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Preface

Formal methods for development of computer systems have been extensively
studied over the years. A range of semantic theories, specification languages,
design techniques, and verification methods and tools have been developed and
applied to the construction of programs used in critical applications. The chal-
lenge now is to scale up formal methods and integrate them into engineering de-
velopment processes for the correct and efficient construction and maintenance
of computer systems in general. This requires us to improve the state of the art
on approaches and techniques for integration of formal methods into industrial
engineering practice, including new and emerging practice.

The now long-established series of International Conferences on Formal En-
gineering Methods brings together those interested in the application of formal
engineering methods to computer systems. Researchers and practitioners, from
industry, academia, and government, are encouraged to attend and to help ad-
vance the state of the art. This volume contains the papers presented at ICFEM
2009, the 11th International Conference on Formal Engineering Methods, held
during December 9–11, in Rio de Janeiro, Brazil.

There was a record 121 submissions by authors from 36 countries all around
the world. Each submission was reviewed by at least three, and on the average
four, Programme Committee members. After extensive discussions, they decided
to accept 36 papers. The programme also included two invited talks by Manfred
Broy, from the Technische Universität München, Germany, and Augusto Sam-
paio, from the Universidade Federal de Pernambuco, Brazil. Their invited papers
are also included here. This year, authors of a selection of the accepted papers
were invited to submit an extended version of their work to a special issue of
the Science of Computer Programming journal.

ICFEM 2009 was organized jointly by the Pontif́ıcia Universidade Católica
do Rio de Janeiro, the University of York, and the Instituto Militar de Engen-
haria. EasyChair was used to manage the submissions, the reviewing, and the
proceedings production. We thank the EasyChair team for a very good tool.

We are grateful to all members of the Programme and Organizing Commit-
tees, and to all referees for their hard work. The support and encouragement of
the Steering Committee were invaluable assets.

Finally, we would like to thank all the authors of the invited and submitted
papers, and all the participants of the conference. They are the main focus of
the whole event. We hope they enjoyed it.

December 2009 Karin Breitman
Ana Cavalcanti



Organization

Steering Committee

Keijiro Araki
Jin Song Dong
Chris George
He Jifeng (Chair)
Mike Hinchey
Shaoying Liu
John McDermid
Tetsuo Tamai
Jim Woodcock

Conference Chair

Jim Woodcock

Programme Chairs

Karin Breitman
Ana Cavalcanti

Programme Committee

Luca Aceto
Nazareno Aguirre
Bernhard Aichernig
Keijiro Araki
Michael Butler
Andrew Butterfield
Rance Cleaveland
Jim Davies
Jin Song Dong
Neil Evans
Colin Fidge
John Fitzgerald
Joaquim Gabarro
Alex Garcia
Stefania Gnesi
Hermann Haeusler
James Harland

Mike Hinchey
Thierry Jeron
Steve King
Kim Larsen
Rustan Leino
Michael Leuschel
Zhiming Liu
Shaoying Liu
Patricia Machado
Tom Maibaum
Tiziana Margaria
Ana Melo
Dominique Mery
David Naumann
Marcel Oliveira
Ken Robinson
Markus Roggenbach



VIII Organization

Helen Treharne
T. H. Tse
Mark Utting
Marcel Verhoef

Farn Wang
Heike Wehrheim
Wang Yi
Fatiha Zaidi

Local Organization

Karin Breitman
Paulo Rosa
Vera Werneck

External Reviewers

Azma Abdullah
Mohammed Aboulsamh
Wilkerson Andrade
Zoe Andrews
Jens Bendisposto
Peter Bertok
Nathalie Bertrand
Frédéric Besson
Anirban Bhattacharyya
Jean-Paul Bodeveix
Artur Boronat
Dragan Bosnacki
Pontus Bostram
Harald Brandl
Franck van Breugel
Roberto Bruni
Jeremy Bryans
Antonio Bucchiarone
Lin-Zan Cai
Josep Carmona
Emanuela Cartaxo
Chunqing Chen
Jia-Fu Chen
Sylvain Conchon
Morten Dahl
Fredrik Degerlund
Zinovy Diskin
Lydie Du Bousquet
David Déharbe
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Seamless Model Driven Systems Engineering Based on 
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Manfred Broy 

Institut für Informatik, Technische Universität München 
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Abstract. So-called formal methods have been advocated as techniques in 
software and systems engineering to improve the correctness and reliability of 
system and software development – in practice with limited success. In contrast, 
modeling concepts have found high interest in the development of software in-
tensive systems in recent years in industry. Models are not necessary formal and 
formal methods do not necessarily provide useful models. We discuss the role 
of models and the advantages, in particular, of formal models in system devel-
opment with emphasis on their seamless use. 

Keywords: Formal methods, models based development. 

1   Motivation 

Since more than four decades, extensive research in so-called “formal methods” ac-
complished remarkable results and a rich body of knowledge. Nevertheless the trans-
fer to practice is slow – lagging behind the state of science and sometimes even not 
making much progress. 

Certainly, there are many reasons why it is difficult to bring formal methods closer 
to practice. Actually, to begin with, there are some misconceptions about the term 
“formal methods”. Already, the understanding of the concept of a “method” is not so 
trivial. The answer to the question what it means that a method is formal is even less 
obvious. A lot of the work done under the heading “formal methods” is actually not 
on methods at all, but rather contributes to a formalization and foundation of struc-
tures and concepts useful in software and systems engineering. 

It is quite clear that people in practice are not prepared to apply formal methods 
without a clear idea what their advantages are, actually. It is obvious, however, that 
the state of practise in systems and software engineering is not satisfactory. In fact, 
there are a lot of projects in systems and software engineering getting into troubles. 
Typical troubles are that projects run out of budget or they do not deliver in time. 
Moreover, the quality of software products is often not sufficient. It is noteworthy, 
however, that functional correctness is only one concern among the many problems 
software projects have to solve. Therefore, it is not surprising that as long as formal 
methods, advocated as a silver bullet, however, only addressing correctness, they will 
not be accepted. 
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We suggest a more holistic view onto software and systems engineering. Holistic 
means to keep all the different factors in mind that may influence the project results 
developing engineering techniques that definitely improve the processes and the re-
sulting products.  

In the following we restrict our considerations to technical aspects of development 
in contrast to management issues. Of course, a lot of the problems in software and 
systems engineering do not come from the software engineering techniques but rather 
from problems in project management as pointed out by Fred Brooks (see [2]). His 
book, “The Mythical Man-Month”, reflects experience in managing the development 
of OS/360 in 1964-65. Its central arguments are that large projects suffer from man-
agement problems different in kind than small ones, due to division in labor and their 
critical need is the preservation of the conceptual integrity of the product itself. His 
central conclusions are that the conceptual integrity can be achieved throughout by 
chief architects and implementation is achieved through well-managed effort. 
Brooks’s famous law says that adding personnel to a late project makes it later. We do 
not discuss problems in project management in the following text. However, we want 
to keep in mind that development techniques cannot be separated completely from 
project management issues. Therefore, when aiming at integrating formal methods 
and modelling approaches into processes of software development, the outcome has 
to improve and to fit to software management issues as well.  

A topic closely related to that is the question what the decisive success factors for 
software and systems engineering technologies are. What we observe today is the 
enormous size and increase in complexity of systems we have to deal with. So, one 
major goal in development is a reduction of complexity and a scaling up of methods 
to the size of the software today. Moreover, we have to accept that technologies have 
to be cost effective. Techniques that contribute to the quality of the product but do not 
prove to be affordable are not helpful in practise.  

2   Engineering Software Intensive Systems 

Engineering is … the systematic application of scientific principles and methods to 
the efficient and effective construction of useful structures and machines. Engineering 
of software intensive systems is still a challenge – but what are the reasons? In spite 
of the many and famous stories about software bugs, it is not just the problem to get 
software bug-free.  

Applying modeling techniques and formal methods are not primary goals in engi-
neering. The main goal is to improve our abilities to manage the development of 
software intensive systems. Primary goals of engineering software intensive systems 
are suitable quality, low evolution costs and timely delivery.  

Formal methods basically claim that they can improve the correctness of software. 
Formal methods provide support in following areas of development: 

• formal specification  
• formal development rules and  
• verification of software.  
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Sometimes an argument against formal method is that they are not powerful enough 
to deal with real life systems. This is actually not true! Within the project Verisoft 
(see [1]) we have demonstrated that software of the size and of complexity as we find 
it in modern cars today can be formally specified and verified by applying computer-
based tools for modelling and interactive theorem proving. This constitutes a proof of 
concept, that formal methods are powerful enough for today’s real life systems. How-
ever, we cannot say much about their cost effectiveness. 

A second issue is that – at least for safety critical systems – the state of the art in 
correctness is not so bad, in practise. The reliability of safety critical systems that we 
are using today is surprisingly good. For instance, reliability of avionic software is not 
worse than that achieved in the other involved engineering disciplines such as me-
chanical engineering and electrical engineering. Therefore, a real need to improve our 
technologies with respect to improving correctness and verification is perhaps not the 
most pressing goal. However, the reliability of the systems we develop today is 
achieved by enormous costs. Some expenses go into the redundancy of the systems, 
while others go into expensive certification processes. 

A third issue is that the key problem in software and systems engineering is not 
just correctness and verification, it is even more the validity of the requirements as 
they were captured and formulated. This is underlined in the new ISO 26262 (see [6]), 
on functional safety for software in vehicles, which rightly points out that safety does 
not just address correctness but has to tackle validity of requirements and their cor-
rectness as well. 

2.1   Engineering and Modeling Based on First Principles 

To make sure that methods are helpful in engineering and really do address key is-
sues, it is advisable to base methods on principles and strategic goals. These princi-
ples are a condensed form of the experiences gained in engineering software intensive 
systems over the years. In the following we list a number of principles and then dis-
cuss to what extent these principles can be backed up by formal methods. 

One of the simple insights in software and systems engineering is, of course, that 
not only the way artefacts are described and also not just the methods that are applied 
are most significant for the quality of the development outcome. What is needed is a 
deep understanding of the engineering issues taking into account all kinds of not ex-
plicitly stated quality requirements. Here formal methods, at least at the state they are 
today, cannot help a lot. As engineers, we are interested to be sure that our systems 
are safe with a high probability and address the user needs in a valid way and that 
during their lifecycle they can be adapted to the requirements to come in the future. In 
particular, legacy software is one of the nightmares of software engineering and it is 
completely unclear to what extend formal methods can help here. 

The discipline of systems and software engineering has gathered a large amount of 
development principles and rules of best practice. Examples are principles like: 

• Separation of Concerns 
• Stepwise refinement 
• Modularity and Compositionality 
• Decomposition 
• Abstraction 
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• Rigor and formality 
• Generality  
• Mitigation of risk 
• Anticipation of Change 
• Incremental Development 
• Standardized Patterns 
• Scalability 

Which of these principles can be supported by formal methods? Certainly, formal 
methods could contribute to the first five principles – but they have to be explicitly 
taken care off when designing formal methods. Formal methods certainly can address 
the principle of “rigor and formality”. The last five principles, however, are not ad-
dressed by formal methods, per se. They can support these principles, however. 

Software Engineering “Maxims” say: 

• Adding developers to a project will likely result in further delays and accu-
mulated costs. 

• Basic tension of software engineering is in trade-offs like: 

– Better, cheaper, faster — pick any two! 

– Functionality, scalability, performance — pick any two! 

• The longer a fault exists in software 

– the more costly it is to detect and correct, 

– the less likely it is to be properly corrected. 

• Up to 70% of all faults detected in large-scale software projects are intro-
duced in requirements and design. 

• Insufficient communication and transparency in the development team will 
lead to project failure. 

• Detecting the causes of those faults early may reduce their resulting costs by 
a factor of 100 or more. 

How can formal methods support these principles? Some do only address manage-
ment tasks. However, early fault prevention can definitely be supported by formal 
methods. 

2.2   From Principles to Methods, from Methods to Processes 

Given principles, we may ask how to derive from principles methods and from meth-
ods development processes. First lets look at principles for which formal techniques 
provide good support.  

2.2.1    Key Steps in Software and Systems Engineering 
In fact, looking at projects in practise we may identify the key activities in software 
and systems engineering. When studying projects and their success factors on the 
technical side, the latter prove to be always the same, namely, valid requirements,  
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well worked out architectures addressing the needs of the application domain and an 
appropriate mapping onto technical solutions. Quality assurance is essential, but only 
a part of it is verification not to forget validation of the requirements.  

Therefore, formal methods have to address directly the demands of requirements 
engineering and of architectural design. If this can be achieved then we actually arrive 
at formal methods that are useful and can help a lot. 

An important issue that is not addressed enough in formal techniques is compre-
hensibility and understandability. Formal description techniques are precise, of 
course. But the significant goal is reduction of complexity and ease of understanding 
– this is why graphical description techniques are so popular! Engineers, users, stake-
holders have to understand the artefacts worked out during the development process. 
Often understanding is even more important then formality. If a formal method pre-
cisely captures important properties, but if no engineer is able to understand it prop-
erly the way it is formulated then it is not useful in practice. 

2.2.2   Requirements Engineering 
Gathering requirements based on collecting, structuring, formalizing, specifying, 
modeling are key activities. One of the big issues is, first of all, capturing and struc-
turing valid requirements. IEEE 830 1998 mentions following quality attributes of 
requirements documentation: 

• correct 
• unambiguous 
• complete 
• consistent 
• ranked for importance/stability 
• verifiable 
• modifiable 
• traceable 

For a good requirements engineering we do not necessarily need formality of methods 
to begin with, since from the attributes listed above mainly consistency, unambiguity, 
and verifiability are supported directly by formal methods.  

2.2.3   Architecture Design 
For the design of architecture at a logical level we use hierarchies of logical compo-
nents, on which a detailed design can be based. The difference between architecture 
and detailed design [7] is expressed as follows: 

• Architecture is concerned with the selection of architectural elements, their 
interactions, and the constraints on those elements and their interactions nec-
essary to provide a framework in which to satisfy the requirements and serve 
as a basis for the design. 

• Design is concerned with the modularization and detailed interfaces of the 
design elements, their algorithms and procedures, and the data types needed 
to support the architecture and to satisfy the requirements. 
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A detailed design is mandatory for systematic module implementation and verifica-
tion and later system integration, which is the key step in system development, includ-
ing integration verification. 

2.3   Functional Safety: The Example ISO DIS 26262 

ISO 26262 is the adaptation of IEC 61508 to comply with needs in functional safety 
specific to the application sector of E/E systems within road vehicles. It explicitly 
addresses notions such as: 

• functional safety: absence of unreasonable risk due to hazards caused by 
malfunctioning behaviour of E/E systems 

• functional safety concept: specification of the functional safety requirements, 
with associated information, their assignment to architectural elements, and 
their interaction necessary to achieve the safety goals  

• functional safety requirement: specification of implementation-independent 
safety behaviour, or implementation-independent safety measure, including 
its safety-related attributes 

ISO 26262 emphasises in a note that there is a difference between  

• to perform a function as required (stronger definition, use-oriented) and  
• to perform a function as specified, so a failure can result from an incorrect 

specification.  

This addresses the significance of valid specification and validation (“Get the re-
quirements right”) as a precondition for useful verification (“Show that the implemen-
tation fulfils the requirements”). 

3   On Formal Engineering Methods  

First of all, formalization is a general method in science. It has been created as a tech-
nique in mathematics and also in philosophical and mathematical logic with the gen-
eral aim to express propositions and to argue about them in a fully objective way. In 
some sense it is the ultimate goal of science to deal with its themes in an absolutely 
objective way.  

Only in the last century, formal logic has entered into engineering. First of all, 
logic has been turned into an engineering tool by the logic of switching circuits and 
also by the logic of software systems. Secondly, the logical approaches help in devel-
oping software and digital hardware – after all code is a formal artefact. 

3.1   Formalization as Scientific Method 

Formalization is a general scientific method. It is, in particular, a helpful concept in 
informatics. Informatics deals with very abstract concepts and notions, which are 
captured by formalization. So, informatics has worked out a lot of formal notions 
including concepts like, for instance, computability, computational complexity and so 
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on. These are basic notions and should not be called formal methods. Formalization is 
an indispensable scientific method for our discipline. 

But what does it mean that something is formal? One difficulty is that the term 
“formal” is used with different meanings. Generally, a formality is an established 
procedure or set of specific behaviors. But this is not what we mean in software and 
systems engineering if we call something formal.  

The following concepts in informatics can be given the attribute formal 

• languages (for specification, design, implementation) 
• development steps and processes 
• rules (calculi) 

Predicate logic may provide the best basis to explain the term formal. Assuming that a 
method requires a language that has a meaning and rules, we can classify the formal-
ity of a method as follows 

• formal syntax, 
• formal semantics (also called the modeling theory), 
• formal transformation and deduction rules. 

It is important not to confuse scientific work for the formalization of scientific con-
cepts with formal methods in systems and software engineering. Clear concepts that 
are theoretically justified and produce a proper terminology are of high scientific 
interest. In engineering, formality is not a goal per se, but rather a powerful mean to 
achieve other goals. 

3.2   About the Concept of a Method 

A method defines “how to do or make something”. 
A method is a very general term and has a flavour that it is a way to reach a par-

ticular goal, where the steps to reach that goal are very well defined such that skilled 
people can perform them. Engineers therefore heavily use methods as ways to reach 
their sub-goals in the development process. 

3.2.1   What Is a Formal Method?  
In informatics, formal methods are understood as mathematically-based techniques 
for the functional specification, development and verification in the engineering of 
software and hardware systems. The use of formal methods for software and hardware 
design is motivated by the expectation that, as in other engineering disciplines, apply-
ing mathematical techniques can contribute to the correctness, reliability and robust-
ness of a design. However, the high cost of using formal methods means that they are 
usually used only in the development of high-integrity systems, where safety or secu-
rity is important. 

Some people say that “formal methods are best described as the application of a 
fairly broad variety of theoretical computer science fundamentals, in particular logic 
calculi, formal languages, automata theory, and program semantics, but also type 
systems and algebraic data types to problems in software and hardware specification 
and verification.” Formal engineering methods can be used at a number of levels: 
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1. Formal specification may be the result of requirements engineering and then 
a program developed from this informally.  

2. Formal development and formal verification may be used to produce a pro-
gram in a more formal manner.  

3. Theorem provers help to produce fully formal machine-checked proofs. This 
can be very expensive and is only practically worthwhile if the cost of mis-
takes is extremely high (such as in critical parts of microprocessor design). 

Further information on this is expanded below. 

3.2.2   Why Formal Specification and Verification Is Not Enough 
Formal development methods that just aim at formal specification and verification are 
not sufficient for the real challenge to make software systems reliable and function-
ally safe such that they fulfil valid requirements of their costumers with expected 
quality and are constructed in cost effective ways. Pure formalization and verification 
can only prove a correct relationship between formal specifications and implementa-
tions but cannot prove that the systems meet valid requirements. 

Therefore the project on the verifying compiler (see [5]) has an essential weakness 
since it only addresses partial aspects of correctness but not validity. 

3.2.3   The Importance of the Formalization of Engineering Concepts 
Engineering concepts in systems and software development are complex and abstract. 
Therefore they are difficult to define and to understand. We see a great potential for 
formalization in the precise definition of terms and notions in engineering and in the 
formal analysis of engineering techniques. We see a significant discrepancy between 
a formal method and the scientific method of formalization. 

3.2.4   The Role of Automation and Tools 
Any methods used in the engineering of software systems are only helpful if they 
scale up and are cost effective. This means they have to be supported to a great deal 
by automation and by tools.  

Here formal methods actually can offer something because any tool support re-
quires a sufficient amount of formalization. The better a method can be formalized the 
better it can be supported by tools. 

4   Seamless Model Based Development 

Our goal should not be making sure that formal methods are applied – our goal should 
be to make engineering more effective, more reliable and more efficient. 

Model Based Engineering (MBE) is a software development methodology which 
focuses on creating models, or abstractions, more close to some particular domain 
concepts rather than programming, computing and algorithmic concepts. It is meant to 
increase productivity by maximizing compatibility between systems, simplifying the 
process of design, increasing automation, and promoting communication between 
individuals and teams working on the system. 
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4.1   What Is a Model? 

A model is simply an appropriate abstraction for a particular purpose. This is of 
course, a very general connotation of model. Having a closer look, models have to be 
represented and communicated in order to be useful in software engineering. We 
should keep in mind, however, that an appropriate “Gedankenmodell”, which  
provides a particular way and abstraction of how to think about a problem is useful 
for the engineer even without an explicit representation for communication. Using 
Gedankenmodells means to think and argue about a system in a specific way. 

We are interested not only in individual models but also in modelling concepts. 
These are hopefully proven techniques to derive certain abstractions for specific pur-
poses. Here is an important point in modelling that goes beyond formal methods, 
namely, that good modelling concepts provide useful patterns of engineering.  

4.1.1   Modeling Requirements 
Capturing and documenting requirements is one of the big challenges in the evolution 
of software intensive systems. As well-known, we have to distinguish between func-
tional requirements and quality requirements. We concentrate in the following mainly 
on functional requirements. Here modelling techniques help since we can describe the 
functionality by using formal specification techniques. 

A well worked out requirements techniques end up with a complete formal specifi-
cation of the interface behaviour of the system under construction. Since for many 
systems the functionality is much too large to be captured in one monolithic specifica-
tion, specifications have to be structured. For instance, techniques are needed to struc-
ture the functionality of large multifunctional systems by hierarchies of sub-functions. 
The system model, briefly introduced in the appendix, allows specifying the interface 
behaviour of the sub-functions and at the same moment using modes to specify how 
they are dependent and to capture the feature interactions. Done in full detail state-
machines with input and output capture the behaviour of the sub-services describing 
the interactions and dependencies between the different sub-functionalities with the 
help of modes. Such descriptions are worked-out starting from use-cases. 

In the end we obtain a fully formalized high level functional specification of a sys-
tem structured into a number of sub-functions. 

4.1.2   Architecture Modeling 
A key task is the modelling of architectures. Having modelled the function hierarchy 
as described above a next step is to design a logical component architecture capturing 
the decomposition of the system into logical components, again in a hierarchical style. 
However, logical component architectures provide completely different views in 
contrast to function hierarchies derived in requirements engineering.  

How are the two views related? The overall functionality described by the function 
hierarchy has to be refined by the interface behaviour of the logical architecture. 

4.1.3   From Requirements and Architecture to Implementation, Integration and 
Verification 

Having worked out a complete description of the requirements and the architecture 
the further development steps are very much guided by the architecture. First of all, 
the architecture model provides specifications of the components and modules. On 
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this basis, we can do a completely independent implementation of components (fol-
lowing the principle of separation of concerns and modularity), say, in terms of state 
machine models. From these state machine models we can generate code. Moreover, 
we can even formally verify architectures before having worked out their implementa-
tion. Architectures with components described by state machines can be tested even 
before implementation and from them we can generate test cases for integration tests. 
Provided, the architecture is described and specified in detail, we can derive and ver-
ify from the architectural specification also properties of the overall functionality as 
specified by the function hierarchy specification of the system. 

Architecture design can be carried out rigorously formally. This is, of course, not 
so easy for large systems. It is a notable property of formal methods whether they 
scale and may be applied lightweight.  

If early architecture verification is done accurately and if modules are verified 
properly then during system integration we have not to be afraid of finding many new 
bugs. Only if architecture verification and component verification are not done prop-
erly, significant bugs are discovered much too late during system integration, as it is 
the case in practice today, if architectures are not verified and modules are not prop-
erly specified. Then module verification cannot be done properly; all problems of 
systems show up only much too late up during system integration and verification. 

4.2   Modeling Systems 

Based on a comprehensive set of concepts for modeling systems – as shortly outlined 
in the appendix – an integrated system description approach can be obtained. 

4.2.1   The Significance of Terminology and Concepts 
One of the big advantages of formal and mathematical techniques in software and 
systems engineering is not just the possibility to increase automatic tool support, to 
formalize and to write formal specifications and to do formal verifications. Perhaps, 
equally important is to have clear notions and clear terminology. In many areas of 
software and systems engineering terms are not properly chosen. Simple examples are 
terms like “function” or “feature” or “service”, which are frequently used in software 
and systems engineering without a proper definition. As a result the understanding 
between the engineers is limited and a lot of time is wasted in confusing discussions. 

4.2.2   An Integrated Model for System Specification and Implementation 
A specified and implemented system is described by (for the used formal concepts see 
appendix): 

• an identifier k, the system name, 
• an interface specification consisting of 
– a syntactic interface description synif(k) = (I O) 
– an interface behavior specification specif(k) ∈ IF[I O] 

• an implementation design dsgn(k) for the interface syntactic interface (I O), be-
ing either 
– an interpreted architecture dsgn(k) = A = (K, ψ), 
– a state machine dsgn(k) = B = (∆, Λ).  
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We end up with a hierarchical system model that way, where systems are decomposed 
into architectures with subsystems called their components that again can be 
decomposed via architectures into subsystems until these are finally realized by state 
machines. We assume that all identifiers in the hierarchy are unique. Then 
hierarchical system with name k defines a set of subsystems subs(k). 

Each subsystem as part of a specified and implemented system has its own specifi-
cation and implementation. A system has an implemented behavior by considering 
only the implementation designs in the hierarchy and a specified behavior considering 
only the interface specifications in the hierarchy. 

A system k is called correct, if the interface abstraction of its implementation A = 
dsgn(k) has an interface abstraction FA is a refinement of its interface specification 
specif(k) = F: 

 F ≈>ref FA 

On the basis of this formal system model we can classify faults. A system is called 
fully correct, if all its sub-systems are correct. A system is called faulty, if some of its 
subsystems are not correct. A system fault of a system implemented by some architec-
ture is called architecture fault, if the interface behavior of the specified architecture 
is not a refinement of the interface specification of the system. A fault is called com-
ponent fault, if the implemented behavior of a subsystem is not a refinement of  
the specified behavior. The distinction between architecture faults and component 
faults is not possible in practice today due to insufficient architecture specification 
(see [9]). 

4.2.3   Modular System Design, Specification, and Implementation 
It is essential to distinguish between  

• the architectural design of a system and  
• the implementation of the components of an architectural design.  

An architectural design consists in the identification of components, their specifica-
tion and the way they interact and form the architecture. 

 F1⊗F2 

x2 

y2 z12 

z21 y1 

x1 
F1 F2 

 
Fig. 1. Composed System 

The property of modularity of specification may be characterized as follows. Given 
two system specifications, where T is a type (for simplicity, here all channels are of 
the same type) and the Pi( ... ) are the specifying assertions for systems Fi, i = 1, 2: 
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F1 
  in    x1, z21: T 
  out  y1, z12: T 

  P1(x1, z21, z12, y1)  

F2 
  in    x2, z12: T 
  out  y2, z21: T 

  P2(x2, z12, z21, y2)  

We get the specification of the composed system F1⊗F2 as illustrated in Fig. 1: 

F1⊗F2 

  in    x1, x2: T 

  out  y1, y2: T 

∃ z12, z21 ∈ Stream T:  P1(x1, z21, z12, y1) ∧ P2(x2, z12, z21, y2) 

  
The specifying assertion of F1⊗F2 is constructed in a modular way from the specify-
ing assertions of its components by logical “and” and existential quantification for 
streams denoted by the internal channels.  

If the architectural design and the specification of the components is precise 
enough then we are able to determine the result of the cooperation of the components 
of the architectures, according to their specification, even without providing an im-
plementation. If the specifications are addressing behaviour of the components and 
the design is modular, then the behaviour of the architecture can be derived from the 
behaviour of its components and the way they are connected. In other words, in this 
case an architecture has given a specification and a specified behaviour. This speci-
fied behaviour has to be put into relation with the requirements specification for the 
system. 

Having this in mind, we obtain two possibilities in making use of architecture de-
scriptions. First of all, architecture verification can be done, based on the architecture 
specification without having to give implementations for the components. How verifi-
cation is done depends on how the components are described. If component specifica-
tions are given by abstract state machines, then the architecture can be simulated and 
model-checked. If component specifications are given by descriptive specifications in 
predicate logic, then verification is possible by logical deduction. If the components 
are described informally only, then we can design test cases for the architecture to see 
whether architectures conform with system specifications. 

Given interface specifications for the components we can first of all implement the 
components, having the specifications in mind and then verify the components with 
respect to their specifications. So, we have two levels of verifications, namely, com-
ponent verification and architecture verification. If both verifications are done care-
fully enough and if the theory is modular then correctness of the system follows from 
both verification steps as a corollary. 

Finally, for an implemented system for a specified system and we distinguish faults 
in the architectural design, then the architecture verification would fail, and faults in 
the component implementation. Note that only if we are careful enough with our 
specification techniques to be able to specify architectures independent from compo-
nent implementations then the separation of component test, architecture and integra-
tion tests and system tests are meaningful. 



 Seamless Model Driven Systems Engineering Based on Formal Models 13 

Furthermore, for hierarchical systems the scheme of specification, design, and im-
plementation can be iterated for each sub-hierarchy.  In any case, we may go on in an 
idealised top-down development as follows: We give a requirement specification for 
the system, we do an architectural design and architectural specification for the sys-
tem, this delivers specifications for components and we can go on with component 
specification as requirements specification for the step of designing and implementing 
the components. 

4.2.4   Formal Foundation of Methods and Models 
As defined, a formal method (or better a formal engineering) method applies formal 
techniques in engineering. Another way to make use of formalization is the justifica-
tion of methods by formal theories. Examples are proofs that specification concepts 
modular or that concepts of refinement are transitive or that transformation rules are 
correct. 

Formal justification of methods or modeling techniques is important. This allows 
justifying methods or development rules to be used by engineers without further ex-
plicit formal reasoning. 

5   Seamless Modeling 

Being formal is only one attribute of a modeling technique or a development method. 
There are others – not less important. 

5.1   Integration of Modeling Techniques 

Modelling techniques and formal techniques have one thing in common. If they are 
applied only in isolated steps of the development process they will not show their full 
benefits well enough and, as a result, they often will not be cost effective. If just one 
step in the development process is formalized and formally verified and if for instance 
a formal verified program is then given to a compiler, which is not verified, it is un-
clear whether the effect of the formal verification brings enough benefit.  

The same applies to modelling. When high level models of systems are constructed 
and a number of results have been achieved based on these models, it is not cost ef-
fective if then in the next step the model is not used anymore and instead the work is 
continued by working out different models.  

Tab. 1 shows a collection of modelling and development methods as well as their 
integration into a workflow aiming at a seamless development process by formal 
models and formal methods. In the requirements engineering the first result should be 
the function hierarchy as described above. Then the logical component architectures 
are designed and verified by test cases generated from the functional hierarchies. For 
the components, test cases can be generated from the component specifications being 
part of the architecture. Logical test cases can be translated into test cases at the tech-
nical level. If the logical architecture is flexible enough, it is a good starting point for 
working out units of deployment, which then can be deployed and scheduled as part 
of the technical architecture in terms of distributed hardware structure and its operat-
ing systems. 
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Table 1. Formal Artefacts, Models and Methods in Seamless Model Based Development 
 

Artifact Based on  Formal Description Formal method to Work Out Validation & Verification Generated artifacts  
Business Goals  Goal trees Logical deduction Logical analysis - 
Requirements System and quality 

model 
Tables with attributes and 
predicate logic 
Taxonomies 

Use cases 
Formalization in predicate 
logics 

Consistency proof 
Derivation of safety 
assertions 

System assertions 
System test cases 

Data models Informal models Algebraic data types 
E/R diagrams 
Class diagrams 

Axiomatization Proof of consi stency and 
relative completeness 

- 

System 
specification 

Interface model Syntactic interface and 
interface assertions 
Abstract state machines 
Interaction diagrams 

Stepwise refinement Proof of safety assertions 
and requirements 
Derivation of interaction 
diagrams 

Interaction diagrams 
System test cases 

Architecture Component and 
composition 

Hierarchy of 
Data flow diagrams 

Decomposition Architecture verification 
Architecture simulation 

Interaction diagrams 
Integration tests 

Components Component model Syntactic interface and 
interface assertions 
Abstract state machines 

Decomposition of system 
specification assertions 

Consistency analysis Component tests 

Implementation State machines State transition diagrams 
State transition tables 

Stepwise derivation of state 
space and state transition rules 

See component verification  

Component 
verification 

State machine runs Proofs in predicate logics 
Tests 

Proof of in terface assertions 
Test case generation 

- Test runs 

Integration Interactions Interaction diagrams Incremental composition - Test runs 
Interaction diagrams 

System 
verification 

Interface interaction System interface assertions 
System test cases 

Proof of in terface assertions 
Test case generation 

- Test runs 

 
 

From the models of the architecture and its interface descriptions test cases for 
module tests as well as extensive integration test cases can be generated and executed. 
The same applies for system test. 

5.2   Reducing Costs – Increasing Quality 

One of the large potentials of formal models and techniques in development process is 
their effects to reduce costs. There are mainly four possibilities for cost reduction as 
numerated below. 

1. Avoiding and finding faults early in the process, 
2. Applying proven methods and techniques that are standardized and ready for 

use, 
3. Automation of the development task and steps wherever possible, 
4. Reuse of implementations, architectures requirements and development pat-

terns wherever possible. 

The last step goes into the direction of a product line engineering, which needs a 
highly worked out modelling and formalization approach to be able to gain all the 
benefits of such an approach. 

6   Concluding Remarks: Towards a Synergy between Formal 
Methods and Model Based Development 

Not surprisingly the synergy between formal methods and model-based development 
is very deep and not exploited in enough details so far. It is certainly not enough for a 
formal development method just to provide a formalization of informal approaches 
like the unified modelling language UML or to develop techniques of model checking 
certain models that have been worked out in the development process. A much deeper 
synergy is needed where appropriate formal models directly address the structure  
of functionality and architecture. This concept requires targeted structure of the  
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models and their relation by refinement. Furthermore, tracing between the models 
must be a built-in property supporting change requests. Then the whole model struc-
ture is always updated and modified in a way such that consistent system models are 
guaranteed. 

Now what is a bottom line? By a first look one might come to the conclusion that 
formal methods and modelling techniques are not so much different and that, if we 
add the requirement of formality to a model-based approach, we end up with a formal 
method. A deeper look, however, shows that there are significant differences.  

A formal method emphasizes formality. So obviously being formal is one of the 
major goals when designing formal methods. Being a method of course is another 
goal but method is a rather broad term.  

The notation of a model, however, addresses an abstraction for a particular pur-
pose. Hence a model is much more purpose oriented than a formal method, in general. 
Actually, many formal methods are not designed for a particular application area or a 
particular step in the development process. They rather provide possibilities to for-
malize properties or to prove propositions.  

Putting formal methods and modelling together we end up with a more powerful 
concept, developing formal methods and modelling for a particular purpose, address-
ing particular issues in the evolution of software intensive systems with the rigour of 
formality and its possibilities for automation and reuse. This brings in a new quality. 
Achieving this, however, needs a lot of research starting from useful theories, based 
on valid principles, finding a good syntax, addressing the application domain and 
finally integrate in that in the process and supporting it with appropriate tool. 

Appendix: Modeling Systems Formally 

We are dealing with models of discrete systems. A discrete system is a technical or 
organizational unit with a clear boundary. A discrete system interacts with its envi-
ronment over this boundary by exchanging messages representing discrete events. In 
the case of FOCUS (see [3]) messages are exchanged via channels. Each instance of 
sending or receiving of a message is a discrete event.  

Systems have syntactic interfaces that are described by their sets of input and out-
put channels. Channels are used for communication by transmitting messages and to 
connect systems. Channels have a data type indicating which messages are communi-
cated over the channels. Hence, the syntactic interfaces describe the set of actions for 
a system that are possible at its interface. Each action consists in the sending or re-
ceiving of an instance of a message on a particular channel. A type is a name for a 
data set, a channel is a name for a communication line, and a stream is a finite or an 
infinite sequence of data messages. 

A discrete system has a semantic interface represented by its interactive behavior. 
The behavior is modeled by a function mapping the streams of messages given on its 
input channels to streams of messages provided on its output channels. We call this 
the black box behavior or the interface behavior of discrete systems. Let I be a set of 
typed input channels and O be the set of typed output channels. By (I O) this syntac-
tic interface is denoted.  
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Fig. 2. Graphical Representation of a System F as a Data Flow Node with its Syntactic  
Interface 

Fig. 2 shows the system F with its syntactic interface in a graphical representation 
by a data flow node.  

In FOCUS, a system encapsulates a state and is connected to its environment exclu-
sively by its input and output channels. On channels, streams of messages of the 
specified type are transmitted. Given a message set M of data elements of type T we 
represent a timed stream s of messages of set M by a function  

 s: IN \{0} M* 

where M* is the set of finite sequences over the set M. By (M*)∞ we denote the set of 
timed streams. For a timed stream s ∈ (M*)∞ in each time interval t ∈ IN\{0} the 
sequence s(t) of messages denotes the sequence of messages communicated within 
time interval t as part of the stream s. Let C be a set of typed channels. A (total) chan-
nel history is a mapping  

 x : C (M*)  

such that x.c is a stream of type Type(c) for each channel c ∈ C. We denote the set of 
all channel histories for the channel set C both by C . A function 

 F : I  (O )  

represents an I/O-behavior. By IF[I O] we denote the set of all (total and partial) I/O-
behaviors with syntactic interface (I O) and by IF the set of all I/O-behaviors. The 
black box behavior, also called interface behavior of a system with syntactic interface 
(I O) is given by an I/O-behavior.  

A I/O-behavior F ∈ IF[I O] can be specified by a formula in predicate logic, 
called interface assertion,  with the channels as logical identifiers for streams. 

Every behavior F’ ∈ IF[I O] with 

 F’(x) ⊆ F(x)  

is called a refinement of F∈ IF[I O]; then we write F ≈>ref F’. A system implementa-
tion is correct for the specified behavior F if its interface behavior is a refinement of F.   

Given a state space Σ a state machine (∆, Λ) with input and output according to the 
syntactic interface (I O) consists of a set Λ ⊆ Σ of initial states as well as of a state 
transition function 

 : (  (I  M*)) (  (O  M*))  
For each state σ ∈ Σ and each valuation a: I  M*  of the input channels in I by se-
quences we obtain by every pair (σ', b) ∈ ∆(σ, a) a successor state σ' and a valuation 
b: O  M* of the output channels consisting of the sequences produced by the state 
transition. (∆, Λ) is a Mealy machine with possibly infinite state space.  
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Given a state machine A = (∆, Λ we define a behavior FA as follows (let Σ be the 
state space for A) 

 
FA(x) = {y: : IN : (0)

t  IN : ( (t+1) , y(t+1)) ( (t), x(t+1)) } 

Here for t ∈ IN we write x.t for the mapping in I  M*  where for c ∈ I: 

 (x.t).c = (x.c).t 

Architectures are concepts to compose systems from subsystems or to decompose 
systems into subsystems. Architectures describe how the composition of their subsys-
tems takes place. In the following we assume that each system used in architectures as 
component has a unique name k ∈ K.  

A set of component names K with a finite set of interfaces (Ik Ok) for each k ∈ K 
is called composable, if  

• the sets of input channels Ik, k ∈ K, are pairwise disjoint, 
• the sets of output channels Ok, k ∈ K, are pairwise disjoint, 
• the channels in {c ∈ Ik: k ∈ K } ∩ {c ∈ Ok: k ∈ K } have the same channel 

types in {c ∈ Ik: k ∈ K } and {c ∈ Ok: k ∈ K }. 

If channel names are not consistent for a set of systems to be used as components we 
simply rename the channels to make them consistent. 

A syntactic architecture A = (K, ξ) with interface (IA OA) is given by a set K of 
component names with composable syntactic interfaces ξ(k) = (Ik Ok) for k ∈ K.  

• IA = {c ∈ Ik: k ∈ K }\{c ∈ Ok: k ∈ K } denotes the set of input channels of the 
architecture, 

• DA = {c ∈ Ok:  k ∈ K } denotes the set of generated channels of the architecture,  
• OA = DA \ {c ∈ Ik: k ∈ K } denotes the set of output channels of the architecture,  
• DA\OA denotes the set of internal channels of the architecture, 
• CA = {c ∈ Ik: k ∈ K }∪{c ∈ Ok: k ∈ K } the set of all channels. 

By (IA DA) we denote the syntactic internal interface and by (IA OA) we denote the 
syntactic external interface of the architecture.  

A syntactic architecture forms a directed graph with its components as its nodes 
and its channels as directed arcs. The input channels in IA are ingoing arcs and the 
output channels in OA are outgoing arcs. 

An interpreted architecture A’ = (K, ψ) for a syntactic architecture A = (K, ξ) gives 
an interface behavior ψ(k) ∈ IF[Ik Ok] for every k ∈ K, where ξ(k) = (Ik Ok). 

For an interpreted architecture with syntactic internal interface (IA DA) we define 

the glass box interface behavior [×] A ∈ IF[IA DA] by the equation (let ψ(k) = Fk):   

 
([ ] A’)(x) = { z|DA: z CA x = z|I  k  K: z|Ok  Fk(z|Ik) }
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For two composable systems Fk ∈ IF[Ik Ok], k = 1, 2, we write 

 F1 × F2 

 for [×] { Fk: k = 1, 2 }. Composition of composable systems is associative 

 (F1 × F2) × F3 = F1 × (F2 × F3)  

We also write with K = {1, 2, 3, ... } 

 [×] {Fk ∈ IF[Ik Ok]:  k ∈ K } = F1 × F2 × F3 × ... 

The black box view of the interface behavior of an architecture is an abstraction of the 
glass box view. Given an interpreted architecture with syntactic external interface 

(IA OA) and glass box interface behavior [×] A’ ∈ IF[IA DA] we define the black 
box interface behavior FA’ ∈ IF[IA OA] by 

 FA’(x) = (F(x))|OA 

Internal channels are hidden by this composition and in contrast to the glass box view 
not part of the output. 

We get for an interpreted architecture with syntactic external interface (IA OA) the 
black box interface behavior FA ∈ IF[IA OA] specified by 

               
FA(x) = {y OA:  z CA : y = z|OA x = z|IA  k  K: z|Ok Fk(z|Ik)}

 

and write 

 FA = ⊗ {Fk ∈ IF[Ik Ok]:  k ∈ K } 

For two composable systems Fk ∈ IF[Ik Ok], k = 1, 2, we write 

 F1 ⊗ F2 

for ⊗{F1, F2 }. Composition of composable systems is associative: 

 (F1 ⊗ F2) ⊗ F3 = F1 ⊗ (F2 ⊗ F3)  

We also write therefore with K = {1, 2, 3, ... } 

 ⊗ {Fk ∈ IF[Ik Ok]:  k ∈ K } = F1 ⊗ F2 ⊗ F3 ⊗ ... 

The idea of the composition of two systems as defined above is shown in Fig. 3 with 
C1 = I2 ∩ D and C2 = I1 ∩ D.  

In a composed system, the internal channels are used for internal communication. 

I2\C1

O2\C2C1

C2O1\C1

I1\C2 F1 F2

 

Fig. 3. Composition F1⊗F2  
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Abstract. This paper contributes to a testing theory, based on the CSP
process algebra, whose conformance relation (cspio) distinguishes input
and output events. Although cspio has been defined in terms of the
standard CSP traces model, we show that our theory can be immedi-
ately extended to address deadlock, outputlock and livelock situations if
a special output event is used to represent quiescence. This is formally
established by showing that this broader view of cspio is equivalent to
Tretmans’ ioco relation. Furthermore, we address compositional con-
formance verification, establishing compositionality properties for cspio
with respect to process composition operators. Our testing theory has
been adopted in an industrial context involving a collaboration with
Motorola, whose focus is on the testing of mobile applications. Some
examples are presented to illustrate the overall approach.

1 Introduction

Aligned to seminal works that have proposed the use of formal methods as a
basis for testing, notably the general testing framework proposed in [9], several
approaches have emerged, evolved and consolidated. As a particular benefit of
such efforts, the formal characterisation of a conformance notion allows defining
test observations, which are the basis for stating and proving properties of the
testing artifacts. A conformance relation allows to determine whether an im-
plementation under test (or a model of such an implementation) is valid with
respect to a specification. Several conformance relations have been proposed to
capture different notions of conformance [26]. For example, ioco [24] is a relation
that distinguishes input and output events.

Soundness or exhaustiveness of a test suite can only be properly addressed
based on some precisely defined conformance relation. Nevertheless, for the pur-
pose of test case generation and execution, a conformance notion plays its role as
a formal reference to prove the relevant properties as, for instance, ensuring that
an algorithm always generates sound test cases. Once proved, the test case gen-
eration algorithm becomes the interface for the practical testing activity, rather
than the conformance relation itself.

K. Breitman and A. Cavalcanti (Eds.): ICFEM 2009, LNCS 5885, pp. 20–48, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Therefore, conformance notions end up not being directly used in the process
of verifying that an implementation conforms to a specification, as this might be
extremely hard (and often impossible) in practice. One reason might be that, in
black box testing, the source code is usually unavailable. Even when the source
code is available, conformance notions relate specifications with abstract models
of implementations, and such models are hardly available. As a consequence,
several formal testing theories do not address mechanised strategies to verify
conformance.

On the other hand, in more systematic development environments, it might
be feasible to assume the existence of design and implementation models; in
such contexts, it might be desirable to perform conformance verification in an
automated way, as an alternative to constructive refinement proofs. In the ideal
scenario in which the model precisely captures the implementation behaviour,
conformance verification would replace the testing activity entirely, being equiv-
alent to exhaustive testing. However, in the more realistic situation where the
model represents only the more critical aspects of an implementation, a combi-
nation of conformance verification and testing would possibly be a promising di-
rection to explore. In such contexts, mechanised conformance verification would
play a similar role to classical model checking [8] or, alternatively, refinement
checking [17]. For example, in [4] it is shown that although a user can provide
an appropriate abstraction when extracting a model from a software implemen-
tation, a promising approach is to use a mechanised strategy to search for an
abstraction, based on the program and the property under consideration. Us-
ing the techniques of predicate abstraction and analysis of spurious error paths,
the author shows how to find such abstractions and embeds the solution in the
SLAM analysis engine, which forms the core of a recently released Microsoft tool
for checking Windows device drivers, called Static Driver Verifier.

Another interesting application of mechanised conformance verification is re-
ported in [2,3], where an approach is presented to generate fault-based testing. In
[2], the strategy is to apply a mutation to the original specification and then carry
out a mechanical comparison between the two specifications, based on some equiv-
alence relation (in the particular context, strong bisimulation has been adopted).
A discriminating sequence resulted as counterexample of the analysis is taken as
a test purpose from which test cases are generated. In subsequent work [3], ioco
is used to compare the two specifications, since ioco is also the conformance rela-
tion, adopted in [3], to assert the correctness of an implementation.

As with model checking, the mechanical analysis of conformance may eas-
ily give rise to state explosion. Therefore, to make the approach more poten-
tially applicable in practice, compositional verification seems essential. Consider
a conformance relation, say rel, implementation models IUT1 and IUT2, and
specifications S1 and S2. If IUT1 rel S1 and IUT2 rel S2, then compositional-
ity implies that, for some operator op, (IUT1 op IUT2) rel (S1 op S2). For
refinement relations used in program development, monotonicity of the lan-
guage operators is a demand, and, therefore, compositionality is an immediate
consequence. However, this is not the case for some conformance relations. Some
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approaches to compositional verification can be found in [10,11]. For ioco, it
has been proved [27] that it is not compositional with respect to usual operators
like parallelism or hiding, unless the specification is always ready to input (input
completeness).

In previous work [18], we introduced a testing theory based on the process
algebra CSP [12,20,22]. We defined a conformance relation, cspio, that distin-
guishes input and output, based on the traces model of CSP. Intuitively, this
relation captures the ioco notion of input-output conformance. However, unlike
ioco that relates labelled transition systems (LTS), cspio relates I/O processes,
formed of ordinary CSP processes together with explicit input and output al-
phabets. Also, ioco takes quiescence (deadlock and livelock, for instance) into
account and is defined in terms of suspension traces (traces with events repre-
senting quiescence), whereas cspio ignores quiescence and is defined in terms
of ordinary traces. In this paper we show that, when the specification and the
model of the implementation are annotated with output events that represent
quiescence, cspio is equivalent to ioco, with respect to a mapping between LTS
and CSP processes. We contrast our conformance verification strategy for cspio,
based on refinement checking, with an on-the-fly verification algorithm for ioco.
Also, we address compositional conformance verification, by uncovering the con-
ditions necessary to ensure that operators on I/O processes be monotonic with
respect to cspio. One of the advantages of our formalisation in terms of a process
algebra, and of CSP in particular, is that we can benefit from the semantic mod-
els and laws of CSP to carry out the proofs. Such proofs can even be mechanised
using tools such as the CSP-Prover [14].

As regards practical applications, our work is in the context of a cooperation
with Motorola, whose aim is to develop strategies to support the testing of
mobile device applications. Figure 1 presents an overview of the overall approach.
Application requirements are detailed in use cases; each use case is presented in
the form of a tabular template, where each line is split into user action, system
state (condition) and system response. The (English) text in each field is written
in a controlled natural language (CNL) [23], so that the entire table can be
automatically translated into a CSP test model [6].

From the CSP test model, our strategy reported in [18] automatically gener-
ates test suites for both individual features and feature interactions, where each
feature represents a mobile device functionality. The test case generation can
be guided by test purposes, which allow selection based on particular traces of
interest. As already mentioned, more generally, we characterise a testing theory
in terms of CSP. We have also developed a tool that mechanises the entire gen-
eration process. The figure also shows that a complementary activity to testing
is automated conformance verification, which is the major contribution of the
current paper.

In the next section we discuss input-output conformance in some detail. First
we introduce the ioco relation and then we give an overview of our approach
based on CSP, focusing on the cspio relation. Section 3 formally establishes a
notion of equivalence between cspio and ioco. Section 4 addresses compositional



Compositional Verification of Input-Output Conformance 23

Fig. 1. Overview of the testing strategy

conformance verification, stating and proving compositionality properties for
cspio with respect to I/O process operators. A summary of our contributions,
related and future work are discussed in the final section. Most of the proofs and
some auxiliary lemmas are included in the appendix.

2 Conformance Relations

In order to have a precise criteria to compare specifications and implementations,
conformance testing [25] requires the definition of an implementation relation be-
tween the domain of specifications and that of implementations. In the following
subsections we summarise two conformance notions: ioco and cspio.

2.1 Input-Output Conformance

The relation ioco is formally defined in terms of labelled transition systems. We
start with some background, necessary both to introduce the relation and later
on to establish a connection between ioco and cspio.

Definition 1 (LTS). A labelled transition system is a 4-tuple 〈Q ,L,T , q0〉,
where Q is a finite non-empty set of states; L is a finite non-empty set of labels;
T is the transition relation, which satisfies T ⊆ Q × (L∪ {τ})×Q, with τ �∈ L;
and q0 ∈ Q is the initial state.

The labels in L represent the observable interactions between the system and its
environment; the special label τ represents internal (unobservable) actions. The
observable behaviour of a system is captured by its ability to perform sequences
of observable actions; each sequence is called a trace. The set of all traces over L
is denoted by L∗, with ε denoting the empty trace. Let σ1, σ2 ∈ L∗ be two traces,
then σ1 ·σ2 is the concatenation of σ1 and σ2. As usual, we adopt the convention
that µ denotes an action from L ∪ {τ} (visible or not), and a denotes a visible
action from L. In addition, the operator · is overloaded to combine events to
form a sequence, as in a1 · a2 and to form a sequence from an element and an
existing sequence, as in a · σ.
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Definition 2 introduces standard notation for LTS. In the sequel, the intuition
of each one is explained, in the same order they are presented. The notation

q
µ−→ q ′ expresses that the system, when in state q, may perform action µ, and

move to state q ′. We write q
µ1 ·...·µn−→ q ′ to mean that: starting from state q, and

performing a sequence of actions µ1 · . . . · µn , each action leading to an adjacent
state, the system may reach a state q ′. When in state q, if no visible action is
performed, which is represented by the empty trace ε, q ε=⇒ q ′ states that the
system may move to a state q ′, which is reachable by a sequence of internal
actions. Similarly, q a=⇒ q ′ is used to denote that the system may move from
state q to q ′ by performing a visible action a, which can be preceded or followed
by a sequence of internal actions. More generally, q a1·...·an=⇒ q ′ means that: starting
from state q, and performing a sequence of visible actions σ = a1 · . . . · an ,
which can be preceded or followed by a sequence of internal actions, the system
may reach state q ′. Finally, we write q σ=⇒ to denote that from state q, after
performing trace σ, the system may reach state q ′.

Definition 2 (Notation for transitions). Let 〈Q ,L,T , q0〉 be a labelled tran-
sition system with q, q ′ ∈ Q, µ, µi ∈ L∪{τ}, a, ai ∈ L, and σ = a1 · . . . ·an ∈ L∗.

q
µ−→ q ′ = (q, µ, q ′) ∈ T

q
µ1 ·...·µn−→ q ′ = ∃ q1, . . . , qn : q = q1

µ1−→ q2 . . .
µn−→ qn = q ′

q ε=⇒ q ′ = q = q ′ ∨ q τ ·...·τ−→ q ′

q a=⇒ q ′ = ∃ q1, q2 : q ε=⇒ q1 a−→ q2 ε=⇒ q ′

q a1·...·an=⇒ q ′ = ∃ q1, . . . , qn : q = q1
a1=⇒ q2 a2=⇒ . . .

an=⇒ qn = q ′

q σ=⇒ = ∃ q ′ : q σ=⇒ q ′

As usual, whenever convenient, we do not distinguish between the system, rep-
resented as an LTS, and its initial state. Thus, for an LTS p with initial state
q0, we use p and q0 interchangeably. The following definition makes this explicit
for the set of traces of an LTS.

Definition 3 (Traces of an LTS). Let p = 〈Q ,L,T , q0〉 be a labelled transition
system, q ∈ Q a state of p, and traces(q) = {σ ∈ L∗ | q σ=⇒} the set of traces of
p starting from state q. Then, the set of traces of p, denoted traces(p), is defined
as traces(q0).

Since the ioco theory distinguishes between input and output behaviour, the
theory models are a kind of LTS that makes this distintion, as defined below.

Definition 4 (IOLTS). An input-output LTS p = 〈Q ,L,T , q0〉 is a labelled
transition system in which the set of actions L is partitioned into input actions
LI and output actions LO : LI ∪ LO = L and LI ∩ LO = ∅. An alternative
characterisation splits the alphabet in the tuple p = 〈Q ,LI ,LO ,T , q0〉.

While a specification in the ioco theory can be an arbitrary IOLTS, an imple-
mentation is characterised as a particular subclass of IOLTS, as defined below.
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Definition 5 (Input complete IOLTS). An IOLTS p = 〈Q ,LI ,LO ,T , q0〉 is
input complete iff ∀ q : Q , a ∈ LI : q a=⇒.

A state of an input-output transition system where no outputs are enabled, and
consequently the system is forced to wait until its environment provides an input,
is called suspended, or quiescent. An observer looking at a quiescent state does
not see any outputs. This particular observation of seeing nothing can intself be
considered an event, which is denoted by δ (δ �∈ L∪{τ}); q δ−→ q ′ expresses that
q allows the observation of quiescence. We use Lδ for L ∪ {δ}.

Let available(q) = {µ | q
µ−→ q ′} be the set of actions (visible or not) that

may be performed from state q.

Definition 6 (Quiescence). Let p = 〈Q ,LI ,LO ,T , q0〉 be an IOLTS.

1. A state q of p is quiescent, denoted δ(q), iff it does not perform an output,
neither an internal transition. Formally, δ(q) ≡ available(q)∩(LO ∪{τ}) = ∅

2. The suspension IOLTS, denoted by ∆(p), is the IOLTS with self transitions
in the quiescent states. Formally, ∆(p) = 〈Q ,LI ,LO ∪ {δ},T ∪ Tδ, q0〉, for
Tδ = {q δ−→ q | q ∈ Q ∧ δ(q)}.

3. The traces of ∆(p) are called suspension traces, denoted Straces(p).

Now we are ready to introduce the conformance notion captured by ioco. In-
formally, an implementation conforms to a specification, according to the ioco
relation, if and only if, after performing a trace of the specification, the set of
output events produced by the implementation (including quiescence) is a sub-
set of that produced by the specification, for the same trace. This is a flexible
notion in that it allows partial specifications; an implementation might produce
new traces, bacause it is always free to engage on new input events. The traces
of an implementation after new inputs can be totally arbitrary, since they are
not considered for establishing conformance.

This is similar to refinement notions in languages like B [1], VDM [16] or
Z [30], where an operation is refined by weakening the precondition (making it
more applicable) or strengthening the postcondition (reducing nondeterminism).
On the other hand, it is weaker than refinement relations adopted in process
algebras, such as trace inclusion, which does not allow an implementation to
engage on new traces.

The formal definition of ioco uses some auxiliary notation. The function
q after σ = {q ′ | q σ=⇒ q ′} yields the set of states reachable from q after a
trace σ; initials(q) = {a ∈ L | q a=⇒} gives the set of visible events that can be
triggered from q; and out(q) = initials(q) ∩ (LO ∪ {δ}) yields the set of outputs
(including quiescence) that may be performed in q.

Definition 7 (Input-output conformance). Let s be an IOLTS and i an
input complete IOLTS, both with the same alphabets. Then

i ioco s ≡ ∀σ ∈ Straces(s) : out(∆(i) after σ) ⊆ out(∆(s) after σ)
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As an example, consider the LTS in Figure 2a, which shows the control flow of
the Important Messages Feature, a simplified mobile phone functionality. This
flow specifies the sequence of actions that the user must perform, and the corre-
sponding system responses, to move a message from the Inbox to the Important
Messages folder. The first user action is to scroll to a message, whose effect is
to highlight this message. The user then selects the option to move this mes-
sage to the Important Messages folder. The system reaction is to request storage
information from a data base component (omitted here, but considered in Sec-
tion 2.2). This component then replies indicating whether the message storage
is full or not. If it is full, the user action is to clean up some of the old messages
(this selection is abstracted here); this triggers another request to the database
component, which replies confirming that the clean up has been performed. In
any case (whether the storage was originally full or not) the system final re-
sponse is an indication that the message was moved to the Important Messages
folder. Figure 2b shows a conforming implementation. This implementation is
valid because it has all the traces of the specification but, in addition, it allows
the user to perform the cleanup option at the very beginning (root state); such
traces respect conformance as they start with an input event not offered by the
specification at its initial state. For simplicity, we omit some transitions neces-
sary for this implementation to be input complete, since they are not relevant
for our illustration.

On the other hand, the LTS in Figure 2c is not a valid implementation of the
specification. The reason is that, on the left path, this candidate implementation
produces the output msgInfoDisp, which is not produced by the specification
after the corresponding trace. Again, we omit some transitions for this LTS to
be input complete.

There are well-established theories, algorithms and tools to generate test
cases from LTS specifications, based on the ioco relation, notably TGV [15]
and TorX [5]. They include soundness and completeness results for test suites,
and offer selection strategies based on the idea of test purposes.

2.2 CSP Input-Output Conformance

In this section we introduce a conformance relation, cspio, inspired by ioco,
but formalised in the setting of the CSP process algebra, rather than in terms of
LTS. Before defining the relation and presenting some of its properties, we give
a brief overview of CSP.

A process is the central element of a CSP specification. Processes can offer
events from Σ (the set of all possible events) to establish communication with
the environment or with other processes. The alphabet of a CSP process P ,
denoted by αP , with αP ⊆ Σ, is the set of events it can communicate.

The CSP primitive process Stop specifies a broken process (deadlock), and the
primitive Skip a process that communicates an event � and terminates success-
fully. CSP also provides a rich set of operators to describe the behaviour of con-
current and distributed systems. We introduce some of the operators of CSP using



Compositional Verification of Input-Output Conformance 27

(a) Specification

(b) Valid implementation (c) Invalid implementation

Fig. 2. Important messages mobile feature

the Important Messages feature already considered in the previous section. For
instance, the LTS in Figure 2a can be modelled as the process IM 1 below.

IM 1 = START1; IM 1

START1 = scrollToAMsg → msgHighlighted → selMoveToIMOpt →
reqStoInfo → (ALT1 � ALT2)

ALT1 = msgStoIsNotFull → msgMovedToIMDisp → Skip

ALT2 = msgStoIsFull → performCleanUp → reqCleanUp → cleanUpOk →
msgMovedToIMDisp → Skip
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The process IM 1 is defined as the sequential composition START1; IM 1, which
behaves initially as the process START1, and when this process terminates suc-
cessfully, IM 1 recurses. The behaviour of START1 is given by a sequence of
events captured using the prefix operator; a process of the form a → P com-
municates the event a and then behaves like P . After communicating the event
reqStoInfo, START1 behaves as the deterministic choice (�) between the pro-
cesses ALT1 and ALT2; the decision is taken by the environment (for instance,
a process that operates in parallel with IM 1). The process ALT1 represents the
path that indicates that the storage is not full and, therefore, the message can
be moved to the Important Messages folder. The process ALT2 captures the
situation when the storage is full; some cleaning up is performed so that the
message can be moved to the same folder. Both processes terminate successfully
(Skip).

In addition to these operators, CSP offers several other constructs for com-
bining processes. For example, the nondeterministic choice of processes P and Q
is denoted P � Q ; the choice is totally arbitrary, with no interference from the
environment. The notation P/s denotes the behavior of the process P after the
trace s , provided s ∈ T (P). The process P |[X ]| Q stands for the generalised
parallel composition of the processes P and Q with synchronisation set X . This
expression states that, concerning events in X , the processes P and Q can only
communicate when both are ready to engage in the same events. On the other
hand, for events not in X , each process can evolve independently. The parallel
composition P ||| Q represents the interleaving between the processes P and Q ,
and is a special case of parallel composition with an empty synchronisation set,
in order to avoid external interference. In this case, both processes communicate
any event freely. The process P \ X behaves like P , but hides (internalises) all
events in X . When composing processes in parallel, it is common to hide the
synchronisation set. CSP also includes operators for interruption and piping,
among others, but we do not make use of such operators in this work; see [20]
for further details.

Although CSP is a very expressive process algebra, and, therefore, convenient
to express our theory, there is no semantic distinction between input and output
events in CSP. A model in our theory is a tuple M = (P ,AI ,AO), where P is
an ordinary CSP process representing the model behaviour, AI the set of input
events, and AO the set of output events, with AI ∩AO = ∅ and αP ⊆ AI ∪AO ;
this model is called an I/O process.

In previous work [18] we have also considered a separate set of events to
abstractly represent state conditions, but in our current approach conditions
are more concretely modeled as expressions on state variables. In any case, this
issue is not relevant for this work, which explores a connection between cspio
and ioco, as well as compositional properties for cspio.

As an example, the process IM 1 introduced above is an ordinary CSP pro-
cess. The relevant model in our theory is the I/O process (IM 1,AIIM1 ,AOIM1),
where the alphabet sets AIIM1 and AOIM1 contain the input and output events,
respectively, and are defined as follows.
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AIIM1 = {scrollToAMsg , selMoveToIMOpt , msgStoIsNotFull , msgStoIsFull ,
performCleanUp, cleanUpOk}

AOIM1 = {msgHighlighted , reqStoInfo, msgMovedToIMDisp, reqCleanUp}

As another example, the database component, responsible for managing the
message storage, is specified as the process DB1 below, together with its input
and output alphabets.

AIDB1 = {reqStoInfo, reqCleanUp}
AODB1 = {msgStoIsNotFull , msgStoIsFull , cleanUpOk}

DB1 = reqStoInfo → (msgStoIsNotFull → DB1 � msgStoIsFull → DB1)
� reqCleanUp → cleanUpOk → DB1

This process accepts requests concerning storage information or cleaning up
(removing) some messages from the storage that represents the Important Mes-
sages folder. As a response to the request for storing information, it indicates
whether the storage is full or not, abstractly represented as an internal (non-
deterministic) choice (�). With respect to the request for cleaning up, the
response is an event indicating that it has been performed; for simplicity, the
behaviour abstracts the number and the actual messages that are removed. After
reacting to any of the two requests the process recurses.

Concerning operators for combining I/O processes, strictly, we define a new
algebra, based on CSP, but considering the input and output events. For in-
stance, to combine two I/O processes in parallel requires imposing restrictions
on their alphabets, as well as defining the alphabet of the resulting I/O pro-
cess. The following definition introduces the parallel operator for composing I/O
processes.

Definition 8 (I/O parallel composition). Consider the two I/O processes
M1 = (P1,AI1 ,AO1) and M2 = (P2,AI2 ,AO2) so that AI1∩AI2 = AO1∩AO2 = ∅.
Then, the parallel composition of M1 and M2, denoted M1 ||io M2, is defined as

M1 ||io M2 = (P1 |[X ]|P2,AI12 ,AO12)

where

• X = (AI1 ∩ AO2) ∪ (AI2 ∩ AO1)
• AI12 = (AI1 − AO2) ∪ (AI2 − AO1)
• AO12 = AO1 ∪ AO2

To illustrate the combination of I/O processes to form more elaborate I/O pro-
cesses, consider the process IM 1DB1, which is the (I/O) parallel composition of
IM 1 and DB1: IM 1DB1 = IM 1 ||io DB1. The relevant synchronisation set is

Sync = {cleanUpOk , reqStoInfo, reqCleanUp, msgStoIsFull ,msgStoIsNotFull}

and the input and output alphabets of the resulting process are given by:

AIIM1DB1 = {selMoveToIMOpt , scrollToAMsg , performCleanUp}

AOIM1DB1 = {reqStoInfo, cleanUpOk , reqCleanUp, msgMovedToIMDisp,
msgStoIsFull ,msgStoIsNotFull , msgHighlighted}
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Similarly, we compose the processes IM 2 and DB2 to form a more elaborate
component; the resulting process is IM 2DB2 = IM 2 ||io DB2. The synchronisa-
tion set is also given by Sync of the previous example, and the input and output
events are as follows.

AIIM2DB2 = AIIM1DB1

AOIM2DB2 = AOIM1DB1 ∪ {cleanUpPerformed}

The hiding operator for I/O processes is defined as follows.

Definition 9 (I/O hiding). Let M = (P ,AI ,AO) be an I/O process and
X ⊆ AI ∪ AO . Then hiding the events of X in M , denoted M \io X , is
(P \ X ,AI − X ,AO − X ).

We illustrate the use of hiding by internalising the synchronisation alphabet of
the previous I/O parallel processes: IM 1DB1 \io Sync and IM 2DB2 \io Sync.

As another example of I/O process operator, we introduce external choice.

Definition 10 (I/O external choice). Consider the following I/O processes
M1 = (P1,AI1 ,AO1) and M2 = (P2,AI2 ,AO2) so that AI1∩AO2 = AI2∩AO1 = ∅.
Then the external (deterministic) choice between M1 and M2, denoted M1 �io

M2, is (P1 � P2,AI1 ∪ AI2 ,AO1 ∪AO2).

Trace semantics is the simplest model for a CSP process. The traces of a process
P , given by T (P), correspond to the set of all possible sequences of events P
can communicate. Definition 11 presents the trace semantics of some of the CSP
operators. A complete definition for all CSP operators can be found in [20].

Definition 11 (Trace semantics of processes). Let P and Q be CSP pro-
cesses and Σ the set of all specified events.

T (Skip) = {〈〉, 〈�}}
T (STOP) = {〈〉}
T (a → P) = {〈〉} ∪ {〈a〉 � s | s ∈ T (P)}
T (P � Q) = T (P) ∪ T (Q)
T (P � Q) = T (P � Q)
T (P ; Q) = (T (P) ∩ Σ∗) ∪ {s � t | s � 〈�〉 ∈ T (P) ∧ t ∈ T (Q)〉
T (P \ X ) = {s � Σ − X | s ∈ T (P)}
T (P/s) = {t | s � t ∈ T (P)}
T (P |[X ]|Q) =

⋃
{s |[X ]| t | s ∈ T (P) ∧ t ∈ T (Q)}

All processes include the empty trace (〈〉). The Skip process produces the event
� to indicate successful termination, and STOP communicates no visible events.
All non-empty traces of a → P are prefixed by a. Internal and external choices
are not distinguished in the traces model. Both result in the union of the traces
of the two operands. The traces of sequential composition are the ones of the first
process, but removing � (T (P)∩Σ∗), and those formed of the concatenation of
these traces with the ones produced by the second process. The traces resulting
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from hiding a set of events is given by preserving only those events that are not
in X (s � Σ−X ). If s � t is a trace of P , then t is a trace of P/s . The semantics
of parallel composition uses an operator on traces (s |[X ]| t) which takes into
account the synchronisation and all possible forms of interleavings between the
traces of the two processes operating in parallel.

It is possible to compare the trace semantics of two processes by set inclusion:
process Q refines process P , in the traces model, denoted P �τ Q , if and only if
T (Q) ⊆ T (P). This can be mechanically checked using the FDR tool [17]. In case
the refinement does not hold, FDR yields a trace (the shortest counter-example),
say ce, such that ce ∈ T (Q) but ce �∈ T (P).

Other more elaborate semantic models of CSP are the failures and the failures-
divergences models. The former captures deadlock situations, whereas the latter
captures livelocks as well. See [20] for further details.

As far as we know, CSP Input-Output Conformance (cspio) is the only im-
plementation relation that distinguishes input from output events, where speci-
fications and implementations are expressed using CSP processes. This relation
assumes as test hypothesis [7] that there is a CSP process which specifies an im-
plementation under test (IUT), say IUT . The alphabet of IUT is also assumed
to be known, and split into two disjoint sets: inputs and outputs.

The relation is formalised by the following definition, which uses some aux-
iliary functions: initials(P) = {a | 〈a〉 ∈ T (P)} yields the set events offered by
the process P ; and the function out(M , s) gives the set of output events of the
process component of the I/O process M , say PM , after the trace s . Formally,
out(M , s) = if s ∈ T (PM ) then initials(PM /s) ∩ AOM else ∅. The relation
cspio establishes that any output event observed in an implementation model
IUT is also observed in the specification S , after any trace of S . In this case,
IUT cspio S .

Definition 12 (CSP input-output conformance). Consider an implemen-
tation model IUT = (PIUT ,AIIUT ,AOIUT ) and a specification S =(PS ,AIS ,AOS ),
such that AIS ⊆ AIIUT and AOS ⊆ AOIUT . Then

IUT cspio S ≡ ∀ s : T (PS ) • out(IUT , s) ⊆ out(S , s)

Theorem 1 below captures cspio using process refinement. This characterisation
uses the process RUN , defined as RUN (A) = � e : A • e → RUN (A). It offers
all the events in A (through an indexed choice operator) and then recurses. The
proof of the following theorem can be found in Appendix A.1.

Theorem 1 (Verification of cspio). Let IUT = (PIUT ,AIIUT ,AOIUT ) be an
implementation model, and S = (PS ,AIS ,AOS ) a specification, with AIS ⊆ AIIUT

and AOS ⊆ AOIUT . Then IUT cspioS holds iff the following refinement holds.

PS �τ (PS ||| RUN (AOIUT )) |[AIIUT ∪ AOIUT ]| PIUT (1)

As a consequence of Theorem 1, if we know the IUT we can mechanically verify
IUT cspioS by checking (using FDR) the expression (1).
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As an example, consider the process IM 2 below, which corresponds to the
LTS in Figure 2b.

AIIM2 = AIIM1

AOIM2 = AOIM1 ∪ {cleanUpPerformed}

IM 2 = START2; IM 2

START2 = scrollToAMsg → msgHighlighted → selMoveToIMOpt →
reqStoInfo → (ALT1 � ALT2)

� performCleanUp → reqCleanUp → cleanUpOk →
cleanUpPerformed → Skip

FDR successfully checks that the following refinement holds, confirming that
IM 2 is a valid implementation of IM 1.

IM 1 �τ (IM 1 ||| RUN (AOIM2)) |[AIIM2 ∪ AOIM2 ]| IM 2

As another example, we use FDR to show that the following process is a valid
implementation of DB1, defined earlier in this section.

AIDB2 = AIDB1

AODB2 = AODB1

DB2 = reqStoInfo → (msgStoIsNotFull → DB2 � msgStoIsFull → DB2
� reqStoInfo → DB2)

� reqCleanUp → cleanUpOk → DB2

The process DB2 allows all the traces of DB1, but in addition accepts consecutive
input requests for storing information.

The mechanical verification of conformance is an important advantage of our
formalisation using CSP. Unlike an explicit algorithm for checking conformance,
as presented in [29] for ioco, we benefit from the expressive power of the refine-
ment notions and the model checker for CSP to verify conformance in a simple
way. Furthermore, we have a formal proof that the refinement expression does
capture input-output conformance, whereas the algorithm presented in [29] is
not, to our knowledge, proved sound. On the other hand, cspio is defined in
terms of ordinary traces, whereas ioco considers quiescence as well. In the next
section we establish a connection between these relations.

