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Abstract. Structural constraint solving allows finding object graphs
that satisfy given constraints, thereby enabling software reliability tasks,
such as systematic testing and error recovery. Since enumerating all possi-
ble object graphs is prohibitively expensive, researchers have proposed a
number of techniques for reducing the number of potential object graphs
to consider as candidate solutions. These techniques analyze the struc-
tural constraints to prune from search object graphs that cannot satisfy
the constraints. Although, analytical and empirical evaluations of indi-
vidual techniques have been done, comparative studies of different kinds
of techniques are rare in the literature. We performed an experiment
to evaluate the relative strengths and weaknesses of some key structural
constraint solving techniques. The experiment considered four techniques
using: a model checker, a SAT solver, a symbolic execution engine, and
a specialized solver. It focussed on their relative abilities in expressing
the constraints and formatting the output object graphs, and most im-
portantly on their performance. Our results highlight the tradeoffs of
different techniques and help choose a technique for practical use.

Keywords: Empirical comparison, software testing tools, model check-
ing, symbolic execution, SAT, state space exploration, systematic testing.

1 Introduction

Generating test inputs for programs that manipulate structurally complex inputs
like XML documents or red black trees is a complex operation. Manual genera-
tion of these tests is time consuming, error prone, and has fairly limited ability
to find bugs whereas systematic testing, which is effective at finding bugs, is
not straightforward as there are no simple enumerators for structurally complex
inputs.

Automated generation of structurally complex test inputs can be done in two
basic ways: using generator functions [52, 51] and by solving constraints [5, 38].
Generator functions are functions that perform basic operations to construct
and build structures (e.g., constructors or mutator methods in Java). Automated
testing using generator functions typically uses different orderings of generator
functions to produce test inputs. This can however result in the same struc-
tures repeated, i.e., redundant tests, and some kinds of structures may never be
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produced. Generator functions are mostly applied for generating larger inputs
effectively.

Automated testing by solving structural constraints [5,38] enables systematic
testing where the program is tested against all test inputs within given bounds.
Even though doing so is feasible only for small bounds, it has been shown to
give high code coverage and find faults in programs with structurally complex
inputs [32, 38, 49]. Also, by writing constraints we can conveniently describe
a whole class of structurally complex test inputs. In this paper, we discuss the
techniques that can be used for systematic testing based on structural constraint
solving.

The structural constraints used by systematic testing techniques are usually
written either as declarative constraints or as imperative constraints. Alloy [30]
(one of the techniques discussed here) uses declarative constraints written in
relational logic using quantified formulas. The other three techniques that we
evaluate use imperative constraints. We call them imperative in contrast to
declarative as they use constraints written in an imperative language (C or Java
in our case). We note that these imperative constraints are required to be free
of side-effects and hence are declarative in nature (even though they are written
in an imperative language).

The contribution of this paper is a controlled experiment for performance
analysis of different constraint solving techniques. It also performs an analysis
to quantify the tradeoffs of these techniques in writing constraints and in pro-
cessing outputs. Our results show that even though generic techniques like model
checkers and symbolic execution can be used to solve structural constraints, spe-
cialized solvers are faster in solving and need the least tweaking of code to work.

The rest of the paper is organized as follows. We provide an overview of the
problem of constraint solving in the following subsection, give a background
on different techniques and how they solve structural constraints in Section 2.
Section 3 describes our experiment; the subjects, analysis strategy, and threats
to validity. We discuss experimental results and our analysis in Section 4 and
summarize and conclude in Section 5.

1.1 Related Work

The idea of using constraints for representing test inputs has been used for at
least three decades [11, 28, 35, 43] and implemented in EFFIGY [35], TEST-
GEN [36], and INKA [24] among other tools. However most of this work was to
solve constraints on primitive data like integers and not structural constraints.

Goodenough and Gerhart [23] discuss the importance of specification based
testing. Test case generation has been automated from specifications by many
tools. Some examples are from Z specifications [15], UML statecharts [41], ADL
specifications [9], and AsmL specifications [25]. However these specifications are
also targeted to primitive types and not structurally complex inputs.

Constraints on complex structures require very different constraint solving
techniques, which have only been explored more recently. Directions of research
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include using model checkers [20, 50], SAT solvers [47], symbolic execution [21,
44], and specialized solvers [5]. Section 2 discusses each of these techniques, their
background and recent advancements.

