
Modeling and Verification of Privacy Enhancing

Protocols

Suriadi Suriadi, Chun Ouyang, Jason Smith, and Ernest Foo

Queensland University of Technology, Australia
{s.suriadi,c.ouyang,j4.smith,e.foo}@qut.edu.au

Abstract. Privacy enhancing protocols (PEPs) are a family of protocols
that allow secure exchange and management of sensitive user informa-
tion. They are important in preserving users’ privacy in today’s open
environment. Proof of the correctness of PEPs is necessary before they
can be deployed. However, the traditional provable security approach,
though well established for verifying cryptographic primitives, is not ap-
plicable to PEPs. We apply the formal method of Coloured Petri Nets
(CPNs) to construct an executable specification of a representative PEP,
namely the Private Information Escrow Bound to Multiple Conditions
Protocol (PIEMCP). Formal semantics of the CPN specification allow us
to reason about various security properties of PIEMCP using state space
analysis techniques. This investigation provides us with preliminary in-
sights for modeling and verification of PEPs in general, demonstrating
the benefit of applying the CPN-based formal approach to proving the
correctness of PEPs.

1 Introduction

As a response to the increasing number of incidents compromising the privacy
of millions of users [1], there has been an increase in the research related to pri-
vacy enhancing protocols (PEPs). PEP is a generic term that refers to protocols
whose main purpose is to preserve users privacy in an open communication envi-
ronment (e.g. over the Internet). For example, emulating the off-line anonymity
afforded by cash transactions, a PEP ensures that when a user purchases goods
on-line, the on-line seller does not learn the identity of the user. A PEP nor-
mally applies complex cryptographic primitives (such as custodian-hiding group
encryption and verifiable encryption) to achieve the privacy-enhancing features.
Recently, the Trusted Platform Module (TPM) technology - which provides se-
cure hardware storage of cryptographic keys and implementation of common
cryptographic primitives - has also been used in PEPs [2].

An important issue in the design of applied cryptographic protocols, such as
PEPs, is to ensure they work correctly and do not contain errors that may weaken
the original security protections provided by the cryptographic primitives em-
ployed. Formal methods are necessary for the construction of unambiguous and
precise models that can be analysed to identify errors and verify correctness be-
fore implementation. The application of formal methods has been demonstrated

K. Breitman and A. Cavalcanti (Eds.): ICFEM 2009, LNCS 5885, pp. 127–146, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

128 S. Suriadi et al.

to lead to reliable and trustworthy security protocols [3, 4, 5]. However, to the
best of our knowledge, no existing work provides a formal verification of PEPs.

In the domain of cryptography, the main method to verify a cryptographic
primitive is the provable security approach [6]. This approach aims to prove
some standard security properties of cryptographic primitives by reducing the
proof of those properties to some hard (normally mathematical) problem within
the context of a simplified standard attack model with well-defined boundaries
(such as the random oracle model). It is however not suitable for verification
of PEPs and the reasons are two-fold. On the one hand, the security properties
of a PEP are behavioral properties and proof of these properties can hardly
be reduced to pure mathematical problems. On the other hand, the simplified
assumptions employed in the provable security approach are not applicable to
PEPs due to the expanded threat environment in which PEPs operate. In PEPs,
one needs to consider attacks introduced by the existence of multi-party entities
and attacks targeted at the design of a protocol, not directly at the cryptographic
primitives employed. The lack of computer-aided tools in the provable security
approach also makes such an approach not scalable when modeling and verifying
a large system such as PEPs. While provable security has been used to verify
certain types of protocols (notably key establishment protocols), we note that it
is nevertheless not suitable to verify behavioral properties.

Coloured Petri Nets (CPNs) [7] are a widely-used formal method for sys-
tem specification, design, simulation and verification. They provide a graphical-
oriented modeling language capable of expressing concurrency, synchronisation,
non-determinism, and system concepts at different levels of abstraction. CPNs
combine Petri nets [8] and the functional programming language Standard ML
(SML) [9]. Petri nets are used to model concurrency, synchronisation and re-
source sharing, and support an abundance of analysis techniques such as the
well-known state space techniques. SML is used to capture data manipulation
and to create compact and parameterisable models. CPN Tools [10] is a graphical
tool supporting the construction, simulation and analysis of CPN models.

In this paper, we propose a CPN-based approach for modeling and verification
of PEPs. CPNs are used to construct a formal specification of a representative
PEP, namely the Private Information Escrow Bound to Multiple Conditions
Protocol (PIEMCP) [11]. PIEMCP involves large multi-party communication
and employs complex cryptographic primitives and TPM functionalities. The
hierarchical structuring mechanism of CPNs supports a modular and systematic
approach in capturing the behavior of PIEMCP at different levels of abstraction.
Using SML, a wide variety of cryptographic primitives and the processing of
these primitives are captured in meta-models that are embedded in higher levels
of the protocol operations. By parameterising the protocol model with different
types of attacks, a large number of attack scenarios are captured for analysis.
The CPN model of PIEMCP is executable and can be analysed to verify the
security behavior of the protocol. The analysis of PIEMCP is performed using
the state space generated from the parameterized CPN model and the selective
runtime protocol session data stored as external files.

Modeling and Verification of Privacy Enhancing Protocols 129

The contributions of this paper are two-fold. First of all, it demonstrates
the use of CPN to model and verify the security behavior of PEPs. To the
best of our knowledge, this is the first attempt at the formal verification of a
PEP. Secondly, the paper proposes several modeling and analysis techniques
that have been applied to other PEPs [12, 13]. These techniques may be used
as preliminary guidelines for a general CPN-based approach for modeling and
verification of PEPs. Also, efficiency is another major concern in PEPs due
to the use of resource-intensive cryptographic primitives. The CPN model of
PIEMCP developed in this paper can be easily extended in the future to allow a
simultaneous analysis of both the protocol performance and security behavior.

The rest of the paper is structured as follows. Sect. 2 provides some back-
ground information about PIEMCP. Sect. 3 proposes the modeling approach
and describes selected parts of the CPN model of PIEMCP. Based on this CPN
model, Sect. 4 details the verification of a set of security behaviors of PIEMCP.
Sect. 5 reviews related research efforts. Finally, in Sect. 6 we summarize our
contribution and discuss future work.

2 Overview of PIEMCP

The PIEMCP [11] is used in a federated single-sign on (FSSO) environment
whereby a user only has to authenticate once to an identity provider (IdP) to
access services from multiple service providers (SPs). The entities involved are
users, IdPs, SPs, and an anonymity revocation manager (ARM) or some referees.
An IdP assures SPs that although users are anonymous, when certain conditions
are fulfilled, the users’ identities can be revealed. A user’s identity refers to a
set of personally identifiable information (PII). Although the services that SPs
provide can be delivered without the need of PII, they require the PII to be
revealed by an ARM or some referees when certain conditions are satisfied.

The PIEMCP consists of four stages, namely PII escrow (PE), key escrow
(KE), multiple conditions (MC) binding, and revocation. An execution of the
protocol involves two distinct sessions: the escrow session which consists of a
sequential execution of the PE, KE and MC stages, and the revocation session
which consists of an execution of the revocation stage. A user can run n escrow
sessions, during which his/her PII is hidden (anonymous). At least one escrow
session has to be completed before a revocation session can start. During the
revocation session, the user’s PII linked to a specific SP in a specific escrow
session is revealed. For n escrow sessions, each with m-number of SPs, up to
n × m revocation sessions can be performed.

