be transported from field sensors to backend enterprise servers for complex
event processing and integration with the business processes. Sensor data is of-
ten time-sensitive in that the correct data that comes too late may become the
wrong data. Therefore sensor data must be transported in a very responsive
and reliable manner. Similarly, control directives carried in the reverse direction
of traffic may drive various mission-critical systems. The control directives may
have stringent requirements on delivery performance and security in order to
avoid catastrophic consequences. On the other hand, the communication infras-
tructure for sensor data and control directives presents a number of challenges.
Sensors are often deployed in potentially hostile environments, which make the
sensors more prone to malicious attacks and natural hazards. Further, sensors
are connected through wireless links that are inherently weak. There may be a
high degree of variability in wireless bandwidth due to moving obstructions, RF
interference, and weather. There may also be periods of intermittent disconnec-
tions. Such characteristics make it very difficult for MOM to effectively address
the QoS requirements of CPS.

In the realm of system of systems, the constituent systems may be distributed
over a large geographic area, e.g., across a nation or even spanning multiple
continents. Messages between the systems often have to travel a long commu-
nication path, incurring much larger delay than local-area messaging. It is also
harder for a long-haul communication path to maintain high availability due
to the increased number of nodes and links on the path. Further, the systems
are likely to be deployed and operated by separate organizations, which result in
different security properties and degrees of trustworthiness to be associated with
these systems. Despite technical challenges arising out of the communication in-
frastructure, many SoS applications require messaging capabilities with certain
assurance on a range of QoS metrics including latency, throughput, availability
and security. One example of such an SoS assimilated multiple systems used
by US federal agencies (FAA, DoD, DHS, etc.) to facilitate the distribution of
real-time national air surveillance data among these agencies [3].

Existing MOMs fall into one of two categories: enterprise messaging systems
and real-time messaging systems. Intended to address traditional business needs,
enterprise messaging systems provide message delivery assurance and transac-
tional guarantees. They usually implement the JMS standard [4] and can trans-
port messages over a wide area across multiple domains. However, they do not
proactively manage messaging performance. As such, applications cannot predict
or depend on when messages will arrive at the destination. Real-time messag-
ing systems, on the other hand, offer QoS assurance by allocating resources and
scheduling messages based on application-specific QoS objectives. They often
conform to the DDS standard [5]. Unfortunately these systems are limited to

Message-Oriented Middleware with QoS Awareness 333

QoS management within a local area or a single domain. They are not designed
for wide-area messaging involving multiple separate domains. Neither enterprise
messaging nor real-time messaging is adequate for the emerging CPS and SoS,
which require QoS awareness and enablement for messaging in a large geographic
area and through federated domains.

The Harmony messaging system developed at IBM T. J. Watson Research
Center is designed to combine the best of enterprise messaging and real-time mes-
saging to suit the needs of the emerging CPS and SoS paradigms. Specifically,
Harmony facilitates the interconnection of disparate messaging domains over
large geographic areas and heterogeneous network infrastructure, and provides
compatibility and interoperability with de-facto messaging standards including
both JMS and DDS. One salient feature of Harmony is the holistic provisioning
of dependable and predictable QoS by effectively addressing system and net-
work dynamics, heterogeneity and failure conditions. It allows the specification
of required performance properties (i.e., latency, throughput), availability and
reliability models, and security constraints separately for each message topic or
connection session; it further transports messages across autonomously admin-
istered domains respecting the above requirements end-to-end.

In this paper, we focus on the provisioning of end-to-end latency QoS in Har-
mony in the context of MOM for wide-area federated domains. This is achieved
through a holistic set of overlay route establishment and maintenance mecha-
nisms for managing the end-to-end latency, including both network latency and
processing latency. In particular, the overlay routing mechanisms actively ex-
ploit diversity in the network paths and redirect messages over those links with
good quality, e.g., low latency and high availability. In order to cope with net-
work dynamics and failures, Harmony continuously monitors the link quality
and adapts the routes whenever their quality deteriorates below the application
requirements. Harmony can operate on top of different data transport layers.
When the transport layer has built-in message scheduling capability, Harmony
also adopts a novel budget allocation scheme to control its scheduling behav-
ior and adapt to short-term network dynamics. Our experience from a testbed
deployment demonstrates that Harmony can effectively manage the end-to-end
latency with respect to the application requirements, despite the dynamics com-
monly seen in the wide-area networks.

The rest of this paper is organized as follows. Section 2 reviews our network
and system models, and Section 3 presents our design of Harmony, a QoS-aware
messaging middleware over wide-area networks. Section 4 describes our imple-
mentation efforts, and Section 5 reports our empirical experience from a testbed
deployment. Section 6 compares the Harmony system to the literature. Finally,
Section 7 concludes the paper.

2 Network and System Models

Our work targets the emerging CPS and SoS paradigms which require message-
oriented middlewares to interconnect massively distributed components, services

334 H. Yang et al.

DOMAIN

DOMAIN

DOMAIN

Sensor
Node

Sensor
Node

Sensor
Node

BROKER

BROKER

BROKER

BROKER

BROKER

Fig. 1. Network Model

and systems over large geographic areas. Examples of such systems include Smart
Grid for electricity distribution, smart city management and intelligent trans-
portation. In all these applications, a large number of sensors and actuators are
deployed in the field, and they must be interconnected with the event processing
and analytics capabilities at the back end. A wide variety of event data and con-
trol directives are transported across different nodes in real time. This requires
a messaging service that supports different communication paradigms, such as
point-to-point, multicast and publish/subscribe. While the system we developed
supports all these communication paradigms, we focus on the publish/subscribe
aspect in this paper, because it provides the fundamental mechanism for asyn-
chronous communication in distributed systems.

We assume that the endpoint nodes in the system are clustered into many local
domains, and there is one broker node inside each domain. As shown in Figure
1, these brokers are inter-connected through an overlay network and collectively
provide the publish/subscribe messaging service. Each endpoint node, such as a
sensor, an actuator or a processing element, is attached to the local broker. There
can be an arbitrary number of topics in the system, which can be defined either
through administrative tools or dynamically using programming APIs. Each
endpoint can publish and subscribe to one or multiple topics, while each broker
can perform publish/subscribe matching, transport messages to local endpoints
or neighboring brokers, and optionally perform message mediation (e.g., format
transformation). Compared to the traditional approach using a single broker or
a cluster of brokers, our overlay-based approach provides several architectural
benefits as follow:

– Scalability: Each node only needs to know the local broker, while each broker
only communicates with a small number of neighboring brokers. As such, we
can avoid maintaining pair-wise connections, which is prohibitively expensive
as the system scales up.

Message-Oriented Middleware with QoS Awareness 335

– Federation: The system is likely deployed and operated jointly by multiple
organizations. In such a federated scenario, it is critical that each adminis-
trative domain can independently manage the access from/to its own nodes,
which can be easily facilitated by the local brokers.

– Heterogeneity: The sensors are inevitably heterogeneous in a large-scale sys-
tem. It is difficult, if possible, for any broker to understand all the protocols
used by different nodes. With an overlay, the brokers can agree on a canoni-
cal protocol among themselves, and use a few adapters to communicate with
the local sensor nodes.

Within each local domain, the sensor and actuator nodes can be connected to
the broker through a variety of forms, e.g., wireless sensor networks. There have
been numerous research in the sensor networking area, which is beyond our scope
in this paper. Instead, we focus on providing Quality-of-Service (QoS) assurance
within the broker overlay network. In the next subsection, we elaborate on the
QoS model that we employ in this work.

2.1 Quality-of-Service Goals

Providing predictable QoS is an essential requirement for mission-critical appli-
cations. In particular, the messaging middleware should ensure timely and reli-
able delivery of critical messages, such as emergency alerts or real-time control
commands. Formally stated, our goal is to provide QoS-aware publish/subscribe
service in terms of message latency and delivery rate between all matching pairs
of publishers and subscribers. Specifically, each topic is associated with a max-
imum delay that its messages can tolerate1, and our system seeks to maximize
the in-time message delivery rate, i.e., the percentage of messages that arrive
before their respective deadline.

Note that the end-to-end delay for a given message consists of both processing
delay at each intermediate broker and the communication delay between adjacent
brokers. The former is affected by the load (i.e., message arrival process) of a
broker, while the latter is affected by the characteristics of the network links. The
broker processing delay also varies over time as each broker dispatches messages
on multiple topics, and the messages may arrive in burst. Furthermore, since
the sensors and actuators are deployed over a large geographic area, they will
inevitably operate over wide-area networks, where the link quality fluctuates
due to the dynamic traffic load. While some applications may employ dedicated
networks, in general we do not assume the underlying network provides any QoS
assurance. Such a relaxed network model allows our system to be applicable
in different deployment scenarios, but it also poses challenges to our design as
the messaging service must cope with such network and system dynamics, and
ensure the end-to-end latency requirement is continuously satisfied.

1 We consider per-topic latency requirement for ease of presentation. Our system can
be easily extended to provide different QoS for individual publishers and subscribers.

336 H. Yang et al.

3 Design

In this section, we present the design of Harmony, a message-oriented middleware
with QoS awareness for wide-area publish/subscribe communication.

3.1 Overview

In order to meet the end-to-end latency requirements, our basic idea is to use
overlay forwarding to bypass any congested network links or overloaded brokers,
and to properly manage the network resources based on the message priorities.
These techniques have been used in the literature for improving the QoS of
point-to-point communication in the Internet [6][7][8]. However, there are a few
non-trivial challenges in the context of publish/subscribe communication, where
a topic may have many distributed publishers and subscribers. First, how can
we establish QoS-aware overlay routes that interconnect all publishers and sub-
scribers of a given topic, and adapt these routes in response to network dynamics
such as link congestion and broker failures? Second, how can we coordinate the
brokers along a route to collectively ensure the end-to-end latency performance?

Harmony addresses these challenges by a holistic set of overlay route establish-
ment and maintenance mechanisms. Specifically, the brokers exchange control
messages among themselves to discover remote subscriptions, and employ a dis-
tributed protocol to establish end-to-end overlay routes that satisfy the latency
requirements. To handle network dynamics, each broker has a monitoring agent
that keeps track of the latest processing latency and network latency to its neigh-
boring brokers. These measurements are propagated among the brokers and used
in the path computation to continuously find QoS-satisfied overlay routes. These
overlay routing mechanisms can work with any data transport layer that sup-
ports publish/subscribe communication. Nevertheless, when the transport layer
has additional message scheduling capability, Harmony allocates latency budgets
for different topics at each hop, which are used to decide the scheduling prior-
ity of different messages at transmission time. This way, the system can handle
short-term latency increase at one broker by increasing the latency budget at this
broker, while reducing the budgets at other brokers. When the latency changes
go beyond what can be handled by shifting budgets, however, new routing paths
are computed to avoid congested links or overloaded brokers.

3.2 Overlay Routing

For simplicity, we assume that the set of brokers is known in advance, and
the topology of the broker overlay is also decided a priori. Nevertheless, these
brokers and links may fail and recover at any time. This assumption is reasonable
in many application scenarios because the broker deployment only changes at
very coarse timescales (e.g., once in a few weeks). In cases where brokers do
frequently join and leave, a dynamic topology maintenance scheme is needed to
adjust the overlay topology in runtime. We leave this issue for future study.

Message-Oriented Middleware with QoS Awareness 337

In general, there are two approaches for routing, namely link state (e.g., OSPF
[9]) and distance vector (e.g., RIP [10]). While each approach has its own merits,
our design follows the link state one which, as explained later, is more suitable
for our specific context. We also employ several novel techniques to support QoS
in distributed publish/subscribe communication.

Finding Subscribers. As discussed in Section 2, each endpoint can subscribe
to any topic at any time. Such subscriptions are sent to the local broker which this
endpoint is attached to. Each broker maintains a local subscription table to record
which topics each local endpoint subscribes to. The brokers then propagate these
topics to other brokers. As a result, each broker knows which topics any other
broker needs; it maintains such information in a remote subscription table.

When an endpoint publishes a message on a topic, say T , the message is sent
to the local broker. This broker first checks the local subscription table and
transmits to all local subscribers of T . It also checks the remote subscription
table to finds all remote brokers that subscribe to T , and sends the message to
these brokers using the overlay routes. Upon receiving this message, these brokers
further forward it to their respective local subscribers. As such, the message will
eventually arrive at all subscribers of topic T in the system.

Monitoring and Link State Advertisement. Similar to OSPF [9], every
broker periodically advertises its link states, including the measured processing
latency for each topic and the network latency to each of its neighbors. Such link
states are propagated to all other brokers through a simple neighbor forwarding
mechanism [9]. Asa result, each broker has a local copy of the entire network
map, i.e., the broker overlay topology with the latest latency measurements for
all nodes and links.

Each broker employs a monitoring agent to measure processing and network
latencies. It periodically pings neighboring brokers to obtain network latency.
We use Exponentially Weighted Moving Averaging (EWMA) to avoid sudden
spikes and drops in the measurements. On the other hand, if a neighbor fails
to reply to three consecutive pings, it is considered to have failed and the link
latency is marked as ∞. The monitoring agent also keeps track of the broker
processing latency, including the time spent on publish/subscribe matching and
the queueing delay. Both latency measurements are included in the link state
advertisement so that each broker can build a complete network map.

QoS-aware Multipath Route Computation. For both resilient and in-
time message delivery, Harmony employs multipath routing in which a message
may be delivered to the subscribers via multiple parallel paths. Since every bro-
ker maintains the complete overlay topology from the link-state advertisements,
it can compute the QoS-satisfied paths individually and use a source routing pro-
tocol, which will be described shortly, to establish these paths. In what follows,
we consider resiliency level (or simply resiliency) as the probability of deliver-
ing a message end-to-end over one or more paths, which can be measured over
long periods of time. We provide a path computation algorithm that takes into

338 H. Yang et al.

account such failure probabilities towards choosing the most resilient combina-
tion of parallel paths. The failure probabilities of brokers and links are assumed
to be known in advance, while our algorithm can accommodate various defini-
tions of resiliency such as [11] or using historic information. For example, the
percentage of time that a broker is available in a specific operational period of
time can be extracted from traces such as the all-pairs-pings service.

Our algorithm takes as input the overlay network topology, the failure prob-
ability of each broker and each overlay link, the number of multipaths needed
n, a delay constraint D and a maximum search depth k. The goal is to compute
the n-multipath that provides the highest resiliency while satisfying the delay
constraint. It first uses the k-shortest paths algorithm in [12] to find the k paths
with the shortest delays between a source and a destination, in the order of in-
creasing delays. It then excludes paths that exceed delay D. For the remaining
k′ paths we apply the provided failure probability of each broker to compute
the resiliency of the remaining paths as follows: A path is considered available
only when all brokers and all links along that path are also available. Thus, the
resiliency of a path can be computed as Pr(E) = Πi,j(1 − pn

i)(1 − pl
j), where

Pr(E) is the resiliency of the path, and pn
i and pl

j are failure probabilities for
brokers and links respectively. The algorithm then computes the resiliency of all
the n-path combinations within the remaining k′ paths, using inclusion-exclusion
to compute Pr(Q), i.e., the resiliency of the multi-path of n paths.

Pr(Q) =
∑n

j=1(−1)j+1∑
I⊆{1...n},|I|=j Pr(EI)

where, I is a subset containing j of the n paths, Pr(EI) is the probability that
all the j paths are operational, meaning their brokers and links are all on. The
sum is done over all subsets of size j, and over all sizes of j (from 1 to n).

Observe that the selection step is of exponential complexity due to its combi-
natorial nature. Another observation is that when adding an additional path say,
pi to a multipath Q the resiliency of the new multipath Q∪pi is at least equal to
Q. This observation motivates the utilization of a branch-and-cut-based heuristic
search. We construct a tree, the root of which is the complete set of paths. Each
broker of the tree represents a multipath. For each broker of the tree, its chil-
dren are associated to all its sub-paths. Clearly, when a broker does not satisfy
a resiliency value, none of its children will; thus it can be safely eliminated along
with its children.

QoS Route Establishment. In OSPF, each node independently runs Dijk-
stra’s algorithm to determine the shortest path to every other node, and then
populate its routing table accordingly. We do not directly apply this method in
our broker overlay due to the need for controlling per-hop latency budget, as we
shall describe in Section 3.3. Because each node on a route makes independent
and possibly different decisions on how to reach the destination, the end-to-end
routes change frequently; no single node can control the route. This makes it
difficult to apply the budget allocation technique on a hop-by-hop basis.

Instead, we employ a novel source routing scheme, where a publisher broker
locally computes the routes to all destinations (i.e., matching subscribers), and

Message-Oriented Middleware with QoS Awareness 339

BROKERBROKER

BROKER

BROKER

1:RT_EST

2:RT_EST

2:RT_EST

3:ACK

3:ACK

4:ACK

PUBLISHER

SUBSCRIBER

SUBSCRIBER

Fig. 2. Route establishment example. Numbers indicate the sequence of an operation.

uses a signaling protocol to set up these routes. As illustrated in Figure 2, the
source node sends a route establishment (RT EST) message to its next-hop
neighbor on a route. The RT EST message contains the topic name and all
intermediate brokers on the route.

Upon receiving this message, a broker first checks whether it is the destination
on the route. If so, it sends an acknowledgment to the upstream node from
which it receives this message. Otherwise, it extracts its own next hops from
the routes and forwards this RT EST message to its next hop broker. When
a node receives an acknowledgment from its downstream broker, it inserts the
<topic,next hop> pairs into its routing table, and then acknowledges to its own
upstream node. Eventually, the source node receives the acknowledgment and the
path is established. The process is repeated periodically to ensure the persistence
of all QoS paths.

To briefly summarize, our scheme differs from OSPF in two fundamental as-
pects: 1) In OSPF, each node independently decides its next-hop nodes. In our
scheme, the source node decides the entire routes. 2) In OSPF, a new link state
advertisement may trigger an intermediate node to update its routing table, thus
changing the end-to-end routes. In our scheme, once the routes are established,
they remain fixed until the source node tears them down. To adapt to network
dynamics, we employ a QoS-driven route maintenance mechanism.

Route Maintenance. Harmony updates the overlay routes only when they
cannot meet the latency requirement. This could happen when the route is dis-
rupted by broker failure or network outage, or when the route quality deterio-
rates as the brokers are overloaded or the network is congested. All these cases
can be easily detected by a source node, because it receives link state advertise-
ment from all other brokers2. Specifically, when a source node receives a link
state update, it checks whether the reported latency affects any of its routes. If
so, it updates the end-to-end latency of the current routes and compares it to
the latency requirement. If the requirement is still satisfied, no action is taken.

2 Assuming the overlay is not partitioned by the failures.

340 H. Yang et al.

Otherwise, it re-computes a new set of routes and establishes them using the
signaling protocol as described above.

When routes need to be updated, a task similar to the route establishment is
performed, with the difference that routing tables are updated incrementally. In
particular, the source compute the delta-path between the previous and current
paths and sends out a route establishment (RT EST) message the contains the
list of new links as well as the list of obsolete links. Upon reception, a node will
perform a similar operation as above, i.e. forward (RT EST) to current and new
downstream nodes but only wait for replies from its new downstream nodes. As
soon as acknowledgments are received, the routing table is updated with the
new downstream destinations and cleared of its removed links. This technique
ensures that no flow will be interrupted while the update process is executed.

3.3 Latency Budget Allocation

The Harmony overlay routing mechanisms can work on top of many different
data transport layers. We have integrated the system with TCP/IP transport,
a JMS-based publish/subscribe transport, and a real-time transport [13] with
built-in message schedulers. In this subsection, we discuss how we take advantage
of the scheduling capability in [13], which implements a laxity-based scheduling
algorithm [14]. While message scheduling provides an important QoS mechanism
of proactive network resource management, it does not always lead to globally
desirable performance. In particular, the multiple brokers that a message tra-
verses make independently scheduling decisions, and the resulting end-to-end
latency may not satisfy the QoS requirement. While one could use a centralized
algorithm to find globally optimal decisions based on the queue behavior (e.g.,
arrival process, steady states) of all brokers, such information changes fast and
is difficult to maintain in practice.

Instead, we apply a heuristics algorithm where the latency margin, the differ-
ent between the delay requirement and the current end-to-end delay, is divided
among all brokers. This way, each broker will have some “buffer” to absorb sud-
den latency increases, provided they are small enough compared to the margin.

Consider a broker B which is currently on the forwarding routes for a set of
topics T1, T2, . . . , TI . Let Di be the end-to-end latency requirement for topic Ti.
The routes for topic Ti has Ki hops, and the measured latency at each hop is
dj

i , where 1 ≤ j ≤ Ki.
Our intuition is to give higher priority to those topics whose end-to-end la-

tency is approaching the bound. To do so, we calculate the end-to-end latency
margin for each topic (say Ti) as:

Li = Di −
Ki∑
j=1

dj
i (1)

We equally split this end-to-end latency margin among the Ki hops in the route.
Thus the per-hop latency margin for topic Ti is:

Message-Oriented Middleware with QoS Awareness 341

Lj
i = (Di −

Ki∑
j=1

dj
i)/Ki (2)

Now the broker B can sort the topics in an increasing order of their per-hop
latency margin. That is, the first topic has the smallest margin, thus should have
the highest priority. Since laxity-based scheduling is used by the transmission
queue, a high priority can be enforced by assigning a small latency budget for
this topic. In general, for the n-th topic in the sorted list, we can assign a latency
budget as (where δ is a step parameter):

LBn = min
1≤i≤I

Ti + n× δ (3)

Note that equal splitting is one simplest method for allocating latency margin
among the brokers. It allows coordinated scheduling across brokers such that
messages close to their delay bound get preferential treatment. We leave other
forms of budget allocation, such as differentiated splitting, as future work.

4 Implementation

We have implemented the Harmony system within IBM Websphere Message
Broker (WMB), an industry-leading messaging platform. WMB introduces the
concept of message flows ; a message flow comprises of one or more incoming
connections, a message processing component and one or more outgoing con-
nections. Incoming connections are used by local domain applications to access
the Harmony messaging service. Our implementation allows the applications to
access the messaging service via standard Java Messaging Service (JMS) APIs
[4]. Thus, those legacy applications that are already JMS-compatible can readily
switch to a Harmony-enabled system, while JMS adapters can be easily built in
order for non-JMS-compatible applications to leverage Harmony. Finally, Incom-
ing and outgoing connections are also established to interconnect brokers across
the wide area network.

Harmony control sits between the incoming and the outgoing connections,
handling the process of routing various messages to the appropriate outgoing
connections. In this way, WMB acts as the integrating agent between the Har-
mony routing control layer and the data transport layer. Therefore, Harmony
routing control layer remains decoupled from any specific transport.

4.1 Topic Structure and Data Forwarding

To facilitate message forwarding, Harmony defines a different topic name space
and naming convention to make a clear distinction between (i) topics coming
from and destined for the local domain applications, and (ii) topics coming from
and destined for the wide-area broker overlay. Harmony will then handle the topic
name transformation from local domains to wide-area overlay. More precisely, in

342 H. Yang et al.

Fig. 3. WMB flow implementation of a Harmony overlay broker

the local domain, a global topic name T is transformed into the form /src/Twhen
forwarded to Harmony and /dst/T when sent out from Harmony. At the overlay,
topic T will be transformed according to the destination as /destID/T. This
novel forwarding approach significantly simplifies the routing process by directly
leveraging the underlying publish/subscribe infrastructure, without requiring for
a separate forwarding protocol. Moreover, it can be readily used among different
publish/subscribe engines beyond the current JMS implementation.

The overall implementation is illustrated in Figure 3 where the actual Har-
mony WMB flow components are shown. Two JMS input components are seen,
one subscribing to local domain topics application publications (JMSInput LAN)
and one for incoming messages from remote brokers (JMSInput WAN). Messages
topics from the LAN are transformed via the Sensor Adapter component to in-
ternal Harmony names. Then, these messages along with incoming wide area
messages are forwarded to the routing component which maintains the per-topic
routing destinations. A de-duplication component removes possible duplicate
messages received at the local node which could occur in the case of multipath
routing. Finally, similar to the incoming messages, JMS output components are
used for publishing out local domain (JMSOutput LAN) and wide area messages
(JMSOutput WAN) according to destinations provided by the Harmony routing
component.

5 System in Action

We have deployed Harmony in several distributed testbeds across the nation. For
illustration purpose, we present a simplified operational example in which five
brokers are each deployed at a major communication hub, namely Los Angeles,
Seattle, Denver, Washington D.C. and Orlando. The presentation of the scenarios
is facilitated by Harmonitor, an administrative tool for real-time visualization
of the Harmony system, such as node/link status and per-topic paths.

In the scenario illustrated, two topics are published by the Seattle broker
(more precisely, application endpoints attached to the Seattle broker). The first
topic is subscribed by the Washington D.C. broker, while the second by Orlando.
The topic to D.C. is considered of higher priority as its required end-to-end

Message-Oriented Middleware with QoS Awareness 343

(a) Normal operation (b) Link slowdown

(c) Link failure (d) Node failure

Fig. 4. View of the deployed network from Harmonitor

latency is lower than that of the other topic. Figure 4(a) indicates the multipaths
for each topic. Additional load is then introduced on the link between Seattle
and Denver so as to slowdown that particular link, enough for the QoS of the first
topic to be violated. As shown in Figure 4(b), Harmony provides differentiated
service based on topic deadlines, and thus re-routes the higher priority topic
away from the problematic link and through the Los Angeles broker. Note that
while the second path is being reconfigured, data continue to flow within the
QoS budget along the first path. In Figure 4(c), the previously slowed-down
link is completely failed. The route for the topic that was flowing along the
failed link, is immediately reconfigured to restore the multipath via the Los
Angeles broker. Again observe that data delivery persists via the second path
while the broken link is identified and the routes re-established. In the final
Figure 4(d)), the Denver broker fails. The path that was routed via Denver is
reset to forward traffic around the failed node from Los Angeles to Orlando and
finally to Washington D.C.

6 Related Work

Message-oriented middleware has been widely used in today’s enterprise IT in-
frastructure for integrating different applications and services in an SOA

344 H. Yang et al.

environment. While these systems (e.g., IBM WebSphere MQ) provide essen-
tial features of reliability, security, transactionality and persistence, there is lit-
tle consideration for real-time QoS such as end-to-end latency. Also, they are
typically deployed within one or a few well-connected data centers. In contrast,
Harmony is designed for a different set of application domains that need to in-
tegrate distributed sensors and actuators with back-end processing capabilities
over wide-area networks, with an emphasis on QoS in the messaging service.

In recent years, overlay networks have been employed in an effort to provide
QoS in the Internet. For example, overlay routing has been shown effective for
providing resilient communication by recovering from Internet path failures [6],
or increasing the available bandwidth between end-hosts by avoiding the bottle-
neck links [15]. Several strategies for selecting the alternative overlay paths are
studied in [7]. The benefits of overlay routing are also established through rigor-
ous analysis in [8]. Our work is inspired by these existing research efforts, but it
studies a different problem of improving end-to-end latency for publish/subscribe
communication through a broker overlay network. We also present an integrated
routing and scheduling framework, with novel techniques in both layers.

The broker overlay in Harmony also resembles a Service Overlay Network
(SON) [16,17] in that the overlay nodes are deployed at strategic locations to
provide specific services. In our case, the services provided by the brokers are
publish/subscribe matching and potentially message mediation. However, there
is one fundamental difference between Harmony and SON: The brokers in Har-
mony collectively provide the publish/subscribe service, while each broker in
SON independently provides a service. There are several proposals for assuring
QoS in a SON [17,18]. In particular, QRON [18] is a QoS-aware routing protocol
that seeks to find paths satisfying QoS requirements yet balance the traffic on
different overlay link and nodes. However, it only considers overlay routes be-
tween a pair of nodes, while Harmony provide QoS-aware group communication
between multiple publishers and subscribers on the same topic.

7 Conclusion

In this paper, we presented the design and implementation of Harmony, a QoS-
aware messaging middleware for supporting wide-area publish/subscribe commu-
nication. Harmony constructs an overlay network on top of the physical topology
and provides a novel fusion of routing, scheduling and delay budget allocation
to maintain the end-to-end QoS requirements. It allows for path adaptation and
reconfigurations when either network outages or excessive delays occur along a
delivery path. We have implemented Harmony in an industry-leading messaging
platform and verified its feasibility and advantages through real deployment.

We are currently extending the Harmony system in several aspects. We plan
to support dynamic topology construction and adaptation as nodes join and
leave the overlay. We are also developing new path computation algorithms to
accommodate multiple end-to-end QoS requirements in parallel. Finally, we plan
to integrate mediation functionality in Harmony to allow applications to perform
various types of actions, such as transformation and filtering, on the messages.

Message-Oriented Middleware with QoS Awareness 345

Acknowledgments

We would like to thank Parijat Dube, William Jerome, Zhen Liu, Dimitrios
Pendarakis and Cathy Xia for their past contribution to the Harmony project.
We are grateful to Maria Ebling, Francis Parr and Paul Giangarra for their
support and valuable feedback. We also thank the anonymous reviewers for their
insightful comments.

References

1. Lee, E.A.: Cyber-physical systems - Are computing foundations adequate? In:
NSF Workshop on Cyber-Physical Systems: Research Motivation, Techniques and
Roadmap (2006)

2. SOS: System of systems, http://www.sosece.org/
3. Comitz, P., Pinto, A., Sweet, D.E., Mazurkiewicz, J.: The joint NEO Spiral 1

program: Lessons learned, operational concepts and technical framework. In: Proc.
Integrated Communications, Navigation and Surveillance Conference, ICNS (2008)

4. JMS: Java messaging service, http://java.sun.com/products/jms/
5. DDS: Data distribution service for real-time systems,

http://www.omg.org/technology/documents/formal/data_distribution.htm

6. Anderson, D., Balakrishnan, H., Kaashoek, M., Morris, R.: Resilient overlay net-
works. In: Proc. ACM Symposium on Operating Systems Principles, SOSP (2001)

7. Fei, T., Tao, S., Gao, L., Guerin, R.: How to select a good alternate path in large
peer-to-peer systems? In: Proc. IEEE Conference on Computer Communications,
INFOCOM (2006)

8. Opos, J.M., Ramabhadran, S., Terry, A., Pasquale, J., Snoeren, A.C., Vahdat, A.:
A performance analysis of indirect routing. In: Proc. IEEE International Parallel
and Distributed Processing Symposium, IPDPS (2007)

9. Moy, J.: OSPF version 2. RFC 2328 (1998)
10. Malkin, G.: RIP version 2. RFC 2453 (1998)
11. Gu, X., Wang, H.: Online anomaly prediction for robust cluster systems. In: Proc.

IEEE International Conference on Data Engineering, ICDE (2009)
12. Martins, E., Pascoal, M.: A new implementation of Yen’s ranking loopless paths

algorithm. 4OR: A Quarterly Journal of Operations Research 1(2), 121–133 (2003)
13. Astley, M., Bhola, S., Ward, M., Shagin, K., Paz, H., Gershinsky, G.: Pulsar: A

resource-control architecture for time-critical service-oriented applications. IBM
Systems Journal 47(2), 265–280 (2008)

14. Ramamritham, K., Stankovic, J.: Dynamic task scheduling in hard real-time dis-
tributed systems. IEEE Software 1(3), 65–75 (1984)

15. Lee, S.J., Banerjee, S., Sharma, P., Yalagandula, P., Basu, S.: Bandwidth-aware
routing in overlay networks. In: Proc. IEEE Conference on Computer Communi-
cations, INFOCOM (2008)

16. Duan, Z., Zhang, Z., Hou, Y.: Service overlay networks: SLAs, QoS, and bandwidth
provisioning. IEEE/ACM Transactions on Networking 11(6), 870–883 (2003)

17. Gu, X., Nahrstedt, K., Chang, R., Ward, C.: QoS-assured service composition in
managed service overlay networks. In: Proc. IEEE International Conference on
Distributed Computing Systems, ICDCS (2003)

18. Li, Z., Mohapatra, P.: QRON: QoS-aware routing in overlay networks. IEEE Jour-
nal of Selected Areas in Communications 22(1), 29–40 (2004)

http://www.sosece.org/
http://java.sun.com/products/jms/
http://www.omg.org/technology/documents/formal/data_distribution.htm

Learning the Control-Flow of a Business Process
Using ICN-Based Process Models

Aubrey J. Rembert1 and Clarence (Skip) Ellis2

1 IBM T.J. Watson Research Center, Hawthorne NY 10532, USA
2 Department of Computer Science

University of Colorado at Boulder, Boulder CO 80306, US

Abstract. In this paper, we present a process mining algorithm that dis-
covers Activity Precedence Graphs (APG), which are control-flow models
in the Generalized Information Control Net (ICN) family of models. Un-
like many other control-flow models discovered by process mining algo-
rithms, APGs can be integrated with other business process perspectives.

1 Introduction

Process mining is the automatic discovery of process models and patterns from
process execution logs. In this paper, we describe a process mining algorithm that
discovers an Activity Precedence Graph (APG), which is a control-flow model in
Generalized Information Control Nets (ICN) [1]. The area of process mining is
over a decade old. It was first investigated by Cook and Wolf [2] in the context of
software processes. Next, process mining was investigated by Agrawal et. al [3].
The concepts of process mining where extended with Petri-nets by Aalst et. al.
in [4,5]. We extend the process mining literature by developing algorithms that
discover APGs.

An ICN Activity Precedence Graph is an edge-colored, directed graph G =
(A,E, κ), where A is a set of activities, E ⊆ A × A is a set of control-flow
links, and κ maps an edge in E to a particular edge color. Let a,b ∈ A be
activities. The predecessors of a are denoted by pred(a) = {b|(b, a) ∈ E(G)}.
The successors of a are denoted by succ(a) = {b|(a,b) ∈ E(G)}. Activities
can be classified structurally as simple, split or join. A simple activity has at
most one predecessor, and at most one successor. A split activity has multiple
successors, and a join activity has multiple predecessors. It is important to note
that a single activity can be both a split activity and a join activity. A control-
flow link (a,b) is said to be activated once a has finished executing and selected
it. In some instances, where a is a split activity, a must choose a subset of its
control-flow links to activate. We now sketch our edge-coloring scheme. Given an
activity a, let Esucc(a) = {(a,b)|b ∈ succ(a)}. Each edge in Esucc(a) is colored
based on the execution semantics of the activities in succ(a). For instance, if
b, c ∈ succ(a), and edges (a,b) and (a, c) are the same color, after a executes, b
and c can be executed concurrently. If the edges are colored differently, a choice
has be made to either execute b, or c. The set Epred(a) is defined analogously,
and the color of edges in Epred(a) determine when a can be executed.

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 346–351, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Learning the Control-Flow of a Business Process 347

2 Process Execution Logs

Our description of process execution logs and precedence dependencies is based
on the descriptions given by Agrawal in the paper [3] and van der Aalst in
the work [4]. Process execution logs consist of sets of process traces. Process
traces consist of a sequence of events that were generated by activities that
were executed in the same process instance. For the following definitions, let
L = {T1, . . . , T|L|} be a process execution log. Also, let T be a process trace in
L. Additionally, let a and b be activities, and a and b be events generated by a
and b, respectively.

Definition 1. Event a precedes event b in T , denoted by a ≺T b, if a occurs
before b in T . (The T from ≺T can be dropped when the context is clear)

Definition 2. Activity b is precedence dependent on an a, denoted by a → b,
if in each process trace Ti ∈ L, where a, b ∈ Ti, it is the case that a ≺Ti b.

Definition 3. Activity a is precedence independent of activity b (and vice
versa), denoted by a ⊥ b, if there exists traces Ti and Tj such that b ≺Ti a
and a ≺Tj b, where j �= i.

We can define a precedence dependency graph, and a precedence independency
graph that represent the log-based precedence dependencies between activities.
These two structures implicitly represent the structure and semantics of the
underlying control-flow model.

Definition 4. A directed graph DL = (A,F) is a precedence dependency graph
over L, iff for each path a � b in DL, there exists a log-based precedence depen-
dence, a → b.

Definition 5. An undirected graph UL = (A,P) is a precedence independency
graph, iff there exists an undirected edge between each pair of activities a and b
in UL where a ⊥ b.

3 Learning APGs

The first phase of our algorithm is a straight-forward implementation of the
Agrawal et. al. algorithm in the paper [3], with the exception that edges that
appear in both directions are not discarded, but are used to construct a prece-
dence independency graph. We will not present the full details of the modified
Agrawal algorithm, and we will only consider the acyclic case due to space lim-
itations. The reader, however, is referred to the work [6] for full details.

Example 1. Consider the process execution log L = {abcef, acbef, adbef, acbef,
abdef, abedf, abecf}. Figure 1(a) shows DL, after the Agrawal algorithm is
executed on L. Figure 1(b) shows UL after the modified version of the Agrawal
algorithm is executed on L.

348 A.J. Rembert and C. Ellis

a

b

e

c d

f

(a) a

b

e

c

d

f

(b)

Fig. 1. (a) DL (b) UL based on the process execution log in Example 1

In the next phase, the semantics of splits and joins are made explicit. In partic-
ular, our algorithm, LearnAPG, constructs an APG by systematically exploring
DL. The LearnAPG algorithm calls the GrowAPG sub-algorithm, which de-
termines the semantics of splits and joins and extends a partially constructed
APG. There are certain situations in which κ should map an edge to two different
colors. In this situation, the GrowAPG algorithm calls the HiddenActivitiySub-
stitution sub-algorithm, which creates hidden activities in order to make the edge
coloring scheme consistent. The input to the LearnAPG algorithm is a prece-
dence dependency graph, DL, and a precedence independency graph, UL. The
output of this algorithm is an APG, G = (A,E, κ), that explicitly represents the
log-based dependencies captured in the precedence dependency and precedence
independency graphs.

In the main iteration of LearnAPG, three sets of activities, BLACK, GREY ,
and WHITE are maintained. The activities in the BLACK set are activities
that have been removed from DL because they have no parents nor children in
DL. The GREY set contains activities from DL that have no parents in DL.
The WHITE set contains activities such that all of the parents of each activity
in WHITE are in GREY , and there is no log-based precedence dependency
between any of the activities in WHITE. Based on these sets, the LearnAPG
algorithm constructs a Family Graph, a Child Graph, and a Parent Graph. Below
we give definitions for these graphs. LearnAPG is presented in Algorithm 3.1.

Definition 6 (Family Graph). Let children(a) be the children of activity
a in graph DL and parent(children(a)) be the parents of all the children in
children(a). A family graph of activity a ∈ GREY , denoted by FGa = (A′, F ′),
is an induced subgraph over DL where A′ is a set of activities such that A′ =
{b|(b = a) ∨ (b ∈ WHITE ∧ b ∈ children(a)) ∨ (b ∈ GREY ∧ b ∈
parent(children(a))}

Definition 7 (Child Graph). A child graph of a family graph FGa = (A′, F ′),
denoted by CGa = (A′′, P ′), is an induced subgraph over UL, where A′′ = {b|b ∈
{children(a) ∩A′}}.

Definition 8 (Parent Graph). A parent graph of a family graph FGa =
(A′, E′), denoted by PGa = (A′′′, P ′′), is an induced subgraph over UL where
A′′′ = {b|b ∈ {parents(children(a)) ∩A′}}.

Learning the Control-Flow of a Business Process 349

Algorithm 3.1. LearnAPG(DL, UL)

1: G ← (∅, ∅, κ)
2: color ← 0 {We assume integers map to colors}
3: Set GREY equal to the set of activities that don’t have parents in DL.
4: while GREY �= ∅ do
5: Set WHITE equal to the set of activities that are children only of activities in GREY such

that for any pair of activities (a,b) ∈ WHITE, it is the case that edge (a,b) /∈ D−B
L

6: Choose an activity a from GREY
7: Compute FGa, PGa, and CGa

8: if |PGa| = 1 then
9: GrowAPG(a, CGa, G, split, color)
10: else if |PGa| > 1 and |CGa| = 1 then
11: Let c be the lone activity in CGa

12: GrowAPG(c, PGa, G, join, color)
13: else if |PGa| > 1 and |CGa| > 1 then
14: Create hidden activity h
15: GrowAPG(h,PGa, G, split, color)
16: GrowAPG(h,CGa, G, join, color)
17: end if
18: Remove all edges from DL that correspond to edges in FGa

19: for activities g ∈ GREY that have no more children in DL do
20: Remove g from GREY and add it to BLACK
21: end for
22: Add all activities in WHITE that have no parents in DL to GREY .
23: end while

Algorithm 3.2. GrowAPG(a, J, G, ind, color)

1: Add a to A(G).
2: CJ ← ConnectedComponents(J)
3: for Ci ∈ CJ do
4: if Ci is a clique then
5: if ind = split then
6: for each activity c ∈ Ci do
7: Add c to A(G)
8: Color edge (a, c) with color
9: Add edge (a, c) to E(G)
10: end for
11: else
12: for each activity c ∈ Ci do
13: Add c to G.A
14: Color edge (c, a) with color
15: Add edge (c, a) to E(G)
16: end for
17: end if
18: else
19: HiddenActivitySubstitution(a, Ci, G, ind, color)
20: end if
21: color ← color + 1
22: end for

The GrowAPG sub-algorithm computes the edge colors of, and extends a par-
tially constructed APG. It takes as input a partially constructed APG, G, an
activity, a, which is the place where the APG will be extended from/to, an undi-
rected graph, J , that is either a child graph or a parent graph, and an indicator
variable, ind, which determines if a is a split or join activity. To compute edge
colors, the algorithm finds the connected components in J . Each connected com-
ponent represents an edge color. All activities in the same connected component
are connected to a with same colored edges. Activities in different connected

350 A.J. Rembert and C. Ellis

Algorithm 3.3. HiddenActivitySubstitution(a, K,G, ind, color)

1: Z ← (∅, ∅)
2: if K is a connected graph then
3: Z ← Compliment(K)
4: Semantics(a) ← OR
5: else
6: Z ← K
7: Semantics(a) ← AND
8: end if
9: CZ ← ConnectedComponents(Z)
10: for each component Ci ∈ CZ do
11: k ← NULL
12: if |Ci| = 1 then
13: Let c ∈ Ci.
14: if ind = join, κ((c, a)) = color, and add edge (c, a) E(G), otherwise κ((a, c)) = color,

and add (a, c) to E(G)
15: else
16: Create hidden activity hi

17: K′ ← K[Ci] {K′ is an induced subgraph of K over the activities in Ci}
18: HiddenActivitySubstitution(hi , K′, G, ind, color)
19: Add hi to A(G)
20: if ind = join, κ((hi, a)) = color and add (hi, a) to E(G), otherwise κ((a,hi)) = color,

and add (a, hi) to E(G)
21: end if
22: if Semantics(a) = OR then
23: color ← color + 1
24: end if
25: end for

a

b
c

d

a
b

c

d(a) (b) (c)

Fig. 2. (a) The family graph, FGa, of activity a from DL based on Figure 1 (b) the
parent graph PGa (c) the child graph CGa

components are connected to a with different-colored edges. It must be noted
that this only applies when the connected component is a clique. When a con-
nected component found in J is not a clique, the algorithm makes a call to the
sub algorithm HiddenActivitySubstituion. The GrowAPG algorithm uses the in-
ternal data structure CJ = {C1, . . .Cw}, which is a set of connected components.

The HiddenActivitySubstitution sub-algorithm takes as input an activity a,
which is either a split or a join activity, an undirected graph, K, which is an
induced subgraph over the connected component Ci from GrowAPG, G, ind,
and color. The color parameter represents the current color that edges should
be colored. The output of this sub-algorithm is a partially constructed APG that
contains a hidden activity to represent the semantics between activities in Ci

and a that could not be represented directly. The algorithm maintains internal
data structures K ′, which is a subgraph of K; Z, which is either equal to K or its
compliment; Semantics(a), which stores the control-flow semantics of a. This
algorithm also makes use of a the function Compliment, which takes a graph and
returns the compliment of that graph. This algorithm is similar in principle to
the work of Silva et. al. [7] and Herbst [8]. It is depicted in Algorithm 3.3.

Learning the Control-Flow of a Business Process 351

(a) a b
c

d

a K

a

b h

(b) (c) h
c

d

a K
i

a

b h

(d)

i

c d

i

Fig. 3. (a)The first call to HiddenActivitySubstitution with the activity a and the
child graph CGa from Figure 2 and the resulting APG in (b). (c)A recursive call to
HiddenActivitySubstituion and the resulting APG in (d).

4 Summary and Future Work

In this work, we have presented a control-flow discovery algorithm that dis-
covers APGs. Additionally, since APGs can be integrated with other process
models from the ICN family of models, future work will explore techniques for
discovering other perspectives of a business process, especially the informational
perspective. We are also exploring the development of correctness proofs of our
control-flow discovery algorithm.

References

1. Ellis, C.A.: Formal and informal models of office activity. In: IFIP Congress, pp.
11–22 (1983)

2. Cook, J.E., Wolf, A.L.: Discovering models of software processes from event-based
data. ACM Trans. Software Engineering Methodology 7(3), 215–249 (1998)

3. Agrawal, R., Gunopulos, D., Leymann, F.: Mining process models from workflow
logs. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS,
vol. 1377, pp. 469–483. Springer, Heidelberg (1998)

4. van der Aalst, W., Weijters, T., Maruster, L.: Workflow mining: Discovering pro-
cess models from event logs. IEEE Transactions on Knowledge and Data Engineer-
ing 16(9), 1128–1142 (2004)

5. Medeiros, A., Weijters, A., Aalst, W.: Genetic process mining: an experimental
evaluation. Data Mining and Knowledge Discovery 14(2), 245–304 (2007)

6. Rembert, A.J.: Automatic Discovery of Workflow Models. PhD thesis, University of
Colorado at Boulder (2008)

7. Silva, R., Zhang, J., Shanahan, J.G.: Probabilistic workflow mining. In: KDD 2005:
Proceeding of the eleventh ACM SIGKDD international conference on Knowledge
discovery in data mining, pp. 275–284. ACM Press, New York (2005)

8. Herbst, J., Karagiannis, D.: Workflow mining with inwolve. Comput. Ind. 53(3),
245–264 (2004)

Fine-Grained Recommendation Systems
for Service Attribute Exchange

Christopher Staite1, Rami Bahsoon1, and Stephen Wolak2

1 School of Computer Science
University of Birmingham, United Kingdom

{C.Staite,R.Bahsoon}@cs.bham.ac.uk
2 Vodafone Group Plc, Newbury, United Kingdom

Stephen.Wolak@vodafone.com

Abstract. The effectiveness of service oriented computing relies on the trust-
worthiness of sharing of data between services. We advocate a semi-automated
approach for information distribution and sharing, assisted by a reputation sys-
tem. Unlike current recommendation systems which provide a user with a gen-
eral trust value for a service, we propose a reputation model which calculates
trust neighbourhoods through fine-grained multi-attribute analysis. Such a model
allows a recommendation relevance to improve whilst maintaining a large user
group, propagating and evolving trust perceptions between users. The approach
is demonstrated on a small example.

1 Introduction

We address the problem of maintaining privacy where services interact with users. We
suggest a recommendation system in order to assist sharing decisions and suggest semi-
automation of sharing.

Current services maintain user profiles locally, which causes data to become out-
dated. The onus is on the user to provide a cross-service link between their profiles and
manage authentication credentials. As a response, centralised Single Sign-On (SSO)
services emerged permitting a single login. Popular implementations include Shibbo-
leth [1] and OpenID [2]. This mechanism provides an easy framework for identifying
users, but does not facilitate centralised profile storage.

Several systems attempt to centralise the storage of profile information. The most
common is browser automatic form filling, which stores previous values. Although this
assists profile creation, it does not allow services to access recent data. Other imple-
mentations such as SAML [3], OAuth [4] and OpenID Attribute Exchange [5] provide
an interface to a central data repository. These permit centralised profile maintenance,
assisting users on devices with restricted input abilities.

Sharing profile data between services raises many privacy questions, including: What
trust should a user impart on a service? Which services should be allowed access to
which parts of a users profile? How should data be transmitted between services? Where
should the profile be stored? How can a user be assured that their data will not be used
against the users’ will? How can a service be sure that the user is not giving inaccurate
information?

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 352–357, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Fine-Grained Recommendation Systems for Service Attribute Exchange 353

As described in Section 2, research has attempted to solve the first question posed by
using a recommendation system. Existing recommendation systems take coarse-grained
approaches to analysis of trust by means of a single metric. Humans do not perceive
trust on a per-service level, instead trust is dependant on factors such as the requested
attributes. A user is constantly sharing their information as they utilise services, causing
many requests from the central data. It is essential many of these operations are auto-
mated in order to produce a usable system. Services which have previously been given
access could be given permanent access to certain fields. Initial access requests are hard
to assess for trustworthiness from a mobile device. A recommendation from other users
may provide a simple measure to assist.

We argue that there is a pragmatic need for semi-automated information distribution,
assisted by reputation systems. By semi-automated we refer to the requirement of secu-
rity to allow a user to make the decision in the case of sensitive data, but automatically
distribute low-sensitivity data based on calculated trust. Reputation systems must anal-
yse the requested attributes in order to accurately represent user opinion. In this paper
we propose a mechanism, extending previous systems, in order to take attributes into
account. Hence, we alter the analysis from the coarse-grained toward the fine-grained.

This paper is structured in the following manner: Section 2 discusses related work.
Section 3 discusses the requirements for multi-factor trust analysis and proposes a for-
mula which meets these requirements. A simple example is shown to detail the ap-
proach. Section 4 concludes.

2 Related Work

Current implementations of sharing mechanisms for the automation of attribute ex-
change (e.g. [6,7]) require a considerable setup effort from the user, such as defining
the context and purpose of use.

Existing service recommendations are based upon whole service reputation [8,9,10].
[11] argues reputation systems are inadequate, due to the subtle differences between
trust and reputation [12]. Trust defines a mental bias toward or against a service, whereas
reputation is the conveyance of trust between people. The context sensitivity of trust
causes it to be degraded by the use of coarse-grained reputation. We propose that repu-
tation is more reliable when measured at a lower level (i.e. per-attribute).

[13] discusses methodologies for attribute exchange: although security in transmis-
sion is available, no mechanism utilises automation or recommendation.

[14] extends [13] in an attempts to enhance identity management online. Specifically,
they provide users with the ability to see the purpose for request/retention details for
each attribute, and the ability to revoke previously shared attributes [15]. This requires
a large amount of screen space and bandwidth making its portability to mobile devices
limited.

[16,17] extend authentication systems to achieve privacy oriented attribute exchange
by utilising security conditions (similar to SAML [3]) and oblivious transfer [18]. The
computational complexity is significant and unsuitable for deployment on mobile de-
vices. Further, these methods do not allow for a persistent profile among user devices.

Collaborative filtering produces recommendations between items based on previ-
ous user input in order to make recommendations (e.g. user-based [19] and item-based

354 C. Staite, R. Bahsoon, and S. Wolak

[20]). Both methods fail to apply multi-attribute to determine cross-attribute links (i.e.
grouping users based on more than one attribute).

3 Approach

When a service requests personal information from a user it is assessed for trustwor-
thiness. Abdul-Rahman & Hailes [10] discuss the three types of trust imparted by the
user. Interpersonal trust is the trust between two individuals in a specific context. This
is the context in which the service is accessed and which attributes are requested. Sys-
tem trust defines the general trust level in an institution. This relates to the provider of
the service. Dispositional trust defines the natural trust a user has in a third party before
they take any other aspect into consideration. Many people are willing to share their
personal information freely on the internet, others prefer to preserve their anonymity
due to their disposition.

A recommendation system attempts to group users based on their dispositional trust.
It may then inform a user of interpersonal and system trust through analysis of similar
users’ previous decisions. Previous implementations fail to properly assess interper-
sonal trust due to their coarse-grained analysis.

Dispositional trust may evolve over time, the proposed system does not consider
this factor. Hence, the database of previous interactions should degrade over time. For
performance reasons the groupings may be calculated offline. By iteratively calculating
the groupings offline there is a constant and recent grouping matrix available for fast
trust calculations.

The trust measurement is taken from the decision to share information with a ser-
vice. We define a binary variable Pu,s,a, where s identifies the service, a identifies the
attribute requested and u identifies the user. The value is 0 if the information is with-
held, or if a false value is given. If the attribute is supplied the value is defined as 1. Pu,s

refers to the set of attribute sharing values and may be in the state undefined if u has no
experience with s. The correlation between two users (u1, u2) produces a recommenda-
tion. This is performed for all values of P which are defined for both users u1 and u2.
Where P is the set of all Pu for which Pu,s are defined.

Ru1,s =
∑ |u|

i=2 (Pui,sCor(Pu1, Pui))∑ |u|
l=2 Cor(Pu1, Pul)

Cor(Pu1, Pui) = |Pui|
|Pui|∑
j=1

1 −

√√√√∑ |Pu1,sj |
k=1 (Pu1,sj,ak − Pui,sj,ak)2

|Pu1,sj |

The correlation between two users is in a non-normalised form and used to provide
the ratio of trust transference. This provides a non-negative value where 0 is defined
as no similarities in past decisions, and increase in size the more similar previous deci-
sions have been. A weighting value may be required in order to ignore lower correlation
values. The multiplication by |Pui| ensures that users which have used more services
similar to the user get preference over those who have similar, but limited, experience
compared to the current user. The value of Ru1,s is a vector with sharing recommen-
dations for each of the attributes which may be sent to s. Each of the values in the

Fine-Grained Recommendation Systems for Service Attribute Exchange 355

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Service1 Service2 Service3

Requested data

⎧⎨
⎩

0
1
1

⎫⎬
⎭

⎧⎨
⎩

1
0
1

⎫⎬
⎭

⎧⎨
⎩

1
1
0

⎫⎬
⎭

Alice

⎧⎨
⎩

0
1
1

⎫⎬
⎭

⎧⎨
⎩

1
0
1

⎫⎬
⎭

⎧⎨
⎩

1
1
0

⎫⎬
⎭

Bob

⎧⎨
⎩

0
0
1

⎫⎬
⎭

⎧⎨
⎩

1
0
1

⎫⎬
⎭

⎧⎨
⎩

1
0
0

⎫⎬
⎭

Charlotte

⎧⎨
⎩

0
1
1

⎫⎬
⎭

⎧⎨
⎩

1
0
1

⎫⎬
⎭ undefined

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 1. A scenario showing three users transactions with three services

vector are between 0, meaning a strong recommendation not to share that attribute, and
1 which gives a strong recommendation to share the requested attribute. When the user
has made their decision to share or withold attributes, the value of Pu,s,a is set/altered.

We illustrate the use of the algorithm using a small example with the values given in
Figure 1. In this table the requested attributes are shown for three services, followed by
the previous sharing performed by three users, Alice, Bob and Charlotte. Both Bob and
Alice have past transaction experience with all three services, Service 1, Service 2 and
Service 3. Charlotte only has past experience with Service 1 and Service 2.

Charlotte visits Service 3 and an attribute request is placed from the service to gain
data items 1 and 2. A decision about which attributes to provide must be made, the
recommendation system will aid the service judgement based on previous experiences.
In order to provide the recommendation we calculate RCharlotte,Service2.

Cor(PC,s1, PA,s1) =

√√√√∑ |PC,s1|
k=1 (PC,s1,ak − PA,s1,ak)2

|PC,s1|

=

√
(0 − 0)2 + (1 − 1)2 + (1 − 1)2

3
=

√
0 = 0.

Cor(PC,s2, PA,s2) =

√√√√∑ |PC,s2|
k=1 (PC,s2,ak − PA,s2,ak)2

|PC,s2|
= 0.

Cor(PC , PA) = 2((1 − 0) + (1 − 0)) = 4.

Cor(PC, PB) = 2((1 −
1
√

3
) + (1 − 0)) =

2
√

3
.

The value of RC,s3 may be calculated using these correlations as groupings for users
which Charlotte has similar sharing habits. The calculation that Alice has very similar
habits to Charlotte as their correlation is much higher than that with Bob.

356 C. Staite, R. Bahsoon, and S. Wolak

RC,s3 =
∑ |u|

i=2 (Pui,s3Cor(PC , Pui))∑ |u|
l=2 Cor(PC, Pul)

=

√
3 ((PA,s3Cor(PC , PA)) + (PB,s3Cor(PC , PB)))

4
√

3 + 2

=

⎛
⎝
⎧⎨
⎩

1
1
0

⎫⎬
⎭ · 4

√
3

⎞
⎠ +

⎛
⎝
⎧⎨
⎩

1
0
0

⎫⎬
⎭ · 2

⎞
⎠

4
√

3 + 2

=

⎧⎨
⎩

1
4
√

3
4
√

3+2
0

⎫⎬
⎭ .

We can present this recommendation to Charlotte in a percentage or bar form. She is
given a 100% recommendation to share attribute 1, a 78% recommendation to share
attribute 2 and a 0% recommendation to share attribute 3. The recommendation for
attribute 3 is omitted as it was never requested by the service. Once Charlotte has made
her decision of which information to share with the service the value of PC,s3 is set for
future reference by Charlotte and for producing recommendations for other users of the
system.

Evolution of dispositional trust can occur as user opinion of a service becomes more
or less trusting. The method given in this paper simply provides a method of calculating
correlation based on past decisions. In order to allow for evolution of trust a time-based
degradation may be performed before correlation calculation.

4 Conclusions

The need for automation and the role of recommendation systems have been outlined.
Following, a mechanism to provide a recommendation has been proposed based on
fine-grained past staring. The example provided an execution of the algorithm on a very
small data set. A centrally accessible profile store is still required, following which an
analysis of the effect of the proposed algorithm may be performed. The key to success-
ful adoption of a serviced based web is the ability to exchange attributes without a large
user effort.

References

1. Erdos, M., Cantor, S.: Shibboleth architecture draft v05 (2002),
https://www.switch.ch/aai/docs/shibboleth/internet2/
draft-internet2-shibboleth-arch-v05.pdf

2. Recordon, D., Reed, D.: Openid 2.0: a platform for user-centric identity management. In:
DIM 2006: Proceedings of the second ACM workshop on Digital identity management, pp.
11–16. ACM, New York (2006)

3. Cantor, S., Kemp, J., Philpott, R., Maler, E.: Assertions and protocols for the oasis secu-
rity assertion markup language (saml) v2.0 (2005), http://docs.oasis-open.org/
security/saml/v2.0/saml-core-2.0-os.pdf

https://www.switch.ch/aai/docs/shibboleth/internet2/draft-internet2-shibboleth-arch-v05.pdf
https://www.switch.ch/aai/docs/shibboleth/internet2/draft-internet2-shibboleth-arch-v05.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf

Fine-Grained Recommendation Systems for Service Attribute Exchange 357

4. Atwood, M., Conlan, R.M., Cook, B., Culver, L., Elliott-McCrea, K., Halff, L., Hammer-
Lahav, E., Laurie, B., Messina, C., Panzer, J., Quigley, S., Recordon, D., Sandler, E., Sergent,
J., Sieling, T., Slesinsky, B., Smith, A.: OAuth Core 1.0. Technical report (2007)

5. Hardt, D., Bufu, J., Hoyt, J.: Openid atrribute exchange 1.0 - final (2007),
http://openid.net/specs/openid-attribute-exchange-1_0.html

6. Cheng, W., Li, J., Moore, K., Karp, A.H.: A customer-centric privacy protection framework
for mobile service-oriented architectures. In: IEEE International Conference on Services
Computing, SCC 2008, Honolulu, HI, vol. 2, pp. 13–20 (2008)

7. Hong, J.I., Landay, J.A.: An architecture for privacy-sensitive ubiquitous computing. In: Mo-
biSys 2004: Proceedings of the 2nd international conference on Mobile systems, applica-
tions, and services, pp. 177–189. ACM, New York (2004)

8. Herlocker, J.L., Konstan, J.A., Borchers, A., Riedl, J.: An algorithmic framework for per-
forming collaborative filtering. In: SIGIR 1999: Proceedings of the 22nd annual international
ACM SIGIR conference on Research and development in information retrieval, pp. 230–237.
ACM, New York (1999)

9. Kinateder, M., Rothermel, K.: Architecture and algorithms for a distributed reputation sys-
tem. In: Nixon, P., Terzis, S. (eds.) iTrust 2003. LNCS, vol. 2692, pp. 1–16. Springer, Hei-
delberg (2003)

10. Abdul-Rahman, A., Hailes, S.: Supporting trust in virtual communities, vol. 1, p. 9 (2000)
11. Resnick, P., Kuwabara, K., Zeckhauser, R., Friedman, E.: Reputation systems. Commun.

ACM 43, 45–48 (2000)
12. Jøsang, A., Ismail, R., Boyd, C.: A survey of trust and reputation systems for online service

provision. Decision Support Systems 43, 618–644 (2007) Emerging Issues in Collaborative
Commerce

13. Pfitzmann, B., Waidner, M.: Privacy in browser-based attribute exchange. In: WPES 2002:
Proceedings of the 2002 ACM workshop on Privacy in the Electronic Society, pp. 52–62.
ACM, New York (2002)

14. Camenisch, J., Shelat, A., Sommer, D., Fischer-Hübner, S., Hansen, M., Krasemann, H.,
Lacoste, G., Leenes, R., Tseng, J.: Privacy and identity management for everyone. In: DIM
2005: Proceedings of the 2005 workshop on Digital identity management, pp. 20–27. ACM,
New York (2005)

15. Pettersson, J.S., Fischer-Hübner, S., Danielsson, N., Nilsson, J., Bergmann, M., Clauss, S.,
Kriegelstein, T., Krasemann, H.: Making PRIME usable. In: Proceedings of the 2005 sym-
posium on Usable privacy and security, pp. 53–64. ACM, New York (2005)

16. Fujiwara, S., Komura, T., Okabe, Y.: A privacy oriented extension of attribute exchange in
shibboleth. In: IEEE/IPSJ International Symposium on Applications and the Internet Work-
shops, p. 28 (2007)

17. Takagi, T., Komura, T., Miyazaki, S., Okabe, Y.: Privacy oriented attribute exchange in shib-
boleth using magic protocols, pp. 293–296 (2008)

18. Rabin, M.: How to exchange secrets by oblivious transfer. Technical report, Technical Report
TR-81, Harvard Aiken Computation Laboratory (1981)

19. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: Grouplens: an open architec-
ture for collaborative filtering of netnews. In: CSCW 1994: Proceedings of the 1994 ACM
conference on Computer supported cooperative work, pp. 175–186. ACM, New York (1994)

20. Sarwar, B., Karypis, G., Konstan, J., Reidl, J.: Item-based collaborative filtering recommen-
dation algorithms. In: WWW 2001: Proceedings of the 10th international conference on
World Wide Web, pp. 285–295. ACM, New York (2001)

http://openid.net/specs/openid-attribute-exchange-1_0.html

A Generative Framework for Service
Process Composition�

Rajesh Thiagarajan, Wolfgang Mayer, and Markus Stumptner

Advanced Computing Research Centre, University of South Australia
{cisrkt,mayer,mst}@cs.unisa.edu.au

Abstract. In our prior work we showed the benefits of formulating ser-
vice composition as a Generative Constraint Satisfaction Problem
(GCSP), where available services and composition problems are modeled
in a generic manner and are instantiated on-the-fly during the solving pro-
cess, in dynamic composition scenarios. In this paper, we (1) outline the
salient features of our framework, (2) present extensions to our framework
in the form of process-level invariants, and (3) evaluate the effectiveness
of our framework in difficult scenarios, where a number of similar and po-
tentially unsuitable services have to be explored during composition.

1 Introduction

A vast number of proposals that exploit formal specifications of individual ser-
vices to automatically select and compose individual services into executable
service processes have been brought forward [1,2,3]. While most frameworks can
successfully address basic composition tasks, many are based on ad-hoc algo-
rithms or lack a precise representation of a service’s capabilities. Therefore, the
problem of configuring and tailoring the software that implements a given service
is often left aside.

Constraint satisfaction based configuration techniques have been proposed as
an alternative to address these challenges, where both type and instance infor-
mation of services and relevant data must be considered [4,5]. Existing models
compose services by treating services as components and assembling them. How-
ever, standard Constraint Satisfaction Problems (CSPs) are insufficient to model
configuration problems where the number of components to be configured is un-
known. Existing CSP-based composition techniques handle this by pre-specifying
the number or type of services to be composed. In general, such estimation is
difficult to make since such problem specific knowledge is not available a priori.

We present a generative consistency-based service composition approach that
addresses these challenges [6]. We extend models that have been successfully ap-
plied to model and configure complex systems [7] to the software domain. The
service composition problem is posed as a configuration task, where a set of ser-
vice components and their interconnections are sought in order to satisfy a given
� This work was partially supported by the Australian Research Council (ARC) under

grant DP0988961.

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 358–363, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Generative Framework for Service Process Composition 359

goal. Our framework is based on a declarative constraint language to express
user requirements, process constraints, and service profiles on a conceptual and
also on the instance level. One of the major benefits of our approach is the provi-
sion to define problems independent of the number and type of services required,
thereby overcoming the disadvantage of other models.

In this paper, we briefly outline our formalism that offers uniform (generic)
constructs to represent service capabilities and semantics, represent data- and
control flow between services (Section 2). We also present our extensions to
the original model to unambiguously correlate conversations involving service
instances or different parts of a workflow in a composition (Section 3). We also
present the results from our evaluation on non-trivial pessimistic scenarios, where
service compositions often fail (Section 4). Experimental results indicate that
even in such pessimistic settings our framework’s performance is quite competi-
tive to other composition systems.

2 GCSP-Based Service Composition

CSPs1 have successfully been applied in various domains including general plan-
ning [8] and service composition [4,5]. Generative CSPs (GCSPs) [7] extend
standard CSPs by lifting constraints and variables to a meta-level, where generic
constraints are the primary modeling element. Generic constraints abstract the
actual CSP variables into so-called meta variables that are instantiated into ordi-
nary constraints over variables in a classical CSP. Generative configuration can
be seen as the problem of incrementally extending a CSP network until all the
generic constraints are satisfied. In our formalism, when a component (C) of a
particular type is added to the configuration, related variables and constraints
(instances of the generic constraints of C) are activated in the configuration
process. This dynamic activation of CSP variables makes GCSPs suitable for dy-
namic situations where a priori prediction of the problem structure is difficult.

A GCSP is characterized by the set of available component types, their at-
tributes and ports (to connect to other components), and a set of generic con-
straints. In generic constraints, meta-variables act as placeholders for component
variables. Generic constraints can be seen as prototypical constraints on a meta-
level that are instantiated into ordinary constraints over variables in the CSP.
For example, assume a generic constraint X�BudgetShipper ⇒ X.price < 1000
is given, stating the invariant that the value of attribute price for any data ob-
ject of type BudgetShipper must be less than 1000. A generic constraint over a
meta-variable is said to be consistent if and only if the constraint is satisfied for
all instances over active CSP variables. We extended the generative formalism
in as follows [6]:

– We introduced connection components that act as connectors between ser-
vices. The explicit representation of connectors provides a uniform interface

1 A CSP consists of a finite set of variables, set of values that each variable can be
assigned to (the variable’s domain), and a set of constraints restricting the valid
assignments of values to variables.

360 R. Thiagarajan, W. Mayer, and M. Stumptner

contract between services and also serves as a means to model the provider-
consumer relationship between services.

– A connection component also holds a representation of the data values that
may be passed along the connection.

– To capture their semantics, we treat complex data objects as components.
This facilitates the uniform handling of service and data components in the
configuration, and has the additional benefit that generic constraints can be
used to impose invariants on data structures throughout a configuration.

– We introduced non-local process level constraints to model data flow, control
flow, and structural invariants of service processes.

In our approach, a service composition problem is posed a as a configuration
task expressed by an initial set of components and constraints that must be
satisfied. During the configuration process, the CSP is dynamically extended by
adding new variables and constraints. After each extension, the configuration is
represented by a standard CSP constraint network (without generic constraints);
therefore, standard algorithms can be applied to solve the CSP. An iterative deep-
ening strategy that limits the number of components that may be introduced in
the configuration prohibits the configuration from expanding indefinitely. Once
that limit has been reached, the algorithm backtracks and attempts to find an
alternative solution. If that fails, the limit is increased and the search is restarted.
Detailed elaboration on the incremental configuration algorithm is given in [6].

3 Workflow Scope

The scope of a workflow or a sub-workflow defines the tasks it encapsulates in
its behavioral process specification. For example, the Shipping process from the
Producer-Shipper composition problem [9] encapsulates tasks RequestGenerator
and SendResponse to process a request and acknowledge it, respectively. Existing
specifications are insufficient if multiple instances of a sub-workflow exist within
a composition. For example consider the process model in Figure 1a, where two
users interact with two instances of the Shipping workflow.2 The users would like
to place a shipping order using the available shipping process, but are oblivious
of each other. From a composition point-of-view, components in each sub-process
are interchangeable. For example, the offer requested by User 1 to Shipper 1 may
actually be sent to User 2 (as in Figure 1a). Hence, means to ensure messages
are directed to correct recipient must be provided.

To address this problem, we introduce explicit workflow scope components in
our generic framework. Scope components, in addition to encapsulating a process
specification, also differentiate between multiple instances of the same workflow
by maintaining a session ID that is unique for each occurrence of the workflow.
Figure 1b shows the scope component that encapsulates the Shipping process
in our example. Formally, scope components and their connections to their pro-
cess elements are also defined using generic constraints like other components

2 We consider user interaction as an explicit part of the composition.

A Generative Framework for Service Process Composition 361

RequestGenerator

SendResponse

from:City to:City on:Date weight:Real

finalResponse:ShipResponse

(a) Multiple In-
stances Problem

Scope
Component

RequestGenerator
Must connect to either

PrepareOffer OR PrepareApologies

next
scope

PrepareOffer

Must connect to
RequestGenerator

Must connect to
SendResponse

next

previous

scope

PrepareApologies

Must connect to
RequestGenerator

Must connect to
SendResponse

next

previous

scope

SendResponse

Must connect to either
PrepareOffer OR PrepareApologies

previous

scope

(b) Workflow Scope

Fig. 1. Process Specifications

in our framework. Connections between scope component and the process ele-
ments are also defined as generic constraints. While each workflow instance is
identified by a unique ID attribute. Additionally, each constituent component
in a composition is further distinguished by its unique component ID. Generic
constraints make use of the scope components and IDs to ensure that the result-
ing service composition is well-formed by restricting the control and data flow
between components.

4 Experimental Evaluation

We conducted an evaluation on a generalized version of the well-known Producer-
Shipper problem [9], where a product ordering and shipping process must be
composed from individual producers and shipper services, considering the ca-
pabilities and restrictions of individual services. Our largest problem with 28
parallel producer-shipper processes (1400 services) can be solved in roughly 3
minutes; a result quite competitive with other approaches [6]. The Producer-
Shipper process is quite atypical in that is does not include complex chains of
services or non-trivial transformations of data exchanged between services. We
conducted further experiments to assess the performance of our framework in
a scenario where items must be processed by a sequence of services in order to
meet the goal requirements.

Assume the supply chain of a pie factory (at a fixed location) is to be config-
ured using services. The factory requires supplies of flour and sugar to produce
pies. Our model includes wheat and sugarcane farming services located in var-
ious Indian cities. In addition to the factory and farmers, the problem domain
includes flour and sugar mills located in a number of South-East Asian desti-
nations. The model also includes shipping services that ship products between
locations. The aim is to compute a composition utilizing available services (farm-
ers, mills, and shippers) in order to facilitate production operations in the pie
factory while minimizing handling of the products (minimal number of shippers).

362 R. Thiagarajan, W. Mayer, and M. Stumptner

The problem structure in our scenario requires the solver to explore different
alternative matching services, and for each alternative, longer chains of prereq-
uisite services must be devised. This extensive exploration at each choice point
better reflects the web service composition context, where a large number of ser-
vices may appear suitable initially, but many fail to satisfy a given request. The
following experiment aims to quantify effects of the changed search behavior on
our framework.

We conducted experiments on a number of variants of our model. All our mod-
els contain 1 factory (the goal), 2 mills, and 12 farming locations. The smallest
model involves choosing among 25 shipping locations. We gradually increase
the number of locations up to 45 locations. Our smallest variant results in a
composition with 13 services, and our largest requires 21 services.

We introduce another parameter success factor to vary the complexity of the
problem. The higher the success factor is the more likely exploring an arbitrary
branch will result in a successful match. A model with success factor 1 implies
that exploring any out-going branch of the factory will definitely lead us to a
matching service. The Producer-Shipper scenario model has a success factor close
to 1 and hence exhibits near linear performance [6]. In this experiment we only
consider models with success factors below 0.5 to simulate difficult composition
problems. This setting reflects the assumption that many candidates that provide
similar services exist, but only a few of those will be suitable. We vary the success
factors of our models by replacing suitable services with ones that share similar
profiles, but do not offer the required capabilities.

The first set of experiments employed the iterative deepening strategy dis-
cussed in [6]. The limit on the number of services in each experiment was initial-
ized to 1 and was incremented by 1 in each iterative deepening step. The results
are shown in Figure 2a. Our smallest problem with 13 services can be solved in
roughly 45 seconds, and our largest problem with 21 services requires roughly 3

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 13 14 15 16 17 18 19 20 21

T
im

e
to

 C
om

po
se

 (
se

co
nd

s)

Number of Components

Success factor 0.4950
Success factor 0.4125
Success factor 0.3300
Success factor 0.2475
Success factor 0.1650

(a) Composing by Iterative Deepening

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 13 14 15 16 17 18 19 20 21

T
im

e
to

 C
om

po
se

 (
se

co
nd

s)

Number of Components

Success factor 0.4950
Success factor 0.4125
Success factor 0.3300
Success factor 0.2475
Success factor 0.1650

(b) Composing by Estimation

Fig. 2. Supply Chain Problem Results

A Generative Framework for Service Process Composition 363

minutes. This result is comparable in terms of problem size and complexity, and
is quite competitive to other composition systems [5,9].

5 Discussion

We have shown that our approach exhibits competitive performance on com-
plex process-level composition scenarios. However, the results in Figure 2a seem
counter-intuitive as the problem instances with smallest success factor are solved
fastest. Intuitively one would expect the opposite, since the chance of making
a wrong choice and backtracking is more frequent in models with low success
factor. To analyze this observation, we conducted another set of experiments
where the number of service required in a composition is approximated before-
hand (no iterative deepening). The results are presented in Figure 2b. It can be
observed that the time taken to solve models with high success factor is lesser
than that of model with low success factor. Therefore, backtracking caused by
the iterative deepening strategy is the cause for the counter-intuitive observa-
tion in Figure 2a. We are currently exploring strategies to preserve solutions to
sub-problems in the configuration while backtracking. In particular, we are in-
vestigating back jumping techniques that identify candidate variables to change
based on previous successful and failing attempts to solve sub-problems.

References

1. Liu, Z., Ranganathan, A., Riabov, A.: A planning-based approach for the automated
configuration of the enterprise service bus. In: Proc. ICSOC (2008)

2. Lécué, F., Delteil, A., Léger, A.: Optimizing Causal Link Based Web Service Com-
position. In: Proc. ECAI (2008)

3. Born, M., et al.: Semantic Annotation and Composition of Business Processes with
Maestro. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.)
ESWC 2008. LNCS, vol. 5021, pp. 772–776. Springer, Heidelberg (2008)

4. Karakoc, E., Senkul, P.: Composing semantic web services under constraints. Expert
Syst. Appl. 36(8), 11021–11029 (2009)

5. Albert, P., et al.: Configuration Based Workflow Composition. In: Proc. ICWS
(2005)

6. Mayer, W., Thiagarajan, R., Stumptner, M.: Service Composition As Generative
Constraint Satisfaction. In: Proc. ICWS (2009)

7. Fleischanderl, G., et al.: Configuring large-scale systems with generative constraint
satisfaction. IEEE Intelligent Systems 13(4) (1998)

8. Pralet, C., Verfaillie, G.: Using constraint networks on timelines to model and solve
planning and scheduling problems. In: Proc. ICAPS (2008)

9. Pistore, M., et al.: Automated composition of web services by planning at the knowl-
edge level. In: Proc. IJCAI (2005)

Achieving Predictability and Service Differentiation
in Web Services

Vidura Gamini Abhaya, Zahir Tari, and Peter Bertok

School of Computer Science and Information Technology
RMIT University, Melbourne, Australia

vabhaya@cs.rmit.edu.au, {zahir.tari,peter.bertok}@rmit.edu.au

Abstract. This paper proposes a model and an admission control algorithm for
achieving predictability in web services by means of service differentiation. We
use real-time scheduling principles typically used offline, adapt them to web ser-
vices to work online. The proposed model and algorithm is empirically evaluated
by implementing it Apache Axis2. The implementation is benchmarked against
the unmodified version of Axis2 for various types of workloads and arrival rates,
given different deadlines. We meet 100% of the deadlines keeping a healthy re-
quest acceptance rate of 42-100% depending on the task size variation. Our solu-
tion outperforms Axis2, specially at instances with high task size variance, by a
factor of 10 - 1000.

1 Introduction

Web service architectures and supporting infrastructure (such as SOAP engines and ap-
plication servers) by design, lacks support for predictability in execution. For instance,
they service requests in a best effort manner. As a result, specialised middleware (such
as Real-Time CORBA [1]) has been the default choice for applications with real-time
requirements.

Applications with real-time requirements are characterized by the equal importance
placed on time taken for a result to be obtained as on the correctness of the computation
performed. Herein, the notion of time taken for the result to be obtained is expected to
be predictable and consistent invariably. Moreover, if the time taken to obtain the result
is beyond a certain deadline, the result may be considered useless and might lead to
severe consequences. As a result, real-time systems with stringent QoS levels require
the service execution and middleware used to have very high predictability [2].

Although some research in web services has attempted to address Quality of Ser-
vice (QoS) aspects [3,4,5,6,7], none of them guarantees predictability in all aspects of
functionality, such as message processing and service execution. Moreover, there is no
support for predictability from the operating system (OS) and the development plat-
form. The work that comes close to achieving it [8], does it in a confined embedded
environment where tasks and their resource requests are known in advance of the task
occurrence. The challenge would be to achieve predictability in the totally dynamic
environment that web services are used in.

Contribution. Our solution is unique due to several reasons. The solution achieves
predictability in a highly dynamic environment with no prior knowledge of requests.

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 364–372, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Achieving Predictability and Service Differentiation in Web Services 365

Request acceptance is not pre-determined and happens on-the-fly. Moreover, it allows
any web service request to be tagged with a target completion time, which on accep-
tance is guaranteed to be met. This is the first approach of scheduling web service re-
quests based on a user requested deadline. Our solution is unique in adapting real-time
scheduling principles designed for offline use, to a dynamic online environment.

2 Background

Two concepts considered in schedulability analysis, namely processor demand and
loading factor [9] are defined here. Henceforth, we use a given task Ti, with release
time of ri, a deadline of di and an execution time requirement of Ci. Our proposed
model is based on the following definitions.

Definition 1. For a given set of real-time tasks and an interval of time [t1, t2), the pro-
cessor demand (h) for the set of tasks in the interval [t1, t2) is

h[t1,t2) = ∑
t1≤rk,dk≤t2

Ck. (1)

Definition 2. For a given set of real-time tasks the fraction of the interval [t1,t2) needed
to execute its tasks is considered as its loading factor (u) that is,

u[t1,t2) =
h[t1,t2)

t2 − t1
. (2)

Definition 3. The loading factor of the maximum of all such intervals, is considered as
absolute loading factor, that is,

u = sup
0≤t1≤t2

u[t1,t2). (3)

Theorem 1 (Spuri [10]). Any set of real-time tasks is feasibly scheduled by EDF algo-
rithm if and only if

u ≤ 1. (4)

3 Proposed Solution

3.1 Proposed Model

The proposed model is based on the notion of a deadline, specified by the client at the
time of service invocation. The Deadline is considered to be the absolute time period
the request has to be serviced within. The proposed solution has two parts. An on-the-fly
schedulability check is conducted on the arrival of a task at the system, to evaluate the
possibility of servicing it within the requested deadline, without compromising already
accepted tasks. Then the accepted tasks are scheduled using a deadline based real-time
scheduling algorithm.

In a pre-emptive scheduling system, execution of a given request could happen with
several pre-emption cycles.

366 V. Gamini Abhaya, Z. Tari, and P. Bertok

Definition 4. For a given request Ti having n number of pre-emptions, where the start
time of each execution is sn and the end time of each execution is en, the Total time of
the task execution Ei can be considered as,

Ei =
n

∑
j=1

(e j − s j). (5)

Definition 5. For a given request submitted to the system, with the execution time re-
quirement of Ci, at any given point of time the remaining execution time Ri can be
considered as,

Ri = Ci −Ei. (6)

Let Tnew be a newly submitted task, with a release time of rnew and a deadline of dnew

and an execution time requirement of Cnew. Let P be the set of tasks already accepted
and active in the system, with their deadlines denoted as dp

With reference to definition 1, the processor demand within the duration of the newly
submitted task can be defined as,

h[rnew,dnew) = ∑
rnew≤dp≤dnew

Rp +Cnew. (7)

With reference to definition 2, the loading factor within the duration of the newly sub-
mitted task can be defined as,

u[rnew,dnew) =
h[rnew,dnew)

dnew − rnew
(8)

With condition 8, if the following condition is satisfied, the new task is considered
schedulable together with tasks finishing on or before its deadline, with no impact on
their deadlines.

u[rnew,dnew) ≤ 1 (9)

Let Q be the set of tasks already accepted and active in the system, required to finish
after dnew (such that, with deadlines after dnew). Let q be the member of Q, with a
deadline of dq up to which the processor demand is calculated for,

h[rnew,dq) = h[rnew,dnew) + ∑
dnew≤di≤dq

Ri. (10)

The result of 7 is used as part of the equation. This represents the processor demand of
all tasks finishing on or prior to dnew and can be treated as one big task with a release
time rnew and a deadline of dnew respectively. Next, the loading factor for the same
duration is calculated.

u[rnew,dq) =
h[rnew,dq)

dq − rnew
(11)

Achieving Predictability and Service Differentiation in Web Services 367

The loading factor is also calculated on a per task basis for each member of Q. Subse-
quently, the calculated loading factor is compared to be less than or equal to 1, in order
for all tasks leading up to q, to be satisfied as schedulable.

u[rnew,dq) ≤ 1 (12)

In summary, for a newly submitted task to be accepted to the system, condition 9 needs
to be satisfied for tasks with deadlines on or before dnew, subsequently condition 12
needs to be satisfied, separately for each task with deadlines after dnew.

3.2 Proposed Algorithm

Based on the above model, Algorithm 1, will form the core of our solution in the im-
plementation that follows. In devising the algorithm, we make the assumption that the
execution time requirement or an estimation of it per parameter, for each service hosted
would be available to the server.

Current time, deadline of the new request and the list of requests already accepted by
the system as inputs. Current time is considered as the start time of the new request. As
per the model described in 3.1, The check consists of two steps. First part determines the
schedulability of a new request together with tasks finishing within its lifespan, while
meeting all deadlines (Lines 2 to 14). For each request P′ ∈ P, it is checked whether
execution information is currently available (Line 4). If the request has been partially
processed, the remaining execution time calculated as per equation 5, is obtained (Line
5). If the request is yet to be processed, the execution time requirement of the task (Line
7), is used alternatively.

Following equation 7, the processor demand within the duration of the newly sub-
mitted request is calculated by summing up the remaining execution times or execution
time requirements of each task. Adding the execution time requirement for the new re-
quest (Line 10) completes the processor demand calculation for its lifespan. Following
equation 8, we calculate the loading factor for the time period (Line 11). If the load-
ing factor is greater than 1, the request is straightaway rejected. If the loading factor
remains less than 100%, the check continues on to the second stage.

The second stage validates the effect of the newly submitted request on requests fin-
ishing thereafter. For this we select requests with deadlines later than that of the new
task (Line 15). The check is done separately for each and every request selected. We
make the process more efficient by, first sorting the list of selected requests in the as-
cending order of the deadlines (Line 16). For each request Q′ ∈ Q, a further subset of
requests from the list is selected. All requests required to finish between newly sub-
mitted and Q′ are selected into set R (Line 19). For each request R′ ∈ R, the processor
demand is calculated by using either the remaining time of the request or its execution
time requirement (Lines 21 to 26). To this, the remaining time or the execution time re-
quest of request Q′ is also added (Line 27 to 29). Following equation 10, the processor
demand calculated for the duration of the new request is added to it (Line 28 and 30).
Finally, following equation 11, we calculate the loading factor for the same duration
(Line 32). If the result exceeds 100%, the request is rejected (Line 33 to 35). If it is less
than or equal to 100%, the check is repeated for members in Q, until a check fails or all
of them are satisfied, at which point the request is considered schedulable.

368 V. Gamini Abhaya, Z. Tari, and P. Bertok

Algorithm 1. Online Schedulability Check

Require: (Snew) Current time, (Dnew) deadline of new
request N, (T) List of requests currently in the sys-
tem

Ensure: true: if the task can be scheduled, false: if the
schedulability check fails

1: WPD ← 0; APD ← 0
2: P ← GetTasksFinWitnNewTask(T, Snew , Dnew)
3: for all P′ ∈ P do
4: if execution information for P′ exists then
5: WPD ← WPD + GetRemExTm(P′)
6: else
7: WPD ← WPD + GetExecTime(P′)
8: end if
9: end for
10: WPD ← WPD + GetExecTime(N)
11: LoadingFactor ← WPD

(Dnew−Snew)

12: if LoadingFactor > 1 then
13: return false
14: end if
15: Q ← GetTasksFinAftNewTask(T,Dnew)
16: Q ← SortByDL(Q)
17: for all Q′ ∈ Q do
18: DL ← GetDL(Q′)
19: R ← GetTasksFinBtwn(T, Dnew, DL)
20: for all R′ ∈ R do
21: if execution information for R′ exists then
22: APD ← APD + GetRemExTm(R′)
23: else
24: APD ← APD + GetExecTime(R′)
25: end if
26: end for
27: if execution information for Q′ exists then
28: APD ← APD + WPD + GetRemExTm(Q′)
29: else
30: APD ← APD + WPD + GetExecTime(Q′)
31: end if
32: LoadingFactor ← APD

(DL−Snew)

33: if LoadingFactor > 1 then
34: return false
35: end if
36: end for
37: return true

Sorting the requests by ascending
deadlines ensures a failure happens as
early as possible. Moreover, it avoids the
check being repeated after a failure. The
complexity of the algorithm results in
O(n2).

3.3 Deadline Based scheduling

The requests accepted through the
schedulability check are scheduled us-
ing a deadline based scheduling algo-
rithm. It schedules tasks sequentially in
the increasing order of their deadlines.
The algorithm makes use of priority lev-
els to control the execution of the worker
threads in the system. This ensures pre-
dictability at execution level of the sys-
tem.

4 Empirical Evaluation

The implementation is benchmarked
against unmodified version of Apache
Axis2. Since Axis2 by design works in
a best effort manner, there would be no
resultant task rejections. However, the
number of tasks meeting their deadlines
is used as the main metric to measure
performance. A web service that allowed
us to fine tune the task sizes with a single
parameter was used for the experiments.

We generated task sizes according to Uniform, Exponential and Pareto distributions.
Moreover, we generated task arrival rates using a Uniform distribution.

4.1 Experimental Results

The success of our solution, depends on two primary factors. The number of requests
accepted for execution and the number of requests meeting the requested deadlines. The
aim was to achieve a high rate of task acceptance and to ensure that majority of them
met their deadlines. The task size distribution, the execution time to deadline ratio and
the arrival rates had an effect on this. Table 1 contains a summary of all experiments
runs. The first two columns contain the various experiment runs conducted and the
parameters used. The deadline for each run was calculated by multiplying the respective
profiled execution time requirement by a value between 1.5 and 10 drawn out uniformly
from the distribution.

Achieving Predictability and Service Differentiation in Web Services 369

Table 1. Comparison of Real-time Axis2 and Unmodified Axis2 performance

Real-time Axis2 Unmodified Axis2
Distribution Inter-arrival

time(sec)
% Acc. % D. Mis. % D. Met % D. Mis. % D. Met

Uniform
0.25 - 5 41.8 0 100 96.6 3.4
0.25 - 10 81.2 0 100 83.6 16.4

Bounded Exponential
λ = 10−6

0.25 - 2 62.5 0.1 99.9 42.6 57.4
0.25 - 5 99.3 0 100 0 100
0.25 - 10 100 0 100 0 100

Bounded Exponential
λ = 10−5

0.25 - 2 100 0 100 0 100
0.25 - 5 100 0 100 0 100
0.25 - 10 100 0 100 0 100

Bounded Pareto α = 0.5
0.25 - 2 100 0.3 99.7 0 100
0.25 - 5 100 0.1 99.9 0 100
0.25 - 10 100 0 100 0 100

Bounded Pareto α = 0.05
0.25 - 2 99.4 0 100 0 100
0.25 - 5 99.9 0 100 0 100
0.25 - 10 100 0 100 0 100

4.2 Discussion

Task Acceptance. In a given period of time, real-time Axis2 accepts between 42% -
100% tasks it receives, depending on the mixture of tasks. If the request sizes take an
Exponential or a Pareto type distribution, the task acceptance rate results a 100% in
almost all the experiment runs. This happens due to the high concentration of small
sized requests in the mix. A small task may have an execution time requirement of a
few CPU cycles or even a fraction of a CPU cycle. As a result, it is possible to finish
more small requests in a given period of time. Medium and large tasks having a higher
execution time requirement tend to get accumulated to the backlog of tasks waiting to
finish execution. This results in task rejections.

Impact of Arrival Rate. Varying the arrival rates of requests, it was observed that the
number of tasks accepted is proportional to the arrival rate of tasks. A higher arrival rate
results in the system receiving requests at a higher rate than it is completing requests.
This leads to a build-up of unfinished requests in the system that leads to the eventual
rejection of tasks. Moreover, a lower arrival rate results in the system finishing up ex-
ecution of requests before the next task arrives at the system. This yields a higher task
acceptance rate.

Deadline Achievement. With the real-time implementation, 100% of the requests
achieve their deadlines, in most cases. It is clearly visible that the real-time imple-
mentation performs better than unmodified Axis2 in meeting request deadlines. When
the requests received are predominantly small, both versions of Axis2 performs well
with meeting deadlines of all tasks. Due to the small execution time requirements of the
tasks the deadlines are easily achieved as it leads to no task build-up. Unmodified Axis2
performs marginally better than the real-time implementation in a couple of cases were
the task mix consist of only very small sized requests.

Timeliness of execution. According to Fig. 1, with runs having a higher variety of task
sizes, real-time Axis2 results in better execution times than unmodified Axis2 by very
large factors. When the requests are predominantly small, both implementations achieve

370 V. Gamini Abhaya, Z. Tari, and P. Bertok

Fig. 1. Execution Time Comparison of Unmodified and Real-time Axis2 implementations

Achieving Predictability and Service Differentiation in Web Services 371

deadlines of almost all the requests. This is largely due to the best effort nature that
unmodified Axis2 functions in. Accepting all requests and trying to execute as many as
possible in parallel, results in all requests taking a longer time to finish execution. With
the real-time implementation, a task is only accepted if its deadline could be met while
not compromising that of the others already accepted. This results in lower execution
times compared to unmodified Axis2. In some of the bounded exponential and pareto
runs, Real-time Axis2 execution times have resulted in higher than normal execution
times for certain task sizes. These are deviations intended behaviour by the real-time
scheduler, in order to achieve the deadlines of other tasks.

CPU utilisation. In the runs where there was rejection of tasks, it is clearly visible from
Fig. 1 that Real-time Axis2 has a very high utilization of the process during the exper-
imental runs. Although it is reasonable to assume that the processor should be utilized
100% of the time by a process in such scenarios, practically this may not achieved due
to thread level scheduling. However, with a real-time OS being used and a develop-
ment platform that supports real-time systems, it is clearly visible that very high rates
of processor utilisation can be achieved. Moreover, whenever tasks are rejected by the
schedulability check, it is backed up by the high processor utilisation.

5 Conclusion

With the experiment results discussed in the previous section, it could be concluded
that the devised model, schedulability check introduced and the real-time algorithm
achieved their purpose. Moreover, it would be fair to conclude that real-time Axis2
achieves the goal of maximizing request deadline achievement. The result show a sig-
nificant difference in the execution times achieved especially where there is a high va-
riety of task sizes. The solution performs decently with a task acceptance rate of 42
- 100% varying with the arrival rates of tasks. Most importantly it performs well to
achieve the deadline of all accepted tasks consistently.

References

1. Schmidt, D., Kuhns, F.: An overview of the Real-Time CORBA specification. Com-
puter 33(6), 56–63 (2000)

2. Schmidt, D., Levine, D., Mungee, S.: The design and performance of real-time object request
brokers. Computer Communications 21(4), 294–324 (1998)

3. Ran, S.: A model for web services discovery with QoS. ACM SIGecom Exchanges 4(1),
1–10 (2003)

4. Tian, M., Gramm, A., Naumowicz, T., Ritter, H., Freie, J.: A concept for QoS integration
in Web services. In: Web Information Systems Engineering Workshops, Proceedings, pp.
149–155 (2003)

5. Yu, T., Lin, K.: The design of QoS broker algorithms for QoS-capable web services. In: IEEE
International Conference on e-technology, e-commerce and e-service, EEE 2004, pp. 17–24
(2004)

6. Sharma, A., Adarkar, H., Sengupta, S.: Managing QoS through prioritization in web services.
In: Web Information Systems Engineering Workshops, Proceedings, December 2003, pp.
140–148 (2003)

372 V. Gamini Abhaya, Z. Tari, and P. Bertok

7. Tien, C.-M., Cho-Jun Lee, P.: SOAP Request Scheduling for Differentiated Quality of Ser-
vice. In: Dean, M., Guo, Y., Jun, W., Kaschek, R., Krishnaswamy, S., Pan, Z., Sheng, Q.Z.
(eds.) WISE 2005 Workshops. LNCS, vol. 3807, pp. 63–72. Springer, Heidelberg (2005)

8. Helander, J., Sigurdsson, S.: Self-tuning planned actions time to make real-time SOAP real.
In: Eighth IEEE International Symposium on Object-Oriented Real-Time Distributed Com-
puting, ISORC, pp. 80–89 (2005)

9. Stankovic, J.A., Spuri, M., Ramamritham, K., Buttazzo, G.C.: Deadline scheduling for real-
time systems: EDF and related algorithms. Kluwer Academic Publishers, Dordrecht (1998)

10. Spuri, M.: Earliest Deadline scheduling in real-time systems. Doctorate Dissertation, Scuola
Superiore S. Anna, Pisa (1995)

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 373–388, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Incorporating Security Requirements into Service
Composition: From Modelling to Execution

Andre R.R. Souza1, Bruno L.B. Silva1, Fernando A.A. Lins1, Julio C. Damasceno1,
Nelson S. Rosa1, Paulo R.M. Maciel1, Robson W.A. Medeiros1,

 Bryan Stephenson2, Hamid R. Motahari-Nezhad2, Jun Li2, and Caio Northfleet3

1 Federal University of Pernambuco, Centre of Informatics
{arss,blbs,faal2,jcd,nsr,prmm,rwam}@cin.ufpe.br

2 HP Labs Palo Alto
{bryan.stephenson,hamid.motahari,jun.li}@hp.com

3 HP Brazil
caio.northfleet@hp.com

Abstract. Despite an increasing need for considering security requirements in
service composition, the incorporation of security requirements into service
composition is still a challenge for many reasons: no clear identification of se-
curity requirements for composition, absence of notations to express them, dif-
ficulty in integrating them into the business processes, complexity of mapping
them into security mechanisms, and the complexity inherent to specify and en-
force complex security requirements. We identify security requirements for ser-
vice composition and define notations to express them at different levels of
abstraction. We present a novel approach consisting of a methodology, called
Sec-MoSC, to incorporate security requirements into service composition, map
security requirements into enforceable mechanisms, and support execution. We
have implemented this approach in a prototype tool by extending BPMN nota-
tion and building on an existing BPMN editor, BPEL engine and Apache Ram-
part. We showcase an illustrative application of the Sec-MoSC toolset.

1 Introduction

There is an increasing need for considering security requirements in service composi-
tion. Service providers and service consumers need security guarantees to offer and
use services. The users of composite services have requirements such as the confiden-
tiality of their information being preserved by all service providers participating in the
composition. Service providers may also sign SLAs (Service Level Agreements) with
the service customers, which impose security requirements that must be satisfied
when the service is being delivered.

Despite the importance, the incorporation of security requirements in service com-
position development is still a challenge for many reasons: no clear identification of
security requirements for service composition, absence of notations to express them,
difficulty in integrating them into the business process (behind the service composi-
tion), complexity of mapping them into actual security mechanisms, lack of monitoring

374 A.R.R. Souza et al.

mechanisms to check whether they are being satisfied at execution time and the com-
plexity inherent to specify and enforce security requirements.

Current solutions on service composition and security usually concentrate on a par-
ticular aspect: incorporation of security requirements into the business process defini-
tion [10][14][11][12], executable composition [3][18][8][5][6] or enforcement of
security at execution time [10][16]. However, there is little work that supports identi-
fication, expression and enforcement of security requirements for service composition
at all levels of abstraction.