3 Relating ioco and cspio

Since ioco and cspio are defined on different formalisms, a comparison between
them requires relating LTS and CSP. As a concrete formalism, LTS is used as
an operational model of several process algebras, including CSP. So operational
semantics and tools for these languages map the corresponding notations into
LTS. We follow the reverse direction. Our approach is to map each LTS transition
into a CSP process prefixed with the corresponding event, and whose behaviour
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is given by recursively mapping the transitions of the target state; transitions
with events representing quiescence are mapped likewise. Based on this mapping
we then establish that verifying i ioco s is the same as checking whether cspio
holds for the processes resulting from the mapping of i and s . As Theorem 1
gives us a mechanical way of checking cspio, we obtain a strategy to verify ioco
as a byproduct of the results of this section.

The mapping of an LTS into a CSP process is very simple, and uses some
auxiliary definitions. Let q be a state and T a transition relation, then we define:
available(q,T ) = {e | (q, e, q ′) ∈ T} yields the set of available events (visible or
not) in state q; next(q, e,T ) = {q ′ | (q, e, q ′) ∈ T} gives the adjacent states of
q after the event e; and m(e) = if e �= τ then e else tau is an identity on event
names, except in the case of τ that is mapped into tau.

As our testing theory is based on the traces model of CSP, we can simplify
the mapping by disregarding nondeterminism, since internal and external choices
are not distinguished in the traces model. Internal transitions (with τ events)
are mapped as ordinary ones, but replacing τ with tau, a special event such
that tau �∈ L; the fact that τ events must be translated into internal events
in the resulting CSP process is captured later one, by internalising such events
using the CSP hiding operator, which effectively replaces tau back into τ , at the
semantic level.
Definition 13 (LTS to CSP mapping). Let p = 〈Q ,L ∪ {τ},T , q0〉 be an
LTS. The following function yields a CSP process whose structure is based on
the transitions of p starting from state q.

M (q,T ) = � e : available(q,T ) • m(e) → � q ′ : next(q, e,T ) • M (q ′,T )

The resulting process is defined as an indexed external choice of processes, each
one prefixed by an event of a transition that can be triggered from state q in the
LTS. The behaviour after engaging in an event, say e, is given by the recursive
call of the mapping function from the target states of the transition triggered
by event e.

Although the definition above does not mention quiescence, it actually maps
quiescent states, provided the relevant transitions are included in the transition
relation. Therefore, M (q,T ∪Tδ) generates a CSP process annotated with a spe-
cial event representing quiescence situations. Recall that Tδ has been introduced
in Definition 6.

A mapping is usually taken as a definition of an embedded semantics. How-
ever, since both the LTS and the resulting CSP processes have a common trace
semantics, we can prove that the proposed mapping does preserve traces. Ac-
tually, it preserves suspension traces as well, since quiescence is mapped into a
special event, as previously explained. This proof is simple but lengthy, and is
omitted here.
Lemma 1 (Mapping preserves (suspension) traces). Let Q be a finite
non-empty set of states; L a finite non-empty set of labels; T ⊆ Q×(L∪{τ})×Q
the transition relation over Q and L, with tau �∈ L. Then,

traces(q) = T (M (q,T ) \ {tau})
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This lemma allows us to relate the traces of an LTS, from an arbitrary state
q, with the process that results from the mapping. Particularly, for an LTS
p = 〈Q ,LI ,LO ,T , q0〉, we have that traces(p) = traces(q0), which, from
Lemma 1, is the same as traces(M (q0,T ) \ {tau}).

From the fact that our mapping preserves (suspension) traces, and that both
ioco and cspio are based on trace semantics, it is now possible to formally relate
cspio and ioco.

Theorem 2 (Conformance equivalence). Let i = 〈Qi ,LI ,LO ,Ti , q0i 〉 be an
input complete IOLTS representing an implementation, s = 〈Qs ,LI ,LO ,Ts , q0s 〉
an IOLTS representing a specification, IUT = (M (q0i ,Ti ∪Tδi ) \ {tau},LI ,LO)
the I/O process resulting from mapping the suspension IOLTS of i, ∆(i); and
S = (M (q0s ,Ts ∪ Tδs ) \ {tau},LI ,LO) the I/O process obtained from mapping
the suspension IOLTS of s, ∆(s). Then

i ioco s ≡ IUT cspioS

The above theorem, proved in Appendix A.2, formalises an important contribu-
tion of this paper: i ioco s can be mechanically verified using FDR to check the
expression IUT cspio S , provided IUT and S correspond to the mappings of i
and s , respectively.

4 Compositional Verification

It has been shown in [27] that, in general, ioco is not a compositional relation
with respect to parallel composition and hiding. However, compositionality does
hold under the assumption that specifications are input complete in the same
alphabet of the corresponding implementations. Therefore, given the results of
the previous section, it is expected that this holds for cspio as well. Nevertheless,
our aim is to prove compositionality for all I/O process operators, and not only
for parallel composition and hiding; it is also our objective to study weaker
assumptions for establishing compositionality for cspio.

We assume, however, that the implementation models to be composed are non-
observationally terminating; this means that they cannot eventually behave like
the Skip process. The lemmas and theorems in this section implicitly assume that
the implementation models obey this condition. The reason for this restriction
is that Skip produces the event � in the traces, and this demands a special
treatment in our compositional strategy, which is a topic for further investigation.
In any case, this is a weaker assumption than input completeness, which clearly
implies in non-termination.

Theorem 3, presented in the sequel, states that cspio reduces to standard
CSP traces refinement, if we assume that the specification is input complete,
and that some additional constraints hold concerning the specification and im-
plementation alphabets. First we formalise the notion of input completeness for
an I/O process.
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Definition 14 (Input complete I/O process). Let M = (P ,AI ,AO) be an
I/O process. Then, M is input complete if, and only if,

∀ t : T (P) • AI ⊆ initials(P/t)

Input completeness can be mechanically verified by checking a simple refinement
expression. The following four lemmas are proved in Appendix A.

Lemma 2 (Input complete I/O process). Let M = (P ,AI ,AO) be an I/O
process. Then, M is input complete if, and only if, P �τ RUN (AI )

The following two lemmas introduce simple properties of the process RUN . The
first one allows to combine two interleaving processes into a single one.

Lemma 3 (RUN composition). Let X and Y be sets of events, such that
X ∩ Y = ∅. Then

RUN (X ∪ Y ) = RUN (X ) ||| RUN (Y )

The next property shows that RUN is the unit of parallel composition.

Lemma 4 (RUN unity). Let P be a non-observationally terminating process,
and A a set of events. Then

P |[A ]|RUN (A) = P

This lemma is a simple variation of a law presented in [22] with an explicit
condition requiring that P does not terminate with Skip.

Another relevant property is that composing a process in parallel in the
context of a synchronisation set that includes the process alphabet leads to
refinement.

Lemma 5 (Parallel refinement). Let P and Q be two processes and X a set
of events, such that αP ⊆ X and αQ ⊆ X . Then

P �τ Q |[X ]|P

Based on the previous lemma, we establish that cspio is, in general, a weaker
relation then traces refinement.

Lemma 6 (cspio weaker than �τ). Let S = (PS ,AIS ,AOS ) be a specifi-
cation and IUT = (PIUT ,AIIUT ,AOIUT ) an implementation model, such that
AIS ⊆ AIIUT and AOS ⊆ AOIUT . Then

PS �τ PIUT ⇒ IUT cspio S

Proof

PS �τ PIUT

⇒ [transitivity of �τ and Lemma 5]
PS �τ (PS ||| RUN (AO)) |[AI ∪ AO ]| PIUT

≡ [Definition 12]
IUT cspio S

Finally we present our first result concerning the equivalence between cspio and
traces refinement.



36 A. Sampaio, S. Nogueira, and A. Mota

Theorem 3 (cspio equivalent to �τ). Consider an input complete specifica-
tion denoted by the I/O process S = (PS ,AI ,AO), and an implementation model
IUT = (PIUT ,AI ,AO). Then

IUT cspio S ≡ PS �τ PIUT

Proof

(IUT cspio S ⇒ PS �τ PIUT )

IUT cspio S
≡ [Theorem 1]

PS �τ (PS ||| RUN (AO)) |[AI ∪ AO ]| PIUT

⇒ [Lemma 2 and transitivity/monotonicity of �τ ]
PS �τ (RUN (AI ) ||| RUN (AO)) |[AI ∪ AO ]| PIUT

≡ [Lemma 3]
PS �τ RUN (AI ∪ AO) |[AI ∪ AO ]| PIUT

≡ [Lemma 4]
PS �τ PIUT

(PS �τ PIUT ⇒ IUT cspio S) follows directly from Lemma 6.

The fact that each I/O process operator is monotonic with respect to the cspio
relation is a simple consequence of the above theorem. As an illustration we show
the case for parallel composition.

Corollary 1. Consider the input complete specifications S1 = (PS1 ,AI1 ,AO1)
and S2 = (PS2 ,AI2 ,AO2), and the implementations IUT1 = (PIUT1 ,AI1 ,AO1)
and IUT2 = (PIUT2 ,AI2 ,AO2). Then

(IUT1 cspio S1) ∧ (IUT2 cspio S2) ⇒ (IUT1 ||io IUT2) cspio (S1 ||io S2)

Proof

(IUT1 cspio S1) ∧ (IUT2 cspio S2)
≡ [Theorem 3]

(PS1 �τ PIUT1) ∧ (PS2 �τ PIUT2)
⇒ [transitivity/monotonicity of �τ , and X = (AI1 ∩ AO2) ∪ (AI2 ∩ AO1)]

(PS1 |[X ]|PS2 ) �τ (PIUT1 |[X ]|PIUT2)
≡ [Definition 8 and Theorem 3]

(IUT1 ||io IUT2) cspio (S1 ||io S2)

Therefore, as all CSP operators are monotonic with respect to all CSP refinement
relations, including traces refinement, compositionality holds for the operators
on I/O processes, since these are defined in terms of the standard CSP operators.

It is worthy contrasting this result with the one obtained in [27]. Apart from
proving a property similar to Theorem 3, laborious proofs were necessary to
establish monotonicity of each of the two operators considered (parallel compo-
sition and hiding). This seems to give some evidence that a formalisation in the



Compositional Verification of Input-Output Conformance 37

setting of a process algebra is a more promising direction to follow in the context
of compositional conformance verification.

We have also explored whether compositionality would hold under weaker as-
sumptions. The next theorem shows that cspio also reduces to traces refinement
when the input events offered by the implementation, after each trace, is a sub-
set of those offered by the specification, for the same trace. Input completeness
of the specification (in the same alphabet of the implementation) clearly implies
this weaker condition. We define an auxiliary function:

in(M , s) = if s ∈ T (PM ) then initials(PM /s) ∩ AIM else ∅

to capture the set of input events of the I/O process M after the trace s . This
can be easily checked using FDR by verifying an expression similar to (1) in
Theorem 1, except that RUN (AOIUT ) is replaced with RUN (AIIUT ).

Theorem 4 (cspio equivalent to �τ). Let the I/O process S = (PS ,AI ,AO)
represent a specification, and IUT = (PIUT ,AI ,AO) an implementation, and
∀ s • in(IUT , s) ⊆ in(S , s). Then

IUT cspio S ≡ PS �τ PIUT

Based on this theorem, whose proof is in Appendix A.6, and on the fact that
traces refinement is compositional, we can show that compositionality holds for
I/O process operators, similarly to Theorem 3. The case for parallel composition
is again used as illustration.

Corollary 2. Let S1 = (PS1 ,AI1 ,AO1) and S2 = (PS2 ,AI2 ,AO2) represent spec-
ifications, and IUT1 = (PIUT1 ,AI1 ,AO1) and IUT2 = (PIUT2 ,AI2 ,AO2) stand
for implementations. Then

(IUT1 cspio S1) ∧ (IUT2 cspio S2) ⇒ (IUT1 ||io IUT2) cspio (S1 ||io S2)

As an example of compositional conformance verification, consider the processes
IM 1, DB1, IM 2 and DB2 presented in Section 2.2, where we have also shown
that IM 2 cspio IM 1 and that DB2 cspioDB1. In the same section we have also
defined the processes IM 1DB1 and IM 2DB2 that capture the parallel compo-
sitions of IM 1 with DB1, and of IM 2 with DB2, respectively. The question is
whether IM 2DB2 cspio IM 1DB1?

Our first attempt to justify this conformance is to check whether the condi-
tions of Theorem 3 hold for the parallel compositions of IM 1 with DB1, and of
IM 2 with DB2. They trivially fail to hold since neither IM 1 nor DB1 are input
complete. Nevertheless, the conditions of Theorem 4 are satisfied, and then we
can conclude that IM 2DB2 conforms to IM 1DB1; this can be easily confirmed
using FDR.

5 Conclusions

We hope to have given some evidence that a characterization of a testing theory
in the setting of a process algebra is a promising direction to follow, especially
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concerning compositional conformance verification, where compositionality of
the conformance relation is an essential property. Particularly, we have explored
this issue in the context of CSP, through an input-output conformance relation
denoted cspio. We have analysed in some detail under which conditions com-
positionality holds for cspio. Assuming input completeness of the specification
in the same alphabet of the implementation, we have proved that conformance
verification reduces to standard traces refinement in CSP and, therefore, com-
positionality holds since all CSP operators are monotonic with respect to traces
refinement, and so are the I/O process operators. We have also shown that com-
positionality holds under a weaker condition: when the input events offered by
the implementation, after each trace, is a subset of those offered by the specifi-
cation, for the same trace. In such cases, conformance checking also reduces to
traces refinement, and, therefore, we obtain an analogous result to the one that
assumes input completeness of the specification.

Another contribution of our work is the connection between cspio and the
well-established ioco conformance notion. We have formally shown that these
two relations are equivalent if quiescence in an LTS is annotated using a special
event in the CSP model. Therefore, it is natural that the closest related works for
us to consider are those on ioco. Concerning conformance verification, in [29] the
authors present an on-the-fly algorithm for mechanically verifying whether ioco
holds between a specification and a candidate implementation. In contrast, we
mechanise such a verification through a simple refinement expression using the
CSP model checker FDR. Although cspio is defined in terms of standard traces,
by using special events to represent quiescence, and based on the established
connection with ioco, the results hold for suspension traces as well. As regards
soundness, the fact that the proposed refinement expression does capture the
conformance notion has been proved as a theorem. On the other hand, a proof
of soundness of the algorithm presented in [29] has not been reported, to our
knowledge.

In [28] the authors present a denotational formalisation of ioco in the frame-
work of the Unifying Theories of Programming [13]. Implementations and
specifications are represented as reactive process. It is shown that, provided
an implementation refines a specification in the reactive processes theory of the
UTP, such an implementation is ioco conformant to the specification. This result
is analogous to our Lemma 6 for traces refinement and cspio.

Compositionality for ioco has been addressed in [27]. Parallel composition
and hiding are defined for LTS, and it is proved that these operators preserve
conformance under the assumption that the specification is input complete in
the same alphabet of the implementation. Apart from proving a result similar to
Theorem 3, laborious proofs were necessary to establish monotonicity of each of
the two operators considered. As previously discussed, we have proved that com-
positionality holds for the I/O process operators, as an immediate consequence
of monotonicity of these operators with respect to trace inclusion. Furthermore,
we have obtained similar results for weaker conditions, not explored in [27].
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There are other approaches to testing that are formalised using CSP. In [19],
some implementation relations are defined based on the semantic models of CSP;
practical test sets are proposed inspired by these relations. The approach is not,
however, completely formal. In [21], two conformance relations are defined, based
on the traces and on the failures-divergences models of CSP, and refinement is
used to check whether conformance holds, in a similar way as we do here. An in-
stantiation of a well-established theory of formal testing [9] to CSP, using traces
and failures refinement as the notion of correctness, is reported in [7]. Compo-
sitionality is not explicitly addressed in any of these works. Nevertheless, in [7],
compositionality is a direct consequence of adopting one of the CSP semantic
models as the conformance relation. None of these works, however, distinguishes
input from output.

As a relevant topic for further research, we intend to explore additional com-
positionality theorems with the weakest possible conditions, for each I/O process
operator. As another future direction, we plan to mechanise our proofs using the
CSP-Prover [14]; some initial experiments have shown that this is feasible. It
is also our aim to consider realistic case studies. Although our testing strategy
has been adopted in practice in the Motorola’s Brazil Test Center initiative, the
focus so far has been on test case generation from use cases, and their execution;
we have not yet applied our compositionality results in practice.
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A Proofs

A.1 Theorem 1

The following Lemma is auxiliary to the proof of Theorem 1.

Lemma A1 (Initials of P interleaved). Let P be a CSP process, and A a
set of events. Then

initials((P ||| RUN (A))/s) = initials(P/s) ∪ initials(RUN (A)/s)

Proof

initials((P ||| RUN (A))/s)
= [traces(P/s) and initials(P) ⇒ initials(P/s) = {a | s � 〈a〉 ∈ T (P)}]

{e | s � 〈e〉 ∈ T (P ||| RUN (A))}
= [def. T (P ||| Q)]

{e | s � 〈e〉 ∈
⋃
{t ||| u | t ∈ T (P) ∧ u ∈ T (RUN (A))}}

= [def. s ||| t ]
{e | s � 〈e〉 ∈ (

{〈v〉 � z | 〈v〉 ∈ T (P) ∧ z ∈ (t ||| u) ∧ t ∈ T (P/〈v〉) ∧
u ∈ T (RUN (A))}

∪
{〈v〉 � z | 〈v〉 ∈ T (RUN (A)) ∧ z ∈ (t ||| u) ∧ t ∈ T (P) ∧

u ∈ T (RUN (A)/〈v〉)}
)

}
= [set comphreension]

{e | s � 〈e〉 ∈ {〈v〉 � z | 〈v〉 ∈ T (P) ∧ z ∈ (t ||| u) ∧ t ∈ T (P/〈v〉) ∧
u ∈ T (RUN (A))}}

∪
{e | s � 〈e〉 ∈ {〈v〉 � z | 〈v〉 ∈ T (RUN (A)) ∧ z ∈ (t ||| u) ∧ t ∈ T (P) ∧

u ∈ T (RUN (A)/〈v〉)}}
= [def. initials(P/s)]

initials(P/s) ∪ initials(RUN (A)/s)

The proof of Theorem 1.
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Let the I/O process IUT = (PIUT ,AIIUT ,AOIUT ) be an implementation model,
and S = (PS ,AIS ,AOS ) a specification, with AIS ⊆ AIIUT and AOS ⊆ AOIUT .
Then IUT cspio S holds iff the following refinement holds.

PS �τ (PS ||| RUN (AOIUT )) |[AIIUT ∪ AOIUT ]| PIUT

Proof

PS �τ (PS ||| RUN (AOIUT )) |[AIIUT ∪ AOIUT ]|PIUT

= [definition �τ ]
T ((PS ||| RUN (AOIUT )) |[AIIUT ∪ AOIUT ]|PIUT ) ⊆ T (PS )

= [αP ⊆ αQ ⇒ T (P |[ αP ∪ αQ ]|Q) = T (P || Q)]
T (PS ||| RUN (AOIUT )) ∩ T (PIUT ) ⊆ T (PS )

= [definition ⊆]
∀ s • s ∈ (T (PS ||| RUN (AOIUT )) ∩ T (PIUT )) ⇒ s ∈ T (PS )

= [holds when sequence is empty or neither]
〈〉 ∈ (T (PS ||| RUN (AOIUT )) ∩ T (PIUT )) ⇒ 〈〉 ∈ T (PS ) ∧
∀ s , x • s � 〈x 〉 ∈ (T (PS ||| RUN (AOIUT )) ∩ T (PIUT )) ⇒

s � 〈x 〉 ∈ T (PS )
= [traces property ∀PS • 〈〉 ∈ T (PS )]

true ⇒ true ∧
∀ s , x • s � 〈x 〉 ∈ (T (PS ||| RUN (AOIUT )) ∩ T (PIUT )) ⇒

s � 〈x 〉 ∈ T (PS )
= [∧ elimination]

∀ s , x • s � 〈x 〉 ∈ (T (PS ||| RUN (AOIUT )) ∩ T (PIUT )) ⇒
s � 〈x 〉 ∈ T (PS )

= [def. ∩]
∀ s , x • s � 〈x 〉 ∈ (T (PS ||| RUN (AOIUT )) ∧ s � 〈x 〉 ∈ T (PIUT )) ⇒

s � 〈x 〉 ∈ T (PS )
= [set comphreension]

∀ s , x • x ∈ {a | s � 〈a〉 ∈ T (PS ||| RUN (AOIUT ))} ∧
x ∈ {a | s � 〈a〉 ∈ T (PIUT )} ⇒ x ∈ {a | s � 〈a〉 ∈ T (PS )}

= [from T (P/s) and initials(P) we have
initials(P/s) = {a | s � 〈a〉 ∈ T (P)}]
∀ s , x • x ∈ initials((PS ||| RUN (AOIUT ))/s) ∧ x ∈ initials(PIUT /s) ⇒

x ∈ initials(PS /s)
= [� �∈ AOIUT , SKIP ||| RUN (AOIUT )) �= SKIP and

initials(PS ) ⊆ (AIIUT ∪AOIUT )]
∀ s , x • x ∈ initials((PS ||| RUN (AOIUT ))/s) ∩ (AIIUT ∪ AOIUT ) ∧

x ∈ initials(PIUT /s) ∩ (AIIUT ∪ AOIUT ) ⇒
x ∈ initials(PS /s) ∩ (AIIUT ∪ AOIUT )

= [∩-dist-∪]
∀ s , x • x ∈ (initials((PS ||| RUN (AOIUT ))/s) ∩ AIIUT )∪

(initials((PS ||| RUN (AOIUT ))/s) ∩ AOIUT ) ∧
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x ∈ (initials(PIUT /s) ∩ AIIUT ) ∪ (initials(PIUT /s) ∩ AOIUT ) ⇒
x ∈ (initials(PS /s) ∩ AIIUT ) ∪ (initials(PS /s) ∩ AOIUT )

= [Lemma A1]
∀ s , x • x ∈ ((initials(PS /s) ∪ initials(RUN (IOIUT )/s)) ∩AIIUT )∪

(initials(PS /s) ∪ initials(RUN (IOIUT )/s)) ∩ AOIUT ) ∧
x ∈ (initials(PIUT /s) ∩ AIIUT ) ∪ (initials(PIUT /s) ∩ AOIUT ) ⇒
x ∈ (initials(PS /s) ∩ AIIUT ) ∪ (initials(PS /s) ∩ AOIUT )

= [since (X ∪ initials(RUN (IOIUT )/s)) ∩AIIUT = X ∩AIIUT and
(X ∪ initials(RUN (IOIUT )/s)) ∩ AOIUT = AOIUT ]
∀ s , x • x ∈ (initials(PS /s) ∩AIIUT ) ∪ AOIUT ∧

x ∈ (initials(PIUT /s) ∩ AIIUT ) ∪ (initials(PIUT /s) ∩ AOIUT ) ⇒
x ∈ (initials(PS /s) ∩ AIIUT ) ∪ (initials(PS /s) ∩ AOIUT )

= [AIS ⊆ AIIUT , AOS ⊆ AOIUT ] and def. out(MP , s)]
∀ s , x • x ∈ (initials(PS /s) ∩AIIUT ) ∪ AOIUT ∧

x ∈ (initials(PIUT /s) ∩ AIIUT ) ∪ out(IUT , s) ⇒
x ∈ (initials(PS /s) ∩ AIIUT ) ∪ out(S , s)

= [definition ∩]
∀ s , x • x ∈ (initials(PS /s) ∩AIIUT ) ∪ AOIUT∩

(initials(PIUT /s) ∩ AIIUT ) ∪ out(IUT , s)) ⇒
x ∈ (initials(PS /s) ∩ AIIUT ) ∪ out(S , s)

= [∩-dist-∪]
∀ s , x • x ∈ (initials(PS /s) ∩AIIUT ) ∩ (initials(PIUT /s) ∩ AIIUT∪
out(IUT , s)) ∪ (AOIUT ∩ (initials(PIUT /s) ∩AIIUT ∪ out(IUT , s)) ⇒

x ∈ (initials(PS /s) ∩ AIIUT ) ∪ out(S , s)
= [set theory, A ∩ A = A]

∀ s , x • x ∈ (initials(PS /s) ∩ initials(PIUT /s) ∩ AIIUT ) ∪ out(IUT , s)∪
(AOIUT ∩ (initials(PIUT /s) ∩ AIIUT ∪ out(IUT , s)) ⇒
x ∈ (initials(PS /s) ∩ AIIUT ) ∪ out(S , s)

= [since AIIUT ∩ AOIUT = ∅]
∀ s , x • x ∈ (initials(PS /s) ∩ initials(PIUT /s) ∩ AIIUT ) ∪ out(IUT , s) ⇒

x ∈ (initials(PS /s) ∩ AIIUT ) ∪ out(S , s)
= [definition ⊆]

∀ s • (initials(PS /s) ∩ initials(PIUT /s) ∩AIIUT ) ∪ out(IUT , s) ⊆
(initials(PS /s) ∩ AIIUT ) ∪ out(S , s)

= [since A ∪ B ⊆ C ∪D ≡ A ⊆ C ∧ B ⊆ D , provided A ∩ B = A ∩ D =
B ∩ C = C ∩ D = ∅; and, out(PM , s) ∩ AIIUT = ∅]
∀ s • (initials(PS /s) ∩ initials(PIUT /s) ∩AIIUT ) ⊆

(initials(PS /s) ∩ AIIUT ) ∧
out(IUT , s) ⊆ out(S , s)

= [since A ∩ B ⊆ A]
∀ s • out(IUT , s) ⊆ out(S , s)

= [since ∀ s �∈ T (PIUT ) • out(IUT , s) = ∅ ⊆ out(S , s)]
∀ s : T (PS ) • out(IUT , s) ⊆ out(S , s)

= [Definition 12]
IUT cspioS
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A.2 Theorem 2

The following lemma establishes a connection between the output events pro-
duced both by the LTS and the corresponding mapped process, after a given
trace.

Lemma A2 (Output equivalence). Let p = 〈Q ,LI ,LO ,T , q0〉 be an IOLTS,
and Mp = (M (q0,T ∪Tδ) \ {tau},LI ,LO ∪{δ}) be the I/O process mapped from
∆(p) be. Then

out(∆(p)after σ) = out(Mp , σ)

Proof

out(∆(p)after σ)
= [def. out(q)]

initials(∆(p)after σ) ∩ (LO ∪ {δ})
= [def. initials(q)]

{a ∈ L | ∆(p)after σ
a=⇒} ∩ (LO ∪ {δ})

= [def. traces(q)]
{a | 〈a〉 ∈ traces(∆(p)after σ)} ∩ (LO ∪ {δ})

= [Lemma 1 and def. P/s]
σ ∈ T (M (q0,T ∪ Tδ) \ {tau}) ∧

{a | 〈a〉 ∈ T ((M (q0,T ∪ Tδ) \ {tau})/σ)} ∩ (LO ∪ {δ})
= [set comphreension]

{a | σ ∈ T (M (q0,T ∪ Tδ) \ {tau}) ∧
〈a〉 ∈ T ((M (q0,T ∪ Tδ) \ {tau})/σ)} ∩ (LO ∪ {δ})

= [set comphreension]
if (σ ∈ T (M (q0,T ∪Tδ) \ {tau})) then

{a | 〈a〉 ∈ T ((M (q0,T ∪ Tδ) \ {tau})/σ)} ∩ (LO ∪ {δ})
else ∅

= [def. initials(P)]
if (σ ∈ T (M (q0,T ∪Tδ) \ {tau}) ) then

initials((M (q0,T ∪ Tδ) \ {tau})/σ) ∩ (LO ∪ {δ})
else ∅

= [def. out(M , s)]
out(Mp , σ)

Here the proof of Theorem 2.

Let i = 〈Qi ,LI ,LO ,Ti , q0i 〉 be an input complete IOLTS representing an im-
plementation, s = 〈Qs ,LI ,LO ,Ts , q0s 〉 an IOLTS representing a specification,
IUT = (M (q0i ,Ti ∪ Tδi ) \ {tau},LI ,LO ) the I/O process resulting from map-
ping the suspension IOLTS of i , ∆(i); and S = (M (q0s ,Ts∪Tδs ) \ {tau},LI ,LO)
the I/O process obtained from mapping the suspension IOLTS of s , ∆(s). Then

i ioco s ≡ IUT cspio S
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Proof

IUT cspio S
≡ [def. cspio]

∀σ : T (M (q0s ,Ts ∪ Tδs ) \ {tau}) • out(IUT , σ) ⊆ out(S , σ)
≡ [Lemma 1 and def. ∆(p)]

∀σ : traces(∆(s)) • out(IUT , σ) ⊆ out(S , σ)
≡ [def. Straces(p)]

∀σ : Straces(s) • out(IUT , σ) ⊆ out(S , σ)
≡ [Lemma A2]

∀σ : Straces(s) • out(∆(i)after σ) ⊆ out(∆(s)after σ)
≡ [def. ioco]

i ioco s

A.3 Lemma 2

The following Lemma is auxiliary. It captures a simple property of traces
refinement.

Lemma A3 (Initials and �τ). Let P and Q be CSP processes. Then

P �τ Q ≡ ∀ s • initials(Q/s) ⊆ initials(P/s)

Proof

P �τ Q
≡ [traces refinement]

T (Q) ⊆ T (P)
≡ [def. ⊆]

∀ t • t ∈ T (Q) ⇒ t ∈ T (P)
≡ [t = s � 〈x 〉 or t = 〈〉]

∀ s , x • s � 〈x 〉 ∈ T (Q) ⇒ s � 〈x 〉 ∈ T (P)
∧
〈〉 ∈ T (Q) ⇒ 〈〉 ∈ T (P)

≡ [traces axiom, 〈〉 ∈ traces(R)]
∀ s , x • s � 〈x 〉 ∈ T (Q) ⇒ s � 〈x 〉 ∈ T (P)

≡ [set comphreension]
∀ s , x • x ∈ {a | s � 〈a〉 ∈ T (Q)} ⇒ x ∈ {a | s � 〈a〉 ∈ T (P)}

≡ [T (P/s) and initials(P) ⇒ initials(P/s) = {a | s � 〈a〉 ∈ T (P)}]
∀ s , x • x ∈ initials(Q/s) ⇒ x ∈ initials(P/s)

≡ [def. ⊆]
∀ s • initials(Q/s) ⊆ initials(P/s)

Here follows the proof of Lemma 2.
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Let M = (P ,AI ,AO ) be an I/O process. Then, M is input complete if, and
only if, P �τ RUN (AI )

Proof

P �τ RUN (AI )
≡ [Lemma A3]

∀ t • initials(RUN (AI )/t) ⊆ initials(P/t)
≡ [T (RUN (A)) = A∗ and

∀ t �∈ A∗ • initials(RUN (A)/s) = ∅ ⊆ initials(P/t)]
∀ t : T (P) • AI ⊆ initials(P/t)

A.4 Lemma 3

The findings of this paper are based on trace semantics, then it is enough to
proof the equality of Lemma 3 on traces model.

Let X and Y be sets of events, such that X ∩ Y = ∅. Then

RUN (X ∪ Y ) = RUN (X ) ||| RUN (Y )

Proof

RUN (X ) ||| RUN (Y )
= [By |||-step, X ∩ Y = ∅ and RUN (X ) =?x : X → RUN (X )]

?x : X ∪ Y → if (x ∈ X ) then RUN (X ) ||| RUN (Y )
else RUN (X ) ||| RUN (Y )

= [By predicate calculus]
?x : X ∪ Y → RUN (X ) ||| RUN (Y )

Using induction we show:

∀ s • s ∈ T (RUN (X ) ||| RUN (Y )) ⇔ s ∈ T (RUN (X ∪Y ))

Base case : s = 〈〉

Trivially holds.

Inductive case : s = s ′ � 〈x 〉, such that x ∈ X ∪ Y

s ′ � 〈x 〉 ∈ T (?x : X ∪Y → RUN (X ) ||| RUN (Y ))
≡ [applying |||-step #s times]

s ′ ∈ (X ∪ Y )∗ ∧ 〈x 〉 ∈ T (?x : X ∪Y → RUN (X ) ||| RUN (Y ))
≡ [by induction hypothesis]

s ′ ∈ (X ∪ Y )∗ ∧ 〈x 〉 ∈ T (?x : X ∪Y → RUN (X ∪ Y ))
≡ [by →-step]

s ′ � 〈x 〉 ∈ T (?x : X ∪Y → RUN (X ∪ Y ))

The proof above enable us to establish the following equality (in traces) for
RUN (X ) ||| RUN (Y ).
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= [By traces]
?x : X ∪ Y → RUN (X ∪Y )

= [By |||-step]
RUN (X ∪ Y )

A.5 Lemma 5

Let P and Q be two processes and X a set of events, such that αP ⊆ X and
αQ ⊆ X . Then

P �τ P |[X ]|Q
Proof

P �τ P |[X ]|Q
≡ [def. �τ ]

T (P |[X ]|Q) ⊆ T (P)
≡ [def T (P |[X ]| )Q ]⋃

{s |[X ]| t | s ∈ T (P) ∧ t ∈ T (Q)} ⊆ T (P)

We demonstrate it for each production of s |[X ]| t . In the proof consider that
x , x ′ ∈ X and y, y ′ �∈ X .

1. For s = 〈〉 and t = 〈〉
〈〉 |[X ]| 〈〉 = {〈〉}

⇒ [traces semantics]
(〈〉 |[X ]| 〈〉) ⊆ T (P)

2. For s = 〈〉 and t = 〈x 〉
〈〉 |[X ]| 〈x 〉 = ∅

⇒ [set theory]
(〈〉 |[X ]| 〈x 〉) ⊆ T (P)

3. For s = 〈x 〉 � s ′ and t = 〈x 〉 � t ′

〈x 〉 � s ′ |[X ]| 〈x 〉 � t ′ = {〈x 〉 � z | z ∈ s ′ |[X ]| t ′}
⇒ [since 〈x 〉 ∈ T (P) ∩ T (Q) and assuming inductively z ∈ T (P)]

(〈x 〉 � s ′ |[X ]| 〈x 〉 � t ′) ⊆ T (P)

4. For s = 〈x 〉 � s ′ and t = 〈x ′〉 � t ′

〈x 〉 � s ′ |[X ]| 〈x ′〉 � t ′ = ∅
⇒ [set theory]

(〈x 〉 � s ′ |[X ]| 〈x 〉 � t ′) ⊆ T (P)

5. The assumptions αQ ⊆ X and αP ⊆ X avoid the productions of s |[X ]| t
that follow.

• s = 〈〉 and t = 〈y〉
• s = 〈x 〉 � s ′ and t = 〈y〉 � t ′

• s = 〈y〉 � s ′ and t = 〈y ′〉 � t ′
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A.6 Theorem 4

Let the I/O process S = (PS ,AI ,AO) be a specification, and consider an imple-
mentation IUT = (PIUT ,AI ,AO) , and ∀ s • in(IUT , s) ⊆ in(S , s). Then

IUT cspio S ≡ PS �τ PIUT

Proof

PS �τ PIUT

≡ [Lemma A3]
∀ t • initials(PIUT /t) ⊆ initials(PS /t)

≡ [set theory]
∀ t • initials(PIUT /t) ∩ (AI ∪ AO) ⊆ initials(PS /t) ∩ (AI ∪ AO)

≡ [∩-∪-dist]
∀ t • initials(PIUT /t) ∩ AI ∪ initials(PIUT /t) ∩ AO ⊆

initials(PS /t) ∩ AI ∪ initials(PS /t) ∩ AO

≡ [defs. in(MP , s) and out(MP , s)]
∀ t • in(IUT , t) ∪ out(IUT , t) ⊆ in(S , t) ∪ out(S , t)

≡ [A ∪ B ⊆ C ∪ D ≡ A ⊆ C ∧ B ⊆ D , provided
A ∩ B = A ∩ D = C ∩ D = B ∩ C = ∅]
∀ t • in(IUT , t) ⊆ in(S , t) ∧ out(IUT , t) ⊆ out(S , t)

≡ [def. cspio]
IUT cspio S ∧ ∀ s • in(IUT , s) ⊆ in(S , s)

≡ [hypothesis and ∧-elimination]
IUT cspio S
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Abstract. We study the problem of generating a database and param-
eters for a given parameterized SQL query satisfying a given test condi-
tion. We introduce a formal background theory that includes arithmetic,
tuples, and sets, and translate the generation problem into a satisfia-
bility or model generation problem modulo the background theory. We
use the satisfiability modulo theories (SMT) solver Z3 in the concrete
implementation. We describe an application of model generation in the
context of the database unit testing framework of Visual Studio.

1 Introduction

The original motivation behind this work comes from unit testing of relational
databases. A typical unit test, first populates the database with concrete test
tables, then evaluates a given test query with respect to the tables, and finally
checks if the result of the evaluation satisfies a given test condition. Typical test
conditions are, checking if the result is empty, nonempty, has a certain number
of rows, or contains a specific value.

In general, a test query may also be parameterized, i.e., involve variables in
place of some concrete values, in which case the parameter variables first need
to be instantiated with concrete values in a separate step prior to evaluating the
query. A test query uses domain specific knowledge about the particular database
schema and acts like a usage scenario, much like code in a traditional unit test.
A test condition validates the result. The task of coming up with concrete test
tables and parameters for the test query satisfying the test condition is, on the
other hand, a combinatorial problem that is both error-prone and tedious.

We propose a technique that can be used to automate the above data genera-
tion problem for a class of SQL queries. The idea is illustrated in Figure 1 where
Qex is the underlying analysis engine. The expected usage scenario is that the
user supplies the query q as well as the test condition ϕ, Qex then generates
the sample input tables and the expected output. The generated input tables
are used to populate the database and the query q is executed against the ac-
tual database. The actual output is validated against the test condition ϕ or
compared against the expected output that was generated by Qex.
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Fig. 1. Using Qex for data generation

We introduce a formal background theory T Σ that is rich enough to capture
the semantics for the class of queries under consideration, and is tailored for
automatic analysis with state of the art SMT solvers. A given query q and a test
condition ϕ are translated into a formula ψ in T Σ. The translation is such that,
if the formula ψ is satisfiable modulo T Σ, i.e., ψ has a model S in T Σ, then the
values of the variables in S, are mapped back to concrete test tables and input
parameters for q.

Satisfiability checking combined with finding a concrete model as a witness is
usually called model generation. We illustrate the use of model generation in the
context of the Visual Studio database unit testing framework. In this application,
model generation is seen as a black box from the user’s perspective. There are
other well-known applications of model generation in the context of databases,
such as integrity and security constraint checking, where this technique could be
useful.

In Section 2 we introduce the background theory T Σ. In Section 3 we define a
formal translation from a class of SQL queries into T Σ. In Section 4 we introduce
an analysis approach of formulas in T Σ by using satisfiability modulo theories
(SMT). In Section 5 we discuss a concrete application for generating database
unit tests in Visual Studio, we look at some concrete examples and provide some
benchmarks. In Section 6 we discuss future work. Section 7 is about related work.

2 Background T Σ

We use a fixed state background T Σ that includes arithmetic, Booleans, tuples,
and finite sets. The universe is multi-sorted, with all values having a fixed sort.
The sorts Z, R, and B are used for integers, reals, and Booleans, respectively; Z

and R are called numeric sorts. The sorts Z, R and B are basic, so is the tuple
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T σ ::= xσ | Defaultσ | Ite(T B, T σ, T σ) | TheElementOf (T S(σ)) |
πi(T T(σ0,...,σi=σ,...))

T T(σ0,...,σk) ::= 〈T σ0 , . . . , T σk〉

T Z ::= k | T Z + T Z | k ∗ T Z | Σi(T S(T(σ0,...,σi=Z,...)))

T R ::= r | T R + T R | k ∗ T R | Σi(T S(T(σ0,...,σi=R,...))) | AsReal(T Z)

T B ::= true | false | ¬T B | T B ∧ T B | T B ∨ T B

T σ = T σ | T S(σ) ⊆ T S(σ) | T σ ∈ T S(σ) | T Z ≤ T Z | T R ≤ T R

T S(σ) ::= XS(σ) | {T σ |x̄ T B} | T S(σ) ∪ T S(σ) | T S(σ) ∩ T S(σ) | T S(σ) \ T S(σ)

F ::= T B | ∃x F | ∃X F

Fig. 2. Well-formed expressions in T Σ

sort T(σ0, . . . , σk), provided that each σi is basic. The set sort S(σ) is not basic
and requires σ to be basic.

The universe of values of sort σ is denoted by Uσ. Universes of distinct sorts
are disjoint.1 For each sort σ, there is a specific Defaultσ in Uσ. In particular,
DefaultB = false, DefaultZ = 0, DefaultR = 0, DefaultS(σ) = ∅, and for a tuple
sort the Default tuple is the tuple of Default’s of the respective element sorts.
There is a function AsReal : UZ → UR that maps integers to corresponding reals.

We refer to a sort σ together with a semantic constraint on Uσ as a type.
In particular, the type Z

+ refers to the positive integers, i.e., the constraint is
∀xZ

+
(x > 0). An enum or k-enum type refers to integers 0 through k − 1 for

some k > 0.

2.1 Expressions

We use an expression language that we also refer to as T Σ. Well-formed expres-
sions or terms of T Σ are shown in Figure 2. A term t of sort σ is written tσ; xσ is
a variable of basic sort σ; Xσ is a variable where σ is a set sort. We adopt the con-
vention that upper case letters are used for set variables. Boolean terms are also
called formulas. We always assume that terms are well-sorted but omit the sorts
when they are clear from the context. The set of free variables of a term t is de-
noted by FV (t), these are all the variables that have an occurrence in t that is not
in the scope of a quantifier. In particular, FV ({t |x ϕ}) = (FV (t)∪FV (ϕ))\{x},
where |x is the comprehension quantifier. A term without free variables is a closed
term. We write t[x0, . . . , xn−1] for a term t where each xi may occur free in t.

1 We could assume that for distinct set sorts σ1 and σ2 the empty set is shared, but
we may also assume, as we do here, that there is distinct empty set for each set sort.
Either assumption is fine, because all expressions in T Σ are well-sorted.
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Let θ be the substitution {xi �→ ti}i<n (where xi and ti have the same sort)2;
tθ denotes the application of θ on t. We write also t[t0, . . . , tn−1] for tθ. For
example, if t[x] is the term Ite({x |x ϕ} = ∅, x+ x, x) and θ = {x �→ x + y} then
tθ or t[x + y] is the term Ite({x |x ϕ} = ∅, (x + y) + (x + y), x + y).

We often omit the variables x̄ from the comprehension quantifier |x̄ when
they are clear from the context. We also use additional definitions in terms of
T Σ when they are needed. When a definition is obvious (such as x < y), we use
it without further notice. We often use the abbreviation x.i for πi(x).

A term in T Σ of the form {x | x = t1 ∨ · · · ∨ x = tn} (where x is not free in
any ti), is abbreviated by {t1, . . . , tn} and is not considered as a comprehension
term, but as an explicit set term.

2.2 Semantics

A state S is a mapping of variables to values. Since T Σ is assumed to be the
background we omit it from S, and assume that S has an implicit part that
includes the interpretation for the function symbols of T Σ, for example that +
means addition and ∪ means set union. By slight abuse of notation, we reuse the
function symbols in Figure 2 also to denote their interpretations, e.g., we write
πi also for πT Σ

i , and let the context determine whether we refer to the symbol
or its interpretation in T Σ. We write Dom(S) for the domain of S. Given two
states S1 and S2 we write S1 � S2 for the union of S1 and S2 but where the
variables in Dom(S1) ∩Dom(S2) have the value in S2.

A state for a term t is a state S such that FV (t) ⊆ Dom(S). Given a term t
and a state S for t, tS is the interpretation or evaluation of t in S, defined by
induction over the structure of t. Given a formula ϕ and a state S for ϕ, S |= ϕ
means that ϕS is true. Besides the standard logical connectives, arithmetical
operations and set operations, equations (1–4) below show the semantics for the
nonstandard constructions of t in Figure 2.

Ite(ϕ, t1, t2)S =
{

tS1 , if S |= ϕ;
tS2 , otherwise.

(1)

TheElementOf (tS(σ)
1 )S =

{
a, if tS1 = {a};
Defaultσ, otherwise.

(2)

{t0 |xσ ϕ}S = {tS�{x �→a}
0 : a ∈ Uσ, S � {x �→ a} |= ϕ} (3)

Σi(t1)S =
∑
a∈tS

1

πi(a) (4)

The interpretation of a comprehension with several variables is a straightforward
generalization of (3). In (3) it is assumed that there are only finitely many a
such that S � {x �→ a} |= ϕ, otherwise we may assume that {t0 |xσ ϕ}S is ∅.3

2 We always make the assumption that substitutions are well-sorted in this sense,
without further notice.

3 In our translation from SQL to T Σ, finiteness is guaranteed by construction.
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The use of comprehensions as terms is well-defined since sets are extensional :
∀X Y (∀z(z ∈ X ⇔ z ∈ Y ) ⇔ X = Y ).4

A state S for a formula ϕ such that S |= ϕ is a model of ϕ. A formula ϕ is
satisfiable if there exists a model of ϕ, and ϕ is valid if all states for ϕ are models
of ϕ.

For a closed term t we talk about evaluation of t, without reference to any
particular state.

Multiplication. We define n ∗ m with Σ0, where n > 0 is an integer.

n ∗ m
def= Σ0({〈m, x〉 | 0 ≤ x < n}) =

n−1∑
x=0

π0(〈m, x〉) =
n−1∑
x=0

m (5)

Note that m may be an integer or a real and the sort of m determines the sort
of n ∗ m.

Bags. Bags or multisets are represented as graphs of maps with positive integer
ranges, i.e., a bag b with elements {ai}i<n each having multiplicity mi > 0 in
b for i < n, is represented as a set of pairs {〈ai, mi〉}i<n, thus having the sort
S(T(σ, Z)) for some basic sort σ called the domain sort of b. We let M(σ) be the
type S(T(σ, Z+)) with the additional map constraint :

∀XM(σ) ∀xσ yσ ((x ∈ X ∧ y ∈ X ∧ x.0 = y.0) ⇒ x.1 = y.1).

We use the following definitions for dealing with bags.

AsBag(Y S(σ)) def= {〈y, 1〉 | y ∈ Y }
AsSet(XM(σ)) def= {y.0 | y ∈ X}

Σb
i (XM(T(σ0,...,σi,...))) def= Σ0({〈x.1 ∗ x.0.i, x.0〉 | x ∈ X}) (σi is numeric)

Intuitively AsSet(X) eliminates the duplicates from X . Σb
i is a generalization

of the projected sum over sets to bags. Note that x.1 above is always positive
(thus, the use of ∗ is well-defined). Note that an expression like XM(σ) ∪ Y M(σ)

is a well-formed expression in T Σ, but it does not preserve the type M(σ).

Example 1. Let q[XM(T(Z,Z,Z))] be the following expression where ϕ[x] is the
formula x < 4. Intuitively, the query selects the first column and sums up the
elements in the second column and groups all entries by the first column (see
also Example 2).

q[X ] = {〈x.0.0, Σb
1({y | y ∈ X ∧ x.0.0 = y.0.0 ∧ ϕ[y.0.2]})〉 | x ∈ X ∧ ϕ[x.0.2]}

Let t = {〈〈0, 2, 1〉, 2〉, 〈〈1, 2, 3〉, 1〉, 〈〈1, 2, 4〉, 1〉}. Consider the evaluation of q[t].

q[t] = {〈x.0.0, Σb
1({y | y ∈ t ∧ x.0.0 = y.0.0 ∧ ϕ[y.0.2]})〉 | x ∈ t ∧ ϕ[x.0.2]}

4 Extensionality of sets is a meta-level property that is not expressible in T Σ.
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= {〈0, Σb
1({y | y ∈ t ∧ 0 = y.0.0 ∧ ϕ[y.0.2]})〉,

〈1, Σb
1({y | y ∈ t ∧ 1 = y.0.0 ∧ ϕ[y.0.2]})〉}

= {〈0,
∑

a∈{〈〈0,2,1〉,2〉} π1(a) ∗ π1(π0(a))〉,
〈1,

∑
a∈{〈〈1,2,3〉,1〉} π1(a) ∗ π1(π0(a))〉}

= {〈0, 4〉, 〈1, 2〉}

3 From SQL to T Σ

In this section we show how we translate a class of SQL queries into T Σ. We
name the translation Q : SQL → T Σ. This section is less formal than Section 2.
We omit full details of Q and illustrate it through examples and templates, which
should be adequate for understanding how the general case works. We restrict our
focus to queries without side-effects and consider a subset of SELECT statements.
We illustrate parts of the concrete grammar with simplified grammar fragments
extracted from [1]. Queries that may cause deletion or addition of rows in the
database are outside the scope of this paper. Also, queries that use ORDER BY are
not handled here. In Section 6 we briefly discuss an extension of our approach
for analyzing queries with side-effects, as ongoing and future work. In most cases
input tables have primary keys that disallow duplicates. However, in the general
case, tables and results of queries are represented as bags whose domain sort is
a tuple.

3.1 Data Types

Typical databases use additional data types besides numbers and Booleans. In
particular, strings are used in virtually every database. So how do we support
them? There are two approaches to deal with this. One is to encode the data
types in T Σ. The other one is to extend T Σ with the corresponding sorts and
background theories. In this paper we take the first approach. The main advan-
tage is that we have a smaller core that we need to deal with in the context
of analysis, that is discussed in Section 4. The main disadvantage is that the
overhead of the encoding may be more expensive than using a built-in theory.

Strings. There are several ways how strings can be encoded in T Σ. Suppose that
in a given column, all strings have a maximum length k; a possible encoding of a
k-string is as a k-tuple of integers, where each character a is encoded as an integer
c(a) in the range [1, 255]. A further constraint associated with this encoding is
that it has the form 〈c(a0), . . . , c(al), 0, . . . , 0〉 for a string a0 · · · al for l < k, and
the empty string is the Default of the tuple sort. Operations over k-strings, such
as extracting a substring, can then be defined in terms of tuple operations.

Commonly, a collection of strings D are used as enums in a given column (for
example names of persons), and the only string operations that are relevant are
equality and lexicographic ordering ≤lex over strings in D. In this case one can
define a bijection fD : D → [0, |D| − 1] such that, for all a, b ∈ D, a ≤lex b iff
fD(a) ≤ fD(b), and encode strings in D as |D|-enums.
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3.2 Nullable Values

We encode nullable values with tuples. Given a basic sort σ, let ?σ be the sort
T(σ, B) with the constraint ∀x?σ (x.1 = false ⇒ x.0 = Defaultσ) and null?σ def=
DefaultT(σ,B). Operations that are defined for σ are lifted to ?σ. For example, for
a numeric sort σ,

x?σ + y?σ def= Ite(x.1 ∧ y.1, 〈x.0 + y.0, true〉,null?σ).

The projected sum operation is lifted analogously. The sorts T(σ, B) are not
used to represent any other data types besides ?σ. This encoding introduces an
overhead for the symbolic analysis and is avoided unless the corresponding value
type is declared nullable.

3.3 Query Expressions

We consider top level query expressions that have the form query expr according
to the (simplified) grammar:

query expr ::= select | (query expr set operation query expr)
set operation ::= UNION | EXCEPT | INTERSECT
select ::= SELECT [DISTINCT] select list

FROM table src [WHERE condition] [group by having]

Set operations such as UNION remove duplicate rows from the arguments and the
resulting query. In particular, the translation for UNION is:

Q(q1 UNION q2) def= AsBag(AsSet(Q(q1)) ∪ AsSet(Q(q2))).

The other set operations have a similar translation.

3.4 Select Clauses

A select clause refers to a particular selection of the columns from a given table
by using a select list . In the following translation we translate a select list l into
a sequence of projection indices (l0, . . . , ln) on the table on which the selection
is applied.

Q(SELECT l FROM t) def= {〈〈x.0.l0, . . . , x.0.ln〉, M(x)〉 | x ∈ Q(t)} (6)

where M(x) = Σ0({〈y.1, y〉 | y ∈ Q(t) ∧
n∧

i=0

y.0.li = x.0.li})

Note that multiplicities of the resulting tuples are computed separately, which is
needed to preserve the type of the result as a bag. For example, the following is
not a valid translation, unless l is *, because the multiplicities are not computed
correctly:

{〈〈x.0.l0, . . . , x.0.ln〉, x.1〉 | x ∈ Q(t)}
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If the DISTINCT keyword is used then duplicate rows are removed.

Q(SELECT DISTINCT l FROM t) def= AsBag(AsSet(Q(SELECT l FROM t)))

The following property is used in the set conversion:

AsSet(Q(SELECT l FROM t)) = {〈y.l0, . . . , y.ln〉 | y ∈ AsSet(Q(t))} (7)

An optional WHERE condition is translated into a formula in T Σ and appears as
an additional condition in the above comprehensions.

3.5 Join Operations

Join operations are used in FROM statements. In general, a FROM statement takes
an argument table src, that, in simplified form, has the grammar:

table src ::= table name [AS alias] | joined table
joined table ::= table src join table src ON condition
join ::= [{INNER | {{LEFT | RIGHT | FULL} [OUTER]}}] JOIN

The condition may use column names of the (aliased) tables and operations on
the corresponding data types. We only consider the case of INNER JOIN:

Q(t1 INNER JOIN t2 ON c) def= (8)
{〈x1.0 × x2.0, x1.1 ∗ x2.1〉 | x1 ∈ Q(t1) ∧ x2 ∈ Q(t2) ∧ Q(c)[x1.0, x2.0]}

where Q(c)[y1, y2] denotes the translation of the condition c to the corresponding
formula in T Σ, where the column names referring to the tables t1 and t2 occur
as corresponding tuple projection operations on y1 and y2, respectively. The
operation × is defined as follows, where x is an m-tuple and y is an n-tuple:

x × y
def= 〈π0(x), . . . , πm−1(x), π0(y), . . . , πn−1(y)〉

The following property holds for the translation:

AsSet(Q(t1 INNER JOIN t2 ON c)) = (9)
{y1 × y2 | y1 ∈ AsSet(Q(t1)) ∧ y2 ∈ AsSet(Q(t2)) ∧ Q(c)[y1, y2]}

3.6 Grouping and Aggregates

A very common construct is the combined use of GROUP BY with aggregate op-
erations. A group by having expression has the following (simplified) grammar,
where a group by item for us is a column name.

group by having ::= group by [HAVING condition]
group by ::= GROUP BY group by list
group by list ::= group by item [ ,...n ]
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This expression appears in a select expression, the grammar of which is shown
above, and there is a context condition that the columns in select list that are not
included in group by list must be applied to aggregate operations. The context
condition is needed to eliminate duplicate rows produced by the select clause
by combining the values in the columns not in the group by list into a single
value for the given column. Here we only consider aggregates in combination
with grouping.5 The aggregate operations we consider are SUM, COUNT, MAX, MIN.

Example 2. Assume that X is a table with the columns (A,B,C) where each
column has integer type. Consider the following query q.

SELECT A, SUM(B) AS D
FROM X
WHERE C < 4
GROUP BY A

Q(q) is AsBag(q[X ]) with q[X ] as in Example 1, where it is shown how

q[

A B C

0 2 1
0 2 1
1 2 3
1 2 4

] evaluates to
A D

0 4
1 2

.

In order to simplify the presentation assume that select list and group by list are
like in Example 2. (Generalization is straightforward, but tedious.) The transla-
tion is as follows, where t is SELECT a SUM(b) AS d FROM t1 WHERE c1,

Q(t GROUP BY a HAVING c2) def= AsBag({z | z ∈ G ∧ Q(c2)[z]})
where G = {〈x.0.0, Σb

1({y | y ∈ Q(t) ∧ y.0.0 = x.0.0})〉 | x ∈ Q(t)}

Note that the condition y.0.0 = x.0.0 corresponds to group list . Note also that
c2 is applied to the result G of the grouping and in the formula Q(c2)[z], z.0
corresponds to a and z.1 corresponds to d. The other aggregates are translated
similarly. For example, if SUM(b) is replaced by COUNT(b) then in the above
translation Σb

1 is replaced by Count def= Σ1. For MIN and MAX the projected sum
operation is not needed, for example:

Min(XS(σ)) def= TheElementOf ({y | y ∈ X ∧ {z | z ∈ X ∧ z < y} = ∅}) (10)

Although we do not consider the aggregate AVG here, it can be translated as
Σb

i (X) ÷ Count(X), where ÷ is division by positive integer in R and can be
defined as follows:

r ÷ k
def= TheElementOf ({xR | k ∗ x = r}). (11)

5 In general, aggregates may also be used in a select expression without using grouping.
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3.7 Simplifications

Many operations convert bags into sets. There are certain further simplification
rules, besides (7) and (9), that are based on the following properties between
bag an set operations and are used in the translation to reduce operations over
bags to operations over sets, whenever possible.

AsSet(AsBag(XS(σ))) = X

Σb
i (AsBag(XS(σ))) = Σi(X)

AsSet({t | ϕ}M(σ)) = {t.0 | ϕ}

Moreover, further simplifications are done at the level of basic sorts, such as
πi(〈t0, . . . , ti, . . .〉) = ti, that are also used as part of the simplification process.
More accurately, the simplifications are part of an equivalence preserving post
processing phase of Q(q) for a given query q.

4 Model Generation with SMT

Translation Q leads to a subclass of expressions in T Σ, denoted by T Σ
Q . The core

problem we are interested in is model generation in T Σ
Q .

Definition 1 (Model Generation in T Σ
Q ). Given a quantifier free formula

ϕ[X ] in T Σ, and a query q, decide if ψ = ϕ[Q(q)] is satisfiable, and if ψ is
satisfiable generate a model of ψ.

Our main application is to generate a database for a given query such that the
query satisfies a certain property. In general a query may also include parameters,
other than the input tables, e.g., in Example 2, the constant 4 can be replaced
by a parameter variable @x.6 Thus, one can use model generation for parameter
generation as well as database generation, given a (partially) fixed database and
a parameterized query q, generate a model of ϕ[Q(q)], where ϕ represents a test
condition (such as the result being nonempty). Once a model is generated, it is
used to generate a concrete unit test, see Section 5.

For model generation we use the state of the art SMT solver Z3 [25,10]. For
bags and sets we use the built-in theory of extensional arrays in Z3, similarly for
tuples, Booleans, integers and reals. In some cases the formula ϕ[Q(q)] can be
first simplified, e.g., so that all bags are reduced to sets. Below we describe the
general mechanism without emphasis on such simplifications.

4.1 Eager Expansion

Consider a formula ψ[X] as an instance of the model generation problem, where
every X in X is a bag variable. The formula ψ may include other free variables
that correspond to parameter variables in the original query. For the analysis,
we introduce a special inductively defined term called a set describer, with the
sort S(σ).
6 Parameters are prefixed with the @ sign in the concrete query language we are using.
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– The constant EmptyS(σ) is a set describer.
– If tS(σ) is a set describer then so is the term Set(ϕB, uσ, t).

Given a state S for Set(ϕ, u, t), the interpretation in S is,

Set(ϕ, u, t)S = Ite(ϕ, {u}, ∅)S ∪ tS , EmptyS = ∅.

Consider a fixed X in X and let tX be the set describer

Set(true, 〈x1, m1〉, . . .Set(true, 〈xk, mk〉,Empty) . . .)

where k and all the mj’s are some positive integer constants and each xi is a
variable. Thus, tX describes the set {〈x1, m1〉, . . . , 〈xk, mk〉}. It is also assumed
that there is an associated constraint distinct(x1, . . . , xk) stating that all the
xi’s are pairwise distinct. Thus tX is a valid bag term, in any context where the
constraint holds.

The expansion of ψ[tX ], Exp(ψ[tX ]), eliminates comprehensions and pro-
jected sums from ψ[tX ]. The definition of Exp is by induction over the structure
of terms. The case of comprehensions is as follows. Here we assume that the
comprehension has a single bound variable, the definition is straightforward to
generalize to any number bound variables. It is also assumed here that the com-
prehension has a special form where the bound variable x has a range expression
x ∈ r where x is not free in r.

Exp({t |x x ∈ r ∧ ϕ}) def= ExpC(t, x,Exp(r), ϕ)

ExpC(t, x,Empty , ϕ) def= Empty

ExpC(t[x], x,Set(γ, u, rest), ϕ[x]) def= Set(γ ∧ Exp(ϕ[u]),Exp(t[u]),
ExpC(t, x, rest , ϕ))

Not all comprehensions are expanded this way, some expressions use special-
ized expansion rules. For example, for (10), Exp(Min(t)) is replaced by a fresh
variable x and the formula

Ite (Exp(t) �= ∅, (IsLeq(x,Exp(t)) ∧ x ∈ Exp(t)), x = 0) ,

which is equivalent to x = Min(t), that is included as a top-level conjunct (in
Exp(ψ[tX ])),7 where

IsLeq(x,Empty) def= true

IsLeq(x,Set(ϕ, u, r)) def= (ϕ ⇒ x ≤ u) ∧ IsLeq(x, r)

For Σi the expansion is as follows.

Exp(Σi(t))
def= Sumi(Exp(t),Empty)

Sumi(Empty , s) def= 0

Sumi(Set(γ, u, rest), s) def= Ite(γ ∧ u /∈ s, πi(u), 0) + Sumi(rest ,Set(γ, u, s))
7 Note that a formula ϕ[t] is equivalent to the formula ∃x(ϕ[x] ∧ x = t), where x is a

fresh variable.
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Note that the role of s is to accumulate elements that have already been included
in the sum, so that the same element is not added twice.

Regarding multiplication, the general form of (5), that involves a compre-
hension without a range expression, is not needed. Since all multiplicities in
the initial tables tX are fixed constants, it follows that multiplications are ei-
ther of the form k1 ∗ k2, where k1 and k2 are constants (in formulas created in
(8)), which preserves the constant multiplicities in the resulting table), or mul-
tiplicities are finite sums of constants (as in (6)), which provides constant upper
and lower bounds for the multiplicities. Multiplication under these constraints
is supported in Z3.

It is also possible to expand t÷ u as defined in (11), by replacing Exp(t÷ u)
with a fresh variable xR and adding the top-level conjunct Exp(u)∗x = Exp(t).
Here Exp(u) is also a sum of terms that have constant upper and lower bounds.

The overall approach amounts to systematically enumerating the sizes of the
tables and the multiplicities, and searching for a model of the resulting expanded
formula.

4.2 Lazy Expansion

The main disadvantage of the eager approach is that it expands all terms up-
front, without taking into account if a certain expansion is actually needed in
a particular context. An alternative (or complementary) approach is to delay
the expansion of (some) terms by delegating the expansion to the proof search
engine of the underlying solver. We explain here a high-level view of how to
accomplish such delayed or lazy expansion in the context of SMT.

In addition to a quantifier free formula ψ that is provided to the SMT solver
and for which proof of satisfiability is sought, one can also provide additional uni-
versally quantified axioms. During proof search, axioms are triggered by match-
ing subexpressions in ψ. An axiom has the form

(∀x̄(α), patα)

where α is a quantifier free formula, patα is a quantifier free term, and FV (α) =
FV (patα) = x̄. The axioms typically define properties of uninterpreted function
symbols in an extended signature. The high-level view behind the use of the
axioms is as follows. If ψ contains a subterm t and there exists a substitution θ
such that t = patαθ, i.e., t matches the pattern patα, then ψ is replaced during
proof search by (a reduction of) ψ∧αθ.8 Note that, if a pattern is never matched
in this way, the use of the corresponding axiom is not triggered. Thus, the use of
axioms is inherently incomplete, and it is not guaranteed that the axioms hold
in a model of ψ, if one is found, or even if the axioms are consistent.

We illustrate the use of axioms with the projected sum operator. Assume that
Empty , Set , and Sumi are new function symbols and assume that we have the
following axioms:
8 In general, one can associate several patterns with an axiom, one of which is used for

triggering, and one can also use multi-patterns in Z3. A multi-pattern is a collection
of patterns all of which must be matched for the axiom to be triggered.
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α1 = ∀s(Sumi(Empty , s) = 0)
patα1

= Sumi(Empty , s)
α2 = ∀b u r s (Sumi(Set(b, u, r), s) =

Ite(b ∧ u /∈ s, πi(u), 0) + Sumi(r, Ite(b, {u}, ∅)∪ s))
patα2

= Sumi(Set(b, u, r), s)

Note that, unlike we defined Sumi in Section 4.1, the argument s here is not a
set describer, but a set valued term that has built-in interpretation in the SMT
solver.9 Let us consider an example reduction, let ψ0 be the formula:

x ≤ Sum1(Set(true, 〈1, y〉,Set(true, 〈1, z〉,Empty)), ∅)

The right hand side of ψ0 matches patα2
, so ψ0 reduces to ψ1:10

x ≤ y + Sum1(Set(true, 〈1, z〉,Empty), {〈1, y〉})

The same axiom is applied again, and ψ1 is reduced to ψ2:

x ≤ y + Ite(z �= y, z, 0) + Sum1(Empty , {〈1, y〉, 〈1, z〉})

Finally, α1 is used to reduce ψ2 to x ≤ y + Ite(z �= y, z, 0). Some concrete
examples, using the smt-lib format, are given in the technical report [24].

In general, such axioms can be defined for expanding other constructs. The
main tradeoff is whether the additional overhead of the axiomatization of the
expansion rules and the loss of completeness pays off. One also has to take into
account that in the intended application, discussed in Section 5, we are mostly
interested in generating small databases.

5 Application to Unit Testing

Returning to the main motivation behind this work, we are primarily interested
in the problem of generating a database (a collection of tables) and concrete
parameters for a given parameterized query that, when evaluated with respect
to the database, satisfies a certain test condition. Examples of standard test
conditions are: the answer is empty, the answer is nonempty, and the answer
contains a given number of (distinct) rows.

We are abstracting here from the problem of determining what exactly are
the intended domains of the values in a column, e.g., a certain column may be
declared to have the string type, but effectively the strings are used as enums.
In fact, the particular encoding of the domain values depends of the query. We
suppose that we have domain specific functions, that enable us to map models
generated by the analysis engine, to corresponding concrete tables and parameter
values for the query, e.g., that the value 12 in a certain column corresponds to
the string “Bob”. See also Section 3.1.
9 It is not possible to pattern-match against built-in operations in Z3.

10 To be precise the reduction takes several steps that are skipped here.
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Fig. 3. High-level view of the workflow in Qex

With this encoding in mind, we view the analysis engine here as a black box,
called Qex, which given a parameterized query, produces a set of tables and
parameters to that query. A high-level workflow diagram of Qex is illustrated
in Figure 3. One can also see a short video that introduces Qex [18]. In the
following we look at some examples and illustrate a concrete application of Qex
in the context of generating database unit tests in Visual Studio.

Experiments. We consider here a sample database for an online store that
contains tables for products, orders and customers; products have a product
id, a name and a price; customers have a customer id and a name; orders
have an order id and a customer id. Figure 4 illustrates some sample queries
over the database. Query q1 selects customers and related orders based on
a constraint on the ids. Query q2 selects those customers and corresponding
number of orders, who have more than one order. Query q3 selects “good”
customers and has a parameter named @value. Table 1 shows some perfor-
mance measures of model generation for different input table sizes and test
conditions for the queries in Figure 4 using the eager expansion. The total
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q1: SELECT C.CustomerID, O.OrderID

FROM Orders AS O

JOIN Customers AS C ON

O.CustomerID = C.CustomerID

WHERE O.CustomerID > 2 AND

O.OrderID < 15

q2: SELECT C.CustomerID,

Count(O.OrderID)

FROM Orders AS O

JOIN Customers AS C ON

O.CustomerID = C.CustomerID

GROUP BY C.CustomerID HAVING

Count(O.OrderID) > 1

q3: DECLARE @value AS INT;

SELECT C.CustomerID, SUM(OP.OrderProductQuantity * P.ProductPrice)

FROM OrderProducts AS OP

JOIN Orders AS O ON OP.OrderID = O.OrderID

JOIN Products AS P ON OP.ProductID = P.ProductID

JOIN Customers AS C ON O.CustomerID = C.CustomerID

WHERE @value > 1

GROUP BY C.CustomerID

HAVING SUM(OP.OrderProductQuantity * P.ProductPrice) > 100 + @value

Fig. 4. Sample queries

evaluation time is divided into expansion time texp and proof search time tz3
with Z3. The current prototype implementation of the eager expansion algo-
rithm is unoptimized and uses a naive representation of terms in T Σ without
structure sharing, e.g., the size of the expanded term Q(q2) for k = 3 is over
5 million symbols. This is reflected by the fact that in most cases texp >> tz3,
although the actual parameter and table generation takes place during proof
search. Note that texp is independent of the test condition, whereas tz3 clearly
depends on it. In general, exhaustive search for models, in the case when the
formula is unsatisfiable, is more time consuming than when a model exists. Note
also that query q2 is unsatisfiable with 1 row in each input table due to the

Table 1. Model generation for sample queries. Evaluation times texp and tz3 are given
in seconds; k is the expected number of rows in each of the generated input tables; all
multiplicities of rows in input tables are 1.

query condition k check texp tz3

q1

res �= ∅

1 sat .03 .001
2 sat .05 .005
3 sat .3 .02
4 sat 1.4 .13

res = ∅

1 sat .03 .001
2 sat .05 .006
3 sat .3 .12
4 sat 1.4 2

query condition k check texp tz3

q1 |res | = 5

1 unsat .03 .001
2 unsat .05 .01
3 unsat .3 .16
4 unsat 1.4 10
5 sat 8.4 1.6

q2 res �= ∅
1 unsat .03 .001
2 sat .7 .006
3 sat 26 .03

q3 res �= ∅ 1 sat .34 .001
2 sat 30 .03
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Fig. 5. Screenshot of model generation through Pex integration of Qex in Visual Studio

condition Count(O.OrderID) > 1. The actual tables and parameters generated
for q3 using Pex [17] integration in Visual Studio Database edition are illus-
trated by a screenshot in Figure 5. The integration also generates automati-
cally a unit test. A partial screenshot of the generated unit test is illustrated
in Figure 6. The test contains two SQL scripts. The first script prepares the
database by deleting old data from the tables and by inserting newly gener-
ated rows into the database. The second script declares the given query together
with the generated parameter values. The unit test is executed against the ac-
tual database, which in this case is provided through MS SQL Server 2005.

...

Fig. 6. Automatically generated database unit test in Visual Studio
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6 Extensions

The Qex project is a new project that has some flavor of model-based testing
as well as parameterized unit testing. The current implementation is a proto-
type that needs further evaluation and case studies. The approach can also be
extended in several ways. The choice of the background theory T Σ was partly
motivated with some of those extensions in mind. Here we discuss a few of the
extensions that are ongoing and future work.

Side-effects. The background theory T Σ is an extension of the background the-
ory T with the projected sum operator and restricted to finite sets; T is used
for symbolic model program analysis [23,22] by reduction to SMT solving. The
projected sum operation has not been considered in that context; one reason is
that it causes undecidability of some fragments that are otherwise decidable. In
principle though, model programs can also be based on the background T Σ. A
model program can be used to describe an evaluation of a query together with
side-effects, where the side-effects are computed as update sets to respective
tables that are applied at the end of the evaluation in a single transaction. In
this setting one can also symbolically analyze the resulting model program for
potential update inconsistency [23].

Data types. Another extension is better support for data types that are in the
current approach encoded with tuples. This encoding is not fully adequate for
supporting commonly used algebraic data types such as trees and lists, or terms
in the sense of a free-algebra with a separate sort. The encoding of such data
types in T Σ is both expensive and incomplete (from the analysis point of view).
Also, one can adopt existing techniques to represent strings, and solve constraints
involving common operations over strings, in the context of an SMT solver [3].

Integration with parameterized unit testing of code. From the practical perspec-
tive, more complex unit tests, used for testing store procedures, may use a com-
bination of queries and code. It is possible to combine parameterized unit testing
of managed code [20] with query evaluation discussed in this paper.

7 Related Work

Deciding satisfiability of SQL queries requires a formal semantics. While we give
meaning to SQL queries by an embedding into our formal background theory
T Σ, which is in turn mapped to a logic of an SMT solver, there are other ap-
proaches, e.g., defining the semantics in the Extended Three Valued Predicate
Calculus [16], or using bags as a foundation [7]. Satisfiability of queries is also re-
lated to logic-based approaches to semantic query optimization [5]. The general
problem of satisfiability of SQL queries is undecidable and computationally hard
for very restricted fragments, e.g., deciding if a query has a nonempty answer is
NEXP-hard for nonrecursive range-restricted queries [9].
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Several research efforts have considered formal analysis and verification of
aspects of database systems, usually employing a possibly interactive theorem
prover. For example, one system [19] checks whether a transaction is guaranteed
to maintain integrity constraints in a relational database; the system is based
on Boyer and Moore-style theorem proving [4].