One common problem faced while generating complex structures is isomor-
phism [45]. Two structures are defined to be isomorphic if they only differ in
object identities. For example, if all elements in two nodes of a tree are swapped
and all references to these nodes are swapped too, the resulting structure is iden-
tical to the original except that pointer values in some nodes would be different.
Since, most programs are not concerned with the actual pointer values and only
with where they are pointing, generating isomorphic structures is considered re-
dundant and the algorithms attempt isomorph breaking procedures to reduce
generated structures.

For the purpose of comparison and explaining how constraints are written in
different approaches, we will take red-black tress [3,26] as our running example.
We pick this representative example as it is one of the more complex structures,
one of the structures commonly used for evaluation in previous work, and one
that is likely to be familiar.

2 Background of Subject Tools

2.1 JPF — Model Checker

Model checking [10] has traditionally been applied to software [2, 13, 50, 27] for
checking event sequences, specified in temporal logic or as a finite state machine
of API usage rules. If a program is checked successfully, no input and execu-
tion can lead it to an error. Thus model checking provides a strong guarantee.
However these techniques did not consider checking properties and validity of
complex structures. The model checkers BLAST and SLAM are also used for
white-box test input generation [4] targeting to cover specific predicates. The
two are also not applied to solving complex structural constraints.

Generalized Symbolic Execution [34] introduced the idea of using a model
checker for solving structural constraints. As an enabling technology, the JPF
(Java Path Finder) model checker [50] was used. JPF is an explicit-state model
checker for Java programs that has been used to find errors in a number of
complex systems [42, 6, 1]. It is built on top of a custom Java Virtual Machine
(JVM). Therefore it handles all standard Java features and in addition allows
nondeterministic choices written as annotations. These annotations are added by
method calls to class Verify. The following methods in this class are important:

– randomBool() returns a nondeterministic boolean value
– random(n) returns a nondeterministic integer in [0,n]
– ignoreIf(cond) makes JPF backtrack if cond is true

Generalized symbolic execution provides a source-to-source translation of a
Java program such that it can be symbolically executed by any standard model
checker that supports non-deterministic choice. The technique of generalized
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class RedBlackTree {
...
static Node[] nodes;
static int maxNode = 0;
boolean header_accessed = false;
Node header;
Node header() {

if (!header_accessed) {
header_accessed = true;
if (maxNode < nodes.length - 1) {

maxNode++;
int r = Verify.random(maxNode);
if( r != maxNode )

maxNode--;
header = nodes[r];

} else header = nodes[ Verify.random( maxNode ) ];
}
return header;

}
boolean repOk() {

if (header() == null)
return false;

Set<Node> visited = new java.util.HashSet<Node>();
visited.add(header());
LinkedList<Node> workList = new LinkedList<Node>();
workList.add(header());
while (!workList.isEmpty()) {

Node current = workList.removeFirst();
if (current.left() != null) {

if (!visited.add(current.left()))
return false;

workList.add(current.left());
}
if (current.right() != null) {

if (!visited.add(current.right()))
return false;

workList.add(current.right());
}

}
if (visited.size() != size() || size() < LOWER_BOUND )

return false;
return repOkColors() && repOkKeys();

}
}

Fig. 1. Parts of Red Black Tree predicate written for JPF

symbolic execution is based on lazy initialization, i.e. it initializes fields when
they are first accessed during symbolic execution of a method. Due to this lazy
initialization, the algorithm only executes program paths on non-isomorphic in-
puts. This can be used for systematic generation of structurally complex inputs
by symbolically executing a predicate checking structural constraints.

Figure 1 shows parts of Red Black Tree predicate written for JPF. Note that
all accesses to structure variables are through accessors functions. One accessor
function for header is also shown. It non-deterministically picks one of the nodes
that have already been used or one of the new nodes.

Recently, this technique has been optimized by making modifications to Java
Path Finder [19]. However these optimizations are specific to one model checker,
whereas the original technique can be used on any model checker.
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2.2 Alloy — Using a SAT Solver

SAT solvers solve boolean formulas. To use SAT solvers for solving structural
constraints, we thus need a language for writing structural constraints, a compiler
to translate that language into a boolean formula, and a mapping from the
solution of the boolean formula into a solution to the structural constraint.