The PIEMCP has two variants: the first variant (PIEMCP-T) uses a trusted
ARM for anonymity revocation, and the second variant (PIEMCP-NT) uses a
group of referees instead of ARM. In both variants, most of the operations,
especially those in the PE, KE and MC stages, are performed in a similar way.
Therefore, we describe the main operations in one of them, the PIEMCP-NT.
Fig. 1 depicts the message exchanges between the different entities within the
four stages of this protocol.

130 S. Suriadi et al.

The PE stage begins when a user requests a service from a service provider
SP1. This triggers the agreement of conditions (Cond1) whose fulfillment allows
the PII to be revealed. SP1 then sends a message NT-PE-1 containing Cond1
to an IdP to escrow the user’s PII. The IdP contacts the user to obtain his
encrypted PII. The user encrypts the PII using a Verifiable Encryption (VE)
scheme under a freshly generated key pair (public and private keys). The user
sends to the IdP NT-PE-2 comprising the VE ciphertext and the public key used
for the encryption. The user keeps the private key, which is needed to decrypt
the ciphertext. Next, the user and the IdP engage in a cryptographic “proof-
of-knowledge” (PK) protocol (NT-PE-3). This is to prove to the IdP that the
VE ciphertext given correctly hides some certified PII without letting the IdP
learn the value of the PII itself. We denote this operation as PKVE. The output
of PKVE is an acceptance or rejection of the VE ciphertext.

The KE stage is started when the PK-VE outputs an acceptance of the cipher-
text. The IdP and the user then engage in another PK protocol - the Direct
Anonymous Attestation (DAA) (NT-KE-1). This is to convince the IdP that the
user is using a valid TPM device while concealing the identity of the TPM de-
vice. A successful DAA prompts the user’s TPM to generate (1) a universal
custodian-hiding verifiable group encryption (UCHVE) of the VE private key
under Cond1 and (2) a TPM proof of a correct UCHVE execution. A UCHVE
produces n ciphertext pieces for a group of n referees among whom there are
t (t ≤n) designated referees, and only designated referees can decrypt these ci-
phertext pieces. At least k (k ≤ t) decrypted pieces are required to recover the
VE private key (i.e. k is the threshold value). Both the n ciphertext pieces and
the TPM proof are sent to the IdP in NT-KE-2. The IdP then verifies the proof
and if correct, prepares a response NT-KE-3 to SP2 which includes the VE of PII
(from the PE stage) and the UCHVE of the VE private key. SP1 now has the
ciphertext of the PII (from the PE stage) and the ciphertext of the correspond-
ing private key. With the help of referees, SP1 can recover the user’s PII when
Cond1 is fulfilled, but cannot decrypt these ciphertexts until that time.

In the MC stage, the user goes to another service provider SP2. This time SP2
(instead of SP1 in the PE stage) needs the IdP to escrow the VE private key in
NT-MC-1 under different conditions Cond2 (Cond1 �= Cond2). The IdP requests
the user’s TPM to produce a new UCHVE ciphertext of the VE private key
and the associated TPM proof in NT-MC-2. The user replies with the requested
encryption and proof in NT-MC-3. The IdP verifies the proof and if correct,
prepares a response NT-MC-4 to SP2 which includes the VE of PII (from the PE
stage) and the UCHVE of the VE private key (bound to Cond2). SP2 now has
the data that, with referees’ help, can reveal the PII when Cond2 are satisfied,
but yet cannot decrypt these ciphertexts at this point. Note that the user may go
to a third provider SP3, in which case, only the MC stage needs to be executed.

The revocation stage is executed when the agreed conditions are satisfied and
when a user has completed at least one escrow session. Assuming that Cond1
is satisfied, SP1 sends a revocation request NT-REV-1 comprising n ciphertext
pieces to the n referees with Cond1. Each referee checks if Cond1 is fulfilled,

Modeling and Verification of Privacy Enhancing Protocols 131

Fig. 1. Message exchanges within the four stages of PIEMCP-NT

and if so, the referee tries to decrypt the given ciphertext piece. Only the des-
ignated referees can decrypt the ciphertext pieces. If decryption is successful,
each designated referee sends the decrypted data NT-REV-2 to SP1. When k
or more decrypted data are received, SP1 can recover the VE private key, and
subsequently decrypt the VE ciphertext to recover the PII.

In the above we described the normal execution of PIEMCP-NT (i.e. with-
out attacks). However, each of the parties involved in PIEMCP (both variants)
may behave maliciously resulting in different attack scenarios. The design goal
of PIEMCP is to achieve the expected security behavior with and without con-
sidering the attacks. In the next section, a CPN model of PIEMCP is presented
which can be configured to capture possible attack and non-attack senarios. The
model is then used as a basis for the verification of PIEMCP in Sect. 4.

3 CPN Model of PIEMCP

CPN Preliminaries. CPNs are a class of high-level nets that enhance Petri nets
with data types. A CPN consists of two types of nodes, places (drawn as ellipses)
and transitions (rectangles), and directed edges known as arcs. A place is typed
by a color set and contains collections (multi-sets) of data items called tokens
of the same type as the place. A transition represents an event and may have a
guard associated with it. The guard is a boolean expression enclosed in square
brackets. Arcs connect places to transitions and transitions to places, and are
inscribed by expressions comprising variables, constants and functions. Variables
are typed and can be assigned values known as binding. CPNs use a variant of
SML for net inscriptions and declarations of variables and types.

A transition’s input places have arcs going to the transition, while its out-
put places have arcs coming from the transition. A transition is enabled if: 1)
sufficient tokens exist in each input place to match each respective input arc
inscription when evaluated for a particular binding of its variables, and 2) the
transition guard evaluates to true for the same binding. If a transition is enabled,
it can occur (or be fired). The occurrence of a transition removes tokens spec-
ified by the respective arc inscriptions from input places, and deposits tokens

132 S. Suriadi et al.

specified by inscriptions on the output arcs into output places. The state of a
CPN is called a marking. It consists of tokens distributed on each place of the
CPN. The occurrence of transitions represent stage changes.

CPNs support hierarchical modeling which facilitates the construction of large
models by using a number of CPN modules called pages. Each page is linked
to a substitution transition (sub-transition) at a higher level of the model. By
means of the hierarchical structuring mechanism it is possible to capture different
abstraction levels of the modeled system in the same CPN model.

3.1 Modeling Approach

The PIEMCP (both variants) is modeled using hierarchical CPNs. There is one
top-level (main) page and four sub-pages capturing the four stages of PIEMCP.
Each of these sub-pages is named according to the stage it models. The PE page
has one further sub-page. The PE page, KE page, and MC page can be executed
in a loop to form an escrow session. The number of escrow sessions to be executed
is parameterized. The revocation page can be executed after the completion of
at least one escrow session. Below, we introduce three modeling approaches that
are specific to PEPs. These approaches are demonstrated in Sect. 3.2.