There are many existing approaches to generate databases as test inputs.
Most approaches create data in an ad-hoc fashion. Only few consider a target
query. Tsai et.al. present an approach for test input generation for relational
algebra queries [21]. They do not consider comprehensions or bags. They pro-
pose a translation of queries to a set of systems of linear inequalities, for which
they implemented an ad-hoc solving framework which compares favorably to
random guessing of solutions. A practical system for testing database transac-
tions is AGENDA [11]. It generates test inputs satisfying a database schema
by combining user-provided data, and it supports checking of complex integrity
constraints by breaking them into simpler constraints that can be enforced by
the database. While this system does not employ a constraint solver, it has been
recently refined with the TGQG [6] algorithm: Based on given SQL statements,
it generates test generation queries; execution of these queries against a user-
provided set of data groups yields test inputs which cover desired properties of
the given SQL statements.

Some recent approaches to test input generation for databases employ au-
tomated reasoning. The relational logic solver Alloy [13,14] has been used by
Khalek et.al. [15] to generate input data for database queries. Their implemen-
tation supports a subset of SQL with a simplified syntax. In queries, they can
reason about relational operations on integers, equality operations on strings,
and logical operations, but not about nullable values, or grouping with aggre-
gates such as SUM; they also do not reason about duplicates in the query results.
QAGen [2] is another approach to query-solving. It first processes a query in an
adhoc-way, which requires numerous user-provided “knob” settings as additional
inputs. From the query, a propositional logic formula is generated, which is then
decided by the Cogent [8] solver to generate the test inputs. Recently, test input
generation of queries has been combined with test input generation of programs
that contain embedded queries in the program text [12], using ad-hoc heuristic
solvers for some of the arising constraints from the program and the queries.

8 Conclusion

The current prototype of Qex is a proof-of-concept. Qex can be used in the con-
text of the Unit Testing Framework of Visual Studio Database Edition; a short
video is available on the Qex project page [18] that illustrates the integration.
For practical usage in an industrial context, we are working on an integration of
Qex inside Pex [17]. In the context of Pex, embedded SQL queries in C# code
can be translated into formulas that can be conjuncted with path-conditions
that are generated by Pex. It is also possible to apply a similar translation to
LINQ queries, although, unlike in SQL, the semantics of LINQ queries depends
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on the order of the rows in the tables. This combination with Pex is possible
because the underlying theorem prover Z3 [25] is used in a similar way in both
tools and the API of Z3 enables incremental evaluation and backtracking over
the search space. In this setting, Qex may be viewed as a database extension of
Pex that supports analysis of constraints involving high-level data types, such
as sets and maps and aggregate operations. Path conditions generated by Pex
establish different contexts where evaluating the same query may yield different
tables depending on the parameter values that have been established in the path
conditions for covering different code branches.

A practical limitation of the approach is if queries use multiple joins and ag-
gregates and the input tables need to contain a high number of rows in order to
satisfy the test condition. Another limitation is the use nonlinear constraints, in
particular multiplication, that has currently only limited support in Z3. However,
for generating tables we start with singleton tables and increment the number
of rows only when a model is not found. We believe that this heuristic should be
adequate for most practical applications, although further evaluation is needed.
In general, checking for nonsatisfiability (or searching for a model of an unsatis-
fiable formula) is less efficient than generating a model of a satisfiable formula,
this is also reflected in Table 1.
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Abstract. Graphical User Interfaces (GUIs) are composed of virtual objects, 
widgets, which respond to events triggered by user actions. Therefore, test in-
puts for GUIs are event sequences that mimic user interaction. The nature of 
these sequences and the values for certain widgets, such as textboxes, causes a 
two-dimensional combinatorial explosion. In this paper we present Barad, a 
GUI testing framework that uniformly addresses event-flow and data-flow in 
GUI applications generating tests in the form of event sequences and data in-
puts. Barad tackles the two-dimensional combinatorial explosion by pruning  
regions of the event and data input space. For event sequence generation we 
consider only events with registered event listeners, thus pruning regions of the 
event input space. We introduce symbolic widgets which allow us to obtain an 
executable symbolic version of the GUI. By symbolically executing the chain 
of listeners registered for the events in a generated event sequence we obtain 
data inputs, thus pruning regions in the data input space. Barad generates fewer 
tests and improves branch and statement coverage compared to traditional GUI 
testing techniques.  

Keywords: GUI testing, symbolic execution, test input generation. 

1   Introduction 

A Graphical User Interface (GUI) provides a convenient way to interact with the 
computer. GUIs consist of virtual objects (widgets) that are intuitive to use, for exam-
ple, buttons, edit boxes, etc. In contrast to console applications where there is only 
one point of interaction (the command line), GUIs provide multiple points (the GUI 
widgets) each of which can have different states. 

A classic challenge in GUI testing is how to select a feasible number of event se-
quences, given the combinatorial explosion due to arbitrary event interleavings. Con-
sider testing a GUI with five buttons, where any sequence of button clicks is a valid 
input. Exhaustive testing without repetition requires trying all 120 combinations since 
triggering one event before another may cause execution of different code paths. 

An orthogonal challenge is how to select values for data widgets, i.e., GUI widgets 
that accept user input, such as textboxes, edit-boxes and combo-boxes, and can have 
an extremely large space of possible inputs. Consider testing a GUI with one text-box 
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that takes a ten character string as an input. Exhaustive testing requires 1026 possible 
input strings (we limit each character to be alphabetical in lower-case). 

Automation of GUI testing has traditionally focused on minimizing event se-
quences [9] [10] [12] [18] [21]. Data widgets have either been abstracted away by not 
considering GUI behaviors dependent on data values, generated at random, or se-
lected from a small manually constructed set of values. As a consequence, data de-
pendent behaviors are inadequately tested. Consider generating a string value that is 
necessary for satisfying an if-condition. Random selection is unlikely to generate the 
desired value. Manual selection requires tedious code inspection. A specification-
based (black-box) approach may find this “special” value, however it would require 
detailed specifications, which often are not provided. 

In this paper we present Barad, a novel GUI testing framework for checking GUI 
applications written in Java with the Standard Widget Toolkit (SWT) [20]. Barad 
generates event sequences and data inputs providing a systematic approach that uni-
formly addresses event-flow and data-flow for white-box testing of GUI applications. 
We detect event listeners – instances that register for and respond to events in the 
GUI. This allows us to consider only events with registered listeners during event 
sequence generation, thus pruning regions of the event input space. We symbolically 
execute the chain of listeners registered for the events in a generated event sequence. 
This allows us to obtain data inputs for the fields of GUI widgets, thus pruning re-
gions in the data input space. Barad is fully automatic, performing bytecode instru-
mentation, test generation, symbolic execution, and test execution. While our current 
implementation handles only GUIs written with the SWT library, our approach is 
generic and can be successfully applied to other Java GUI libraries. 

To scale symbolic execution [7] [8] [15] [16] [17] for GUI applications, we intro-
duce symbolic widgets which allow us to perform symbolic manipulation of standard 
GUI widgets and obtain an executable symbolic version of the GUI. Widget imple-
mentations have three concerns: (1) functionality; (2) visualization; and (3) perform-
ance. Symbolic widgets focus on functionality, abstracting away the other two  
concerns. The benefit of this approach is that it enables (1) efficient and systematic 
dynamic analysis of GUI applications, and (2) generation of inputs for data widgets. 

In our previous publication [5] we introduced symbolic analysis of GUI event  
listeners in isolation for obtaining data inputs without considering event sequence 
generation and analysis of event listeners in the context of the GUI application (i.e. 
interactions between event listeners). In this paper we present a novel approach for 
event sequence generation and symbolic analysis of the GUI application. 

We make the following contributions: 

• Symbolic analysis of GUI applications. We introduce the abstraction of 
symbolic widgets that enables efficient and systematic dynamic analysis of 
GUI applications. 

• Event sequence generation. We present a novel test generation approach 
and consider only events with registered event listeners, thus pruning regions 
of the event input space. 

• Data input generation. By symbolically executing the chain of listeners reg-
istered for the events in a generated event sequence we obtain data inputs, 
thus pruning regions in the data input space. 
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• Implementation. Barad is fully automatic, performing Java bytecode in-
strumentation, test generation, symbolic execution, and test execution. 

• Evaluation. We evaluate our approach on non-trivial GUI subjects and com-
pare it to traditional GUI testing techniques. Barad generates fewer tests and 
achieves higher statement and branch coverage. 

2   Example 

In this section we provide an example how our approach uniformly handles event-
flow and data-flow in GUI applications and compare it to conventional GUI testing 
techniques. 

2.1   Fare Calculator 

The GUI presented in Figure 1 is an application (313 lines of code) that we devel-
oped. It calculates the amount due for a train ticket. A user must provide a passenger 
class, name, ID, passenger group, and begin and end points. Passenger groups are 
Senior, Adult, Student, and Child. 

 

Fig. 1. Screenshot of the Fare Calculator 

Each passenger class has its own coefficient that is used during the calculation. 
Each group has a different base price depending on the distance to be traveled, which 
is the difference between From mile and To mile. This application has three event 
listeners registered for the click events in buttons Close, Calculate, and Clear, respec-
tively. The calculation logic has 22 branches with conditional statements nested three 
levels deep. The execution of a particular branch depends on the user input both in the 
form of data and event sequence. 

2.2   Input Space 

The Fare Calculator consists of two radio buttons, five textboxes, three buttons, and 
one combo–a total of eleven GUI widgets. Therefore, the number of event sequences 
with only one event per widget and one value per data widget is slightly less than 
4,000,000 (11!). Furthermore, just the input for the ID field of the Fare Calculator, a 
sequence of ten numeric characters, causes a factor of 10,000,000,000 (1010) increase 
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in the test suite size. Hence, due to the two-dimensional combinatorial explosion in 
GUI inputs, exhaustive testing of even as simple GUI as the Fare Calculator is unreal-
istic.  Clearly, a systematic approach that prunes regions of the event and data input 
space is required.   

2.3   Test Results 

We tested the Fare Calculator with Barad. The process was completed fully automati-
cally. Our results are shown in Table 1. 

Table 1. Test results with enabled symbolic analysis 

Tests Branch coverage, % Statement coverage, % Time, sec 

69 100 100 13.02 

The first column presents the total number of tests. The second and the third col-
umns present the branch and statement coverage, respectively. Column four contains 
the execution time which includes instrumentation, test generation, symbolic execu-
tion, and test execution. Barad uses Emma [4] to determine code coverage. Branch 
coverage was obtained by manual inspection of the code coverage report. 

We interpret our results as follows. The application has three event listeners regis-
tered for the events of clicking each of the buttons. Hence, during event sequence 
generation we consider only these three events resulting in six tests with length three 
without repetition. Each test case was executed on the symbolic version of the GUI 
and for some tests sets of input values were obtained. Test cases, symbolic execution 
of which generated sets of input values, were prefixed with events to populate each 
set of values, thus producing a new test case for each input set. The full branch and 
statement coverage is due to data values obtained by systematic exploration of all 
feasible paths during symbolic execution. 

Conventional GUI testing techniques [9] [10] [12] [18] [22] exhaustively generate 
event sequences up to a given bound and adopt a specification based approach to 
populate inputs—selecting from a predefined set of values. We disabled the sym-
bolic and event listener analysis in Barad to simulate conventional GUI testing. We 
limited the length of event sequences to be equal to the length of sequences gener-
ated by our approach before prefixing with events for data input population. The 
input values for data widgets were chosen in a widget specific manner as follows:  
for the textboxes a choice from the set {-1, 0, 1, Test, ThisIsAVeryLongStringValue, 
the empty string} was made; for the combo a choice from the set of possible values, 
 

Table 2. Test results with disabled symbolic analysis 

Tests Branch coverage, % Statement coverage, % Time, sec 

1152 23 87 142.45 
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namely {Senior, Adult, Student, Child} was made. Results of this analysis are pre-
sented in Table 2. The first column presents the total number of tests. The second 
and the third columns present the branch and statement coverage, respectively.  
Column four contains the execution time which includes test generation and test 
execution. 

2.4   Comparison 

Results show that for the Fare Calculator our approach generated more than an order 
of magnitude fewer tests compared to a traditional approach, while achieving 
significantly higher branch coverage. The longest event sequence generated by our 
technique has length eight and consists of the following events:  (1) selecting a 
Passenger class; (2) populating the Name field; (3) populating the ID field; (4) 
populating the From mile field; (5) populating the To mile field; (6) selecting the 
Calculate button; (7) selecting the Clear button; (8) selecting the Close button; Note 
that our approach generated the minimal set of event sequences with length eight to 
achieve full path coverage. In contrast, to generate a test case with this length and 
achieve the same coverage results the traditional approach requires generation of all 
event sequences with length eight without repetition. Considering the very limited 
input specifications, this results in 7.6 x 1013 test cases. 

3   Background 

This section provides the reader with some background about the technique of sym-
bolic execution. It also presents the traditional GUI testing approaches and the GUI 
model we adopt. 

3.1   Symbolic Execution 

The main idea behind symbolic execution is to use symbolic values, instead of actual 
data, as input values, and to represent the values of program variables as symbolic 
expressions. As a result, the output values computed by a program are expressed as a 
function of the input symbolic values. 

The state of a symbolically executed program includes the (symbolic) values of 
program variables, a path condition (PC), and a program counter. The path condition 
is a (quantifier-free) Boolean formula over the symbolic inputs; it accumulates con-
straints which the inputs must satisfy in order for an execution to follow the particular 
associated path. The program counter defines the next statement to be executed. A 
symbolic execution tree characterizes the execution paths followed during the sym-
bolic execution of a program. The nodes represent program states and the arcs repre-
sent transitions between states. 

Consider the code fragment in Figure 2, which swaps the values of integer vari-
ables x and y, when x is greater than y. The figure also shows the corresponding sym-
bolic execution tree. Initially, PC is true and x and y have symbolic values X and Y, 
respectively. At each branch point, PC is updated with assumptions about the inputs, 
in order to choose between alternative paths. For example, after the execution of the 
first statement, both then and else alternatives of the if-statement are possible, and PC 
is updated accordingly. 
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1 int x, y;
2 if (x > y) {
3 x = x + y;
4 y = x - y;
5   x = x - y;
6 if (x - y > 0)
7 assert(false);
8  }
9 } x:X+Y, y:X

PC: X>Y

x:Y, y:X
PC: X>Y

x:Y, y:X
PC: X>Y&Y-X >0
FALSE!

x:Y, y:X
PC: X>Y&Y-X<=0

x:X+Y, y:Y
PC: X>Y

x:X, y:Y
PC: X>Y

x:X, y:Y
PC: X<=Y

x:X, y:Y
PC: true

 

Fig. 2. Code that swaps two integers and its symbolic execution tree where transitions are 
labeled with program control points 

If the path condition becomes false, i.e., there is no set of inputs that satisfy it, this 
means that the symbolic state is not reachable, and symbolic execution does not con-
tinue for that path. For example, statement (7) is unreachable. 

3.2   GUI Testing Approaches 

Since contemporary software extensively uses GUIs to interact with users, verifying 
GUI’s reliability becomes important. There are two approaches to building GUIs and 
these two approaches affect how testing can be performed.  

The first approach is to keep the GUI light weight and move computation into the 
background. In such cases the GUI could be considered as a “skin” for the software. 
Since the main portion of the application code is not in the GUI, it may be tested 
using conventional software testing techniques. However, such an approach places 
architectural limitations on system designers.  

The second approach is to merge the GUI and its computations.  The most com-
mon way of testing such GUIs is by using tools that record and replay event se-
quences. This is laborious and time consuming. Another technique for checking 
GUI’s correctness is by using tools for automatic test generation, execution, and as-
sessment as the one presented in this paper or the ones described in [9] [12] .  

3.3   GUI Model 

We take a standard view of a GUI. Let },...,{ 21 nwwwW =  be the set of GUI widgets. Ex-

amples of widgets are Button, Combo, Label, etc.  Each widget has a set of properties. 
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Let },...,{ 21 mpppP = be the set of widget properties. Examples of properties are enabled, 

text, visible, selection, etc. Each property has a set of values. Let },...,{ 21 pvvvV = be the 

set of property values. Examples of values are true, false, etc. A GUI is a triple 
),,( νρW that consists of a set of widgets, a mapping PW 2: →ρ  from widgets to proper-

ties, and a mapping VP 2: →ν from properties to values. 
Let E  be the set of all events accepted by the GUI. Each GUI widget w accepts 

as input a set of user events wE triggered by user actions which is a subset of E . 

Examples of events are clicks, mouse moves, etc. 

),(:| ww EwacceptEEWw ⊆∃∈∀                                         (1) 

Let L  be the set of all event listeners in the GUI. Each GUI widget w  has zero or 
more event listeners wL  registered for events performed on the widget which is a 

subset of L . Each listener l is registered for a set of events lE which is a subset of all 

events wE  accepted by the widget. Examples of listeners are selection listener, modi-

fication listener, etc.  

  

),(||| elregisteredEeEELlLLWw lwlww ∈∀∧⊆∃∈∀∧⊆∃∈∀          (2) 

Since a user interacts with the GUI through events, a GUI test case t from the set T  
of GUI test cases is an event sequence. 

>=<∈∀ peeetTt ,...,,: 21                                              (3) 

4   Barad 

This section presents Barad, our GUI testing framework. We present the techniques 
for addressing event-flow and data-flow in GUI applications and our approaches for 
pruning regions in the event and data input space. We also provide details about the 
adopted abstractions. 

The process of GUI testing performed by Barad is shown on Figure 3. To enable 
symbolic execution, Barad instruments the bytecode of the tested GUI application 
replacing concrete entities (widgets, strings, primitives, library classes) with their 
corresponding symbolic equivalents (symbolic widgets, symbolic strings, symbolic 
integers etc.) provided by Barad’s symbolic library. The bytecode instrumentation is 
implemented with the ASM library [1]. As a result of the instrumentation phase an 
executable symbolic version of the GUI is generated. Next, a symbolic analysis of the 
instrumented version is performed.  

During this process event listeners are detected, tests in the form of sequences of 
events with registered listeners are generated, and then symbolically executed—all 
paths are systematically explored and their feasibility evaluated by constraint solving. 

As a result of this process a log file and a test suite are generated. The test suite 
consists of event sequences and concrete inputs. Finally, the test suite is executed on 
the concrete version of the application and a coverage report is generated. 
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Fig. 3. GUI testing process in Barad 

4.1   Event-Flow 

To address event-flow in GUI applications we adopt a strategy of pruning regions in 
the event input space by not considering events for which there is no registered event 
listener. Since an event listener contains computational logic performed upon a cer-
tain event, the lack of a listener for an event renders the event to have no effect on the 
GUI. 

However, such an approach might prevent the execution of a given program path. 
Consider a simple GUI with one textbox, one button, and a single event listener for 
the event of pressing the button. Now assume the event listener code has a conditional 
statement which depends on the value of the textbox. 

Since there is no listener for the event of populating the text box and we consider 
only events with registered listeners, an event for populating the textbox will not be 
included in any test case. This leads to inadequate testing because of a failure to cover 
all program paths in the listener. Hence, adopting a strategy for considering only 
events with registered listeners requires a mechanism for detecting if the code in the 
event listener in our example depends on the value of the textbox. To determine such 
a dependency we perform symbolic analysis of the event listener code and generate 
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values for the textbox that would ideally achieve full path coverage of the event lis-
tener. Let us assume that we have identified two values “A” and “B” for the textbox 
which would force the execution to follow different paths at the conditional statement 
in the listener. In such a case if we generate two tests one including the event for 
populating “A” in the textbox followed by pressing the button and the other including 
the event for populating “B” in the textbox followed by pressing the button we will 
achieve full path coverage of the event listener. Therefore, employing symbolic exe-
cution for identifying such dependencies allows us to safely consider only events with 
registered event listeners. We generate events that populate data widgets, for which 
no listener exists only in case we have identified values that would force visiting 
unexplored program paths. More details about our test generation approach are pre-
sented in Section 4.4. 

To illustrate the reduction in the event input space by considering only events with 
registered event listeners consider the Fare Calculator from Section 2. The GUI con-
sists of eleven widgets and three event listeners. Considering only one event per wid-
get (some widgets accept more than one event) results in 165 event sequences with 
length three while considering only events with registered listeners results in only six 
events sequences with length three. 

4.2   Data-Flow 

To address data-flow in GUI applications we utilize symbolic execution to obtain 
inputs for data widgets. We execute symbolically the chain of event listeners regis-
tered for the events in a test case. This is achieved by executing each test case on a 
symbolic version of the application. 

In order to obtain a symbolic version of the application, thus enabling symbolic 
execution of GUIs, we introduce the abstraction of symbolic widgets. Each  
GUI widget has a symbolic counterpart that has the same fields and provides  
the same methods, which however represent and operate on symbolic data,  
respectively. For example, org.eclipse.swt.widgets.Text is mapped to a 
barad.symboliclibrary.ui.widgets.SymbolicText and the string field text of the for-
mer is implemented as a symbolic string in the latter. The corresponding getter and 
setter methods, for the text field of the SymbolicText widget, return as a result and 
receive as a parameter symbolic strings. To enable the integration of symbolic wid-
gets in our framework, we introduce symbolic events and symbolic event listeners. 
Similarly to symbolic widgets, these entities are structurally equivalent to their 
concrete counterparts and operate with symbolic data. 

Symbolic widgets could be envisioned as wrappers that relate sets of variables, 
representing symbolic primitives and strings, to particular instances in the GUI widget 
hierarchy. Therefore, constraints and operations on symbolic widgets are constraints 
and operations on symbolic primitives and strings.  

However, symbolic widgets have richer semantics than the set of variables they en-
capsulate, performing specific to the symbolic and event listener analysis functions: (1) 
Symbolic widgets wrap the variables related to concrete GUI widgets, allowing us to 
maintain a mapping from symbolic variables to concrete GUI widgets. This mapping 
identifies which concrete widgets to be populated with values obtained after concreti-
zation of symbolic variables; (2) Symbolic widgets are mapped one-to-one with con-
crete widgets. This guarantees that the symbolic widget hierarchy is isomorphic to the 
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concrete widget hierarchy and tests generated for the symbolic version of the GUI are 
applicable to its concrete version; (3) Symbolic widgets detect event listeners at run 
time. Detecting of event listeners is required by our test generation algorithm; (4) 
Symbolic widgets implement methods which execute registered event listeners, pass-
ing as a parameter a symbolic event. These methods are used for execution of the  
generated tests; (5) Symbolic widgets, similarly to their concrete counterparts, are 
referenced by the events passed as parameters to the event listeners. This provides a 
mechanism of accessing properties of symbolic widgets through events instances. 

Symbolic widgets abstract away the visualization layer of their concrete replicas. 
Such an approach has several advantages. (1) We avoid symbolic execution of the 
GUI library implementation and focus our analysis on the application logic. Our ob-
jective is verifying application correctness, rather than proper behavior of the GUI 
library. (2) We avoid the native calls made by a GUI widget to the operating system 
to generate a visual representation of the widget. Our focus, during symbolic execu-
tion, is on data-flows in GUI applications and the visual representation of these GUIs 
is irrelevant to our analysis. Hence, we abstract away unnecessary computations. 

Currently Barad supports the symbolic widgets, events, and event listeners required 
for testing the GUI applications presented in this paper. Our framework is an experimen-
tal prototype used to evaluate the applicability of our approach. We did not encounter any 
widget specific issues, which make defining a symbolic widget challenging. We believe 
that full support for the SWT library as well as other Java GUI libraries is feasible. 

4.3   Symbolic GUI Model 

Our view of the symbolic version of a GUI follows the GUI model we have presented 
in Section 3.3. 

Let },...,{ 21 snsss wwwW =  be the set of symbolic widgets. Each symbolic widget has 

a set of properties which are symbolic variables },...,{ 21 smsss pppP = . Each symbolic 

property has a set of values it can take during its concretization },...,{ 21 pssss vvvV = . A 

symbolic GUI is a triple ),,( νρsW that consists of a set of symbolic widgets, a map-

ping sP
sW 2: →ρ  from symbolic widgets to symbolic properties, and a mapping 

sV
sP 2: →ν from symbolic properties to concrete values. 

Let sE  be the set of symbolic events. Each symbolic widget sw  accepts as input a 

set of symbolic events wsE . 

),(:| wssswsss EwacceptEEWw ⊆∃∈∀                              (1) 

Let sL be the set of event listeners. Each symbolic widget sw has zero or more event 

listeners wsL . Each listener sl is registered for a set of symbolic events lsE .  

),(||| ssslswslswssswsss elregisteredEeEELlLLWw ∈∀∧⊆∃∈∀∧⊆∃∈∀    (2) 

4.4   Test Generation Algorithm 

Taking advantage of the symbolic widgets we developed our test generation algorithm 
shown in Figure 4. 
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Fig. 4. Test generation algorithm 

We represent the GUI events with registered event listeners as an Events with Lis-
teners Graph (ELG)—a directed graph with nodes representing events with registered 
listeners and edges. The existence of an edge from event e1 to event e2 means an 
execution of event e2 can be performed immediately after the execution of event e1. 
For example, if event e1 opens a new form (GUI window) every event in that form 
strictly succeeds e1. Every time a new event with registered listener is identified a 
new node is added to the graph. 

Since events with registered listeners are detected at runtime by symbolic widgets 
(intercepting event listener registration calls) and these events can open other forms, 
all events with registered listeners should be executed at least once (line 1) to build a 
complete ELG. Such an approach enables handling of multiple GUI windows. Once 
an ELG has been created we generate test cases performing graph traversals. Our test 
generation algorithm generates exhaustively test cases in the form of event sequences 
up to a given bound without repetition (line 2). 

We obtain data inputs by symbolically executing the sequence of listeners regis-
tered for the events in a test case (line 3-6). Doing so, we capture data dependencies 
between the event listeners and potentially identify sets of input values for the data 
widgets in the GUI (line 4).  For each such set (if such sets exist) a test case is created 
by concatenating events for populating data widgets with the values from the set and 
the events of the test case (line 5). 

To illustrate our test generation algorithm, recall the Fare Calculator from Section 2. 
The algorithm proceeds as follows. Once the symbolic version of the GUI is launched 
the ELG is constructed by executing every event with registered listener in the GUI 
(line 1). As a result from this step all three events with registered listeners (for clicking 
the three buttons) e1, e2, and e3 are identified and used for construction of six event 
sequences (line 2). The listeners corresponding to these events are symbolically exe-
cuted (line 4). Without loss of generality, consider the event sequence (e1, e2, e3) 
symbolically executing the listeners of which generated twenty two sets S of five in-
puts values v1 – v5 each: 

( ) }},..,{},....,,..,{},,..,{{,, 5122512511321 vvSvvSvvSeee →                    (1) 

Each input set transitions the GUI to such a state that executing the sequence (e1, e2, and 
e3) will force visiting of a different program path. Our algorithm constructs a separate 
test case for each set of values by concatenating the event sequence required to populate 
these values with the test event sequence (line 5). The generated test cases, where e(x, y) 
is the event required for populating the value x from value set y, look as follows: 

;e ,e ,e ),S ,e(v,… ),S ,e(v ),S ,e(v 321151211                                  (2) 
                                                                  … 

;e ,e ,e ),S ,e(v,… ),S ,e(v ),S ,e(v 321225222221                                  (3) 

1. SymbolicModel.executeEventsWithListeners(); 
2. eventSequences = TestGenerator.generateTests(); 
3. for (EventSequence s: eventSequences){ 
4.   in = SymbolicModel.excecuteListenerSequence(s.listeners()); 
5.   test.addAll(TestGenerator.appendInputs(in, s); 
6. } 
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4.5   Symbolic Widget Example 

To provide the reader with a better intuition about symbolic widgets we present as an 
example a partial implementation of the symbolic combo widget. Figure 5 shows the 
source code. Symbolic combo extends the symbolic widget (line 1) and defines a 
concrete SWT class it represents (line 2).  

 
Fig. 5. Symbolic combo snippet 

The widget has a list of symbolic listeners (line 3) and a set of symbolic members 
representing its properties (line 4).  In the constructor (lines 6-10) symbolic variables 
are assigned to the combo’s properties (line 9). The symbolic variable receives the 
combo and the property it represents as parameters to associates itself with that prop-
erty. The combo exposes the SWT class it represents (line 11) and defines a method 
for firing a selection event (lines 12-17). Client code can register event listeners (lines 
18-21). Upon detection of an event listener a vertex is added to the ELG (line 19). 
Properties of the symbolic combo are exposed via getter/setter (setter not shown) 
pairs (lines 22-25). Each symbolic variable representing a widget property is added to 
the path (multiple additions has no effect) as an input variable (line 23), informing the 
constraint solver to generate an input value for this variable during the concretization 
phase. 

5   Implementation 

This section presents the components of Barad. We discuss the symbolic and concrete 
agents and provide an overview of the GUI testing mechanism. 

1. public class SymbCombo extends SymbWidget { 
2.   String SWT_CLASS_NAME = "org.eclipse.swt.widgets.Combo"; 
3.   private List<SymbSelectionListener> mSelectionListeners; 
4.   private SymbString mText; 
5.   . . . 
6.   public SymbCombo(SymbComposite parent, SymbInteger style) { 
7.     super(parent, style, "SymbCombo"); 
8.     . . . 
9. mText = new SymbString(20, this, “text”); 
10.  } 
11.  public String getSWTClassName() {return SWT_CLASS_NAME;} 
12.  public void fireSelectionEvent() { 
13. SymbSelectionEvent event = new SymbSelectionEvent(this); 
14. for (SymbSelectionListener l: mSelectionListeners) { 
15.   l.widgetSelected(event); 
16. } 
17.  } 
18.  public void addSelectionListener(SymbSelectionListener l) { 
19.    TestGenerator.addELGVertex(this, EventType.SELECTION); 
20. mSelectionListeners.add(l); 
21.  } 
22.  public StringInterface getText() { 
23.    Path.addInputVariable(text); 
24.    return text; 
25.  } 
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5.1   Symbolic Primitives, Strings, and Constraint Solving 

Barad supports symbolic operations on all primitive types (integer, float, Boolean, 
and character). Supported symbolic operations on integers and floats are: and, or, 
addition, difference, multiplication, division, less than, greater than, greater than or 
equal, and less than or equal. (Booleans are represented as integers). For solving 
numeric constraints Barad has a custom solver implemented via the Choco [2] library. 

Supported operations on symbolic strings are: substring, concat, charAt, and trim. 
For symbolic string representation and constraint solving we use the work presented 
in [19], where finite state automata are employed to model the set of possible values 
for a string variable. 

5.2   Barad Agents 

Barad consists of two collaborating agents operating on a symbolic and a concrete 
version of the application, respectively. They perform separate steps in the GUI test-
ing process and can operate as stand-alone testing tools. The Symbolic Agent performs 
our algorithm for symbolic analysis and generates a test suite. The Concrete Agent 
generates and executes tests on the concrete version of the application as well as pro-
vides reports for code coverage and detected errors. While these agents operate in a 
collaborative fashion, test cases are generated by the Symbolic Agent and executed by 
the Concrete Agent. The agents run in the same Java Virtual Machine (JVM) and 
communicate asynchronously via publish-subscribe paradigm. 

5.2.1   Symbolic Agent 
The Symbolic Agent instruments the GUI bytecode, performs symbolic execution of 
the instrumented version, and generates test cases as event sequences and data inputs. 
It is a Java agent that registers in the JVM for class loading events. It intercepts the 
loading of the main class of the AUT, instruments it, and executes it symbolically in a 
separate thread. Subsequently loaded classes are also instrumented at loading time. 

5.2.2   Concrete Agent 
The Concrete Agent generates tests adopting a traditional test generation approach 
and executes tests on the application. In contrast with conventional GUI testing 
frameworks, which restart the GUI after executing a test case, the agent performs 
reinitialization. The agent is a JVM Tool Interface and can detect defects via uncaught 
exceptions thrown by the GUI at runtime.  

6   Evaluation 

This section presents two case studies and evaluates the applicability of our GUI test-
ing approach. The first case study is a notepad application which does not exploit data 
dependent behaviors. The second case study is a workout generator program the be-
havior of which depends on data inputs. We compare our approach to traditional GUI 
testing strategies. 

6.1   JNotepad 

JNotepad is a Java implementation of the popular Notepad text editor. JNotepad pro-
vides basic functionalities such as creating, editing, and saving text files; cut, copy,  
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Table 3. JNotepad application 

Windows Widgets LOC Classes Methods Branches 

8 30 849 9 51 90 

 

Fig. 6. Screenshot from JNotepad 

paste, undo, redo operations etc. We analyze version 2.0 of the application. Table 3 
presents a summary of JNotepad and Figure 6 shows a screenshot of the GUI.   

For testing JNotepad we configured Barad to ignore all widgets in the Open, Save, 
and SaveAs dialogs except the text field for specifying a file name and the OK and 
Cancel buttons. The file chooser class, used for implementing these dialogs, is pro-
vided by the GUI library, testing of which we want to avoid.  

First, we tested JNotepad adopting our approach with enabled symbolic and event 
listener analysis. To limit the number of generated test cases, we configured the 
maximal length of event sequences before appending data populating events to three. 
Obtained results are presented in Table 4. 

Table 4. Test results with enabled symbolic analysis 

Tests Branch coverage, % Statement coverage, % Time, sec 

24 058 92 97 1 495 

The first column presents the total number of executed tests. The second and third 
columns present the branch and statement coverage, respectively. The fourth column 
presents the test generation and execution time (including symbolic analysis). Code 
coverage was reported by Barad and branch coverage was obtained by manual inspec-
tion of the code coverage report. 
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We next disabled the symbolic and event listener analysis simulating a traditional 
GUI testing approach. Values for the text boxes were selected from the set {-1, 0, 1, 
Test, ThisIsAVeryLongStringValue, and the empty string}. Table 5 shows the results. 

Table 5. Test results with disabled symbolic analysis 

Tests Branch coverage, % Statement coverage, % Time, sec 

51 694 84 91 2 946 

Experimental results show that our approach generated approximately half the 
number of test as opposed to the traditional technique.  The reason for the moderate 
decrease in the number of test cases generated by Barad is twofold: (1) JNotepad has 
few data widgets (one textbox in the main, find, and save/open windows, respec-
tively) and does not have much data dependent behavior; (2) JNotepad contains pri-
marily buttons, which accept a single event for which corresponding event listeners 
exist. Hence, for most of the events accepted by the GUI corresponding listeners ex-
ist. Despite the structure of JNotepad, which is not ideal for our technique, we still 
achieve significant reduction in the number of tests. 

6.2   Workout Generator 

The Workout Generator is a program the first author developed in his previous ex-
perience. The GUI takes as input user’s biometric characteristics and generates a 
weekly workout program. Table 6 summarizes the characteristics of the Workout 
Generator and Figure 7 shows a screenshot of the GUI.  

 

Fig. 7. Screenshot of the Workout Generator 

Table 6. Workout Generator application 

Windows Widgets LOC Classes Methods Branches 

1 9 651 3 15 121 
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The combo boxes could take one of the following values: for Gender - Male, Fe-
male; for Metabolism - Slow, Normal, and Fast; and for Experience - Beginner, In-
termediate, and Advanced. 

First, we tested the Workout Generator adopting our approach with enabled sym-
bolic and listener analysis. We configured an upper bound of three for the length of 
event sequences. The results are presented in Table 7. 

Table 7. Test results with enabled symbolic analysis 

Tests Branch coverage, % Statement coverage, % Time, sec 

48 100 100 4.3 

We next disabled the symbolic and event listener analysis simulating a traditional 
GUI testing approach. The values for data widgets were chosen as follows: for text-
boxes a value from the set {-1, 0, 1, Test, ThisIsAVeryLongStringValue, and the 
empty string}; for combo-boxes, a value from the set of possible values. We set the 
maximal length of generated event sequences to three. The results are presented in 
Table 8. 

Table 8. Test results with disabled symbolic analysis 

Tests Branch coverage, % Statement coverage, % Time, sec 

5 984 76 97 285 

Experimental results show that for the Workout Generator our approach generates 
significantly fewer test compared to the traditional technique. The reason for that is 
twofold: (1) Workout Generator has a fair amount of data widgets and exploits data 
dependent behaviors; (2) Workout Generator has fewer listeners. The structure of the 
Workout Generator is opportune for our technique and we achieve in order of two 
magnitudes decrease in the number of test. 

7   Discussion 

The experimental results show that our approach generates fewer tests and achieves 
higher branch and statement coverage compared to traditional GUI testing techniques. 
Further, our approach addressed data-flows in GUI applications by generating inputs 
for data widgets, which force the execution of different program paths. Our technique 
is especially effective for testing data intensive GUI applications, with data dependent 
behavior. 

Since we perform symbolic analysis, our technique inherits the limitations of sym-
bolic execution with regard to native calls.  While our implementation does not han-
dle native calls we can adopt the approach for approximation symbolic execution 
presented in [16]. Another issue that arises during symbolic execution is handling of 
loops. We take a standard approach and perform loop unwinding up to a given bound. 
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Such an approximation inevitably introduces errors. Further, symbolic execution 
requires solving of path constraints, which in the general case, are undecidable. 

The current implementation of Barad supports a subset of the SWT GUI library 
which prevents us to apply our approach to the written with Swing TerpOffice, an 
application suite used by Memon et al. in his extensive work in GUI testing. 

We currently detect bugs as runtime exceptions. However, specification based ora-
cles that check richer properties would enable more thorough testing of GUIs. We do 
not report detected bugs since we adopt the same fault detection strategy as the con-
ventional GUI testing performed by Memon et al. Our focus is on reducing test suite 
size and improving statement and branch coverage.  

8   Related Work 

To the best of our knowledge, in his Ph.D. dissertation [9] Memon presents the first 
framework for GUI testing that generates, runs, and assesses GUI tests. The frame-
work focuses on the event-flow of GUI applications. For emulating user input a speci-
fication based approach is adopted—using values from a prefilled database. The  
components of the framework and its extensions are presented in several papers [9], 
[11], [13], [14], [22]. This framework considers all events accepted by the GUI while 
we focus on events with event listeners. The framework does not provide a mecha-
nism for obtaining inputs for data widgets. By providing such a mechanism our work 
is complementary in this respect. 

Memon, Banarjee and Nagarajan present a framework for regression testing of 
nightly/daily builds of GUI applications [12]. This tool addresses rapidly evolving 
GUI applications executing a small enough test suite that the test process could be 
accomplished in less than a day/night. This framework is based on the one presented 
in Memon’s PhD dissertation [9] and uses the same test generation algorithm and 
specification based approach to simulate user inputs. We employ a different test gen-
eration algorithm and present a technique for obtaining data inputs.  

Another approach is representing the GUI as a Variable Finite State Machine from 
which after a transformation to an FSM, tests are obtained [18]. This black-box test-
ing technique does not consider user input while focusing on the event-flow. Our 
approach is white-box with dynamic analysis focusing on event listeners and gener-
ates data inputs. 

A technique for testing a GUI is transforming the GUI into a FSM and using dif-
ferent techniques to reduce the states of that FSM to avoid state space explosion [21]. 
In approach the focus is on collaborating selections and user sequences over different 
objects in the GUI. This is a white-box event centric approach that abstracts away 
user inputs. We adopt an event listener centric technique and generate data values. 

Verification of GUI specifications has been performed via model checking [3]. The 
authors introduce domain specific abstractions to reduce the state space to be ex-
plored. The GUI and its behavior are represented as a Computation Tree Logic in the 
input language of the SMV model checker via a manual process. In contrast, our ap-
proach is fully automatic and aims at test generation rather than at model checking. 
We see this work as complementary to our approach. 
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A technique for updating test scripts for evolving GUI applications has been pro-
posed [6]. This enables reuse of existing scripts via detecting script errors due to 
changes in the GUI. Our work focuses on test generation and is complementary. 

A system that automatically extracts a program interface, generates a test driver 
and a random test suite after completion of which symbolic execution is used to guide 
the generation of additional tests has been presented [15]. Similarly, we employ sym-
bolic execution to generate tests which maximize coverage by exploring different 
program paths. We introduce the abstraction of symbolic widgets which allows scal-
ing symbolic execution for GUIs. 

Symbolic execution and concrete execution have been combined for test generation 
[16]. This approach uses approximate symbolic execution for testing code with dy-
namic data structures. In contrast, we generate inputs in the form of string and  
numeric data and do not perform concrete execution. We take advantage of the sys-
tematic approach for path exploration and scale symbolic execution for GUIs. 

Symbolic execution has been used for test data generation [23]. The program is 
represented as a deterministic FSM and using symbolic execution generates test data. 
This work deals exclusively with numeric constraints. Barad performs symbolic exe-
cution over GUI components (widgets) and strings (in addition to primitives).  

9   Conclusion 

We presented Barad, a novel GUI testing framework that addresses event-flow as well 
as data-flow for white-box testing of GUI applications. Barad is fully automatic, per-
forming instrumentation, symbolic execution, test generation, and test execution. 

We introduce the abstraction of symbolic widgets. This abstraction enables sym-
bolic analysis to reason about the control flow in GUI applications without analyzing 
the GUI library implementation. We generate test cases as sequences of events with 
registered listeners, pruning significant regions of the event input space. We execute 
symbolically the sequence of listeners registered for the events in a test case enabling 
a systematic approach to obtain inputs for data widgets.   

We evaluate our framework on non trivial GUI subjects. Compared to traditional 
GUI testing techniques Barad achieves higher statement and branch coverage while 
generating significantly fewer tests. 

Acknowledgements. This material is based upon work partially supported by the 
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Abstract. Structural constraint solving allows finding object graphs
that satisfy given constraints, thereby enabling software reliability tasks,
such as systematic testing and error recovery. Since enumerating all possi-
ble object graphs is prohibitively expensive, researchers have proposed a
number of techniques for reducing the number of potential object graphs
to consider as candidate solutions. These techniques analyze the struc-
tural constraints to prune from search object graphs that cannot satisfy
the constraints. Although, analytical and empirical evaluations of indi-
vidual techniques have been done, comparative studies of different kinds
of techniques are rare in the literature. We performed an experiment
to evaluate the relative strengths and weaknesses of some key structural
constraint solving techniques. The experiment considered four techniques
using: a model checker, a SAT solver, a symbolic execution engine, and
a specialized solver. It focussed on their relative abilities in expressing
the constraints and formatting the output object graphs, and most im-
portantly on their performance. Our results highlight the tradeoffs of
different techniques and help choose a technique for practical use.

Keywords: Empirical comparison, software testing tools, model check-
ing, symbolic execution, SAT, state space exploration, systematic testing.

1 Introduction

Generating test inputs for programs that manipulate structurally complex inputs
like XML documents or red black trees is a complex operation. Manual genera-
tion of these tests is time consuming, error prone, and has fairly limited ability
to find bugs whereas systematic testing, which is effective at finding bugs, is
not straightforward as there are no simple enumerators for structurally complex
inputs.

Automated generation of structurally complex test inputs can be done in two
basic ways: using generator functions [52, 51] and by solving constraints [5, 38].
Generator functions are functions that perform basic operations to construct
and build structures (e.g., constructors or mutator methods in Java). Automated
testing using generator functions typically uses different orderings of generator
functions to produce test inputs. This can however result in the same struc-
tures repeated, i.e., redundant tests, and some kinds of structures may never be
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produced. Generator functions are mostly applied for generating larger inputs
effectively.

Automated testing by solving structural constraints [5,38] enables systematic
testing where the program is tested against all test inputs within given bounds.
Even though doing so is feasible only for small bounds, it has been shown to
give high code coverage and find faults in programs with structurally complex
inputs [32, 38, 49]. Also, by writing constraints we can conveniently describe
a whole class of structurally complex test inputs. In this paper, we discuss the
techniques that can be used for systematic testing based on structural constraint
solving.

The structural constraints used by systematic testing techniques are usually
written either as declarative constraints or as imperative constraints. Alloy [30]
(one of the techniques discussed here) uses declarative constraints written in
relational logic using quantified formulas. The other three techniques that we
evaluate use imperative constraints. We call them imperative in contrast to
declarative as they use constraints written in an imperative language (C or Java
in our case). We note that these imperative constraints are required to be free
of side-effects and hence are declarative in nature (even though they are written
in an imperative language).

The contribution of this paper is a controlled experiment for performance
analysis of different constraint solving techniques. It also performs an analysis
to quantify the tradeoffs of these techniques in writing constraints and in pro-
cessing outputs. Our results show that even though generic techniques like model
checkers and symbolic execution can be used to solve structural constraints, spe-
cialized solvers are faster in solving and need the least tweaking of code to work.

The rest of the paper is organized as follows. We provide an overview of the
problem of constraint solving in the following subsection, give a background
on different techniques and how they solve structural constraints in Section 2.
Section 3 describes our experiment; the subjects, analysis strategy, and threats
to validity. We discuss experimental results and our analysis in Section 4 and
summarize and conclude in Section 5.

1.1 Related Work

The idea of using constraints for representing test inputs has been used for at
least three decades [11, 28, 35, 43] and implemented in EFFIGY [35], TEST-
GEN [36], and INKA [24] among other tools. However most of this work was to
solve constraints on primitive data like integers and not structural constraints.

Goodenough and Gerhart [23] discuss the importance of specification based
testing. Test case generation has been automated from specifications by many
tools. Some examples are from Z specifications [15], UML statecharts [41], ADL
specifications [9], and AsmL specifications [25]. However these specifications are
also targeted to primitive types and not structurally complex inputs.

Constraints on complex structures require very different constraint solving
techniques, which have only been explored more recently. Directions of research
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include using model checkers [20, 50], SAT solvers [47], symbolic execution [21,
44], and specialized solvers [5]. Section 2 discusses each of these techniques, their
background and recent advancements.

One common problem faced while generating complex structures is isomor-
phism [45]. Two structures are defined to be isomorphic if they only differ in
object identities. For example, if all elements in two nodes of a tree are swapped
and all references to these nodes are swapped too, the resulting structure is iden-
tical to the original except that pointer values in some nodes would be different.
Since, most programs are not concerned with the actual pointer values and only
with where they are pointing, generating isomorphic structures is considered re-
dundant and the algorithms attempt isomorph breaking procedures to reduce
generated structures.

For the purpose of comparison and explaining how constraints are written in
different approaches, we will take red-black tress [3,26] as our running example.
We pick this representative example as it is one of the more complex structures,
one of the structures commonly used for evaluation in previous work, and one
that is likely to be familiar.

2 Background of Subject Tools

2.1 JPF — Model Checker

Model checking [10] has traditionally been applied to software [2, 13, 50,27] for
checking event sequences, specified in temporal logic or as a finite state machine
of API usage rules. If a program is checked successfully, no input and execu-
tion can lead it to an error. Thus model checking provides a strong guarantee.
However these techniques did not consider checking properties and validity of
complex structures. The model checkers BLAST and SLAM are also used for
white-box test input generation [4] targeting to cover specific predicates. The
two are also not applied to solving complex structural constraints.

Generalized Symbolic Execution [34] introduced the idea of using a model
checker for solving structural constraints. As an enabling technology, the JPF
(Java Path Finder) model checker [50] was used. JPF is an explicit-state model
checker for Java programs that has been used to find errors in a number of
complex systems [42, 6, 1]. It is built on top of a custom Java Virtual Machine
(JVM). Therefore it handles all standard Java features and in addition allows
nondeterministic choices written as annotations. These annotations are added by
method calls to class Verify. The following methods in this class are important:

– randomBool() returns a nondeterministic boolean value
– random(n) returns a nondeterministic integer in [0,n]
– ignoreIf(cond) makes JPF backtrack if cond is true

Generalized symbolic execution provides a source-to-source translation of a
Java program such that it can be symbolically executed by any standard model
checker that supports non-deterministic choice. The technique of generalized
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class RedBlackTree {
...
static Node[] nodes;
static int maxNode = 0;
boolean header_accessed = false;
Node header;
Node header() {

if (!header_accessed) {
header_accessed = true;
if (maxNode < nodes.length - 1) {

maxNode++;
int r = Verify.random(maxNode);
if( r != maxNode )

maxNode--;
header = nodes[r];

} else header = nodes[ Verify.random( maxNode ) ];
}
return header;

}
boolean repOk() {

if (header() == null)
return false;

Set<Node> visited = new java.util.HashSet<Node>();
visited.add(header());
LinkedList<Node> workList = new LinkedList<Node>();
workList.add(header());
while (!workList.isEmpty()) {

Node current = workList.removeFirst();
if (current.left() != null) {

if (!visited.add(current.left()))
return false;

workList.add(current.left());
}
if (current.right() != null) {

if (!visited.add(current.right()))
return false;

workList.add(current.right());
}

}
if (visited.size() != size() || size() < LOWER_BOUND )

return false;
return repOkColors() && repOkKeys();

}
}

Fig. 1. Parts of Red Black Tree predicate written for JPF

symbolic execution is based on lazy initialization, i.e. it initializes fields when
they are first accessed during symbolic execution of a method. Due to this lazy
initialization, the algorithm only executes program paths on non-isomorphic in-
puts. This can be used for systematic generation of structurally complex inputs
by symbolically executing a predicate checking structural constraints.

Figure 1 shows parts of Red Black Tree predicate written for JPF. Note that
all accesses to structure variables are through accessors functions. One accessor
function for header is also shown. It non-deterministically picks one of the nodes
that have already been used or one of the new nodes.

Recently, this technique has been optimized by making modifications to Java
Path Finder [19]. However these optimizations are specific to one model checker,
whereas the original technique can be used on any model checker.



92 J.H. Siddiqui and S. Khurshid

2.2 Alloy — Using a SAT Solver

SAT solvers solve boolean formulas. To use SAT solvers for solving structural
constraints, we thus need a language for writing structural constraints, a compiler
to translate that language into a boolean formula, and a mapping from the
solution of the boolean formula into a solution to the structural constraint.

Alloy [29] provides a declarative language for writing these constraints. It
is based on parts of the Z specification [48]. The Alloy Analyzer [31] provides
a fully automated tool to solve these constraints using a SAT solver. The lat-
est version of Alloy Analyzer (4.1.10) works with many state-of-the-art solvers
like BerkMin [22], MiniSat [47], SAT4J (Java implementation of MiniSat), and
ZChaff [40]. Alloy analyzer provides a translation from the declarative language
of Alloy with quantifiers to a boolean formula when given bounds. It then trans-
lates the solution back to the declarative language.

TestEra [33] builds on Alloy to translate the solutions further back into actual
Java structures. TestEra also adds a layer on top of Alloy language to facilitate
writing preconditions and postconditions, and allows test case generation based
on preconditions and function validation using its postconditions as an oracle.
However for the purpose of constraint solving alone, Alloy is sufficient. The Alloy
to Java translator component of TestEra can be used to translate Alloy solutions
into Java structures. The translation time is insignificant in comparison to the
constraint solving time.

We show class invariant for red-black trees modeled in Alloy in Figure 2. Note
that this completely models red black trees. Addition of a few more syntactic
sugar like definition of Node etc is all that is needed to generate all possible red
black trees within given bounds. This concise representation is one of the key
benefits of using a declarative language. However the learning curve of declarative

all e: rbt.root.*(left+right) |
// BT: distinct children
( no e.(left+right) || e.left != e.right ) &&
// BT: acyclic
( e ! in e.^(left+right) ) &&
// BT: distinct parent
lone e.~(left + right) &&
// BST: ordered
lt[ e.left.*(right+left).key, e.key ] &&
gt[ e.right.*(right+left).key, e.key ] &&
// RBT: red node has black children
( e.color in Red && some e.(left + right)
=> e.(left + right).color in Black )

all e, f: rbt.root.*(left+right) |
// RBT: all paths from root to NIL have same # of black nodes
(no e.left || no e.right) && (no f.left || no f.right) =>
#{ p: rbt.root.*(left+right) |

e in p.*(left+right) && p.color in Black } =
#{ p: rbt.root.*(left+right) |

f in p.*(left+right) && p.color in Black }

Fig. 2. Red Black Tree constraint written for Alloy
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programming for programmers used to program in imperative languages often
offsets this benefit. The bounds for Alloy are written as below:

run test for 1 rbt, exactly 3 Node

The class invariant requires the tree to satisfy binary search tree properties and
the additional properties of red-black trees mentioned in comments in Figure 2.
The reader is referred to Jackson [29] for detailed discussion of Alloy operators
and syntax and to Guibas [26] for red-black tree properties.

2.3 CUTE — Symbolic Execution

The idea of symbolic execution dates back at least three decades [35]. Traditional
symbolic execution is a combination of static analysis and theorem proving. In
symbolic execution, operations are performed on symbolic variables instead of
actual data. On branches, symbolic execution is forked with opposite constraints
on symbolic variables in each forked branch. At times, the constraints on sym-
bolic variables can become unsatisfiable signaling unreachable code. Otherwise,
end of the function is reached and a formula on symbolic variables is formed.
A solution to this formula will give a set of values that will direct an actual
execution along the same path.

Renewed interest in symbolic execution is seen in the last decade [7, 12, 18].
Generalized Symbolic Execution [34] extended the concept to concurrent pro-
grams and complex structures.

The main problem with symbolic execution is that for large or complex units,
it is computationally infeasible to maintain and solve the constraints required
for test generation. Larson and Austin [37] combined symbolic execution with
concrete execution to overcome this limitation. Their approach was primitive as
they used symbolic execution to make the path constraint of a concrete execution
and find other input values that can lead to errors along the same path.

DART (Directed Automated Random Testing) [21] is one of the first tools
to systematically combine symbolic execution and concrete execution. Similar
to previous approach, they formed a path constraint during concrete execution.
However after the execution, they backtrack on the path constraint by negating
clauses, solve the new constraints, and re-run concrete execution expecting it
to follow a new path. When it is not feasible to solve the modified constraints,
they substitute random concrete values. Another simultaneous effort was EGT
(Execution Guided Test Cases) [8] using a similar approach. Lastly, CUTE (Con-
colic Unit Testing Engine for C) [44], another tool using similar approach, is the
tool that we will be using here. It is the only tool that can handle pointers and
complex structures.

The idea of using CUTE to generate test cases has been briefly discussed but
not evaluated [44]. There, the authors considered prev pointers in a doubly linked
list and discussed the order (big O) of candidates CUTE and Korat (discussed
below) explore to find answers. In our evaluations we thoroughly cover this
example among others. In particular, we discuss the constants involved (time of
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int repOk( struct bintree* b ) {
struct listnode* visited=0, *worklist=0;
int NODES = 0;
if( b->root == 0 )

return 0;
visited = newnode( b->root, visited );
++NODES;
worklist = newnode( b->root, worklist );
while( worklist ) {
struct node* current = worklist->data;
worklist = worklist->next;
if( current->left ) {

if( !addunique( visited, current->left ))
return 0;

++NODES;
worklist = newnode( current->left, worklist );

}
if( current->right ) {

if( !addunique( visited, current->right ))
return 0;

++NODES;
worklist = newnode( current->right, worklist );

}
if( NODES > UPPER_BOUND )

return 0;
}
if( b->size != vcount || NODES < LOWER_BOUND)
return 0;

return repOkColors(b) && repOkKeys(b);
}

Fig. 3. Parts of Red Black Tree predicate written for CUTE

exploring one candidate) and constraint rewriting requirements to understand
which approach is likely better in practical usage.

We show parts of the red-black tree constraint written in C for use in CUTE
in Figure 3. The NODES variable is introduced to keep a count of nodes used.
We break the loop when more than UPPER_BOUND nodes have been touched and
return false if less than LOWER_BOUND nodes were touched during the exe-
cution. This is how we control the desired number of objects when generating
structures in CUTE. Rest of the constraint is similar to what was shown in
Figure 1.

2.4 Korat — A Specialized Solver

Korat [5] is a framework for automated generation of structurally complex test
inputs. It performs specification based testing. By using a Java predicate that rep-
resents properties of desired inputs, Korat uses backtracking search and explores
the input space of the predicate and enumerates inputs for which the predicate
returns true. Each enumerated inputs is a desired structurally complex test in-
put. Korat performs bounded exhaustive testing: it generates all non-isomorphic
test cases within given bounds. Bounded exhaustive testing has been used to suc-
cessfully find bugs in a fault-tree analyzer [49], a resource discovery architecture,
and an XPath compiler.

Korat performs a dynamic analysis of the predicate. It prunes huge portions
of the input space by monitoring field accesses during predicate execution. It
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public boolean repOK() {
if (root == null)

return false;
Set<Node> visited = new HashSet<Node>();
visited.add(root);
LinkedList<Node> workList = new LinkedList<Node>();
workList.add(root);
while (!workList.isEmpty()) {

Node current = workList.removeFirst();
if (current.left != null) {

if (!visited.add(current.left))
return false;

workList.add(current.left);
}
if (current.right != null) {

if (!visited.add(current.right))
return false;

workList.add(current.right);
}

}
if (visited.size() != size)

return false;
return repOkColors() && repOkKeys();

}

Fig. 4. Parts of Red Black Tree predicate written for Korat

IFinitization f = FinitizationFactory.create(RedBlackTree.class);

IClassDomain entryDomain = f.createClassDomain(Node.class, numEntries);
IObjSet entries = f.createObjSet(Node.class, true);
entries.addClassDomain(entryDomain);

IIntSet sizes = f.createIntSet(minSize, maxSize);
IIntSet keys = f.createIntSet(-1, numKeys - 1);
IIntSet colors = f.createIntSet(0, 1);

f.set("root", entries);
f.set("size", sizes);
f.set("Node.left", entries);
f.set("Node.right", entries);
f.set("Node.color", colors);
f.set("Node.key", keys);

Fig. 5. Korat’s specification of bounds for Red Black Tree

backtracks on the last field accessed and makes a non-deterministic assignment
to that field. It then uses the new candidate to re-execute the predicate.

Korat, being a specialized solver, produces correct output for every predicate
(repOk), however it is written. Although, some predicates would cause a faster
execution (return after touching as few fields as possible) and some would be
slower (return once after checking all checks that can be checked), none would
result in an incorrect result. We here show a portion of red-black tree constraint
written for Korat in Java in Figure 4. We also show how bounds are given for
Red Black Tree in Korat’s finitization in Figure 5.

The principle idea of Korat has been used in other applications. In particular,
STARC [16] uses the Korat algorithm to repair huge complex structures by
running the algorithm in neighborhood of the defective structure. Glass box
testing [14] uses the method to be tested to prune Korat’s generation. Thus it
moves away from the pure black-box approach of Korat.
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Korat has been optimized in a number of ways. Instead of running repOk
from the start for every candidate, efficient backtracking optimization [17] can
undo operations done in last execution and proceed from that point for the
next candidate. This has shown improvements for STARC and also for Korat.
Lastly, Korat has been parallelized for clusters of largely independent machines
by random division of work [39] and for high bandwidth clusters by systematic
division of work [46].

2.5 Research Questions

The effectiveness of bounded exhaustive testing (generating all test cases sat-
isfying the constraints) has been previously shown in application to many real
applications. Here we are concerned with different tools to generate these tests.
Thus we are not concerned with the fault detecting capability of these tools, as
this capability would be equal (given sufficient time) for all tools in our scenario.
We are rather concerned with how to write the tests and interpret the output
and most importantly how much time it takes to generate the tests.

We pose the following research questions for our experiment and analysis:

– What are the pros and cons of different tools in writing constraints and
defining bounds?

– How is the output of a tool represented and how it can be converted into
actual test inputs?

– What are the fastest tools for practical sizes of subject structures?
– How well do the tools perform with more and more complex constraints?
– What are the best tools in terms of time complexity?

Next we describe our experiment and its analysis.

3 The Experiment

3.1 Experimental Subjects

To evaluate the selected tools, we consider six complex structures: three list
structures, and three tree structures. Note that these complex structures are the
foundation of several data structures used in applications. For example, an XML
document, a file system hierarchy, Java or C class hierarchies, expression trees,
abstract syntax trees for compiler can all be viewed as trees and are likely to give
similar performance to one of the tree structures we consider here. We evaluate
the following six structures:

1. Binary Tree
2. Binary Search Tree
3. Red Black Tree
4. Singly Linked List
5. Doubly Linked List
6. Sorted Linked List
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Note that a red-black-tree is a binary search tree which is in turn a binary
tree. From this, we intend to learn the effect of increasing constraint complexity
on tool performance.

To avoid any bias, we took constraints for the above subjects from previous
work [5], where available. In some cases, we needed to change the constraints so
that the tool under evaluation performs bounded exhaustive testing (as discussed
in the previous section).

3.2 Experimental Design

The experiment focused on:

1. Structurally complex constraints (6 constraints of subjects given in previous
section)

2. Bounds (we considered 4 bounds for each subject structure)
3. The constraint solver (one of the four constraint solvers discussed in this

paper)

On each run, we measured:

1. Time taken to generate all tests
2. Candidates generated to see isomorphism pruning

We also measure qualitative results for:

1. How constraints needed to be converted to run the tool
2. How bounds needed to be converted to run the tool
3. How results from the tool needed to be converted to test cases

Results reported for the experiment were averages of 10 repeated measure-
ments. Thus, for each subject structure and each constraint solver and each given
bounds, we ran the tool 10 times and computed the average. The experiments
were performed on a Linux machine with Intel Pentium 4 2.8Ghz processor and
4GB RAM.

3.3 Threats to Internal Validity

Threats to internal validity are influences that can affect dependent variables
without researcher’s knowledge. In this respect, our concerns include the way
constraints are written and language differences. Constraints can be written
to suit one tool and not the other. We have done our best effort is writing
the constraints so that every tool can perform at its best. Language differences
matter because one of the tools works in C while the rest work in Java. C
implementations are inherently faster so the results of this tool would have a
slight edge because of language. However this concern would have been more
significant if this tool turned out to be the fastest which is not the case as we
see below.
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3.4 Threats to External Validity

Threats to external validity are conditions that limit us in generalizing the re-
sults of our experiment. Our biggest concerns in this area is that the subject
programs might not be representative of complex constraints. To control this
threat, we have studied literature regarding the tools and summarized the com-
plex constraints previously studied, we have also studied structures discussed
in algorithm books, and have found that the most commonly used complex
structures are actually the basis of a large class of data structures. For exam-
ple, B-trees, AVL trees, Sparse matrices, hash tables are all basically trees or a
combination of trees and lists. We considered complex inputs of real programs
like compilers (abstract syntax tree), XML parsers (XML Tree), web browser
(HTML Tree), File system tree, Java class hierarchies, and expression trees. All
of these share constraints with the basic structures we test here. Therefore we
believe that our subjects are representative of complex constraints and can be
used to evaluate constraint solvers.

3.5 Threats to Construct Validity

Threats to construct validity are situations where measurement instruments do
not adequately capture concepts that they are supposed to capture. In this
experiment, we measure performance and ease of writing constraints and using
results. Measuring performance is always risky on todays multitasking machines.
We controlled this threat with repeated measurements and with no sharing of
resources. The quantitative analysis about constraint writing is more prone to
this threat. We control this threat by providing raw data (how constraints are
written, bounds given, results converted) and add our analysis on top of it.

3.6 Analysis Strategy

We summarize all the data first. We then make observations on this data and
our observations on the three quantitative criteria of constraint writing, giving
bounds, and using results. Finally, we show several comparisons between perfor-
mance of different techniques in graphical form.

4 Data and Analysis

We provide performance comparison and its analysis followed by quantitative
analysis.

4.1 Performance Comparison

Table 1 shows the results of our experiments. The first column lists the complex
structures we chose. The next column specifies the size we are using. For Binary
Tree, Singly Linked List, and Doubly Linked List, we generate structures up to



An Empirical Study of Structural Constraint Solving Techniques 99

Table 1. Results of generating bounded exhaustive test cases for six subject structures
by CUTE, Korat, Alloy, and JPF. Time out or tool limitations are represented by a
hyphen (-).

Subject Size CUTE Korat Alloy JPF

Binary Tree

3 1.761 0.507 0.880 16.349
4 4.774 0.533 1.085 16.158
5 15.104 0.567 1.779 16.678
6 47.427 0.620 5.882 19.405
7 156.368 0.720 41.866 24.197
8 527.292 1.048 520.868 48.389

Search Tree

3 2.580 0.579 1.159 16.415
4 8.240 0.495 1.423 16.478
5 28.015 0.547 2.529 21.498
6 95.764 0.746 3.032 43.905
7 341.444 2.363 6.437 222.893
8 - 17.515 26.456 1409.366

Red Black Tree

3 43.769 0.841 1.571 15.775
4 82.905 0.875 1.450 17.139
5 720.625 0.829 5.293 18.948
6 - 1.018 4.132 28.186
7 - 1.687 18.036 57.800
8 - 5.250 85.277 170.962

Singly Linked List

10 0.855 0.389 8.452 16.661
13 1.073 0.399 602.250 16.414
50 4.136 0.481 - 18.015

100 8.383 0.688 - 23.433
200 17.273 2.110 - 48.625
300 27.082 6.138 - 104.517
400 36.811 13.939 - 200.062
500 48.849 27.982 - 344.724

Doubly Linked List

10 1.167 0.408 7.408 16.221
13 1.523 0.411 130.423 15.242
50 5.657 0.537 - 18.511

100 11.900 1.047 - 24.547
200 25.538 4.987 - 63.614
300 44.332 16.354 - 146.015
400 67.828 36.503 - 285.589
500 100.057 72.686 - 501.617

Sorted List

9 1.292 0.395 2.602 21.333
11 1.557 0.457 7.409 36.900
13 1.839 1.026 10.420 108.670
15 2.110 2.286 21.874 439.063
18 2.821 21.646 - -
20 2.797 102.609 - -
22 3.036 499.276 - -

given size while we generate structures of exactly that size for the other three
structures. The reason for this is that when generating structures with valid
integer ranges of some data variables (e.g. Sorted List), then all tools except
CUTE will produce all valid assignments while CUTE will provide a single valid
assignment. This makes comparison difficult. We thus chose a fixed size and
fixed range of integers such that only one valid assignment exists. The next four
columns in the table list the times taken by each tool.

Alloy ran into solver limitations for sizes greater than about 15 nodes for all list
structures. Similarly CUTE faced symbolic execution limitations for red black
trees. Other numbers not available are time outs for the allocated 15 minutes.
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Table 2. Isomorphic Candidates Produced

Subject CUTE Korat Alloy JPF

Binary Tree NO NO YES NO

Binary Search Tree NO NO NO NO

Red Black Tree YES NO NO NO

Singly Linked List NO NO YES NO

Doubly Linked List NO NO YES NO

Sorted List NO NO NO NO

Table 2 shows how well the candidate tools performed in terms of pruning
isomorphic candidates. Korat and JPF never produced an isomorphic result.
Also from their algorithm, they would never produce a normal isomorphic re-
sult according to the definition given previously. Note that their can be domain
specific isomorphic results (e.g. isomorphic graphs) which no tool identifies as
isomorphic. CUTE produced isomorphic candidates only when it ran into sym-
bolic execution limitations. This happened in our case for red-black trees. Alloy
produced isomorphic candidates most often. Its isomorphism pruning is most
limited. For example, for a singly linked list, other than the root node and the
tail node, it produces more than one isomorphic orderings of the middle nodes.

Lastly, Figure 6 shows six graphs, one for each subject structure and plots
the performance of all four tools. The time axis is logarithmic since bounded
exhaustive testing is an exponentially growing problem and a logarithmic scale
better shows how the tools are performing.

We observe that other than sorted lists, Korat is the fastest tool within 1000s
time. For binary tree and Red Black Trees, it also seems to grow the slowest. For
Binary Trees and Binary Search Trees, CUTE is growing linear on a logarithmic
scale which means it is slightly better in terms of time complexity but the actual
problem size where it would take over Korat would be huge.

CUTE is the only tool that handles Sorted Lists successfully, It touches our
1000s limit for generating about 500 element lists. This huge difference is be-
cause the other tools internally generate all possible combinations (n!) whereas
symbolic execution does not. This is also the motivation around some recent
work on Korat and JPF to use symbolic execution for primitives and use the
native algorithm for non-primitive fields [51].

Note also in all graphs that CUTE has the best time complexity. It grows ex-
ponentially (trees) and sub-exponentially (lists) except for red black trees where
symbolic execution faced limitations. Thus when symbolic execution faces limi-
tations and CUTE reverts to take help from concrete execution, we may not get
results comparable to other tools. This is one of the key weak points of CUTE
for bounded exhaustive generation.

Alloy shows an interesting behavior. It performs better for Binary Search Trees
(more complex constraint) than Binary Trees. We believe that this is because
SAT solvers solve the easiest clauses first and the former gives it a better chance
at doing that. Red black tree performance is in the middle and is better for 4
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Fig. 6. Performance Comparison of techniques for all six subject structures. Y-axis
shows time in seconds on a logarithmic scale. X-axis shows size of structure.

nodes than for 3 (and 6 nodes than for 5). We again believe this has to do with
the formation of clauses.

If we carefully note, the graph of JPF is almost at a constant distance above
Korat. Indeed, JPF structural constraint solving algorithm and the Korat algo-
rithm principally make the same decisions. JPF is only burdened with running
a model checking virtual machine and keeping a lot of additional state which
Korat can do without. That is why they have similar time complexity but a
different multiplier. Thus we can say that Korat is a much faster specialized
implementation of what the JPF structural constraint solving algorithm does
without the added overheads of model checking.
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Table 3. Comparison of structural constraint solving techniques on non-performance
metrics

Constraints Bounds Output

CUTE Imperative function:
Some special care at
branches to enable symbolic
execution to visit both
branches

For linear structures, giving
a depth bound in invoking
CUTE is enough; for others,
special checks needed to be
inserted inside the predicate

Each complex structure is
available at end of testing
function in a separate pro-
cess

Korat Imperative function:
No special restrictions

An imperative function list-
ing bounds for each object
and predicate involved (fini-
tization)

Each structure is available
in a special function in the
same single process

Alloy Declarative predicate:
In relational quantified logic

List of bounds for each ob-
ject involved

Result is a list of solutions
that can be translated into
actual heap structures using
Alloy to Java translator in
TestEra [33]

JPF Imperative function:
Need to use special accessor
functions (can be added au-
tomatically) that use model
checker’s non-determinism

Ranges can be specified in
special accessor functions

Each complex structure is
available at end of testing
function in a separate pro-
cess

4.2 Qualitative Comparison

One of the research goals of our experiment was to discuss some qualitative
differences between subject tools. We give summarized results in Table 3 and
give a more detailed discussion of each difference below.

Constraint Writing: All tools except Alloy required constraints written in an
imperative language. Constraints are required to be free of side-effects. CUTE
constraints needed some tweaking to allow symbolic execution to explore all
paths. For example, a return size == 0 statement has to be changed to a
branch statement with separate returns. JPF and Korat can use an arbitrary
imperative function that is free of side-effects. Alloy required declarative pred-
icates. Declarative specifications are concise and can be significantly smaller
than an equivalent imperative specification. The tradeoff is the learning curve
of declarative language for programmers used to writing code in imperative
languages.

Giving Bounds: Korat and Alloy were the easiest to provide bounds, which is
not surprising since they are designed for specification-based, bounded exhaus-
tive checking. They differed in that Alloy required bounds for each type whereas
Korat was more explicit in requiring bounds for each field of each type. Also for
primitives, Korat can use lower bounds and upper bounds whereas Alloy would
need those bounds as part of specification and not as part of bounds. To limit
structures generated by CUTE within bounds, we needed to tweak its imper-
ative predicate. Providing bounds using the JPF approach was simple. In this
approach the required arrays (universe of values) were constructed during the
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testing Main method. Values of these arrays are non-deterministically used by
accessor functions (possibly automatically added).

Using Results: The JPF approach and CUTE approach produce each result,
i.e. structure that represents a test input, in a separate execution (process). This
result can directly be used for testing or saved for later use. Korat approach
produces each result in the same execution (process). The result can be saved.
Direct testing has to be careful about using a new process to avoid crashing of
Korat due to faulty code. In previous work, these results have been distributed for
parallel test execution [39]. Alloy produces solutions to declarative specifications.
These need to be converted to the corresponding imperative language for actual
test use. One tool in this area is Alloy to Java converter used in TestEra [33].
This tool can generate actual Java structures corresponding to Alloy output.

Treatment of primitive fields: While the key benefit of structural constraint
solving is non-primitive fields (pointers to objects), primitive fields also pose
a limitation. All the surveyed tools except CUTE try all possible values for a
given primitive field. This often results in exponential or factorial amount of
time. CUTE excels in this area by providing a single valid solution for such
fields.