In this paper, we present an approach to deal with security requirements of service
composition at various levels of abstraction. Our approach streamlines the modelling
and enforcement of security requirements across multiple stages of business service
development: from business process specification, to composite service design and
development, and to business process execution.

We identify a collection of security requirements for service composition and pro-
pose a set of abstractions to express these security requirements. At the business level,
we propose abstractions to express identified security requirements, which are repre-
sented by extending BPMN notations [19]. We present a methodology called
Sec-MoSC (Security for Model-oriented Service Composition) through which com-
position logic, which is represented in standard BPMN, is annotated with security
abstractions. The annotated model is translated into a BPEL process specification and
configurations for security enforcement modules and mechanisms. The security re-
quirements are enforced at runtime by an auxiliary engine, which complements the
BPEL execution engine. We have implemented the approach in a prototype tool to
demonstrate its viability and showcase it using an example.

This paper is structured as follows. Section 2 introduces an example scenario used
throughout the paper. Section 3 presents security requirements and abstractions used
to express them. Section 4 presents the Sec-MoSC methodology. Section 5 presents
the architecture and implementation of the prototype tool and an example. Section 6
presents related works. Section 7 draws our conclusions and identifies future work.

2 Illustrative Scenario

We consider a virtual travel agency called VTA (Virtual Travel Agency), which pro-
vides services through an Internet portal for trip arrangements. The VTA portal is an
interface between many different travel business companies/government services and
end-users interested in travel.

Customers interact with VTA for service usage, payment and non-computational
assets (e.g., receive the travel insurance policy). The operations are accessed through
a Web interface available in the VTA portal. The VTA portal runs though the compo-
sition of services available in the Internet. We identified important security require-
ments including (i) encrypting credit card information in all communications, (ii)
VTA and its partners need valid digital signatures, (iii) authentication mechanisms
must be used in all interactions among web services accessed by VTA, (iv) logging all
operations in the service composition for auditing purposes, and (v) VTA and
its partners require that their Web services may only accept requests coming from
specific IP addresses or domains.

 Incorporating Security Requirements into Service Composition 375

3 Security Abstractions for Business Modelling to Execution

Our approach starts with the identification of security requirements that may be pre-
sent in service composition. In the following, we identify these requirements and
introduce a set of abstractions (modelling elements) that help understand, express and
structure them in such a way that they can be incorporated into a service composition.

3.1 Security Requirements

By examining the VTA and other service applications that require composition of
multiple Internet services across different service providers, we have identified the
following common security requirements:

[NFR 01] Confidentiality. Critical information stored or exchanged in service inter-
actions, such as credit card and personal identification information in the VTA exam-
ple, needs to be disclosed only as needed to deliver the service.

[NFR 02] Data Retention. The information exchanged between services may have a
time-to-live (TTL), i.e. it should be deleted after a certain time. For example, VTA
must delete credit card information after sending the e-ticket to the customer.

[NFR 03] Access Control. Service providers must guarantee that only employees of
the commercial department have access to customer data (e.g., the system designer
cannot access this data).

[NFR 04] Authentication. Authentication ensures that only appropriate users have
access to the sensitive or critical information held by the services, and also ensures
that an action X was performed by a user Y and by nobody else (non-repudiation).

[NFR 05] Restricted Access. The composite service may filter communication with
other services based on IP address or domain names. The VTA service relies on the IP
addresses belonging to registered service providers to restrict access.

[NFR 06] Data Integrity. Stored and communicated sensitive customer data (such as
credit card information) has to be checked against data corruption.

[NFR 07] Data Sharing. Service providers may be required to keep customer data
within their company, or share it with sub-contractors in a limited way.

[NFR 08] Service Certification. Services used in the composition may need a certi-
fied abstraction of their behaviour. Any service whose behaviour is altered must be
certified again. A Secure Capability Authority may be in charge of evaluating the
compliance of Web services with respect to security capabilities and functionality.

[NFR 09] Auditing. Any operation performed by the service composition may need
to be logged for auditing purposes.

[NFR 10] Monitoring. Anomalous behaviour in the composition that leads to viola-
tion of security constraints (e.g. leakage of information) should be monitored.

This set of security requirements has served as a basis for the proposed solutions
presented in this paper.

376 A.R.R. Souza et al.

3.2 Abstractions

In order to express the security requirements, we propose a set of abstractions by
extending our previous work [15] to express non-functional requirements at model-
ling, development and run time: NF-Attributes, NF-Statements, and NF-Actions.

Table 1. Security requirements, NF-Actions and properties

Security
requirement
(Section 3.1)

NF-Action Properties

NFR01 UseCryptography Encryption Type (Symmetric /
Asymmetric), Algorithm, Encrypted
Message Parts , Key Length

NFR02 DeleteInformation Type (Time/Event based), Time-to-
live (TTL), Event (Before, After)

NFR03 UseAccessControl Role, list of trusted entities, access
level for each service

NFR04 UseAuthentication
UseDigitalSignatures

Token Type (Username / X509 /
Kerberos / SAML), Session Timeout

NFR05 RestrictAccess Restriction Type (allow, deny), Source
IP, Source IP Range, Destination
Endpoint

NFR06 CheckDataIntegrity Signature Type (HMAC_SHA1 /
RSA_SHA1), Checked Parts (Header /
Body)

NFR07 ClassifyInformation Classification (Top Secret, Secret,
Confidential)

NFR08 CertifiedServiceBehavior Level of certification, The trusted
entity

NFR09 Log Level (DEBUG, INFO, WARN,
ERROR)

NF-Attribute. It models non-functional characteristics such as security that may be
defined in service composition. An NF-Attribute can be primitive or composite. A
composite NF-Attribute is decomposed into primitive NF-Attributes that are closer to
implementation elements. The composite NF-Attribute Security may be decomposed
into primitive NF-Attributes Integrity and Confidentiality.

NF-Action. It models a software aspect or hardware feature that implements an NF-
Attribute. Software aspects mean design decisions, algorithms, data structures, con-
figurations and so on. Hardware features concern computer resources available for
running the software system. NF-Actions are the abstractions to express the security
enforcement mechanisms that must be implemented to achieve the NF-Attribute. For
example, the realisation of the NF-Attribute Authentication may be carried out by
implementing the NF-Action UseAuthentication. Finally, NF-Actions may be grouped

 Incorporating Security Requirements into Service Composition 377

to facilitate their reuse. They may have a set of properties like a tuple <name,
value> that help to better characterise and implement them, e.g., the NF-Action
UseCryptography has the property <encryption type, symmetric>.

NF-Statement. It models constraints defined on an NF-Attribute to guide decisions
taken to implement the NF-Attribute. In the context of security, NF-Statements are
defined in multiple levels such as high, medium, low. For example, “High Confidenti-
ality” may require choosing public key-based encryption algorithm, whereas “Me-
dium Confidentiality” may require 128-bit AES encryption.

In this paper, our focus is on “security” (a composite NF-Attribute). We define a
set of primitive security NF-Attributes (Integrity, Confidentiality, Authentication,
Authorization, Audit, etc.) and a set of NF-Actions (together with their properties) that
may be used to realise the NF-Attributes (see Table 1), and four constraint levels to
the NF-Statements (High, Medium, Low and Other). The identified NF-Attributes are
realised by implementing these NF-Actions through configuring orchestration engines
using existing standards, defining and implementing security modules, and so on.

1- Business Process

Modelling

3- Service
Enrichment

2- Security Requirements
Modelling

11- Platform-Specific
WS-BPEL Generation

7- Predicate
Enrichment

10- Generic
Security

Specification
Generation

8-Generic
WS-BPEL

Generation

5- Task and Group
Enrichment

6- Data Object
Enrichment

4- NF-Action
Enrichment

13- Execution of
WS-BPEL

12- Platform-Specific
Security Configuration

Generation

Execution
Level

Design
Level

Business
Level

9- Service
Information
Generation

BPMN Annotated

Fig. 1. Sec-MoSC Methodology

4 Sec-MoSC Methodology

We present a methodology, called Sec-MoSC, for incorporation of security require-
ments in service composition based on the following principles and assumptions: (i)
different stakeholders (business users, security experts, service developers) are in-
volved in defining and enforcing security requirements at various development stages.
Following the principle of separation of concerns, we define three abstraction levels:
business, design and execution. Security requirements are represented in different
views corresponding to these layers; (ii) targeting business users, we adopt BPMN to
express business processes; (iii) business users incorporate security requirements into
the composition process during the business process definition using an extended
BPMN notation; (iv) we use WS-BPEL to express the executable service composition

378 A.R.R. Souza et al.

specification. We provide a semi-automated approach to translate the annotated
BPMN into executable BPEL along with enforceable security mechanisms. The run-
time support is offered by complementing the orchestration engine with an auxiliary
engine. Sec-MoSC methodology, shown in Figure 1, consists of the following steps:

Step 1: Business Process Modelling: This step refers to modelling the business
process using BPMN abstractions such as tasks, task groups, data objects (business
process information), predicates and so on. This step is performed by a business ex-
pert that has knowledge of the business process.

Step 2: Security Requirements Modelling: This step consists of defining security
requirements and binding them to elements of the BPMN model. We extend BPMN
elements by three new notations corresponding to NF-Attribute, NF-Statement and
NF-Action. Considering the non-functional abstractions introduced in Section 3.2,
this step initially defines NF-Attributes (composite security or primitive confidential-
ity, etc.) and NF-Statements (High, Medium, Low and Other) and binds them to
BPMN elements. This step is performed by a business expert, possibly aided by a
security expert that knows the meaning of NF-Attributes and NF-Statements. The
business expert may include the rationale to define the NF-Statement. NF-Attributes
and NF-Statements are bound to a BPMN element like data object, task or task group.
This step annotates the BPMN model with NF-Attributes, NF-Statements, and default
NF-Actions. For example, a BPMN task may be associated to the NF-Attributes Au-
thorization and Authentication and NF-Statement “High” along with default NF-
Actions RestrictAccess and UseAuthentication needed to realise them.

Step 3: Service Enrichment: This step concentrates on enriching the annotated
BPMN model by including additional information about the actual services that are
used to realize BPMN tasks. Services may be selected from a service repository. A
filter based on NF-Attributes and NF-Statements is applied to the list of candidate
services in such a way that only services that satisfy the security requirements are
considered. This step is to facilitate automated code generation from BPMN to BPEL.

Step 4: NF-Action Enrichment: This step further refines the security requirements
identified in Step 2. The security expert considers if the set of NF-Attributes and de-
fault NF-Actions are enough to realise the security requirements. The security expert
may change (remove/add/alter) the default set of NF-Actions and their properties to
satisfy the requested NF-Statement. Each NF-Action has a particular set of properties
that serves as parameters in its use (see Table 1). These properties may be altered by
the security expert to select the best parameters to meet NF-Statements.

Steps 5, 6 and 7: Task and Group Enrichment, Data Object Enrichment and
Predicate Enrichment: Automatic mapping from BPMN to BPEL is intractable with-
out additional information. Steps 3, 5, 6 and 7 are defined to enrich the BPMN model
in order to facilitate automatic generation of executable service composition from the
BPMN model to BPEL. Step 5 (Task and Group Enrichment) includes more informa-
tion about the service defined in Step 3 such as URI, business type, and so on. Step 6
(Data Object Enrichment) consists of refining the definition of the BPMN data
objects by associating data types and assigning variables to them. Finally, Step 7

 Incorporating Security Requirements into Service Composition 379

(Predicate Enrichment) consists of explicitly solving predicates of the BPMN model
(e.g., loop, decision commands).

Steps 8, 9 and 10: Generic WS-BPEL Generation, Service Information Generation
and Generic Security Specification Generation: In these steps, we map the anno-
tated BPMN model into an executable composition (WS-BPEL) along with the secu-
rity configurations and enforcement mechanisms. This mapping is carried out in two
steps as we choose to decouple the executable composition from any particular or-
chestration engine. Steps 8, 9 and 10 refer to the mapping of the annotated BPMN
into platform-independent (which we call generic) WS-BPEL, service information
and security configurations, and Steps 11 and 12 yield platform-specific BPEL and
security configurations.

Step 8 (Generic WS-BPEL Generation) maps the annotated BPMN into a WS-
BPEL composition that is independent from any particular WS-BPEL engine. The
WS-BPEL composition only contains standard WS-BPEL elements. Step 9 (Service
Information Generation) generates a file that contains generic information (XML file)
about the services to be used in the executable service composition (see Steps 3 and
5). Finally, Step 10 (Generic Security Configuration Generation) is responsible for
yielding a generic configuration file that includes needed security configurations to
realise the security requirements defined in Steps 2 and 3. Internally, NF-Actions will
be actually bound to WS-BPEL commands such as invoke, receive, reply,
sequence, assign, variable, eventHandler and throw. NF-Actions have
(in most cases) different meanings when they are bound to different WS-BPEL ele-
ments. For example, the NF-Action UseCryptography() bound to the WS-BPEL
command receive means that once the receive is the entry point of the composi-
tion, the interactions between the client and the orchestration engine must be en-
crypted. On the other hand, when UseCryptography() is bound to the WS-BPEL
command invoke, the interactions between the orchestration engine and the service
provider must be encrypted.

Steps 11 and 12: Platform-Specific WS-BPEL and Security Configuration Genera-
tion: In these steps, the generic files generated in Steps 8, 9 and 10 are transformed
into platform-specific WS-BPEL (Step 11) and security configuration files (Step 12).
Step 11 (Platform-Specific WS-BPEL Generation) produces a WS-BPEL composition
that is customised to run on a particular orchestration engine (e.g., Apache ODE in
our work). Step 12 (Platform-Specific Security Configuration Generation) generates a
set of configuration files to enforce the security requirements in a particular orchestra-
tion engine or security module (e.g., Apache ODE Rampart in our work).

Step 13: Execution of WS-BPEL: This step runs the WS-BPEL executable composi-
tion and enforces the security requirements at specified enforcement points using an
auxiliary engine, which is described in more detail in Section 5.2.

5 Architecture, Implementation and Example

This section presents the Sec-MoSC solution architecture that supports security ab-
stractions (Section 3) and the Sec-MoSC methodology (Section 4). Following this

380 A.R.R. Souza et al.

architecture, we have implemented a toolset to demonstrate the viability of the ap-
proach. We also detail how the prototype toolset can be used to support the modelling
and development of the VTA use case introduced in Section 2.

5.1 Architecture

Figure 2 shows the architectural overview of the proposed solution, which includes a
security extension of a BPMN editor (Sec-MoSC Tool Editor), a set of repositories
(for Security NF-Actions, Services and Log), execution environment tools (Auxiliary
Engine and Orchestration engine) and XML files.

Repositories

Security Services

Auxiliary
Engine

Orchestration
Engine

Platform-independent
XML Files

BPMN
Module

Security
Extension

Service
Extension

Sec-MoSC
Translator

Sec-MoSC Tool Editor

Execution
Environment

Log

Platform-specific
XML Files

Fig. 2. Sec-MoSC Architecture

Sec-MoSC Tool Editor provides support at development time and is composed of

four main components: BPMN module, Security extension module, Service extension
module and the Sec-MoSC Translator. The BPMN module allows the developer to
define a business process using the standard BPMN notation. The Security extension
provides support to model the security requirements and bind them to BPMN ele-
ments. The Service extension is responsible for the annotation of service information
(e.g., candidate services to execute a task) into the BPMN. Finally, the Sec-MoSC
Translator is in charge of carrying out the mapping of the annotated BPMN model
into WS-BPEL and other specification files. The repositories Services and Security
store information about pre-registered services and supported security NF-Actions.
These repositories support annotation of the business process model. The Log reposi-
tory stores security log information generated at runtime.

The Execution Environment is responsible for executing the service composition
and realising non-functional requirements. This realisation is performed by the en-
forcement mechanisms through generation of configuration files to the Orchestration
Engine. This generation is performed by the Auxiliary Engine, which applies and
manages configurations in order to execute the secure service composition. The

 Incorporating Security Requirements into Service Composition 381

Orchestration Engine has the traditional role of executing the composition. The auxil-
iary engine has an internal component, the MoSC Security Module , that executes the
security enforcement mechanisms by implementing needed NF-Actions either directly
or by configuring existing engines such as Apache Rampart [1]. We provide three
complementary views in the Sec-MoSC Tool Editor corresponding to the three levels
of abstraction: business, design and execution. In the business view, the business user
can use the editor to annotate a BPMN model with provided security annotations. The
design view shows the corresponding BPEL code and security configuration files to
the annotated BPMN model. The developer can inspect the generated code and further
refine the configuration of NF-Actions. The execution view allows the user to deploy
the composition logic into the Execution Environment and monitor and inspect the
log of secured composition execution.

It is important to note that the functional BPEL code is not altered in order to insert
enforcement points. In the presented approach, the enforcement points are specified in
the configuration files generated by the Auxiliary Engine. For example, if the user
specifies that a specific communication should be encrypted via the NF-Action of
UseCryptography, the Auxiliary Engine will receive this requirement and will gener-
ate specific configurations in order to guarantee that the enforcement points will be
performed. In this example (UseCryptography), the execution of the NF-Action will
alter the SOAP request and SOAP response messages by encrypting/decrypting the
message. This process is transparent to the functional execution of the application.
An example of a configuration file will be presented in Section 5.3.

5.2 Implementation

Components of the Sec-MoSC architecture presented in Figure 2 are implemented as
an Eclipse plugin. The BPMN Module was implemented by extending the BPMN
editor [7] to support the BPMN concept of TaskType (this concept is present in the
BPMN 1.2 specification). We used Eclipse GEF framework to implement the defini-
tion and binding of security and service information to the BPMN model. These ex-
tensions access the Service and NF-Action repositories at development time to assist
the model annotation. The Sec-MoSC Translator has been implemented considering
the BPMN elements and user annotations in the Sec-MoSC Tool Editor in order to
generate platform-independent files containing all information required for the execu-
tion of the service composition and configuration of security mechanisms.

Figure 3 shows a screenshot of the Sec-MoSC Tool Editor. This figure is divided
into three main areas. The palette on the right includes BPMN shapes (Task, Predicate
and Data Object) and security shapes (NF-Attributes represented as cloud, NF-
Statements as locker, Group of NF-Actions as dashed rectangle and NF-Actions as
solid rectangle) used in the graphical modelling. The modelling area in the centre
contains the business process and security definitions. The property area shows the
properties of a particular BPMN shape (e.g., size) or security shape (e.g., Encryption
Type for this particular example shown in the figure). The property area also includes
service information bound to a BPMN task.

The Auxiliary Engine has been implemented in Java and it is able to generate both
a Platform-Specific WS-BPEL (from the Generic WS-BPEL and service annotations)
and a Platform-Specific Security Configuration (from Generic Security Specification);

382 A.R.R. Souza et al.

and intermediate invocations/responses to/from the Orchestration Engine. The Or-
chestration Engine used is the Apache ODE [2] (based on Axis 2) due to its wide
adoption and its support for security enforcement points provided by the Rampart
security module [1]. Finally, the Auxiliary Engine MoSC Security Module was im-
plemented based on Axis 2 that implements the NF-Actions not supported by Ram-
part, e.g., RestrictAccess and Log (see Table 1).

Fig. 3. Sec-MoSC Tool Editor

Figure 4 shows the architecture of Execution Environment. This architecture uses

the orchestration engine Apache ODE [2], built under the framework Axis2 [17]. The
service composition principle is based on the Axis2 message flow. The functional part
of the application is translated to WS-BPEL 2.0 and is executed by the Apache ODE
engine. The non-functional part of the application is handled by interceptors associ-
ated to the NF-Actions. When the Apache ODE sends/receives an invocation, the
SOAP message crosses the Axis2 message flow; if the service to be invoked has an
associated NF-Action, a handler will be invoked in order to perform this NF-Action.
The Apache Rampart is able to handle a specific set of NF-Actions, e.g. UseCrypto-
graphy, UseAuthentication and CheckDataIntegrity. However, there are some NF-
Actions that Rampart is unable to manage; in this case, the Auxiliary Engine takes

 Incorporating Security Requirements into Service Composition 383

over the responsibility. The NF-Actions RestrictAccess and Log, for example, are
managed by the Auxiliary Engine interceptors.

Note that the flow of messages inside the Execution Environment depends on the
security requirements defined. For example, the implementation of the NF-Action
RestrictAccess receives an invocation and then forwards it to the Auxiliary Engine
that checks if the IP address in the output message has some kind of constraint. If the
constraint is not satisfied, the message is not forwarded through other elements in the
FlowOut. Otherwise (the IP address is allowed), the message is forwarded to Rampart
that may enforce other NF-Actions (e.g., UseCryptography). Next, Rampart forwards
the message to the web service that actually handles the request.

Axis 2

SOAP
request

Web
ServiceSOAP

response

Apache ODE

M
es
sa
g
e

S
en
d
er
/r
ec
ei
ve
r

FlowInFlowOut

FlowOutFlowIn

RestrictAccess

Log

Mosc Security
Module

Rampart

Fig. 4. Implementation of the Execution Environment in the Apache ODE

5.3 Illustrative Example

This section presents how the Sec-MoSC methodology and the tools have been used
to model the example scenario presented in Section 2. We describe a use case in
which the user buys a national air ticket. The security requirements defined in this
business process are Confidentiality (NFR 01) and RestrictAccess (NFR 05), which
are implemented by the NF-Actions UseCryptography and RestrictAccess.

Figure 5 presents the resulting business process model after steps Business Process
Modelling and Security Requirements Modelling. This business process includes four
Service Tasks (Receive customer data, Check flight availability, Request authorisa-
tion payment and Send confirmation e-mail), the NF-Statements bound to Receive
customer data (locker) and Request authorisation payment (locker), the NF-Attribute
Confidentiality and the NF-Actions RestrictAccess and UseCryptography that imple-
ment this NF-Attribute.

384 A.R.R. Souza et al.

In step NF-Action Enrichment (shown in Figure 1), the properties of UseCrypto-
graphy and RestrictAccess are configured. The next enrichment steps (Data Object
Enrichment, Task and Group Enrichment and Predicate Enrichment) collect addi-
tional information from the users such that the remainder of the process can be auto-
mated. To perform the generic generation steps 8, 9, and 10, the Sec-MoSC translator
takes the annotated BPMN model as input and generates three platform-independent
files, which we term generic files. The security information file includes information
for specific security enforcement actions expressed in the model. The service orches-
tration specification file is a platform-independent version of the functional executa-
ble code (WS-BPEL code). The service information file includes information (e.g.
URI, partner links, operation names) needed to enrich the service orchestration speci-
fication file to perform calls to the selected services.

The steps Platform-Specific WS-BPEL and Platform-Specific Security Configura-
tion Generation generate four files: one Platform-Specific WS-BPEL (executable
service composition) and three security configuration files. The security mechanisms
to support the NF-Action UseCryptography are already implemented by Rampart,
which means that for this particular NF-Action we generate a Rampart configuration
file that enforces this NF-Action. The NF-Action RestrictAccess is not supported by
Rampart. Thus we implement it using an Axis2 phase.

Fig. 5. Business Process and its security requirements

The following XML code refers to the specification of the security mechanism re-

lated to the NF-Actions UseCryptography and RestrictAccess. This code is generated
by the Auxiliary Engine and provides configurations to the Apache Rampart (Line 9
to Line 11, and Line 17 to Line 19), in the case that the NF-Action can be imple-
mented using this security module, and to the MoSC Security Module, in the case that
Rampart do not provide support to the NF-Action (Line 21 to Line 27).

With respect to the NF-Action UseCryptography, this file specifies that the encryp-
tion algorithm TripleDESRSA15 (line 10) must be used. In addition, at line 18, it is
stated that the body of the message must be encrypted. All of this information is used
by Apache Rampart to guarantee that the user requirements will be respected.

 Incorporating Security Requirements into Service Composition 385

In the case of the NF-Action RestrictAccess, the Apache Rampart does not support
the enforcement. Therefore, the MoSC Security Module, part of the Auxiliary Engine,
is responsible for the enforcement of this NF-Action. The associated configuration
specification to this NF-Action can be found from Line 21 to Line 27 of the following
code.

(1) <wsp:Policy wsu:Id="SigEncr"
(2) ...
(3) <wsp:ExactlyOne>
(4) <wsp:All>
(5) <sp:AsymmetricBinding>
(6) <wsp:Policy>
(7) ...
(8) <sp:AlgorithmSuite>
(9) <wsp:Policy>
(10) <sp:TripleDesRsa15 />
(11) </wsp:Policy>
(12) </sp:AlgorithmSuite>
(13) ...
(14) </wsp:Policy>
(15) </sp:AsymmetricBinding>
(16) ...
(17) <sp:EncryptedParts>
(18) <sp:Body />
(19) </sp:EncryptedParts>
(20) ...
(21) <secmosc:SecMoscConfig>
(22) <secmosc:restrictAccess>
(23) <secmosc:restrictPartner policyType="allow">
(24) <secmosc:destinationEndpoint

address="172.17.0.0/16"/>
(25) </secmosc:restrictPartner>
(26) </secmosc:restrictAccess>
(27) </secmosc:SecMoscConfig>
(28) </wsp:All>
(29) </wsp:ExactlyOne>
(30) </wsp:Policy>

The MoSC Security Module is also responsible for the enforcement of the NF-Action
Restrict Access. When a service invocation is realized by the orchestration engine, the
request message is intercepted by the MoSC Security Module that will call the han-
dler to perform the NF-Action. The handler verifies whether the IP address of the web
service to be invoked is valid based on the defined configuration (Line 24).

We learned that this model-driven approach facilitates the communication between
the business analyst, security expert, and service developer to specify and refine secu-
rity requirements. Having an intermediate platform-independent specification helps
in both code generation and enforcement. In particular this enables the Auxiliary
Engine to manage different orchestration engines and security modules.

386 A.R.R. Souza et al.

6 Related Work

Existing research related to service composition and security usually concentrates on
supporting security at one of the abstraction levels: the business process definition
[10][14][11][12], the executable composition [3][18][8][5][6], or enforcement of
specific security requirements at execution time [10][16].

At the business process modelling level, Menzel [10] and Rodriguez [14] have ex-
tended BPMN modelling notations with specific security elements to incorporate
security requirements into business process specification. In contrast our modelling
notation is minimal and generic (NF-Attribute, NF-Action and NF-Statement) and can
be used to express any security requirement. Therefore, it is easily extendable. Basin
[3] has complementary work focused on software modelling which offers specific
notations for modelling access control requirements. Our approach handles all types
of security requirements for business processes. In Neubauer’s approach [11][12] the
treatment of security requirements starts before defining the business process by sup-
porting decision makers with elicitation of security requirements. Carminati [3] pro-
poses an ontology-based method for modelling security requirements and provides a
security vocabulary. In another approach, Phan et al [20] provide a framework for
specification of high level security requirements as policy objectives and then trans-
lating them into WS-Policy fragments. However, they do not consider business proc-
esses and composite services, but focus on policies for atomic services.

Although conceptually a business process is mapped into an executable process, in
most existing work that supports incorporating security requirements at execution
time, the business process is directly defined using an executable language like WS-
BPEL. For example, [18][8][5][6] extend WS-BPEL with security capabilities. Song
[16] adopts an aspect-oriented approach that interprets the WS-BPEL process and
plugs in calls to the security web service component. Menzel [10] reports generating
only WS-SecurityPolicy fragments. In contrast, we automatically generate platform-
independent configurations which are then automatically translated into platform-
specific configurations which are enforced at execution time by security modules.

Another key advantage of our approach is that the extension to BPMN notation is
managed separately from the BPMN model. This allows standard tools to be used
with the BPMN model. Similarly, we do not modify the BPEL code corresponding to
the BPMN model but rather identify the enforcement points and mechanisms in sepa-
rate configuration files.

7 Conclusions and Future Work

In this paper, we presented a novel holistic model-driven approach and a toolset that
supports security requirement modelling, automatic code generation and enforcement
of security requirements. It facilitates the jobs of business users, security experts and
developers of service composition solutions. The main contributions of the proposed
approach include the definition of a set of non-functional abstractions to express secu-
rity requirements at different abstraction levels, a methodology to incorporate security
requirements and service information into BPMN, mappings of security and service
information into executable elements, and providing execution support for security

 Incorporating Security Requirements into Service Composition 387

requirements. We have prototyped the Sec-MoSC solution architecture, which in-
cludes a security-extended BPMN editor to support service composition at modelling
time, and an auxiliary engine that coordinates with security enhancement modules on
top of Axis 2 to realise the security requirements at execution time.

In terms of future work, we concentrate on three areas: (1) to extend the binding of
security requirements to other BPMN element types beyond tasks, task groups, and
data objects; (2) to define and realise additional security requirements; and (3) to
monitor security requirements at runtime in such a way that when a particular re-
quirement is violated, the execution environment can provide evidence of and possi-
bly correct violations.

Acknowledgement. This research is supported by Hewlett-Packard Brasil Ltda. using
incentives of Brazilian Informatics Law (Law nº 8.2.48 of 1991).

References

[1] Apache Software Foundation (2008), Apache Rampart – Axis2 Security Model,
http://ws.apache.org/rampart/ (last visit at May 3, 2009)

[2] Apache Software Foundation. Apache Orchestration Director Engine (ODE),
http://ode.apache.org/ (last visit at May 3, 2009)

[3] Basin, D., et al.: Model driven security: From UML models to access control infrastruc-
tures, ACM Trans. Software Eng. Methodology 15(1), 39–91 (2006)

[4] Carminati, B., Ferrari, E., Hung, P.C.K.: Security Conscious Web Service Composition.
In: Proc. International Conference on Web Services ICWS 2006, pp. 489–496 (2006)

[5] Charfi, A., Mezini, M.: Using aspects for security engineering of Web service composi-
tions. In: Proc. IEEE International Conference on Web Services ICWS 2005, pp. 59–66
(2005)

[6] Chollet, S., Lalanda, P.: Security Specification at Process Level. In: Proc. IEEE Interna-
tional Conference on Services Computing (SCC 2008), pp. 165–172 (2008)

[7] Eclipse Foundation (2008), The BPMN Modeler,
http://www.eclipse.org/bpmn

[8] Garcia, D.Z.G., Felgar de Toledo, M.B.: Ontology-Based Security Policies for Support-
ing the Management of Web Service Business Processes. In: Proc. IEEE International
Conference on Semantic Computing, pp. 331–338 (2008)

[9] Han, J., Kowalczyk, R., Khan, K.M.: Security-Oriented Service Composition and Evolu-
tion. In: Proc. 13th Asia Pacific Software Engineering Conference APSEC 2006 (2006)

[10] Menzel, M., Homas, I., Meinel, C.: Security Requirements Specification in Service-
Oriented Business Process Management. In: Proc. ARES 2009 (2009)

[11] Neubauer, T., Heurix, J.: Defining Secure Business Processes with Respect to Multiple
Objectives. In: Proc. ARES 2008, pp. 187–194 (2008)

[12] Neubauer, T., Heurix, J.: Objective Types for the Valuation of Secure Business Proc-
esses. In: Proc. Seventh IEEE/ACIS International Conference on Computer and Informa-
tion Science ICIS 2008, pp. 231–236 (2008)

[13] Ouyang, C., et al.: Translating BPMN to BPEL (2006),
http://code.google.com/p/bpmn2bpel/ (last visit: May 10, 2009)

[14] Rodriguez, A., Fernández-Medina, E., Piattini, M.: A BPMN Extension for the Modeling
of Security Requirements in Business Processes. IEICE - Trans. Inf. Syst. E90-D(4),
745–752 (2007)

388 A.R.R. Souza et al.

[15] Rosa, N.S.: NFi: An Architecture-based Approach for Treating Non-Functional Proper-
ties of Dynamic Distributed Systems, PhD thesis, Centre of Informatics, Federal Univer-
sity of Pernambuco (2001)

[16] Song, H., Sun, Y., Sun, Y., Yin, Y.: Dynamic Weaving of Security Aspects in Service
Composition. In: Proc. Second IEEE International Workshop Service-Oriented System
Engineering SOSE 2006, pp. 189–196 (2006)

[17] Tong, K.K.L.: Developing Web Services with Apache Axis2, TipTec Development
(2008)

[18] Wang, X., Zhang, Y., Shi, H.: Access Control for Human Tasks in Service Oriented
Architecture. In: Proc. of ICEBE 2008, pp. 455–460 (2008)

[19] White, S.A.: Introduction to BPMN, Technical report, IBM Corporation (2004)
[20] Phan, T., Han, J., Schneider, J.G., Wilson, K.: Quality-Driven Business Policy Specifica-

tion and Refinement for Service-Oriented Systems. In: Bouguettaya, A., Krueger, I.,
Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364, pp. 5–21. Springer, Heidelberg
(2008)

End-to-End Security for Enterprise Mashups

Florian Rosenberg1, Rania Khalaf2, Matthew Duftler2, Francisco Curbera2,
and Paula Austel2

1 Distributed Systems Group, Technical University Vienna
Argentinierstrasse 8/184-1, Vienna, Austria

florian@infosys.tuwien.ac.at
2 IBM T.J. Watson Research Center

19 Skyline Drive, Hawthorne, NY, 10532
{rkhalaf,duftler,curbera,pka}@us.ibm.com

Abstract. Mashups are gaining momentum as a means to develop situ-
ational Web applications by combining different resources (services, data
feeds) and user interfaces. In enterprise environments, mashups are re-
cently used for implementing Web-based business processes, however, se-
curity is a major concern. Current approaches do not allow the mashup
to securely consume services with diverse security requirements without
sharing the credentials or hard-coding them in the mashup definition. In
this paper, we present a solution to integrate security concerns into an
existing enterprise mashup platform. We provide an extension to the lan-
guage and runtime and propose a Secure Authentication Service (SAS)
to seamlessly facilitate secure authentication and authorization of end-
users with the services consumed in the mashup.

1 Introduction

Mashups are an increasingly popular approach to develop new kinds of situ-
ational Web applications by combining content, presentation, and application
functionality from disparate Web sources [1]. A vast number of mashup tech-
nologies and tools exist that provide a means of seamlessly “mashing” together
several Web-based services and sources such as REST or SOAP services, feeds
(RSS or ATOM) or plain XML or HTML sources. These mashup tools either
provide a mashup language targeted for developers or provide an editor allow-
ing a graphical mashup development such as Yahoo Pipes [2] or IBM Mashup
Center [3].

In general, two different mashup types are dominant [4]: Consumer mashups
are mostly for private use, combining data from several resources by unifying
them using a common interface. Enterprise mashups combine different sources
(content, data or application functionality) from at least one resource in an enter-
prise environment. An important distinction is the fact that enterprise mashups
have some additional requirements such as security, availability or other quality
of service items. Such enterprise mashups have an enormous potential by pro-
moting assembly over development to reduce development costs and provision a
new software solution within shorter time periods.

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 389–403, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

390 F. Rosenberg et al.

However, current enterprise mashup tools lack the ability to consume and
integrate different services in a secure way when having completely diverse se-
curity requirements in terms of authentication and authorization [5, 6]. As a
consequence, many mashup tools can only integrate security-free services and
data sources or hard-code authentication data in the mashup code. Clearly, this
is a problem in enterprise environments because users are more reluctant to give
their authentication information to third parties (in fact, company policy may
even prohibit that), resources typically have custom security requirements, and
resources may support any of several authentication protocols such as HTTP
basic authentication, custom application keys or more Web 2.0 like protocols
such as OpenID [7] and OAuth [8].

We argue that seamless security support for enterprise mashups, in particular
related to secure credentials management is required and needs to be integrated
in the mashup language and/or tooling because users are not willing and should
not disclose their credentials for different resources in the mashup definition.
The mashup environment has to provide support for authentication and autho-
rization, and delegation control allowing the execution of a service on behalf of
a given user.

1.1 Illustrative Example

An enterprise mashup scenario depicted in Figure 1 is used to illustrate the
problem and concepts. In this scenario, the hiring manager at Acme Inc (left) is
hiring for a new position. He uses the enterprise mashup to schedule the interview
with and get the resume of the candidate (bottom right).

Fig. 1. Hiring Mashup Scenario

In order to do so, the mashup first makes a call to the hiring manager’s
calendar available via Google. Then, it forks: the bottom branch replies to the
initial call and the top branch posts the available times to Acme’s interview
scheduling service, e-mails the candidate the final slot returned by that service
and a link that should be followed to complete the process. Once the candidate
clicks on the link, he finds a form where he fills in his personal information and
attaches his resume. Finally, the mashup places the resume in the ‘Files’ file
sharing service in LotusLive Engage, an online collaboration solution.

End-to-End Security for Enterprise Mashups 391

Interacting with multiple secured third-party services requires different sets
of credentials and authentication protocols. For example, Google Calendar uses
the OAuth protocol, Acme’s scheduling service uses HTTP basic authentication,
and the Files service requires an application key and the user in whose store the
file is to be added. The Google Calendar call and the Files service call both
require that the mashup interacts with them on the user’s behalf - possibly after
the user is no longer logged into the system.

1.2 Contributions

Seamlessly specifying and enforcing mashup security by supporting different
authentication mechanisms requires both, a language extension and a runtime
mechanism. In particular, this paper makes the following contributions to enable
an end-to-end security solution for enterprise mashups:

– We provide a model and semantics for integrating security concerns directly
into an existing business mashup platform (BMP), in particular the underly-
ing lightweight workflow language Bite [9,10] to address authentication and
authorization from a language perspective.

– We describe a framework and implementation for homogenizing the authenti-
cation and authorization process within a mashup application for authoriza-
tion mechanisms (e.g., basic authentication, custom application IDs, OAuth,
etc) by leveraging a trusted Secure Authentication Service (SAS).

– We elaborate on the seamless integration and user experience of the authen-
tication process by describing several mechanisms to allow mashup users to
securely enter their credentials directly at the service provider (if possible)
or by using the SAS.

The remainder of this paper is organized as follows: In Section 2, we describe the
BMP project and the underlying Bite engine as the target enterprise mashup
platform. Section 3 outlines the proposed security solution. Section 4 describes
the Bite language extensions to enable security support followed by a detailed
description of the SAS in Section 5. Section 6 evaluates and discusses the pro-
posed approach followed by a discussion of related work in Section 7. Finally,
Section 8 concludes this paper and outlines future work.

2 BMP and the Bite Language

The Business Mashup Platform (BMP) provides a hosted development envi-
ronment for rapid development of situational business processes or enterprise
mashups. It overlaps with the system in [11]. The graphical mashup develop-
ment is browser-based, leveraging a BPMN-style editor, a forms designer and a
catalog of extension activities that are offered to the designer in a palette. Once
a mashup has been completely specified, BMP allows one click deployment of
mashups that are immediately invokable. In the backend Bite code is generated
and executed on the server.

392 F. Rosenberg et al.

Bite Language and Runtime. Bite is an XML-based REST-centric com-
position language designed to facilitate the implementation of lightweight and
extensible flows1. The process model implements a subset of the WS-BPEL [12]
execution semantics that consists of a flat graph (except for loops) containing
atomic actions (activities) and links between them. Loops may be created using
a dedicated while activity, the only construct allowed to contain other activities.
Graph execution logic is encoded in conditional transition links between activi-
ties. Error handling is provided by special error links to error handling activities.
Bite provides a small set of built-in activities: (1) basic HTTP communication
primitives for receiving and replying to HTTP requests (receiveGET|POST2,
replyGET|POST, receive-replyGET|POST) and making HTTP requests to ex-
ternal services (GET, POST, PUT, DELETE), (2) utility activities for waiting or
calling local code, (3) control helpers such as external choice and loops.
� �

1 <process name="hiring">
2 <receivePOST name="hrInput " url="/hiring" />
3
4 <!-- get Google calendar data -->
5 <GET name="gcal" url="http://www.google.com/calendar /feeds/default /

owncalendars/full">
6 <control source="hrInput " />
7 <input name=""></input>
8 <input name=""></input>
9 <security authtype ="oauth" />

10 </GET>
11
12 <replyPOST name="hrReply " url="/hiring">
13 <control source="gcal" />
14 <input value=""/>
15 </replyPOST>
16
17 <!-- invoke interview scheduling service -->
18 <POST name="scheduleInterview" url="http://internal .acme.com/ interview/

schedule ">
19 <control source="gcal" />
20 <input name=""></input>
21 <input name=""></input>
22 <security authtype ="http_basic" notificationType="sametime "

notificationReceiver="$:hrInput_User" />
23 </POST>
24
25 <!-- send an email to the candidate and collect candidate data using a

special form activity -->
26
27 <!-- put all the collected candidate data on the Lotus file share -->
28 <shareFile name="storeApplication" ...>
29 <control source="collectCandidateData"/>
30 <!-- other parameter cut for brevity -->
31 <security user="$:hrInput_User" authtype ="app_id">
32 <mapping >
33 <element name="par" label="Partner ID" applyTo ="param" />
34 <element name="key" label="License Key" applyTo ="param" />
35 </mapping >
36 </security >
37 </shareFile>
38 </process >
� �

Listing 1.1. Hiring Mashup (simplified – without input parameters)

A Bite flow both calls external services and provides itself as a service. Sending
an HTTP POST request to a flow’s base URL results in the creation of a new
flow instance that is assigned a new instance URL. This instance URL is returned
1 We use ‘mashup’ and ‘flow’ interchangeably in this paper.
2 The pattern [x]GET|POST denotes two different activities:[x]GET, [x]POST.

End-to-End Security for Enterprise Mashups 393

in the HTTP Location header field of the response. The instance URL contains
a flow ID that is used for correlation of subsequent requests to that flow.

Each flow instance can define multiple receive activities corresponding to mul-
tiple entry points. These activities expose additional URLs as logical addresses
of the instance’s nested resources. POST requests directed to these URLs are dis-
patched to the individual receive activities in the flow model using the relative
URLs defined in the activities’ url attribute. This mechanism allows building
interactive flows having multiple entry points for interacting with them. This
behavior is leveraged by various activities such as Web forms that are designed
as part of the mashup creation with the BMP.

A core concept of Bite is the extensible design that enables the developer
community to provide additional functionality in a first-class manner by cre-
ating Bite extension activities and registering them with the Bite engine. This
design allows keeping the language and its runtime very small and allows to
implement other required activities as extensions. Extension activities can be
created using Java or any scripting language supported by the Java Scripting
API (e.g., Groovy, Ruby, Python, etc).

We show, in Listing 1.1, the (abbreviated) Bite code for the hiring sample
in Figure 1. Each mashup has a root element called process (line 1). A new
flow instance is created by sending a HTTP POST request to the relative URL
/hiring of the initial receivePOST (line 2). The data associated with the POST
request is implicitly available in variable hrInput Output to all dependent ac-
tivities. In this case the variable contains a map of all POST parameters. After
completing the hrInput activity, the gcal activity is activated (lines 5–10).
Transitions between activities are expressed by the control element (line 6).
From lines 12–15, the mashup replies to the initial HTTP POST from the hiring
manager informing him that he will receive an email with the selected interview
date. The interview scheduling is executed in lines 18–23 by issuing a HTTP
POST call to the interview scheduling service. Then, the other remaining steps
are executed, e.g., sending an email using the sendMail activity and preparing
the candidate form using the form activity – both implemented as Bite extension
activities (not shown in the listing for brevity). Finally, the shareFile extension
activity (lines 28–37) uploads the collected candidate data to LotusLive.

As stated in Section 1.1, the outgoing HTTP GET and POST call (gcal
and scheduleInterview) and the shareFile activity require different security
credentials that are required for successfully executing the mashup. The security
element (lines 9, 22 and 31–36) and its semantics are presented in Section 4. For
more details on Bite, its runtime and possible applications, see [9, 10].

3 Overview of the Enterprise Mashup Security Solution

Building security into an enterprise mashup platform requires to address (i)
authentication of users at third-party services (i.e., verifying a user’s claimed
identity) and (ii) authorization in the sense that the user has to authorize the
Bite engine to perform the task on the user’s behalf. We have to distinguish two

394 F. Rosenberg et al.

aspects: First, security has to be addressed on a language level to integrate secu-
rity concerns into the Bite language. A core requirement is to keep the language
extensions minimal and provide extensibility support for various authentica-
tion protocols in a seamless user-centric way. Second, an extensible mechanism
is needed to realize authentication and authorization of trusted services having
different authentication protocols. This process is transparently handled by a Se-
cure Authentication Service (SAS) that offers an OAuth interface, as described
in detail in Section 5.

Bite Engine

Trusted Area

Secure
Authentication
Service (SAS)

Third Party ServicesEnterprise Mashup Host

Google
Calendar

Lotus
FileShare

Interview
Scheduling

Service

Legend:

... Secured Service ... Unsecured Service

HTTP Basic
Authentication

OAuth

AppID

redirect
redirect &

authenticate

authenticated
redirect back

 send
credentials

authenticated

 send app IDs

authenticated

Security Handler

Fig. 2. End-to-End Security Solution Overview

In Figure 2, the basic overview of the security solution is depicted. The Bite
engine including an executable flow is shown on the left (resembling the illus-
trative example from Figure 2). The white circles constitute services which do
not require authentication, the gray ones require authentication. In the middle
is the SAS which has to operate in a secure and trusted area within the company
network as it manages credentials during the execution of a flow. On the right,
the third-party services are depicted that will be invoked during the execution.
Note that placement of the SAS is important: it must be in a trusted space.
Some options include either at a third-party provider or a SAS at each service
provider. As we are focused on enterprise mashups, it is viable that the SAS is
a service provided by the enterprise itself making trust issues between users and
the proxy infrastructure less of a problem. In this paper, we focus on an archi-
tecture and implementation whereby mashups can be secured using a security
service; therefore, trust issues related to particular deployments are left to future
work.

When the user triggers the execution of the flow by using the HTTP POST
request in the Web form (or from another application), the mashup is executed
and as soon as it reaches the first “secured” third-party service (cf. the gcal
activity from Listing 1.1), the Bite engine will use a security handler to allow

End-to-End Security for Enterprise Mashups 395

the user to authenticate at the target service. The handler does this by inter-
acting with the SAS. The SAS implements different security modules (OAuth,
HTTP Basic Authentication and AppID) to provide support for different security
mechanisms at the target service. The procedure for performing authorization
and authentication has two cases:

– Synchronous Authentication: In this case the user is already interacting with
the flow via a Web application and can thus be simply redirected to the
SAS to perform the authentication at the target service. In the flow, this
means that receiveGET|POST has been processed without yet reaching a
corresponding replyGET|POST activity. For example, this is the case for the
gcal activity from Listing 1.1 (lines 5–10) which is in between a receivePOST
and a replyPOST.

– Asynchronous Authentication: In this case the flow already returned to the
user by executing a replyGET|POST activity. Alternatively, an activity called
receive-replyGET|POST is used to receive and immediately reply to an in-
coming request. Therefore, the user is no longer interacting with the flow
and there is no connection that can be redirected to the SAS. For example,
all activities from Listing 1.1 after line 18 (namely, scheduleInterview,
emailCandidate,collectCandidateDataand storeApplication).This re-
quires contacting the user using asynchronous techniques to request him to
authenticate at the third-party service. As shown later in the paper, we
support email and instant messaging to do this.

The communication between the Bite engine and the SAS uses a slightly ex-
tended version of the OAuth protocol to seamlessly implement the handling of
authentication and authorization between Web applications (in our case the Bite
engine and the SAS). Therefore, the SAS design is generic and can be used by
any mashup tool by implementing the corresponding OAuth connector that is
capable of processing the proposed extensions.

4 Language Extensions for Security Specification

In order to enable security within Bite, the language needs to be extended to
capture the security requirements such as authentication and authorization. A
core requirement is to keep such language extensions minimal. On a language
level, we focus on the outbound security in this paper, i.e., security support
while calling an external service from Bite. Inbound security, i.e., authentication
and authorization of users that want to execute a mashup is also supported
but a detailed description is out of scope. For the sake of completeness, it is
mentioned that it is done on a runtime level whereby the user authenticates using
OpenID with an external authentication service and the authenticated user is
injected into the process context where it can be checked against user restrictions
on receiving activities (receiveGET|POST). If the user is allowed to access the
receive, the activity activates, stores the message and the user in the appropriate
variables, and completes. Otherwise, an error is sent back to the user and the

396 F. Rosenberg et al.

receive activity is not activated. If provided, user information from inbound
security is stored at runtime in an implicit variable, [activity name] User.
Hence, subsequent activities may use this variable to refer back to a particular
user.

4.1 Security Extension and Semantics

A security extension element is provided and made optional for all outbound
communication activities such as GET, POST, PUT, DELETE and all extension ac-
tivities implementing custom behavior that may also require authentication.

Listing 1.1 has three security elements (lines 9, 22 and 31–36) in the flow. In
Listing 1.2, we present the security element syntax.
� �

1 <security authtype ="http_basic|oauth|app_id" user="string |expression"?
2 roles="string (comma -separated)"? scope="activity |flow"?
3 notification="http|email|sametime "?
4 notificationReceiver="string |expression"?/>

� �

Listing 1.2. Security Extension Element

Attribute Description: The attributes available for the security element are:

– authtype: Specifies the authentication type for authenticating a user at the
target service. Currently, we support OAuth [8], HTTP basic authentication
and customized application IDs that are frequently used by various service
providers in the form of single or multiple GET or POST parameters. Han-
dling these authentication types is transparently supported by the Secure
Authentication Service (SAS), described in Section 5.

– user: Defines the name of the user (as a string or an expression) on whose
behalf a specific service is executed. This user attribute is relevant especially
for extension activities that support the “on behalf of” semantics. For ex-
ample, the hiring flow from Listing 1.1 uses LotusLive to upload and share
files. This application supports the “on behalf of” semantics by explicitly
defining who uploaded a document indicated by the user attribute in the
Bite flow (this username is then used in LotusLive’s file sharing service as
the owner of the uploaded document).

– roles: Defines roles, that a user can have, in the form of comma-separated
strings. If a role is used, role definitions must have been provided to the
runtime.

– scope: It defines whether an activity’s security credentials are propagated
to the other activities for re-use. If the attribute value is flow, credentials
are propagated thereby avoiding repeated logins by re-using credentials to a
service that is called more than once in a flow for the same user. In case of
an attribute value activity, the credentials are not propagated.

– notification: It defines how a user should be notified that a service re-
quires authentication. In case of a synchronous authentication, http can be
used by redirecting to the SAS to request authentication and authorization.
In the asynchronous case, the flow has to get back to the user to request

End-to-End Security for Enterprise Mashups 397

authentication. This can be done by blocking the activity requiring security,
sending an email to the user (attribute value email) or sending an instant
message (attribute value sametime) pointing him to the SAS, and resuming
the activity once authentication/authorization is complete. Our approach
supports Lotus Sametime, a messaging software used at IBM; other proto-
cols may easily be added.

– notificationReceiver: It is only needed when using the notification
type email or sametime because then it is necessary to have the contact
details (e.g., email address or sametime contact). In case of http, it is not
necessary, because the user is still interacting with the flow in the browser
and is thus redirected to the SAS to perform the authentication.

4.2 Execution Semantics

The effect of the security elements on the execution semantics of the Bite lan-
guage is as follows: Once an activity that has a security element is reached in
a flow, the values of the security element’s attributes are evaluated and stored
in a security context, itself stored in the process context which maintains the
state of execution for the flow instance. This information is used to lookup a
corresponding security handler in a handler registry. The security context and
the message payload are provided to this handler, which interacts with the SAS
to provide the required authentication and authorization. If no credentials are
available, the handler contacts the user sending them to the SAS. The handler
then makes the secure call and returns the result to the activity implementation,
which in turn stores it in its output variable. If the scope attribute value is set
to activity, the security handler contacts the SAS through its OAuth interface
to proceed with the required security handling and the OAuth connection tokens
are destroyed after the authentication. If it is set to flow, these OAuth tokens
are stored in the process context and can be reused in case the same service is
called again in the flow for the same user. Reusing the same OAuth tokens for
connecting to the SAS allows it to determine whether the user has previously
authenticated and authorized Bite to invoke a given third-party service on its
behalf. For more details on the OAuth handling see Section 5.

While the asynchronous case has no further effects on flow semantics, the
synchronous (http) case is more involved because if credentials are not available
then it needs to reuse one of the flow instance’s open connections to contact
the user, redirecting him to the SAS, and then back to the flow. Bite allows
several receiving activities to be open (i.e., not yet replied to) at the same time.
Therefore, the right open connection must be identified. To do so, open receive
activities in the flow instance are checked for a matching ‘ User’ variable value to
the one in the security element being handled. The ‘reply status’ of a matching
receive activity is set to ‘awaiting redirect’ and a key is created for it against
which the redirection from the SAS back to the flow can be matched. A reply is
sent to the receive’s open connection that redirects the user to the SAS. Once
the user completes working with the SAS, a client-side redirect sends him back

398 F. Rosenberg et al.

to the flow. Also, the matched receive activity instance is found using the key
and its reply status reset to ‘open’.

If no match is found among open receives, then receives ‘awaiting reply’ are
checked as they will eventually become ‘open’ and may be used at that time. If
no match is found among receives that are open or awaiting-redirect, the user is
contacted as in the asynchronous case if contact information is provided in the
security element definition. Otherwise, a fault is thrown.

A reply activity for a receive that is ‘awaiting redirect’ must wait before it
can send its response until the receive’s reply status is again ‘open’ and no other
security redirects are pending for that receive.

5 Secure Authentication Service

The Secure Authentication Service (SAS) is responsible for providing a proxy
that can transparently handle various authentication types of different secure
Web-based, e.g., RESTful services. Therefore, the SAS supports different secu-
rity mechanisms and exposes itself using an OAuth interface, a popular protocol
for managing authentication and authorization among Web-based APIs. The
specification [8] defines it as follows: “OAuth protocol enables websites or appli-
cations (Consumers) to access Protected Resources from a web service (Service
Provider) via an API, without requiring Users to disclose their Service Provider
credentials to the Consumers.”3. We provide a brief overview of the OAuth pro-
tocol and its extensions.

5.1 OAuth Principles

We leverage OAuth as the protocol for communicating with the SAS for two
main reasons: OAuth is a well-understood and increasingly popular protocol for
Web based applications and it implements a seamless way of handling authen-
tication and authorization between a consumer and a provider. The consumer
in our scenario is the Bite engine and the provider is the SAS itself. An OAuth
provider has to provide three different request URLs: (1) a request token URL
(relative URL /request token); (2) a user authorization URL (/authorize);
and (3) an access token URL (/access token). A typical OAuth authentication
and authorization is handled as follows: First, a consumer requests a request
token using the request token URL (1) by sending a number of OAuth specific
parameters, such a pre-negotiated consumer key to identify the consumer appli-
cation, timestamp, nonce, signature etc. In case all parameters are correct and
verifiable, the service provider issues an unauthorized request token. When the
request token is received by the consumer, the user’s browser can be redirected to
the service provider to obtain authentication and authorization. This authoriza-
tion ensures that the user sitting behind the browser explicitly ensures that the
consumer Web application is allowed to access the service provider on its behalf.
3 We are aware of the current security issue with OAuth [13], however, this will be

fixed in a future version of the OAuth implementation that we currently use.

End-to-End Security for Enterprise Mashups 399

Once the authorization is performed, the service provider can redirect the user
back to the consumer application (using a callback URL). Finally, the consumer
has to exchange the request token for an access token at the service provider.
This is typically granted if the user successfully performed the authentication
and authorization in the previous step. This access token is one of the OAuth
parameters that has to be sent with every further request to the protected service
(among others such as consumer key, timestamp, signature, etc).

5.2 Third-Party Service Support

Transparently supporting a secure authentication and authorization of different
third-party services through the SAS’s OAuth interface requires extending the
OAuth protocol. This allows the SAS to act as a “secure proxy” for various
other authentication protocols. To do so, the SAS needs at least the URL and the
authentication type of the target service. Since this information is available in the
activity specification and the security extension in a Bite flow (e.g., Listing 1.1,
lines 18–23), it just needs to be sent to the SAS to enable transparent third-party
service authentication. Thus, a number of request parameters are added when
the Bite engine requests a request token at the SAS as discussed below.

HTTP Basic Authentication. This type of authentication is widely used in
practice although it is not very secure unless using SSL. It can be specified in Bite
by setting the authtype to http basic (cf., Listing 1.1, line 22). At runtime,
the Bite engine contacts the SAS by requesting a request token by sending the
following extended OAuth request:

http://sas.watson.ibm.com/request_token?oauth_consumer_key=bite_app

&oauth_timestamp=...&oauth_signature=...&oauth_...=...

&x-oauth_serviceurl=http://internal.acme.com/interview/schedule

&x-oauth_authtype=http_basic

The parameters x-oauth serviceurl and x-oauth authtype indicate the tar-
get URL of the secured third-party service and its authentication type from the
scheduleInterview activity from Listing 1.1 (we prefix the extension with x-
because this is a common pattern for HTTP header extensions too). In case of
a synchronous authentication the user is redirected to the SAS Web interface,
otherwise (in the asynchronous case) the user id specified in the notification-
Receiver attribute receives a link that is used for authentication (basically the
same that Bite redirects to in the synchronous case).

These two extension attributes are used by the SAS to make an outgoing
call to the target URL in an iframe. It prompts the user for the credentials of
the target service. If the authentication is successful, the HTTP Authorization
header of the target service is intercepted by the SAS’s proxying mechanism. A
simple proxy servlet (/proxy) is used to achieve the proxying transparently at
the SAS. The response of the target service is queued at the SAS, otherwise we
would call the service twice: once for the authentication and once for the original
service invocation. When the first “real” service invocation is executed, the SAS
will return the queued response during the authentication process.

400 F. Rosenberg et al.

Custom Application IDs. Support for custom application IDs requires adding
another OAuth extension parameter called x-oauth appid mapping, that en-
codes details on how application IDs are queried from the user in a dynamically
rendered Web form at the SAS and how this data is sent to the target service
(e.g., in the HTTP header or as GET or POST parameter). Therefore, the secu-
rity extension element in the Bite flow defines a mapping element (cf. Listing 1.1,
lines 31–36). More specifically, this mapping states that the target service re-
quires two parameters for a successful authentication, par and key, that need to
be added as HTTP POST parameters (because this extension activity internally
uses POST). Additionally, each element defines a label attribute used as a label
for the HTML input element in the dynamically rendered authentication form.

Upon execution of such an application ID based service, the Bite engine se-
rializes the Bite XML mapping into a simple text based form that is transfered
to the SAS using the aforementioned OAuth extensions. Then the dynamically
rendered authentication form is shown to prompt for the application IDs.

OAuth. Support for OAuth is also transparently supported by the SAS. In
this case, the SAS just adds another layer of redirection between Bite and the
target service provider without storing any information. It would be possible
to implement a customized security handler to consume OAuth-based services
directly (because Bite is already an OAuth consumer for the SAS). However,
going through the SAS when consuming OAuth-based services has the advantage
of handling multiple security mechanism transparently for the Bite engine.

5.3 Implementation Aspects

Bite and the SAS have been implemented in Java 1.6. Bite can be run on ei-
ther a servlet container or WebSphere sMash server. The SAS implementation
is based on Google’s Java OAuth implementation providing multiple servlets
for the different endpoints (request token, access tokens, etc). These servlets
have been extended to support the above mentioned security protocols trans-
parently. The Bite engine implements the OAuth client by using a specific se-
curity handler upon calling services from an activity with a security element
(SASSecurityHandler). All other calls use a NullSecurityHandler that does
not involve the SAS.

6 Case Study and Discussion

We have implemented the approach and provided a simple case study based
on the illustrative example from Figure 1. It uses three different authentication
mechanisms that are transparently handled by the SAS.

Figure 3 illustrates the SAS’s Web interface for the authentication and au-
thorization for the shareFile activity from Listing 1.1 (lines 28–37) that uses
custom application IDs as the “security” mechanism. Figure 3a shows the dy-
namically rendered authentication form based on the specification in Bite. When

End-to-End Security for Enterprise Mashups 401

(a) Authentication Dialog (b) Authorization Step

Fig. 3. Custom Application ID Authentication and Authorization Process

the user’s browser is redirected to the SAS, the user sees the Web page as shown.
By clicking on the link, the authentication box pops up and the user enters the
credentials. After submitting the credentials, the user explicitly has to authorize
Bite to call the service on its behalf (Figure 3b). When the user authorizes Bite,
the flow proceeds its execution and the user is redirected back to the flow appli-
cation (in the synchronous case), otherwise an error is thrown. The same user
experience is available for HTTP basic authentication, however, the dialog box
is not dynamically rendered but browser-specific.

The proposed approach based on the SAS effectively supports both, authenti-
cation and authorization of third-party services without the need to disclose the
credentials to consumer applications (such as Bite in our case). A major focus
was a seamless user-experience during the authentication and authorization pro-
cess by automatically redirecting to the SAS to handle the authentication and
authorization process. Therefore, it provides a mechanism for enterprise mashup
solutions to transparently consume services in a secure way.

An important requirement for ensuring this end-to-end security is that the
SAS has to run in a “trusted” environment because it stores intercepted creden-
tials (for HTTP basic authentication) and stores the custom application IDs.
Clearly, this is not an issue when using a third-party service supporting OAuth,
because no credentials are disclosed to the SAS.

7 Related Work

Most existing mashup tools and products (e.g., Yahoo Pipes [2] or IBM Mashup
Center [3]) do not address a secure end-to-end authentication and authorization
of different services within a mashup. Most approaches use plain text to manage
user credentials within a mashup definition.

Pautasso [14] proposed BPEL for REST, an extension to the WS-BPEL lan-
guage to enable language support for RESTful services in business processes.

402 F. Rosenberg et al.

BPEL for REST does not provide any direct security support for invoking REST-
ful services. It allows the specification of custom HTTP headers which could be
used to encode the HTTP basic authentication information. However, this would
imply that password information is stored in cleartext in the BPEL definition.

Austel et al. [15] discussed the security challenges that need to be addressed
for Web 2.0. Many of the challenges are addressed in our solution: protecting
end-user credentials, secure and open delegation, authorization rules to limit del-
egation and a proxy to enable secure delegation to back end legacy systems. The
paper mostly concentrated on OAuth as the wire protocol for secure delegation.
It does not discuss proxy implementation details.

The approach introduced in this paper also shares several characteristics with
identity metasystems (IMs) [16, 17], which also deal with the problem of users
having multiple digital identities based on different protocols. IMs are typically
used to allow clients to access Web applications on behalf of users. In the work
presented here we consider the impact of multiple digital identities on the devel-
opment and use of business mashups. The fundamental difference is our focus
on a server side application (the mashup) acting on behalf of the end user.

A number of works have identified security issues for client-side mashups,
i.e., running in a browser and communicating with other service through AJAX
or related technologies. SafeMashups [18], for example, allows two web appli-
cations to communicate through a browser to securely authenticate each other
and establish a trusted channel. Subspace [19] enables a secure cross-domain
communication by providing a small JavaScript library to rule out a number of
existing security flaws.

8 Conclusions and Outlook

In this paper we provided an end-to-end environment for securely consuming
third-party services having diverse security requirements in a common service
mashup application. The proposed approach was implemented as an extension
to the Bite language and runtime by providing authentication and authorization
transparently using a Secure Authentication Service (SAS) that can handle dif-
ferent security protocols common in the Web 2.0 area. The approach currently
supports HTTP basic authentication, OAuth and customized application IDs
that are frequently used in various RESTful services on the Web.

As future work, we plan to extend the support for further security mech-
anisms supported by the SAS, for example single sign-on approaches such as
OpenID [7]. Additionally, we also want to reduce the need to explicitly spec-
ify the authentication type in the Bite flow, enabling automatic techniques to
“guess” the security mechanism at the target service.

References

1. Yu, J., Benatallah, B., Casati, F., Daniel, F.: Understanding Mashup Development.
IEEE Internet Computing 12(5), 44–52 (2008)

2. Yahoo! Inc.: Yahoo Pipes, http://pipes.yahoo.com (Last accessed: May 19, 2009)

http://pipes.yahoo.com

End-to-End Security for Enterprise Mashups 403

3. IBM Corporation: IBM Mashup Center,
http://www.ibm.com/software/info/mashup-center/ (Last accessed: May 19,
2009)

4. Hoyer, V., Fischer, M.: Market Overview of Enterprise Mashup Tools. In: Bouguet-
taya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364, pp. 708–
721. Springer, Heidelberg (2008)

5. Lawton, G.: Web 2.0 creates security challenges. Computer 40(10), 13–16 (2007)
6. Koschmider, A., Torres, V., Pelechano, V.: Elucidating the Mashup Hype: Def-

initions, Challenges, Methodical Guide and Tools for Mashups. In: Proc. of the
Workshop on Mashups, Enterprise Mashups and Lightweight Composition on the
Web (MEM 2009), Madrid, Spain (2009),
http://integror.net/mem2009/papers/paper14.pdf (Last accessed: May 21,
2009)

7. OpenID Foundation (OIDF): OpenID Authentication 2.0 - Final,
http://openid.net/specs/openid-authentication-2_0.html (Last accessed:
May 20, 2009)

8. OAuth Consortium: OAuth Core 1.0,
http://oauth.net/core/1.0/ (Last accessed: May 20, 2009)

9. Rosenberg, F., Curbera, F., Duftler, M.J., Khalaf, R.: Composing RESTful Services
and Collaborative Workflows: A Lightweight Approach. Internet Computing 12,
24–31 (2008)

10. Curbera, F., Duftler, M., Khalaf, R., Lovell, D.: Bite: Workflow Composition for
the Web. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS,
vol. 4749, pp. 94–106. Springer, Heidelberg (2007)

11. Lau, C.: BPM 2.0 – a REST based architecture for next generation workflow man-
agement. In: Devoxx Conference, Antwerp, Belgium (2008),
http://www.devoxx.com/download/attachments/1705921/D8_C_11_07_04.pdf

12. OASIS: Web Service Business Process Execution Language 2.0 (2006),
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel

(Last accessed: May 28, 2009)
13. OAuth Consortium: OAuth Security Advisory 2009.1,

http://oauth.net/advisories/2009-1 (Last accessed: May 20, 2009)
14. Pautasso, C.: BPEL for REST. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.)

BPM 2008. LNCS, vol. 5240, pp. 278–293. Springer, Heidelberg (2008)
15. Austel, P., Bhola, S., Chari, S., Koved, L., McIntosh, M., Steiner, M., Weber,

S.: Secure Delegation for Web 2.0 and Mashups. In: Proc. of the Workshop on
Web 2.0 Security and Privacy 2008, W2SP (2008), http://w2spconf.com/2008/
papers/sp4.pdf (Last accessed: May 21, 2009)

16. OASIS: Identity Metasystem Interoperability Version 1.0,
http://www.oasis-open.org/committees/download.php/32540/identity-1.

0-spec-cs-01.pdf/ (May 14, 2009)
17. Microsoft: Microsoft’s Vision for an Identity Metasystem, http://msdn.

microsoft.com/en-us/library/ms996422.aspx (May 2005)
18. SafeMashups Inc.: MashSSL, https://www.safemashups.com (Last accessed: May

19, 2009)
19. Jackson, C., Wang, H.J.: Subspace: secure cross-domain communication for web

mashups. In: Proc. of the International Conference on World Wide Web (WWW
2007), Banff, Alberta, Canada, pp. 611–620. ACM, New York (2007)

http://www.ibm.com/software/info/mashup-center/
http://integror.net/mem2009/papers/paper14.pdf
http://openid.net/specs/openid-authentication-2_0.html
http://oauth.net/core/1.0/
http://www.devoxx.com/download/attachments/1705921/D8_C_11_07_04.pdf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
http://oauth.net/advisories/2009-1
http://w2spconf.com/2008/papers/sp4.pdf
http://w2spconf.com/2008/papers/sp4.pdf
http://www.oasis-open.org/committees/download.php/32540/identity-1.0-spec-cs-01.pdf/
http://www.oasis-open.org/committees/download.php/32540/identity-1.0-spec-cs-01.pdf/
http://msdn.microsoft.com/en-us/library/ms996422.aspx
http://msdn.microsoft.com/en-us/library/ms996422.aspx
https://www.safemashups.com

A Genetic Algorithms-Based Approach for
Optimized Self-protection in a Pervasive Service

Middleware

Weishan Zhang1, Julian Schütte3, Mads Ingstrup1, and Klaus M. Hansen1,2

1 Aarhus University
{zhangws,ingstrup}@cs.au.dk

2 University of Iceland
kmh@hi.is

3 Fraunhofer Institute for Secure Information Technology
julian.schuette@sit.fraunhofer.de

Abstract. With increasingly complex and heterogeneous systems in
pervasive service computing, it becomes more and more important to
provide self-protected services to end users. In order to achieve self-
protection, the corresponding security should be provided in an opti-
mized manner considering the constraints of heterogeneous devices and
networks. In this paper, we present a Genetic Algorithms-based approach
for obtaining optimized security configurations at run time, supported
by a set of security OWL ontologies and an event-driven framework. This
approach has been realized as a prototype for self-protection in the Hydra
middleware, and is integrated with a framework for enforcing the com-
puted solution at run time using security obligations. The experiments
with the prototype on configuring security strategies for a pervasive ser-
vice middleware show that this approach has acceptable performance,
and could be used to automatically adapt security strategies in the
middleware.

1 Introduction

Security is an important quality of service (QoS) requirement in pervasive com-
puting systems. On the one hand, the higher security, the better. On the other
hand, resource restrictions on pervasive computing devices may compromise the
security requirements, as usually the higher security, the more resources are
needed to implement and enforce them. Therefore, an interesting concern in re-
lation to system quality is not how secure or efficient a system can be made,
but rather how secure we can afford to make a system given the constraints
set by available resources and other requirements, such as memory consumption
and latency. Tradeoffs between security, performance, and resources are always
involved, especially in pervasive computing systems.

Hence, an investigation on how to obtain an optimized solution following se-
curity, resource, and performance requirements is an interesting issue. Although

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 404–419, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Genetic Algorithms-Based Approach for Optimized Self-protection 405

several research contributions have been made towards making security mech-
anisms adaptable [1], we have found that most of this work focus on security
in isolation rather than on managing an appropriate tradeoff between several
quality attributes at runtime.

In this paper we present a way for systems to dynamically optimize the
tradeoffs between security, resources and performance as users’ preferences are
changed to reflect, at run time, the relative importance of these three quality
attributes. We have accomplished this by relying on a general architecture for
self management developed in the EU-funded Hydra project1, in which Genetic
Algorithms (GAs) [2] are used to obtain optimized solutions at run time, from
a number of conflicting objectives.

Approaching adaptive security from the perspective of making systems self-
managing has particular merit because security is thereby managed alongside
other quality attributes. Moreover, since even security mechanisms that are ar-
guably simple to use are frequently misunderstood and applied incorrectly by
end users [3], automating their configuration may make systems more secure by
precluding their incorrect configuration by human operators, who express their
goals declaratively as policies.

The remainder of the paper is organized as follows: First we explain the self-
management architecture of Hydra and how its components interact to optimize
self-protection (section 2). Our approach uses semantic models of resource con-
sumption and security characteristics, which are described in Section 3. Section
4 describes a scenario of self-protection and the security strategies used within it.
Next, section 5 describes how genetic algorithms are used to optimize protection
in face of specific resource requirements. Section 6 presents our prototype im-
plementation, and evaluations that show our approach can perform acceptably.
Finally, we review related work (section 7) and conclude the paper (section 8).

2 Semantic Web-Based Self-management and Work Flow
of Self-protection in Hydra

2.1 Self-management Architecture

The Hydra self-management features cover the full spectrum of self-management
functionalities, including self-configuration, self-adaptation, self-protection, and
self-optimization. The self-management of Hydra follows a three layer model
proposed by Kramer and Magee [4] as detailed in Figure 1, where the interac-
tion between different layers are through events via the Hydra Event Manager,
following a publish-subscribe [5] communication style.

Besides the Event Manager, the Self-management component also needs to
collaborate with other Hydra components, including the EventProcessingEngine
component for Complex Event Processing (CEP), which is used to monitor dy-
namic resources and other context changes, and a QoS manager, which is used
to retrieve the QoS properties for services/devices and monitor QoS changes.
1 http://www.hydramiddleware.eu

http://www.hydramiddleware.eu

406 W. Zhang et al.

C
om

po
ne

nt

C
on

tro
l

C
ha

ng
e

M
an

ag
em

en
t

G
oa

l
M

an
ag

em
en

t

Plan Requests Change Plans

Request/Reply Events
State Change Events

Request/Reply Events
(e.g. Component adaption commands for Actuator)

StateMachine

ProbeMessage OSGiComponent

ASL-Actuator

RuleProcessing OntologyProcessing

ServiceProfile SecurityProtocol

EventManager

QoSProfileFilter

GAOptimizer

Statemachine
ASL script

self-management
ontologies/Self-
management

Rules

Architecture
knowledge,

GA
algorithms

IPP-Planner

FaultDetection ArchitectureManagement

OntologyManager

DeviceManagerContextManager

QoSManagement

QoSManager ServiceManager

ObligationFramework StorageManagerNetworkManager

EventProcessingEngine

Fig. 1. Architecture of the Self-Management component in Hydra

Also, as we are adopting a Semantic Web-based self-management approach [6],
the management of OWL2(Web Ontology Language)/SWRL3 (Semantic Web
Rule Language) ontologies is handled by the Ontology Manager. The diagnosis
results are stored via the Storage Manager for future analysis.

Component Control Layer. The component control layer has two respon-
sibilities: to enable higher layers to monitor low-level events, and to actuate
changes to the underlying system.

For detecting situations which require changes of the system’s configuration,
three components are available: device run time state monitoring via state ma-
chines, service invocations monitoring using message probes and detecting spe-
cific patterns of events through an event processing engine. Event patterns can
be ordered in an increasingly abstract hierarchy, ranging from low-level events
(e.g., raw sensor data) to high-level events (e.g., more complex situations like
“fire in the hall”). In the Component Control layer, the EventProcessingEngine
based on Complex Event Processing (CEP) is used to detect situations requir-
ing changes of the system’s security configuration, such as additional services or
devices joining a network.

For the second purpose of the Component Control layer, the ability to actuate
changes to a system’s configuration by obligation policies triggering the execution
2 http://www.w3.org/TR/swbp-n-aryRelations/
3 http://www.w3.org/Submission/SWRL/

A Genetic Algorithms-Based Approach for Optimized Self-protection 407

of ASL (architectural scripting language) [7] scripts is provided by its interpreter.
This is shown as an ASL-Actuator component in Figure 1.

Change Management Layer. The Change Management layer is responsible
for executing predefined schemes of self-management, i.e., this layer will respond
to detected deficiencies in a system and execute strategies defined in advance or
dynamically generated for a specific change event. A primary approach in Hydra
is the usage of SWRL [6] to define these self-management capabilities. Further,
QoS is considered if necessary for all self-management activities.

Goal Management Layer. Two complementary approaches are adopted in the
Goal Management layer to achieve planning. First GAs are used for obtaining
optimal solutions given some QoS goals and restrictions. Second, once a desired
target solution has been chosen, it becomes input to the IPP planner [8] which
generates an actuation plan.

A GA based approach [9] is used for optimization. Here, optimization (for
example choosing the most suitable services for self-configuration) is one impor-
tant task in self-management for pervasive service computing. These optimiza-
tion tasks can be considered as problems of multi-objective services selection
with constraints, where GAs are effective.

Non-trivial plans are generated with the IPP planner. Given a domain de-
scription, a start configuration and a condition describing the goal state, IPP
planner can generate a sequence of actions available in the domain (architectural
configurations in our case) that lead to a goal state.

2.2 Self-protection Work Flow

Figure 2 illustrates how the work flow of automatically re-configuring security
settings in the middleware based on the components introduced above.

In the first step, situations are detected which might require a reconfiguration
of security parameters and mechanism. For this purpose, events broadcasted
on the event bus are being monitored and fed into the EventProcessingEngine,
which then detects specific patterns of events. Once an event pattern has been
detected (e.g. a new device with some additional managers joining the network),
the EventProcessingEngine initiates the GAs to find the optimal configuration
for the new situation.

In general, a number of steps is required to come from the current to the op-
timal solution identified by the GAs. Therefore, the optimal solution is at first
sent to an IPP planning engine which calculates an enforceable plan leading to
this solution. This execution plan is passed to an obligation distribution point
(ODP) which is responsible for applying the individual steps of the plan to the
system by sending appropriate obligations [10] to enforcement points (OEP).
Obligations are signed by the Obligation Distribution Point (ODP) to prevent
manipulation and to ensure authenticity of the obligation. When receiving an
obligation, OEPs validate the attached signature and invoke appropriate enforce-
ment plugins which are able to execute the actions stated within the obligation.

408 W. Zhang et al.

Fig. 2. Workflow of Self-Protection (components as boxes, communication as arrows)

After the enforcement process, OEPs can send back status report events indicat-
ing success or failure which can again be monitored by the component control
layer.

From Figure 2, we can see that the proposed approach relies on two aspects:
the underlying security contexts (implemented as ontologies) and an eventing
mechanism for context provision. Therefore our approach is generic and is appli-
cable to situations other than the Hydra middleware where the self-protection
approach originated.

3 Security Ontologies

The Goal Management layer in Figure 1 requires information about security
mechanisms that can be applied to the system to make proper decisions. This
information is modeled in a set of security ontologies, which need to describe not
only security mechanisms and their targeted protection goals, but also quality
of those mechanisms which differentiate our security ontologies to the existing
ones, such as the one from FIPA TC [11] and NRL ontology [12]. The ontology
used in our approach is application-agnostic and provided as part of the middle-
ware. Developers can add application-specific information by inserting additional
instances into the predefined ontologies.

3.1 Modeling Protection Goals

For self-protection, the security ontology mainly serves two purposes: at first,
it assigns each configuration to the protection goals it supports. Secondly, the
ontology should provide information about the quality of a mechanism, i.e.,
describe how well it is suited to achieve the protection goals and how high the
costs in terms of memory and CPU consumption will be. We will now describe
the most important concepts of the ontology as depicted in Figure 3 and explain
how they address those two purposes.

We model protecion goals as instances of the SecurityObjective class in or-
der to describe which configuration of the system is suited to achieve a certain
protection goal. This concept is modeled similarily to what is done in the NRL

A Genetic Algorithms-Based Approach for Optimized Self-protection 409

Fig. 3. Main concepts and properties of the Security Ontology

ontology, i.e. it comprises instances such as Confidentiality, MessageIntegrity, Re-
playPrevention, etc.. Further, the concept SecurityProtocol represents the actual
configuration that could be applied to the system. This concept is the only one
whose instances refer to specific software modules or settings (e.g., OSGi4 bun-
dles or sets of preferences). As not all instances of SecurityProtocol are equally
suited to fulfil a certain protection goal, we modeled an n-ary relation between
SecurityProtocol and SecurityObjective using the ObjectiveStrengthRelation con-
cept to overcome the lack of n-ary relations in OWL. In this way, we are able
to express qualified relations using security levels like “RSA-512 serves low con-
fidentiality”. By querying the ontology given protection goals it is thus possible
to retrieve a set of applicable implementations and configurations, ranked by the
degree to which they address protection goals.

3.2 Modeling Resource Consumption

In most cases, security is not for free and so the second purpose of the secu-
rity ontology is to provide information about the trade-off between the security
level and the required performance costs for each instance of the SecurityProto-
cols. The resource consumption of each instance is represented by the properties
requiresComputingPower and requiresMemory. Obviously, both properties vary
depending on the platform and various other factors, so the values in the on-
tology may only be taken as a rough estimation. However, for our optimization
approach the absolute values are not of interest but rather the relation of mod-
ules according to their resource consumption. Hence, we argue that in this case
it is feasible to represent such platform-specific information in a system-wide

4 http://www.osgi.org/

410 W. Zhang et al.

security ontology. The requiresComputingPower property describes the addi-
tional processing time that is required by adding a certain security module or
configuration. That is, the values refer not only to cryptographic operations
but to the overall processing time required by the module. The requiresMemory
property describes the additional memory overhead that is added by applying
a security module. It refers to the sum of memory allocated by all objects and
methods of the module.

3.3 Usage of Security Ontologies

In Hydra, we are using SWRL rules to retrieve information from the security
ontology. For example, the following rule is used to retrieve the security protocols
and their corresponding memory consumption, computing time consumption,
authenticity level and its value. This information is then used in the fitness
evaluation functions described in Section 5.1.

Rule: SecurityResource
SecurityProtocol(?protocol) ∧
requiresComputingPower(?protocol,?power) ∧
requiresMemory(?protocol, ?memory)∧
authenticityObj(?protocol, ?auth) ∧
hasStrength(?auth, ?value)
→ sqwrl : select(?protocol, ?memory, ?power, ?auth, ?value)

Further, the security ontology is needed to automatically replace security mech-
anisms once they are considered to be insecure. From time to time, new at-
tacks on cryptographic algorithms become feasible and their level of security
decreases. Reflecting such changes in the security ontology by modifying the Ob-
jectiveStrengthRelation (c.f. the following section) will trigger a re-configuration
of the middleware, replacing outdated mechanisms by more secure equivalents.
This work is still under investigation and will be reported in the near future.

4 Security Strategies and a Scenario for Self-protection
in Hydra

In this section, we will describe how different security strategies described by the
security ontology have been combined with the self-management architecture in
order to realize self-protection in the Hydra middleware.

4.1 Security Strategies

A Hydra device is basically a set of managers (i.e. web services) which can
either be hosted locally on a single platform or be distributed across devices.
To protect communication between those managers (which we refer to as Core
Hydra) a number of security modules with different properties are available.
Besides the Core Hydra configuration, further security settings can be made in

A Genetic Algorithms-Based Approach for Optimized Self-protection 411

the middleware: the communication between Hydra devices can be protected in
different ways, different trust models (e.g. OpenPGP, PKI-Common, etc.) can
be used, and message formats such as XMLSecurity or S/Mime can be chosen.
In this paper, however, we will focus on the Core Hydra configuration only,
i.e. the selection of different security strategies for the communication between
managers (the procedure for other configurations is analogous).

The protection of Core Hydra communication is realized by SOAP5 security
handlers implementing the following security strategies: Null, XMLEnc, XM-
LEncSig and XMLEncSigSproadic each representing a different protection level.
These security handlers are hooked into the web service handler chain, a series
of Java classes that is called immediately before a SOAP call is routed into the
actual web service and immediately after the response leaves it. Thus, these
Core Hydra handlers are supposed to be completely invisible for users of the
middleware.

Null. This strategy switches off all message protection mechanisms and the
Core Hydra security handler simply passes all messages on to the receiving
manager. This strategy is obviously the most insecure but also the fastest
way of sending messages in Core Hydra.

XMLEnc. This strategy applies XMLEncryption6 to messages in Core Hydra.
The message payload is encrypted using a 192 bit TripleDES key. This sym-
metric key is then attached to the message, encrypted by RSA 1.5 using the
1024 bit public key of the receiving manager. This strategy ensures confi-
dentiality but does not fully prevent message modification or replay attacks.

XMLEncSigSporadic. For this strategy, nonces (“number used once”) are
added to messages in order to prevent replay attacks and XMLSignature7

using RSA is applied in addition to XMLEncryption. Receivers will however
only randomly verify a certain percentage of the arriving messages to save
resources. While this strategy may allow attackers to send some individual
forged messages, it is not possible to inject a whole sequence of faked mes-
sages. It depends on the messages content and the application whether this
strategy adds any additional security – in the worst case it is equivalent to
XMLEnc, in the best case it is equivalent to XMLEncSig.

XMLEncSig. For this strategy, messages are created in the same way as in the
previous strategy. In addition, all signatures are verified by the receiver. So,
the XMLEncSig strategy ensures confidentiality and authenticity as well as
it prevents attackers from re-playing previously recorded messages.

Table 1 lists the security strategies with the degree of support for confidential-
ity and authenticity as well as their resource consumption, which are encoded
in the security ontologies and will be used at run time as security contexts.
For XMLEncSigSporadic, 50% of the arriving messages are verified in our case.
The CPU processing time and memory consumption values have been obtained

5 http://www.w3.org/TR/soap/
6 http://www.w3.org/TR/xmlenc-core/
7 http://www.w3.org/TR/xmldsig-core/

412 W. Zhang et al.

Table 1. Protection levels (0 to 10) and resource consumptions of security strategies

Level of protection Resource consumption
Strategy Confidentiality Authenticity CPU (ms) Memory (KB)
Null 0 0 16.3 0.32
XMLEnc 4 4 21.4 28.96
XMLEncSigSporadic 4 7 102.4 54.97
XMLEncSig 4 9 114.3 57.52

by measuring the Hydra middleware with different security configurations on a
VMWare Windows XP with 512 MB memory and an Intel Core2 Duo processor.

4.2 A Self-protection Scenario in Hydra

The Hydra middleware has been developed to interconnect heterogeneous embed-
ded devices. In such scenarios developers have to deal with resource-constrained
platforms and the performance versus security trade-off. Usually this requires de-
sign decisions to be made at development time and knowledgeable developers who
know the benefits and deficits of different security mechanisms. The aim of self-
protection is to relieve developers from this task as much as possible by automat-
ically adapting security mechanisms to the current situation. As an example, we
look at how the middleware automatically selects the security strategies that best
fit the resource and security requirements of the application.

Suppose Hydra is the supporting middleware for an airport management sys-
tem, a public area that needs high security. All of 10 different Hydra components
are deployed on different devices: PDAs, PCs, and security checking machines,
connected via the Internet. All data sent between the managers should be con-
fidential, and – if possible – protected against modification and replay attacks.
At the same time, resource constraints must be considered, i.e., the latency and
memory consumption should not exceed limits. As there are 10 managers, there
are

(10
2

)
= 45 bi-directional connections/channels to consider. For each connec-

tion, three different security strategies are available (omitting the Null strategy
as it does not provide any confidentiality). The problem space for finding the
optimal solution is 345, a scale that works well for GAs. Therefore, the following
goals for the overall system’s security configuration (referring to all 45 channels)
are passed as input to the Hydra Goal Management layer:

– Authenticity should be maximized (highest value is 10 for a channel)
– Latency must not exceed 2000 ms
– Memory should be minimized, not more than 2 Mbytes should be used

In the following section we will describe how the self-protection architecture finds
an optimal solution to this problem, plans its execution and finally enforces all
necessary steps.

5 Obtaining Optimized Protection Using GAs

First, we will formulate the abstract requirements as an optimization problem
that can be solved using a GA engine.

A Genetic Algorithms-Based Approach for Optimized Self-protection 413

5.1 Optimization Objectives and Constraints Formulation

The memory consumption of a Hydra device’s security mechanisms (the M ob-
jective) is calculated by the sum of each channel’s memory consumption as:

M =
n∑

i=1

m∑
j=1

Mi · E(i, j), where E(i, j) = 1 if for a channel i (with a scope of

[1, n]) a security strategy that has memory consumption Mi is selected, other-
wise E(i, j) = 0. j represents the sequence number of a concrete security strategy
with a scope of [1,m]. In the scenario under consideration, n = 45 and m = 3.
As we choose exactly one security strategy for each channel, there is exactly one
E(i, j) = 1 and all other E(i, j) = 0 for all j ∈ [1,m].

Similarly, we can formulate the CPU consumption (the P objective) to calcu-

late the total processing time required by security mechanisms as: P =
n∑

i=1

m∑
j=1

Pi·

E(i, j), where E(i, j) = 1 if a component i (with a scope of [1, n]) that has power
consumption Pi is selected, otherwise E(i, j) = 0. j represents the sequence num-
ber of a concrete component implementation with a scope of [1,m].

Authenticity, as said, should be maximized. We instead minimize the un-
authenticity to formulate all objectives in a similar way. The un-authenticity

(the Ua objective) is calculated as: Ua = n · 10 −
n∑

i=1

m∑
j=1

Ai · E(i, j), where

E(i, j) = 1 if a channel i (with a scope of [1, n]) that has authenticity Ai is
selected, otherwise E(i, j) = 0. j represents the sequence number of a concrete
security strategy with a scope of [1,m].

5.2 Chromosome Encoding and Fitness Evaluations

A chromosome corresponds to a unique solution in the solution space. GAs can
typically make use of booleans, real numbers and integers to encode a chromo-
some. The representation of chromosome in our case is using integers (starting
from 0). That is to say, we are using an integer vector V = [V1, V2, ...Vi, ..., Vn]
(where n is the number of decision variables – in our case 45) to represent a
solution. Vi is a natural number, acts as a pointer to the index of the security
strategy of the ith strategy. For example, a chromosome [0,1,2,1,2,0,1,1,2,1...]
represents that a solution chooses the first security strategy for channel 1, the
second security strategy for channel 2, the third security strategy for channel
3, and so on. In our case, this relates to XMLEnc, XMLEncSigSporadic, XM-
LEncSig (cf. Table 1). Based on the chosen security strategies, the GAs then
decide fitness using the objective equations as introduced in Section 5.1, and
will at the same time evaluate whether the constraints mentioned in Section 5.1
are met.

414 W. Zhang et al.

6 Prototype Implementation

In order to test the self-protection approach, we developed a prototype that has
been integrated into the Hydra middleware. In this section we will discuss the
architecture of the prototype implementation and the achieved performance.

6.1 Implementing GA-Based Optimization for Self-protection

As in our former evaluation of GAs for self-management [9], we used the JMetal
GA framework8 for the implementation of the self-protection optimization prob-
lem. As shown in Figure 4, we model a SelfProtectionProblem as a SelfMan-
agementProblem. Evaluations of solution fitness using the formulas introduced
in Section 5.1 are implemented in the SelfProtectionProblem class as usual
when a developer is to implement self-management optimization problems. The
GAEngine is the core class for the GA-based self-management planning, and
defines the common methods for getting the solutions.

The package evaluations defines utility classes for obtaining the Pareto front/
set9, and the evaluation of the solution quality uses the Hyper volume (HV) qual-
ity indicator [13], which is a quality indicator that calculates the volume (in the
objective space) covered by members of a non-dominated set of solutions for prob-
lems where all objectives are to be minimized.

Fig. 4. GAs based Self-management optimization

6.2 Enforcement of Obligations

The enforcement architecture (c.f. Section 2.2) allows adding support for ar-
bitrary obligations at runtime by loading appropriate enforcement plugins. We
implemented one enforcement plugin that supports operations on the OSGi plat-
form (such as starting and stopping bundles or setting preferences) and one that

8 http://sourceforge.net/projects/jmetal/
9 http://www-new.mcs.anl.gov/otc/Guide/OptWeb/multiobj/

A Genetic Algorithms-Based Approach for Optimized Self-protection 415

supports the execution of ASL scripts. While for simple obligations such as used
in our prototype example, the OSGi plugin provides a fast and direct access
to OSGi management, platform-independent ASL scripts are better suited for
heterogeneous platforms and more complex architectural restructurings [7]. The
sequences of actions that constitute an obligation policy (and an ASL script) is
generated by the IPP planner based on the target security configuration found
by the GA optimization.

6.3 Performance Measurements and Quality Evaluation

Performance of Genetic Algorithms. For the measurement of performance
of obtaining optimal solutions, the following software platform was used: JMetal
2.1, JVM 1.6.02-b06, Heap memory size is 256 Mbytes, Windows XP SP3. The
hardware platform was: Thinkpad T61P T7500 2.2G CPU, 7200rpm 100G hard
disk, 2G DDR2 RAM. The performance time measurements are in milliseconds.

We have done evaluations of two generic algorithms, NSGA-II and MOCell for
their usage in pervasive computing [9]. In this paper, we want to validate whether
our recommendations for these two algorithms are valid for different problem
(where the problem space is much bigger and fitness evaluation algorithms are
different). This time, the parameter settings for GAs are the same as in [9], and
we are following the same steps as in [9] for evaluations.

The analysis for this evaluation (procedures as detailed in [9]) shows that
our recommendations for parameter settings as in [9] are valid and NSGA-II
is recommended for our self-management problems. Table 2 shows randomly
chosen runs (from one of 100 runs for every parameter combination) for some
of the parameter combinations (as detailed in the legend of Figure 5). We can
see that for NSGA-II, which is recommended (and was recommended in [9]) in
this case, the population size 64 to 100 with max evaluations of 5000 will have
acceptable performance for getting optimized solutions within 342ms to 449ms,
and has acceptable quality of solutions as shown in Table 2 and Figure 5. MOcell
is not recommended as it has worse HV. We can see this in a direct way in Figure
5: MOCell solutions has many more points far from the Pareto front. We can also
see that the diversity and convergence are satisfactory of NSGA-II, the solutions
are spread uniformly along the true Pareto front, and the majority of the points
in NSGA-II results are located at the Pareto front.

Table 2. Performance and quality of solutions

GA name Population size Max evaluations cross over probability (CVP) Avg. HV Avg. Running Time

NSGA-II 64 5000 0.8 0.566524 342 ms
NSGA-II 81 5000 0.9 0.566524 419 ms
NSGA-II 100 5000 0.9 0.566524 449 ms
MOCell 1444 5000 0.8 0.459411 235 ms
MOCell 1600 10000 0.8 0.494775 576 ms

416 W. Zhang et al.

1.3
1.35

1.4
1.45

1.5
1.55

1.6
1.65

1.7
x 10

6

800

1000

1200

1400

1600

1800

2000

210

220

230

240

250

260

270

CPU

Memory

U
n-

A
ut

he
nt

ic
ity

NSGA-II population 64-evaluation 5000-CVP 0.8 - run number 66
NSGA-II population 81-evaluation 5000-CVP 0.9 - run number 88
NSGA-II population 100-evaluation 5000-CVP 0.9 - run number 96
MOCell population 1444-evaluation 5000-CVP 0.8 - run number 12
True Pareto front

Fig. 5. Visualizing the solution quality

Performance of IPP Planner. We measured the performance of the IPP
planner for the plans required in our implementation. With just one security
strategy to be set, the planner generates the correct solution in just 10ms (aver-
age of 5 measurements, standard deviation 2 ms). In our case, at most four kinds
of planning problems can occur, because the steps required to change a strategy
depends only on the strategy being activated. Thus in practise the planner can
be invoked once for each of these problems to produce a template plan/scheme
which is stored in the Change Management layer and available for immediate ex-
ecution once needed. Thus the test showing an execution time of just 10 ms is the
worst case time for planning in our implementation. Other implementations of
our approach may require more complex plans to activate a strategy. However,
our previous experience with using the IPP planner for general architectural
reconfiguration shows that it generates a plan within 100 ms [7].

Performance of Obligation Enforcement. Finally, we measured the per-
formance of the enforcement process, i.e. the process of distributing a single
obligation to the OEPs and executing the contained actions. The overall time
(omitting network latency) amounts to 70.9 ms (standard deviation 14.21 ms)
whereas the plain execution time is almost negligible (0.6%) due to the simple
operation we use in our prototype example (changing the configuration of the
Core Hydra module). The main computing costs come from signing and verifying
the obligation, accounting to over 73% of the overall enforcement time. Another
21.7% is required by Axis 1.4 web service calls.

6.4 Discussion

The critical part of our self-management approach is obtaining the optimized solu-
tions for all the communication channels. The search for the best solutions should
be finished in a reasonable time. As we can see from Section 6.3, GAs can accom-
plish this within acceptable time and satisfactory quality. Combining the perfor-
mance testing with IPP Planner for generating enforcement plans, and the
performance of actual enforcement of security protocols from Section 6.3, in the

A Genetic Algorithms-Based Approach for Optimized Self-protection 417

best case we can get the self-protection ready within 520ms, which is acceptable for
enabling the self-protection for the whole Hydra middleware. Even in the “worst”
case, where the IPP planner needs to be invoked and the enactment of a strategy
change is more complex than in Hydra, this would add less than 100ms or 20% to
the execution time.

7 Related Work

In the Willow architecture [14] for comprehensive survivability, security threats
are treated as one source of faults that the architecture provides mechanisms to
avoid, eliminate, or tolerate. In contrast with our prototype, there is no dynamic
adaptation or explicit modeling of the trade-offs involved in providing the protec-
tion. The ATNAC framework described by Ryutov et al. [15] detects malicious
activity by analyzing failures and behavior patterns of the access control and
trust negotiation process. Thus rather than trying to prevent an ongoing attack
as such, a detected malicious activity is input to the access control and authoriza-
tion process which thereby becomes more dynamic. The functionality is at the
specific level orthogonal to our work, in that it is concerned with authentication.
Further, the adaptation which is provided is focused on improving the accuracy
of authentication, rather than on balancing multiple concerns against each other
as in our approach. Another approach to multi-objective optimization is followed
by the middleware CARISMA. In [16], the authors propose utility functions and
auction-based negotiations to agree on an optimized trade-off between security
and efficiency. Their decentralized approach however assumes each instance of
the middleware acts honestly.

Event-condition-action policies as used in our obligation framework have been
used for many policy-based management approaches before, where Ponder2 [17]
is one of the most prominent examples. However, self-protection is scarcely con-
sidered in such approaches. Finally, a conceptually different approach to self-
protection is used in artificial immune systems [18]. This approach is interesting
but it is unclear yet how it can be combined with other self-* approaches in
order to make acceptable tradeoffs between several different qualitative con-
cerns. In our approach, multi-objective optimization can be used for other self-
management features, as we have done for self-configuration [9].