Cryptographic primitive abstraction. To capture complex cryptographic behav-
iors, we firstly model the representation of a ciphertext as a CPN colour set, and
then capture its operations by describing them as SML functions. This approach
is flexible and inclusive as virtually any type of cryptographic primitives can be
captured. The CPN record type can encode the necessary information to repre-
sent a primitive properly, and the SML can be used to simulate the operations.
Expressing cryptographic operations as functions promotes reuse which leads to
a cleaner and more concise model. In Sect. 3.2, we demonstrate this approach by
modeling a VE ciphertext and a zero-knowledge operation (PK-VE). The com-
plexity of UCHVE ciphertext prevents use from describing it due to the space
constraint. However, it is available in the full-version of this paper [14].

We also propose a technique to capture the commonly-used message signing
and verification operations. We define a CPN colour set for the message to be
signed, followed by a definition of its signature. A signed message is a pair con-
sisting of the message and its signature. The verification of a signed message
upon the receipt of the message is enforced within a transition guard. If the
signature verification fails, the message integrity and/or authenticity are com-
promised. As a result, the guard returns a false value, thus halting any further
processing on the message - an expected fail-stop behavior.

TPM provable execution. We propose an approach to model a TPM’s prov-
able execution behavior [15]. Our model depicts how an entity can generate the
expected TPM proof based on some known information, and compare it with
the received TPM-generated output and its corresponding proof. In this way
an incorrect TPM-generated output can be detected. The demonstration of this
approach is available in the full-version of this paper [14].

Modeling and Verification of Privacy Enhancing Protocols 133

parameterized attack. We propose a parameterisation approach to modeling at-
tacks such that one or more attacks can be switched on or off depending on
the environmental assumptions. In general, attacks can come from both exter-
nal intruders (i.e. external entities attempt to access and break the protocol)
and malicious insiders (i.e. protocol entities attempt to compromise a users PII
to achieve some personal advantage). At this point, we scope our work to only
consider malicious insiders - which we think is of a greater concern in PEPs.1 To
this end, the attack models specifying those from external intruders, such as the
Dolev-Yao intruder model [16], are not used. There are many attacks that a ma-
licious insider could launch. Creating a new model to capture each type of attack
(existing or new) scales poorly as the number of attacks grows. Parameterisation
allows the re-use of the existing model while allowing it to behave differently ac-
cording to the attacks being set - virtually allowing thousands of possible attack
scenarios to be captured. We have modeled 17 types of attacks in our model, each
with a possible value of ‘true’ or ‘false’, thus capturing 217 = 131072 possible
attack scenarios. The attack parameters can be encoded in the arc-inscriptions,
transition guards, or transition code-regions (attached to a transition where one
can specify side-operations upon execution of the transition, e.g. writing data
to an external file). The advantage of this approach is that we do not have to
change the structure of the model at all to obtain different behaviors.

In addition, we introduce two general modeling approaches. First, session-
data capture is applied to capture runtime protocol data generated and received
by entities for analysis. We take advantage of the executable CPN model by
interfacing it with a set of output text files which store the session data during
the execution of the model. Session data are firstly represented as CPN colour
sets. Then, functions are written to read session data from text files into the ap-
propriate CPN variables, and to write back the updated variables into text files.
This allows easy reading, storing, and updating of session data during the model
execution without having to maintain tokens in various places across multiple
CPN pages, thus avoiding the application of the ‘vacuum cleaner’ functional-
ity [17] to remove tokens at the end of each session. Next, we generate one-time
random data which improves on the simple random (possibly repeated) number
generation function supported in the current CPN Tools.

3.2 Model Description

Selected parts of the PIEMCP-NT CPN model (the main page, the PE page,
and the revocation page) are described to demonstrate the above modeling ap-
proaches. Relevant CPN colour sets definitions are provided in Table 1. The
entire model consists of 6 pages, 108 places, 79 transitions, 77 colour sets, 38
functions, 29 code-regions, and 21 parameters.

1 While many types of attacks from external intruders (e.g. eavesdropping, message
modification) can be mitigated through the use of secure communication channels
(e.g. Secure Sockets Layer (SSL)), attacks from malicious insider could result in a
misuse of PII without having to break the security of the communication channel.

134 S. Suriadi et al.

Table 1. Colour Sets Definition

colset K_PUB_VE = INT;
colset K_PRIV_VE = INT;
colset K_SIGN_GEN = INT;
colset PII = STRING;
colset LABEL = STRING;
colset PROVABILITY = BOOL;
colset SP_REQ = record genCond:STRING * conditions1:STRING * <other fields omitted>
colset SP_REQ_SIG = record message:SP_REQ * key:K_SIGN_GEN;
colset SIGNED_SP_REQ = record message:SP_REQ * signat:SP_REQ_SIG;
colset COMMITMENT_PII = record message:PII * random:RANDOM;
colset SIGNATURE_GEN = record message:MSG * key:K_SIGN_GEN * provable: PROVABILITY;
colset SIGNED_MSG = record message:MSG * signat:SIGNATURE_GEN;
colset CIPHER_VE_PII = record message:PII * key:K_PUB_VE * label:LABEL * provable:PROVABILITY;
colset DEC_REQ = record conditions:LABEL * uchvePiece:CIPHER_UCHVE_KVE_PIECE;
colset DEC_REQ_SIGNATURE = record message:DEC_REQ * key:K_SIGN_GEN * provable:BOOL;
colset SIGNED_DEC_REQ = record message:DEC_REQ * signat:DEC_REQ_SIGNATURE;

Main page. Fig. 2 shows the main page of PIEMCP-NT. The protocol starts
with a user and a service provide SP1 agreeing on a set of conditions (tran-
sition U SP1 GENERATE CONDITIONS) before proceeding to execute the PE
stage (sub-transition PII Escrow) and then the KE stage (sub-transition
Key Escrow). Upon completion of the KE stage, the user goes to another ser-
vice provider SP2. Similarly, they need to agree on a set of conditions (transi-
tion U SP2 GENERATE CONDITIONS) before starting the MC stage (sub-transition
Multiple Conditions). The completion of the MC stage marks the completion
of one session which triggers the storage of the session data accumulated by
all entities. The number of sessions executed is parameterized by the value of

Fig. 2. The PIEMCP-NT CPN – Main page

Modeling and Verification of Privacy Enhancing Protocols 135

session. Thus, if value of counter is less than or equal to session (note the
guard for the transition U SP1 GENERATE CONDITIONS), the model will execute
another session. Otherwise, the guard will disable the transition, and a token will
be placed at the place SP1 REVOCATION CONDITIONS FULFILLED which triggers
the start of a revocation stage which, if successful, results in the revelation of
the user’s PII represented by a token in the place RECOVERED USER PII.

This page also demonstrates the session data capture approach. The shaded
text number 1 in Fig. 2 shows a code region which calls the function to read the user
session data from a text file to a variable of type USER RECORD. After performing
some update operations on the variable (the one-time random number generator
function is called in shaded text number 2), the update function is called to store
the updated user session data into the text file again (shaded text number 3).