5 Summary and Conclusions

In this paper, we performed an empirical study of using four different techniques
for constraint solving to perform bounded exhaustive testing. Bounded exhaus-
tive testing has been previously shown effective at finding faults in real programs.
Here, our goal is to compare the performance of these tools. We considered the
CUTE tool based on symbolic execution, the JPF model checker, the Alloy tool
based on SAT, and the specialized solver Korat . Our key results are:

– The fastest tool for most of the subjects of small size is Korat. However it
degrades in performance when several constraints are on primitive fields.

– The JPF constraint solving approach using lazy initialization is effectively a
slower Korat.

– Alloy provides the most concise way of writing predicates. For programmers
knowledgeable in declarative languages, it can significantly reduce time to
write or maintain specifications.

– CUTE provides better time complexity than most tools however the slope
constant is fairly high. This is because of the symbolic execution overhead.

– CUTE requires some tweaking of class invariants to enable bounded exhaus-
tive generation.

– No tool gives better non-isomorphic generation for exhaustive enumeration
than the Korat algorithm (and likewise lazy initialization using JPF).

– All tools except CUTE provide bounded exhaustive checking by design and
CUTE focuses on generating one input per path.
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Our results also provide directions for future work. We see two main directions
of research:

– Using symbolic execution to improve the specialized solver Korat.
– While Alloy provides an intuitive way to write specifications (after the learn-

ing curve), its solving capability is limited to smaller sizes (see list data
structure) and can often produce isomorphic candidates. We believe using a
combination of solvers, such as SAT, SMT, string constraint solvers, and set
constraint solvers, is likely to provide significantly more efficient solving.

– Similar to parallelization for Korat [39,46], we are working on parallel sym-
bolic execution. Other tools, such as Alloy, can also gain from parallel exe-
cution, both on commodity parallel machines and bigger clusters.
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Abstract. Küsters and Truderung recently proposed an automatic ver-
ification method for security protocols with exclusive or (XOR). Their
method reduces protocols with XOR to their XOR-free equivalents,
enabling efficient verification by tools such as ProVerif. Although the
proposed method works efficiently for verifying secrecy, verification of
authentication properties is inefficient and sometimes impossible.

In this paper, we improve the work by Küsters and Truderung in two
ways. First, we extend their method for authentication verification to
a richer class of XOR-protocols by automatically introducing bounded
verification. Second, we improve the efficiency of their approach by de-
veloping a number of dedicated optimizations. We show the applicability
of our work by implementing a prototype and applying it to both exist-
ing benchmarks and RFID protocols. The experiments show promising
results and uncover a flaw in a recently proposed RFID protocol.

1 Introduction

Cryptographic security protocols typically consists of a series of message ex-
changes among two or more agents over a hostile network. They aim to achieve
various security goals such as authentication, secrecy, key agreement, privacy,
and anonymity. However, designing secure protocols is an error-prone task and
incorrect protocols may become ideal entry points for various attacks. Starting
from the seminal work by Lowe [1], automated symbolic verification methods
for security protocols have shown their strength in finding attacks and proving
correctness of security protocols.

As attacks that rely on cryptographic primitives are hard to prove and diffi-
cult to be automatically checked, cryptographic primitives are usually treated as
functions without any algebraic properties in symbolic methods. This is called
the perfect cryptography assumption [2], namely no cryptographic message can
be opened without the correct key. Based on this assumption, many automatic
tools have been designed and implemented, among which ProVerif [3] is consid-
ered as the state of the art [4]. However, ProVerif cannot uncover attacks that
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make use of certain algebraic properties of cryptographic primitives. Cortier,
Delaune and Lafourcade give a survey on algebraic properties of common cryp-
tographic primitives and attacks making use of them [5]. Therefore, some relax-
ation of the perfect assumption needs to be investigated. Exclusive or (XOR) is
one binary operator with typical algebraic properties that has drawn a lot of in-
terest. For example, XOR is often used in radio frequency identification (RFID)
systems, which have become popular in recent years.

We call security protocols employing the exclusive or operator (⊕) XOR-
protocols. The ⊕-operator has the following four properties.

x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z (associativity) (1)
x ⊕ y = y ⊕ x (commutativity) (2)
x ⊕ 0 = x (neutral element) (3)
x ⊕ x = 0 (nilpotence) (4)

In order to detect attacks on XOR-protocols, we need to model intruders with
the ability of exploring the above algebraic properties, in addition to the perfect
cryptography assumption.

Related work. In the literature, several approaches have been proposed to deal
with the verification of XOR-protocols [6,7,8], but few of them are practical to
implement. A few tools can cope with a certain class of XOR-protocols [8,9], all of
them have strict restrictions on the range of protocols they can be applied to. For
example, the tool of Cortier, Keighren, and Steel can only handle protocols with
the ⊕-operator and symmetric encryption. More recently, Küsters and Truderung
proposed a more general approach [10] to automatic verification of cryptographic
XOR-protocols based on ProVerif. Their main idea is to reduce protocol analysis
with XOR to the XOR-free case. The XOR-reduction step transforms Horn
theories modeling XOR-protocols to the ones free from algebraic properties of the
⊕-operator, by computing a family of legal substitutions for terms containing ⊕.
Thus, verification is reduced to a syntactic derivation problem. They implement
their transformation step in a tool called XorProverif [10]. The use of ProVerif
allows the modeling of essential cryptographic primitives and the verification of
security protocols with an unbounded number of sessions. However, there are
still a few limitations of this XOR-reduction approach – only ⊕-linear protocols
can be handled (see Sect. 2 for the definition of ⊕-linearity) and it is likely to
suffer from exponential blow up of the number of substitutions (Lem. 12, [10]).
In this paper, we develop several methods to tackle these restrictions of the
XOR-reduction approach, and implement a prototype to evaluate and illustrate
our methods by experiments on existing benchmarks and recent RFID protocols.

Our main contribution. One goal of this research is to develop a systematic
method to improve efficiency of the XOR-reduction approach. Our first idea is to
reduce the number of substitutions during the transformation, by exploring the
freshness of nonces generated during the executions of the XOR-protocols. By
this further reduction, the time taken by ProVerif for verification is decreased
and some false attacks can be removed as well.
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We also propose a new approach to use bounded verification to make the
XOR-reduction approach available to verify authentication of more protocols
which violate ⊕-linearity. In this approach, session identifiers are considered as
constants instead of variables [10] and we can verify protocols using models with
a certain bounded number of sessions. Our bounded verification can be further
optimized by restricting the order between sessions and by checking the secrecy
property first. RFID protocols are a special class of protocols that require au-
thentication. They often use the ⊕-operator to build protocol messages. In terms
of the characteristics of RFID protocols, more optimizations can be introduced
and their protocol models could be much more simplified.

We implement a prototype to evaluate and illustrate our methods: it first au-
tomatically transforms the original Horn theory of an XOR-protocol to a multi-
session model, then it reduces the model XOR-free and performs the introduced
optimizations when necessary. In the end, ProVerif is applied to the final result of
the transformations. A number of XOR-protocols including RFID protocols have
been analyzed and experimental results show that our approach is effective and im-
proves the verification of XOR-protocols based on the XOR-reduction approach.
In one case, a new attack is detected on a RFID protocol in its multi-session model.

Structure of this paper. In Sect. 2, we present the main idea of the XOR-
reduction approach with a running example. The concepts of bounded verifica-
tion are introduced in Sect. 3. Several different ways to do optimizations are
presented in Sect. 4. We discuss our implementation and experimental results in
Sect. 5. We conclude the paper in Sect. 6.

2 Preliminaries

In this section, we illustrate how security protocols with ⊕ can be modeled by
Horn theories and explain the main ideas behind the reduction process proposed
by Küsters and Truderung. More details can be found in the original paper [10].

2.1 Basic Concepts

We use Σ to denote a finite signature containing the binary function symbol ⊕
and V to denote a set of variables. The set of terms is defined as usual over Σ
and V . We use s � t to denote that s is a subterm of t. Terms containing no
variables are ground and are also called messages. For a unary predicate q and a
(ground) term t, we call q(t) a (ground) atom. A substitution σ is a set of pairs
{t1/x1, . . . , tn/xn}, where t1, . . . , tn are terms and x1, . . . , xn are variables. We
use dom(σ) to denote the domain of σ, which contains the variables x1 . . . xn. A
term is standard if its top symbol is not ⊕, otherwise it is called non-standard.
Equations (1)-(4) define a congruence relation ∼ on terms. A term is in reduced
form if equations (1)-(2) and equations (3)-(4), when interpreted as reductions
from left to right, can no longer be applied.

A Horn clause is of the form of a1, . . . , an → a0 where a0, . . . , an are atoms.
A set of Horn clauses constitutes a Horn theory. Given a ground atom a, we
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use T � a to denote that there is a derivation π for a from the Horn theory T .
A derivation π is a sequence of ground atoms b1, . . . , b� with b� = a. For each
bi there exists a substitution σ of a Horn clause a1, . . . , an → a0 in T , we have
a1σ, . . . , anσ → a0σ where a0σ = bi and for every j ∈ {1, . . . , n} there exists
k ∈ {1, . . . , i − 1} with ajσ = bk. Similarly, if the congruence relation ∼ is used
instead of syntactic equality =, we can say a can be derived from T modulo ⊕,
denoted by T �⊕ a.

One crucial notion in [10] is ⊕-linearity. A term is ⊕-linear if for each of its
subterms of the form t⊕ s, t or s is ground. For example, a⊕ x is ⊕-linear while
a ⊕ x ⊕ y is not, where x, y are variables and a is a constant. The concept of
⊕-linearity extends to Horn theories and derivations in a straightforward way.
Küsters and Truderung also define the notion of C-domination [10]. Let C denote
a finite set of standard reduced ground terms such that C does not contain two
terms m and m′ such that m �= m′ and m ∼ m′. We use C⊕ to denote the
⊕-closure of C, that is,

C⊕ = {t | there exist c1, . . . , cn ∈ C s.t. t ∼ c1 ⊕ · · · ⊕ cn}.

A term is C-dominated if for each of its subterms of the form t ⊕ s, it is true
that either t or s is in C⊕. The concept of C-domination extends to Horn clauses
and derivations. A Horn theory is called C-dominated if each clause in T is C-
dominated, except for the rule I(x), I(y) → I(x⊕y) which models the intruder’s
ability to perform XOR operations. The set C is always finite and must be chosen
as small as possible in order to make the XOR-reduction efficient (see Lem. 2
and Lem. 12 in [10]).

2.2 Modeling Protocols by Horn Theories

A Horn theory modeling security protocols contains three parts: initial intruder
facts, intruder rules, and protocol rules. It uses the predicate I. A fact I(t) means
that the intruder can obtain the term t. The initial intruder facts represent the
initial intruder knowledge, typically names of principals and public keys, for in-
stance, I(a) denotes that the intruder knows the name a and I(pub(ska)) denotes
that the intruder knows the public key of a where ska represents its private key.
The set of Dolev-Yao intruder [2] rules representing the ability to derive new
messages can be found in [10], where a special clause I(x), I(y) → I(x ⊕ y),
called the ⊕-rule, is used to allow the intruder to perform the XOR operation
on arbitrary messages. The protocol rules represent the actions performed in
a protocol. Each rule i is of the form I(t1), . . . , I(ti) → I(si) where t1, . . . , ti
describe messages the principal has received up to step i and I(si) describes the
message the principal will send out at step i.

The secrecy property of a term t can be formulated as the fact that I(t) cannot
be derived from the set of clauses, while authentication properties are often
expressed as correspondence assertions of the form end(x) → begin(x), where x
describes the value on which both agents agree [11]. Due to the difference, we
give the Horn theories for secrecy and authentication verification of our running
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skA, pub(skB)
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skB, pub(skA)
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nonce n
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{m}pub(ske)

secret m
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Fig. 1. Description of the NSL′
⊕ protocol (a) and one of its attacks (b)

example NSL′
⊕ separately. Fig. 1(a) depicts the NSL′

⊕ protocol, which is a
variation of the protocol by Lowe [1] that fixes a vulnerability in the Needham-
Schroeder protocol [12].

In this paper, we use role to refer to the protocol steps an agent expects to
carry out, for instance A and B in Fig. 1(a)1. For example, agent a playing role
A has two steps. To start, a generates a nonce and sends the first message to the
agent playing role B. Then upon receiving the second message and checking its
correctness, a sends back the last message. A run is the execution of a role by
an agent. Several runs can be executed at the same time. By session, we mean a
(prefix of a) complete run of an agent. Let P denote the sets of participants and H
be the set of honest agents. The notations ska and pub(ska) represent the private
and the corresponding public key of a ∈ P . Comon-Lundh and Cortier prove that
for secrecy (authentication properties), only two (three) participants [13] need
to be considered. Therefore, we have P = {a, b}, H = {a} for NSL′

⊕-sec and
P = {a, b, c}, H = {a, b} for NSL′

⊕-auth. We use n(a, b) to denote the nonce in
the first message in which a ∈ P is the generator and b ∈ P is the receiver, and
m(b, a) in the second message to denote the nonce sent from b to a. Encryption
of a term t under a key k is denoted by {t}k.

Model for secrecy verification NSL′
⊕-sec. We model the protocol using the fol-

lowing clauses:

I({n(a, b), a}pub(skb)) for a ∈ H, b ∈ P (5)
I({x, a}pub(skb)) → I({m(b, a), m(b, a) ⊕ x ⊕ b}pub(ska)) for b ∈ H, a ∈ P (6)

I({y, y ⊕ n(a, b) ⊕ b}pub(ska)) → I({y}pub(skb)) for a ∈ H, b ∈ P (7)

1 We use message sequence charts for the descriptions of protocols and/or their pos-
sible attacks, where capital letters represent roles and small letters are used to rep-
resent agents.
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We denote the set of clauses above by NSL′
⊕-sec. One attack breaking the

secrecy claim of m(b, a) is described in Fig. 1(b) where the adversary imperson-
ates a to b. After receiving the message {n(a, eve), a}pub(ske), it makes use of
the algebraic properties of XOR and its knowledge of the protocol to send out
a message {n(a, eve) ⊕ b ⊕ eve, a}pub(skb) to b. It replays the response from b,
{m(b, a), m(b, a) ⊕ n(a, eve) ⊕ eve}pub(ska), to a. In the end, the adversary can
obtain m(b, a) by decrypting the last message from a.

Model for authentication NSL′
⊕-auth. For authentication verification, nonces

generated in a session are typically chosen as the parameter x in the events
begin(x) and end(x). To guarantee their freshness and prevent replay attacks,
session identifiers need to be added to nonces to make expressing correspondence
of sessions possible. The following Horn theory models the protocol rules to verify
if role A can be authenticated by B.

I({n(a, b, sid), a}pub(skb)) for a ∈ H, b ∈ P (8)

I({x, a}pub(skb )) → I({m(b, a, sid), m(b, a, sid) ⊕ x ⊕ b}pub(ska )) for b ∈ H,a ∈ P (9)

begin(a, b, y), I({y, y ⊕ n(a, b, sid) ⊕ b}pub(ska )) → I({y}pub(skb)) for a ∈ H, b ∈ P (10)

I({m(b, a, sid)}pub(skb )) → end(a, b,m(b,a, sid)) for b ∈ H,a ∈ P (11)

The set of clauses we defined above is denoted by NSL′
⊕-auth.

2.3 The XOR-Reduction Process

We refer to the process of reducing the deduction problem modulo XOR to the
one without XOR for C-dominated theories as XOR-reduction. XOR-reduction
aims to construct a Horn theory that can be analyzed by ProVerif and makes
sure that any derivation obtained from the theory modulo XOR can also be
derived from the constructed one.

Each C-dominated term can be turned into normal form after fixing a linear
ordering on C. The operator �·� denotes this operation. Any two C-dominated
terms t and t′ such that t ∼ t′ have the same normal form, that is �t� = �t′�. If
all terms in C⊕ are in normal form, we have the set C⊕

norm . A fragile subterm t′

of a C-dominated term t is a non-ground, standard term occurring in a subterm
of t of the form t′ ⊕ s or s ⊕ t′. We use F(t) to represent the set of all fragile
subterms of t. The concept of fragile subterms extends to Horn clauses.

For example, the dominating set for NSL′
⊕-sec is

{m(a, b), m(a, a), n(a, b), n(a, a), a, b}.

Considering the term m(b, a) ⊕ x ⊕ b in rule (6), its fragile subterm is x.

Definition 1 (Def. 4 in [10]). Let t be a C-dominated term. The family of
substitutions

∑
(t) for t with respect to F(t) is defined as follows. The domain

of every substitution in
∑

(t) is the set of all variables which occur in some
s ∈ F(t). Consider a substitution σ ∈

∑
(t). For each x ∈ dom(σ) one of the

following three cases holds: (i) σ(x) = x; (ii) x ∈ F(t) and σ(x) = c ⊕ x for
some c ∈ C⊕

norm, c �= 0; (iii) x occurs in a fragile subterm s and there exists a
substitution σ′ in normal form satisfying sσ′ ∈ C⊕ then σ(x) = σ′(x).
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Now given a Horn theory modulo XOR, T , we can reduce it to an XOR-free one
T+ as follows

�r1σ�, · · · , �rnσ� → �r0σ� for each σ ∈
∑

(〈r0, . . . , rn〉) (12)

I(c), I(c′) → I(�c ⊕ c′�) for each c, c′ ∈ C⊕
norm (13)

I(c), I(x) → I(c ⊕ x) for each c ∈ C⊕
norm (14)

I(c), I(c′ ⊕ x) → I(�c ⊕ c′� ⊕ x) for each c, c′ ∈ C⊕
norm (15)

I(c ⊕ x), I(c′ ⊕ x) → I(�c ⊕ c′�) for each c, c′ ∈ C⊕
norm (16)

where rule (12) is applied to each rule r1, . . . , rn → r0 of T . The Horn clauses
except for the ⊕-rule can be simulated by the rules in (12). The rules (13)-(16)
are used to simulate the ⊕-rule. Küsters and Truderung prove that a message
can be derived from T modulo XOR if and only if it can be derived from T+

only with a syntactic derivation, that is, no algebraic properties of XOR need to
be considered.

We take NSL′
⊕-sec as an example to show how the reduction works. It is ⊕-

linear with dominating set C = {m(a, b), m(a, a), n(a, b), n(a, a), a, b}. We sup-
pose the order on C is how they are listed. The set C⊕

norm can also be computed.
Since only the Horn clauses in (6) and (7) have a fragile subterm x, we need to
compute its set of substitutions whose domain is {x}. Other clauses should be
included in the new theory unchanged.

Consider an instantiated clause of rule (6)

I({x, a}pub(ska)) → I({m(a, a), m(a, a) ⊕ x ⊕ a}pub(ska)) (17)

According to Def. 1, case (i) always holds so it gives σ1(x) = x. Case (ii) gives
63 substitutions such as σi(x) = m(a, a) ⊕ n(a, a) ⊕ x. For case (iii), we have
another 64 substitutions. For instance, σj(x) = m(a, b)⊕n(a, a) will be included.
In the end, we have 128 substitutions in total. For each of them, we obtain an
instance of rule (6). For example, after applying σi we have:

I({m(a, a) ⊕ n(a, a) ⊕ x, a}pub(ska)) → I({m(a, a), n(a, a) ⊕ a ⊕ x}pub(ska))

We can obtain the reduced Horn clauses for other instantiated clauses in a simi-
lar way. The clauses (13)-(16) model the ⊕-rule. In our running example, for in-
stance, I(m(a, a)⊕a), I(a⊕x) → I(m(a, a)⊕x) will be an instance of clause (15).

3 Bounded Verification of Authentication Protocols

In the Horn theory based approach new protocol runs do not necessarily use fresh
nonces [10]. Therefore, nonces from different runs need to be disambiguated. The
standard solution is to add a special session identifier variable (sid) to terms
representing nonces. During verification, sid is automatically instantiated by a
fresh random value. Freshness of nonces is only required when verifying security
properties that need correspondence at run level. Note the difference between
m(a, b, sid) and m(a, b) in NSL′

⊕-auth and NSL′
⊕-sec, respectively.
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As a consequence, Horn theories that are ⊕-linear when verifying secrecy
can become non-⊕-linear when verifying authentication properties. For instance,
NSL′

⊕-auth is not ⊕-linear since it contains a term m(b, a, sid)⊕x⊕b, where both
m(b, a, sid) and x are non-ground. As observed by Küsters and Truderung [10],
sid is a special variable, because it cannot be substituted by C-dominated terms.
In the sequel, we call variables that can be substituted by C-dominated terms
C-variables. Protocol models that are not ⊕-linear solely because of the intro-
duction of session identifiers form a special class of XOR-protocols, which we
call nonce-⊕-linear.

Definition 2 (Nonce-⊕-linear). A term is nonce-⊕-linear if for each of its
subterms of the form s ⊕ t, s or t contains no C-variables.

For example, the term h(n(a, b, sid))⊕ x is nonce-⊕-linear while h(n(a, b, sid)⊕
x) ⊕ y is not, where n(a, b, sid) is a nonce and x, y are variables. The concept
of nonce-⊕-linearity extends to Horn clauses and theories in a similar fashion to
⊕-linearity.

By instantiating the variable sid with a fixed finite set S = {s1, . . . , sn} of
session identifiers, nonce-⊕-linear protocols can be transformed into ⊕-linear
protocols. Note that S must not intersect with T . We then obtain the multi-
session Horn theory Tn by replacing sid with each si ∈ S.

Definition 3 (Multi-session Horn Theory). Let T be a Horn theory, and
let σi (1 ≤ i ≤ n) be the substitutions mapping sid to si and the identity map
for other terms. Then multi-session Horn theory of T is defined by

Tn =
⋃

1≤i≤n

σi(T )

Clearly, transforming a nonce-⊕-linear Horn theory into a multi-session Horn
theory as in Def. 3 makes it ⊕-linear.

We now give a theorem about the correctness of our multi-session transfor-
mation. Suppose there is a C-dominated message using at most n sessions of
any agent to derive. We can derive it from T if and only if it can also be derived
from T⊕

n through syntactic derivations. Since T⊕
n is XOR-free, ProVerif can be

used to analyze it.

Theorem 1. Given a nonce-⊕-linear Horn theory T , the corresponding multi-
session XOR-free Horn theory T⊕

n and a C-dominated message f which can be
derived using at most n sessions of participating agents, T �⊕ f iff T⊕

n � f .

In the sequel, let Tn be the n-session model transformed from T . We prove the
theorem by proving the following two lemmas.

Lemma 1. If π is a syntactic derivation for f from T⊕
n , then π is a derivation

for f from T modulo XOR.

Proof. From Lem. 13 in [10], if there is a derivation π for f from T⊕
n , then π is

also a derivation for f from Tn modulo XOR. Therefore, to prove this lemma it
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suffices to prove that if π is a derivation for f from Tn modulo XOR, then it is
also a derivation for f from T . Thus, we need to prove each π(i) can be obtained
by a derivation modulo XOR from T and π<i. (We use π(i) to denote the i-th
atom in π, and π<i to denote those atoms π(j) with j < i.)

Suppose π(i) is obtained using a protocol rule r1, . . . , rm → r0 in Tn. There
exists a substitution θ with r0θ ∼ π(i) and for each k ∈ {1, . . . , m}, we have
j < i such that rkθ ∼ π(j). By Def. 3, there must be a rule r′1, . . . , r

′
m → r′0 in T

and a substitution σ such that for each � ∈ {0, . . . , m}, r� = r′�σ. Thus for each
k ∈ {1, . . . , m}, we have j < i such that r′k(σθ) = (r′kσ)θ = rkθ ∼ π(j). Thus we
obtain r′0(σθ) = r0θ ∼ π(i) using the rule r′1, . . . , r

′
m → r′0.

Lemma 2. If π is a derivation for f from T modulo XOR, then �π� is a deriva-
tion for f from T⊕

n .

Proof. Let S be the set of session identifiers occurring in π and suppose its size
is n. By Def. 3, we obtain a multi-session theory Tn using S. From Lem. 15
in [10], we know if π′ is a derivation for f from Tn modulo XOR, then �π′� is
a syntactic derivation for f from T⊕

n . Thus, to prove this lemma, it suffices to
prove π is also a derivation from Tn. Now, we have to prove each π(i) is obtained
by a derivation modulo XOR from Tn and π<i.

Suppose π(i) is obtained from a rule r1, . . . , rm → r0 in T . Then there exists
a substitution θ with r0θ = π(i) such that for each k ∈ {1, . . . , m}, we have
j < i and rkσ = π(j). The domain of θ can be divided into two parts; session
identifiers V1 and C-variables V2. It is clear that there exist two substitutions
σ and θ′ such that rjθ = rjσθ′ where dom(σ) = V1 and dom(θ′) = V2. From
Def. 3, there exists a rule r′1, . . . , r

′
m → r′0 in Tn such that for each � ∈ {0, . . . , m}

r′� = r�σ. Thus we obtain π(i) = (r0σ)θ′ = r′0θ
′ from r′1, . . . , r

′
m → r′0.

From the above two lemmas, we immediately obtain that T �⊕ f iff T⊕
n � f .

4 Optimizations of XOR-Reduction

4.1 Optimization Based on Nonce Freshness

Recall that a protocol model in a Horn theory T consists of a set of rules ri

(i ∈ {1, . . . n}) of the form I(t1), . . . , I(ti) → I(si). Such rules should be read as
“after receiving the messages t1, . . . , ti the agent sends si”. The terms on both
sides may contain C-variables to which substitutions are applied in the XOR-
reduction process. Consider a rule ri in which some tj (1 < j ≤ i) and si contain
a variable x. If ri generates a nonce m, substituting m for x may lead to false
attacks. For example, applying substitution σ(x) = m(b, a) ⊕ x to rule (6) gives

{m(b, a) ⊕ x, a}pub(skb) → {m(b, a), b ⊕ x}pub(ska),

indicating a pre-play of the nonce m(b, a) by the adversary, contradicting fresh-
ness of nonces. We call rules that are vulnerable to this type of illegal substi-
tutions challenging rules. To identify challenging rules we assume a strict total



116 X. Chen, T. van Deursen, and J. Pang

order ≺ on protocol rules of a role according to the execution order of the pro-
tocol steps, and use t � r to denote that a term t appears in the Horn clause r
(formally t is a subterm of the left-hand side or right-hand side of the rule r).

Definition 4 (Challenging Rule). Let M be the set of nonces occurring in a
Horn theory and R = {r1, · · · , rn} the corresponding set of protocol rules. We
say ri is a challenging rule if there exists m ∈ M such that m � ri and for each
rj ∈ R such that rj ≺ ri, m �� rj.

We now define which terms in a clause can be cancelled by applying a substitu-
tion to them.

Definition 5 (Cancelling Term Set). Let t be a C-dominated term and s � t
be a fragile term. We define the set of cancelling terms N (s, t) to be a set of terms
such that there exists a substitution for s resulting in cancellation of another
subterm of t:

N (s, t) = {s′|∃u s.t. s ⊕ u ⊕ s′ � t ∨ s′ ⊕ u ⊕ s � t}.

For example, the cancelling term set N (x, t) for t = m(a, b)⊕x⊕a is {m(a, b), a}.
Now, let M be a set of nonces that are freshly generated in rule r. We can

restrict the set of C-dominated substitutions for r to substitutions that do not
cancel any term with m ∈ M .

Definition 6 (Legal Substitution). Let t be a C-dominated term and M be
the set of nonces that are freshly generated. Then σ is a legal substitution for t
if it contains all variables x that occur in t and for each x one of the following
three cases holds:

i. σ(x) = x,
ii. x ∈ F(t), σ(x) = c⊕x for some c ∈ C⊕

norm, c �= 0 and for each m ∈ M , there
does not exist n ∈ N (x, t) such that m � n ∧ n � c.

iii. if x occurs in a fragile subterm s and there exists a substitution σ′ in normal
form satisfying sσ′ ∈ C⊕ and for each m ∈ M , there does not exist n ∈
N (s, t) such that m � n ∧ n � sσ′, then σ(x) = σ′(x).

Recall that there are128 substitutions for clause (17).Clearly,N (x, t) is{m(a, a), a}
where t = m(a, a) ⊕ x ⊕ a. Since m(a, a) is fresh in this challenging rule, M =
{m(a, a)}. According toDef. 6, any substitution in cases (ii) and (iii)havingm(a, a)
as a subterm is not legal. For instance, the substitutions such as σ(x) = m(a, a)⊕x
and σ(x) = m(a, a)⊕n(a, a) are removed. Applying this optimization removes 64
rules.

4.2 Optimization Based on Session Ordering

The bounded verification that we have introduced in Sect. 3 extends the class
of XOR-protocols that can be automatically verified. However, their verification
is often inefficient. Recall that the number of rules of an XOR-reduced protocol
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grows exponentially in the size of the dominating set. Therefore, in particular
the verification of protocols that are nonce-⊕-linear but not ⊕-linear becomes
less efficient if the number of sessions grows. In this section, we aim to reduce
the number of rules obtained from the XOR-reduction process by computing a
dominating set for each rule with fragile subterms.

We first observe that the session identifiers we introduced in Sect. 3 are only
needed to disambiguate nonces from different sessions. They carry no other in-
formation and do not appear anywhere else in the protocol specification. We can
therefore enforce an order on the challenging rules that create these nonces. In
the following we assume that each role of a protocol contains at most one chal-
lenging rule, but we note that our theory can be extended to roles with more
than one challenging rule.

Let Cr(si) be the challenging rule of an agent in session si ∈ {s1, . . . , sn}. In
these sessions, the agent plays the same role and communicates with the same
partner as well. We now extend the order ≺ introduced in Sect. 4.1 by defining
the order between these challenging rules such that Cr(si) ≺ Cr(sj) if and only
if i < j. The main observation for this optimization is that by fixing an order on
the execution of the challenging rules, we can eliminate illegal substitutions. In
order to do so, we compute a dominating set for each rule having fragile subterms
separately. This dominating set only contains nonces that have been generated
in previous sessions (based on ≺).

As a starting point we take a dominating set C (see Sect. 2.1). We then
eliminate terms that contain subterms that are generated in later challenging
rules. Let Nt(Cr) denote the set of nonces generated in challenging rule Cr.
Then the dominating set C′ for rule r is defined by the set C from which any
term that depends on a nonce that is generated after or in r is eliminated:

C′(r) = {s ∈ C|there does not exist n ∈
⋃

r≺r′
Nt(r′) ∪ Nt(r) s.t. n � s}.

With the size of the dominating set decreasing, the number of substitutions
decreases as well. Consider an instance of rule (9) in NSL′

⊕-auth. Suppose two
sessions s1 and s2 in which agent b plays role B and talks to a. Let r1 and r2
represent the rules in session s1 and s2 respectively:

I({x, a}pub(skb)) → I({m(b, a, s1), m(b, a, s1) ⊕ x ⊕ b}pub(ska)

I({x, a}pub(skb)) → I({m(b, a, s2), m(b, a, s2) ⊕ x ⊕ b}pub(ska)

Since they are both challenging rules with Nt(r1) = {m(b, a, s1)} and Nt(r2) =
{m(b, a, s2)}, and we also have r1 ≺ r2, the dominating set C′(r1) cannot contain
terms with m(b, a, s1) and m(b, a, s2) as subterms.

4.3 Secrecy-Based Authentication Verification

By the result of Comon-Lundh and Cortier [13], we need one more participant
to verify authentication than secrecy (see Sect. 2.2). Therefore, Horn theories for
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verifying authentication are generally bigger than models of the same protocols
for verifying secrecy. The situation becomes worse when bounded verification is
applied. We propose to optimize verification of authentication properties by first
verifying secrecy for certain terms in the Horn theory.

Consider two nonce-⊕-linear Horn theories Tsec and Tauth . Let F be the set of
facts that ProVerif will check for their secrecy when deriving the goals in Tauth .
With the results from the secrecy verification for F using Tsec, we can prevent
ProVerif from deriving these facts during authentication verification.

For the sake of efficiency, F should be carefully chosen. Typically, F contains
shared keys and C-dominated terms. The observation is that by this choice we
can eliminate the rules violating secrecy after reduction. For example, for NSL′

⊕
after reduction of its two-session model, we have a rule:

I({n(a, b, s1), c}pub(skb)) → I({m(b, c, s1), m(b, c, s1) ⊕ n(a, b, s1) ⊕ b}pub(skc).

If we know that n(a, b, s1) is secret, according to this rule and the ⊕-rule the
intruder can obtain it after decrypting the message and computing the XOR of
m(b, c, s1)⊕ n(a, b, s1)⊕ b with m(b, c, s1) and b. This contradicts the secrecy of
n(a, b, s1). To identify these rules, we define secrecy-violating rules:

Definition 7 (Secrecy-violating Rule). Let S be a set of verified secrets and
r be a reduced rule. We say r is a secrecy-violating rule if after repeatedly using
the intruder rules, the intruder can obtain a secret t ∈ S.

This optimization concentrates on finding secrecy-violating rules in order to
reduce the size of the resulting Horn theory. Therefore, we can improve the
efficiency of verification using ProVerif. We only implemented a light-weight
process to remove some of the rules automatically. How to remove all such rules
is an interesting research topic.

4.4 RFID-Based Optimizations

Radio frequency identification (RFID) systems are used to identify tagged ob-
jects through wireless channels. Since tags must be manufactured at a very low
cost, only simple operations can be performed by the tag. Therefore, XOR is
an operator that is often used in RFID protocols. Compared to general security
protocols, RFID protocols have their own characteristics that allow optimization
of the verification process. In this section, we discuss three characteristics and
present their corresponding optimizations.

During communications, readers are initiators and they aim to authenticate
tags. Tags receive challenges and run the steps described by the protocol. For
this reason, an agent can only play one role: an agent is either reader or tag.
This allows us to simplify the Horn theories for verification of authentication. For
instance, assume NSL′

⊕ is used as an RFID protocol and let the set of protocol
participants be {tag, reader , intruder}. In rule (8) of NSL′

⊕-auth, a can only be
substituted by reader while b can be substituted by either tag or intruder .
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Since information such as keys is embedded in tags, only the readers of the
same system can talk to tags. Moreover, tags always belong to one RFID system.
There never exist secrets shared between the intruder and tags. We therefore do
not model the intruder as an insider, preventing the derivation of insider-attacks.

In particular, we propose to remove the rules in which tag believes to be
talking to intruder . For example, with the assumption that NSL′

⊕ is an RFID
protocol, in rule (9), we have a ∈ {tag}, b ∈ {reader}. In this way, we decrease
the number of Horn clauses in the model. In particular, the size of dominating
set will be smaller as a number of nonces is removed.

We observe that tags are manufactured in such a way that they can only have
one active protocol execution at a time. Therefore, we do not have to model
attacks that rely on a parallel execution of two or more runs of one tag. Hence,
a tag’s runs are completely sequential. For bounded verification, the order ≺
introduced in Sect. 4.1 can be extended to all rules of the tag. Suppose there
are � rules in a session and n sessions are modeled in total. Let r(i, sk) be the
rule that represents the ith step of the tag in session sk ∈ {s1, . . . , sn}. Given
i, j ≤ �, k1, k2 ≤ n, we have r(i, sk1) ≺ r(j, sk2 ) if (i < j ∧ k1 = k2) ∨ (k1 < k2).
Now, the optimization in Sect. 4.2 can be applied to the simplified models with
the strict order on the tag’s rules.

4.5 Optimization Based on ⊕-Rule Reduction

In the implementation of XorProverif, Küsters and Truderung introduce a com-
pact way to represent clauses (13)-(16). They do not keep all the copies for every
pair c, c′ ∈ C⊕

norm, but rather introduce a function xtab(c, c′, �c⊕ c′�) to denote
clauses of the form of (13). The Horn clauses (14)-(16) are represented below:

xarg(x), I(x), I(y) → I(x ⊕ y)) (18)
xarg(x), I(x ⊕ y), I(x) → I(y) (19)

xtab(x, y, z), I(x ⊕ t), I(y) → I(z ⊕ t) (20)
xtab(x, y, z), I(x ⊕ t), I(y ⊕ t) → I(z) (21)

where xarg(x) denotes x ∈ C⊕
norm in the first two clauses and x, y, z are variables

in the last two. When instantiating rule (20) with the substitution {a/x, b/
y, �a⊕b�/z}, we have xtab(a, b, �a⊕b�), I(a⊕ t), I(b) → I(�a⊕b�⊕ t). Similarly,
for substitution {b/x, a/y, �a⊕ b�/z} we have xtab(b, a, �a⊕ b�), I(b⊕ t), I(a) →
I(�a⊕b�⊕t). As shown by this example, rule (20) requires both xtab(a, b, �a⊕b�)
and xtab(b, a, �a⊕ b�) existing in the Horn theory to capture both scenarios. By
introducing the following symmetric clause to rule (20)

xtab(x, y, z), I(y ⊕ t), I(x) → I(z ⊕ t)

we can remove xtab(b, a, �a ⊕ b�) as long as xtab(a, b, �a ⊕ b�) remains in the
Horn theory in the previous example, since the second substitution is captured
by the newly introduced clause. In this way, we can remove rules of the form
xtab(a, b, �a ⊕ b�). With the size of the dominating set C⊕

norm becoming larger,
the number of reduced rules also becomes larger.
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5 Implementation and Experiments

In order to validate our ideas, we have built an implementation [14] of the
bounded verification (as descried in Sect. 3) and the optimizations (as described
in Sect. 4). In order to check the effects of our improvements, we have compared
our implementation with that of XorProverif.

5.1 Implementation

We use SWI prolog for our implementation. The input Horn theory consists of
three parts: (1) declaration of function symbols that are used in the theory, (2)
necessary initial intruder facts, intruder rules, and protocol rules, (3) verifica-
tion goals, either secrecy or authentication. We introduce a function nonce to
declare nonces, and an auxiliary function to provide necessary information about
a protocol rule including its position and session. The latter is needed in order
to implement optimizations in Sect. 4.

Fig. 2. Structure of the implementation

As shown in Fig. 2, our implementation mainly performs three steps. Each step
takes the output of its previous step as the input Horn theory and outputs a new
Horn theory after. The input Horn theory at the very beginning must be nonce-
⊕-linear. Step (i) is optional. It can choose a set of terms to check if they are
secret, and the results of the secrecy verification are added to the output. Step (ii)
transforms its input into a multi-session ⊕-linear model, which is necessary for
bounded verification (see Sect. 3). Step (iii) checks ⊕-linearity and computes C-
dominating sets as done by XorProverif. It also applies optimizations as described
in Sect. 4 whenever possible and reduces the Horn theory to the XOR-free one.
In the end, ProVerif performs the last part of the verification.

5.2 Experiments

We first present experimental results for secrecy verification with optimizations
applied to the XOR-reduction step and compare them with XorProverif (see
Tab. 1). Then we apply bounded verification to a number of nonce-⊕-linear
protocols including some RFID protocols to check authentication (see Tab. 2).
All experiments are performed on a Dell Latitude E5500 laptop with a 2.26GHz
Intel CoreTM 2 Duo P8400 processor and 2GB RAM.

Secrecy verification. We first describe the protocols in that we use for our
experiments.
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The first protocol we consider is our running example NSL′
⊕-sec. We propose

two fixes to the protocol that counter the attack depicted in Sect. 2.2. In NSL′
⊕-

fix-0, we replace the message {m, m⊕ n⊕ b}pub(ska) with {m⊕ n, b}pub(ska) and
in NSL′

⊕-fix-1 with {m, h(m⊕n)⊕ b}pub(ska), where h denotes a hash function.
Note that these protocols are only meant to fix the secrecy flaw.

The protocol NSL⊕ is the example used by Küsters and Truderung [10] where
the second message is of the form {m, n⊕ b}pub(ska). CCA is short for Common
Cryptographic Architecture (CCA) API [15], designed by IBM. This series of
CCA protocols are also checked by Küsters and Truderung [10].

Inspired by Millen’s ffgg protocol [16], we design a family of protocols which
we call fgms. The family contains protocols that can be attacked in n sessions,
but not in n − 1 sessions, for any n. In order to attack the secrecy claim, the
algebraic properties of ⊕ need to be used.

The specification of fgms-2, the protocol that can be attacked in two sessions
but not in one, is as follows. Role A and B initially share a secret k. An agent
in role A initiates the protocol by sending {na, k}k to B. The agent playing role
B does not verify the values of na and k inside the encryption, but only the
encryption key k. He then generates a nonce nb and replies with 〈x, nb, {nb ⊕
y, x}k〉. The protocol is shown in Fig. 3.

k

A

k

B

nonce na

{na, k}k

nonce nb

na, nb, {k ⊕ nb, na}k

secret k secret k

auth B

Fig. 3. Description of the fgms-2 protocol

We can obtain the protocol fgms-3 by adding an extra nonce to both mes-
sages. The first message is replaced by {na, n

′
a, k}k and the second message by

na, nb, {n′
a ⊕ nb, k, na}k. In a similar way fgms-n for any n > 2 can be designed.

Tab. 1 gives the reduction time required by XorProverif (referred to as ‘XPv’)
and our implementation (referred to as ‘optimized’), and the ProVerif verifica-
tion time with and without our optimizations. From the results, we observe a big
improvement for NSL′

⊕ and its fixes, if our optimization for secrecy is applied.
For the CCA protocols, due to the optimization in Sect. 4.5, the analysis also be-
comes more efficient. For the fgms family of protocols, without our optimization
ProVerif cannot terminate.
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Table 1. Results for secrecy verification (n.t. for non-terminating)

XOR-protocols correct reduction ProVerif time saved
XPv optimized - opt. + opt.

NSL′
⊕-sec no 0.67s 0.52s 16.12s 7.16s 55.6%

NSL′
⊕-fix-0 yes 0.13s 0.12s 0.14s 0.08s 42.9%

NSL′
⊕-fix-1 yes 0.71s 0.53s 14.95s 6.60s 55.9%

NSL⊕ no 0.07s 0.07s 0.02s 0.01s 50%
CCA-0 no 0.24s 0.22s 129s 117s 9.3%
CCA-1A yes 0.09s 0.09s 0.69s 0.64s 7.2%
CCA-1B yes 0.12s 0.11s 1.17s 1.11s 5.1%
CCA-2B yes 0.20s 0.18s 12.7s 10.4s 18.1%
CCA-2C yes 0.25s 0.22s 69.60s 64.34s 7.6%
CCA-2E yes 0.09s 0.09s 1.48s 1.34s 9.5%
fgms-2 no 0.06s 0.06s n.t. 0.21s -
fgms-3 no 0.07s 0.07s n.t. 0.37s -
fgms-4 no 0.07s 0.07s n.t. 0.40s -
fgms-5 no 0.08s 0.08s n.t. 0.51s -

Bounded verification of authentication properties. For the analysis of
our verification method for authentication we use the following protocols.

The protocols containing NSL′
⊕ in their names include our running exam-

ple and one of its fixes. Lee et al. [17] and Song and Mitchell [18] proposed
RFID protocols, which we call LAK06 and SM08 after the last names of the

TID ,PWA
R

TID ,PWA
T

nonce Rr

Query,Rr

nonce Rt

M� = CRC (TID�⊕Rr⊕Rt)
Mh = CRC (TIDh⊕Rr⊕Rt)
M = (M� ‖ Mh) ⊕ PWA

Rt, M

M ′
� = CRC (TID� ⊕ Rt)

M ′
h = CRC (TIDh ⊕ Rt)

M ′ = (M ′
� ‖ M ′

h) ⊕ PWA
M ′

auth T auth R

Fig. 4. Description of the CZW08 protocol
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TID ,PWA
r eve

TID ,PWA
t

nonce Re

Query, Re

nonce Rt

M� = CRC (TID�⊕Re⊕Rt)
Mh = CRC (TIDh⊕Re⊕Rt)
M = (M� ‖ Mh) ⊕ PWA

Rt,M

nonce Rr

Query, Rr

Re ⊕ Rt ⊕ Rr,M

M ′
� = CRC (TID� ⊕ Rt ⊕ Re ⊕ Rr)

M ′
h = CRC (TIDh ⊕Rt ⊕Re ⊕Rr)

M ′ = (M ′
� ‖ M ′

h) ⊕ PWA

M ′

auth T

Fig. 5. An attack on the CZW08 protocol

authors. Attacks on both protocols have been reported by Van Deursen and
Radomirović [19]. We also analyze a variant of the protocol by Choi et al. [20]
(CLL09).

Our final example is the mutual RFID authentication protocol proposed by
Cai et al. [21], which is depicted in Fig. 4. In order to comply with the EPCglobal
C1G2 specification, the protocol only uses a 16-bit Pseudo-Random Number
Generator (PRNG) and a 16-bit Cyclic Redundancy Check (CRC). The reader
R and tag T share secrets TID (Tag Identifier) and PWA (Access Password).
The reader starts by sending a query and a nonce Rr. The tag generates a nonce
Rt and computes the XOR of PWA and the concatenation of M� and Mh, as
given in Fig. 4.

The reader checks the the correctness of the received message before sending
the response. Burmester et al. give two attacks on the protocol [22], which both
rely on the homomorphic properties of CRC functions.

Using our prototype, we find a new attack on tag authentication using bounded
verification. To impersonate a tag the intruder proceeds as follows. He challenges
the tag with any nonce Re and obtains the reply 〈Rt, (CRC (TID l ⊕ Re ⊕ Rt) ‖
CRC (TIDh⊕Re⊕Rt))⊕PWA〉. This message suffices for the intruder to respond
to any reader challenge Rr by replacing Rt in the message with Re ⊕ Rr ⊕ Rt.
The attack is depicted in Fig. 5.

Tab. 2 gives the number of sessions (#sid) used for multi-session transforma-
tion, the time used for our optimized XOR-reduction, the verification time taken
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Table 2. Results of bounded verification of authentication

XOR-protocols correct #sid reduction ProVerif time saved #derivations
- opt. + opt. - opt. + opt.

NSL′
⊕-authA no 1 4.47s 17.67s 7.39s 58.2% 2 1

NSL′
⊕-authA-fix-0 yes 1 6.50s 0.132 0.072s 45.5% 1 1

NSL′
⊕-authA-fix-0 yes 2 97.2s 6916s 2907s 58.0% 2 2

NSL′
⊕-authB-fix-0 no 1 3.01s 0.32s 0.08s 75.0% 1 1

LAK06 no 1 0.152s 0.012s 0.004s 66.7% 8 4
SM08 no 1 0.128s 0.036s 0.016s 55.6% 8 4
CLL09 yes 1 0.068s 0.124s 0.064s 48.4% 13 5
CLL09 no 2 0.62s 244.4s 139.4s 42.9% 156 14
CZW08 no 1 0.17s 0.064s 0.028s 56.2% 8 4

by ProVerif after the multi-session transformation (without the optimizations)
and our bounded verification with optimizations, and the number of generated
derivations (#derivations). For general protocols, we apply the optimization in
Sect. 4.2. For RFID protocols, the optimization in Sect. 4.4 is also applied. The
table clearly shows that our optimizations can reduce both the verification time
by ProVerif, and the number of derivations.

6 Conclusion and Future Work

In this paper, we have focused on the verification of security protocols with XOR.
We improve the XOR-reduction approach of Küsters and Truderung [10] for the
verification of XOR-protocols modeled by Horn theories.

First, we extend their approach for authentication verification to a richer class
of XOR protocols using the idea of bounded verification. We consider session
identifiers as constants instead of variables [10] and verify protocols using models
with a bounded number of sessions. The corresponding transformation process
is performed automatically.

Second, we make their approach more efficient by developing a number of
dedicated optimizations including the usage of freshness of generated nonces and
secrecy of certain terms to reduce the number of substitutions, restricting session
order in our bounded verification, and exploring the specific characteristics of
RFID protocols. All these ideas have been implemented in a prototype. The
experimental results show the feasibility of our methods and the reduction in
verification time by ProVerif looks in all respects promising. We also found a
new attack on a recently proposed RFID protocol.

We conjecture that our optimizations presented in the current paper do not
sacrifice the soundness of Küsters and Truderung’s approach. However, their for-
mal correctness proofs are left for the future. There are several ways to proceed.
Our implementation is still preliminary, we want to improve it and test it with
more experiments. Especially we are interested in bigger examples. We want to
extend our work by identifying more optimizations. Küsters and Truderung have
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extended their reduction approach to protocols with Diffie-Hellman exponenti-
ation [23]. It will be interesting to see to what extent our optimizations can be
applied to those protocols as well.
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Abstract. Privacy enhancing protocols (PEPs) are a family of protocols
that allow secure exchange and management of sensitive user informa-
tion. They are important in preserving users’ privacy in today’s open
environment. Proof of the correctness of PEPs is necessary before they
can be deployed. However, the traditional provable security approach,
though well established for verifying cryptographic primitives, is not ap-
plicable to PEPs. We apply the formal method of Coloured Petri Nets
(CPNs) to construct an executable specification of a representative PEP,
namely the Private Information Escrow Bound to Multiple Conditions
Protocol (PIEMCP). Formal semantics of the CPN specification allow us
to reason about various security properties of PIEMCP using state space
analysis techniques. This investigation provides us with preliminary in-
sights for modeling and verification of PEPs in general, demonstrating
the benefit of applying the CPN-based formal approach to proving the
correctness of PEPs.

1 Introduction

As a response to the increasing number of incidents compromising the privacy
of millions of users [1], there has been an increase in the research related to pri-
vacy enhancing protocols (PEPs). PEP is a generic term that refers to protocols
whose main purpose is to preserve users privacy in an open communication envi-
ronment (e.g. over the Internet). For example, emulating the off-line anonymity
afforded by cash transactions, a PEP ensures that when a user purchases goods
on-line, the on-line seller does not learn the identity of the user. A PEP nor-
mally applies complex cryptographic primitives (such as custodian-hiding group
encryption and verifiable encryption) to achieve the privacy-enhancing features.
Recently, the Trusted Platform Module (TPM) technology - which provides se-
cure hardware storage of cryptographic keys and implementation of common
cryptographic primitives - has also been used in PEPs [2].

An important issue in the design of applied cryptographic protocols, such as
PEPs, is to ensure they work correctly and do not contain errors that may weaken
the original security protections provided by the cryptographic primitives em-
ployed. Formal methods are necessary for the construction of unambiguous and
precise models that can be analysed to identify errors and verify correctness be-
fore implementation. The application of formal methods has been demonstrated
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to lead to reliable and trustworthy security protocols [3, 4, 5]. However, to the
best of our knowledge, no existing work provides a formal verification of PEPs.

In the domain of cryptography, the main method to verify a cryptographic
primitive is the provable security approach [6]. This approach aims to prove
some standard security properties of cryptographic primitives by reducing the
proof of those properties to some hard (normally mathematical) problem within
the context of a simplified standard attack model with well-defined boundaries
(such as the random oracle model). It is however not suitable for verification
of PEPs and the reasons are two-fold. On the one hand, the security properties
of a PEP are behavioral properties and proof of these properties can hardly
be reduced to pure mathematical problems. On the other hand, the simplified
assumptions employed in the provable security approach are not applicable to
PEPs due to the expanded threat environment in which PEPs operate. In PEPs,
one needs to consider attacks introduced by the existence of multi-party entities
and attacks targeted at the design of a protocol, not directly at the cryptographic
primitives employed. The lack of computer-aided tools in the provable security
approach also makes such an approach not scalable when modeling and verifying
a large system such as PEPs. While provable security has been used to verify
certain types of protocols (notably key establishment protocols), we note that it
is nevertheless not suitable to verify behavioral properties.

Coloured Petri Nets (CPNs) [7] are a widely-used formal method for sys-
tem specification, design, simulation and verification. They provide a graphical-
oriented modeling language capable of expressing concurrency, synchronisation,
non-determinism, and system concepts at different levels of abstraction. CPNs
combine Petri nets [8] and the functional programming language Standard ML
(SML) [9]. Petri nets are used to model concurrency, synchronisation and re-
source sharing, and support an abundance of analysis techniques such as the
well-known state space techniques. SML is used to capture data manipulation
and to create compact and parameterisable models. CPN Tools [10] is a graphical
tool supporting the construction, simulation and analysis of CPN models.

In this paper, we propose a CPN-based approach for modeling and verification
of PEPs. CPNs are used to construct a formal specification of a representative
PEP, namely the Private Information Escrow Bound to Multiple Conditions
Protocol (PIEMCP) [11]. PIEMCP involves large multi-party communication
and employs complex cryptographic primitives and TPM functionalities. The
hierarchical structuring mechanism of CPNs supports a modular and systematic
approach in capturing the behavior of PIEMCP at different levels of abstraction.
Using SML, a wide variety of cryptographic primitives and the processing of
these primitives are captured in meta-models that are embedded in higher levels
of the protocol operations. By parameterising the protocol model with different
types of attacks, a large number of attack scenarios are captured for analysis.
The CPN model of PIEMCP is executable and can be analysed to verify the
security behavior of the protocol. The analysis of PIEMCP is performed using
the state space generated from the parameterized CPN model and the selective
runtime protocol session data stored as external files.
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The contributions of this paper are two-fold. First of all, it demonstrates
the use of CPN to model and verify the security behavior of PEPs. To the
best of our knowledge, this is the first attempt at the formal verification of a
PEP. Secondly, the paper proposes several modeling and analysis techniques
that have been applied to other PEPs [12, 13]. These techniques may be used
as preliminary guidelines for a general CPN-based approach for modeling and
verification of PEPs. Also, efficiency is another major concern in PEPs due
to the use of resource-intensive cryptographic primitives. The CPN model of
PIEMCP developed in this paper can be easily extended in the future to allow a
simultaneous analysis of both the protocol performance and security behavior.

The rest of the paper is structured as follows. Sect. 2 provides some back-
ground information about PIEMCP. Sect. 3 proposes the modeling approach
and describes selected parts of the CPN model of PIEMCP. Based on this CPN
model, Sect. 4 details the verification of a set of security behaviors of PIEMCP.
Sect. 5 reviews related research efforts. Finally, in Sect. 6 we summarize our
contribution and discuss future work.

2 Overview of PIEMCP

The PIEMCP [11] is used in a federated single-sign on (FSSO) environment
whereby a user only has to authenticate once to an identity provider (IdP) to
access services from multiple service providers (SPs). The entities involved are
users, IdPs, SPs, and an anonymity revocation manager (ARM) or some referees.
An IdP assures SPs that although users are anonymous, when certain conditions
are fulfilled, the users’ identities can be revealed. A user’s identity refers to a
set of personally identifiable information (PII). Although the services that SPs
provide can be delivered without the need of PII, they require the PII to be
revealed by an ARM or some referees when certain conditions are satisfied.

The PIEMCP consists of four stages, namely PII escrow (PE), key escrow
(KE), multiple conditions (MC) binding, and revocation. An execution of the
protocol involves two distinct sessions: the escrow session which consists of a
sequential execution of the PE, KE and MC stages, and the revocation session
which consists of an execution of the revocation stage. A user can run n escrow
sessions, during which his/her PII is hidden (anonymous). At least one escrow
session has to be completed before a revocation session can start. During the
revocation session, the user’s PII linked to a specific SP in a specific escrow
session is revealed. For n escrow sessions, each with m-number of SPs, up to
n × m revocation sessions can be performed.

The PIEMCP has two variants: the first variant (PIEMCP-T) uses a trusted
ARM for anonymity revocation, and the second variant (PIEMCP-NT) uses a
group of referees instead of ARM. In both variants, most of the operations,
especially those in the PE, KE and MC stages, are performed in a similar way.
Therefore, we describe the main operations in one of them, the PIEMCP-NT.
Fig. 1 depicts the message exchanges between the different entities within the
four stages of this protocol.
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The PE stage begins when a user requests a service from a service provider
SP1. This triggers the agreement of conditions (Cond1) whose fulfillment allows
the PII to be revealed. SP1 then sends a message NT-PE-1 containing Cond1
to an IdP to escrow the user’s PII. The IdP contacts the user to obtain his
encrypted PII. The user encrypts the PII using a Verifiable Encryption (VE)
scheme under a freshly generated key pair (public and private keys). The user
sends to the IdP NT-PE-2 comprising the VE ciphertext and the public key used
for the encryption. The user keeps the private key, which is needed to decrypt
the ciphertext. Next, the user and the IdP engage in a cryptographic “proof-
of-knowledge” (PK) protocol (NT-PE-3). This is to prove to the IdP that the
VE ciphertext given correctly hides some certified PII without letting the IdP
learn the value of the PII itself. We denote this operation as PKVE. The output
of PKVE is an acceptance or rejection of the VE ciphertext.

The KE stage is started when the PK-VE outputs an acceptance of the cipher-
text. The IdP and the user then engage in another PK protocol - the Direct
Anonymous Attestation (DAA) (NT-KE-1). This is to convince the IdP that the
user is using a valid TPM device while concealing the identity of the TPM de-
vice. A successful DAA prompts the user’s TPM to generate (1) a universal
custodian-hiding verifiable group encryption (UCHVE) of the VE private key
under Cond1 and (2) a TPM proof of a correct UCHVE execution. A UCHVE
produces n ciphertext pieces for a group of n referees among whom there are
t (t ≤n) designated referees, and only designated referees can decrypt these ci-
phertext pieces. At least k (k ≤ t) decrypted pieces are required to recover the
VE private key (i.e. k is the threshold value). Both the n ciphertext pieces and
the TPM proof are sent to the IdP in NT-KE-2. The IdP then verifies the proof
and if correct, prepares a response NT-KE-3 to SP2 which includes the VE of PII
(from the PE stage) and the UCHVE of the VE private key. SP1 now has the
ciphertext of the PII (from the PE stage) and the ciphertext of the correspond-
ing private key. With the help of referees, SP1 can recover the user’s PII when
Cond1 is fulfilled, but cannot decrypt these ciphertexts until that time.

In the MC stage, the user goes to another service provider SP2. This time SP2
(instead of SP1 in the PE stage) needs the IdP to escrow the VE private key in
NT-MC-1 under different conditions Cond2 (Cond1 �= Cond2). The IdP requests
the user’s TPM to produce a new UCHVE ciphertext of the VE private key
and the associated TPM proof in NT-MC-2. The user replies with the requested
encryption and proof in NT-MC-3. The IdP verifies the proof and if correct,
prepares a response NT-MC-4 to SP2 which includes the VE of PII (from the PE
stage) and the UCHVE of the VE private key (bound to Cond2). SP2 now has
the data that, with referees’ help, can reveal the PII when Cond2 are satisfied,
but yet cannot decrypt these ciphertexts at this point. Note that the user may go
to a third provider SP3, in which case, only the MC stage needs to be executed.

The revocation stage is executed when the agreed conditions are satisfied and
when a user has completed at least one escrow session. Assuming that Cond1
is satisfied, SP1 sends a revocation request NT-REV-1 comprising n ciphertext
pieces to the n referees with Cond1. Each referee checks if Cond1 is fulfilled,



Modeling and Verification of Privacy Enhancing Protocols 131

Fig. 1. Message exchanges within the four stages of PIEMCP-NT

and if so, the referee tries to decrypt the given ciphertext piece. Only the des-
ignated referees can decrypt the ciphertext pieces. If decryption is successful,
each designated referee sends the decrypted data NT-REV-2 to SP1. When k
or more decrypted data are received, SP1 can recover the VE private key, and
subsequently decrypt the VE ciphertext to recover the PII.

In the above we described the normal execution of PIEMCP-NT (i.e. with-
out attacks). However, each of the parties involved in PIEMCP (both variants)
may behave maliciously resulting in different attack scenarios. The design goal
of PIEMCP is to achieve the expected security behavior with and without con-
sidering the attacks. In the next section, a CPN model of PIEMCP is presented
which can be configured to capture possible attack and non-attack senarios. The
model is then used as a basis for the verification of PIEMCP in Sect. 4.

3 CPN Model of PIEMCP

CPN Preliminaries. CPNs are a class of high-level nets that enhance Petri nets
with data types. A CPN consists of two types of nodes, places (drawn as ellipses)
and transitions (rectangles), and directed edges known as arcs. A place is typed
by a color set and contains collections (multi-sets) of data items called tokens
of the same type as the place. A transition represents an event and may have a
guard associated with it. The guard is a boolean expression enclosed in square
brackets. Arcs connect places to transitions and transitions to places, and are
inscribed by expressions comprising variables, constants and functions. Variables
are typed and can be assigned values known as binding. CPNs use a variant of
SML for net inscriptions and declarations of variables and types.

A transition’s input places have arcs going to the transition, while its out-
put places have arcs coming from the transition. A transition is enabled if: 1)
sufficient tokens exist in each input place to match each respective input arc
inscription when evaluated for a particular binding of its variables, and 2) the
transition guard evaluates to true for the same binding. If a transition is enabled,
it can occur (or be fired). The occurrence of a transition removes tokens spec-
ified by the respective arc inscriptions from input places, and deposits tokens
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specified by inscriptions on the output arcs into output places. The state of a
CPN is called a marking. It consists of tokens distributed on each place of the
CPN. The occurrence of transitions represent stage changes.

CPNs support hierarchical modeling which facilitates the construction of large
models by using a number of CPN modules called pages. Each page is linked
to a substitution transition (sub-transition) at a higher level of the model. By
means of the hierarchical structuring mechanism it is possible to capture different
abstraction levels of the modeled system in the same CPN model.

3.1 Modeling Approach

The PIEMCP (both variants) is modeled using hierarchical CPNs. There is one
top-level (main) page and four sub-pages capturing the four stages of PIEMCP.
Each of these sub-pages is named according to the stage it models. The PE page
has one further sub-page. The PE page, KE page, and MC page can be executed
in a loop to form an escrow session. The number of escrow sessions to be executed
is parameterized. The revocation page can be executed after the completion of
at least one escrow session. Below, we introduce three modeling approaches that
are specific to PEPs. These approaches are demonstrated in Sect. 3.2.

Cryptographic primitive abstraction. To capture complex cryptographic behav-
iors, we firstly model the representation of a ciphertext as a CPN colour set, and
then capture its operations by describing them as SML functions. This approach
is flexible and inclusive as virtually any type of cryptographic primitives can be
captured. The CPN record type can encode the necessary information to repre-
sent a primitive properly, and the SML can be used to simulate the operations.
Expressing cryptographic operations as functions promotes reuse which leads to
a cleaner and more concise model. In Sect. 3.2, we demonstrate this approach by
modeling a VE ciphertext and a zero-knowledge operation (PK-VE). The com-
plexity of UCHVE ciphertext prevents use from describing it due to the space
constraint. However, it is available in the full-version of this paper [14].

We also propose a technique to capture the commonly-used message signing
and verification operations. We define a CPN colour set for the message to be
signed, followed by a definition of its signature. A signed message is a pair con-
sisting of the message and its signature. The verification of a signed message
upon the receipt of the message is enforced within a transition guard. If the
signature verification fails, the message integrity and/or authenticity are com-
promised. As a result, the guard returns a false value, thus halting any further
processing on the message - an expected fail-stop behavior.

TPM provable execution. We propose an approach to model a TPM’s prov-
able execution behavior [15]. Our model depicts how an entity can generate the
expected TPM proof based on some known information, and compare it with
the received TPM-generated output and its corresponding proof. In this way
an incorrect TPM-generated output can be detected. The demonstration of this
approach is available in the full-version of this paper [14].
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parameterized attack. We propose a parameterisation approach to modeling at-
tacks such that one or more attacks can be switched on or off depending on
the environmental assumptions. In general, attacks can come from both exter-
nal intruders (i.e. external entities attempt to access and break the protocol)
and malicious insiders (i.e. protocol entities attempt to compromise a users PII
to achieve some personal advantage). At this point, we scope our work to only
consider malicious insiders - which we think is of a greater concern in PEPs.1 To
this end, the attack models specifying those from external intruders, such as the
Dolev-Yao intruder model [16], are not used. There are many attacks that a ma-
licious insider could launch. Creating a new model to capture each type of attack
(existing or new) scales poorly as the number of attacks grows. Parameterisation
allows the re-use of the existing model while allowing it to behave differently ac-
cording to the attacks being set - virtually allowing thousands of possible attack
scenarios to be captured. We have modeled 17 types of attacks in our model, each
with a possible value of ‘true’ or ‘false’, thus capturing 217 = 131072 possible
attack scenarios. The attack parameters can be encoded in the arc-inscriptions,
transition guards, or transition code-regions (attached to a transition where one
can specify side-operations upon execution of the transition, e.g. writing data
to an external file). The advantage of this approach is that we do not have to
change the structure of the model at all to obtain different behaviors.

In addition, we introduce two general modeling approaches. First, session-
data capture is applied to capture runtime protocol data generated and received
by entities for analysis. We take advantage of the executable CPN model by
interfacing it with a set of output text files which store the session data during
the execution of the model. Session data are firstly represented as CPN colour
sets. Then, functions are written to read session data from text files into the ap-
propriate CPN variables, and to write back the updated variables into text files.
This allows easy reading, storing, and updating of session data during the model
execution without having to maintain tokens in various places across multiple
CPN pages, thus avoiding the application of the ‘vacuum cleaner’ functional-
ity [17] to remove tokens at the end of each session. Next, we generate one-time
random data which improves on the simple random (possibly repeated) number
generation function supported in the current CPN Tools.

3.2 Model Description

Selected parts of the PIEMCP-NT CPN model (the main page, the PE page,
and the revocation page) are described to demonstrate the above modeling ap-
proaches. Relevant CPN colour sets definitions are provided in Table 1. The
entire model consists of 6 pages, 108 places, 79 transitions, 77 colour sets, 38
functions, 29 code-regions, and 21 parameters.

1 While many types of attacks from external intruders (e.g. eavesdropping, message
modification) can be mitigated through the use of secure communication channels
(e.g. Secure Sockets Layer (SSL)), attacks from malicious insider could result in a
misuse of PII without having to break the security of the communication channel.
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Table 1. Colour Sets Definition

colset K_PUB_VE = INT;
colset K_PRIV_VE = INT;
colset K_SIGN_GEN = INT;
colset PII = STRING;
colset LABEL = STRING;
colset PROVABILITY = BOOL;
colset SP_REQ = record genCond:STRING * conditions1:STRING * <other fields omitted>
colset SP_REQ_SIG = record message:SP_REQ * key:K_SIGN_GEN;
colset SIGNED_SP_REQ = record message:SP_REQ * signat:SP_REQ_SIG;
colset COMMITMENT_PII = record message:PII * random:RANDOM;
colset SIGNATURE_GEN = record message:MSG * key:K_SIGN_GEN * provable: PROVABILITY;
colset SIGNED_MSG = record message:MSG * signat:SIGNATURE_GEN;
colset CIPHER_VE_PII = record message:PII * key:K_PUB_VE * label:LABEL * provable:PROVABILITY;
colset DEC_REQ = record conditions:LABEL * uchvePiece:CIPHER_UCHVE_KVE_PIECE;
colset DEC_REQ_SIGNATURE = record message:DEC_REQ * key:K_SIGN_GEN * provable:BOOL;
colset SIGNED_DEC_REQ = record message:DEC_REQ * signat:DEC_REQ_SIGNATURE;

Main page. Fig. 2 shows the main page of PIEMCP-NT. The protocol starts
with a user and a service provide SP1 agreeing on a set of conditions (tran-
sition U SP1 GENERATE CONDITIONS) before proceeding to execute the PE
stage (sub-transition PII Escrow) and then the KE stage (sub-transition
Key Escrow). Upon completion of the KE stage, the user goes to another ser-
vice provider SP2. Similarly, they need to agree on a set of conditions (transi-
tion U SP2 GENERATE CONDITIONS) before starting the MC stage (sub-transition
Multiple Conditions). The completion of the MC stage marks the completion
of one session which triggers the storage of the session data accumulated by
all entities. The number of sessions executed is parameterized by the value of

Fig. 2. The PIEMCP-NT CPN – Main page
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session. Thus, if value of counter is less than or equal to session (note the
guard for the transition U SP1 GENERATE CONDITIONS), the model will execute
another session. Otherwise, the guard will disable the transition, and a token will
be placed at the place SP1 REVOCATION CONDITIONS FULFILLED which triggers
the start of a revocation stage which, if successful, results in the revelation of
the user’s PII represented by a token in the place RECOVERED USER PII.

This page also demonstrates the session data capture approach. The shaded
text number 1 in Fig. 2 shows a code region which calls the function to read the user
session data from a text file to a variable of type USER RECORD. After performing
some update operations on the variable (the one-time random number generator
function is called in shaded text number 2), the update function is called to store
the updated user session data into the text file again (shaded text number 3).

PE page. This page models the PE stage of PIEMCP-NT (Fig. 3). Here, we
demonstrate the message signing and verification approach. The place SP1 PII
REQ SIGNATURE, of type SIGNED SP REQ, represents the NT-PE-1 message. From
Table 1, this colour set represents a SP1-signed message whose content is Cond1.
Other messages are omitted here for simplicity. As the IdP receives this message,
the IdP first verifies the signature validity. As explained in Sect. 3.1, such a
validation is captured in a transition guard. In this case, the transition guard
at the IDP VERIFIES SP1 REQ AND STARTS PII ESCROW transition captures the
signature validation process. If it returns true, the signature is valid and the
transition is enabled, allowing PE stage to progress normally.

Fig. 3. The PIEMCP-NT CPN – PE page
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The user then encrypts the PII. Here, we demonstrate how complex crypto-
graphic primitive behaviors can be modeled. The VE ciphertext is defined as a
CPN colour set of type CIPHER VE PII (see Table 1) which is a record consisting
of four fields: the message itself, the public encryption key, the label under which
the message is encrypted, and the provability property. A provable ciphertext
means that the recipient of the ciphertext can be convinced that the received
ciphertext correctly encrypts some claimed value (in this case the user’s PII)
without the recipient learning the value of either the PII itself or the decryption
key. We consider the message field inside a CPN colour set that represents a
ciphertext to be unreadable. The VE operations, including the encryption and
decryption operations, are captured as functions. The VE ciphertext of PII is
represented by a token in the place PII VE CIPHER.

Next, the user sends the NT-PE-2 message (containing the VE ciphertext of
PII, and the public VE key) - represented by the transition U SENDS PII ESCROW
DATA. Upon receiving NT-PE-2, the PK-VE operation is triggered (NT-PE-3).
Here, we demonstrate how a complex zero-knowledge proof protocol, such as
PKVE is modeled in CPN. We break this operation into three transitions:
START PKVE (triggered by IdP to signal user the start of such a protocol), the
GENERATE PKVE PROOF transition, executed on the user side to generate the re-
quired PKVE proof data, and the VERIFY PKVE PROOF executed by the IdP to
verify the given PKVE proof data. The result of PKVE is represented by the
place PKVE RESULT. The essential processing required on the IdP to verify the
correctness of the proof is captured by the function pkve called as arc inscription
from the transition VERIFY PKVE PROOF to the place PKVE RESULT.

There are two parameterized attacks: SP ATTACK5 (arc inscription
from transition SPI SIGNS PII REQ to place SPI PII REQ SIGNATURE),
and USER ATTACK2 (from transition U SENDS PII ESCROW DATA to place
USER TO IDP). USER ATTACK2 depicts the behavior of a malicious user who gives
an incorrect VE public key to the IdP in the NT-PE-2 message. Thus, when
USER ATTACK2 is set to ‘true’, the user will send an incorrect VE public key
value represented by a value of ’0’, otherwise, a correct value is sent. SP ATTACK5
depicts the behavior of a malicious SP1 who uses an invalid signature key to
sign the SP1 request message.

Revocation page. This page captures the UCHVE threshold decryption
process (Fig. 4). Due to space limitation, it is impossible to go into the de-
tail how we model such a threshold decryption process. Nevertheless, note the
place UCHVE PIECE DECRYPT SUCCESS and its corresponding output arc. The arc
inscription requires t (representing the threshold value) successful decrypted
pieces of the UCHVE group encryption by referees before the message (that is,
the VE private key) can happen. Also note the parameterized malicious refer-
ees’ behavior (REF ATTACK2) who attempt to pool all decrypted UCHVE pieces
amongst themselves with the hope of being able to recover the VE private key.
Since our protocol assume that there is at least one honest designated referee,
we assign such role to referee 2 (hence, we do not model referee 2 participating
in the attack). This page also demonstrates how CPN can be used to capture
concurrent processing required during the threshold decryption process.
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Fig. 4. Revocation page

4 Verification of the PIEMCP

We verify the correctness of PIEMCP using state space analysis. The basic
idea behind the state space method of CPNs is to compute all reachable states
and state changes of the system based on the CPN model. The verification of
PIEMCP is carried out in two stages: the basic behavior verification and security
behavior verification. The basic behavior verification is performed through stan-
dard state space analysis. It includes the analysis of proper session termination,
deadlock freedom, livelock freedom, and absence of unexpected dead transitions.
The security behavior verification is the focus of the paper.