8 Conclusion and Future Work

Self-protection is one of the important self-management capabilities of per-
vasive service computing. There is scarce reported work providing optimized
self-protection, i.e. considering the characteristics of pervasive systems where
resources are usually restricted. In this paper, we proposed a Genetic Algorithms-
based approach for obtaining optimized security configurations. The optimized
solutions can be used to enable corresponding security strategies, based on obli-
gations generated from the IPP planner, and finally the obligation framework
will execute these plans and make use of the chosen security protocols. The

418 W. Zhang et al.

whole process is evaluated and it was show that our approach is feasible with
acceptable performance and satisfactory quality. We will explore auction-based
multi-attribute optimization [16], and investigate the replacement of outdated
security mechanisms at run time using security ontologies.

Acknowledgments. The research reported in this paper has been supported
by the Hydra EU project (IST-2005-034891).

References

1. Elkhodary, A., Whittle, J.: A survey of approaches to adaptive application security.
In: Proc. of the 2007 International Workshop on Software Engineering for Adap-
tive and Self-Managing Systems, Washington, DC, USA. IEEE C.S, Los Alamitos
(2007)

2. Mitchell, M.: An Introduction to Genetic Algorithms. Bradford Books (1996)
3. Whitten, A., Tygar, J.D.: Why johnny can’t encrypt: A usability evaluation of pgp

5.0. In: Proceedings of the 8th USENIX Security Symposium (August 1999)
4. Kramer, J., Magee, J.: Self-Managed Systems: an Architectural Challenge. In: In-

ternational Conference on Software Engineering, pp. 259–268 (2007)
5. Eugster, P., Felber, P., Guerraoui, R., Kermarrec, A.: The Many Faces of Pub-

lish/Subscribe. ACM Computing Surveys 35(2), 114–131 (2003)
6. Zhang, W., Hansen, K.M.: Semantic web based self-management for a pervasive

service middleware. In: Second IEEE International Conference on Self-Adaptive
and Self-Organizing Systems (SASO 2008), Venice, Italy, October 2008, pp. 245–
254 (2008)

7. Ingstrup, M., Hansen, K.M.: Modeling architectural change - architectural script-
ing and its applications to reconfiguration. In: WICSA/ECSA 2009, Cambridge,
England, September 2009. IEEE, Los Alamitos (2009)

8. Koehler, J., Nebel, B., Hoffmann, J., Dimopoulos, Y.: Extending planning graphs
to an adl subset. In: Steel, S. (ed.) ECP 1997. LNCS, vol. 1348, pp. 273–285.
Springer, Heidelberg (1997)

9. Zhang, W., Hansen, K.: An Evaluation of the NSGA-II and MOCell Genetic Al-
gorithms for Self-management Planning in a Pervasive Service Middleware. In:
14th IEEE International Conference on Engineering Complex Computer Systems
(ICECCS 2009), pp. 192–201. IEEE Computer Society, Washington (2009)

10. Pretschner, A., Hilty, M., Basin, D.: Distributed usage control. Communications
of the ACM 49(9), 39–44 (2006)

11. FIPA Security: Harmonising heterogeneous security models using an ontological
approach. Part of deliverable Agentcities. RTD, Deliverable D3.4 (2003)

12. Naval Research Lab: NRL Security Ontology (2007),
http://chacs.nrl.navy.mil/projects/4SEA/ontology.html

13. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case
study and the strength Pareto approach. IEEE transactions on Evolutionary Com-
putation 3(4), 257–271 (1999)

14. Knight, J., Heimbigner, D., Wolf, A.L., Carzaniga, A., et al.: The Willow Ar-
chitecture: Comprehensive Survivability for Large-Scale Distributed Applications,
Technical Report CU-CS-926-01, University of Colorado

http://chacs.nrl.navy.mil/projects/4SEA/ontology.html

A Genetic Algorithms-Based Approach for Optimized Self-protection 419

15. Ryutov, T., Zhou, L., Neuman, C., Leithead, T., Seamons, K.E.: Adaptive trust
negotiation and access control. In: SACMAT 2005: Proceedings of the tenth ACM
symposium on Access control models and technologies, pp. 139–146. ACM, New
York (2005)

16. Capra, L., Emmerich, W., Mascolo, C.: CARISMA: Context-Aware Reflective mId-
dleware System for Mobile Applications. IEEE Transactions on Software Engineer-
ing, 929–945 (2003)

17. Twidle, K., Dulay, N., Lupu, E., Sloman, M.: Ponder2: A policy system for au-
tonomous pervasive environments. In: The Fifth International Conference on Au-
tonomic and Autonomous Systems (ICAS) (April 2009)

18. Dasgupta, D.: Advances in artificial immune systems. IEEE Computational Intel-
ligence Magazine 1(4), 40–49 (2006)

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 420–428, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Role of Process Modeling in Software Service Design

Susanne Patig1 and Harald Wesenberg2

1 University of Bern, IWI, Engehaldenstrasse 12, CH-3012 Bern, Switzerland
susanne.patig@iwi.unibe.ch

2 StatoilHydro ASA, Arkitekt Ebbels veg 10, Rotvoll, NO-7005 Trondheim, Norway
hwes@statoilhydro.com

Abstract. Service-oriented architecture technically facilitates business process
management as it enables software to evolve along with changing business
processes by simply recomposing software services. From a theoretical point of
view it is, thus, natural to take business processes as a starting point for soft-
ware service design. However, deriving software services strictly top-down
from business processes is awkward from a practical point of view: The result-
ing services are too fine-grained in scope and too vast in number, and particular
process control flows become cemented in service orchestrations. In this paper,
another approach of software service design is described that, though starting
from process models, avoids these drawbacks. The approach is illustrated
by a practical example. The presented service design approach has been suc-
cessfully applied in industry for more than 14 years and enables agile service
implementation.

1 Motivation

Building large, mission-critical enterprise systems has always been challenging. Dur-
ing the last decades, these software systems have grown into tightly coupled masto-
dons that call for extensive efforts to keep in sync with the mutable business.

Service-oriented architecture (SOA) promises to ameliorate this situation: By
structuring large software systems into smaller components (software services),
adapting software to changed business processes amounts to recomposing software
services. Consequently, SOA provides the technical foundation for business process
management, where software evolves along with continuous process improvements.

Implementing SOA requires the definition of what constitutes a software service.
SOA design approaches as sketched in Section 2 suggest that it works best to take
business processes as a starting point for strict top-down derivation of software ser-
vices, which realize process activities. However, practical experience indicates an-
other way of software service design that can be justified by its favorable outcomes
and, simultaneously, changes the view on the role of process models in SOA design.

In this paper we outline and generalize the service design approach used by Sta-
toilHydro, which has proven since the mid-90s to facilitate service identification in-
dependently of technology and to create highly reusable and stable software services.
Especially stability is a prerequisite for agile service development.

 Role of Process Modeling in Software Service Design 421

Section 3 explains the StatoilHydro approach of software service design abstractly
and by means of a real-life example. Section 4 compares our approach with other
practice-oriented ones, abstracts from the observations in the StatoilHydro case and
draws some general conclusions on software service design for application systems.

2 Current Software Service Design Approaches

Basically, approaches to design software services for SOA fall into two groups: prin-
ciples-driven approaches and hierarchical ones. Principle-driven software service
design approaches (e.g., [3]) provide best practices that support SOA design prince-
ples such as abstraction, standardized contract, autonomy, statelessness, discover-
ability etc. Often these recommendations are bundled into patterns (e.g., [4]) whose
realization and combination is left to the user.

In contrast, hierarchical software service design approaches prescribe steps from
some level of abstraction to a set of software services. They end either at the design
stage (e.g., [7], [13], [16]) or include further stages of the service life cycle (e.g., [11],
[1]). It can be distinguished between top-down approaches, which proceed from ab-
stract information at the business level to the technical level of service implemen-
tation, and bottom-up approaches that increase the level of abstraction during design.
Hybrid approaches combine bottom-up and top-down strategies (see Section 4).

Starting points for top-down software service design approaches are business goals
[5], [9], functional business areas [13] or business processes [12], [7], [13], and [6].
Goals describe what should be achieved by a software service, functional areas are
sets of related tasks referring to, e.g., departments or products, and business processes
additionally consider the roles that perform these tasks as well as the order of tasks
(control flow). Some of the top-down approaches rely on several types of business
information [1]. The common idea of top-down approaches is a strict decomposition
of business information into particular and usually fine-grained functions, which con-
stitute service candidates. Process-oriented approaches are often favored as they en-
able the design of composite software services by orchestrating (atomic) software
services according to the control flow between process activities [1], [11].

Current bottom-up software service design approaches (e.g., [16]) try to achieve
service-orientation by wrapping existing application systems. They use reverse engi-
neering techniques such as clustering to identify cohesive components. The functions
these components provide form service candidates.

The direction top-down vs. bottom-up mainly refers to the identification of service
candidates. Often the initial candidates are refined before they are specified: (1) Fine-
grained services that have some logical affinity (in terms of, e.g., functions or com-
munication [11]) are grouped into coarse-grained services; (2) verification and (3)
validation check whether or not the candidate software services are conform to the
SOA design principles [7], [2] and the stakeholders’ needs [1], respectively.

Grouping and refinement can be found in top-down and bottom-up approaches.
Only top-down approaches require asset analysis to map the identified and refined
services either to existing application systems or to service implementation projects
[2], [1], [7], [11]. Bottom-up approaches, on the other hand, need an analysis of busi-
ness requirements and a corresponding alignment between IT and business [8].

422 S. Patig and H. Wesenberg

The final step of service specification is always necessary. It defines the service in-
terface (operations and their signatures, given by message types for inbound and out-
bound messages) and the conversations between services [1], [2], [13], [11].

3 A Practical Case of Software Service Design

3.1 SOA Development Context

StatoilHydro is an integrated oil and gas company with about 30,000 employees in 40
countries and more than 30 years domain experience. Part of the StatoilHydro value
chain is the global sales and distribution of crude oil, an area that has been supported
by a set of custom-made systems over the last 15 years. During the continued devel-
opment of the application portfolio, the functional core of these systems was re-
engineered as a set of services in the mid-90s, first as PL/SQL interfaces, then as web
services. When developing these services (both PL/SQL and web), it was paramount
to enable reuse and reduce duplication of code. Since the mid-90s, the services have
been expanded, but the initially identified core has remained stable.

3.2 Service Design Process

There was no prescribed method for the design of the initial set of application services
(service inventory [3]) at StatoilHydro when the project started. An academic ex-post
analysis (by interviews, document and system analysis) of the service design process
revealed recurring steps, which are depicted as BPMN activities [10] in Fig. 1 below.
Section 3.3 illustrates the service design process by an example.

B
us

in
es

s
P

ro
ce

ss

M
od

el
in

g

In
fo

rm
at

io
n

M
od

el
in

g
Fu

nc
tio

n
M

od
el

in
g

IT

R
ea

liz
at

io
n

D
om

ai
n

Fig. 1. Software service design process (in BPMN 1.1 [10])

 Role of Process Modeling in Software Service Design 423

Application services express the contribution of a software system to a business
process on a logical level. They represent functions with high interdependencies in
terms of data usage, user interaction or business rules. The (application) service de-
sign process followed a two-pronged approach focusing on business processes/ work-
flows and information concepts: Workflows were arranged in groups and analyzed to
identify candidate services in a top-down way. Simultaneous bottom-up analysis of
information concepts helped in generalizing these candidate software services to in-
crease their stability and encourage reuse.

The identified candidate application services were refined (grouped or split) by us-
ing the following heuristics (for more examples see Section 3.3):

• An application service must refer to the same information concept in the same se-
mantic context. For example, the information concept ‘Cargo’ has distinct interpre-
tations depending on whether it is related to terminal operations, e.g., storing at the
port, or to supply operations, e.g., lifting [15]. Hence, separate services are needed.

• An application service must stick to the same business rules.

• Domain expertise beyond the models must be used to check the candidate applica-
tion services or to discover new ones.

As for specification, StatoilHydro decided to build small service interfaces containing
only stable operations. In all, identification and refinement as described brought about
three types of software services: (1) entity services (mainly CRUD – create, retrieve,
update, delete - on information concepts), (2) task services (execution of operations
more complex than CRUD and strongly guided by business rules) and (3) technology
services that are not related to business, but needed for the systems to operate (e.g.,
services that provide a system with data from a data base). Currently, specification
guidelines for these service types are prepared in the form of patterns.

3.2 Service Design Example

This section illustrates the service design process described in Section 3.2 by an ex-
cerpt from the current business process, workflow and service model of StatoilHydro.
All pictures are real-life snapshots of the company’s model repository. The models
address human readers, contain both manual and IT supported activities and their exe-
cution is not automated, but relies on human interaction (human-centric processes).
All models were already available due to governance requirements.

StatoilHydro has a supply business focusing on the delivery of crude oils and re-
finery products to customers all over the world. The high-level business process Sup-
ply Operations consists of the four sub-processes shown in Fig. 2 below.

Schedule delivery Initiate lifting
Get unload
information

Complete delivery
and close cargo

Fig. 2. Business Process ‘Supply Operations’

424 S. Patig and H. Wesenberg

Fig. 3. Sub-process ‘Schedule Delivery’

Each sub-process is detailed by workflows that are modeled with BPMN [10]. For
example, Fig. 3 depicts the workflow of the sub-process ‘Schedule Delivery’. The
BPMN diagrams and candidate application services of the other sub-processes of
Fig. 2 can be found in [14].

Top-down and bottom-up software service design were conducted simultaneously:
The four sub-processes of the business process ‘Supply Operations’ form a natural
group (functional area) to look for similar activities and information concepts. The
candidate application services needed in a workflow were gathered by domain expe-
rience; Table 1 contains the results for the sub-process ‘Schedule Delivery’. From
workflow activities, both task and entity services (see Section 3.2) were derived,
whereas information concepts initially brought about only entity services. The initial
classification of the service types may change during refinement (see below).

Table 1. Identified candidate application services

Activity / Information Concept Candidate Application Service Service Type
Sub-process ‘Schedule delivery’
Send delivery info (information) to
ship operations (A = activity)

Send Delivery info Entity (Delivery)

Nominate vessel to customer (A) Nominate Vessel,
Update Vessel

Task (Nominate),
Entity (Vessel)

Revise voyage order (A) Reschedule Voyage Task (Reschedule)
Inform customer, terminal... (A) Send Voyage info Entity (Voyage)
Receive info about agents,
inspectors, expeditors etc. (A)

Receive Agent info, Receive
Inspector info, Receive
Expeditor info

Entity
(Agent/Inspector/Ex-
peditor information1)

Vessel acceptance
(IC = information concept)

Receive Vessel acceptance,
Update Voyage

Entity (Vessel
acceptance, Voyage)

(Revise) Voyage order (IC) Send Voyage order Entity (Voyage order)
Customer appointed
inspector (IC)

Receive Inspector info,
Update Inspector info

Entity (Inspector
information)

Document instructions (IC) Issue Document instructions Entity (Document
instructions)

1 Information concepts whose names include the term ‘information’ represent relations between

information concepts. Here, the relation exists between ‘Cargo’ and ‘Agent’, ‘Inspector’ etc.

 Role of Process Modeling in Software Service Design 425

After the initial identification of candidate application services for the workflow of
each sub-process (see [14]), refinement was conducted in workshops with domain
experts, software architects and software developers (see Table 2). There are three
categories of refinement of candidate application services:

1. Service type changes: When more knowledge is gathered and a CRUD operation
turns out to involve business rules, then the type of the candidate service is
changed from ‘entity’ to ‘task’. For example, ‘Update Vessel’ verifies that some
selected vessel meets all legal requirements, which no longer is a CRUD operation.

2. Grouping: Candidate application services having the same names or working on
similar information concepts in the same context are grouped. For example, initial
services such as ‘Update Vessel’ and ‘Update Voyage’ form the service ‘Maintain
Cargo’ as they work on the same, more general information concept ‘Cargo’.

3. Service Discovery: The refined services ‘Archive electronic documents’ and ‘Re-
ceive external documents’ gathered from domain experts demonstrate that some
services cannot be derived from workflow activities. Another example is the task
service ‘Calculation engine‘ that calculates transport costs, prices and volumes.

Table 2. Refined candidate application services

Refined
Candidate
Service

Identified Candidate
Application Services2

Justification for Refinement Service
Type

Service Type Changes
Update
Vessel

Update Vessel Business Rule: Before updating it must
be checked, e.g., whether or not the
vessel fulfils all legal requirements.

Task

Issue
Document
instructions

Issue Document
instructions

Business Rules: A rules engine
determines which document must be sent
to which business partner.

Task

Grouping
Maintain
Cargo

Update {Cargo | Delivery |
Volume | Transport costs |
Gain/loss | Arrival info |
ETA | Inspector info}

Context: All candidate services relate to
attributes of a cargo. The refined service
both creates and updates cargoes.

Entity
(Cargo)

Receive
external
documents

Receive {Transport costs |
Discharge documents |
Cargo documents | ETA |
Arrival info | Vessel
nomination | Vessel
acceptance}

Domain expertise: All candidate services
relate to the reception of paper documents
(by surface mail or fax). The scanned
documents must be automatically
processed and distributed electronically.

Task

Service Discovery
Calculation
engine

Calculate Transport costs Domain expertise: Prices and volumes
must be calculated in several activities.

Task

Archive
electronic
documents

Not applicable Domain expertise: All legal documents
related to a cargo must be stored in the
corporate electronic archives. Archiving
also adds necessary meta data.

Task

2 To save space, terms common to the names of several service candidates are given outside the

brackets ‘{}’ and distinctive parts of the names inside, separated by ‘|’.

426 S. Patig and H. Wesenberg

Altogether, service refinement has reduced the number of application services handed
over to software development teams from initially 33 candidates for the business
process ‘Supply Operations’ to 21 [14]. Especially grouping increases reuse: The
service ‘Maintain Cargo’ is used seven times in the workflows related to the business
process ‘Supply Operations’; further reuse occurs in other functional areas.

4 Generalization and Conclusions

The described approach to design application services has been successfully applied
over 14 years in a complex industrial setting. In essence, candidate application services
are functions related to (a) data handling (CRUD) of an information concept in the
same context (entity services), (b) business rules (task services) or (c) IT (technology
services). These service types are gathered both top-down (from activities common to a
set of workflows) and bottom-up (from – potentially generalized – information con-
cepts and domain experience). So, a service design process should be hybrid. If avail-
able, process models can be used as a source of domain knowledge; otherwise, a list of
application (business) functions to be supported by IT is sufficient for service design.
For human-centric processes, the control flow in the process models should be ignored
to not artificially restrict process execution (see [14] for an example).

Table 3. Comparison of hybrid SOA design approaches

Approach SOMA [1] SOAF [2] [6] [7] Statoil
Candidate Software Services

Goals ⎯ ⎯ ⎯ ⎯
Functional
Areas

Decomposi-
tion Decomposi-

tion
(SOA scope) ⎯

Business
Processes

Activities,
processes, CF

Activities of
a use case

Activities,
CF

Activities

Similar
activities in
functional
areas

T
op

-d
ow

n

Other BR, variations ⎯ Stakeholder Roles Events
Existing
application

Available
functions

Assessed
functions

(Implemen-
tation)

(Service list) Available
functions

IC (CRUD) ⎯ Only to group (State changes) CRUD

B
ot

to
m

-u
p

Other ⎯ ⎯ ⎯ ⎯ IT

Additional
Design Rules

 Low data trans-
fer, not time-
critical, reuse

SOA princi-
ples

Grouping Logical
affinity

Shared data/
code, scope,
reuse

Entity / Task
services

SOA principles,
service context/
layer, laws,
reusability Same (gene-

ralized) IC
or BR

Splitting ⎯ ⎯ ⎯ ⎯ IC context

R
ef

in
em

en
t

Checks VA ⎯ ⎯ VE, VA, over-
lap, feasibility

⎯

Specification X X X Specification
schema

Small inter-
face, stable
operations

BR: Business rule, CF: Control flow, IC: Information concept, VA: validation, VF: Verification

 Role of Process Modeling in Software Service Design 427

Grouping of similar activities is essential in application service design to (1) keep
the number of designed services small and (2) increase reuse. Grouping requires do-
main expertise and (preferably object-oriented) information models to guide gener-
alization; thus, process modeling must be supplemented by information modeling.
Finally, sometimes services must be split based on semantic context to enable reuse.

Table 3 compares the generalized StatoilHydro and other hybrid approaches of
software service design. Shaded activities do not lead to software services.

The design of the StatoilHydro application services has proven to be stable for
more than 14 years. As we look forward, agile software development is seeing wide-
spread adoption across the software industry. Agile software development places less
emphasis on upfront analysis and more emphasis on deferring decisions until more
knowledge is available. In this setting, identifying stable application services at the
right granularity before software service development starts is even more important,
as identifying the wrong services can lead to extensive rework. We believe that the
software service design process outlined in this paper has shown to facilitate service
identification while, at the same time, significantly reducing the need for upfront
analysis, making it immensely suitable for agile development projects.

References

1. Arsanjani, A., Ghosh, S., Allam, A., Abdollah, T., Ganapathy, S., Holley, K.: SOMA: A
method for developing service-oriented solutions. IBM Systems Journal 47, 377–396
(2008)

2. Erradi, A., Anand, S., Kulkarni, N.: SOAF: An Architectural Framework for Service Defi-
nition and Realization. In: Proc. SCC 2006. IEEE, Los Alamitos (2006)

3. Erl, T.: SOA Principles of Service Design. Prentice Hall, Upper Saddle River (2008)
4. Erl, T.: SOA Design Patterns. Prentice Hall, Upper Saddle River (2008)
5. Kaabi, R.S., Souveyet, C., Rolland, C.: Eliciting service composition in a goal driven

manner. In: Aiello, M., et al. (eds.) Proc. ICSOC 2004, pp. 305–308. ACM Press, New
York (2004)

6. Klose, K., Knackstedt, R., Beverungen, D.: Identification of Services - A Stakeholder-
based Approach to SOA development and its application in the area of production plan-
ning. In: Österle, H., et al. (eds.) Proc. ECIS 2007. St. Gallen, pp. 1802–1814 (2007)

7. Kohlmann, F.: Service identification and design - A Hybrid approach in decomposed fi-
nancial value chains. In: Reichert, M., et al. (eds.) Proc. EMISA 2007, Koellen, Bonn, pp.
205–218 (2007)

8. Lämmer, A., Eggert, S., Gronau, N.: A Procedure Model for SOA-Based Integration of
Enterprise Systems. Int. Journal of Enterprise Information Systems 4, 1–12 (2008)

9. Levi, K., Arsanjani, A.: A Goal-driven Approach to Enterprise Component Identification
and Specification. Communications of the ACM 45, 45–52 (2002)

10. Object Management Group (OMG): Business Process Modeling Notation, V1.1. OMG
Document Number: formal/20012-01-17,
http://www.omg.org/docs/formal/012-01-17.pdf

11. Papazoglou, M.P., van den Heuvel, W.-J.: Service-oriented design and development meth-
odology. Int. Journal of Web Engineering and Technology 2, 412–442 (2006)

428 S. Patig and H. Wesenberg

12. Papazoglou, M.P., Yang, J.: Design Methodology for Web Services and Business Proc-
esses. In: Buchmann, A., Casati, F., Fiege, L., Hsu, M.-C., Shan, M.-C. (eds.) TES 2002.
LNCS, vol. 2444, pp. 175–233. Springer, Heidelberg (2002)

13. Quartel, D., Dijkman, R., van Sinderen, M.: Methodological support for service-oriented
design with ISDL. In: Aiello, M., et al. (eds.) Proc. ICSOC 2004, pp. 1–10. ACM Press,
New York (2004)

14. Patig, S., Wesenberg, H.: Role of Process Modeling in Software Service Design. Preprint
No. 219, University of Bern (May 2009)

15. Wesenberg, H., Landre, E., Rønneberg, H.: Using domain-driven design to evaluate com-
mercial off-the-shelf software. In: Proc. Companion OOPSLA 2006, pp. 824–829. ACM
Press, New York (2006)

16. Zhang, Z., Liu, R., Yang, H.: Service Identification and Packaging in Service Oriented Re-
engineering. In: Chu, W.C., et al. (eds.) Proc. SEKE 2005, Skokie, pp. 620–625 (2005)

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 429–436, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Assisting Trustworthiness Based Web Services Selection
Using the Fidelity of Websites*

Lijie Wang, Fei Liu, Ge Li**, Liang Gu, Liangjie Zhang, and Bing Xie

Software Institute, School of Electronic Engineering and Computer Science,
Peking University, Beijing 100871, P.R. China

Key Laboratory of High Confidence Software Technologies, Ministry of Education,
Beijing 100871, P.R. China

{wanglj07,liufei08,lige,guliang05}@sei.pku.edu.cn,
{zhanglj06,xiebing}@sei.pku.edu.cn

Abstract. Web services selection aims to choose an appropriate web service
among a number of service candidates. The trustworthiness of web services is
an important metric for web services selection. Many trustworthiness based web
services selecting methods have been proposed in the academic community.
However, the fidelity of web service's supporting websites (e.g. the websites
providing the service, or referencing the service.), as an important factor for the
evaluation of web services’ trustworthiness, is often ignored. This leads to that
existing methods cannot provide service consumers with a comprehensive view
of the web services. In this paper, we propose a method to estimate the fidelity
of web services’ supporting websites, and present a novel trustworthiness based
web services selection approach using our estimation result. A case study con-
ducted in this paper indicates that, by using our approach, we can provide active
assistance for service consumers during web services selection.

Keywords: Web Services, Services Selection, Fidelity, Quality of Service.

1 Introduction and Related Work

With the increasing number of available web services on the internet, web services
selection, which aims to select an appropriate web service among a bunch of func-
tionally similar service candidates, is becoming a crucial task. Many researches on
web services selection were proposed in the academic community in recent several
years [3-6]. Recently, trustworthiness is introduced into services selection by many
researches [5, 6]. In these researches, the trustworthiness of an individual web service
is often acquired by collecting feedback from previous consumers, mainly in the form
of rating on specific criteria of the service. However, all these existing researches
mainly focus on using the quality or the trust of the individual service to conduct

* This work was supported by the National Basic Research Program of China (973) (SN:

2005CB321805), the Science Fund for Creative Research Groups of China (SN: 60821003),
and the National Natural Science Foundation of China (SN: 60803010, 60803011).

** Corresponding author.

430 L. Wang et al.

selection of services. A comprehensive evaluation about the service is lacking in these
researches.

For a specific web service on the internet, there are always some websites being re-
lated with the service. For instance, for a web service, there must be a website provid-
ing the executing environment for it, there must be some website(s) to publish the
service, and there may be some website(s) providing reference links to the service. All
these websites provide support for web services. In this paper, websites providing
support for web services are called “supporting websites”. Based on the different type
of support they provide for services, we classify supporting websites into three types:

 Service Provider (abbreviated as SP): The website providing the executing envi-
ronment for the service. A service’s SP is specified by an end point described in the
service’s WSDL document.

 WSDL Hoster (abbreviated as WH): The website where the service is published
on. Because a service is described by a WSDL document, publishing a service is
actually hosting the service’s WSDL document onto a website. Thus, we can get a
service’s WH from the URL of the service’s WSDL document.

 Service Reference (abbreviated as SR): The website containing reference links (i.e.
hyperlinks) to the service. Because a web service is described by the service’s
WSDL document, a service’s SR actually refers to the website containing hyper-
links to the service’s WSDL document.

Web Service

- Name: String

Service Provider
- DomainName

WSDL Hoster
- DomainName

ServiceReference

- DomainName

1..*

1..1

1..*

1..*

1..*

1..*

Fig. 1. Web services and supporting websites

The fidelity of a supporting website is the probability that it may provide valid web
service information, it can be calculated using the proportion of valid web service
information it provides.

Since there are three types of supporting websites for a web service, a website may
play different roles for the same web service (or for different services). Actually, a
website has different fidelity when it plays different roles. For example, all of the
services provided by website SiteX are available, but many service hyperlinks on it
are invalid. It means that website SiteX has high fidelity as a SP, but its fidelity is
relatively low as a SR. Therefore, we treat a supporting website playing multi-roles as
different ones, e.g. we treat ‘SiteX’ as two websites, one plays the role as a SP; the
other one plays the role as a SR. As shown in Fig 1, Be stands for the website B play-
ing the role as a SP, Bb stands for the website B playing the role as a SR.

In real life, the fidelity of supporting websites provides valuable reference for a
service consumer to judge the services at hand during web services selection. For
instance, it is natural that a service consumer tends to choose a web service whose
supporting websites have higher fidelity. The fidelity of supporting websites is an

Assisting Trustworthiness Based Web Services Selection Using the Fidelity of Websites 431

important factor for evaluation of the trustworthiness of services. It provides a com-
prehensive view of the services. However, existing evaluation mechanisms often
ignore this factor and do not provide service consumers with a comprehensive view of
web services. In this paper, we propose a method to assess the fidelity of supporting
websites, and present a novel trustworthiness based web services selection approach
using the fidelity of the service’s supporting websites.

The rest of this paper is organized as follows. In section 2, we propose an approach
to assessing the fidelity of supporting websites. The fidelity is used to assess the
trustworthiness of web services in section 3. In section 4, we conduct a case study to
evaluate our work. Section 5 draws the conclusion and some future work.

2 Assessing the Fidelity of Supporting Websites

2.1 Modeling the Relationship between Supporting Websites

When a service consumer uses a web service (represented as s), the typical sequence
of supporting websites that he/she visits is from a SR of s to a WH of s, and then from
the WH to the SP of s (the solid arrow shown in Fig 2). In other words, there exists
linkage relation between the three types of supporting websites of a service. Z. Gyön-
gyi et al. argued that the trust of a website contributes to that of its linked websites
[2]. The fidelity here also reflects a facet of trust for websites. We argue that there
exists a fidelity transition relationship between the supporting websites of a service,
along the sequence mentioned above, shown as the dotted arrow in Fig 2. The fidelity
of a SR website contributes to that of its linked WH websites; the fidelity of a WH
website contributes to that of its linked SP websites.

Service Reference WSDL Hoster Service Provider

URL of WSDL file End Point

Sequence of visiting Transition of fidelity

Fig. 2. Relationship between the supporting websites of a service

Fig. 3. Fidelity transition relationship between supporting websites of service WSi and WSj
shown in Fig 1, respectively

We model the supporting websites of a web service (represented as s) and the fidel-
ity transition relationship between them as a graph =s s sG (V ,E) consisting of a set

sV of Ns sites (i.e. vertices, Ns is the number of the supporting websites of service s)

and a set sE of directed links (i.e. edges) that represent the fidelity transition

432 L. Wang et al.

relationship between the two linked websites. Thus, the fidelity transition relation-
ships between the supporting websites of service WSi shown in Fig 1 are modeled as
the graph shown in Fig 3(a).

The fidelity transition relationships between all of the supporting websites of all
web services are modeled by combining the models of each individual service in the

following way: =G (V ,E) , where
=

= U
1

k

n

ws
k

V V , n is the number of web services,

 = < > ∃ < >∈ ∧ = < >（ ）
i ipq ws ws pqE p,q,w E , p,q E w CountOf p,q{ | } ;

pqw is the weight of edge <p, q>, and actually it is the number of the services co-

supported by p and q. The weight of an edge reflects the closeness degree of the rela-
tionship between the two linked websites. According to the modeling method, the
fidelity transition relationships between the supporting websites of the two web ser-
vices shown in Fig 1 are modeled as a graph shown in Fig 4(a).

 (a) (b)

Fig. 4. Combined model of fidelity transition relationship between supporting websites for the
web services shown in Fig 1

The adjacency matrix representation TM corresponding to the graph G in Fig 4(a)
is shown in Fig4(b) (the number labeled beside the node in Fig4(a) is the id of the
corresponding website).

2.2 Assessing the Fidelity of Supporting Websites

We divide the assessment of fidelity for supporting websites into two steps: 1) Initializa-
tion, i.e. initialize the fidelity for each supporting website according to the service in-
formation provided by the website itself; 2) Transition, i.e. utilize fidelity transition
between related supporting websites to get the final fidelity for each website.

2.2.1 Initializing the Fidelity of Supporting Websites
For a supporting website e, we use F0(e) to represent the initial fidelity of e. We lev-
erage the proportion of valid web service information a supporting website provides
to initialize its fidelity.

Actually, the fidelity of supporting websites with different roles, i.e. SP, WH, and
SR, has different meanings. The fidelity of a SP stands for the probability that it may
provide available web services. The fidelity of a WH stands for the probability that it
may host valid WSDL documents. The fidelity of a SR stands for the probability that
it may provide valid hyperlinks to web services. Therefore, the initialization of the
fidelity for supporting websites with different roles is different:

Assisting Trustworthiness Based Web Services Selection Using the Fidelity of Websites 433

(1) For a supporting website with the role as a SR, we use the proportion of valid
service hyperlinks it provides to initialize its fidelity. We set a service hyperlink
to be valid only if service consumers could obtain the linked WSDL document
which should confirm to the WSDL schema and could reach the referenced ser-
vice successfully, otherwise invalid.

(2) For a supporting website with the role as a WH, we use the proportion of valid
WSDL documents it hosts to initialize its fidelity. We set a WSDL document to
be valid only if it confirms to the WSDL schema and service consumers could
reach the declared service successfully, otherwise invalid.

(3) For a supporting website with the role as a SP, we use the proportion of available
services it provides to initialize its fidelity. We send an empty testing SOAP mes-
sage to the service’s endpoint listed in the WSDL file and analyze the returned
HTTP status codes to verify whether the service is active.

2.2.2 Utilizing Fidelity Transition between Supporting Websites
Based on the initial fidelity, we use the model described in section 2.1 to implement
fidelity transition according the following three principles:

1) The fidelity propagated from a supporting website to its linked websites should be
attenuated in some degree with respect to the source website’s fidelity. We leverage a
dampening coefficient β (0<β<1) to achieve such attenuation;
2) The more targets a website links to, the less fidelity propagated from this website
to each target, i.e. the fidelity propagated from a website would be in inverse propor-
tion with the out-degree of the source website;
3) Given a supporting website s, the closer the relationship between a linked website
and s is, the more fidelity propagated from s to the target website. We leverage the
weight of edges in the model described in section 2.1 to follow this principle.

Input: TM adjacency matrix of fidelity transition graph G
F0 initial fidelity vector produced in section 2.2.1
P, H, R the set of supporting websites with roles as SP, WH, SR, respectively

, reservation factor, dampening coefficient, +
Output: F vector of fidelity for each supporting website after transition
Begin
(step1) For each h in H

F(h) = F0(h) //each website reserves a part of its initial fidelity
For each i in R //the fidelity of a WH is influenced by the fidelity of the linking SR

0 1

() () [(,) / (,)]N

j
h i i h i jF F TM TM

(step2) For each p in P
F(p) = F0(p) //each website reserves a part of its initial fidelity
For each i in H //the fidelity of a SP is influenced by the fidelity of the linking WH

1

() () [(,) / (,)]N

j
p i i p i jF F TM TM

 return F //return the result
End

Fig. 5. Fidelity transition algorithm

434 L. Wang et al.

The algorithm in Fig 5 illustrates the process of fidelity transition between support-
ing websites. Actually, according to the model described in section 2.1, fidelity only
propagates from SR websites to WH websites (labeled as step 1), then from WH web-
sites to SP websites (labeled as step 2). The transition strategies for step 1 and step 2
are similar, due to the limited space, we only explain step 1 in detail here.

Given a WH website (represented as h), its fidelity contains two parts: 1) one part
is the reserved part of its initial fidelity (i.e. α·F0(h)). 2) The other part is the fidelity
propagated from its linking SR websites (i.e. N

0 1
() [(,) / (,)]β

=
⋅ ⋅ ∑ j

i i h i jF TM TM).

β is the dampening coefficient introduced to follow principle 1,

0 1
() [(,) / (,)]

=
⋅ ∑N

j
i i h i jF TM TM is used to follow principle 2 and 3, where (,)i hTM is

the weight of edge <i, h>,
1

(,)
=∑ N

j
i jTM is the out-degree of website i.

3 Services Selection Using Trustworthiness

3.1 Assessing Trustworthiness for Web Services

In the section above, we get the fidelity of supporting websites. In this section, we
will make use of the fidelity of websites to assess the trustworthiness of web services.

Given a service s, we use T(s) to represent s’s trustworthiness. T(s) can be meas-
ured in three dimensions, i.e. the dimensions of service’s SP, WH, and SR. Thus, T(s)
can be represented as a triple: T(s)=<TP(s), TH(s), TR(s)>, where TP(s) , TH(s), and
TR(s) is the trustworthiness measured in the dimension of s’s SP, WH, and SR, respec-
tively. The computation is as follows:

() () ()
() , () , ()p h bP H R

s
s

F p F h F b
T s T s T ss s sP H R

s s
s s

P H R
P H R

Ps, Hs, and Rs is the set of service s’s SP websites, WH websites, and SR websites,
respectively. In addition, we give rewards to the services which are more popular by
multiplying the number of their supporting websites.

Then we convert the multi-dimensional representation into a single-dimensional
representation in the following way:

() () () ()P H RT s T s T s T s , where 1χ δ γ+ + = (*)
3.2 Services Selection Using Trustworthiness of Web Services

The essential purpose of services selection is to provide service consumers with a
novel approach to choose the appropriate service more easily. The common practice is
to provide a mechanism for ranking the functionally similar service candidates. Thus,
in this section, by using services’ trustworthiness, we propose an approach for ranking
services candidates.

Assume the criteria used for services ranking is K. Given a service s, we use K(s)
to represent such criteria of s. K(s) could be represented as a two-tuples: K(s) = <M(s),
T(s)>, where T(s) is the trustworthiness of s assessed using supporting websites’

Assisting Trustworthiness Based Web Services Selection Using the Fidelity of Websites 435

fidelity, and M(s) is the evaluation of s with respect to some other metrics, e.g. avail-
ability1. An approach for comparing services according to K is needed.

We argue that the assessed trustworthiness of services reflects the quality of ser-
vices in some degree; it plays the role as an assistant for services selection instead of a
‘decision maker’. Thus, if the gap between M(s) is larger than a given threshold, the
comparing is determined on the aspect of M(s), otherwise determined by T(s).

4 Case Study

The scenario of the case is: A service consumer needs a service providing weather
forecast. But there are a bunch of services providing this function, and the perform-
ance of them are roughly the same. Which service should the consumer select?

There are 16 web services providing weather forecast in our collected dataset2. We
monitored the availability of these 16 services for two weeks3. Then we rank these 16
services in decreasing order of availability (the availability is used as M(s) here). The
top 6 services4 in the ranked list are shown in the left part of Table 1. The first column
from left is the ranking order; the second column from left is the ranked list in de-
creasing order of availability; the third column from left is the corresponding avail-
ability. The availability of the top 6 services ranges from 100% to 98%; it would be
hard for users to choose a service from them just according to their availability.

Due to the small gap between the criteria of M(s), we rank the 6 web services again
using their assessed trustworthiness5 (i.e. T(s)). The ranked list is shown in the right
part of Table 1. The third column from right is the ranked list; the first column from
right is the corresponding trustworthiness.

It is easy to notice the difference between the two ranked lists. For instance, in the
left ranked list, the ranking order of service ‘globalweather’ is 4; its ranking order is 1
in the right ranked list. Through analyzing the dataset, we find that the SP of service
‘globalweather’ is ‘webservicex.net’. This website is a professional service provider
which provides many fine web services. Moreover, service ‘globalweather’ is also
referenced by many websites among which there are several outstanding websites
whose fidelity is high. In contrast, the fidelity of the supporting websites for service
‘WeatherForecastService’ is relatively low; that is why its ranking order changes so
much in the two ranked lists.

This case study indicates that the fidelity of web services’ supporting websites does
provide service consumers with a more comprehensive view of the services. With the

1 We would not restrict the possible options for M(s); we just use availability as an example

here. Actually, the assessed trustworthiness of services could be used together with many
metrics.

2 The dataset was collected from the Internet according to the approach presented in [1] basi-
cally. We find these services in the dataset by searching with ‘weather’ ‘forecast’ as key-
words firstly. Then we check the results manually.

3 We check whether the service is available using the approach in section 2.2.1 once an hour.
We use the ratio of successful check for each service as their availability.

4 The reason for only listing the top 6 services is that their availability is high and very close with
each other; it is hard for users to choose a service from them only using availability easily.

5 α and β is set to 0.8 and 0.2; χ ,δ andγ is set to 0.7, 0.2, and 0.1 respectively.

436 L. Wang et al.

Table 1. Comparing of the two ranked lists

Rank according to M(s) Rank according to K(s) Rank
Service Name M(s) Service Name M(s) T(s)

1 WeatherWebService 100% globalweather 99.2% 0.634

2 WeatherForecast
Service 100% WeatherWebService 100% 0.585

3 FastWeather 99.5% FastWeather 99.5% 0.549
4 globalweather 99.2% usweather 98.3% 0.549
5 usweather 98.3% WeatherForecast 98% 0.527

6 WeatherForecast 98%

WeatherForecast
Service 100% 0.43

comprehensive knowledge about web service candidates, service consumers can make
a wiser decision in web services selection more easily.

5 Conclusion and Future Work

In this paper, we proposed a new feature for the trustworthiness of web service, i.e.
the fidelity of supporting websites, to assist trustworthiness based services selection.
Actually, the assessed trustworthiness of web service reflects the overall condition of
the service’s surrounding. However, we argue that the fidelity of supporting websites
plays the role as an assistant instead of a ‘decision maker’. The case study indicates
the active effect of our approach. Some future work includes applying our approach
on dynamic services selection, and proposing some other mechanisms to initialize the
fidelity of supporting websites, etc.

References

1. Li, Y., Liu, Y., Zhang, L., Li, G., Xie, B., Sun, J.: An Exploratory Study of Web Services
on the Internet. In: Proceedings of the IEEE International Conference on Web Services,
ICWS, pp. 380–387 (2007)

2. Gyöngyi, Z., Garcia-Molina, H., Pedersen, J.: Combating Web Spam with TrustRank. In:
Proceedings of the 13th International Conference on Very Large Data Bases, VLDB, pp.
576–587 (2004)

3. Liu, Y., Ngu, A., Zeng, L.: QoS Computation and Policing in Dynamic Web Service Selec-
tion. In: Proceedings of the 13th International Conference on World Wide Web, pp. 66–73.
ACM Press, WWW (2004)

4. Zeng, L., Benatallah, B., Ngu, A., Dumas, M., Kalagnanam, J., Chang, H.: QoS-Aware
Middleware for Web Services Composition. IEEE Transactions on Software Engineer-
ing 30(5), 311–327 (2004)

5. Maximilien, E.M., Singh, M.P.: A Framework and Ontology for Dynamic Web Services
Selection. IEEE Internet Computing 8(5), 84–93 (2004)

6. Haddad, J.E., Manouvrier, M., Ramirez, G., Rukoz, M.: QoS-Driven Selection of Web Ser-
vices for Transactional Composition. In: Proceedings of the IEEE International Conference
on Web Services, ICWS, pp. 653–660 (2008)

Web Service Search on Large Scale

Nathalie Steinmetz1,2, Holger Lausen2, and Manuel Brunner2

1 Semantic Technology Institute (STI) Innsbruck, University of Innsbruck,
Technikerstrasse 21, A-6020 Innsbruck, Austria

nathalie.steinmetz@sti2.at
2 Seekda GmbH, Grabenweg 68, A-6020 Innsbruck, Austria

firstname.lastname@seekda.com

Abstract. The Web is nowadays moving from a Web of data to a Web
of services. In this paper we present our approach for Web Service dis-
covery on Web scale, targeted to support flexible and on-demand Web
Service usage on the Web. The approach starts with crawling the Web
for Web Services, gathering on the one hand WSDL service descriptions
and related documents, and, on the other hand, Web APIs. We describe
our methodology for building unique service objects from multiple Web
resources. Then we provide an overview of how we extract basic service
information from all the data and use it to semantically annotate the
resulting services.

1 Introduction

The Web is currently changing from a Web of pages to a Web of services, that
is instead of mainly assembling static documents the Web is more and more col-
lecting and offering access to Web Services. With Web Services technologies all
possible functionalities can be exposed and used in multiple ways. They can be
flexibly integrated both in traditional software systems and in Web pages like for
example Web 2.0 style portals. This way they provide a new ground for interop-
erability of business logics. Most Web Services are published using either WSDL
(Web Service Description Language) or following a RESTful (Representational
State Transfer) approach. For users to be able to use a service they need first to
be aware of the existence its particular features.

In the beginnings of the Web Service era, UDDI[2] was proposed as solution to
publish and search services, but the standard has not prevailed in the domain of
publicly available Web Services. Today Web Services are often registered on spe-
cific portals (e.g. XMethods1 or ProgrammableWeb2) or are simply put on the
Web together with some Web pages describing the features of the service. This
leads to two main ways how services are searched today: over the specific por-
tal’s search functionalities or using standard search engines and keyword search.
[1] and [5] discuss the efficiency of these approaches and outline some related

1 http://www.xmethods.net
2 http://www.programmableweb.com/

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 437–444, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.xmethods.net
http://www.programmableweb.com/

438 N. Steinmetz, H. Lausen, and M. Brunner

problems like outdated or missing data. [6] provides a quantitative analysis of
Web Service search using these methods.

Our approach allows discovery of publicly available Web Services, both WSDL
and RESTful ones, by (1) performing a focused Web crawl, (2) identifying rel-
evant documents and (3) aggregating available information to lightweight an-
notations of the services. Using this approach we collected the largest pool of
(WSDL) Web Services known of (June 2009: more than 28.000 services from
around 8.000 providers).

2 Crawling the Web for Services

The big success of search engines today is only possible due to efficient crawling
solutions. A crawler exploits the fact that Web pages are interlinked with hyper-
references: by following the links found in a set of initial pages (seed) a crawler
discovers more URLs. These (yet) unvisited URLs build the frontier of a crawl,
distributed on multiple queues (e.g., one queue per host or per IP). The frontier
is dynamic and grows according to the scope of a crawl. A scope defines which
of the newly found URLs will be disregarded and which will be queued. Scoping
and priority assignments to queues and URLs are the most important aspects
in building a focused crawler like our Web Service crawler. To focus our crawler
on that part of the Web that is relevant to Web Services is important, as due
to (a) the size of the Web, (b) restricted resources and (c) time constraints, it is
unrealistic to provide a complete coverage of the whole Web.

Our focused crawler is based on the Internet Archive open-source crawler
Heritrix3. It has been designed in a modular way that allows extensions for all
relevant aspects such as scoping of URLs, queue assignment strategies, URL
precedence, etc. [8]. We focus our crawl on WSDL files, on related documents,
as well as on Web pages that informally describe Web APIs (a.k.a. RESTful
services).

2.1 WSDL Crawling Strategies

There are several aspects we need to take into account when crawling for WSDL
Web Services and related information:

Seeds. The seed URLs that we use to start a crawl are relevant for the success.
We collect them in a semi-automatic process that involves, e.g., screening of well
known sites, like the specialized portals mentioned in Section 1 and a selection
of URLs from previous crawls.

WSDL Identification. We concentrate our search on service descriptions and
related documents, which are mostly stored in textual files. That said, we do
by default reject a lot of content in our crawls, like images, audio or video

3 http://crawler.archive.org/

http://crawler.archive.org/

Web Service Search on Large Scale 439

files. We specifically want to look at pages like HTML, XML, PDF, other text
documents, i.e. all types of files that could either contain a service description
or a related information. During the crawl process we check whether a fetched
XML resource is a valid WSDL description and whether it refers to publicly
accessible endpoints.

Related Information Identification. Related information may consist of
provider documentation of the service functionality, provider Web pages, Wikis,
Blogs, FAQs, user ratings and many more. The documents may be pointing to
the service, the service provider its service definition or may also not directly
be linked to the service. As a first step we consider the inlinks and outlinks of
the WSDL documents, i.e., those resources that include links pointing to the
service interface description and vice versa. We can gather this information from
the crawl link graph that is being written during a crawl iteration; the crawler
follows the outlinks in a given page and writes the from-link and its outlinks
into a link graph. The task of collecting related information is split onto the
crawl run-time and the post analysis of the data because those documents that
point to the WSDL descriptions, i.e. the inlinks, cannot be identified during the
running crawl and are collected in a post-processing step by iterating through
the crawl link graph (see also Section 4).

But it is not yet sufficient to collect related information only by relating
outlinks and inlinks to the service descriptions: this way a lot of information
may stay hidden to us (e.g., a price page published by the provider but not
linking directly to the service description). This leads to another way of detecting
information related to services: looking at term vector similarities. We assume
that by looking at the term vectors of pages we are able to assess the similarity
between documents and services and can thus conclude that they are related.
We though calculate at crawl run-time the term vectors of all fetched pages and
store them. The analysis, i.e., the term vector similarity comparison, is done
afterwards in the postprocessing step. Clearly we cannot apply this approach
blindly on all fetched documents, as this would require far too much computing
power and time. We restrict our approach to checking the similarity of the term
vectors of services to the term vectors of documents fetched from their respective
provider domains, which we screen more intensively than other domains.

Queue and URL Scheduling. As we mentioned already before, queue and
URL scheduling are very important means to focus a crawl. The crawler creates
new queues per top-level domain, i.e. per host. Influencing the URL and queue
scheduling means (in the specific case of Heritrix) allocating costs or precedences
to URLs and/or queues before they are being scheduled by the frontier (low cost
or high precedence meaning the URL or queue is being scheduled more upfront).
We have developed an approach for URL cost assignment that is targeted on
the prioritizing of (assumable) Web Service related documents. We set the cost
of each new URL by default to 20. Then we check the URL for negative features
that we penalize by increasing the costs (e.g. a lot of subdomains, more than
one query string, more than one path segment). Afterwards we start privileging

440 N. Steinmetz, H. Lausen, and M. Brunner

positive aspects of the analyzed URLs by reducing the costs (e.g. URLs that
contain “?wsdl”, “ws”, “service”, “api”).

As last step we take into account a score that we calculate for the provenance
page, i.e. for the ’from-link’ URL whose outlinks we are currently assigning
costs to. A high score means that it is rather probable that this page is somehow
talking about Web Services; we assume that a page that is talking about services
might with a high probability link to other pages that talk about services. We
calculate the score based on the number and position of the occurrence of Web
Service related terms in the page’s content, taking as well into account HTML
mark-up (e.g. words appearing in the title text or being marked bold). Finally
we reduce the costs of the outgoing links by the score of the provenance page.

The aforementioned strategies to set, increase or reduce the costs of URIs can-
not be applied to queues. Here we follow another approach: we set the precedence
of the queues to the lowest cost that the URLs within those queues provide. This
makes that URLs with low costs, i.e. interesting URLs, automatically enhance
the precedence of the queue they are being scheduled in. This way the most
interesting URLs should always be processed first. [11] provides a more detailed
overview of the Service Crawler’s queue and URL scheduling approach.

2.2 Web API Crawling Strategies

Detecting Web APIs on the Web is unlike harder than detecting WSDL files or
even related documents. Web APIs are HTML documents, same as other Web
pages, differentiated only by the fact that they expose a functionality that can be
invoked by (in most cases) adding a specific query string to the URL that then
calls a specific method in the background (e.g. https://api.linode.com/api/?
api_key=cakeisgood&action=domainGet&DomainId=45F33). RESTful services,
as introduced in [4], are usually a lot easier to create than WSDL services, use basic
HTTP request methods (like GET, POST, PUT, DELETE) and are quite under-
standable for humans. We mostly use the term Web API, instead of REST service,
as an API may represent a REST service, but it can also represent a service that
is not strictly RESTful (following the definition in [4]). We have developed two
different initial approaches to tackle the challenge of crawling Web APIs, which
both are still in a rather experimental phase and not yet as well matured and eval-
uated as the WSDL crawling approach. We will outline the evaluation approach
for the Web API crawling in Section 5.

Automatic Classification Approach. Our first approach follows a traditional
data mining approach: text classification. Automated classification (also called
categorization) of texts has become quite important as in recent years huge
amounts of digital documents are becoming available[9]. There are two major
types of text classification: supervised and unsupervised[7] learning approaches.
In short, supervised learning works with a positive example set, i.e., a set of
already classified documents, which is taken as input and used to produce a class
label prediction (the so-called classification). Unsupervised learning functions are
used when there is no training set available for the machine learning tool.

 https://api.linode.com/api/?api_key=cakeisgood&action=domainGet&DomainId=45F33
 https://api.linode.com/api/?api_key=cakeisgood&action=domainGet&DomainId=45F33

Web Service Search on Large Scale 441

In our approach we use a supervised learning algorithm, concretely the Sup-
port Vector Machine (SVM) model[7]. We used Web API documents that we
collected from ProgrammableWeb4 as positive example set. The automatic clas-
sification is done within the crawler, by adding a classification processor into the
regular crawl environment. As classifier we use the open-source data-mining tool
RapidMiner5.

Term Frequency Approach. Our second approach is based on term frequen-
cies and tries to tackle, amongst others, the weaker aspect of the automatic
SVM approach: the fact that it is only based on words and does not take into
account HTML structures and mark-ups. We might as well want to take into
account the URL of a Web document, which often contains words describing the
topic of the page. Another relevant aspect covers the syntactical properties of
the language used in Web API homepages. Most times they contain a higher
amount of camel-cased words than random pages (e.g. getDocument) and often
they contain fewer external links than usual. Often Web API homepages also
contain internal links that target to the same domain, e.g., example calls for the
described API.

We have created three indicators that group all the relevant parameters: API,
Documentation and Web-related. The API indicator takes into account the ap-
pearance of keywords like “api”, “developer”, “lib”, “code”, “service”, etc. in
the URL and/or content of a page and looks for a high amount of camel-
cased words. The Documentation indicator looks for keywords like “dev”, “doc”,
“help”, “wiki”, etc. in the URL of a page and checks the page’s content for the
number of outlinks and camel-cased words. The Web-related indicator takes into
account keywords like “rest”, “web service”, “api”, etc. in the URL and/or con-
tent of a page and looks for a high amount of inner domain links in the page’s
content. [11] describes the parameters and indicators in more detail. Each of
these indicators is regarded individually and is assigned a score that indicates to
what level a specific document complies with this indicator: the three indicator
scores need to be over a specific threshold in order to mark the specific page as
Web API.

3 Building Unique Service Descriptions

After having harvested the Web for Web Service descriptions - both WSDLs
and Web APIs - we remain with a large amount of service descriptions and
related documents. But not all of these service descriptions correspond to exactly
one unique service. That is, we do not have a one-to-one mapping from service
descriptions to actual services. E.g., one WSDL can contain more than one single
service, each bound to different endpoints. But even more usual is the case that
multiple WSDLs are out there that resume to one single service. Often service

4 http://www.programmableweb.com/
5 http://rapid-i.com/content/blogcategory/38/69/

http://www.programmableweb.com/
http://rapid-i.com/content/blogcategory/38/69/

442 N. Steinmetz, H. Lausen, and M. Brunner

descriptions are hosted on more than one server, even sometimes from more than
one provider.

We have developed an approach to deduplicate WSDLs, i.e. to build unique
service objects that each represent single unique services. Our first step is to
extract the provider from the service description endpoint. This is a non-trivial
step, as it is not clear what is an authority and what is a registered domain.
Since there is no algorithmic method for finding the highest level at which a
domain may be registered for a particular top-level domain, we use the Public
Suffix List6 instead. An example would be the URL http://www.library.uibk.
ac.at/test.wsdl, where the provider resolves to uibk.ac.at, the domain of the
University of Innsbruck. Next we build a new unique (seekda) URL for the
service. This URL contains first the provider’s name and is then completed with
the service name (e.g. http://seekda.com/providers/cdyne.com/IP2Geo).

If one service assembles a set of WSDLs under one umbrella, we, as last
step, need to choose one service description that we present as the main one to
the user. We do so by choosing the URL that has the shortest path and the less
subdomains and - if available - belongs to the service provider domain. While this
might not always be the right choice, we think of it as a good starting indication.
This deduplication approach is so far restricted to the crawled WSDL service
descriptions; for Web APIs we create a similar unique identifier for each, which
contains the provider name and the hash value of the Web API URL instead of
the service name (as we do not know the name of a service in that case).

After a crawl iteration where we have more than 200.000 WSDL service de-
scriptions (see Section 2), we apply our algorithm for service deduplication on it
and remain with more than 28.000 unique Web Services.

4 Automatically Enriching Service Descriptions

We do not stop the analysis of the data we gathered during the crawl at the
deduplication of WSDL services. To each one of the unique service objects we
try to append some more information. We store this service meta-data in RDF
triples, using as structure ontologies that have partly been developed in the
scope of the Service-Finder project: Service-Finder Ontology7 and seekda Crawl
Ontology8.

The first meta-data that we store is the relation between services, their
providers and their related documents, whereas these documents refer to both
WSDLs and other documents. As already described in the sections 2 and 3,
we collect this information by (a) going through the link graphs stored by the
crawler and (b) when building the unique service objects.

Other meta-data that we collect refers to basic information that we can extract
around the fetched Web Services. One information bit that we gather around
the service endpoint is the geographic location of the service, that is the country
6 http://publicsuffix.org./
7 http://www.service-finder.eu/ontologies/ServiceOntology
8 http://seekda.com/ontologies/CrawlOntology

http://www.library.uibk.ac.at/test.wsdl
http://www.library.uibk.ac.at/test.wsdl
http://seekda.com/providers/cdyne.com/IP2Geo
http://publicsuffix.org./
http://www.service-finder.eu/ontologies/ServiceOntology
http://seekda.com/ontologies/CrawlOntology

Web Service Search on Large Scale 443

where the service is located (i.e. hosted). Another basic information that we
extract for all services is their liveliness, i.e. their availability and response times.
seekda is monitoring and storing these data on a daily basis, and provides a
corresponding availability graph with the service details.

Concerning the Web APIs we store initial meta-data concerning the three
indicators that we have described in Section 2.2, i.e. the indicator scores, the
number of camel-cased words, the number of external or inner links, etc. This
information can be used in later stages to refine the focused crawl approach for
this service type.

All the meta-data extracted about the two kinds of services as described
above can be concluded by the crawler or a direct postprocessing analysis of
the fetched data (without the need of complex information extraction, e.g.).
This data can be used in several ways: to improve semantic service discovery, to
provide service ranking (based e.g. on the availability of services) or to provide
the users of a service discovery engine with more information on a service than
only its technical description (see e.g. Service-Finder Portal, SOA4All studio).

5 Evaluation

We have evaluated our service crawling approach according to several indicators,
which are different for the WSDL and Web API approaches.

The WSDL and related information crawling approach was evaluated by, on
the one hand, pure performance measure indicators (e.g., documents crawled per
second, kB crawled per second) and, on the other hand, indicators that refer to
the quality of the resulting data, i.e. how much relevant information could be
found (e.g., number of WSDL documents, number of extracted service identi-
fiers). [3] provides detailed evaluation results using these indicators, comparing
three different crawl iterations.

For evaluating the Web API crawling approach we have created three data
sets: one set with random Web pages, one set with Web API Homepages from
ProgrammableWeb.com and one set with Web pages from the domain of “pro-
gramming languages”, taken from the dmoz.org directory. We have then run our
classifier over these three sets and evaluated the results. Detailed results of the
evaluation can be found in [10].

6 Conclusion and Future Work

In the scope of this paper we have described our approach for discovering Web
Services and related information on large scale, taking into account both WSDL
services and Web APIs. We have showed how we focus a Web Crawler to re-
trieve as many as possible services and service-related information. The fact
that there is no one-to-one mapping between WSDL service descriptions and
actual services has led us to introduce new unique service objects and identifiers
that assemble all duplicate services under one umbrella. We have shown how
we relate the crawled data, i.e. the related information and the WSDLs, to the

444 N. Steinmetz, H. Lausen, and M. Brunner

services and how we store this meta-data. Also we have provided an overview
of what other meta-data can currently be extracted from the raw crawl data.
Finally we have provided an overview of our evaluation approach for the three
crawling approaches: one WSDL and related information approach and two Web
API crawling approaches.

Some of the major issues that can be tackled in the future to improve the Web
Service crawling and analysis include the deduplication of related documents,
the detection of new means to find service related information on the Web, the
refinement of the Web API crawling and the unification of the current two Web
API classification approaches.

Acknowledgements

The work is funded by the European Commission under the projects Service-
Finder and SOA4All.

References

1. Bachlechner, D., Siorpaes, K., Lausen, H., Fensel, D.: Web service discovery - a
reality check. In: 3rd European Semantic Web Conference (2006)

2. Bellwood, T., Clément, L., Ehnebuske, D., Hately, A., Hondo, M., Husband, Y.L.,
Januszewski, K., Lee, S., McKee, B., Munter, J., von Riegen, C.: Uddi version 3.0
(July 2002)

3. Brockmans, S., Celino, I., Cerizza, D., Valle, E.D., Erdmann, M., Funk, A., Lausen,
H., Schoch, W., Steinmetz, N., Turati, A.: D7.3 - assessment of tests for alpha
release and revised testing scenarios and evaluation criteria for beta release (2009)

4. Fielding, R.T.: Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California, Irvine (2000)

5. Lausen, H., Haselwanter, T.: Finding web services. In: 1st European Semantic
Technology Conference (2007)

6. Lausen, H., Steinmetz, N.: Survey of current means to discover web services. Tech-
nical report, STI Innsbruck (August 2008)

7. Moens, M.-F.: Information Extraction: Algorithms and Prospects in a Retrieval
Context. Springer, Heidelberg (2006)

8. Mohr, G., Stack, M.: An introduction to heritrix. In: 4th International Web Archiv-
ing Workshop (2004)

9. Sebastiani, F.: Machine learning in automated text categorisation. Technical re-
port, Consiglio Nazionale delle Ricerche (1999)

10. Steinmetz, N., Lausen, H., Brunner, M., Martinez, I., Simov, A.: D5.1.3 - second
crawling prototype (2009)

11. Steinmetz, N., Lausen, H., Kammerlander, M.: Crawling research report - version
1 (2008)

Enabling Adaptation of Pervasive Flows:
Built-in Contextual Adaptation�

Annapaola Marconi1, Marco Pistore1, Adina Sirbu1, Hanna Eberle2,
Frank Leymann2, and Tobias Unger2

1 Fondazione Bruno Kessler - Irst, via Sommarive 18, 38050, Trento, Italy
{marconi,pistore,sirbu}@fbk.eu

2 Institute of Architecture of Application Systems,
Universitatsstrasse 38, 70569 Stuttgart, Germany

{eberle,leymann,unger}@iaas.uni-stuttgart.de

Abstract. Adaptable pervasive flows are dynamic workflows situated in the real
world that modify their execution in order to adapt to changes in the execution
environment. This requires on the one hand that a flow must be context-aware and
on the other hand that it must be flexible enough to allow an easy and continuous
adaptation. In this paper we propose a set of constructs and principles for embed-
ding the adaptation logic within the specification of a flow. Moreover, we show
how a standard language for web process modeling (BPEL) can be extended to
support the proposed built-in adaptation constructs.

1 Introduction

In recent years, domains involving highly dynamic environments, such as pervasive
computing and ambient intelligence, have turned their attention towards service ori-
ented architectures (SOA). Indeed, even if SOA was initially designed for business con-
texts, its concept of building applications by exploiting and combining existing services
matches very well the high variability, heterogeneity and dinamicity of these domains;
this opens the possibility of re-using in these domains principles, methodologies and
tools designed in the SOA framework. Conversely, for SOA, the dynamicity of these
fields represents an important challenge that will contribute to speed up research on
adaptability of service-based applications.

An example of this trend is the European project ALLOW [1]. The project exploits
the well-known ”workflow” concept, which has proven successful in the SOA field
for modeling service-based applications, and uses it as the core of a new program-
ming paradigm for human-oriented pervasive applications. More precisely, ALLOW’s
Adpaptable Pervasive Flows are workflows situated in the real world, i.e., they are logi-
cally or physically attached to entities like artifacts and people, move with them through
different contexts. While being carried along, they model the behavior intended for their
entity and the conditions on the execution context that guarantee a correct behavior. AL-
LOW’s flows are hence capable to check deviations on the behavior of the entity they
are attached to, as well as problems in the execution context, and to trigger adaptation.

There already exist pervasive computing infrastructures that use adaptation mech-
anisms (e.g., [6], [12]) . However, these mechanisms are mostly short-term, reactive

� This work is partially funded by the FP7 EU FET project Allow IST-324449.

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 445–454, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

446 A. Marconi et al.

re-composition of services, or dynamic re-binding of components. The vision behind
adaptable pervasive flows is to exploit the advantages of workflows to achieve kinds of
adaptation beyond those already mentioned. Short-term adaptation will allow reacting
to changes in the context by re-planning the structure of the running flow; it will be able
to react not only to a change in the context, but also to detect that, given the current
execution status, a constraint will be violated before a conflict actually occurs (proac-
tive). Moreover, by analyzing information relative to past executions and adaptations of
the flows, it will be possible to devise forms of long-term adaptation: the modifications
on the flow produce produce a new generation of the flow model on which all future
running flow will be instantiated.

A key enabling factor for all the aforementioned automated adaptation mechanisms
is a convenient way of embedding the adaptation logic within the specification of a flow.
The aim of this work is to present a set of modeling constructs and of tools that support
the encoding of context-aware run-time flow adaptation. In particular, we propose a set
of built-in adaptation modeling constructs that can be useful to add dynamicity and
flexibility to flow models. For each built-in adaptation construct we provide a BPMN-
like graphical representation and define a BPEL extension, with a clear syntax and
operational semantics, that can be used to specify and execute Adaptable Pervasive
Flows.

The paper is structured as follows. In Section 2 we present the adaptable pervasive
flow paradigm proposed within ALLOW and we describe the main concepts concerning
context-aware flow adaptation that drive the work described in this paper. Section 3
describes the built-in adaptation constructs that we propose for the encoding of context-
aware adaptation within flow models. Finally, Section 4 presents some related works
and draws conclusions, as well as on-going and future work.

2 Adaptable Pervasive Flows

Similar to the well-known workflows, adaptable pervasive flows (APF) consist of a
set of activities and a corresponding execution order, which is specified using control
elements such as sequence, choice, parallel operators.

A particular feature of APFs is that they are situated in the real world. This realizes
the pervasiveness of the flows and is achieved in two ways. First, the flows are logically
attached to physical entities (which can be either objects or humans) and move with
them through different contexts. Secondly, they run on physical devices (e.g., PDAs,
desktops). For instance, we can have a flow that models the shipment of a box and that
is thus logically attached to that box; each fragment of a box flow is then potentially
executed on different devices (e.g. the delivery part of the box flow is executed on the
flow engine installed on the truck, while the storage part is executed on the PDA of the
worker that in charge of storing the box).

Another important aspect of APFs is their adaptiveness. A flow is a dynamic entity
that modifies its execution in order to adapt to changes in the execution environment.
We consider different forms of flow adaptation. Vertical adaptation refines the flow or
re-maps services to the flow without affecting the flow structure, while horizontal adap-
tation modifies the flow structure by adding, changing, or removing fragments of the
flow. Moreover we distinguish between instance-based adaptation, were only the flow
instance that triggers the adaptation need is modified, from evolutionary adaptation that,

Enabling Adaptation of Pervasive Flows: Built-in Contextual Adaptation 447

on the basis of previous flow executions and adaptations, proactively modifies the flow
model on which all future flow instances will be based.

In the following we briefly introduce the most important concepts related to APFs.
For a detailed description of adaptable pervasive flows we refer the reader to [9].

After an analysis and comparison [3] of todays workflow standards the ALLOW
project has chosen BPEL [11] as a nucleus for the Adaptable Pervasive Flow Language
(APFL).

An important characteristic introduced by APFL is the distinction between abstract
and concrete activities. An abstract activity is a non-executable activity that allows to
partially specify the flow model at design-time. It expresses properties which will be
used at run-time to properly associate a concrete flow (a flow where all the activities are
concrete). A concrete activity is an executable flow activity. Concrete activities include
all standard BPEL basic and structured activities (e.g. sending/receiving of a message,
data manipulation, control constructs, parallel forks) and a set of APF-specific activities
that have been defined as BPEL extensions. Human interaction activities are activities
that require an interaction with a human, e.g. displaying or getting information through
a device. Context events are a special type of activities for receiving events broadcasted
by a particular entity called Context Manager. We call flow scope a connected set of
flow activities with unique entry and exit points. Moreover, we distinguish between a
flow and a flow instance. A flow instance is a particular execution of a flow. To better
underline the difference, we sometimes refer to flows as flow models.

Another basic element of the flow is the constraint, which can be used to annotate
a flow, a flow scope or an activity. There are multiple types of constraints: security,
contextual, adaptation, distribution etc. In its basic form, a constraint is a condition on
the execution of the flow. The most relevant kind of constraint for the problem adressed
in this paper is the contextual one, since it allows to specify conditions on the flow
execution environment. A first extension that has been defined, on which we base the
work in this paper, aims at providing a modeling approach to annotate BPEL processes
with contextual constraints and an execution model to monitor those constraints during
flow execution (see [8] for details).

To better understand the concepts described above, we will consider adaptation ex-
amples on a concrete flow model: the flow logically attached to a box, which describes
how the box should be handled when reaching a warehouse (see Figure 1). The flow
refers to the Warehouse Management Case Study of the ALLOW Project described
in [2]. The drawing of flows is based on the graphical representation of APFL basic and
structured activities defined in [7].

The basic flow in Figure 1 consists of two abstract activities Unload Me and Store
Me. During the execution of the flow, we assume that the box is not damaged: we model
this as a context constraint b.damaged == false.

An example of vertical adaptation is the refinement of the abstract activity Unload
Me to obtain a concrete flow that can be executed. This refinement is done at run-time
and can be achieved through different techniques, e.g. binding the abstract activity to a
concrete activity (e.g. web service, human task...), or, as in this example, substituting
the abstract activity with a concrete flow that can either be pre-defined or computed by
composing other concrete activities/flows. The flow waits to receive a context event that
it has been Picked Up by a worker, and then sends to the worker, through a human in-
teraction activity, the information on the location where the box should be brought to. It

448 A. Marconi et al.

then waits for a context event that it has been dropped. A characteristic of vertical adap-
tation is that, although a new flow is introduced, the structure of the original abstract
flow remains unchanged.

On the contrary, horizontal adaptation affects the structure of the flow model. Con-
sider for instance the situation where the context constraint not(b.damaged) is vio-
lated right after the unloading of a box. The adaptation mechanism tries to handle this
assumption violation by modifying the flow instance structure. In particular, the dam-
age extent is evaluated and, if the box can be repaired, the damage is fixed and the box
can proceed with normal storage, otherwise the procedure for handling damaged items
is started.

The adaptation cases presented so far are both examples of instance-based adapta-
tion: a running flow instance is modified, refined or recomposed respectively, to react to
an adaptation need. Now, suppose that analysing all past executions of Box Unloading
flows, we find out that 10% of executions required to handle damaged boxes, and that in
90% of the cases, the horizontal adaptation variant devised in Figure 1 allowed to prop-
erly handle the violation of the flow constraint. We can decide to proactively embed
this adaptation variant within the box flow model in such a way that all future execu-
tions will be able to cope directly with this adaptation need (evolutionary adaptation).
Specifying such a flow requires having modelling tools that allow on the one hand to
specify flexible, context and adaptation-oriented flows and on the other hand allow to
keep trace of adaptation variants within the flow model.

The aim of Built-in adaptation is to tackle this problem, providing a set of constructs
for embedding the adaptation logic within the specification of a flow. Although this
is just a first (design-time, manual) form of adaptation, we believe it is not a trivial
problem. Moreover, solving this problem will provide the modelling language that can
be used when tackling automated adaptation problems.

Fig. 1. Different Forms of Flow Adaptation

Enabling Adaptation of Pervasive Flows: Built-in Contextual Adaptation 449

3 Built-in Adaptation Constructs

In the rest of this Section we present a set of built-in adaptation constructs that can
support the encoding of context-aware adaptation within a flow model and for each
construct we define the corresponding BPEL extension.

3.1 Basic Constructs: Context Conditions in Standard Control Constructs

The first and most simple kind of built-in adaptation constructs exploits the possibility
to specify contextual conditions and applies it to standard BPEL control constructs (e.g.
if, while).

<e x t : c o n t e x t u a l I f s t a n d a r d−a t t r i b u t e s>
s t a n d a r d−e l e m e n t s

<e x t : c o n t e x t C o n d i t i o n e x p r e s s i o n L a n g u a g e =” anyURI ” ?>
c o n t e x t−exp r

</ e x t : c o n t e x t C o n d i t i o n>
a c t i v i t y

<e x t : e l s e i f>∗
<e x t : c o n t e x t C o n d i t i o n e x p r e s s i o n L a n g u a g e =” anyURI ” ?>

c o n t e x t−exp r
</ e x t : c o n t e x t C o n d i t i o n>

a c t i v i t y
</ e x t : e l s e i f>
<e x t : e l s e>?

a c t i v i t y
</ e x t : e l s e>

</ e x t : c o n t e x t u a l I f>

Fig. 2. <ContextualIf> Activity

For instance, the Contextual If construct, presented in Figure 2, allows to define
several flow fragments as possible branches in the execution of the flow. Each flow
fragment has an associated context condition. We can define also one flow fragment
without a context condition, which will encode the default behavior. The syntax of the
Contextual If is defined in Figure 21, where context-expr is a contextual condition
and activity is any APFL simple or structured activity. The operational semantics
of the construct is similar to a traditional if: the first fragment for which the context
condition holds will be selected and executed.

Similarly, we can extend other BPEL traditional control constructs.

3.2 Context Handlers

Testing a context condition at a certain moment in time is not always sufficient. Rather,
we might need to monitor the condition during the execution of several activities, and
to react to changes of this condition. If we consider the example of Figure 1, it can
be the case that while the box is unloaded/stored the staging/storage location is not
free anymore (e.g. because some other worker dropped a box there), or the box gets
damaged. It would be useful to have the possibility to specify that a certain context
condition must be monitored during the execution of a flow/scope and, if it is violated,
execute a set of predefined activities.

This possibility is offered by the Context Handler construct (see Figure 3).

1 The syntax of all BPEL extensions is defined using W3C XML Schema language and, when
not explicitly specified, refers to standard BPEL constructs.

450 A. Marconi et al.

<e x t : c o n t e x t H a n d l e r s>?
<e x t : o n C o n t e x t E v e n t t y p e =” f a u l t | even t−b l o c k i n g | e v e n t ”>+

<e x t : c o n t e x t C o n d i t i o n e x p r e s s i o n L a n g u a g e =” anyURI ” ?>
c o n t e x t−exp r

</ e x t : c o n t e x t C o n d i t i o n>
a c t i v i t y

</ e x t : o n C o n t e x t E v e n t>
</ e x t : c o n t e x t H a n d l e r s>

Fig. 3. <contextHandler> Activity

A context handler is associated to a scope, including the flow scope, and it defines
a set of contextEvents, each specifying a context condition (context-expr) and
a flow fragment (any APFL activity) that models the activities to be performed in
case the corresponding context condition is violated. During the execution of the main
flow, the context conditions are monitored and, as soon as one of them is violated, its
corresponding flow fragment is executed.

We defined different kinds of context events within a context handler, namely fault,
event-blocking, and event, which differ basically in the way their violation influ-
ence the execution of the scope to which the handler is attached.

When a fault-triggering condition is violated, the handling of the fault begins by
stopping all active activities within the scope. Then, the flow fragment specified for that
condition within the context handler is executed. The scope is considered to have not
completed normally and as such is not eligible for compensation for that execution.
Then normal process execution can resume from the point of the scope on. If this hap-
pens at the process level, then the process completes normally but would not be eligible
for process instance compensation.

For what concerns event-triggering conditions, we propose two alternative kinds of
context events: blocking and non-blocking. In the former case, whenever the condition
is violated the execution of the scope is stopped, then the flow fragment specified within
the context handler is executed and finally the scope execution is resumed. Whereas in
the latter case the execution of the scope proceeds normally and the flow fragment
specified within the context handler is executed concurrently.

Figure 5 presents an example of an event-blocking contextHandler used to check
the availability of the assigned staging location during the unloading of a box.

3.3 Contextual One-of and Cross-Context Links

The aim of the Contextual One-of is to allow the design-time specification of a set of
alternative flow fragments, each handling the execution of the flow within a specific
context, and to allow at run-time to jump from one flow fragment to another, whenever
the context changes or the assumptions on the context turn out to be wrong.

The Contextual One-of, as shown in Figure 4, consists of a set of alternative flow
fragments, each of them associated to a contextual condition context-expr, modeling

Enabling Adaptation of Pervasive Flows: Built-in Contextual Adaptation 451

<e x t : c o n t e x t u a l O n e O f s t a n d a r d−a t t r i b u t e s>
s t a n d a r d−e l e m e n t s

<e x t : c o n t e x t L i n k s>?
<e x t : c o n t e x t L i n k name= N C N a m e >+

a c t i v i t y
</ e x t : c o n t e x t L i n k>

</ e x t : c o n t e x t L i n k s>
<e x t : c a s e s t a n d a r d−a t t r i b u t e s>+

<e x t : c o n t e x t C o n d i t i o n e x p r e s s i o n L a n g u a g e =” anyURI ” ?>
c o n t e x t−exp r

</ e x t : c o n t e x t C o n d i t i o n>
oneOf−a c t i v i t y

<e x t : o n C o n t e x t C h a n g e>
oneOf−a c t i v i t y

</ e x t : o n C o n t e x t C h a n g e>
<f a u l t H a n d l e r s> . . .</ f a u l t H a n d l e r s>
<c o m p e n s a t i o n H a n d l e r s>. .</ c o m p e n s a t i o n H a n d l e r s>

</ e x t : c a s e>
<e x t : o t h e r w h i s e>?

oneOf−a c t i v i t y
</ e x t : o t h e r w h i s e>

</ e x t : c o n t e x t u a l O n e O f>

A oneOf-activity is any APFL activity where

standards-elements are enriched with

<t a r g e t s C L>?
<t a r g e t C L c o n t e x t L i n k =”NCName” />+
</ t a r g e t s C L>
<sourcesCL>?
<sourceCL c o n t e x t L i n k =”NCName” />+
</ sourcesCL>

Fig. 4. <contextualOneOf> Activity

the context assumption for that fragment, and a roll-back flow, onContextChange, that
can be executed to undo the partial and unsuccessful work of the fragment.

At run-time, the first flow fragment for which the property holds is chosen and ex-
ecuted. During the fragment execution, its context condition is monitored and, as soon
as it is violated, the following actions are performed:

1. stop execution: all running activities within the fragment are stopped;
2. undo partial work: the roll-back flow associated to the current fragment is executed;
3. context jump: the first fragment for which the associated context condition holds is

executed and its context condition is monitored.

Roll-back flows, like any other flow, can throw faults/exceptions (e.g. to handle the fact
that the work done within the fragment cannot be undone), and in this case the flow
is terminated following normal flow fault handling. If this is not the case, and the roll-
back flow completes successfully, the main flow is considered successfully running, no
matter how many times contextual one-of fragments are rolled back and re-executed.

It is possible (not mandatory) to specify a default flow fragment for which no con-
text condition is specified. If this is the case, the defualt fragment is executed only if no
other context condition holds and, during its execution, no context condition is moni-
tored (that is, unless faults occur, it will complete its execution and the contextual one
of will complete successfully). During the execution of a contextual one-of, if all the
context conditions are evaluated to false and no default fragment is specified, a fault is
thrown and the flow terminates abnormally.

For exemplification, consider again the box flow presented in Section 2. A first prob-
lem that can occur here is that the box can be damaged. The damage may have occurred
either before, during transportation, but it may also occur at any point while the box is

452 A. Marconi et al.

Fig. 5. Built-in Constructs at work: the Box Flow Example

being unloaded to the staging area, or moved to the storage area. In Figure 5 we use the
Contextual OneOf construct to model the handling of damaged boxes.

When using the Contextual OneOf, it may be the case that, when jumping from one
execution context to another, we do not want to undo the work done or the complete flow
rollback is not possible. The Cross-context link (CL) is designed especially for this case.
As can be seen from Figure 4, CLs connect two activities of different scopes within a
Contextual OneOf. CLs allow adapting to a context change by jumping from a certain
execution state of the current activity (source activity) to an execution activity (target
activity) of another fragment suitable for the actual context. After the jump the flow in-
stance must be in a consistent state. Therefore, a CL has an associate flow specifying the
activities that are needed to prepare the flow to the jump.

At run time, if the contextual condition associated to the running scope turns out to
be false, two possibilities are considered:

1. if there exists some context link leaving the active activity for which the context
conditions holds
(a) the roll-back flow associated to the cross-context link is executed

Enabling Adaptation of Pervasive Flows: Built-in Contextual Adaptation 453

(b) the monitoring for the new context condition is activated
(c) the flow execution is re-started from the target activity of the cross-context link

2. otherwise the condition violation is handled as described for the standard Contextual
one-of.

4 Conclusions and Future Works

We have provided an overview of the adaptable pervasive flows, a paradigm introduced
in the ALLOW European project. We have presented the main concepts, as well as the
associated adaptation methodology. After detailing the main adaptation strategies, we
have focused on built-in adaptation, which is a design-time, evolutionary, horizontal,
and fully manual strategy. For this particular strategy, we have presented several con-
structs which allow to encode the adaptation logic in the flow language and extended
BPEL with suitable notations for the built-in adaptation constructs. These built-in adap-
tation constructs play an important role: they will serve as a basis for automated adap-
tation solutions.

Several adaptation approaches [13,4,14,5,10] have been proposed to address prob-
lems that are closely related to the built-in adaptation constructs presented in this
paper. Most of them support the specification of context constraints within work-
flows [13,4,14,5] proposing different forms of context handling. In [10], the authors
use an aspect-oriented programming (AOP) approach to adaptation.

Ongoing work aims at providing design tools and mechanisms for addressing auto-
mated flow adaptation. In particular, we are defining a formal language for APF that
will enable the use of automated flow verification techniques [7]. Then, we plan to ad-
dress run-time adaptation problems by providing a set of mechanism that can be used
to compute adaptation variants during the execution of the flow instances. In the long
term, we will devise mechanisms for analyzing historical data on flow executions and
adaptations and that, on the basis of this analysis, proactively compute flow evolutions.

References

1. EU-FET Project 213339 ALLOW, http://www.allow-project.eu/
2. D2.1 Results of scenario analysis. ALLOW Project Deliverable (September 2008)
3. D3.1 Basic flow-model and language for Adaptable Pervasive Flows. ALLOW Project De-

liverable (November 2008)
4. Adams, M., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: Worklets: A Service-

Oriented Implementation of Dynamic Flexibility in Workflows. In: Meersman, R., Tari, Z.
(eds.) OTM 2006. LNCS, vol. 4275, pp. 291–308. Springer, Heidelberg (2006)

5. Baresi, L., Guinea, S., Pasquale, L.: Self-healing BPEL processes with Dynamo and the
JBoss rule engine. In: Proc. of International workshop on Engineering of software services
for pervasive environments (ESSPE 2007), pp. 11–20 (2007)

6. Becker, C., Handte, M., Schiele, G.: PCOM - A Component System for Pervasive Comput-
ing. In: Proc. of the International Conference on Pervasive Computing and Communications,
PERCOM (2004)

7. Bucchiarone, A., Lafuente, A.L., Marconi, A., Pistore, M.: A formalisation of Adaptive Per-
vasive Flows. Submitted to WSFM 2009 (2009)

8. Eberle, H., Föll, S., Herrmann, K., Leymann, F., Marconi, A., Unger, T., Wolf, H.: Enforce-
ment from the Inside: Improving Quality of Bussiness in Process Management. Accepted for
ICWS 2009 (2009)

http://www.allow-project.eu/

454 A. Marconi et al.

9. Herrmann, K., Rothermel, K., Kortuem, G., Dulay, N.: Adaptable Pervasive Flows – An
Emerging Technology for Pervasive Adaptation. In: Proc. of the Self-Adaptive and Self-
Organizing Systems Workshops (SASOW 2008). IEEE Computer Society, Los Alamitos
(2008)

10. Kongdenfha, W., Saint-Paul, R., Benatallah, B., Casati, F.: An Aspect-Oriented Framework
for Service Adaptation. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294,
pp. 15–26. Springer, Heidelberg (2006)

11. OASIS WSBPEL Technical Committee. Web Services Business Process Execution Lan-
guage Version 2.0, 21, Committee Draft, work in progress (2005)

12. Roman, M., Hess, C.K., Cerqueira, R., Ranganathan, A., Campbell, R.H., Nahrstedt, K.:
Gaia: A Middleware Infrastructure to Enable Active Spaces. IEEE Pervasive Computing,
74–83 (October–December 2002)

13. Wieland, M., Kopp, O., Nicklas, D., Leymann, F.: Towards Context-aware Workflows. In:
CAiSE 2007 Proceedings of the Workshops and Doctoral Consortium (2007)

14. Wu, Y., Doshi, P.: Making BPEL Flexible: Adapting in the Context of Coordination Con-
straints Using WS-BPEL. In: WWW 2008 (2008)

A Service-Oriented UML Profile with Formal Support�

Roberto Bruni1, Matthias Hölzl3, Nora Koch2,3, Alberto Lluch Lafuente1,
Philip Mayer3, Ugo Montanari1, Andreas Schroeder3, and Martin Wirsing2

1 University of Pisa
2 Cirquent GmbH

3 Ludwig-Maximilians-Universität München

Abstract. We present a UML Profile for the description of service oriented ap-
plications. The profile focuses on style-based design and reconfiguration aspects
at the architectural level. Moreover, it has formal support in terms of an ap-
proach called Architectural Design Rewriting, which enables formal analysis of
the UML specifications. We show how our prototypical implementation can be
used to analyse and verify properties of a service oriented application.

1 Introduction

Service-oriented computing is a paradigm centered around the notion of service: au-
tonomous, platform-independent computational entities that can be described, pub-
lished, discovered, and dynamically assembled for developing massively distributed,
interoperable, evolvable systems and applications. However, services are still developed
in a poorly systematic, ad-hoc way. Full fledged theoretical foundations are missing, but
they are urgently needed for achieving trusted interoperability, predictable composition-
ality, and for guaranteeing security, correctness, and appropriate resource usage.

The IST-FET Integrated Project Sensoria aims at developing a comprehensive
approach to the engineering of service-oriented software systems where foundational
theories, techniques and methods are fully integrated into pragmatic software engineer-
ing processes. The development of mathematical foundations and mathematically well-
founded engineering techniques for service-oriented computing constitutes the main
research activity of Sensoria.

In this paper we present recent efforts within Sensoria aimed to develop high-level
modelling languages with strong formal support. More precisely, we present a novel
extension of UML4SOA, our UML2 profile and define here its formal semantics. The
presentation is illustrated on a simple example taken from the automotive domain (§ 2).

UML4SOA is an extension of UML2, the lingua franca of object-oriented software
analysis and design. UML4SOA enhances UML2 with concepts for modelling struc-
tural and behavioural aspects of services. In § 3 we present for the first time an extension
of the profile to support architectural styles [23] and dynamic reconfiguration.

The formal semantics of the extension is defined in § 4 in terms of Architectural
Design Rewriting (ADR) [7], an approach for style-based design and reconfiguration of

� This work has been supported by the EU FET-GC2 IP project Sensoria, IST-2005-016004.

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 455–469, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

456 R. Bruni et al.

software architectures based on graphs and term rewriting, which supports both style-
preserving and style-changing reconfiguration of service-oriented systems. In § 5 we
show how the ADR formalisation and its prototypical implementation [4], can be used
to analyse and specify properties of UML4SOA specifications.

2 Running Example

We illustrate our approach by exploiting the On Road Connectivity scenario from a
Sensoria case study where a road assistance group of services support car drivers activ-
ities. In the scenario, cars access wireless services via stations that are situated along a
road. We use a UML component to represent a configuration of such a system. Figure
1 shows the white-box view of a system as a component (outer box) that contains other
components (nested boxes) as parts of its internal assembly. A car is connected to the
service access point of a station, which can be shared with other cars that are attached
to the same station. A station and its accessing cars form a cell, which is dynamically
reconfigurable, in the sense that cars can move away from the range of the station of
their current cell and enter the range of another cell. A handover protocol permits cars
to migrate to adjacent cells as in standard cellular networks.

Stations, in addition to the service access point, use two other communication ports
that we call chaining ports. Such ports are used to link cells in larger cell chains. Stations
can shut down, in which case their orphan cars are connected to other stations. This is
tackled by appropriate system reconfigurations. We shall consider a shut down situation
in which orphan cars switch from their normal mode of operation to a cell mode, in
which case they become standalone ad-hoc stations (see the CarCells in Fig. 1).

Fig. 1. Structure diagram of a configuration of the On road connection scenario

3 UML4SOA Extension

UML4SOA [17] is a UML profile for designing service-oriented software. UML4SOA
is defined as a conservative extension of the UML2 metamodel. Such a UML Profile
is the basis for the specification of a model-driven approach for the automated genera-
tion of service-oriented software through model transformations (c.f. [18]). UML4SOA

A Service-Oriented UML Profile with Formal Support 457

uses extended internal structure and deployment diagrams. The extension for structure
diagrams comprises service, service interface and service description [17]. A compo-
nent may publish several services specified as ports, which are described by service
descriptions. Each service may contain a required and a provided interface containing
operations. The orchestration of these services defines a new service. The extension for
deployment diagrams is restricted to different types of communication paths between
the nodes of a distributed system: permanent, temporary and on-the-fly [25].

When modelling service oriented applications with our UML4SOA profile we ob-
served the need for convenient mechanisms to model the inherent dynamic topologies
of such applications: components join and leave the system, and connections are re-
arranged. Such dynamic reconfigurations exhibit a number of beneficial features, but
require a suitable mechanism to constrain the possible evolutions of system config-
urations and to avoid ill-formed configurations. In order to express such constraints
on topologies, it is common practice to use architectural styles [23], i.e. sets of rules
specifying the legal constituents of a system configuration and the permitted intercon-
nections between them. Unfortunately, UML offers a limited and unsatisfactory support
for architectural styles. We propose a novel extension of UML4SOA to remedy this. In
addition, we provide a methodology for modelling dynamic changes of configurations
under architectural styles.

3.1 The UML4SOA Reconfigurations Profile

We present our UML4SOA extension to draw easily understandable diagrams for ar-
chitectural styles and reconfigurations. UML4SOA models services with ports. For an
enhanced readability we will omit in this paper the �service� stereotype on ports, as all
ports in the following represent services. Service providers are represented by compo-
nents, while (one-to-one) connectors are used to model service references.

Modelling System Configurations. We model system configurations with internal struc-
ture diagrams. Using such diagrams allows us to model services as ports of service
providers. Internal structure diagrams are used to depict the interconnections of com-
ponents contained within an architectural entity, together with their names, types, and
multiplicities.

To model system configurations, we introduce the stereotype �fragment�(used in
e.g. Chain), which may be applied to components and requires that all component fields
(the elements pictured in the internal structure diagram) are typed with component or
connector types, and interpret unspecified multiplicities as one. We constrain �frag-
ment� components by forbidding the use of range or ∗ multiplicities. Fig. 1 shows a
sample system configuration of our scenario.

In internal structure diagrams, ports of the container classifier may be drawn on
the border of the diagram; they may be connected to internal elements by �dele-
gates� edges, stating that the port of the container component is a proxy an internal
port. This allows the definition of named docking points to internal components, to
which other components may be glued to. For �fragment� components, we require
that all external ports must be a delegate of a port of its contained components. As
the name implies, a �fragment� represents a fragment of a system configuration that

458 R. Bruni et al.

Fig. 2. Architectural style productions for the On Road Connectivity scenario

can be plugged together with other fragments. A complete system configuration is then
modelled as a fragment without external ports.

Modelling Architectural Styles. UML internal structure diagrams provide a set of fea-
tures to specify architectural styles. Indeed, such diagrams describe the static structure
on the level of types, and allow to constrain multiplicities as well as interconnections
between contained components. However, the service engineer is forced to model all al-
ternatives allowed by a specific architectural style within one single diagram because of
two reasons: first, there is no possibility to define abstract UML components, and sec-
ond, using subtype polymorphism would introduce arbitrary many artificial composite
components in the architecture. We believe that such mechanisms are not enough for a
convenient specification of styles.

Our approach, instead, is based on a straightforward extension of the modelling of
fragments with two modifications. First, the constraints on multiplicities are removed.
Secondly, to define architectural styles in an inductive manner with composeable pat-
terns, by using �refineable� components instead of concrete ones. Components used
to define architectural style patterns are tagged with the stereotype �production�. The
non-terminal components marked with �refineable� may be replaced by any special-
izing �production� pattern (cf. Fig 2 for an example). In our scenario, for example,
the �production� Chain contains two occurrences of �refineable� Xel components,
which may be replaced by Chain, CarCell, and CarStation, as they all specialize the
�refineable� Xel.

The �production� patterns define the legal wirings between components, and repre-
sent the basic building blocks of an architectural style. An architectural style is repre-
sented by a set of �production� patterns in the sense that every legal configuration must

A Service-Oriented UML Profile with Formal Support 459

Fig. 3. Ad-hoc network reconfiguration rules for the On Road Connectivity scenario

be produceable by applying the production patterns of the architectural style, replacing
�refineable� by specializing �production� patterns.

Modeling Reconfigurations under Architectural Styles. Reconfiguration rules are de-
fined as �transformation� packages having two �pattern� stereotyped components with
internal structure diagrams (a left hand side and right hand side pattern), linked with a
�transforms� edge. The name of fields in �pattern� components is interpreted as vari-
able names and the enclosing �transformation� package as their scope, hence allowing
to share variables among left hand side and right hand side patterns.

460 R. Bruni et al.

Often enough, reconfiguration rules depend on complex or non-local conditions.
Consider for example the shut-down of a connection station: The connected cars should
form an ad-hoc network chain which will be connected to the neighbouring operating
stations. Having only simple rules at hand, one would have to write one rule for each
possible number of cars to be reconfigured. Using recursive rules, that is to say, us-
ing application conditions as in conditional rewrite frameworks, allows us to model the
reconfiguration of arbitrarily many cars to a linear ad-hoc network, as in Fig. 3.

As can be seen from the diagram, one stereotype was introduced, �preconditions�,
which is attached to a dependency edge and points to a package containing the recon-
figuration preconditions. The scope of variables in precondition patterns is again the
enclosing �transformation� package, hence allowing to carry over transformation re-
sults from the preconditions to the actually performed reconfiguration step. In this way,
a complex reconfiguration involving arbitrary many components may be modelled us-
ing simple and local reconfigurations.

One major challenge when modelling dynamic reconfigurations is to guarantee that
the constraints of the architectural style are not violated. The benefit of our approach is
that style preservation is ensured just by having the same types in the left- and right-
hand sides of reconfiguration rules. This is of course only possible for those styles that
can be inductively characterised by types. This includes common topologies such as
trees or rings, but lets other, like regular grids, aside. Basically, the kind of structural
constraints one model with our approach amounts to those sets of graphs characterisable
with hyper-edge graph grammars [14].

4 Formal Support

ADR [7] models systems by designs: a kind of typed, interfaced graphs whose inner
items represent the system components and their interconnections and whose interfaces
express their overall types and connection capabilities. Domains of valid systems, (e.g.
those compliant to styles) are defined in an inductive way by means of design produc-
tions (i.e. valid system compositions), which define an algebra of design terms, each
encoding the structure of the system and providing a proof of validity (e.g. style con-
formance). Reconfiguration and behaviour are given as term rewrite rules acting over
design terms rather than over designs. This enables the flexible definition of valid (e.g.
style preserving) reconfigurations. A prototypical implementation is described in [4],
where we also extended the approach to the treatment of hierarchical graphs and ex-
plained how to write system specifications and how to analyse them. ADR has been
already validated over heterogeneous models such as network topologies, architectural
styles and modelling languages. For instance, in [5] we presented a formalisation of
reconfiguration aspects of Sensoria’s business-level service modelling language.

4.1 ADR Semantics for the UML4SOA Reconfiguration Profile

This section describes, in an illustrative manner, the ADR formal semantics of the above
presented UML4SOA profile. The main idea behind the formalisation is that �frag-
ment�-stereotyped components, i.e. configurations, are represented by ADR designs,

A Service-Oriented UML Profile with Formal Support 461

Xel

• �� • Station�� ��

��

• �������	c�� �� • Station�� ��

��

• • Station�� ��

��

• •��

� � �

�������	c

��

��

�������	c

��

��

�������	c

��

��

�������	c

��

��

�������	c

��

��

�������	c

��

��
◦ ◦ ◦ • • ◦

Car

��

Car

��

Car

��

CarCell

��

�� • �������	c�� �� • CarCell��

��

Car

��

Fig. 4. The On Road Connectivity scenario of Fig. 1 as an ADR design

while the architectural constraints imposed by UML4SOA concepts such as multiplic-
ity or productions are captured by appropriate ADR types and design productions.
UML4SOA reconfiguration rules specified as �transformation� packages are repre-
sented by ADR rewrite rules. It is worth to recall that the main novel principles of
the profile, i.e. style-consistent design-by-refinement and style-preserving, conditional
reconfigurations are indeed the quintessence of ADR.