PE page. This page models the PE stage of PIEMCP-NT (Fig. 3). Here, we
demonstrate the message signing and verification approach. The place SP1 PII
REQ SIGNATURE, of type SIGNED SP REQ, represents the NT-PE-1 message. From
Table 1, this colour set represents a SP1-signed message whose content is Cond1.
Other messages are omitted here for simplicity. As the IdP receives this message,
the IdP first verifies the signature validity. As explained in Sect. 3.1, such a
validation is captured in a transition guard. In this case, the transition guard
at the IDP VERIFIES SP1 REQ AND STARTS PII ESCROW transition captures the
signature validation process. If it returns true, the signature is valid and the
transition is enabled, allowing PE stage to progress normally.

Fig. 3. The PIEMCP-NT CPN – PE page

136 S. Suriadi et al.

The user then encrypts the PII. Here, we demonstrate how complex crypto-
graphic primitive behaviors can be modeled. The VE ciphertext is defined as a
CPN colour set of type CIPHER VE PII (see Table 1) which is a record consisting
of four fields: the message itself, the public encryption key, the label under which
the message is encrypted, and the provability property. A provable ciphertext
means that the recipient of the ciphertext can be convinced that the received
ciphertext correctly encrypts some claimed value (in this case the user’s PII)
without the recipient learning the value of either the PII itself or the decryption
key. We consider the message field inside a CPN colour set that represents a
ciphertext to be unreadable. The VE operations, including the encryption and
decryption operations, are captured as functions. The VE ciphertext of PII is
represented by a token in the place PII VE CIPHER.

Next, the user sends the NT-PE-2 message (containing the VE ciphertext of
PII, and the public VE key) - represented by the transition U SENDS PII ESCROW
DATA. Upon receiving NT-PE-2, the PK-VE operation is triggered (NT-PE-3).
Here, we demonstrate how a complex zero-knowledge proof protocol, such as
PKVE is modeled in CPN. We break this operation into three transitions:
START PKVE (triggered by IdP to signal user the start of such a protocol), the
GENERATE PKVE PROOF transition, executed on the user side to generate the re-
quired PKVE proof data, and the VERIFY PKVE PROOF executed by the IdP to
verify the given PKVE proof data. The result of PKVE is represented by the
place PKVE RESULT. The essential processing required on the IdP to verify the
correctness of the proof is captured by the function pkve called as arc inscription
from the transition VERIFY PKVE PROOF to the place PKVE RESULT.

There are two parameterized attacks: SP ATTACK5 (arc inscription
from transition SPI SIGNS PII REQ to place SPI PII REQ SIGNATURE),
and USER ATTACK2 (from transition U SENDS PII ESCROW DATA to place
USER TO IDP). USER ATTACK2 depicts the behavior of a malicious user who gives
an incorrect VE public key to the IdP in the NT-PE-2 message. Thus, when
USER ATTACK2 is set to ‘true’, the user will send an incorrect VE public key
value represented by a value of ’0’, otherwise, a correct value is sent. SP ATTACK5
depicts the behavior of a malicious SP1 who uses an invalid signature key to
sign the SP1 request message.

Revocation page. This page captures the UCHVE threshold decryption
process (Fig. 4). Due to space limitation, it is impossible to go into the de-
tail how we model such a threshold decryption process. Nevertheless, note the
place UCHVE PIECE DECRYPT SUCCESS and its corresponding output arc. The arc
inscription requires t (representing the threshold value) successful decrypted
pieces of the UCHVE group encryption by referees before the message (that is,
the VE private key) can happen. Also note the parameterized malicious refer-
ees’ behavior (REF ATTACK2) who attempt to pool all decrypted UCHVE pieces
amongst themselves with the hope of being able to recover the VE private key.
Since our protocol assume that there is at least one honest designated referee,
we assign such role to referee 2 (hence, we do not model referee 2 participating
in the attack). This page also demonstrates how CPN can be used to capture
concurrent processing required during the threshold decryption process.

Modeling and Verification of Privacy Enhancing Protocols 137

Fig. 4. Revocation page

4 Verification of the PIEMCP

We verify the correctness of PIEMCP using state space analysis. The basic
idea behind the state space method of CPNs is to compute all reachable states
and state changes of the system based on the CPN model. The verification of
PIEMCP is carried out in two stages: the basic behavior verification and security
behavior verification. The basic behavior verification is performed through stan-
dard state space analysis. It includes the analysis of proper session termination,
deadlock freedom, livelock freedom, and absence of unexpected dead transitions.
The security behavior verification is the focus of the paper.

Verifying the security behavior of PIEMCP is complicated due to the numer-
ous avenues by which attackers could break the security protection provided by
the protocol. We propose to scope the verification of the security behavior of
PIEMCP within a set of plausible known attack scenarios. The result of such a
verification is the assurance that the desired security behavior is achieved within
the set of attack scenarios. As attacks are parameterized in the model, new types
of attack scenarios can be added to the existing model without requiring major
changes or a new model to be developed. A protocol is proved to be secure if the
set of security properties hold in both the presence and absence of attacks. This
is especially true in the case of PEPs whose main service (privacy) is in itself
already a security behavior. When no attacks are modeled, we expect the secu-
rity behavior to be fulfilled; when attacks are included, we expect the protocol
to either detect it (and therefore stop), or be immune from those attacks.

The verification of the security behavior of the PIEMCP is performed as fol-
lows: firstly, the security behaviors of PIEMCP are formalized as Computational

138 S. Suriadi et al.

Tree Logic (CTL) and/or standard state space statements; next, the formalized
statements are used as queries for model-checking the state space generated from
the PIEMCP CPN. Session data analysis is used when appropriate.

CPN Tools support state space analysis and model-checking the state space
via ASK-CTL [18]. ASK-CTL is an implementation of a subset of CTL (mainly
the “until” operator). It implements two basic operators to capture this logic:
EXIST UNTIL(A1, A2) and FORALL UNTIL(A1, A2). The EXIST UNTIL operator
means that there must be at least one path, from a given state, whereby A1

is true for every state in the path until the last state where A2 is true. The
FORALL UNTIL operator is similar, except that it requires all paths to fulfill A1

until A2 is true. Based on these two operators, there are also POS and EV oper-
ators, where POS(A) = EXIST UNTIL(TT, A), and EV(A) = FORALL UNTIL(TT,
A) (TT refers to a true value). These operators check the reachability of a state
where A is true. POS checks if there is at least one path that leads to A, while
EV checks if all paths lead to A. The NF operator contains a state formula func-
tion which returns a boolean value. There are many other ASK-CTL operators
which we do not use, thus, not elaborated. CPN Tools contain a model checker
which takes an ASK-CTL formula as an argument, checks the formula against
the current state space of the CPN model, and returns the truth value of the
given formula. Both the ASK-CTL logic and model checker are implemented in
SML and thereby queries are formulated directly in SML syntax.

For simplicity, we consider a minimum full protocol execution. The PIEMCP
CPN model is parameterized to execute two escrow sessions sequentially, fol-
lowed by one revocation session. Note that it is possible for both the escrow and
revocation session to run in parallel, however, modeling such concurrency does
not capture any additional behaviors of the protocol as these two sessions are
distinct, i.e. they do not interfere with each other. The state space generated
from the above in the absence of attack behavior contains 147 nodes and 226
arcs. Next, the CPN model is parameterized to include a number of known at-
tacks, resulting in a set of parameterized CPN models. Each of these models is
executed to generate the state space for analysis of certain security properties.