Verifying the security behavior of PIEMCP is complicated due to the numer-
ous avenues by which attackers could break the security protection provided by
the protocol. We propose to scope the verification of the security behavior of
PIEMCP within a set of plausible known attack scenarios. The result of such a
verification is the assurance that the desired security behavior is achieved within
the set of attack scenarios. As attacks are parameterized in the model, new types
of attack scenarios can be added to the existing model without requiring major
changes or a new model to be developed. A protocol is proved to be secure if the
set of security properties hold in both the presence and absence of attacks. This
is especially true in the case of PEPs whose main service (privacy) is in itself
already a security behavior. When no attacks are modeled, we expect the secu-
rity behavior to be fulfilled; when attacks are included, we expect the protocol
to either detect it (and therefore stop), or be immune from those attacks.

The verification of the security behavior of the PIEMCP is performed as fol-
lows: firstly, the security behaviors of PIEMCP are formalized as Computational
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Tree Logic (CTL) and/or standard state space statements; next, the formalized
statements are used as queries for model-checking the state space generated from
the PIEMCP CPN. Session data analysis is used when appropriate.

CPN Tools support state space analysis and model-checking the state space
via ASK-CTL [18]. ASK-CTL is an implementation of a subset of CTL (mainly
the “until” operator). It implements two basic operators to capture this logic:
EXIST UNTIL(A1, A2) and FORALL UNTIL(A1, A2). The EXIST UNTIL operator
means that there must be at least one path, from a given state, whereby A1
is true for every state in the path until the last state where A2 is true. The
FORALL UNTIL operator is similar, except that it requires all paths to fulfill A1
until A2 is true. Based on these two operators, there are also POS and EV oper-
ators, where POS(A) = EXIST UNTIL(TT, A), and EV(A) = FORALL UNTIL(TT,
A) (TT refers to a true value). These operators check the reachability of a state
where A is true. POS checks if there is at least one path that leads to A, while
EV checks if all paths lead to A. The NF operator contains a state formula func-
tion which returns a boolean value. There are many other ASK-CTL operators
which we do not use, thus, not elaborated. CPN Tools contain a model checker
which takes an ASK-CTL formula as an argument, checks the formula against
the current state space of the CPN model, and returns the truth value of the
given formula. Both the ASK-CTL logic and model checker are implemented in
SML and thereby queries are formulated directly in SML syntax.

For simplicity, we consider a minimum full protocol execution. The PIEMCP
CPN model is parameterized to execute two escrow sessions sequentially, fol-
lowed by one revocation session. Note that it is possible for both the escrow and
revocation session to run in parallel, however, modeling such concurrency does
not capture any additional behaviors of the protocol as these two sessions are
distinct, i.e. they do not interfere with each other. The state space generated
from the above in the absence of attack behavior contains 147 nodes and 226
arcs. Next, the CPN model is parameterized to include a number of known at-
tacks, resulting in a set of parameterized CPN models. Each of these models is
executed to generate the state space for analysis of certain security properties.

Below, we define four security behaviors for PIEMCP and discuss in detail
how we implement the first two properties in ASK-CTL queries in CPN Tools
(the details of the queries for the other properties are available in the full version
of this paper [14]). Fig 5 includes a set of notations to be used in the definition
of these properties.

Let T = {ts|s ∈ {1, 2, ..., n}} be the set of (executed) escrow sessions, P = {SPi|i ∈ {1, 2, ..., n}}
be the set of SPs. ∀ts ∈ T , ∀SPi ∈ P :

– vs
i represents a VE ciphertext that SP i holds for session ts;

– us
i represents a UCHVE ciphertext that SP i holds for ts;

– vs
usr represents a user-generated VE ciphertext for ts;

– us
i represents the user-generated UCHVE ciphertext for SP i in ts;

– Cs
i represents the set of agreed conditions between a user and SPi in ts;

– Gs is the set of the general conditions in ts;
– ks represents the one-time VE public key that an IDP receives in ts.

Fig. 5. List of notations to be used in the definition of security properties
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4.1 Multiple Conditions

When PIEMCP runs without attacks, it is expected to reach the end of every
escrow session, and also each SP should receive an escrowed PII that is cryp-
tographically bound to conditions which are different from one SP to another.
However, an attack may occur during an escrow session and as a result it is not
possible for the PIEMCP to reach the end of that session. In the PIEMCP CPN,
when the protocol reaches the end of an escrow session s, the place MC COMPLETE
on the Main page (P Main

MC COMPLETE) is marked by 1‘e and the place COUNTER on the
same page (P Main

COUNTER) is marked by a token of integer carrying the value of 1‘s.
This can be specified by the following predicate:

SessionEnds(Mi) = (Marking(Mi, P
Main
MC COMPLETE) = 1‘e) AND (Marking(Mi, P

Main
COUNTER) = 1‘s)

where Mi ∈� i.e. the set of reachable markings (states) of the PIEMCP CPN.

Property 1 (Multiple Conditions). When there is no attack:

– φmc
1 : ∀ts ∈ T , EV(SessionEnds);2 and

– φmc
2 : ∀ts ∈ T , ∀M such that SessionEnds(M)=true, ∀SPi, SPj ∈ P , if i �= j,

then Cond(us
i ) �= Cond(us

j).
3

When an attack occurs:

– φmc
3 : ∃ts ∈ T , NOT(POS(SessionEnds)).4

To verify this property, we use both ASK-CTL and session data analysis. In
a normal environment (i.e. without an attack), φmc

1 states that the end of the
session is reachable. It can be directly queried using ASK-CTL formulas (see

Table 2. ASK-CTL and session-data queries for Multiple Conditions property

1 fun SessionEnd_1 n = Mark.Main’MC_COMPLETED 1 n = 1‘() andalso Mark.Main’COUNTER 1 n = 1‘1;
2 fun SessionEnd_2 n = Mark.Main’MC_COMPLETED 1 n = 1‘() andalso Mark.Main’COUNTER 1 n = 1‘2;
3 val MC_Phi1_1 = EV(NF("", SessionEnd_1));
4 val MC_Phi1_2 = EV(NF("", SessionEnd_2));
5 val sp1Rec1 = readSPRecord("sp1_sess1.txt");
6 val sp1Rec2 = readSPRecord("sp1_sess2.txt");
7 val sp2Rec1 = readSPRecord("sp2_sess1.txt");
8 val sp2Rec2 = readSPRecord("sp2_sess2.txt");
9 val cipherUCHVE11 = #cipherUCHVE(sp1Rec1);

10 val cipherUCHVE21 = #cipherUCHVE(sp2Rec1);
11 val cipherUCHVE12 = #cipherUCHVE(sp1Rec2);
12 val cipherUCHVE22 = #cipherUCHVE(sp2Rec2);
13 val MC_Phi2 = #label(cipherUCHVE11) <> #label(cipherUCHVE21) andalso
14 #label(cipherUCHVE12) <> #label(cipherUCHVE22);
15 val MC_Phi3_1 = NOT(POS(NF("", SessionEnd_1)));
16 val MC_Phi3_2 = NOT(POS(NF("", SessionEnd_2)));
17 val multipleConditions =
18 if not SP_ATTACK7 then (eval_node MC_Phi1_1 InitNode andalso
19 eval_node MC_Phi1_2 InitNode andalso MC_Phi2) else
20 (eval_node MC_Phi3_1 InitNode andalso eval_node MC_Phi3_2 InitNode);

2 SessionEnds must eventually become true.
3 Each SP holds a UCHVE ciphertext bound to a unique set of conditions.
4 It is not possible to reach the end of an existing session.
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line 1-4 in Table 2). By running two sessions, we have s ∈ {1, 2}. From the main
page of the PIEMCP CPN, it is obvious that the session data is stored when
SessionEnds becomes true in each session. Therefore, φmc

2 (which formalizes
the ‘different conditions within a session clause’) can be directly verified using
the saved session data as shown in line 5-14 of Table 2. We have parameter-
ized the model with one attack parameter that may compromise this property:
SP ATTACK7 which depicts the scenario of SPs colluding to use the same condi-
tion string with the same user in a session. In such a scenario, we expect the
protocol to behave in a fail-stop manner - therefore, φmc

3 states that the protocol
cannot reach the end of both sessions. φmc

3 is directly translated into ASK-CTL
queries as shown in line 15-16 of Table 2. Finally, after formulating the queries,
we execute the formulas to check if all of the predicates hold (line 17-20).

4.2 Zero-Knowledge

When there are no attacks, before the revocation of a user’s PII for an escrow
session, IdP, SPs and referees must not learn the value of the user’s PII but at the
same time be convinced that its encryption is correct. When the attacks occur,
it is expected that at least one of the encryptions is corrupted. For example, if a
user-generated VE ciphertext is correct, the place PKVE RESULT on the PE page
is marked by 1‘true; otherwise, the place is marked by 1’false. Fig. 6 lists the
predicates specifying the acceptance (i.e. conviction) or rejection of the user’s
encryption data by IdP and SPs while the user’s PII is not revealed. Finally, an
escrow session cannot be revoked until the user’s encryption data has been all
accepted. The place REVOCABLE SESSION on the Main page records the revocable
sessions in terms of session numbers. Thus, we define the predicate Revocable-
Sessions(Mi) = 1‘s ∈ Marking(Mi, P

Main
REVOCABLE SESSIONs) over� which indicates if a

session ts has been revoked.

∀ts ∈ T :

– TrueUsrVEs(Mi) = (Marking(Mi, P PE
PKVE RESULT)=1‘true) AND (Marking(Mi, P Main

COUNTER)=1‘s)
– FalseUsrVEs(Mi) = (Marking(Mi, P PE

PKVE RESULT)=1‘false) AND (Marking(Mi, P Main
COUNTER)=1‘s)

– TrueUsrTPMs(Mi) = (Marking(Mi, P KE
PK DAA RESULT)=1‘true) AND (Marking(Mi, P Main

COUNTER)=1‘s)
– FalseUsrTPMs(Mi) = (Marking(Mi, P KE

PK DAA RESULT)=1‘false) AND (Marking(Mi, P Main
COUNTER)=1‘s)

– TrueUCHVEinKEs(Mi) = (Marking(Mi, P KE
TPM PROOF RESULT)=1‘true) AND (Marking(Mi, P Main

COUNTER)=1‘s)
– FalseUCHVEinKEs(Mi) = (Marking(Mi, P KE

TPM PROOF RESULT)=1‘false) AND (Marking(Mi, P Main
COUNTER)=1‘s)

– TrueUCHVEinMCs(Mi) = (Marking(Mi, P MC
TPM PROOF RESULT)=1‘true) AND (Marking(Mi, P Main

COUNTER)=1‘s)
– FalseUCHVEinMCs(Mi) = (Marking(Mi, P MC

TPM PROOF RESULT)=1‘false) AND (Marking(Mi, P Main
COUNTER)=1‘s)

where Mi ∈ M i.e. the set of reachable markings (states) of the PIEMCP CPN.

Fig. 6. List of predicates specifying acceptance or rejection of user’s encryption data

Property 2 (Zero-knowledge). Without attacks:

– φzk
1 : ∀ts ∈ T , EV(TrueUsrVEs) ∧ EV(TrueUsrTPMs) ∧ EV(TrueUCHVEinKEs)

∧ EV(TrueUCHVEinMCs);
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– φzk
2 : ∀ts ∈ T , NOT(POS(FalseUsrVEs)) ∧ NOT(POS(FalseUsrTPMs)) ∧

NOT(POS(FalseUCHVEinKEs)) ∧ NOT(POS(FalseUCHVEinMCs)); and
– φzk

3 : ∀ts ∈ T , FORALL UNTIL(NOT(RevocableSessions), φzk
1 ).

With attacks:

– φzk
4 : ∀ts ∈ T , NOT(POS(TrueUsrVEs)) ∧ NOT(POS(TrueUsrTPMs)) ∧

NOT(POS(TrueUCHVEinKEs)) ∧ NOT(POS(TrueUCHVEinMCs)); and
– φzk

5 : ∀ts ∈ T , POS(FalseUsrVEs) ∨ POS(FalseUsrTPMs) ∨
POS(FalseUCHVEinKEs) ∨ POS(FalseUCHVEinMCs);

– φzk
6 : ∀ts ∈ T , NOT(POS(RevocableSessions)).

For brevity, Table 3 only show queries related to TrueUsrVEs, FalseUsrVEs

and RevocableSessions (queries related to other predicates are performed in the
same manner as for the first two predicates). φzk

1 , φzk
2 and φzk

3 can be directly
translated into ASK-CTL queries as shown in line 12-17 of Table 3. These three
predicates are finally executed at line 18-19, where the zero-knowledge property
of no attacks holds if all three predicates return true.

We have modeled six attacks that may compromise this property, which are
parameterized as USER ATTACK1, USER ATTACK2, USER ATTACK3,
USER ATTACK4, SP ATTACK12, SP ATTACK22. The formulas φzk

4 , φzk
5 and φzk

6 are
directly translated into ASK-CTL queries as shown in line 23-28 of Table 3.
These predicates are executed at line 29-30 and all must return true if the zero-
knowledge property with attacks is to hold.

1 fun TrueUsrVE_1 n = Mark.PE’PKVE_RESULT 1 n = 1‘true andalso Mark.Main’COUNTER 1 n = 1‘1;
2 fun TrueUsrVE_2 n = Mark.PE’PKVE_RESULT 1 n = 1‘true andalso Mark.Main’COUNTER 1 n = 1‘2;
3 ...
4 fun FalseUsrVE_1’ n = Mark.PE’PKVE_RESULT 1 n = 1‘false andalso Mark.Main’COUNTER 1 n = 1‘1;
5 fun FalseUsrVE_2’ n = Mark.PE’PKVE_RESULT 1 n = 1‘false andalso Mark.Main’COUNTER 1 n = 1‘2;
6 ...
7 fun RevocableSession_1 n = List.exists (fn y => y=1) (Mark.Main’REVOCABLE_SESSION 1 n);
8 fun RevocableSession_2 n = List.exists (fn y => y=2) (Mark.Main’REVOCABLE_SESSION 1 n);
9

10 NO ATTACKS (NA)
11 ==================
12 val ZK_Phi1 = eval_node EV(NF("",TrueUsrVE_1)) InitNode andalso ...
13 eval_node EV(NF("",TrueUsrVE_2)) InitNode andalso ...;
14 val ZK_Phi2 = eval_node NOT(POS(NF("",FalseUsrVE_1))) InitNode andalso ...
15 eval_node NOT(POS(NF("",FalseUsrVE_2))) InitNode andalso ...;
16 val ZK_Phi3 = FORALL_UNTIL(NOT(NF("",RevocableSession_1)), ZK_Phi1_1 initNode) andalso
17 FORALL_UNTIL(NOT(NF("",RevocableSession_2)), ZK_Phi1_2 initNode);
18 val zeroKnowledgeNA = eval_node ZK_Phi1 InitNode andalso eval_node ZK_Phi2 InitNode andalso
19 eval_node ZK_Phi3 InitNode;
20

21 WITH ATTACKS (WA)
22 ===================
23 val ZK_Phi4 = eval_node NOT(POS(NF("",TrueUsrVE_1))) InitNode andalso ...
24 eval_node NOT(POS(NF("",TrueUsrVE_2))) InitNode andalso ...;
25 val ZK_Phi5 = eval_node POS(NF("",FalseUsrVE_1)) InitNode orelse ...
26 eval_node POS(NF("",FalseUsrVE_2)) InitNode orelse ...;
27 val ZK_Phi6 = eval_node NOT(POS(NF("",RevocableSession_1))) InitNode andalso
28 eval_node NOT(POS(NF("",RevocableSession_2))) InitNode;
29 val zeroKnowledgeWA = eval_node ZK_Phi4 InitNode andalso eval_node ZK_Phi5 InitNode andalso
30 eval_node ZK_Phi6 InitNode;

Table 3. ASK-CTL and session-data queries for Zero-knowledge property
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4.3 Enforceable Conditions

When PIEMCP is executed, a user’s PII should never be revealed unless all des-
ignated referees agree that the cryptographically bound conditions are satisfied.
This property should hold regardless of whether there is an attack or not. We
define the following: ∀ts ∈ T , ∀Mi ∈�,

– HasRefPKVEs(Mi) = Marking(Mi, P
Revocation
REF RECOVERED VE PRIVATE KEY)�= empty,

– HasRecUsrPIIs(Mi) = Marking(Mi, P
Revocation
RECOVERED USER PII)�= empty,

– threshold ∈ {2..n} specifies the minimum referees needed for a successful
PII revocation, and

– revCondition denotes the actual status of a revocation condition which is
either true or false.

Property 3 (Enforceable Conditions:)

– φec
1 : ∀ts ∈ T , NOT(POS(HasRefPKVEs));

– φec
2 : if revCondition=true then ∀ts ∈ T where t s is being revoked,
• φec

2a: |P Revocation
UCHVE PIECE DECRYPT SUCCESS| < threshold and

• φec
2b: NOT(POS(HasRecUsrPIIs));

– φec
3 : if revCondition=false then ∀ts ∈ T where t s is being revoked,
• φec

3a: |P Revocation
UCHVE PIECE DECRYPT SUCCESS| ≥ threshold and

• φec
3b: EV(POS(HasRecUsrPIIs)).

While there are attacks that can be launched to compromise this property
(parameterized by SP ATTACK4, REF ATTACK1, REF ATTACK2, the above defini-
tion remains the same. Standard state space queries, and ASK-CTL queries are
used to verify this property. φec

1 states that the marking indicating illegal recov-
ery of private VE key by the referees must not be reached at any time. When
some conditions for session ts are not fulfilled, the number of decrypted UCHVE
pieces must be fewer than the threshold value required (φec

2a), and that the mark-
ing which indicates the revelation of the user PII must not be reached too (φec

2b).
When conditions are fulfilled, we expect the number of decrypted UCHVE pieces
to be greater or equal to the threshold value (φec

3a), and that the user PII must
eventually be revealed (φec

3b).
In summary, the predicates φec

1 , φec
2b and φec

3b can be directly translated into
ASK-CTL queries, while φec

2a and φec
3a are verified using the standard state space

query UpperIntegerBound (i.e. the maximum number of tokens that can reside
in a place). See [14] for details.

4.4 Conditions Abuse Resistant

During the execution of PIEMCP, an SP and an IdP must not be able to make
the user encrypt the PII, or the VE private key, under a set of conditions dif-
ferent from those originally agreed. Similarly, an SP or IdP must not be able to
successfully revoke the user’s PII using conditions different from those originally
agreed. In the following definition, we have used the notations shown in Fig. 5.
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Property 4 (Conditions Abuse Resistant). No attack:

– φcar
1a : ∀ts ∈ T , Gs = Cond(vs

usr) and
– φcar

1b : ∀ts ∈ T , ∀SPi ∈ P , Cs
i = Cond(us

i )

With attacks: ∀ts ∈ T , ∀Mi ∈�, let:

– PE Ends(Mi) = (Marking(Mi, P
Main
PE COMPLETE)=1‘e) AND (Marking(Mi, P

Main
COUNTER)=1‘s)

– KE Ends(Mi) = (Marking(Mi, P
Main
KE COMPLETE)=1‘e) AND (Marking(Mi, P

Main
COUNTER)=1‘s)

then:

– for attacks that manipulate the general conditions, φcar
2a : NOT(POS(PE Ends));

– for attacks that manipulate conditions with SP1, φcar
2b : NOT(POS(KE Ends));

– for attacks that manipulate conditions with SP2,3,...,y,
φcar

2c : NOT(POS(SessionEnds));
– for attacks that use wrong conditions for revocation,

• φcar
2d : Transition T Revocation

USE ATTACK CONDITIONS is not dead ∧
• φcar

2e : NOT(POS(HasRecUsrPIIs)) ∧ NOT(POS(HasRefPKVEs)).

In a normal environment (no attacks), φcar
1a states that the cryptographically

bound conditions (or label) used to produce a VE ciphertext must be the same
as the one originally agreed. Similar explanation applies to φcar

1b . When there
are attacks targeting the general conditions used in the PE stage (parameter-
ized by USER ATTACK1, SP ATTACK1, we expect the PE stage to fail stop (hence
φ2a). For attacks targeting the conditions used during the KE stage (with SP1
- parameterized by USER ATTACK4, SP ATTACK11), we expect the KE stage to
fail stop (hence φcar

2b ). For attacks targeting the conditions used during the MC
stage (for subsequent SPs - parameterized by SP ATTACK2), we expect the MC
stage to fail stop (hence φcar

2c ). For attacks targeting the use of invalid condi-
tions during the revocation stage (parameterized by SP ATTACK3, we expect that
T Revocation
USE ATTACK CONDITIONS is not a dead transition (i.e. a transition that can never fire),

and that the marking which indicate the revelation of user PII, or the illegal
revelation of VE private key to not be reached (hence φcar

2d and φcar
2e ).

In summary, φcar
1a , φcar

1b , and φcar
2d can be verified using state space queries

(notably the search nodes and token value comparisons queries). φcar
2a , φcar

2b ,
φcar

2c , and φcar
2e can be directly translated into ASK-CTL queries. See [14] for

details.

5 Related Work

We briefly review several formal methods that have been used to verify security
protocols. Earlier work, such as Burrows, Abadi, and Needham (BAN) logic [19],
use the modal logic approach whereby the security of a protocol is assessed by
studying the evolution of beliefs and/or knowledge over the course of the protocol
to evaluate their adequacy for some pre-defined protocol objectives. We do not
use this method because it is not evident if this approach is able to capture
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and verify behavioral properties. Besides, the modal logic approach is generally
considered a weaker approach in comparison to other formal methods [20].

Formal methods based on process algebra have also been used to model and
verify security protocols (such as LySa [5] and CSP [21]). Process algebra allows
the modeling of a system’s behavior (including concurrency) as a set of algebraic
statements. Common verification techniques used with process algebra include
equational reasoning and model checking [22]. For example, Pi-Calculus [23] sup-
ports labeled transition semantics in modeling a system. This allows the verifica-
tion of protocols through state exploration techniques such as model checking.
However, we choose not to use process algebra approach due to its complexity
which tends to (unnecessarily) complicate even simple things [17]. In compar-
ison to the graphical-based modeling approach in CPN, this is a less intuitive
approach to modeling large distributed systems such as PEPs. Model validation
can only be performed by users who are experts in both the protocol itself and
the process algebra syntax. While one still needs to understand the concept of
CPN, the intuitive graphical-based modeling approach is a more human-friendly
approach and thus easier to learn. The interactive and simulatable CPN model
help modelers in detecting inconsistencies between a model and its original pro-
tocol specification, thus facilitating effective model validation.

State exploration techniques (such as state space analysis and model check-
ing) have also been widely used for security protocol analysis. Examples of
formal methods belonging to this category are the Automated Validation of In-
ternet Security Protocols and Applications (AVISPA) tool [3], Scyther [24], and
ProVerif [25]. These are state-of-the-art tools capable of automatically detecting
attacks in many security protocols. Nevertheless, the main reason we do not use
these tools is because the types of security properties verifiable by these tools
are not relevant to PEPs. Instead, they are mostly relevant to authentication
and key agreement protocols, i.e. secrecy, authenticity, and their variants. When
protocols related to privacy are verified using these tools, the privacy property
is reduced to confidentiality and authenticity. We argue that this is a simplis-
tic approach to verifying privacy and that privacy does not simply equate to
confidentiality and/or authenticity. The behavior of a protocol in preserving/vi-
olating a user’s privacy is just as important. As stated in the introduction, it is
the behavior of the protocol that we are interested to verify.

Similar to process algebra, these tools also lack the rich graphical and sim-
ulation support of CPN.5 Finally, it is not evident if concurrent processing (as
oppose to concurrent protocol execution supported in Scyther) is supported in
these tools. Therefore, we do not find these tools to be suitable for our pur-
pose. Although CPN has been widely used to analyze industrial communication
protocols (such as Transmission Control Protocol (TCP)), its use in the area of
security protocols is still very new with limited documented cases. For example,
Al-Azzoni et al [4] used CPN to model and verify the Tatebayashi, Matsuzaki,
and Newman (TMN) key exchange protocol [26]. The main difference between

5 Scyther provides some static graphical support. However, it falls short of interactive
protocol simulation and graphically-driven protocol specification.
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our work and theirs is that they focus on verifying the secrecy property of the
TMN protocol, while our work focus on verifying the security behavior of PEPs.

Our work has not reached the maturity of the other methods discussed.
However, we see its potential. By exploiting the intuitiveness of CPN’s
graphical-based modeling approach (which is also based upon a solid underlying
mathematical foundation) in combination with its rich modeling capability (hi-
erarchical modeling, concurrent processing, flexible colour sets definition, model
parameterization, etc), performance analysis capability, and its powerful veri-
fication techniques, CPN has the potential to be an easy-to-use yet powerful
formal method for modeling and verifying large multi-party PEPs.

6 Conclusion

We have shown that CPNs can be used to model complex PEPs using CPN and
verify its behavioral properties using state space analysis, ASK-CTL (model
checking language), and session data analysis. We have also proposed several
modeling techniques, notably the cryptographic primitive abstraction (capturing
complex primitives and zero-knowledge proof protocol), TPM provable execu-
tion, parameterized attacks, and session data capture. We have also shown how
a set of behavioral properties can be formalized which can be directly verified
using the existing state space, ASK-CTL, and session data queries.

Future work involves using the model to conduct a performance analysis of
the protocol and to assess its efficiency in deployment. We will also be looking
at refining and generalizing the modeling techniques proposed in this paper
such that they can be applied to other PEPs. CPN Tools can be improved by
providing a better user front-end to simplify and automate the tasks required in
the modeling and verification of PEPs. The function of such a front-end could be
as simple as aiding users with the configuration of the model parameters, to a full-
blown automation whereby a user without any knowledge of CPN can generate
the required back-end CPN model with only a PEP specification. As to the issue
of attack behavior, so far we have considered in the protocol verification a set
of known attack scenarios, while ultimately the goal is to achieve an automated
attack detections for PEPs using the CPN-based approach.
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Abstract. Fault-tolerant (FT) distributed protocols (such as group
membership, consensus, etc.) represent fundamental building blocks for
many practical systems, e.g., the Google File System. Not only does
one desire rigor in the protocol design but especially in its verification
given the complexity and fallibility of manual proofs. The application
of model checking (MC) for protocol verification is attractive with its
full automation and rich property language. However, being an exhaus-
tive exploration method, its scalable use is very much constrained by
the overall number of different system states. We observe that, although
FT distributed protocols usually display a very high degree of symmetry
which stems from permuting different processes, MC efforts targeting
their automated verification often disregard this symmetry. Therefore,
we propose to leverage the framework of symmetry reduction and im-
prove on existing applications of it by specifying so called role-based
symmetries. Our secondary contribution is to define a high-level descrip-
tion language called FTDP to ease the symmetry aware specification of
FT distributed protocols. FTDP supports synchronous as well as asyn-
chronous protocols, a variety of fault types, and the specification of safety
and liveness properties. Specifications written in FTDP can directly be
analyzed by tools supporting symmetry reduction. We demonstrate the
benefit of our approach using the example of well-known and complex
distributed FT protocols, specifically Paxos and the Byzantine Generals.

1 Introduction

Model checking (MC) is a verification approach that exhaustively and automati-
cally simulates the system by starting it from initial states and generating paths
to verify that some specified properties hold along every path [7]. For designers
of distributed systems, in particular of fault-tolerant (FT) distributed protocols,
MC represents a useful tool for automatic verification of formal properties which
are usually hand-proved. Not only can MC provide supporting evidence of the
correctness of the proofs: it can also serve as a powerful tool for fast prototyp-
ing and debugging of protocols by showing counterexamples, i.e., runs violating
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Fig. 1. The proposed approach for verifying a FT distributed protocol P

a certain property. However, the use of MC in the design and verification of
distributed systems is still limited. In this paper, we identify (and tackle) two
major barriers that prevent a widespread use of MC for distributed protocols.

The first barrier is that the design of a model still requires significant MC spe-
cific expertise. Distributed systems designers typically use a pseudocode which
primarily represents the process behavior and which abstracts many details re-
quired by the model checker. When the properties of an algorithm are hand-
proved, only those predicates about the system and fault model which are needed
in the proofs are enunciated. With automatic verification, however, the system
and fault model need to be explicitly encoded into the model. This, together with
the fact that the input languages of MC often require detailed understanding of
the internal model representation used by the model checker, makes it difficult
and error-prone for distributed systems designers to define models for MCs.

The second major limitation to the adoption of MC for verification of dis-
tributed systems is that the number of system states generated by the MC
becomes very often unfeasible, i.e., state space explosion. Existing approaches to
MC of FT distributed protocols disregard the fact that the symmetric nature
of such systems can lead to significant state space reductions. For example, in
many consensus protocols all processes execute the same algorithm and it is ir-
relevant to model which processes agree on a value as long as this is the same
for all processes.

Paper Contributions. This paper introduces the FTDP language which (a)
allows writing models of FT distributed protocols using a simple pseudocode-like
language and (b) forces the specification of symmetric systems to yield a sound
and complete abstraction which effectively limits state space explosion. FTDP
addresses both discussed barriers. It allows the system designer to concentrate
on writing the pseudocode of the protocol behavior. The system and fault model
can be defined by picking the desired properties from a palette of pre-defined
templates which represent typical and well-known abstractions expressing the
properties of the communication channels (e.g. synchrony, reliability) and of
faults (e.g. crashes, Byzantine). FTDP also mitigates the state explosion problem
by showing and discussing how symmetry reduction [10,8,16] can be integrated
into automated model verification transparently to the system designer.

The basic idea of symmetry reduction is to identify groups of symmetric sys-
tem states such that it is sufficient to explore one representative state in each
group. However, the process of identification of symmetric states, commonly
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called symmetry detection, is a complex task. Automatic detection of symmetries
in a model in order to produce a smaller, symmetry-reduced model is at least
as complex as exploring the original model. It is therefore up to the designer to
identify symmetries and express them in a language supporting symmetry reduc-
tion like SS [10]. FTDP identifies symmetries from the pseudocode of the system
by leveraging roles. Roles are independent processes which partition the oper-
ations executed by the nodes participating in the protocol. They are explicitly
defined, for example, in the Paxos protocol (leaders, acceptors and learners) [11]
and in the OM protocol (commander and lieutenants) [15]. Implicit roles can be
commonly identified in many distributed protocols (e.g., [1,6,18]). In our exper-
imental evaluations we show that role-based symmetry reduction of distributed
algorithms is very efficient as it can reach almost optimal state reduction for
the detected symmetries. We also show that a role-based approach can be ex-
ponentially more efficient in the number of roles than the common, simplistic
symmetry detection approach which considers nodes as the symmetric unit in
the system [10,8].

Our overall verification approach is depicted in Figure 1. The system designer
writes a protocol’s pseudocode using the FTDP language. By doing this, it also
selects the appropriate system and fault model. FTDP is then automatically
translated to the language SS. SS is general and comes with a precise proof of
the correctness of symmetry detection. During the translation, FTDP uses roles
to specify the symmetries of the system. The SS model of the protocol is then
given as an input to a symmetry reduction model checker, which automatically
explores the system state and verifies the properties.

In order to show the viability of the approach, we present the FTDP models
of the Paxos and Oral Messages (OM) protocols. Both are fundamental consen-
sus protocols which representatively show how FTDP can be used over different
system models (asynchronous vs. synchronous) and over different fault models
(crash vs. Byzantine). These protocols also demonstrate how roles are com-
monly used in distributed algorithms. Experimental verification shows that our
approach can reduce the size of the state space of multiple orders of magnitude
over non-symmetric models as well as over node-based symmetry reductions.

A Motivating Example. We give the intuition of the proposed approach
through the example of a simple reliable storage protocol. The protocol oper-
ations here, of different phases of information exchange and consequent deci-
sion/termination steps, are representative of a broad class of distributed FT
protocols. This protocol implements a regular read/write storage (RS) assuming
that only a strict minority of all processes can crash [17]. Channels are authenti-
cated, i.e., a receiver process can identify the sender of the message. A message
can be lost, duplicated or delayed but it cannot be forged. An RS is implemented
on top of read/write registers each of them located on a different physical node.
RS defines two roles, a single writer and n readers that can write/read to/from
the RS respectively. Being a fault-tolerant solution, processes should be able to
access the RS even if some registers are unaccessible. Figure 2(a) sketches how
the protocol works if n = 4 in a setting where the registers are located on the
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Fig. 2. (a) Example of the regular read/write storage protocol. (b-c) Outline of the
pseudocode of the same protocol using the usual node-based and the proposed role-
based symmetries resp. (d) The benefit of the role-based approach: the node-based
approach cannot detect that global state s′′ is symmetric with global states s and s′.

same physical nodes as the readers and where the writer and one reader are
located on the same node. The writer can write a value v into RS by invoking
write(v). This operation consists of requesting every register to update its value
to v together with the writer’s latest timestamp (t). The write completes if any
majority of the registers have sent an acknowledgement. Even though reader 2
does not have v locally, it can use the RS protocol to obtain the value by invok-
ing a read operation. The reader first requests every register to report the value
with the latest timestamp, waits for a reply from a majority of all registers and
returns the value with the largest timestamp among the replies. MC must verify
that the RS is regular, i.e., a read always returns a value v that was actually
written and v is not older than the value written by the last preceding write.1

Figure 2(b) shows the template of the pseudocode specification of the RS
protocol used to detect node-based symmetries by construction. The designer
specifies that the system consists of nodes, each of them able to host a writer
and a reader. Nodes are declared to be symmetric, i.e., their local states are
interchangeable. Symmetry violations are prevented in the specification language
by disallowing the definition of symmetry-breaking operations. The global state
of the system at each instant of time is given by an array storing the local state
of each node of the system.

Figure 2(c), on the other hand, depicts the pseudocode-template of the same
protocol with the ability of detecting role-based symmetries (like in FTDP).
Every role, writer and reader, is defined to be symmetric. There is one writer
process and four reader processes. The assignment of processes to physical nodes
needs not be modeled because the properties of RS does not specify nodes. The

1 An operation op1 precedes op2 if op1 completes before op2 is invoked.
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global state of the system is the set of arrays, each of them belonging to a
role, storing the local state of each role instance. The benefit of the role-based
approach is demonstrated by an example in Figure 2(d). Three global states
s, s′ and s′′ are shown which only differ regarding which node has missed a
read request. All these global states are symmetric because each of them can be
obtained from another by permuting the IDs of the readers. However, the node-
based approach cannot detect that s′′ is symmetric with s and s′ because the
model has to remember that reader 1, which is the only one hosted on the same
node as the writer, has received the read request. Therefore, the model checker
explores two states (s or s′ and s′′) in the node-based model. In contrast, it
suffices to explore a single state (arbitrarily selected among s, s′ and s′′) in the
role-based model.

Related Work. A recent survey of general applications and tools for symmetry
reduction is [16]. Our work is related to symmetry detection and to approaches
that are specific to automated formal verification of FT distributed protocols.
We assume that the model checker can distinguish between symmetric states;
related techniques are also surveyed in [16].

The proposed solution assumes that the system consists of a finite number
of processes. This strong assumption enables us to provide full automation and
an expressive property language. Our recent brief announcement [4] provides a
summary level overview of the approach. A powerful tool for the specification and
the analysis of distributed systems is provided by the TLA+ language and the
TLC model checker [13]. TLC supports symmetry reduction and requires that
the user detects symmetries. FTDP models automatically detect symmetry and
can be also translated into TLA+. +CAL [14] is a language allowing high-level
specification of algorithms which, similarly to FTDP and SS, is automatically
translated into TLA+. +CAL does not support the specification of symmetries
and is lower-level (and also more general) than FTDP. For example, the modeling
of message-based communication and faults must be implemented by the user.

Other work uses model checkers with no symmetry reduction support to verify
consensus protocols under the crash fault model and the Heard-Of system model
[23,24]. The latter model assumes that a message which is sent in a communica-
tion round cannot arrive in later rounds. This additional assumption facilitates
verification of consensus protocols, but is only sound for systems implementing
it. The symmetry detection approach of FTDP can also be extended to exploit
symmetry under the Heard-Of system model. Since FTDP restricts to finite
models, the technique of abstracting protocols using infinite time stamps into a
finite representation [23] can be combined with our approach.

Another work verifies the optimistic termination of Byzantine consensus pro-
tocols [25]. This approach differs from ours in many aspects: it is specific to
consensus protocols, it uses a dedicated verification engine, it does not use sym-
metries, and it does not verify the entire protocol but rather focuses on opti-
mistic cases. Model checking of self-stabilizing algorithms was proposed by using
symbolic techniques that are (under favorable conditions) insensitive to the large
number of initial states [22]. However, different but symmetric initial states need
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Fig. 3. (a) Example symmetric state space with symmetry reduction. The dashed line
states are not explored leading to state space reduction. (b) If the system has two
nodes, each running instances of two roles a and b, where instances of a have states a1

and a2 and instances of b has states b1 and b2, symmetric state π2(s) is not detected
in the classic node-based approach but (c) is detected in the role-based approach.

not be explored, which, if combined with explicit state model checking, does not
suffer from the drawback of symbolic approaches. Work that uses MC to verify
specific FT distributed protocols but that disregards symmetry (e.g., [21]) can
naturally leverage our technique.

2 A Role-Based Approach to Tackling Symmetry

Symmetries of Distributed Protocols. A typical example of symmetries in
the state space, or state graph, of the system is when all nodes in a distributed
system execute the same process. The intuition is that a (global) system state
s where two processes i and j assume different local states is symmetric with
another state π(s) where these two local states are swapped. Formally, symmetry
[8] is a permutation π acting on all reachable system states satisfying that for
every state s and its successor s′ it holds that π(s′) is a successor of π(s).2

Figure 3 (a) shows a simple case of a symmetric state graph, where any pair
among s, π1(s) and π2(s) is symmetric.

Symmetry reduction [16] exploits such symmetries to ease model checking.
The idea is that the system exhibits indistinguishable behavior when started
from symmetric states if the property under verification does not distinguish
symmetric states. By using this technique a reduced model, or reduced state
graph, is explored which is defined such that every state s of the reduced model
is a representative state among all states of the original model that are symmetric
with s, and two states are connected in the reduced model if any two states of
the corresponding sets of symmetric states are connected in the original model.
2 More generally, the pairs of symmetric states s and π(s) yield a bi-simulation for

the state graph.
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In Figure 3(a) the reduced state graph contains only the representative states
s, s′, s′′, and their relations.

Detecting Symmetries. The definition of symmetry shows that all relations
and states in the non-reduced state space may have to be visited to automati-
cally detect symmetries, although this entails the very same complexity we want
to eliminate. Therefore, we take the approach of creating symmetric models by
construction, where the exploration of the state space is not needed because sym-
metries are indicated by the system designer. In order to indicate symmetries
in the model the designer uses a special data type called scalarsets. Scalarsets
were introduced in the SS language and define subranges with restricted opera-
tions, e.g., scalarset values can only be checked for equivalence and arrays with
scalarset index type cannot be indexed by constants. The restrictions guarantee
that any permutation of scalarset values results in symmetric states.

Efficient Symmetry Detection via Roles. We observe that most FT dis-
tributed protocols are expressed, or can be easily expressed, in terms of roles.
Protocols are executed by computing elements, termed processors or nodes. Each
node executes one or more state machines, called processes, whose state consists
of input and output message buffers and a local state. State transitions are
atomic and are activated by either reading a message from the input buffer or
by responding to an internal event (e.g. timeouts). Possible effects of a state
transition are changing the local state of the process and writing new messages
in its output buffer.

As protocols normally consist of a single process pi per node i ∈ [1, n], it
is natural to model the system as the parallel composition p1|| . . . ||pn and to
represent the current system state as a configuration, i.e., a tuple containing for
each node i the local state of its process pi. This is done by existing symmetry
reduction approaches for distributed protocols, which use a single scalarset to
represent the IDs of nodes in the current configuration (e.g. [10,8]). Each node
is thus modeled as an atomic entity and two configurations are symmetric if the
states of the nodes can be permuted. We call this approach node-based.

The key idea of FTDP is that it lets the designer define a set R of roles, which
are independent processes having non-intersecting states and whose state tran-
sitions are activated by non-intersecting sets of incoming messages and internal
events. The behavior of each process pi is expressed in FTDP as the parallel
composition pi = r1

i || . . . ||rki

i , where each rj
i is an instance of a role in R and

where each role has at most one instance per process. Our role-based symmetry
detection identifies symmetries by permuting the states of multiple role instances
rather than the states of nodes as a whole. FTDP models each role in R with a
separated scalarset whose size is determined by the number of the corresponding
role instances in the system. In other words, we do not model the local state of a
node but the local state of each role instance separately. This is possible because
the properties of the protocol specify roles rather than nodes.

We illustrate the difference between role- and node-based approaches using the
example state graph of Figure 3 (a). All states s, π1(s) and π2(s) are symmetric
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but only a role-based approach may be able to detect all existing symmetries.
Consider for example that these states model a protocol where each of the two
nodes executes instances of two roles {a, b} = R as in Figures 3 (b) and (c). A
node-based approach can detect the symmetry of s and π1(s) because two node
states are permuted, but no symmetry is detected between π2(s) and any of the
previous states. This symmetry can be detected by our role-based approach be-
cause role instances, rather than nodes, are modeled as basic symmetric entities.

The role-based approach can yield an exponentially larger number of sym-
metric states compared to classic node-based approaches. In the best-case, the
model reduced using the symmetries detected by the role-based approach con-
tains less states than the original model by a factor of at most

∏
i=1...|R| ni!,

where R is the set of roles and ni is the number of processes executing role
ri ∈ R. This is because every state in the reduced model corresponds to at most
ni! different states in the original model where ni instances of ri are permuted.
In our experiments we show that this best-case reduction is almost reached for
both Paxos and OM(1), so the identified reductions are very efficient. Further-
more, role-based detection can lead to an exponential best-case gain in terms
of state reduction compared to the classic node-based approach in common sys-
tems. Assume that all n nodes execute all roles, i.e., ni = n for all i. In this case,
the maximum benefit of symmetry reduction with the node-based symmetry
detection approach is n!, which is (n!)|R|−1 times less than with the role-based
approach. Note that there is no guarantee that the reduced state space remains
intractably large. In fact, symmetry reduction is able to mitigate state space
explosion instead of fully tackling it.

3 The FTDP Language by Example: Modeling Paxos

Our goal is to create a language which, besides detecting symmetries, is able
to faithfully model a broad class of FT distributed protocols. Models written in
our language resemble the pseudocode of protocols so that system designers can
easily use it.

We now present the FTDP language through the example of the Paxos proto-
col [11]. The complete FTDP model to verify the safety of Paxos is very compact
and as depicted in Figures 4 and 5. The syntax of FTDP can be found in the
Appendix.

Paxos solves the consensus problem, where each process keeps a local value
and only one of these values is delivered to all processes. It assumes asynchronous,
lossy channels with out-of-order delivery and at most a minority of processes
which can crash. In a didactic paper [12] successive to [11], Lamport explicitly
mentions three roles for each process, leaders, acceptors and learners. Leaders
send a proposal, composed of the current local value and a proposal number,
to all acceptors. An acceptor accepts a proposal only if it has not yet received
any other proposal with a higher proposal number. A proposal is termed as
chosen if a majority of acceptors accepts it. A chosen proposal can be learnt by
the learners by collecting the accepted proposals from the acceptors. Consensus
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Table 1. Overview of system models available in the FTDP language

Channel Models
Asynchronous / (No / Existing) known upper bound on

Synchrony Synchronous computation and message transmission delays
Reliability Lossy / Reliable Sent messages (are not / are) eventually received

Authentication Authenticated The receiver can identify the sender of the message
Out-of-order / Sent messages (are not / are) received

Delivery order FIFO in the same order as they are sent
Duplication No Sent messages are not duplicated by the channel
Channel size B-bounded At most B messages can be sent but not yet received

Fault Models
Correct / Process always follows specification /

Status Crash faulty / Process eventually stops /
Byzantine faulty Process does not follow specification

requires that (a) it is impossible that two proposals with different values are ever
chosen (safety) and (b) a proposal is eventually learnt (liveness).3

Palette of System Models and API. The FTDP language supports multi-
ple common system models that usually appear in FT distributed protocols. We
model systems as parallel compositions of processes, i.e., role instances, commu-
nicating via messages sent through point-to-point directed channels. A summary
of the different channel and fault models that can be selected by the user in
FTDP are depicted in Table 1. A global parameter of every FTDP model deter-
mines a specific channel model. A field called status denotes for each process
whether the process is correct, crash faulty or Byzantine.

Incoming messages activating state transitions are referred by the special vari-
able msg, which has a user defined message type. A set of variables of the form
2roleName[k] is used for sending a message to the kth process executing in
the specified role (e.g., 2leader[k]). These variables are written by the sender
process and have a user defined message type.

FTDP Model Structure and Declarations. Every FTDP model defines
four blocks for the definitions of roles and message types (type), state variables
(var), initial assignments of the variables (init), and rules updating the vari-
ables (rules). The first three blocks for Paxos are depicted in Figure 4. A role
is defined for leaders and acceptors by the role name and the number of the cor-
responding role instances m and n, which are constant model parameters (line 1
and 2). In order to verify safety we only need to model that a proposal is chosen
so learners are not modeled explicitly. The type of messages is defined between
lines 3-7. We define messages using a record where the value of the first field
indicates the message type.

In every FTDP model, an array is defined for each role (lines 8-15 and 16-19),
which stores the local states of role instances. The local state consists of the
values of all state variables of the corresponding process. For example, proposal
3 Note that in MC terms a liveness property differs from a safety property in that it

can only be violated through infinite runs.
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Fig. 4. Paxos modeled in FTDP — Declaration of types and variables, initialization
with two leaders

numbers are stored in an array called propNoPool (line 10). The FTDP model
of Paxos is parametric in the size of this array (L). The Paxos protocol assumes
that the sets of proposal numbers are disjoint for different leaders. We implement
this by assigning in the init block distinct values in [1..m · L] to the elements
of the propNoPool arrays.

We specify symmetry by declaring that the local states of role instances can
be freely permuted. The syntax of the FTDP language guarantees that the per-
mutation yields symmetric states. This results in state space reduction if two
processes of the same role have different local states which can be permuted
in two different (global) system states in the original model. For example, the
local state of two acceptors can differ when only one of them receives a leader’s
message. On the other hand, role-based symmetry detection cannot achieve the
theoretically maximum benefit when the two acceptors can have the same local
state, for example because both receive the leader’s message.

State Initialization and Transitions. Initialization rules are used to set the
initial values of process variables and the fault model of each process. Since asyn-
chronous communication and concurrent operations between leaders are more
challenging to handle than leader crashes, the initialization rule of Figure 4
sets all leaders as correct and selects a minority of crash faulty acceptors (lines
21-33). For simplicity of the presentation, we assume that m=2 and L=2. The
initialization rule is parametric in the process IDs so that there is a distinct
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rule for each possible assignment of the parameters i1, i2 and j1 . . . j�(n+1)/2� to
process IDs. For example, in case of n = 3, the assignment i1 = 1, i2 = 2, j1 =
1, j2 = 3 determines one instance of the rule.

Each FTDP rule corresponds to a state transition which can update the local
state and send messages. The rules for Paxos, separated by [], are depicted in
Figure 5. Rules are labeled for an easier reference. For example, the rule labeled
as leaderElect (lines 36-43) handles an internal event triggered by leader elec-
tion which makes leader i propose its value. Other rules are parameterized by i
and j, the receiver and the sender of a message. Rules in FTDP can be guarded
by a Boolean condition (lines 37, 46, 54, 68). For example, leaderElect is exe-
cuted only if there is some unused proposal number left in the pool (line 37).

Temporal Properties in FTDP. Safety in Paxos requires that once a proposal
with a value val is chosen, no other proposal is chosen at some time in the
future with a value different from val. Such properties can be naturally written

Fig. 5. Paxos modeled in FTDP — Rules and safety property
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in temporal logics. FTDP supports Computation Tree Logic (CTL*) which is
a powerful temporal logic containing other useful logics like CTL or LTL. For
example, safety can be defined in FTDP by using the temporal operators G
(“always”) and F (“eventually”) (Figure 5, lines 71-78).4 The basic assumption
of role-based symmetries is that the property does not specify which role instance
is executed by which physical node. In fact, the specification of such properties
is impossible in FTDP as the model does not have the notion of nodes.

4 Symmetry Reduction of FTDP Models

The syntax of FTDP hides the modeling of channels and faulty processes from
the user. These are modeled in the SS translation of FTDP models. In other
words, FTDP defines syntactic sugar for SS. The translation between FTDP
and SS guarantees that out-of-order delivery, message losses and process faults
are considered in all possible ways. Therefore, no case can be overlooked which
is necessary for a sound verification process. The soundness of verification is
also affected by the property of the protocol. The property language of FTDP
supports a broad class of properties that is provably preserved by symmetry
reduction. We now give an overview of the translation between FTDP and SS
and our property preservation results. The precise semantics of FTDP can be
found in our technical report available online [3].

Faithful Model of Environment. Channels are modeled via message buffers.
An input buffer is an array or a multiset depending on whether the channel is
FIFO or delivers messages out-of-order. The size of each input buffer is bounded
by B. Output buffers correspond to the API variables in the form 2roleName[k]
and can contain a single message. The transmission of a message is modeled by
moving it from the output buffer of the sender process into the input buffer of
the recipient process. In case this buffer is full the message is discarded (lossy
channels) or the sender must wait until all the messages it is sending can be
copied into the input buffers of the recipients (reliable channels). We model
authenticated channels by defining at each process a buffer for each other process.
A process receives and processes a message by removing it from the input buffer.
In lossy channels it is decided non-deterministically if a message in the input
buffer is lost, in which case it is removed without processing.

A crash faulty process that has not yet crashed is modeled such that it cor-
rectly follows the process specification. Upon receiving a message from a crash
faulty process, it is decided non-deterministically if the message is actually pro-
cessed. If not, the sender is considered to be crashed and the message is discarded
as it had not been sent. In such a way we also model scenarios where a process
crashes after it has sent a message to only a subset of processes.

4 Note that because of the implication in line 77 it is not required that another proposal
is ever chosen.
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The state of a Byzantine process is not modeled. We model a process receiving
a message from a Byzantine sender by non-deterministically selecting an arbi-
trary message from the domain. Thus, the size of this domain directly affects
the size of the state space.

A system is synchronous if there is a known upper bound on message compu-
tation and delivery time, and is considered asynchronous otherwise. We model
synchronous systems by assuming that a correct process waiting for a message is
able to perfectly detect if the sender is faulty and the message will never arrive.
Therefore, we introduce a Boolean flag msg.absent which is true if and only if
the sender is either Byzantine faulty and fails to send a message or is crashed.
The message itself (msg) contains the necessary information about which mes-
sage is missing.

Property Preservation. Symmetry reduction is sound to use only if it pre-
serves the properties in FTDP, which is provided by the following theorem:

Theorem 1. [10,8] Let P be an SS model and AP a set of Boolean expressions
defined over the variables in P . Given the state graph representation M of P , let
the reduced state graph MR be obtained from M by the permutation of scalarset
values. MR preserves every CTL* property f over AP , that is, f holds in M iff
f holds in MR.

The property language of FTDP is essentially CTL* where the quantifiers, for
example in the safety property of Paxos of Figure 5, are syntactic sugar for ANDs
and ORs. Since the translation from FTDP to SS does not change AP , the above
theorem justifies the soundness of our proposed approach as depicted in Figure 1.
The details of the proof can be found in [3]. Note that every proposition p in
AP is symmetric in that it cannot distinguish between specific role instances.
Formally, in FTDP p must be quantified (existentially or universally) over the
IDs of role instances. This constraint about AP enables the preservation of a
class of properties as general as CTL*. We remark that the same constraint is
needed if we restrict to a simpler class of properties such as simple invariants.
Techniques where less symmetric properties can be preserved, at a price of less
reduction, are surveyed in [16].

5 Experiments

We tested our approach on the representative synchronous and asynchronous
Paxos and the OM(1) protocols. These two protocols represent a wide spectrum
of different system and fault models. Different from Paxos, OM(1) is a syn-
chronous, Byzantine fault tolerant consensus protocol using reliable channels. It
defines two roles, a single commander who proposes its local value and n lieu-
tenants who will agree on the same value if at most one general or lieutenant
is Byzantine and n ≥ 3 (IC1). Moreover, if the commander is correct its local
value must be the agreed value (IC2). Conditions IC1-2 are called the interactive
consistency (IC) conditions. The full FTDP model of OM(1) can be found in
the Appendix (Figure 8).
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Protocol Param. Property Symm. red. States Gain Effic. Time Result
No 1,591,897 268 s Verified

safety Node-based 795,945 2x 33% 226 s Verified
Role-based 136,915 12x 96% 32 s VerifiedPaxos

m = 2 Erroneous No 649,301 61 s CE found
n = 3 safety (chosen Node-based 325,074 2x - 226 s CE found
L = 1 = accepted) Role-based 57,677 11x - 12 s CE found

Faulty Paxos No 1,114,891 126 s CE found
(always accept safety Node-based 562,298 2x - 122 s CE found

proposals) Role-based 101,239 11x - 20 s CE found
No 1,797 0.1 s Verified

n = 3 IC1-2 Node-based 941 2x 31% 3 s Verified
Role-based 345 5x 85% 0.1 s Verified

No 150,417 9.6 s Verified
OM(1) n = 4 IC1-2 Node-based 26,401 6x 24% 17 s Verified

Role-based 6,999 22x 90 % 7.4 s Verified
No - - No mem.

n = 5 IC1-2 Node-based 2,402,167 - - 4 h Verified
Role-based 490,839 - - 2 h Verified

Faulty OM(1) No 934 0.1 s CE found
(two Byzantine n = 3 IC1 Node-based 843 1.1x - 2.9 s CE found

faults) Role-based 200 5x - 0.1 s CE found

Fig. 6. (a) Results of model checking Paxos and OM(1) with Murϕ using no, node-
based and role-based symmetry reduction: “Verified” if the property can be proved, “No
mem.” if the state space explodes, and “CE found” if a counterexample was identified.
(b) Comparison between the maximum and measured benefit of role-based symmetry
reduction (n = 5, OM(1) see table).

We used the Murϕ symmetry reduction model checker [9] as it implements
the SS language.5 Since Murϕ only supports invariants, i.e., properties that must
hold in all states of the model, we instrumented our SS models by monitors to
check properties containing temporal operators. Monitors save system states that

5 Other symmetry reduction model checkers like SymmSpin [5] or SMC [20] can also
be used if the SS translation of FTDP models is adapted for the input language of
the model checker. The SMC model checker supports liveness properties as well.
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are specified by the property (e.g., the first chosen proposal in Paxos) and use it
as a reference in other states (e.g., where a new proposal is chosen). Properties
that cannot be defined via invariants and monitors, like liveness in Paxos, cannot
be verified using Murϕ and thus are excluded from the experiments.

Murϕ uses different heuristics to minimize the (time and space) overhead of
checking whether a state is symmetric with a previously visited one. Therefore,
Murϕ might also expand states that are symmetric. The results of the exper-
iments are depicted in Figure 6 using Murϕ’s “heuristic fast canonicalization”
algorithm. The results of Figure 6(a) include a comparison of the node-based and
role-based approaches, the verification of the properties of both protocols as well
as false properties and fault-injected protocols where, for each case, a counterex-
ample was found. Our experiments cover for both protocols those (non-trivial)
settings that were feasible to verify with Murϕ. All experiments were executed
on DETERlab machines [2], equipped with a Xeon processor and 4 GB memory
and running a Linux installation with Fedora 6 core. The results show that sym-
metry reduction was able to achieve a benefit of at least one magnitude in terms
of the number of visited states. Furthermore, OM(1) with 5 lieutenants could
not be verified without symmetry reduction because the queue of unexplored
states ran out of memory.

Figure 6 also compares the size of the reduced model (in terms of the number
of visited states) with the lower bound on the number of non-symmetric states,
i.e., the theoretical maximum benefit of node-based and role-based symmetries
(see Section 2). The proportion of these two numbers is called efficiency [10].
It can be seen that both protocols are almost optimally symmetric with respect
to their roles (approaching 100% efficiency). This is also highlighted in Figure
6(b) where we compare the size of the reduced model (middle bar) with the
lower bound (rightmost bar), and relate them to the size of the original model
(leftmost bar). This comparison cannot be done for OM(1) with n = 5 because
the size of the original model is unknown. We can observe that the difference
between the achieved and maximum benefit is within 3% of the size of the original
model.

The node-based models assume that the number of nodes equals max{ni},
i.e., the maximum number of processes executing the same role. Nodes can be
arbitrarily allocated for role instances as long as no node hosts more than one role
instance of the same role. Our experiments show that the role-based symmetry
detection approach is superior to the node-based one in terms of the number
of explored states. Note that even in the case of OM(1), where the theoretical
maximum benefit is the same for the node-based and role-based approaches, the
measured benefit is considerably higher with role-based symmetry detection.
Intuitively, this is because the node-based model has to remember whether a
lieutenant is hosted on the same node as the commander.

6 Conclusion

We have created FTDP, a pseudocode-like specification language for FT dis-
tributed protocols which can be directly used to model check the target protocol
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against its properties without specific MC expertise. FTDP flexibly supports
the most used system and fault models and is able to specify symmetries of the
protocol if it is divided into roles, a term familiar to protocol designers. We have
shown that FTDP can naturally and compactly specify complex and widely-used
distributed protocols such as Paxos and OM. Our role-based symmetry detec-
tion approach can be exponentially more efficient than the node-based approach.
Our experiments on the MC of these protocols have shown that they are highly
symmetric with respect to their roles as the experienced benefit approaches the
theoretical maximum, and that the reduction in terms of the number of visited
states is very significant, that is, around one order of magnitude.
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A The Syntax of FTDP

Figure 7 depicts the BNF syntax of FTDP. As usual, the operator “[]” is used
to select array elements and “.” to address fields of a record. The names of
non-terminals specific to FT distributed protocols are prefixed by “FTDP”. The
following types are pre-defined in every model: the roles used by the protocol
(〈FTDP-roleDecls〉) and the type of a message (Msg). The first type defines for
each role 〈FTDP-roleType〉 the number of role instances. A message is modeled
through a record of fields. For simplicity, the language allows the definition of
one type of message only. This is not a limitation because the same type can be
used to model various messages. Every FTDP model maintains for each role an
array 〈FTDP-roleState〉 to store the local state of each role instance.

Every FTDP model must define at least one initial state. This is done via
〈rule〉. A simple rule is defined by a sequence of statements (〈stmt〉) and labeled
for easier reference. A statement is used to update the values of process variables.
Rules are separated by using the [] operator. Parameterized rules can be defined
by writing [](〈id〉 : 〈typeExpr〉). This means that a rule is defined for every
possible value of id. The execution of a rule means that the statements defined
by the rule are executed. The state of the protocol is updated through the
execution of a rule. If multiple rules are defined any of them can be executed.
This is how the FTDP language supports non-determinism.

The statement undefine(v) can be used to assign a special undefined value
to all values in variable v. The predicate isundefined(v) is used to check if
all values in v assume the undefined value. Otherwise, a variable var can be
assigned a value val by writing var:=val. Conditional and iterative statements
are defined similar to ordinary programming languages.

Rules that describe how correct processes or processes that have not yet
crashed update their variables are defined via 〈FTDP-rule〉. These rules can be
combined similarly to 〈rule〉. The rule 〈FTDP-onTransition〉 defines an event
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Fig. 7. The syntax of the FTDP language

handler of the ith role instance in the specified role (〈FTDP-roleId〉) to update
its local state in response to an internal event. Another rule 〈FTDP-onReceipt〉
defines an event handler for the receipt of a message. The rule is parameterized
by a reference to the receiver and sender role instances (i and j). Both rules
are guarded by a Boolean condition (〈FTDP-guard〉) to govern which handler is

Table 2. List of predefined variables in FTDP modeling a protocol with k roles (j ∈
[1..k]). Variables can be read-only (R), read/write (RW), and write-only (W). Proc. i
is defined in the FTDP rule.

Name Type Scope Usage Description
msg Msg rules R Latest mess. received by proc. i from j
msg.absent bool rules R True iff the mess. was not sent
roleName[i].status {corr,crash,byz} init RW Status of proc. i in role “roleName”
2roleNamej array[roleIdj] of Msg rules W Proc. i’s mess. to “roleNamej” inst.
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Fig. 8. OM(1) and its properties specified in FTDP
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executed. In order to avoid deadlocks in our models the ELSE rule can be used
which executes the empty statement if no other rule can be executed.

The list of pre-defined variables and their description is depicted in Table 2.
The use of these variables is better explained in Section 3 and in [3].

Symmetry by Construction. We define conditions C1-C5 to ensure that the
symmetry of an FTDP model is not broken. These conditions can be verified
through simple syntactic checking. We assume that they are (automatically)
checked by an interpreter.

(C1) An array with role index type can only be indexed by a variable of exactly
the same type.

(C2) A term of role type may not appear as an operand to + or any other
operator in a term.

(C3) Variables of role type may only be compared using =.
(C4) For all assignments d := t, the types of d and t may be (possible different)

subranges or exactly matching roles.
(C5) Variables, elements of arrays and fields of records written by any iteration

of a “for” statement indexed by a role type must be disjoint from the set
of variables, elements of arrays and fields of records referenced (read or
written) by other iterations.

The Property Language. We adopt the Computation Tree Logic (CTL*)
[7] to define properties of FT distributed protocols. Properties of an FTDP
model can be defined via the CTL* temporal operators based on AP (atomic
properties), where AP contains all Boolean expressions in the FTDP language.
We refer to our technical report [3] for more details about CTL*.
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Abstract. In this paper we describe the functional features and the
architecture of a tool implementing the Stocks-Carrington framework
(TTF) for model based testing (MBT). The resulting prototype, called
Fastest, makes it easy to generate test cases from Z specifications. We
not only apply the ideas of the referred framework but we also use a
technique based on finite models to find test cases, which has proved to
increase the level of automation during the whole testing process. The
paper also discusses problems and challenges that have appeared during
the development of the tool, and introduces real case studies and an
analysis of the results obtained so far.

1 Introduction

Current industrial practice in software testing is mostly manual: test template1

definition, test case derivation and the determination of success or failure are all
manual, tedious, resource consuming and error prone activities. These activities
make poor use of software engineers’ skills, changing analytical tasks for a repet-
itive manual work. Within this picture many software development companies
seldom perform serious testing of their programs. In this paper we introduce
a tool, called Fastest [1], which automates test suite definition and test case
derivation for unit testing, by applying the Test Template Framework (TTF)
proposed by Stocks and Carrington [2,3,4] for model-based testing (MBT).

The main contributions of the paper are: (a) a flexible, efficient and automatic
implementation of the TTF which, as far as we have investigated, does not exist
yet; (b) the implementation of a technique to automatically derive abstract test
cases from test objectives, which was not originally proposed by Stocks and
Carrington; and (c) an analysis of the application of Fastest to two industrial-
strength case studies and several toy examples.

Since this paper is about MBT we will shortly introduce this technique; for
a deeper presentation the reader may consult [5]. In order to test a program
1 Test templates are also called test classes or test objectives; we will use all of them

as synonymous.
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P it is necessary to have a formal specification Op of it and follow the process
depicted in Fig. 1. From Op, abstract test cases (t) are derived by executing
the conceptual step named gen. Abstract test cases are abstract since they are
written in the same language than Op. Then each t is refined into a concrete
test case (x ), i.e. in a test case written in the same language than P . The
exec step represents the actual execution of P with input x , which produces
an output P(x ). This output is abstracted to the specification level when the
abs step is executed. The specification is used again to verify whether the test
has uncovered an error or not, during the final step compr . The abstract pair
(t , y) is conveniently substituted in Op: if it reduces to true then no error was
discovered, and if it reduces to false or P(x ) cannot be abstracted into t , an
error was found.

Fig. 1. A general description of the MBT process

All of the steps of Fig. 1 can be mechanized to a great extent. In this article we
introduce a specific implementation of the gen step based on the TTF. It is worth
to mention that, although the Z notation is one of the most used formal notations
in industry and that the TTF is a straightforward and powerful MBT technique
for Z, there is no implementation of the Stocks and Carrington framework as
automatic as ours.

The paper is structured as follows. The next section presents a brief introduc-
tion to the TTF. In Sect. 3 we show the functional and architectural features of
Fastest, while a representative example is run in Sect. 4. Section 5 presents the
results of applying Fastest to some industrial cases studies and to some toy ex-
amples, as well. Our work is compared to similar approaches in Sect. 6. Finally,
Sect. 7 describes our conclusions and future work.

2 The Test Template Framework

In this section we introduce MBT from the perspective of Stocks and Carrington,
without mention any particular implementation or tool. Precisely, in Sect. 3 we
introduce our implementation which also refines the framework.
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Phil Stocks and David Carrington introduced in [2,3,4] a formal framework
to conduct model-based testing of Z specifications [6], including a rigorous and
disciplined technique for defining and structuring abstract test templates and
test cases. They also proposed new testing tactics2 specifically suited to the Z
notation. According to them, testing tactics are the mechanisms that must be
used to partition the input space to build a so called testing tree.

We make use of an example to explain the TTF, but we assume the reader is
fluent in the Z notation.

2.1 A Simple Pool of Sensors

The following Z model describes a simple pool of sensors which records the
highest reading of each sensor. The KMR operation3 takes as input a sensor ID,
s?, and a reading, r?, of it. If s? is a valid ID and if r? is greater than the current
reading of s?, KMR replaces the current reading for r?. If some condition does
not hold, then the operation fails and nothing is changed.

[SENSOR]
MaxReadings == [smax : SENSOR �→ Z]

KMROk
∆MaxReadings
s? : SENSOR; r? : Z

s? ∈ dom smax
smax s? < r?
smax ′ = smax ⊕ {s? �→ r?}

KMRE2
ΞMaxReadings
s? : SENSOR; r? : Z

s? ∈ dom smax
r? ≤ smax s?

KMRE1 == [ΞMaxReadings ; s? : SENSOR | s? �∈ dom smax ]
KMR == KMROk ∨ KMRE1 ∨ KMRE2

2.2 Testing Tactics, Test Classes and Testing Trees

The TTF starts by defining, for each Z operation, the input space (IS ) and the
valid input space (VIS ). The IS is the set defined by all of the possible values of
the input and state variables of the operation. For instance, the IS of KMR is:

IS == [smax : SENSOR �→ Z; s? : SENSOR; r? : Z]

In turn, the VIS is the subset of IS for which the operation is defined. The VIS
of KMR is equal to its IS since the operation is total. More formally, the VIS
of an operation Op can be defined as follows:
2 Here we preferred testing tactic instead of the original term testing strategy because

we believe the former has a narrow scope than the last.
3 KMR stands for KeepMaxReadings.
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VISOp == [ISOp | preOp]

Stocks and Carrington suggest to divide the VIS into equivalence classes, called
test classes, by applying one or more testing tactics. The test classes obtained
in this way can be further subdivided into more test classes by applying other
testing tactics. This procedure can continue until either the engineer considers
that the test classes are reasonable small, or there is a reasonable number of
them, or each of the functional alternatives is covered by only one test class.
Within the TTF all these test classes are represented as a testing tree, as shown
in Fig. 3. The authors indicate that it is convenient for the testing process that
tactics produce a mathematical partition of either the VIS or a test class. In this
way, test classes are indeed equivalence classes in the sense that if the program
fails for a particular element it should fail for any other element of the class. Test
cases are taken only from the leaves of the testing tree as we will see shortly.

Within the TTF the authors defined a number of testing tactics that together
provide a sound method for calculating tests objectives. Furthermore, they pro-
pose that new tactics should be added for particular projects, systems, require-
ments, etc. Then, any tool implementing the TTF should enable the inclusion
and parametrization of testing tactics. Two of the testing tactics proposed within
the TTF are the following:

– Disjunctive Normal Form (DNF). By applying this tactic the predicate of
the operation is written in DNF and the VIS or a test class is partitioned
in as many test classes as terms has the predicate. The precondition of each
term is conjoined to the predicate of the VIS or the test class being divided.

– Standard Partitions (SP). This tactic uses the mathematical operators ap-
pearing in the predicate to generate more test objectives. A standard parti-
tion is a partition of the domain of a given mathematical operator in sets
called sub-domains. In practice, standard partitions are expressed as condi-
tions that must hold of the operator’s operands. These conditions are used
to divide a test class. Figure 2 shows one possible standard partition for the
< operator.

We will apply both tactics to KMR. First we apply DNF to the VIS and then
Standard Partitions is applied to the expression smax s? < r? of KMROk . The
resulting testing tree is shown in Fig. 3. Some of the nodes of the testing tree
are shown below as Z schema boxes. It is worth to mention that the predicates
of the objectives in a given level contain the predicates of the upper level. This
is the reason for which test cases are drawn only from the leaves.

1. a < 0, b < 0
2. a < 0, b = 0
3. a < 0, b > 0

4. a = 0, b < 0
5. a = 0, b = 0
6. a = 0, b > 0

7. a > 0, b < 0
8. a > 0, b = 0
9. a > 0, b > 0

Fig. 2. Possible standard partition for a < b
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Fig. 3. Testing tree of KMR

KMR DNF 1
smax : SENSOR �→ Z

s? : SENSOR
r? : Z

s? ∈ dom smax
smax s? < r?

KMR SP 1
smax : SENSOR �→ Z

s? : SENSOR
r? : Z

s? ∈ dom smax
smax s? < r?
smax s? < 0
r? < 0

KMR SP 2
smax : SENSOR �→ Z

s? : SENSOR
r? : Z

s? ∈ dom smax
smax s? < r?
smax s? < 0
r? = 0

KMR DNF 2
smax : SENSOR �→ Z

s? : SENSOR
r? : Z

s? �∈ dom smax

KMR SP 9
smax : SENSOR �→ Z

s? : SENSOR
r? : Z

s? ∈ dom smax
smax s? < r?
smax s? > 0
r? > 0

KMR DNF 3
smax : SENSOR �→ Z

s? : SENSOR
r? : Z

s? ∈ dom smax
r? ≤ smax s?

KMR SP 19
smax : SENSOR �→ Z

s? : SENSOR
r? : Z

s? ∈ dom smax
r? ≤ smax s?
smax s? < 0
r? < 0

KMR SP 20
smax : SENSOR �→ Z

s? : SENSOR
r? : Z

s? ∈ dom smax
r? ≤ smax s?
smax s? < 0
r? = 0
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For instance, KMR DNF 3 is defined by the same variables declared in VIS ,
and its predicate is one of the terms of the predicate of KMR after writing it
in DNF . In turn, the predicate of KMR SP 20 is the conjunction between the
predicate of KMR DNF 3 and the instantiation of the second predicate of the
standard partition shown in Fig. 2.

The second step of the TTF methodology suggests to prune the testing tree.
In effect, some test objectives are empty because they are contradictions. In these
cases it is impossible to find abstract test cases. For instance, class KMR SP 20
must be pruned, among others. Stocks and Carrington do not give a recipe on
how this can be automated. In Sect. 3.6 we give a very short description of a
technique that we are currently implementing in Fastest.

Finally, the engineer has to choose at least one element for each of the re-
maining leaves of the testing tree. These are the abstract test cases. Here, we
can see one of the main benefits of the TTF: the model, the test classes and
the test cases are all expressed in the same notation. For example, the following
schema boxes represent abstract test cases of the corresponding test objectives.
Note that the method naturally provides traceability between objectives and
abstract test cases by using schema inclusion. Within the TTF a test case is a
sort of assignment of constant values to state and input variables, rather than
a sequence of operations leading to the desired state, as is suggested by other
approaches [7,8,9].

KMR SP 1 TCASE
KMR SP 1

r? = − 1
smax = {(sensor0,− 2)}
s? = sensor0

KMR SP 2 TCASE
KMR SP 2

r? = 0
smax = {(sensor0,− 1)}
s? = sensor0

KMR SP 6 TCASE
KMR SP 6

r? = 1
smax = {(sensor0, 0)}
s? = sensor0

KMR SP 9 TCASE
KMR SP 9

r? = 2
smax = {(sensor0, 1)}
s? = sensor0

We want to remark that there is a clear distinction between test objectives
and test cases: the formers are predicates, and the latter are constants. In other
papers test cases are the same than test objectives [10,11,12]. We think that
this difference is essential to the MBT process because the selection of constants
satisfying test objectives is a very time consuming task if it is not done auto-
matically. Although the TTF suggests that the selection of abstract test cases
from test classes is a rather easy task, the authors do not give any clue on how
to automate this step. In Sect. 3.7 we show the method we have developed.
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3 Fastest: An Implementation of the TTF

The goal of this section is to describe both the functional and architectural
features of Fastest. Also we show some design and implementation details that
we believe contribute to the development of MBT tools. Since the Community
Z Tools framework [13,14] is a key component of Fastest we comment on how it
was integrated into our tool.

Fastest is an open-source software available in the section Tools at
http://www.flowgate.net (which includes a rather complete user manual).