Modelling System Configurations in ADR. A design is a graph-based structure. Recall
that a graph is a tuple G = 〈V, E, θ〉where V is the set of nodes, E is the set of edges and
θ : E → V∗ is the tentacle function. Given a graph T (called the type graph), a T-typed
graph is a pair 〈G, tG : G → T 〉, where G is the underlying graph and tG : G → T is a
graph morphism. From now on we assume that graphs are T -typed.

Technically, a design is a triple d = 〈Ld ,Rd, id〉, where Ld is the interface graph
consisting of a single so-called non-terminal edge (the interface) whose tentacles are
attached to distinct nodes; Rd is the body graph; and id : VLd → VRd is the total function
that maps interface nodes to body nodes.

The visual representation of a design (see Fig. 4) depicts the interface as a dotted box
with its type written in its top-left corner. The body is depicted inside the dotted box.
Edges are represented as boxes (possibly rounded), tentacles as arrows (their order is
given by their orientation) and nodes as small circles. The nodes being exposed on the
interface are denoted by waved lines.

Fig. 4 exemplifies how UML4SOA �fragment� components of Fig. 1 can be
mapped to ADR designs: �service� ports are mapped to ADR nodes, while the port
type determines the node type (e.g. UML types ChainingPort, CarAcccessPort and
StationAcccessPort are represented by node types •, ◦ and �, respectively). Compo-
nents are mapped to hyper-edges, where the component type determines the hyper-edge
type. UML connectors are mapped to binary edges of a predefined type c.

The interface of the design is defined by the ports and the generalisation of the �frag-
ment� component. The ports of the �fragment� define the set of interface nodes VLd ,
and each �delegates� edge defines a maplet of the mapping id from interface to body
nodes VRd . The type of the so-produced graph, as defined by the UML4SOA model, is
determined by the generalisation of each �fragment� (Xel in Fig. 1).

462 R. Bruni et al.

�������	c

�� ��
• CarCell

		
��

Car

��

Station

��

��
◦ �������	c�� �� � Cars�� Xel

�� ��

• Station�� ��

��

• Station�� ��

•

�

�������	c

��

��

◦

Fig. 5. Type graph for On Road Connectivity scenario (left) and a correctly typed graph(right)

Modelling Architectural Styles in ADR. The distinction between refinable components
and non-refinable components amounts to the distinction between non-terminal and ter-
minal edges in ADR. The underlying idea is the same: a non-terminal edge is an edge
intended to be refined (i.e. replaced by an arbitrarily complex graph). Non-terminal
edges can appear in designs, representing unspecified parts of a configuration (a refin-
able component) or in design productions (see later). Terminal edges instead represent
parts of a graph that cannot be further refined (non-refinable components).

The style definition mechanisms of UML4SOA, i.e. internal structure diagrams and
productions, are modelled by ADR type graphs and by design productions. Note how-
ever that some of the architectural constraints involved in class diagrams such as multi-
plicities cannot be directly mimicked by type graphs. Instead, they are dealt with at the
level of design productions.

Consider the type graph on the left on Fig. 5. It is easy to see that each edge cor-
responds to a component (Car, Station, CarCell) or connector type (the overloaded
symbol c). Non-terminal edges (Cars, Xel) are distinguished by their double border.
In general, the type graph is obtained from the whole UML4SOA specification: adding
terminal edges for each non-refinable component type, non-terminal edges for each re-
finable component type, nodes for port types, tentacles for component ports and edges
for the connectors.

Type graphs do not impose any multiplicity constraint, i.e. they would amount to a
UML [0..∗] multiplicity constraint. A suitable way to impose a multiplicity constraint in
ADR is by means of design productions. For instance, the treatment of sets of cars in the
UML4SOA specification via multiplicities is dealt in ADR with the design productions
NoCar, Car and Cars (see Fig. 6), which respectively allow to refine a generic set of
cars as an empty set, a single car or the union of two other sets. In this way, UML4SOA
productions are directly mapped into ADR design productions. For instance, in absence
of production NoCar the multiplicity constraint would be [1..∗]. We remark that pro-
ductions allow to refine the architectural constraints imposed by a type graph alone.
For instance, the graph on the right of Fig. 5 is well-typed but is not generated by our
productions.

Technically, a design production is very much like a design but with an order on
the non-terminal edges of the body graph (intuitively, the order of the arguments they
represent). The type of a production p is A1 ×A2 × . . .×Anp → Ap, where Ak is the non-
terminal symbol labelling the k-th non-terminal edge ek of the body of the production.
The functional type A1 × A2 × . . . × Anp → Ap associated to a production p means that

A Service-Oriented UML Profile with Formal Support 463

CarStation : Cars → Xel

Xel

• �� • Station�� ��

��

• •�� �� ��

�

Cars

��

Chain : Xel × Xel→ Xel

Xel

• �������� • Xel�� �� • �������	c�� �� • Xel�� �� • •�� �� ��

CarCell :→ Xel

Xel Xel

• �� • CarCell�� �� • •��

NoCar :→ Cars Car :→ Cars Cars : Cars × Cars → Cars

�

��
��
��

Cars

�

�

��
��
��

Cars

� �������	c�� �� ◦ Car��

�

��
��
��
��

Cars

Cars �� � Cars��

Fig. 6. Design productions for On Road Connectivity scenario

p can be considered a function that when applied to a tuple 〈d1, d2, . . . , dnp〉 of designs
of types A1, A2, . . .Anp , respectively, returns a design d = p(d1, d2, . . . , dnp) of type Ap.
The definition is obvious: d = (Lp,Rd, ip), where Rd is obtained from Rp by replacing
edge ek in it with graph Rdk respecting the tentacle function idk , k = 1, . . . , np.

This view corresponds to a bottom-up design development: a design is constructed
by putting together some component designs. However, the dual view is also possible:
a production can be seen as a refinement of an abstract component of type A as an
assembly of concrete and abstract components, the latter being of type A1, A2, . . .Anp .

Modelling Reconfigurations under Architectural Styles. UML4SOA transformations
are represented by ADR rewrite rules, which are given in different flavours: e.g.
in Meseguer’s rewriting logic [19] or Plotkin’s structural operational semantics
(SOS) [22]. We just recall here that one of the advantages of ADR reconfigurations over
other graph-based approaches is style-preservation, which is guaranteed by rewrites that
do not change the overall type (they can actually change the type of certain sub-parts in
the rule derivation of the overall reconfiguration).

Translating UML4SOA reconfiguration rules to ADR in the general case is done
by translating the precondition rules, the �transforms� left- and right-hand sides of
the rule conclusion, and translating transformation labels into their respective counter-
parts in ADR. In this process, �pattern� components are translated to ADR designs
by first producing ADR design graphs (replacing components with [0..∗] multiplici-
ties by the corresponding non-terminal hyper-edge, as done in the example with Cars)
and then parsing the result using the ADR productions generated from the UML4SOA
productions.

The ad-hoc network reconfiguration is tackled by using inductive reconfiguration
rules in SOS style. The base reconfiguration involves a single car (see Fig. 7):

CarToCell : Car
tocell−→ CarCell

464 R. Bruni et al.

�

��
��
��

Cars

� �������	c�� �� ◦ Car�� tocell−→

Xel

• �������� • CarCell�� �� • •�� �� ��

Fig. 7. Reconfiguration CarToCell

◦

x1 :Cars

��

tocell−→ • x′1:Xel�� �� •

◦

x2:Cars

��

tocell−→ • x′2 :Xel�� �� •

�

��
��
��

Cars

�

x1:Cars

��

x2:Cars

��
tocell−→

Xel

• �� • x′1:Xel�� �� • �������	c�� �� • x′2 :Xel�� �� • •�� �� ��

Fig. 8. Reconfiguration CarsToCellChain

The inductive case we consider is illustrated in Fig. 8, where the union of two col-
lections of cars is reconfigured as the concatenation of the respective reconfigured cells,
provided that these are possible:

CarsToCellChain :
x1
tocell−→ x′1 x2

tocell−→ x′2
Cars(x1, x2)

tocell−→ Chain(x′1, x
′
2)

The cell with the station shutting down is reconfigured by the rule (see Fig. 9):

CellToChain : x
tocell−→ x′

CarStation(x) −→ x′

Obviously, types are not preserved by CarToCell and CarsToCellChain and thus the
right- and left-hand sides of the rewriting rule cannot be applied in the same contexts.
Type changing allows for the modelling of reconfigurations that lead from one architec-
tural style to another. However, this is not what we want in this example and thus labelled
rules are given in SOS style. The last rule CellToChain, instead, is given as a conditional
term rewrite rule, where the premise in its turn a rewrite rulle requiring a collection of
cars to become a chain cell, while the conclusion actually transforms a chain of cells
into a chain of cells. The type is preserved and the silent label makes it applicable in any
larger context (unlike style-changing rewrites labelled tocell).

A Service-Oriented UML Profile with Formal Support 465

�

x:Cars

��

tocell−→ • x′ :Xel�� �� •

Xel

• �������� • Station�� ��

��

• •�� �� ��

�

x:Cars

��

−→ • x′ :Xel�� �� •

Fig. 9. Reconfiguration CellToChain

5 Analysis and Verification

This section emphasises the benefit of having a formal semantics for our UML profile
by describing how the use of our implementation of ADR [4] can be used to analyse
and verify properties of UML4SOA specifications. We remark that the translation of
UML4SOA specifications to ADR specifications has not been implemented yet. On
the other hand, a prototypical implementation of ADR is available for download [4].
Nevertheless, we offer sufficient evidence of the potential of our approach as a helpful
support for software architects.

Analysing Styles. After a first development of a UML4SOA specification, a software
architect might wonder whether the defined architectural styles enjoy some properties
he desires. For instance, in our example scenario one could be interested in stating that
no Xel production builds a configuration in which the left and right chaining ports are
disconnected. It is easy to see that this property trivially holds in our example. However,
as scenarios become complicated such properties become more subtle. Note that due to
the inductive definition of styles it holds that if all Xel productions satisfy the property,
then the property holds for any possible Xel configuration. This is indeed the case of the
example property: all Xels are un-broken chains.

Our implementation includes a graph logic (Courcelle’s MSO [11]) that allow us
to reason about the structure of a graph. Such mechanism can be used to analyse the
structure of UML4SOA productions by analysing the underlying graphs. The above
example for instance is a well known property of graph connectivity which can be
expressed in MSO by ∀X.((∀x, y(y ∈ X ∧ z ∈ R(y, z) → z ∈ X ∧ ∀y.R(a, y) → y ∈
X)) → b ∈ X) , where X is a set of nodes, x,y and z are nodes, R abbreviates the
existence of an edge between two nodes, and a, b are shorthands for the left and right
hand-side chaining ports. In words, we look for all sets of nodes X closed under the
transitive closure of the relation R of direct adjacency and containing all nodes adjacent
to a. If all such sets contain b too, then a and b are reachable from each other. The
above formula holds for all body graphs of Xel productions. We can of course, write
abbreviations for such formulae to construct a sort of library of structural properties.

466 R. Bruni et al.

Checking Style Conformance. Once the software architect is confident with the style
he has designed, he might be interested in re-using some of his old specifications. After
manually applying some cosmetics on the types of diagrams and other entities, he might
want to know whether the resulting instance is consistent with the style. Roughly, he
needs a correct parse in terms of the productions. This is supported by a mechanism
that roughly generates design terms and checks if the resulting designs are isomorphic
to the configuration under analysis. For instance, one can show that the configuration
in Fig. 4 is style conformant by finding the parsing that we mentioned in Section 3.1. A
counterexample can be found in Fig. 5 (right).

Finding Configurations Automatically. Model finding is the problem of analysing the
state space of all possible instances of his architectural style. Such analysis serves as a
computer-aided design process or as a debugging method to find out inconsistencies in
models, styles or properties. Our model finding system is based on two mechanisms:
one to generate a state space of models and one to explore it. In our approach we can de-
fine a rewrite theory that simulates a design-by-refinement process, roughly consisting
of the context-free graph grammar obtained by a left-to-right reading of design produc-
tions. In order to explore such state spaces, we can use various mechanisms of Maude.
Typically, the space of configurations is infinite and bounds are required. For instance,
we can use search strategies to find configurations with at most 4 cars, 3 stations and 2
car cells and we obtain, among others, the design of Fig. 4.

Analysing Static Aspects of Configurations. Now that the software architect has adapted
some of his old designs and possibly built new ones, he might want to reason about
them. Returning to our example, we might wonder if a configuration has at least n
cars or is free of cars in cell mode. Recall that our configurations have two levels: the
more abstract level of design terms and the more detailed level of the diagrams. We
can expect dual mechanisms for stating structural aspects. Indeed, we saw above that
the properties of diagrams are supported by graph logics. Similarly, properties can be
stated at the level of design terms. Our ADR implementation does this by means of
spatial logics, the natural and structured way to reason about term-like specifications.
Basically, for each design production f used to compose designs the logic incorporates
a spatial operator f-so to decompose a design. For instance, formula Chain-so(φ1,φ2) is
satisfied by all those designs of the form Chain(x1,x2), where design x1 satisfies formula
φ1 and design x2 satisfies formula φ2.

Consider the property that states a collection of cars has at least n cars. We can
inductively define it as follows: For n equal to zero the formula always holds. For n + 1
the formula holds whenever the term is decomposable as the composition via operation
Cars of one car (Car-so) and a term with at least n cars. Using such formulas we can for
instance check that the design of Fig. 4 satisfies the property stating that each station
has at least one car and violates the property stating that each station has at least two
cars.

Analysing Dynamic Instances of Configurations. At this point the software architect
might be satisfied with the structural properties enjoyed by his configurations. The
modelled application, however, has a dynamic architecture with various reconfiguration

A Service-Oriented UML Profile with Formal Support 467

rules such as those we use in our running example. Can he express that some property
is invariantly preserved or that some bad property will never happen? The standard way
to reason about such properties is by means of temporal logics.

In our case temporal logics are supported by Maude’s built-in LTL model checker.
Properties regarding dynamic aspects of reconfigurations are expressed using the
Linear-time Temporal Logic (LTL). Roughly, one is able to reason about infinite
sequences of reconfigurations, by expressing properties on the ordering of state (i.e.
configuration) observations. Such observations are predicates expressing structural
properties as above mentioned.

As an example we can write the formula asserting that it is always true that a collec-
tion of cars has at least 2 cars as [] at-least-k-cars(2), where [] denotes the always temporal
operator �. This property trivially holds for the design of figure 4. Indeed, no reconfig-
uration rule allows cars to leave the system so that their number remains constant.

6 Related Work

The Service Component Architecture (SCA) [9] focuses on policies and implementa-
tion aspects of services but is not based on UML. The work in [24] is based on UML
models and transformations to executable descriptions of services. However, the ap-
proach lacks an appropriate UML profile preventing one from building models at the
high level of abstraction; thus producing overloaded diagrams. The work of [13] pro-
poses to use modes to address dynamic reconfiguration of service-oriented architectures
and extends the UML to visualise such reconfiguration. The UML extension sticks to
the mode terminology and does not include a visualisation of the transformation rules.
The OMG is also working to standardise SoaML, a UML profile and metamodel for
services [21]. The current version does not support styles or reconfigurations.

Structural aspects for services, modelled in UML, have also been addressed in sev-
eral other works (e.g. [16]); however, as far as we know, none of them is based on a
formal background like the one presented here. The only exception is the UML exten-
sion for service-oriented architectures that can be found in [2]. The approach includes
refinement issues based on architectural styles and is formalised by graph transforma-
tion systems. It includes stereotypes for the structural specification of services. How-
ever, it does not introduce specific model elements for the orchestration of services, the
notion of style there is less expressive (it basically amounts to our type graphs) and
reconfigurations there are limited to unconditional ones.

A completely different approach to modelling architectural styles in UML would
be to use constraints expressed in the OMG Object Constraint Language (OCL). To the
best of our knowledge, however, there is no reconfiguration approach using solely OCL,
which would have two drawbacks: OCL is a textual notation and it would introduce
another language to the service engineer.

ADR has been mainly inspired by graph-based approaches to architectural
styles [15,20] (see [7] for a comparison). The use of graphs and graph transforma-
tions to model architectural styles has been proposed by several authors (see [23], for
instance) who based their approaches on the concept of shapes in programming lan-
guages. ADR shares also concepts with approaches based on process calculi with recon-
figurable components (e.g. [1]). The main advantages of ADR are that the hierarchical

468 R. Bruni et al.

and inductively based approach allows us to compactly represent complex reconfig-
uration rules, and that, style preservation is guaranteed by construction. ADR is also
related to approaches that deal with reconfigurations in software architectures defined
by an ADL (see [6]). The main advantages of ADR are the unified treatment of design,
behaviours and reconfiguration, and the use of hierarchical, inductive reconfigurations.
A comparison with a logic based architectural design methodology was given in [8].

7 Conclusion

We have presented a novel extension of UML4SOA, our approach for the modelling of
service oriented architectures. The profile offers suitable ingredients to deal with archi-
tectural styles and reconfigurations. We have equipped the proposed profile extension
with a formal semantics, offering support for analysis and verification from the very
early stages of modeling. Thus, our approach is a comprehensive and pragmatic but the-
oretically well founded approach to software engineering for service-oriented systems.
Our current efforts are aimed at completing our tool support. First, by automatising
the translation of UML4SOA specifications, possibly by means of Maude-supported,
MOF-based model transformations [3]. Second, by upgrading the prototypical imple-
mentation of ADR into a tool that can be used to formally analyse ADR models ei-
ther specified directly or transformed from UML4SOA or other models. In future work
we would like to integrate our approach in the Sensoria suite of tools and techniques,
which already includes some development [12] and re-engineering (legacy systems as
services) [10] instruments.

References

1. Aguirre, N., Maibaum, T.S.E.: Hierarchical temporal specifications of dynamically reconfig-
urable component based systems. ENTCS 108, 69–81 (2004)

2. Baresi, L., Heckel, R., Thöne, S., Varró, D.: Style-based modeling and refinement of service-
oriented architectures. SOSYM 5(2), 187–207 (2006)

3. Boronat, A., Meseguer, J.: An algebraic semantics for MOF. In: Fiadeiro, J.L., Inverardi, P.
(eds.) FASE 2008. LNCS, vol. 4961, pp. 377–391. Springer, Heidelberg (2008)

4. Bruni, R., Lluch-Lafuente, A., Montanari, U.: Hierarchical design rewriting with maude.
ENTCS 238(3), 45–62 (2009)

5. Bruni, R., Lluch Lafuente, A., Montanari, U., Tuosto, E.: Service Oriented Architectural De-
sign. In: Barthe, G., Fournet, C. (eds.) TGC 2007. LNCS, vol. 4912, pp. 186–203. Springer,
Heidelberg (2008)

6. Bruni, R., Lluch Lafuente, A., Montanari, U., Tuosto, E.: Architectural Design Rewriting as
an Architecture Description Language. R2D2 Microsoft Research Meeting (2008)

7. Bruni, R., Lluch Lafuente, A., Montanari, U., Tuosto, E.: Style Based Architectural Recon-
figurations. EATCS Bulletin 94, 161–180 (2008)

8. Bucchiarone, A., Bruni, R., Gnesi, S., Lluch Lafuente, A.: Graph-Based Design and Anal-
ysis of Dynamic Software Architectures. In: Degano, P., De Nicola, R., Meseguer, J. (eds.)
Concurrency, Graphs and Models. LNCS, vol. 5065, pp. 37–56. Springer, Heidelberg (2008)

9. SCA Consortium, Service Component Architecture Policy Framework, Version 1.0 (2007)

A Service-Oriented UML Profile with Formal Support 469

10. Correia, R., Matos, C., Heckel, R., El-Ramly, M.: Architecture migration driven by code
categorization. In: Oquendo, F. (ed.) ECSA 2007. LNCS, vol. 4758, pp. 115–122. Springer,
Heidelberg (2007)

11. Courcelle, B.: The expression of graph properties and graph transformations in monadic
second-order logic. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing
by Graph Transformation, pp. 313–400. World Scientific, Singapore (1997)

12. Foster, H., Mayer, P.: Leveraging integrated tools for model-based analysis of service com-
positions. In: ICIW 2008. IEEE Computer Society Press, Los Alamitos (2008)

13. Foster, H., Uchitel, S., Kramer, J., Magee, J.: Leveraging Modes and UML2 for Service
Brokering Specifications. In: MDWE 2008. LNCS, vol. 389, pp. 76–90. CEUR (2008)

14. Habel, A.: Hyperedge Replacement: Grammars and Languages. Springer, Heidelberg (1992)
15. Hirsch, D., Montanari, U.: Shaped hierarchical architectural design. ENTCS 109, 97–109

(2004)
16. Johnston, S.: UML 2.0 Profile for Software Services (2005)
17. Koch, N., Mayer, P., Heckel, R., Gönczy, L., Montangero, C.: D1.4a: UML for Service-

Oriented Systems. Specification, SENSORIA Project 016004 (2007),
http://www.pst.ifi.lmu.de/projekte/Sensoria/del 36/D1a.pdf

18. Mayer, P., Schroeder, A., Koch, N.: A Model-Driven Approach to Service Orchestration. In:
SCC 2008, pp. 1–6. IEEE, Los Alamitos (2008)

19. Meseguer, J., Rosu, G.: The rewriting logic semantics project. TCS 373(3), 213–237 (2007)
20. Métayer, D.L.: Describing software architecture styles using graph grammars. IEEE Trans-

actions on Software Engineering 24(7), 521–533 (1998)
21. Object Management Group (OMG). Service oriented architecture Modeling Language

(SoaML), http://www.omg.org/cgi-bin/doc?ptc/09-04-01 (Last visited: July 2009)
22. Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebr. Program. 60-

61, 17–139 (2004)
23. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Discipline.

Prentice-Hall, New Jersey (1996)
24. Skogan, D., Grønmo, R., Solheim, I.: Web service composition in UML. In: EDOC 2004,

pp. 47–57. IEEE Computer Society, Los Alamitos (2004)
25. Wirsing, M., Clark, A., Gilmore, S., Hölzl, M., Knapp, A., Koch, N., Schroeder, A.:

Semantic-Based Development of Service-Oriented Systems. In: Najm, E., Pradat-Peyre, J.-
F., Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229, pp. 24–45. Springer, Hei-
delberg (2006)

Designing Workflows on the Fly Using e-BioFlow

Ingo Wassink1,2, Matthijs Ooms1, and Paul van der Vet1,2,�

1 Human Media Interaction Group
University of Twente

Enschede, The Netherlands
2 The Netherlands Bioinformatics Centre (NBIC)

Abstract. Life scientists use workflow systems for service orchestration
to design their computer based experiments. These workflow systems
require life scientists to design complete workflows before they can be
run. Traditional workflow systems not support the explorative research
approach life scientists prefer. In life science, it often happens that few
steps are known in advance. Even if these steps are known, connecting
these tasks still remains difficult.

We have extended the e-BioFlow workflow system with an ad-hoc
editor to support on-the-fly workflow design. This ad-hoc editor enables
an ad-hoc design of the workflow with no predetermined plan of the
final workflow. Users can execute partial workflows and extend these
workflows using intermediate results. The ad-hoc editor enables its users
to explore data and tasks representing tools and web services, in order
to debug the workflow and to optimise parameter settings. Furthermore,
it guides its users to find and connect compatible tasks. The result is a
new workflow editor that simplifies workflow design and that better fits
the explorative research style life scientists prefer.

1 Introduction

Life scientists are used to work in an explorative research style, without having a
clear hypothesis [1–4]. Data is used as a source of inspiration, and few steps are
known in advance. A workflow system will better fit the life scientist’s needs if it
supports this explorative research style [5]. Current workflow systems separate
the design and execution of the workflow, which has led to a trial-and-error
approach in using them.

We have extended our workflow system, e-BioFlow [6], to an ad-hoc workflow
system. An ad-hoc workflow system enables an ad-hoc workflow design, with
a small or no predetermined plan of the final workflow [7]. e-BioFlow presents
new interactions with workflow systems and supports the explorative research
style life scientists prefer. Scientists can execute partial workflows. The data
produced are explicitly present in the workflow model, can be inspected and used
as sources of inspiration to decide on the next steps in the experiment. These
data are available as input for new tasks or tasks already in the workflow. New
� i.wassink@ewi.utwente.nl

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 470–484, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Designing Workflows on the Fly Using e-BioFlow 471

tasks can be inserted, connected to data produced by tasks in the workflow and
executed in isolation. e-BioFlow simplifies workflow design, because it enables
scientists to try things out and to insert tasks that may even be absent in the
final workflow.

Even if the complete workflow model is known in advance, linking the parts is
often difficult. Such problems are known as plan composition problems [8]. The
real services to be used may be unknown and linking services often requires data
conversion [9]. The ad-hoc editor will help the scientist to build the workflow.
The scientist can run parts of the workflows and inspect intermediate results to
test and debug the workflow, and to fine-tune parameter settings. The result of
using the ad-hoc editor is a runnable workflow that can be stored as a generic file
for future use. Due to e-BioFlow’s support for late binding, it is independent of
resources available at design time. Late binding means that tasks are abstracted
from services until execution time. e-BioFlow can easily switch between alterna-
tive services without any change of the workflow model. Therefore, the workflow
can be used as template for future experiments and shared with peers through
web portals such as myExperiment [10, 11].

In this paper, we will first discuss the characteristics of an ad-hoc workflow
editor. We will introduce our workflow system e-BioFlow. After that, e-BioFlow’s
ad-hoc workflow editor will be discussed. A use case will demonstrate the use
of the ad-hoc workflow editor. Then, we will compare our approach to other
systems that support ad-hoc workflow design. We will end with a discussion.

2 Ad-Hoc Editor: Characteristics

Although life scientists use data as sources of inspiration, workflow systems focus
on tasks. The graph visualisation of the workflow consists of nodes representing
the tasks and arrows representing the dependencies or data flows between the
tasks. The data itself is absent and cannot be used to design the workflow.
These workflow systems handle a routine process-oriented mode: the workflow
needs to be designed in advance, before the workflow designer can run it [5]. Like
in other visual programming environments, the workflow designer has to make
many design choices without good data to direct his decisions [12]. This forces
workflow designers to guess-ahead or to insert place-holders [8].

An ad-hoc workflow editor has characteristics of a traditional workflow editor,
a workflow engine and a provenance system. It enables the workflow designer to
execute partial workflows and extend them using the data produced by the tasks
in the workflow that are already executed. It supports what Gibson et al. [5] call
an investigative data-oriented mode.

Ad-hoc workflow systems have many advantages over traditional workflow
interfaces:

– The tasks to be used are often unknown at design time. Tasks can be tried
out in the ad-hoc editor.

– No need to know the complete workflow in advance, but extend and execute
partial workflows.

472 I. Wassink, M. Ooms, and P. van der Vet

– Speeds up of workflow design, because a small change in the workflow re-
quires a rerun of just the tasks involved.

– Use intermediate results as sources of inspiration to decide on next steps of
the workflow.

– No guess-ahead required about the data produced or consumed by the tasks.
– Fine-tune parameters and debug workflows by executing tasks in isolation.

Workflow systems have much in common with integrated development environ-
ments (IDE’s) for visual programming languages and text-based programming
languages. Most users of visual programming languages are not experts in pro-
gramming and often do not want to be, but need to program for their daily
working activities [4, 13], which is also true for most life scientists [14]. It is im-
portant that the visual language used matches the user’s mental representation
of the problem he wants to inspect [8, 12, 13]. The closer the programming world
is to the problem world, the easier problem solving ought to be [8]. IDE’s have
implemented different techniques to help the programmer write correct program
code through, among others, live editing, auto-completion and programming by
demonstration. These three techniques are applicable to an ad-hoc workflow
system as well. They will be explained in the context of workflow design.

The ad-hoc workflow editor explicitly presents the data to the workflow de-
signer, which enables the designer to use these data to further design the work-
flow [2, 15]. The resulting environment supports what is called live editing, and is
applied to textual programming languages [16]. A live editing environment sup-
ports explorative programming and gives programmers real-time feedback on
the program’s execution at edit time. The ad-hoc workflow system can be used
as a live editing environment, but then to design workflows [15]. It enables the
workflow designer to execute uncompleted workflows and gives feedback about
the workflow’s execution state by means of the data produced and consumed by
tasks and about errors that may have occurred. In case of an error, the workflow
designer can use the feedback to correct the workflow. In case of a successfully
executed task, he can use the data produced to further design the workflow.

When data and input and output ports of tasks are syntactically and seman-
tically typed, type information can be used by the ad-hoc workflow system to
suggest new steps for the workflow design. The workflow editor has wizard-like
functionality to help the workflow designer extend the workflow [15]. It supports
what we call guided workflow design. The ad-hoc editor should support forward
guiding, to propose tasks that can use the data produced as input [17], but also
backward guiding, to find tasks that can produce the data required as input.
Guided workflow design is close to the auto-completion functions found in many
IDE’s. Auto-completion helps the programmer, among others, to write correct
programming code and to quickly discover methods [18].

Additionally the workflow system can guide data conversion. Data incompati-
bility forms a big problem in service composition [19–23]. Wassink et al. [9] have
shown that at least 30% of the tasks in a typical bioinformatics workflow are de-
voted to data conversion. The workflow system can propose tasks that perform
the data conversion required.

Designing Workflows on the Fly Using e-BioFlow 473

Some workflows are used only once, others repeatedly [11]. An ad-hoc work-
flow system should support both, workflows for one-time use and workflows
intended for multiple-time use. The ad-hoc workflow system is a programming
by demonstration environment. Programming by demonstration means the user
shows what needs to be done, and the environment records these actions, gen-
eralises over them and translate them into a script [24]. A programming by
demonstration environment acts like a macro recorder, but at the same time is
able to recognise control structures such as iteration and conditional branching.
In a workflow context, the workflow designer creates the workflow by demonstra-
tion; the ad-hoc workflow system abstracts from case specific properties, such as
data and services, and translates the model into a template workflow.

Designing workflows by demonstration suits the dual mode of experiment
design and experiment reuse. In the early phase of workflow design, scientists go
through a fast cycle of hypothesis generation, experimentation, evaluation of the
results and method selection [23]. After this phase, rationalisation is performed,
in which scientists validate the results and formalise the process [5]. The ad-hoc
workflow system enables the workflow designer to explore and to try things out
in the early phase of workflow design. The result is a workflow that abstracts
from concrete data and can be used as a template for future, similar experiments.
The power of the template becomes even greater if the workflow system supports
late binding, because then the workflow is independent of the resources used at
design time.

3 e-BioFlow: Different Perspectives on Scientific
Workflows

e-BioFlow [6] is an open source workflow system that provides its users a work-
flow editor and a workflow engine1. The workflow system uses a tabbed user
interface to design and execute workflows and to analyse executed workflows. A
tab is called a perspective. e-BioFlow contains six different perspectives at the
moment:

Control flow perspective focuses on the order of tasks. It enables the work-
flow designer to model the order of task execution. The workflow designer
can model sequential, parallel, iterative and conditional execution of tasks.

Data flow perspective is used to model data transfer between tasks, called
pipes. Input ports and output ports contain type information (syntactical
and semantical) about the data they respectively consume and produce.

Resource perspective is used to define the type of resources required to exe-
cute the task. The actual resource to execute the task is chosen at execution
time of the workflow. The resources are called actors and are components
that can execute tasks, such as invoking web services or executing scripts.

Workflow engine can execute workflows. It is responsible for scheduling tasks,
performing the late binding and passing data between tasks. It is built on the
YAWL engine [25], but supports late binding and passing data by reference.

1 Available at: http://www.ewi.utwente.nl/~biorange/ebioflow

http://www.ewi.utwente.nl/~biorange/ebioflow

474 I. Wassink, M. Ooms, and P. van der Vet

Provenance system automatically captures all process and data related infor-
mation of workflow execution. It stores provenance data in Open Provenance
Model [26, 27] compatible format. It contains a provenance browser, which
is a graph visualisation to explore the provenance data.

Ad-hoc editor is able to perform ad-hoc design of the workflow. It will be
discussed in more detail in the next section.

All perspectives except the provenance perspective directly communicate with
the specification controller (Figure 1). This specification controller manages all
workflows loaded into e-BioFlow. The perspectives send requests to the speci-
fication controller for a change in the workflow model when the user edits the
workflow diagram. The specification controller applies the change and notifies
all perspectives about the change.

Specification Controller
manages workflow specifications

Editor perspectives
routine

process-oriented mode

Engine
executes
workflows

Ad-hoc Editor
investigative data-

oriented mode

Workflow 3
Workflow 2

Resource
Perspective

Control
Flow

Perspective

Data Flow
Perspective

Workflow 1

Sends partial
workflows for

execution

Sends task and
data related

information of the
workflow execution

Provenance
System

collects and
visualises

provenance data

Fig. 1. All perspectives are registered to the specification controller to send and receive
changes in the workflow model. The ad-hoc editor is a perspective that interacts with
the engine.

The first three perspectives are introduced in previous work [6]. They are com-
plementary: they edit the same workflow model, but each focuses on a specific
aspect of the workflow. The ability to model control flow related information and
data flow related information within a single workflow system makes e-BioFlow
what is called a hybrid workflow system [28].

The engine can run the workflows managed by the specification controller in
a routine process-oriented mode. It performs late binding using the task defini-
tions. It tries to delegate the task to the default actor, if it is set and available,
else it will try to find a compatible services. At the moment, e-BioFlow supports

Designing Workflows on the Fly Using e-BioFlow 475

three types of actors: i) actors that can invoke SOAP/WSDL or BioMOBY ser-
vices, ii) actors that can execute scripts written in, among others, Java2, Perl3

and R [29], and iii) actors that can interact with the user. The provenance sys-
tem communicates with the engine. It receives all information related to the
workflow execution, and stores this information. The provenance browser can be
used to interactively explore these data.

4 Ad-Hoc Workflow Design in e-BioFlow

The ad-hoc editor combines features of an editor, an engine and a provenance
system. The ad-hoc editor uses the workflow models shared by the other perspec-
tives. Like other perspectives, the ad-hoc editor uses the specification controller
to receive notifications about changes in the workflow models and to request
changes in the workflow model when the workflow designer edits the workflow.
The three characteristics live editing, guided workflow design and workflow by
example will be used to explain the ad-hoc editor in more detail.

4.1 Live Editing

At first sight, the ad-hoc editor looks similar to the data flow perspective: the
workflow designer can drag and drop tasks into the workflow diagram and define
outputs of one task to be input for others. However, using the ad-hoc editor, the
workflow designer can select one or more tasks and instruct the ad-hoc editor
to execute these tasks. When the workflow designer instructs the ad-hoc editor
to do this, the ad-hoc editor creates a partial workflow of the selected tasks
based on the original workflow model. It adds two user interaction tasks to this
new workflow. The first task, called the input-task, is added to the start of the
workflow. This task shows a dialog containing the input data already available
and fields for the missing data. The user can modify the already available data
and enter the missing data using drop-down boxes in the case there are fixed sets
of valid options or else using text fields. The second task is called the output-task
and is added to the end of the workflow to show the results of the tasks.

The ad-hoc editor uses the workflow engine to execute this partial workflow.
It automatically captures the data produced during workflow execution. These
data are visualised as circles called data items (Figure 2). The ad-hoc editor
uses arrows from the output ports to the corresponding data items to present
the created-by relations. The workflow designer can inspect the data by selecting
the circles. At the moment, e-BioFlow can visualise many data formats, such as
plain-text, XML, PDF-files, bitmap graphics and vector graphics.

The workflow designer can create a connection between a data item and a
task’s input port to define this data item to be input for that task. This relation
is called a used-by relation. The ad-hoc editor automatically adds a pipe between
the output port of the task that has generated the data item and the input port
2 http://www.java.sun.com
3 http://www.perl.org

http://www.java.sun.com
http://www.perl.org

476 I. Wassink, M. Ooms, and P. van der Vet

Fig. 2. A screenshot of the ad-hoc editor. Tasks are presented as boxes; data as circles
connected to the output ports that have produced them and to the input ports that
use them.

that uses the data item as input (Figure 3). When the user instructs the ad-hoc
editor to execute this task, it uses this data item as input for that input port
of the task. When multiple data items are defined to be input of the task, the
input-task enables the user to choose which ones to use.

When an executed task has produced a data item related to an input port
that is connected to an output port by means of a pipe, the ad-hoc editor auto-
matically creates a used-by relation between the data item and the output port
(Figure 4).

4.2 Guided Workflow Design

The ad-hoc editor helps the workflow designer to find new tasks to extend the
workflow using the type information of data and the ports of tasks. When the
workflow designer selects an input port of a task, the ad-hoc editor lists actors
available and tasks already in the workflow that can produce compatible input.
If the workflow designer chooses an actor from this list, the ad-hoc editor adds
a task definition into the workflow for that actor. Additionally, it generates a
pipe between the input port selected and the compatible output port of the new
task. If the new task has multiple compatible output ports, the ad-hoc editor
asks the workflow designer to which input port the pipe should be connected. If
the workflow designer chooses a task already in the workflow, only the pipe is
created.

In a similar way, the workflow designer can select output ports to find and
add tasks or actors that accept the output data to as input. Data items can be
selected to find and add tasks and actors that accept these data as input.

Designing Workflows on the Fly Using e-BioFlow 477

Amino
Acid Sequence

(<?xml ver)
generated

EBI
WU_Blast

Amino Acid
Sequence

(a)

Amino
Acid Sequence

(<?xml ver)
generated used by

EBI
WU_Blast

Amino Acid
Sequence

(b)

Amino
Acid Sequence

(<?xml ver)

generated used by

AminoAcidSequence

EBI
WU_Blast

Amino Acid
Sequence

(c)

Fig. 3. (a) The “Amino Acid Sequence” task has generated a data item as output. (b)
This data item is defined as input for the “EBI WU Blast” task. (c) The ad-hoc editor
automatically generates a pipe between the two tasks.

Object

Identifier Get
GenBankFasta

(a)

Object
(<?xml ve)

generated used by

Object

Identifier Get
GenBankFasta

(b)

Fig. 4. (a) The output of the composer task “Object” is connected to the input of
the task “Get GenBankFasta” task. (b) When the first task is executed, the ad-hoc
editor automatically creates a data link between the data item produced and the next
task.

478 I. Wassink, M. Ooms, and P. van der Vet

Many web services use XML-based data structures as input or output, such
as SOAP/WSDL and MOBY-S services. Different services use different formats,
even for the same type of data. Creating these structures is a laborious and
error-prone activity, especially when the data is hierarchical. The ad-hoc editor
helps the workflow designer to build and parse these XML data structures by
means of so-called composer tasks and decomposer tasks. The inputs of a com-
poser task are the child elements, content and attribute values; the output is the
XML structure built. The input of a decomposer task is the XML structure to
be parsed; the outputs are the child elements, the content and the attributes.
Multiple composers and decomposers can be chained to build or parse hierarchi-
cal XML structures. Composers and decomposers tasks are handled as normal
e-BioFlow tasks, but are listed in separate categories when the workflow designer
searches for compatible tasks. Although these composer and decomposer tasks
do not solve all data conversion problems, they help the scientists to create XML
structures and to reuse the contents of XML structures without programming.

4.3 Programming by Demonstration

Workflows designed in the ad-hoc editor can be edited directly using the other
perspectives and vice versa. For example, when a new task is inserted in the
ad-hoc editor, then this task is also visible in the other perspectives. Similarly,
if a connection is made between a data item produced by a certain task and the
input of another task in the ad-hoc editor, this is visible as a data pipe between
the two tasks in the data flow perspective and vice versa. The relation is visible
as a dependency relation in the control flow perspective, denoting the order of
task execution. When the workflow is complete, it can of course also be run using
the e-BioFlow workflow engine. The workflow can can be saved as a template
for future experiments.

5 Use Case: Perform a Blat Operation

For the use case we introduce a fictitious bioinformatician named Tom, who
wants to orchestrate web services to analyse a biological question. Tom wants
to perform a sequence retrieval search against the zebrafish assembly for a set
of 200 sequences. He uses the ad-hoc editor to construct a runnable workflow
using a single sequence. Once the design of the workflow is finished, he will run
the workflow for the whole set of sequences.

Tom searches for a Blat service [30], because it is a fast alternative for Blast.
Soon, he finds the Blat service provided by Wageningen University, because this
one provides fast access to the Ensembl [31] zebrafish assembly. He drags the Blat
service to the workflow panel. The service requires two inputs, both MOBY-S
objects. The first, named “User”, is required for session information; the second,
called “BlatJob”, to provide the sequence and the database name. Tom does
not know the XML structures required, and even does not want to. Luckily, the
ad-hoc editor can help Tom to construct these complex data structures. Tom

Designing Workflows on the Fly Using e-BioFlow 479

instructs the editor to add composer tasks for the “User” input by right clicking
on this port. The ad-hoc editor shows compatible services and a composer task.
Tom chooses the composer task and instructs the ad-hoc editor to execute it. The
ad-hoc editor asks Tom to enter the e-mail address and password to construct
the complex data structure. The service description tells Tom that any e-mail
address and password will suffice. The ad-hoc editor shows the results of the
composer task in the workflow panel. Additionally, two arrows are added to the
workflow model, one connecting the composer’s output port to the data item
and one connecting the data item to the input port of the Blat task.

The “BlatJob” input is created in a similar way. This object is built of complex
data input too (database and sequence information). The ad-hoc editor enables
Tom to further compose these inputs. Tom instructs the ad-hoc editor to run
these three composer tasks at once. The ad-hoc editor asks Tom to enter the
database to be used and the sequence. The result is visualised as a red circle
connected to the output port.

Now all the inputs required by the Blat task are available, Tom instructs the
ad-hoc editor to execute the Blat task. The Blat service returns four outputs,
namely a URL to the Blat report, a copy of the two inputs and the MOBY-
S service notes. It seems that Tom has to download the Blat results using this
URL, however, it is in MOBY-S XML format. By right-clicking on the URL data
item, Tom selects the decomposer task for this MOBY-S object (Figure 5(a)).
The data item is connected to the input of the decomposer automatically. Tom
instructs the ad-hoc editor to execute this task. The output of the decomposer
is the URL, this time in plain text.

The URL describes a location using a secure socket connection. Currently,
e-BioFlow does not offer a task that can download content over a secure connec-
tion. Tom knows how to do this using Perl. He searches for a Perl task in the
task panel and finds a “scripting task”. Tom drags this task into the workflow
panel. The scripting task has no inputs or outputs by default. When Tom selects
the task, a configuration dialog pops to define the input (the URL) and the out-
put (the Blat report) of the task, and the script to be executed. The scripting
task requires Tom to select the language he wants to use. From the available
languages, he chooses “Perl”. Tom enters the code to be executed. The script
panel supports syntax highlighting; the inputs and outputs are treated as normal
variables, but are highlighted to distinguish them from the other variables.

When Tom has finished writing the code, he instructs the ad-hoc editor to
run the scripting task. The ad-hoc editor shows an error message and complains
about an unknown function. Tom reopens the configuration dialog of the script-
ing task and discovers he had forgotten to include a package. He inserts the
import statement and re-executes the task. This time, the task runs successfully
and returns the Blat report. The Blat report is in PSI format. Tom, however,
wants the output in Blast format in order to inspect the alignment. He con-
figures the Blat operation to generate the report in Blast format. He instructs
e-BioFlow to rerun the Blat task, the decomposer and the download task. This
time, the workflow generates the correct output (Figure 5(b)).

480 I. Wassink, M. Ooms, and P. van der Vet

(a) Search for composer task.

(b) The result of the scripting task.

Fig. 5. Screenshots of the design of the use case workflow in the ad-hoc editor

Now Tom has designed a correct workflow using a single sequence, he can use
it to perform the sequence-based search for the complete set of sequences.

6 Related Work

Few systems support ad-hoc workflow design, but none of them fulfill all the
features mentioned above. We will mention five different systems, all handling a
different approach in supporting ad-hoc workflow design.

Workflow by Example (WbE) [32]. WbE records the operations the user
performs on a database and translate them into a workflow for future

Designing Workflows on the Fly Using e-BioFlow 481

applications in similar contexts. WbE, however, is task oriented and does
not support direct data manipulation. Additionally, its focus is on automat-
ing querying databases instead of web service composition.

SeaHawk [17]. This tool provides an interface in which the user can explore
data and request the tool for services that accept the data as input. Seahawk
is not a workflow tool itself, but it can record the complete exploration
history and export this to a Taverna workflow.

KNIME [33]. This is a data exploration system and mining. It provides access
to many data analysis tools and they are presented as nodes of the workflows.
KNIME enables its users to execute the tools in isolation and to explore the
outputs. These outputs are, however, not explicitly presented in the graph.
Additionally, KNIME does not support web services.

Data playground [5]. A Taverna [34, 35] extension that enable life scientists
to “play” with MOBY-S services and to create small workflow snippets.
This plugin system enables the scientist to transform these snippets to the
standard process view of Taverna. Although the initial user experiences were
promising, this extension is not further designed.

ADEPT2 [36]. ADEPT2 supports dynamic process adaptation Running pro-
cesses can be modified at runtime. But ADEPT2 is directed to data-poor
business administration workflows for which the workflow engine is idle most
of the time during a run. Data, because it is scarce, cannot be used to decide
about the continuation of the workflow.

e-BioFlow supports the workflow by example, the explorative reseach style of
the Data playground and the guided experiment design of SeaHawk. It combines
many features of these systems, and provides them through a single graphical
user interface.

7 Discussion

The ad-hoc editor turns e-BioFlow into a workflow design and execution sys-
tem that supports both the routine process-oriented mode and the investiga-
tive data-oriented mode to design workflows. The ad-hoc editor operates on the
same workflow model and therefore workflows designed in this perspective can
be edited using the other perspectives or run using the e-BioFlow engine. This
editor enables the workflow designer to construct workflows in an explorative
and intuitive way by giving real-time feedback of the state of the workflow and
suggesting compatible actors, composers and decomposers. The workflow de-
signer can run tasks in isolation, among others, to analyse intermediate results,
to optimise parameters and to debug scripts.

The ad-hoc editor supports all actors provided by e-BioFlow. The ad-hoc edi-
tor fully supports the late binding capabilities of e-BioFlow. Workflows designed
in this perspective are reusable templates for routine process-oriented mode to
analyse other data sets and for sharing with other scientists through web portals
such as myExperiment.

482 I. Wassink, M. Ooms, and P. van der Vet

The use-case in this paper demonstrates a small but realistic scenario of using
the ad-hoc editor to design a workflow. Many features the ad-hoc editor provides
are shown, such as explorative design, composing and decomposing complex
data structures, debugging the workflow and optimising parameter settings. The
result of the use-case is a correct, runnable workflow that can be (re)used to
perform a Blat analysis for a large number of sequences.

We [37] have tested the ad-hoc editor among life scientists and have found
this editor to be a real improvement over traditional workflow editors.

Acknowledgement

This work was part of the BioRange programme of the Netherlands Bioinformat-
ics Centre (NBIC), which is supported by a BSIK grant through the Netherlands
Genomics Initiative (NGI).

References

1. Kell, D., Oliver, S.: Here is the evidence, now what is the hypothesis? BioEs-
says 26(1), 99–105 (2004)

2. Mahoui, M., Lu, L., Gao, N., Li, N., Chen, J., Bukhres, O., Miled, Z.: A dynamic
workflow approach for the integration of bioinformatics services. Cluster Comput-
ing 8(4), 279–291 (2005)

3. Shao, Q., Sun, P., Chen, Y.: Efficiently discovering critical workflows in scientific
explorations. Future Generation Computer Systems 25(5), 577–585 (2009)

4. Barga, R., Gannon, D.: Scientific versus business workflows. In: Taylor, I.J., Deel-
man, E., Gannon, D.B., Shields, M. (eds.) Workflows for e-Science, pp. 258–275.
Springer, Berlin (2007)

5. Gibson, A., Gamble, M., Wolstencroft, K., Oinn, T., Goble, C.: The data play-
ground: An intuitive workflow specification environment. In: Cox, S. (ed.) E-
SCIENCE 2007: Proceedings of the Third IEEE International Conference on e-
Science and Grid Computing, Washington, DC, USA, pp. 59–68. IEEE Computer
Society Press, Los Alamitos (2007)

6. Wassink, I., Rauwerda, H., van der Vet, P., Breit, T., Nijholt, A.: e-BioFlow: Dif-
ferent perspectives on scientific workflows. In: Elloumi, M., Küng, J., Linial, M.,
Murphy, R.F., Schneider, K., Toma, C. (eds.) 2nd International Conference on
Bioinformatics Research and Development (BIRD), Vienna, Austria, pp. 243–257
(2008)

7. Wainer, J., Weske, M., Gottfried, V., Bauzer Medeiros, C.: Scientific workflow sys-
tems. In: Proceedings of the NSF Workshop on Workflow and Process Automation
in Information Systems, Athens, Georgia, pp. 1–5 (1997)

8. Green, T.R.G., Petre, M.: Usability analysis of visual programming environments:
A cognitive dimensions framework. Journal of Visual Languages & Computing 7(2),
131–174 (1996)

9. Wassink, I., van der Vet, P., Wolstencroft, K., Neerincx, P., Roos, M., Rauwerda,
H., Breit, T.: Analysing scientific workflows: why workflows not only connect web
services. In: Zhang, L. (ed.) SERVICES 2009 (Part I), Los Angeles, USA, pp.
314–321 (2009)

Designing Workflows on the Fly Using e-BioFlow 483

10. Goble, C., De Roure, D.: MyExperiment: Social networking for workflow-using e-
scientists. In: Deelman, E., Taylor, I. (eds.) WORKS 2007, Monterey, California,
USA, pp. 1–2 (2007)

11. Goderis, A., De Roure, D., Goble, C., Bhagat, J., Cruickshank, D., Fisher, P.,
Michaelides, D., Tanoh, F.: Discovering scientific workflows: The myExperiment
benchmarks. IEEE Transactions on Automation Science and Engineering (2008)
(Submitted)

12. Whitley, K.: Visual programming languages and the empirical evidence for and
against. Journal of Visual Languages & Computing 8(1), 109–142 (1997)

13. Costabile, M., Fogli, D., Mussio, P., Piccinno, A.: Visual interactive systems for
end-user development: A model-based design methodology. IEEE Transactions on
Systems, Man and Cybernetics, Part A: Systems and Humans 37(6), 1029–1046
(2007)

14. Kulyk, O., Wassink, I., van der Vet, P.E., van der Veer, G.C., van Dijk, E.M.A.G.:
Sticks, balls or a ribbon? results of a formative user study with bioinformaticians.
Technical Report TR-CTIT-08-72, CTIT, University of Twente, Enschede (2008)

15. Downey, L.: Group usability testing: Evolution in usability techniques. Journal of
Usability Studies 2(3), 133–144 (2007)

16. Hundhausen, C., Lee Brown, J.: An experimental study of the impact of visual
semantic feedback on novice programming. Journal of Visual Languages and Com-
puting archive 18(6), 537–559 (2007)

17. Gordon, P., Sensen, S.: Seahawk: moving beyond html in web-based bioinformatics
analysis. BMC bioinformatics 8(208), 1–13 (2007)

18. Robbes, R., Lanza, M.: How program history can improve code completion. In:
Inverardi, P., Ireland, A., Visser, W. (eds.) 23rd IEEE/ACM International Con-
ference on Automated Software Engineering (ASE 2008), Aquila, Italy, September
2008, pp. 317–326 (2008)

19. Wroe, C., Goble, C., Greenwood, M., Lord, P., Miles, S., Papay, J., Payne, T.,
Moreau, L.: Automating experiments using semantic data on a bioinformatics grid.
IEEE Intelligent Systems 19(1), 48–55 (2004)

20. Neerincx, P., Leunissen, J.: Evolution of web services in bioinformatics. Briefings
in Bioinformatics 6(2), 178–188 (2005)

21. Belhajjame, K., Embury, S., Paton, N.: On characterising and identifying mis-
matches in scientific workflows. In: Leser, U., Naumann, F., Eckman, B. (eds.)
DILS 2006. LNCS (LNBI), vol. 4075, pp. 240–247. Springer, Heidelberg (2006)

22. Kappler, M.: Software for rapid prototyping in the pharmaceutical and biotechnol-
ogy industries. Current Opinion in Drug Discovery & Development 11(3), 389–392
(2008)

23. Shon, J., Ohkawa, H., Hammer, J.: Scientific workflows as productivity tools for
drug discovery. Current Opinion in Drug Discovery & Development 11(3), 381–388
(2008)

24. Lau, T.A., Weld, D.S.: Programming by demonstration: an inductive learning for-
mulation. In: Maybury, M., Szekely, P., Thomas, C.G. (eds.) IUI 1999: Proceedings
of the 4th international conference on Intelligent user interfaces, pp. 145–152. ACM
Press, New York (1999)

25. van der Aalst, W., Aldred, L., Dumas, M., ter Hofstede, A.: Design and implemen-
tation of the YAWL system. In: Persson, A., Stirna, J. (eds.) CAiSE 2004. LNCS,
vol. 3084, pp. 142–159. Springer, Heidelberg (2004)

26. Moreau, L., Plale, B., Miles, S., Goble, C., Missier, P., Barga, R., et al.: The Open
Provenance Model (v1.01). Technical report, University of Southampton (2008)

484 I. Wassink, M. Ooms, and P. van der Vet

27. Moreau, L., Freire, J., Futrelle, J., Mcgrath, R., Myers, J., Paulson, P.: The open
provenance model: An overview. In: Freire, J., Koop, D., Moreau, L. (eds.) IPAW
2008. LNCS, vol. 5272, pp. 323–326. Springer, Heidelberg (2008)

28. Shields, M.: Control- versus data-driven workflows. In: Taylor, I.J., Deelman, E.,
Gannon, D.B., Shields, M. (eds.) Workflows for e-Science, pp. 258–275. Springer,
Berlin (2007)

29. Ihaka, R., Gentleman, R.: R: A language for data analysis and graphics. Journal
of Computational and Graphical Statistics 5(3), 299–314 (1996)

30. Kent, W.: Blat–the blast-like alignment tool. Genome Research 12(4), 656–664
(2002)

31. Flicek, P., Aken, B., Beal, K., Ballester, B., Caccamo, M., Chen, Y., Clarke, L.,
Coates, G., Cunningham, F., Cutts, T., Down, T., Dyer, S., Eyre, T., Fitzgerald,
S., Fernandez-Banet, J., Gräf, S., Haider, S., Hammond, M., Holland, R., Howe,
K., Howe, K., Johnson, N., Jenkinson, A., Kähäri, A., Keefe, D., Kokocinski, F.,
Kulesha, E., Lawson, D., Longden, L., Megy, K., Meidl, P., Overduin, B., Parker,
A., Pritchard, B., Prlic, A., Rice, S., Rios, D., Schuster, M., Sealy, I., Slater, G.,
Smedley, D., Spudich, G., Trevanion, S., Vilella, A., Vogel, J., White, S., Wood,
M., Birney, E., Cox, T., Curwen, V., Durbin, R., Fernandez-Suarez, X., Herrero,
J., Hubbard, T., Kasprzyk, A., Proctor, G., Smith, J., Ureta-Vidal, A., Searle, S.:
Ensembl 2008. Nucleic Acids Research 36(Database issue), D707–D714 (2008)

32. Tomasic, A., McGuire, R., Myers, B.: Workflow by example: Automating database
interactions via induction. Technical Report CMU-ISRI-06-103, Carnegie Mellon
University (2006)

33. Berthold, M.R., Cebron, N., Dill, F., Gabriel, T.R., Kötter, T., Meinl, T., Ohl, P.,
Sieb, C., Thiel, K., Wiswedel, B.: KNIME: The konstanz information miner. In:
Preisach, C., Burkhardt, H., Schmidt-Thieme, L., Decker, R. (eds.) Data Analysis,
Machine Learning and Applications, pp. 319–326. Springer, Berlin (2008)

34. Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, M., Carver, T.,
Glover, K., Pocock, M., Wipat, A., Li, P.: Taverna: a tool for the composition and
enactment of bioinformatics workflows. Oxford Bioinformatics 20(17), 3045–3054
(2004)

35. Oinn, T., Li, P., Kell, D., Goble, C., Goderis, A., Greenwood, M., Hull, D., Stevens,
R., Turi, D., Zhao, J.: Taverna/myGrid: Aligning a workflow system with the life
sciences community. In: Taylor, I.J., Deelman, E., Gannon, D.B., Shields, M. (eds.)
Workflows for e-Science, pp. 300–319. Springer, Berlin (2007)

36. Reichert, M., Dadam, P.: Enabling adaptive process-aware information systems
with ADEPT2. In: Research on Business Process Modeling. Information Science
Reference, pp. 173–203 (2009)

37. Wassink, I., van der Vet, P., van Dijk, E., Veer, G., Roos, M.: New interactions
with workflow systems. In: European Conference on Cognitive Ergonomics 2009
(ECCE 2009), Otaniemi, Finland (in press, 2009)

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 485–499, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Measuring the Quality of Service Oriented Design

Renuka Sindhgatta, Bikram Sengupta, and Karthikeyan Ponnalagu

IBM India Research Laboratory
Bangalore, India

{renuka.sr,bsengupt,pkarthik}@in.ibm.com

Abstract. Service Oriented Architecture (SOA) has gained popularity as a de-
sign paradigm for realizing enterprise software systems through abstract units
of functionality called services. While the key design principles of SOA have
been discussed at length in the literature, much of the work is prescriptive in na-
ture and do not explain how adherence to these principles can be quantitatively
measured in practice. In some cases, metrics for a limited subset of SOA quality
attributes have been proposed, but many of these measures have not been em-
pirically validated on real-life SOA designs. In this paper, we take a deeper look
at how the key SOA quality attributes of service cohesion, coupling, reusability,
composability and granularity may be evaluated, based only on service design
level information. We survey related work, adapt some of the well-known soft-
ware design metrics to the SOA context and propose new measures where
needed. These measures adhere to mathematical properties that characterize the
quality attributes. We study their applicability on two real-life SOA design
models from the insurance industry using a metrics computation tool integrated
with an Eclipse-based service design environment. We believe that availability
of these measures during SOA design will aid early detection of design flaws,
allow different design options and trade-offs to be considered and support plan-
ning for development, testing and governance of the services.

Keywords: Service Design, Business Process Model, Service Design
Principles, Metrics.

1 Introduction

Service Oriented Architecture (SOA) represents the natural continuum of increasing
levels of abstraction in software engineering that has previously seen the emergence
of object-oriented programming and component based development. SOA is charac-
terized by a greater focus on identifying business-relevant functionality that may be
exposed as services to consumers (end-user applications or other services), a higher-
level of decoupling of interfaces and implementation, and a thrust on open standards-
based protocols (e.g. Web Services) for realizing this vision.

The design of a service is guided by a set of principles that help in achieving the
goals of SOA. These principles have been well-documented in the literature [6, 7, 19]
and include notions of cohesion, coupling, reusability, composability, granularity,
statelessness, autonomy, abstraction and so on. However, the principles are largely

486 R. Sindhgatta, B. Sengupta, and K. Ponnalagu

prescriptive in nature and there has been little work in defining how adherence to
these principles may be quantitatively measured in practice. In some cases, metrics
for a limited subset of SOA quality attributes have been proposed (e.g. [4, 5]), but
most of these measures have not been empirically validated on real-life SOA designs.
As a result, service design may proceed based on an informal or incomplete under-
standing of the principles, and without a sound measurement basis, could result in a
flawed design. The generated services can provide all the functionality required by
them and yet may not ultimately satisfy the design goals of SOA.

In this paper, we take a deeper look at how the key SOA quality attributes of ser-
vice cohesion, coupling, reusability, composability and granularity may be evaluated,
based only on service design level information. We review related work, adapt some
of the well-known software design metrics to the SOA context and propose new
measures where needed. We study their applicability on two real-life SOA design
models from the insurance industry using a metrics computation tool integrated with
an Eclipse-based service design environment. We also state the mathematical proper-
ties that the metrics adhere to (for lack of space, we do not include the proofs, which
are straightforward). We believe that availability of these measures during SOA de-
sign will aid early detection of design flaws, allow different design options and trade-
offs to be considered and support planning for development, testing and governance
of services. The service consumer will also be capable of analyzing the quality of a
service without having to analyze the details of the implementation (to which the
consumer may not have access).

The rest of the paper is structured as follows. Section 2 sets the context by intro-
ducing the abstract service design model, case studies and tooling framework used in
this paper. In Section 3, we define and evaluate a set of metrics for the SOA quality
attributes of cohesion, coupling, reusability, composability, and granularity. Related
work for each of the metrics is also discussed in detail and leveraged whenever possi-
ble. Section 4 presents directions for future research.

2 Setting the Context

We first describe the formal model and notation for service design that we use in this
paper. Next, we introduce two large service designs in the Insurance Industry that we
will use as running examples to compute and evaluate the metrics we propose. Fi-
nally, we briefly describe the service modeling environment on top of which our met-
rics computation tool has been built and our empirical studies conducted.

2.1 Model and Notations – Process, Service, Operations, Messages

To ensure common understanding of the metrics, we introduce the underlying service
model and associated notations used in this paper. An enterprise adopting Service
Oriented Architecture identifies a domain that needs to undergo SOA transformation.

• The business domain is supported by a set of business processes P = {p1, p2…pP}.
• A set of services S= {s1, s2…sS} are identified and designed for automating the

business process of the domain.

 Measuring the Quality of Service Oriented Design 487

• A service s∈ S provides a set O(s) of operations = {o1, o2,….oO} and |O(s)| = O

• An operation o ∈ O(s) has a set of input and output messages that are used as
data containers between the service consumers and the service. A message and
its constituent data types are derived from an information model of the domain.
M(o) is set of messages and data types for the operation o, The set of messages
and constituent data types of all operations of a service s is represented as M(s)

= U
)(

)(
sOo

oM
∈

.

• Sconsumer(s) = {Sc1, Sc2….Scn}, represents a set of consumers of the service s.

2.2 Case Studies

Insurance Application Architecture (IAA): IAA [20] is a comprehensive set of
insurance specific models that represent best practices in insurance. IAA describes the
business of the insurer and includes process and information models of the domain. In
recent years, a set of services have been designed to accelerate SOA adoption. In the
rest of the paper, we refer to this design as ServiceDesignA.

Insurance Property & Casualty Content Pack: IBM Websphere Industry content
pack contains pre-built service-oriented architecture assets that are used to accelerate
development of industry-specific business applications. The Insurance Property &
Casualty Content Pack [21] for WebSphere Business Services Fabric focuses on
property and casualty lines of business for insurance enterprises and provides a ser-
vice design for the same. We refer to this design as ServiceDesignB.

Table 1 gives a high-level summary of the design of the two experimental systems.

Table 1. Case Studies for Measuring Quality of Service Design

Experimental System # of

services
of
operations

of messages
and types

of Business
Processes

ServiceDesignA 110 622 3000 292
ServiceDesignB 83 286 794 53

2.3 Service Design and Metrics Computation Tool

Rational Software Architect (RSA) [22] provides a mature environment for designing
SOA solutions and is built over the Eclipse platform supporting plug-in development.
Our tool for metrics computation on service design is an RSA plug-in. A UML model
of the service design is taken as input. Eclipse EMF APIs are used to extract data on
each service e.g. operations, messages, data types and business processes. This data is
used to compute the metrics through a metrics calculator. The metrics is stored along
with each service design element and can be analyzed.

We now move on to the main part of the paper – the definition and evaluation of a
metric suite for different quality aspects of service-oriented design.

488 R. Sindhgatta, B. Sengupta, and K. Ponnalagu

3 Service Design Metrics

SOA design principles emphasize the attributes of coupling, cohesion, reusability,
composability and granularity. Below, we briefly introduce each attribute and survey
related work on measuring them, for procedural and OO systems. We also review the
(limited) research in quantifying these attributes for service-oriented systems. Finally,
we propose a set of metrics for measuring each attribute and study their applicability
and usefulness on our example service design models.

3.1 Cohesion

For any system, cohesion measures the degree to which the elements of the system
belong together [1]. The notion is generic enough to be applied to different types or
levels of encapsulation e.g. a module, class, component, service etc., although how it
is measured would have to be adapted to the context. Highly cohesive designs are
desirable since they are easier to analyze and test, and provide better stability and
changeability, which make the eventual systems more maintainable [10].

For procedural systems, various categories of module cohesion were proposed in
[1] such as Coincidental (weakest), Logical, Temporal, Procedural, Communicational,
Sequential and Functional (strongest). For Object-Oriented (OO) systems, a different
set of categories was defined in [11]: Separable (weakest), Multifaced, Non-
delegated, Concealed and Model (strongest). However, some of this categorization is
subjective in nature. Bieman et. al [8] measure the functional cohesion of procedures
by identifying common tokens that lie in the data slices of the procedure. Perhaps the
most well-known effort at quantifying cohesion for OO systems is the LCOM (Lack
of Cohesion in Methods) metric introduced by Chidamber and Kemerer that has mul-
tiple definitions and has undergone several refinements [3, 9].

For service-oriented systems, Perepletchikov et. al [5] categorizes cohesion on the
basis of data, usage, sequence and implementation, defines measures for these and
aggregates based on their average. Of the proposed measures, Service Interface Data
Cohesion (SIDC), that identifies cohesion based on commonality of messages of the
operations in terms of contained data types, will be reviewed in more detail below.
None of the metrics have been empirically validated.

In the following, we first adapt two variants of the LCOM metric in the services
context (LCOS1, LCOS2). The metrics are applied on our case studies and their draw-
backs are analyzed. We propose a new metric for measuring service cohesion (SFCI)
and evaluate its performance. Finally, the properties of SFCI are discussed.

Lack of Cohesion of Service Operations (LCOS)
LCOM has been widely used as a measure of cohesiveness in OO systems. For each
class, the methods that operate on the same attributes are considered cohesive. In the
context of services, there are no service attributes but messages become relevant as
operations use these to execute the business functionality. Service operations that use
common messages or their constituent data types can be considered cohesive. Service
messages typically represent business entities or artifacts and hence operations on
the same business entity or artifact are functionally related. We evaluate LCOM

 Measuring the Quality of Service Oriented Design 489

definitions and redefine them for services. The definition is based on two widely used
LCOM metrics [3, 9].

LCOS1 is based on the [3] where pairs of operations on the same set of messages
are identified and considered cohesive; similarly, pairs of operations that do not con-
tain similar messages are considered non-cohesive.

For a service s with operations O(s), let M(oi) be the set of messages (and data

types) used by operation)(sOoi ∈ . Let,

P(s) ={ (M(oi),M(oj)) | M(oi) 3 M(oj) = π ,)(, sOoo ji ∈ } and

Q(s) = { (M(oi), M(oj)) } | M(oi) 3 M(oj) ! π,)(, sOoo ji ∈ }, then

LCOS1 (s) = |P(s)| - |Q(s)| if |P(s)| > |Q(s)|
 = 0 if |P(s)| < |Q(s)|

As the above definition indicates, LCOS1 is not normalized, similar to the original
LCOM metric [6]. LCOS1 is 0 (strong cohesion) when the number of operation pairs
that share messages (Q(s)), is more than the number of pairs that do not (P(s)). Oth-
erwise, the difference between the numbers is taken as the lack of cohesion measure.
LCOS2 is based on the [9]. The number of operations using a message m can be de-

fined as μ (m) where m∈ M(s).

|)(|1

|)(|)(
|)(|

1

)(
)(

2 sO

sOm
sM

sLCOS
sMm

−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=
∑
∈

μ

LCOS2 is bound between 0 and 1. If each operation uses all the messages 3(m) =
|O(s)| and hence LCOS2 = 0. If each operation uses a distinct message, then the nu-
merator reduces to 1-|O(s)| and so LCOS2 = 1.

In practice, we have found both LCOS1 and LCOS2 to suffer from some drawbacks
when applied to service oriented systems. Apart from its lack of normalization, the
discriminating power of LCOS1 is low, and most services tend to be classified as
highly cohesive. On the other hand, LCOS2 tends to increase sharply with increase in
the number of operations, and most services appear as lacking cohesion. This is be-
cause, with an increasing number of operations, it becomes very unlikely that each
operation will require the same set of (all) messages, although they may still contain
some core data types that are relevant to the service functionality and may thus be
argued to be functionally cohesive. These observations motivated us to define the
Service Functional Cohesion Index (SFCI) defined below.

Service Functional Cohesion Index (SFCI)
This metric defines the functional cohesion of the operations of the service based on
the commonality of the key message(s) the operations use to perform the required
functionality. As above, if the number of operations using a message m is μ(m) where

m∈ M(s), and |O(s)| >0, then

490 R. Sindhgatta, B. Sengupta, and K. Ponnalagu

|)(|

))(max(
)(

sO

m
sSFCI

μ=

We define SFCI(s) to be 0 when s contains no operations. In SFCI(s), we focus on the
contained data types that defines the message that is most widely used across all the
operations – the fraction of operations using this common message and types returns
SFCI. The value of this metric is always between 0 (non-cohesive) and 1 (highly
cohesive). The service is perfectly cohesive if all the operations use one common
message – the intuition here is that a cohesive service typically operates on a small set
of key business objects (messages) relevant to that service, so these objects should
appear in most of its operations. But the operations may also need other messages as
inputs to operate on the key objects, and these types can very well differ based on the
nature of the operation. As our empirical studies will show, this metric is better in-
dicative of the cohesion of service operations when compared to LCOS1 and LCOS2
and remains stable with increase in number of operations. To compute the above
metric in practice, we recommend filtering out utility data types that are also part of
the messages since otherwise, unrelated operations may appear cohesive. The classifi-
cation of data types into utility and business-relevant types may be done by a domain
expert. Utility data types (including those representing primitive types) usually appear
in many/most operations, often across unrelated services, hence we may automatically
identify potential utility data types based on their usage count, for validation and
filtering by domain experts.

The Service Interface Data Coupling (SIDC) metric defined in [5] also considers
common data types of messages across operations to measure service cohesion. How-
ever, like LCOS2, cohesion is high in SIDC only when all operations have the mes-
sages with same data types. Also, the metric, which is defined as the ratio of two
unrelated terms (the number of operations having the similar messages and the total
number of messages) has not been normalized to range between 0 and 1. Finally, the
metric has not been empirically evaluated.

Measuring and Evaluating Cohesion Metrics
We have evaluated LCOS1, LCOS2 and SFCI metrics on ServiceDesignA and Ser-
viceDesignB, and the results are shown in Figure 1.Since LCOS1 and LCOS2 indicate
lack of cohesion while SFCI measures cohesion; we plot LCOS1, LCOS2 and (1-
SFCI). Along the X-axis, we have ordered the services in terms of their increasing
number of operations.

In ServiceDesignA LCOS1 indicates a value of 0 for all but 2 services, while in
ServiceDesignB, it is 0 for all the services. Thus all services are deemed highly cohe-
sive and are indistinguishable in this respect. Conversely, LCOS2 displays a strong
correlation with the number of operations, and cohesion is very low for all services
with more than 5 operations. On the other hand, the plot of SFCI shows better dis-
criminating power compared to LCOS1 and it remains stable as the number of
operations increases, unlike LCOS2. To validate that SFCI is more meaningful as a
cohesion metric than LCOS2, we investigated a service PolicyAdministration having 9
operations, with LCOS2 indicating lack of cohesion of 0.85 and SFCI indicating cohe-
sion of 0.89, which are very conflicting values. We found that all the 9 operations in
PolicyAdministration are related to aspects of policy, and 8 of the 9 operations

 Measuring the Quality of Service Oriented Design 491

Fig. 1. Cohesion Metrics for ServiceDesignA and ServiceDesignB

process a business object called InsurancePolicy, hence from the design perspective,
the service appears highly cohesive, as determined by SFCI, and the value of LCOS2
appears misleading. We also reviewed a service with the lowest SFCI metric in Ser-
viceDesignA. The service, LifePolicyManager has 19 operations dealing with differ-
ent aspects such as terminating agreement, surrendering policy or requesting a loan,
which could be refactored as multiple services. Note that there are several utility
types that are defined to invoke an operation – e.g. RequestHeader, ResponseHeader
and BusinessObject in ServicceDesignA. We filtered these types while computing the
SFCI. It is seen that about 70% of the services in ServiceDesignA have an SFCI > 0.8.
ServiceDesignB has 80% of the services with cohesion > 0.8. Thus both designs are
very cohesive.

Validation of Cohesion Metrics
We verify the properties satisfied by the cohesion metric SFCI using the Properties
based software engineering measurement framework [2]. SFCI is not negative and is
normalized between 0 and 1 (Non-negativity, Normalization). SFCI is null when there
are no messages or operations of a service (Null Value). SFCI is monotonic and does
not reduce when more number of operations use some common messages. By adding
more relationships between the messages and operations, μ(m) increases and hence
the cohesion of the service cannot decrease (Monotonicity). SFCI of a service ob-
tained by putting together two unrelated services (having disjoint message sets) can-
not be more than the SFCI of either service (Cohesive Service).

3.2 Coupling

Coupling measures the strength of association or dependence between systems.
Loosely coupled systems are easier to maintain [10], since a change in one system
entity will have less impact on other entities. They are also easier to comprehend,
reuse and test. Low coupling and high cohesion are thus fundamental to the design of
any software system, including those that are service-oriented.

The concept of coupling was originally studied for procedural systems and classi-
fied into different types of coupling such as Content(highest),Data, Control, Mes-
sages(lowest) coupling [1]. For OO systems, additional complexities in coupling
introduced by inheritance, polymorphism etc. have been studied and a number
of coupling frameworks have been proposed [11, 12]. Two well-known metrics for

Cohesion Metrics for ServiceDesignA

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120

Services

M
et

ri
c

V
al

u
e

LCOS1 LOCS2 1-SFCI

Cohesion Metrics for ServiceDesignB

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

Services

M
et

ri
c

V
al

u
e

LCOS1 LCOS2 1-SFCI

492 R. Sindhgatta, B. Sengupta, and K. Ponnalagu

OO coupling are Coupling Between Objects (CBO) and Response for a Class (RFC)
[3]. CBO for a class is the count of the number of classes to which it is coupled – i.e.
methods of one class use methods or instance variables of another. RFC for a class is
the set of all methods that may be invoked in response to the invocation of a method
in the class. In the context of service-oriented systems, [4] defines 8 types of coupling
metrics. These metrics mostly relate to service implementation elements, assumes
different weight factors for the relationships between elements, and makes many fine-
grained distinctions between the types of dependencies. The aggregate forms of these
metrics are used to define coupling at the service level. While the work is very de-
tailed, the measures have not been empirically evaluated. Unlike [4], we define cou-
pling measures assuming the availability of only service design level information. The
focus is on defining a small set of metrics that are easy for the service designer to act
on and the service consumer to comprehend. Our approach has been motivated by the
fact that coupling as a property, has a tendency to generate a multitude of measures
often without offering newer insight, as a study by Briand et al have shown for OO
systems [13].

In a service-oriented design, we believe that there is a need to distinguish between
2 categories of coupling: the dependence of a service on other services, and its de-
pendence on messages. The dependence of one service on another has parallels with
inter-class coupling, and the OO metrics of CBO and RFC may be suitably adapted,
as we show below. However, the dependence of a service on messages is a character-
istic of the services domain. Unlike in OO where a class encapsulates data (class at-
tributes) and also operations on that data, messages are not bound to a service; rather,
they are treated as first-class entities in a service-oriented design approach, and are
defined by data architects based on the information model containing all the business
entities of the domain. Services encapsulate operations that refer to and update the
state of the business messages, and thus become coupled to them – business object
models may get independently updated, thereby necessitating changes to the service
operations that process them. Accordingly, we define metrics for both service cou-
pling (SOCI, ISCI) and message coupling (SMCI), below.

Service Operational Coupling Index (SOCI)
We analyze the dependence of a service on the operations of other services it uses for
its functionality. Service Operational Coupling Index; SOCI can be represented as the
number of operations of other services invoked by service s.

{ }')',(|'')(ssoocallssosSOCI so ≠∧∃∈= ∈

calls (o, o’) denotes a call made by operation o of s to operation o’ of s’. This measure
considers direct coupling only. We can further use a transitive closure of the calls
relation to get a measure of indirect service operational coupling, which is denoted as
SOCIindirect(s). SOCI is an adaptation of the OO metric Response for a Class (RFC)
[3], in the services domain.

Inter-Service Coupling Index (ISCI)
Inter-Service Coupling Index (ISCI) is defined as the number of services invoked by a
given service s.

 Measuring the Quality of Service Oriented Design 493

{ }')',(.,|')('' ssoocallsssISCI soso ≠∧∃∃= ∈∈

We can further use a transitive closure of the calls relation to get a measure of indirect
inter-service coupling which is denoted as ISCIindirect(s). ISCI is similar in spirit to the
OO metric of Coupling Between Objects (CBO) [3]. However CBO also includes
dependencies on class attributes (in addition to methods), which is not relevant in the
services context.

 Service Message Coupling Index (SMCI)
SMCI measures the dependence of a service on the messages derived from the infor-
mation model of the domain. These messages are those its operations receive as inputs,
interpret and process, and those they need to produce as output, as declared in the inter-
face. They also include messages the service needs to create in order to invoke opera-
tions in other services it is functionally dependent on. We represent SMCI as

|)')',(()'(|)'(|)('' ssoocallssooMsSMCI soso ≠∧∃∃∨∈= ∈∈U

A low SMCI indicates less complexity for the service in interpreting and creating
messages and less dependence on the domain information model. Note that M(o)
includes all the constituent data types.

Measuring and Evaluating Coupling Metrics
The ISCI and SOCI metrics, evaluated on ServiceDesingnA, are shown in Fig.2 (a)
Overall, the system has moderate levels of coupling and of the 110 services, 36 ser-
vices (~ 33%) are coupled to other services, while the rest are atomic services that do
not depend on other services for their functionality. For most services, the SOCI and
ISCI metric are the same. This indicates that a service is dependent on another service
for only one of its operations. Moreover, we have determined that the Indirect ver-
sions of these metrics do not bring in any additional coupling. The maximum value of
ISCI is 4. The service OperationalRiskAssessment is coupled to other services as it
analyzes risk by requesting information from 4 distinct services related to Customer,
Policy, Agreement and Payment. In the case of SystemDesignB, all 83 services were
atomic services. The design consists of utility services on which other services can be
defined. Figure 2 (b) shows the SMCI metric for the services in ServiceDesignA and
ServiceDesignB In general, ServiceDesingA has higher message coupling than Ser-
viceDesignB, as seen from the figure.

ISCI and SOCI for ServiceDesignA

0

5

10

15

20

25

1 2 3 4 5

Metric value

N
u

m
b

er
 o

f
S

er
vi

ce
s

ISCI SOCI

SMCI for ServiceDesign

0%

5%

10%

15%

20%

25%

30%

35%

<=4 >5 <=10 >10 <=15 >15 <=20 >20 <=30 >30 <=58

SMCI

P
er

ce
n

ta
g

e
o

f
S

er
vi

ce
s

ServiceDesignB ServiceDesignA

Fig. 2(a). ISCI, SOCI for ServiceDesignA 2(b). SMCI for ServiceDesignA and Ser-
viceDesignB

494 R. Sindhgatta, B. Sengupta, and K. Ponnalagu

Validation of Coupling Metrics
We now verify the properties of the coupling metrics [2]. The coupling metrics are
nonnegative (Nonnegativity). ISCI, SOCI and SMCI are null if there are no coupled
services or no messages for each of the service operations (Null Value). The metrics
are Monotonic and do not decrease by adding more dependencies. SMCI may only
increase if the number of messages of the service (or, in operations invoked by the
service) increases (Monotonicity). The coupling of a service obtained by merging two
services is less than or equal the sum of coupling of the two original services (Merg-
ing of Services). This is true for all the metrics. The coupling obtained by merging two
disjoint services is equal to the sum of couplings of the two original services (Disjoint
Service Additivity). Disjoint services are not consumers of each other, are coupled to
different services and have disjoint message sets.

3.3 Reusability and Composability

We now discuss service reusability and composability, which are related concepts.
Reusability is one of the key principles of service design. A service should ideally be
designed for more that one service consumer. Service composability is a form of
reusability. A service becomes a composition participant and can be reused along with
other services to provide business functionality.

Reusability of an entity may be looked at from two perspectives: the characteristics
of the entity that are predictors of reusability, and potential for future reuse of the
entity based on usage that has already happened. The attributes of coupling and cohe-
sion are generally good predictors of reusability. A service whose operations are
cohesive and have less external dependencies will be more easily reusable. [14] com-
putes customizability, understandability and portability metrics and uses them as
predictors of reusability. Portability is measured in terms of the number of methods
without parameters or return values. In [16], the average number of arguments per
procedure is proposed as a measure of the understandability of the interface. For pre-
dicting reusability based on actual usage, contributions in terms of lines of code
(LOC) [15] have been proposed for code assets. For OO systems, Depth of Inheri-
tance (DIT) metric is used as a measure of reusability of a class [3]. However, neither
of these metrics is relevant to services-oriented design, and we instead suggest meas-
uring reusability based on use of the service by service consumers.

Service Reuse Index
The number of existing consumers of a service indicates the reusability of the service.
At the service design level, these consumers may be other services coupled to this
service or business processes where the service is used. We define Service Reuse
Index as

SRI(s) = |Sconsumer(s)| = P + Q, where

P = { }'),'(.,|' '' ssoocallss soso ≠∧∃∃ ∈∈

Q = { }psPp ∈∈ |

Similarly, we may define an Operation Reuse Index (ORI) for an operation as
the number of consumers of that operation across services and business processes.

 Measuring the Quality of Service Oriented Design 495

Sometimes the reuse of a service is due to the reuse of one or few of its operations –
ORI helps identify those important operations of the service.

While SRI predicts future reuse based on existing usage of a service, service reuse
potential based on interface understandability (along the lines of component under-
standability [16]) may be defined in terms of the complexity of the interface. The
interface of a service is complex when it contains a high number of operations and
messages, hence |O(s)| and |M(s)| may be used as indicators of understandability, with
lower values implying better understandability (thereby higher reuse potential). How-
ever, proving the value of such measures for reuse (i.e. being able to link actual usage
to better understandability) is difficult and higher interface complexity often means
more reuse opportunities, as our empirical studies reveal below.

Service Composability Index (SCOMP)
A composable service is designed to participate as an effective member of multiple
compositions. We define service composability considering the compositions in
which the service is a composition participant and the number of distinct composition
participants which succeed or precede the service. Neighbors(s, p) returns the set of
services which are neighbors (immediate predecessors and successors) of s in busi-
ness process p. We define:

SCOMP(s) = |),(| U
Pp

psNeighbors
∈

We may also extend this definition to include other services that may not be immedi-
ate successors or predecessors of s but are participants of the same composition and
would be present in the control flow of the composition. The composability of s with
these services may be weighed by the inverse of its distance from s in these composi-
tions (more distant is the neighbor, less is the composability).

Service Reusability

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

1 2 3 4 5 6 7 >8
<=20

>20
<=35

>50
<=77

SRI

P
er

ce
n

ta
g

e
o

f
S

er
vi

ce
s

ServiceDesignB ServiceDesignA

Service Composability for ServiceDesignA

0

5

10

15

20

0 5 10 15 20 25 30 35

Number of Compositions/Consumers

S
C

O
M

P

Fig. 3(a). SRI for ServiceDesignA and Ser-
viceDesignB

3(b). SCOMP for ServiceDesignA

Measuring and Evaluating Reusability and Composability
Figure 3(a) shows the percentage of services having a certain number of consumers.
There are some instances of high reuse e.g. in ServiceDesignA, there is one service
‘PartyNotification’ having 77 consumers. Similarly, in ServiceDesignB, there are 4
services that have >30 service consumers, but there is also a significant percentage of
services with very few consumers. We evaluate the operation reuse index of the Par-
tyNotification service. There is one operation that is highly reused as compared to the

496 R. Sindhgatta, B. Sengupta, and K. Ponnalagu

others – notifyParty with 36 consumers. A change to this operation would have a high
impact on the consumers of PartyNotification. SCOMP(s) for all the services of Ser-
viceDesignA is measured as shown in Figure 3(b). As the number of compositions in
which a service occurs increases, the number of distinct composition participants
generally increases as well, and hence SCOMP increases. This correlation can be seen
in the figure. This plot does not include the Party notification service that is used in 77
compositions and has SCOMP =32. We also found that for ServiceDesignA, service
interface complexity (|M(s)| and |O(s)|) has a positive correlation of > 0.5 with reus-
ability: it seems that higher the complexity (arguably, lower the understandability),
the larger is the scope of service functionality, and higher the number of consumers.
While interface complexity/understandability is an issue that may concern consumers
from outside the domain looking to use the service, it seems that within a domain it is
the value and scope of the business functionality offered by a service that determines
its reuse potential. We return to this issue when we discuss service granularity.

Properties of Reusability and Composability Metrics
Based on the inherent semantics of reusability and composability, we define a set of
properties that their metrics should adhere to. The metrics cannot be negative (Non-
negativity). They should be null where there are no consumers (Null Value). Reus-
ability of a service or an operation should not decrease by adding more service con-
sumers; similarly, composability of a service should not decrease with more composi-
tion participants (Monotonicity). The reusability of a service obtained by merging two
services is not greater than the sum of reusability of the two original services. This is
also true for the composability metric. (Merging of services). It may be shown that
SRI and SCOMP satisfy these properties.

3.4 Service Granularity

Granularity refers to the quantity of functionality encapsulated in a service. A coarse
grained service would provide several distinct functions and would have a large num-
ber of consumers. As described in [6], granularity could be further classified as capa-
bility granularity and data granularity. Capability granularity refers to the functional
scope of the service and data granularity refers to the amount of data that is trans-
ferred to provide the functionality. One of the indicators of the quantity of functional-
ity in a service is its size. The number of operations of a service |O(s)| and the number
of messages used by the operations |M(s)| can be indicative of the Service Capability
Granularity (SCG) and Service Data Granularity (SDG) respectively, where higher
values may indicate coarser granularity e.g. larger functional scope. However, a high
|O(s)| can also result from decomposing coarser operations into multiple finer-grained
operations that consumers need to call, hence there is a need to reason about service
granularity also from the perspective of a business process where the service is used.
If a service encodes many small units of capability, each exchanging small amounts
of data, then complex business processes would need a large number of such services
to be composed to yield the desired functionality – thus for a business process

Pp ∈ , the number of services involved (Process Service Granularity or PSG(p))

and number of operations invoked (Process Operation Granularity or POG(p)), may
also indicate if the constituent services are of an acceptable granularity or not – too

 Measuring the Quality of Service Oriented Design 497

many (conversely, too few) services and operations constituting a business process
may imply that the services in the design model are too fine grained (or, too coarse
grained), and that there is a need to re-factor the services to get the granularity right.
This is also related to the service identification process of top-down decomposition
proposed by many methods (e.g. [18]), where a complex business process is succes-
sively decomposed into sub-processes, which ultimately map to services. The Depth
of Process Decomposition (DPD) – the number of levels to which the process was
decomposed before services were identified, can be an indicator of the granularity of
the derived services and operations, with services/operations identified at a greater
depth likely to be of finer granularity. Also, with each decomposition step, the poten-
tial number of services (and/or the number of operations in a service) may increase,
thereby showing up as higher values of PSG, POG, SCG etc. Thus, service and proc-
ess granularity metrics may need to be reviewed together, to obtain greater insight on
design granularity.

SDG - Service Data Granularity

0%

5%

10%

15%

20%

25%

30%

35%

>1 <=4 >5 <=10 >10 <=15 >15 <=20 >20 <=30 >30 <=59

Messages |M(s)|

P
er

ce
n

ta
g

e
o

f
S

er
vi

ce
s

ServiceDesignB ServiceDesignA

SCG - Service Capability Granularity

0%

10%

20%

30%

40%

50%

1 2 3 4 5 >5 <=10 >11 <=19

Operations |O(s)|

P
er

ce
n

ta
g

e
o

f
S

er
vi

ce
s

ServiceDesignB ServiceDesignA

PSG for ServiceDesignA

0
10

20
30
40

50
60

70
80

1 2 3 4 5 >=6 <= 10

PSG

N
u

m
b

er
 o

f
P

ro
ce

ss
es

POG for ServiceDesignA

0

10

20

30

40

50

60

1 2 3 4 5 6 7 >=8
<=16

POG

N
u

m
b

er
 o

f
P

ro
ce

ss
es

4(a) 4(b)

4(c) 4(d)

SDG - Service Data Granularity

0%

5%

10%

15%

20%

25%

30%

35%

>1 <=4 >5 <=10 >10 <=15 >15 <=20 >20 <=30 >30 <=59

Messages |M(s)|

P
er

ce
n

ta
g

e
o

f
S

er
vi

ce
s

ServiceDesignB ServiceDesignA

SCG - Service Capability Granularity

0%

10%

20%

30%

40%

50%

1 2 3 4 5 >5 <=10 >11 <=19

Operations |O(s)|

P
er

ce
n

ta
g

e
o

f
S

er
vi

ce
s

ServiceDesignB ServiceDesignA

PSG for ServiceDesignA

0
10

20
30
40

50
60

70
80

1 2 3 4 5 >=6 <= 10

PSG

N
u

m
b

er
 o

f
P

ro
ce

ss
es

POG for ServiceDesignA

0

10

20

30

40

50

60

1 2 3 4 5 6 7 >=8
<=16

POG

N
u

m
b

er
 o

f
P

ro
ce

ss
es

4(a) 4(b)

4(c) 4(d)

Fig. 4. Granularity Metrics for Service Design

Measuring Granularity Metrics
We measure the granularity metrics for both the designs. As shown in Fig. 4, a large
number of services in ServiceDesignB are fine grained with one operation and < 4
messages and types. In ServiceDesignA, there are many services with > 5 operations
and >20 messages and types, which is indicative of coarser granularity of the services.
PSG(p) of the processes of ServiceDesignA is shown in Figure 4(c). There are about
20 processes that have one single service and invoke one operation as POC(p) =1.
This indicates that the services used in the process are coarse grained. There are a few
processes that involve around 10 services, and these may be explored to check if their
granularity is too fine, but that is unlikely to be the case given that no process requires
more than 16 operations. The DPD of the processes that we considered for the design

498 R. Sindhgatta, B. Sengupta, and K. Ponnalagu

is 1 or 2, which suggests that processes were not overly decomposed to obtain ser-
vices, and the rest of the metrics seem to confirm this.

Properties of Granularity Metrics
We validate the granularity metrics against the mathematical properties of size, as the
number of services, operations, and messages are size metrics. The granularity of a
service and a process is nonnegative (Nonnegativity). The granularity of a ser-
vice/process is null if it does not have any operations (Null Value). The granularity of
a service obtained by merging two disjoint services is equal to the sum of the granu-
larity of the original services having different messages and operations (Disjoint Ser-
vice Additivity).

4 Discussions and Future Work

In this paper, we have proposed and evaluated a metrics suite for measuring the qual-
ity of service design along well-known design principles. The strengths and limita-
tions of some of these metrics were discussed, and we have presented the results of
measuring these metrics on two large SOA solution designs in the Insurance domain.
Apart from conducting more empirical studies (with service designs from other do-
mains), there are two tracks along which we are extending this work:

Additional Service Design Qualities: Some of the key service principles of abstrac-
tion, autonomy and statelessness have not been covered in this paper. These aspects of
a service may require additional inputs that need to be defined during the design of
services. For example, we are exploring WSDL-S [17] to see how such specifications
may be analyzed to gain more quality insights.

Design Analysis: We have defined and analyzed the metrics independently. How-
ever, the principles are related, and often the same metric can be indicative of multi-
ple design aspects, as we have seen (e.g. |M(s)| can be used to study coupling as well
as granularity). In a large solution design, there are requirements to address multiple
quality aspects of a solution, and these often involve trade-offs. The design would
also need to account for the non-functional requirements such as governance and
performance. A more comprehensive analysis of the design, that would allow users to
prioritize design attributes and would propose design alternatives that best meet the
business needs, is an important direction that we intend to explore.

References

1. Stevens, W., Myers, G., Constantine, L.: Structured Design. IBM Systems J. 13, 115–139
(1974)

2. Briand, L.C., Morasca, S., Basili, V.R.: Property-Based Software Engineering Measure-
ment. IEEE Trans. Software Eng. 22(1), 68–85 (1996)

3. Chidamber, S.R., Kemerer, C.F.: A Metrics Suite for Object Oriented Design. IEEE Trans.
Software Eng. 20(6), 476–493 (1994)

 Measuring the Quality of Service Oriented Design 499

4. Perepletchikov, M., Ryan, C., Frampton, K., Tari, Z.: Coupling Metrics for Predicting
Maintainability in Service-Oriented Designs. In: Software Engineering Conference,
ASWEC 2007, pp. 329–340 (2007)

5. Perepletchikov, M., Ryan, C., Frampton, K.: Cohesion Metrics for Predicting Maintain-
ability of Service-Oriented Software. In: Seventh International Conference on Quality
Software, pp. 328–335 (2007)

6. Erl, T.: SOA, Principles of Service Design. Prentice Hall, Englewood Cliffs (2007)
7. Artus, D.J.N.: SOA realization: Service design principles,

http://www.ibm.com/developerworks/webservices/library/
ws-soa-design/

8. Bieman, J., Ott, L.M.: Measuring Functional Cohesion. IEEE Transactions on Software
Engineering 20(8), 644–657 (1994)

9. Henderson-Sellers, B.: Object-Oriented Metrics: Measures of Complexity. Prentice Hall,
Englewood Cliffs (1996)

10. ISO/IEC, ISO/IEC 9126-1:2001 Software Engineering Product Quality – Quality Model,
International Standards Organization, Geneva (2001)

11. Eder, J., Kappel, G., Schrefl, M.: Coupling and Cohesion in Object-Oriented Systems. In:
ACM Conference on Information and Knowledge Management, CIKM (1992)

12. Briand, L.C., Daly, J., et al.: A Unified Framework for Coupling Measurement in Object-
Oriented Systems. IEEE Transactions on Software Engineering 25(1), 91–121 (1999)

13. Briand, L.C., Daly, J., et al.: A Comprehensive Empirical Validation of Design Measures
for Object-Oriented Systems. In: 5th International Software Metrics Symposium (1998)

14. Washizaki, H., Yamamoto, H., Fukazawa, Y.: A Metrics Suite for Measuring Reusability
of Software Components. IEEE Metrics (2003)

15. Poulin, J., Caruso, J.: A Reuse Metric and Return on Investment Model. In: Advances in
Software Reuse: Proceedings of Second International Workshop on Software Reusability,
pp. 152–166 (1993)

16. Boxall, M., Araban, S.: Interface Metrics for Reusability Analysis of Components. In:
Australian Software Engineering Conference, ASWEC (2004)

17. Web Service Semantics – WSDL-S, http://www.w3.org/Submission/WSDL-S/
18. Arsanjani, A.: Service-Oriented Modeling and Architecture,

http://www.ibm.com/developerworks/library/ws-soa-design1/
19. Reddy, V., Dubey, A., Lakshmanan, S., et al.: Evaluation of Legacy Assets in the Context

of Migration to SOA. Software Quality Journal 17(1), 51–63 (2009)
20. Huschens, J., Rumpold-Preining, M.: IBM Insurance Application Architecture (IAA) – An

Overview of the Insurance Business Architecture. In: Handbook on Architectures of In-
formation Systems, pp. 669–692. Springer, Heidelberg (1998)

21. IBM Insurance Property and Casualty Content Pack:
http://www-01.ibm.com/support/
docview.wss?rs=36&context=SSAK4R&dc=D400&uid=
swg24020937&loc=en_US&cs=UTF-8&lang=en&rss=ct36websphere

22. IBM RSA:
http://www-01.ibm.com/software/awdtools/architect/
swarchitect/

Specification, Verification and Explanation of Violation
for Data Aware Compliance Rules

Ahmed Awad, Matthias Weidlich, and Mathias Weske

Hasso-Plattner-Institute, University of Potsdam, Germany
{ahmed.awad,matthias.weidlich,mathias.weske}@hpi.uni-potsdam.de

Abstract. Compliance checking is becoming an inevitable step in the business
processes management life cycle. Languages for expressing compliance require-
ments should address the fundamental aspects of process modeling, i.e. control
flow, data handling, and resources. Most of compliance checking approaches
focus on verifying aspects related to control flow. Moreover, giving useful
feedback in case of violation is almost neglected. In this paper, we demonstrate
how data can be incorporated into the specification of compliance rules. We call
these rules data aware. Building upon our previous work, we extend BPMN-Q,
a query language we developed, to express these rules as queries and formalize
these rules by mapping them into PLTL. In addition, whenever a compliance
rule is violated, execution paths causing violations are visualized to the user. To
achieve this, temporal logic querying is used.