Below, we define four security behaviors for PIEMCP and discuss in detail
how we implement the first two properties in ASK-CTL queries in CPN Tools
(the details of the queries for the other properties are available in the full version
of this paper [14]). Fig 5 includes a set of notations to be used in the definition
of these properties.

Let T = {ts|s ∈ {1, 2, ..., n}} be the set of (executed) escrow sessions, P = {SPi|i ∈ {1, 2, ..., n}}
be the set of SPs. ∀ts ∈ T , ∀SPi ∈ P :

– vs
i represents a VE ciphertext that SP i holds for session ts;

– us
i represents a UCHVE ciphertext that SP i holds for ts;

– vs
usr represents a user-generated VE ciphertext for ts;

– us
i represents the user-generated UCHVE ciphertext for SP i in ts;

– Cs
i represents the set of agreed conditions between a user and SPi in ts;

– Gs is the set of the general conditions in ts;
– ks represents the one-time VE public key that an IDP receives in ts.

Fig. 5. List of notations to be used in the definition of security properties

Modeling and Verification of Privacy Enhancing Protocols 139

4.1 Multiple Conditions

When PIEMCP runs without attacks, it is expected to reach the end of every
escrow session, and also each SP should receive an escrowed PII that is cryp-
tographically bound to conditions which are different from one SP to another.
However, an attack may occur during an escrow session and as a result it is not
possible for the PIEMCP to reach the end of that session. In the PIEMCP CPN,
when the protocol reaches the end of an escrow session s, the place MC COMPLETE
on the Main page (P Main

MC COMPLETE) is marked by 1‘e and the place COUNTER on the
same page (P Main

COUNTER) is marked by a token of integer carrying the value of 1‘s.
This can be specified by the following predicate:

SessionEnds(Mi) = (Marking(Mi, P
Main
MC COMPLETE) = 1‘e) AND (Marking(Mi, P

Main
COUNTER) = 1‘s)

where Mi ∈� i.e. the set of reachable markings (states) of the PIEMCP CPN.

Property 1 (Multiple Conditions). When there is no attack:

– φmc
1 : ∀ts ∈ T , EV(SessionEnds);2 and

– φmc
2 : ∀ts ∈ T , ∀M such that SessionEnds(M)=true, ∀SPi, SPj ∈ P , if i �= j,

then Cond(us
i) �= Cond(us

j).
3

When an attack occurs:

– φmc
3 : ∃ts ∈ T , NOT(POS(SessionEnds)).4

To verify this property, we use both ASK-CTL and session data analysis. In
a normal environment (i.e. without an attack), φmc

1 states that the end of the
session is reachable. It can be directly queried using ASK-CTL formulas (see

Table 2. ASK-CTL and session-data queries for Multiple Conditions property

1 fun SessionEnd_1 n = Mark.Main’MC_COMPLETED 1 n = 1‘() andalso Mark.Main’COUNTER 1 n = 1‘1;
2 fun SessionEnd_2 n = Mark.Main’MC_COMPLETED 1 n = 1‘() andalso Mark.Main’COUNTER 1 n = 1‘2;
3 val MC_Phi1_1 = EV(NF("", SessionEnd_1));
4 val MC_Phi1_2 = EV(NF("", SessionEnd_2));
5 val sp1Rec1 = readSPRecord("sp1_sess1.txt");
6 val sp1Rec2 = readSPRecord("sp1_sess2.txt");
7 val sp2Rec1 = readSPRecord("sp2_sess1.txt");
8 val sp2Rec2 = readSPRecord("sp2_sess2.txt");
9 val cipherUCHVE11 = #cipherUCHVE(sp1Rec1);

10 val cipherUCHVE21 = #cipherUCHVE(sp2Rec1);
11 val cipherUCHVE12 = #cipherUCHVE(sp1Rec2);
12 val cipherUCHVE22 = #cipherUCHVE(sp2Rec2);
13 val MC_Phi2 = #label(cipherUCHVE11) <> #label(cipherUCHVE21) andalso
14 #label(cipherUCHVE12) <> #label(cipherUCHVE22);
15 val MC_Phi3_1 = NOT(POS(NF("", SessionEnd_1)));
16 val MC_Phi3_2 = NOT(POS(NF("", SessionEnd_2)));
17 val multipleConditions =
18 if not SP_ATTACK7 then (eval_node MC_Phi1_1 InitNode andalso
19 eval_node MC_Phi1_2 InitNode andalso MC_Phi2) else
20 (eval_node MC_Phi3_1 InitNode andalso eval_node MC_Phi3_2 InitNode);

2 SessionEnds must eventually become true.
3 Each SP holds a UCHVE ciphertext bound to a unique set of conditions.
4 It is not possible to reach the end of an existing session.

140 S. Suriadi et al.

line 1-4 in Table 2). By running two sessions, we have s ∈ {1, 2}. From the main
page of the PIEMCP CPN, it is obvious that the session data is stored when
SessionEnds becomes true in each session. Therefore, φmc

2 (which formalizes
the ‘different conditions within a session clause’) can be directly verified using
the saved session data as shown in line 5-14 of Table 2. We have parameter-
ized the model with one attack parameter that may compromise this property:
SP ATTACK7 which depicts the scenario of SPs colluding to use the same condi-
tion string with the same user in a session. In such a scenario, we expect the
protocol to behave in a fail-stop manner - therefore, φmc

3 states that the protocol
cannot reach the end of both sessions. φmc

3 is directly translated into ASK-CTL
queries as shown in line 15-16 of Table 2. Finally, after formulating the queries,
we execute the formulas to check if all of the predicates hold (line 17-20).

4.2 Zero-Knowledge

When there are no attacks, before the revocation of a user’s PII for an escrow
session, IdP, SPs and referees must not learn the value of the user’s PII but at the
same time be convinced that its encryption is correct. When the attacks occur,
it is expected that at least one of the encryptions is corrupted. For example, if a
user-generated VE ciphertext is correct, the place PKVE RESULT on the PE page
is marked by 1‘true; otherwise, the place is marked by 1’false. Fig. 6 lists the
predicates specifying the acceptance (i.e. conviction) or rejection of the user’s
encryption data by IdP and SPs while the user’s PII is not revealed. Finally, an
escrow session cannot be revoked until the user’s encryption data has been all
accepted. The place REVOCABLE SESSION on the Main page records the revocable
sessions in terms of session numbers. Thus, we define the predicate Revocable-
Sessions(Mi) = 1‘s ∈ Marking(Mi, P

Main
REVOCABLE SESSIONs) over� which indicates if a

session ts has been revoked.