3.1 Conceptual Description

As shown in Fig. 4, Fastest receives a Z specification in LATEX format using
the CZT package. The Z specification must verify the ISO standard [15]. The
specification is transformed into an internal representation more amenable to
parsing and static analysis. Then, the user has to enter a list of the operations
to test as well as the tactics to apply to each of them. In a third step Fastest
generates the testing tree of each operation. After the trees are generated, the
user can browse them and their test classes, and he can prune any node. Once the
user is done with pruning, he can instruct Fastest to find one abstract test case
for each leaf in all the test trees. Although the method to find abstract test cases
has proved to be quite automatic, it is worth to say that it does not guarantee
to find abstract test cases for all test objectives, as we will see in a following
subsection. The user can export all the results –test classes and abstract test
cases– in LATEX format.

Fig. 4. Fastest’s testing process. The dotted line divides the steps reported in this
paper from those not included here.

http://www.flowgate.net
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3.2 The Architecture of Fastest

Fastest was envisioned as a client-server application [16]. The main reason for
thinking of a distributed system came from the realization that calculating ab-
stract test cases from test objectives in large projects could be a hard computing
problem, but highly parallelizable as well –we will come back to this point in
Sect. 3.7. Then, we thought of an scalable application using the idle computer
power present in a corporate network. On the other side, since testing a large
application is usually carried on by a group of testers, a client-server architecture
allows the team to work concurrently from different workstations by running a
client process per tester. However, in such a large project there is shared infor-
mation –such as the definition or parametrization of some testing tactics, test
cases already calculated, theorems that help to prune testing trees, etc.– that all
the clients and servers should be able to access. Hence, a typical Fastest installa-
tion has a data server that is known to all other processes, some client processes
and a number of testing servers.

The client is organized following the Implicit Invocation architectural style
[17]. The main architectural invariant of this style is that the components that
announce events do not know which other components will react to them. A
consequence of this property is the possibility to add, remove and change com-
ponents without affecting the others [18]. For instance, it would be quite easy
to add a component that is called whenever a new test case is calculated, that
stores it on disc or that refines it to a given programming language.

The client has a simple text-based user interface from which the user can issue
commands and read their output. All the components of this architecture were
implemented as Java programs.

3.3 The CZT Framework

The Community Z Tools (CZT) project [13,14] is an open source Java framework
created in 2003 with the goal of building a toolkit for the Z notation or its
dialects. These tools include editors, parsers, type-checkers and so on, to work
with Z specifications written in LATEX, Unicode or XML. The following CZT
services have been used in Fastest:

– CZT Parser and the Annotated Syntax Trees (AST)
– CZT Type-checker
– CZT ZLive specification animator

Although we were benefited greatly from all these services, perhaps the most
important was ZLive. The ZLive project provides an evaluator of Z expressions
and predicates. In other words, ZLive takes a Z model and values for the input
and state variables and calculates the values of the output and next state vari-
ables –it is worth to mention that ZLive does not cover the whole Z notation yet.
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We used this facility to calculate test cases from test templates as is described
in Sect. 3.7.

3.4 Testing Tactics in Fastest

As we have said earlier, the first step of the TTF is to apply some testing tactics
to each operation of the Z model. Fastest features a user command (addtactic)
that allows the user to build the list of tactics to be applied to each operation,
by entering the name of an operation, the testing tactic name and a few more
parameters depending on the tactic –for more details on the syntax of user com-
mands go to Sect. 4. The current version implements DNF, Standard Partitions
and two new tactics proposed by us: Free Types (FT) and In Set Extension
(ISE). FT works on the variables of a free (enumerated) type, partitioning the
VIS or the test class in as many classes as elements has the type. More formally,
if the VIS of a given operation declares v : T , where T ::= V1 | . . . | Vn , then
the class is partitioned in n templates where each of them has a predicate of the
form v = Vi . This tactic is useful since enumerated types usually codify specific
states, operational modes, etc. Hence, by applying it there will be at least one
test case for each of those situations. ISE consist in partitioning an objective
which contains a precondition of the form v ∈ {e1, . . . , en}, where v is a variable
and e1, . . . , en are expressions, in n new objectives each of which contains, also,
a predicate of the form v = ei .

Since Standard Partitions is a general tactic that can be applied to a number
of mathematical operators, Fastest has a configuration file where the user can
define, modify or read partitions for all the operators he or she needs. Figure 5
shows a typical standard partition for the ∩ operator. As the reader may note,
the user writes the standard partitions in a simple and intuitive LATEX-based
language. In this way Fastest implements one important feature of the TTF.

Another important aspect of Fastest is a key design decision that allows users
to add new tactics. The only thing a user has to do is to program a class im-
plementing the Tactic interface. This class has methods to configure and apply
testing tactics.

\cap : operator(S,T);

S = \{\}, T = \{\};

S = \{\}, T \neq \{\};

S \neq \{\}, T = \{\};

S \neq \{\}, T \neq \{\}, S \cap T = \{\};

S \neq \{\}, T \neq \{\}, S \subset T;

S \neq \{\}, T \neq \{\}, T \subset S;

S \neq \{\}, T \neq \{\}, T = S;

S \neq \{\}, T \neq \{\}, (S \cap T) \neq \{\},

\lnot(S \subseteq T), \lnot (T \subseteq S), T \neq S;

end operator;

Fig. 5. Fastest’s standard partition for S ∩ T
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3.5 Fastest’s Automatic Generation of Testing Trees

Once the engineer has entered the list of testing tactics for each operation, the
only thing he or she has to do to build the testing trees is to run command
genalltt. In other words, the sole manual work for the engineer, up to this
point, is to enter the names of the tactics and other simple parameters: Fastest
reads the definition of each testing tactic and builds automatically each node of
each testing tree by manipulating the Z text.

3.6 Pruning Testing Trees in Fastest

Applying one tactic after another usually yields many empty test classes that
is advisable to prune from the tree. Besides, the engineer might want to prune
some nodes to reduce the number of tests to run for various reasons. Then, a tool
implementing the TTF should feature a way to automatically prune testing trees
as well as some manual way. Fastest current version implements only manual
pruning.

Automatic pruning involves some automatic way of finding contradictions,
which is in general an unsolvable problem. After trying to use the automated
theorem prover Z/EVES [19], which solves some cases but not all of them, we
have envisioned a light-weight method. This technique is being implemented
and rests on the peculiarities of the problem within the TTF. We think that
a full description of the method deserves its own paper, so here we just give
some tips. First, we assume that test class predicates are conjunctions of atomic
predicates. Second, Fastest would be delivered with a list of so called elimination
theorems, which are parametrized conjunctions of atomic predicates that yield
a contradiction –for instance f = ∅ ∧ dom f �= ∅, where the name and type
of f are parameters. Third, we let the user to extend the list with his own
theorems. Fourth, some simplification or rewrite rules are applied to each test
class. Finally, Fastest applies all the elimination theorems to each test class,
which means to seek the contradictory predicates inside the test class’ predicate.
Hence, if some class is a contradiction but Fastest fails to prune it, the user can
add an elimination theorem that will prune similar test classes in future projects.
However, we still think of combining our method with Z/EVES.

For manual pruning, Fastest provides three commands (prunebelow, prune-
from and unprune) that allow the engineer to prune subtrees and restore them
in case of mistake. See Sect. 4 for more details.

3.7 Finding Abstract Test Cases with Finite Models

We have based our method for calculating abstract test cases from test objectives
on the following:

Conjecture. For most of the predicates appearing in real specifications,
a small finite model will suffice to find an element verifying that predi-
cate; and if there is no element verifying the predicate, it is because the
predicate is a contradiction.
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Then, the method consists of building a finite model for each test class by cal-
culating the Cartesian product between a very small finite set of values for each
variable in the VIS . Later, Fastest evaluates –using ZLive– the class’ predicate on
each element of the model. Although this technique might appear inefficient and
is certainly inelegant, it has proved to be quite accurate, as we show in Sect. 5. In
part the efficiency has been achieved by exploiting the highly parallelizable nature
of the problem. In effect, Fastest asks each testing server to calculate a test case
of a particular test class. Then, the time to find abstract test cases decrease pro-
portionally with the number of available testing servers. This parallelization is so
efficient because each calculation is completely independent from each other; syn-
chronization is only needed when testing servers communicate a result to a client.

Then, every time Fastest asks a testing server to find an abstract test case
from a given test class, it can happen one and only one of the following:

– Some element in the finite model satisfies the class’ predicate, then we have
the desired test case.

– There is no element in the finite model satisfying the predicate because it is
a contradiction –and was not pruned in the previous step.

– There is no element in the finite model satisfying the predicate, but the
predicate is not a contradiction. In this case Fastest lets the user to sug-
gest a new finite model or part of it for the conflicting class (see command
setfinitemodel in Sect. 4).

The key point here is what finite sets Fastest considers for each variable in
the test class. By applying the first versions of the tool to some real case studies
we were able to define a set of heuristics that make it possible to find a very
high number of test cases, while minimizing the number of evaluations. These
heuristics are the following:

– The finite sets for types N or Z are built from the numerical constants
appearing in the predicate –if there are no such constants then we take
{0, 1, 2} and {−1, 0, 1}, respectively.

– The finite sets for enumerated types are the types themselves.
– The finite sets for basic types are built by generating three constant names

of each type. For example, if CHAR is a basic type, we assume the existence
of char1, char2, char3 : CHAR, and then we take {char1, char2, char3} as
the finite set for any variable of type CHAR. We think of them as being
three different constant elements.

– If a variable declared in the VIS does not appear in the predicate of a test class,
then the finite set for that variable is any singleton –since the value of such a
variable has no influence whatsoever on the evaluation of the predicate.

– If the predicate of a test class contains an atomic predicate of the form
var = VAL, where var is a variable declared in the VIS and VAL is a
constant value, then the finite set for var is just {VAL} –since it will be
impossible to satisfy the predicate with any other value.

– The finite sets for types such as seq X , X �→ Y , and so on, are built recur-
sively from the finite sets considered for the more basic types.
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The current version of Fastest does not cover the whole Z notation yet –in part
because ZLive does not either. Hence, the Z models can only have variables of
the following types: basic types, enumerated types, N, Z, set extensions, ranges,
power sets, Cartesian products, binary relations, total functions, partial func-
tions, sequences or any valid combination of them. For instance, Fastest does
not yet support variables of schema types, A →→ B , A � B , A �→ B , P1 A and
N1. Axiomatic definitions are not supported neither. Although these are obvious
limitations they do not impeded us to apply Fastest to real world examples, as
shown in Sect. 5.

4 Running an Example

In this section we use Fastest to run the example shown in Sect. 2. We will refer
to some Z schema defined in that section.

Fastest is run from a command window with the following command:

java -jar fastest.jar

Assuming the specification is stored in a file called sensors.tex it is loaded
with:

loadspec sensors.tex

Before generating a testing tree the user needs to select one or more operations
to test. In our example we select KMR.

selop KMR

Now it is time to apply the testing tactics. Fastest applies DNF by default.
Standard Partitions is applied to the expression smax s? < r? present in schema
KMROk with:

addtactic KMR SP < smax~s? < r?

Test trees are generated with the command genalltt, which needs no parame-
ters. Now the engineer can either prune the tree or calculate abstract test cases.
Assume he or she wants to prune the tree. In order to perform manual pruning
the user first needs to see the contents of each node in the testing tree. Fastest
provides command showsch to print the LATEX text of any node. Since all the
descendants of KMR DNF 2 contain an undefined expression –smax s? because
s? �∈ dom smax– they can be pruned manually by issuing:

prunebelow KMR_DNF_2

while individual empty test classes can be pruned with prunefrom, as follows:

prunefrom KMR_SP_4
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KMR_VIS

!______KMR_DNF_1

| !______KMR_SP_1

| !______KMR_SP_2

| !______KMR_SP_3

| !______KMR_SP_6

| !______KMR_SP_9

|

!______KMR_DNF_2

|

!______KMR_DNF_3

!______KMR_SP_19

!______KMR_SP_22

!______KMR_SP_23

!______KMR_SP_25

!______KMR_SP_26

!______KMR_SP_27

Fig. 6. Testing tree for KMR after pruning all the empty nodes

The testing tree resulting after pruning all the empty test classes is shown in
Fig. 6, which was generated with command showtt.

Abstract test case generation is initiated by genalltca, without any param-
eters. After some time, the engineer can see that Fastest found an abstract test
case for all test objectives except for KMR SP 1 and KMR SP 9. The reason
is that while Fastest will choose, in this case, the set {−1, 0, 1} as the finite set
for Z, their predicates can only be satisfied by considering either two strictly
positive or negative numbers. Hence, the user must help Fastest to find the right
finite models. The commands are as follows:

setfinitemodel KMR_SP_1 -fm "\num == \{-1, -2\}"
setfinitemodel KMR_SP_9 -fm "\num == 1 \upto 2"

By running genalltca again Fastest will find abstract test cases for those two
leaves.

As the reader can see, Fastest features an interesting level of automation. To
date, the most human-time consuming task is pruning testing trees, but auto-
matic pruning will be included in the next version as we explained in Sect. 3.6.

5 Empirical Assessment

We do not assess MBT against other forms of testing, nor the relative suitability
of the TTF because it has been done elsewhere [5,20]. However, we think it is
worth to mention that Fastest is the only tool providing an implementation of
the TTF where most of its steps are automatic, and that it is one of the few tools
for MBT for the Z notation [5] –see Sect. 6. Rather, what we want is to assess
Fastest with respect to its ability to find abstract test cases from tests objectives.
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Table 1. Summary of the case studies (part one)

N◦ Case study Real/Toy LOZC State Operations Tactics

1 SWPDC Real 1,238 18 17 DNF, SP, ISE, FT
2 Plavis Real 608 13 13 DNF, SP, FT
3 Scheduler Toy 240 3 10 DNF, SP
4 Security class Toy 172 4 7 DNF, SP
5 Savings accounts Toy 171 1 5 DNF, SP
6 Lift Toy 152 6 3 DNF
7 Symbol table Toy 78 1 3 DNF, SP

In particular we are interested in two measurements: (a) the percentage of non-
empty test classes for which Fastest automatically finds an abstract test case;
and (b) the computing time necessary to calculate (a). Since testing trees are
built almost instantaneously, we did not pay attention to this step.

Here we report the results of applying Fastest to two real-world, industrial-
strength systems from the aerospace sector, and to five toy examples borrowed
from the Z and MBT literature, and proposed by us as well. Tables 1 and 2
summarize the results of these experiments; note that both tables are related by
column N◦. In Sect. 5.1 we briefly describe each case study.

Table 1 gives an idea of the complexity of the models being “tested”. LOZC
stands for lines of Z code (in LATEX format); State indicates the number of state
variables in each model; and Operations gives the number of Z operations in
each model. The last column shows the testing tactics that we have applied
in the experiments. We applied at most two tactics to every operation in all
experiments, except in one operation of the Scheduler case study, where three
tactics were applied.

Table 2 gives an idea of the complexity of testing. Classes is the total number
of test objectives right after applying the tactics, some of which were manually
pruned, as is indicated in the third column, either because they are empty test
classes or because they will not contribute significantly to test the target ap-
plication. After pruning remains the Possible test objectives. Columns Auto,
Manual, Time and Ratio are the most important for us. The first two of these
indicate the number of test cases derived automatically and manually, respec-
tively –by manually we mean that the engineer had to issue a setfinitemodel
command to help Fastest to find a test case in a given test class. Percentages are
with respect to column Possible because we want to assess the effectiveness of
our method for finding abstract test cases from non empty test classes. As the
reader can observe, our conjecture (Sect. 3.7) was true even in the real-world
experiments. In our opinion this implies some uniformity in specifications: al-
though Z is a general purpose notation, users tend to specify using the same
kind of predicates. Otherwise, so simple a heuristic could not have yield so high
percentages. It was quite surprising for us that this simple heuristic have been
useful for specifications of systems of such diverse domains (see Sect. 5.1).

Before analyzing the last two columns of Table 2, it is necessary to give
some details about the platform used for performing the experiments. All the
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Table 2. Summary of the case studies (part two)

N◦ Classes Pruned Possible Auto (%) Manual (%) Time Ratio

1 225 123 112 91 (81.25%) 21 (18.75%) 124:00’ 1:06’
2 232 128 117 104 (88.88%) 13 (11.11%) 158:00’ 1:21’
3 213 174 29 28 (96.55%) 1 (3.44%) 3:00’ 0:06’
4 36 16 20 20 (100%) 0 (0%) 0:20’ 0:01’
5 97 74 23 23 (100%) 0 (0%) 4:50’ 0:12’
6 17 1 16 16 (100%) 0 (0%) 7:30’ 0:28’
7 18 10 10 10 (100%) 0 (0%) 0:10’ 0:01’

Averages 95.24% 4.76% 0:27’

experiments were conducted over the same hardware and software: an Intel Cen-
trino Duo of 1.66 GHz with 1 Gb of main memory, running Linux Ubuntu 8.04
with kernel 2.6.24-24-generic and Java SE Runtime Environment (build 1.6.0 14-
b08). Fastest was run in application mode –i.e. not in client-server mode–, what
did not make use of parallelization, except for the concurrency that the Intel
chip and the Linux kernel can provide. The last two columns show the total
computing time (in minutes) necessary to find one test case for all Possible test
objectives, and the computing time per test case, respectively.

In spite of the good results we got so far, there is a key issue that we need
to solve –in fact we are doing it as we write this article. The problem is how
and how efficient can empty test classes be automatically pruned from testing
trees. This point is important because, as the reader can see, there is a large
number of empty test classes in all the experiments. To perform the experiments
we analyzed one by one all the classes for which Fastest failed to find an abstract
test case, just to find that close to 100% were actually empty –by the way, this
fact supports the second part of our conjecture (Sect. 3.7). If most of the empty
test classes cannot be pruned automatically, then Fastest either will require a
non trivial amount of human effort, or the engineer could skip some test cases.

5.1 Description of the Case Studies

In this section we give a brief informal description of each case study.

SWPDC. Simplified version of the communication protocol between two com-
puters of a Brazilian satellite. The protocol roughly follows the directives of
the ESA standard ECSS-E-70-41A. This model has operations to load a pro-
gram in the memory of one of the computers, to transmit a data between the
computers, to interact with some hardware devices, to dump the memory,
and so on.

Plavis. Simpler version of SWPDC.
Scheduler. This model was borrowed from [5]. Basically, we translated the B

model described in that book into Z.
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Security class. A security class is a computer security concept belonging to
mandatory access control [21]. A security class is composed of an element
–called security level– that belongs to a totally ordered set and a set of
elements –called categories– of other type. Then, there are operations to
consult the security level or the set of categories, to change either one, etc.

Savings accounts. This is a typical example of a Z model. A bank has many
savings accounts where money can be deposited and withdrawn, the balance
can be checked, a new account can be created and an existing account can
be closed.

Lift. This model was borrowed from [22].
Symbol table. This model was borrowed from [2].

6 Related Work

In this section we compare Fastest with other similar tools. Clearly, TinMan
[23,24] is an obligatory reference since it is the implementation of the TTF by
its own authors. However, TinMan is not as automatic as Fastest because the
engineer has to enter by hand: (a) the predicates of the derived test classes, and
(b) the values of the constants for the abstract test cases. In other words, as far as
we understood, all the calculation is the engineer’s responsibility while TinMan
assist him or her in managing the specification, test objectives and abstract test
cases. Although management of hundreds of test cases is a real problem, the
automatic features of Fastest (a) avoid human error, and (b) save human effort
for the analytical work.

Confimiq launched in 2002 a tool called Conformiq Test Generator (CTQ)
[25] which calculates and executes test cases from UML Statechars models. CQT
was surpassed by another tool by Conformiq named Qtronic. While CQT needed
both a model of the environment of the system and a model of the system itself,
Qtronic only needs a model of the system. Besides, Qtronic supports concurrent,
multi-thread or non-deterministic models and time restrictions. Smartesting’s
Test Designer [26] is another tool that works with UML models. Test Designer
also provides facilities for simulation. Two tools from IBM’s Telelogic, Telel-
ogic Statemate & Telelogic Rhapsody [27], also work from UML and Statechart
models. All these tools have many advantages with respect to Fastest, basically
because they are the result of many years of development, but they have a non-
trivial disadvantage for data-intensive systems. Statecharts are not particularly
well suited to modeling that kind of system and, strictly speaking, UML models
are not formal, while Z has proved to be a very good formal notation for this
kind of specification. In fact, every Statecharts model can be translated into a
Z specification.

UniTESK Lab. is part of the Institute for System Programming of the Russian
Academy of Sciences. This laboratory has developed a couple of similar MBT
tools named CTESK and JavaTESK. These tools use models written in exten-
sions of the C and Java programming languages developed also at UniTESK. As
far as we understand both tools are aimed at system testing and not particu-
larly for unit testing. ModelJUnit is an extension of JUnit that supports MBT
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based on FSM written in Java [28]. An obvious limitation of these tools is their
dependency on programming languages, but it also can be their strength since
programmers might find it easier to write models in languages similar to the
ones they routinely work with.

Rave [29] uses tabular models derived from the work done by David L. Parnas
at the U.S Naval Research Laboratory. T-VEC, the company which developed
Rave, also advertises T-VEC Tester [30] which uses Simulink and Stateflow mod-
els. Reactis [31], from Reactive Systems, also uses Simulink and Stateflow models
from which it generates test cases.

In the open source community we found a Java implementation of MBT called
org.tigrismbt. This tool generates sequences of tests from FSM written as graphs
in graphml format.

LTG/B from LEIRIOS (now Smartesting) [5] shares some similarities with
Fastest. This tool uses B models [32] –which are similar to Z models– and is
based on the symbolic animation of formal specifications and two test generation
strategies: analysis of cause-effect and analysis of boundaries. One difference with
Fastest is that LTG/B generates sequences of operations that put the system
in the desired state, rather than giving the values of state variables to put the
system in that state, as the TTF suggests.

Helke and others in [10] use Isabelle/HOL to calculate test classes, although
the title of the paper indicates that test cases are generated. However, in this
work an automatic pruning technique is well described and empirically assessed.
There are numerous papers proposing algorithms or techniques for automatically
generating test cases from Z specifications, like [11,12], but none of them shows
the implementation of the proposed tool, or they are not based on the TTF, or
they actually does not generate test cases but just test templates.

For an up-to-date list of MBT tools consult [33].
As this survey shows there are no implementations of MBT tools for the

Z formal notation as automatic as Fastest. This situation combined with the
relative widespread use of the Z formal notation in industry and the advantages
of the TTF, led us to implement the framework in order to provide such a tool
to the Z community.

7 Conclusions and Future Work

We presented a tool, called Fastest, that automates the generation of unit tests
from Z models based on the Stocks-Carrington framework for model-based test-
ing. A simple method is proposed to find abstract test cases from test objectives
and an empirical analysis based on seven models from different domains is also
shown. The architecture of the tool was briefly introduced and a toy example
was executed. We think that the architecture presents some interesting features
such as the possibility of distributing the calculation of test cases, the way by
means of which new testing tactics can be added and the existing ones can be
configured, the integration with the CZT project, etc. It is worth to mention
that Fastest is still a prototype that needs to be extended in many ways.
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As the empirical study shows, we can conclude that, an apparently rough
method to calculate abstract test cases, based on a practical conjecture about
the form of real-world specifications, proved to be very accurate and reasonable
efficient and, combined with the architecture, scalable as well. On the other
side, the direct implementation of the TTF framework made it possible to take
advantage of all its interesting properties.

However, among others, we need to improve on automatic pruning of test trees
to dramatically reduce the amount of human effort during the testing process.
We also sketched our ideas on this regard. Also, more testing tactics proposed
within the TTF, such as specification mutation and sub-domain propagation,
have to be implemented. In turn, these tactics can be assembly in higher-level
test design strategies. The user interface prays for an improvement. Finally, it
will be necessary to support the whole Z notation, but this is tied, to some
extent, to the improvement of CZT’s ZLive animator.
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Abstract. In this paper we introduce a formal framework to test sys-
tems where non-deterministic decisions are probabilistically quantified
and temporal information is defined by using random variables. We de-
fine an appropriate extension of the classical finite state machines for-
malism, widely used in formal testing approaches, to define the systems
that we are interested in. First, we define a conformance relation to es-
tablish, with respect to a given specification, what a good implementation
is. In order to decide whether a system is conforming, we apply different
statistic techniques to determine whether the (unknown) probabilities
and random variables governing the behaviour of the implementation
match the (known) ones of the specification. Next, we introduce a no-
tion of test case. Finally, we give an alternative characterization of the
previous conformance relation based on how a set of test is passed by
the implementation.

1 Introduction

Formal testing techniques [20,28,5,31] allow to test the correctness of a system
with respect to a specification. Formal testing originally targeted the functional
behavior of systems, such as determining whether the tested system can perform
certain actions and it does not perform some non-expected ones. However, many
systems require to deal with non-functional properties such as probabilities or
time. On the one hand, the number of systems that incorporate non-determinism
and probabilistic behavior in order to ensure fairness and robustness in com-
munication protocols is increasing. Some of them such as Ethernet and IEEE
802.11 have long been deployed in real networks where the exponential back-
off algorithm works in a nondeterministic way. Some security protocols such as
non-repudiation protocols have been proposed where the key for decrypting a
message already sent is delivered with a given probability to ensure the fairness
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of the protocol [24]. Regarding the temporal behavior it is a critical aspect for
developing useful models of real-time systems. In fact, there are several pro-
posals that allow to explicitly represent the probability of performing a certain
task [19,10,9,7,27] as well as the time consumed by the system while performing
tasks, being it either given by fix amounts of time [30,26] or defined in proba-
bilistic/stochastic terms [15,3,21,4].

In this paper we use a suitable extension of the well known finite state ma-
chine formalism (FSM), Probabilistic-Stochastic Finite State Machine (PSFSM)
introduced in [13], that allows to express in a natural way both probabilistic
and temporal aspects. The probabilities allow to quantify the non-deterministic
choices that a system may undertake. We consider a variant of the reactive
interpretation of probabilities (see for example [19]). Intuitively, a reactive inter-
pretation imposes a probabilistic relation among transitions labelled by the same
action but choices between different actions are not quantified. In our setting we
are able to express probabilistic relations between transitions outgoing from a
state and having the same input action (the output may vary). The stochas-
tic information represents the time consumed between the input is applied and
the output is received and it will be given by random variables. The main idea
is that time information is incremented with some kind of probabilistic infor-
mation. That is, instead of having expressions such as “the message a will be
received in t units of time” we will have expressions such as “the message a is
expected to be received with probability 1

2 in the interval (0, 1], with probability
1
4 in (1, 2], and so on”.

There has been a lot of work to test the functional correctness of
non-deterministic FSMs with respect to input/output sequences [11,23,29,17].
More recently models with probabilities have been studied [2,12,19,33,8,22] while
some of them also include time information [18,34,25]. Nevertheless, there have
been relatively few studies on testing whether the probabilities and stochastic
information of a system is correctly implemented with respect to its specifi-
cation. Implementation relations to assess conformance based on the observed
executions of the implementation have been proposed in [22,25,14].

In this paper, we propose a methodology to test whether the probabilities and
random variables of the transitions are correctly implemented. We might require
that any transition of the implementation must have the same associated proba-
bility and delay, that is, an identically distributed random variable. Even though
this is a very reasonable notion to define correctness, if we assume a black-box
testing framework then we do not know the internal details of the implemen-
tations. So, we cannot check whether the corresponding random variables are
identically distributed or the probabilities are equal to the ones established in
the specification. In fact, we would need an infinite number of observations to
assure it. Thus, we give a more realistic method based on a finite set of observa-
tions. The idea will be to check that the observed outputs and execution times
in the implementation, fit the probabilities and random variables, respectively,
established in the specification. This notion of fitting will be given by means of
interval estimation (probabilities) and hypothesis contrasts (stochastic time).
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We also introduce a notion of test and how to test implementations that can
be represented by using our notion of finite state machine. In addition, we pro-
vide an algorithm that derives test suites from specifications. The main result of
our paper indicates that these test suites have the same distinguishing power as
the two conformance relations presented, in the sense that an implementation
successfully passes a test suite iff it is conforming to the specification. Since the
testing methodology is based on a finite set of observations, a test verdict is
assigned with a given confidence level. When we test probabilities using inter-
val estimation, different confidence levels and confidence interval length provide
different quality of testing.

The rest of the paper is structured as follows. In Section 2, we define a PSFSM
and notations related to testing. In Section 3, we give our conformance relations.
In Section 4, we formally define a notion of test, as well as the application of
tests to implementations and two notions of successfully passing a test suite.
A test generation method for testing from PSFSMs is presented in Section 5. In
Section 6, the basic ideas behind testing of probabilities using interval estimation
and checking random variables by means of hypothesis contrast are introduced.
Finally, in Section 7 we present our conclusions.

2 Preliminaries

In this section we extend the finite state machine formalism in order to deal
with probabilities and stochastic time. On the one hand, probabilities attached
to the transitions allow us to quantify the non-determinism of the system. On
the other hand, stochastic time, represented by means of random variables, let
us model the time that outputs take to be executed. We will consider that the
domain of random variables is a set of numeric time values Time. Since this is
a generic time domain, the specifier can choose whether the system will use a
discrete/continuous time domain. We simply assume that 0 ∈ Time.

In addition, we denote by C∗ the set of all finite sequences with elements in
C, c̄ denotes a sequence with length greater than 0 while ε denotes the empty
sequence. Following, we introduce some basic concepts that will be used along
the paper.

Definition 1. We denote by V the set of random variables (ξ, ψ, . . . range over
V). Let ξ be a random variable. We define its probability distribution function as
the function Fξ : Time −→ [0, 1] such that Fξ(x) = P (ξ ≤ x), where P (ξ ≤ x)
is the probability that ξ assumes values less than or equal to x. Let ξ, ξ′ ∈ V be
random variables. We write ξ = ξ′ if for any x ∈ Time we have Fξ(x) = Fξ′(x).
We will denote by θ the random variable which probability distribution function
is defined by F (x) = 1 for all x ∈ Time.

Given two random variables ξ and ψ we consider that ξ+ψ denotes a random
variable distributed as the addition of the two random variables ξ and ψ.

We will use the delimiters {| and |} to denote multisets. Given a set E, we
denote by ℘(E) the multisets of elements belonging to E.
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A Probabilistic-Stochastic Finite State Machine is a non-deterministic finite
state machine in which every transition has associated both a probability and a
random variable. As we said before, the latter represents the expected distribu-
tion of times to execute the transition.

Definition 2. A Probabilistic Stochastic Finite State Machine, in short PSFSM,
is a tuple M = (S, s0, Li, Lo, PT , PV) where S is a finite set of states, with s0 ∈ S
being the initial state, Li and Lo denote the finite input and output alphabets,
respectively, PT : S × Li × Lo × S → [0, 1] is the probability-transition function
and PV : S × Li × Lo, S → V the time function. For all s ∈ S and a ∈ Li,∑

p∈PT (s,a,x,s′) p = 1. For all (s, a, x, s′) ∈ S×Li×Lo×S if PT (s, a, x, s′) = p > 0
and PV(s, a, x, s′) = ξ then (s, a, x, p, ξ, s′) is a transition of M .

M is observable if for every state s, input a and output x there is at most one
transition leaving s with input a and output x. PSFSM M is completely specified
if for every state s and input a there exists at least one transition outgoing from
s and labelled with input a. M is said to be initially connected if every state is
reachable from the initial state.

Intuitively, a transition (s, a, x, p, ξ, s′) indicates that if the machine is in state s
and receives the input a then with probability p the machine emits the output
x and it moves to state s′ before time t with probability Fξ(t).

We do not allow that a PSFSM has two transitions with the same initial and
final states s, s′ and the same input/output a/x. Let us note that this condition
does not really limit the behaviors that we can define. If we consider two different
transitions, (s, a, x, p1, ξ1, s

′) and (s, a, x, p2, ξ2, s
′), they have the same meaning

that the one provided by a unique transition (s, x, y, p, ξ, s′) where p = p1 + p2
and ξ = p1

p · ξ1 + p2
p · ξ2.

Let us remark that non-deterministic choices will be resolved before the timers
indicated by random variables start counting, that is, we follow a pre-selection
policy. Thus, if we have several transitions, outgoing from a state s, associated
with the same input a, and the system receives this input, then the system at
time 0 will choose which one of them to perform according to the probabilities.
So, we do not have a race between the different timers to decide which one is
faster. In order to avoid side-effects, we will assume that all the random variables
appearing in the definition of a PSFSM are independent. Let us note that this
condition does not restrict the distributions to be used. In particular, there can
be random variables identically distributed even though they are independent.

In this paper, we assume that both implementation and specification can
be modeled by observable PSFSMs with the same input alphabet, completely
specified and initially connected. If a PSFSM is not completely specified, it is
possible to transform it to a completely specified PSFSM by adding a self-loop
transitions for each missing input with an empty output. If the specification is not
initially connected, we can consider only a sub-machine which consists of states
and transitions reachable from the initial state of the system. It is also assumed
that there is an upper bound on the number of states of the implementation.
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s1 s2

s4 s3

a/z/ 1
3 /ξ31

a/y/ 1
3 /ξ32

a/z/1/ξ11

b/x/ 1
2 /ξ21

a/z/1/ξ33

b/y/1ξ22

b/z/1/ξ12b/x/1/ξ23

a/y/1/ξ13

a/x/ 1
3 /ξ14

b/y/ 1
2 /ξ34

Fξ1i
(x) =

⎧⎨⎩
0 if x ≤ 0
x
5 if 0 < x < 5
1 if x ≥ 5

for all 1 ≤ i ≤ 4.

Fξ2i
(x) =

{
0 if x < 4
1 if x ≥ 4

for all 1 ≤ i ≤ 3.

Fξ3i
(x) =

{
1 − e−2·x if x ≥ 0

0 if x < 0
for all 1 ≤ i ≤ 4.

Fig. 1. Example of Probabilistic Stochastic Finite State Machine

Example 1. Let us consider the machine depicted in Figure 1. Each transition
has associated a probability and a random variable. In the following we explain
how these random variables are distributed. Let us consider that the random
variables ξ1i are uniformly distributed in the interval [0, 5]. Uniform distributions
assign equal probability to all the times in the interval. The random variable ξ2i

follow a Dirac distribution in 4. The idea is that the corresponding delay will be
equal to 4 time units. Finally, ξ3i are exponentially distributed with parameter 2.

Let us consider the transition (s1, a, x, 1
3 , ξ14, s2). Intuitively, if the machine

is in state s1 and receives the input a then it will produce the output x with
probability 1

3 after a time given by ξ14. For example, we know that this time
will be less than 1 time unit with probability 1

5 , it will be less than 3 time units
with probability 3

5 , and so on. Finally, once 5 time units have passed we know
that the output x has been performed, that is, we have probability 1.

The functions PT and PV can be extended to P ∗
T and P ∗

V respectively to be
applied to input and output sequences.

Definition 3. Let M = (S, s0, Li, Lo, PT , PV) be a PSFSM. Let ā/x̄ be an in-
put/output sequence and s ∈ S. We define the probability of reaching state s′

from s with ā/x̄ as:

P ∗
T (s, ε, x, s′) =

⎧⎨⎩ 1 if x = ε ∧ s′ = s

0 otherwise

P ∗
T (s, āa, x̄x, s′) =

⎧⎪⎪⎨⎪⎪⎩
P ∗

T (s, ā, x̄, s′′) · PT (s′′, a, x, s′) if ∃ s′′ ∈ S : PT (s′′, a, x, s′) > 0
∧

PT (s, ā, x̄, s′′) > 0
0 otherwise
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The random variable that defines the time that the system takes to reach the
state s′ from s performing the output sequence x̄ if it receives the input sequence
ā is given by:

P ∗
V(s, ε, x, s′) = θ

P ∗
V(s, āa, x̄x, s′) =

⎧⎪⎪⎨⎪⎪⎩
P ∗
V(s, ā, x̄, s′′) + PV(s′′, a, x, s′) if ∃ s′′ ∈ S : PT (s′′, a, x, s′) > 0

∧
PT (s, ā, x̄, s′′) > 0

θ otherwise

In a slight abuse of notation P ∗
T (s, ā, x̄) denotes the probability that M produces

output sequence x̄ when it receives input sequence ā when in state s. In the same
way, P ∗

V(s, ā, x̄) denotes the random variable that defines the time that M takes
to produce the output sequence x̄ when it receives input sequence ā when in
state s.

Next, we introduce the notion of trace. As usual, a trace is a sequence of
input/output pairs. In addition, we have to record the time that the trace needs
to be performed. An evolution is a trace starting at the initial state of the
machine.

Definition 4. Let M = (S, s0, Li, Lo, PT , PV) be a PSFSM. We say that a tuple
(s, s′, (i1/o1, . . . , ir/or), ξ) is a timed trace, or simply trace, of M if there exist
(s, s1, i1, o1, ξ1),(s1, s2, i2, o2, ξ2), . . ., (sr−1, s

′, ir, or, ξr) transitions of M such
that ξ =

∑
ξi.

We say that (i1/o1, . . . , ir/or) is a non-timed evolution, or simply evolution,
of M if we have that (s0, s

′, (i1/o1, . . . , ir/or), ξ) is a trace of M . We denote by
NTEvol(M) the set of non-timed evolutions of M .

We say that the pair ((i1/o1, . . . , ir/or), ξ) is a timed evolution of M if we
have that (s0, s

′, (i1/o1, . . . , ir/or), ξ) is a trace of M . We denote by TEvol(M)
the set of timed evolutions of M . ��

Traces are defined as sequences of transitions. The random variable associated
with the trace is computed from the ones corresponding to each transition be-
longing to the sequence. In fact, this random variable is obtained by adding the
time values associated with each of the transitions conforming the trace.

3 Conformance Relations for PSFSMs

In order to test against a specification it is necessary to say what it means for
the implementation to conform to the specification. In our framework we need
to consider two different levels of conformance: functional and temporal. The
former only takes into account functional aspects of the system while the per-
formance of the system, that is, the time that the system takes to perform the
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actions is ignored. The fact that we consider a black box framework avoid us
to see the probabilities and the random variables assigned to the transitions in
the implementation under test. In order to estimate the probabilities associated
with each choice of the implementation we will consider a set of observations. By
collecting the observations of the implementation the probabilities will be esti-
mated by an interval with a certain level of confidence, which is called confidence
interval, and compared with the corresponding probabilities of the specification.
We define a notion of functional conformance by following the ideas underly-
ing our methodology. Intuitively, we do not request that the probabilities of the
implementation be equal to the corresponding in the specification but that this
fact happens up to a certain probability.

In addition to requiring this notion of functional conformance, we have to ask
for some conditions on delays. As we have indicated, we are not able to check
whether the random variables are indeed identically distributed. Thus, we give a
notion of temporal conformance based on finite sets of observations. This relation
takes into account the observations that we may get from the implementation.
We will collect a sample of time values and we will compare this sample with the
random variables appearing in the specification. By comparison we mean that
we will apply a hypothesis contrast to decide, with a certain confidence, whether
the sample could be generated by the corresponding random variable.

Definition 5. Let M be a PSFSM. We say that (σ̄, t), with σ̄ = a1/x1, . . . , an/xn,
is an observed timed execution of M , or simply timed execution, if the observation
of M shows that the time elapsed between the acceptance of the input a1 and the
observation of the output xn is t units of time.

Let Φ = {σ̄1, . . . , σ̄m} and let H = {|(σ̄′
1, t1), . . . , (σ̄′

n, tn)|} be a multiset of
timed executions. We say that Sampling(H,Φ) : Φ −→ ℘(Time) is a sampling
application of H for Φ if Sampling(H,Φ)(σ̄) = {|t | (σ̄, t) ∈ H |}, for all σ̄ ∈ Φ.

We say that SeqSampling(H,Φ) : Φ −→ ℘(Φ) is a sequence sampling applica-
tion of H for Φ if SeqSampling(H,Φ)(ā/x̄) = {|σ̄ | (σ̄, t) ∈ H ∧ σ̄ = ā/x̄′|}, for all
ā/x̄ ∈ Φ.

Let ξ be a random variable and H be a a multiset of timed executions. We
denote by γ(ξ, H) the confidence of ξ on H. Let 0 < α < 1 and Φ = {σ̄1, . . . , σ̄m}.
We denote by CIα(Φ) the confidence interval from Φ with confidence level α.

In the previous definition, an observed timed execution simply contains the ob-
servation of a sequence of input/output actions associated with the amount of
time that the implementations take to perform it. Regarding the definition of
sampling applications, on the one hand, we assign to each sequence the set of
total observed times corresponding to its execution by the implementation; on
the other hand, the sequence sampling application assign to each input sequence
the set of output sequences observed. Let us note that γ(ξ, H) takes values in
the interval [0, 1]. Intuitively, bigger values of γ(ξ, H) indicate that the observed
sample H is more likely to be produced by the random variable ξ. That is, this
function decides how similar the probability distribution function generated by
H and the one corresponding to the random variable ξ are. Finally, let us note
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that the confidence interval length depends on the sample size and α. Larger
sample size results in shorter confidence interval, which means that we can esti-
mate the probability from the sample H more precisely. Higher values of α result
in larger confidence interval and we can have higher possibility that the actual
probability lies within the obtained confidence interval.

Definition 6. Let M and M ′ be PSFSMs, H be a multiset of timed executions of
M ′, 0 < α < 1, Φ = {σ̄ | ∃ t : (σ̄, t) ∈ H}, and let us consider SeqSampling(H,Φ).
We say that M ′ (α, H)-probabilistically conforms to M , denoted by M ′ �p,(α,H)
M if for all σ̄ = ā/x̄ ∈ Φ such that P ∗

T (s0, ā, x̄) > 0 we have

P ∗
T (s0, ā, x̄) ∈ CIα(SeqSampling(H,Φ)(σ̄))

Intuitively the idea is that the probabilities associated to the sequences in the
M ′ are similar enough to the corresponding ones in M . In addition, we require
conditions over the execution times.

Definition 7. Let M and M ′ be PSFSMs, H be a multiset of timed executions of
M ′, 0 ≤ α ≤ 1, Φ = {σ̄ | ∃ t : (σ̄, t) ∈ H}, and let us consider Sampling(H,Φ). We
say that M ′ is (α, H)-stochastically conformance to M , denoted by M ′ �s,(α,H)
M if for all σ̄ = ā/x̄ ∈ Φ we have

γ
(
P ∗
V(s0, ā, x̄), Sampling(H,Φ)(σ̄)

)
> α

The implementation M ′ must probabilistically conform to the specification M .
Besides, for all observation, the execution time values fit the random variable
indicated by M . This notion of fitting is given by the function γ that it is formally
defined in the next Section.

4 Definition and Application of Tests

We consider that tests represent sequences of inputs applied to an implemen-
tation. Once an output is received, the tester checks whether it belongs to the
set of expected ones or not. In the latter case, a fail signal is produced. In the
former case, either a pass signal is emitted (indicating successful termination)
or the testing process continues by applying another input. If we are testing
an implementation with input and output sets LI and LO, respectively, tests
are deterministic acyclic LI/LO labelled transition systems (i.e. trees) with a
strict alternation between an input action and the set of output actions. After
an output action we may find either a leaf or another input action. Leaves can
be labelled either by pass or by fail. In addition, we have to check if the imple-
mentation behaves according to probabilities established in the specification. We
have also to detect whether wrong timed behaviors appear. Thus, tests have to
include capabilities to deal with probabilities and time. On the one hand, tests
will include probabilities. In our proposal, we will estimate the probabilities by
applying a test several times and we will use statistical results to establish the
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number of times we need to apply the test to obtaining a required confidence
level. On the other hand, we will include random variables. The idea is that
we will record the time that it takes for the implementation to arrive to that
point. We will collect a sample of times (one for each test execution) and we will
compare this sample with the random variable. By comparison we mean that we
will apply a contrast to decide, with a certain confidence, whether the sample
could be generated by the corresponding random variable.

Definition 8. A test case is a tuple T = (S, LI , LO, λ, s0, SI , SO, SF , SP , ζ, η)
where S is the set of states, LI and LO, with LI ∩ LO = ∅ are the sets of input
and output actions, respectively, λ ⊆ S ×LI ∪LO × S is the transition relation,
s0 ∈ S is the initial state, and the sets SI , SO, SF , SP ⊆ S are a partition of S.
The transition relation and the sets of states fulfill the following conditions:

– SI is the set of input states. We have that s0 ∈ SI . For all input state s ∈ SI

there exists a unique outgoing transition (s, a, s′) ∈ λ. For this transition we
have that a ∈ LI and s′ ∈ SO.

– SO is the set of output states. For all output state s ∈ SO we have that for
all o ∈ LO there exists a unique state s′ such that (s, o, s′) ∈ λ. In this case,
s′ /∈ SO. Moreover, there do not exist i ∈ LI , s

′ ∈ S such that (s, i, s′) ∈ λ.
– SF and SP are the sets of fail and pass states, respectively. We say that these

states are terminal. Thus, for all state s ∈ SF ∪ SP we have that there do
not exist a ∈ LI ∪ LO and s′ ∈ S such that (s, a, s′) ∈ λ.

Finally, we have two timed functions. ζ : SP −→ V is a function associating
random variables, to compare with the time that took the implementation to
perform the outputs, with passing states. η : SP −→ (0, 1] is a function associ-
ating probabilities with passing states.

We say that a test case T is valid if the graph induced by T is a tree with
root at the initial state s0. We say that a set of tests Tst = {T1, . . . , Tn} is a test
suite.

Let σ̄ = i1/o1, . . . , ir/or. We write T
σ̄=⇒ sT if sT ∈ SF ∪ SP and there exist

states s12, s21, s22, . . . sr1, sr2 ∈ S such that {(s0, i1, s12), (sr2, or, s
T )} ⊆ λ, for

all 2 ≤ j ≤ r we have (sj1, ij , sj2) ∈ λ, and for all 1 ≤ j ≤ r − 1 we have
(sj2, oj , s(j+1)1) ∈ λ. ��

Let us remark that T
σ̄=⇒ sT implies that sT is a terminal state. Next we define

the application of a test suite to an implementation. We say that the test suite
Tst is passed if for all test the terminal states reached by the composition of
implementation and test are pass states.

Definition 9. Let I be PSFSM and T = (St, LI , LO, λT , s0, SI , SO, SF , SP , ζ, η)
be a valid test, σ̄ = i1/o1, . . . , ir/or, sT be a state of T , and t̄ = (t1, . . . , tr).We
write I ‖ T

σ̄=⇒ sT if T
σ̄=⇒ sT and σ̄ ∈ NTEvol(I).

We write I ‖T
σ̄=⇒t sT if I ‖T

σ̄=⇒ sT and (σ̄, t̄) is a observed timed execution
of I. In this case we say that (σ̄, t̄) is a test execution of I and T .
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Fig. 2. Examples of Test Cases: LI = {a, b} and LO = {x, y, z}

We say that I passes the test suite Tst, denoted by pass(I, Tst), if for all test
T ∈ Tst there do not exist σ̄ ∈ NTEvol(I), sT ∈ S such that I ‖ T

σ̄=⇒ sT and
sT ∈ SF . ��

Let us remark that since we are assuming that implementations are completely
specified and initially connected, the testing process will conclude only when the
test reaches either a fail or a success state.

In addition to this notion of passing tests, we will have probabilistic and time
conditions. We apply these conditions to the set of observed timed executions,
not to evolutions of the implementations. In fact, we need a set of test executions
associated to each evolution to evaluate if they match these conditions. In order
to increase the degree of reliability, we will not take the classical approach where
passing a test suite is defined according only to the results for each test. In our
approach, we will put together all the observations, for each test, so that we have
more samples for each evolution. In particular, some observations will be used
several times. In other words, an observation from a given test may be used to
check the validity of another test sharing the same observed sequence.

Definition 10. Let I be a PSFSM and Tst = {T1, . . . , Tn} be a test suite. Let
H1, . . . , Hn be test execution samples of I and T1, . . . , Tn, respectively. Let H =⋃n

i=1 Hi, Φ = {σ̄ | ∃ t̄ : (σ̄, t̄) ∈ H}, and σ̄ ∈ Φ. We define the set Test(σ̄, Tst) =
{T | T ∈ Tst ∧ I ‖ T

σ̄=⇒ sT }.
Let us consider 0 < α < 1, Sampling(H,Φ) and SeqSampling(H,Φ). We say

that the implementation I probabilistically (α, H)−passes the test suite Tst if
pass(I, Tst) and for all σ̄ = ā/x̄ ∈ Φ we have that for all T ∈ Test(σ̄, Tst) it
holds η(sT ) ∈ CIα(SeqSampling(H,Φ)(σ̄)).

We say that the implementation I stochastically (α, H)−passes the test suite
Tst if pass(I, Tst) and for all σ̄ ∈ Φ we have that for all T ∈ Test(σ̄, Tst) it holds
γ(ζ(sT ), Sampling(H,Φ)(σ̄)) > α.
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Intuitively, an implementation passes a test if there does not exist an evolution
leading to a fail state. Once we know that the functional behavior of the im-
plementation is correct with respect to the test, we need to check probabilistic
and time conditions. The set H corresponds to the observations of the (several)
applications of the tests belonging to the test suite Tst to I. Thus, we have to de-
cide whether, for each evolution σ̄, the frequency (that is, SeqSampling(H,Φ)(σ̄))
and the observed time values (that is, Sampling(H,Φ)(σ̄)) match the probabilities
and the definition of the random variables appearing in the successful state of
the tests corresponding to the execution of that evolution (that is, η(sT ) and
ζ(sT )).

5 Derivation of Test Suites

In this section we present an algorithm to derive tests from specifications. We will
derive test suites that are sound and complete with respect to the implementa-
tion relations introduced in Section 3. The basic idea underlying test derivation
consists in traversing the specification in order to get all the possible evolutions
in an appropriate way. First, we introduce some additional notation.

Definition 11. Let M = (S, s0, Li, Lo, PT , PV) be a PSFSM. We define the func-
tion out : S × Li −→ ℘(Lo) such that for all s ∈ S and i ∈ I it returns the set
of outputs

out(s, a) = {x | ∃ s′, p, ξ : PT (s, a, x, s′) = p > 0 ∧ PV(s, a, x, s′) = ξ}

We define the function after : S × Li × Lo × V × [0, 1] −→ ((S × V × [0, 1]) ∪
{error}) such that for all s ∈ S, a ∈ Li, x ∈ Lo, p ∈ [0, 1] and ξ ∈ V we have

after(s, a, x, ξ, p) =

⎧⎪⎨⎪⎩
(s′, ξ + ξ′, p · p′) if ∃ s′, p′, ξ′ : PT (s, a, x, s′) = p′ > 0 ∧

PV(s, a, x, s′) = ξ′

error otherwise

��

The function out(s, a) computes the set of output actions associated with those
transitions that can be executed from s after receiving the input a. The function
after(s, a, x, ξ, p) computes the situation that is reached from a state s after
receiving the input a, producing the output x, when the duration of the previous
testing process is given by ξ with probability p. Let us also remark that due to
the assumption that PSFSMs are observable we have that after(s, a, x, ξ, p) is
uniquely determined. Finally, we will apply this function only when the side
condition holds, that is, we will never receive error as result of applying after.

The algorithm to derive tests from a specification is given in Figure 3. By
considering the possible available choices we get a test suite extracted from the
specification M . We denote this test suite by tests(M).
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Input: A specification M = (S, sin, Li, Lo, PT , PV).
Output: A test case T = (S,Li, Lo, λ, s0, SI , SO , SF , SP , ζ, η).

Initialization: S′ := {s0}; Tran′, SI , SO, SF , SP := ∅; Saux := {(sin, θ, 0, s0)}.
Inductive Cases: Choose one of the following two options until Saux = ∅.

1. If (sM , ξ, p, sT ) ∈ Saux then perform the following steps:
(a) Saux := Saux − {(sM , ξ, p, sT )}; SP := SP ∪ {sT }; ζ(sT ) := ξ; η(sT ) := p.

2. If Saux = {(sM , ξ, p, sT )} and ∃ a ∈ Li : out(sM , a) �= ∅ then perform the following
steps:
(a) Saux := ∅; Choose a such that out(sM , a) �= ∅.
(b) Consider a fresh state s′ /∈ S′ and let S′ := S′ ∪ {s′}.
(c) SI := SI ∪ {sT }; SO := SO ∪ {s′}; Tran′ := Tran′ ∪ {(sT , a, s′)}.

{Add an input transition labelled by a and consider all outputs}
(d) For all x /∈ out(sM , a) do {These outputs lead to a fail state}

– Consider a fresh state s′′ /∈ S′ and let S′ := S′ ∪ {s′′}.
– SF := SF ∪ {s′′}; Tran′ := Tran′ ∪ {(s′, x, s′′)}.

(e) For all x ∈ out(sM , a) do
{These outputs are expected. At most one of them will lead to an

input state where the test continues; the rest will lead to pass

states}
– Consider a fresh state s′′ /∈ S′ and let S′ := S′ ∪ {s′′}.
– Tran′ := Tran′ ∪ {(s′, x, s′′)}.
– (sM

1 , ξ′, p′) := after(sM , a, x, ξ, p); Saux := Saux ∪ {(sM
1 , ξ′, p′, s′′)}.

Fig. 3. Derivation of tests from an observable specification

Next we explain how our algorithm works. A set of pending situations Saux

keeps those tuples denoting the possible states, random variables and probabili-
ties that could appear in a state of the test whose outgoing transitions have not
been completed yet. More precisely, a tuple (sM , ξ, p, sT ) ∈ Saux indicates that
we did not complete the state sT of the test, the current state in the traversal
of the specification is sM , and the accounting for the elapsed duration in the
specification from the initial state is given by ξ. In addition, p reflects the proba-
bility associated to the transitions traversed in the specification for reaching the
current state.

Following with the explanation of the algorithm, the set Saux initially con-
tains a tuple with the initial states (of both specification and test) and the initial
situation of the process, that is, duration θ and probability 0. For each tuple be-
longing to Saux we may choose one possibility. It is important to remark that
the second step can be applied only when the set Saux becomes singleton. So,
our derived tests correspond to valid tests as introduced in Definition 8. The
first possibility simply indicates that the state of the test becomes a passing
state. The second possibility takes an input and generates a transition in the
test labelled by this input. Then, the whole sets of outputs is considered. If
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the output is not expected by the specification (step 2.(d) of the algorithm)
then a transition leading to a failing state is created. This could be simulated
by a single branch in the test, labelled by else, leading to a failing state (in
the algorithm we suppose that all the possible outputs appear in the test). For
the expected outputs (step 2.(e) of the algorithm) we create a transition
with the corresponding output and include the appropriate tuple into the set
Saux.

Let us note that finite tests are constructed simply by considering a step where
the second inductive case is not applied. The algorithm provide us with a test
suite extracted from the specification S that we denote by tests(S).

Let us comment on the finiteness of our algorithm. If we do not impose any
restriction on the implementation (e.g. a bound on the number of states) we
cannot determine some important information such as the maximal length of
the traces that the implementation can perform. In other words we would need
a fault coverage criterion to generate a finite test suite. Obviously, one can impose
restrictions such as “generate n tests” or “generate all the tests with m inputs”
and completeness will be obtained up to that coverage criterion. Since we do
not assume, by default, any criteria, all we can do is to say that this is the, in
general, test suite that allows to prove completeness, that is, we obtain full fault
coverage but taking into account that the derived test suite will be, in general,
infinite.

Next, we present the results that relate implementation relations and appli-
cation of test suites derived from a specification. The result holds because the
temporal and probabilistic conditions required to conform to the specification
and to pass the test suite are in fact the same. Due to space limitations, we
cannot include in this paper the proof of the theorem. In spite of the differences,
the proof is an adaptation of that in [25].

Theorem 1. (Soundness and Completeness) Let I and S be PSFSMs, H be a
multiset of timed executions of I, 0 < α < 1. We have that:
– I �p,(α,H) S iff I probabilistically (α, H)−passes tests(S).
– I �s,(α,H) S iff I stochastically (α, H)−passes tests(S).

��
The derived test suite is sound and complete, up to a given confidence level α and
for a sample H , with respect to the conformance relations �s,(α,H) and �p,(α,H).
Specifically, for a given specification S, the test suite tests(S) can be used to
distinguish those (and only those) implementations that conform with respect
to �s,(α,H) and �p,(α,H). However, we cannot say that the test suite is complete
since both the notion of passing tests and the considered implementation rela-
tions have a probabilistic component. So, we can talk of completeness up to a
certain confidence level.

6 Estimation of Probabilities and Random Variables

When testing from a non-deterministic FSMs, it is necessary to make an assump-
tion: implementations have a fairness property such that if an input sequence
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is applied to the implementation a finite number of times, all possible execution
paths in the implementation that can be followed using the input sequence are
traversed. This is the so-called complete-testing assumption. Under this assump-
tion, we need to apply the test sequences a minimum number of times to the
implementation in order to observe all output sequences that can be produced.
In addition, in our approach, we need to estimate the probabilities associated to
each input/output sequence in order to determine if they fulfill the requirements
specified. Moreover, we need to check if the random variables are correctly im-
plemented. In order to do it we collect a set of timed executions corresponding
to the observations of the several applications of the tests belonging to a test
suite to the implementation. Nevertheless, this technique does not allow us to
determine the probabilities and the random variables of the implementation.
We only can estimate the probabilities and decide with a certain confidence,
whether the sample could be generated by the corresponding random variable
in the specification. We use statistical results to establish the number of times
we need to apply the test to obtaining a required confidence level.

6.1 Checking Correctness of Probabilities

In general, test sequence repetition numbers are neither large enough to satisfy
the complete-testing assumption nor large enough to estimate exact probabili-
ties. In such a case, the testing process is a hypothesis test [32]. When we check
the probability of a given input/output sequence the following two hypotheses
are considered in this paper.

H0 : the probability of the implementation is correct
H1 : the probability of the implementation is not correct.

Let us denote by PEP and PNEF test-pass probability of equivalent machines and
test-fail probability of faulty machines respectively. The probability (1 − PEP )
corresponds to type I error of hypothesis H0 which is the probability that the
hypothesis H0 is rejected when it is true. The probability (1−PNEF ) corresponds
to type II error of hypothesis H0 which is the probability that the hypothesis H0
is accepted when it is false. When we test probabilities using interval estimation,
the numbers of test application will be determined such that PEP and PNEF are
not less than a given value where the types of faulty machines can be described
further in hypothesis H1.

If there are two executable transitions t1 and t2 from a state s when an input is
applied where the transition probabilities are p and 1− p respectively, a random
variable X defined as follows is a Bernoulli random variable:{

X = 0 if transition t1 is selected for execution from state s.
X = 1 if transition t2 is selected for execution from state s.

Selecting a transition between t1 and t2 for execution can be considered as an
experiment (or a trial). If Y represents the number of times t1 was selected after
n independent experiments, Y is said to be a binomial random variable with
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parameters (n, p). The observed data after n independent experiments is called
a sample where n is the sample size. The probability p can be estimated by
an interval with a certain degree of confidence, which is called the confidence
interval, after n independent experiments. The Agresti-Coull interval [1] which
is one of the recommended intervals by Brown et al. [6] for p with 100(1 − α)%
confidence is given by

p̃ − κ

√
p̃(1 − p̃)

ñ
≤ p ≤ p̃ + κ

√
p̃(1 − p̃)

ñ

where Ỹ = Y +κ2/2, ñ = n+κ2, p̃ = Ỹ /ñ, and κ is such that P{|Z| ≤ κ} = 1−α
where Z is a standard normal variable. For the case when α=0.05, the value 2
is used instead of 1.96 for κ in the Agresti-Coull interval. If n ≥ 40, the Agresti-
Coull interval provides good coverage even for p very close to 0 or 1 [6].

Suppose that an implementation PSFSM MI has a transition with probability
p′ while the probability in the specification PSFSM M is p. The following criteria
can be used for testing:{

Pass if p is included in the obtained confidence interval for p′;
Fail otherwise.

Let d denote half of the obtained confidence interval length. According to the
value of p′ we will have the following results. If p′ = p, 100(1− α)% of the time
the implementation will have a pass verdict. When we test probabilities using
interval estimation, therefore, we can ensure that PEP is never less than a given
value, (1 − α). If |p′ − p| > 2d, 100(1 − α/2)% of the time, the implementation
will have a fail verdict and PNEF is ensured to be not less than a given value,
(1−α/2). If 0 < |p′− p| ≤ 2d, we cannot provide any meaningful upper or lower
bound of PNEF as the range is too wide, from α to (1 − α/2) according the
difference between p and p′.

We now explain how to determine test sequence repetition numbers for testing
probabilities. Test sequence repetition numbers will be determined so that PEP

and PNEF are ensured to be not less than (1−α) and (1−α/2) respectively where
faulty implementations are such that the difference of the probability is more
than 2d. For correct implementations, ideally, 100(1−α)% of the time, p will be
contained in any size of confidence interval. Therefore, PEP is independent of d
and we can always ensure PEP as far as we have a reliable confidence interval.
In order to have PNEF ≥ 1−α/2, the test sequence repetition number n should
satisfy the following condition.

n >
(κ

d

)2
p̂(1 − p̂) − κ2

where

p̂ =
{

p + d if p ≤ 0.5
p − d otherwise
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If there are j probabilities to test in a test sequence ts and there are k test
sequences in a test suite which have at least two probabilities to test, κ should
satisfy the following condition when we test the probabilities of the test sequence.

P{|Z| < κ} =
{

(1 − α)1/k if j = 2
(1 − α)1/(j+k−1) if j > 2

For further details about the determination of test sequence repetition numbers
for testing probabilities can be found at [16].

6.2 Checking Correctness of Random Variables

Goodness-of-fit tests indicate whether or not it is sensible to assume that a
random sample comes from a specific distribution. Hypothesis Test model for
Goodness-of-fit tests are a form of hypothesis testing where the null and alter-
native hypotheses are

– H0: Sample data come from the stated distribution.
– HA: Sample data do not come from the stated distribution.

The underlying idea is that a sample will be rejected if the probability of
observing that sample from a given random variable is low. In practice, we will
check whether the probability to observe a discrepancy lower than or equal to
the one we have observed is low enough.

Three goodness-of-fit tests are the most frequently used. Chi-square test can
be applied for both continuous and discrete distributions. Kolmogorov-Smirnov
and Anderson-Darling test only can be used for continuous distributions. Due
to the fact that our models may present random variables associated to discrete
and continuous distributions functions, we will present a methodology based on
Chi-square test to measure the confidence degree that a random variable has on
a sample.

The mechanism is the following. Once we have collected a sample of size n we
perform the following steps:

– We split the sample into k classes which cover all the possible range of values.
We denote by Oi the observed frequency at class i (i.e. the number of elements
belonging to the class i).

– We calculate the probability pi of each class, according to the proposed
random variable. We denote by Ei the expected frequency, which is given by
Ei = npi.

– We calculate the discrepancy between observed frequencies and expected
frequencies as X2 =

∑k
i=1

(Oi−Ei)2

Ei
. When the model is correct, this discrep-

ancy is approximately distributed as a random variable χ2 .
– We estimate the number of freedom degrees of χ2 as k − r − 1. In this case,

r is the number of parameters of the model which have been estimated by
maximal likelihood over the sample to estimate the values of pi (i.e. r = 0
if the model completely specifies the values of pi before the samples are
observed).
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– We will accept that the sample follows the proposed random variable if the
probability of obtaining a discrepancy greater or equal to the discrepancy
observed is high enough, that is, if X2 < χ2

α(k−r−1) for some α high enough.
Actually, as the margin to accept the sample decreases as α increases, we can
obtain a measure of the validity of the sample as max{α|X2 < χ2

α(k−r−1)}.

According to the previous steps, we can now present an operative definition
of the function γ which is used in this paper to compute the confidence of a
random variable on a sample.

Definition 12. Let ξ be a random variable and J be a multiset of real numbers
representing a sample. Let X2 be the discrepancy level of J on ξ calculated as
explained above by splitting the sampling space into k classes

C = {[0, a1), [a1, a2), . . . , [ak−2, ak−1), [ak−1,∞)}

where k is a given constant and for all 1 ≤ i ≤ k − 1 we have P (ξ ≤ ai) =
i
k . We define the confidence of ξ on J with classes C, denoted by γ(ξ, J), as
max{α | X2 < χ2

α(k − 1)}.

The previous definition indicates that in order to perform a contrast hypothe-
sis, we split the collected values in several intervals having the same expected
probability. We compute the value for X2 as previously described and check this
figure with the tabulated tables corresponding to χ2 with k− 1 freedom degrees
(see, for example, www.statsoft.com/textbook/sttable.html).

Let us comment on some important details. First, given the fact that the ran-
dom variables that we use in our framework denote the passing of time, we do not
need classes to cover negative values. Thus, we will suppose that the class con-
taining 0 will also contain all the negative values. Second, the number of classes
and how many data contain each class will affect the power of the test, that is,
how sensitive it is to detecting departures from the null hypothesis. Power will
not only be affected by the number of classes and how they are defined, but by
the sample size and shape of the null and underlying distributions. Some useful
rules can be given in order to determine it. When data are discrete, tabulation
can be used to categorize the data. Continuous data present a more difficult
challenge. One defines classes by segmenting the range of possible values into
non-overlapping intervals. Elements can then be defined by the endpoints of the
intervals. In general, power is maximized by choosing endpoints such that each
element is equiprobable, that is, the probabilities associated with an observation
falling into a given class are divided as evenly as possible across the intervals. A
good starting point for choosing the number of classes is to use the value 2 ·n2/5,
each of them containing at least 5 elements.

Example 2. Let us consider a device that produces real numbers belonging to the
interval [0, 1]. We would like to test whether the device produces these numbers
randomly, that is, it does not have a number or sets of numbers that have a
higher probability of being produced than others. Thus, we obtain a sample
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from the machine and we apply the contrast hypothesis to determine whether
the machine follows a uniform distribution in the interval [0, 1]. First, we have
to decide how many classes we will use. Let us suppose that we take k = 10
classes. Thus, for all 1 ≤ i ≤ 9 we have ai = 0.i and P (ξ ≤ ai) = i

10 . So,
C = {[0, 0.1), [0.1, 0.2) . . . [0.8, 0.9), [0.9,∞)}.

Let us suppose that the multiset of observed values, after we sort them, is:

J =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0.00001, 0.002, 0.0876, 0.8,
0.1, 0.11, 0.123,
0.21, 0.22, 0.22, 0.2228, 0.23, 0.24, 0.28,
0.32, 0.388, 0.389, 0.391
0.4, 0.41, 0.42, 0.4333
0.543, 0.55, 0.57,
0.62, 0.643, 0.65, 0.67, 0.68, 0.689, 0.694
0.71, 0.711, 0.743, 0.756, 0.78, 0.788,
0.81, 0.811, 0.82, 0.845, 0.8999992,
0.91, 0.93, 0.94, 0.945, 0.9998

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Since the sample has 48 elements we have that the expected frequency in each
class, Ei, is equal to 4.8. In contrast, the observed frequencies, Oi, are
4, 3, 7, 4, 4, 3, 7, 6, 5, 5. Next, we have to compute

X2 =
10∑

i=1

(Oi − Ei)2

Ei
= 4.08333

Finally, we have to consider the table corresponding to χ2 with 9 degrees of
freedom and find the maximum α such that 4.08333 < χ2

α(9). Since χ2
0.9(9) =

4.16816 and χ2
0.95(9) = 3.32511 we conclude that, with probability at least 0.9,

the machine produces indeed random values.

7 Conclusions

In this paper we have presented a notion of finite state machine to specify, in an
easy way, both probabilities that quantified the non-deterministic choices and
the passing of time due to the performance of actions. In addition, we have pre-
sented two implementation relations based on the notion of conformance. First,
the implementation must conform to the specification regarding functional as-
pects. It requires to take into account the probabilities associated to the transi-
tions in the specification. Second, we require that the implementation complies
with the temporal requirements specified by means of random variables. In order
to check that the implementation fulfills the probabilities and random variables
established in the specification, we apply statistical results. Additionally, we in-
troduce a notion of test, how to apply a test suite to an implementation, and
what is the meaning of successfully passing a test suite. Even though implemen-
tation relations and passing of test suites are, apparently, unrelated concepts,
we provide a link between them: We give an algorithm to derive test suites from
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specifications in such a way that a test suite is successfully passed iff the imple-
mentation conforms to the specification. This result, usually known as soundness
and completeness, allows a user to check the correctness of an implementation,
applying a derived test suite.
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21. López, N., Núñez, M.: A testing theory for generally distributed stochastic pro-
cesses. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp.
321–335. Springer, Heidelberg (2001)
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Abstract. An extension to action systems is presented facilitating the
modeling of continuous behavior in the discrete domain. The original
action system formalism has been developed by Back et al. in order
to describe parallel and distributed computations of discrete systems,
i.e. systems with discrete state space and discrete control. In order to
cope with hybrid systems, i.e. systems with continuous evolution and
discrete control, two extensions have been proposed: hybrid action sys-
tems and continuous action systems. Both use differential equations (re-
lations) to describe continuous evolution. Our version of action systems
takes an alternative approach by adding a level of abstraction: continu-
ous behavior is modeled by Qualitative Differential Equations that are
the preferred choice when it comes to specifying abstract and possibly
non-deterministic requirements of continuous behavior. Because their so-
lutions are transition systems, all evolutions in our qualitative action
systems are discrete.

Based on hybrid action systems, we develop a new theory of qualita-
tive action systems and discuss how we have applied such models in the
context of automated test-case generation for hybrid systems.

1 Introduction

The most important aspect of any technical system is to meet the expecta-
tions set. More precisely, any technical system has to fulfill the requirements
that lead to the design of the system. To improve our confidence in a given
system, a variety of quality assurance techniques have been developed, includ-
ing formal (verification) methods. In the case where the system’s internals are
not accessible, we have to rely on testing techniques that exercise the system
with predefined inputs and – hopefully – demonstrate compliance with the
expected behavior. One testing methodology that particularly addresses the
problem of comparing the expected behavior defined by the requirements with
the observed behavior of the implemented system is called black-box testing.
Black-box means that details of the implementation are of no concern during
testing. Only the input/output behavior is being looked at. Because testing
should yield verdicts, any black-box testing approach needs information about
the expected (correct) system behavior. One particular testing approach that
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automates test-case generation, execution, and verdict generation is model-based
testing.

This paper presents a new approach to model-based test case generation for
hybrid systems. Commonly, hybrid automata are used to model hybrid systems,
i.e. systems with continuous evolution and discrete control. Overly simplified
one might say that hybrid automata are normal automata but with differential
equations attached to each discrete state: the differential equations describe the
continuous evolution of the system in the particular state. Hence, switching be-
tween discrete states in the automaton means changing the continuous evolution.
While differential equations are a very precise tool to describe the continuous
behavior of a system, they are not necessarily the best choice for model-based
testing.

Consider the example hybrid system

Fig. 1. Two-Tank Pump System

of Figure 1 and the task to automati-
cally derive tests. The first step toward
a system model is to know the (infor-
mal) system requirements : in the two-
tank system in Figure 1 tank T 1 is on
a lower level than the tank T 2. T 1 is
being filled with water having some in-
flow rate in. Both tanks (T 1, T 2) are
connected by the pump P1 that is con-
trolled such that: if the water level in T 2
decreases below a certain Reserve mark
and T 1 is full, pump P1 starts pumping
water until T 2 is full or T 1 gets empty.
In addition, the controller needs to con-
trol the pump P2 that is pumping water
out of T 2: P2 shall be turned on as long

as a button WaterRequest is pressed and there is enough water in T 2 (T 2 not
Empty). Note that the signal WaterRequest and the inflow rate in are not con-
trollable, hence T1 may overflow.

Given these requirements, one is able to derive a formal model. As an exam-
ple, the continuous dynamics of the system may be expressed by two coupled
differential equations: ẋ1 = (in− inout)/A1 and ẋ2 = (inout−out)/A2. Here, A1
and A2 are the base areas of the two tanks and x1 and x2 denote the current
level in the tanks. The variables in, inout, and out denote the flow rates into T 1,
between T 1 and T 2, and out of T 2 respectively.

Observe that for testing whether some given implementation of this two-tank
system conforms to the stated requirements we do not need to know the exact
numerical value of the water level at all times, nor do we care about the exact
time information! Also, we would need to incorporate additional knowledge, such
as the exact base areas of the tanks, in order to solve these equations numerically:
in reality we might not have all information that is required for such a detailed
model. Informal requirements, as in our example, mostly describe evolutions
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of hybrid systems in a qualitative manner like ”when something increases to a
certain value another thing will start descreasing. Finally, in order to transform
the informal requirements to the differential equation model, one needs expe-
rience in physics, and applied mathematics. To put a long story short: for our
purposes of conformance testing, the full differential model – most of the time –
requires (and carries) too much detail.