Keywords: Compliance Checking, Business Process Querying, Violation Expla-
nation, Temporal Logic Querying.

1 Introduction

Business process models are the means to formalize the way services are composed in
order to provide an added value [1]. Evidently, the notion of a service in this context de-
pends on the purpose of the process model. High-level models capture the way business
goals laid by top management are achieved, whereas low-level models describe techni-
cal service orchestrations. When process models define how the day to day business is
enacted in a certain organizational and technical environment, they are the best place to
check for and enforce compliance to organization policies and external regulations.

Compliance rules originate from different sources and keep changing over time. Also,
these rules address different aspects of business processes, for example a certain order
of execution between activities is required. Other rules force the presence of activities
under certain conditions, e.g. reporting banking transactions to the central bank, when
large deposits are made. Violation to compliance requirements originating from regula-
tions, e.g., the Sarbanes-Oxley Act of 2002 [2] could lead to penalties, scandals, and loss
of business reputation. Therefore, compliance checking is crucial for business success.

As both compliance requirements and processes evolve over time, it becomes nec-
essary to have automated approaches to reason about the adherence of process models
to these requirements. In this context, there is a number of challenges. First, the ques-
tion how to express the compliance requirements has to be addressed. Second, process
models that are subject to checking within large repositories containing hundreds to

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 500–515, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Specification, Verification and Explanation of Violation 501

thousands of process models have to be identified. Third, there has to be an appropriate
formalism for automatic checking of compliance rules against a process model. Fourth,
users should be provided with useful feedback in case of violations.

While there are different notations available in order to express compliance rules,
most of the approaches consider solely control flow aspects [3]. Moreover, the second
challenge, that is automatic identification of processes that are subject to checking, was
almost neglected in existing work. Further on, different formalism have been used to
check for compliance. Here, model checking [4] is the most popular. The fourth chal-
lenge for compliance checking was neglected either. In case of violation, there is almost
no feedback conveyed to the user in common approaches.

In a previous work [5], we demonstrated an approach that partially addresses these
challenges. We employed BPMN-Q [6], a visual language we developed for querying
business process models, to express compliance requirements (compliance rules) re-
garding execution ordering of activities (services) in process models. BPMN-Q was
capable of expressing control flow aspects. Rules, expressed as BPMN-Q queries, were
mapped into past linear time logic PLTL formulae [7]. Next, the resulting PLTL formu-
lae were model checked [4] against the process models to decide about compliance.

Our contribution in this paper is twofold. First, we build upon work in [5] by in-
corporating data aspects. With data coming into play, the user can express so called
data flow rules and conditional rules. Also, the mapping to PLTL is not straightforward.
We achieve this by extending BPMN-Q with data aspects. Second, we introduce an ap-
proach to explain violations to compliance requirements. Whenever a rule is violated by
the process model, we use temporal logic querying [8] techniques along with BPMN-Q
queries to visually explain violations in the process model.

The use of BPMN-Q queries is manifold. First of all, BPMN-Q allows users to ex-
press compliance requirements in a visual way very similar to the way processes are
modeled. That, in turn, simplifies application of our approach, as the business expert
abstracts from the technical details. Second, a compliance rule that is defined as a query
automatically determines the set of process models that are subject to checking in a
repository. That is of particular importance, as such a repository might contain hun-
dreds to thousands of process models. Finally, due to the nature of BPMN-Q query
processing, the matching part(s) of the processes under investigation to the query are
used to show execution scenarios causing violations directly on the process model level.

While we use BPMN for illustrating our contributions, results are applicable to other
process modeling languages. The rest of the paper is organized as follows. Section 2
introduces an exemplary business process that needs to satisfy certain compliance rules.
Section 3 is devoted to preliminaries on the applied techniques and Section 4 shows how
BPMN-Q was extended to express data-aware compliance rules. Discussion of violation
explanation is given in Section 5 and Section 6 gives details on our implementation.
Related work is reviewed in Section 7, before we conclude in Section 8.

2 Motivating Example

A process model, expressed in BPMN notation, to open a correspondent bank account is
shown in Fig. 1. The process starts with activity “Receive correspondent Account open
request”. Afterwards, the bank identity is looked up (“Identify Respondent Bank”). If

502 A. Awad, M. Weidlich, and M. Weske

Analyze
Respondent
Bank annual

report

Review
Respondent
Bank rating

Receive
correspondent
Account open

request

Identify
Respondent

Bank

R_Bank_Record = created

R_Bank_Record = exists

Conduct due
diligence

study

Assess
Respondent

Bank risk

Check
Respondent

Bank certificate

Obtain
Respondent
Bank Annual

Report

Open
Correspondent

Account

 Evaluation = passed or
 R_Bank_Record = exists

(Evaluation = failed or
Evaluation = initial)

Request
[initial]

R_Bank_Record
[exists]

R_Bank_Record
[created]

Certificate
[valid]

Certificate
[invalid]

Risk
[low]

Risk
[high]

Evaluation = failed

Add Respondent
Bank to Black List

(Evaluation = passed or
Evaluation = initial)

Evaluation
[passed]

Evaluation
[failed]

Rating
[accepted]

Rating
[rejected]

Certificate
[initial]

Evaluation
[initial]

R_Bank_Record
[initial]

Rating
[initial]

Risk
[initial]

Lookup
Partner Banks

Evaluation = failed

Extra_valuation
[yes]

Extra_valuation
[no]

Evaluation = passed

Extra_valuation = no

Extra_valuation = yes

Extra_valuation
[initial]

Activity

Data A
[state 1]

Data A
[state 2]

Data A
[state 1]

Data A
[state 2]

Activity

The activity
changes the
state of “Data A“
either to “state
1“ or to “state 2“.

The activity
expects “Data
A“ to be either in
“state 1“ or
“state 2“.

Fig. 1. A process model to open a bank account

this is the first time this bank requests to open an account, a new record is created and
some checks must take place. The bank to open the account needs to conduct a study
about the respondent bank due diligence, where the respondent bank may pass or fail
this study. In case of failure, the bank inquires one of its partner banks about the re-
spondent bank (“Lookup Partner Banks”). Then, it is decided, whether to make an extra
study. It is also required to assess the risk of opening an account (“Assess Respondent
Bank risk”) resulting in either high or low risk. In the mean time, the respondent bank
certificate is checked for validity. If the evaluation fails, the respondent bank is added
to a black list. Subsequently, the bank obtains a report about the performance of the
respondent bank (“Obtain Respondent Bank Annual Report”). This report is analyzed,
and the respondent bank rate is reviewed. If the respondent bank passes the due dili-
gence evaluation or it has already a record at the bank, an account is finally opened.

To prevent money laundering, various compliance rules are in place for the banking
sector. We assume that the following rules must be checked for the process in Fig. 1.

R1: An account is opened only in case that risk is low.
R2: The respondent bank must always be added to the black list in case its due

diligence evaluation fails.
R3: Before opening an account, the respondent bank rating must be accepted.
R4: In case the respondent bank rating review is rejected, an account must never be

opened.

Specification, Verification and Explanation of Violation 503

3 Preliminaries

3.1 Linear Temporal Logic with Past Operators (PLTL)

Linear Temporal Logic (LTL) allows expressing formulae about the future states of sys-
tems. In addition to logical connectors (¬,∧,∨,→,⇔) and atomic propositions, LTL
introduces temporal operators, such as eventually (F), always (G), next (X), and until
(U). PLTL [7] extends LTL by operators that enable statements over the past states. That
is, it introduces the previous (P), once (O), always been (H), and since (S) operators.

3.2 Data Access Semantics

Formalization of data access in process models is needed to be able to reason about.
We formalized the semantics of accessing data objects by activities in a BPMN model
in [9]. The semantics is inspired by the notion of business object lifecyles (cf. [10]),
in which execution of activities might update the state of a data object. For instance,
activity “Assess Respondent Bank risk” requires the data object “Risk” to be in state
initial in order to execute. Since object lifecyles are merely state transition systems, at
any point of execution a data object can assume only one state. Thus, an activity that has
two or more associations with the same data object but with different states, e.g. activity
“Lookup Partner Banks” with the data object ”Extra valuation” in Fig. 1, is interpreted
as a disjunction of such states. This data processing semantics along with control flow
execution semantics of BPMN given in [11] are used to generate the behavioral model
of the process for model checking grounded on the following atomic propositions:

– The predicate state(dataObject, stateV alue) describes the fact that a data object
assumes a certain state.

– The predicates ready(activity) and executed(activity) state that a certain ac-
tivity is ready to be executed or has already been executed, respectively.

3.3 BPMN-Q

Based on BPMN, BPMN-Q [6] is a visual language that is designed to query business
process models by matching a process to a query structurally. In addition to the sequence
flow edges of BPMN, BPMN-Q introduces the concept of path edges as illustrated in
Fig. 2(b). Such a path might match a sub-graph of a BPMN process — the highlighted
part of the process in Fig. 2(a) is the matching part to the path edge of Fig. 2(b).

While such a path considers only the structure of a process, execution semantics have
to be considered in the query if BPMN-Q is used for compliance checking. In this case,

B

A

C

D

E

D//

<<Leads to>>

A D//

A D//

<<Precedes>>a) A process model

b) A structural query

c) A behavioral leads to query

d) A behavioral precedes query

A

Fig. 2. BPMN-Q Path Edges

504 A. Awad, M. Weidlich, and M. Weske

we type paths between two activities as being eitherprecedes (cf. Fig. 2(d)) orleads
to (cf. Fig. 2(c)) paths [5]. The former requires that before activity B is about to execute,
activity A has already been executed. The latter, in turn, states that an execution of the
first activity is eventually followed by an execution of the second activity. Considering
Fig. 2(a), it is obvious that A precedes D is satisfied, while A leads to D is not.

Moreover, behavioral BPMN-Q queries are wrappers for PLTL expressions. That is,
leads to paths are transformed into an implication with the eventually quantifier,
whereas precedes paths map to an implication with the once operator. Thus, the
mappings of the queries in Fig. 2(c) and Fig. 2(d) into PLTL are G(executed(A) →
F (ready(D))) and G(ready(D) → O(executed(A))), respectively. The resulting
expressions might then be checked against the process model’s execution state space.

The path edge has one more property called the exclude property. Imagine a struc-
tural query with a path from activity A to activity E where exclude is set to D. Then
matching this query to the process in Fig. 2(a) would yield the whole model except
activity D. Setting the exclude property for behavioral paths affects the PLTL formula.

4 BPMN-Q for Data Aware Compliance Rules

In this section, we demonstrate how to express data aspects in compliance rules by
extending the BPMN-Q language. Section 4.1 illustrates the extensions and introduces
different kinds of data aware queries by using the aforementioned compliance rules as
examples. We define the syntax for BPMN-Q in Section 4.2 and specify query semantics
by mapping the queries into PLTL expressions in Section 4.3.

4.1 Examples for Data Aware Compliance Rules

Open
Correspondent

Account
Risk
[Low]

Fig. 3. Query for R1

R1: An account is opened only in case that risk
is low. Data objects and data associations are
used in BPMN-Q in the same way as in BPMN.
BPMN-Q additionally introduces a new type of
association edges called behavioral associations. This association represents an implicit
association between a data object and an activity. This captures R1, which requires that
the data object “Risk” must be in state low when the activity “Open Correspondent
Account” is about to execute. Fig. 3 depicts the query for R1. A behavioral association
edge is visualized with a double arrow head. Rules specifying solely data dependencies
for a single activity are called data rules.

R2: The respondent bank must always be added to the black list in case its due
diligence evaluation fails. R2 requires that once the due diligence evaluation fails

Conduct due
diligence

study

Evaluation
[failed]

Add
Respondent

Bank to Black
List

//

<<Leads to>>

Fig. 4. Query for R2

as a result of executing activity “Conduct due
diligence study”, the process must proceed in
a way that the respective bank is added to a
black list. The BPMN-Q query representing
this rule is shown in Fig. 4. We call this rule a
conditional leads to rule. It is a re-
finement of the leads to introduced above.

Specification, Verification and Explanation of Violation 505

R3: Before opening an account, the respondent bank rating must be accepted. This
rule might be modeled similarly to R1. In this case, we want to be sure that the state
of the “Rating” data object will always be accepted when the activity “Open Corre-
spondent Account” is about to execute. Another way to model R3 is shown in Fig. 5(a).
This query requires that when the activity “Open Correspondent Account” is ready to
execute, the “Rating” was accepted as a result of the execution of activity “Review Re-
spondent Bank rating”. Unlike the first case, the state of the data object may change in
between. We call the latter query a conditional precedes rule.

Review
Respondent
Bank rating

//

<<Precedes>>

Open
Correspondent

Account

Rating
[Accepted]

(a) A conditional precedes relation

@A //

<<Precedes>>

Open
Correspondent

Account

Rating
[Accepted]

(b) A less strict form of 5(a)

Fig. 5. Different BPMN-Q queries to capture R3

Fig. 5(b) shows an even less strict variant of the query in Fig. 5(a). Here, focus is only
on the data condition that must have held once before the execution of activity “Open
Correspondent Account”. Using the BPMN-Q variable activity, denoted as an activity
with the label “@A”, relieves the modeler from explicitly mentioning the activity that
sets the “Rating” to accepted. Rule R2 could have been modeled in the same way.

@A

Rating
[rejected]

//
<<Leads to>>

Exclude(Open Correspondent Account)

Fig. 6. Query for R4

R4: In case the respondent bank rating
review is rejected, an account must never
be opened. This rule is another way of
stating a requirement similar to this of R3.
When a certain condition holds, i.e. the
“Rating” is rejected, it has to be ensured
that the activity “Open Correspondent Ac-
count” will never be executed. The query in Fig. 6 captures this requirement. The vari-
able activity “@A” with an association to the data object “Rating” with state rejected
represents the data condition. Moreover, there is a leads to path from this activity
to an end event with the exclude property set to the activity “Open Correspondent Ac-
count”. That is interpreted as: activity “Open Correspondent Account” must never be
executed from the point the data condition holds to the end of the process.

4.2 Syntax of Data Aware BPMN-Q Queries

After we have introduced data aware BPMN-Q queries by exemplary compliance rules,
we define their syntax formally. Therefore, the notions of a process graph and a query
graph as introduced in [5] have to be extended with data related concepts. We introduce
these extensions formally solely for the query graph, as they subsume the extensions
needed for the process graph. We begin by postulating infinite sets of activities A, data
objects D, and labels of data object states L.

506 A. Awad, M. Weidlich, and M. Weske

Definition 1 (Query Graph). A BPMN-Q query graph is a tupleQG = (AQ, EQ,DQ,
P ,X , C, T ,L) where:

– AQ ⊂ (A ∪ {@A}) is the set of activities with @A as the distinguished variable
activity, EQ ⊆ {eS, eE} is the set of events that might contain a dedicated start and
a dedicated end event, and DQ ⊂ D is the set of data objects. AQ, EQ, and DQ
are finite and disjoint sets.

– P ⊆ ({eS} ∪ AQ) × ({eE} ∪ AQ) is the path relation.
– X : P → ℘(AQ) defines the exclude property for paths.
– C ⊆ (DQ ×AQ) ∪ (AQ ×DQ) is the data access relation.
– T : (P → {leadsto, precedes, none}) ∪ (C → {behavioral, none}) assigns

stereotypes to paths and data associations.
– L : DQ → ℘(L) assigns status labels to data objects.

We see that a query graph might contain data objects that are accessed by data associ-
ations. The latter, in turn, might be of type behavioral, which captures an indirect data
dependency as explained above. Moreover, a set of status labels is assigned to each data
object. The labeling function L, the set of data objects DQ, and the data access relation
C are data related extensions that are applied for process graphs as well.

Definition 1 allows to define query graphs that are unconnected or show anomalies
as, for instance, variable activities that are targets of a path. Therefore, we restrict the
definition to well-formed query graphs. As a short-hand notation, we use NQ = AQ ∪
EQ for all nodes, SQ = {n2 ∈ NQ| � ∃ n1 ∈ NQ [(n1, n2) ∈ P]} for start nodes, and
TQ = {n1 ∈ NQ| � ∃ n2 ∈ NQ [(n1, n2) ∈ P]} for end nodes.

Definition 2 (Well-Formed Query Graph). A query graph QG = (AQ, EQ,DQ,P ,
X , C, T ,L) is well-formed, iff

– ∀ n ∈ NQ [∃ s ∈ SQ, e ∈ TQ [sP∗n ∧ nP∗e]] with P∗ as the transitive reflexive
closure of P , i.e. activities and events are connected,

– ∀ d ∈ DQ [∃ a ∈ AQ [(d, a) ∈ C ∨ (a, d) ∈ C]], i.e. data objects are accessed,
– ∀ (n1, n2) ∈ P [(n2 �= @A) ∧ (n1 = @A ⇒ ∃ d ∈ DQ [(n1, d) ∈ C])], i.e. the

variable activity is never target of a path and must have data access.

We restrict our discussion to well-formed query graphs and use the term query as a
short form for query graph. A query is called compliance query, if every path is of
type precedes or leads to. Note that we do not consider paths of type none
at this point. These paths are not applicable to specify compliance rules as BPMN-Q
queries, as they specify structural requirements for the process model rather than behav-
ioral requirements. Nevertheless, these queries are well-formed queries, which might
be generated in order to explain violations of compliance rules. Depending on how data
aspects are considered in the query, we distinguish data queries, control flow queries,
and conditional queries. Data queries specify data constraints for solely one activity.
In contrast, control flow queries are all BPMN-Q queries that do not consider any data
dependencies. A conditional query combines data and control flow dependencies, such
that a control flow dependency is required to hold under certain data conditions.

Definition 3 (Data Query). A query Q = (AQ, EQ,DQ,P ,X , C, T ,L) is called data
query, iff |AQ| = 1, AQ �= {@A}, and EQ = ∅, the query contains exactly one activity
(not the variable activity), but no events.

Specification, Verification and Explanation of Violation 507

Definition 4 (Control Flow Query). A query Q = (AQ, EQ,DQ,P ,X , C, T ,L) is
called control flow query, iff DQ = ∅.

Definition 5 (Conditional Leads to / Precedes Query). A query Q = (AQ, EQ,DQ,
P ,X , C, T ,L) is called conditional query, iff

– (|AQ| = 2) ∨ ((|AQ| = 1) ∧ (EQ = {eE})), the query contains two activities
or events, but no start event,

– (|P| = 1) ∧ ∀ (p1, p2) ∈ P [p1 �= p2], that are connected by a path,
– ∀ d ∈ DQ [∃ (a1, n) ∈ P [(a1, d) ∈ C]], all data objects are written by the node

that is the origin of the path.

A conditional query is called conditional leads to query, iff ∀ p ∈ P [T (p) = leadsto],
or conditional precedes query, iff ∀ p ∈ P [T (p) = precedes].

4.3 Mapping Queries into PLTL

After we specified the syntax for BPMN-Q queries, this section introduces the mapping
of a query into a PLTL formula in order to model check them against process models.
This mapping is based on the aforementioned classification of BPMN-Q queries. We
focus on the mapping of data queries and conditional queries, and refer to [5] for a
mapping of control flow queries.

Mapping Data Queries. The mapping into PLTL is straightforward. A certain data
condition must always hold at the time an activity is about to execute.

Definition 6 (PLTL for Data Query). For a data query Q = (AQ, EQ,DQ,P ,X ,
C, T ,L), the corresponding PLTL formula PQ is defined as: PQ = G(ready(a) →∧

d∈DQ Pd) with a ∈ AQ, Pd =
∨

s∈L(d) state(d, s).

According to this definition, the mapping of the query in Fig. 3 into PLTL is
G(ready(Open Correspondent Account) → state(Risk, low)).

Mapping Conditional Leads to Queries. These queries can be distinguished
into presence and absence queries, depending on whether the execution of an activity
has to be ensured (presence) or prevented (absence). The query in Fig. 4 is an example
for a presence query, whereas the query in Fig. 6 is an absence query.

A mapping of these conditional queries to PLTL is not straightforward. Con-
sidering the query in Fig. 4, a first attempt to map this query might result in
G(executed(Conduct due diligence study) ∧ state(Evaluation, failed) →
F (ready(Add Respondent Bank to Black List))).

At the first glance, the formula captures the requirement. Whenever the activity “Con-
duct due diligence study” is executed and the bank evaluation failed, the respondent
bank must be added to a black list. Referring to the process in Fig. 1, we see that this re-
quirement is satisfied. However, model checking this formula against the process model
tells that the model does not satisfy the formula. The reason is that the formula has not
been specified properly. Imagine the execution scenario where “Conduct due diligence
study” is executed for the first time and as a result the evaluation fails, i.e., the condition
of the above mentioned formula holds. Next, “Lookup Partner Bank” is executed with

508 A. Awad, M. Weidlich, and M. Weske

the result to make an extra diligence study. In the second execution of the diligence
study, the “Evaluation” is passed. From that point the process continues without adding
the respondent bank to the black list. Thus, the rule is violated.

As a result, the aforementioned mapping cannot be applied. Instead, for this
specific example, we need the model checker to record that the evaluation failed
only when there is no chance to pass the evaluation in the future. We say that the
data object state, and consequently the predicates, state(Evaluation, failed) and
state(Evaluation, passed) are contradicting. We assume that we have the knowl-
edge about these contradicting states before we start the process of rule mapping. The
corrected PLTL formula is G(executed(Conduct due diligence study) ∧
state(Evaluation, failed) ∧ G(¬ state(Evaluation, passed)) →
F (ready(Add Respondent Bank to Black List))).

Before we introduce the mapping of conditional leads toBPMN-Q queries
into PLTL formulae, we introduce two auxiliary predicates that will be used in the
mapping of all conditional queries.

Definition 7 (Full Data Condition Predicate). For a set of data objects DQ and a la-
belling function L, the full data condition is a PLTL predicate defined as: PD(DQ,L) =∧

d∈DQ(
∨

s∈L(d) state(d, s)) ∧ G(
∧

sc∈LC(d,s) ¬ state(d, sc)).

Definition 8 (Variable Activity Condition Predicate). For a node n, the variable ac-
tivity condition is a PLTL predicate defined as:

PV(n) =

{
true iff n = @A

executed(n) else
.

The full data condition requires all data objects to be in one state out of a set of states. In
addition, it prohibits contradicting data object states. As mentioned above, we assume
the knowledge about contradicting states to be part of the business context. This is
formalized as a function LC : D × L → ℘(L) that returns all contradicting states for
a pair of a data object and a state. The second auxiliary predicate, namely the variable
activity condition, requires the execution of an activity. In case of the variable activity
“@A” this predicate is simply true.

Definition 9 (PLTL for Conditional Leads To Query). For a conditional leads to
query Q = (AQ, EQ,DQ,P ,X , C, T ,L), the corresponding PLTL formula PQ is de-
fined as: PQ = G((PV(src) ∧ PD(DQ,L)) → Ptar) with (src, tar) = p ∈ P ,

Ptar =

{∧
a∈X (p)(¬ executed(a))U(ready(tar)) iff p ∈ dom(X)

F (ready(tar)) else
.

We distinguish presence and absence queries by the definition of the predicate Ptar,
which is defined based on whether the exclude property is set for the path.

Mapping Conditional Precedes Queries. Similarly, we can derive the PLTL
formula for a conditional precedes query. For instance, consider the rule
in Fig. 5(a). Informally the rule states that at the point activity “Open Correspon-
dent Account” is ready to execute, i.e. ready(Open Correspondent Account)

Specification, Verification and Explanation of Violation 509

holds, there was a previous state in which activity “Review Respondent Bank Rat-
ing” was executed and the “Rating” was accepted. In other words, the predicates
executed(Review Respondent Bank Rating) and state(Rating, accepted) were
true before. Following the argumentation on the change of data states given above, we
need to be sure that the state of the data object “Rating” did not change to a contra-
dicting state. Therefore, the PLTL formula to capture the query in Fig. 5(a) is defined
as G(ready(Open Correspondent Account) → O(state(Rating, accepted) ∧
executed(Review RespondentBank Rating)∧G(¬ state(Rating, rejected)))).
For the rule in Fig. 5(b), the mapping is quite similar except the treatment of the variable
activity (according to Definition 8).

While the former queries require the presence of an execution of a certain activity,
absence queries can be mapped similarly. They require the absence of an execution of
certain activities between two activities taking the data conditions into account. The
conditional precedes query is mapped to a PLTL formula as follows.

Definition 10 (PLTL for Conditional Precedes Query). For a conditional precedes
query Q = (AQ, EQ,DQ,P ,X , C, T ,L), the corresponding PLTL formula PQ is
defined as: PQ = G(ready(tar) → Psrc) with (src, tar) = p ∈ P ,

Psrc =

{∧
a∈X (p)(¬ executed(a))S(PV(src) ∧ PD(DQ,L)) iff p ∈ dom(X)

O(PV(src) ∧ PD(DQ,L)) else
.

Predicate Psrc reflects the difference between presence/absence queries.

5 Explanation of Violation

When the rules R1 to R4 introduced in Section 4.1 are checked against the process
model in Fig. 1, we get the following result. R2 is satisfied by the model, whereas R1,
R3, and R4 are violated. That, in turn, leads to the question why a certain rule is violated.

We would like to answer this question by showing execution scenarios that violate the
rule directly in the process model. One could think of using the counterexample returned
by the model checker when the rule is not satisfied. However, there are two problems
with that approach. Firstly, the counterexample is given as a trace of states that violate the
rule. Therefore, we need to translate it back to the level of the model structure. Secondly,
counterexamples given by a model checker are not exhaustive. That is, they do not show
every possible violation to the rule, rather, they show the first met violation.

In order to tackle this problem we use a two-step approach. First, we extract the data
conditions under which the violation occurred. Second, this violation is visualized on
the process model level. For the first step we use Temporal Logic Querying (TLQ) [8].
For the purpose of visualizing the violations based on the results of the first step, we
use BPMN-Q to formulate the so-called anti-pattern queries.

We briefly introduce TLQ in Section 5.1. Subsequently, Sections 5.2 to 5.4 demon-
strate the application of this two-step approach for each category of queries.

5.1 Temporal Logic Querying

Temporal Logic Querying (TLQ) was first introduced by Chen in [8] in order to find
software model invariants and gain understanding about the behavior of the model. So,

510 A. Awad, M. Weidlich, and M. Weske

model checking can be seen as a subproblem of temporal logic querying. In model
checking, we issue Boolean queries only. In the general case of TLQ, we ask a TLQ
solver (e.g. [12]) to find a propositional formula that would make our query hold true
when seen as a temporal logic formula. The question mark ‘?’ is used in a temporal logic
query as a placeholder for such a propositional formula, which might also be limited to
certain predicates. For instance, the query G(?{p, q}) looks for invariants that are based
on the predicates p and q.

5.2 Explanation of Data Rules Violations

A data compliance query (cf. Definition 6) is violated if there is a state in which the
respective activity (a) is ready to execute (ready(a) holds), but the data condition is
not fulfilled. This occurs in case the data objects that are relevant to the compliance
rule, assume states other than specified in the rule. We issue the temporal logic (TL)
query G(ready(a) → state(?dob, ?st)) to discover the violation. Thus, we are asking
about the data states that are set at the point ready(a) holds. Here, the symbol ?dob is
a placeholder for the data objects that were mentioned in the compliance query; while
?st is the placeholder for their respective states. In general, such a query delivers the
different assignments of data object states that make the statement hold. The general
form of the query result is

∧
d∈DQ(

∨
s∈L(d) state(d, s)).

@A

Risk
[high]

Open
Correspondent

Account
//

Fig. 7. Anti-pattern for R1

For the case of rule R1,
the result of the TL query
G(ready(Open Correspondent Account)
→ state(Risk, ?st)) is state(Risk, low) ∨
state(Risk, high). Thus, there is a possible
execution trace where the state of data object
“Risk” is set to high and remains in this state
until activity “Open Correspondent Account”
is ready to execute. In order to visualize this execution trace on the process model level,
we need to find a path from some activity that sets the state of “Risk” to high and
another path from this activity to the activity “Open Correspondent Account”. That is
captured by the anti-pattern, which is illustrated in Fig. 7. Such anti-pattern matches
the process part that causes the violation of the original compliance rule.

5.3 Explanation of Conditional Leads to Violations

@A

Rating
[rejected]

//
Open

Correspondent
Account

Fig. 8. Anti-pattern for R4

Derivation of anti-patterns for
conditional leads to compli-
ance rules is straight-forward. Such a rule is
violated when there is at least one execution
trace in which the source activity is executed
and the data condition holds, and the exe-
cution continues to the end of the process
without executing the target activity. On the other hand, a conditional absence
leads to rule is violated, if the activity required to be absent is executed in at least
one possible execution trace. Rule R4 is an example for the latter kind of compliance

Specification, Verification and Explanation of Violation 511

rule. The corresponding anti-pattern query is shown in Fig. 8. Here, the path edge
connects a variable activity at which the data condition holds to the activity “Open
Correspondent Account”. The type of path is none. Thus, we look for a structural
match.

5.4 Explanation of Conditional Precedes Rules Violations

Explanation of violations of this type of rules is more complex than for the case of
conditional leads to rules. According to Definition 10, a violation might be
traced back to the following reasons.

1. PVsrc ∧
∧

d∈DQ(
∨

s∈L(d) state(d, s)) did not occur before activity tar is reached.
That, in turn, might be traced back to one of the following reasons:
(a) Either activity src was not executed at all, or
(b) the data condition

∧
d∈DQ(

∨
s∈L(d) state(d, s)) was not fulfilled.

2. G(
∧

sc∈LC(d,s) ¬ state(d, sc)) was not fulfilled, i.e., the state of the data object had
been altered to a contradicting data state before activity tar was ready to execute.

In order to identify the exact reason for the violation, we have to issue a sequence of
TL queries. Depending on the results, anti-pattern queries are derived. First, we check
whether the predicates for the execution of the source activity and the data condition
hold when the target activity is ready to execute, i.e. G(ready(tar) → O(PVsrc ∧∧

d∈DQ(
∨

s∈L(d) state(d, s)))). Note that, again, we use the variable activity predicate
PVsrc (Definition 8) resolving to executed(src) for ordinary activities and to true for
the variable activity “@A”. If this query returns a positive result, we know that violation
occurred owing to the second of the aforementioned reasons (2). That is, the states of
the data objects are altered, such that G(

∧
sc∈LC(d,s) ¬ state(d, sc)) is not satisfied.

The corresponding anti-pattern query is sketched in Fig. 9(a).

ActX

Condition

// @A ActY//

Contra
Condition

(a) Occurrence of contradicting data states

// @A ActY//

Contra
Condition

(b) Non occurrence of data condition

Fig. 9. Anti-pattern queries for conditional precedes

On the other hand, if the result is negative; either the source activity has not been
executed at all before the target activity (reason 1a) or the data condition did not
hold (reason 1b). In order to decide on a reason, we issue a TL query that checks,
whether the source activity (src) is always executed before the target activity (tar), i.e.
G(ready(tar) → O(PV(src))). If this query is not satisfied, then we know that the tar-
get activity (tar) might be executed without executing the source activity (src) before.
Thus, the violation can be identified by finding paths from the start of the process to the
target activity without executing the source activity (which is captured by the exclude
property). On the other hand, if this query is satisfied; we know that in some cases the

512 A. Awad, M. Weidlich, and M. Weske

data condition does not hold. To identify the data states that violate the data condition,
we query the states of data objects that result from an execution of the source activity
(src), as a TL query G(ready(tar) → O(PV(src) ∧ state(?dob, ?states))). For each
resulting data state, a query as in Fig. 9(b) shows the violation in the process model.

// @A
Open

Correspondent
Account

//

Rating
[rejected]

Fig. 10. Anti-pattern for R3

Finally, the case of
conditional absence
precedes compliance rules adds
one more potential reason for viola-
tion. That is, the excluded activities
might have been executed. Again, the
violation can be captured by issuing
a query where there is a path from the start of the process to the activity that should
be absent, and another path from this activity to the target activity. With respect to
our examples, the anti-pattern query for rule R3 is illustrated in Fig. 10. This query
matches the whole process model, such that activity “Review Respondent Bank Rating”
is executed, the “Rating” is rejected, whereas activity “Open Correspondent Account”
might be executed.

6 Implementation

Our approach has been implemented within the BPMN-Q query processor engine. The
implementation covers mapping of the discussed rules into corresponding PLTL formu-
las as shown earlier. To prepare the investigated process models for model checking, the
mapping proposed in [11,9] is used to generate the behavioral model.

For our work, we were not able to use existing temporal logic query solvers [12,13]
as they support only CTL based queries. However, according to [14] it is possible to
implement a temporal logic query solver by using a model checker and issuing all pos-
sible 22n

combinations, where n is a finite set of predicates, and tabulating the result
of each combination. In our case, we adopted this approach in an even simplified form
as we know for data states that they are mutually exclusive, i.e., a data object can have
only one state at a time [9]. The implementation of this special case TL query solver is
an integral part of the BPMN-Q query processor.

7 Related Work

There has been a large body of research interested in compliance checking on business
process models. We focus on work done regarding execution ordering between activities
on a business process. In this regard, we can divide work done on compliance into two
areas, namely compliance by design and post-design compliance checking.

Compliance by design takes compliance rules as input for the design of new process
models. Work in [15,16,17,18] shows how compliance requirements are enforced in
the design process of new business processes. By definition, there is no chance for
violations to occur. However, once a new compliance requirement is introduced or the
process model is modified, the checking for compliance is needed.

Specification, Verification and Explanation of Violation 513

Post-design compliance checking, in turn, targets checking for compliance for ex-
isting process models. Thus, it separates the modeling phase of a process model from
the checking phase. Our approach belongs to this category. Similar approaches [19,20]
also employ model checking to verify that process models satisfy the compliance rules.
Although some of these approaches are able to express what we call conditional rules,
it remains open how these approaches can be applied to express so-called data flow
rules. Taking business contracts as a source for compliance rules, deontic logic was
employed as a formalism to express these requirements in [21,22,23]. It is possible to
express the notion of obligation and permission and prohibition. Thus, it is possible to
express alternative actions to be taken when a primary one is not done. However, the
data perspective is largely neglected. Further on, work in [24,10] addressed the consis-
tency between business process models and lifecycles of business objects processed in
these models. Yet, explanation of the points of deviation and their representation has
not been addressed. A recent approach to measure the compliance distance between a
process model and a rule was introduced in [25]. This approach enables measuring the
degree of compliance on the scale from 0 to 1. Again, data aspects are not considered.

Another field of related work deals with resolution of compliance violations. In [26]
an approach to check compliance of business processes and the resolution of violations
was introduced. Although automated resolution is important, the paper discussed it from
a high level point of view. We believe that this point needs further investigation and has
to be tackled in future work.

Explanation of violations was also addressed in the area of workflow verification [27]
as well as service orchestration [28]. In both approaches, the explanation was a transla-
tion of the output of the verification tools. Thus, it might be the case that some violation
scenarios were not discovered.

The unique features of our approach are 1) the possibility of identifying process
models subject to checking by means of queries and 2) giving explanations of possible
violations on the process model level.

8 Conclusion

In this paper, we discussed an approach to model the so-called data aware compli-
ance rules. These rules were realized by extending BPMN-Q. Including data aspects
increased the expressiveness of the language. Nevertheless, formalizing these rules
(queries), by mapping into PLTL, is not straightforward. Extra information, e.g. the
notion of contradicting states, must be present. To explain violations, we applied tem-
poral logic querying (TLQ). We demonstrated how feedback can be given — based on
so-called anti-pattern queries that are derived automatically. To the best of our knowl-
edge, we are the first to apply TLQ in the area of business process management.

The ability to provide explanations why a certain compliance rule is not satisfied
has to be seen as a major step towards real-world applicability. Knowing just that a
process violates a certain compliance rule is of limited use for common business sce-
narios. Owing to the intrinsic complexity of these scenarios, feedback on violations is
crucial.

514 A. Awad, M. Weidlich, and M. Weske

In future, we will investigate approaches for (semi) automated resolution of viola-
tions. In that case, other formalism has to be used as resolution of violation implies
changes to the structure of the process models.

References

1. Weske, M.: Business Process Management. Springer, Heidelberg (2007)
2. United States Senate and House of Representatives in Congress: Sarbanes-Oxley Act of 2002.

Public Law 107-204 (116 Statute 745) (2002)
3. Kharbili, M.E., de Medeiros, A.K.A., Stein, S., van der Aalst, W.: Business Process Com-

pliance Checking: Current State and Future Challenges. In: MobIS, GI. LNI, vol. P-141, pp.
107–113 (2008)

4. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)
5. Awad, A., Decker, G., Weske, M.: Efficient compliance checking using bpmn-q and temporal

logic. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 326–
341. Springer, Heidelberg (2008)

6. Awad, A.: BPMN-Q: A Language to Query Business Processes. In: EMISA, GI. LNI, vol. P-
119, pp. 115–128 (2007)

7. Zuck, L.: Past Temporal Logic. PhD thesis, Weizmann Intitute, Israel (1986)
8. Chan, W.: Temporal-logic queries. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,

vol. 1855, pp. 450–463. Springer, Heidelberg (2000)
9. Awad, A., Decker, G., Lohmann, N.: Diagnosing and Repairing Data Anomalies in Process

Models. In: 5th International Workshop on Business Process Design. LNBIP. Springer, Hei-
delberg (to appear, 2009)

10. Küster, J.M., Ryndina, K., Gall, H.: Generation of Business Process Models for Object Life
Cycle Compliance. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS,
vol. 4714, pp. 165–181. Springer, Heidelberg (2007)

11. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process models
in BPMN. Inf. Softw. Technol. 50, 1281–1294 (2008)

12. Chechik, M., Gurfinkel, A.: TLQSolver: A temporal logic query checker. In: Hunt Jr., W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 210–214. Springer, Heidelberg (2003)

13. Gurfinkel, A., Chechik, M., Devereux, B.: Temporal logic query checking: A tool for model
exploration. IEEE Trans. Softw. Eng. 29, 898–914 (2003)

14. Bruns, G., Godefroid, P.: Temporal logic query checking. In: LICS, p. 409. IEEE Computer
Society, Los Alamitos (2001)

15. Lu, R., Sadiq, S.W., Governatori, G.: Compliance aware business process design. In: ter Hof-
stede, A.H.M., Benatallah, B., Paik, H.-Y. (eds.) BPM Workshops 2007. LNCS, vol. 4928,
pp. 120–131. Springer, Heidelberg (2008)

16. Goedertier, S., Vanthienen, J.: Designing Compliant Business Processes from Obligations
and Permissions. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006. LNCS, vol. 4103, pp.
5–14. Springer, Heidelberg (2006)

17. Goedertier, S., Vanthienen, J.: Compliant and flexible business processes with business rules.
In: BPMDS. CEUR Workshop Proceedings, CEUR-WS.org, vol. 236 (2006)

18. Milosevic, Z., Sadiq, S.W., Orlowska, M.E.: Translating business contract into compliant
business processes. In: EDOC, pp. 211–220. IEEE Computer Society, Los Alamitos (2006)

19. Yu, J., Manh, T.P., Han, J., Jin, Y., Han, Y., Wang, J.: Pattern based property specification and
verification for service composition. In: Aberer, K., Peng, Z., Rundensteiner, E.A., Zhang, Y.,
Li, X. (eds.) WISE 2006. LNCS, vol. 4255, pp. 156–168. Springer, Heidelberg (2006)

20. Lui, Y., Müller, S., Xu, K.: A static compliance-checking framework for business process
models. IBM Syst. J. 46, 335–362 (2007)

Specification, Verification and Explanation of Violation 515

21. Governatori, G., Milosevic, Z.: Dealing with contract violations: formalism and domain spe-
cific language. In: EDOC, pp. 46–57. IEEE Computer Society, Los Alamitos (2005)

22. Governatori, G., Milosevic, Z., Sadiq, S.: Compliance checking between business processes
and business contracts. In: EDOC, pp. 221–232. IEEE Computer Society, Los Alamitos
(2006)

23. Sadiq, S.W., Governatori, G., Namiri, K.: Modeling control objectives for business process
compliance. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714,
pp. 149–164. Springer, Heidelberg (2007)

24. Ryndina, K., Küster, J.M., Gall, H.C.: Consistency of Business Process Models and Object
Life Cycles. In: Kühne, T. (ed.) MoDELS 2006. LNCS, vol. 4364, pp. 80–90. Springer, Hei-
delberg (2007)

25. Lu, R., Sadiq, S., Governatori, G.: Measurement of Compliance Distance in Business Pro-
cesses. Inf. Sys. Manag. 25, 344–355 (2008)

26. Ghose, A., Koliadis, G.: Auditing business process compliance. In: Krämer, B.J., Lin, K.-J.,
Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 169–180. Springer, Heidelberg
(2007)

27. Flender, C., Freytag, T.: Visualizing the soundness of workflow nets. In: Algorithms and
Tools for Petri Nets (AWPN 2006), University of Hamburg, Germany, Department Informat-
ics Report 267, pp. 47–52 (2006)

28. Schroeder, A., Mayer, P.: Verifying interaction protocol compliance of service orchestrations.
In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364, pp. 545–
550. Springer, Heidelberg (2008)

Generating Interface Grammars from WSDL for
Automated Verification of Web Services�

Sylvain Hallé, Graham Hughes, Tevfik Bultan, and Muath Alkhalaf

University of California
Santa Barbara, CA 93106-5110 USA

shalle@acm.org, {graham,bultan,muath}@cs.ucsb.edu

Abstract. Interface grammars are a formalism for expressing constraints
on sequences of messages exchanged between two components. In this pa-
per, we extend interface grammars with an automated translation of XML
Schema definitions present in WSDL documents into interface grammar
rules. Given an interface grammar, we can then automatically generate ei-
ther 1) a parser, to check that a sequence of messages generated by a web
service client is correct with respect to the interface specification, or 2) a
sentence generator producing compliant message sequences, to check that
the web service responds to them according to the interface specification.
By doing so, we can validate and generate both messages and sequences of
messages in a uniform manner; moreover, we can express constraints where
message structure and control flow cannot be handled separately.

1 Introduction

Service-oriented architecture (SOA) has become an important concept in soft-
ware development with the advent of web services. Because of their flexible
nature, web services can be dynamically discovered and orchestrated to form
value-added e-Business applications. However, this appealing modularity is the
source of one major issue: while dynamically combining cross-business services,
how can one ensure the interaction between each of them proceeds as was in-
tended by their respective providers? Achieving modularity and interoperability
requires that the web services have well defined and enforceable interface con-
tracts [20].

Part of this contract is summarized in the service’s WSDL document, which
specifies its acceptable message structures and request-response patterns. This
document acts as a specification that can be used both to validate and to generate
messages sent by the client or the service. This double nature of WSDL makes it
possible to automatically produce test requests validating the functionality of a
service, or to test a client by communicating with a local web service stub that
generates WSDL-compliant stock responses.

As it is now well known, many web services, and in particular e-commerce
APIs such as the Amazon E-Commerce Service, Google Shopping or PayPal,
� This work is supported by NSF grants CCF-0614002 and CCF-0716095.

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 516–530, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Generating Interface Grammars from WSDL 517

Web Service
Client

Server
Stub

WSDL
Specification

Web Service
Server

Service
Driver

SOAP
Request

SOAP
Response

WSDL to
Interface Grammar

Translator

SOAP
Request

SOAP
Response

Interface
Grammar

Interface
Compiler

Control Flow
Constraints

Fig. 1. Our web service verification framework

introduce the notion of sessions and constrain communications over several
request-response blocks. The previous approach does not generalize to such sce-
narios. Apart from attempts at validation of service interactions through runtime
monitoring of message sequences [5,6,18,13,14], for the most part the question of
generating a control-flow compliant sequence of messages, for simulation, testing
or verification purposes, remains open.

Interface grammars are a specification formalism that has been proposed to
enable modular verification [16]. An interface grammar specifies the allowable
interactions between two components by identifying the acceptable call/return
sequences between them. In earlier work, we proposed their use for expressing
the control-flow constraints on a client interacting with a web service [17]. How-
ever, message elements in these grammars were regarded as terminal symbols; to
actually generate or validate a given message, hand-coded Java functions had to
be written and hooked to their respective grammar counterpart. In this paper,
we bridge the gap between control flow and message specifications by developing
an automated translation of WSDL documents into interface grammar rules.

In Section 2, we present a real-world web service, the PayPal Express Checkout
API. We exhibit constraints where the sequence of allowed operations and their
data content are correlated, and express them with the use of interface grammars.

Our web service verification framework (Figure 1) consists of two tools: 1) a
WSDL-to-interface grammar translator and 2) an interface compiler. First, the
WSDL to interface grammar translator takes a WSDL specification as input and
converts it into an interface grammar; this translation is described in Section 3.
Constraints that are not expressed in WSDL (such as control-flow constraints)
can then be added to this automatically generated interface grammar.

In Section 4, we use an interface compiler which, given an interface grammar
for a component, automatically generates a stub for that component. This stub
acts a parser for incoming call sequences; it checks that the calls conform to the
grammar and generates return values according to that grammar. Moreover, the
same grammar can be used to create a driver that generates call sequences and
checks that the values returned by the component conform to it. The compiler
was applied to perform both client and server side verification on two real-world

518 S. Hallé et al.

services, including PayPal’s Express Checkout, and allowed us to discover a
number of mismatches between the implementation of the services and their
documentation. In addition to being feasible and efficient, our approach differs
from related work mentioned in Section 5 by enabling us to validate and test
properties where control flow and message content cannot be handled separately.

2 Web Service Interface Contracts

An interface contract is a set of conventions and constraints that must be ful-
filled to ensure a successful interaction with a given web service. Elicitation
and enforcement of such contracts has long been advocated [20], and interface
documents such as WSDL provide a basic form of specification for syntactical
requirements on SOAP messages and request-response patterns. Although many
web services are composed of such simple request-response patterns of indepen-
dent operations, in practice a fair number of services also exhibit long-running
behavior that spans multiple requests and responses. This is especially true of
commerce-related web services, where concepts such as “purchase transactions”
and “shopping carts” naturally entail some form of multi-step operations.

2.1 The PayPal Express Checkout API

A commercial web service suite provided by the PayPal company, called the
PayPal Web Service API, is an example of a service that supports multi-step
operations. Through its web site, PayPal allows to transfer money to and from
credit card and bank accounts between its registered members or other financial
institutions. In addition to direct usage by individuals, an organization wishing
to use these functionalities from its own web site can do so through PayPal’s
web service API. All transactions can be processed in the background between
the organization and PayPal by exchanging SOAP messages that replace the
standard access to PayPal’s portal.

PayPal’s API is public and its documentation can be freely accessed [1]. The
sum of all constraints, warnings, side notes and message schemas found in this
documentation constitutes the actual interface contract to the web service API.
We shall see that this contract is subject to data and control-flow constraints,
and that these constraints can be formally specified using interface grammars.

To illustrate our point, we concentrate on a subset of PayPal’s API called
“Express Checkout”, which allows for a simplified billing and payment between
an organization and a customer. The organization simply sends PayPal a to-
tal amount to be charged to the customer; PayPal then performs the necessary
background checks and confirmations with the customer, after which the orga-
nization retrieves a transaction number which can be used to execute the money
transfer.

Express Checkout is performed in three steps, each corresponding to a request-
response pattern of XML messages. The first step is to create an Express Check-
out instance through the SetExpressCheckout message, whose structure, defined

Generating Interface Grammars from WSDL 519

<PaymentDetails>
<Token>1234</Token>
<OrderTotal>50</OrderTotal>
<PaymentDetailsItems>

<PaymentDetailsItem>
<Name>. . . </Name>
<Number>. . . </Number>
<Quantity>. . . </Quantity>
<Amount>. . . </Amount>

</PaymentDetailsItem>
. . .

</PaymentDetailsItems>
<PaymentAction>Sale</PaymentAction>

</PaymentDetails>
(a) SetExpressCheckoutRequest

<Token>. . .</Token>
<PayerID>. . . </PayerID>
<PaymentDetailsItems>
. . .
</PaymentDetailsItems>

(b) GetExpressCheckoutDetails

<Token>. . . </Token>
<PayerID>. . . </PayerID>
<PaymentDetailsItems>
. . .
</PaymentDetailsItems>
<PaymentAction>Sale</PaymentAction>

(c) DoExpressCheckoutPaymentRequest

<Token>. . .</Token>
<PaymentInfo>

<TransactionID>. . .<TransactionID>
<GrossAmount>. . .<GrossAmount>
<PendingReason>. . .<PendingReason>

</PaymentInfo>

(d) DoExpressCheckoutPaymentResponse

Fig. 2. Request and response messages from PayPal’s Express Checkout API

in the WSDL specification, is shown in Figure 2(a). This message provides a total
for the order, as well as (optionally) a list of items intended to detail the contents
of the order the client is billed for. PayPal’s response to this message consists
of a single Token element, whose value will be used in subsequent messages to
refer to this particular instance of Express Checkout. The PaymentAction ele-
ment (Figure 2(c)) can take the value “Sale”, indicating that this is a final sale,
or “Authorization” and “Order” values indicating that this payment is either a
basic or an order authorization, respectively.

The second step consists of obtaining additional details on the Express Check-
out through the GetExpressCheckoutDetails operation. The request message
simply requires a token identifying an Express Checkout instance; the response
to this message is structured as in Figure 2(b). It repeats the payment details
and token fields from the previous request, and adds a PayerID element. This
element is then used in the last operation, DoExpressCheckoutPayment (Figure
2(c)); the response to this message (Figure 2(d)) completes the Express Checkout
procedure.

2.2 Interface Grammars for Web Services

Interface grammars were proposed as a new language for the specification of
component interfaces [15, 16]. The core of an interface grammar is a set of pro-
duction rules that specifies all acceptable method call sequences for the given
component. An interface grammar is expressed as a series of productions of the
form a(v1, . . . , vn) → A. The v1, . . . , vn are lexically scoped variable names cor-
responding to the parameters of the non-terminal a. A is the right hand side of
the production, which may contain the following:

520 S. Hallé et al.

start → !seco(doc1, items, token, action); ¡seco(doc2, token);

start ; details(items, token, action, payerid); start

| ε

details(items, token, action, payerid) → !gecod(doc1, token); ¡gecod(doc2, token, payerid);

do(items, token, action, payerid)

do(items, token, “Sale”, payerid) → !decop(doc1, token, payerid, items, “Sale”);

¡decop(doc2, token, transactionid)

do(items, token, action1, payerid) → !decop(doc1, token, payerid, items, action2);

¡decop(doc2, token, transactionid)

Fig. 3. Interface grammar for a PayPal Express Checkout client

– nonterminals, written nt(v1, . . . , vn);
– semantic predicates that must evaluate to true when the production is used

during derivation, written �p�;
– semantic actions that are executed during the derivation, which we express

as 〈〈a〉〉;
– incoming method calls, written ?m(v1, . . . , vn);
– returns from incoming method calls, written ¿m(v1, . . . , vn);
– outgoing method calls, written !m(v1, . . . , vn);
– returns from outgoing method calls, written ¡m(v1, . . . , vn).

For the purposes of web service verification, the method calls in the interface
grammar correspond to the web service operations. For example, the interface
grammar shown in Figure 3 represents the client interface for a simplified ver-
sion of the PayPal service described previously. Terminal symbols seco, gecod

and decop stand respectively for operations SetExpressCheckout, GetExpress-
CheckoutDetails and DoExpressCheckoutPayment; the ! and ¡ symbols denote
the request and response message for each of these operations. The ? and ¿ sym-
bols, which are not used in our example, would indicate that the server, instead
of the client, initiates a request-response pattern.

Nonterminal symbols in interface grammars are allowed to have parame-
ters [15]. The “doci” symbol in each message refers to the actual XML document
corresponding to that particular request or response; it is assumed fresh in all of
its occurrences. Remaining parameters enable us to propagate the data values
from that document that might be used as arguments of the web service oper-
ations. Because we need to be able to pass data to the production rules as well
as retrieve them, we use call-by-value-return semantics for parameters.

By perusing PayPal’s API documentation, it is possible to manually define
the simple interface grammar shown in Figure 3, which captures a number of
important requirements on the use of the PayPal API:

1. Multiple Set, Get and Do operations for different tokens can be interleaved,
but, for each token, the Set, Get and Do operations must be performed in
order.

Generating Interface Grammars from WSDL 521

2. The PayerID field in the DoExpressCheckoutPaymentRequest must be the
one returned by the GetExpressCheckoutDetails response with matching To-
ken element.

3. If the action element of the SetExpressCheckout operation is set to “Sale”, it
cannot be changed in the DoExpressCheckoutPayment; otherwise, the Get
and Do operations can have different action values.

4. To ensure that every Express Checkout instance is eventually complete, every
SetExpressCheckout operation must be matched to subsequent GetExpress-
CheckoutDetails and DoExpressCheckoutPayment requests.

Although all these constraints are mentioned in the service’s documentation in
some form or another, none of them can be formally described through the
WSDL interface document.

3 Translating WSDL to Interface Grammars

While interface grammars can express complex interfaces that involve both data-
flow and control-flow constraints, writing such grammars manually requires a
surprisingly large amount of boilerplate code. Crafting the appropriate data
structures, verifying the result and extracting the data, even for one operation,
requires as much code as the entire interface grammar. Moreover, parameters
such as “items” and “token” refer to actual elements inside “doc”, but the
grammar in Figure 3 offers no way of actually specifying how the document
and its parts are structured or related. To alleviate this difficulty, we developed
a tool that uses type information to automatically translate the data structures
associated with a WSDL specification into an interface grammar, without user
input.

3.1 Translation from XML Schema to Interface Grammars

A WSDL specification is a list of exposed operations along with the type of the
parameters and return values. It encodes all types using XML Schema. Since
XML Schema itself is verbose, we use the Model Schema Language (MSL) for-
malism [10], which encodes XML Schema in a more compact form. More pre-
cisely, we define a simplified version of MSL that handles all the portions of XML
Schema we found necessary in our case studies:

g → b
∣∣ t[g0]

∣∣ g1{m,n}
∣∣ g1, . . . , gk

∣∣ g1| . . . |gk (1)

Here g, g0, g1, . . . , gk are all MSL types; b is a basic data type such as Boolean,
integer, or string; t is a tag; and m and n are natural numbers such that m < n
(n may also be ∞).

The MSL type expressions are interpreted as follows: g → b specifies a basic
type b; g → t[g0] specifies the sub-element t of g, whose contents are described
by the type expression g0; g → g1{m,n}, where n �= ∞, specifies an array of
g1s with at least m elements and at most n elements; g → g1{m,∞} specifies

522 S. Hallé et al.

an unbounded array of g1s with at least m elements; g → g1, . . . , gk specifies
an ordered sequence, with each of the gis listed one after the other; and g →
g1| . . . |gk specifies choice, where g is one of the gis. We denote the language of
type expressions generated by Equation (1) to be XML.

For example, the type for the DoExpressCheckoutPaymentResponse message
(Figure 2(c)) is the following:

Token[string], PaymentInfo[
TransactionID[string], GrossAmount[int], PendingReason[string]]

As a more complex example, the SetExpressCheckoutRequest message (Figure
2(a)) is of the following type:

Token[string]{0, 1},
PaymentDetails[

OrderTotal[int],
PaymentDetailsItems[

PaymentDetailsItem[
Name[string]{0, 1}, Number[string]{0, 1}, Quantity[int]{0, 1},
Amount[int]{0, 1},

]{1,∞}
]{0,∞},
PaymentAction[string]{0, 1}]

These type expressions can be used to generate XML documents. However, to
communicate with a SOAP server, we chose to use Apache Axis, a library that
serializes Java objects into XML. Accordingly, we create Java objects from XML
type expressions, and do so in the same way that Axis maps WSDL to Java
objects.

XML Schema and the Java type system are very different and, hence, mapping
from one to the other is not trivial. However, since such a mapping is already
provided by Axis, all we have to do is the follow the same mapping that Axis
uses:

1. g → b is mapped to a Java basic type when possible (for example, with
Booleans or strings). Because XML Schema integers are unbounded and
Java integers are not, we must use a specialized Java object rather than
native integers.

2. g → t[g0] is mapped to a new Java class whose name is the concatenation of
the current name and t; this class contains the data in g0, and will be set to
the t field in the current object.

3. g → g1{0, 1} is mapped to either null or the type mapped by g1.
4. g → g1{m,n} is mapped to a Java array of the type mapped by g1.
5. g → g1, . . . , gk is mapped to a new Java class that contains each of the gis

as fields.
6. g → g1| . . . |gk is mapped to a new Java interface that each of the gis must

implement.

Generating Interface Grammars from WSDL 523

The rules for the WSDL to interface grammar translation are shown in Fig-
ure 4. The translation is defined by the function p, which uses the auxiliary func-
tions r (which gives unique names for type expressions suitable for use in gram-
mar nonterminals) and t (which gives the name of the new Java class created
in the Axis mapping of g → t[g0]). By applying p�g� to an XML Schema type
expression g, we compute several grammar rules to create Java object graphs for
all possible instances of the type expression g. The start symbol for the generated
interface grammar is r�g�.

p : XML → Prod

r : XML → NT

t : XML → Type

p�g = boolean� =

{
r�g�(x) → 〈〈x = true〉〉,
r�g�(x) → 〈〈x = false〉〉

}
(2)

p�g = int� =

{
r�g�(x) → 〈〈x = 0〉〉,
r�g�(x) → r�g�(x); 〈〈x = x + 1〉〉

}
(3)

p�g = string� =

{
r�g�(x) → 〈〈x = ""〉〉,
r�g�(x) → r�g�(x); 〈〈x = x‖c〉〉 for every c

}
(4)

p�g = {c1, . . . , cn}� =
{
r�g�(x) → 〈〈x = "ci"〉〉 for every ci

}
(5)

p�g = t[g′]� =
{

r�g�(x) → 〈〈if (x ≡ null) x = new t�g�〉〉;
r�g′�(y); 〈〈x.t = y〉〉

}
∪ p�g′� (6)

p�g = g′{0, 1}� =

{
r�g�(x) → 〈〈x = null〉〉,

r�g�(x) → r�g′�(x),

}
∪ p�g

′
� (7)

p�g = g′{0,∞}� =

{
r�g�(x) → 〈〈x = []〉〉,

r�g�(x) → r�g
′
�(y); r�g�(x); 〈〈x = x‖y〉〉

}
∪ p�g′� (8)

p�g = g′{0, n}� =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

r�g�(x) → 〈〈x = []〉〉,
r�g�(x) → r�g′�(y); 〈〈x = [y]〉〉,

. . .
r�g�(x) → r�g′�(y1); . . . ; r�g′�(yn);

〈〈x = [y1, . . . , yn]〉〉

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

∪ p�g′� (9)

p�g = g′{m, n}� =
{

r�g�(x) → r�g′�(y1); . . . ; r�g′�(ym);
r�g′′�(x); 〈〈x = [y1, . . . , ym]‖x〉〉

}
(10)

∪p�g
′′

� ∪ p�g
′
� where g

′′ → g
′{0, n − m}

p�g = g1, . . . , gk� = {r�g�(x) → r�g1�(x); . . . ; r�gk�(x)} ∪
k⋃

i=1

p�gi� (11)

p�g = g1| . . . |gk� =
k⋃

i=1

{r�g�(x) → r�gi�(x)} ∪ p�gi� (12)

For a nonterminal g, p�g� is the set of associated grammar rules, r�g� is a unique name suitable for a

grammar nonterminal, t�g� is the unique Java type for that position in the XML Schema grammar,

and x and y designate an XML document or subdocument.

Fig. 4. MSL to interface grammar translation rules

Rule (2) translates Boolean types by simply enumerating both possible values.
Calling r�g�(x) with an uninitialized variable x will set x to either true or

524 S. Hallé et al.

false. Rule (3) translates integer numbers to a Java instance by starting at 0
and executing an unbounded number of successor operations. If the number is
bounded we can generate it more efficiently by creating one production for each
value. However, Rule (3) allows us to generate an infinite number of values. We
can also accommodate negative integers using Rule (3) and then choosing a sign.

Rule (4) translates strings to Java strings. It starts with an empty string and
concatenates an unbounded number of characters onto it, to generate all possible
string values. It should be noted that strings are frequently used as unspecified
enumerations, have possible correlations with other parts of the object graph, or
have some associated structure they should maintain (as in search queries), etc.
Accordingly, the automatically generated grammar can be refined to something
more restricted but also more useful by manually changing these rules.

Rule (5) takes care of enumerated types by providing one rule to generate
each possible value of that type.

Rule (6) translates tags into Java objects. The rule is simple; we figure out
which Java type Axis is using for this position using t�g�, if it is not already
initialized (which can happen if we are applying Rule (11)) instantiate it, re-
cursively process its contents, and then set the contents to the t field on the
object we are currently working on. Rule (7) translates optional elements into
Java objects by having two rules, one for null and the other to generate the
object.

Rule (8) translates unbounded arrays into Java objects. We start with the
base case of an empty array and concatenate objects onto it. Rule (9) translates
bounded arrays into Java objects, by simply generating n rules, one for each
potential object. Although we give this simple rule here for readability, in our
implementation we handle this case more efficiently.

Rule (10) translates general arrays, that may have a minimum number of
objects greater than 0, to a situation where one of Rule (8) or Rule (9) applies.
Rule (11) translates sequences into Java objects; we simply apply each of the sub-
rules to the object graph under examination in sequence. Rule (12) translates
alternations into Java objects; we pick one of the sub-rules and apply it.

As an example of translation, consider the MSL type for the DoExpress-
CheckoutPaymentResponse message in the PayPal WSDL specification men-
tioned above. First, the production rules for the basic types string and integer
are:

string(doc) → 〈〈doc = ""〉〉
string(doc) → string(doc); 〈〈doc = doc‖c〉〉 for every character c

int(doc) → 〈〈doc = 0〉〉
int(doc) → int(doc); 〈〈doc = doc + 1〉〉

The message type consists of a sequence. For the first element of the sequence, we
need to apply Rule (6) followed by Rule (4), resulting in the following grammar
production:

Generating Interface Grammars from WSDL 525

a(doc) → 〈〈if (doc ≡ null) doc = new Token〉〉; string(doc1); 〈〈doc.Token = doc1〉〉

with start symbol a. Applying these productions can assign to doc a subdocument
like <Token>abc</Token>. Nonterminal a is responsible for the creation of
the Token element, and repeated application of the productions for the string
nonterminal creates an arbitrary value for the string field.

For the second element of the sequence we apply Rule (6) which leads to
another sequence. Then we apply Rule (11) followed by three applications of
Rule (6), two applications of Rule (4) and one application of Rule (3). The
resulting productions are:

b(doc) → 〈〈if (doc ≡ null) doc = new PaymentInfo〉〉; c(doc1); d(doc1); e(doc1);

〈〈doc.PaymentInfo = doc1〉〉
c(doc) → 〈〈if (doc ≡ null) doc = new PaymentInfoTransactionID〉〉; string(doc1);

〈〈doc.PaymentInfoTransactionID = doc1〉〉
d(doc) → 〈〈if (doc ≡ null) doc = new PaymentInfoGrossAmount〉〉; int(doc1);

〈〈doc.PaymentInfoGrossAmount = doc1〉〉
e(doc) → 〈〈if (doc ≡ null) doc = new PaymentInfoPendingReason〉〉; string(doc1);

〈〈doc.PaymentInfoPendingReason = doc1〉〉

with start symbol b. Finally, we apply Rule (11) one more time resulting in one
additional nonterminal and production:

DoExpressCheckoutPaymentResponse(doc) → a(doc); b(doc)

3.2 Control-Flow and Messages

Using the translation scheme described above, terminal symbols standing for
messages in the grammar of Figure 3 can be expanded into productions for val-
idating or generating individual message instances. For example, the ¡decop

terminal symbol refers to a message of type DoExpressCheckoutPaymentRe-
sponse. Generating such a message simply amounts to expanding the respective
message productions according to the derivation rules we have just shown.

Recall that production symbols in an interface grammar can carry additional
parameters that can be used to refer to specific elements of messages. These
parameters can be passed on from message to message to express correlations
between parameters across a whole transaction.

In the case of the ¡decop symbol, we attach two parameters: token and trans-
actionid, standing for the values of message elements of the same name. We must
therefore associate these two variables with the actual content of the production
that relates to these values:

526 S. Hallé et al.

a′(doc, token) → 〈〈if (doc ≡ null) doc = new Token〉〉; string(token);

〈〈doc.Token = token〉〉
b′(doc, transactionid) → 〈〈if (doc ≡ null) doc = new PaymentInfo〉〉;

c′(doc1, transactionid); d(doc1); e(doc1);

〈〈doc.PaymentInfo = doc1〉〉
c′(doc, transactionid) → 〈〈if (doc ≡ null) doc = new PaymentInfoTransactionID〉〉;

string(transactionid);

〈〈doc.PaymentInfoTransactionID = transactionid〉〉

Finally, the rule for ¡decop itself can be obtained by:

¡decop(doc, token, transactionid) → a′(doc, token); b′(doc, transactionid);

This mechanism is not restricted to primitive types; for example, the “items”
argument of the !seco message stands for the list of items; this element itself is
formed of multiple item elements with values for name, amount, and so on.

This particular characteristic of our translation to interface grammars is fun-
damental. By expressing message structures, parameter values and control flow
in a uniform notation, all such properties of a given service are taken into ac-
count in one specification framework. For example, by using the above rules to
simulate an Express Checkout client, we have that: 1) if the client invokes Set-
ExpressCheckout with some token i, then the client expects a response with the
same token value; 2) the client is guaranteed to eventually invoke Get and Do
with that same token i. Additionally, if the client invokes SetExpressCheckout
with an action value of “Sale” for token i, then the DoExpressCheckoutPayment
message that will be eventually sent for token i will also have the value “Sale”.
These constraints could not be handled if the messages were generated by a
procedure independent of the control flow constraints.

4 Experiments

To demonstrate the value of our approach, we studied two web services: the
Amazon E-Commerce Service provided by Amazon.com and the PayPal Web
Service API that we used as a running example throughout the paper.

4.1 Amazon E-Commerce Service

The Amazon E-Commerce Service (AWS-ECS) [3] provides access to Amazon’s
product data through a SOAP interface specified with WSDL. It was analyzed
in an earlier paper [17]; however, although it was not mentioned at the time,
the interface grammar for the six key operations (ItemSearch, CartCreate, Car-
tAdd, CartModify, CartGet, and CartClear) was generated automatically from
the WSDL specification of the AWS-ECS. These six operations also have sev-
eral control flow constraints that are not stated in the WSDL specification of

Generating Interface Grammars from WSDL 527

the AWS-ECS. We extended the automatically generated interface grammar by
adding these extra constraints. The data summarized below, and the interface
grammar itself, are described in more detail in [17].

We used the interface grammar both for client and server side verification, as
shown in Figure 1. The AWS-ECS client we used in our experiments is called
the AWS Java Sample. This client performs no validation on its input data
whatsoever. It is intended as a programming example showing how to use the
SOAP and REST interfaces, not as something to use. Hence, it serves as a
suitable vehicle to demonstrate the bug finding capabilities of our approach.

We fed the interface grammar for the AWS-ECS to our interface compiler
and generated a service stub for the AWS-ECS. We combined this service stub
with the AWS Java Sample for client verification. We used the Java PathFinder
(JPF) [9] to systematically search the state space of the resulting system. Note
that a model checker like JPF is not able to analyze the AWS Java Sample with-
out the automatically generated service stub provided by our interface compiler.

We analyzed three types of errors that the client, were it doing proper input
validation, would catch: type failures happen when the user enters a string when
an integer is expected; data failures occur when the user attempts to add a
nonexistent item to a nonexistent cart (the request is syntactically valid, but
nonsensical); uncorrelated data failures involve two operations that are in the
correct sequence, but the data associated with the two calls violates the extra
constraints (for example, editing an item that was previously removed from the
cart). We were able to discover the type failures in 12.5 seconds using 25 MB
of memory, the data failures in 11.1 seconds using 25 MB of memory and the
uncorrelated data failures in 20.8 seconds using 43 MB of memory.

For server verification, our interface compiler takes the interface specification
as input and automatically generates a driver that sends SOAP requests to the
web service. We ran ten tests using a sentence generator that chooses the next
production randomly. In each of these tests, the sentence generator was run
until it produced 100 SOAP message sequences, which were sent to the AWS-
ECS server. The average execution time for the tests was 430.2 seconds (i.e., 4.3
seconds per sequence). On average, the driver took 17.5 steps per derivation,
and each such derivation produced 3.2 SOAP requests.

These tests uncovered two errors, corresponding to mismatches between the
interface grammar specification and the AWS-ECS implementation:

1. The AWS-ECS implementation does not allow multiple add requests for the
same item, although this is not clear from the specification of the service.

2. We assumed that a shopping cart with no items in it would have an items
array with zero length. However, in the implementation this scenario leads
to a shopping cart with a null items array. This was not clarified in the
AWS-ECS specification.

4.2 PayPal Express Checkout Service

As a second case study, we conducted server side verification for PayPal’s Express
Checkout API. The running example in earlier sections is a simplified version

528 S. Hallé et al.

of this API. As we did for the server side verification of the AWS-ECS service,
we used a random sentence generator algorithm that sends SOAP requests to
PayPal’s web service. Our tests uncovered two errors. Again, these errors cor-
respond to discrepancies between the interface grammar specification and the
API’s actual implementation:

1. In a SetExpressCheckout request, elements CancelURL and ReturnURL can-
not be arbitrary strings; they must be valid URLs. This is not written in the
API documentation or in the WSDL, which only specify it must be a string.
It took 5.7 seconds to find this error.

2. The implementation does not allow a client to set its own token in a SetEx-
pressCheckout request. If the client does not use a token previously returned
by another SetExpressCheckout request, it has to set the token to the empty
string and reuse what SetExpressCheckout gives back. Again this constraint
was not clear from the documentation. It took 2.5 seconds to catch this error.

Once we modified the interface grammar specification to reflect these constraints,
the driver did not produce any more errors. The round-trip time to generate each
new message from the grammar, send it, get and parse the response from PayPal
took about 1 second.

5 Related Work

Earlier work has been done on grammar-based testing. For example, Sirer and
Bershad [21] have developed a grammar-based test tool, lava, with a focus on
validating Java Virtual Machine implementations. Test data has been generated
using enhanced context-free grammars [19], regular grammars [8] and attributed
grammars [12]. None of these tools focus on web service verification —they use
grammars to characterize inputs rather than interfaces.

Some approaches attempt to automate the testing of web services by taking
advantage of their WSDL definitions. Available tools like soapUI [2] allow a
user to create so-called “mock web services” whose goal is to mimic the actual
web service requests and responses; for each such operation, the tool generates
a message skeleton that the user can then manually populate with data fields.
Other works automate this process entirely by simulating a web service through
the generation of arbitrary, WSDL-compliant messages when requested [4,7].

On the other hand, other works attempt to validate incoming and outgoing
messages to ensure they are WSDL-compliant. The Java API for XML Web Ser-
vices (JAX-WS)1 provides a validator for that purpose; the IBM Web Service
Validation Tool2 validates a trace of SOAP messages against WSDL specifica-
tions. Cacciagrano et al. [11] push the concept further and validate not only
the structure of messages, but also additional constraints such as dependencies
between values inside a message.
1 https://jax-ws.dev.java.net/
2 http://www.alphaworks.ibm.com/tech/wsvt

Generating Interface Grammars from WSDL 529

However, all these previous approaches treat request-response as patterns in-
dependently of each other; therefore, they do not allow properties where values
generated in some messages constrain the control flow of the web service, as we
have shown is the case in PayPal’s Express Checkout.

6 Conclusion

We proposed and implemented a translator to automatically generate an in-
terface grammar skeleton from a WSDL specification. This interface grammar
skeleton can be combined with control flow constraints to generate an interface
specification that characterizes both control and data-flow constraints in a uni-
form manner. Using the actual documentation and WSDL specification from the
PayPal Express Checkout API, we have shown how such automatically gener-
ated grammar skeletons can be extended with control flow constraints to obtain
interface grammars that specify the interaction behavior of web services. These
interface grammars can then be automatically converted to web service stubs
and drivers to enable verification and testing. We also applied these techniques
to a client for the key interfaces of the Amazon E-Commerce Service and also to
the Amazon E-Commerce Service server directly, and have demonstrated that
our approach is feasible and efficient.

References

1. PayPal web service API documentation (2008), http://www.paypal.com
2. soapUI: the web services testing tool (2009), http://www.soapui.org/
3. Amazon web services, http://solutions.amazonwebservices.com/
4. Bai, X., Dong, W., Tsai, W.-T., Chen, Y.: WSDL-based automatic test case genera-

tion for web services testing. In: IEEE International Workshop on Service-Oriented
System Engineering, SOSE 2005, pp. 207–212 (2005)

5. Barbon, F., Traverso, P., Pistore, M., Trainotti, M.: Run-time monitoring of in-
stances and classes of web service compositions. In: Proceedings of the 2006 IEEE
International Conference on Web Services (ICWS 2006), pp. 63–71 (2006)

6. Baresi, L., Guinea, S., Kazhamiakin, R., Pistore, M.: An integrated approach for
the run-time monitoring of BPEL orchestrations. In: Proceedings of the First Eu-
ropean Conference Towards a Service-Based Internet (ServiceWave 2008), pp. 1–12
(2008)

7. Bartolini, C., Bertolino, A., Marchetti, E., Polini, A.: Towards automated WSDL-
based testing of web services. In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.)
ICSOC 2008. LNCS, vol. 5364, pp. 524–529. Springer, Heidelberg (2008)

8. Bauer, J.A., Finger, A.B.: Test plan generation using formal grammars. In: Pro-
ceedings of the 4th International Conference on Software Engineering, Munich,
Germany, September 1979, pp. 425–432 (1979)

9. Brat, G., Havelund, K., Park, S., Visser, W.: Java pathfinder: Second generation
of a Java model checker. In: Proceedings Workshop on Advances in Verification
(2000)

10. Brown, A., Fuchs, M., Robie, J., Wadler, P.: MSL: a model for W3C XML Schema.
In: Proceedings of the 10th International World Wide Web Conference, pp. 191–200
(2001)

http://www.paypal.com
http://www.soapui.org/
http://solutions.amazonwebservices.com/

530 S. Hallé et al.

11. Cacciagrano, D., Corradini, F., Culmone, R., Vito, L.: Dynamic constraint-based
invocation of web services. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-
FM 2006. LNCS, vol. 4184, pp. 138–147. Springer, Heidelberg (2006)

12. Duncan, A.G., Hutchison, J.S.: Using attributed grammars to test designs and
implementations. In: Proceedings of the 5th International Conference on Software
Engineering, New York, NY, USA, March 1981, pp. 170–178 (1981)

13. Hallé, S., Villemaire, R.: Runtime monitoring of message-based workflows with
data. In: Proceedings of the 12th International Enterprise Distributed Object Com-
puting Conference (EDOC 2008), pp. 63–72 (2008)

14. Hallé, S., Villemaire, R.: Browser-based enforcement of interface contracts in web
applications with BeepBeep. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 648–653. Springer, Heidelberg (2009)

15. Hughes, G., Bultan, T.: Extended interface grammars for automated stub gener-
ation. In: Proceedings of the Automated Formal Methods Workshop, AFM 2007
(2007)

16. Hughes, G., Bultan, T.: Interface grammars for modular software model checking.
IEEE Trans. Software Eng. 34(5), 614–632 (2008)

17. Hughes, G., Bultan, T., Alkhalaf, M.: Client and server verification for web services
using interface grammars. In: Bultan, T., Xie, T. (eds.) TAV-WEB, pp. 40–46.
ACM, New York (2008)

18. Mahbub, K., Spanoudakis, G.: Run-time monitoring of requirements for systems
composed of web-services: Initial implementation and evaluation experience. In:
Proceedings of the 2005 IEEE International Conference on Web Services (ICWS
2005), pp. 257–265 (2005)

19. Maurer, P.M.: Generating test data with enhanced context-free grammars. IEEE
Software 7(4), 50–55 (1990)

20. Meredith, G., Bjorg, S.: Contracts and types. Commun. ACM 46(10), 41–47 (2003)
21. Sirer, E., Bershad, B.N.: Using production grammars in software testing. In: Pro-

ceedings of DSL 1999: the 2nd Conference on Domain-Specific Languages, Austin,
TX, US, pp. 1–13 (1999)

Satisfaction of Control Objectives by Control Processes�

Daniela Marino1, Fabio Massacci2, Andrea Micheletti1, Nataliya Rassadko2,
and Stephan Neuhaus2

1 Fondazione Centro San Raffaele del Monte Tabor
e-Services for Life & Health Unit, Via Olgettina 60 - 20132 - Milano, Italy

surname.name@hsr.it
2 Dipartimento di Ingegneria e Scienze dell’Informazione

Università degli Studi di Trento, via Sommarive 14 - 38100 Trento, Italy
name.surname@disi.unitn.it

Abstract. Showing that business processes comply with regulatory requirements
is not easy. We investigate this compliance problem in the case that the require-
ments are expressed as a directed, acyclic graph, with high-level requirements
(called control objectives) at the top and with low-level requirements (called
control activities) at the bottom. These control activities are then implemented
by control processes. We introduce two algorithms: the first identifies whether a
given set of control activities is sufficient to satisfy the top-level control objec-
tives; the second identifies those steps of control processes that contribute to the
satisfaction of top-level control objectives. We illustrate these concepts and the
algorithms by examples taken from a large healthcare provider.

1 Introduction

Processes – no matter whether executed by people or by machines – are often governed
by desirable or prescribed features of their execution. For example, if an Italian hospi-
tal dispenses drugs to a patient, the identity of the person requesting the dispensation
must appear in an audit log, according to Legislative Decree no. 196 of 30 June 2003
“personal data protection code”, “Computerized Authentication System”, clauses 1, 2,
3 and 6 [25]. Processes that have these features are called compliant.

Designers of such processes are faced with a dilemma: the desirable features are
listed as high-level control objectives, e.g., “Processing operations may only be per-
formed by persons in charge of the processing that act under the direct authority of
either the data controller or the data processor by complying with the instructions re-
ceived”, but the actions to which such control objectives pertain happen at a much lower
level, e.g., “look up the user’s ID and check authorization”. In order to know that the
action is influenced by the control objective, that objective must be successively decom-
posed until it is clear to which process steps it pertains. For example, a sub-objective of
“Personal data undergoing processing shall be kept [...] in such a way as to minimize
[...] the risk of their destruction or loss,” [25, Section 31] could be “patient records may
only be deleted after authorization by at least two authorized persons”.

� Research partly supported by the EU under the project EU-IST-IP-MASTER (FP7-216917).

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 531–545, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

532 D. Marino et al.

It may not be feasible to implement all the actions that are prescribed by control
objectives. In this case, we want to know whether the subset that we have implemented
is sufficient to guarantee the satisfaction of the high-level objective. For example, we
could prescribe that patient records are anonymized even as they are assembled for
sending to the local health administration. But failing to implement this anonymization
would not be fatal if the records are anonymized during the sending process.

In this paper, we consider this problem on three levels:

– on the design level, we consider the decomposition of control objectives into sub-
objectives. The objectives then become successively more specific on refinement
until we consider them to be atomic. These atomic objectives can then be either im-
plemented or not. We ask: “given a decomposition of objectives into sub-objectives
and atomic objectives, and given that certain atomic objectives are implemented and
others not, are the top-level objectives satisfied?” This allows us to claim compli-
ance at the design level, when we plan to satisfy certain atomic control objectives,
but don’t have a concrete implementation yet.

– on the implementation level, we first consider the implementation of atomic ob-
jectives by processes. Steps in these processes will contribute to the satisfaction
of different atomic control objectives. So we ask, “Does execution of a particular
control process lead to the satisfaction of the top-level objectives?” This allows us
to claim compliance by adding independent controls.

– on the process level, we recognize that control processes are usually woven into
processes instead of being separate processes by themselves. For example, check-
ing a user’s authentication and authorization are usually parts of processes instead
of being realized as separate processes. If we are given, for each process step, a
list of atomic control objectives to whose satisfaction it contributes, we ask, “does
every execution of this process lead to the satisfaction of the top-level control ob-
jective?” This allows us to claim compliance by adding process-specific controls
or by analysing controls that are already in place.

Since control objectives are expressed in natural language, their decomposition and re-
finement, i.e., design is intrinsically a manual process requiring the presence of a human
expert. We consider the automation of the rest, i.e. implementation and process, can be
automated. So this paper is organized as follows: after introducing our case study (§ 2),
we formalize the problem (§ 3). Then, we look at the problems of objective satisfaction
through the implementation of atomic control objectives (§ 4) and compliance of con-
trol process. (§ 5). After that, we review related work (§ 6) and finish with conclusions
and further work (§ 7).

2 Example: Outpatient Drug Reimbursement

The case study considered in this paper is based on a concrete process from Hospital
San Raffaele (HSR) in Milano, Italy, and concerns drug reimbursement.

Private Hospitals with a officially recognized public functions (such as HSR) are
charged with administering drugs or with providing diagnostic services to patients that
use their structure (e.g,, because the corresponding public services are overbooked) and

Satisfaction of Control Objectives by Control Processes 533

then are authorized to claim the cost of drug dispensation or diagnostic provisioning
from the regional state health administration.

The Italian Direct Drug Reimbursement process is a mechanism that allows refund-
ing hospitals for drugs administered or supplied in the outpatient departments to patients
that are not hospitalized; this mechanism is called “File F” and guarantees continuity of
care regardless of the different forms in which that care is provided.

As a consequence of their public function and because they treat sensitive data, the
processes of HSR are highly regulated:

– First, the e-health services have to respect the Health Governmental Authority (e.g.
Ministry, Regional Health authority, etc.) indications; these regulations or guide-
lines have to be followed by all the healthcare institutions and concern a wide
spectrum of norms, e.g., from the Personal Electronic Health Record to the Accred-
itation procedures, from the clinical practice to the price of the hospital treatments.
Moreover, the e-health services usually follow the healthcare standards related to a
specific domain, such as HL7, DICOM, HIPAA, etc., depending on the service.

– Other regulations to consider are the Governmental indications about the privacy
matters (personal data protection); the European framework is regulated by the “Di-
rective 95/46/EC - privacy framework” that have to be implemented by each Eu-
ropean state. There is also to consider the Directive 2002/58/EC concerning the
processing of personal data and the protection of privacy in the electronic commu-
nications sector and other governmental regulations regarding digital signatures,
health data storage, etc.

– The final regulatory framework consists of Information & Communication Tech-
nologies Security standards, such as ISO/IEC 27002 [16] “code of practice for In-
formation Security management”, the ISO 15408 “Common Criteria for IT Security
Evaluation” [17], the COBIT framework [15], ITIL [24], etc. Sometimes also busi-
ness agreements between suppliers and customers impose security requirements.

In order to give an idea of the sheer volume of regulation, the simple process of au-
thorization and accounting for the dispensation and recompensation of drugs (called
“File F”) is subject to the following (not exhaustive) set of regulations: Legislative
Decree no. 196 of 30 June 2003 [25] “personal data protection code”, “Additional
Measures Applying to Processing of Sensitive or Judicial Data” clause 20; “Comput-
erized Authentication System” clauses 1, 2, 3, 5; annex B, “processing by electronic
means”, “authorization system” clauses 12, and 13, as well as regional circular 17/SAN
3.4.1997, which is successively amended by various notes and circulars such as Circu-
lar No. 5/SAN 30 1 2004 [3], Circular No. 45/SAN 23 12 2004 [6], Note 30.11.2007
H1.2007.0050480 [5], Note 27.3.2008 H1.2008.0012810 [4], and Note 04.12.2008 H1.-
2008.0044229 [7].

All the regulations and best practices above mentioned contribute to the definition of
the control objectives of the HSR business process for performing regulatory compli-
ance analysis. The set of control objectives for the File F process activities is augmented
by various business objectives (also called business goals) that have to be satisfied to
reach the correct process results.

534 D. Marino et al.

3 Conceptual Model

Recall from Section 1 that we view processes as being governed by desirable or pre-
scribed features of their execution, features which we called control objectives. In this
section, we will formalize the concepts of objectives and objective decomposition, as
well as the concept of implementing an atomic objective.

Control Objectives (COs) are requirements on the internal operations of a business
that describe what needs to be done (e.g.,. follow certain industry best practices) or what
needs to be achieved (e.g., certain states or outcomes). However, control objectives are
not actionable because they are phrased as requirements, not as procedures.

Example 1 (Regulatory Requirement). For the File F process, one regulatory require-
ment is “Legislative Decree no. 196 of 30 June 2003 ‘personal data protection code’,
‘Additional Measures Applying to Processing of Sensitive or Judicial Data’, clause 20”.

Example 2 (Control Objective). For the regulatory requirement described above, the
following objectives (from ISO 27002) are particularly relevant: “access control” and
“user access management”.

Control objectives like “access control” are not actionable. Rather, they have to be re-
fined to a level where it is clear to which part of the business these refined objectives
pertain and such that further refinement is no longer needed. We call such atomic objec-
tives control activities (CAs). They are the policies, procedures, mechanisms, and orga-
nizational structures that are put in place to assure that control objectives are achieved.
Control activities are embedded in business processes; that is they affect and change the
inner workings of a business. Common synonyms include controls, countermeasures,
and safeguards as well. Control activities, by definition, are actionable, because they
are phrased as procedures.

Example 3 (Control Activity). One control activity that is pertinent to the control objec-
tive would be (in ISO 27002 parlance) “User registration”, or (in procedural parlance)
“register users before granting them access”.

The problem is now to translate somehow from control objectives to control activities
so that if we implement and execute the control activities, we automatically satisfy the
control objectives.

To this end, we introduce the concept of control objective refinement, i.e., the re-
placement of a control objective by a number of more specific control sub-objectives
that together contribute to the satisfaction of the control objective.

Example 4 (Objective Decomposition). The control objective “access control” in the
File F example is achieved by having (from ISO 27002) “user access management” and
“user responsibilities”.

A decomposition can therefore be seen as a graph whose nodes are the control objec-
tives, which have the property of being satisfiable. Control objectives have a number
of sub-objectives that contribute to its satisfaction, which is expressed by drawing a di-
rected edge from the objective to its sub-objective. We distinguish between two cases:

Satisfaction of Control Objectives by Control Processes 535

Composite
process

Atomic
process + O

Fig. 1. Constructs of process decomposition. Composite processes are represented as boxes, tasks
(atomic process that cannot be decomposed) are shown as rectangles with rounded corners. The
flow of decomposition is denoted by an arrow. AND-decomposition (execution of all subpro-
cesses required) is shown by a circle with plus inside, while (exclusive) OR (execution of at most
one subprocess is required) is denoted as a circle with a O inside.

– When the satisfaction of a single sub-objective is sufficient to satisfy the objective,
we call the objective OR-decomposed.

– When all sub-objectives need to be satisfied in order to satisfy the objective, we call
the objective AND-decomposed.

Leaves (control objectives that have no sub-objectives) are so specific that they are
actionable and are therefore control activities. For the purpose of checking compliance,
they have the property of being implemented or not. It is also reasonable to assume that
refinement is acyclic, i.e., that no objective ultimately depends on itself for fulfillment.
More formally, we have therefore:

Definition 1 (Objective Model). An objective model is a non-empty, directed, acyclic
graph G = (V,E), where V is a set of nodes that can be either control objectives or
control activities, and where (m,n) ∈ E if n is a sub-objective of m so that n con-
tributes to the satisfaction of m. For n ∈V, we write n.parents := {m | (m,n) ∈ E} and
n.children := {m | (n,m) ∈ E}.

Since G is nonempty and acyclic, there exists a nonempty set of nodes n with
n.parents = /0. These are those objectives that do not function as sub-objectives to other
objectives and are therefore called global objectives.

In our model, control activities they are implemented by control processes (CPs),
including any configuration and maintenance work that is needed to keep the control
operational. Control processes can be structurally composed of subprocesses, for which
we use the notation shown in Fig. 1.

Example 5 (Process Decomposition). In Fig. 2 (left), we used a standard business pro-
cess notation to show a process of File F dispensation. Its structural decomposition is
shown in Fig. 2 (right). Namely, P1 is the entire process depicted in Fig. 2 (left); P2 is a
sequence, consisting of all tasks before the first conditional diamond, P3 is everything
that is executed after the first conditional diamond. Note that P2 and P3 constitute an
AND-decomposition of P1. Next, P2 is decomposed into and AND-structure consisting
tasks A2.1, A2.2, A2.3. The decomposition of P3 is more complex since it is the OR-
decomposition consisting of the branches of the first conditional diamond. Therefore, it
is either P4, which is the YES-branch, or P5, which is NO-branch.

Example 6 (Process-to-Objective Assignment). The overall conceptual model is shown
on Fig. 3. The upper part of the figure is an objective model, where ovals and hexagons
represent COs and CAs respectively. Namely, the global objective CO3 can be satisfied

536 D. Marino et al.

A2 – File F Dispensation

Input Healthcare personnel (doctor/nurse) Output

Patient’s
drug

request

A2.10 –
Delivery
of the
drugs

A2.1-Access to
dispensation

IT system

A2.2-Identify
patient

A2.3-Check
prescription/

delivery
data

Deliver from
prescribed/delivered

drugs

…

NO

A2.4-Select
drugs to be

delivered

…

YES

Drug available?…
NO

YES

P1

P3

P2

+

O

P5

P4

A1

+A2

A3

A4

A5

Fig. 2. File F Dispensation process (left) and its structural decomposition (right)

CO3

Access
Control

CO3.1 CO3.2

CO3.3

CO2

CO2.2CO2.1

CA1 CA2 CA6CA3 CA4CA5

P1

P3

P2

+

OP5

P4

A1

+
A2

A3

A4

A5

Fig. 3. Control objective satisfaction by executing control processes

if all CO2 and CO3.3 and AC (standing for Access Control) are satisfied. In their turn,
satisfaction of CO2 depends on satisfaction of both CO2.1 and CO2.2, where the first de-
pends on implementation of activities CA3 and CA4 and the second depends on activity
CA3 only. On the other hand, the satisfaction of CO3 requires an implementation of both
CA3 and CA6. AC is satisfied if either CO3.1 or CO3.2 are satisfied. The satisfaction of
the latter COs rely on implementation of {CA1, CA2, CA5} and CA3 respectively. The
explanation of all COs and CAs will be presented in Sec. 4.

The lower part of Fig. 3 is dedicated to an executable process P1 which requires a
necessary execution of both P2 and P3. The former is implemented by tasks A1, A2, A3.
The latter is decomposed into choice execution of P4 and P5 that are implemented by
tasks A4 and A5 respectively.

During execution of a control process, we may contribute to the satisfaction of one of
the sub-objectives of a global objective and hence ultimately to the satisfaction of that

Satisfaction of Control Objectives by Control Processes 537

Table 1. Control objectives, sub-objectives and control activities vs. regulatory requirements

Control objective
(from ISO 27002)

Sub-objective
(from ISO 27002)

Control activities
(from ISO 27002)

Source of Regulatory Requirement

CO1: Access con-
trol

CO1.1: User access
management

CA1 - User registra-
tion

Legislative Decree no. 196 of 30 June 2003 “personal
data protection code”, “Additional Measures Applying
to Processing of Sensitive or Judicial Data” clause 20

CA2 - User pass-
word management

Legislative Decree no. 196 of 30 June 2003 “personal
data protection code”, “Computerized Authentication
System” clause 5. Legislative Decree no. 196 of 30 June
2003 “personal data protection code”, “Additional Mea-
sures Applying to Processing of Sensitive or Judicial
Data” clause 20

CO1.2: User re-
sponsibilities

... ...

CO2: Information
systems acquisition,
development and
maintenance

CO2.1: Correct pro-
cessing in applica-
tions

CA3 - Control of in-
ternal processing

circular No.5/SAN 30 1 2004 and Note
30.11.2007 H1.2007.0050480 and Note 27.3.2008
H1.2008.0012810

CA4 - Output data
validation

circular No.5/SAN 30 1 2004 and Note 30.11.2007
H1.2007.0050480 and the Note 27.3.2008
H1.2008.0012810

CO2.2: Techni-
cal vulnerability
management

... ...

global objective itself. This is what we intuitively mean by compliance and what we
show in Fig. 3 by a dotted line.

While process-to-objective assignment is an intrinsically human-related task [2], the
compliance checking can be done automatically. For this purpose, we need to resolve
the following problems:

1. Given a set of implemented CAs, we need to check whether the global COs are
satisfied (“Problem of Satisfaction”).

2. Given an implementation of CAs by tasks and (sub)processes, we need to check
whether the entire process is compliant to the objective model (“Problem of Com-
pliance”).

3. Given the execution of a control process, we need to identify a set of (sub)pro-
cesses, execution of which leads to a satisfaction of a concrete control objective
(“Problem of Contribution”).

Resolving the first problem will show us whether the mechanisms that we have (or
want to have) in place are sufficient to satisfy our global objectives. The resolution of
the last two problems will then make it possible for us to do check for compliance more
effectively because, if we know exactly which sub-process contributes to which control
objective, we can more easily establish what we need to monitor.

4 Specification: Control Objective Satisfaction

Considering the case study, starting from the Regulatory Requirements, we can obtain
the control activities that have to be performed. In a practical way, it is possible to use
standard control objectives, sub-objectives and control activities related to a specific

538 D. Marino et al.

Table 2. Business objectives of the File F process

Process phase Business/control objectives Sub-objectives Control activities (from ISO 27002)
A2. File F Dis-
pensation

CO3:

– Deliver the right drugs to the right
patient;

– Give input to logistic stock man-
agement

CO3.1: Doctors and nurses
must have authorization and
credentials for accessing the
dispensation IT system

– CA1 - User Registration
– CA2 - User Password management
– CA5 - Review of User Access

Right

CO3.2: The original copy of
prescription sheet with the sig-
nature of the doctor must be
given to the nurse as dispensa-
tion request

– CA3 - Control of internal process-
ing

CO3.3: Prescription data must
be univocally assigned to a pa-
tient – CA3 - Control of internal process-

ing
– CA6 - Documented operating pro-

cedures

domain; for instance in our case we can consider the ISO 27002 “Information security
management systems” standard. The specific control mechanisms to be implemented
are then customized on the particular business process.

Table 1 reports an example of this methodology, where there is a mapping between
the Regulatory requirements and the ISO control activities; the control mechanisms
that will be implemented on our business process will have to satisfy the regulatory
requirements1.

On the other hand we can identify the control objectives, the sub-objectives and
the control activities coming from the business objectives of our process, as shown in
Table 2. Also in this case it is possible to refer to the ISO standard for having a common
reference for the control activities.

Then control activities are implemented by processes compliant to regulations. How-
ever, for example, due to tight budget or other business/economical reasons, only a
restricted set of activities can be implemented. However, the implemented activities
should lead to the satisfaction of “global” control objectives.

In Fig. 4, we show our algorithm for satisfaction of global control objectives given
the satisfaction of some control activities. The algorithm begins at the leaves (the CAs)
of the objective model and proceeds upwards. To propagate satisfaction, we use an array
UNTIL-SATISFIED that contains, for all nodes, a number of sub-nodes that need to be
satisfied in order for the node to be satisfied as well. Lines 1–6 compute the initial value
of UNTIL-SATISFIED: an implemented control activity is automatically satisfied; a non-
implemented CA can never be satisfied. If a node is an AND-decomposed CO, all of
its sub-objectives need to be satisfied; for an OR-decomposed CO, the satisfaction of a
single sub-objective suffices.

We also use a queue that contains satisfied control objectives. Initially, the queue
contains all satisfied leaves (implemented CAs). At each iteration of the while loop
starting at line 7, one node is removed from the front of the queue and its parents are

1 We do not include CO1 (and its sub-objectives) into our objective model shown in Fig 3 be-
cause it is subsumed by CO3.1.

Satisfaction of Control Objectives by Control Processes 539

Algorithm. PROBLEM OF SATISFACTION RESOLUTION

Input: A control objective model G = (V,E)
Output: Identifies if global COs are satisfied.
1: for all n ∈V do
2: if n is a CA then
3: UNTIL-SATISFIED [n] := 0 if n is implemented, 1 otherwise;
4: else
5: UNTIL-SATISFIED [n] := |n.children | if n is AND-decomposed, 1 otherwise;
6: Insert into queue Q all nodes n ∈V with UNTIL-SATISFIED [n] = 0;
7: while Q is not empty do
8: n ← Q;
9: for all n′ ∈ n.parents() do
10: if UNTIL-SATISFIED [n] �= 0 then
11: UNTIL-SATISFIED [n′] := UNTIL-SATISFIED [n′]−1;
12: if UNTIL-SATISFIED [n′] = 0 then
13: Q ← n′;

Fig. 4. Algorithm PROBLEM OF SATISFACTION RESOLUTION

examined. If the satisfaction of the current node is enough to also satisfy the parent, the
parent is also marked as satisfied and appended to the end of the queue.

Theorem 1. The algorithm is correct, terminates and has time complexity O(|V |2).