Alloy [29] provides a declarative language for writing these constraints. It
is based on parts of the Z specification [48]. The Alloy Analyzer [31] provides
a fully automated tool to solve these constraints using a SAT solver. The lat-
est version of Alloy Analyzer (4.1.10) works with many state-of-the-art solvers
like BerkMin [22], MiniSat [47], SAT4J (Java implementation of MiniSat), and
ZChaff [40]. Alloy analyzer provides a translation from the declarative language
of Alloy with quantifiers to a boolean formula when given bounds. It then trans-
lates the solution back to the declarative language.

TestEra [33] builds on Alloy to translate the solutions further back into actual
Java structures. TestEra also adds a layer on top of Alloy language to facilitate
writing preconditions and postconditions, and allows test case generation based
on preconditions and function validation using its postconditions as an oracle.
However for the purpose of constraint solving alone, Alloy is sufficient. The Alloy
to Java translator component of TestEra can be used to translate Alloy solutions
into Java structures. The translation time is insignificant in comparison to the
constraint solving time.

We show class invariant for red-black trees modeled in Alloy in Figure 2. Note
that this completely models red black trees. Addition of a few more syntactic
sugar like definition of Node etc is all that is needed to generate all possible red
black trees within given bounds. This concise representation is one of the key
benefits of using a declarative language. However the learning curve of declarative

all e: rbt.root.*(left+right) |
// BT: distinct children
( no e.(left+right) || e.left != e.right ) &&
// BT: acyclic
( e ! in e.^(left+right) ) &&
// BT: distinct parent
lone e.~(left + right) &&
// BST: ordered
lt[ e.left.*(right+left).key, e.key ] &&
gt[ e.right.*(right+left).key, e.key ] &&
// RBT: red node has black children
( e.color in Red && some e.(left + right)
=> e.(left + right).color in Black )

all e, f: rbt.root.*(left+right) |
// RBT: all paths from root to NIL have same # of black nodes
(no e.left || no e.right) && (no f.left || no f.right) =>
#{ p: rbt.root.*(left+right) |

e in p.*(left+right) && p.color in Black } =
#{ p: rbt.root.*(left+right) |

f in p.*(left+right) && p.color in Black }

Fig. 2. Red Black Tree constraint written for Alloy
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programming for programmers used to program in imperative languages often
offsets this benefit. The bounds for Alloy are written as below:

run test for 1 rbt, exactly 3 Node

The class invariant requires the tree to satisfy binary search tree properties and
the additional properties of red-black trees mentioned in comments in Figure 2.
The reader is referred to Jackson [29] for detailed discussion of Alloy operators
and syntax and to Guibas [26] for red-black tree properties.

2.3 CUTE — Symbolic Execution

The idea of symbolic execution dates back at least three decades [35]. Traditional
symbolic execution is a combination of static analysis and theorem proving. In
symbolic execution, operations are performed on symbolic variables instead of
actual data. On branches, symbolic execution is forked with opposite constraints
on symbolic variables in each forked branch. At times, the constraints on sym-
bolic variables can become unsatisfiable signaling unreachable code. Otherwise,
end of the function is reached and a formula on symbolic variables is formed.
A solution to this formula will give a set of values that will direct an actual
execution along the same path.

Renewed interest in symbolic execution is seen in the last decade [7, 12, 18].
Generalized Symbolic Execution [34] extended the concept to concurrent pro-
grams and complex structures.

The main problem with symbolic execution is that for large or complex units,
it is computationally infeasible to maintain and solve the constraints required
for test generation. Larson and Austin [37] combined symbolic execution with
concrete execution to overcome this limitation. Their approach was primitive as
they used symbolic execution to make the path constraint of a concrete execution
and find other input values that can lead to errors along the same path.

DART (Directed Automated Random Testing) [21] is one of the first tools
to systematically combine symbolic execution and concrete execution. Similar
to previous approach, they formed a path constraint during concrete execution.
However after the execution, they backtrack on the path constraint by negating
clauses, solve the new constraints, and re-run concrete execution expecting it
to follow a new path. When it is not feasible to solve the modified constraints,
they substitute random concrete values. Another simultaneous effort was EGT
(Execution Guided Test Cases) [8] using a similar approach. Lastly, CUTE (Con-
colic Unit Testing Engine for C) [44], another tool using similar approach, is the
tool that we will be using here. It is the only tool that can handle pointers and
complex structures.