In such cases, where accurate numerical information about the system is not
available, or no precise numerical value about the evolution of the system is
needed, a technique called Qualitative Reasoning (QR) can be applied [1]. In-
stead of describing the evolutions of a system in terms of differential equations,
QR uses qualitative constraints, so called Qualitative Differential Equations. In
QR, simulation algorithms like QSIM solve the underlying constraint problem in
order to predict future system behavior. Most importantly, QR abstracts away
from time and exact numerical values and works on value-intervals, separated
by so called landmarks.

Given Qualitative Reasoning to describe the continuous evolutions of a sys-
tem, we rely on action systems for the discrete part. Action systems have been
extensively studied [2,3,4]. Most notably, a solid theoretical basis defines the
notion of refinement between different action systems. Also, object-oriented and
hybrid extensions have been proposed that make action systems a natural con-
tender for modeling discrete and hybrid systems. By combining these two for-
malisms, we obtain the notion of Qualitative Action Systems that inherit the
strengths of both, action systems and qualitative reasoning. In particular we
gain the formal foundation for model-based test case generation through action
refinement and the ability for high-level hybrid systems specification.

The reminder of this paper is organized as follows. First, Section 2 discusses
the modeling of hybrid systems in the continuous domain by means of hybrid
action systems. Next, in Section 3 we present our extension to hybrid action sys-
tems and discuss qualitative abstraction of continuous models. Then, Section 4
discusses the refinement from qualitative to hybrid models. In Section 5 we ex-
plain how our qualitative action systems serve as models for conformance testing.
Finally, we discuss related work (Section 6) before drawing our conclusions in
Section 7.

2 Hybrid Modeling

In the preceding section we have argued for qualitative action systems, an action-
systems-based hybrid system model that does not depend on differential equa-
tions to describe continuous behavior. In this section we present the theoretical
foundations of our qualitative action system, namely hybrid action systems of
Rönkkö and Sere [5].

Per definition, a hybrid system comprises discrete and continuous parts. In our
two-tank example, the discrete part is formed by the controller that needs to start
and stop different pumps. The environment, i.e. the tanks and the water, form
the continuous part. In the remainder of this paper, we will take advantage of the
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compositionality of action systems to express this separation of concerns. More
precisely, our hybrid model is formed as parallel composition of the controller
and the environment: system ≡ controller||environment. This approach yields
important consequences: we are working with a closed system and all test cases
we derive are tests for the whole system.

2.1 Discrete Part: Controller

For a detailed controller design the requirements given in the introduction are
too imprecise. We therefore need to give a more precise picture of the discrete
part of our hybrid system:

1. If a button WaterRequest is pressed (on) and provided T 2 is not
empty (water level above Reserve), start pump P2 and pump water
out of tank T 2.

2. If P2 is running and WaterRequest is not pressed then stop P2.
3. If P2 is running and the water level of T 2 drops to Empty stop P2.
4. If tank T 2 gets empty (water level below Reserve mark), and T 1 is

full then pump water out of tank T 1 into tank T 2 by starting pump
P1.

5. If pump P1 is running and the water level in tank T 1 drops to Empty
then stop P1.

6. If pump P1 is running and the water level in tank T 2 reaches Full
then stop P1.

Because the given requirements can be mapped to discrete system properties,
we are free to use the conventional action-system methodology [3,6] without any
hybrid additions to model the controller of our system. Syntactically, an action
system AS can be represented as

AS =df |[var Y : T • S0;do A1� . . .�Anod ]| : I

where Y denotes the list of S0-initialized discrete model variables. Similarly, T is
the list of types 〈T1, . . . , T|Y |〉 for Y . Variables may be decorated with ∗ to denote
read/write-export. The body of an action system is formed by a set of guarded
commands A1 . . . An that are separated by non-deterministic choice operators �
and embedded in a loop-forever statement do . . .od. Each guarded command Ai

is of the form guard → action, meaning that if the guard-predicate is satisfied
then the action-statement can be executed. Finally, I denotes a set of imported
variables.

Informally, executing an action system means to initialize all variableswith their
corresponding initial values before steadily choosing one enabled guarded com-
mand and executing the associated action-statement. If no guarded command is
enabled, or an action aborts, the action system halts execution. Termination of an
action system means the termination of the control over the system [6].

Coming back to our running example, we need to create at least four guarded
commands in order to model the given requirements: we need to turn on/off
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both pumps P1 and P2. By setting a state variable PX running to true/false
we are modeling switching on/off the pump PX . In addition, we set the flow
rate produced by the pump PX . Hence, a guarded command for turning on P2
might look like

g3 → P2 running := true; out := (0, Max]

with g3 standing for some guard and out := (0, Max] for a non-deterministic
assignment of some flow-rate from the interval (0, Max] to the out-pipe. Based
on this knowledge, the action system of the controller can be given as follows.

Controller =df |[ var P1 running,P2 running : Bool,
out*, inout* : Real

• P1 running := false;P2 running := false;
out := 0; inout := 0;

do g1 → P1 running := true; inout := (0,Max]
� g2 → P1 running := false; inout := 0
� g3 → P2 running := true; out := (0,Max]
� g4 → P2 running := false; out := 0

od
]| : WaterRequest, x1, x2

The two sensors for the water level and the external button for pumping wa-
ter out of the tank system are modeled as imported variables x1, x2, and
WaterRequest. The given action system still has general guards g1 to g4 in-
stead of concrete ones. Hence, we need to find the correct guards so that our
controller behavior matches the requirements. Starting with the first requirement
that specifies when P2 should be enabled we can replace g3 by

g3 =df WaterRequest ∧ ¬P2 running ∧ x2 > Reserve

Requirements 2 and 3, dealing with cases when to stop P2, can be translated
into guard g4:

g4 =df P2 running ∧ (¬WaterRequest ∨ x2 = Empty)

Similarly, g1 and g2 can be given as follows.

g1 =df x2 ≤ Reserve ∧ x1 = Full ∧ ¬P1 running
g2 =df P1 running ∧ (x1 ≤ Empty ∨ x2 = Full)

2.2 Continuous Part: Environment

While the controller can be modeled as a discrete system, the environment model
depends on continuous evolutions. So we have to use an extended version of
conventional action systems, namely hybrid action systems, to model the en-
vironment. Hybrid action systems add the notion of a differential action that
describes a continuous evolution of the system. Differential actions are similar to
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guarded commands in that both are atomic and both have a guard that needs to
be fulfilled so that the action is a candidate for execution. However, differential
actions, denoted by guard :→ action, extend the notion of a discrete guarded
command: first, the action-part is formed by a first-order autonomous differential
equation that describes the continuous evolution. Second, the guard is checked
during the evolution whether it still holds. If the guard is found to not hold any-
more, the continuous evolution is aborted. Therefore, the guard of a differential
action is also called evolution guard. Combining discrete and differential actions
yields a hybrid action system.

Definition 1 (Hybrid Action System).

HS =df |[var X : T • X := E; alt H with DH ]| : I

where H are discrete actions (guarded commands) and DH differential actions.

In the introduction we have already shown that the continuous dynamics of
our example system can be modeled by two coupled differential equations: ẋ1 =
(in− inout)/A1 and ẋ2 = (inout−out)/A2. Here, A1 and A2 are the base areas of
the two tanks and x1 and x2 denote the current level in the tanks. The variables
in, inout, and out denote the flow rates into T 1, between T 1 and T 2, and out
of T 2 respectively. The hybrid action system of the environment contains the
differential equations describing the water flows as differential action in the with
clause:

Environment =df |[ var x1*, x2* : Real,
• x1 := 0; x2 := 0;

alt
with true :→

ẋ1 = (in − inout)/A1 ∧ ẋ2 = (inout − out)/A2
]| : inout, out

Notice that in our case the evolution guard is true, hence the system will never
leave the continuous evolution. This might be a problem since we also have
discrete actions in our system which would never be eligible candidates for ex-
ecution. As already said, when a differential action is being carried out, it may
only be aborted if the evolution guard becomes false. Hence, for a reactive sys-
tem, it must be ensured that the evolution guard becomes false eventually. This
happens when the environment changes its behavior (mode switch to another
continuous action) or the controller interacts with the environment. In order to
constrain interleavings between discrete and differential actions, so called pri-
oritized alternation is applied: as long as discrete actions are ready to run, the
system will choose them instead of differential actions that might also be enabled
at the same time. Only if no discrete action is enabled, the system tries to run
a differential action. This execution model underlies the assumption that the
controller is fast enough to reach a stable state before the next environmental
interaction takes place. Notice that by including all negated guards of discrete
actions within the evolution guards of differential actions, the behavior can be
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changed to give discrete actions ultimate priority. This is known as interrupted
prioritized alternation. For details, see [5].

In the remainder of this subsection we give a more formal definition of dif-
ferential actions. We use this theoretical framework later on to lift differential
actions to qualitative ones.

Differential actions in hybrid action systems express initial value problems of
ordinary differential equations (ODEs). Given a set of continuous variables re-
lated by a set of ODEs and an initialization vector, there exists a unique function
vector as solution to the initial value problem. The ODEs in differential actions
are autonomous: this property means that the variable used for differentiation
does not occur otherwise in the ODE. Because we are differentiating with re-
spect to time-variable t, differential actions must not contain t. As an example,
ẏ + y = 0 is an autonomous first order ODE but ẏ + y + t = 0 is not.

A differential action e :→ d consists of an evolution guard e : PRED(X, Y )
and a differential relation d : PRED(X, Ẋ, Y ). Both, the evolution guard and
the differential relation, are predicates over sets of discrete model variables Y
and continuous model variables X . Relations over higher order derivatives can
be modeled via additional variables. The following definition characterizes the
evolutions of a differential action: φ.

Definition 2 (Evolutions).

φ is an evolution of e :→ d iff SFc(φ, e, d) ∧ ∆c(φ, e) > 0 (1)
an evolution φ is terminating iff ∆c(φ, e) < ∞ (2)

SFc(φ, e, d) =df φ.0 = X ∧ φ̇.0 = Ẋ∧
∀τ : R

+
0 · (e =⇒ d)[X := φ.τ, Ẋ := φ̇.τ ]

(3)

∆c(φ, e) =df inf{τ : R
+
0 · ¬e[X := φ.τ ]} (4)

A function φ is a solution to the differential action if it satisfies the predicate
SFc as shown in Formula 3. The predicate demands that the function has to
start at the current system state and fulfills the differential relation d as long
as the evolution guard is true. The termination time ∆c (see Equation 4) states
the boundary time when the evolution guard is not satisfied by φ. Notice that
∆c is defined as ∆c(φ, e) =df ∞ when φ satisfies e forever. Function φ is called
an evolution if it satisfies Proposition 1 and it is said to be terminating if it lasts
for a finite period of time, cf. Proposition 2.

The semantics of a differential action is expressed by its weakest precondition:

Definition 3 (WP of Differential Actions).

wp(e :→ d, post) =df

∀φ · SFc(φ, e, d) ∧ ∆c(φ, e) > 0 =⇒
∆c(φ, e) < ∞∧ post[X := φ.(∆c(φ, e)), Ẋ := φ̇.(∆c(φ, e))]

The weakest precondition says that of all continuously differentiable functions,
those that are evolutions for the given differential action must be terminating
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and end in a state fulfilling the post-condition. Because in qualitative reasoning
the first derivation is part of the state space, Definition 3 extends the definition
in [5] with Ẋ as additional state variable. The same adaptation applies to the
initial value condition in (3), Definition 2.

2.3 Putting It All together

In order to get our complete system model, we need to parallel compose the
controller and the environment models. Unfortunately, parallel composition of
hybrid action systems is more complicated than that of ordinary action systems
because linear superposition of differential actions is necessary. The intuitive
reason for this is the fact that only one differential action can be executed at
a time, so the parallel composition of two systems executing two differential
actions at the same time can only be modeled by superposition of the two
actions.

In our two-tank example, however, we only have one differential action, so
we do not need to apply any superposition calculation. Hence the parallel com-
position of Controller and Environment becomes trivial as we only need to
combine the elements of both action systems, and correct the import statement.
Before doing so, however, we need to fix one issue: because we want our con-
troller (= discrete actions) to interrupt the continuous flow, we need to change
the evolution guard of our differential action. Instead of making it trivially true,
we need to insert the conjunction of all negated guards of the discrete actions.
In effect, we are using interrupted prioritized alternation instead of prioritized
alternation.

Merging controller and environment under interrupted prioritized alternation
yields the following result. Notice that the guards g1 to g4 do not change.

System =df |[ var x1*, x2* : Real,
P1 running,P2 running : Bool, out*, inout* : Real

• x1 := 0; x2 := 0; out := 0; inout := 0;
P1 running := false;P2 running := false;

alt g1 → P1 running := true; inout := (0,Max]
� g2 → P1 running := false; inout := 0
� g3 → P2 running := true; out := (0,Max]
� g4 → P2 running := false; out := 0

with ¬(g1 ∨ g2 ∨ g3 ∨ g4) :→
ẋ1 = (in − inout)/A1 ∧ ẋ2 = (inout − out)/A2

]| : WaterRequest, in

The hybrid model adequately represents our controlled system. The only ex-
ternal signals left are WaterRequest and in. However, for testing our require-
ments we are only interested in the qualitative aspects of the environment. The
next section presents this abstraction step.
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3 Qualitative Modeling

We now lift the continuous model developed within the last section to a dis-
crete one by applying qualitative abstraction. As the name suggests, qualitative
modeling abstracts away from quantitative values: in case of qualitative reason-
ing we are giving up exact numerical values for value intervals, separated by so
called landmarks. We also lose exact time information. To support the intuitive
understanding of qualitative functions and the difference to continuous ones, we
sketch the process of qualitative abstraction in the following. (Further details
can be found in Section 3.2.)

Given are the continuous (time dependent) function f and the landmarks
〈zero, med, high, max〉. After assigning exact numerical values to these land-
marks, we can draw a diagram like the one in the upper right corner of Figure 2:
the abscissa reflects passing time, while the ordinate measures the output of
the continuous function. Value abstraction (v-abs), which is one of two parts of
qualitative abstraction, lifts the exact numerical value to a qualitative one. Qual-
itative values are pairs of an interval or landmark and an abstract value (−,0,+)
for the slope of the continuous function. For example, at time point zero the
output of the continuous function is below the landmark med but above the
landmark zero, hence in the interval zero..med, and the slope of the function is
zero. Value abstraction will therefore return the pair (zero..med, 0) as qualitative
value. The second abstraction we need to employ in order to map a continuous

Fig. 2. (Diagram bottom, right.) Function t-abs partitions time into equivalence classes.
(Diagram on top.) Function v-abs partitions the range of f into equivalence classes.
Equivalence classes are denoted by shaded areas, slope omitted. (Diagram to the left.)
The resulting qualitative function g is depicted on the left. The qualitative slope is
represented by circle, triangle up, and triangle down symbols. Thereby the circle stands
for “0”, triangle up denotes “+”, and triangle down represents “-”.
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function to a qualitative one is time-abstraction (t-abs). Starting again at the
upper right diagram in Figure 2 we can see the workings of time-abstraction in
the diagram below (bottom right). Informally stated, as long as value abstraction
returns the same qualitative value over passing time on a continuous function,
the “qualitative time” is the same, i.e. there is no need to create a new qual-
itative state within the qualitative function that is being constructed. Taking
value abstraction and time abstraction together, we get the resulting qualitative
function g depicted in the diagram on the bottom to the left.

Commonly, ordinary differential equations are used to specify continuous be-
havior instead of continuous functions: similar to ordinary differential equations
in the continuous domain, qualitative reasoning (QR) knows about qualita-
tive differential equations (QDEs) to describe qualitative functions. Notice that
QDEs can be thought of as a constraint system. As is the case with ordinary dif-
ferential equations, QDEs describe the relations between model variables. Within
the domain of QR, these model-variables are also called quantities.

Note that QDEs can be derived from ordinary differential equations (ODEs).
As an example, the first order ODE ẋ = −3x yields the following QDEs:
d/dt(q, q̂) and M−(q, q̂). Here, the first QDE states that q̂ is the qualitative
derivation of q. In the second QDE M− expresses a negative monotonic function
relation with q̂ = f.q and ḟ .q < 0.

Given a set of QDEs, an initial state, and a qualitative simulation engine,
e.g., QSIM [1], the solution to the QDEs is a transition system1 (TS) containing
all possible behaviors that may evolve over time, i.e. all traces starting from the
initial state. Due to incomplete system knowledge, leading to under-constraint
specifications, and because of abstraction the solution sets to QDEs usually are
large. In addition spurious behavior may occur, i.e. behavior that is not possible
in any “real” system. However, the solution-TS is deterministic and each state
binds all quantities q ∈ Q to a certain qualitative value. Each qualitative value is
of type QSq×δ: the quantity space QSq forms a strict total order and is populated
with landmarks and open intervals in-between. Landmarks distinguish important
states of a system, e.g., water freezes below 0°C and starts boiling around 100°C.
When we refer to either landmarks or intervals, we speak about quantity values
(not to be confused with qualitative values!) or “values in the quantity space”.
Notice that the landmark zero is always included and infinity may be expressed
by landmarks, e.g., +/ −∞. Also, the open intervals separating landmarks do
not have explicit names and we skip mentioning them when specifying a quantity
space. Besides values in the quantity space, a qualitative value also consists of a
qualitative derivation (abstracted gradient ∂

∂t ) of ordered type δ =df 〈−, 0, +〉.
To make the terminology clearer, we consider our example system compris-

ing the quantities {x1, x2, in, inout, out}. In our example, the quantity x2 has
the quantity space 〈0,Empty,Reserve,Full〉 and may take a qualitative value of
(Reserve..Full, +) with Reserve..Full representing an interval between landmarks
and + as abstract derivation. This means that the real value of x2 is increasing
somewhere between Reserve and Full.

1 Certain QDEs may also be solved analytically, see [7].
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3.1 Qualitative Action Systems

After laying out the terminology of QR and discussing the basic ideas, we come
back to our running example and lift the hybrid action system to a qualitative
one. We do this by replacing differential actions by qualitative actions.

Definition 4 (Qualitative Action). A qualitative action eq :⇁ dq comprises
an abstract, qualitative evolution guard eq : PRED(Y, Q) and a set of qualitative
differential equations dq : PRED(Q).

Note that in contrast to differential actions, we can not use discrete state vari-
ables Y within dq because of incompatible types. Whenever the guard of the
qualitative action becomes true the action is a candidate for execution by sim-
ulating (solving) the according QDEs with the current initial values, i.e. the
system state. As in differential actions, the execution of the qualitative action
halts when the evolution guard does not hold anymore. However, in contrast
to differential actions based on differential equations2, there might exist several
different evolutions, all starting from the same initial value. Hence, there can be
several different final states.

In order to lift our continuous system to a qualitative one, we need to trans-
form the differential actions to qualitative ones. In particular we need to lift the
differential equations to QDEs. However, before we can do this in our example,
we need to think about the landmarks the system knows about. Fortunately,
most of the landmarks were already given within Figure 1: the model quanti-
ties x1 and x2 (x1, x2 are now qualitative variables!) have the quantity spaces
T 1 = 〈0, Empty, Full〉 and T 2 = 〈0, Empty, Reserve, Full〉 respectively. For
simplicity we omit an additional landmark Overflow for tank T 1 and assume
that when the water climbs above Full it will overflow. The flow rates have the
quantity space FR = 〈0, Max〉. We also need to introduce auxiliary quantities in
order to be able to set up the QDEs. The auxiliary quantities only have to link
different QDEs, so they only need a coarse quantity space, NZP = 〈−∞, 0,∞〉.
The resolution of the quantity spaces depends on the guards of actions in the sys-
tem and on the relations (QDEs) between quantities. It is in the response of the
designer to find the right level of abstraction to express the system requirements
appropriately.

The following qualitative actions are written in the QSIM [1] notation. Here,
add(x1, x2, y) means the addition of the quantities x1 +x2 = y and the predicate
d/dt(x1, diff1) means that diff1 is the qualitative derivative of x1. Note that
during qualitative abstraction constant factors, in this example the base areas
of the tanks A1 and A2, are neglected. Hence, given the ordinary differential
equation describing the water level of the first tank in our example, ẋ1 = (in −
inout)/A1 (all variables are ∈ R), we can deduce following qualitative differential
equations (all variables are ∈ QS × δ):

d/dt(x1, diff1) ∧ add(diff1, inout, in)
2 Note that differential actions based on differential relations may also yield several

different evolutions.
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In our example, the abstraction for the second ordinary differential equation is
equally straight forward. By taking everything together, we get the resulting
qualitative action system.

QSystem =df |[ var x1* : T 1, x2* : T 2, out*, inout* : FR
diff1, diff2 :: NZP
P1 running,P2 running : Bool

• x1 := (0, 0); x2 := (0, 0);
out := (0, 0); inout := (0, 0);
P1 running := false;P2 running := false;

alt g1 → P1 running := true; inout := (0..Max, 0)
� g2 → P1 running := false; inout := (0, 0)
� g3 → P2 running := true; out := (0..Max, 0)
� g4 → P2 running := false; out := (0, 0)

with ¬(g1 ∨ g2 ∨ g3 ∨ g4) :⇁
add(diff2, out, inout) ∧ add(diff1, inout, in)∧
d/dt(x1, diff1) ∧ d/dt(x2, diff2)

]| : WaterRequest, in

Note that x1, x2, inout, out are now quantities, i.e. qualitative model variables,
and that the continuous (but qualitative) evolution of the system is interrupted
every time one of the guards g1 to g4 becomes true.

After presenting the fundamental idea behind qualitative action systems, we
discuss the exact semantics in the remainder of this subsection. We start by giv-
ing an characterization of the solution to a QDE: the solution to a QDE dq with
a given initial value assignment is a transition system ψ : TS =df (S, s0, T, v).
The transition system consists of a set of states S ⊂ N0, an initial state s0 =df 0,
a transition relation T : S × S, and a valuation function v : S �→ (Q �→ QS × δ)
binding states to value assignments for all quantities q ∈ Q. The transition
system is defined via trace semantics as follows:

Traces(ψ) =df {〈v.s0, v.s1, . . .〉 | i ∈ N0 ∧ si ∈ S ∧ s0 = 0 ∧ T (si, si+1)}

Notice that each trace is a qualitative function (cf. g.s in the bottom left diagram
in Figure 2). Similar to differential actions, solutions to qualitative actions have
the following properties:

Definition 5.

g is an evolution of eq :⇁ dq iff SFq(g, eq, dq) ∧ ∆q(g, eq) > 0 (5)
an evolution g is terminating iff ∆q(g, eq) < ∞ (6)
SFq(g, eq, dq) =df g.0 = Q ∧ ∀s : dom(g) · (eq =⇒ dq)[Q := g.s] (7)

∆q(g, eq) =
{

min(x = {i | i ∈ N0 ∧ ¬eq[Q := g.i]}) if x �= {}
0 else

(8)

Predicate SFq (7) states that a qualitative function, i.e. a trace g, is a valid so-
lution to the qualitative action if it is contained in the solution of the qualitative
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differential equation whenever the evolution guard is satisfied. Furthermore the
initial value must match the current system state. Formula (8) takes a qualita-
tive function and returns the “time”, i.e. the state number, when it first violates
the evolution guard. Propositions (5) and (6) define when a qualitative function
is an evolution and terminating respectively.

Similar to differential actions, we define the weakest precondition of a quali-
tative action as follows:

Definition 6 (WP of Qualitative Actions).

wp(eq :⇁ dq, post) =df

∀ψ : TS · ∀g ∈ Traces.ψ · SFq(g, eq, dq) ∧ ∆q(g, eq) > 0 =⇒
∆q(g, eq) < ∞∧ post[Q := g.∆q(g, eq)]

3.2 Qualitative Abstraction

As we want to have a formal link between quantitative functions and their qual-
itative counterparts, we look at the abstraction of time-dependent functions. In
the following we will develop this abstraction function

αq : C1 �→ (N0
∼�→ QSq × δ)

mapping a continuous function f to a qualitative function g, hence αq.f = g.
The abstraction process is two-fold: (1) concrete real values are mapped to

qualitative values and (2) continuous time is mapped to a sequence (of states).
Given a time-dependent function f : C1, iterated application with progressing
time values will give a trajectory, i.e. a trace through the range of this function.
Given such a trajectory, we use a value abstraction function v-absq : C1 �→
(R+

0
∼�→ QSq × δ) that maps quantitative values into the qualitative domain and

a time abstraction function t-absq : C1 �→ (R+
0 �→ N0) that maps continuous

time to a discrete state to derive the qualitative function g : N0
∼�→ QSq × δ. The

class of functions g is denoted by QF.
Hence, we define the abstraction from continuous values to qualitative values

as follows:

Definition 7 (Value Abstraction). Given a continuous function f : C1, its
corresponding quantity q, and a value abstraction function

v-absq : C1 �→ (R+
0

∼�→ QSq × δ).

For each concrete value f(t) in the range of the continuous function f the
corresponding abstract quantity value is calculated by the function application
v-absq.f.t.

Note, that our v-absq results in a partial mapping modeling the case where the
abstract quantity space (landmarks, intervals) does not cover the full range of f .
For example given a quantity space 〈0, max = 10〉 and the function f exceeding
this maximum f.t > 10, then the abstraction is undefined. Therefore in QR



Qualitative Action Systems 219

special landmarks covering the border intervals up to infinity are usually added.
Hence in the following, we assume v-absq being total.

Value abstraction is necessary but not sufficient: abstracting from time is also
needed for our qualitative abstraction mapping α.

Definition 8 (Qualitative Abstraction). The abstraction α is a mapping of
continuous time-dependent functions f : R

+
0 �→ R to qualitative state-dependent

functions g : N0
∼�→ QSq × δ such that:

∀f : C1 · ∀t : R
+
0 · ∃s : N0 · α.f.s = g.s = v-absq.f.t (9)

Furthermore, a state and its successor must not have equal values:

∀s1, s2 ∈ dom(g) · s2 = s1 + 1 =⇒ g.s1 �= g.s2 (10)

with dom giving the domain of a function.

See Figure 2 for a sketch of the abstraction of a given function.

Corollary 1 (Time Scale Abstraction). By skolemization of the existential
quantifier in (9), we introduce a function t-absq : C1 �→ (R+

0 �→ N0) partitioning
the domain of f : R

+
0 �→ R into qualitative equivalence classes:

∀f : C1 · ∀t : R
+
0 · α.f.(t-absq.f.t) = g.(t-absq.f.t) = v-absq.f.t

= ∀f : C1 · α.f ◦ t-absq.f = g ◦ t-absq.f = v-absq.f

This mapping t-absq represents our time scale abstraction.

Furthermore, function t-abs has the following properties:

Definition 9.

∀f : C1 · ∀t1, t2 : R
+
0 · t1 < t2 =⇒ t-abs.f.t1 ≤ t-abs.f.t2 (11)

∀f : C1 · ∀t : R
+ · ∃ε > 0 : R · t-abs.f.t − t-abs.f.(t − ε) ≤ 1 (12)

t-abs.f.0 = 0 (13)

The definition basically says that t-abs has to be increasing over time and that it
must not step-over a state, in other words, it has to sequentially visit all numbers
∈ N0 up to the current value. A property of time scale abstraction is the fact,
that finite trajectories result in finite qualitative traces but the reverse may not
be true. For instance the trace 〈(0..max,+), (max, 0)〉 may be refined into an
exponential function which has the landmark max as limit value:

lim
t→∞

max · (1 − e−t) = max.

In practice we may not have access to the function definition of f but we may
have access to samples of f . The well known sampling theorem describes con-
ditions under which f can be reconstructed from samples. Similarly, given a
sampling interval Ts > 0 : R, a sample number t�, and a trace of abstracted
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samples 〈v-abs.f.(0 ·Ts), . . . , v-abs.f.(t� ·Ts), . . .〉, it is not always possible to re-
construct an abstract qualitative function g from these qualitative values: Within
a qualitative function g, the values may either change to the next value of the
quantity space or the next value of the qualitative derivation in one discrete
time-step. The following definition, in which q1 and q2 denote qualitative values,
states this property formally. Because quantity spaces form a strict total order,
we can define an indexing function ind that returns the index i ∈ N0 of a given
value from the quantity space of a quantity q: indq : QSq �→ {0 ≤ i < |QSq|}.
Furthermore, indδ(−) = 0, indδ(0) = 1, indδ(+) = 2.

Definition 10 (Continuity of Qualitative Samples).

∃Ts > 0 : R · ∀0 ≤ ε < Ts : R · ∀t� : N0·
v-absq.f.(t� · Ts + ε) = q1 ∧ v-absq.f.((t� + 1) · Ts + ε) = q2 ∧ Cont(q1, q2)
where

Cont(q1, q2) =df v1, v2 : QSq · δ1, δ2 : δ·
q1 = (v1, δ1) ∧ q2 = (v2, δ2)∧
|indq.v1 − indq.v2| ≤ 1 ∧ |indδ.δ1 − indδ.δ2| ≤ 1

Whenever a system conforms to the given definition (and adheres to the sampling
theorem to prevent aliasing), we are able to compute a qualitative function g
that represents the continuous function f out of the observed sample values.

4 Refinement of Qualitative Actions

For blackbox testing the behavior of a system might be specified on different
abstraction levels. This abstraction level determines the data refinement relation
which is usually implemented in the test adapter. This means that observed
events from the implementation are translated to events in the specification
language and vice versa. In the following we describe the refinement between
qualitative and differential actions in more detail.

Data refinement is shown by using the following data refinement relation r:

Definition 11 (Refinement Relation).

r =df Q = β.(X, Ẋ) where β.(φ.t, φ̇.t) = (v-abs.φ).t

As described in [8] the weakest precondition semantics of differential actions cov-
ers not only the relation between pre- and post-states but also the flow between
these states. This provides an ordering on the pre-states with respect to time.
However, since the points of observation are only at pre/post states on the action
level the intermediate flow states are hidden.

In order to characterize refinement between qualitative and hybrid action
systems it is worthwhile to note that both can be rewritten into a pre/post
condition normal form:
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Lemma 1 (Conjunctive Normal Form). Since both, differential actions C
and qualitative actions A are conjunctive predicate transformers they can be
rewritten into a normal form [9]: {p}; [R]. Here, the predicate p is an assert
statement establishing the precondition. If the precondition holds the demonic
update statement [R] is executed and the statement aborts otherwise.

C = {pC}; [QC ] =

{∀φ : C1 · SFc(φ, e, d) ∧ ∆c(φ, e) > 0 ⇒ ∆c(φ, e) < ∞};
∃φ : C1 · SFc(φ, e, d) ∧ ∆c(φ, e) > 0 ∧ X := φ.(∆c(φ, e)) ∧ Ẋ := φ̇.(∆c(φ, e))

and

A = {pA}; [QA] =
{∀ψ : TS · ∀g ∈ Traces.ψ · SFq(g, eq, dq) ∧ ∆q(g, eq) > 0 ⇒ ∆q(g, eq) < ∞};
∃ψ : TS, g ∈ Traces.ψ · SFq(g, eq, dq) ∧ ∆q(g, eq) > 0 ∧ Q′ = g.∆q(g, eq)

The rewriting of wp semantics into normal form is straightforward and can be
found in [5].

Given this normal form, the following refinement law expresses the well-known
fact that under refinement preconditions are weakened and postconditions are
strengthened.

Theorem 1 (Refinement Law). A qualitative action is refined by a continu-
ous action if

[ ¬∞q(Q, eq, dq) ∧ r =⇒ ¬∞c(X, ec, dc)) ] and

[ (¬∞q(Q, eq, dq) ∧ r ∧ (∃φ : C1 · SFc(φ, ec, dc) ∧ ∆c(φ, ec) > 0

∧X ′ = φ.∆c(φ, ec) ∧ Ẋ ′ = φ̇.∆c(φ, ec)))
=⇒

∃Q′, ψ : TS, g ∈ Traces.ψ · (SFq(g, eq, dq) ∧ Q′ = g.∆q(g, eq) ∧ r) ]

with [ ] denoting universal quantification over the observations before (X, Ẋ, Q)
and after execution (X ′, Ẋ ′, Q′). The termination predicates are defined as:

¬∞q(Q, eq, dq) =df ∀ψ : TS, g ∈ Traces.ψ · SFq(g, eq, dq)∧
∆q(g, eq) > 0 =⇒ ∆q(g, eq) < ∞

¬∞c(X, ec, dc) =df ∀φ : C1 · SFc(φ, ec, dc) ∧ ∆c(φ, ec) > 0 =⇒ ∆c(φ, ec) < ∞

Proof.

A �r C

≡ {L simulation, Lemma 1}
{pA}; [QA]; [r] ⊇ [r]; {pC}; [QC ]
≡ {wp of sequential composition}
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wp({pA}, wp([QA], wp([r], post))) =⇒ wp([r], wp({pC}, wp([QC ], post)))
≡
∀σ, γ · wp({pA}, ∀σ′ · QA.σ.σ′ ∧ r.σ′ ⊆ γ) =⇒ wp([r], ∀σ′ · pC .σ′ ∧ QC .σ′ ⊆ γ)
≡
∀σ, γ · pA.σ ∧ ∀σ′ · QA.σ.σ′ ∧ r.σ′ ⊆ γ =⇒ (∀σ′ · r.σ.σ′ =⇒ pC .σ′ ∧ QC .σ′ ⊆ γ)
≡ {⇒ by specialization (γ := QA; r),⇐ by transitivity of ⊆}
∀σ, σ′ · pA.σ ∧ r.σ.σ′ =⇒ pC .σ′ ∧ QC .σ′ ⊆ QA; r
≡
(∀σ, σ′ · pA.σ ∧ r.σ.σ′ =⇒ pC .σ′)∧
(∀σ, σ′, γ · pA.σ ∧ r.σ.σ′ ∧ QC .σ′.γ =⇒ ∃σ′′ · QA.σ.σ′′ ∧ r.σ′′.γ)
≡ {definitions}
[ ¬∞q(Q, eq, dq) ∧ r =⇒ ¬∞c(X, ec, dc)) ] and

[ (¬∞q(Q, eq, dq) ∧ r ∧ (∃φ : C1 · SFc(φ, ec, dc) ∧ ∆c(φ, ec) > 0∧
X ′ = φ.∆c(φ, ec) ∧ Ẋ ′ = φ̇.∆c(φ, ec)))

=⇒
∃Q′, ψ : TS, g ∈ Traces.ψ · (SFq(g, eq, dq) ∧ Q′ = g.∆q(g, eq) ∧ r) ] �

5 Testing

Testing of hybrid systems is an extension to testing of continuous systems as,
e.g., presented in [10]: in hybrid systems, the state space of discrete actions has
to be explored in addition to the continuous behavior. As a qualitative action
may describe several different evolutions due to the inherent non-determinism,
simulating the continuous behavior yields a set of post-states, hence a set of
qualitative action systems with different internal state. Further simulation of
the qualitative action system then has to take all these possible outcomes into
consideration, which most likely yields a state-space explosion problem. In order
to prevent full state exploration, online testing is an interesting alternative be-
cause the system is able to cut down on possible evolutions due to observations
of the real system.

In contrast to our previous work, where whole trajectories are tested against
specified traces, this work builds on the weakest precondition semantics of dif-
ferential/qualitative actions. This has as consequence, that only the pre/post
states of actions are observable but not the trajectories/traces in between. For
our running example we apply traces refinement [11] as conformance relation.
For visualization we also show the behavior in between the pre/post states of
evolutions.

The system may be initialized with both tanks being empty and both pumps
turned off. Figure 3 shows a concrete trajectory and the according abstract trace
through the system consisting of four evolutions. (1) In the first evolution both
pumps are turned off and the inflow in fills tank T 1 up to the Full level. (2)
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Fig. 3. Example Test Case consisting of four Evolutions

When T 1 is full pump P1 is activated and delivers water to T 2, so the water
level x2 is increasing. (3) When the water level x1 drops to Empty the pump
P1 is turned off. Since P2 still is turned off, x2 remains constant. Due to the
in-flow, the water level in tank T 1 increases. (4) In the last evolution pump P2
is started which empties tank T 2 below the Reserve water level.

In our case observable behaviors are traces consisting of the valuation of model
variables during action execution. We denote one valuation in such a trace as
event. In order to decide implementation conformance the observed behavior is
simulated on the qualitative action system. It can be seen that there exists a
qualitative function (trace) that corresponds to the observed concrete behav-
ior. Based on the test case generation approach in [11] test cases are traces
in the specification where one unspecified event has been appended. Such a
trace has to be refused by the implementation by showing deadlock behavior.
Otherwise the traces refinement does not hold leading to a fail verdict. For
our example this means that the trace in Figure 3 extended with a state, e.g.,
〈x1 = (Empty..Full, +), x2 = (Empty..Reserve, +)〉, must result in a deadlock.
This is true since the implementation cannot follow the specified trajectory of
the last state where x2 changes its direction from decreasing to increasing.

6 Related Research

Most relevant to our research are different extensions to action systems that
allow modeling of hybrid systems. The work in [6] presents continuous action
systems. They are similar to conventional action systems except for the fact that
continuous functions are used as values for variables (attributes). There also is
an implicit attribute now that shows the present time and starts at zero. In this
model, actions are urgent, meaning that if at some particular time a guard of an
action is satisfied, the action is executed. An action may assign new functions
to attributes in order to change the future behavior. An action is also thought
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of being atomic and instantaneous. Composition of continuous action systems
is analogous to that of action systems, which means that a parallel composition
does not incur the superposition-overhead as outlined earlier in the case of hybrid
action systems. We could also use continuous actions systems as a basis for our
qualitative action system: since continuous action systems speak about traces,
it would be a natural fit to our abstraction function αq. However, time scale
abstraction makes it hard to introduce an attribute now. That said, we will
explore the differences in more detail in future.

Abstractions of hybrid systems are a common way to deal with inherent
system complexity. Often, these abstractions are used to decide over proper-
ties of the underlying hybrid system. The authors of [12] summarize results
for property-preserving abstractions of hybrid systems. A combination of ideas
taken from predicate abstraction and qualitative reasoning has been recently
proposed in [13]: based on hybrid automata, the author presents a procedure
for constructing sound abstractions for hybrid systems and also discusses which
abstractions should be chosen. Abstract models of hybrid systems, besides being
useful for deciding over properties, are also a common way of specifying systems.
This is the intended use of qualitative action systems. Related work in qualita-
tive modeling of hybrid systems can be found, e.g., in [14] where the authors
present Qualitative Charon, a qualitative modeling language that is based on
Charon and qualitative reasoning.

The work in [10] presents an approach for testing continuous systems against
Qualitative Reasoning models. A tool named Garp3 serves as modeling and
simulation tool. In a subsequent step test purposes or coverage criteria [15,16]
are specified to steer the automated test case generation from QR transition
systems. For executing generated abstract test cases inputs are refined to the
implementation level whereas outputs (a sequence of samples) are abstracted to
the specification level. In order to decide implementation conformance the work
in [10] introduces the conformance relation qrioconf which is an adaptation of the
well known ioco relation by Jan Tretmans. The testing approach is demonstrated
on a small Matlab Simulink implementation where two introduced errors were
discovered.

7 Conclusions

In this work, we have formalized an abstraction from continuous functions to
discrete qualitative traces. This abstraction relation served subsequently for the
definition of (data) refinement between hybrid action systems and the newly
introduced qualitative action systems. Furthermore the weakest precondition se-
mantics for qualitative actions was introduced and a refinement theorem between
qualitative and differential actions was presented. We also showed with an exam-
ple how qualitative action systems can be used to specify hybrid systems. Finally,
model-based testing applications have been discussed. The contributions can be
summarized as follows: (1) To our best knowledge this is the first time that
qualitative reasoning techniques from AI have been integrated into a classical
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formal method. (2) This allows us to model hybrid systems in a purely discrete
domain providing an abstraction layer suitable for expressing requirements. (3)
The presented notion of refinement establishes a notion of correctness, a method
for step-wise development. The results form part of our ongoing development of
formal testing techniques for hybrid embedded-systems.
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Abstract. This paper presents a case study in modeling and verifying
a POSIX-like file store for Flash memory. This work fits in the context of
Hoare’s verification challenge and, in particular, Joshi and Holzmann’s
mini-challenge to build a verifiable file store. We have designed a simple
robust file store and implemented it in the form of a Promela model. A
test harness is used to exercise the file store in a number of ways. Model
checking technology has been extensively used to verify the correctness
of our implementation. A distinguishing feature of our approach is the
(bounded) exhaustive verification of power loss recovery.

1 Introduction

A software product should meet all of its requirements and fully conform to its
specification. Testing and other quality assessment techniques can only help to
approach this goal [9]. Proving that a piece of software will always work correctly
requires the use of formal methods. Two approaches to using formal methods
exist: Post facto and correctness by construction [29]. The first approach uses
technologies like model checking to determine the correctness of (an abstraction
of) an existing implementation. This is often called verification. The second
approach can be used to construct an implementation starting from an abstract
formal specification. This technique is sometimes referred to as refinement.

Tony Hoare has proposed a Grand Challenge project [17], whose long-term
vision is to develop methodologies and a set of automated tools that can be used
to verify whether a piece of software meets its requirements [5]. One of the steps
towards the realization of this vision is to build a repository [40] of formalized
software designs and verified implementations, which can be used to test and
develop the before mentioned tools.

The first case study for the Verification Grand Challenge was Mondex [40], a
smartcard functioning as an electronic purse. At the VSTTE conference [41] in
Zürich in 2005, Gerard Holzmann proposed a mini-challenge: build a verifiable
file store specifically designed to work with Flash memory [30,23]. The mini-
challenge defines strict robustness requirements. The file store should be able
to cope with unexpected power loss without getting corrupted. It should also
be able to recover from faults specific to Flash memory, such as bad blocks and
bit corruption. The mini-challenge has been embraced by the Formal Methods
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community. It has for example been a case study for the ABZ conference [2,1]
and has also been a topic at several VSR-net workshops. Precursors of this paper
have been presented at several GC6 workshops [14].

This paper presents our work contributing to the mini-challenge project. This
work is experimental in nature. Our approach is unique in that it forms a kind of
middle road between abstracting an existing implementation and the correctness
by construction approach. We have designed a simple file store called RAFFS,
which is short for Robust Abstract Flash File Store. This file store and its sur-
rounding environment has been implemented in the modeling language Promela
[18]. The environment includes a Flash memory and a test harness that inter-
acts with the file store. RAFFS is capable of fixing inconsistencies that may be
present in the file store after a power failure. Our model includes the injection
of such power failures. For simplicity reasons we have assumed that the Flash
memory is fully reliable. Bit flips and bad blocks are thus not included in the
model.

A ’proof of correctness’ for our file store implementation is obtained by (ex-
haustive, but bounded) model checking. At the end of the paper we present some
measurements relating model checking particulars (such as memory usage and
running time) to the ’depth’ of testing by the test harness.

In Section 2 we give an overview of related work and in Section 3 we discuss the
quirks of Flash memory. Section 4 will discuss abstractions and simplifications
that we have applied to our model. Section 5 will give some implementation
details, Section 6 will give verification results. Finally, Section 7 will provide
conclusions and suggestions for future work.

2 Related Work

File systems are abundant in computer systems, however the correctness of their
implementations is seldom proved. We will first discuss several papers based
upon the refinement approach.

A number of authors have used refinement approaches [4], [6], [7], [10], [11],
[25], [31] and [33]. Of particular note, Morgan and Sufrin [33] give a specifica-
tion of the Linux file system using the Z-notation [38]. They explicitly abstract
from issues such as data representation and the physics of the underlying stor-
age medium. Their specification is one-level only; there are no refinement steps
towards an implementation. Arkoudas et al. [4] prove an implementation of a file
system correct by establishing a simulation relation between a specification of
the file system and an implementation. The specification models the file system
as an abstract map from file names to sequences of bytes. In the implementation,
fixed sized blocks are used to store the contents of the files. The implementation
assumes an ideal storage medium. Their proofs use the Athena system [3] and
automatic theorem provers. Kang and Jackson [31] use Alloy [28] to construct a
formal model of a Flash file system. Their model includes the underlying hard-
ware and the file system software with basic operations such as read and write.
A fault tolerance scheme addresses memory issues such as the management of
block erasures, wear leveling and garbage collection.
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As examples of the verification approach, we mention two important papers.
Galloway et al. [13] use model checking to investigate the correctness of a Linux
Virtual File System (VFS). They downscale existing VFS code by slicing away
code and abstracting data. They transform C-code by hand into Promela and
SMART models. This turns out to be a challenging task, partly because of the
shallow VFS documentation. They had to reduce the sizes of their file system
data structures (such as inodes) to similar values as we have used during the
construction of our RAFFS. However, due to the well known state explosion
problem, they seem unable to perform exhaustive model checking, whereas we
have been able to apply exhaustive model checking widely. Yang et al. give an
important start to the verification of a file system using model checking [42].
Like in our approach, Yang et al. check file systems for storage errors and they
use model checking to verify that a file store, upon encountering such errors,
will reboot into a known legal state. They operate the OS and several known file
stores from within the model checker whereas we have separated out the file store.
The article by Mühlberg and Lüttgen [34] is also an example of exhaustive testing
of existing code using model checking. They use BLAST [16] to check device
drivers for memory safety (illegal pointer de-references) and locking behaviour.

We have created a POSIX-like file store using a Flash memory. Our file system
includes files, directories, reads and writes, block erasure and garbage collection.
Since we have assumed the Flash memory to be reliable, we did not model wear,
bad blocks, and bit corruption. A distinguishing feature of our model is that
it includes the simulation of general system failure in the form of power loss.
Our file store has been designed to always recover to a consistent state. Where
others have mainly focused on the verification of specifications, we have focused
on verification of the implementation. Our implementation supports multiple
simultaneous users of the file store.

3 Flash in a Nutshell

For compatibility with existing operating systems, it is desirable that a Flash
memory acts as a block based device. Most Flash device drivers emulate a block
based device. All Flash specific behavior is then handled in a special layer called
the Flash Translation Layer (FTL) [27].

Flash memory has a hierarchical structure similar to common block based
storage devices, but has some restrictions with regard to its usage. The memory
is divided in small chunks called pages. Pages are grouped together into blocks. A
page is the smallest access unit for reading and writing. Writing to a Flash page,
which is called programming, has an important limitation. It is only possible to
change bit values from 1 to 0. In an empty (read: erased) page all bits have value
1. An empty page can be programmed with any desired data. But once a page
has been programmed, it can not be overwritten with arbitrary data. It must
first be erased, resetting all bits back to value 1. Erasing is a special operation
for Flash memory. The smallest unit for erasing is a block, making it impossible
to erase individual pages.
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Consequences of the above mentioned limitations are that page content can
not be overwritten and that pages with obsolete content can not be erased imme-
diately. The first issue is solved by performing out of place updates. This means
that instead of overwriting data in its existing location, the data is written to
a different (free) location. The original data is marked as obsolete. A garbage
collection algorithm is responsible for erasing blocks that contain pages with
obsolete content. Valid content can be moved elsewhere when needed.

Moving data around puts a new problem on the table. The file store must
know where every single piece of data is stored. This information is part of
the metadata stored in for example inodes. Updating an inode whenever a data
address changes would result in a vicious circle. This problem is solved by adding
a level of indirection between the translation of logical addresses to physical
addresses. The indirection and the moving of the data is handled by the FTL.
From the point of view of the file store data can then be overwritten in its current
logical location and addresses stored in inodes do not need to be updated. The
FTL maintains a mapping table in RAM to translate logical addresses into
physical ones. The logical address that is associated with the contents of a Flash
page is stored in a special part of the page called the spare data region along
with other metadata used by the FTL. The mapping table can be rebuild by
reading this metadata from Flash (during mounting).

Flash memory is well known to have some reliability problems. For example
bits may randomly flip value due to electrical interference in the memory. De-
terioration of the material of which the memory is made can lead to damaged
blocks. We have excluded these issues from our model and have assumed a per-
fectly reliable Flash memory where no data corruption or unexpected data loss
may occur. Properly dealing with these reliability issues is a very complex task
and depends heavily on statistics. Our Promela model of a downscaled file store
is not intended to be used for statistical analysis. Instead we use exhaustive
verification to prove complete correctness.

4 Abstractions

4.1 POSIX Compatibility

The mini-challenge project suggests using a subset of the POSIX standard
[35,36,12]. Our highly abstracted file store API is not fully POSIX compati-
ble. We will compare our API with the abstract formal specification [33] from
Morgan and Sufrin. An overview of the file store API functions in RAFFS is
given in Figure 1.

There are some differences between our API and the formal specification. In
the formal specification, a directory is encoded and stored as a file, and all API
functions operate on files. In our model, a clear distinction is made between files
and directories, and there are separate functions for dealing with these objects.
This design choice simplifies the implementation and downscaling of the file
store. For example, a directory inode can now be stored in a single page, instead
of multiple.
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Our model does not contain file descriptors, or channels as they are called
in the formal specification. We have abstracted those away to reduce memory
usage. Thus the functions open, close, and seek are not present in our model.
Instead of a file descriptor, all functions in our API have a parameter path which
is used to uniquely identify the inode on which the function operates.

In our model, each inode always has a name. There is no separate naming
system like in the formal specification. As a consequence, our model lacks the
link and unlink functions. We have added two delete functions for removing files
and directories.

The handling of data also differs from the formal specification. Our API func-
tions only have a single unit of data as input or output, instead of a sequence of
data units. The reason for this abstraction is to reduce the complexity of the file
store implementation. Changing this, possibly as part of future work, will not
have an impact on the robustness quality of RAFFS.

The formal specification lacks clear definitions of error conditions. We have
clearly defined error conditions for all API functions. Our implementation checks
for those conditions and returns appropriate error codes.

� �

f s a p i c r e a t e f i l e ( path ) ;
f s a p i f i l e e x i s t s ( path ) ;
f s a p i f i l e s i z e ( path ) ;
f s a p i f i l e a p p e n d ( path , data ) ;
f s a p i f i l e m o d i f y ( path , o f f s e t , data ) ;
f s a p i f i l e r e a d ( path , o f f s e t ) ;
f s a p i f i l e t r u n c a t e ( path , s i z e ) ;
f s a p i d e l e t e f i l e ( path ) ;
f s a p i c r e a t e d i r ( path ) ;
f s a p i d i r e x i s t s ( path ) ;
f s a p i d i r s i z e ( path ) ;
f s a p i d i r g e t c h i l d n ame ( path , index ) ;
f s a p i d e l e t e d i r ( path ) ;
f s ap i mount ( ) ;
f s ap i unmount ( ) ;

� �

Fig. 1. File store API function prototypes

4.2 Abstractions Applied

The goal of our project is to perform (exhaustive) verification of our state-based
model, which requires that the model must have a low complexity. In the current
context, complexity means the size of the state space. The bigger the state space,
the more memory and time is needed to perform verification.

Abstracting an existing implementation would be a time consuming task; far
more work than we could accomplish in a short period of time. Others abstracted
parts of an existing file store [13] which proved to be a difficult task. We have
decided to design a basic file store from scratch. So instead of abstracting a
complex design, we have directly made an abstracted design. The advantage of
this method is that we had complete freedom in the design choices, allowing us
to keep things simple, while also making a robust design. We were not forced to
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think within the paradigm of other designers. We are confident that this choice
has resulted in a model with a much lower complexity than could have achieved if
we would have attempted to abstract (and modify) an existing implementation.
A disadvantage of making a whole new design and implementation is of course
that it is difficult to compare our work with other designs and implementations.
Making the design more similar to real-life file stores is envisioned as future work.
Our current efforts should be seen as a demonstration of the capabilities of model
checking and the complexities involved with verifying a file store implementation.

There are many abstractions and simplifications in our model. The simplified
API and the assumption that the Flash memory is reliable have already been
discussed. Another simplification is related to inodes. In the model there are two
distinct types of inodes, namely a file and a directory. A file contains a sequence
of data units. A directory contains an unordered list of references to child inodes.
Both types of inodes are assumed to be able to always fit into a single page. They
will thus never span multiple pages. The data of a directory is not encoded as file
data and is not stored as a file. When a page is used to store file data instead of
an inode, then we assume that a page can fit exactly X units of data, regardless
of how big a page really is. A unit of data in the model is a single bit.

There are different types of data abstractions in the model. The first type
of abstraction is the compact representation of data. For example, file names
and paths are not represented by character sequences, but by numerical values.
These numerical values can easily be stored as short sequences of bits. The values
themselves are not really important in an abstract model. We only need a certain
number of distinct values.

The second type of abstraction is to limit ranges of values. Everything in
the model is scaled down to a small size. Sizes in the model are specified by
constant values. This allows us to easily modify those sizes when desired. The
values of these constants have been carefully chosen to scale down the file store as
far as possible without sacrificing functionality. For example, every single error
condition in each API function must be reachable.

The flash memory in the model currently consists of just 4 blocks, each having
two pages, giving a total of 8 pages. The maximum number of inodes that can
be present in the file store is currently set to 4. The maximum size of a file is 3
data units. The maximum number of children of a directory is 2.

5 Implementation

In the sections below we will discuss the model that we have constructed.
This discussion will necessarily be limited. Further details can be obtained
from [39]. Our model has a layered design, consisting of five layers as shown in
Figure 2. The arrows indicate which layer uses functionality from another layer.
The bottom two layers are the Flash memory and its driver, to be discussed in
Section 5.1. The next two layers belong to our file store implementation, named
RAFFS, which is discussed in Section 5.2. The top layer serves as a test har-
ness for RAFFS. This test harness is discussed in Section 5.3. In Section 5.4
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Fig. 2. UML layer diagram

we explain how power loss has been modeled. Section 5.5 discusses how the de-
sign of RAFFS has been adapted to meet the robustness requirement. Finally,
Section 5.6 explains the issues of verifying a model that contains multiple users.

5.1 Flash Memory and Its Driver

The bottom layer in our implementation is the Flash memory. We have modeled
the Flash as a simple data structure, namely an array of pages. Each page
consists of two parts, the data region and the spare data region. The data region

Fig. 3. Flash Memory and Driver



RAFFS: Model Checking a Robust Abstract Flash File Store 233

is used for storing inode metadata or file data. Its size is chosen so that it is
exactly large enough to fit the largest possible inode in the model. The spare
data region is used for storing metadata used by the file store, and the Flash
Translation Layer in particular. This metadata includes three page status bits,
a version field, and a virtual page number.

The second layer in the model is the Flash driver, which has functions to read
or program a page, and to erase a block. Details of both layers are shown in
Figure 3.

5.2 RAFFS

The third layer is the Flash Translation Layer (FTL), which implements Flash
specific behavior and emulates a generic block based storage device. It exposes
functions to the file store API layer for writing, updating, and deleting data in
a logical location. The FTL maps logical addresses to physical ones and per-
forms out of place updates as explained in Section 3. We use a simple mapping
scheme based on virtual page numbers (VPN) [8]. Other schemes exist that are
more memory efficient because they use a smaller mapping table [32]. However,
due to the extremely small scale of our Flash memory, implementing such a
complex scheme would require increasing the number of Flash blocks. Using a
different scheme is therefore not worthwhile for us in terms of both complexity
and memory efficiency.

The FTL applies a two step programming protocol [26] when writing data to
a Flash page. This protocol is a required for robustness reasons.

The FTL contains a simple garbage collection algorithm for recovering space
occupied by pages with obsolete content. The FTL in our model is also respon-
sible for the management of free space. To ensure that enough free space is
available to successfully complete an operation, each API function must reserve
an amount of free locations that equals the number of writes that it is planning
to perform.

Fig. 4. Flash Translation Layer
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Fig. 5. File Store API

The UML diagram in Figure 4 shows the functions that the FTL exposes to
the file store API layer. The fourth layer is the file store API, which was already
discussed in Section 4.1. A UML diagram with details of this layer is shown in
Figure 5.

5.3 Test Harness

The fifth and topmost layer is the user layer, which functions as a test harness in
our model. A user is a Promela process that calls file store API functions. Multi-
ple concurrent user processes are allowed to be present in our model. We use sim-
ple techniques to prevent processes from interfering with each others’ operations.
Shared data structures are either locked for exclusive access or values are read and
updated within a single atomic block. Locking is for example applied to inodes.

We have made several variations of our model, each with a different testing
purpose, and with a different implementation of the user layer. Four variants
will be discussed in this paper; SU (single user), SUPL (single user with power
loss), MU (multiple users), and MUPL (multiple users with power loss). The SU
variant is discussed below, the SUPL variant is discussed in Section 5.4, and the
MU and MUPL variants are discussed in Section 5.6.

To verify the correctness of the file store, we must consider all possible states
in which the file store can reside, and all possible transitions between those
states. The SU variant of our model contains a single user process that performs
a random sequence of file store API calls. In each step of the sequence, the file
store API function and its inputs are chosen non-deterministically. Performing
full verification on this model will, with an infinite sequence, examine the entire
state space.

The behavior of every file store API call should be exactly as described in the
specification. We verify this by comparing the result of each API call with the
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result given by a reference implementation using assertions. The idea is that in-
correct behavior will always lead to an unexpected result being returned at some
point in the sequence. Because of the state-based nature of our model, the refer-
ence implementation has to be fully integrated in the code. If the model would
be used for simulation only, then an external reference implementation could be
used. Holzmann used an external reference implementation during randomized
differential testing of his own Flash file store model [15].

Because the reference implementation needs to be integrated into our model
and because our file store API is unique, we were forced to make our own refer-
ence implementation. The reference implementation has thus also been written
in Promela. This implementation has not been verified to be correct, we can only
assume it is correct. Proving its correctness is a task for future work. Suppose
that one of the two implementations contains a bug. This bug would only go
unnoticed only if both implementations would exhibit the exact same incorrect
behavior. However, since the two implementations are considerably different such
a situation is unlikely.

The reference implementation in our model is an extremely abstracted imple-
mentation of a file store. It maintains a private list of inodes that are expected
to exist in the file store. All relevant data is stored in those inodes, including
file contents. The file store API functions operate directly on the inode list. The
reference implementation is much less complex compared to our RAFFS imple-
mentation, as there is no storage medium, and no Flash specific behavior. The
code size of the reference implementation is an order of magnitude smaller than
the RAFFS implementation.

The sequences of API calls that are performed by the test harness have a
configurable length. This allows us to control the ’depth’ of our verification.
Increasing the sequence length will increase the size of the state space. An un-
bounded model would be far too complex for performing exhaustive verification.
The impact of the bound will be discussed in Section 6.2.

As said before, the input parameters for the chosen API function are generated
non-deterministically. The generated values of the input parameters fall in a
domain of potentially valid input values. This means values which, in certain
situations, could lead to a successful file store operation, while in other situations
they will trigger an error condition in the file store API function. Values that
always trigger an error fall outside of the inspected domain. We have tested such
’invalid’ inputs in a separate deterministic test suite.

Besides comparing results with a reference implementation, we have also im-
plemented a series of consistency checks which are performed after each file store
API call. These consistency checks compare metadata stored in RAM by the file
store with metadata stored on the Flash memory using assertions. Inodes and
the mapping table of the FTL are examples of such metadata.

5.4 Power Loss

One of the goals in our project is to make the file store robust so that it can
cope with power failures. If power loss occurs while there are unfinished file store
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operations, the contents of the Flash memory may be in an inconsistent state.
The mount operation is responsible for detecting inconsistencies and recovering
the system to a valid consistent state. The robustness requirement specifies that
an unfinished operation must either be completed, or that all changes made by
such an unfinished operation must be undone.

A second variant of our model, named SUPL, is an extension of the SU variant
discussed in the previous section. The main difference is the addition of power
loss in the model. Promela has a special language construct called unless that
we have used in this variant. The unless construct works similar to an exception
handler. It contains a main sequence of statements and an escape sequence.
Before a statement from the main sequence is executed, an escape condition
is checked. If this condition evaluates to true, execution jumps to the escape
sequence. The remaining statements in the main sequence are not executed.

The code that we want to be susceptible to power loss is put inside an unless
construct. A second Promela process is used to trigger power loss. When power
loss occurs, execution of the file store code is aborted. All data that the file store
maintains in RAM is cleared and the file store is re-mounted. During mounting
the contents of the Flash memory is checked for consistency and corrections are
made. After mounting a new sequence of API calls is performed. In our model,
multiple subsequent power loss situations take place. They can occur at any
time, even during mounting.

Figure 6 shows pseudo code for the model variant SUPL. From the point of
view of the user there can be two valid situations when power loss has occurred
during an operation. One in which the operation was completed successfully,
and one in which the operation was not performed at all. We therefore let the
reference implementation maintain two states. Each state consists of an inode
list and the amount of available free space. The first state is the ’before’ state,
where the chosen API function has not been performed. The second state is the
’after’ state, where the chosen API function was performed successfully by the
reference implementation. If a power loss situation occurs, then after mounting
we compare the state of the file store from the RAFFS implementation with the
two states from the reference implementation and pick the first one that matches
(function select expected state in the pseudo code). The reference implementation
will continue with that state as both the new after and before state. If neither
state matches, then the robustness requirement was not met and there is a bug in
the model. If the chosen API function completes without the occurrence power
loss, then the return values of both implementations are compared (function
compare results in the pseudo code). The return value either is an error code
(negative value), a data value (positive value), or a void (zero value). The states
of the reference implementation are also synchronized, the before state being set
equal to the after state.

The results presented in Section 6.2 were obtained using a model that triggers
a fixed number of 2 power loss situations during each sequence. Triggering more
power losses, for example by using an infinite loop, will increase the complexity
of the model.
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� �

bool power loss ;

PROCESS USER() {
i n i t i a l i z e s y s t e m ;
whi l e ( 1 ) {

{
mount ;
s e l e c t e x p e c t e d s t a t e ;
p e r f o rm con s i s t en cy che ck s ;
wh i l e ( 1 ) {

c h oo s e ap i f u n c t i o n ;
g ene ra t e i npu t s ;
p e r f o rm ap i c a l l r e f e r e n c e ;
p e r f o rm ap i c a l l ;
c ompare r e su l t s ;
p e r f o rm con s i s t en cy che ck s ;

}
} un l e s s {

power loss == 1
}
reboot ;

}
}

PROCESS TRIGGER POWERLOSS( ) {
/∗ mul t i p l e power l o s s s i t u a t i o n s ∗/
power loss = 1 ;
power loss = 1 ;
. . .

}
� �

Fig. 6. Pseudo code for SUPL test harness

5.5 Mounting and Order of Operations

The mount operation reads inode metadata from Flash and stores it in RAM. It
fills the FTL mapping table and is also responsible for correcting inconsistencies
in the file store metadata residing on the Flash memory. Our solution for making
the file store robust involves making changes to the contents of the Flash memory
in a specific order. Given that order, a small set of generic corrective actions will
always result in fixing all inconsistencies. The resulting state will be one in which
all unfinished operations have either been completed or been undone.

To explain the specific order in which Flash content modifications are made
during the various file store operations, we first classify two types of operations.
Operations that add inodes or modify data are classified as constructive. Oper-
ations that remove inodes or data are classified as destructive.

We make use of three relations between different pieces of information stored
on the Flash memory to decide which corrective actions must be taken by the
mount algorithm. Firstly, all inodes (except the root) are referenced by the inode
of its parent directory. Secondly, every data page is referenced (through its VPN)
by a file inode. Thirdly, when two pages have identical VPN value, the version
field can be used to determine which one is the newest copy. If no relation between
an inode can be found with another inode, then this inode is called an orphan.
Unreferenced data pages are handled in a similar way. Orphaned entities will
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be removed during mounting. Items that become orphaned during the removal
process will be removed as well.

For destructive operations, the idea is to create orphans as quickly as possible.
The operation can then always be completed if aborted unexpectedly. For exam-
ple, when removing a file, the very first step to take is updating the inode of its
parent directory. The file inode and any related data, will then become orphaned.

For constructive operations, the idea is to keep all new and modified data
orphaned as long as possible. Also, existing data must be kept intact. Then the
changes made by the operation can always be undone if aborted. When creating
a file, the first step is to create the inode of the file and the last step is to update
the inode of its parent directory. The functions in the file store API should thus
not overwrite file data. Instead they must write updated data to a new virtual
location. The old data locations are deleted at the end of the operation (when
they have become orphaned). By preserving the old data, a rollback is possible.

The four corrective actions that our mount algorithm makes are: (1) removing
unreferenced inodes, (2) removing unreferenced data pages, (3) removing pages
with content of which a newer version was found, (4) removing pages that have
state invalid. Removing means marking as obsolete. The actual erasing is done
later by the garbage collector. A page can have state invalid if power loss occurred
during the first step of the two step programming protocol.

5.6 Multiple Users

The verification method that we have described in the previous sections was
performed with a single user process. Even though our implementation supports
multiple users, it is not possible to apply the same method to a model with
multiple simultaneous users. The reason is that the expected result of each API
call is not predictable. We have two variants of our model that contain mul-
tiple users; variant MU without power loss injection, and variant MUPL with
power loss injection. In these variants each user again executes a sequence of
file store API calls, but this time the results are not compared to a reference
implementation. Only general consistency checks are performed. Our main fo-
cus with these variants has been on verifying the absence of deadlock. We hope
to do more extensive verification in the future. Additional processes cause the
state space to explode, making it currently impossible to perform any exhaustive
model checking on the multi user variants, even with a bounded model.

6 Verification and Results

The model checking tool SPIN [22] was used for verification of our model. Results
of our verification efforts are presented and discussed in Section 6.2. First we will
present a method that we developed for compact storage of variables.

6.1 CCVS: Custom Compact Variable Storage

Our model contains many variables with a small size, typically of the special
Promela variable type unsigned. SPIN maps such variables onto (larger) integer
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type variables (byte/short/int). As a result, the size of the state vector can
be larger than strictly required. Inspired by the work of Ruys [37] we have
implemented a generic method for storing the values of multiple variables into a
single integer type variable, which then serves as a container. The purpose of this
storage method is to reduce memory usage during verification. Bit arithmetic
is used for reading and writing the values of individual variables from such a
container variable. CCVS makes heavy use of preprocessor macros. We have
currently defined variables both as normal individual variables and using our
CCVS method. One of these two storage methods is chosen with a preprocessor
flag. Disabling CCVS can be useful for debugging purposes, since it obfuscates
the variables.

6.2 Results

We will first discuss results obtained for the SU variant that was described in
Section 5.3. We have been able to perform exhaustive verification for sequences
(of file store API calls) up to length 6 with a memory usage less than 1 GB.
Using a machine equipped with a 2.3 GHz Intel Xeon CPU and 32 GB of RAM
we were able to go up to length 8. Sequences of length 15 and 31 have been
extensively tested using the bitstate hashing technique [20].

It is important to note that, thanks to the small scale of the file store, short se-
quences will already result in many interesting situations being tested. Based on
experience gained by making a deterministic test suite, we can say that the ma-
jority of error conditions and corner cases in the file store are reachable at length
5 or below. Sequences with a length above 8 mainly involve exploring states that
could be considered variations of states reachable at shorter lengths. Complete
verification, with an unbounded sequence, is currently infeasible. Nevertheless,
the results that we have obtained give us confidence that our implementation
functions as intended and expected. In the future we plan to extend the reachable
part of the entire state space by starting with different initial states.

Results from our exhaustive verification runs can be found in Table 1, Table 2,
and Table 3. Each table shows the number of states, the memory usage, and
the execution time for different sequence lengths of file store API calls. The
difference between the three tables is the state compression method that was
chosen in SPIN. No compression was used for the results listed in Table 1, state

Table 1. Results for variant SU. Compression: none.

Sequence length CCVS States Memory (MB) Time (s)
2 no 129,835 21 0.2
2 yes 137,581 14 0.2
3 no 1,140,027 168 1.7
3 yes 1,217,514 105 1.7
4 no 9,332,851 1,387 14.5
4 yes 10,039,814 876 14.0
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Table 2. Results for variant SU. Compression: -DCOLLAPSE.

Sequence length CCVS States Memory (MB) Time (s)
2 no 129,835 7 0.4
2 yes 137,581 7 0.3
3 no 1,140,027 43 3.6
3 yes 1,217,514 39 3.0
4 no 9,332,851 344 29.0
4 yes 10,039,814 319 24.4

vector collapse [21] was used for Table 2, and minimized DFA encoding [24] was
used for Table 3.

CCVS proved to be very useful for reducing memory usage during verification
of our model. To our surprise it also consistently reduced the time needed to
verify the model, despite the additional computations that it makes. The benefit
of CCVS is particularly significant when using SPIN’s minimized DFA encoding
technique (Table 3), where it reduced memory usage by more than half. The
results show that minimized DFA encoding gives the lowest memory usage, even
without CCVS, at the cost of a significantly longer execution time. We have used
this powerful compression technique, in combination with CCVS, during the rest
of our verification efforts since memory is the most scarce resource available to us.

Table 3. Results for variant SU. Compression: -DMA.

Sequence length CCVS States Memory (MB) Time (s)
2 no 129,835 6 3.4
2 yes 137,581 4 2.0
3 no 1,140,027 27 34.2
3 yes 1,217,514 14 19.3
4 no 9,332,851 147 317.0
4 yes 10,039,814 60 164.0
5 yes 67,763,329 249 1,170.0
6 yes 365,532,240 900 6,710.0
7 yes 1,801,435,400 5,989 33,800.0
8 yes 8,010,865,300 18,577 156,000.0

The use of model checking proved particularly useful during the verification of
the model variant SUPL that included power loss injection, which was discussed
in section 5.4. By analyzing all possible execution interleavings of the processes
in the model, we have been able to verify that our implementation is always able
to recover to a valid consistent state, regardless of the moments at which power
loss situations occur.

We have been able to perform exhaustive verification for a sequence length
of 5 on a machine with 32 GB RAM. Results for verification runs on the SUPL
variant are listed in Table 6.2. The applied state compression technique was
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Table 4. Results for variant SUPL. Compression: -DMA.

Sequence length CCVS States Memory (MB) Time (s)
2 yes 13,205,390 98 268.0
3 yes 93,392,252 882 2,040.0
4 yes 727,651,040 5,434 16,700.0
5 yes 5,467,663,300 28,584 134,000.0

very efficient with a compression of 95.4% at length 5. This means that without
compression the verification run would have required 626 gigabyte of memory.
Without CCVS it would have even been double that amount. The execution
time of 37 hours is long but in our case more than acceptable. Being able to
trade time for reduction in memory usage has allowed us to perform exhaustive
verification for sequences longer than would otherwise have been possible.

We already started using the described verification methods during the de-
velopment of our implementation. This has helped us to find flaws in our imple-
mentation quickly and effectively. Like a compiler can point out syntax errors in
its input, a verifier can reveal errors in the functioning of its input. By analyzing
and fixing our mistakes, we gained a better understanding of the functioning of
the model. This knowledge was beneficial for the remainder of the development
cycle.

We found a few bugs in our implementation through model checking. In our
garbage collection algorithm we found a bug that would probably have never
been discovered without the help of model checking techniques. A few free pages
are always implicitly reserved for garbage collection so that valid content can
be moved from a dirty block to other blocks, before the dirty block is erased. It
turned out that the situation in which a power failure occurs right before the
erasure of a block was not properly handled. In that case the number of avail-
able free pages could decrease below the minimum amount needed to perform
garbage collection on an arbitrary dirty block. This flaw was fixed by adjusting
the garbage collection algorithm to process the dirtiest blocks first.

We have been unable to perform exhaustive verification on the MU and MUPL
variants of our model. The state space explodes when multiple Promela processes
are used in a model. Approximative verification has been applied on these vari-
ants using SPIN’s bitstate hashing technique. Bitstate hashing explores only a
subset of the entire state space. Based upon the results obtained and the com-
plexity estimates given by Spin, it is difficult to estimate the full size of the state
space. Results of this testing have therefore been omitted from this paper. Our
focus up till now has been mainly in the single user variants. We plan to shift
our focus to the multi user variants in the near future.

7 Conclusion and Further Work

We have presented the construction of a POSIX-like file store for Flash mem-
ory, specially designed for model checking. The system has been constructed
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using the Promela modeling language. The model abstracts from a real file store
by reducing various data structures and by reducing the number of operations
supported.

Distinguishing features of our model are the exhaustive verification of the code
and the ability to inject multiple power losses in the functioning system. Upon
recovery from power loss, the system status is restored into a known correct
state. This mechanism has been exhaustively verified. Multiple user processes
exercise the model to its full extent under exhaustive verification using a test
harness. The paper gives quantitative results of the model checking process such
as the compression mechanisms used, number of states investigated, memory
usage and running time.

The exhaustive verification makes our approach stand out from other ways
of verifying a file system. In [13] the code of a Linux VFS is downscaled and
transformed into Spin and SMART models. Although the authors of that paper
downscale to similar values as we have used, they seemed unable to use exhaus-
tive verification on their model. Additionally our model verifies Flash particulars
such as out of place updates and garbage collection. Our approach differs from
[42] in that we test a special purpose file store for Flash memory whereas they
concentrate upon existing file systems. Compared to various papers based upon
the refinement approach we have constructed real code, resulting in a functioning
system.