In a nutshell, the correct outcome of algorithm run should result in UNTIL-SATISFIED

[CO] := 0 if CO is satisfied, 1 otherwise; for any CO. This issue can be easily demon-
strated by proof by contradiction. Termination of the algorithm is evident due to acyclic-
ity of objective model and the fact that each node can be added to queue only once.
Since in cycle while in line 7 lasts O(|V |) iterations, O(|V |) operations are performed
in line 9 at each iteration, the complexity is O(|V |2).

5 Compliance of Control Processes

In this section, we want to tackle problems 2 and 3, namely which parts of a control
process contribute to the satisfaction of control objectives.

Definition 2. A Process-to-Activity Assignment is a mapping A from the set of pro-
cesses to the set of control activities such that a process P is mapped to a control activity
A if A is satisfied after P has completed. We write this assignment P →A A and say “P
implements A”.

At the moment, we have no way of automating a process-to-activity assignment, so we
assume that this is done manually.

Having identified process-to-activity assignment, we try to “dig” into each structural
subprocess and to identify if this assignment may be alleviated. In other words, there
might be many control processes assigned to one particular CA. This may happen not
only because of the complexity of CA, but also because there is a need of “reserve”
implementation that could be launched in the case of failure of the “main” implementa-
tion. Some of these assignments might be more costly to implement or difficult to audit,
others might not. So, we want to identify the core subset of process-to-activity assign-
ment which is necessary to implement in order to fulfill the root objectives. On the other

540 D. Marino et al.

hand, if we are able to distinguish some additional assignments leading to a “reserve”
satisfaction of some COs, we will have a possibility to configure process-to-objective
assignment in different ways w.r.t. our requirements to implementation cost or auditing
difficulty.

Definition 3. Let G = (V,E) be a control objective model with a set G of global objec-
tives, let {A1, . . . ,An} ⊆ V be a set of control activities, and let P be a process, com-
posed of sub-processes {P1, . . . ,Pm} that implement control activities A1, . . . ,An. Let A
be a process-to-activity assignment. We call A correct if the global objectives in G are
satisfied when P completes. In this case, we write P |= G.

Given a process-to-activity assignment, we would like to test its correctness and also to
identify which part of the process (1) is compliant with a particular control objective,
and (2) contributes to a satisfaction of a particular control objective. We can answer
these questions with the help of algorithm presented in Fig. 5. For this purpose, for
each control objective n ∈ V , we maintain a set IMPLEMENTEDBY[n] of those sub-
processes of P that contribute to control objective satisfaction, and for each subprocess
p of P, we maintain a set ACHIEVES[p] that are implemented by that p.

The input of the algorithm is (1) a process-to-activity assignment, (2) the objec-
tive model, and (3) the control process and its sub-processes. From the process-to-
activity assignment, we can easily instantiate IMPLEMENTEDBY and ACHIEVES for
corresponding subprocesses and control objectives according to lines 7–10.

After this initialization, subprocesses start the propagation of their implementation to
super-processes (parent processes). More precisely, each process p′ implements those
control objectives that are available for propagation of satisfaction from control ob-
jectives implemented by subprocesses of p′. To calculate such a reachability, we use
the function Reach which is an algorithm PROBLEM OF SATISFACTION RESOLUTION

having as input a set of satisfied control objectives or implemented CAs that are pushed
into the queue. Respectively, values associated to the corresponding nodes in objective
model are equal to “0”, while the other nodes are associated the values according to the
algorithm. The algorithm proceeds propagating satisfaction bottom-up. As soon as the
algorithm terminates, satisfied control objectives represent the result of Reach function.

If super-process p′ is AND-decomposed (flow or sequence of subprocesses), it satis-
fies all control objectives satisfied/implemented by each of its sub-processes. It means
that we can propagate also satisfaction in the objective model. The satisfaction is prop-
agated from the union of control objectives implemented by subprocesses of p′. On
the other hand, if p′ is OR-decomposed (choice), it can implement only those control
objectives that are reachable from the intersection of control objectives implemented
by subprocesses of p′. That is why OR-decomposition of process cannot implement
AND-decomposition of objectives.

Theorem 2. Algorithm PROBLEM OF COMPLIANCE AND CONTRIBUTION RESOLU-
TION is correct, terminates, and has time complexity O((|V |2 + |V |)× |P|), where |V |
is the number of nodes in objective model, |P| is the number of subprocesses of P.

Proof. The correctness means that for each CO, IMPLEMENTEDBYCO contains only
those elements that contribute to satisfaction of CO; for each p, ACHIEVESp contains
only those elements that are satisfied by p.

Satisfaction of Control Objectives by Control Processes 541

Algorithm. PROBLEM OF COMPLIANCE AND CONTRIBUTION RESOLUTION

Input: A process-to-activity assignment A , an objective model G = (V,edges), an executable process P, composed of sub-
processes P1, . . . ,Pn

Output: Structures that represent (1) compliance of each subprocess to a certain control objective, and (2) satisfaction of
each control objective with a certain set of subprocesses of executable process.

1: Put into QP all process that implement some CAs;
2: for all nodes e of objective model do
3: IMPLEMENTEDBY (e) = /0;
4: for all subprocesses and tasks P′ of the executable process P do
5: ACHIEVES (P′) = /0’
6: VISITED [P′] := f alse;
7: for all assignments P →A {A1,A2, . . . ,An} do
8: IMPLEMENTEDBY (Ai) := IMPLEMENTEDBY (Ai)∪{P};
9: ACHIEVES (P) := ACHIEVES (P)∪{A1,A2, . . . ,An};
10: VISITED [P] := true;
11: while QP is not empty do
12: P′ ← QP;
13: for all p ∈ P′.superprocesses do
14: if p is choice then
15: ReachableOb jectives := Reach(G,∩ j{ACHIEVES (p.subprocesses())});
16: else if p is flow or sequence then
17: ReachableOb jectives := Reach(G,∪ j{ACHIEVES (p.subprocesses)});
18: ACHIEVES (p) := ReachableOb jectives;
19: for all objectives CO ∈ ReachableOb jectives do
20: IMPLEMENTEDBY (CO) := IMPLEMENTEDBY (CO)∪{P′};
21: if not VISITED [P′] then
22: VISITED [P′] := true;
23: QP ← P;

Fig. 5. Algorithm PROBLEM OF COMPLIANCE AND CONTRIBUTION RESOLUTION

We prove the correctness by the method of induction. The base of induction is
a process-to-activity assignment A , which is correct by default: for all assignments
P →A {A1,A2, . . . ,An}, the corresponding IMPLEMENTEDBY and ACHIEVES are cal-
culated correctly.

Now let us consider any process p from process decomposition such that p � inA .
Let’s assume that for subprocesses of p, all ACHIEVES and corresponding
IMPLEMENTEDBY are calculated correctly. Step of induction: ACHIEVES(p) is cal-
culated correctly. Indeed, if ACHIEVES(p) is incorrect, then ReachableOb jectives is
calculated incorrectly. Since function Reach is correct by Theorem 1, then ACHIEVES

of subprocesses of p are calculated incorrectly, which contradicts to the assumption of
the induction step. Therefore, for all processes of process decomposition, ACHIEVES

are calculated correctly.
Let us assume that there exists CO such that IMPLEMENTEDBYCO is calculated

incorrectly. It means, that there exists a process p such that its ReachableOb jectives is
calculated incorrectly, which contradicts to the statement proved previously.

We will prove termination by showing that in cycle while in line 11, processes can
be added to the queue at most once. Since process decomposition is finite and since
one node is removed on every iteration, termination then follows. Initially (line 1), the
elements of queue are all distinct. Line 13 guarantees that only super-processes are
added to the queue. For an element to be added to the queue twice, it would therefore
have to be its own super-processes which is impossible.

Finally, we prove the complexity result. The most complex calculation is hold in
cycle while in line 11. Above, we have proved that the queue length is O(|P|). At

542 D. Marino et al.

Table 3. Result of algorithm run

CO IMPLEMENTEDBY (CO) P ACHIEVES (P)
CA1,CA2,CA5 A1 A1 {CA1,CA2,CA5}

CA3 A2 A2 CA3

CA4 {A4,P4} A3 CA6

CA6 A3 A4 CA4

CO3.1,CO3.2,CO3.3,AC {P2,P1} P3,P5,A5 { /0}
CO2.1,CO2.2,CO2,CO3 { /0} P2,P1 {CO3.1,CO3.2,CO3.3,AC}

P4 CA4

each iteration we pop exactly one process. For each popped process, in line 13 we
check its parents. Due to the structural nature of our process decomposition model,
each process has only one super process. Thus, for a single parent, we run algorithm
Reach which has complexity O(|V |2) because of Theorem 1. In line 19, we have to
update IMPLEMENTEDBY for some COs the total number which is less than O(|V |).
Thus the complexity is not more than O((|V |2 + |V |)×|P|).
Example 7. In this example we will show the run of the algorithm PROBLEM OF COM-
PLIANCE AND CONTRIBUTION RESOLUTION. Since A1, A2, A3 are composed into
AND-execution (i.e., sequence in the original workflow), we have to calculate function
Reach over the union of activities that they implement; and the union is CA1, CA2, CA3,
CA5, CA6. Thus, ACHIEVES(P2) = Reach(G,{CA1,CA2,CA3,CA5,CA6})=
{CO3.1,CO3.2,AC,CO3.3}, and P2 is added to corresponding sets IMPLEMENTEDBY of
control objectives respectively.

On the other hand, A4 implements CA4. And ACHIEVES(P4) = Reach(G,AC4) =
{CA4}. P5 does not implement anything. Therefore at P3 intersection of CA4 with empty
set is an empty set.

P2 and P3 are composed into sequence (AND-composition), therefore Reach will be
calculated over ACHIEVES(P2)∩ACHIEVES(P3)={CO3.1,CO3.2,AC,CO3.3}. This will
be a set of COs that are satisfied by P1, the root objective is not in this set. Thus the root
objective is not satisfied.

The complete output of the algorithm is shown in Table 3.

If we investigate column IMPLEMENTEDBY of Table 3, we will notice that there is a
set of processes that do not satisfy any CO. These processes can be organized as a path
of a tree-like structure of process decomposition model, e.g., P3 → P5 → A5. Thus, we
can detect the source of incompliance.

The situation that is described as in Example 7 could be fixed if A5 were designed
to implement some CA in objective model. It seems to be obsolete and even more non
compliant to the hospital regulations and therefore it should be deleted. If we elimi-
nate the process P5, then P3 obtains IMPLEMENTEDBY(P4) = {CA4} and being united
with IMPLEMENTEDBY(P2) for calculation of IMPLEMENTEDBY(P1) will result in the
complete satisfaction of objective model.

6 Related Work

The problem of compliance to regulatory requirements was investigated from different
angles and by means of different methodologies.

Satisfaction of Control Objectives by Control Processes 543

A recent survey on compliance checking [19] classifies various proposals either de-
sign time or execution time or audit time compliance checking. It’s easy to see that our
proposal can be attributed to the first class, i.e., design time compliance checking. In-
deed, we reason on compliance by analysing business process structure, CO model, and
process-to-objective assignment. There have been proposed other design time compli-
ance checking methodologies.

A logical language PENELOPE proposed in [11] makes use of temporal deontic
assignments from compliance requirements (obligations and permissions) to create state
space. The latter is refined than in control flow. In contrast to [11], we do not consider
workflow but rather its structural complexity, i.e., AND/OR decomposition.

A range of various model-driven proposals for compliance analysis were proposed,
for example, in [18] (TROPOS [1]), [21] (pi-calculus and temporal logic), [22] (De-
ontic logic), [10] (REALM framework [9]). The idea of all these proposals is that re-
quirements are modelled in the first turn either by means of logical prepositions or goal
model, and then a workflow model is derived from requirements model. Thus, the de-
rived business process should be compliant to requirement model by design.

Schmidt et al. [27] designed a compliance ontology w.r.t. regulations. The compli-
ance checking is based on verification of instantiated classes of compliance ontology
against process ontology. This automatic procedure could be used in ours at the stage
of process-to-objective assignment which we assume to be a human-related task. Sim-
ilar approach was proposed in [20], where semantic-based architecture for compliance
checking was sketched. The difference is that compliance ontology is called semantic
policy which is assumed to be enforced against business process semantic. The core
policy ontology was designed as well.

The notion of compliance pattern (i.e., commonly occurring business process model
which is proven to be compliant to some requirements) was introduced in [8]. Com-
pliance patterns are used for compliance violation detection and also provide heuristic
guidance to resolve non-compliance by modification of the business process.

An attempt to design a formal framework for business process compliance is pre-
sented in [23]. Basically, the framework relies on propositional logic to model risks,
controls, business process activities.

A methodology that refines regulatory requirements to control activities according
to risks (as in the current paper) was proposed in [26], [12]. After that, controls that
is supposed to verify the compliance is encoded into prepositions of Formal Contract
Language [13, 14].

7 Conclusion and Further Work

In this paper, we presented a methodology of design-time compliance checking between
regulations and a control process. Our methodology is based on the notion of objective
model which is derived from regulations and refined into simple instructions that can
be easily implemented into small functions and procedures and later organized into a
control process. The correctness of implementation can be checked by the algorithms
presented in this paper. Namely, the proposed algorithms (1) verify the satisfaction of
the root objective, (2) identify which subprocess contributes to satisfaction of which
COs, (3) means to detect the source of incompliance.

544 D. Marino et al.

Currently, we are working on the model of compliance of a controlled process that is
process interwoven with a control process considered in the current paper. As the future
work, we would like to develop an automated procedures for process-to-objective as-
signment which for now we assume to be performed manually by a human. Next, we are
going investigate runtime compliance, i.e., compliance of business process execution
traces to objective model. This will allow to include temporal COs into considerations
and thus to extend the range of applicability of our methodology. Finally, we plan to
introduce a notion of compliance to some extend in our methodology. Namely, we are
working currently on the notion of key indicators which are metrics that are specific to
business processes and so avoid one persistent metrics-related problem.

References

[1] Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A.: TROPOS: An agent-
oriented software development methodology. Autonomous Agents and Multi-Agent Sys-
tems 8(3), 203–236 (2004)

[2] Curbera, F., Doganata, Y., Martens, A., Mukhi, N.K., Slominski, A.: Business provenance
— a technology to increase traceability of end-to-end operations. In: Meersman, R., Tari,
Z. (eds.) OTM 2008, Part II. LNCS, vol. 5332, pp. 100–119. Springer, Heidelberg (2008)

[3] DSRL. File f circular no. 5/san 30 1 2004 (2009),
http://www.sanita.regione.lombardia.it/circolari/04_05san.
pdf

[4] DSRL. File f note 27.3.2008 h1.2008.0012810 (2009),
http://www.sanita.regione.lombardia.it/circolari/nota2008_
12810.pdf

[5] DSRL. File f note 30.11.2007 h1.2007.0050480 (2009),
http://www.sanita.regione.lombardia.it/circolari/nota2007_
50480.pdf

[6] Il Dirigente del Sanita Regione Lombardia. File f circular no. 45/san 23 12 2004 (2009),
http://www.sanita.regione.lombardia.it/circolari/04_45san.
pdf

[7] Il Dirigente del Sanita Regione Lombardia (DSRL). File f note 04.12.2008
h1.2008.0044229 (2009), http://www.sanita.regione.lombardia.it/
circolari/nota2008_44229.pdf

[8] Ghose, A., Koliadis, G.: Auditing business process compliance. In: Krämer, B.J., Lin, K.-J.,
Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 169–180. Springer, Heidelberg
(2007)

[9] Giblin, C., Liu, A.Y., Müller, S., Pfitzmann, B., Zhou, X.: Regulations expressed as logical
models (realm). In: JURIX 2005, pp. 37–48. IOS Press, Amsterdam (2005)

[10] Giblin, C., Müller, S., Pfitzmann, B.: From regulatory policies to event monitoring rules:
Towards model-driven compliance automation. Technical Report RZ 3662, IBM Research
(2006)

[11] Goedertier, S., Vanthienen, J.: Designing compliant business processes with obligations and
permissions. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006. LNCS, vol. 4103, pp.
5–14. Springer, Heidelberg (2006)

[12] Governatori, G., Hoffmann, J., Sadiq, S., Weber, I.: Detecting regulatory compliance for
business process models through semantic annotations. In: 4th International Workshop on
Business Process Design (2008)

http://www.sanita.regione.lombardia.it/circolari/04_05san.pdf
http://www.sanita.regione.lombardia.it/circolari/04_05san.pdf
http://www.sanita.regione.lombardia.it/circolari/nota2008_12810.pdf
http://www.sanita.regione.lombardia.it/circolari/nota2008_12810.pdf
http://www.sanita.regione.lombardia.it/circolari/nota2007_50480.pdf
http://www.sanita.regione.lombardia.it/circolari/nota2007_50480.pdf
http://www.sanita.regione.lombardia.it/circolari/04_45san.pdf
http://www.sanita.regione.lombardia.it/circolari/04_45san.pdf
http://www.sanita.regione.lombardia.it/circolari/nota2008_44229.pdf
http://www.sanita.regione.lombardia.it/circolari/nota2008_44229.pdf

Satisfaction of Control Objectives by Control Processes 545

[13] Governatori, G., Milosevic, Z.: A formal analysis of a business contract language. Interna-
tional Journal of Cooperative Information Systems 15(4), 659–685 (2006)

[14] Governatori, G., Rotolo, A.: An algorithm for business process compliance. In: Francesconi,
E., Sartor, G., Tiscornia, D. (eds.) JURIX. Frontiers in Artificial Intelligence and Applica-
tions, vol. 189, pp. 186–191. IOS Press, Amsterdam (2008)

[15] ISACA. Cobit (2008), http://www.isaca.org/cobit/
[16] ISO/IEC. ISO/IEC 27001:2005: Information security management systems (2005)
[17] ISO/IEC. ISO/IEC 15408: Common criteria for information technology security evaluation

(2009), http://www.commoncriteriaportal.org/thecc.html
[18] Kazhamiakin, R., Pistore, M., Roveri, M.: A framework for integrating business processes

and business requirements. In: EDOC 2004, pp. 9–20. IEEE, Los Alamitos (2004)
[19] Kharbili, M.E., de Medeiros, A.K.A., Stein, S., van der Aalst, W.M.P.: Business process

compliance checking: Current state and future challenges. In: MobIS 2008. LNI, vol. 141,
pp. 107–113 (2008)

[20] Kharbili, M.E., Stein, S.: Policy-based semantic compliance checking for business process
management. In: Loos, P., Nuttgens, M., Turowski, K., Werth, D. (eds.) MobIS Workshops.
CEUR Workshop Proceedings, vol. 420, pp. 178–192. CEUR-WS.org (2008)

[21] Liu, Y., Müller, S., Xu, K.: A static compliance-checking framework for business process
models. IBM Syst. J. 46(2), 335–361 (2007)

[22] Namiri, K., Stojanovic, N.: A model-driven approach for internal controls compliance in
business processes. In: Hepp, M., Hinkelmann, K., Karagiannis, D., Klein, R., Stojanovic,
N. (eds.) SBPM. CEUR Workshop Proceedings, vol. 251 (2007)

[23] Namiri, K., Stojanovic, N.: Towards a formal framework for business process compliance.
In: Proceedings of Multikonferenz Wirtschaftsinformatik (MKWI 2008). GITO-Verlag,
Berlin (2008)

[24] Office of Governance Commerce. IT infrastructure library (2009),
http://www.itil.org/en/

[25] The President of the Italian Republic. Personal data protection code: Italian legislative de-
cree no. 196 dated 30 june 2003 (2009),
http://www.garanteprivacy.it/garante/document?ID=1219452

[26] Sadiq, S.W., Governatori, G., Namiri, K.: Modeling control objectives for business process
compliance. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714,
pp. 149–164. Springer, Heidelberg (2007)

[27] Schmidt, R., Bartsch, C., Oberhauser, R.: Ontology-based representation of compliance re-
quirements for service processes. In: ESWC 2007. CEUR Workshop Proceedings, vol. 251
(2007)

http://www.isaca.org/cobit/
http://www.commoncriteriaportal.org/thecc.html
http://www.itil.org/en/
http://www.garanteprivacy.it/garante/document?ID=1219452

Effective and Flexible NFP-Based Ranking
of Web Services

Matteo Palmonari, Marco Comerio, and Flavio De Paoli

University of Milano - Bicocca, viale Sarca 336, 20126 Milano, Italy
{palmonari,comerio,depaoli}@disco.unimib.it

Abstract. Service discovery is a key activity to actually identify the
Web services (WSs) to be invoked and composed. Since it is likely that
more than one service fulfill a set of user requirements, some ranking
mechanisms based on non-functional properties (NFPs) are needed to
support automatic or semi-automatic selection.

This paper introduces an approach to NFP-based ranking of WSs pro-
viding support for semantic mediation, consideration of expressive NFP
descriptions both on provider and client side, and novel matching func-
tions for handling either quantitative or qualitative NFPs. The approach
has been implemented in a ranker that integrates reasoning techniques
with algorithmic ones in order to overcome current and intrinsic limita-
tions of semantic Web technologies and to provide algorithmic techniques
with more flexibility. Moreover, to the best of our knowledge, this paper
presents the first experimental results related to NFP-based ranking of
WSs considering a significant number of expressive NFP descriptions,
showing the effectiveness of the approach.

1 Introduction

Web Service (WS) discovery is a process that consists in the identification of the
services that fulfill a set of requirements given by a user. Since more than one
service is likely to fulfill the functional requirements, some ranking mechanisms
are needed in order to provide support for the automatic or semi-automatic
selection of a restricted number of services (usually one) among the discovered
ones.

According to a gross-grain definition, the discovery process consists in first
locating a number of WSs that meets certain functional criteria, and then iden-
tifying the services, among the discovered ones, that better fulfill a set of non-
functional properties (NFPs) requested by actual users. The latter activity is
called WS ranking and it is based on the computing of a degree of match be-
tween a set of requested NFPs and a set of NFPs offered by the discovered WSs.
NFPs cover Quality of Service (QoS) aspects, but also other business-related
properties, such as pricing and insurance, and properties not directly related to
the service functionalities, such as security and trust.

The enrichment of WS descriptions based on WSDL by means of semantic
annotation languages and ontologies (OWL-S, WSMO, SAWSDL) has been pro-
posed to improve automation and precision of WS discovery and composition.

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 546–560, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Effective and Flexible NFP-Based Ranking of Web Services 547

Semantic annotations can be likewise exploited to support the description of
NFPs and to improve ranking algorithms, as shown also by recent works such as
[3,8,7,9,11,14]. Automated reasoning techniques based on semantic annotations
are particularly suitable to mediate between different terminologies and data
models considering the semantics of the terms used in the descriptions as de-
fined by means of logical axioms and rules (e.g., at class-level, by making explicit
that, in a given domain, the property BasePrice is equivalent to the property
ServicePrice, or, at instance-level, by making explicit that a fire insurance is
part of a blanket insurance). However, the crisp nature of matching-rules based
on logical reasoning conflicts with the need to support ranking algorithms with
more practical matching techniques; moreover, many reasoners show poor effec-
tiveness when dealing with non trivial numeric functions (e.g., weighted sums)
which are needed to manage more properties at the same time. As a consequence
logic-based and algorithmic techniques need to be combined to provide for an
effective and flexible approach to service ranking.

In this paper we present an effective and flexible approach to NFP-based
ranking of Semantic WSs, which is based on PCM-compliant NFP descriptions.
PCM (Policy Centered Meta-model) [6] is a meta-model that supports the de-
scription of the NFPs offered by a service, as well as requested by a user, by
means of NFP expressions; NFP offers and requests are aggregated in sets called
Policies to capture business scenarios by aggregating interdependent properties.
A purpose of the PCM is to act as an intermediate and integrating meta-model
that maps to significant subsets of popular languages (e.g., WSLA [10] and
WS-Policy [17]).

The NFP-based WS ranking consists of a four-phase process: a property
matching phase that identifies the NFPs in the offered policies that match
with the NFP in the requested policy; a local property evaluation phase
that computes a matching degree for each couple of matching NFPs; a global
policy evaluation phase that computes a global matching degree between the
requested policy and each offered policy; finally, services (and policies) are sorted
according to their global matching degrees during a policy ranking phase. The
ranking process has been tested by implementing the PoliMaR (Policy Match-
maker and Ranker) tool covering a significant set of NFP expressions for both
requested and offered NFPs. Experimental results demonstrate the feasibility
and the effectiveness of the approach.

The peculiar features of the proposed approach are the following:

– expressivity, by supporting rich descriptions of requested and offered NFPs
addressing qualitative properties by mean of logical expressions on ontology
values and quantitative properties by mean of expressions including ranges
and inequalities;

– generality, by allowing semantic-based mediation in the matching phase
with NFP descriptions based on multiple ontologies;

– extensibility, by supporting parametric property evaluation by customizing
functions associated with operators;

548 M. Palmonari, M. Comerio, and F. De Paoli

– flexibility, by allowing incomplete specifications (i.e., unspecified properties
and values in NFP requests and offers).

The paper is organized as follows: the problem of NFP-based WS ranking and
the issues related to the NFP representations expressiveness are discussed in
Section 2 through the introduction of a running example; Section 3 describes
the PCM features and the ranking problem; Section 4 presents the approach to
policy matchmaking and ranking; experimental results evaluating the scalability
of the approach are discussed in Section 5; finally, the comparison with related
works (Section 6) and concluding remarks (Section 7) end the paper.

2 Problem Context and Motivation

The problem of ranking a set of services can be defined as follows: given a set
of service descriptions S = {s1, ..., sn}, and a specification R of non-functional
requirements, define a sorting on S based on R. In this paper we assume that
a set of services, namely eligible services, are identified by a discovery engine
on the basis of their functional properties (FPs); the non-functional property
descriptions of the eligible services form the set S to be ranked.

As discussed in [6], the distinction between FP and NFP is often ambiguous
and no rules are available to qualify a property as FP or NFP. From our point of
view this is a consequence of the fact that functional or non-functional is not an
intrinsic qualification of a property, but it depends on the application domain
and context. For example, the service location could be classified as a FP for a
logistic service and as a NFP for a payment service. Moreover, from the requester
perspective, the classification of requested properties as FP or NFP might be of
little interest and counterintuitive. The requested properties represent the user
preferences and could be mandatory or optional. In this paper, we adopt the
proposal described in [1]. From the requester perspective, we considered hard
and soft constraints to distinguish between the properties that are specified as
mandatory or optional in a service request. From the provider perspective, we
consider FPs those properties of a service that strictly characterize the offered
functionality (e.g., service location for a shipment service) and NFPs those prop-
erties that do not affect or affect the offered functionality only marginally (e.g.,
service location for a payment service). Then, in order to support the matching
between requested and offered properties, FPs and NFPs are mapped with hard
and soft constraints respectively.

To illustrate the main aspects that need to be covered when dealing with NFP-
based ranking, let us consider a running example based on the discovery scenario
in the logistic domain presented in [1]. The scenario derives from an analysis of
the logistic operator domain conducted within the Networked Peers for Business
(NeP4B) project1 and has inspired one of the current discovery scenarios in the
Semantic Web Service Challange2. In this scenario, several logistic operators offer
1 http://www.dbgroup.unimo.it/nep4b
2 http://sws-challenge.org/wiki/index.php/Scenarios

Effective and Flexible NFP-Based Ranking of Web Services 549

one or more services (e.g., freight transport, warehousing) each one characterized
by offered NFPs. A set of relevant NFPs in this domain are: (i) payment method :
how the user can perform the payment; (ii) payment deadline: the maximum
number of days that the user can wait to perform the payment after the service
fulfilment; (iii) insurance: the type of compensation in case of failure applied to
the service; (iv) base price: the amount of money to be paid to get the service;
(v) hours to delivery: the number of hours required for the service fulfilment.

A freight transport service provider can specify the following NFP offered by
its service: ”I offer a service that performs freight transportation in 24-48 hours
with a base price equal to 100 Euros. I accept carriage paid payment within 45
days and I offer a blanket insurance on the transportation”.

Users in this context might want to formulate quite rich requests to identify
the best service according to their own stated criteria. An example of user re-
quest, written in natural language, is the following: ”I am interested in a service
to perform a freight transportation in one or two days with a price less than or
equal to 120 Euros. Moreover, I would like to use a service allowing, at least,
a 15-days postponed payment with carriage paid or carriage forward payment
method. Finally, I prefer a service offering a fire insurance or any insurance
type that includes it”.

A detailed discussion about the expressiveness of languages and models needed
to represent NFPs in order to support WS discovery can be found in our previous
work [6]. Here, we just observe that: NFPs may refer to either numerical values
(e.g., 120) or world objects (e.g., fire insurance); some values can be undefined in
the requests (e.g., in a lower bound expression such as price less than or equal to
120 Euros) or even in the offered NFPs (e.g., in a range expression such as 24-48
hours); a user expresses constraints on different NFPs at a same time and may
want to express preferences about what should be considered more important.

3 PCM-Compliant NFP Descriptions and Policy Ranking

The Policy Centered Meta-model (PCM) has been developed to address NFP
representation and service ranking. In the PCM, requested or offered NFPs are
grouped into policies; offered policies are associated with services and defined
by an applicability condition for the properties composing them. As a result,
the problem of ranking a set S of n WSs can be reformulated as the problem of
ranking a set P of k policies on the basis of a requested policy RP , with k ≥ n
since a service can be offered with more policies.

The PCM is defined by a language-independent conceptual syntax, whose
semantics is defined by an ontology. Two concrete syntaxes of the PCM are
provided in OWL and WSML. Since the implementation of the ranker presented
in the paper uses the WSML language, in the following we will use a WSML-
like notation with small variants to shorten the descriptions. In this paper we
provide for a brief description of the PCM by means of examples, focusing on
the elements that are more relevant in the ranking process. The reader can refer
to [6] for details and formal definitions.

550 M. Palmonari, M. Comerio, and F. De Paoli

The following is an example of a section of a service description in the context
of logistics operators.
� �

< ONTOLOGY HEADING: namespace declaration, ontology import...>

instance premiumPolicy memberOf pcm#Policy
pcm#ServiceReference hasValue
’’http://www.itis.disco.unimib.it/research/ontologies/WSSouthItalyOrdinaryTransport.wsml’’
pcm#hasCondition hasValue premiumCondition
pcm#hasNfp hasValue [off.BasePrice1 memberOf nfpo#BasePrice]
pcm#hasNfp hasValue [off.PaymentDeadline1 memberOf nfpo#PaymentDeadline]
pcm#hasNfp hasValue [off.HoursToDelivery1 memberOf nfpo#HoursToDelivery]
pcm#hasNfp hasValue [off.PaymentMethod1 memberOf nfpo#LogisticPaymentMethod]
pcm#hasNfp hasValue [off.Insurance1 memberOf nfpo#LogisticInsurance]
...

� �

The term instance introduces the name of the instance of the ontology, and
memberOf specifies the class it belongs to. The namespace pcm# is for the
PCM ontology and nfpo# for a domain-specific NFP ontology extending the
PCM3. A policy is identified by a URI and associated with one or more WSs
by ServiceReference. A PolicyCondition defines the requirements a client pro-
file should fulfill to select that policy (e.g., the premiumPolicy is for frequent
clients that subscribed for a significant number of shipments per years); NFPs
are represented in the PCM by PolicyNfps and are expressed in terms of, pos-
sibly external, ontologies (e.g., nfpo#BasePrice). A NFP is specified by means
of a NfpExpression that is characterized by a ConstraintOperator and by a set
of attributes that depends on the constraint operator type. Different examples,
referred to premiumPolicy, are synthetically represented on the right-hand side
of Figure 1.

To explicitly take into account the requestor perspective, PCM introduces the
concept of RequestedPolicy that is composed of Requests stating what values are
acceptable for a certain property, and expressing the relevance of each required
property. Requests are therefore defined extending PolicyNfps with the property
hasRelevance, whose range is a rational within [0..1]. The requests formulated
in the scenario in Section 2 are collected in the LOReqPolicy1 in the left-hand
side of Figure 1.

PCM makes distinction between qualitative and quantitative NFP expres-
sions. Qualitative expressions refer to objects (their values are instances of given
domain ontologies) and are further classified in SetExpressions and CustomEx-
pressions. Quantitative expressions assume numeric values, whose measurement
units is specified by a unit term; quantitative expressions are further classified
into SingleValueExpressions and RangeExpressions.

Figure 2 shows the properties that characterize each class of NFP expressions,
the respective ranges, and a set of built-in constraint operators, which are also
exploited by the ranker proposed in this paper (the set of operators is extensible
by mean of standard ontology import mechanisms). As for SetOperators, PCM

3 All ontologies are available on-line athttp://www.itis.disco.unimib.it/
research/ontologies

 http://www.itis.disco.unimib.it/research/ontologies
 http://www.itis.disco.unimib.it/research/ontologies

Effective and Flexible NFP-Based Ranking of Web Services 551

Fig. 1. The scenario revisited according to the PCM

introduces (i) the two standard logical operators all and exist with their logi-
cal meanings, and (ii) the operator include. Intuitively, a include-based request
(e.g., I need an insurance including fire insurance) asks for values that logically
include the selected values (e.g., a blanket insurance); logical inclusion is looked
up by exploring hierarchical properties of different nature (e.g., part-of, topolog-
ical inclusion). The set of CustomOperators allows domain experts to introduce
other operators to deal with object values. As an example, a request based on
semanticDistance operator may ask for values that are semantically close to the
specified one.

Fig. 2. Characterization of the four NFP Expression classes

552 M. Palmonari, M. Comerio, and F. De Paoli

As for quantitative expressions, PCM defines a set of operators that supports
the most common clauses for numeric values (e.g., inequalities and ranges). Be-
side the standard binary operator = (equal), and ternary operator interval that
fixes a minimum and a maximum value, new operators have been introduced to
increase expressiveness of inequalities. These operators are: (i) ≥↑ (greaterEqual)
to specify a lower bound, so that the highest possible value is better; (ii) ≥↓
(atLeast) to specify a lower bound, so that the lowest possible value is better;
(iii) ≤↓ (lessEqual) to specify an upper bound, so that the lowest possible value
is better; (iv) ≤↑ (atMost) to specify an upper bound, so that the highest possi-
ble value is better. Observe that binary operators are followed by one parameter
and ternary operators by two parameters.

The formal discussion of the relationships between the PCM and other well-
recognized languages such as WS-Policy and WSLA is out of the scope of this
paper. However, we can show that significant sections of WSLA and WS-Policy
descriptions, and in particular, the significant subset for WS ranking, are PCM
compliant, making our ranking techniques applicable to these languages.

WSLA is used by service providers and service consumers to define service
performance characteristics. The commitment to maintain a particular value for
a NFP (i.e., SLAParameter) is defined in the Service Definition section of a
WSLA specification through the Service Level Objectives. A Service Level Ob-
jective is defined by an Expression based on quantification-free first order logic;
the language includes ground predicates and logic operators, and easily maps
to predicate logic. The simplest form of a logic expression is a plain predicate
that can be mapped to a PolicyNfp characterized by an expression where the
constraint operator and the parameter represent the Type (e.g., =, ≤) and the
Value (e.g., numerical values) of the WSLA expression, respectively. Complex
WSLA expressions are mapped as follows: implications are deleted and the re-
sulting WSLA expression is put into a disjunctive normal form (a disjunction of
conjunctions of ground predicates) exploiting standard techniques for predicate
logic; each WSLA conjunction C is then represented by a Policy P composed
of PolicyNfps representing the WSLA predicates in C; finally, for all the WSLA
conjunctions C containing a predicate occurring in the head of an implication,
an applicability condition representing the body of the implication is created for
the Policy representing C.

WS-Policy is the most cited standard for enriching WSDL files with NFP
specifications. A WS-Policy specification is an unordered collection of zero or
more policy alternatives defined as assertions stating behaviors or requirements
or conditions for an interaction. A WS-Policy alternative can be mapped to
a Policy. WS-Policy assertions can be mapped to a PolicyNfp specification.
“And” aggregations of WS-Policy assertions can be mapped to sets of Poli-
cyNfps in a Policy. “Or” aggregations of WS-Policy assertions can be mapped
to multiple PolicyNfps. WS-Policy specifications of nested policies need more
articulated descriptions of ontology values (parameters) by means of CustomEx-
pressions, which is not straightforward but it is supported by the WSML/OWL
data-model.

Effective and Flexible NFP-Based Ranking of Web Services 553

4 Policy Matchmaking and WS Ranking: Combining
Semantics and Algorithms for Policy Evaluation

The WS ranking process is composed of four phases: (i) property matching
phase: for each Request, identify the set of PolicyNFPs to be evaluated; (ii) local
property evaluation phase: for each identified Request/PolicyNFP couple,
evaluate how the offered property satisfies the requested one - results are in
range [0, 1]; (iii) global policy evaluation phase: for each policy, evaluate the
results of the previous phase to compute a global satisfaction degree - results are
values in range [0, n]; (iv) policy ranking phase: policies are ranked according
to their global satisfaction degree.

The ranking process has been implemented in the PoliMaR tool. Figure 3
shows the components of the tool and their connection to external tools. As dis-
cussed above we assume that: (i) a number of PCM compliant policies are stored
into an ontology repository; (ii) the eligible services are used by the Ontology
Loader to make the reasoner load the knowledge needed to perform the ranking
process; (iii) if NFPs are specified according to another model, the PCM Wrapper
is used to transform the original descriptions into PCM-based descriptions.

The Matching Evaluator. The property matching phase is performed by
the matching evaluator. According to the approach based on decoupling the
matching phase from the evaluation phase, the matching evaluator has two goals:
(i) discover the PolicyNFPs that match against the Requests; and (ii) retrieve
all the data concerning these NFPs to support the other components in the
evaluation tasks.

A mediator-centric approach is used to achieve these goals, according to the
WSMO asset that exploits different kinds of mediators to solve semantic mis-
matches. In this case, the mediation is defined by logic programming rules. A
first set of rules mediates among the possibly different ontologies on which of-
fered and requested NFPs are based on. These rules retrieve a set of matching
couples exploiting subclass relations. The following example of matching rule

Fig. 3. The overall architecture of the PoliMaR tool

554 M. Palmonari, M. Comerio, and F. De Paoli

specifies that a request and an offer match if they belong to specific subclasses
of PolicyNfp.
� �

axiom BasePriceMatching
definedBy

matchCouple(?request,?nfp,baseprice) :−
(?request memberOf nfpo#BasePriceRequest) and
(?nfp memberOf nfpo#BasePrice) or
(?nfp memberOf nfpo#ServicePrice)

� �

A second set of rules is defined to retrieve the data related to the set of
matched NFPs. The reasoner exploits standard mechanisms of variable bind-
ing to explore the PCM-compliant ontologies and retrieve the information for
each NFP. Moreover, retrieval of such data is not straightforward because non
monotonic rules are exploited to put results in a kind of normal form (e.g.,
some quantitative properties might be defined through binary operators in some
policies and ternary operators in other policies). Formally, the results of the
matching evaluator are provided by executing a query and consist in a table
with all the relevant information necessary for the next phases. An example is
sketched in Table 1.

The Local Evaluator. The local evaluator takes a result table, like the one
shown in Table 1, as input. We call matching couple every couple <Request,
PolicyNfp> in the table. The output of the local evaluator is a local satisfaction
degree (LD for short) for each couple. A LD is expressed by a value in the range
[0..1], where 0 means “no match” and 1 means “exact match”. In our approach,
the matching degree for each matching couple is calculated by a function that
takes the form e (copr, copo, norm (vr) , norm (vo)), where copr and copo are the
requested and offered constraint operators; norm (vr) and norm (vo) are the re-
quested and offered normalized values (i.e., values after a unit conversion when
necessary). Observe that values of qualitative properties are objects in the on-
tology, which means that a default object unit can be considered; moreover, a
qualitative property can refer to a set of objects (a property can assume multiple
values).

The set of local evaluation functions is stored in a Library Functions. Links
between functions and constraint operators are defined by a configuration file to
supply a flexible and extensible solution. This is a crucial advantage to address

Table 1. A fragment of the table displaying the matching phase results

Policy/Req.Policy NFP Operator MinParameter MaxParameter Unit Relev.

LOReqPolicy1 req.BasePrice lessEqual 120 null euro 0.8
premiumPolicy off.BasePrice1 equal 100 null euro -

goldPolicy off.BasePrice2 interval 80 150 euro -
... -
...

LOReqPolicy1 req.Insurance include fireInsurance null null 0.6
premiumPolicy off.Insurance1 all blanketInsurance null null -

silverPolicy off.Insurance3 all fireInsurance null null -
... -

Effective and Flexible NFP-Based Ranking of Web Services 555

the development of effective tools. In the current implementation, a number of
functions for matching qualitative and quantitative properties have been devel-
oped; the configuration file allows for links to new operators or to new tailored
functions. Qualitative and quantitative NFPs need to be handled in a different
way. The quantitative local evaluation functions currently in use have been in-
troduced in [4]. As for qualitative local evaluation functions, the reasoner needs
to be recalled to exploit inference mechanisms based on the NFP domain on-
tologies in use. In particular, we considered the all operator in the PolicyNfps
and the operators all, exist and include in the Requests.

The operators all and exist have standard logical meaning; basic inferences
based on identities need to be considered for both the operators (e.g., when a
service ships to ”Italy” and the request ask for a service shipping to ”Italia”).
Let V be the set of requested values and O the set of offered values. For the
Requests based on the all operator, we evaluate a LD d within the range [0..1].
If V ⊆ O, then d = 1; If V ∩O = ∅, then d = 0. If V �⊆ O and V ∩O �= ∅, then
d = |V ∩ O|/|V |. For the Requests based on the exist operator, the LD d can
assume the value 0 or 1. If V ∩O = ∅, then d = 0. If V ∩O �= ∅, then d = 1.

Requests specified through an include operator need to consider specific de-
pendencies among the values specified in the PolicyNfps. In the running example
discussed in Section 2 the insurance ontology defines the fireInsurance as a partOf
of the blanketInsurance. Therefore, policies offering a blanketInsurance satisfies
requests asking for services that offer fireInsurance. A mediator-centric approach
is used. In the rule ontology, where mediation rules are stored, the axiom for the
example states that the partOf relation among insurance is to be considered as
an inclusion relation (see the listing below).
� �

axiom insuranceInclusion
definedBy

include(?X,?Y) :−
(?X memberOf ins#Insurance) and (?Y memberOf ins#Insurance) and ins#partOf(?X,?Y)

� �

The local evaluation function for inclusion operators expands the set O of of-
fered values according to the transitive closure for the inclusion relations involv-
ing offered and requested values. Then, LD is calculated as for the all operator.

The Global Evaluator. The global evaluator takes the set of LDs evaluated
for each matching couple as input, and provides a global satisfaction degree (GD
for short) as output. GD provides information about how much a Policy matches
a RequestedPolicy and it is computed by taking into account the relevance as-
sociated with each Request in the RequestedPolicy. Different global evaluation
functions can be defined and stored into the Library Functions. A possible func-
tion is the weighted sum of the LDs, where weights are the relevance values of
the corresponding Requests. The global evaluator ranks the Policies according
to their GD.

Observe that our approach is tolerant w.r.t. the incompleteness of the NFP
specifications (i.e., Requests whose matching PolicyNfps are not specified in a
Policy). In fact, the more Requests in the RequestedPolicy match with some

556 M. Palmonari, M. Comerio, and F. De Paoli

PolicyNfps for a given Policy, the greater the GD is; however, the evaluation
does not crash when a Request in the RequestedPolicy does not match with any
PolicyNfps of a given Policy.

5 Experimental Results

The current version of the PoliMaR tool has been implemented using Java JDK
1.6.0 update 11 for Linux 64 bit and provides all the components described in
Figure 3 except for the PCM Wrapper. All the ontologies are represented in the
WSML language. The ranker uses KAON2 (v2007-06-11) as ontology repository
and reasoner and the Wsml2Reasoner API (v0.6.1) to communicate with the
reasoner. PoliMaR is now part of the GLUE2 discovery engine [2] available at
http://glue2.sourceforge.net.

The current implementation of PoliMaR has been tested to evaluate the scal-
ability and the efficiency of the matching and evaluation components. The eval-
uation activity has been performed using an Intel Core2 Q6700 2.66 Ghz with
2GB RAM and Linux kernel 2.6.27 64 bits. Due to the lack of large and accessi-
ble sets of NFP descriptions to derive PCM-based descriptions, the experiment
has been carried out starting from a set of randomly generated descriptions that
consists of about 500 policies. The generated test set is a combination of the
properties discussed in Section 2 to form policies that are described according to
the NFPO ontology; constraint operators and parameters are selected randomly
according to the ranges specified in the NFPO.

The RequestedPolicy (TRP) represented in Figure 1 was used as testbed. It is
composed of three quantitative requests r#1, r#2, and r#3; and two qualitative
requests r#4, and r#5. Observe that r#4 and r#5 are based on two different
constraint operators, namely all and include, that require different reasoning
tasks for the evaluation. The performed tests were:

– TEST 1: Measurement of the overall execution time in the cases of single
and multiple file storage;

– TEST 2: Analysis of the execution-time distribution between reasoning and
algorithmic computation for single file storage;

– TEST 3: Analysis of the execution-time distribution among the ranking
phases (matching, local and global evaluation) for single file storage;

– TEST 4: Measurement and comparison of the overall execution time with
increasing complexity in the requested policy for single file storage.

TEST 1 (Figure 4a) highlights that: (i) the multiple file approach is efficient
only for small numbers of policies. Moreover, the KAON2 reasoner was able to
manage at most 136 WSML files containing a policy each; (ii) the required time
increases exponentially for the multiple-file approach and polynomially for the
single-file approach; (iii) there is an amount of time (approximately 5 seconds)
that is independent of the input. It represents the time required to invoke the
reasoner through the WSML2Reasoner API. The conclusion that can be driven
from this first set of tests is that semantic tools available today make the single

Effective and Flexible NFP-Based Ranking of Web Services 557

Fig. 4. Evaluation Tests

file approach compulsory. Ongoing research on large scale distributed reasoning
might overcome this limit in the future.

TEST 2 (Figure 4b) highlights that the bottleneck for our evaluation is rep-
resented by the reasoner: the time required for the evaluation of quantitative
NFPs and the global evaluation phase is very short.

TEST 3 (Figure 4c) highlights that: (i) the time required for the execution of
the global evaluation phase does not influence significantly the evaluation time;
(ii) the time used for the local evaluation phase is twice as long as the time for
the matching phase.

TEST 4 has been executed considering six combinations of the single requests
forming the TRP with increasing degrees of complexity. The first three requested
policies were composed of quantitative requests only: RP1 was composed of r#1
(written RP1 = r#1); RP2 = RP1 + r#2; RP3 = RP2 + r#3. The next three
requested policies considered also qualitative requests: RP4 = RP3 + r#4 (the
all constraint operator is used); RP5 = RP3 + r#5 (the include constraint
operator is used); RP6 = RP3 + r#4 + r#5 (both all and include are used).

The results of TEST 4 (Figure4d) highlight that: (i) the number of quantita-
tive NFP constraints marginally affects the evaluation time (RP1, RP2 and RP3
show similar evaluation times); (ii) the evaluation of a qualitative NFP expressed
with the all operator requires more time than one expressed with the include
operator. Considering a Policy Repository with 500 policies, the introduction of
an all constraint determines an increment of 12 seconds, instead the inclusion
of an include constraint determines an increment of 4 seconds.

558 M. Palmonari, M. Comerio, and F. De Paoli

6 Related Work

Many “non-semantic” approaches to NFP specification and monitoring exist. The
most relevant among them are WSLA [10] and WS-Policy [17]. The mappings be-
tween these languages and the PCM have been discussed in Section 3. Current
standards for semantic descriptions of services (e.g., WSMO [5] and OWL-S [15])
cover only marginally the specification of NFPs. They basically adopt attribute-
value descriptions. A comparison of PCM with the several proposals
(e.g., [8,11,9,14]) that try to overcome this current limitations, was discussed in
[6]. Relevance and applicability conditions are distinctive characteristics of the
PCM. The definition of combined offers can also be considered a distinguishing
characteristic of PCM, since only [11] and [9] provide limited support by allowing
association of more QoS offers with an OWL-S service profile.

Considering the classification proposed in [19], our approach to NFP-based
ranking of WSs can be classified as a policy-based solution for NFP descrip-
tions of Web Services that allows for ontology-based preference modeling. Similar
approaches are presented in [7,3,13,16,18,12,8]

An hybrid architecture for WS selection based on DL reasoners and Constraint
Programming techniques is proposed in [7]. An extension of WS-Policy with on-
tological concepts to enable QoS-based semantic policy matching is presented in
[3]. Approaches for the WS selection based on the normalization of QoS values
are described in [13,16]. A NFP-based service selection approach that modifies
the Logic Scoring Preference (LSP) method with Ordered Weighted Averag-
ing (OWA) operators is proposed in [18]. A framework for WS selection that
combines declarative logic-based matching rules with optimization methods is
described in [12]. A WSMO-based hybrid solution to WS ranking based on the
usage of axioms for requested and offered NFPs is defined in [8].

The comparison with these approaches is carried out focusing on the features
described in Section 1: (i) expressive NFP descriptions ; (ii) semantic-based me-
diation; (iii) parametric NFP evaluation; (iv) tolerance to unspecified NFP ; (v)
experimental results. Table 2 reports the results of the comparison (yes/no is
used to show whether the approach achieves the requirement, and low, average,
high to indicate at what level the approach reaches the requirement). The result
of the comparison is that, among the considered approaches, only [12] presents
an evaluation activity executed on a large number of policies. Test activities

Table 2. Comparison of NFP-based Web service ranking approaches

Expr. Desc. Mediation Param. Eval. Unspec. NFP Experiment
Garcia et al. 2007 [7] low no no no no
Chaari et al. 2008 [3] low no no no no
Liu et al. 2004 [13] low no no yes low
Wang et al. 2006 [16] low no no yes low
Yu et al. 2008 [18] low no no yes low
Lamparter et al. 2007 [12] low yes no yes high
Garcia et al. 2008 [8] high yes yes no low
Our Approach yes yes yes high high

Effective and Flexible NFP-Based Ranking of Web Services 559

demonstrates that the semantic service selection described in [12] is more effi-
cient. However, that approach is based on simpler NFP descriptions. Only the
equal operator is allowed in the definition of qualitative NFP and quantitative
NFPs defined as range of values are not considered. Moreover, the approach is
less extensible and flexible since the algorithms are hard-coded.

The consideration of high-expressive NFP descriptions and the definition of
parametric NFP evaluations are provided only by [8]. The proposed exploita-
tion of axioms support complex and conditioned NFP definitions (e.g., if the
client is older than 60 or younger than 10 years old the invocation price is lower
than 10 euro). Our proposal differs for four different aspects. First, we support
assertions about properties with undefined values by specifying them with a
range of possible guaranteed values. This supports the evaluation of offers with
some unspecified values. Second, we decouple the evaluation of policy/request
matching and applicability conditions. This supports information retrieval with-
out forcing the requester to know and specify all the information required to
evaluate the applicability conditions. In case of incomplete requests, the user is
involved to evaluate the actual applicability conditions. Third, our descriptions
can be obtained by wrapping existing specifications defined in WSLA and WS-
Policy. Fourth, our approach has been tested against a significant set of NFP
descriptions.

7 Concluding Remarks

This paper represents an effort toward the development of feasible and practi-
cal ranking tools. The proposed solution overcomes some limits of the current
approaches by combining high expressivity in NFP descriptions with a rich and
extensible set of operators and evaluation functions. Experimental results show
the effectiveness of the approach when dealing with a significant number of pol-
icy specifications, even if some desirable improvements emerged as necessary to
reach high efficiency and increase performance.

Currently, our approach assumes the availability of PCM-based descriptions
but we are working to fill these limitations by developing a wrapper to retrieve
data from heterogeneous service descriptions defined using different languages
and formats (e.g., WSLA and WS-Policy, but also RDF or generic XML files) and
use them to define PCM-based Policies to be processed by PoliMaR. Moreover,
our current research focuses on performance improvements by means of caching
strategies for qualitative property evaluation. Future work will deal with the
development of tools to support users in writing NFP descriptions and evaluation
functions.

References

1. Carenini, A., Cerizza, D., Comerio, M., Della Valle, E., De Paoli, F., Maurino, A.,
Palmonari, M., Sassi, M., Turati, A.: Semantic web service discovery and selection:
a test bed scenario. In: proc of the Int. Workshop on Evaluation of Ontology-based
tools and the Semantic Web Service Challenge (EON&SWS-Challenge) (2008)

560 M. Palmonari, M. Comerio, and F. De Paoli

2. Carenini, A., Cerizza, D., Comerio, M., Della Valle, E., De Paoli, F., Maurino,
A., Palmonari, M., Turati, A.: Glue2: a web service discovery engine with non-
functional properties. In: Proc. of the Eur. Conf. on Web Services, ECOWS (2008)

3. Chaari, S., Badr, Y., Biennier, F.: Enhancing web service selection by qos-based
ontology and ws-policy. In: Proc. of the Symp. on Applied computing, SAC (2008)

4. Comerio, M., De Paoli, F., Maurino, A., Palmonari, M.: Nfp-aware semantic web
services selection. In: Proc. of the International Enterprise Distributed Object
Computing Conference (EDOC), Annapolis, USA, pp. 484–492 (2007)

5. de Bruijn, J., Lausen, H., Polleres, A., Fensel, D.: The web service modeling lan-
guage: An overview. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011,
pp. 590–604. Springer, Heidelberg (2006)

6. De Paoli, F., Palmonari, M., Comerio, M., Maurino, A.: A Meta-Model for Non-
Functional Property Descriptions of Web Services. In: Proc. of the Int. Conference
on Web Services (ICWS), Beijing, China (2008)

7. Garćıa, J.M., Ruiz, D., Ruiz-Cortés, A., Mart́ın-Dı́az, O., Resinas, M.: An hybrid,
qos-aware discovery of semantic web services using constraint programming. In:
Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp.
69–80. Springer, Heidelberg (2007)

8. Garcia, J.M., Toma, I., Ruiz, D., Ruiz-Cortes, A.: A service ranker based on logic
rules evaluation and constraint programming. In: Proc. of the Non Functional
Properties and Service Level Agreements in SOC Workshop, NFPSLASOC (2008)

9. Giallonardo, E., Zimeo, E.: More semantics in qos matching. In: Proc. of Int. Conf.
on Service-Oriented Computing and Application, SOCA (2007)

10. Keller, L.H., The, A.: wsla framework: Specifying and monitoring service level
agreements for web services. J. Netw. Syst. Manage. 11(1), 57–81 (2003)

11. Kritikos, K., Plexousakis, D.: Semantic qos metric matching. In: Proc. of the Eur.
Conf. on Web Services (ECOWS), pp. 265–274 (2006)

12. Lamparter, S., Ankolekar, A., Studer, R., Grimm, S.: Preference-based selection of
highly configurable web services. In: Proc. of the Int. Conf. on World Wide Web
(WWW), pp. 1013–1022 (2007)

13. Liu, Y., Ngu, A.H., Zeng, L.Z.: Qos computation and policing in dynamic web
service selection. In: Proc. of the Int. World Wide Web conference on Alternate
track papers and posters (WWW-Alt), New York, NY, USA (2004)

14. Maximilien, E., Singh, M.P.: A framework and ontology for dynamic web services
selection. IEEE Internet Computing 08(5), 84–93 (2004)

15. OWL-S. Semantic Markup for Web Services (2003),
http://www.daml.org/services/owl-s/1.0/owl-s.html

16. Wang, X., Vitvar, T., Kerrigan, M., Toma, I.: A qos-aware selection model for
semantic web services. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS,
vol. 4294, pp. 390–401. Springer, Heidelberg (2006)

17. Ws-Policy. Web Service Policy 1.2 - Framework (2006),
http://www.w3.org/Submission/2006/SUBM-WS-Policy-20060425/

18. Yu, H.Q., Reiff-Marganiec, S.: A method for automated web service selection. In:
Proc. of the Congress on Services (SERVICES), pp. 513–520 (2008)

19. Yu, H.Q., Reiff-Marganiec, S.: Non-functional property based service selection: A
survey and classification of approaches. In: Proc. of the Non Functional Properties
and Service Level Agreements in SOC Workshop, NFPSLASOC (2008)

http://www.daml.org/services/owl-s/1.0/owl-s.html
http://www.w3.org/Submission/2006/SUBM-WS-Policy-20060425/

Combining Quality of Service and Social
Information for Ranking Services

Qinyi Wu1, Arun Iyengar2, Revathi Subramanian2, Isabelle Rouvellou2,
Ignacio Silva-Lepe2, and Thomas Mikalsen2

1 College of Computing, Georgia Institute of Technology
801 Atlantic Drive, Atlanta, GA 30332, USA

qxw@cc.gatech.edu
2 IBM T.J. Watson Research Center

19 Skyline Drive, Hawthorne, NY 10532, USA
{aruni,revathi,rouvellou,isilval,tommi}@us.ibm.com

Abstract. In service-oriented computing, multiple services often exist
to perform similar functions. In these situations, it is essential to have
good ways for qualitatively ranking the services. In this paper, we present
a new ranking method, ServiceRank, which considers quality of service
aspects (such as response time and availability) as well as social perspec-
tives of services (such as how they invoke each other via service compo-
sition). With this new ranking method, a service which provides good
quality of service and is invoked more frequently by others is more trusted
by the community and will be assigned a higher rank. ServiceRank has
been implemented on SOAlive, a platform for creating and managing ser-
vices and situational applications. We present experimental results which
show noticeable differences between the quality of service of commonly
used mapping services on the Web. We also demonstrate properties of
ServiceRank by simulated experiments and analyze its performance on
SOAlive.

Keywords: Cloud computing, Quality of service, Service ranking.

1 Introduction

Cloud computing is viewed as a major logical step in the evolution of the Internet
as a source of services. With many big companies now offering hosted infrastruc-
ture tools and services, more and more businesses are using cloud computing.
We envision an open, collaborative ecosystem where cloud services can be easily
advertised, discovered, composed and deployed. In cloud computing, there are
often software services that perform comparable functions. An example would
be mapping services such as those available from Google, Yahoo!, and Mapquest.
Users, service composers and service invokers alike are thus faced with the task
of picking from a set of comparable services that meet their needs. A random
selection may not be optimal for its targeted execution environment and may
incur inefficiencies and costs. In this situation, it will be very valuable if users

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 561–575, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

562 Q. Wu et al.

could be provided with some indication of the relative merits of comparable
services. We propose a new ranking method to address this need.

Our methodology takes into account how services invoke each other via ser-
vice composition. Service composition allows developers to quickly build new
applications using existing services that provide a subset of the function they
need. An address book service that takes as input an address and returns its
geocoding is an example of a primitive service that provides a specialized func-
tion. A FindRoute service that takes as input the geocoding of two addresses
and returns a route from the start address to the end address is a composite
service. Composite services can also become the building blocks of other com-
posite services. The ability to compose and deploy services quickly is a big draw
for existing and prospective cloud customers. We therefore imagine that cloud
environments shall abound in service networks, where services form client-server
relationships. Having good methodologies for evaluating and ranking services
will be critically important for selecting the right services in this environment.

Our service ranking methodology incorporates features from social computing.
Social ranking features are available throughout the Web. The social rank of an
item is the popularity of the item within a community of users. This community
can be virtual or real. Recommender systems such as those by Amazon or Netflix
collect reviews and ratings from users and record their preferences. They can then
use this information to recommend products to like-minded users (a virtual social
network of users). Social bookmarking sites such as del.icio.us allow an explicit
community of users to be formed via user networks. del.icio.us provides listings
of the most popular bookmarks at any point in time which can be tailored to
specific communities. There has also been past work in ranking and matching
web services [1][13]. Prior research deals with finding the services that best match
a required interface, support certain functions, or satisfy certain rules or policies.

In our approach to rank services in the cloud, we start out with the assumption
that some initial matchmaking has been performed to arrive at a set of compa-
rable services which then need to be ranked. We therefore, do not dwell on the
aspects of matching interfaces, service descriptions, semantics, etc. Instead, we
focus our energies on drawing the parallel between social networks and service
networks. In social networks, users rate services. In service networks, services
can rate other services based on how successful the service invocations were.
The high rank (or popularity) of a service is influenced not just by a large num-
ber of service clients, but also by the satisfaction expressed by these service
clients. A hike in the rank of a service S propagates favorably down the line to
other services that it (S) depends upon.

The contributions of this paper are as follows:

– We present a new algorithm, referred to as ServiceRank, for ranking services
which combines quality of service (QoS) aspects such as response time and
availability with social ranking aspects such as how frequently the service is
invoked by others.

– We show through experimental results that our algorithm is efficient and
consumes minimal overhead.

Combining Quality of Service and Social Information for Ranking Services 563

– We study the performance of different mapping services on the Web. Our
results indicate that the different services exhibit different behavior which is
a key reason that quantitative methods are needed to rank services.

In the rest of this paper, we first define the ServiceRank algorithm in Section 2.
We then describe an implementation of ServiceRank in Section 3. Experiments
are presented in Section 4. We describe related work in Section 5 and conclude
in Section 6.

2 ServiceRank

ServiceRank incorporates features from social computing by taking into account
how services invoke each other via service composition. Figure 1 shows an ex-
ample. A circle represents a service. A directional arrow represents a service
invoking another service to fulfill its functionality. We call the service sending a
request the client and the service processing the request the server. In this exam-
ple, services s1 and s2 are clients. s4 is their server. s3 dynamically invokes either
s4 or s5 to balance its load between these two services. s4 and s5 are grouped
into a category because they provide the same functionality. From ServiceRank’s
perspective, a request is regarded as a rating from the client to the server. The
client evaluates all the requests to compute a local rating of the server. Local
ratings are eventually aggregated to compute global ranks for all the services.
ServiceRank considers three factors for the aggregation. The first factor is how
many clients a service has. In this example, we expect that s4 gains a higher rank
than s5 because it has more client services. The second factor is how frequently
a service is invoked. If s3 sends more requests to s5 than s4, s3 will rank s5
higher under the condition that the quality of both services is similar. The third
factor considers QoS in terms of response time and availability. For example, if
s5 has better response time than s4, its rank should be raised even though it has
fewer clients. In the rest of this section, we explain how ServiceRank combines
all three factors to compute global ranks for services.

2.1 Local Ratings

A service network consists of a set of services S = s1, s2, ..., sn. If si sends a re-
quest to sj , si is a client of sj , and sj a server of si. We use Rij = {r1ij , r2ij , ..., rm

ij }

S1 S3

S4 S5

S2

category

Fig. 1. A service network example

564 Q. Wu et al.

to denote all the requests between si and sj and ru
ij the u-th request. In Ser-

viceRank, a request ru
ij is regarded as a rating from si to sj . If si processes it

successfully, si gives sj a positive rating: rate(ru
ij) = 1, otherwise rate(ru

ij) = −1.
si’s total rating to sj , denoted by lij , is the sum of the ratings of all the requests.

lij =
∑

u

rate(ru
ij) (1)

lij considers how frequently a service is invoked, and whether requests are suc-
cessfully processed. However, QoS is a critical factor in service composition as
well. It is important that ranks of services can be differentiated based on their
performance. The ServiceRank algorithm achieves this goal by comparing the
average response time of a service with that of other services with the same
functionality and using the comparison ratio to adjust local ratings. Next we
introduce a few more notations to explain how this is done.

For a service sj , its average response time, rtj , is computed by averaging the
response time of all the requests it receives. Let Bj denote its client set.

rtj =

∑
si∈Bj

∑
ru

ij∈Rij
response time(ru

ij)∑
si∈Bj

|Rij |
(2)

Services with the same functionality are grouped into a category, denoted by cu.
We use min crt

u to denote the minimal average response time of services in cu.
Services with no requests are not considered. Suppose sj belongs to cu, the total
rating from si to sj is adjusted as follows:

l̂ij = (
∑

u

rate(ru
ij)) ∗

min crt
u

rtj
(3)

In the above equation, if sj achieves the minimal average response time in cate-
gory cu, the total rating remains the same. Otherwise, the rating will be adjusted
by a constant less than 1. min crt

u

rtj
brings category knowledge into local ratings.

This unique feature differentiates ServiceRank from earlier ranking algorithms
in which local ratings are solely based on local knowledge [5][7]. With this new
feature, if a client sends the same amount of requests to two services in a cat-
egory, the client will give a higher rating to the one achieving better response
time. Note that there are other ways to adjusting local ratings with category
knowledge. For example, we can use the median of services’ average response
time and put penalties on local ratings only when a service performs below the
average. We do not discuss them further since they do not change the definition
of Equation 3 fundamentally. A concern in this approach is that a malicious ser-
vice can register itself in a category and respond back to its malicious partners
instantaneously. In doing so, an ordinary service is likely to be penalized due to
its “bad” performance. This problem can be avoided if we use average response
time from well-established services as an adjusting baseline.

Combining Quality of Service and Social Information for Ranking Services 565

2.2 Normalizing and Aggregating Local Ratings

In social ranking, we wish that the rank of a service is decided by both the
ranks and ratings of its clients. ServiceRank computes the global rank of sj by
aggregating the local ratings from its client, defined as

wj =
∑

si∈Bj

l̂ijwi (4)

It is important to normalize local ratings to remove noisy data and protect
the ranking system from a malicious party which creates bogus services and
commands them to send requests to a service to artificially raise its rank. Ser-
viceRank normalizes local ratings in two steps. First, it evaluates the eligibility
of a local rating lij by two criteria: 1) the total number of requests exceeds a
constant number T such that |Rij | > T ; 2) successful rate exceeds a thresh-
old β such that

|Rsucc
ij |

|Rij | > β, where Rsucc
ij denotes those requests that satisfy

rate(ru
ij) = 1. T and β are two configurable parameters. The two criteria ensure

that two services must establish a stable history before ServiceRank considers
its local rating. This helps remove noisy data such as ratings from testing re-
quests or ratings for unavailable services. In the second normalization step, only
eligible ratings are considered. A local rating from si to sj is divided by lij with
the total number of requests sent by si:

rij =
l̂ij∑
j l̂ij

(5)

With Equation 4, the global rank values of services w = (w1, w2, ..., wn) are the
entries of the principal left eigenvector of the normalized local rating matrix
R = (rij)ij , defined as follows:

wT = wTR (6)

The above definition does not consider prior knowledge of popular services. In
a service network, some services are known to be trustworthy and provide good
quality. Similar to the early approach [5], ServiceRank uses this knowledge to
address the problem of malicious collectives in which a group of services sends
requests to each other to gain high global ranking values. Let Q denote a set of
trusted services. We define the vector q to represent the pre-trusted rank values.
qi is assigned a positive value if si ∈ Q, otherwsie qi = 0. q satisfies

∑
i qi = 1.

The global rank values of services are now defined as:

wT = awTR + (1 − a)qT (7)

where R is the normalized local rating matrix and a a constant less than 1.
Equation 7 is a flow model [4]. It assumes that the sum of global ranks is a
constant, and the total rank value is distributed among services in a network. q
serves as a rank source. This model states that starting from a trusted source, the

566 Q. Wu et al.

global ranks are unlikely to be distributed to untrusted services if there are no
links from trusted services to untrusted services. Therefore, malicious collectives
can be prevented if we can effectively control the number of links between these
two groups.

3 System Prototype and Runtime Traffic Monitoring

ServiceRank has been implemented on SOAlive [12] which is an approach to pro-
vide smart middleware as a service. The SOAlive platform allows users to create,
deploy, and manage situational applications easily. Each application may include
one or more services which may be invoked at runtime, and which in turn, may
invoke other services. For our experiments, we used a SOAlive implementation
on WebSphere sMash [http://www.projectzero.org/]. WebSphere sMash is an
agile web development platform that provides a new programming model and
a runtime that promotes REST-centric application architectures. Logically, the
SOAlive platform can be broken down into i) system components; and ii) hosted
applications and their runtimes.

Figure 2 shows the key SOAlive components. The service catalog, the reposi-
tory, the application manager, the application installer, and the router work in
concert to provide a simplified development and deployment experience.

– The SOAlive repository allows modules, the building blocks for applica-
tions, to be uploaded and shared.

– The SOAlive Application Manager lets users create deployed applica-
tions from deployable modules in the repository.

– The SOAlive Application Installer is responsible for downloading, re-
solving, and installing user applications on worker nodes.

– The SOAlive catalog stores metadata about hosted artifacts, in addition
to storing metadata about external artifacts which are of interest to users of
the SOALive platform. It also acts as the hub for collaborative development.

– The SOAlive router is the first stop for any request coming into SOAlive
and provides a suitable extension point for monitoring functions.

SOAlive supports several different topologies ranging from the one in which all
the system components and managed applications run on a single node to a
truly distributed topology where individual system components are themselves
distributed across several nodes, and applications execute in one or more worker
nodes based on system policies. SOAlive defines several extension points as a
way to build upon its core functionality. One of these extension points allows
for different runtime monitors to be added as logical extensions to the routing
component.

Monitoring is enabled on a per-application basis. Each application includes a
“monitor” flag that must be set for monitoring to occur. When monitoring is en-
abled for a given application, the server will invoke all registered application mon-
itors for each application request/response pair. The monitor will be invoked on
the application request thread, after the response is available. The monitor’s caller

Combining Quality of Service and Social Information for Ranking Services 567

Catalog

System Nodes Application Worker Nodes

SOAlive

Repositor
y

Applicatio
nManager

Nodes housing SOAlive system components
Nodes housing SOAlive managed applications

Catalog

Repository

Application
Manager

Other
MonitorsPerformance

MonitorRanking
Monitor

Router

Other
MonitorsPerformance

MonitorRanking
Monitor

Other
MonitorsPerformance

MonitorRanking
Monitor

Registered monitors as
router extensions

Router

System DB Managed Applications

Application
Installer

Application
Instance
Manager

Application
Manager

Agent

Application
Installer

Application
Instance
Manager

Application
Manager

Agent

Mapquest
Proxy

Yahoo!Maps
Proxy

GoogleMaps
Proxy

Mapquest
Proxy

Yahoo! Maps
Proxy

Google Maps
Proxy

Managed Applications

Fig. 2. SOAlive system architecture

assumes that the monitor will return as quickly as possible, and that it will de-
fer any processing for a later time and on a separate thread. The following figure
shows the sequence of events when SOAlive receives a request to a managed ap-
plication that has monitoring enabled. For inter-application requests (i.e., where
one hosted SOAlive application invokes another hosted SOAlive application), the
runtime for the source application adds headers to the out-bound request that
identifies the source application and the specific method in the source application
from which the call originated. This allows the SOAlive monitoring and logging
facilities to fully determine the source of a request. This header injection feature
is also used to propagate the correlator for a chain of invocations. For instance, if
application A1 called A2 that called A3 and A4, then the paths A1 → A2 → A3
and A1 → A2 → A4 have the same correlator. This correlator is a unique ID
generated by SOAlive at the start of a chain of requests.

Registered Monitor 3

SOAlive Router Application Manager Managed Application

incoming request

save request

connect

invoke appropriate method

return response

save response
monitor(request, response, sourceApp, targetApp)

return response

Registered Monitor 2

Registered Monitor 1

Fig. 3. SOAlive monitoring flow

Using the information gathered from the ranking monitors, ranks are com-
puted periodically and incrementally in SOAlive. Weights are assigned to each
evaluation, with the more recent evaluations having higher weights. The assigned
weights also depend upon service lifecycle events - for example, if a service is en-
tirely rewritten, then its previous evaluations are assigned low weights. If a minor

568 Q. Wu et al.

bug fix is made to a service, then the earlier ratings still have considerable impor-
tance, and therefore higher weights. Our incremental ranking procedure allows
new evaluations to update ranks without the need to re-examine old evaluations.

4 Experiment Results

4.1 Map Services

ServiceRank is designed to take QoS into consideration because we expect ser-
vices demonstrate dynamic behavior and should be ranked differently. We con-
ducted experiments on real-world services to confirm this expectation. In our
experiments, we collected traffic data from three well-known map services: Google
Maps, Yahoo! Maps, and Mapquest. They were chosen because all of them have
standard APIs that take the geocoding of an address and return its local map.
Moreover, the returned results all contain similar map data. Therefore, it is
meaningful to characterize and compare their performance in terms of response
time and failure rate.

Experiment setup.To obtain the traffic data of three map services through
SOALive, we create three proxies. Each proxy is responsible for forwarding a re-
quest to the real map service and forwarding back the result to its client. We im-
plement a workload generator that periodically sent requests to three proxies at
a configurable interval. At each turn, the workload generator uniformly chooses
the geocoding of an address in the US from a database that contains hundreds of
entries. We collect the traffic data for each service for seven consecutive days. The
time interval is set to be 30 seconds. The traffic data was collected from 7:00pm
(EDT) August 4th, 2008 to 7:00pm (EDT) August 11th, 2008.

Experiment results. Figure 4 shows the average response time at different
times in the day. We can see three phenomena. First, all three map services have
degraded response time during peak hours (approximately between 8:00 and
18:00). Second, MapQuest has slightly worse response times in general compared
to the other two map services. Third, even though Google Maps and Yahoo! Maps
have similar response time during non-peak hours, Google Maps performs worse
than Yahoo! Maps during peak hours. Figure 5 shows the percentage of failed
invocations at different times in the day. The figure does not show anything
for Yahoo! Maps because it did not return any failed invocations during our
experimental period. Both Google Maps and MapQuest have very small failure
rates with MapQuest being slightly higher.

From these experiment results, we can see that real-world services do demon-
strate different behavior over time. Therefore, it is very important to rank them
dynamically to characterize their latest performance. From Figure 4, we see that
Google Maps has degraded response time during peak daytime hours. The most
likely explanation is that Google Maps is more loaded during that period. Yahoo!
Maps demonstrates better average response time during the same period. QoS-
based ranking can provide valuable information to assist applications that have

Combining Quality of Service and Social Information for Ranking Services 569

0 2 4 6 8 10 12 14 16 18 20 22
200

300

400

500

600

700

800

900

1000

1100

1200

Hour (Eastern Daylight Time)

M
ill

is
ec

on
ds

Google Maps
Yahoo! Maps
Mapquest

Fig. 4. Average response time

0 2 4 6 8 10 12 14 16 18 20 22
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Hour (Eastern Daylight Time)

P
er

ce
nt

ag
e

(%
)

Google Maps
Mapquest

Fig. 5. Percentage of failed invocations.
Yahoo! Maps does not have bars be-
cause it did not return any failed request.
Google Maps has few bars because it re-
turned failed requests only in some of the
hours.

critical requirements on performance. For example, travel planning services that
want to integrate a map service would do well to choose Yahoo! Maps during
peak hours.

The relative performance of Google Maps, Yahoo! Maps, and Mapquest may
have changed since the time these measurements were made. For a large number
of customers, all three services offer performance and availability which are more
than adequate. We do not have sufficient data to judge one of the services as
currently being superior to another. The key point is that at any given point in
time, different services offering the same functionality will often show noticeable
differences in performance. In addition, there may also be considerable variations
in performance based on the time of day.

4.2 ServiceRank Properties

We now demonstrate the properties of ServiceRank through a hierarchical service
network model. In this model, a set of services form a hierarchical structure. The
structure is divided into layers l1, l2, ..., ln. Services at the same layer belong to
the same category. The lowest layer is l1. Services at li are clients of services at
li+1. Requests are sent by a root service s0 to services at l1. To process a request,
a service at l1 invokes one of the services at l2, which will in turn uses a service
at l3 and so on. The response time of a request at a service is the service’s own
processing time plus the round trip time spent at upper layers.

Experiment 1. We intend to show how the rank of a service changes with the
number of times it is invoked. A simple topology suffices for this purpose. We use
the one shown in Figure 6. An arrow represents a client-server relationship. We
gradually adjust the percentage of requests between s1 and s2 and observe how

570 Q. Wu et al.

S1 S2

S3 S4

S0

layer l1

layer l2

Fig. 6. A simple hierarchical service network

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Percentage of requests sent to s
1
 [%]

R
an

ki
ng

 v
al

ue

S1S2

S3S4

Fig. 7. Impact of request frequency on
ranking values

20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

Request rate sent by s
0
 [requests/s]

R
an

ki
ng

 v
al

ue

S1

S2

S3

S4

Fig. 8. Impact of response time on
ranking values

the ranks of s3, s4, s5, and s6 change. To see only the impact of request frequency,
we do not consider the two other factors: failure rate and response time. In other
words, each request is successfully satisfied, and services in the same category have
similar response times. The results are shown in Figure 7. We can see that the
ranking values of both s1 and s3 increase as they consume a higher percentage of
requests compared to their counterparts. The ranking values of s2 and s4 decrease
correspondingly. We can also see that the ranking value of a service is impacted
not only by the percentage of requests it receives, but also by the ranking values of
its client. In this case, s3’s ranking value increases faster than s1 because both s3’s
request percentage and s1’s ranking value get increased. This property is a desir-
able feature of social ranking because it takes into consideration both popularities
of services and the amount of workload they share.

Experiment 2. We now evaluate how the rank of a service is impacted by
the quality its requests receive. We continue to use the topology in Figure 6.
We assume that the percentage of requests between s1 and s2 follows the 80-20
rule in which s1 receives 80% of requests while s2 receives 20%. The experiment
runs in cycles. In each cycle, s0 sends requests at a given rate to both s1 and

Combining Quality of Service and Social Information for Ranking Services 571

s2, which will invoke their corresponding services at the next upper layer. We
simulate the average response time of a service by a function, which remains
constant when the request rate below a threshold and increases linearly after
that. In the experiment, we configure the threshold to be 50. Figure 8 shows
the result. Without considering the factor of response time, the ranking values
of all services would not change over the course of the experiment because the
percentage of requests at all services does not change. After taking response
time into consideration, the number of ratings a service receives from its clients
will be adjusted by how well the requests are served. From Figure 8, we can see
that the ranks of services do not change when the number of requests is below
50. After that, the ranks of s1 and s3 begin to drop because their response
times start to increase. This is to simulate the situation in which a service shows
degraded performance when overloaded. As a result, the ranks of s1 and s2 start
to converge. s3 and s4 demonstrate similar trends. In real applications, this
property motivates service writers to improve service response times in order to
keep service ranks from declining when the services are overloaded due to high
request rates. It also provides more accurate information to guide new traffic to
services that are less overloaded.

4.3 Monitoring Overhead in SOALive

SOALive collects the traffic data of services when they are serving customers.
It is very important that the monitoring procedure does not interfere with the
ordinary operation of services. The experiment in this section measures the mon-
itoring overhead.

Experiment setup. We set up two services si and sj in SOALive. si uses sj ’s
functionality by sending a sequence of HTTP requests. The monitoring service
in SOALive is responsible for recording the round trip time of each invocation
and its status. sj has an empty function body. It returns back to si as soon as

0 20 40 60 80 100 120 140
0

2

4

6

8

10

12

14

16

18

20

Number of requests

T
ot

al
 e

xe
cu

tio
n

tim
e

[s
ec

on
ds

]

monitoring disabled
monitoring enabled

Fig. 9. Monitoring overhead in SOALive

572 Q. Wu et al.

it receives a request. Therefore, the total amount of time to process a batch of
requests will be close to the overhead introduced by SOALive.

Experiment result. Figure 9 shows the results. We gradually increase the total
number of requests between si and sj . For each configuration, we collect total
processing time with and without monitoring enabled. We run the experiment
five times and compute the average. Figure 9 shows that the overall processing
time with monitoring enabled is only slightly higher than the case with moni-
toring disabled. This demonstrates that an efficient monitoring service can be
implemented in a cloud. The current experiment is only run in a small setting.
For large settings with hundreds or even thousands of services deployed, we can
use different optimization techniques such as sampling to collect traffic data.

4.4 ServiceRank Performance

In SOALive, ServiceRank periodically analyzes traffic data and computes the
ranking values of services. It is important that ServiceRank can scale up to
large numbers of services to provide ranking values in a timely fashion. We have
implemented the ServiceRank algorithm by using the power method to compute
the left principal eigenvector of Equation 7. Since we do not have enough services
in SOALive to test the algorithm for a large number of services, we evaluate its
performance for a high number of services by simulation.

Service network model. The topology of a service network is determined by
both the number of services and the service invocations. We assume that within
the cloud, services with different popularities exist. For an invoked service, the
number of its clients conforms to a power law distribution as shown in Table 1.
In this setting, 35% of services are only clients and do not provide services to
others. A majority of services (60.36%) have clients ranging between 1 and 20.
Less than 1% services have more than 100 clients.

Table 1. Distribution of number of clients for invoked services

number of clients percentage number of clients percentage
0 35% [21, 40] 2.26%

[1, 5] 48.69% [41, 100] 1.39%
[6, 20] 11.67% [100, +] 0.99%

Simulation execution. We evaluate the response time and throughput of our
ranking algorithm by simulation. In each simulation cycle, a workload generator
sends requests at different rates (i.e. the number of requests per second). We use
a thread pool to process concurrent requests. Each request computes the ranking
values for a service network with a given number of services. The services are
connected according to our service network model. To measure average response
time, we run our workload generator for three minutes and average the response

Combining Quality of Service and Social Information for Ranking Services 573

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

2

2.5

3

3.5

Number of services

A
ve

ra
ge

 r
es

po
ns

e
tim

e
[s

]

Fig. 10. Average response time for ser-
vice networks with different number of
services

0 500 1000 1500 2000 2500 3000 3500 4000
0

50

100

150

200

250

300

Number of services

T
hr

ou
gh

pu
t [

ra
nk

in
gs

/s
]

Fig. 11. Throughput per second for ser-
vice networks with different number of
services

time of each request. To measure maximum throughput, we adjust request rates
and observe the values of throughput at different rates for three minutes. The
maximum throughput is the point when the throughput does not increase any
more with the increase of request rate.

Hardware configuration. All experiments are conducted on a 64-bit GNU
Linux machine with Intel(R) Core(TM)2 Quad CPU 2.83GHz, 4GB RAM.

Experiment results. Figure 10 shows the results for the measurement of re-
sponse time. Figure 11 shows the results for the measurement of throughput. As
the number of services increases in a service network, the response time is less
than tens of milliseconds on average until the number reaches at around 1500
services. Correspondingly, the throughput of ServiceRank scales well for service
networks with less than 1500 services. After that the throughput gradually drops
from hundreds of rankings per second to less than ten rankings per second. We
expect in a real cloud, rankings are not workload-intensive. There may be many
seconds between successive rankings. Therefore, ServiceRank should be able to
scale up to large settings with many thousands of services.

5 Related Work

Past work addresses the ranking problem by analyzing relationships between
different parties. Mei et. al. [7] analyze binding information in service WSDL
specifications and apply the PageRank algorithm [9] to compute global ranks
of services. The binding relationships are static and cannot distinguish services
different in runtime qualities. Gekas et.al. [3] analyze semantic compatibility of
input/output parameters of services and select the best matching service for an
output request. We focus on QoS metrics for service composition. Two pieces
of work are close to ours. One is EigenTrust [5], which works on peer ranking
on P2P networks. EigenTrust considers how frequently two parties interact with

574 Q. Wu et al.

each other and uses this information to compute global ranks for them. A unique
feature of our approach is that we use global knowledge to adjust local ratings
to consider the impact of response time. This feature makes our approach better
suitable for service ranking in that QoS is a critical factor for service composition.
The other related work is [10], which applies document classification techniques
for web API categorization and ranks APIs in each category by combining user
feedback and utilization. Similar to their work, we also model the service ranking
problem by using statistics collected from web traffic. However, [10] considers
the factor of popularity only. Our approach additionally considers response time
and failure rate and can be easily extended to include user feedback as well.

Other ranking approaches include those based on user feedback or testing
techniques. In [2], the authors propose to rank services based on users’ ratings
to different QoS metrics. These ratings are then aggregated to compute global
ranks of services. In [8], gaps between users’ feedback and actually delivered
QoS from service providers are measured to rank services. These approaches
have limited application in service networks because human feedback may not
be available for those backend services that do not have direct interactions with
customers. Tsai et.al. [14] propose a ranking technique in which pre-developed
testing cases are executed periodically to check the current status of services.
Services are ranked according to their deviation from the expected output.

Several ranking frameworks are proposed to rank services by combining many
aspects of QoS into the same picture. Liu et al. [6] proposed to rank services
based on prices, advertised QoS information from service providers, feedback
from users, and performance data from live monitoring. Sheth et. al [11] pro-
posed a service-oriented middleware for QoS management by taking into consid-
eration time, cost, reliability and fidelity. Bottaro et al. [1] proposed a context
management infrastructure in which services are dynamically ranked based on
application contextual states at runtime (e.g., physical location of mobile de-
vices). These frameworks target a broader spectrum of QoS domains and mainly
focus on the design of expressive QoS specification languages and algorithmic
solutions to aggregating metrics from different subdomains. By comparison, our
work provides a unique solution to incorporate QoS into service ranking and can
be adopted as part of a broader ranking framework covering other aspects.

6 Conclusion

In cloud computing, services are discovered, selected, and composed to satisfy
application requirements. It is often the case that multiple services exist to per-
form similar functions. To facilitate the selection process for comparable services,
we propose a new ranking method, referred to as ServiceRank, that combines
quantitative QoS metrics with social aspects of services to provide valuable rank-
ing information. Services form a social network through client-server invocation
relationships. The ServiceRank algorithm ranks a service by considering not only
its response time and availability but also its popularity in terms of how many
services are its clients and how frequently it is used. By combining all these fac-
tors, the rank of a service will be raised if it attracts a higher amount of traffic

Combining Quality of Service and Social Information for Ranking Services 575

and demonstrates better performance compared to other comparable services. In
the future, we plan to integrate service level agreements into our current work.
With this feature, the rank of a service will be impacted by both its performance
and its fulfillment of service-level contracts.

References

1. Bottaro, A., Hall, R.S.: Dynamic contextual service ranking. In: Lumpe, M., Van-
derperren, W. (eds.) SC 2007. LNCS, vol. 4829, pp. 129–143. Springer, Heidelberg
(2007)

2. Chan, H., Chieu, T., Kwok, T.: Autonomic ranking and selection of web services
by using single value decomposition technique. In: ICWS, pp. 661–666 (2008)

3. Gekas, J., Fasli, M.: Automatic web service composition based on graph network
analysis metrics. In: Meersman, R., Tari, Z. (eds.) OTM 2005. LNCS, vol. 3761,
pp. 1571–1587. Springer, Heidelberg (2005)

4. Jósang, A., Ismail, R., Boyd, C.: A survey of trust and reputation systems for
online service provision. Decis. Support Syst. 43(2), 618–644 (2007)

5. Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The eigentrust algorithm for
reputation management in p2p networks. In: Proceedings of the 12th international
conference on World Wide Web, pp. 640–651. ACM, New York (2003)

6. Liu, Y., Ngu, A.H., Zeng, L.Z.: Qos computation and policing in dynamic web
service selection. In: Proceedings of the 13th international World Wide Web con-
ference on Alternate track papers & posters, pp. 66–73. ACM, New York (2004)

7. Mei, L., Chan, W.K., Tse, T.H.: An adaptive service selection approach to service
composition. In: Proceedings of the 2008 IEEE International Conference on Web
Services, Washington, DC, USA, 2008, pp. 70–77. IEEE Computer Society, Los
Alamitos (2008)

8. Ouzzani, M., Bouguettaya, A.: Efficient access to web services. IEEE Internet Com-
puting 8(2), 34–44 (2004)

9. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:
Bringing order to the web. Technical Report 1999-66, Stanford InfoLab (November
1999)

10. Ranabahu, A., Nagarajan, M., Sheth, A.P., Verma, K.: A faceted classification
based approach to search and rank web apis. In: Proceedings of ICWS 2008, pp.
177–184 (2008)

11. Sheth, A., Cardoso, J., Miller, J., Kochut, K.: Qos for service-oriented middleware.
In: Proceedings of the Conference on Systemics, Cybernetics and Informatics (2002)

12. Silva-Lepe, I., Subramanian, R., Rouvellou, I., Mikalsen, T., Diament, J., Iyengar,
A.: Soalive service catalog: A simplified approach to describing, discovering and com-
posing situational enterprise services. In: Bouguettaya, A., Krueger, I., Margaria, T.
(eds.) ICSOC 2008. LNCS, vol. 5364, pp. 422–437. Springer, Heidelberg (2008)

13. Sriharee, N., Senivongse, T.: Matchmaking and ranking of semantic web services
using integrated service profile. Int. J. Metadata Semant. Ontologies 1(2), 100–118
(2006)

14. Tsai, W.-T., Chen, Y., Paul, R., Huang, H., Zhou, X., Wei, X.: Adaptive test-
ing, oracle generation, and test case ranking for web services. In: Proceedings of
the 29th Annual International Computer Software and Applications Conference,
Washington, DC, USA, 2005, pp. 101–106. IEEE Computer Society, Los Alamitos
(2005)

Web Services Reputation Assessment Using
a Hidden Markov Model�

Zaki Malik1, Ihsan Akbar2, and Athman Bouguettaya3

1 Department of Computer Science, Wayne State University
Detroit, MI, 48202 USA

zaki@wayne.edu
2 Department of Electrical Engineering,

Virginia Tech Blacksburg, VA. 24061 USA
iakbar@vt.edu

3 CSIRO, ICT Center. Canberra, Australia
athman.bouguettaya@csiro.au

Abstract. We present an approach for reputation assessment in service-
oriented environments. We define key metrics to aggregate the feedbacks
of different raters, for assessing a service provider’s reputation. In situ-
ations where rater feedbacks are not readily available, we use a Hidden
Markov Models (HMM) to predict the reputation of a service provider.
HMMs have proven to be suitable in numerous research areas for mod-
elling dynamic systems. We propose to emulate the success of such sys-
tems for evaluating service reputations to enable trust-based interactions
with and amongst Web services. The experiment details included in this
paper show the applicability of the proposed HMM-based reputation as-
sessment model.

1 Introduction

The next installment of the World Wide Web will be a shift from the current
data-centric Web to a service-centric Web [14]. In this regard, the Web, services,
and semantic technologies (e.g. in the form of ontologies) will come together to
create an environment where users (and applications) can query and compose
services in an automatic and seamless manner. The Service Web will build upon
and extend the Semantic Web to treat services as first class objects. Web services
are slated to be the key enablers of the new service computing paradigm [14]. A
Web service is defined as a self-describing software application that can be ad-
vertised, located, and used on the Web using a set of standards such as WSDL,
UDDI, and SOAP. The Service Web is expected to be a place where a large
number of Web services will compete to offer similar functionalities [9]. Thus,
enriching the Web with semantics would facilitate the organization and location
of these services, and most importantly enable quality-based querying. It is ex-
pected that Web services would fully leverage the Semantic Web to outsource
� This work is funded in part by the U.S. National Science Foundation grant number

0627469.

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 576–591, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Web Services Reputation Assessment Using a Hidden Markov Model 577

part of their functionality to other Web services [20]. In this case, some services
may not have interacted before, while others may act maliciously to be selected,
thus negatively impacting the quality of collaboration. A key requirement then
is to provide trust mechanisms for quality access and retrieval of services [8].

Over the years, a number of techniques have been proposed for establishing
trust online. These techniques fall under two main categories: security-based
solutions, and social control-based solutions. The former includes mechanisms as
authentication, access control, etc, while the latter is based on recommendations
and reputation. In this paper, we focus on reputation as a means to establish
trust among different services.

Reputation is regarded as a predictor of future behavior. It is a subjective
assessment of a characteristic ascribed to one entity by another based on past
experiences. In the context of the Service Web, we refer to the aggregated per-
ceptions that the community of service requesters have for a given Web service
provider as service reputation. Experimental studies have shown that people rely
on reputation systems (e.g. eBay’s Feedback Forum) to make trust-enabled de-
cisions regarding their daily Web-enabled activities [8]. Reputation systems rely
on the feedbacks or ratings provided by the members of the community for a
given subject. At times, due to various reasons, majority of the members may not
be willing to engage in the rating process. In such situations of ratings scarcity,
the accuracy of the reputation system may be compromised. We address the
issue of ratings scarcity by approximating ratings aggregation and predicting the
reputation of a given subject based on historical data.

In terms of prediction accuracy, machine learning algorithms have provided
better results over other traditional techniques [16]. For instance, Artificial Neu-
ral Networks (ANNs) and Hidden Markov Models (HMMs) exhibit high pre-
dictive power, especially with large data sets [16]. Since ANN performances
depend greatly on the chosen architecture, and a user may need to perform
extensive model training by considering almost every feature, we prefer to use
HMMs for reputation prediction. Moreover, an HMM allows a user more control
than an ANN, with comparable accuracy. HMMs have been used successfully in
pattern recognition (voice and face), hand writing recognition, natural language
domains, DNA sequence analysis, finger print matching, prediction of stock mar-
ket prices, etc [16]. We build on that success to predict the reputation of Web
services through HMMs.

Several reputation systems have been proposed in the literature. The spec-
trum of these reputation management solutions ranges from “purely statistical”
techniques to “heuristics-based” techniques. While statistical techniques focus
on providing a sound theory for reputation management, heuristics-based tech-
niques focus on defining a practical model for implementing a robust reputation
system. Bayesian systems [5], [13] and belief models [6], [24] are the major ex-
amples of purely statistical techniques. Bayesian systems work on binary ratings
(honest or dishonest) to assess the reputation, by statistical updating of beta
probability density functions. In a belief model, a consumer’s belief regarding
the truth of a ratings statement is also factored in reputation computation. The

578 Z. Malik, I. Akbar, and A. Bouguettaya

techniques for combining beliefs vary from one solution to the other. For exam-
ple, [24] uses the Dempster’s Rule, while Subjective Logic is used in [6]. The
complexity of purely statistical solutions has prompted researchers to present
heuristics-based solutions. These solutions aim to define a practical, robust, and
easy to understand/construct reputation management system. For example, [23]
and [4]. In the following, we present a hybrid solution defining key heuristics,
and a statistical model (HMM-based) for reputation assessment.

2 Web Services Reputation

A Web service exposes an interface through which it may be automatically in-
voked by Web clients. A Web service’s interface describes a collection of op-
erations that are network-accessible through standardized XML messaging [9].
Invoking a Web service involves three entities: the service provider, the service
registry and the service consumer. The service provider is the entity that owns
and/or manages the service. It advertises the capabilities of the service by pub-
lishing a description to the service registry. This description specifies how the
service can be invoked (i.e., its address, operations, parameters, etc.) The service
registry is a repository of service descriptions. Finally, the service consumer is
the entity that invokes the service.

In traditional Web service models, service selection is not trust-based, and
an invocation can be made directly after discovering the service through the
registry. However, in our model this selection is based on the reputation of each
individual service from the list retrieved through the service registry. The service
consumer gathers the feedbacks of the providers from its peer service consumers,
and then sorts the providers according to the assessed reputation. The higher the
reputation of a service provider, the better the service. Service consumers then
invoke the best available Web service through one of its listed operations. We
assume that at the end of the interaction the service consumer rates the provider
according to some pre-determined criteria (e.g., using an ontology[9], [23]). The
service ratings are used to compute the provider reputations accordingly.

We view the reputation of a Web service as a reflection of its quality. The
Quality of Service (QoS), is defined as a set of quantitative and qualitative
characteristics of a system, necessary to achieve the required functionality of an
application [17]. We adopt a similar definition of QoS and extend its application
to the Service Web with related constraints (similar to [17], [10]). We term this as
the quality of Web service (QoWS). QoWS is a mapping between a set of quality
parameters defined through a common ontology, and a set of values or ranges of
values. Examples of quality parameters include security, privacy preservation, a
services’ response time, availability, reliability, etc.

Let S and T be the set of provider Web services and the set of service con-
sumers respectively. Let Φ be the universal set of quality parameters. Φ may
be represented as a p-element vector (φ1, ..., φp) where φk is the kth quality
parameter. Each Web service sj ∈ S advertises a promised quality QoWSp(sj),
which assigns values or ranges of values to each quality parameter φk. When a

Web Services Reputation Assessment Using a Hidden Markov Model 579

service requester x ∈ T invokes the service sj , each quality parameter φk in Φ

gets assigned a delivered quality value φxj
k (post-transaction completion). For

this invocation of service sj , the vector QoWSd(sj , x) = {φxj
1 , .., φxj

p } is called
the delivered quality of Web service.

It is outside the scope of the current discussion exactly how values are assigned
to different QoWS attributes. We assume a service publication model presented
in [17], where service providers publish their QoWSp values in the service registry
(say UDDI) with the service descriptions ([20] proposes a similar technique).
Other similar models where the QoWS information can be added to the WSDL
file using WS-Policy, can also be used [8]. Post-transaction completion, observing
the variation between QoWSp and QoWSd, reputation values can be created [17],
[20], [8].

We suggest that since the Service Web cannot be easily monitored due to its
expanse, each service consumer records its own perceptions of the reputation
of only the services it actually invokes. This perception is called personal eval-
uation (PerEval). For each service sj that it has invoked, a service consumer
x maintains a p-element vector PerEvalxj representing x’s perception of sj ’s
reputation. Thus, personal evaluation only reflects the QoWS performance of a
provider in the consumer’s own view.