The idea of using CUTE to generate test cases has been briefly discussed but
not evaluated [44]. There, the authors considered prev pointers in a doubly linked
list and discussed the order (big O) of candidates CUTE and Korat (discussed
below) explore to find answers. In our evaluations we thoroughly cover this
example among others. In particular, we discuss the constants involved (time of
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int repOk( struct bintree* b ) {
struct listnode* visited=0, *worklist=0;
int NODES = 0;
if( b->root == 0 )

return 0;
visited = newnode( b->root, visited );
++NODES;
worklist = newnode( b->root, worklist );
while( worklist ) {
struct node* current = worklist->data;
worklist = worklist->next;
if( current->left ) {

if( !addunique( visited, current->left ))
return 0;

++NODES;
worklist = newnode( current->left, worklist );

}
if( current->right ) {

if( !addunique( visited, current->right ))
return 0;

++NODES;
worklist = newnode( current->right, worklist );

}
if( NODES > UPPER_BOUND )

return 0;
}
if( b->size != vcount || NODES < LOWER_BOUND)
return 0;

return repOkColors(b) && repOkKeys(b);
}

Fig. 3. Parts of Red Black Tree predicate written for CUTE

exploring one candidate) and constraint rewriting requirements to understand
which approach is likely better in practical usage.

We show parts of the red-black tree constraint written in C for use in CUTE
in Figure 3. The NODES variable is introduced to keep a count of nodes used.
We break the loop when more than UPPER_BOUND nodes have been touched and
return false if less than LOWER_BOUND nodes were touched during the exe-
cution. This is how we control the desired number of objects when generating
structures in CUTE. Rest of the constraint is similar to what was shown in
Figure 1.

2.4 Korat — A Specialized Solver

Korat [5] is a framework for automated generation of structurally complex test
inputs. It performs specification based testing. By using a Java predicate that rep-
resents properties of desired inputs, Korat uses backtracking search and explores
the input space of the predicate and enumerates inputs for which the predicate
returns true. Each enumerated inputs is a desired structurally complex test in-
put. Korat performs bounded exhaustive testing: it generates all non-isomorphic
test cases within given bounds. Bounded exhaustive testing has been used to suc-
cessfully find bugs in a fault-tree analyzer [49], a resource discovery architecture,
and an XPath compiler.

Korat performs a dynamic analysis of the predicate. It prunes huge portions
of the input space by monitoring field accesses during predicate execution. It
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public boolean repOK() {
if (root == null)

return false;
Set<Node> visited = new HashSet<Node>();
visited.add(root);
LinkedList<Node> workList = new LinkedList<Node>();
workList.add(root);
while (!workList.isEmpty()) {

Node current = workList.removeFirst();
if (current.left != null) {

if (!visited.add(current.left))
return false;

workList.add(current.left);
}
if (current.right != null) {

if (!visited.add(current.right))
return false;

workList.add(current.right);
}

}
if (visited.size() != size)

return false;
return repOkColors() && repOkKeys();

}

Fig. 4. Parts of Red Black Tree predicate written for Korat

IFinitization f = FinitizationFactory.create(RedBlackTree.class);

IClassDomain entryDomain = f.createClassDomain(Node.class, numEntries);
IObjSet entries = f.createObjSet(Node.class, true);
entries.addClassDomain(entryDomain);

IIntSet sizes = f.createIntSet(minSize, maxSize);
IIntSet keys = f.createIntSet(-1, numKeys - 1);
IIntSet colors = f.createIntSet(0, 1);

f.set("root", entries);
f.set("size", sizes);
f.set("Node.left", entries);
f.set("Node.right", entries);
f.set("Node.color", colors);
f.set("Node.key", keys);

Fig. 5. Korat’s specification of bounds for Red Black Tree

backtracks on the last field accessed and makes a non-deterministic assignment
to that field. It then uses the new candidate to re-execute the predicate.