∀ts ∈ T :

– TrueUsrVEs(Mi) = (Marking(Mi, P PE
PKVE RESULT)=1‘true) AND (Marking(Mi, P Main

COUNTER)=1‘s)

– FalseUsrVEs(Mi) = (Marking(Mi, P PE
PKVE RESULT)=1‘false) AND (Marking(Mi, P Main

COUNTER)=1‘s)

– TrueUsrTPMs(Mi) = (Marking(Mi, P KE
PK DAA RESULT)=1‘true) AND (Marking(Mi, P Main

COUNTER)=1‘s)

– FalseUsrTPMs(Mi) = (Marking(Mi, P KE
PK DAA RESULT)=1‘false) AND (Marking(Mi, P Main

COUNTER)=1‘s)

– TrueUCHVEinKEs(Mi) = (Marking(Mi, P KE
TPM PROOF RESULT)=1‘true) AND (Marking(Mi, P Main

COUNTER)=1‘s)

– FalseUCHVEinKEs(Mi) = (Marking(Mi, P KE
TPM PROOF RESULT)=1‘false) AND (Marking(Mi, P Main

COUNTER)=1‘s)

– TrueUCHVEinMCs(Mi) = (Marking(Mi, P MC
TPM PROOF RESULT)=1‘true) AND (Marking(Mi, P Main

COUNTER)=1‘s)

– FalseUCHVEinMCs(Mi) = (Marking(Mi, P MC
TPM PROOF RESULT)=1‘false) AND (Marking(Mi, P Main

COUNTER)=1‘s)

where Mi ∈ M i.e. the set of reachable markings (states) of the PIEMCP CPN.

Fig. 6. List of predicates specifying acceptance or rejection of user’s encryption data

Property 2 (Zero-knowledge). Without attacks:

– φzk
1 : ∀ts ∈ T , EV(TrueUsrVEs) ∧ EV(TrueUsrTPMs) ∧ EV(TrueUCHVEinKEs)

∧ EV(TrueUCHVEinMCs);

Modeling and Verification of Privacy Enhancing Protocols 141

– φzk
2 : ∀ts ∈ T , NOT(POS(FalseUsrVEs)) ∧ NOT(POS(FalseUsrTPMs)) ∧

NOT(POS(FalseUCHVEinKEs)) ∧ NOT(POS(FalseUCHVEinMCs)); and
– φzk

3 : ∀ts ∈ T , FORALL UNTIL(NOT(RevocableSessions), φzk
1).

With attacks:

– φzk
4 : ∀ts ∈ T , NOT(POS(TrueUsrVEs)) ∧ NOT(POS(TrueUsrTPMs)) ∧

NOT(POS(TrueUCHVEinKEs)) ∧ NOT(POS(TrueUCHVEinMCs)); and
– φzk

5 : ∀ts ∈ T , POS(FalseUsrVEs) ∨ POS(FalseUsrTPMs) ∨
POS(FalseUCHVEinKEs) ∨ POS(FalseUCHVEinMCs);

– φzk
6 : ∀ts ∈ T , NOT(POS(RevocableSessions)).

For brevity, Table 3 only show queries related to TrueUsrVEs, FalseUsrVEs

and RevocableSessions (queries related to other predicates are performed in the
same manner as for the first two predicates). φzk

1 , φzk
2 and φzk

3 can be directly
translated into ASK-CTL queries as shown in line 12-17 of Table 3. These three
predicates are finally executed at line 18-19, where the zero-knowledge property
of no attacks holds if all three predicates return true.

We have modeled six attacks that may compromise this property, which are
parameterized as USER ATTACK1, USER ATTACK2, USER ATTACK3,
USER ATTACK4, SP ATTACK12, SP ATTACK22. The formulas φzk

4 , φzk
5 and φzk

6 are
directly translated into ASK-CTL queries as shown in line 23-28 of Table 3.
These predicates are executed at line 29-30 and all must return true if the zero-
knowledge property with attacks is to hold.

1 fun TrueUsrVE_1 n = Mark.PE’PKVE_RESULT 1 n = 1‘true andalso Mark.Main’COUNTER 1 n = 1‘1;
2 fun TrueUsrVE_2 n = Mark.PE’PKVE_RESULT 1 n = 1‘true andalso Mark.Main’COUNTER 1 n = 1‘2;
3 ...
4 fun FalseUsrVE_1’ n = Mark.PE’PKVE_RESULT 1 n = 1‘false andalso Mark.Main’COUNTER 1 n = 1‘1;
5 fun FalseUsrVE_2’ n = Mark.PE’PKVE_RESULT 1 n = 1‘false andalso Mark.Main’COUNTER 1 n = 1‘2;
6 ...
7 fun RevocableSession_1 n = List.exists (fn y => y=1) (Mark.Main’REVOCABLE_SESSION 1 n);
8 fun RevocableSession_2 n = List.exists (fn y => y=2) (Mark.Main’REVOCABLE_SESSION 1 n);
9

10 NO ATTACKS (NA)
11 ==================
12 val ZK_Phi1 = eval_node EV(NF("",TrueUsrVE_1)) InitNode andalso ...
13 eval_node EV(NF("",TrueUsrVE_2)) InitNode andalso ...;
14 val ZK_Phi2 = eval_node NOT(POS(NF("",FalseUsrVE_1))) InitNode andalso ...
15 eval_node NOT(POS(NF("",FalseUsrVE_2))) InitNode andalso ...;
16 val ZK_Phi3 = FORALL_UNTIL(NOT(NF("",RevocableSession_1)), ZK_Phi1_1 initNode) andalso
17 FORALL_UNTIL(NOT(NF("",RevocableSession_2)), ZK_Phi1_2 initNode);
18 val zeroKnowledgeNA = eval_node ZK_Phi1 InitNode andalso eval_node ZK_Phi2 InitNode andalso
19 eval_node ZK_Phi3 InitNode;
20

21 WITH ATTACKS (WA)
22 ===================
23 val ZK_Phi4 = eval_node NOT(POS(NF("",TrueUsrVE_1))) InitNode andalso ...
24 eval_node NOT(POS(NF("",TrueUsrVE_2))) InitNode andalso ...;
25 val ZK_Phi5 = eval_node POS(NF("",FalseUsrVE_1)) InitNode orelse ...
26 eval_node POS(NF("",FalseUsrVE_2)) InitNode orelse ...;
27 val ZK_Phi6 = eval_node NOT(POS(NF("",RevocableSession_1))) InitNode andalso
28 eval_node NOT(POS(NF("",RevocableSession_2))) InitNode;
29 val zeroKnowledgeWA = eval_node ZK_Phi4 InitNode andalso eval_node ZK_Phi5 InitNode andalso
30 eval_node ZK_Phi6 InitNode;

Table 3. ASK-CTL and session-data queries for Zero-knowledge property

142 S. Suriadi et al.

4.3 Enforceable Conditions

When PIEMCP is executed, a user’s PII should never be revealed unless all des-
ignated referees agree that the cryptographically bound conditions are satisfied.
This property should hold regardless of whether there is an attack or not. We
define the following: ∀ts ∈ T , ∀Mi ∈�,

– HasRefPKVEs(Mi) = Marking(Mi, P
Revocation
REF RECOVERED VE PRIVATE KEY)�= empty,

– HasRecUsrPIIs(Mi) = Marking(Mi, P
Revocation
RECOVERED USER PII)�= empty,

– threshold ∈ {2..n} specifies the minimum referees needed for a successful
PII revocation, and

– revCondition denotes the actual status of a revocation condition which is
either true or false.

Property 3 (Enforceable Conditions:)

– φec
1 : ∀ts ∈ T , NOT(POS(HasRefPKVEs));

– φec
2 : if revCondition=true then ∀ts ∈ T where t s is being revoked,
• φec

2a: |P Revocation
UCHVE PIECE DECRYPT SUCCESS| < threshold and

• φec
2b: NOT(POS(HasRecUsrPIIs));

– φec
3 : if revCondition=false then ∀ts ∈ T where t s is being revoked,
• φec

3a: |P Revocation
UCHVE PIECE DECRYPT SUCCESS| ≥ threshold and

• φec
3b: EV(POS(HasRecUsrPIIs)).