2.1 Reputation Assessment

A consumer intending to assess the reputation of a service provider may in-
quire several peer consumers in its community (the one its is registered with),
and aggregate their respective personal evaluations for sj . Identifying the en-
tities responsible for collecting and disseminating reputations, and defining the
procedures involved in such reputation exchanges are important aspects of a rep-
utation management system, which require independent research. We assume a
reputation collection model presented in [22], and extend it to the Web services
domain using methods presented in [12]. Note that other collection models as [1],
[17] can also be used. A single value is obtained as a result of the aggregation
of personal evaluations collected. This derived value is defined as the service
provider’s aggregated reputation in that consumer’s view. Different service con-
sumers may employ different aggregation techniques. Therefore, the aggregated
reputation value for the same provider may be different for each consumer, i.e.,
it may not be consistent across all consumers. Formally, the reputation of sj, as
viewed by a consumer is defined as:

Reputation(sj) =
∧
x∈L

(PerEvalxj) (1)

where L denotes the set of service raters and
∧

represents the aggregation func-
tion. It can be as simple as representing the union of personal evaluations where
the output is a real number, or an elaborate process that considers a number of
factors to assess a fairly accurate reputation value.

Equation 1 provides an approximation of how the service reputation may be
calculated. In the following, we build upon this equation to define the “RATEWeb

580 Z. Malik, I. Akbar, and A. Bouguettaya

metrics” for accurate reputation assessment. We aim to counter attacks related
to deception in reputation management, i.e., identifying, preventing, and detect-
ing malicious behavior of peers or a set of colluding peers acting as either service
providers or raters. Problems as free riding, fake identities, ratings incentives,
etc. are outside the scope of this paper.

Credibility of Raters: The foremost drawback of feedback-only based systems
is that all ratings are assumed to be honest and unbiased. However, in the real
world we clearly distinguish between the testimonies of our sources and weigh the
“trusted” ones more than others [19]. A Web service that provides satisfactory
service (in accordance with its promised quality (QoWSp)), may get incorrect
or false ratings from different evaluators due to several malicious motives. In
order to cater for such “bad-mouthing” or collusion possibilities, a reputation
management system should weigh the ratings of highly credible raters more
than consumers with low credibilities [4], [3], [18], [15], [23]. In RATEWeb, the
reputation score of the provider is calculated according to the credibility scores
of the raters (used as the weight). Thus, Equation 1 becomes:

Reputation(sj) =

∑L
x=1(PerEval

x
j ∗ Cr(x))∑L

x=1 Cr(x)
(2)

where Reputation(sj) is the assessed reputation of sj as calculated by the service
consumer and Cr(x) is the credibility of the service rater x as viewed by the
service consumer. The credibility of a service rater lies in the interval [0,1] with
0 identifying a dishonest rater and 1 an honest one. The processes involved in
calculating raters’ credibilities are described in detail in [8].

Personalized Preferences: Service consumers may vary in their reputation
evaluations due to their differences in QoWS attribute preferences over which a
Web service is evaluated. For instance, some service consumers may label Web
services with high reliability as more reputable while others may consider low-
priced services as more reputable. We allow the service consumers to calculate the
reputation scores of the Web services according to their own personal preferences.
Each service consumer stores its QoWS attribute preferences in a reputation
significance vector (RSV). This allows the consumers the ability to weigh the
different attributes according to their own preferences. Let φh(sj , u)x denote the
rating assigned to attribute h by the service rater x for service provider sj in
transaction u, m denote the total number of attributes and RSVh denote the
preference of the service consumer for attribute h. Then, the local reputation for
sj as reported by service rater x is defined as:

PerEvalxj =
∑m

h=1(φh(sj , u)x ∗RSVh)∑m
h=1 RSVh

(3)

Reputation Fading: Reputation information of a service provider decays with
time [9][11]. Hence all the past reputation data may be of little or no importance.

Web Services Reputation Assessment Using a Hidden Markov Model 581

For instance, a Web service performing inconsistently in the past may amelio-
rate its behavior. Alternatively, a service’s performance may degrade over time.
It may be the case that considering all historical data may provide incorrect rep-
utation scores. In order to counter such discrepancies, we incorporate temporal
sensitivity in our proposed model. The rating submissions are time-stamped to
assign more weight to recent observations and less to older ones. This is termed
as “reputation fading” where older perceptions gradually fade and fresh ones
take their place. We adjust the value of the ratings as:

PerEvalxj (t) = PerEvalxj (t− 1 : t− v) ∗ fd (4)

where PerEvalxj is as defined above and fd is the reputation fader. t is the
current time instance and t− 1 : t− v specifies the time interval from previous 1
to v transactions. In our model, the recent most rating has the fader value 1 while
older observations are decremented for each time interval passed. When fd = 0,
the consumer’s rating is not considered as it is outdated. The “time interval” is
an assigned factor, which could be anywhere from a single reputation inquiry,
ten inquiries or even more than that. All inquiries that are grouped in one time
interval are assigned the same fader value. In this way, the service consumer can
define its own temporal sensitivity degree. For example, a service can omit the
fader value’s effect altogether by assigning it a null value. We propose to use
a fader value that can then be calculated as: fd = 1√

Pu
, where Pu is the time

interval difference between the present time and the time in which the rating
was collected from the rater. This allows the convergence of reputation to a very
small value as time passes. Note that the consumer can assign a group of ratings
collected at different times to have the same time-stamp, and hence lie in the
same time interval.

Incorporating the defined metrics together (denoted RATEWeb metrics), the
equation for overall reputation calculation becomes:

Reputation(sj) =

∑L
x=1[

∑
m
h=1(φh(sj ,u)x∗RSVh)∑m

h=1 RSVh
∗ fd ∗ Cr(x)]∑L

x=1 Cr(x)
(5)

Through experimental evidence we have found that the above equation provides
a comprehensive assessment of the reputation of a given service provider. Some
evaluation results are presented in Section 3. For a thorough review, the in-
terested reviewer is referred to [9]. Other aspects of our RATEWeb framework
relating to reputation bootstrapping are defined in [10], and are outside the scope
of this paper. As mentioned earlier, the providers’ reputations calculated above
may not always be available. This may either be due to the reluctance of the
raters or other unforseen circumstances as power outages, network congestion,
etc. We propose to use HMM-based “prediction” methods to evaluate service
reputations based on past behavior in situations where the current feedbacks
are not available.

The proposed methodology is shown in Figure 1. Each service consumer’s
HMM first trains itself using the feedbacks provided by its peers. Once a reliable

582 Z. Malik, I. Akbar, and A. Bouguettaya

Observe Service 1

Behavior and Update

HMM Parameters

Observe Service 2

Behavior and Update

HMM Parameters

Observe Service n

Behavior and Update

HMM Parameters

. . .

Predict Reputations

Pr(high), Pr(low)
1 1

Predict Reputations

Pr(high), Pr(low)
2 2

Predict Reputations

 Pr(high), Pr(low)
n n

Choose Maximum

Pr(high)

. . .

Fig. 1. Predicting Reputations using HMMs

model is developed, the high and low reputations of the services are predicted.
In the next step, the service consumer compares all the predicted provider repu-
tations. The provider that has the highest predicted reputation for the next time
instance is chosen for interaction. After each interaction, the observed behavior
values and present feedbacks are input to the HMM, and the model is refined.

2.2 HMM-Based Reputation Assessment

A Hidden Markov Model (HMM) is a finite state machine in which the observa-
tion sequence is a probabilistic function of a fixed number of states. In our case, it
provides a probabilistic framework for modelling service reputations. Since their
introduction in the 1970s, HMMs have proven to be very powerful prediction
tools [16]. Some of the advantages of HMMs include: (1) strong mathematical
and statistical basis, (2) more control through easy manipulation of training
and verification processes, (3) mathematical/theoretical analysis of the results,
(4) efficient prediction of similar patterns, and (5) ability to incorporate new
knowledge robustly.

An excellent tutorial describing the basics and use of HMMs is available in [16].
In brief, an HMM (denoted ζ) is characterized by:

– the number of states in the model (N).
– the number of observation symbols per state (M), where each symbol cor-

responds to the actual output (here, reputation) being modelled.
– state transition probability matrix (P = {pij}), where pij represents the

probability of transition from state i to state j.
– output probability matrix (B = {bj(yk)}), where bj(yk) represents the prob-

ability of generating symbol yk at state j.
– initial state distribution (π = {πi}), where πi gives the probability of being

in a particular state at the start of the process.

Web Services Reputation Assessment Using a Hidden Markov Model 583

With N and M (which depend on the observation data and the application
objective) specified, an HMM is denoted as ζ = {P,B, π}, with

∑
j pij = 1,∑

k bj(yk) = 1, and
∑

i πi = 1, where pij , bj(yk), πi ≥ 0, ∀i, j, k.
There are established algorithms and techniques for the estimation of the pa-

rameters of an HMM. We have used the Bayesian Information Criterion (BIC)
(one of the most accurate and frequently used order estimation techniques [16])
to estimate N for our reputation model: a 2-State HMM was selected. The es-
timation of the total number of states of HMM is an open question that still
needs to be solved satisfactorily. “In the case of HMM, the problem of model se-
lection (and in particular the choice of the number of states in the Markov chain
component model) has yet to be satisfactorily solved” [7]. Similarly, in [2], it
is stated that “the order estimation problem in an HMM is difficult because of
our poor understanding of the maximum likelihood in HMMs.” The likelihood
of a process in case of HMMs, increases as the number of states increases. How-
ever, even though a higher state HMM is expected to perform well, it does not
guarantee to provide optimal results [7], [2]. BIC is defined as:

x̂ = min[−2(sup
Mx

logPr(yn
1)) + klog(n)] (6)

where k is the dimension of a HMM, n is length of the observed reputations
sequence, Mx represents the HMMs with different number of states, and x̂ rep-
resents the selected HMM with optimal number of states. Using BIC over past
reputations, we train HMMs with different number of states and obtain their
corresponding log-likelihood (denoted l) values. The model with the minimum
BIC value is then chosen. For instance, Table 1 shows the BIC order estimation
process for a number of HMMs evaluated using experimental reputation data for
different service providers. Experiment details are presented in the next section.
Since 4.6861 × 103 is the lowest value obtained, BIC selects a 2-state HMM as
the model of choice. Note that the number of HMM states that the BIC esti-
mator selects, are specific to the training data. Thus, the number of states that
different service consumers obtain for their respective HMMs, may also differ
(since each consumer aggregates reputations according to his own preferences,
knowledge, etc).

Note that all the models (2-state, 3-state, and 15-state HMMs shown) produce
similar l-values, upon reaching the local maxima. Moreover, the number of iter-
ations required to get to the local maxima are also similar. In terms of accuracy,

Table 1. Estimating BIC values of different HMMs

Model k −l BIC

2-State HMM 4 2321.8056 4.6861 × 103

3-State HMM 9 2321.7719 4.7391 × 103

4-State HMM 16 2321.6676 4.8131 × 103

5-State HMM 25 2320.8490 4.9070 × 103

6-State HMM 36 2320.4865 5.0230 × 103

584 Z. Malik, I. Akbar, and A. Bouguettaya

the different state models show similar results. But since greater the number
of states in an HMM, greater is the complexity of the prediction process [21].
Therefore, we use the minimal state HMM (2-state HMM).

In defining M , we use a simple strategy that outputs one of two reputation
symbols for the results obtained through Equation 5. One symbol represents a
trustworthy service (i.e., high reputation), while the second symbol represents
an untrustworthy (with low reputation) service. The choice of only two symbols
is made only for simplifying the model explanation, and the number can be
extended easily. Although the reputation values obtained from Equation 5 may
be continuous, we distinguish the results to two discrete symbols by setting a
threshold. For example, on a scale from 0 to 10 (0 being the lowest) with the
threshold set at 5, reputation values graters than 5 are treated as trustworthy and
untrustworthy otherwise. Other techniques (e.g., vector quantization) may also
be used. Defining the system with just two reputation symbols suffices the need of
our application. The service consumer either interacts with a trustworthy service,
or it does not interact with an untrustworthy service. The need for “middle-
ground” or “fuzzy” decision making arises only in cases where no trustworthy
service is available. However, this can also be handled by adding a clause that
lets the consumer choose the best provider from the remaining (untrustworthy)
services.

In using the HMM, one major task is to find the probability (Pr) of generating
the reputation sequence given the model ζ. This can be written as:

Pr(yT
1 |ζ) = πB(y1)PB(y2)...PB(yT) (7)

where yT
1 = [y1, y2, ..., yT] with each yk having either high or low reputation

(i.e., one of the 2 symbols), and B(yk) denotes the probability of generating
symbol yk from different states. We use the “Forward-Only algorithm” to com-
pute Pr(yT

1 |ζ). Moreover, we use the Baum-Welch Algorithm (BWA) [16] (a form
of the Expectation-Maximization (EM) algorithm) to estimate the parameters,
and find the model that best explains the observed data. Due to space restric-
tions, details of the algorithms are not presented here. The interested reader is
referred to [16].

Figure 2 shows the steps (simplified to elucidate) involved in using an HMM
to assess a provider’s reputation. To decide on interacting with a particular
service provider, feedbacks from different raters are collected and aggregated
(to derive the provider’s reputation). In situations of ratings scarcity, aggregate
reputations from previous instances are used to predict future provider behavior.
The reputations, initial conditions (if any), etc. are used as inputs to the BWA
to extract HMMs (with different number of states). BIC is then used to estimate
the optimal number of states for the HMM. The selected model is then used to
predict future service reputations, to aid in the interaction decision process. Any
subsequent re-estimations are performed on the selected model.

Web Services Reputation Assessment Using a Hidden Markov Model 585

BWA2

BWA3

BWAn

BIC

Estimator

Prediction

Pr(Reputation|λ)

Estimate Optimal

Number of Hidden

States

BWAk

Optimal HMM.

BWA-Input: No. of hidden states, Reputation, Initial conditions,

Predict

HMM-based PredictionBWA-Output: P, B, π

2
HMM

3
HMM

n
HMM

Reputation Re-Estimation

k
HMM

Reputation

Collection

Interaction

Decision

Reputation

.

.

Aggregate

Assessment

Fig. 2. HMM-based Prediction Processes

3 Evaluation

We performed preliminary experiments to evaluate the RATEWeb approach
and show the accuracy of HMM-based reputation assessment. The experiments
are divided into two phases. In the first phase, the effectiveness of RATEWeb
metrics is evaluated. In the second phase, the assessed reputations from the first
phase are used to train an HMM. The HMM is then used to predict future
provider behavior. In the following, we provide the experiments related to HMM
prediction (phase 2). Extensive evaluation of RATEWeb related to phase 1 is
presented in [8], [9].

Setup: We created a Web services environment where the actual behavior of
service providers is accurately captured, i.e, we can monitor each service’s be-
havior. The providers’ behaviors are simulated using data similar to the behavior
of sellers at eBay. The service community consists of 100 Web services, and the
interactions are conducted over 6000 time iterations. Although each QoWS pa-
rameter is rated individually, we use only the aggregated scalar aggregated repu-
tation value to facilitate comparison. We assume that QoWS values are assigned
accurately according to a pre-defined rating scheme. The minimum performance
value is 0 while the maximum is 10.

The accuracy of the hidden Markov model is evaluated by observing the vari-
ance between the actual behavior and predicted reputation. We check the validity
of our HMM-based reputation prediction by comparing the results with another
formal prediction model (ANN) and with an ad hoc model in which no prediction
is used. The type of ANN that we have used (through MATLAB) incorporates
adaptive filtering which allows the network to adapt at each time step to min-
imize the error and predict in a relatively short time. The parameters of the
HMM (from the processes in Figure 2) we use in the experiments are shown in
Table 2.

586 Z. Malik, I. Akbar, and A. Bouguettaya

Table 2. Parameters of the Chosen HMM

P B π[
0.988 0.011
0.008 0.991

] [
0.051 0.948
0.990 0.009

] [
0.999 0.001

]

The generation of the reputation sequence given the model is performed using
the following procedure. We start from the π vector and select the initial repu-
tation state by generating a uniformly distributed random number (within the
desired reputation range). The reputation output symbol is obtained by again
generating a uniformly distributed random number and then assigning a repu-
tation output symbol according to the probability distribution of the B matrix.
The next reputation state is then obtained by again generating a uniformly dis-
tributed random number and selecting the next reputation state according to the
probability distribution of the previous reputation state from the P matrix. We
then go back and find the reputation output symbol according to the probability
distributions of different reputation symbols using the B matrix. We continue
till the required number of reputation output symbols are obtained. An HMM
is most useful for random data that shows some pattern. We have generated a
data set in which service reputations oscillate between high (above 5) and low
(less than 5). The reputation data is random such that the service provider can
shift from a high to low state and vice versa at any time. The time spent in
each state is random and not uniform. However, the data exhibits memory since
the service follows the pattern of staying in one state and moving to the other
after ‘sometime.’ Note that the service provider does not change states at almost
every time instance (as in memoryless systems).

Figure 3 shows the original reputation data generated for one service provider,
and the comparison of the original data against HMM-based and ANN-based
predicted reputation. The original data is represented by a continuous line (in
color: blue) while the predicted reputations are shown as dotted lines (in color:
red). In Figure 3-A, the original values for 5000 iterations are shown. However,
Figures 3-B and -C show the zoomed-in values for iterations 1200 to 1600 for
explanatory purposes. We have trained the HMM and ANN over 1000 iterations
and then predicted reputations for 5500 future iterations. The predicted reputa-
tions shown in Figure 3 are not completely identical to the original ones. There
is some “error” associated with each reputation prediction. However, the error is
not disruptive to the prediction process due to its small size. The predicted rep-
utation values obtained using the HMM (Figure 3-B) and the ANN (Figure 3-C)
are very close to the original reputation. Therefore, we can safely conclude that
the generated values are representative of the original service behavior allowing
fairly accurate trust decision making.

Both the prediction models predict the reputation in a fairly accurate manner.
This proves that both ANN and HMM-based methods are viable. Note that
the duration of the provider’s “stay” in either state (high or low reputation)
is random and no two intervals are equal. Still, the HMM and ANN are able

Web Services Reputation Assessment Using a Hidden Markov Model 587

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0

5

10

1200 1250 1300 1350 1400 1450 1500 1550 1600

0

5

10

1200 1250 1300 1350 1400 1450 1500 1550 1600

0

5

10

Original

Original vs. ANN

A

C

1200 1250 1300 1350 1400 1450 1500 1550 1600

0

5

10

1200 1250 1300 1350 1400 1450 1500 1550 1600

0

5

10

Original vs. HMMB

Fig. 3. Predicted Reputation Comparisons

to predict the reputation fairly accurately. However, the predicted values for
HMM are closer to the original values in comparison with the ANN. Therefore,
HMMs get our preference over ANNs. Moreover, the strong mathematical basis
of HMMs is also a plus, which the ANNs lack. Since there is some cost associated
with each of the above mentioned prediction models, either of these is of help to
the service consumer only if the accuracy obtained through reputation prediction
is more than the reputation values calculated in an ad hoc manner.

To capture the effects of reputation assessment when no prediction is involved,
we have performed the experiments on the same data set of original reputations.
Figure 4, shows the result of 1000 interactions out of a total 6000 interactions.
The first 1449 interactions are those in which rater feedbacks are present. The
1450th. interaction onwards, no peer feedback is available about the service
provider. Since no prediction is involved here, the future reputation evaluations
hover around the reputation value that was observed at the last time instance.
Since service consumer’s own experience is also not factored in the reputation
computation, we see an almost stationary reputation graph.

Figure 5 shows the effects of incorporating the service consumer’s personal
experience in calculating the provider reputation, when no peer feedbacks are
available and no prediction is used. Around 600 iterations are shown for this case

588 Z. Malik, I. Akbar, and A. Bouguettaya

1000 1200 1400 1600 1800 2000

1

2

3

4

5

6

7

8

9

Original vs. AdHoc

1000 1200 1400 1600 1800 2000

1

2

3

4

5

6

7

8

9

Fig. 4. Reputation Evaluation without Prediction and Personal Experience

1

2

3

4

5

6

7

8

9

2

3

4

5

6

7

8

Original

Last feedback iteration

Last feedback iteration

AdHoc

A

800 900 1000 1100 1200 1300 1400

1

2

3

4

5

6

7

8

9

AdHoc

Last feedback iteration

2

3

4

5

6

7

8

Last feedback iteration

Original

B

800 900 1000 1100 1200 1300 1400

800 900 1000 1100 1200 1300 1400

800 900 1000 1100 1200 1300 1400

Fig. 5. Reputation Evaluation incorporating Personal Experience without Prediction

Web Services Reputation Assessment Using a Hidden Markov Model 589

out of a total of 6000 iterations. In Figure 5-A, the last set of peer feedbacks
is received at the 980th. iteration, which gives an overall low value (around 3)
for the provider’s reputation. Starting from the 981st. interaction, the service
consumer incorporates his own personal experience into the last calculated ag-
gregate reputation to reassess the provider’s reputation. Since, the consumer’s
own testimony is weighed in highly, therefore the “general trend” of the evalu-
ated reputation moves towards the original. However, since majority feedbacks
are still centered around 3, an accurate assessment is not possible and the values
are off by some degrees. Figure 5-B, provides a similar picture, but in this case
the last feedbacks receiving iteration (960), leaves the service consumer with an
aggregate reputation of 7. Subsequent reputation evaluations using the personal
experience provide accurate results when the actual provider performance is high
but inaccurate results when the actual provider performance is low. The reason
is similar to the previous case, that since majority of the ratings are around 7,
if the service consumer evaluates the provider as a low performer, the general
trend of reputation evaluation moves in that direction but the high majority
rating keeps the assessment inaccurate.

In light of the above experiments, we conclude that using a prediction model,
we can assess the reputation of a service provider fairly accurately even if no
rater feedbacks are present. We have also seen that HMMs have a slight edge
over ANNs in computing service reputations. In contrast, if no prediction model
is used then the reputation values that are assessed are inaccurate.

4 Conclusion and Future Work

We have presented an HMM-based reputation management framework to estab-
lish trust among Web services in situations where rater feedbacks may not be
readily available. We have provided evaluation results for reputation prediction
based on past service provider behavior using both an ANN and an HMM. In the
future, we intend to build upon our proposed reputation management framework.
We would refine the service interaction model to define a reputation model for
composed Web services. Similarly, information dissemination techniques, change
detection and interpretation for both individual and composed services will also
be studied.

References

1. Buchegger, S., Le Boudec, J.-Y.: Performance Analysis of the CONFIDANT Pro-
tocol. In: Proc. of the 3rd ACM Intl. Symposium on Mobile Ad Hoc Networking
and Computing, June 9-11, pp. 226–236 (2002)

2. Cappe, O., Moulines, E., Ryden, T.: Inference in Hidden Markov Models. Springer,
Heidelberg (2005)

590 Z. Malik, I. Akbar, and A. Bouguettaya

3. Delgado, J., Ishii, N.: Memory-Based Weighted-Majority Prediction for Recom-
mender Systems. In: ACM SIGIR 1999 Workshop on Recommender Systems: Al-
gorithms and Evaluation (1999)

4. Huynh, T.D., Jennings, N.R., Shadbolt, N.R.: Certified reputation: how an agent
can trust a stranger. In: AAMAS 2006: Proceedings of the fifth international joint
conference on Autonomous agents and multiagent systems, pp. 1217–1224. ACM
Press, New York (2006)

5. Josang, A., Ismail, R.: The beta reputation system. In: 15th Bled Conference on
Electronic Commerce (June 2002)

6. Josang, A.: A logic for uncertain probabilities. Int. J. Uncertain. Fuzziness Knowl.-
Based Syst. 9(3), 279–311 (2001)

7. MacDonald, I.L., Zucchini, W.: Hidden Markov and Other Models for Discrete-
valued Time Series. Chapman and Hall, Boca Raton (1997)

8. Malik, Z., Bouguettaya, A.: Rater Credibility Assessment in Web Services Interac-
tions. World Wide Web Journal 12(1) (March 2009)

9. Malik, Z., Bouguettaya, A.: Reputation-based Trust Management for Service-
Oriented Environments. VLDB Journal 18(4) (August 2009)

10. Malik, Z., Bouguettaya, A.: Reputation Bootstrapping for Trust Establishment
among Web Services. IEEE Internet Computing 13(1) (January-February 2009)

11. Marti, S., Garcia-Molina, H.: Limited Reputation Sharing in P2P Systems. In:
Proc. of the 5th ACM Conference on Electronic Commerce, New York, NY, USA,
May 2004, pp. 91–101 (2004)

12. Medjahed, B., Bouguettaya, A.: Customized delivery of e-government web services.
IEEE Intelligent Systems 20(6) (November/December 2005)

13. Mui, L., Mohtashemi, M., Halberstadt, A.: A computational model of trust and
reputation. In: Proceedings of the 35th Annual Hawaii International Conference
on System Sciences, January 2002, pp. 2431–2439 (2002)

14. Papazoglou, M.P., Georgakopoulos, D.: Serive-Oriented Computing. Communcica-
tions of the ACM 46(10), 25–65 (2003)

15. Park, S., Liu, L., Pu, C., Srivatsa, M., Zhang, J.: Resilient trust management for
web service integration. In: ICWS 2005: Proceedings of the IEEE International
Conference on Web Services (ICWS 2005), Washington, DC, USA, pp. 499–506.
IEEE Computer Society, Los Alamitos (2005)

16. Rabiner, L.R., Juang, B.H.: An introduction to hidden markov models. IEEE ASSP
Magazine 3(1), 4–16 (1986)

17. Ran, S.: A model for web services discovery with qos. SIGecom Exch. 4(1), 1–10
(2003)

18. Sonnek, J.D., Weissman, J.B.: A quantitative comparison of reputation systems
in the grid. In: The 6th IEEE/ACM International Workshop on Grid Computing,
November 2005, pp. 242–249 (2005)

19. Tennenholtz, M.: Reputation systems: An axiomatic approach. In: AUAI 2004: Pro-
ceedings of the 20th conference on Uncertainty in artificial intelligence, Arlington,
Virginia, United States, pp. 544–551. AUAI Press (2004)

20. Tian, M., Gramm, A., Ritter, H., Schiller, J.: Efficient selection and monitoring of
qos-aware web services with the ws-qos framework. In: International Conference
on Web Intelligence, Washington, DC, USA, pp. 152–158. IEEE Computer Society,
Los Alamitos (2004)

Web Services Reputation Assessment Using a Hidden Markov Model 591

21. Turin, W.: Digital Transmission Systems: Performance Analysis and Modeling.
McGraw-Hill, New York (1998)

22. Udupi, Y.B., Singh, M.P.: Information sharing among autonomous agents in refer-
ral networks systems. In: 6th International Workshop on Agents and Peer-to-Peer
Computing (May 2007)

23. Xiong, L., Liu, L.: PeerTrust: Supporting Reputation-based Trust for Peer-to-
Peer Electronic Communities. IEEE Trans. on Knowledge and Data Engineering
(TKDE) 16(7), 843–857 (2004)

24. Yu, B., Singh, M.P.: An evidential model of distributed reputation management.
In: AAMAS 2002: Proceedings of the first international joint conference on Au-
tonomous agents and multiagent systems, pp. 294–301. ACM Press, New York
(2002)

MC-Cube: Mastering Customizable Compliance
in the Cloud

Tobias Anstett, Dimka Karastoyanova, Frank Leymann, Ralph Mietzner,
Ganna Monakova, Daniel Schleicher, and Steve Strauch

Institute of Architecture of Application Systems, University of Stuttgart, Germany
lastname@iaas.uni-stuttgart.de

Abstract. Outsourcing parts of a company’s processes becomes more
and more important in a globalized, distributed economy. While archi-
tectural styles and technologies such as service-oriented architecture and
Web services facilitate the distribution of business process over several de-
partments, enterprises and countries, these business processes still need
to comply with various regulations. These regulations can be company
regulations, national, or international regulations. When outsourcing IT-
functions, enterprises must ensure that the overall regulations are met.
Therefore they need evidence from their outsourcing partners that sup-
ports the proof of compliance to regulations. Furthermore it must be
possible to enforce the adherence to compliance rules at partners. In this
paper we introduce so-called compliance interfaces that can be used by
customers to subscribe to evidence at a provider and to enforce regula-
tions at a provider. We introduce a general compliance architecture that
allows compliance to be monitored and enforced at services deployed in
any emerging cloud delivery model.

1 Introduction and Motivation

Service-oriented architecture has emerged as the architectural style that allows
to recursively compose services that are run in a distributed fashion on hetero-
geneous infrastructures. Service-oriented systems are often used in conjunction
with business process execution engines to build cross-organizational IT-support
for the business processes in and across enterprises.

With upcoming service delivery models such as infrastructure as a service
(IaaS), platform as a service (PaaS) and software as a service (SaaS) enterprises
can outsource computing and middleware resources to the cloud and use them
“on demand”. This allows enterprises to focus on their core competencies that
may not lie in the acquisition and management of an IT infrastructure. As a con-
sequence from financial and other scandals in the last years, companies are faced
with more and more regulations that they need to obey to. These regulations
range from internal regulations, such as business ethics or sustainability rules to
external regulations, such as privacy laws that need to be obeyed or frameworks
such as BASEL II [3] or SOX [20] that regulate financial transactions.

Many of these regulations mandate enterprises to provide enough evidence to
auditors so that those auditors can judge whether regulations have been obeyed

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 592–606, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

MC-Cube: Mastering Customizable Compliance in the Cloud 593

or violated. In the case of outsourced IT services, the gathering of evidence can be
partially delegated to the outsourcing provider. However, some regulations still
hold an enterprise (or even the CEO of an enterprise) liable even if an outsourcing
provider violated a regulation. Furthermore as complex business processes can be
partially supported by IT systems running at different providers and in the own
data-center, the evidence must later be aggregated to provide a comprehensive
view on the whole business process.

In this paper we deal with cross-organizational business processes that use
services provided at multiple outsourcing providers in multiple delivery models.
In such a setting, compliance to regulations is of utmost importance and has
implications on the IT-infrastructure of both providers and consumers of services.
Thus there is a need to monitor and correct the execution of business processes
after reaching a service-level agreement. Therefore we introduce the notion of a
compliance interface that allows enterprises to gather evidence from providers as
well as enforce rules on these providers. We show that providers must allow their
clients to customize the evidence they provide depending on the regulations the
client has to be compliant with. The approach presented in this paper is very
flexible and does not focus on a certain legal framework. However, specific focus
is paid on outsourcing parts of applications, which must maintain the overall
compliance rules imposed on the whole application.

We introduce a running example in Section 2 that will be used while presenting
the main contributions of the paper. We then describe the requirements and
architecture for a general compliance framework that we gathered from the case
studies in various projects (Section 3). We apply this framework to different
delivery models in Section 4. In Section 5 we then discuss how the compliance
interfaces could be realized. We show a prototypical implementation in Section
6, compare our approach to other approaches in Section 7 and finish with a
conclusion and an outlook to future work that we plan in the field.

2 Running Example

In [2] we investigated how security and trust issues affect the execution of WS-
BPEL [16] processes in the cloud and discussed requirements on the middleware
supporting the execution of WS-BPEL processes in the different cloud delivery
models. In contrast, in this paper we investigate how compliance of business
processes can be ensured during outsourcing.

Therefore we introduce the example of a fictional EU-based company manu-
facturing and shipping drugs named Pharmazon. Figure 1 illustrates a simplified
view on the business process that Pharmazon follows when selling drugs.

Of course the company Pharmazon and its business processes have to com-
ply to several European laws and national laws for example concerning pro-
duction, distribution, advertising and labeling of medical products for human
and veterinary use [6]. For example, Pharmazon must be compliant to direc-
tive 2001/83/EC [21] of the European Parliament and Council, which deals
among other things with the advertising of medicinal products for humans. Their

594 T. Anstett et al.

order received

order accepted

drugs produced

delivery confirmed

order confirmed

order refused

invoice written

received payment

packaged

Pharmazon Shipping
Company

received for shipping

shipped

[not solvent] [solvent]

Solvency Check

if order exceeds
10.000

do 1st solvency check

do 2nd solvency check

[yes]

[no]

[not solvent] [solvent]

Fig. 1. Simplified view on Pharmazon’s business process

business processes also have to be compliant to their own internal regulations.
Examples for such internal rules are: ’Every time an order is received, a solvency
check has to be done. If the amount exceeds e 10.000 a second solvency check
has to be done by a person different from the first one’ or ’Every order has to
be delivered within 24 hours’.

Pharmazon is forced to maintain lower costs to stay competitive. The first
step in reducing cost is to reduce the enormous shipping costs to non Euro-
pean countries by subcontracting pharmaceutical companies in the US and Asia

MC-Cube: Mastering Customizable Compliance in the Cloud 595

Pacific countries. Furthermore parts of the business process such as the above
mentioned solvency check have to be outsourced.

While outsourcing parts of the business (process) it must be ensured that the
outsourcee still complies with the European, national or internal regulations that
formerly were ensured by the company itself. Thus Pharmazon has to have the
possibility to check, whether the outsourcee complies to the given regulations
imposed on Pharmazon’s processes.

In this paper we will use the example with focus on the internal regulations
mentioned above, ensuring that the outsourced solvency check is made as defined
and the cross-cutting business concern of orders delivered within 24 hours is
achieved.

3 Requirements and Resulting Architecture

As mentioned in Section 1 it is required that a specified set of compliance con-
straints is ensured during a business process execution.

Hardware

Middleware

MApplications S EEn

A
En
S
M
E
A

:
:
:
:
:

enforcing service
signaling service
monitoring service
enforcement service
assessment service

Fig. 2. Abstract Compliance Supporting Architecture / Infrastructure

Figure 2 presents an abstract architecture using compliance services to en-
able the control and assessment of compliance. Here the term En is a shortcut
for enforcing service, S for signaling service, M for monitoring service, E for
enforcement service and A for assessment service. The architecture as well as
terms used in this paper are based on the research work [13] in the European
Community’s FP7 project MASTER 1.

In the following each compliance service is described in detail:

Signaling Service: Provides evidence in form of events emitted on action state
changes. An example of an action state can be state ready, denoting that an
action is ready to be executed, state running, denoting that an action is currently
executing or a state completed, denoting that an action was executed. Signaling
services can be implemented at any level of abstraction where events must be

1 http://www.master-fp7.eu

596 T. Anstett et al.

emitted, e.g. at application, platform middleware or hardware level. Logically
they are however related to a certain business process behavior as evidence to
prove the satisfaction of constraints.

Runtime Monitoring Service: Aggregates events based on its situation in-
formation, payload or any other data, which can be resolved using an external
service (such as a database entry lookup or a Web service call). Thus, runtime
monitoring services can also be viewed as complex event processing, for short
CEP [14], services. Depending on the aggregation rules, events may either pro-
vide evidence for a compliant execution of the process or the detection of a
constraint violation.

Enforcement Service: In order to prevent a violation the enforcement service
reacts to an event denoting a possible threat of violation and guides (controls)
the system in such a way that the invalid state (the state, which violates the
constraint) cannot be reached. In case of a detected violation the goal of the
reactive process is to transfer the system from the current invalid state into a
valid one. This can be done through the compensation of the actions, which
caused the invalid state transfer. If such compensation is not possible, other
actions can be taken to minimize the impact of the violation on the business
value. In both cases, an enforcement process is an orchestration of services, which
are able to influence the state of the system. Note that the actual execution of
the services can only be influenced if corresponding enforcement capabilities
are provided by the corresponding middleware. For example a process can be
terminated from the outside only if the engine provides an interface supporting
a terminate operation. A component providing such enforcement capabilities is
in the following called enforcing service.

Assessment Service: Assess the satisfaction of constraints as well as the effec-
tiveness of the implemented enforcement process.

Because compliance concerns may vary between different business processes
an infrastructure realizing the presented architecture has to allow dynamic con-
figuration of its services. Compliance policies allow to describe the configuration
of the compliance services required to monitor and enforce a certain compliance
constraint. The configuration can be divided into the following blocks: i) descrip-
tion of the signals (events) required to monitor the behavior of the system, ii)
description of the monitoring rule (predicate), which allows detection of the vio-
lation or a violation threat, iii) description of the reactive and preventive actions
and iv) description of the assessment function.

When translating compliance regulations to compliance policies, for short do-
ing compliance regulations refinement, the responsible person has to take deci-
sions about the granularity of events, where they occur and where and how they
can be aggregated to express the required semantics. Depending on the capabil-
ities of the underlying execution environment these events can be emitted and
aggregated at different levels. For example an event denoting the read access to
a specific database resource could be emitted by the database using its trigger

MC-Cube: Mastering Customizable Compliance in the Cloud 597

mechanism, by a service that provides an interface to the database functional-
ity or by the business process that initiated the access. Furthermore the required
signaling and runtime monitoring capabilities can be part of the business pro-
cess itself, implemented as internal controls, or provided as compliance services.
Reactions to certain events, e.g. to enforce the satisfaction of constraints, may be
realized by single operation calls or require more complex reactive processes. In
Section 5 we present a concrete example using the running example of Section 2.

4 Refining the General Architecture to Cloud Delivery
Models

One of the biggest challenges of mastering compliance in the cloud is that the
customer is not able to transfer its obligations regarding compliance regulations
to the outsourcing provider. This section discusses the requirements as well as
responsibilities of customer and provider in outsourcing scenarios. We describe
the requirements for the following three categories of delivery models, namely
infrastructure as a service (IaaS), platform as a service (PaaS) and software as
a service (SaaS).

4.1 IaaS

In this delivery model a customer basically rents the required hardware from an
IaaS provider. Like in the traditional on-premise model, he has to take care for
configuring the platform and application on his own. Amazon Elastic Compute
Cloud (Amazon EC2)2 is a prominent example of an infrastructure as a service.
The configuration of the platform includes the installation of operating system,
platform middleware such as database management system (DBMS), enterprise
service bus (ESB) or a BPEL engine, and application. In the following compli-
ance services are considered as a specialized platform middleware. Although only
responsible for providing the hardware the provider may also provide signaling,
monitoring and enforcement capabilities for its hardware. A provider may offer
these compliance services as agreed in the service agreements with the customer.
He may also require compliance services for ensuring his own compliance. E.g. he
has to check that his hardware works as expected and furthermore is not abused
to run illegal software like file sharing servers.

Using IaaS a customer will always trust his own installation and therefore does
not have to worry about the validity of the events generated by this software.

4.2 PaaS

The PaaS model offers both, the infrastructure (hardware) as well as the platform
middleware to deploy applications. The customer neither has to take care for

2 http://aws.amazon.com/ec2/

598 T. Anstett et al.

reserving hardware resources nor for configuring the platform. Google’s App
Engine3 is an example of platform as a service.

In PaaS the customer has to specify his functional and non-functional require-
ments to the provider and the provided infrastructure. While the functional
requirements might for example only specify the need for a certain type of mid-
dleware, the non-functional part includes the specification of the compliance
requirements on the provided middleware or even hardware. For example the
customer might specify that the BPEL engine, which is part of the platform,
must be able to send events about the actual state of process instances. Fur-
thermore the engine must allow to enforce certain actions on process instances
and must therefore provide a specific enforcement interface. If the customer is
for example interested in using monitoring or enforcement services, he has to
provide its configuration using the compliance policies. The provider is in charge
of installing and executing these policies on his middleware in a similar way
he would have to do it when deploying a BPEL process on a BPEL engine.
Thus policies can be considered at the level as BPEL processes, which realize
applications. This allows PaaS providers to offer monitoring, enforcement and
assessment services in a SaaS delivery model. Because signaling and enforcing
services are bound to specific platform middleware they can not be outsourced
independently of that platform middleware.

In contrast to the IaaS model, the provider may not be able to offer all the
required information or services to the customer or even may decide to offer
only a limited subset of information he could generate for use by its customers.
Thus the customer is constrained to the offered granularity and semantics of
the provided events as well as monitoring and enforcement capabilities of the
provider.

One of the main deficiencies of using PaaS in this context is the perceived lack
of trust, that events provided to the customer are authentic. Because everything
except the business process model and its explicitly generated events are hosted,
the customer must trust his provider. There are several ways to increase the
trust level. On the one hand the trust level could be increased by applying more
complex monitoring rules, which execute additional checks on the middleware or
even hardware event level. On the other hand there is need for a compliance cer-
tification agency to increase trust and allow chains of trust similar to Verisign’s4

role and functionality in the Internet. Certification agencies might base their cer-
tificates on audits of the assured compliance, refined compliance policies and the
implementation of compliance services. This also leads to the need for trusted
middleware.

4.3 SaaS

Software as a service provides different customers the functionality of an appli-
cation that is completely hosted in the cloud. The user does not have to worry
about the required infrastructure or setting up and configuring the platform.
3 http://appengine.google.com
4 http://www.verisign.com

MC-Cube: Mastering Customizable Compliance in the Cloud 599

When recalling the presented compliance architecture, which is mainly based
on the presence of signaling services to provide evidence, the concept of variabil-
ity becomes very important not only for SaaS but also for the other delivery
models. The set of supported events must be made available to the user at each
level of abstraction. These abstraction levels should support but not be limited to
the categorization used throughout this paper, namely hardware, platform mid-
dleware and application, but also introduce more convenient perspectives such
as resources, actions and states. Based on a the provided compliance capabilities
the customer should be able to define the compliance policies.

5 Technical Architecture

In this section we discuss how the signaling and enforcement capabilities can
be described. For this purpose we extend the model described in [5], which is
based on relations between actions, resources, services and events. As motivated
in Section 1 and discussed in Section 3 the customer requires evidence of the
behavior of the actual executed business process. This behavior is defined by
the set of actions being executed and their ordering relations. Thus the behavior
can be represented by and reconstructed from event traces [1] [23] [22]. An event
basically represents a specific execution state of the process or an action within
the process and contains additional payload information such as resources.

The description of the signaling capabilities contains the following information:

– actions the service performs
– states an action supports, e.g. [7] describes the states BPEL activities sup-

port
– resources the service uses
– events emitted on action state change
– resource/information an event may contain
– event properties such as event timestamps

The description of the enforcement capabilities contains the following
information:

– enforcement actions the service performs. The enforcement actions are spe-
cific actions, which can be used to influence the service execution.

– resources on which the enforcement action is performed
– end point reference (EPR) of the enforcement action to enable action invo-

cation

Figure 3 illustrates the model for describing signaling and enforcement capabil-
ities. The relation onState is an abstract relation, which can be subtyped with
the relations onStarted, onRunning, onFaulted, onTerminated, onCompleted, de-
pending on the states the corresponding action supports. Note that because an
enforcement action is a subtype of the general action concept, events also can be
emitted on the state changes of the enforcement action. Note also that because

600 T. Anstett et al.

Action

Resource

Event

on

onState

properties

SupportedStates

contains

Service

performs

emits

uses

subtypeOf

Enforcement
Action

offers Human
Service

EPR

Fig. 3. Signaling and Enforcement Model

action is a subtype of a resource, an enforcement action can be executed on an-
other action, e.g. an enforcement action block can be executed on action check.
A signaling policy is a serialization of the events of a concrete instance of this
model. An enforcement policy is a serialization of all actions of type Enforcemen-
tAction. If both customer and provider specify their requirements/capabilities
using the same model with domain specific actions and resources, two signaling
as well as enforcement policies can be matched using policy matching algorithms
(for example that of WS-Policy [25]) to determine if the service provider provides
sufficient evidence and actions for external control.

As described in Section 2 Pharmazon decided to outsource the solvency check
part of its business process. To be compliant with internal regulations, Pharma-
zon wants to ensure that the check action is performed twice in case the order
exceeds e 10.000 and that these check operations are performed by different per-
sons. Thus, Pharmazon requires events every time a check action was executed,
denoting the completion of this action, on action state completed, containing in-
formation about the person who executed this action. Figure 4 shows an example
of a solvency check process signaling and enforcement description offered by an
SaaS provider.

Note, that this model does not describe the structure of the solvency check
process. The provider can in addition describe the structure of the process using
existing standards, such as abstract BPEL [16].

In general there are two options to bind to a service: i) dynamic binding and
ii) static binding. Dynamic binding as defined in [25] is based on the operations
publish, find and bind. A service requestor finds a service by providing its re-
quirements to the discovery facility, which is responsible for matching service
descriptions as well as policies. If a service matching the required capabilities is
found, the service requestor binds itself to the service to use it. Because the cus-
tomer also has to subscribe to the events he described within his signaling policy
the bind step has to include the subscription to the events using the compliance
interface offered by the provider. A compliance interface has to provide the fol-
lowing operations, which could be implicitly contained in the service description
(WSDL [25]) or offered as a standalone service:

MC-Cube: Mastering Customizable Compliance in the Cloud 601

Check
<Action>

CustomerInfo
<Resource>

on

onStart

timestamp

{Started, Completed}

containsInfo

performs

emits

uses

performsonComplete

CheckCompleted
<Event>

timestamp
uses

CheckStarted
<Event>

containsInfo Redo
<EnforcementAction>

offers

Worker
<HumanService>

on

SolvencyCheck
<Service>

EPR1

Fig. 4. Signaling capabilities of the service provider

– getSignalingCapabilities(service) returns the signaling policy for the specified
service

– getEnforcementCapabilities(service) returns the enforcement policy for the
specified service

– subscribeTo(service, event) subscribes to a specific event of the service

Static binding assumes that a suitable service was already found and only the
subscription to signaling events has to be done manually. For example a SaaS
provider could offer a graphical user interface to describe an abstract view on
the business process including signaling and enforcement capabilities available
for this process. The customer can use the offered tooling to select the events he
wants to subscribe to and the provider automatically performs the subscription
in the background. Especially in SaaS delivery models this approach might be
interesting because providers already allow customers to customize the provided
business processes using variability descriptors [15].

However, which of the discussed approaches is used, the events, a customer
has subscribed to, have to be monitored to provide evidence for a compliant ex-
ecution of the process or the detection of a constraint violation. In Pharmazon’s
case it has to be ensured that every time an order exceeds e 10.000 two check
operations are performed by different persons.

Using the provided description of the signaling capabilities, the monitoring
rule for the seperation of duties (SoD) objective can be specified as follows:

∀r ∈ SolvencyCheck ∃e1, e2 ∈ CheckCompleted :

(e1.pid = r.pid) ∧ (e2.pid = r.pid) ∧ (e1 �= e2) ∧ (e1.Worker �= e2.Worker)

where pid denotes the id of the current process instance run. This rule states
that at least two different events of type CheckCompleted should be available
for every run of the SolvencyCheck service. This implies that the action Check
must be performed at least twice for every process run. In addition, the above

602 T. Anstett et al.

condition requires the two actions being executed by different workers. In our
case this rule must only be fulfilled if the order amount exceeds e 10.000. Because
the order sum is not directly available from the event payload of the provided
events, this information has to be extracted on the customer’s side before the
solvency check service is invoked. Assuming that an additional event e3 of type
SolvencyCheckInvoked containing order sum and the process ID is sent to the
monitoring component by the Pharmazon process before the solvency check is
invoked, the above rule can be rewritten as follows:

∀e3∈SolvencyCheckInvoked(e3.sum > 10.000) → ∃e1, e2 ∈ CheckCompleted :

e1.pid = e3.pid ∧ e2.pid = e3.pid ∧ (e1 �= e2) ∧ (e1.Worker �= e2.Worker)

If the separation of duties criteria was not met by the provider, Pharmazon can
for example enforce the compliance of its process by invoking a reactive process,
which enforces a redo on one of the check activities.

If the outsourcing provider always executes the check operation twice and the
check operations are performed by different persons, then the monitoring rule
is not violated. Because checking things twice may take significant longer than
not doing so, Pharmazon’s business process has to wait longer for the reply of
solvency checks made for orders less than e 10.000. Because Pharmazon has to
be also compliant to its internal regulation Every order has to be delivered within
24 hours this might not be applicable. Thus another monitoring policy is needed
to express the relation between the order volume, time available and checks to be
performed. This policy could trigger an enforcement process, which either skips
the activity waiting for the result of the solvency check if the order is less than
e 10.000, and the first check evaluated to true, or changes the shipping partner
or method to a faster one depending on the time left.

6 Implementation Aspects

In this section we show a prototype, which fulfills the requirements of Section 3
and can be used to implement the described architecture.

We extended the Apache ODE BPEL engine5 with the capability of sending
events to the outside. Apache ODE supports BPEL 2.0 process models.

Figure 5 shows where the BPEL engine is placed in a compliance supporting
architecture. It also shows the signaling service (S) and the enforcing service
(En), which are part of the engine. The enforcing service provides operations to
for example influence the running processes on the engine.

During the execution of a process the BPEL engine produces many events and
stores them in an internal database called the audit trail. These events can be
used to check compliance concerns. In order to fulfill the requirement of emitting
events to the outside, the engine has been extended with two Web services.
The first one is a publish-subscribe Web service, which provides operations to

5 http://ode.apache.org

MC-Cube: Mastering Customizable Compliance in the Cloud 603

Hardware

Apache Ode

BPEL Process

SaaS

PaaS

IaaS

En S

En
S
M

:
:
:

enforcing service
signaling service
monitoring serviceM

Events

Audit trail

Fig. 5. Placement of BPEL engine in a compliance supporting architecture

subscribe to certain events occurring during process execution. For technical
details of the subscription mechanism we refer to [24]. The second Web service is
a signaling Web service. It sends the events as SOAP messages to the subscribers.
These events are based on the common base event model proposed by IBM6. This
model for example comprises information of the service, which sent a certain
event and in what situation it was sent.

In [7] a static event model for BPEL is proposed. In this context static means,
that every activity has a static set of events and one could subscribe to all
events at any time. There is no way of constraining the events, which are visible
outside of the BPEL engine. This document also contains definitions of all events,
which can be emitted during execution of a BPEL activity. This is useful for
subscriptions to certain events of a particular activity.

To process the events emitted by a BPEL engine a monitoring service (M)
could for example subscribe to certain events to check the validity of the running
processes in the BPEL engine. If a violation has occurred a new event can be
issued to a so called enforcement service. The enforcement service then could
carry out reactive actions in order to respond to compliance violations. Actions,
which react to a compliance violation, can for example stop the business pro-
cess running in the domain of the business partner. Such actions could also be
modeled in a business process. This process is then called a reactive process.

The life cycle management operations, ODE provides, can be used as en-
forcement capabilities. ODE is capable of pausing, resuming, terminating, and
deleting of process instances. So this prototype can be used as an enforcement
component specified in Section 3. The engine is also capable of blocking a process
instance when a certain event has occurred. This is in some cases useful when a
decision has to be made before the process could continue.

For example, if someone has placed an order to buy drugs from Pharmazon
exceeding the price of e 100.000 the process will be blocked and an event will be
emitted notifying the enforcement service. The engine then can be unblocked by
the enforcement by invoking a reactive process, which then takes the necessary
actions to unblock the process.

6 http://www.ibm.com/developerworks/library/specification/ws-cbe/

604 T. Anstett et al.

7 Related Work

Outsourcing is a technique used in process re-engineering in order to optimize or
improve business processes in terms of optimization according to different crite-
ria. Additionally it can be used as a mechanism for adapting business processes.
The outsourcing of applications can be implemented using different techniques,
which depend on the paradigms and technology used for implementing these
applications. One of the approaches used to enable outsourcing of processes is
process splitting. In the field of Web services compositions approaches have been
created for outsourcing service compositions in order to optimize the processes
they implement with respect to organizational resources or infrastructure per-
formance. E.g. the approach in [11] enables splitting of BPEL processes into so-
called partitions, which can be run as stand-alone processes on different BPEL
engines at different locations/organizations in such a manner that the overall
semantics of the original business process is maintained. The work in [4] reports
on another approach for splitting service compositions in an optimal manner
according to criteria like execution time, response time, cost etc. The approach
allows for splitting a composition in the so-called strata and is based on the con-
cept of stratified transactions, while the communication among strata is enabled
via a queuing infrastructure (MOM in general). This approach views a service
composition as a transaction and all the tasks of a composition - as nested trans-
actions. The resulting stratified compositions maintain the original logic but
improve its performance. The work introduces several algorithms for optimal
stratification of service compositions. Multiple coordination protocols for parti-
tioned/split processes exist and they are dependent on the approach used for
the splitting. Worth mentioning are the WS-BA [17], which is a part of the WS
protocol stack; for the above mentioned approaches there are corresponding co-
ordination protocols based on either WS-Coordination Infrastructure [12] or on
other coordination mechanisms. To enable the communication among the parts
of a global process that run at different locations and hence be able to coordinate
these partitions/fragments each service composition engine needs to provide in-
formation about events related to the life-cycle of process instances. Usually, an
engine implements an event model, which is used to publish information for the
purposes of monitoring; this has been used for enabling monitoring [9], adapta-
tion [15] [8] [9] and a framework for coordination of service compositions [10].
These are all examples of the use of the events published by the engine, based on
an event model. The existence of such an model is crucial also for enabling the
outsourcing of parts of service-based applications and enabling their compliance.
Compliance to a global process logic in the area of process splitting has been
enabled by design in the approaches presented in [11] and [4]. Compliance of
processes to a process model has been enabled by the work of [18] for the case of
adaptation by means of model evolution. The difference with respect to the sub-
ject of compliance between this approach and the one we present here is that our
approach focuses on ensuring compliance of process instances, whereas the ap-
proach of [19] enables the compliance or correctness of adaptation/modifications
on the process model level only.

MC-Cube: Mastering Customizable Compliance in the Cloud 605

8 Conclusion and Future Work

In this paper we presented MC-Cube, an approach to deal with compliance re-
quirements in cross-organizational applications build upon a service-oriented ar-
chitecture. We introduced compliance interfaces as a means to allow subscribers
of services to customize the evidence they need from a provider. On the other
hand when enforcing compliance at an oursourcing provider the enforcement part
of the compliance interface can be used. We introduced a general architecture
for outsourcing and compliance and mapped this infrastructure to different de-
livery models such as IaaS, PaaS and SaaS. We described a prototype that shows
how the presented concepts can be applied to a BPEL engine that can then be
used at providers to offer customizable compliance to their customers. In future
work we will extend this work to describe how suitable services that offer the
required compliance can be automatically discovered. We will also investigate in
detail how changes to compliance requirements will affect running applications
and how this affects the underlying middleware (such as BPEL engines).

Acknowledgments

The work published in this article has partially received funding from the Euro-
pean Community’s 7th Framework Programme Information Society Technologies
Objective under the COMPAS project7 contract no. FP7-215175, the MASTER
project8 contract no. FP7-216917 and under the Network of Excellence S-Cube9

contract no. FP7-215483.

References

1. Agrawal, R., Gunopulos, D., Leymann, F.: Mining Process Models from Workflow
Logs. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS,
vol. 1377, p. 469. Springer, Heidelberg (1998)

2. Anstett, T., Leymann, F., Mietzner, R., Strauch, S.: Towards BPEL in the Cloud:
Exploiting Different Delivery Models for the Execution of Business Processes. In:
IWCS 2009 (2009)

3. Basel Committee on Banking Supervision. International Convergence of Capital
Measurement and Capital Standards (2006)

4. Danylevych, O., Karastoyanova, D., Leymann, F.: Optimal Stratification of Trans-
actions. In: ICWS 2009 (2009)

5. Flegel, U., Kerschbaum, F., Miseldine, P., Monakova, G., Wacker, R., Leymann, F.:
Insider Threats in Cybersecurity - And Beyond. Springer, Heidelberg (to appear,
2009)

6. Gordon, J.W., Appelbe, E.: Dale and Appelbe’s pharmacy law and ethics. Phar-
maceutical Press (2005)

7 http://www.compas-ict.eu
8 http://www.master-fp7.eu
9 http://www.s-cube-network.eu

606 T. Anstett et al.

7. Karastoyanova, D., Khalaf, R., Schroth, R., Paluszek, M., Leymann, F.: BPEL
Event Model. Technical Report Computer Science 2006/10

8. Karastoyanova, D., Leymann, F.: BPEL’n’Aspects: Adapting Service Orchestration
Logic. In: ICWS 2009 (2009)

9. Karastoyanova, D., Leymann, F., Nitzsche, J., Wetzstein, B., Wutke, D.: Parame-
terized BPEL Processes: Concepts and Implementation. In: IWCS 2009 (2009)

10. Khalaf, R., Karastoyanova, D., Leymann, F.: Pluggable Framework for Enabling
the Execution of Extended BPEL Behavior. In: WESOA 2007 (2007)

11. Khalaf, R., Leymann, F.: A Role-based Decomposition of Business Processes using
BPEL. In: ICWS 2006 (2006)

12. Khalaf, R., Leymann, F.: Coordination Protocols for Split BPEL Loops and Scopes.
Technical Report Computer Science 2007/01

13. Lotz, V., Pigout, E., Fischer, P.M., Kossmann, D., Massacci, F., Pretschner, A.:
Towards Systematic Achievement of Compliance in Service-Oriented Architectures:
The MASTER Approach. Wirtschaftsinformatik (2008)

14. Luckham, D.: The Power of Events: An Introduction to Complex Event Processing
in Distributed Enterprise Systems. Addison-Wesley Longman, Amsterdam (2002)

15. Mietzner, R., Leymann, F.: Generation of BPEL Customization Processes for SaaS
Applications from Variability Descriptors. In: IEEE SCC (2008)

16. OASIS. Web Services Business Process Execution Language Version 2.0 – OASIS
Standard (2007)

17. OASIS. Web Services Business Activity (WS-BusinessActivity) Version 1.2 – OA-
SIS Standard (2009)

18. Reichert, M., Dadam, P.: ADEPT flex - Supporting Dynamic Changes of Workflows
Without Loosing Control. Journal of Intelligent Information Systems (1998)

19. Reichert, M.U., Rinderle, S.B.: On Design Principles for Realizing Adaptive Service
Flows with BPEL. In: EMISA 2006 (2006)

20. Sarbanes, P., Oxley, M.: Sarbanes-Oxley Act of 2002. The Public Company Ac-
counting Reform and Investor Protection Act. Washington DC: US Congress (2002)

21. The European Parliament and the Council of the European Union. Directive
2001/83/EC of the European Parliament and the Council. Official Journal of the
European Communities 311 (2001)

22. van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G.,
Weijters, A.J.M.M.: Workflow mining: A survey of issues and approaches. Data
Knowl. Eng. (2003)

23. van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow Mining: Dis-
covering Process Models from Event Logs. IEEE Transactions on Knowledge and
Data Engineering (2004)

24. van Lessen, T., Leymann, F., Mietzner, R., Nitzsche, J., Schleicher, D.: A Manage-
ment Framework for WS-BPEL. In: ECOWS 2008 (2008)

25. Weerawarana, S., Curbera, F., Leymann, F., Storey, T., Ferguson, D.F.: Web
Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-
BPEL, WS-Reliable Messaging, and More. Prentice Hall PTR, Englewood Cliffs
(2005)

Another Approach to Service Instance Migration

Nannette Liske1, Niels Lohmann2, Christian Stahl3, and Karsten Wolf2

1 Humboldt-Universtität zu Berlin, Institut für Informatik,
Unter den Linden 6, 10099 Berlin, Germany

2 Universität Rostock, Institut für Informatik, 18051 Rostock, Germany
{niels.lohmann,karsten.wolf}@uni-rostock.de

3 Department of Mathematics and Computer Science, Technische Universiteit
Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

c.stahl@tue.nl

Abstract. Services change over time, be it for internal improvements,
be it for external requirements such as new legal regulations. For long
running services, it may even be necessary to change a service while
instances are actually running and interacting with other services. This
problem is referred to as instance migration. We present a novel approach
to the behavioral (service protocol) aspects of instance migration. We
apply techniques for finitely characterizing the set of all correctly inter-
acting partners to a given service. The approach assures that migration
does not introduce behavioral problems with any running partner of the
original service. Our technique scales up to services with thousands of
states, including models of real WS-BPEL processes.

1 Introduction

Service-oriented computing aims at creating complex systems by composing less
complex systems called services. A service interacts with an environment consist-
ing of other services. Such a complex system is subject to changes. To this end,
individual services are substituted by other services. This becomes particularly
challenging as services rely on each other and often nobody oversees the overall
system—for example, if the individual services belong to different enterprises.

As a service is stateful rather than stateless, its exposed operations have to be
invoked in a particular order, described by its business protocol. Throughout this
paper we restrict ourselves to business protocol changes [1]; that is, we assume
that nonfunctional properties (e.g., policies, quality of services) and semantical
properties are not violated when changing a service Sold to a service Snew .

In our previous work we presented a procedure to decide for given services
Sold and Snew whether Snew can substitute Sold [2]. The approach ensures that
every service S that interacts properly with Sold also interacts properly with
Snew . A properly interacting service is called a partner. In [3], we have applied
these techniques to WS-BPEL processes.

However, this approach only covers the static and not the dynamic business
protocol evolution. A service has running instances. In case a service is long

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 607–621, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

608 N. Liske et al.

running (e.g., an insurance), it is not feasible to wait until a running instance has
terminated. Instead, instances have to be migrated to the new service definition.
In this paper, we extend our previous work towards instance migration.

Given a running instance in a state qold of Sold , instance migration is the task
of finding some state qnew of Snew such that resuming the execution in state qnew

does not affect any partner of Sold . We call the transition from qold to qnew a
jumper transition. Clearly, not for every state qold may exist a jumper transition
to a state qnew . Sometimes it might be necessary to continue the instance on
Sold until a state is reached, where a migration is then possible. As a service may
have arbitrary many running instances, we do not calculate suitable jumper
transitions for each individual instance, but calculate them independently of
actually running instances.

A jumper transition models that an engine is stopped, an instance is frozen
and migrated to the new service definition. As our approach only guarantees be-
havioral correctness, a jumper transition may later disqualify for other reasons;
for example, it may violate a data dependency or domain-specific restrictions.
Hence, the set of jumper transitions can be seen as a safe overapproximation of
possibilities to migrate an instance. That means, any additional jumper transi-
tion can introduce behavioral problems such as deadlocks in the interaction with
some partner of Sold .

The contribution of this paper can be summarized as follows. We present an
algorithm to compute the maximal set of jumper transitions. An implementa-
tion of this algorithm justifies the applicability of our approach to real-world
WS-BPEL processes. In contrast to most existing approaches we assume an
asynchronous communication model for services, because services are intended
to communicate asynchronously rather than synchronously [4]; furthermore, we
do not put restrictions on the structure of Sold and Snew and the way they are
changed. We only require that every partner of Sold is a partner of Snew .

The necessary background from our previous work is introduced in Sect. 2. In
Sect. 3, we formalize the problem of instance migration in terms of the introduced
concepts. Our actual approach to migration is explained in Sect. 4. In Sect. 5,
we report on an implementation and a case study. We compare our contribution
to related work in Sect. 6 and, finally, we conclude the paper in Sect. 7.

2 Behavior of Services

We model a service as a service automaton. This model reflects the control flow
and the business protocol while abstracting from semantics and nonfunctional
properties. To a limited degree, data aspects may be coded within the states of
a service automaton.

Definition 1 (Service automaton). A service automaton S = [Cin, Cout, Q,
q0, δ, Ω] consists of two disjoint sets Cin of inbound message channels and Cout

of outbound message channels, a set of states Q including an initial state q0
and a set of final states Ω, and a nondeterministic labeled transition relation
δ ⊆ Q× (Cin ∪ Cout ∪ {τ}) ×Q.

Another Approach to Service Instance Migration 609

?b

!a

?c

2

1

3

(a) SA

?c?b

!a

?c

4

5

6 7

(b) SB

?a

!c

8

9

10

(c) SC

[1, 8, []]

[2, 8, [a]]

[1, 9, [c]] [1, 9, []]

[2, 9, [a, c]]

[2, 10, []]

[2, 10, [c]]
τ

τ

τ

τ

τ

τ

τ

τ

(d) SA ⊕ SC

[4, 8, []]

[5, 8, [a]]

[4, 9, [c]]

[5, 9, [a, c]]

[7, 9, []]

[5, 10, [c]]

[6, 9, [a]]

[6, 10, []]
τ

τ

τ

τ

τ

τ

τ

τ

τ

(e) SB ⊕ SC

Fig. 1. Running example: service automata and their composition

We shall use indices for distinguishing the ingredients of different service au-
tomata. Cin and Cout establish the interface of S. Messages can be received
from inbound channels and sent to outbound channels. In figures, we represent
the interface implicitly by appending the symbol “?” to inbound channels and
the symbol “!” to outbound channels. A transition with a label a ∈ Cin re-
ceives a message from channel a. It is blocked if no message is available in the
channel. A transition with a label b ∈ Cout sends a message to channel b. We
assume asynchronous communication, so sending transitions are never blocked.
A transition with label τ (τ /∈ (Cin ∪ Cout)) represents any internal (i.e., non-
communicating) activity. We shall write q

x−→S q′ for [q, x, q′] ∈ δ. Final states
symbolize a successful completion of a service execution.
Example. As a running example, consider the service automata in Figs. 1(a)–(c).
We use the standard graphical notations for automata and denote initial states
by an inbound arrow and final states by double circles.
The interaction between services is defined through the concept of composition.
For formalizing composition, we need to introduce multisets. A multiset is similar
to a set, but permits multiple occurrences of elements. Formally, the number of
occurrences of an element is represented as a mapping into the set IN of natural
numbers (including 0).

Definition 2 (Multiset). A multiset A ranging over a set M is a mapping
A : M → IN. Multiset A + B is defined by (A + B)(x) = A(x) + B(x), for all
x. A singleton multiset, written [x] means x = 1 and [x](y) = 0, for y �= x.
The empty multiset [] assigns 0 to all arguments. Let Bags(M) be the set of all
multisets ranging over set M .

In the definition of composition, we use multisets in particular for representing
the messages that are pending in channels. If, for some channel a, M(a) = k,
then k messages are pending in channel a. Using multisets instead of queues,
we assume asynchronous communication in which messages may overtake each
other.

Definition 3 (Composition). Services S1 and S2 are composable if Cin1 =
Cout2 and Cout1 = Cin2 . For composable services S1 and S2, the composition
Sc = S1 ⊕ S2 is the transition system (i.e., a service automaton with empty

610 N. Liske et al.

interface) S where Qc = Q1 × Bags(Cin1 ∪ Cin2) ×Q2, q0c = [q01, [], q02], Ωc =
Ω1 × {[]} ×Ω2, and the transition relation δc is determined as follows:

send: If x ∈ Cout1 , q1
x−→S1 q′1, q2 ∈ Q2, and M ∈ Bags(Cin1 ∪ Cin2), then

[q1,M, q2]
τ−→Sc [q′1,M + [x], q2]. Sending by S2 is treated analogously.

receive: If x ∈ Cin1 , q1
x−→S1 q′1, q2 ∈ Q2, and M ∈ Bags(Cin1 ∪ Cin2), then

[q1,M + [x], q2]
τ−→Sc [q′1,M, q2]. Receiving by S2 is treated analogously.

internal: If q1
τ−→S1 q′1, q2 ∈ Q2, and M ∈ Bags(Cin1 ∪ Cin2), then

[q1,M, q2]
τ−→Sc [q′1,M, q2]. Internal transitions in S2 are treated analogously.

Example (cont.). The service automata SA and SC as well as SB and SC are
composable (we assume all three services have three channels a, b, and c). Fig-
ures 1(d)–(e) depict the respective compositions.
Of course, only states reachable from the initial state are relevant. Using the
notion of composition, we may define our correctness notion. We call an interac-
tion correct if no bad states are reached in the composed system. We distinguish
two kinds of bad states: deadlocks and overfull message channels. A deadlock is
a non-final state where no transition is enabled. An overfull message channel is
a state where some message channel contains more than k messages, for some
given value k. As we treat the particular value of k as a parameter, we actually
talk about k-correctness.

Definition 4 (k-correctness, k-partners). Let k > 0 be a natural number.
The interaction between composable services S1 and S2 is called k-correct if the
composed system S1 ⊕ S2 enables at least one transition in every non-final state
q ∈ QS1⊕S2 \ ΩS1⊕S2 , and, for all states [q1,M, q2] reachable from q0S1⊕S2

and
all message channels x, M(x) ≤ k. If the interaction between S1 and S2 is k-
correct, we call S1 a k-partner of S2, and we call S2 a k-partner of S1. We write
k-Partners(S) for the set of all k-partners of S.

Example (cont.). The composition SA⊕SC contains two bad states (shaded gray).
In contrast, the composition SB⊕SC does not contain any bad state, and in every
reachable state at most one message is pending on each channel. Hence, SB and
SC are 1-partners.

Treating overfull message channels as bad states has the advantage that a com-
posed system has only finitely many reachable good states. This is essential for
our approach. Besides, a crowded channel may indeed indicate a problem in the
mutual interaction. In the real WS-BPEL processes we have analyzed so far, there
is hardly any process in which more than a single message pending on a channel
made sense. In practice, the value of k may stem from capacity considerations on
the channels, from static analysis of the message transfer, or be chosen just suffi-
ciently large. In the sequel, we shall assume that one particular value of k is fixed
and we shall use the terms correct and partner without the preceding k.

In previous work, we were able to show that the (usually infinite) set
Partners(S) can actually be finitely characterized. We provided an algorithm
[5] and a tool for computing that characterization. The characterization exploits

Another Approach to Service Instance Migration 611

the fact that the set Partners(S) actually contains a top element in the simu-
lation preorder (i.e., it can exhibit all behavior that any service in Partners(S)
may exhibit).

Definition 5 (Simulation, most-permissive partner). Let S1 and S2 be
services with the same interface. A relation & ⊆ Q1×Q2 is a simulation relation
iff the following conditions are satisfied:

Base: [q01, q02] ∈ &;
Step: If [q1, q2] ∈ & and, for some x, [q1, x, q′1] ∈ δ1 then there exists a state q′2

such that [q2, x, q′2] ∈ δ2 and [q′1, q
′
2] ∈ &.

If there exists such a simulation relation, we say that S2 simulates S1. An element
S∗ ∈ Partners(S) is called most-permissive partner of S iff S∗ simulates all
elements of Partners(S).

In [6], we showed that a (not necessarily unique) most-permissive partner exists
for every service S unless Partners(S) = ∅.

A simulation relation shows that the behavior of every partner of S is embed-
ded in the behavior of a most-permissive partner. Hence, our finite characteriza-
tion of all partners of S extends a most-permissive partner with Boolean anno-
tations. They determine which embedded behaviors of the used most-permissive
partner are actually in the set Partners(S). The formulas constrain the outgoing
edges from states as well as the set of final states.

Definition 6 (Annotated automaton, matching). An annotated automa-
ton A = [SA, φ] consists of a service automaton SA and a mapping φ that assigns
to each state of SA a Boolean formula. The formulas use propositions from the
set CinA ∪ CoutA ∪ {τ,final}.
A service automaton S matches with A if it uses the same interface as SA and
there is a simulation relation & ⊆ QS ×QSA such that, for all [q, q′] ∈ &, formula
φ(q′) is satisfied under the following assignment. Proposition x is true if there
exists a state q1 with q

x−→S q1. Proposition final is true if q ∈ ΩS .
With Match(A), we denote the set of all services that match with A.

The main result of [5] is:

Proposition 1 (Operating guidelines). For every service S with
Partners(S) �= ∅, there exists an annotated automaton A = [SA, φ] (called op-
erating guidelines of S or OG(S)) such that SA is a particular most-permissive
partner of S, subsequently referred to as MPP(S), and Partners(S) = Match(A).

The most-permissive partner MPP(S) used as the underlying structure of operat-
ing guidelines has two important structural properties. First, it is deterministic
(i.e., transitions leaving a state have different labels) no matter whether the
service S is deterministic or nondeterministic. This fact makes the search for
simulation relations rather efficient. Second, there exist transitions [q, τ, q] in
every state. We are going to use this fact as an argument in subsequent proofs.

612 N. Liske et al.

?a !b

A

B C

D

!b ?a
φ(A) = !b ∨ ?a

φ(B) = ?a

φ(C) = !b

φ(D) = final

(a) OG(SA)

?a

!b
?a

!c

?a
!b!c

E

F G H

I J

φ(E) = !c ∨ ?a ∨ !b

φ(F) = ?a ∧ final
φ(G) = !c ∨ !b
φ(H) = ?a
φ(I) = final
φ(J) = final

(b) OG(SB)

?a

!b
?a

!c

?a
!b!c

E

F G H

I J

?a

!c

8

9

10

�

�

�

(c) matching SC with OG(SB)

Fig. 2. Running example: operating guidelines and matching

Example (cont.). The operating guidelines of SA and SB (cf. Fig. 1) are depicted
in Figs. 2(a)–(b). To increase legibility, we refrained from showing the τ -loops.
The formula φ(A) = !b∨?a can be interpreted as a partner must send a message
to channel b or receive a message from channel a; φ(F) = ?a ∧ final means that
a partner must be in a final state, but still be able to receive a message from
channel a. For the ease of presentation we also do not show the τ -disjunct in each
annotation. For example, φ(F) is φ(F) = (?a ∧ final) ∨ τ ; that is, a partner may
also execute an internal step. As SC is a partner of SB, it matches with OG(SB).
The simulation relation & is depicted in Fig. 2(c). It can be easily verified that
the formulas are also satisfied. As SC is not a partner of SA, there is no matching
between SC and OG(SA).

We have already described a number of applications of operating guidelines to
problems related to service behavior, including test case generation [7], service
correction [8], and service transformation [3]. One that we actually shall apply
subsequently is related to substitutability (i.e., static business protocol evolution).
Informally, substitutability states that every service that interacts correctly with
S1 will also interact correctly with S2. This means that S1 can be safely substi-
tuted by S2 (this time assuming that there are no running instances).

Definition 7 (Substitutability). Service S1 is substitutable with service S2
if Partners(S1) ⊆ Partners(S2).

Substitutability (which is an inclusion between infinite sets) can be checked using
operating guidelines [2]. We need to check a simulation relation and implications
between annotations:

Proposition 2 (Checking substitutability). Let S1 and S2 be services with
the same interface, Partners(S1) �= ∅, and Partners(S2) �= ∅. Let OG(S1) =
[MPP(S1), φ1] and OG(S2) = [MPP (S2), φ2] be the corresponding operating
guidelines. Then S1 is substitutable with S2 if and only if there is a simula-
tion relation & ⊆ QMPP(S1)×QMPP(S2) such that, for all [q1, q2] ∈ &, the formula
(φ(q1) =⇒ φ(q2)) is a tautology (i.e., true in all assignments).

Implementations of all techniques referred to in this section are available at
http://www.service-technology.org/tools.

http://www.service-technology.org/tools

Another Approach to Service Instance Migration 613

Example (cont.). By checking Proposition 2, we can verify that Partners(SA) ⊆
Partners(SB); that is, SA is substitutable with SB. As we saw earlier, the converse
does not hold, because SC /∈ Partners(SA) (cf. Fig. 1(d)).

3 Formalization of Instance Migration

Assume throughout this section that we want to migrate an instance of a service
Sold to an instance of Snew . We generally assume that Sold and Snew have the
same interface. Furthermore we require that Sold is substitutable with Snew .
The assumption of substitutability is reasonable as it allows us immediately to
migrate an instance of Sold being in its initial state to an instance of Snew

being in its initial state. Furthermore, substitutability in connection with the
assumption S ∈ Partners(Sold) gives us S ∈ Partners(Snew) which is also a
desirable property.

An actual migration can be modeled as an internal transition from a state
qold of service Sold into a state qnew of service Snew . We call such a transition
jumper transition. This kind of modeling abstracts from technical details like the
process of freezing Sold (with all its parallel threads) in some intermediate state,
transferring data to the new service and finally to start Snew in some non-initial
state. In this sense, our approach considers behavior in isolation and abstracts
from other aspects which are indeed relevant for instance migration.

Formally, we are not just interested in one particular jumper transition. In-
stead, we would like to find all feasible jumper transitions. That is, we aim at
the calculation of a largest possible set J ⊆ Qold ×Qnew of jumper transitions.
This way, a single calculation of J may help in migrating all running instances
of Sold regardless of how far the execution of instances has progressed.

It is worth mentioning that there may be states of Sold for which there is no
corresponding state in Snew . In such a state, migration is not possible. Instead
it is necessary to let Sold proceed to another state where a migration can take
place.

Using relation J , the process of instance migration can be expressed in terms
of a single model. In fact, we can place Sold next to Snew and insert all jumper
transitions as internal transitions. This model captures all possible migration
scenarios reflected in J . In the literature, the term hybrid model has been coined
for this approach [9]. The following notation formalizes the idea and introduces
a notation.

Definition 8 (Hybrid model). Let S1 and S2 be services with disjoint sets of
states (Q1 ∩ Q2 = ∅) and equal interfaces. Let J ⊆ Q1 × Q2. Then the hybrid
model S = 〈S1

J
==⇒S2〉 is a service automaton defined as follows. QS = Q1 ∪Q2,

CinS = Cin1 = Cin2 , CoutS = Cout1 = Cout2 , q0S = q01, ΩS = Ω1 ∪ Ω2,
δS = δ1 ∪ δ2 ∪ {[q1, τ, q2] | [q1, q2] ∈ J}.

As the jumper transitions are internal to Sold and Snew , their occurrence is under
full control of the provider of these service. For this reason, the hybrid model
indeed reflects the process of migration of arbitrary instances of Sold .

614 N. Liske et al.

τ

τ

τ

τ

τ

τ

τ

τ

[1,A, []]

[2,A, [a]]

[1,B, [b]]

[2,B, [a, b]] [3,C, []]

[2,D, [b]]

[3,B, [a]]

(a) SA ⊕ MPP(SA)

[4,A, []]

[5, A, [a]]

[4, B, [b]]

[5, B, [a, b]] [6,D, []]

[6,B, [a]]

[5,D, [b]][5,C, []]
τ

τ

τ

τ

τ τ

τ τ

ττ

(b) SB ⊕ MPP(SA)

?c?b

!a

?c

4

5

6 7

?b

!a

?c

2

1

3

τ

τ

τ

(c) 〈SA
J∗

===⇒SB〉

Fig. 3. Running example: constructing the hybrid model

Using the notion of a hybrid model, we may state the correctness requirement
on J . Essentially, we would like that every partner S of Sold interacts correctly
with the hybrid model. In other words, interaction does not lead to bad states
before, during, or after the migration.

Definition 9 (Feasible migration). Let Sold and Snew be services. The
migration relation J ⊆ Qold × Qnew is feasible if Partners(Sold) ⊆
Partners(〈Sold

J
==⇒Snew 〉).

4 Migration Approach

In this section, we first exhibit a particular migration relation J∗. Then we show
that J∗ is feasible. We continue with a discussion on the maximality of J∗.

The next definition shall determine J∗. To this end, remember that a migra-
tion must be correct independently of the interacting partner S of Sold and the
state of S. A jumper transition [qold , qnew] means that we switch from a reach-
able state [qold ,M, q] of Sold ⊕S into state [qnew ,M, q]. Of course, we are on the
safe side if [qnew ,M, q] is a reachable state of Snew ⊕ S. This is due to the fact
that S is a partner of Sold and, by substitutability, a partner of Snew , too. Being
a partner, no bad states can be reached from [qnew ,M, q] which is all we desire.

This observation leads straight to the definition of J∗, with just one modifi-
cation. Instead of considering an arbitrary service S, we consider the particular
service MPP(Sold) (which we can compute from Sold). This is a reasonable choice
as MPP(Sold) embeds the behavior of all partners of Sold .

Definition 10 (Migration relation J∗). Let Sold and Snew be substitutable
services. Then J∗ = {[qold , qnew] | for all [qold ,M, q] ∈ QSold⊕MPP(Sold) holds:
[qnew ,M, q] ∈ QSnew⊕MPP(Sold)}.

Example (cont.). As SA is substitutable with SB, we can calculate the migra-
tion relation to migrate states from instances from SA to SB. The composi-
tions with the most-permissive partner of SA are depicted in Figs. 3(a)–(b).
Among the states, we have {[2,A, [a]], [2,B, [a, b]], [2,D, [b]]} ⊆ QSA⊕MPP(SA) and
{[5,A, [a]], [5,B, [a, b]], [5,C, []], [5,D, [b]]} ⊆ QSB⊕MPP(SA). From Definition 10, we
can conclude that [2, 5] ∈ J∗: We can safely migrate state 2 to state 5 without
jeopardizing correctness. The resulting hybrid model is depicted in Fig. 3(c).

Another Approach to Service Instance Migration 615

?d

?e ?f

!g

11

12

13

14

(a) SD

?e ?f

?f ?e

!g

15

16 17

18

19

(b) SE

?d

?e ?f

!g

11

12

13

14

?e ?f

?f ?e

!g

15

16 17

18

19

τ

τ

τ

(c) 〈SD
J∗

===⇒SE〉

20

21

22 23

?h

!i !j

(d) SF

24

25 26

27 28

?h ?h

!i !j

(e) SG

τ

τ

τ

τ

τ

20

21

22 23

24

25 26

27 28

?h ?h?h

!i !i!j !j

(f) 〈SF
J∗

===⇒SG〉

Fig. 4. Further migration examples

Figures 4(a)–(c) show an example in which migration is not possible in every
state of the old service: state 12 of service SD cannot be migrated to a state of
SE. Only after SD proceeds to state 13, migration to SE is again possible.

In the remainder of this section, we will focus on feasibility and maximality
of the migration relation.

Feasability of the Migration Relation

We will first show that the migration relation J∗ is indeed feasible; that is, the
jumper transitions induced by J∗ do not introduce bad states in the interaction
with running partners of Sold .

Theorem 1. J∗ is feasible.

Proof. Assume the contrary. Then there exists a service S ∈ Partners(Sold) \
Partners(〈Sold

J∗
===⇒Snew 〉). For not being a partner of 〈Sold

J∗
===⇒Snew 〉, there must

be an execution in 〈Sold
J∗

===⇒Snew 〉 ⊕ S that leads to a bad state. Consider first
the case that the sequence does not contain any jumper transition. Then the
sequence is actually a sequence in S1 ⊕ S which contradicts the assumption
S ∈ Partners(Sold).

Consider now the case that a jumper transition [qold , qnew] occurs in the con-
sidered execution. By our construction, only one such transition can occur. We
now produce a contradiction by exhibiting a partner Sbad of Sold which is not
a partner of Snew . This contradicts the assumed substitutability of the involved
services.

As S ∈ Partners(Sold) there is a simulation relation & ⊆ QS×QMPP(Sold) such

that the conditions of Definition 6 are met. Let Sbad = 〈MPP(Sold) �−1
====⇒S〉. We

first show Sbad ∈ Partners(Sold). By Proposition 1, it is sufficient to show that
Sbad matches with the operating guidelines OG(Sold) = [MPP(Sold), φ]. To this
end, consider the relation &bad = & ∪ idQMPP(Sold) between Sbad and MPP(Sold).1

&bad is actually a simulation. For states in MPP(Sold) this is easily verified

1 By construction of Sbad, we have QMPP(Sold) ⊂ QSbad , so idQMPP(Sold) can be seen as
a relation between QSbad and QMPP(Sold).

616 N. Liske et al.

as the identity is indeed a simulation between a service and itself. Consider a
jumper transition [q1, q2] ∈ QMPP(Sold)×QS. We arrive with [q1, q1] ∈ idQMPP(Sold) .
As MPP(Sold) has τ -loops in every state, the jumper transition can be matched,
leading to the pair [q2, q1]. The jumper transition [q1, q2] has been introduced only
if [q2, q1] ∈ &. So, [q2, q1] is indeed in the simulation relation. For the remaining
transitions, simulation follows from the fact the & has been chosen as a simulation
between S and MPP(Sold). For completing the matching procedure, we have to
show that the assignments determined by Sbad satisfy the related annotations
in MPP(Sold). For those states of Sbad which are in MPP(Sold), this is obvious
as MPP(Sold) is indeed a partner of Sold and the identity is a valid simulation
relation. For those states of Sbad which are in S, satisfaction of the annotations
follows from the choice of &.

We conclude our proof by showing that Sbad is not a partner of Snew which
contradicts the assumed substitutability. For this purpose, return to the assumed
execution sequence that brings 〈Sold

J∗
===⇒Snew 〉 ⊕ S into a bad state. We replay

this sequence in Sbad ⊕ Snew . Assume that the jumper transition [qold , qnew]
occurred in the context of state q of S and a bag M of pending messages. In
other words, the composed system 〈Sold

J∗
===⇒Snew 〉 ⊕ S contained the transition

[qold ,M, q] τ−→ [qnew ,M, q]. As MPP(Sold) embeds the behavior of S, we can find
a corresponding sequence in Sold ⊕MPP(Sold) that reaches a state [qold ,M, q∗]
such that [q, q∗] are in the simulation relation between S and MPP(Sold). The lat-
ter sequence is also executable in Sbad. Now, let the jumper transition [qold , qnew]
occur, followed by the jumper transition [q∗, q] in Sbad. The resulting state is
[qnew ,M, q]. This is exactly the state reached by the jumper transition in the
originally considered sequence. Hence, the remainder of the original sequence
may be appended and shows that Sbad ⊕ Snew may reach a bad state. !"

Maximality of the Migration Relation

Now we turn to the question of maximality of J∗. For this purpose, consider a
transition [qold , qnew] ∈ Qold × Qnew which is not contained in J∗. By Defini-
tion 10, this means that there exists at least one service (e.g., MPP(Sold)) and a
reachable state [qold ,M, q], from where the migration leads to a state [qnew ,M, q],
is not reachable in the composition Snew ⊕ MPP(Sold). As MPP(Sold) is most-
permissive, this means that actually no service in Partners(Sold) is able to reach
[qnew ,M, q]. That is, migration would bring us into a part of Snew which is not
intended to be reached by any partner of Sold . Though continuation from such
a state may or may not lead to bad states, we believe that it is very unplausible
to continue interaction there. In this light, we may claim that our migration
relation is the largest possible set of jumper transitions.

5 Case Study and Implementation

For evaluating our proposed approach, we have implemented the computation of
the migration relation J∗ of Definition 10. The algorithm takes the two service

Another Approach to Service Instance Migration 617

automata Sold and Snew as its input. First, it computes the most-permissive part-
ner MPP(Sold). According to the technique used in [6], this calculation returns
not only MPP(Sold), but also the set of states QSold⊕MPP(Sold). Consequently,
a second calculation is only required for producing QSnew⊕MPP(Sold). The two
sets of states are then sorted according to a criterion that enables an efficient
verification of the implications in Definition 10.

The services used in the case study were anonymized real WS-BPEL processes
provided by a small German consulting company. They implement several busi-
ness processes from different domains such as government administration, indus-
trial production, and customer services. To apply our formal framework, we first
translated these WS-BPEL processes into service automata [10].

Table 1 lists the size of the interface (i.e., the number of inbound and out-
bound channels) and the number of states of the service automata. Due to com-
plex internal behavior such as fault and compensation handling, the services
have up to 14,569 states. The forth column contains the number of states of the
most-permissive partner. For the considered services, the most-permissive part-
ner usually has less states, because it only describes the interaction behavior
and does not contain internal behavior other than the τ -loops mentioned in the
remarks below Proposition 1.

In the case study, we migrated each service to its public view. The public
view of a service S is a service PV (S) that can be canonically derived from
the operating guidelines OG(S) such that holds: OG(PV (S)) = OG(S). Hence,
the public view PV (S) is (1) by design substitutable with the original service
S. Being constructed from the operating guidelines, however, it (2) abstracts
from internal behavior and usually has no structural relationship to S. For these
reasons, we chose the public view to benchmark the migration approach. The
last column of Table 1 lists the number of states of the public views.

Table 2 lists information about the migration. To calculate the migration re-
lation J∗, the composition of the most-permissive partner of the original service
S (called “Sold” before) and the public view of S (“Snew”) has to be considered.
At maximum, this composition contained more than 100,000 states. The third
column (“search space”) lists the number of states to check in Definition 10. As

Table 1. Numbers on the services used in the case study

service S |CinS ∪ CoutS | |QS | |QMPP(S)| |QPV (S)|
Travel Service 10 34 192 202
Purchase Order 10 402 168 176
Ticket Reservation 9 304 110 118
Internal Order 7 1,516 96 104
Contract Negotiation 11 784 576 588
Deliver Finished Goods 14 182 1,632 1,394
Passport Application 11 14,569 1,536 1,540

618 N. Liske et al.

Table 2. Numbers on the calculation of the maximal migration relation

migration S ⇒ PV (S) |QMPP(S)⊕PV (S)| search space |J∗ | time (sec)

Travel Service 2,976 3,333,120 49 2.1
Ticket Reservation 1,031 4,886,940 359 0.6
Purchase Order 2,545 19,851,000 429 1.3
Internal Order 1,455 34,460,220 1,613 0.9
Contract Negotiation 17,331 856,844,640 866 12.9
Deliver Finished Goods 60,753 1,050,783,888 197 123.1
Passport Application 100,975 990,199,624,400 22,382 518.1

this number depends on several state spaces, it heavily suffers from state explo-
sion and nearly reaches 1012 states for the Identity Card service. Nevertheless,
this number is only a theoretical bound, because (1) only two generator sets are
kept in memory (the state spaces of the compositions with the most-permissive
partner), and (2) these generators are sorted and represented to quickly detect
violation of the criterion of Definition 10.

The forth column of Table 2 lists the size of the maximal migration relation J∗

(i.e., the number of jumper transitions). Compared to the states of the involved
services and the search spaces, this relation is rather small. The last column
shows that most results were available in a few seconds. The maximal calculation
took a bit more than eight minutes.2 Though the implementation is only a
prototype to prove the concept, we claim that these numbers are acceptable:
The whole setting of instance migration is motivated by long-running services in
which a few minutes of calculation is negligible. Furthermore, once the jumper
transitions have been calculated, they can be applied to any number of running
instances.

The case study of this paper can be replayed using the Web-based imple-
mentation of the tools available at http://service-technology.org/live/
migration. At the same URL, the tools and the examples of the case study
can be downloaded.

6 Related Work

Instance migration (or dynamic business protocol evolution) is a hot topic which
has been studied by many researchers. Our proposed approach is inspired by the
notion of state replaceability in [11], where all pairs of states (qold , qnew) of Sold

and Snew are determined such that Sold and Snew are forward and backward
compatible. Backward compatible means that every path from the initial state
of Sold to qold is a valid path from the initial state of Snew to qnew . In contrast,
forward compatible means that every path from qold to a final state in Sold is

2 The reported experiments were conducted on an Apple MacBook with a 2.16 GHz
Intel Core 2 Duo processor. No calculation required more than 1 GB of memory.

http://service-technology.org/live/migration
http://service-technology.org/live/migration

Another Approach to Service Instance Migration 619

also a valid path from qnew to a final state in Snew . Besides state replaceability,
several weaker notions are presented in [11].

We identify the following differences to our approach: In [11] it is guaran-
teed that a service can always reach a final state, whereas our approach only
guarantees deadlock freedom. As a restriction, synchronous communication is
assumed in [11]. In contrast, service automata model asynchronous communi-
cation, as services are intended to communicate asynchronously rather than
synchronously [4]. Although not explicitly mentioned, the approach in [11] is
restricted to deterministic services, as forward and backward compatibility only
relies on trace inclusion. For example, if we assume synchronous communication,
then services SF and SG in Figs. 4(d) and 4(e) cannot be migrated. A service
that first executes h and then expects i is a partner for SF but not for SG (SG

may enter the right branch causing a deadlock). However, by looking at traces,
this counterexample cannot be detected. Moreover, the states 20 and 24 are
forward and backward compatible. In contrast, our proposed method works for
deterministic and non-deterministic services. As the crucial difference, we do not
compare the structures of Sold and Snew but use information about all partners
of Sold to compute the jumper transitions.

Dynamic evolution has been in particular studied in the field of workflows;
see [12,13] for an overview. Some approaches [14,15] calculate the part of the
workflow definition that is affected by the change (i.e., the change region). If an
instance of Sold is not in the change region, it can be safely replaced by Snew .
Other approaches like [16] and [17] are restricted to acyclic workflow models. In
addition, [17] and also [18] take only the history into account to decide migration.
Hence, the migrated instance may deadlock.

In [19] inheritance (i.e., branching bisimulation) is proposed for relating two
workflows Sold and Snew . Transfer rules are presented to map a state of Sold to
a state of Snew . The transfer rules ensure proper termination of an instance in
Snew . The approach can also be combined with dynamic change regions in [15]
to widen the applicability. However, branching bisimulation is too strict; for
example, services SF and SG in Figs. 4(d) and 4(e) are not branching bisimular,
and hence could not be migrated. In contrast, using our approach a migration
can be computed (see Fig. 4(f)).

The ADEPT2 framework [13] offers support to dynamically change a workflow
definition and to migrate running instances of the old workflow definition to the
new one. The approach guarantees that no deadlocks or livelocks are introduced.
Furthermore, the history of the migrated instance can be replayed on the new
workflow definition. Thereby ADEPT2 also takes the data flow into consideration
and ensures data consistency. However, the approach is restricted to workflows,
whereas we consider services.

7 Conclusion

We provided an approach to the automated calculation of the maximal set of
jumper transitions which model the possible migration of service instances. We

620 N. Liske et al.

addressed the behavioral aspect and took care that migration does not introduce
reachable bad states. Other than this, the set of jumper transitions is reason-
ably large. The calculation of the set is possible within seconds to few minutes,
considering real WS-BPEL processes. As instance migration is typically relevant
for long-running services, this amount of time negligible. Though the results
base on service automata, they can be easily applied to other service description
languages once a translation to automata is specified. As such a translation is
usually straightforward, the choice of service automata as formal model poses
no intrinsic restrictions.

We are of course aware that our approach only considers behavior while it is
necessary to obey several restrictions in several other aspects. Therefore, it is
very well possible that some of our jumper transitions disqualify for reasons of
data integrity or domain specific reasons. However, these issues can hardly avoid
problems if the service runs into a bad state. Hence, our approach can be under-
stood as a first overapproximation which reasonably reduces the combinatorics
for subsequent consideration of other aspects for correct migration. Furthermore,
data dependencies can be detected by techniques used in the area of static pro-
gram analysis [20]. For WS-BPEL there exist such techniques already [21,22,23].

Due to the lack of tools and the fact that usually thousands of running in-
stances have to be migrated, we think that our approach is a significant step
towards supporting instance migration.

An interesting line of further research is to investigate the data aspect in
more detail. As a result, we may get a smaller overapproximation. Furthermore,
as a service composition may run on different servers another interesting line
of further work is to migrate the state of each service separately rather than
migrating the whole composition at once.

Acknowledgements. Niels Lohmann and Karsten Wolf are funded by the DFG
project “Operating Guidelines for Services” (WO 1466/8-1).