Korat, being a specialized solver, produces correct output for every predicate
(repOk), however it is written. Although, some predicates would cause a faster
execution (return after touching as few fields as possible) and some would be
slower (return once after checking all checks that can be checked), none would
result in an incorrect result. We here show a portion of red-black tree constraint
written for Korat in Java in Figure 4. We also show how bounds are given for
Red Black Tree in Korat’s finitization in Figure 5.

The principle idea of Korat has been used in other applications. In particular,
STARC [16] uses the Korat algorithm to repair huge complex structures by
running the algorithm in neighborhood of the defective structure. Glass box
testing [14] uses the method to be tested to prune Korat’s generation. Thus it
moves away from the pure black-box approach of Korat.
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Korat has been optimized in a number of ways. Instead of running repOk
from the start for every candidate, efficient backtracking optimization [17] can
undo operations done in last execution and proceed from that point for the
next candidate. This has shown improvements for STARC and also for Korat.
Lastly, Korat has been parallelized for clusters of largely independent machines
by random division of work [39] and for high bandwidth clusters by systematic
division of work [46].

2.5 Research Questions

The effectiveness of bounded exhaustive testing (generating all test cases sat-
isfying the constraints) has been previously shown in application to many real
applications. Here we are concerned with different tools to generate these tests.
Thus we are not concerned with the fault detecting capability of these tools, as
this capability would be equal (given sufficient time) for all tools in our scenario.
We are rather concerned with how to write the tests and interpret the output
and most importantly how much time it takes to generate the tests.

We pose the following research questions for our experiment and analysis:

– What are the pros and cons of different tools in writing constraints and
defining bounds?

– How is the output of a tool represented and how it can be converted into
actual test inputs?

– What are the fastest tools for practical sizes of subject structures?
– How well do the tools perform with more and more complex constraints?
– What are the best tools in terms of time complexity?

Next we describe our experiment and its analysis.

3 The Experiment

3.1 Experimental Subjects

To evaluate the selected tools, we consider six complex structures: three list
structures, and three tree structures. Note that these complex structures are the
foundation of several data structures used in applications. For example, an XML
document, a file system hierarchy, Java or C class hierarchies, expression trees,
abstract syntax trees for compiler can all be viewed as trees and are likely to give
similar performance to one of the tree structures we consider here. We evaluate
the following six structures:

1. Binary Tree
2. Binary Search Tree
3. Red Black Tree
4. Singly Linked List
5. Doubly Linked List
6. Sorted Linked List
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Note that a red-black-tree is a binary search tree which is in turn a binary
tree. From this, we intend to learn the effect of increasing constraint complexity
on tool performance.

To avoid any bias, we took constraints for the above subjects from previous
work [5], where available. In some cases, we needed to change the constraints so
that the tool under evaluation performs bounded exhaustive testing (as discussed
in the previous section).

3.2 Experimental Design

The experiment focused on:

1. Structurally complex constraints (6 constraints of subjects given in previous
section)

2. Bounds (we considered 4 bounds for each subject structure)
3. The constraint solver (one of the four constraint solvers discussed in this

paper)

On each run, we measured:

1. Time taken to generate all tests
2. Candidates generated to see isomorphism pruning

We also measure qualitative results for:

1. How constraints needed to be converted to run the tool
2. How bounds needed to be converted to run the tool
3. How results from the tool needed to be converted to test cases

Results reported for the experiment were averages of 10 repeated measure-
ments. Thus, for each subject structure and each constraint solver and each given
bounds, we ran the tool 10 times and computed the average. The experiments
were performed on a Linux machine with Intel Pentium 4 2.8Ghz processor and
4GB RAM.

3.3 Threats to Internal Validity

Threats to internal validity are influences that can affect dependent variables
without researcher’s knowledge. In this respect, our concerns include the way
constraints are written and language differences. Constraints can be written
to suit one tool and not the other. We have done our best effort is writing
the constraints so that every tool can perform at its best. Language differences
matter because one of the tools works in C while the rest work in Java. C
implementations are inherently faster so the results of this tool would have a
slight edge because of language. However this concern would have been more
significant if this tool turned out to be the fastest which is not the case as we
see below.
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3.4 Threats to External Validity

Threats to external validity are conditions that limit us in generalizing the re-
sults of our experiment. Our biggest concerns in this area is that the subject
programs might not be representative of complex constraints. To control this
threat, we have studied literature regarding the tools and summarized the com-
plex constraints previously studied, we have also studied structures discussed
in algorithm books, and have found that the most commonly used complex
structures are actually the basis of a large class of data structures. For exam-
ple, B-trees, AVL trees, Sparse matrices, hash tables are all basically trees or a
combination of trees and lists. We considered complex inputs of real programs
like compilers (abstract syntax tree), XML parsers (XML Tree), web browser
(HTML Tree), File system tree, Java class hierarchies, and expression trees. All
of these share constraints with the basic structures we test here. Therefore we
believe that our subjects are representative of complex constraints and can be
used to evaluate constraint solvers.