While there are attacks that can be launched to compromise this property
(parameterized by SP ATTACK4, REF ATTACK1, REF ATTACK2, the above defini-
tion remains the same. Standard state space queries, and ASK-CTL queries are
used to verify this property. φec

1 states that the marking indicating illegal recov-
ery of private VE key by the referees must not be reached at any time. When
some conditions for session ts are not fulfilled, the number of decrypted UCHVE
pieces must be fewer than the threshold value required (φec

2a), and that the mark-
ing which indicates the revelation of the user PII must not be reached too (φec

2b).
When conditions are fulfilled, we expect the number of decrypted UCHVE pieces
to be greater or equal to the threshold value (φec

3a), and that the user PII must
eventually be revealed (φec

3b).
In summary, the predicates φec

1 , φec
2b and φec

3b can be directly translated into
ASK-CTL queries, while φec

2a and φec
3a are verified using the standard state space

query UpperIntegerBound (i.e. the maximum number of tokens that can reside
in a place). See [14] for details.

4.4 Conditions Abuse Resistant

During the execution of PIEMCP, an SP and an IdP must not be able to make
the user encrypt the PII, or the VE private key, under a set of conditions dif-
ferent from those originally agreed. Similarly, an SP or IdP must not be able to
successfully revoke the user’s PII using conditions different from those originally
agreed. In the following definition, we have used the notations shown in Fig. 5.

Modeling and Verification of Privacy Enhancing Protocols 143

Property 4 (Conditions Abuse Resistant). No attack:

– φcar
1a : ∀ts ∈ T , Gs = Cond(vs

usr) and
– φcar

1b : ∀ts ∈ T , ∀SPi ∈ P , Cs
i = Cond(us

i)

With attacks: ∀ts ∈ T , ∀Mi ∈�, let:

– PE Ends(Mi) = (Marking(Mi, P
Main
PE COMPLETE)=1‘e) AND (Marking(Mi, P

Main
COUNTER)=1‘s)

– KE Ends(Mi) = (Marking(Mi, P
Main
KE COMPLETE)=1‘e) AND (Marking(Mi, P

Main
COUNTER)=1‘s)

then:

– for attacks that manipulate the general conditions, φcar
2a : NOT(POS(PE Ends));

– for attacks that manipulate conditions with SP1, φcar
2b : NOT(POS(KE Ends));

– for attacks that manipulate conditions with SP2,3,...,y,
φcar

2c : NOT(POS(SessionEnds));
– for attacks that use wrong conditions for revocation,

• φcar
2d : Transition T Revocation

USE ATTACK CONDITIONS is not dead ∧
• φcar

2e : NOT(POS(HasRecUsrPIIs)) ∧ NOT(POS(HasRefPKVEs)).

In a normal environment (no attacks), φcar
1a states that the cryptographically

bound conditions (or label) used to produce a VE ciphertext must be the same
as the one originally agreed. Similar explanation applies to φcar

1b . When there
are attacks targeting the general conditions used in the PE stage (parameter-
ized by USER ATTACK1, SP ATTACK1, we expect the PE stage to fail stop (hence
φ2a). For attacks targeting the conditions used during the KE stage (with SP1
- parameterized by USER ATTACK4, SP ATTACK11), we expect the KE stage to
fail stop (hence φcar

2b). For attacks targeting the conditions used during the MC
stage (for subsequent SPs - parameterized by SP ATTACK2), we expect the MC
stage to fail stop (hence φcar

2c). For attacks targeting the use of invalid condi-
tions during the revocation stage (parameterized by SP ATTACK3, we expect that
T Revocation
USE ATTACK CONDITIONS is not a dead transition (i.e. a transition that can never fire),

and that the marking which indicate the revelation of user PII, or the illegal
revelation of VE private key to not be reached (hence φcar

2d and φcar
2e).

In summary, φcar
1a , φcar

1b , and φcar
2d can be verified using state space queries

(notably the search nodes and token value comparisons queries). φcar
2a , φcar

2b ,
φcar

2c , and φcar
2e can be directly translated into ASK-CTL queries. See [14] for

details.

5 Related Work

We briefly review several formal methods that have been used to verify security
protocols. Earlier work, such as Burrows, Abadi, and Needham (BAN) logic [19],
use the modal logic approach whereby the security of a protocol is assessed by
studying the evolution of beliefs and/or knowledge over the course of the protocol
to evaluate their adequacy for some pre-defined protocol objectives. We do not
use this method because it is not evident if this approach is able to capture

144 S. Suriadi et al.

and verify behavioral properties. Besides, the modal logic approach is generally
considered a weaker approach in comparison to other formal methods [20].

Formal methods based on process algebra have also been used to model and
verify security protocols (such as LySa [5] and CSP [21]). Process algebra allows
the modeling of a system’s behavior (including concurrency) as a set of algebraic
statements. Common verification techniques used with process algebra include
equational reasoning and model checking [22]. For example, Pi-Calculus [23] sup-
ports labeled transition semantics in modeling a system. This allows the verifica-
tion of protocols through state exploration techniques such as model checking.
However, we choose not to use process algebra approach due to its complexity
which tends to (unnecessarily) complicate even simple things [17]. In compar-
ison to the graphical-based modeling approach in CPN, this is a less intuitive
approach to modeling large distributed systems such as PEPs. Model validation
can only be performed by users who are experts in both the protocol itself and
the process algebra syntax. While one still needs to understand the concept of
CPN, the intuitive graphical-based modeling approach is a more human-friendly
approach and thus easier to learn. The interactive and simulatable CPN model
help modelers in detecting inconsistencies between a model and its original pro-
tocol specification, thus facilitating effective model validation.

State exploration techniques (such as state space analysis and model check-
ing) have also been widely used for security protocol analysis. Examples of
formal methods belonging to this category are the Automated Validation of In-
ternet Security Protocols and Applications (AVISPA) tool [3], Scyther [24], and
ProVerif [25]. These are state-of-the-art tools capable of automatically detecting
attacks in many security protocols. Nevertheless, the main reason we do not use
these tools is because the types of security properties verifiable by these tools
are not relevant to PEPs. Instead, they are mostly relevant to authentication
and key agreement protocols, i.e. secrecy, authenticity, and their variants. When
protocols related to privacy are verified using these tools, the privacy property
is reduced to confidentiality and authenticity. We argue that this is a simplis-
tic approach to verifying privacy and that privacy does not simply equate to
confidentiality and/or authenticity. The behavior of a protocol in preserving/vi-
olating a user’s privacy is just as important. As stated in the introduction, it is
the behavior of the protocol that we are interested to verify.