References

1. Papazoglou, M.P.: The challenges of service evolution. In: Bellahsène, Z., Léonard,
M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 1–15. Springer, Heidelberg (2008)

2. Stahl, C., Massuthe, P., Bretschneider, J.: Deciding substitutability of services with
operating guidelines. In: Jensen, K., van der Aalst, W. (eds.) ToPNoC II. LNCS,
vol. 5460, pp. 172–191. Springer, Heidelberg (2009)

3. König, D., Lohmann, N., Moser, S., Stahl, C., Wolf, K.: Extending the compatibility
notion for abstract WS-BPEL processes. In: WWW 2008, pp. 785–794. ACM, New
York (2008)

4. Papazoglou, M.P.: Web Services: Principles and Technology. Pearson - Prentice
Hall, Essex (2007)

5. Lohmann, N., Massuthe, P., Wolf, K.: Operating guidelines for finite-state services.
In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 321–341.
Springer, Heidelberg (2007)

Another Approach to Service Instance Migration 621

6. Wolf, K.: Does my service have partners? In: Jensen, K., van der Aalst, W. (eds.)
ToPNoC II. LNCS, vol. 5460, pp. 152–171. Springer, Heidelberg (2009)

7. Kaschner, K., Lohmann, N.: Automatic test case generation for interacting services.
In: Feuerlicht, G., Lamersdorf, W. (eds.) ICSOC 2008. LNCS, vol. 5472, pp. 66–78.
Springer, Heidelberg (2009)

8. Lohmann, N.: Correcting deadlocking service choreographies using a simulation-
based graph edit distance. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM
2008. LNCS, vol. 5240, pp. 132–147. Springer, Heidelberg (2008)

9. Casati, F., Ceri, S., Pernici, B., Pozzi, G.: Workflow evolution. In: Thalheim, B.
(ed.) ER 1996. LNCS, vol. 1157, pp. 438–455. Springer, Heidelberg (1996)

10. Lohmann, N., Massuthe, P., Stahl, C., Weinberg, D.: Analyzing interacting
WS-BPEL processes using flexible model generation. Data Knowledge Engineer-
ing 64(1), 38–54 (2008)

11. Ryu, S.H., Casati, F., Skogsrud, H., Benatallah, B., Saint-Paul, R.: Supporting
the dynamic evolution of web service protocols in service-oriented architectures.
TWEB 2(2) (2008)

12. Rinderle, S., Reichert, M., Dadam, P.: Correctness criteria for dynamic changes in
workflow systems - a survey. Data Knowl. Eng. 50(1), 9–34 (2004)

13. Reichert, M., Rinderle-Ma, S., Dadam, P.: Flexibility in process-aware information
systems. In: Jensen, K., van der Aalst, W. (eds.) ToPNoC II. LNCS, vol. 5460, pp.
115–135. Springer, Heidelber (2009)

14. Ellis, C.A., Keddara, K., Rozenberg, G.: Dynamic change within workflow systems.
In: COOCS 1995, pp. 10–21. ACM, New York (1995)

15. van der Aalst, W.M.P.: Exterminating the dynamic change bug: A concrete ap-
proach to support workflow change. Information Systems Frontiers 3(3), 297–317
(2001)

16. Agostini, A., Michelis, G.D.: Improving flexibility of workflow management sys-
tems. In: van der Aalst, W.M.P., Desel, J., Oberweis, A. (eds.) Business Process
Management. LNCS, vol. 1806, pp. 218–234. Springer, Heidelberg (2000)

17. Sadiq, S.W.: Handling dynamic schema change in process models. In: Australasian
Database Conference, pp. 120–126 (2000)

18. Casati, F., Ceri, S., Pernici, B., Pozzi, G.: Workflow evolution. Data Knowl.
Eng. 24(3), 211–238 (1998)

19. van der Aalst, W.M.P., Basten, T.: Inheritance of Workflows: An Approach to
Tackling Problems Related to Change. Theoretical Computer Science 270(1-2),
125–203 (2002)

20. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis, 2nd edn.
Springer, Berlin (2005)

21. Lohmann, N.: A feature-complete Petri net semantics for WS-BPEL 2.0. In: Du-
mas, M., Heckel, R. (eds.) WS-FM 2007. LNCS, vol. 4937, pp. 77–91. Springer,
Heidelberg (2008)

22. Moser, S., Martens, A., Gorlach, K., Amme, W., Godlinski, A.: Advanced verifica-
tion of distributed WS-BPEL business processes incorporating CSSA-based data
flow analysis. In: SCC 2007, pp. 98–105. IEEE Computer Society, Los Alamitos
(2007)

23. Heinze, T.S., Amme, W., Moser, S.: Generic CSSA-based pattern over Boolean
data for an improved WS-BPEL to Petri net mappping. In: ICIW 2008, pp. 590–
595. IEEE Computer Society, Los Alamitos (2008)

Distributed Cross-Domain Configuration
Management

Liliana Pasquale1, Jim Laredo2, Heiko Ludwig2, Kamal Bhattacharya2,
and Bruno Wassermann3

1 Politecnico di Milano, Italy
pasquale@elet.polimi.it

2 IBM TJ Watson Research Center, USA
{laredoj,hludwig,kamalb}@us.ibm.com

3 University College London, UK
b.wassermann@cs.ucl.ac.uk

Abstract. Applications make extensive use of services offered by dis-
tributed platforms ranging from software services to application
platforms or mere computational resources. In these cross-domain en-
vironments applications may have dependencies on services or resources
provided by different domains. A service management solution based on
a centrally managed configuration management database (CMDB) is not
viable in these environments since CMDB federation does not scale well
to many domains. In this paper we propose a distributed configuration
management approach by applying standard technologies (e.g., REST
services, ATOM feeds) to provide access to and distribution of config-
uration information. A domain exposes individual configuration items
as RESTful web service resources that can be referred to and read by
other domains in the context of service management processes. Using this
distributed approach, organizations can engage in effective service man-
agement practices avoiding the tight integration of CMDBs with their
service providers and customers.

1 Introduction

Applications make extensive use of services offered by distributed platforms
hosted in different domains. These platforms range from software services (Soft-
ware-as-a-Service, SaaS), to application platforms (e.g., facebook.com) to mere
computational resources (e.g., Amazon Elastic Compute Cloud). Often, appli-
cations make use of different services from different providers, e.g., for storage
and application platforms, and may be also integrated with in-house, dedicated
software. Hence applications may depend on services or resources provided by dif-
ferent organizational domains. In such a loosely-coupled environment, providers
are not even aware of the set of other organizations currently using their ser-
vices. Furthermore, the wide adoption of web standards to consume and provide
services facilitates the easy establishment and the change of these cross-domain
configuration relationships. If providers conduct changes independently of their

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 622–636, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Distributed Cross-Domain Configuration Management 623

clients, the clients services may be disrupted. For this reason clients need to
understand on which external configurations they depend on.

Configuration management plays a crucial role for other service management
processes, e.g. incident management, change management, or process manage-
ment, whose activities depend on configuration information of the environment.
Hence, management activities have to take into account the distribution of con-
figuration information across organizational boundaries due to the presence of
inter-domain dependencies. Moreover, when a configuration changes it is neces-
sary to provide some mechanisms to manage these changes, notifying interested
clients. This becomes of high importance especially in those environments in
which an outage caused by an unmanaged configuration change may be propa-
gated along a chain of dependencies.

Current service configuration management approaches rely on a centrally
managed configuration management database (CMDB) [1], which collects the
state of hardware and software entities, represented by Configuration Items (CIs)
[2]. When changes happen in a CI, specific operations need to be performed on
other CIs that depend on it. A service management solution based on a central
CMDB is not viable in cross-domain environments since CMDB federation does
not scale well to many domains and different organizations are often reluctant
to provide direct access to their CMDBs.

In general there are different issues configuration management must address
for distributed, loosely coupled environments:

– Discovery: The lack of scope and access to resources of other domains
makes hard to discover CIs outside ones’ own management domain.

– Dependency management: Detect the management domains an CI de-
pends on is not an easy task.

– Cross-Domain configuration analysis: It is not always feasible to ag-
gregate and combine configuration information of different domains in a
straightforward way, to ease management activities.

In this paper we propose a distributed configuration management approach by
applying standard Web technologies (e.g., REST services, ATOM feeds) to help
to solve the issues described above and provide access and distribution of config-
uration information. A domain exposes individual CIs as RESTful web service
resources that can be referred to and read by other domains in the context of
service management processes. Domains can manage dependencies on outside
resources in the form of URLs. Using this distributed approach, organizations
can engage in effective service management practices while not requiring tight
integration with their service providers and customers. This approach and the
specific application to change management has been shown in [3] and [4].

The paper is organized as follows. Section 2 analyzes the problems of cross-
domain configuration management using an example. Section 3 gives an overview
of the architecture of our solution. Section 4 explains the approach of Smart Con-
figuration Items, including their publication, consumption, and format. Subse-
quently, section 5 illustrates how configuration information can be aggregated

624 L. Pasquale et al.

across domains. Finally, section 6 discusses implementation, section 7 summa-
rizes related approaches, and section 8 concludes the paper.

2 Problem Analysis

In this section we discuss the main challenges of cross-domain configuration
management using an example scenario, shown in Figure 1. A startup company,
E-Shop, integrates different retailers, to advertise and sell their products. E-Shop
relies on a distributed application infrastructure whose elements are owned and
managed by different organizations. In our example, Domain A provides an
application server (AS-A1), hosting the service which advertises the products to
sell (Advertise). Domain A also hosts a database management system (DBMS-
A1) which controls several databases (e.g., DB-A1, etc.). Both the application
server and the DBMS are hosted on a virtual machine, represented through its
address (131.34.5.20). Each machine can provide one or more file systems. The
same situation holds for Domain B, which provides the service that performs
payments (Payment), and some storage facilities.

Fig. 1. Running Example

In the scenario we have intra-domain dependencies between CIs, represented
through straight arrows, and inter-domain dependencies, represented through
dashed arrows. For example, services provided by Domain A depend on the
application server on which they are deployed. While file systems, application
servers and DBMSs depend on the machine in which they are installed. Moreover,
databases depend on the DBMS by which they are managed and application
servers depend on local/remote DBs used by applications deployed on them
(e.g., through a Web services connection). Furthermore each application may
depend on services of another domain. In our example, application Sell depends
on service Payment, provided outside its domain.

Finally, E-Shops marketing campaign is carried by several business services
that can be considered as “abstract” CIs relying on “concrete” elements of the

Distributed Cross-Domain Configuration Management 625

infrastructure. Figure 1 shows a business service (BS-A1) that depends on those
CIs that implement it (service Advertise, application server AS-A1 and the ma-
chine 131.34.5.20). This case highlights the need to trace properties and depen-
dencies of CIs that do not correspond to an element provided by the underlying
infrastructure (e.g., business services), since changes on the infrastructure may
also impact on these abstract elements.

This example illustrates the main functional issues that need to be addressed
by a cross-domain configuration management approach:

– Publication of configuration information: Management domain must
select internal CIs relevant for other domains and provide them in a conve-
nient way.

– Identification of cross-domain dependencies: When performing dis-
covery in a domain, a configuration management system must identify those
CIs that depend on external CIs and manage the dependency (e.g., receiving
notifications when external CIs change).

– Multi-domain configuration analysis: In the course of service manage-
ment processes, analysis is conducted through entire configurations, e.g., for
root cause analysis. Organizations must be able to aggregate configuration
information from multiple domains.

These functions enable a management domain to conduct configuration manage-
ment in a multi-domain environment involving multiple service providers.

3 Overview of the Approach

Our approach deals with configuration information for each single domain of the
infrastructure. This information is published on one or more web servers author-
itative for a domain and can be consumed in a standard way through REST and
ATOM [5] protocols. Local configuration management also provides distributed
and cross-domain benefits, since information about the overall infrastructure can
be easily published and obtained aggregating that available for each local do-
main. Figure 2 shows the application of our solution for our running example. It
provides two main functionality: Smart Configuration Management and Cross
Domain Aggregation.

Smart Configuration Management. All CIs are detected for each resource
of a domain, through a discovery process (1). We call these configuration items
Smart Configuration Items (SCIs): they represent the properties and the inter-
and intra-domain dependencies of an element of the infrastructure. Our discovery
process is also able to resolve cross-domain dependencies, that in general are hard
to identify, through the DSM Registry (2.b). SCIs and their dependencies may
also be established manually, when elements they represent cannot be detected
through the discovery mechanisms (e.g., the business service we adopted in our
example). Each SCI is associated with a feed document carrying on its changes.
SCIs and feed documents generated after the domain configuration discovery

626 L. Pasquale et al.

nimbus01.watson.ibm.com nimbus06.watson.ibm.com

Fig. 2. Solution Architecture

are periodically published (2.a) on a authoritative web server known as Domain
Service Manager (DSM), which serves local information via REST or as ATOM
feeds to interested parties.

Cross-Domain Aggregation. Information about the overall infrastructure is
obtained querying to an Aggregator that is in charge to communicate to all DSMs
of the infrastructure (3). This information is provided through a REST or an
ATOM aggregation. The first one is synchronous and offers information about
all SCIs of the infrastructure or all SCIs of a particular type. While, the latter
is asynchronous and generates notifications if some changes happened in one or
more SCIs that comply to specific features. Aggregation provides configuration
information in a flexible way and eases the adoption of this information to per-
form several kinds of analysis (e.g. dependency, consolidation, impact analysis,
compliance analysis) or to perform service management operation (e.g., change
management, incident management, etc.).

The basic tenet of our approach is to use Web-based techniques for dealing
with cross-domain management issues. The flexibility of the REST-based ap-
proach and the wide availability of tooling to create/consume SCIs and their
associated feeds makes possible to easily manage configuration information also
for cross-domain environments. For example, we can hypothesize to have lis-
teners from Domain A for a change in service Payment of Domain B. In this
case, after a feed listener in Domain A is notified about the change of parame-
ter AcceptedPayments of service Payment it can trigger a new internal change
process (supposed that this change is relevant), resulting in the participation of
Domain A in Domain B ’s change process.

Distributed Cross-Domain Configuration Management 627

4 Smart Configuration Items

DSM is the enabling element for domain configuration management. It tracks in
its internal registry all available SCIs in a domain. Each SCI is associated with
a unique id, a set of properties/dependencies (address, port, type, etc.) able to
unambiguously identify it and two paths in the domain file system pointing re-
spectively to the location of the SCI document and the feed document containing
configuration changes. We also provide a DSM Registry, which associate each
DSM with the hosts it is authoritative for. A DSM Registry may be available
in a single domain and is in charge to communicate with other DSM Registries
provided by other domains. The DSM offers RESTful services to retrieve, create,
modify or delete discovered SCIs. Users can access to SCI information through
a simple GET operation on the SCI URL constructed as follows:

http://<DSM_HostName>:8080/sci?id=<id>

where <DSM HostName> is the address of the DSM and <id> is the identifier
of the requested SCI. While the feed document associated with an SCI can be
retrieved at the following URL:

http://<DSM_HostName>:8080/feed?id=<id>

Feeds can also be consumed through a standard feed reader. DSM also provides
a graphical interface system administrators can use to perform several opera-
tions on local SCIs. It allows to visualize information about all SCIs available
in a domain (URL, type, properties and dependencies). It also permits to re-
cursively traverse the dependency chain of an SCI, with the possibility to reach
SCIs involved in a inter-domain dependency, which are not local. For example,
from the SCI associated with application Payment of Domain A, it is possible
visualize information about its application server (AS-A1). This is still valid if
the requested SCI is managed by another DSM, e.g., belonging to Domain B.

We also allow domain administrators to add a new SCI to represent config-
uration information that is not discovered automatically. This functionality is
adopted when we need to add SCIs representing business services (e.g., BS-B1,
in our example) that rely on infrastructural resources, but cannot be detected
through the standard configuration discovery algorithms. The interface also per-
mits to manually modify an existing SCI e.g., adding inter-domain dependencies
when they cannot be discovered automatically.

4.1 Configuration Data Model

An SCI status is represented through an extensible XML document, able to
address the descriptive requirements of different configuration domains.

In Figure 3 on the left we show the SCI logic schema, while on the right we
propose an example of SCI document associated with application Sell of the pro-
posed scenario. Each SCI is described through a set of mandatory attributes: uri,
which represents the URL that uniquely identifies the SCI (on the DSM which is
actually keeping it); type, which is the type of the represented item (DBMS, ap-
plication server, database, etc.). In Figure 3 attribute type is set to application

628 L. Pasquale et al.

<sci:SmartConfigurationItem

 xsi:schemaLocation="com.watson.ibm.tlaloc.sci"

 uri="http://nimbus01.watson.ibm.com:8080/sci?id=18"

 type="application">

 <Properties>

 <Property name="application-name">

 <prop:application-name>

 Sell

 </prop:application-name>

 </Property>

 </Properties>

 <Dependencies>

 <Dependency type="Uses">

 <OtherSci_id>

 http://nimbus06.watson.ibm.com:8080/sci?id=0

 </OtherSci_id>

 </Dependency>

 <Dependency type="ManagedApplication">

 <OtherSci_id>

 http://nimbus01.watson.ibm.com:8080/sci?id=1

 </OtherSci_id>

 </Dependency>

 </Dependencies>

</sci:SmartConfigurationItem>

Fig. 3. SCI document schema and example

and attribute uri indicates that the SCI is kept in the DSM authoritative for
Domain A, since it starts with hostname nimbus01. watson.ibm.com. SCIs can
also have optional attributes (e.g., description, which gives a human readable
description of the SCI).

An SCI can have any number of properties, defined by a name and an XML
value. The property name is equal to the local name of the XML tag enclosing
the property value. This mechanism allows users to define their own properties
that can have values compliant to an arbitrary schema. In the proposed example
the application is described through property: application-name.

An SCI has zero or more dependencies, specified by a type and a list of URLs
identifying SCIs on which the item depends. Extension points are provided to
insert new attributes and elements describing the nature of the dependency. In
our example we have two kinds of dependencies: ManagedApplication and Uses.
The first is on the SCI representing the application server in which application
Sell is deployed. While the latter indicates a dependency on the adopted service
(Payment). This last dependency is not local since the corresponding SCI is
available on the DSM authoritative for Domain B (nimbus06.watson.ibm.com).

Besides the representation of the current SCI in the DSM, the discovery pro-
cess produces a feed outlining SCI changes compared to the previous discov-
ery. Possible changes are: add/delete/modify property, add/delete dependency,
or add/delete a SCI pointer into a dependency. An example of the feed doc-
ument associated to web service Payment is shown in Figure 4. It is updated
after the input message of operation PayOrder change type from tns:RPType

Distributed Cross-Domain Configuration Management 629

to tns:RPAllowedType. Change descriptions are enclosed into element <entry>
in the feed document. In the example we have two entries. The first is created
when an SCI associated with web server Payment is added for the first time to
the authoritative DSM, while the second one advertises the change of operation
PayOrder. Change information is carried on by element <property-change> and
is described through the following attributes: type that represents the kind of
change happened (ChangePropertyValue); xpath, which points to the modified
property/dependency (in this case, property alias-name); uri, that is the url
of the corresponding SCI; and feed-uri that is the feed url. Each change is
described through two sub-elements: <old>, which contains the previous value
of the property/dependency and <new>, which contains the new value of the
considered property/dependency. If the change is an addition or a deletion of a
property/dependency, element <old> or <new>, respectively, are not inserted in
the change description.

<entry>

 <title>SCI Added</title>

 <id>random id</id>

 <updated>2008-12-14T18:30:02Z</updated>

 <content type="TEXT">

 A new service was added to DSM nimbus06.watson.ibm.com;

 </content>

</entry>

<entry>

 <title>Modify Property Entry</title>

 <id>random id</id>

 <updated>2008-12-14T19:30:02Z</updated>

 <content type=”XHTML”>

 <!-- the element Property is modified -->

 <pc:property-change xmlns:pc="com.ibm.tlaloc.propEntryContent"

 type="ChangePropertyValue"

 xpath="//Property[@name='operationq']"

 uri="nimbus06.watson.ibm.com:8080/sci?id=0"

 feed-uri="nimbus06.watson.ibm.com:8080/feed?id=0"

 propertyName=”operations”>

 <pc:old>

 ...

 <wsd:operation name="PayOrder">

 <wsdl:input message="RequstPayment" type="tns:RPType"/>

 ...

 </pc:old>

 <pc:new>

 <wsd:operation name="PayOrder">

 <wsdl:input message="RequstPayment" type="tns:RPAllowedType"/>

 ...

 </pc:new>

 </pc:property-change>

 </content>

 </entry>

Fig. 4. An example of configuration change

4.2 Domain Configuration Discovery

SCIs rely on a local discovery mechanism to report the dependencies and proper-
ties of each CI. The local discovery gives us another level of granularity removing
the need of any centralized repository, ideally for a more distributed approach,

630 L. Pasquale et al.

yet given the complexity of comprehensive discovery mechanisms it is necessary
to make trade-offs as to how close to the CIs we can place the discovery engine
given their resource requirements.

A discovery process must detect the main SCIs available on those virtual ma-
chines that it covers and, for each of them, it must find their main properties
and dependencies on other SCIs (that can belong to that domain or to other do-
mains). For example, it must discover the basic properties of virtual machines,
e.g., their operating system and the hostnames associated with them. Moreover,
a discovery process must find the servers installed on each host (e.g., DBMSs,
application servers, http servers), their main properties (e.g., for a DBMS, the
ports it listens to, its type and version), and dependencies (e.g. a DBMS is as-
sociated with the host in which it is installed). A discovery process must also
detect SCIs managed by the servers installed on a host (e.g., applications man-
aged by an application server). From the discovered properties and dependencies
we also want to identify each SCI uniquely, among other SCIs of the same type.
For example, a DBMS can be uniquely identified through the host in which it
is installed and the ports it listens to. Finally we also require discovery to be
performed periodically and automatically upon configuration change (e.g., with
a specific periodicity or when something happens, for example a new component
is installed or an existing one is upgraded).

Taking into account these requirements we demonstrated our approach using
Galapagos [6], a lightweight discovery mechanism acting on a per virtual node
basis. In particular we embedded in our discovery agent the Galapagos capa-
bility. The agent converts information discovered by Galapagos into several SCI
state representations. The adoption of Galapagos satisfies our requirements since
it is able to detect all basic elements provided by common virtual machines (file
systems, http servers and their virtual hosts, databases, DBMSs, application
servers, etc.). Furthermore, Galapagos is primarily tailored for IBM software
(e.g., DB2, IBM HTTP Server, WebSphere Application Server, etc.), for which
it can discover a wider set of properties. Finally we allow to perform discov-
ery periodically depending on specific needs in terms of times and frequency of
scans, or it can be triggered by particular events, like failures, software/hardware
upgrades, etc.

4.3 SCI Dependency Resolution and Management

The discovery agent inspects all CIs starting from those that have no dependen-
cies (e.g. a virtual machine) up to those that may have numerous dependencies
(e.g. application servers, applications).

If we consider host 131.34.5.20 of Domain A, discovery will follow the follow-
ing steps:

1. host (mandatory): It leverages data describing the host 131.34.5.20 in
which discovery is performed to create an SCI of type host which has no
dependencies and has at least two properties: os, which represents its oper-
ative system, with a name (Linux) a version (2.6.18 - EL5.02), etc., and lan,

Distributed Cross-Domain Configuration Management 631

which carries on hostnames associated with that host (nimbus03.watson-
.ibm.com).

2. File Systems (mandatory): It transforms information regarding mounted
file systems into an SCI of type file system, which is described by the fol-
lowing properties: fs-device (file system device), fs-mount-point (mount
point), name (file system name), fs-mode (read only/write mode). It also
depends on the host providing its mount point, represented by dependency
HostedBy. This dependency is within the domain and the corresponding SCI
is detected at step 1.

3. DBMSs: An SCI of type dbms is created for DBMS-A1, found during dis-
covery. It is characterized by a hostname (property host-name) and a set
of ports it listens to (property ports). Each dbms depends on the SCI cre-
ated at step 1 and associated with the host in which it is actually installed
(dependency HostedBy).

4. Databases: Database DB-A1 found during discovery is transformed into an
SCIs of type db, described through a database name (property databasename)
and an alias name (property alias-name). It also depends on the SCI asso-
ciated with its DBMS (DBMS-A1). For this reason, dependency ManagedDB is
created: it is within the domain and the corresponding SCI is created at step 3.
DiscoveredDBs may also depend on other databases they refer to (dependency
Uses) which can be managed on other hosts (this last case is not illustrated in
our scenario).

5. Application Servers: Application server AS-A1 found during discovery
is associated with an SCI of type application server, we already shown
in Section 4. This SCI also has an inter-domain dependency on databases
hosted on other domains of the cloud.

6. Applications: Applications Advertise and Sell found during discovery are
associated with an SCI of type application. They are described through
their name (property application name). Furthermore they may be com-
posed of several ejb/java/web modules (dependency ComposedOf). They de-
pend on the application server on which they are deployed (dependency
ManagedApplication). Both these dependencies are within the domain and
the corresponding SCIs are created in the previous steps.

During discovery it is necessary to identify URLs of SCIs that are referenced
in the dependencies. These SCIs can be local to the domain or they can belong
to other domains. An SCI URL can be automatically constructed knowing the
hostname of its authoritative DSM and the id through which the DSM reference
it in its internal table. Hence, when a dependency refers to a local SCI (which
has the same authoritative DSM of the depending item) it is only needed to
know its id. This id can be retrieved from the local DSM giving in input some
properties/dependencies inferred during discovery. The DSM searches in its table
the rows that have properties/dependencies matching those given as input and
returns the associated ids. When an SCI is not local, it is also necessary to know
what DSM maintains it.

For example, in our scenario we need to identify URL of the SCI associated
with service Payment on which application Sell depends. Information retrieved

632 L. Pasquale et al.

during discovery about service Payment is its endpoint http://131.34.5.25/-
FlexPayService.wsdl. From this property we know the host on which service
Payment is deployed (131.34.5.25). At this point the discovery needs to know
what is the DSM authoritative for the SCIs of host 131.34.5.25. Discovery
process gets this information from DSM Registry, issuing the query below:

http://nimbus06.watson.ibm.com:8081/machine?address=131.34.5.25

It is worth to note that each host of the domain knows the address of the author-
itative DSM Registry, since it is given to the discovery process as a configuration
parameter.

The DSM Registry returns the hostname of the required DSM (nimbus06-
.watson.ibm.com) that keeps the SCI of service Payment. Finally, what the
discovery needs to do is to request to the DSM the SCI id of service Payment
through a query of this type (single URI):

http://nimbus06.watson.ibm.com:8080/

sciRegistry?type=web_service&

properties=<property name=ws-endpoint>

<prop:ws-endpoint>

http://131.34.5.25/FlexPayService.wsdl

</prop:ws-endpoint>

</property>

The DSM Manager returns the id of the SCI associated to service Payment
(i.e., 0). This way the discovery process is able to construct the URL of the SCI
associated with service Payment as follows:

http://nimbus06.watson.ibm.com:8080/sci?id=0

Before terminating discovery the set of detected SCIs is given as input to the DSM
authoritative for that domain. DSM keeps the set of SCIs already detected in the
previous discovery phase. Hence it compares discovered SCIs with the previous
ones grouping them into three sets: ADDED (new SCIs that were not discovered
previously),DELETED(old SCIs that arenot detected in the last discoveryphase)
and MODIFIED (pairs of SCIs detected in two subsequent discovery phases). As-
sociationbetween SCIs that refer to the same component in two subsequent discov-
ery phases are detected as follows: the DSM checks if the properties/dependencies
that allow to uniquely identify an SCI are still the same. For example, to uniquely
identify an SCI associated with a db among all SCI of type db, we need property
database-name and dependency ManagedDB (the corresponding dbms). If a pre-
vious SCI is detected with properties/ dependencies matching those given as in-
put, both the previous SCI and the new one are inserted in the set MODIFIED.
Otherwise the new SCI is put in the set ADDED. Old SCIs that do not have a
corresponding new SCI, are put in set DELETED.

For each SCI in set ADDED the DSM adds a new entry in its internal table
with a unique id, the discovered attributes that allow to uniquely identify it
and the paths to the locations of the configuration information. A new feed
document is also created and associated to that SCI, with an entry that advertise

Distributed Cross-Domain Configuration Management 633

its creation. For all SCIs in set DELETED, DSM adds a new entry in their
feed documents to advertise their deletion. DSM also marks as “deleted” the
row state in its internal table pointing to that SCI. Configuration files will be
deleted after a certain time for space reasons. All couples of SCIs put in the set
MODIFIED are compared to find differences in the SCI documents that reveal
possible modifications. If a modification is detected a suitable entry is added to
the feed document associated with that SCI to advertise the change.

5 Cross Domain Aggregation

SCIs availability in each domain via the authoritative DSM allows all interested
stakeholders to get higher level views on the configuration of the overall in-
frastructure according to specific needs. These views transcend the perspective
of a particular domain and are created through the combination and the re-
interpretation of existing SCIs or feed documents. Cross-domain aggregation is
enabled by the adoption of mashups relying on one or more Aggregators, which
collects and aggregates the information exposed by each DSM. To aggregate SCIs
and feeds coming from the whole distributed platform, Aggregators ask the DSM
Registry what are the hostnames of all DSMs available in the infrastructure.

Aggregators provide overall information about items configuration and their
changes through respectively a REST or an ATOM aggregation. REST aggre-
gation allows to combine several SCIs according to some criteria. In our current
prototype we provide the following aggregations we considered significant for
service management processes:

All SCIs available in the infrastructure. It provides a global view of all items
available in all domains of the distributed platform. For example, it can be useful
when a cloud provider receives a request from a user who wants to deploy his/her
applications. In this case, the provider needs a global overview of all SCIs of the
infrastructure to know which machines of its cloud are more suitable to host
those applications.

All SCIs a business application relies on. It is useful for business analysts who
may want to retrieve SCIs a specific business application relies on.

All SCIs associated with items of the same type. It is useful for administrators
who need to perform maintenance on items of the same type. For example, an
administrator may ask for all SCIs of type dbms when he/she has to perform
an upgrade to a next version of DB2, to all DBMS of the infrastructure. In fact
he/she needs to view the version of all DBMS available in the infrastructure to
know which of them has to be upgraded.

A specific SCI together with those SCIs referenced in its dependencies. During
incident management processes, detecting the cause of a failure in an CI may
require to inspect the configuration of other items it depends on.

ATOM cross-domain aggregation allows stakeholders to subscribe on changes
that can affect any item of the overall infrastructure, without knowing the URLs
of the feeds associated with each SCI. We provide some predefined criteria to
aggregate feeds:

634 L. Pasquale et al.

– All feeds available in the infrastructure. It eases change management pro-
cesses. For example, interested users may be notified when an item in the
infrastructure changes (e.g. service Payment) and, if this change is relevant
for their business, they can perform maintenance actions on the affected
items (e.g., change the parameters adopted to invoke service Payment).

– All feeds associated with items of the same type. It is useful, for example,
when an administrator is interested in knowing all changes affecting all
DBMS of the infrastructure, to perform suitable corrective actions.

– A specific feed together with those feeds associated with SCIs an items depends
on. It shows configuration and changes relative to a specific SCI and its
dependencies. If we consider a business service, it may be necessary to know
changes in all items it depends on to perform impact analysis or activate
change management processes.

Other SCI/feed aggregations may be offered easily since the infrastructure al-
ready provides all necessary configuration information. For example we may
support aggregation that collects SCI/feeds of a component having particular
properties, e.g., all DBMSs of type DB2, or we may want to collect feeds carrying
specific kinds of changes to apply a suitable patch. We also provide a graphical
interface to view aggregated SCI and feed documents.

Even if each DSM only keeps the current SCI version it is possible to go
back to previous versions inspecting the corresponding feed document. This is
important for incident management processes where stakeholders want to inspect
configurations before a failure happened and analyze the cause of a problem. It is
possible to retrieve the last SCI configuration, inspect the changes that happened
after a particular time instant (that in which the failure happened), starting from
the last one up to the first one and apply these changes in a backward way. For
example, if an entry advertises a change in a property/dependency, it is sufficient
to substitute the XML value of the property/dependency with that carried on
by element <old> in the entry content. We may need to get the SCI version
associated with service Payment, before its signature for operation PayOrder is
changed. In this case we have to change the input parameter is changed from
tns:RPType to tns:RPAllowedType (see second feed entry in Figure 4).

6 Implementation

The viability of the SCI approach was validated by implementing a prototype
comprising the following components: the configuration discovery agent, the feed
generator, the DSM, the DSM Registry and the Aggregator. The domain dis-
covery process is a script that triggers the execution of Galapagos discovery and
translates its results into a set of SCIs, and generates the ATOM feed entries
associated to the detected changes. The DSM, the Aggregator and the DSM
Registry are implemented through WebSphere sMash [7], a development and
runtime environment for RESTful services and mash-ups.

The platform was tested in a laboratory environment using scenarios like that
outlined in section 2. The tests showed that the platform permits to maintain

Distributed Cross-Domain Configuration Management 635

configuration information automatically. Configuration exchange among differ-
ent domains takes place easily, by simply retrieving or aggregating XML doc-
uments using Web browsers and feed readers. Service management processes
or interested stakeholders can access configuration information using common
tools. Finally, the application of filters to customize the SCIs/feeds aggregation
offers to service management processes the information they exactly need.

7 Related Work

Distributed system management is the central focus of two standards: Web Ser-
vices Distributed Management (WSDM) [8] and Web Services for Management
(WS-M) [9]. Both propose the idea to expose management information as Web
services and represent resource information through extensible models. To trace
associations among resources WSDM provides the concept of relationship, which
includes our notion of dependency. While, even if WS-M proposes a rich con-
figuration model, i.e., CIM [10], it does not support dependencies. Furthermore,
WSDM and WS-M provide limited discovery capabilities. Our solution repre-
sent a significant improvement over these standards because it offers a global
approach that continuously maintains resources after they are discovered, up-
dates their configuration when changes are detected, and notifies interested users
about these changes. WSDM and WS-M support allow users to subscribe on
events generated after resources’ changes and being notified according to re-
spectively WS-Notification [11] or WS-Eventing [12] standards. These standards
do not provide a clear way to represent resources changes and their low dif-
fusion, discourages their adoption. Instead, our approach adopts ATOM/RSS
feeds, offering a standard way to represent changes (encoded into a feed entry),
and consume them through any feed reader, with the possibility to rely on its
subscription and filtering capabilities.

CMDB federations [1] are an approach to use CMDBs across domain bound-
aries, enabling access to information held in different CMDBs. This approach
has high setup costs since all parties must establish explicit relationships, which
it is not feasible in loosely coupled environments. Treiber et al. [13] proposed a
concrete information model to represent both static and dynamic changes in web
services and encapsulate them in atom feed entries. The authors also relate each
change to its cause and to the stakeholders who may be interested in. Despite
our approach focuses on static configuration properties, it has the main advan-
tage of dealing with cross-domain environments, representing intra- and inter-
domain dependencies among CIs. Moreover our solution keeps the information
model light, enabling different business analysis through several cross-domain
aggregations.

8 Conclusions

Loosely coupled applications spreading an SOA over multiple management do-
mains requires a configuration management approach that takes into account

636 L. Pasquale et al.

the the absence of central service management and a central CMDB. The SCM
approach proposes to decentralize configuration management in a way in which
service providers can expose configuration information to their users in a stan-
dard format based on domain discovery information while service users are able
to discover and trace CIs outside their own management domain boundaries.
The use of RESTful interfaces to CIs and ATOM feeds to distribute updates
on configuration changes enables the use of very commonly available tools to
expose and process configuration information. The feasibility of the approach
was demonstrated in a proof-of-concept implementation. As next steps we will
further validate the approach and work on improvements related to interaction
with existing discovery technology, selective publication of SCIs, and program-
ming models for aggregation. We also plan to remove the architectural bottleneck
generated by the DSM Registries organizing them in P2P networks.

References

1. Clark, D., et al.: The Federated CMDB Vision: A joint White Paper from BMC,
CA, Fujitsu, HP, IBM, and Microsoft, Version 1.0. Technical report

2. IBM: Tivoli: Change and Configuration Management Database,
http://www-01.ibm.com/software/tivoli/products/ccmdb/

3. Ludwig, H., Laredo, J., Bhattacharya, K., Pasquale, L., Wassermann, B.: REST-
based management of loosely coupled services. In: Proceedings of the 18th Inter-
national Conference on World Wide Web (2009)

4. Wassermann, B., Ludwig, H., Laredo, J., Bhattacharya, K., Pasquale, L.: Dis-
tributed cross-domain change management. In: Proceedings of the International
Conference on Web Services (2009)

5. Network Working Group: The Atom Syndication Format (2005),
http://www.ietf.org/rfc/rfc4287.txt

6. Magoutis, K., Devarakonda, M., Joukov, N., Vogl, N.: Galapagos: Model-driven dis-
covery of end-to-end application-storage relationship in distributed systems. IBM
Journal of Research and Development (2008)

7. IBM: Projectzero, http://www.projectzero.org/
8. OASIS: Web services distributed management: Management using web services
9. DMTF: Web Services for Management (WS-Management)

10. DMTF: Common Information Model (CIM) Specification, Version 2.2
11. OASIS: Web Services Base Notification 1.3 (WS-BaseNotification) (2006)
12. Box, D., et al.: Web Services Eventing (WS-Eventing) W3C Member Submission
13. Treiber, M., Truong, H.L., Dustdar, S.: On analyzing evolutionary changes of web

services. In: Feuerlicht, G., Lamersdorf, W. (eds.) ICSOC 2008. LNCS, vol. 5472,
pp. 284–297. Springer, Heidelberg (2009)

http://www-01.ibm.com/software/tivoli/products/ccmdb/
http://www.ietf.org/rfc/rfc4287.txt
http://www.projectzero.org/

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 637–638, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Pluggable Framework for Tracking and Managing
Faults in Service-Oriented Systems

Daniel Robinson and Gerald Kotonya

Computing Department, InfoLab21, South Drive,
Lancaster University, Lancaster, United Kingdom
{robinsdb,gerald}@comp.lancs.ac.uk

Abstract. Practical fault management in service-oriented systems requires dy-
namic monitoring of services for SLA violations, failures and undesirable
changes in the system runtime environment. It should also include effective
fault recovery strategies, and be transparent and lightweight to enhance trust
and to minimise the load on the consumer and providers. This paper describes a
technology-independent fault management approach that uses a pluggable bro-
kerage model to track and resolve service changes and faults. A case study is
used to illustrate the efficacy of the approach.

Keywords: Service-oriented systems, Fault tracking, Change management.

1 Introduction

Failures in service provision, Service Level Agreement (SLA) violations and changes
in the system runtime environment can impact adversely on the quality of a service-
oriented system. There are several initiatives based on monitoring that are designed to
track changes and detect SLA violations. However, these generally support static
rather than dynamic analysis and provide poor support for resolving undesirable
changes and violations [1]. In addition, most are designed to support service providers
avoid SLA violations, rather than help the service consumer to detect and respond to
problematic QoS [3]. Effective fault management in service-oriented systems requires
a consumer-centred approach that actively monitors services for SLA violations, fail-
ures and undesirable changes; and provides strategies for minimising their adverse
effects.

Our solution has been to develop a failure management approach that uses a con-
sumer-centred, pluggable brokerage model to track and renegotiate service faults and
changes. The brokerage model is reported in [2]. Our approach is service-technology
independent and incorporates pluggable support for different monitoring and negotia-
tion models in addition to assessing provider reputation. To help with the automation
of negotiation and monitoring processes, and to ensure a shared set of terms for de-
scribing services, our approach also incorporates pluggable support for a service on-
tology. We will show using a service-oriented case study and different fault and
change scenarios how our framework tracks and manages faults and changes.

638 D. Robinson and G. Kotonya

2 An Overview of the Approach

Figure 1 shows the framework on which the approach is based. Service consumers
and providers supply the brokerage system with templates that specify strategies for
the services they require or provide. For consumers, the strategy describes the ideal
QoS requirements of the functional services they wish to use. The brokerage incorpo-
rates an engine builder component, which uses the templates to assemble a custom
service broker engine for processing negotiation messages and service proposals. The
proposal engine creates and evaluates service proposals. The broker engine contains a
separate negotiation engine for each negotiation protocol it supports. The negotiation
engine concurrently negotiates with multiple parties. The engine maintains a separate
negotiation session for each negotiation.

The framework provides a service monitoring system, which actively monitors the
quality of negotiated services for emergent changes, SLA violations and failure. The
primary monitoring approach adopted by the framework is a passive model, which
transparently intercepts service requests and responses between service consumers
and providers.

QoS Negotiation

Brokerage System

Service
Provider

returns negotiated
SLAs

supplies negotiation models and strategies

supplies negotiation models and strategies

Service
technology
Interfaces

ConnectorSLA
Creation/Evaluation

Resource
Management

IService
Requester

IB
ro

ke
ra

ge

Se
rv

ic
e

IService
Provider

returns negotiated SLAs

Service
Consumer

 SOA Implementation
(e.g. Web Service, Jini,

other)

QoS Measurement

Moniotoring System

SLA Editing

QoS Forecasting

invokes services

IMonitoring
Service

SLAs

IService

IMonitor
Listener

SLA audit
results

Reputation
System

Service Rating

IReputation
Service

sends service
ratings

queries
reputation

Fig. 1. Pluggable Service brokerage framework

References

1. Saunders, S., Ross, M., Staples, G., Wellington, S.: The Software Quality Challenges of
Service-Oriented Architectures in E-Commerce. Software Quality Control 14(1), 65–75
(2006)

2. Robinson, D., Kotonya, G.: A Runtime Quality Architecture for Service-Oriented Systems.
In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364,
pp. 468–482. Springer, Heidelberg (2008)

3. Hoffman, R.: Monitoring, at your service. ACM Queue 3(10), 34–43 (2005)

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 639–640, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Distributed Access Control Management – A XACML-
Based Approach

Erik Rissanen1, David Brossard2, and Adriaan Slabbert1

1 Axiomatics AB, Electrum 223, 164 40 Kista, Sweden
{erik,adriaan}@axiomatics.com

2 BT Innovate, Adastral Park, IP5 3RE Martlesham Heath, England
{david.brossard}@bt.com

Abstract. Enterprises are increasingly pervasive with users and services
belonging to different domains. Cross-enterprise business collaborations are
soaring and so are business relationships with complex access control rules.
Business rules no longer come from a single source. There is a need for multi-
ple administrators to define rules that apply to their part of the collaboration.
Traditional access control models are not sufficient. This demonstrator illus-
trates an authorization service developed by Swedish SME Axiomatics. It
implements the eXtended Access Control Markup Language (XACML), a pol-
icy- and rule-based access control language which allows the expression of
fine-grained access control rules in distributed environments.

Keywords: SOA, security, authorization, access control, XACML.

1 Introduction

Distributed access control and authorization services allow access policies to be en-
forced in a multi-administrative environment. Traditional models tend to rely on a
single-administrator model where policies are authored by the same authority within a
single domain.

The dynamic nature and level of distribution of the business models typical of ser-
vice-oriented infrastructures (SOI) [4] mean that one can no longer rely on a set of
known users or fixed organizational structures with access to only a set of known
systems. Furthermore, access control policies need to be aware of the context within
which an access control request is being issued as it can impact the final decision.

The dynamic multi-administrative nature of an SOI necessitates a new model for
access control and the development of new models that cater for these characteristics
of the infrastructure while combining the best features from role-based, attribute-
based, and policy-based access control (RBAC, ABAC and PBAC respectively).

This demonstrator presents the Axiomatics Authorization Service (AuthZ-PDP)
and illustrates how it can be used in distributed environments. Axiomatics is also
working with OASIS, to drive the evolution of the XACML [2,3] standard.

A demo video can be seen at http://www.gridipedia.eu/gt-axiomatics.html.

640 E. Rissanen, D. Brossard, and A. Slabbert

2 System Description

The AuthZ-PDP allows the necessary decision making for distributed enforcement of
access policies by multiple administrators, ensuring compliance, accountability and
audits. Current access control models are extended with (1) validity conditions for
each policy, (2) policy issuance whereby administrators digitally sign the policies
they write, and (3) administrative delegation policies that lets an administrator define
who can issue policies about what actions on which resources. Key functions include:

 Policy-based access control: applicable policies are stored on the system and are
analyzed by the PDP. The PDP makes its decision and returns the decision.

 Constrained Administrative Delegation: the delegation mechanism is used to
support decentralized administration of access policies. It allows an authority
(delegator) to delegate all or part of its authority to another user (delegate). The
specific authorization can then be delegated further.

 Obligation: an obligation is a directive from the PDP to the Policy Enforcement
Point (PEP) on what must be carried out before or after access is granted. If the
PEP cannot comply with the directive, the granted access will not be realized.

 Segregation of policy stores: by means of PDP instantiation, it is possible to have
instances of the PDP service that each act as a single standalone PDP.

 Flexible: the PDP is standards-based and can be deployed in a variety of ways.

3 Benefits

The innovations that differentiate the solution from other access management capa-
bilities include the delegation of administrative authority: policy authoring and man-
agement is controlled by constraint-delegation policies that put constraints on the
access management policies that administrators can author and allow the run-time
creation of dynamic chains of delegation of administrative authority without assuming
prior knowledge of an organization’s structure. Authenticity, integrity and account-
ability are guaranteed: policy authoring rights are granted to issuers whose account-
ability is enforced by use of digital signatures. This is only possible through the
introduction of the Policy Issuer element in XACML and through the rigorous im-
plementation of the standard by the PDP put forward. Lastly, the AuthZ-PDP is con-
text-aware and can be contextualized enabling its use in multi-tenancy scenarios. It
can be provisioned in the SaaS pattern.

Acknowledgments. This demonstrator was partly produced within BEinGRID [1].

References

1. The BEinGRID project, http://www.beingrid.eu
2. OASIS, XACML 3.0 (core specification and schemas) (May 18, 2008)
3. OASIS, XACML 3.0 administration and delegation profile, (October 10, 2007)
4. Gresty, C., et al.: Meeting customer needs. BT Technology Journal 26(1)

Engage: Engineering Service Modes with
WS-Engineer and Dino

Howard Foster1, Arun Mukhija2,
David S. Rosenblum2, and Sebastian Uchitel1

1 London Software Systems, Dept. of Computing, Imperial College London,
180 Queen’s Gate, London SW7 2BZ, UK

{hf1,su2}@doc.ic.ac.uk
2 London Software Systems, Dept. of Computer Science, University College London,

Gower Street, London WC1E 6BT, UK
{a.mukhija,d.rosenblum}@cs.ucl.ac.uk

http://icsoc09.ws-engineer.net

Abstract. In this demonstration1 we present an approach to engineer-
ing service brokering requirements and capabilities using the concepts
of Service Modes. The demonstration illustrates building service modes
in UML2 with Rational Software Modeller, transforming modes in WS-
Engineer and generating artefacts for runtime service brokering.

1 The Service Modes Approach
A mode, in the context of service engineering, aims to provide an easily accessi-
ble mechanism for developing adaptive service brokering requirements. Service
modes are an abstraction of a set of services that collaborate to achieve a task
or sub-tasks. A Service Modes Architecture consists of specifying the service
components, their configuration and behaviour required or provided, and their
interface specifications. We developed and apply a UML Service Modes Profile [1]
to identify various elements of the service configuration elements for service bro-
kering, and reuse this in the approach to identify required and provided services
in modes. A service modes model consists of a number of mode packages, which
themselves contain collaborations with configurations of service components and
their requirements or capabilities. If a service component is specified as required,
it identifies the service component for service discovery. Alternatively, if a ser-
vice component is specified as provided, it identifies the service component as
offered in service discovery. Additionally, service component bindings may ref-
erence binding constraints, offering non-functional requirements or capabilities
(such as expected response times for the service specified).

We also provide transformations from service mode models to service bro-
kering requirements and capability specifications (initially for a specific service
broker Dino from University College London). The transformations generate
documents which are deployed on to a runtime broker. Thus, at runtime the
requirements documents are used by service clients to create a new brokering
session and trigger discovery of required services. Capabilities may also be reg-
istered with the service broker, which offers provided services and adds service
capability to discoverable services.
1 Sponsored by the EU funded project SENSORIA (IST-2005-016004).

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 641–642, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

642 H. Foster et al.

Fig. 1. Demonstration of In-Vehicle Service Modes

2 The Demonstration
The demonstration illustrates service modes for an In-Vehicle Services Architec-
ture. The scenarios used as requirements for this example consider two vehicles
in different roles, namely a Master role (planning mode) and a Slave role (convoy
and detour modes). The demonstration takes place in three core stages. Firstly,
a service mode model for several modes of an In-Vehicle Services Architecture
is described. The audience is taken through a series of mode packages illustrat-
ing both the approach of constructing service configuration specifications using
the UML Modes profile and those elements which are referenced to the core
UML model. More specifically, service brokering requirements and capabilities
are highlighted. The second stage takes this model and mechanically transforms
the model modes to service brokering runtime documents. The audience is taken
through these documents, their structure and how this links to elements of both
the model and runtime requirements. Finally, the generated documents are used
directly for a runtime example of brokering in a simulation (as a vehicle anima-
tion illustrated in Figure 1) of the In-Vehicle Services scenario.

References

1. Foster, H., Mukhija, A., Uchitel, S., Rosenblum, D.S.: A Model-Driven Approach
to Dynamic and Adaptive Service Brokering using Modes. In: Bouguettaya, A.,
Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364, pp. 558–564.
Springer, Heidelberg (2008)

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 643–644, 2009.
© Springer-Verlag Berlin Heidelberg 2009

FAST-SE: An ESB Based Framework for SLA Trading

Jose Antonio Parejo, Antonio Manuel Gutiérrez,
Pablo Fernandez, and Antonio Ruiz-Cortes

University of Sevilla

Abstract. SLA driven service transaction has been identified as a key challenge
to take advantage of a SOA. FAST System provides a software framework for
the automated creation of SLAs. In particular it have been developed as an ex-
tension to the ESB (Enterprise Service Bus) paradigm to create a transparent
SLA management layer that drives any service invocation. Our framework has
been successfully applied in two different scenarios and provides an extensible
architecture to address new domains.

1 Introduction

As SOC has evolved into a mature paradigm, new challenges appear in the horizon. In
particular, the automatic provision of services is a promising field that could lead to a
new generation of organizations that adapt "on demand" to rapid changes in its busi-
ness environment.

FAST system addresses a core element of the automatic provision of services: the
creation of SLAs (Service Level Agreements) that will describe the rights and obliga-
tions of the service consumer and the service provider during the transaction. The
terms of the agreement could refer to either functional (such as the type of service –
i.e. the interface-) or non-functional (such as the availability of the service) features.
In doing so, our approach provides an architecture based on components to extend a
JBI Enterprise Service Bus with a new element: the FAST-SE (FAST Service En-
gine). This element provides an extensible software framework to deal with different
service domains: On the one hand, the system defines standard data models (informa-
tion, proposals, counterparties, agreements, etc.) that can be refined with a specific
vocabulary of the domain. On the other hand a flexible orchestration system is pro-
vided to allow different SLA creation transactions.

A short video demonstration of the system can be found in1

2 FAST Extension Capabilities

The FAST (Framework for Automatic Service Trading) system provides an architec-
ture based on components that are interconnected with a set of linking choreographies
and generic data models. The implementation of linking choreographies is independ-
ent of the vocabulary of the information so they can be adapted to different domains.

1 http://www.isa.us.es/fast

644 J.A. Parejo et al.

Also, the components develop a set of generic roles executed as autonomous process
so their behavior can be orchestrated.

Adapting to a specific domain only requires defining the domain vocabulary: i.e.
the specific (functional and non-functional) properties. Once the framework is instan-
tiated the parties (consumers and providers) specify their SLA creation preferences in
the trading process using the domain vocabulary. Finally, a domain can also specify
the component orchestration to model the trading process that will create the SLA.
Following, a short description of two domains already implemented is described.

Computing Marketplace Domain. In this case, a set of providers trade with a com-
putation service according to different properties as cost, computation time or delay.
The interaction choreographies are implemented in a distributed deployment scenario
and the agreement conditions are obtained optimizing domain constraints between
consumer requirements and providers features. Additionally, it is important to remark
that the application of the framework in this scenario provides the feasibility of adapt-
ing the trading process stages in each provider.

Federated bus government. The framework is applied to govern services in a feder-
ated bus inside a corporation. The system creates agreements to plan service invoca-
tions inside a federated bus with different service providers according to certain
conditions as reliability, performance or priority. The linking choreographies are
implemented to adapt a high performance environment. Moreover, the framework
provides an extensible environment to adapt new corporate services or constraints
with minimal effort. Currently, the system is in a pre-production test stage and it is
deployed to federate corporative services implemented by several departments in a
wide-size organization for a regional government.

3 Conclusions

The system has been deployed successfully in two different scenarios proving their
adaptability to their vocabulary and interaction needs. Currently, the system is being
extended to enrich the expression language in properties and preference. A set of
generic components is developed to deal with complex negotiations and CSP-based
selection.

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 645 – 646, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Gelee: Cooperative Lifecycle Management for
(Composite) Artifacts

Marcos Báez, Cristhian Parra, Fabio Casati, Maurizio Marchese,
Florian Daniel, Kasia di Meo, Silvia Zobele, Carlo Menapace, and Beatrice Valeri

University of Trento, Italy
{baez,parra,casati,marchese,daniel}@disi.unitn.it,
{katarzyna.dimeo,silvia.zobele}@studenti.unitn.it,
{carlo.menapace,beatrice.valeri}@studenti.unitn.it

Abstract. In this demonstration we introduce Gelee, our online platform for the
hosted specification and cooperative execution of lifecycles of artifacts of any
kind. With Gelee we aim at filling two lacks we identify in current cooperative
software systems when it comes to unstructured, artifact-based works (e.g., the
writing of a project deliverable): the lack of state and the complete lack of au-
tomated actions. Lifecycles allow us to model the state of any object, and if we
focus on online resources (e.g., a Google Doc) then we can also automate some
lifecycle actions. If we apply Gelee to composite artifacts, e.g., a set of web
services, lifecycles provide for the human-driven orchestration of services.

Keywords: Lifecycle Management, Artifacts, Online Resources, Gelee.

1 Introduction

Historically, the spectrum of cooperative software has been divided into two macro-
areas: process-centric systems (e.g., workflow management or service orchestration
systems) and document-centric systems (e.g., groupware or sub-versioning systems).
The former typically suffer from a too rigid imposition of the process logic, not allow-
ing users to easily adapt or change a running instance; as a consequence, such systems
do not suit unstructured, creative works without predefined process. Ad-hoc or adap-
tive workflow management systems or case handling systems only partially intro-
duced flexibility into process-centric systems. Document-centric systems, on the other
hand, typically come without any explicit notion of state for the work being assisted
by the system (the state is represented by the data in the system) and, hence, there is
no automated coordination of the work or support for automated actions.

We argue that everything has a lifecycle, a real-world object (e.g., a car) the same
way as a creative work (e.g., the writing of a deliverable). If modeled in terms of
phases and transitions, the lifecycle of an artifact allows us to capture some notion of
state of the artifact. While in general we cannot automate the progression of a lifecy-
cle for a given object, the people working on the artifact know how it changes during
its life. So we rely on humans to progress lifecycles. In projects where multiple arti-
facts are manipulated, this already grants the project coordinator visibility into the

646 M. Báez et al.

state of each artifact (e.g., to fill a progression report), a feature that is only scarcely
supported by any project management tool on the market (if at all). We then specifi-
cally focus on online resources, which typically come with an API (a web service)
that allows the enactment of actions on the resource. By binding a lifecycle to specific
resource (e.g., a Google Doc), Gelee allows for the automation of the API’s actions
by extending the lifecycle model with resource-specific actions (e.g., the translation
into PDF), thus alleviating the work of human actors. Composite artifacts (e.g., the
writing of a paper and its submission to a conference) can be obtained by combining
atomic artifacts, and lifecycles can be used to coordinate the interaction with their
APIs, practically yielding a human-orchestrated service composition.

In this demo we show Gelee at work, and we show that it indeed is an answer to
many situations that cannot be adequately managed with existing cooperative soft-
ware. The demo introduces the Gelee online platform, the lifecycle editor, the execu-
tion environment, and the monitoring tool. Gelee itself implements a SOA and allows
one to plug in new services through a dedicated registry. The platform includes a
SOA middleware for resource management, with on top the lifecycle management
applications.

2 Demonstration Flow

In this demonstration we will show the Gelee prototype at work. This prototype im-
plements the concepts in [1] providing artifact lifecycle modeling, progression, and
monitoring. The goal of this demonstration is to introduce the user to the Gelee fea-
tures and underlying concepts in the following flow:

1. First, we put Gelee into context to explain what the key contributions and the
novel features of the tool are.

2. Then we show the Gelee system at work, starting from the Gelee workspace.
3. From the workspace we move to the modeling environment to describe the model-

ing features with an example of a deliverable lifecycle.
4. We follow then this example to describe the execution environment, in which we

bind the actual deliverable (e.g., in Google Docs) to the lifecycle defined in the
modeling environment. In particular, we show how we operate on the resource by
executing and configuring lifecycle actions.

5. After introducing both environments, we briefly show the monitoring widgets and
how they can be included into web dashboards (e.g. iGoogle).

6. Finally, we summarize the demonstration and we mention our ongoing and future
work.

A short video describing the above demonstration flow is available at the following
address: http://project.liquidpub.org/gelee/docs/gelee-demo.wmv.

References

[1] Báez, M., Casati, F., Marchese, M.: Universal Resource Lifecycle Management. In: ICDE
2009, pp. 1741–1748 (2009)

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 647–648, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Hosted Universal Integration on the Web:
The mashArt Platform

Florian Daniel1, Fabio Casati1, Stefano Soi1, Jonny Fox1,
David Zancarli1, and Ming-Chien Shan2

1 University of Trento, Italy
{daniel,casati,soi,fox,zancarli}@disi.unitn.it

2 SAP Labs- 3410 Hillview Avenue, Palo Alto, CA 94304, USA
ming-chien.shan@sap.com

Abstract. Traditional integration practices like Enterprise Application Integra-
tion and Enterprise Information Integration approaches typically focus on the
application layer and the data layer in software systems, i.e., on limited and
specific development aspects. Current web mashup practices, instead, show that
there is also a concrete need for (i) integration at the presentation layer and (ii)
integration approaches that conciliate all the three layers together. In this dem-
onstration, we show how our mashArt approach addresses these challenges and
provides skilled web users with universal integration in a hosted fashion.

Keywords: Hosted Universal Integration, Mashups, Services Composition.

1 Introduction and Contributions

Mashups are online applications that are developed by composing contents and func-
tions accessible over the Web [1]. The innovative aspect of mashups is that they also
tackle integration at the user interface (UI) level, i.e., besides application logic and
data, they also reuse existing UIs (e.g., many of today’s applications include a Google
Map). We call this practice of integrating data, application logic, and UIs for the de-
velopment of a composite application universal integration.

Universal integration can be done (and is being done) today by joining the capa-
bilities of multiple programming languages and techniques, but it requires significant
efforts and professional programmers. There is, however, also a growing number of
mashup tools, which aim at aiding mashup development and at simplicity more than
robustness or completeness of features. For instance, Yahoo Pipes focuses on
RSS/Atom feeds, Microsoft Popfly on feeds and JavaScript components, Intel Mash
Maker on UIs and annotated data in web pages, while JackBe Presto also allows put-
ting a UI on top of data pipes. None of these, however, covers the three application
layers discussed above together in a convenient and homogeneous fashion.

Building on research in SOA and capturing the trends of Web 2.0 and mashups, in
this demo we propose an integrated and comprehensive approach for universal inte-
gration, equipped with a proper hosted development and execution platform called
mashArt (a significant evolution of the work described in [2]). Our aim is to do what
service composition has done for integrating services, but to do so at all layers, not

648 F. Daniel et al.

just at the application layer, and to do so by learning lessons and capturing the trends
of Web 2.0 and mashups, removing some of the limitations that constrained a wider
adoption of workflow/service composition technologies.

The mashArt approach aims at empowering non-professional programmers with
easy-to-use and flexible abstractions and techniques to create and manage composite
web applications. Specifically, mashArt provides the following, unique contributions:

• A unified component model that is able to accommodate and abstract UI compo-
nents (HTML), application logic components (SOAP or RESTful services), and
data components (feeds or XML/relational data) using a unified model.

• A universal composition model that allows mashArt users to develop composite
applications on top of the unified component model and conciliates the needs of
both UI synchronization and service orchestration under one hood.

• A development and execution platform for composite applications that facilitates
rapid development, testing, and maintenance. mashArt is entirely hosted and web-
based, with zero client-side code.

2 Demonstration Storyboard

The live demonstration introduces the three contributions of mashArt by means of a
joint use of slides (for the conceptual aspects) and hands-on platform demos (for the
practical aspects). In particular, the demonstration is organized as follows:

1. Intro: introduction of the conceptual and theoretical background of the pro-
ject, its goals and ambitions, and its contributions.

2. UI integration: explanation of the idea of UI integration and how UI compo-
nents and the composition logic look like.

3. UI integration demo: demonstration of how to do UI integration with mashArt
starting from a set of existing mashArt UI components. Two minutes suffice
to show how to develop and run a simple application that synchronizes a
search component and a map component for geo-visualization of results.

4. Universal integration: description of mashArt’s component model and its
composition model, which characterize the universal integration approach.

5. Universal integration demo: demonstration of how to combine service, data,
and UI integration in mashArt. Again, two minutes suffice to show how to
add an RSS reader component to the previous scenario and to feed it with da-
ta sourced from a RESTful service and transformed via a Yahoo! pipe.

6. Architecture: functional architecture of mashArt to show that mashArt is (or
will be) more than what is shown in the demo.

7. Conclusion and future works: summary and outline of future works.

A short version of the demo can be previewed here: http://mashart.org/mashArt.wmv.

References

[1] Yu, J., et al.: Understanding Mashup Development and its Differences with Traditional
Integration. Internet Computing 12(5), 44–52

[2] Yu, J., et al.: A Framework for Rapid Integration of Presentation Components. In: WWW
2007, pp. 923–932 (2007)

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 649–650, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Sec-MoSC Tooling - Incorporating Security
Requirements into Service Composition

Andre R.R. Souza1, Bruno L.B. Silva1, Fernando A.A. Lins1, Julio C. Damasceno1,
Nelson S. Rosa1, Paulo R.M. Maciel1, Robson W.A. Medeiros1, Bryan Stephenson2,

Hamid R. Motahari-Nezhad2, Jun Li2, and Caio Northfleet3

1 Federal University of Pernambuco, Centre of Informatics
{arss,blbs,faal2,jcd,nsr,prmm,rwam}@cin.ufpe.br

2 HP Labs Palo Alto
{bryan.stephenson,hamid.motahari,jun.li}@hp.com

3 HP Brazil
caio.northfleet@hp.com

Abstract. The Sec-MoSC Tooling supports modelling and enforcement of se-
curity abstractions in business processes and service composition. It offers a
novel approach consisting of abstractions and methods for capturing and en-
forcing security requirements in service composition.

1 Introduction

There is an increasing need for considering security requirements during service com-
position. However, no holistic and consistent approach exists for the identification,
modelling and enforcement of security requirements in service composition that cov-
ers all levels of abstraction from modelling to execution.

The Sec-MoSC Tooling is a novel set of tools and programming components that
enables the high-level specification, modelling, mapping and enforcement of security
requirements in business processes and service composition. Sec-MoSC enables
traceability of security requirements at different levels of abstraction, automatic gen-
eration of configuration files containing enforceable security actions for the composed
services and the involved security tools. Security requirements are defined once and
enforced across many services.

The architecture of this solution is presented in Figure 1. The Sec-MoSC Tool Edi-
tor allows the user to define a business process based on BPMN standard and annotate
it with security requirements. The repositories store information related to the partici-
pant services and security properties. The MoSC Security Module implements security
enforcement mechanisms. The Auxiliary Engine coordinates the operation of Security
Module and the orchestration engine. While the Tool Editor provides support at devel-
opment time, the Execution Environment components shown in Figure 1 are responsi-
ble for executing the service composition and realising the security mechanisms.

We introduce three non-functional abstractions to express security requirements:
NF-Attribute, NF-Statement and NF-Action. NF-Attribute models non-functional
requirements (e.g. confidentiality). The NF-Statement represents constraints related to

650 A.R.R. Souza et al.

Repositories

Security Services

Auxiliary
Engine

Orchestration
Engine

MoSC
Security
Module

Platform-independent
XML Files

BPMN
Module

Security
Extension

Service
Extension

Sec-MoSC
Translator

Sec-MoSC Tool Editor

Execution
Environment

Log

Platform-specific
XML Files

Fig. 1. Architecture of the Sec-MoSC Tooling

NF-Attributes (e.g. “high” confidentiality) and NF-Action refers to detailed technical
mechanisms that realize NF-Attributes, (e.g. use cryptography to encrypt data).

2 Demonstration Scenario

To illustrate the application of Sec-MoSC Tooling, we use a service composition
example called Virtual Travel Agency (VTA). Our demonstration starts with a BPMN
model of the VTA. We show how a business person can annotate a BPMN model
using the provided security annotations. Several security requirements across com-
posed services and their enforcement mechanisms are demonstrated including confi-
dentiality, data integrity, and restricting access. In order to enforce the security
requirements we follow a model-driven approach for code generation. Specifically,
from the annotated BPMN we generate three platform-independent files: WS-BPEL
code, XML-based security configuration (in particular WS-SecurityPolicy), and ser-
vice configuration. The Auxiliary Engine transforms the platform-independent files to
platform-specific configuration files for the chosen security enforcement modules and
orchestration engines. The platform-specific files are deployed to the execution envi-
ronment to enforce security requirements. We finally demonstrate how the user can
monitor service interactions to verify enforcement of security requirements.

All the components in the Sec-MoSC Tooling are implemented as an Eclipse
plugin. We choose Apache ODE as our WS-BPEL orchestration engine and Apache
Rampart for enforcing message-level security requirements. The editor is built on top
of the Eclipse BPMN Modelling Editor. Additional information can be found in [1].

Acknowledgement. This research is supported by Hewlett-Packard Brasil Ltda. using
incentives of Brazilian Informatics Law (Law nº 8.2.48 of 1991).

References

[1] Souza, A.R.R., et al.: Incorporating Security Requirements into Service Composition:
From Modelling to Execution. In: 7th International Joint Conference on Service Oriented
Computing (ICSOC&ServiceWave 2009), Stockholm, Sweden (2009)

Services Inside the Smart Home:
A Simulation and Visualization Tool�

Elena Lazovik��, Piet den Dulk��, Martijn de Groote��, Alexander Lazovik���,
and Marco Aiello� � �

University of Groningen, Nijenborgh 9, 9747AG Groningen, The Netherlands
{A.C.T.den.Dulk,M.de.Groote}@student.rug.nl,

{e.lazovik,a.lazovik,m.aiello}@rug.nl

Abstract. Pervasive systems, and domotics in particular, is an applica-
tion area where heterogeneity is the norm, with thousands of autonomous
heterogeneous devices live together and need to interoperate. One of the
greatest difficulties in developing middleware for smart homes is that this
kind of systems are extremely difficult to test and verify. We propose to
reduce the testing costs by replacing actual home services with virtual
stubs behaving as if they were actual hardware installed somewhere in
the house and, most importantly, to visualize the behaviour of the home
to give the user the impression and feedback of being in a real home.

1 Introduction

Service-Oriented Computing (SOC) is a leading paradigm to create state of the
art information systems. It is widely used in the development of complex software
artifacts that require high interoperability, scalability, security, and reliability.
Software of this kind can be seamlessly integrated with other systems that are
possibly written in different programming languages and are deployed under
different operating system. High interoperability is achieved through usage of
standard platform-independent protocols, such as the web services stack. Per-
vasive systems and domotics applications are concerned with technology that
pervades the home in order to make it more pro-active and aware with the final
goal of increasing security and comfort of its inhabitants. SOC is a natural can-
didate to address the major requirements of domotics needs. Examples of are
the Java based Jini technology (http://www.jini.org) or web services [2].

In this paper, we concentrate on smart homes, that is, homes that contain
interactive and pro-active devices, that adapt their behavior to the needs of
the home inhabitant through extensive interoperation and user interaction. For
example, a movie may be automatically paused when the user leaves the room,
and then launched again when s/he is back; windows are automatically opened

� This research is supported by the EU through the STREP project FP7-224332
Smart Homes for All, http://www.sm4all-project.eu

�� Master in Computer Science.
� � � Distributed Systems Group.

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 651–652, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.jini.org

652 E. Lazovik et al.

Fig. 1. Architecture of the domotics simulation environment ViSi

to regulate the air condition or as a reaction to gas leak, and so on. One of the
greatest challenges in domotics is verification of the proposed solutions.

We propose to reduce the testing costs by replacing actual home services with
virtual stubs behaving as if they were actual hardware installed somewhere in the
house. To this end, we extend Google SketchUp (http://sketchup.google.com)
with a set of tools that extend its visual representation of the house with virtual
interactive home web services supporting SOAP messages. This allows not only
to visualize the potential smart home but also to provide a full featured simu-
lation of any possible domotics scenario. In addition, it is possible to model the
user and its interaction with the home. The realized simulation and visualization
environment is named ViSi (Smart Home Visualization and Simulation) [1].

The framework may be used in conjunction with hardware supporting the
web service stack. For instance, we have included in our test a controller of a
fridge implementing WSDL and SOAP over HTTP on an ethernet connection.
Figure 1 provides an overview of the implementation: the visualization compo-
nent is written as a set of plug-ins for Google SketchUp, the communication
mechanism is based on the Ruby SOAP implementation. As typical of web ser-
vices, the clients are language-independent and can be written in any language
that supports the web services stack. In our experimentation we have used Java
and various BPEL engines. The implemented framework ViSi is not limited to
domotics applications. Google SketchUp is a domain-independent drawing tool,
and our framework may be used to simulate and visualize network applications,
distributed systems, telecommunications, to name some application areas.

References

1. ViSi demo (2009),
http://www.sm4all-project.eu/index.php/activities/videos.html

2. Aiello, M., Dustdar, S.: A domotic infrastructure based on the web service stack.
Pervasive and Mobile Computing 4(4), 506–525 (2008)

http://sketchup.google.com
http://www.sm4all-project.eu/index.php/activities/videos.html

SLA Management and Contract-Based Service
Execution

Matthias Winkler1, Josef Spillner2, and Alexander Schill2

1 SAP Research CEC Dresden, SAP AG, Chemnitzer Str. 48,
01187 Dresden, Germany

matthias.winkler@sap.com
2 TU Dresden, Nöthnitzer Str. 46, 01187 Dresden, Germany

{josef.spillner,alexander.schill}@tu-dresden.de

Abstract. In the Internet of Services vision, services are traded via internet ser-
vice marketplaces. Service provisioning is regulated by service level agreements
(SLAs). In this demonstration1 we present an infrastructure which supports SLA
creation and negotiation as well as service provisioning and monitoring based on
SLAs in the context of service marketplaces. It is an implementation of the work
presented in [1] and [2] and an intermediate result of the TEXO project2.

1 The SLA Management Infrastructure

We present a novel system for end-to-end SLA handling during design time, negoti-
ation, and runtime which improves existing work by increasing automation of SLA
management. The system is also different from existing ones because of its central-
ized SLA negotiation and monitoring support via the marketplace instead of requiring
consumer-provider negotiation. Our system supports contract-bound tradable service
execution through a distributed service infrastructure with ubiquitous support for WS-
Agreement3. SLAs are created, negotiated, and monitored by specialised components
on the infrastructure for engineering, trading, and executing services.

The ISE development environment consists of tools for modelling and describing
services. The Service Management Platform (SMP) provides service marketplace func-
tionality for offering and searching services, SLA negotiation and monitoring, and
billing. The Tradable Services Runtime (TSR) supports service execution and moni-
toring at the provider side. Multiple distributed service runtimes are interacting with
the central service marketplace. The communication between the SMP and the TSRs
is realized via a message-oriented middleware which supports the exchange of infor-
mation regarding deployed services, negotiated SLAs, and monitoring data. Figure 1
provides an overview of the infrastructure of ISE, SMP and TSR.

1 Associated video:
http://texo.inf.tu-dresden.de/servicewave-texo-video

2 The project was funded by means of the German Federal Ministry of Economy and Technology
under the promotional reference “01MQ07012”. The authors take the responsibility for the
contents.

3 WS-Agreement: http://www.ogf.org/documents/GFD.107.pdf

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 653–655, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://texo.inf.tu-dresden.de/servicewave-texo-video
http://www.ogf.org/documents/GFD.107.pdf

654 M. Winkler, J. Spillner, and A. Schill

Fig. 1. Infrastructure for SLA management of tradable services

SLA template generation and deployment: SLA templates, which form the base for
SLA negotiation, are created at design time by the SLA Template Generation compo-
nent [2] of ISE. It takes a USDL (Universal Service Description Language) service
description as input and generates a WS-Agreement SLA template via a model-to-text
transformation. This automates part of the work of a service provider.

Negotiation of SLAs: The negotiation of SLAs is supported by the SLA Manager com-
ponent, which provides the agreement provider interfaces defined by WS-Agreement.
The Contract Wizard and the ISE SLA Negotiation Wizard provide front ends for the ne-
gotiation of SLAs for service consumers and composite service creators, respectively.
While the Contract Wizard was implemented as a web application, the ISE SLA Negoti-
ation Wizard was implemented as a plug-in for the ISE workbench. Upon the successful
negotiation of an SLA, different runtime components are activated in order to prepare
service provisioning and monitoring.

Service Execution and Monitoring: Once an SLA was negotiated, the respective ser-
vice can be consumed. Service requests are checked by the Access Gate SOAP proxy
for user authentication and SLA-based authorisation. Invocation-related statistics are
injected into the SLA-driven monitor Grand SLAM. Further system and service metrics
are measured by its monitoring sensors. They are aggregated and evaluated according
to the negotiated SLA conditions. In the case of detected problems a violation event is
sent to the SLA Manager. Adaptive execution environments can react on this event.

SLA Management and Contract-Based Service Execution 655

References

[1] Spillner, J., Winkler, M., Reichert, S., Cardoso, J., Schill, A.: Distributed Contracting and
Monitoring in the Internet of Services. In: Senivongse, T., Oliveira, R. (eds.) DAIS 2009.
LNCS, vol. 5523, pp. 129–142. Springer, Heidelberg (2009)

[2] Winkler, M., Springer, T.: SLA Management for the Internet of Services. In: Proceedings of
the Third International Workshop on Architectures, Concepts and Technologies for Service
Oriented Computing (ACT4SOC), Sofia, Bulgaria (2009)

Author Index

Aiello, Marco 651
Akbar, Ihsan 576
Alkhalaf, Muath 516
Anstett, Tobias 592
Austel, Paula 389
Awad, Ahmed 500

Báez, Marcos 645
Bahsoon, Rami 352
Barroca, Leonor 144
Bauer, Bernhard 253
Bertok, Peter 364
Bhattacharya, Kamal 622
Bouguettaya, Athman 83, 576
Brinkmann, André 301
Brogi, Antonio 68
Brossard, David 639
Bruni, Roberto 455
Brunner, Manuel 437
Bultan, Tevfik 516

Calvanese, Diego 130
Casati, Fabio 645, 647
Cavallaro, Luca 159
Comerio, Marco 221, 546
Corfini, Sara 68
Curbera, Francisco 389

Damasceno, Julio C. 373, 649
Daniel, Florian 645, 647
De Giacomo, Giuseppe 130
de Groote, Martijn 651
Delchev, Ivan 316
den Dulk, Piet 651
De Paoli, Flavio 221, 546
di Meo, Kasia 645
Ding, Chen 285
Di Nitto, Elisabetta 159
Duftler, Matthew 389
Dustdar, Schahram 221

Eberle, Hanna 445
Ellis, Clarence (Skip) 346

Fernandez, Pablo 643
Fernández, Rafael 316

Fikouras, Ioannis 19
Foster, Howard 641
Fox, Jonny 647
Fradinho, Manuel 316
Freiter, Eugen 19
Fuchsloch, Andrea 316
Fuentes, Thaizel 68

Gamini Abhaya, Vidura 364
Gijsen, Bart M.M. 34
Gu, Liang 429
Gudenkauf, Stefan 301
Gutiérrez, Antonio Manuel 643

Hallé, Sylvain 516
Hammoudi, Slimane 175
Hansen, Klaus M. 404
He, Qiang 269
Höing, André 301
Hölzl, Matthias 455
Hoyer, Volker 316
Hughes, Graham 516
Hull, Richard 1, 130

Ingstrup, Mads 404
Ishikawa, Fuyuki 253
Iyengar, Arun 561

Janner, Till 316
Jin, Hai 269

Karastoyanova, Dimka 592
Karenos, Kyriakos 331
Khalaf, Rania 389
Kim, Minkyong 331
Klein, Adrian 253
Koch, Nora 455
Kotonya, Gerald 637
Kotsokalis, Constantinos 190
Kritikos, Kyriakos 99

Laney, Robin 144
Laredo, Jim 622
Lausen, Holger 437

658 Author Index

Lazovik, Alexander 651
Lazovik, Elena 651
Lécué, Freddy 205
Lei, Hui 331
Levenshteyn, Roman 19
Leymann, Frank 445, 592
Li, Ge 429
Li, Jun 373, 649
Li, Lei 50
Lim, Ee-Peng 50
Lins, Fernando A.A. 373, 649
Liske, Nannette 607
Liu, Fei 429
Lluch Lafuente, Alberto 455
Lohmann, Niels 607
López, Javier 316
Ludwig, Heiko 622

Maciel, Paulo R.M. 373, 649
Mahfouz, Ayman 144
Malik, Zaki 576
Marchese, Maurizio 645
Marconi, Annapaola 445
Marino, Daniela 531
Massacci, Fabio 531
Mayer, Philip 455
Mayer, Wolfgang 358
Medeiros, Robson W.A. 373, 649
Meeuwissen, Hendrik B. 34
Mehandjiev, Nikolay 205
Meister, Dirk 301
Mello Ferreira, Alexandre 99
Menapace, Carlo 645
Mendling, Jan 115
Meulenhoff, Pieter J. 34
Micheletti, Andrea 531
Mietzner, Ralph 592
Mikalsen, Thomas 561
Monakova, Ganna 592
Monfort, Valérie 175
Montanari, Ugo 455
Möller, Knud Hinnerk 316
Motahari-Nezhad, Hamid R. 373, 649
Mukhija, Arun 641
Müller, Carlos 237

Narendra, Nanjangud C. 1
Neuhaus, Stephan 531
Niemöller, Jörg 19
Nigam, Anil 1

Northfleet, Caio 373, 649
Nuseibeh, Bashar 144

Ooms, Matthijs 470
Ortega, Sebastian 316
Ostendorf, Dennis R. 34

Palmonari, Matteo 546
Parejo, Jose Antonio 643
Parra, Cristhian 645
Pasquale, Liliana 622
Patig, Susanne 420
Pernici, Barbara 99
Pistore, Marco 445
Ponnalagu, Karthikeyan 485
Pradella, Matteo 159

Quinet, Raphaël 19

Rassadko, Nataliya 531
Rembert, Aubrey J. 346
Resinas, Manuel 237
Reyes, Marcos 316
Rissanen, Erik 639
Rivera, Ismael 316
Robinson, Daniel 637
Rojas Gonzalez, Miguel Angel 190
Rosa, Nelson S. 373, 649
Rosenberg, Florian 389
Rosenblum, David S. 641
Rouvellou, Isabelle 561
Ruiz-Cortés, Antonio 237, 643

Sambamoorthy, Preethy 285
Scherp, Guido 301
Schill, Alexander 653
Schleicher, Daniel 592
Schroeder, Andreas 455
Schütte, Julian 404
Sengupta, Bikram 485
Shan, Ming-Chien 647
Shao, Shizhi 83
Silva, Bruno L.B. 373, 649
Silva-Lepe, Ignacio 561
Sindhgatta, Renuka 485
Sirbu, Adina 445
Slabbert, Adriaan 639
Smirnov, Sergey 115
Soi, Stefano 647
Souza, Andre R.R. 373, 649

Author Index 659

Spillner, Josef 653
Stahl, Christian 607
Staite, Christopher 352
Steinmetz, Nathalie 437
Stephenson, Bryan 373, 649
Strauch, Steve 592
Stumptner, Markus 358
Su, Jianwen 130
Subramanian, Revathi 561

Tan, Yue 285
Tari, Zahir 364
Thiagarajan, Rajesh 358
Truong, Hong-Linh 221

Uchitel, Sebastian 641
Unger, Tobias 445

Valeri, Beatrice 645
van der Vet, Paul 470
Vandikas, Konstantinos 19

Wajid, Usman 205
Wan, Cheng 83
Wang, Hongbing 83
Wang, Lijie 429

Wang, Yan 50
Wassermann, Bruno 622
Wassink, Ingo 470
Weidlich, Matthias 115, 500
Wesenberg, Harald 420
Weske, Mathias 115, 500
Winkler, Matthias 653
Wirsing, Martin 455
Wolak, Stephen 352
Wolf, Karsten 607
Wu, Qinyi 561

Xie, Bing 429

Yahyapour, Ramin 190
Yan, Jun 269
Yang, Hao 331
Yang, Yun 269
Ye, Fan 331

Zancarli, David 647
Zhang, Liangjie 429
Zhang, Weishan 404
Zhou, Xuan 83
Živković, Miroslav 34
Zobele, Silvia 645

	Title page
	Preface
	Organization
	Table of Contents
	Composition
	Facilitating Workflow Interoperation Using Artifact-Centric Hubs
	Introduction
	Representative Example
	Example Overview
	Design Considerations

	A Framework for Artifact-Centric Interoperation Hubs
	Nested Data and Artifact Types
	Artifact Schemas and Hub Schemas
	Adding a Condition Language

	Views and Access Rights
	Views
	Windows
	Access Rights and CRUDAE
	Persistence of Visibility

	Towards a Prototype Implementation
	Related Work
	Conclusions
	References

	Aspect Orientation for Composite Services in the Telecommunication Domain
	Introduction
	Related Work
	Crosscutting in the Telecommunication Domain
	AOP for Composite Services
	Weaving Definition and Join-Points
	Advice Selection and Execution
	Data Exchange with Advice Services

	Example
	Summary and Discussion of the Approach
	Conclusion
	References

	Intelligent Overload Control for Composite Web Services
	Introduction
	Mathematical Foundation for Admission Control
	Dynamic Admission Control Algorithm S
	Dynamic Admission Control Algorithm D
	Simulation Setup
	Experimental Validation
	Concluding Remarks
	References

	Discovery
	Trust-Oriented Composite Service Selection and Discovery
	Introduction
	Related Work
	Service Invocation Model
	Composite Services and Invocation Relation
	An Example: Travel Plan
	Service Invocation Graph
	Service InvocationMatrix

	Trust Evaluation in Composite Services
	Trust Estimation Model
	Global Trust Computation in Composite Services

	Composite Service Selection and Discovery
	Longest SEF Algorithm
	Monte Carlo Method Based Algorithm (MCBA)

	Experiments
	Comparison on Travel Plan Composite Services
	Comparison on Complex Composite Services

	Conclusions
	References

	A Two-Tiered Approach to Enabling Enhanced Service Discovery in Embedded Peer-to-Peer Systems
	Introduction
	OverlayNetwork
	Network Maintenance
	Message Routing Protocol

	Service Discovery Protocol
	Optimisations
	Evaluation
	Related Work
	Concluding Remarks
	References

	Web Service Selection with Incomplete or Inconsistent User Preferences
	Introduction
	Background
	Web Service Selection
	CP-Net
	Recommender System

	Service Selection Framework
	Preference Amendment
	Similar User Detection
	Preference Voting
	Conflict Removal
	Preference Complementation

	Experiment
	Simulation Setup
	Efficiency of Conflict Removal
	Efficiency and Effectiveness of Preference Complementation

	Related Work
	Conclusion
	References

	Design Principles
	Energy-Aware Design of Service-Based Applications
	Introduction
	Service Energy Efficiency Computation
	Service-Based Application Design
	Main Definitions and Assumptions
	Proposed Approach

	Motivating Example
	Concluding Remarks
	References

	Action Patterns in Business Process Models
	Introduction
	Motivating Example
	Action Patterns
	Formal Framework
	Co-occurrence Action Patterns
	Behavioral Action Patterns

	Evaluation Based on the SAP Reference Model
	Related Work
	Conclusion
	References

	Artifact-Centric Workflow Dominance
	Introduction
	Artifact-Centric Workflows
	Dominance
	Absolute Dominance
	Enactments of Bounded Length
	Enactments of Unbounded Length

	Conclusions
	References

	Customization and Adaptation
	Requirements-Driven Collaborative Choreography Customization
	Introduction
	Choreographed Interactions
	Customizing Choreographed Interactions
	The Problem
	Messaging Specification vs. Requirements
	Our Proposed Approach

	Modeling Interaction Requirements
	Global View: AD Modeling
	Local View: GA Modeling
	Behavioral Specification: Formal Tropos

	Traceability and Impact Analysis
	Impact Analysis: Bridging Local and Global Views
	Traceability: Bridging Requirements to Messaging

	Choreography Customization Process
	Validation
	Related Work
	Conclusions and Further Work
	References

	An Automatic Approach to Enable Replacement of Conversational Services
	Introduction
	Related Work
	Motivating Example
	Adaptation Approach: Overview
	Generation of Adaptation Scripts for Protocol-Level Mismatches
	Problem Statement
	Implementation and Practical Issues

	Evaluation
	Conclusion
	References

	Towards Adaptable SOA: Model Driven Development, Context and Aspect
	Introduction
	Aspects for Web Services Adaptability
	Applying AOP to Web Services with ASW
	Adaptability with Aspects Based Services : Related Works

	Context for Service Adaptability with Model Driven Approach
	MDD and Context for Service Adaptability
	Adaptability with Context Based Services: Related Works

	Towards Models, Context and Aspects for Service Adaptability
	Global Approach
	Concrete Examples
	Dynamic Rerouting Modeling (CPIM)
	Model Transformation
	Related Works and Discussion

	Conclusion and Future Works
	References

	Negotiation, Agreements, and Compliance
	Modeling Service Level Agreements with Binary Decision Diagrams
	Introduction
	Related Work
	Binary Decision Diagrams
	SLAs as BDDs
	A Motivating Scenario
	SLAs and SLA Hierarchies
	BDD Mapping
	Negotiation Time Operations
	Runtime Operations

	Experimental Verification
	Conclusions and Future Work
	References

	Provider-Composer Negotiations for Semantic Robustness in Service Compositions
	Introduction
	Preliminaries
	Template-Based Service Composition
	Formal Semantic Model

	Negotiating Robust Interfaces with Candidate Service Providers
	Service Suitability
	Negotiation Protocol

	Details of Protocol and Agent Decisions
	Phase 1
	Phases 2 and 3

	An Example Negotiation
	Phase 1
	Phases 2 and 3

	Related Work
	Robustness in Composition
	Agent-Based Negotiation

	Conclusion
	References

	Evaluating Contract Compatibility for Service Composition in the SeCO2 Framework
	Introduction
	Motivation and Related Work
	Motivation
	Related Work on Service Contract Compatibility

	Overview of the SeCO2 Framework
	Modeling and Mapping Service Contract Specifications
	Typology of Contract Specifications
	Modeling and Mapping Service Contract Terminologies into the Reference Ontology
	Wrapping Service Contract Specifications to SeCO Policy

	Contract Compatibility Evaluation for Service Composition
	Contract Compatibility Evaluation Rules
	An Algorithm for Contract Compatibility Evaluation

	Illustrating Scenarios
	Concluding Remarks
	References

	Explaining the Non-compliance between Templates and Agreement Offers in WS-Agreement
	Introduction
	WS-Agreement*-Non-compliant Offers and Templates
	WS-Agreement* Offers and Templates
	What’s in WS-Agreement*?
	Compliance between Templates and Agreement Offers
	Explaining the Non-compliance

	Explaining the Non-compliance Using CSPs
	Preliminaries
	Mapping WS-Agreement* Templates onto CSP
	Explaining the Non-compliance between WS-Agreements* Documents

	Related Work
	Conclusions and Future Work
	References

	Selection
	A Probabilistic Approach to Service Selection with Conditional Contracts and Usage Patterns
	Introduction
	Related Work
	Scenario
	Overview
	Providers
	Users
	Challenges

	Approach
	Conditional Contracts
	Usage Patterns
	Probability Distributions
	Probabilistic Selection

	Evaluation
	Response Time
	Price

	Conclusion
	References

	ServiceTrust: Supporting Reputation-Oriented Service Selection
	Introduction
	Requirements Analysis
	ServiceTrust Mechanisms
	Generating Local Transactional Ratings
	Aggregating Local Transactional Ratings
	Combining Personal Trust
	Evaluating Transactional Trust
	Initial Trust for New Services

	Experiments
	Experiments Configuration
	Experimental Results

	Related Work
	Conclusions and Future Work
	References

	QoS Browsing for Web Service Selection
	Introduction
	Related Works
	Interactive QoS Browsing for Service Selection
	QoS Attributes of Web Services
	Iterative Clustering for QoS Browsing

	Experiments
	Experiments on Interval Clustering Algorithm
	Illustrating the Interactive QoS Browsing Process

	Conclusions
	References

	Platforms and Infrastructures
	An Orchestration as a Service Infrastructure Using Grid Technologies and WS-BPEL
	Introduction
	Orchestration as a Service
	BIS-Grid OaaS Infrastructure
	BIS-Grid Engine Architecture
	Security Infrastructure

	Application Scenarios
	Workflow Modeling Methodology

	Related Work
	Conclusion
	References

	The FAST Platform: An Open and Semantically- Enriched Platform for Designing Multi-channel and Enterprise-Class Gadgets
	Introduction and Motivation
	Related Work and Background
	Enterprise Mashups – Definition and Terminology
	Requirements

	FAST Platform
	Enterprise Mashup Life Cycle
	FAST Gadget Ontology
	Architecture
	Deployment of Multi-channel Gadgets

	Case Study: Cross-Organizational Promotion Scenario
	Conclusion and Future Work
	References

	Message-Oriented Middleware with QoS Awareness
	Introduction
	Network and System Models
	Quality-of-Service Goals

	Design
	Overview
	Overlay Routing
	Latency Budget Allocation

	Implementation
	Topic Structure and Data Forwarding

	SysteminAction
	Related Work
	Conclusion
	References

	Short Papers I
	Learning the Control-Flow of a Business Process Using ICN-Based Process Models
	Introduction
	Process Execution Logs
	LearningAPGs
	Summary and Future Work
	References

	Fine-Grained Recommendation Systems for Service Attribute Exchange
	Introduction
	Related Work
	Approach
	Conclusions
	References

	A Generative Framework for Service Process Composition
	Introduction
	GCSP-Based Service Composition
	Workflow Scope
	Experimental Evaluation
	Discussion
	References

	Achieving Predictability and Service Differentiation in Web Services
	Introduction
	Background
	Proposed Solution
	ProposedModel
	Proposed Algorithm
	Deadline Based scheduling

	Empirical Evaluation
	Experimental Results
	Discussion

	Conclusion
	References

	Security
	Incorporating Security Requirements into Service Composition: From Modelling to Execution
	Introduction
	Illustrative Scenario
	Security Abstractions for Business Modelling to Execution
	Security Requirements
	Abstractions

	Sec-MoSC Methodology
	Architecture, Implementation and Example
	Architecture
	Implementation
	Illustrative Example

	Related Work
	Conclusions and Future Work
	References

	End-to-End Security for Enterprise Mashups
	Introduction
	Illustrative Example
	Contributions

	BMP and the Bite Language
	Overview of the Enterprise Mashup Security Solution
	Language Extensions for Security Specification
	Security Extension and Semantics
	Execution Semantics

	Secure Authentication Service
	OAuth Principles
	Third-Party Service Support
	Implementation Aspects

	Case Study and Discussion
	Related Work
	Conclusions and Outlook
	References

	A Genetic Algorithms-Based Approach for Optimized Self-protection in a Pervasive Service Middleware
	Introduction
	Semantic Web-Based Self-management and Work Flow of Self-protection in Hydra
	Self-management Architecture
	Self-protection Work Flow

	Security Ontologies
	Modeling Protection Goals
	Modeling Resource Consumption
	Usage of Security Ontologies

	Security Strategies and a Scenario for Self-protection in Hydra
	Security Strategies
	A Self-protection Scenario in Hydra

	Obtaining Optimized Protection Using GAs
	Optimization Objectives and Constraints Formulation
	Chromosome Encoding and Fitness Evaluations

	Prototype Implementation
	Implementing GA-Based Optimization for Self-protection
	Enforcement of Obligations
	Performance Measurements and Quality Evaluation
	Discussion

	Related Work
	Conclusion and Future Work
	References

	Short Papers II
	Role of Process Modeling in Software Service Design
	Motivation
	Current Software Service Design Approaches
	A Practical Case of Software Service Design
	SOA Development Context
	Service Design Process
	Service Design Example

	Generalization and Conclusions
	References

	Assisting Trustworthiness Based Web Services Selection Using the Fidelity of Websites
	Introduction and Related Work
	Assessing the Fidelity of Supporting Websites
	Modeling the Relationship between Supporting Websites
	Assessing the Fidelity of Supporting Websites

	Services Selection Using Trustworthiness
	Assessing Trustworthiness for Web Services
	Services Selection Using Trustworthiness of Web Services

	Case Study
	Conclusion and Future Work
	References

	Web Service Search on Large Scale
	Introduction
	Crawling the Web for Services
	WSDL Crawling Strategies
	Web API Crawling Strategies

	Building Unique Service Descriptions
	Automatically Enriching Service Descriptions
	Evaluation
	Conclusion and Future Work
	References

	Enabling Adaptation of Pervasive Flows: Built-in Contextual Adaptation
	Introduction
	Adaptable Pervasive Flows
	Built-in Adaptation Constructs
	Basic Constructs: Context Conditions in Standard Control Constructs
	Context Handlers
	Contextual One-of and Cross-Context Links

	Conclusions and Future Works
	References

	Modeling and Design
	A Service-Oriented UML Profile with Formal Support
	Introduction
	Running Example
	UML4SOAExtension
	The UML4SOA Reconfigurations Profile

	Formal Support
	ADR Semantics for the UML4SOA Reconfiguration Profile

	Analysis and Verification
	Related Work
	Conclusion
	References

	Designing Workflows on the Fly Using e-BioFlow
	Introduction
	Ad-Hoc Editor: Characteristics
	e-BioFlow: Different Perspectives on Scientific Workflows
	Ad-Hoc Workflow Design in e-BioFlow
	Live Editing
	Guided Workflow Design
	Programming by Demonstration

	Use Case: Perform a Blat Operation
	Related Work
	Discussion
	References

	Measuring the Quality of Service Oriented Design
	Introduction
	Setting the Context
	Model and Notations – Process, Service, Operations, Messages
	Case Studies
	Service Design and Metrics Computation Tool

	Service Design Metrics
	Cohesion
	Coupling
	Reusability and Composability
	Service Granularity

	Discussions and Future Work
	References

	Validation and Verification
	Specification, Verification and Explanation of Violation for Data Aware Compliance Rules
	Introduction
	Motivating Example
	Preliminaries
	Linear Temporal Logic with Past Operators (PLTL)
	Data Access Semantics
	BPMN-Q

	BPMN-Q for Data Aware Compliance Rules
	Examples for Data Aware Compliance Rules
	Syntax of Data Aware BPMN-Q Queries
	Mapping Queries into PLTL

	Explanation of Violation
	Temporal Logic Querying
	Explanation of Data Rules Violations
	Explanation of $Conditional Leads to$ Violations
	Explanation of $Conditional Precedes$ Rules Violations

	Implementation
	Related Work
	Conclusion
	References

	Generating Interface Grammars from WSDL for Automated Verification of Web Services
	Introduction
	Web Service Interface Contracts
	The PayPal Express Checkout API
	Interface Grammars for Web Services

	Translating WSDL to Interface Grammars
	Translation from XML Schema to Interface Grammars
	Control-Flow and Messages

	Experiments
	Amazon E-Commerce Service
	PayPal Express Checkout Service

	Related Work
	Conclusion
	References

	Satisfaction of Control Objectives by Control Processes
	Introduction
	Example: Outpatient Drug Reimbursement
	Conceptual Model
	Specification: Control Objective Satisfaction
	Compliance of Control Processes
	Related Work
	Conclusion and Further Work
	References

	Reputation and Ranking
	Effective and Flexible NFP-Based Ranking of Web Services
	Introduction
	Problem Context and Motivation
	PCM-Compliant NFP Descriptions and Policy Ranking
	Policy Matchmaking and WS Ranking: Combining Semantics and Algorithms for Policy Evaluation
	Experimental Results
	Related Work
	Concluding Remarks
	References

	Combining Quality of Service and Social Information for Ranking Services
	Introduction
	ServiceRank
	Local Ratings
	Normalizing and Aggregating Local Ratings

	System Prototype and Runtime Traffic Monitoring
	Experiment Results
	Map Services
	ServiceRank Properties
	Monitoring Overhead in SOALive
	ServiceRank Performance

	Related Work
	Conclusion
	References

	Web Services Reputation Assessment Using a Hidden Markov Model
	Introduction
	Web Services Reputation
	Reputation Assessment
	HMM-Based Reputation Assessment

	Evaluation
	Conclusion and Future Work
	References

	Service Management
	MC-Cube: Mastering Customizable Compliance in the Cloud
	Introduction and Motivation
	Running Example
	Requirements and Resulting Architecture
	Refining the General Architecture to Cloud Delivery Models
	IaaS
	PaaS
	SaaS

	Technical Architecture
	Implementation Aspects
	Related Work
	Conclusion and Future Work
	References

	Another Approach to Service Instance Migration
	Introduction
	Behavior of Services
	Formalization of Instance Migration
	Migration Approach
	Case Study and Implementation
	Related Work
	Conclusion
	References

	Distributed Cross-Domain Configuration Management
	Introduction
	ProblemAnalysis
	Overview of the Approach
	Smart Configuration Items
	Configuration Data Model
	Domain Configuration Discovery
	SCI Dependency Resolution and Management

	Cross Domain Aggregation
	Implementation
	Related Work
	Conclusions
	References

	Demonstrations
	A Pluggable Framework for Tracking and Managing Faults in Service-Oriented Systems
	Introduction
	An Overview of the Approach
	References

	Distributed Access Control Management – A XACML BasedApproach
	Introduction
	System Description
	Benefits
	References

	Engage: Engineering Service Modes with WS-Engineer and Dino
	The Service Modes Approach
	The Demonstration
	References

	FAST-SE: An ESB Based Framework for SLA Trading
	Introduction
	FAST Extension Capabilities
	Conclusions

	Gelee: Cooperative Lifecycle Management for (Composite) Artifacts
	Introduction
	Demonstration Flow
	References

	Hosted Universal Integration on the Web: The mashArt Platform
	Introduction and Contributions
	Demonstration Storyboard
	References

	Sec-MoSC Tooling - Incorporating Security Requirements into Service Composition
	Introduction
	Demonstration Scenario
	References

	Services Inside the Smart Home: A Simulation and Visualization Tool
	Introduction
	References

	SLA Management and Contract-Based Service Execution
	The SLA Management Infrastructure
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