3.5 Threats to Construct Validity

Threats to construct validity are situations where measurement instruments do
not adequately capture concepts that they are supposed to capture. In this
experiment, we measure performance and ease of writing constraints and using
results. Measuring performance is always risky on todays multitasking machines.
We controlled this threat with repeated measurements and with no sharing of
resources. The quantitative analysis about constraint writing is more prone to
this threat. We control this threat by providing raw data (how constraints are
written, bounds given, results converted) and add our analysis on top of it.

3.6 Analysis Strategy

We summarize all the data first. We then make observations on this data and
our observations on the three quantitative criteria of constraint writing, giving
bounds, and using results. Finally, we show several comparisons between perfor-
mance of different techniques in graphical form.

4 Data and Analysis

We provide performance comparison and its analysis followed by quantitative
analysis.

4.1 Performance Comparison

Table 1 shows the results of our experiments. The first column lists the complex
structures we chose. The next column specifies the size we are using. For Binary
Tree, Singly Linked List, and Doubly Linked List, we generate structures up to
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Table 1. Results of generating bounded exhaustive test cases for six subject structures
by CUTE, Korat, Alloy, and JPF. Time out or tool limitations are represented by a
hyphen (-).

Subject Size CUTE Korat Alloy JPF

Binary Tree

3 1.761 0.507 0.880 16.349
4 4.774 0.533 1.085 16.158
5 15.104 0.567 1.779 16.678
6 47.427 0.620 5.882 19.405
7 156.368 0.720 41.866 24.197
8 527.292 1.048 520.868 48.389

Search Tree

3 2.580 0.579 1.159 16.415
4 8.240 0.495 1.423 16.478
5 28.015 0.547 2.529 21.498
6 95.764 0.746 3.032 43.905
7 341.444 2.363 6.437 222.893
8 - 17.515 26.456 1409.366

Red Black Tree

3 43.769 0.841 1.571 15.775
4 82.905 0.875 1.450 17.139
5 720.625 0.829 5.293 18.948
6 - 1.018 4.132 28.186
7 - 1.687 18.036 57.800
8 - 5.250 85.277 170.962

Singly Linked List

10 0.855 0.389 8.452 16.661
13 1.073 0.399 602.250 16.414
50 4.136 0.481 - 18.015

100 8.383 0.688 - 23.433
200 17.273 2.110 - 48.625
300 27.082 6.138 - 104.517
400 36.811 13.939 - 200.062
500 48.849 27.982 - 344.724

Doubly Linked List

10 1.167 0.408 7.408 16.221
13 1.523 0.411 130.423 15.242
50 5.657 0.537 - 18.511

100 11.900 1.047 - 24.547
200 25.538 4.987 - 63.614
300 44.332 16.354 - 146.015
400 67.828 36.503 - 285.589
500 100.057 72.686 - 501.617

Sorted List

9 1.292 0.395 2.602 21.333
11 1.557 0.457 7.409 36.900
13 1.839 1.026 10.420 108.670
15 2.110 2.286 21.874 439.063
18 2.821 21.646 - -
20 2.797 102.609 - -
22 3.036 499.276 - -

given size while we generate structures of exactly that size for the other three
structures. The reason for this is that when generating structures with valid
integer ranges of some data variables (e.g. Sorted List), then all tools except
CUTE will produce all valid assignments while CUTE will provide a single valid
assignment. This makes comparison difficult. We thus chose a fixed size and
fixed range of integers such that only one valid assignment exists. The next four
columns in the table list the times taken by each tool.