Similar to process algebra, these tools also lack the rich graphical and sim-
ulation support of CPN.5 Finally, it is not evident if concurrent processing (as
oppose to concurrent protocol execution supported in Scyther) is supported in
these tools. Therefore, we do not find these tools to be suitable for our pur-
pose. Although CPN has been widely used to analyze industrial communication
protocols (such as Transmission Control Protocol (TCP)), its use in the area of
security protocols is still very new with limited documented cases. For example,
Al-Azzoni et al [4] used CPN to model and verify the Tatebayashi, Matsuzaki,
and Newman (TMN) key exchange protocol [26]. The main difference between

5 Scyther provides some static graphical support. However, it falls short of interactive
protocol simulation and graphically-driven protocol specification.

Modeling and Verification of Privacy Enhancing Protocols 145

our work and theirs is that they focus on verifying the secrecy property of the
TMN protocol, while our work focus on verifying the security behavior of PEPs.

Our work has not reached the maturity of the other methods discussed.
However, we see its potential. By exploiting the intuitiveness of CPN’s
graphical-based modeling approach (which is also based upon a solid underlying
mathematical foundation) in combination with its rich modeling capability (hi-
erarchical modeling, concurrent processing, flexible colour sets definition, model
parameterization, etc), performance analysis capability, and its powerful veri-
fication techniques, CPN has the potential to be an easy-to-use yet powerful
formal method for modeling and verifying large multi-party PEPs.

6 Conclusion

We have shown that CPNs can be used to model complex PEPs using CPN and
verify its behavioral properties using state space analysis, ASK-CTL (model
checking language), and session data analysis. We have also proposed several
modeling techniques, notably the cryptographic primitive abstraction (capturing
complex primitives and zero-knowledge proof protocol), TPM provable execu-
tion, parameterized attacks, and session data capture. We have also shown how
a set of behavioral properties can be formalized which can be directly verified
using the existing state space, ASK-CTL, and session data queries.

Future work involves using the model to conduct a performance analysis of
the protocol and to assess its efficiency in deployment. We will also be looking
at refining and generalizing the modeling techniques proposed in this paper
such that they can be applied to other PEPs. CPN Tools can be improved by
providing a better user front-end to simplify and automate the tasks required in
the modeling and verification of PEPs. The function of such a front-end could be
as simple as aiding users with the configuration of the model parameters, to a full-
blown automation whereby a user without any knowledge of CPN can generate
the required back-end CPN model with only a PEP specification. As to the issue
of attack behavior, so far we have considered in the protocol verification a set
of known attack scenarios, while ultimately the goal is to achieve an automated
attack detections for PEPs using the CPN-based approach.

References

1. Holtzman, D.H.: Privacy Lost. Jossey-Bass (2006)
2. WP 14.1: PRIME (Privacy and Identity Management for Europe) - Framework V3

(March 2008)
3. Team, T.A.: AVISPA v1.1 User Manual. Information Society Technologies Pro-

gramme (June 2006), http://avispa-project.org/
4. Al-Azzoni, I., Down, D.G., Khedri, R.: Modeling and verification of cryptographic

protocols using coloured petri nets and design/cpn. Nordic Journal of Comput-
ing 12(3), 201–228 (2005)

5. Bodei, C., Buchholtz, M., Degano, P., Nielson, F., Nielson, H.R.: Static validation
of security protocols. J. Comput. Secur. 13(3), 347–390 (2005)

http://avispa-project.org/

146 S. Suriadi et al.

6. Koblitz, N., Menezes, A.: Another look at provable security. J. Cryptology 20(1),
3–37 (2007)

7. Jensen, K.: Coloured Petri Nets - Basic Concepts, Analysis Methods and Practical
Use, 2nd edn. Monographs in Theoretical Computer Science, vol. 1. Springer, Berlin
(1997)

8. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the
IEEE 77(4), 541–580 (1989)

9. Gilmore, S.: Programming in standard ml 1997: A tutorial introduction. Technical
report, The University of Edinburgh (1997)

10. Jensen, K., Kristensen, L.M., Wells, L.: Coloured petri nets and cpn tools for
modelling and validation of concurrent systems. STTT 9(3-4), 213–254 (2007)

11. Suriadi, S., Foo, E., Smith, J.: Private information escrow bound to multiple con-
ditions. Technical report, Information Security Institute - Queensland University
of Technology (2008), http://eprints.qut.edu.au/17763/1/c17763.pdf

12. Suriadi, S., Foo, E., Josang, A.: A user-centric federated single sign-on system.
Journal of Network and Computer Applications 32(2), 388–401 (2009)

13. Suriadi, S., Foo, E., Smith, J.: A user-centric protocol for conditional anonymity
revocation. In: Furnell, S.M., Katsikas, S.K., Lioy, A. (eds.) TrustBus 2008. LNCS,
vol. 5185, pp. 185–194. Springer, Heidelberg (2008)

14. Suriadi, S., Ouyang, C., Smith, J., Foo, E.: Modeling and verification of privacy
enhancing security protocols. Technical report, ISI, Queensland University of Tech-
nology (April 2009) http://eprints.qut.edu.au/20088/

15. McCune, J.M., Parno, B., Perrig, A., Reiter, M.K., Isozaki, H.: Flicker: an execution
infrastructure for TCB minimization. In: Sventek, J.S., Hand, S. (eds.) EuroSys,
pp. 315–328. ACM, New York (2008)

16. Dolev, D., Yao, A.C.C.: On the security of public key protocols. IEEE Transactions
on Information Theory 29(2), 198–207 (1983)

17. van der Aalst, W.: Pi calculus versus petri nets: Let us eat humble pie rather than
further inflate the pi hype. In: BPTrends, pp. 1–11 (May 2005)

18. Christensen, S., Mortensen, K.H.: Design/CPN ASK-CTL Manual - Version 0.9.
University of Aarhus, Aarhus C, Denmark (1996)

19. Burrows, M., Abadi, M., Needham, R.: A logic of authentication. ACM Trans.
Comput. Syst. 8(1), 18–36 (1990)

20. Meadows, C.: Open issues in formal methods for cryptographic protocol analysis.
In: DISCEX 2000, pp. 237–250. IEEE Computer Society Press, Los Alamitos (2000)

21. Lowe, G.: Breaking and fixing the needham-schroeder public-key protocol using
FDR. In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 147–
166. Springer, Heidelberg (1996)

22. Baeten, J.C.M.: A brief history of process algebra. Theor. Comput. Sci. 335(2-3),
131–146 (2005)

23. Milner, R.: Communicating and Mobile Systems: the Pi-Calculus. Cambridge Uni-
versity Press, Cambridge (1999)

24. Cremers, C.J.: The scyther tool: Verification, falsification, and analysis of security
protocols. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 414–418.
Springer, Heidelberg (2008)

25. Blanchet, B.: An Efficient Cryptographic Protocol Verifier Based on Prolog Rules,
pp. 82–96 (June 2001)

26. Tatebayashi, M., Matsuzaki, N., Newman Jr., D.B.: Key distribution protocol
for digital mobile communication systems. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 324–334. Springer, Heidelberg (1989)

http://eprints.qut.edu.au/17763/1/c17763.pdf
http://eprints.qut.edu.au/20088/

	Modeling and Verification of Privacy Enhancing Protocols
	Introduction
	Overview of PIEMCP
	CPN Model of PIEMCP
	Modeling Approach
	Model Description

	Verification of the PIEMCP
	Multiple Conditions
	Zero-Knowledge
	Enforceable Conditions
	Conditions Abuse Resistant

	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