Alloy ran into solver limitations for sizes greater than about 15 nodes for all list
structures. Similarly CUTE faced symbolic execution limitations for red black
trees. Other numbers not available are time outs for the allocated 15 minutes.
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Table 2. Isomorphic Candidates Produced

Subject CUTE Korat Alloy JPF

Binary Tree NO NO YES NO

Binary Search Tree NO NO NO NO

Red Black Tree YES NO NO NO

Singly Linked List NO NO YES NO

Doubly Linked List NO NO YES NO

Sorted List NO NO NO NO

Table 2 shows how well the candidate tools performed in terms of pruning
isomorphic candidates. Korat and JPF never produced an isomorphic result.
Also from their algorithm, they would never produce a normal isomorphic re-
sult according to the definition given previously. Note that their can be domain
specific isomorphic results (e.g. isomorphic graphs) which no tool identifies as
isomorphic. CUTE produced isomorphic candidates only when it ran into sym-
bolic execution limitations. This happened in our case for red-black trees. Alloy
produced isomorphic candidates most often. Its isomorphism pruning is most
limited. For example, for a singly linked list, other than the root node and the
tail node, it produces more than one isomorphic orderings of the middle nodes.

Lastly, Figure 6 shows six graphs, one for each subject structure and plots
the performance of all four tools. The time axis is logarithmic since bounded
exhaustive testing is an exponentially growing problem and a logarithmic scale
better shows how the tools are performing.

We observe that other than sorted lists, Korat is the fastest tool within 1000s
time. For binary tree and Red Black Trees, it also seems to grow the slowest. For
Binary Trees and Binary Search Trees, CUTE is growing linear on a logarithmic
scale which means it is slightly better in terms of time complexity but the actual
problem size where it would take over Korat would be huge.

CUTE is the only tool that handles Sorted Lists successfully, It touches our
1000s limit for generating about 500 element lists. This huge difference is be-
cause the other tools internally generate all possible combinations (n!) whereas
symbolic execution does not. This is also the motivation around some recent
work on Korat and JPF to use symbolic execution for primitives and use the
native algorithm for non-primitive fields [51].

Note also in all graphs that CUTE has the best time complexity. It grows ex-
ponentially (trees) and sub-exponentially (lists) except for red black trees where
symbolic execution faced limitations. Thus when symbolic execution faces limi-
tations and CUTE reverts to take help from concrete execution, we may not get
results comparable to other tools. This is one of the key weak points of CUTE
for bounded exhaustive generation.

Alloy shows an interesting behavior. It performs better for Binary Search Trees
(more complex constraint) than Binary Trees. We believe that this is because
SAT solvers solve the easiest clauses first and the former gives it a better chance
at doing that. Red black tree performance is in the middle and is better for 4
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Fig. 6. Performance Comparison of techniques for all six subject structures. Y-axis
shows time in seconds on a logarithmic scale. X-axis shows size of structure.

nodes than for 3 (and 6 nodes than for 5). We again believe this has to do with
the formation of clauses.

If we carefully note, the graph of JPF is almost at a constant distance above
Korat. Indeed, JPF structural constraint solving algorithm and the Korat algo-
rithm principally make the same decisions. JPF is only burdened with running
a model checking virtual machine and keeping a lot of additional state which
Korat can do without. That is why they have similar time complexity but a
different multiplier. Thus we can say that Korat is a much faster specialized
implementation of what the JPF structural constraint solving algorithm does
without the added overheads of model checking.
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Table 3. Comparison of structural constraint solving techniques on non-performance
metrics

Constraints Bounds Output

CUTE Imperative function:
Some special care at
branches to enable symbolic
execution to visit both
branches

For linear structures, giving
a depth bound in invoking
CUTE is enough; for others,
special checks needed to be
inserted inside the predicate

Each complex structure is
available at end of testing
function in a separate pro-
cess

Korat Imperative function:
No special restrictions

An imperative function list-
ing bounds for each object
and predicate involved (fini-
tization)

Each structure is available
in a special function in the
same single process

Alloy Declarative predicate:
In relational quantified logic

List of bounds for each ob-
ject involved

Result is a list of solutions
that can be translated into
actual heap structures using
Alloy to Java translator in
TestEra [33]

JPF Imperative function:
Need to use special accessor
functions (can be added au-
tomatically) that use model
checker’s non-determinism

Ranges can be specified in
special accessor functions

Each complex structure is
available at end of testing
function in a separate pro-
cess

4.2 Qualitative Comparison

One of the research goals of our experiment was to discuss some qualitative
differences between subject tools. We give summarized results in Table 3 and
give a more detailed discussion of each difference below.

Constraint Writing: All tools except Alloy required constraints written in an
imperative language. Constraints are required to be free of side-effects. CUTE
constraints needed some tweaking to allow symbolic execution to explore all
paths. For example, a return size == 0 statement has to be changed to a
branch statement with separate returns. JPF and Korat can use an arbitrary
imperative function that is free of side-effects. Alloy required declarative pred-
icates. Declarative specifications are concise and can be significantly smaller
than an equivalent imperative specification. The tradeoff is the learning curve
of declarative language for programmers used to writing code in imperative
languages.

Giving Bounds: Korat and Alloy were the easiest to provide bounds, which is
not surprising since they are designed for specification-based, bounded exhaus-
tive checking. They differed in that Alloy required bounds for each type whereas
Korat was more explicit in requiring bounds for each field of each type. Also for
primitives, Korat can use lower bounds and upper bounds whereas Alloy would
need those bounds as part of specification and not as part of bounds. To limit
structures generated by CUTE within bounds, we needed to tweak its imper-
ative predicate. Providing bounds using the JPF approach was simple. In this
approach the required arrays (universe of values) were constructed during the
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testing Main method. Values of these arrays are non-deterministically used by
accessor functions (possibly automatically added).

Using Results: The JPF approach and CUTE approach produce each result,
i.e. structure that represents a test input, in a separate execution (process). This
result can directly be used for testing or saved for later use. Korat approach
produces each result in the same execution (process). The result can be saved.
Direct testing has to be careful about using a new process to avoid crashing of
Korat due to faulty code. In previous work, these results have been distributed for
parallel test execution [39]. Alloy produces solutions to declarative specifications.
These need to be converted to the corresponding imperative language for actual
test use. One tool in this area is Alloy to Java converter used in TestEra [33].
This tool can generate actual Java structures corresponding to Alloy output.

Treatment of primitive fields: While the key benefit of structural constraint
solving is non-primitive fields (pointers to objects), primitive fields also pose
a limitation. All the surveyed tools except CUTE try all possible values for a
given primitive field. This often results in exponential or factorial amount of
time. CUTE excels in this area by providing a single valid solution for such
fields.

5 Summary and Conclusions

In this paper, we performed an empirical study of using four different techniques
for constraint solving to perform bounded exhaustive testing. Bounded exhaus-
tive testing has been previously shown effective at finding faults in real programs.
Here, our goal is to compare the performance of these tools. We considered the
CUTE tool based on symbolic execution, the JPF model checker, the Alloy tool
based on SAT, and the specialized solver Korat . Our key results are:

– The fastest tool for most of the subjects of small size is Korat. However it
degrades in performance when several constraints are on primitive fields.

– The JPF constraint solving approach using lazy initialization is effectively a
slower Korat.

– Alloy provides the most concise way of writing predicates. For programmers
knowledgeable in declarative languages, it can significantly reduce time to
write or maintain specifications.

– CUTE provides better time complexity than most tools however the slope
constant is fairly high. This is because of the symbolic execution overhead.

– CUTE requires some tweaking of class invariants to enable bounded exhaus-
tive generation.

– No tool gives better non-isomorphic generation for exhaustive enumeration
than the Korat algorithm (and likewise lazy initialization using JPF).

– All tools except CUTE provide bounded exhaustive checking by design and
CUTE focuses on generating one input per path.
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Our results also provide directions for future work. We see two main directions
of research:

– Using symbolic execution to improve the specialized solver Korat.
– While Alloy provides an intuitive way to write specifications (after the learn-

ing curve), its solving capability is limited to smaller sizes (see list data
structure) and can often produce isomorphic candidates. We believe using a
combination of solvers, such as SAT, SMT, string constraint solvers, and set
constraint solvers, is likely to provide significantly more efficient solving.

– Similar to parallelization for Korat [39,46], we are working on parallel sym-
bolic execution. Other tools, such as Alloy, can also gain from parallel exe-
cution, both on commodity parallel machines and bigger clusters.
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