The middle road between the above approaches we have followed by construct-
ing an abstract model in Promela has proven to be very useful to test a design
concept on a reduced scale. Our model proved to be truly effective in verifying
the ability of the RAFFS implementation to recover from power loss.

We can’t claim full verification of our implementation because of the bounds
that we have set in the model to limit the size of the state space, and also because
of the assumption that our reference implementation is correct. However, the
results that we have obtained give us high confidence in the correctness of our
implementation. Our efforts could be considered as an extreme form of testing.

RAFFS has no direct practical application since it is a highly abstracted
design and implementation. That was also never our intention. Our work gives
a good indication of the complexities involved with model checking a file store
implementation. Even an abstracted and downscaled file store is too complex
to perform unbounded exhaustive verification with currently available hardware
and technologies. The inevitable dependency on data is one of the causes of the
enormous size of the state space.

We envisage reducing some of the current severe abstractions in the model.
A goal is to make our implementation more realistic and more comparable to
existing implementations and specifications. We want to make the file store API
more similar to POSIX. A desirable modification is to store directories as files like
is done in UNIX. This will also require upscaling the file store. The page based
mapping in the FTL can be replaced by a more complex (and more memory
efficient) block based mapping.
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Since obtaining the results presented in this paper we have continued opti-
mizing our code in an effort to further reduce the size of the state space and the
memory usage. Depending on the model variant, we have been able to achieve
reductions in memory usage up to 50%.

Our test harness currently always starts with the same initial state of the
file store. This is going to be changed so that the initial state can be read
from an input file. Files containing valid initial states will be generated through
simulation runs.

The capabilities of model checkers have recently been expanded with multi-
threading [19], opening up the possibility of significant performance gains. The
continued growth of memory sizes will allow us to test longer sequences, and/or
increase the complexity of the model.
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34. Mühlberg, J.T., Lüttgen, G.: Blasting Linux code. In: Brim, L., Haverkort, B.R.,
Leucker, M., van de Pol, J. (eds.) FMICS 2006 and PDMC 2006. LNCS, vol. 4346,
pp. 211–226. Springer, Heidelberg (2007)

35. Part 1: Base definitions POSIX. ISO/IEC 9945-1:2003
36. Part 2: System Interfaces POSIX. ISO/IEC 9945-2:2003
37. Ruys, T.C.: Towards Effective Model Checking. PhD thesis, University of Twente,

Enschede (March 2001)
38. Spivey, J.M.: The Z notation: a reference manual. Prentice-Hall, Inc., Upper Saddle

River (1989)

http://vstte.ethz.ch
http://www.spinroot.com/spin/Man/promela.html


RAFFS: Model Checking a Robust Abstract Flash File Store 245

39. Taverne, P.: Raffs: Model checking a robust abstract flash file store. Master’s
thesis, Delft University of Technology (2009), http://repository.tudelft.nl/

view/ir/uuid%3A2b4a1434-8169-481d-9824-fe79e9c4874c/

40. Verified software repository, http://vsr.sourceforge.net
41. Verified software: Theories, tools, experiments (October 2005),

http://vstte.inf.ethz.ch/

42. Yang, J., Twohey, P., Engler, D., Musuvathi, M.: Using model checking to find
serious file system errors. ACM Trans. Comput. Syst. 24(4), 393–423 (2006)

http://repository.tudelft.nl/view/ir/uuid%3A2b4a1434-8169-481d-9824-fe79e9c4874c/
http://repository.tudelft.nl/view/ir/uuid%3A2b4a1434-8169-481d-9824-fe79e9c4874c/
http://vsr.sourceforge.net
http://vstte.inf.ethz.ch/


European Train Control System:
A Case Study in Formal Verification�
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Abstract. Complex physical systems have several degrees of freedom.
They only work correctly when their control parameters obey corre-
sponding constraints. Based on the informal specification of the European
Train Control System (ETCS), we design a controller for its cooperation
protocol. For its free parameters, we successively identify constraints that
are required to ensure collision freedom. We formally prove the parameter
constraints to be sharp by characterizing them equivalently in terms of
reachability properties of the hybrid system dynamics. Using our deduc-
tive verification tool KeYmaera, we formally verify controllability, safety,
liveness, and reactivity properties of the ETCS protocol that entail colli-
sion freedom. We prove that the ETCS protocol remains correct even in
the presence of perturbation by disturbances in the dynamics. We verify
that safety is preserved when a PI controlled speed supervision is used.

Keywords: formal verification of hybrid systems, train control, theo-
rem proving, parameter constraint identification, disturbances.

1 Introduction

Complex physical control systems often contain many degrees of freedom includ-
ing how specific parameters are instantiated or adjusted [1,2,3]. Yet, virtually
all of these systems are hybrid systems [4] and only work correctly under certain
constraints on these parameters. The European Train Control System (ETCS) [5]
has a wide range of different possible configurations of trains, track layouts, and
different driving circumstances. It is only safe for certain conditions on external
parameters, e.g., as long as each train is able to avoid collisions by braking with
its specific braking power on the remaining distance to the rear end of the next
train. Similarly, internal control design parameters for supervisory speed control
and automatic braking triggers need to be adjusted in accordance with the un-
derlying train dynamics. Moreover, parameters must be constrained such that
the system remains correct when passing from continuous models with instant
reactions to sampled data discrete time controllers of hardware implementations.
Finally, parameter choices must preserve correctness robustly in the presence of
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disturbances caused by unforeseen external forces (wind, friction, . . . ) or internal
modelling inaccuracies of ideal-world dynamics, e.g., when passing from ideal-
world dynamics to proportional-integral (PI) controller implementations.1 Yet,
determining the range of external parameters and the choice of internal design
parameters for which complex control systems like ETCS are safe, is not possible
just by looking at the model, even less so in the presence of disturbance.

Likewise, it is difficult to read off the parameter constraints that are required
for correctness from a failed verification attempt of model checkers [6,7,8], since
concrete numeric values of a counterexample trace cannot simply be translated
into a generic constraint on the free parameters of the system which would have
prevented this kind of error. While approaches like counterexample-guided ab-
straction refinement [9,8] are highly efficient in undoing automatic abstractions
of an abstract hybrid system from spurious counterexamples, they stop when
true counterexamples remain in the concrete system. For discovering constraints
on free parameters, though, even concrete models will have counterexamples
until all required parameter constraints have been identified.

Instead, we use our techniques based on symbolic decompositions [10] for sys-
tematically exploring the design space of a hybrid system and for discovering cor-
rectness constraints on free parameters. For a complex physical system, we show
step by step how a control system can be developed that meets its control design
goals and desired correctness properties. Starting from a coarse skeleton of the
ETCS cooperation protocol obtained from its official specification [5], we system-
atically develop a safe controller and identify the parameter constraints that are
required for collision freedom. Although these parameter constraints are safety-
critical, they are not stated in the official specification [5]. Rather, they result
from the system dynamics and objectives and need to be made explicit to find
safe choices. The constraints are nontrivial especially those needed to ensure a safe
interplay of physics and sampled control implementations. Using the parametric
constraints so discovered, we verify correctness properties of the ETCS cooper-
ation protocol that entail collision freedom. We verify rich properties, including
safety, controllability, reactivity, and liveness, which are not uniformly express-
ible and verifiable in most other approaches. Moreover, we verify those correctness
properties of the parametric ETCS case study almost fully automatically in our
verification tool KeYmaera [11]. Compared to our preliminary short report [12] we
prove 12 additional properties including PI control and disturbance extensions.

Contributions. We show how realistic fully parametric hybrid systems for traffic
protocols can be designed and verified using a logic-based approach. For ETCS, we
identify all relevant safety constraints on free parameters, including external sys-
tem parameters and internal design parameters of controllers. Safe control choices
will be important for more than two million passengers in Europe per day. Our first
contribution is that we characterize safe parameter choices equivalently in terms
of properties of the train dynamics and that we verify controllability, reactivity,
safety, and liveness properties of ETCS. Our second contribution is that we show

1 PI is a standard control technique and also used for controlling trains [2].
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how to verify ETCS with a proportional-integral (PI) controller. In contrast to
their routine use in control, giving formal proofs for the correct functioning of PIs
has been an essentially unsolved problem. Other issues often arise from verifica-
tion results for ideal-world dynamics that cease to hold for real-world dynamics.
Our third contribution is to show how to extend ETCS verification to the presence
of disturbances in the dynamics, which account for friction etc. Most notably, the
ETCS model with its rich set of properties is out of scope for other approaches.
ETCS further illustrates a more general phenomenon in hybrid systems: safely
combining dynamics with control requires parameter constraints that are much
more complicated than the original dynamics.

Related Work. Model checkers for hybrid systems, for example HyTech [4]
and PHAVer [8], verify by exploring the state space of the system as exhaustively
as possible. In contrast to our approach they need concrete numbers for most
parameters and cannot verify liveness or existential properties, e.g., whether and
how a control parameter can be instantiated so that the system is always safe.

Batt et al. [3] give heuristics for splitting regions by linear constraints that can
be used to determine parameter constraints. Frehse et al. [13] synthesize param-
eters for linear hybrid automata. However, realistic systems like ETCS require
non-linear parameter constraints and are out of scope for these approaches.

Tomlin et al. [14] show a game-theoretic semi-decision algorithm for hybrid
controller synthesis. For systems like ETCS, which are more general than linear
or o-minimal hybrid automata, they suggest numerical approximations. We give
exact results for fully parametric ETCS using symbolic techniques.

Peleska et al. [15] and Meyer et al. [1] verify properties of trains. They do not
verify hybrid dynamics or the actual movement of trains. The physical dynamics
is crucial for faithful train models and for showing actual collision freedom,
because, after all, collision freedom is a property of controlled movement.

Cimatti et al. [16] analyze consistency of informal requirements on ETCS
expressed as temporal properties. Our work is complementary, as we focus on
developing and verifying an actual hybrid systems controller that can be imple-
mented later on, not the consistency of the requirement specification properties.

Structure of this Paper. In Sect. 2 we summarize differential dynamic logic
[10] which we use for modelling ETCS. We introduce a formal model for paramet-
ric ETCS in Sect. 3. We refine and verify it using symbolic decompositions [10]
in Sect. 4. More complex control models, namely PI controllers are the topic of
Sect. 5. In Sect. 6, we generalize the physical transmission model to the presence
of disturbances and verify ETCS with disturbances. Section 7 gives experimental
results in our verification tool KeYmaera. Proofs are given in [17].

2 Preliminaries: Differential Dynamic Logic

In this section, we survey differential dynamic logic dL [10] which is tailored for
specifying and verifying rich correctness properties of parametric hybrid systems.
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Both its ability to express rich properties and the structural decomposition tech-
niques for dL are highly beneficial for expressing and discovering the required
parameter constraints for ETCS. We only develop the theory as far as necessary
and refer to [10] for more background on dL and the sequent proof calculus for
dL which is implemented in KeYmaera [11].

The logic dL is a first-order logic with built-in correctness statements about
hybrid systems. It is designed such that parametric verification analysis can be
carried out directly in dL. Generalizing the principle of dynamic logic to the
hybrid case, dL combines hybrid system operations and correctness statements
about system states within a single specification and verification language. dL
uses hybrid programs (HP) [10] as a program notation for hybrid systems that is
amenable to deductive structural decomposition in dL. In addition to standard
operations of discrete programs, HPs have continuous evolution along differential
equations as a basic operation. For example, the movement of a train braking
with force b can be expressed by placing the differential equation τ.p′′ = −b
(where τ.p′′ is the second time-derivative of τ.p) at the appropriate point inside
a HP. Together with the change of variable domain from N to R, differential
equations constitute a crucial generalization from discrete dynamic logic to dL.

The syntax of hybrid programs is shown together with an informal semantics
in Tab. 1. The basic terms (called θ in the table) are either real numbers, real-
valued variables or arithmetic expressions built from those.

The effect of x := θ is an instantaneous discrete jump assigning θ to x. That
of x′ = θ ∧ χ is an ongoing continuous evolution controlled by the differential
equation x′ = θ while remaining within the evolution domain χ. The evolution
is allowed to stop at any point in χ but it must not leave χ. For unrestricted
evolution, we write x′ = θ for x′ = θ ∧ true. Systems of differential equations and
higher-order derivatives are defined accordingly: τ.p′ = v ∧ τ.v′ = −b ∧ τ.v ≥ 0,
for instance, characterizes the braking mode of a train with braking force b that
holds within τ.v ≥ 0 and stops at speed τ.v ≤ 0 at the latest.

The test action ?χ is used to define conditions. It completes without chang-
ing the state if χ is true in the current state, and it aborts all further evo-
lution, otherwise. The nondeterministic choice α ∪ β expresses alternatives in

Table 1. Statements of hybrid programs (F is a first-order formula, α, β are HPs)

Statement Effect
α; β sequential composition, first performs α and then β afterwards
α ∪ β nondeterministic choice, following either α or β
α∗ nondeterministic repetition, repeating α some n ≥ 0 times
x := θ discrete assignment of the value of term θ to variable x (jump)
x := ∗ nondeterministic assignment of an arbitrary real number to x(
x′

1 ∼1 θ1 ∧ · · · ∧ continuous evolution of xi along differential (in)equation system
x′

n ∼n θn ∧ F
)

x′
i ∼i θi, with ∼i ∈ {≤, =}, restricted to evolution domain F

?F check if formula F holds at current state, abort otherwise
if(F ) then α perform α if F is true, do nothing otherwise
if(F ) then α else β perform α if F is true, perform β otherwise
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the behavior of the hybrid system. The if-statement can be expressed using the
test action and the choice operator. Its semantics is that if the condition is
true, the then-part is executed, otherwise the else-part is performed, if there is
one, otherwise the statement is just skipped. The sequential composition α; β
expresses that β starts after α finishes. Nondeterministic repetition α∗ says
that the hybrid program α repeats an arbitrary number of times. These op-
erations can be combined to form any other control structure. For instance,
(?τ.v ≥ m.r; τ.a := A) ∪ (?τ.v ≤ m.r; τ.a :=−b) says that, depending on the re-
lation of the current speed τ.v of some train and its recommended speed m.r, τ.a
is chosen to be the maximum acceleration A if m.e − τ.p ≥ 0 or maximum de-
celeration −b if m.e− τ.p ≤ 0. If both conditions are true (hence, m.e− τ.p = 0)
the system chooses either way. The random assignment x := ∗ nondeterminis-
tically assigns any value to x, thereby expressing unbounded nondeterminism,
e.g., in choices for controller reactions. For instance, the idiom τ.a := ∗; ?τ.a > 0
randomly assigns any positive value to the acceleration τ.a.

The dL-formulas are defined by the following grammar (θi are terms, x is a
real-valued variable, ∼ ∈ {<,≤, =,≥, >}, φ and ψ are formulas, α is a HP):

θ1 ∼ θ2 | ¬φ | φ ∧ ψ | φ ∨ ψ | φ → ψ | φ ↔ ψ | ∀xφ | ∃xφ | [α]φ | 〈α〉φ

The formulas are designed as an extension of first-order logic over the reals
with built-in correctness statements about HPs. They can contain propositional
connectives ∧,∨,→,↔,¬ and real-valued quantifiers ∀, ∃ for quantifying over
parameters and evolution times. For HP α, dL provides correctness statements
like [α]φ and 〈α〉φ, where [α]φ expresses that all traces of system α lead to states
in which φ holds. Likewise, 〈α〉φ expresses that there is at least one trace of α
to a state satisfying φ. As dL is closed under logical connectives, it provides
conditional correctness statements like φ → [α]ψ, saying that α satisfies ψ if φ
holds at the initial state, or even nested statements like the reactivity state-
ment [α]〈β〉φ, saying that whatever HP α is doing, HP β can react in some way
to ensure φ. As a closed logic, dL can also express mixed quantified statements
like ∃m [α]φ saying that there is a choice of parameter m such that system α
always satisfies φ, which is useful for determining parameter constraints.

3 Parametric European Train Control System

The European Train Control System (ETCS) [5,1] is a standard to ensure safe
and collision-free operation as well as high throughput of trains. Correct func-
tioning of ETCS is highly safety-critical, because the upcoming installation of
ETCS level 3 will replace all previous track-side safety measures in order to
achieve its high throughput objectives. In this section, we present a system
skeleton, which corresponds to a simple representation of the train dynamics
and controller reflecting the informal ETCS cooperation protocol [5]. This sys-
tem is actually unsafe. In Sect. 4, we will systematically augment this skeleton
with the parameter constraints that are required for safety but not stated in [5].
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3.1 Overview of the ETCS Cooperation Protocol

ETCS level 3 follows the moving block principle, i.e., movement permissions are
neither known beforehand nor fixed statically. They are determined based on
the current track situation by a Radio Block Controller (RBC). Trains are only
allowed to move within their current movement authority (MA), which can be
updated by the RBC using wireless communication. Hence the train controller
needs to regulate the movement of a train locally such that it always remains
within its MA. After MA, there could be open gates, other trains, or speed re-
strictions due to tunnels. The automatic train protection unit (atp) dynamically
determines a safety envelope around a train τ , within which it considers driving
safe, and adjusts the train acceleration τ.a accordingly. Fig. 1a illustrates the
dynamic assignment of MA. The ETCS controller switches according to the pro-
tocol pattern in Fig. 1b which corresponds to a simplified version of Damm et
al. [2]. When approaching the end of its MA the train switches from far mode
(where speed can be regulated freely) to negotiation (neg), which, at the latest,
happens at the point indicated by ST (for start talking). During negotiation the
RBC grants or denies MA-extensions. If the extension is not granted in time, the
train starts braking in the correcting mode (cor) returning to far afterwards.
Emergency messages announced by the RBC can also put the controller into cor
mode. If so, the train switches to a failsafe state (fsa) after the train has come
to a full stop and awaits manual clearance by the train operator.

1a: Dynamic assignment of movement authorities

far neg

cor fsa

1b: Cooperation pattern

Fig. 1. ETCS train cooperation protocol

Lemma 1 (Principle of separation by movement authorities). If each
train stays within its MA and, at any time, MAs issued by the RBC form a
disjoint partitioning of the track, then trains can never collide (proof see [17]).

Lemma 1 effectively reduces the verification of an unbounded number of traffic
agents to a finite number. We exploit MAs to decouple reasoning about global
collision freedom to local cooperation of every traffic agent with its RBC. In
particular, we verify correct coordination for a train without having to consider
gates or railway switches, because these only communicate via RBC mediation
and can be considered as special reasons for denial of MA-extensions. We only
need to prove that the RBC handles all interaction between the trains by assign-
ing or revoking MA correctly and that the trains respect their MA. However, to
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enable the RBC to guarantee disjoint partitioning of the track it has to rely on
properties like appropriate safe rear end computation of the train. Additionally,
safe operation of the train plant in conjunction with its environment depends
on proper functioning of the gates. As these properties have a more static na-
ture, they are much easier to show once the actual hybrid train dynamics and
movements have been proven to be controlled correctly.

As trains are not allowed to drive backwards without clearance by track super-
vision personnel, the relevant part of the safety envelope is the closest distance
to the end of its current MA. The point SB, for start braking, is the latest point
where the train needs to start correcting its acceleration (in mode cor) to make
sure it always stays within the bounds of its MA. In Sect. 4, we derive a necessary
and sufficient constraint on SB that guarantees safe driving.

τ.v

τ.p
m1.r

m1.e
m1.d

m2.r

m2.e
m2.d

m3.r = m4.r

m3.e

m3.d

Fig. 2. ETCS track profile

We generalize the concept of MA to a vector
m = (d, e, r) meaning that beyond point m.e the
train must not have a velocity greater than m.d.
Additionally, the train should try not to out-
speed the recommended speed m.r for the current
track segment. Short periods of slightly higher
speed are not considered safety-critical. Fig. 2 shows an example of possible train
behavior in conjunction with the current value of m that changes over time due
to RBC communication.

For a train τ = (p, v, a) at position τ.p with current velocity τ.v and accelera-
tion τ.a, we want to determine sufficient conditions ensuring safety and formally
verify that τ.v is always safe with respect to its current MA, thus satisfying:

τ.p ≥ m.e → τ.v ≤ m.d (S)

Formula (S) expresses that the train’s velocity τ.v does not exceed the strict
speed limit m.d after passing the point m.e (i.e., τ.p ≥ m.e). Generalized MA
are a uniform composition of two safety-critical features. They are crucial as-
pects for ensuring collision free operation in ETCS (Lemma 1) and can take
into account safety-critical velocity limits due to bridges, tunnels, or passing
trains. For example high speed trains need to reduce their velocity while passing
non-airtight or freight trains with a pressure-sensitive load within a tunnel. Our
model captures this by reducing the speed component m.d of m.

3.2 Formal Model of Fully Parametric ETCS

For analyzing the proper functioning of ETCS, we have developed a formal model
of ETCS as a hybrid program (see Fig. 3) that is based on the informal speci-
fication [5]. RBC and train are independent distributed components running in
parallel. They interoperate by message passing over wireless communication. As
the RBC is a purely digital track-side controller and has no dependent continuous
dynamics, we can express parallelism equivalently by interleaving using nonde-
terministic choice (∪) and repetition (∗): the decisions of the train controller
only depend on the point in time where RBC messages arrive at the train, not
the communication latency. Thus, the nondeterministic interleaving in ETCS
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ETCSskel : (train ∪ rbc)∗

train : spd; atp; drive
spd : (?τ.v ≤ m.r; τ.a := ∗; ? − b ≤ τ.a ≤ A)

∪(?τ.v ≥ m.r; τ.a := ∗; ? − b ≤ τ.a ≤ 0)
atp : if (m.e − τ.p ≤ SB ∨ rbc.message = emergency) then τ.a := −b fi
drive : t := 0; (τ.p′ = τ.v ∧ τ.v′ = τ.a ∧ t′ = 1 ∧ τ.v ≥ 0 ∧ t ≤ ε)
rbc : (rbc.message := emergency) ∪ (m := ∗; ?m.r > 0)

Fig. 3. Formal model of parametric ETCS cooperation protocol (skeleton)

where either the train or (∪) the RBC chooses to take action faithfully models
every possible arrival time without the need for an explicit channel model. The
∗ at the end of ETCSskel indicates that the interleaving of train and RBC re-
peats arbitrarily often. Successive actions in each component are modelled using
sequential composition (; ). The train checks for its offset to the recommended
speed (in spd) before checking if emergency breaking is necessary (in atp).

Train Controller. As it is difficult to use highly detailed models for the train and
its mechanical transmission like in [2] directly in the verification and parameter
discovery process, we first approximate it by a controller with a ranged choice for
the effective acceleration τ.a between its lower bound (−b) and upper bound (A).
(We will refine the dynamics in Sect. 5 and 6.) This controller provides a model
that we can use both to derive parameter constraints, and to overapproximate
the choices made by the physical train controller [2]. For Sect. 3–4, we model the
continuous train dynamics by the differential equation system

τ.p′ = τ.v ∧ τ.v′ = τ.a ∧ t′ = 1 ∧ τ.v ≥ 0 ∧ t ≤ ε . (I)

It formalizes the ideal-world physical laws for movement, restricted to the evo-
lution domain τ.v ≥ 0 ∧ t ≤ ε in drive. The primed variables stand for the first
time-derivative of the respective unprimed variable. Therefore, τ.p′ gives the
rate with which the position of the train changes, i.e., the velocity (τ.p′ = τ.v).
The velocity itself changes continuously according to the acceleration τ.a, i.e.,
τ.v′ = τ.a. The train speeds up when τ.a > 0 and brakes when τ.a < 0. In par-
ticular, for τ.a < 0, the velocity would eventually become negative, which would
mean the train is driving backwards. But that is prohibited without manual
clearance, so we restrict the evolution domain to non-negative speed (τ.v ≥ 0).
Time can be measured by clocks, i.e. variables changing with constant slope 1
(t′ = 1). To further account conservatively for delayed effects of actuators like
brakes or for delays caused by cycle times of periodic sensor polling and sampled
data discrete time controllers, we permit the continuous movement of the train
to continue for up to ε > 0 time units until control decisions finally take effect.
This is expressed using the invariant region t ≤ ε on the clock t that is reset us-
ing the discrete assignment t := 0 before the continuous evolution starts. When
the system executes the system of differential equations in drive, it can follow a
continuous evolution respecting the constraints of (I).
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The speed supervision spd has two choices (∪). The first option in Fig. 3 can
be taken if the test ?τ.v ≤ m.r succeeds, the second one if the check ?τ.v ≥ m.r is
successful. If both succeed, either choice is possible. The spd chooses the acceler-
ation τ.a to keep the recommended speed m.r by a random assignment τ.a := ∗,
which assigns an arbitrary value to τ.a. By the subsequent test ? − b ≤ τ.a ≤ 0
an acceleration is chosen from the interval [−b, 0] if the current speed τ.v ex-
ceeds m.r (otherwise the full range [−b, A] is available). Our controller includes
controllers optimizing speed and energy consumption as secondary objectives.

As a supervisory controller, the automatic train protection (atp in Fig. 3)
checks whether the point SB has been passed (m.e − τ.p ≤ SB) or a message
from the RBC was received notifying of a track-side emergency situation. Both
events cause immediate braking with full deceleration −b. Thus, atp decisions
take precedence over spd speed advisory. In the case where m.e− τ.p > SB but
no emergency message arrived the decisions made by spd take effect.

Radio Block Controller. We model the RBC as a controller with two possible
choices (∪). It may choose to demand immediate correction by sending emer-
gency messages (rbc.message := emergency) or update the MA by assigning ar-
bitrary new values to its three components (m := ∗). These nondeterministic
changes to m reflect different real-world effects like extending m.e and m.d if
the heading train has advanced significantly or, instead, notify of a new recom-
mended speed m.r for a track segment. We will identify safety-critical constraints
on MA updates in Sect. 4.2.

4 Parametric Verification of Train Control

The model in Fig. 3 from the informal specification is unsafe, i.e., it does not
always prevent collisions. To correct this we identify free parameter constraints
by analyzing increasingly more complex correctness properties of ETCS. Using
these constraints we refine the train control model iteratively into a safe model
with constraints on design parameter choices and physical prerequisites on ex-
ternal parameters resulting from the safety requirements on the train dynamics.

Iterative Refinement Process. For discovering parametric constraints required
for system correctness, we follow an iterative refinement process using structural
symbolic decomposition in dL: first, we decompose the uncontrolled system dy-
namics to a first-order formula characterizing the controllable state region, which
specifies for which parameter combinations the system dynamics can actually be
controlled safely by any control law. Next, we successively add partial control
laws to the system while leaving its decision parameters (like SB or m) free and
use structural symbolic decomposition again to discover parametric constraints
that preserve controllability under these control laws. This step we repeat until
the resulting system is proven safe. Finally, we prove that the discovered para-
metric constraints do not over-constrain the system inconsistently by showing
that it remains live.
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In practice, variants of the controllable domain constitute good candidates for
inductive invariants, and the parameter constraints discovered ensure that the
control choices taken by the controller never leave the controllable domain.

4.1 Controllability Discovery in Parametric ETCS

By analyzing the uncontrolled train dynamics, we obtain a controllability con-
straint on the external train parameters, i.e., a formula characterizing the pa-
rameter combinations for which the train dynamics can be controlled safely by
any control law at all. For our analysis we choose the following assumptions

τ.v ≥ 0 ∧ m.d ≥ 0 ∧ b > 0 (A)

stating that the velocity is non-negative, the movement authority issued by the
RBC does not force the train to drive backwards, and the train has some positive
braking power b. The controllability constraint is now obtained by applying the
dL proof calculus [10] to the following dL formula:

(A ∧ τ.p ≤ m.e) → [τ.p′ = τ.v ∧ τ.v′ = −b ∧ τ.v ≥ 0]S .

τ.p

τ.v

m.d

m.e

τ.v2
− m.d2

≤ 2b(m.e − τ.p)

Fig. 4. Controllable region

This means that starting in some state
where (A) holds and the train has not yet
passed m.e (τ.p ≤ m.e) every possible evo-
lution of the train system that applies full
brakes (τ.v′ = −b) is safe, i.e. does not
violate (S). This dL formula only holds if
τ.v2 − m.d2 ≤ 2b(m.e − τ.p). We prove that
the so discovered constraint, illustrated in
Fig. 4, characterizes the set of states where
the train dynamics can still respect MA by
appropriate control choices (expressed by the
left-hand side dL formula):

Proposition 1 (Controllability). The constraint τ.v2 − m.d2 ≤ 2b(m.e − τ.p)
is a controllability constraint for the train τ with respect to property (S) on page
252, i.e., the constraint retains the ability of the train dynamics to respect the
safety property. Formally, with A∧ τ.p ≤ m.e as regularity assumptions, the fol-
lowing equivalence is a valid dL formula:

[τ.p′ = τ.v ∧ τ.v′ = −b ∧ τ.v ≥ 0](τ.p ≥ m.e → τ.v ≤ m.d)

≡ τ.v2 − m.d2 ≤ 2b(m.e − τ.p)

This formula expresses that every run of a train in braking mode satisfies (S)
if and only if condition τ.v2 − m.d2 ≤ 2b(m.e − τ.p) holds initially. Observe how
the above equivalence reduces a dL formula about future controllable train dy-
namics to a single constraint on the current state. We use this key reduction
step from safe train dynamics to controllably safe state-constraints by analyzing
whether each part of the ETCS controller preserves train controllability.



256 A. Platzer and J.-D. Quesel

Definition 1 (Controllable state). A train τ is in a controllable state, if
the train is always able to stay within its movement authority m by appropriate
control actions, which, by Proposition 1, is equivalent to

τ.v2 − m.d2 ≤ 2b(m.e − τ.p) ∧A . (C)

ETCS cannot be safe unless trains start and stay in controllable states. Hence
we pick (C) as a minimal candidate for an inductive invariant. This invariant
will be used to prove safety of the system by induction even automatically using
the technique in [18].

4.2 Iterative Control Refinement of ETCS Parameters

Starting from the constraints for controllable trains, we identify constraints for
their various control decisions and refine the ETCS model correspondingly.

RBC Control Constraints. For a safe functioning of ETCS it is important that
trains always respect their current MA. Consequently, RBCs are not allowed
to issue MAs that are physically impossible for the train like instantaneous full
stops. Instead RBCs are only allowed to send new MAs that remain within the
controllable range of the train dynamics. For technical reasons the RBC does not
reliably know the train positions and velocities in its domain of responsibility
to a sufficient precision, because the communication with the trains has to be
performed wirelessly with possibly high communication delay and message loss.
Thus, we give a failsafe constraint for MA updates which is reliably safe even
for loss of position recording communication.

Proposition 2 (RBC preserves train controllability). The constraint

m0.d
2 − m.d2 ≤ 2b(m.e − m0.e) ∧ m0.d ≥ 0 ∧ m.d ≥ 0 (M)

ensures that the RBC preserves train controllability (C) when changing MA
from m0 to m, i.e., the following formula is valid:

∀τ
(
C → [m0 := m; rbc]

(
M → C

))
. (1)

This RBC controllability is characterized by the following valid formula:

m.d ≥ 0 ∧ b > 0 → [m0 := m; rbc]
(
M ↔ ∀τ

(
(〈m := m0〉C) → C

))
. (2)

Constraint (M) characterizes that an extension is safe if it is possible to reduce
the speed by braking with deceleration b from the old target speed m0.d to
the new target speed m.d within the extension range m.e − m0.e, regardless of
the current speed of train τ . It imposes constraints on feasible track profiles.
Property (1) expresses that, for all trains in a controllable state (C), every RBC
change of MA m0 to m that complies with (M) enforces that the train is still in
a controllable state (C). Constraint (M) is characterized by the equivalence (2),
expressing that for every decision of rbc, (M) holds for the RBC change from
m0 to m if and only if all trains (∀τ) that were controllable (C) for the previous
MA (set using 〈m := m0〉) remain controllable for the new MA m.
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Train Control Constraints. Now that we found constraints characterizing when
the cooperation of train and RBC is controllable, we need to find out under which
circumstances the actual control choices by spd and atp retain controllability. In
particular, the design parameter SB (start braking point relative to the end of
the movement authority) needs to be chosen appropriately to preserve (C). First
we show that there is a choice of SB:

Proposition 3. For all feasible RBC choices and all choices of speed control,
there is a choice for SB that makes the train always stay within its MA, i.e., for
controllable states, we can prove:

C → [m0 := m; rbc]
(
M → [spd]〈SB := ∗〉[atp; drive]S

)
.

The formula expresses that, starting in a controllable region C, if the RBC up-
dates the MA from m0 to m respecting (M), then after arbitrary spd choices,
the train controller is still able to find some choice for SB (〈SB := ∗〉) such that
it always respect the fresh MA when following atp and drive. Since Proposition3
is provable in KeYmaera we know that there is a safe solution for ETCS. On
the formula level the assumptions are expressed using implications such that the
formula does not make any proposition if either (C) is not initially satisfied or
the RBC does not respect (M). The train controller is split up into the propo-
sition that for all executions of the speed supervision ([spd]) there is a choice
for SB (〈SB := ∗〉) such that the automatic train protection unit (atp) always
preserves safety during the execution of the trains movement in the drive phase.
For atp and drive we again make a statement over all possible executions of the
components. Only the choice of SB is existentially quantified.

To find a particular constraint on the choice of SB, we need to take the
maximum reaction latency ε of the train controllers into account. With ε > 0, the
point where the train needs to apply brakes to comply with m is not determined
by (C) alone, but needs additional safety margins to compensate for reaction
delays. Therefore, we search for a constraint that characterizes that for every
possible end of the movement authority (∀m.e) and train position (∀τ.v), train
movement with an acceleration of A preserves (C) if it started in a state where (C)
holds and the point SB has not been passed yet (m.e − τ.p ≥ SB ∧ C).

Proposition 4 (Reactivity constraint). If the train is in a controllable state,
the supervisory ETCS controller reacts appropriately in order to maintain con-
trollability iff SB is chosen according to the following equivalence(

∀m.e ∀τ.p
(
m.e − τ.p ≥ SB ∧ C → [τ.a := A; drive] C

))
≡ SB ≥ τ.v2 − m.d2

2b
+
(

A

b
+ 1

)(
A

2
ε2 + ε τ.v

)
. (B)

Constraint (B) on SB is derived using a projection of the train behavior to the
worst-case acceleration A in a state where SB has not been passed yet. We
choose this projection because the train controller needs to ensure that it can
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ETCSr : (trainr ∪ rbcr)∗

trainr : spd; atpr; drive

atpr : SB := τ.v2−m.d2

2b
+
(

A
b

+ 1
) (

A
2
ε2 + ε τ.v

)
; atp

rbcr : (rbc.message := emergency)
∪
(
m0 := m; m := ∗; ?m.r ≥ 0 ∧ m.d ≥ 0 ∧ m0.d

2 − m.d2 ≤ 2b(m.e − m0.e)
)

Fig. 5. Refined parametric ETCS cooperation protocol with bug-fixes to Fig. 3

drive safely with maximum acceleration A for ε time units even right before
passing SB in order for an acceleration choice of A to be safe constraint (B) is
not obvious from the system model. After discovering constraint (B), it can be
explained in retrospect: It characterizes the relative braking distance required
to reduce speed from τ.v to target speed m.d with braking deceleration b, which
corresponds to controllability and is expressed by the term τ.v2−m.d2

2b . In addition,
it involves the distance travelled during one maximum reaction cycle of ε time
units with acceleration A, including the additional distance needed to reduce
the speed down to τ.v after accelerating with A for ε time units (expressed
by

(
A
b + 1

) (
A
2 ε2 + ε τ.v

)
). This extra distance results from speed changes and

depends on the relation A
b of maximum acceleration A and braking power b.

Propositions 1–4 prove equivalences. Hence, counterexamples exist for the
ETCS skeleton in Fig. 3 whenever the parameter constraints are not met. Con-
sequently, these constraints must be respected for correctness of any model of
ETCS controllers, including implementation refinements. It is, thus, important
to identify these safety constraints early in the overall design and verification
process.

4.3 Safety Verification of Refined ETCS

By augmenting the system from Fig. 3 with the parametric constraints obtained
from Propositions 1–4, we synthesize a safe system model completing the ETCS
protocol skeleton. The refined model is presented in Fig. 5 which bug-fixes the
model in Fig. 3 taken from the informal specification (spd , atp, drive as in Fig. 3).

Proposition 5 (Safety). Starting in a controllable state, this global and un-
bounded-horizon safety formula about the refined ETCS system in Fig. 5 is valid:

C → [ETCSr](τ.p ≥ m.e → τ.v ≤ m.d) .

This provable formula states that, starting in a controllable region (C), the aug-
mented ETCS model is safe, i.e., trains always respect their movement authority.

As an example to illustrate the proof structure for the verification of Propo-
sition 5, consider the sketch in Fig. 6. By convention, such proofs start with the
conjecture at the bottom and proceed by decomposition to the leaves. We need
to prove that universal controllability (C) implies safety (S) at all times. As the
system consists of a global loop, we prove that (C) is an invariant of this loop
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C → [ETCSr]S

C → C

C → [trainr ∪ rbcr]C

C → [rbcr]C

m := ∗ rec

C → [trainr]C

τ.v ≥ m.r

m.e − τ.p ≥ SB

m.e − τ.p ≤ SB

τ.v ≤ m.r

m.e − τ.p ≤ SB

m.e − τ.p ≥ SB

C → S

Fig. 6. Proof sketch for Proposition 5

and strong enough to imply (S). It can
be shown easily that the invariant (C) is
initially valid (left branch) and implies
the postcondition (S) (right branch). As
usual, proving that invariant (C) is pre-
served by the loop body is the most chal-
lenging part of the proof in KeYmaera
(middle branch), which splits into two
cases. For the left case, we have to show
that the RBC preserves the invariant,
which can be proven like Proposition2.
For the right case, we show that the train
controller preserves the invariant. The
proof splits due to the choice in the spd
component depending on the relation of the current speed to the recommended
speed (τ.v vs. m.r). The next split on both of these branches depends on the
relation of (m.e − τ.p) and SB. If the train has passed point SB (middle case)
the system is safe (Proposition1), because the invariant describes a controllable
state and the atp applies brakes. The outer branches, where the train has not
yet passed SB, can be proven using Proposition4.

4.4 Liveness Verification of Refined ETCS

In order to show that the discovered parameter constraints do not over-constrain
the system inconsistently, we show liveness, i.e., that an ETCS train is able to
reach every track position with appropriate RBC permissions.

Proposition 6 (Liveness). The refined ETCS system is live, i.e., assuming
the RBC can safely grant the required MAs because preceding trains are moving
on, trains are able to reach any track position P by appropriate RBC choices:

τ.v ≥ 0 ∧ ε > 0 → ∀P 〈ETCSr〉 τ.p ≥ P

The formula expresses that, starting in a state where the velocity is non-negative
and the maximum evolution time is positive, every point P (∀P ) can be reached
(τ.p ≥ P ) by some execution of the ETCS model (〈ETCSr〉). Here the diamond
modality is used to say that not all, but some appropriate execution reaches a
state where the postcondition (τ.p ≥ P ) holds. For showing that the system is
live, a more liberal initial state is possible with regard to the controllability of
the train. It is easy to see from the domain restrictions (τ.v ≥ 0∧ t ≤ ε) in drive
that the assumptions (τ.v ≥ 0) and ε > 0 are necessary.

4.5 Full Correctness of ETCS

By collecting Propositions 1–6, we obtain the following main result of this paper,
which demonstrates the feasibility of dL-based parametric discovery and verifi-
cation supported by our theorem prover KeYmaera. It gives important insights
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in the fully parametric ETCS case study and yields conclusive and fully verified
choices for the free parameters in ETCS. By virtue of the parametric formula-
tion, this result applies to all concrete instantiations of the ETCS cooperation
protocol from Sect. 3, including controllers that further optimize speed or model
refinements in hardware implementations.

Theorem 1 (Correctness of ETCS cooperation protocol). The ETCS
system augmented with constraints (B) and (M) is correct as given in Fig. 5.
Starting in any controllable state respecting (C), trains remain in the control-
lable region at any time. They safely respect movement authorities issued by the
RBC so that ETCS is collision-free. Further, trains can always react safely to all
RBC decisions respecting (M). ETCS is live: When tracks become free, trains
are able to reach any track position by appropriate RBC actions. Furthermore,
the augmented constraints (C) and (B) are necessary and sharp: Every configu-
ration violating (C) or (B), respectively, gives rise to a concrete counterexample
violating safety property (S). Finally, every RBC choice violating (M) gives rise
to a counterexample in the presence of lossy wireless communication channels.

5 Inclusion and Safety of PI Controllers

Trains use proportional-integral (PI) controllers for speed supervision [2] like
most physical control systems do. A PI uses a linear combination of the pro-
portional and integral values of the difference between the current (τ.v) and
the target system state (m.r) to determine control actions. The proportional
part uses the current error τ.v − m.r of the system state compared to the tar-
get state with some factor l, whereas the integral part sums up previous errors∫
(τ.v − m.r)dt with some factor i. Damm et al. have identified a detailed train

model with a PI controller [2]. The resulting PI corresponds to the differential
equation system

τ.p′ = τ.v ∧ τ.v′ = min
(
A, max

(
−b, l(τ.v − m.r) − i s − c m.r

))
∧ s′ = τ.v − m.r ∧ t′ = 1 ∧ τ.v ≥ 0 ∧ t ≤ ε . (P)

The position of the train τ.p changes according to its velocity τ.v (τ.p′ =
τ.v) and τ.v changes according to the acceleration determined by PI equa-
tions. Variable s tracks the integral part of the controller: differential equation
s′ = τ.v − m.r corresponds to integral equation s =

∫
(τ.v − m.r)dt. Thus i s rep-

resents the integral share of the error scaled by i in the PI. Since trains do not
drive backwards by braking, the system contains an evolution domain stating
that the speed remains non-negative (τ.v ≥ 0). PI P influences the velocity by
changing the acceleration of the train according to proportional and integral
changes compared to recommended speed m.r. The parameters l, i and c are
derived from the train physics and chosen in a way such that the controller does
not oscillate. Note that classical PIs use c = 0. We also allow c �= 0, which is
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used in the refined PI controller identified in [2] for additional attenuation. Fol-
lowing [2], the controller further obeys physical bounds for the acceleration and
is restricted to values between −b < 0 and A > 0 using min, max functions.

In this section we relate this model for the train control with the approxi-
mation (I) used in Sect. 3–4. First, we prove that our abstraction is a valid
overapproximation by showing that whatever the PI controller (P) does, the
ideal-world physical controller for (I) can reach the same point within the same
time. Unlike (I), we cannot simply solve PI (P) in polynomial arithmetic to
prove properties. We use differential invariants [19,18] instead for proofs.

Proposition 7 (PI inclusion). Starting from 0, every possible execution of
the PI controller (P) can be imitated by the ranged controller

spds := (τ.a := ∗; ?τ.a ≥ −b ∧ τ.a ≤ A)

for the dynamics (I) such that they are in the same place at the same time:

[P ∧ t′π = 1] 〈(spds; t := 0; I ∧ t′τ = 1)∗〉 (π.p = τ.p ∧ tπ = tτ )

That is, for every evolution of (P), spds can choose its options such that (I)
reaches the same point π.p at the same time tπ. Here tπ is a clock (t′π = 1)
measuring the time the first controller (P) consumes and tτ measures the time
needed by the second controller to reach the same position at the same time.

The ranged controller spds is less restrictive than spd , because it allows more
liberal acceleration choices. As the previous propositions do not depend on the
value of m.r showing the inclusion property for spds is sufficient.

With the constraints in ETCSr, we verify that the fully parametric PI con-
troller combined with the automatic train protection atpr preserves safety:

Proposition 8 (Safety of the PI-controlled system). For trains in con-
trollable state, the ETCSr system with a PI controller for speed regulation is
safe, i.e., when replacing drive by (Pe ∧ t′ = 1 ∧ t ≤ ε) for (continuous) speed
supervision and with emergency braking according to Fig. 5. This corresponds to
the physical train model identified in [2].

6 Disturbance and the European Train Control System

In Sect. 3–4, we assumed direct control of acceleration. In reality, acceleration
results from physical transmission of corresponding forces that depend on the
electrical current in the engine [2]. As a conservative overapproximation of these
effects, we generalize the ETCS model to a model with differential inequali-
ties [19], where we also take into account disturbances in the physical transmis-
sion of forces (including wind, friction etc.):

τ.p′ = τ.v ∧ τ.a − l ≤ τ.v′ ≤ τ.a + u ∧ t′ = 1 ∧ τ.v ≥ 0 ∧ t ≤ ε (Id)

with a disturbance within the interval [−l, u]. That is, the acceleration τ.a chosen
by the train controller can take effect with an error bounded by −l and u, because
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the derivative τ.v′ of the velocity will not need to be τ.a exactly in (Id), but τ.v′

can vary arbitrarily between τ.a − l and τ.a + u over time. We generalize the
differential equation (I) in component train from Fig. 3 and Fig. 5 by replacing
it with the differential inequality (Id) and denote the result by traind.

Notice that, unlike (I), we cannot simply solve differential inequality (Id),
because its actual solution depends on the precise value of the disturbance, which
is a quantity that changes over time. Thus, solutions would only be relative to
this disturbance function and a reachability analysis would have to consider
all choices of this function, which would require higher-order logic. Instead, we
verify using differential invariants [19,18] as a sound first-order characterization.

6.1 Controllability in ETCS with Disturbances

The controllability characterization from Proposition1 carries over to train con-
trol with disturbance when taking into account the maximum disturbance u on
the braking power b that limit the effective braking power to (b − u):
Proposition 9 (Controllability despite disturbance). The constraint

τ.v2 − m.d2 ≤ 2(b − u)(m.e − τ.p) ∧ m.d ≥ 0 ∧ b > u ≥ 0 ∧ l ≥ 0 (Cd)

is a controllability constraint with respect to property (S) for the train τ with dis-
turbance (Id), i.e., it retains the ability of the train dynamics to respect the safety
property despite disturbance. Formally, with A ∧ τ.p ≤ m.e ∧ b > u ≥ 0 ∧ l ≥ 0
as regularity assumptions, the following equivalence holds:

[τ.p′ = τ.v ∧ τ.a − l ≤ τ.v′ ≤ τ.a + u ∧ t′ = 1 ∧ τ.v ≥ 0 ∧ t ≤ ε]S
≡ τ.v2 − m.d2 ≤ 2(b − u)(m.e − τ.p)

Here (Cd) results from (C) by replacing b with (b−u). In worst case disturbance,
the train cannot brake with deceleration −b but instead might be off by u. To
guarantee that the train is able to stay within its MA the controller has to assume
maximum guaranteed deceleration −(b − u) when making control decision.

6.2 Iterative Control Refinement of Parameters with Disturbances

When taking into account worst-case effects of disturbance on control, reactivity
constraint (B) carries over to the presence of disturbance in the train dynamics:

Proposition 10 (Reactivity constraint despite disturbance). For trains
in controllable state, the supervisory ETCS controller reacts appropriately despite
disturbance in order to maintain controllability iff SB is chosen according to the
following provable equivalence:(

∀m.e ∀τ.p
(
(m.e − τ.p ≥ SB ∧ τ.v2 − m.d2 ≤ 2(b − u)(m.e − τ.p)) →

[τ.a := A; drived](τ.v2 − m.d2 ≤ 2(b − u)(m.e − τ.p)
))

≡ SB ≥ τ.v2 − m.d2

2(b − u)
+
(

A + u

b − u
+ 1

)(
A + u

2
ε2 + ετ.v

)
(Bd)
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ETCSd : (traind ∪ rbcd)∗

traind : spd; atpd; drived

atpd : SB := τ.v2−m.d2

2(b−u)
+
(

A+u
b−u

+ 1
) (

A+u
2

ε2 + ετ.v
)
;

if (m.e − τ.p ≤ SB ∨ rbc.message = emergency) then τ.a := −b fi
drived : t := 0; (τ.p′ = τ.v ∧ τ.a − l ≤ τ.v′ ≤ τ.a + u ∧ t′ = 1 ∧ τ.v ≥ 0 ∧ t ≤ ε)
rbcd : (rbc.message := emergency)

∪
(
m0 := m;m := ∗;

?m.r ≥ 0 ∧ m.d ≥ 0 ∧ m0.d
2 − m.d2 ≤ 2(b − u)(m.e − m0.e)

)
Fig. 7. Parametric ETCS cooperation protocol with disturbances

For reactivity (Bd) not only the maximum deceleration but also the maximum
acceleration matters. Therefore, we need to substitute every b by (b−u) but also
every A with (A + u) which is the maximum acceleration under disturbance to
get a (provable) reactivity constraint for the disturbed system.

6.3 Safety Verification of ETCS with Disturbances

When we augment the ETCS model by the constraints (Bd) and (Md), where
(Md) results from (M) by again replacing every b by (b−u), ETCS is safe even
in the presence of disturbance when starting in a state respecting (Cd).

Proposition 11 (Safety despite disturbance). Assuming the train starts in
a controllable state satisfying (Cd), the following global and unbounded-horizon
safety formula about the ETCS system with disturbance from Fig. 7 is valid:

Cd → [ETCSd](τ.p ≥ m.e → τ.v ≤ m.d) .

This safety proof generalizes to ETCS with disturbance, using differential induc-
tion [19,18] with a time-dependent version of (Bd) as differential invariant:

m.e − τ.p ≥ τ.v2 − m.d2

2(b − u)
+
(

A + u

b − u
+ 1

)(
A + u

2
(ε − t)2 + (ε − t)τ.v

)

7 Experimental Results

Tab. 2 shows experimental results for verifying ETCS in our dL-based verification
tool KeYmaera [11]. The results are from a system with two quad core Intel
Xeon E5430 (2.66 GHz per core, using only one core) and 32 gigabyte of RAM.
All correctness properties and parameter constraints of ETCS can be verified
with 91% to 100% degree automation. More than 91% of the proof steps are
fully automatic. The proofs are 100% automatic in 6 properties and require minor
guidance in 7 more challenging cases. Tab. 2 gives the number of user interactions
necessary in the column Int, for comparison the total number of applied proof
rules in column Steps. In most cases proofs can be found automatically [18].
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Table 2. Experimental results for the European Train Control System

Case study Int Time(s) Memory(MB) Steps Dim
Controllability Proposition 1 0 1.3 29.6 14 5
Refinement Proposition 2 eqn. (1) 0 1.7 29.0 42 12
RBC Control Proposition 2 eqn. (2) 0 2.2 29.0 42 12
Reactivity Proposition 3 8 133.4 118.7 229 13
Reactivity Proposition 4 0 86.8 688.2 52 14
Safety Proposition 5 0 249.9 127.8 153 14
Liveness Proposition 6 4 27.3 100.7 166 7
Inclusion Proposition 7 PI 19 766.2 354.4 301 25
Safety Proposition 8 PI 16 509.0 688.2 183 15
Controllability Proposition 9 disturbed 0 5.6 30.8 37 7
Reactivity Proposition 10 disturbed 2 34.6 74.3 78 15
Safety Proposition 11 disturbed 5 389.9 41.7 88 16

For more complicated properties beyond the capabilities of currently available
decision procedures for real arithmetic, KeYmaera needs more user guidance but
they can still be verified with KeYmaera! We see that the formula complexity
and symbolic state dimension (Dim) has more impact on the computational
complexity than the number of proof steps in dL decompositions, which indicates
good scalability in terms of the size of the system model.

8 Summary

As a case study for parametric verification of hybrid systems, we have verified
controllability, reactivity, safety, and liveness of the fully parametric coopera-
tion protocol of the European Train Control System. We have demonstrated
the feasibility of logic-based verification of parametric hybrid systems and iden-
tified parametric constraints that are both sufficient and necessary for a safe
collision-free operation of ETCS. We have characterized these constraints on
the free parameters of ETCS equivalently in terms of corresponding reachability
properties of the underlying train dynamics. We have verified a corresponding
fully parametric PI controller and proven that the system remains correct even
when the train dynamics is subject to disturbances caused, e.g., by the physical
transmission, friction, or wind.

We have shown how the properties of train control can be expressed in dL. Our
experimental results with KeYmaera show a scalable approach by combining the
power of completely automatic verification procedures with the intuition behind
user guidance to tackle even highly parametric hybrid systems and properties
with substantial quantifier alternation (reactivity or liveness) or disturbance.

We have verified all propositions formally in the KeYmaera tool. We present
proof sketches in [17].
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for useful remarks on preliminary versions of this paper. Additionally, we like to
thank the anonymous referees for their helpful comments.



European Train Control System: A Case Study in Formal Verification 265

References

1. Meyer, R., Faber, J., Hoenicke, J., Rybalchenko, A.: Model checking duration cal-
culus: A practical approach. FACS 20(4–5), 481–505 (2008)

2. Damm, W., Mikschl, A., Oehlerking, J., Olderog, E.R., Pang, J., Platzer, A.,
Segelken, M., Wirtz, B.: Automating verification of cooperation, control, and de-
sign in traffic applications. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.) Formal
Methods and Hybrid Real-Time Systems. LNCS, vol. 4700, Springer, Heidelberg
(2007)

3. Batt, G., Belta, C., Weiss, R.: Model checking genetic regulatory networks with
parameter uncertainty. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC
2007. LNCS, vol. 4416, Springer, Heidelberg (2007)

4. Alur, R., Henzinger, T.A., Ho, P.H.: Automatic symbolic verification of embedded
systems. IEEE Trans. Software Eng. 22(3), 181–201 (1996)

5. ERTMS User Group, UNISIG: ERTMS/ETCS System requirements specification.
Version 2.2.2 (2002), http://www.era.europa.eu

6. Henzinger, T.A.: The theory of hybrid automata. In: LICS, IEEE CS Press, Los
Alamitos (1996)

7. Mysore, V., Piazza, C., Mishra, B.: Algorithmic algebraic model checking II.
In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 217–233.
Springer, Heidelberg (2005)

8. Frehse, G.: PHAVer: Algorithmic verification of hybrid systems past HyTech. In:
Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer,
Heidelberg (2005)

9. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided ab-
straction refinement for symbolic model checking. J. ACM 50(5) (2003)

10. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reason-
ing 41(2), 143–189 (2008)

11. Platzer, A., Quesel, J.D.: KeYmaera: A hybrid theorem prover for hybrid systems.
In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI),
vol. 5195, pp. 171–178. Springer, Heidelberg (2008),
http://symbolaris.com/info/KeYmaera.html

12. Platzer, A., Quesel, J.D.: Logical verification and systematic parametric analysis
in train control. In: Egerstedt, M., Mishra, B. (eds.) HSCC 2008. LNCS, vol. 4981,
pp. 646–649. Springer, Heidelberg (2008)

13. Frehse, G., Jha, S.K., Krogh, B.H.: A counterexample-guided approach to parame-
ter synthesis for linear hybrid automata. In: Egerstedt, M., Mishra, B. (eds.) HSCC
2008. LNCS, vol. 4981, pp. 187–200. Springer, Heidelberg (2008)

14. Tomlin, C., Lygeros, J., Sastry, S.: A Game Theoretic Approach to Controller
Design for Hybrid Systems. Proceedings of IEEE 88, 949–969 (2000)

15. Peleska, J., Große, D., Haxthausen, A.E., Drechsler, R.: Automated verification for
train control systems. In: FORMS/FORMAT (2004)

16. Cimatti, A., Roveri, M., Tonetta, S.: Requirements validation for hybrid systems.
In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643. Springer, Heidel-
berg (2009)

17. Platzer, A., Quesel, J.D.: European train control system: A case study in formal
verification. Report 54, SFB/TR 14 AVACS, ISSN: 1860-9821, avacs.org (2009)

18. Platzer, A., Clarke, E.M.: Computing differential invariants of hybrid systems as
fixedpoints. Form. Methods Syst. Des. 35(1), 98–120 (2009) Special CAV 2008 issue

19. Platzer, A.: Differential-algebraic dynamic logic for differential-algebraic programs.
J. Log. Comput (2008), doi:10.1093/logcom/exn070

http://www.era.europa.eu
http://symbolaris.com/info/KeYmaera.html


 

K. Breitman and A. Cavalcanti (Eds.): ICFEM 2009, LNCS 5885, pp. 266–285, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Development of Security Software: A High Assurance 
Methodology 

David Hardin1, T. Douglas Hiratzka1, D. Randolph Johnson2, Lucas Wagner1, 
and Michael Whalen1 

1 Rockwell Collins, Inc. 
2 National Security Agency 

Abstract. This paper reports on a project to exercise, evaluate and enhance a 
methodology for developing high assurance software for an embedded system 
controller.  In this approach, researchers at the National Security Agency cap-
ture system requirements precisely and unambiguously through functional 
specifications in Z. Rockwell Collins then implements these requirements using 
an integrated, model-based software development approach. The development 
effort is supported by a tool chain that provides automated code generation and 
support for formal verification. The specific system is a prototype high speed 
encryption system, although the controller could be adapted for use in a variety 
of critical systems in which very high assurance of correctness, reliability, and 
security or safety properties is essential. 

1   Introduction 

In order to study advanced high speed electronics technology, hardware research en-
gineers at the National Security Agency started a project to build a prototype high 
speed encryption system.  The system architecture they arrived at is shown in Fig. 1. 

In this design, the Data Accelerators handle input/output functions, data format-
ting, and enforcement of some security policy rules.  The encrypt core and decrypt 
core perform the actual encryption and decryption.  These six subsystem blocks are in 
the high speed data paths.  The control block manages the subsystem blocks but lies 
outside the high speed data path.  An important consequence of this architecture is 
that the High Speed Crypto Controller (HSCC) does not need to be implemented us-
ing any exotic high speed electronics technology.  The critical HSCC design goals are 
high reliability and achieving very high assurance of functional correctness and essen-
tial security properties.  As a result, project responsibility for implementing the data 
accelerators and the crypto cores remained with the hardware engineering organiza-
tion while responsibility for the HSCC was passed to the High Confidence Software 
and Systems (HCSS) Division.  

Because of the general research mission of the HCSS division, the project now had 
two main goals.  The first goal was to deliver a working controller.  The second goal 
was to exercise, evaluate, and try to enhance a strong software development method-
ology.  Since this is a security system, the methodology has to support a full range of 
development aspects from requirements through very rigorous evaluation by inde-
pendent evaluators. And, in addition to being rigorous, it should also be cost-effective  
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Fig. 1. High-Speed Crypto Functional Block Diagram 

in time and money.  Given these goals, and the limited resources of a research organi-
zation, we in the HCSS division needed an industrial partner.  We found the ideal 
partner in Rockwell Collins. 

One reason for teaming with Rockwell Collins was their capability with the 
AAMP7G microprocessor and high-assurance FPGA development.  The AAMP7G 
supports strict time and space partitioning in hardware, and has received an NSA 
MILS certificate based in part on a formal proof of correctness of its separation kernel 
microcode, as specified by the EAL-7 level of the Common Criteria [5].  The formal 
verification of the AAMP7G partitioning system was conducted using the ACL2 theo-
rem prover, and culminated in the proof of a theorem that the AAMP7G partitioning 
microcode implements a high-level security policy [4]. 

Perhaps more important than their hardware capabilities, Rockwell Collins has a 
very solid approach to software development.  It features an integrated, model-based 
development toolchain with a focus on providing a domain-specific modeling envi-
ronment that abstracts the implementation details, promotes architectural level design, 
and provides automated transformations between the problem domain formalisms and 
the target platform.  The tools simplify code development and facilitate the applica-
tion of automated formal analysis tools.  In addition, the toolchain is capable of inter-
facing directly to a simulation environment, providing another level of assurance of 
design correctness.   

For its part, HCSS researchers have experience in the Z specification language 
[10].  They have written Z functional specifications and design descriptions for sev-
eral internal development projects.  In the Tokeneer project [1,2], HCSS researchers 
played the role of customers and read and commented on draft specifications and de-
signs in Z written by Praxis High Integrity Systems.  In addition to experience in the 
requirements stage of development, HCSS people are familiar with the security 
evaluation work done by other NSA personnel. 
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The approach we chose for this project was for HCSS to take the lead in writing 
control software requirements in the form of functional specifications in Z.  Rockwell 
Collins would take these specifications as input into their established development 
process.  They would look for opportunities to strengthen the process, including the 
support for evaluation, or save time and money by taking advantage of the formal 
specifications.  Everyone would see where the tool support was good or in need of 
improvement.  This is a report on our experience.  It is only incidentally about high-
speed electronics technology or cryptography.  Furthermore, because of limited space, 
we do not discuss in this paper data separation or any other properties of the hard-
ware, for example, of the sort described by McComb and Wildman [6]. 

2   Z Specification Work 

Over the last ten years, HCSS researchers have worked with other organizations using 
Z in support of a variety of development projects.  We use the Z/EVES [9] support tool 
and have found it quite suitable for our needs.  Based on our experience, we chose to 
use Z to write functional specifications on this high assurance controller project. 

Most of the people involved in using Z over the years had some relevant technical 
background.  An author of this paper is a trained mathematical logician who was in-
volved in writing the ISO standard for Z and participated actively in all the projects.  
Most others had backgrounds in electrical engineering, mathematics or computer sci-
ence, but began with no formal methods experience at all. Some had no technical 
background.  Since there was only one occasion in which a number of people wanted 
to learn Z at about the same time, the usual pattern was individual learning.  The new-
comer started reading a Z textbook and asked more experienced people questions 
whenever something was not clear.  They joined the small working group (two to four 
people) and quickly progressed from observers to active participants.  When new fea-
tures of the language came up, they were explained and discussed to make sure that 
everyone had the correct understanding.  This informal on-the-job training approach 
has worked quite well.  We have never had anyone decide that Z or formal methods 
were too difficult.  Quite the opposite, in fact.  Those who have expressed an opinion 
have said that learning the notation was not as hard as they thought it would be. 

Our experience is that writing a good functional specification or system design 
document in Z is hard work.  That is because writing a good functional specification 
or system design document is hard work.  The clarity and organization obtained 
through using an expressive mathematically based notation such as Z makes the work 
easier, not harder. 

On this project we tried to follow good habits acquired over the years. We think 
carefully about names and try to use clear helpful names and well chosen abbrevia-
tions.  We have a house style for notational details such as capitalization. The impor-
tant point is that both writers and readers of Z benefit greatly from a consistent style. 
The specific details of the style are not nearly as important as the fact that there is a 
set of standard conventions. In our finished documents, we adhered strictly to the 
principle that every Z paragraph was immediately preceded by an accurate English 
translation. No naked Z allowed. 
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The order in which we specify different aspects of the system matters.  We usually 
start in the middle.  That is, think first about the primary activity of the system when 
everything is working correctly.  Define important data structures, introducing given 
types and other basic data types as needed.  Define operations in the normal, success-
ful case.  Usually the inputs, outputs, preconditions, postconditions, and invariants are 
fairly clear.  Then consider all the possible error cases. These are usually associated 
with the ways in which preconditions on the inputs fail or assumed invariants fail.  
Finally, combine all the possible cases, correct and faulty. 

Since this project was to produce the controller for a crypto system, we had to de-
scribe, at a suitable level of abstraction, the main work of the system. On the  
outbound data path, this includes accepting, filtering and formatting data in the Red 
Ingress data accelerator, encryption in the encrypt core, and formatting and sending 
data out in the Black Egress data accelerator. The inbound data path is a mirror image 
with a decrypt core. 

From this basic system analysis, we could see what control data structures had to 
be provided by the controller to properly manage the system. Basically, the system 
had to match each incoming piece of user data with the right cryptographic algorithm 
and key material. Secondary functions such as managing and updating key material 
were handled next. We had to define a system control protocol to convey system 
management messages back and forth between the controller and the other subsys-
tems.  After specifying this basic functionality of the system and the controller, we 
worked on the functional description of the subsystems. 

This was when we realized that the Ingress data accelerators would also receive 
data such as new key material addressed to the system itself. This should not be en-
crypted or decrypted but instead passed to the controller. Similarly, the Egress data 
accelerators would have to send out data from the controller addressed to external re-
cipients. After finishing all six subsystem specifications, we revisited the combined 
system level-controller specification to incorporate all the added functionality not 
previously considered.  At this point we have complete and final Z specifications for 
the six subordinate subsystems and are doing the final revised specification for this 
version of the controller. 

There were two aspects of the Z work on this project which were new to us. Be-
cause the encrypt and decrypt core subsystems were being developed by one team, the 
data accelerators by another team, and only the controller by our team with Rockwell 
Collins, we decided to write the specifications as separate documents. Actually, the 
top level system specification and the controller specification were so intertwined, 
they were in one document.  The need to integrate a number of separate specifications 
was one we had not encountered before. The challenge of keeping all seven specifica-
tion documents consistent was addressed in two ways. On the conceptual level, the 
fact that the same people (with one change) wrote all the documents and we were all 
conscious of the need for consistency was sufficient for us to keep each other honest.  
We could and did refer to previously written documents to check on details. 

Where careful thinking was not sufficient was on the level of small details. Our 
goal was the possibility of merging (the Z content in) all seven documents into a  
unified system specification which was syntactically correct, type correct, and seman-
tically correct. This goal could be met only if all the tiny details of spelling, capitali-
zation, presence of underscores, etc. were coordinated to make names intended to 
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have the same meaning in the different documents appear exactly the same and names 
intended to have different meanings differ in some detail.  This is a task for which a 
computer is far more effective than a whole team of human beings.  We took advan-
tage of the capability of Z/EVES to export and import Z between its internal represen-
tation and LaTeX mark up. We devised an approach and wrote some Python scripts to 
automate the process and use Z/EVES to help with the required checking.  The new 
tool support did not eliminate the need for careful thinking and attention to detail, but 
gave us much greater confidence that we have done things right. 

The work described in this paper is all part of an ongoing research program.  An 
early version of a system specification was written over a period of about eighteen 
months.  It consisted of 185 pages of Z and English.  Using that document, specifica-
tions for the six subordinate subsystems and a lower level communication protocol, 
totaling 290 pages, were written in about eight months.  Finally, a revised controller 
specification estimated to contain 255 pages of Z and English is being written in 
about four months.  In each case two or three people were involved. 

3   Model Based Development  

Model-based development (MBD) refers to the use of domain-specific, graphical 
modeling languages that can be executed and analyzed before the actual system is 
built.  The use of such modeling languages allows the developers to create a model of 
the system, execute it on their desktop, analyze it with automated tools, and use it to 
automatically generate code and test cases. 

The next section discusses the use of MBD in the HSCC software development 
process. 

3.1   HSCC Software Development Using MBD 

Software for the HSCC system was developed in two parts.  System software (drivers 
and interrupt/trap handling) and portions of the high-level application code (message 
formatting and control processing) were implemented in hand-coded SPARK. This 
code includes information flow annotations to enable use of the Praxis toolchain and 
provide assurance of correctness. 

Database transactions were designed and developed using the Rockwell Collins 
MBD tool-chain, Gryphon [12].  Simulink/Stateflow models were created for each da-
tabase transaction.  Each model was then tested via simulation in the Reactis tool to 
discover and correct obvious errors.  When complete, the Gryphon framework is used 
to translate the model into the Prover tool.  Gryphon supports several back-end formal 
analysis tools, including Prover, NuSMV and ACL2; for this project Prover was 
deemed to have the best combination of performance and automation. Prover is used 
to exhaustively verify each transaction preserves properties (derived from Z specifica-
tions) about the database it is acting upon. The proven correct Simulink model was 
then used to generate SPARK-compliant Ada95 for use on the target. Fig. 2 below il-
lustrates the process flow. 
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Fig. 2. Model-Based Development Process Flow 

The following sections briefly describe each tool involved in the HSCC software 
development process. 

3.1.1   Simulink®, Stateflow®, MATLAB® 
Simulink®, Stateflow®, and MATLAB® are products of The MathWorks, Inc. [11] 
Simulink is an interactive graphical environment for use in the design, simulation,  
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implementation, and testing of dynamic systems. The environment provides a custom-
izable set of block libraries from which the user assembles a system model by select-
ing and connecting blocks.  Blocks may be hierarchically composed from predefined 
blocks. Simulink was chosen for development because it is the standard model-based 
development environment at Rockwell Collins and has extensive existing tool sup-
port, including support for formal analysis. 

3.1.2   Reactis 
Reactis® [8], a product of Reactive Systems, Inc., is an automated test generation tool 
that uses a Simulink/Stateflow model as input and auto-generates test code for the 
verification of the model.  The generated test suites target specific levels of coverage, 
including state, condition, branch, boundary, and modified condition/decision cover-
age (MC/DC).  Each test case in the generated test suite consists of a sequence of in-
puts to the model and the generated outputs from the model.  Hence, the test suites 
may be used in testing of the implementation for behavioral conformance to the 
model, as well as for model testing and debugging. 
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Fig. 3. Rockwell Collins Gryphon Translator Framework 

3.1.3   Gryphon 
Gryphon [12] refers to the Rockwell Collins tool suite that automatically translates 
from two popular commercial modeling languages, Simulink/Stateflow® and 
SCADE™ [3], into several back-end analysis tools, including model-checkers and 
theorem provers  Gryphon also supports code generation into Spark/Ada and C. An 
overview of the Gryphon framework is shown in Fig. 3. Gryphon uses the Lustre 
formal specification language (the kernel language of SCADE) as its internal repre-
sentation.  Gryphon has been in development at Rockwell Collins for the last 6 years, 
and has been used on several significant formal verification efforts involving Simu-
link models. 

3.1.4   Prover 
Prover [7] is a best-of-breed commercial model checking tool for analysis of the be-
havior of software and hardware models.  Prover can analyze both finite state models 
and infinite-state models, that is, models with unbounded integers and real numbers, 
through the use of integrated decision procedures for real and integer arithmetic.  
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Prover supports several proof strategies that offer high performance for a number of 
different analysis tasks including functional verification, test-case generation, and 
bounded model checking (exhaustive verification to a certain maximum number of 
execution steps). 

3.1.5   Custom Code Generation 
By leveraging its existing Gryphon translator framework, Rockwell Collins designed 
and implemented a tool-chain capable of automatically generating SPARK-compliant 
Ada95 source code from Simulink/Stateflow models.   

3.2   Transaction Development 

Simulink/Stateflow models are used as the common starting point for both the imple-
mentation and analysis. Each model corresponds to a single database transaction. 
Model inputs correspond to SPARK procedure “in” parameters and outputs correspond 
to “out” parameters. Note the database object used by each transaction model may 
appear as both an input and an output if the database is modified by the transaction. In 
this case, the database object access appears as an “in out” parameter in the generated 
code. For each database, one model must be created to initialize the data object, as 
well as models to perform necessary transactions (add, delete, lookup) on the data-
base. Additional models are required for the formal analysis to model invariants on 
the database object.  This topic will be covered in more detail in subsequent sections.  

The screenshot in Fig. 4 below shows a sample Simulink model which contains the 
“Dest_Encr_Addr_Found” lookup function performed on the Routing Table.  This 
function performs a lookup in the Routing Table to determine if the specified destina-
tion encryptor address is found in the table.  The inputs (at left) are the routing table 
(“Rt_Tbl”) and the destination encryptor address (“Dest_Encr_Addr”) for which to 
search.  The output (at right) is the boolean value (“Found”) resulting from the search.  
The rectangular block in the center is a Simulink subsystem block which implements 
the database lookup. 

 

Fig. 4. Destination Encryptor Address Found model 

Typically, a transaction model will contain a Stateflow chart inside the Simulink 
model. Stateflow is well-suited to the implementation of the database operations. The 
screenshot in Fig. 5 below shows the contents of the of the Simulink subsystem block. 
The heavy vertical bar at the left is a Simulink Bus Selector.  Simulink Bus Objects 
are roughly analogous to a record in Ada or SPARK. (The Reactis tool does not allow 
Bus Objects as inputs to Stateflow charts, so a Bus Selector is used to separate the  
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Fig. 5. Sample Simulink Subsystem 

 

Fig. 6. Sample Stateflow Chart. 

component parts of the Bus Object into separate inputs to the Stateflow chart.) The 
large rounded rectangle block is a Stateflow chart. 

Fig. 6 shows the expanded Stateflow chart of the Dest_Encr_Addr_Found model, 
which implements the database search.  Statements are attached to various transitions.  
Those in curly brackets (“{  }”) represent assignment statements.  Statements in 
square brackets (“[  ]”) represent conditional expressions.  Conditional transitions are 
executed only if the expression evaluates to “true”. 

As stated earlier, a model must be built for each transaction in each database.  In 
the case of the Routing Table, these are: 

● Init – procedure to initialize the routing table data structure (called upon reset) 

● Add – database transaction to add a routing record to the routing table 
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● Delete – database transaction to remove a routing record from the routing  
table 

● Dest_Encr_Addr_Found – database query to determine existence of destina-
tion encryptor address 

● Get_Dest_Addr_List – database lookup to return list of addresses mapped to 
an encryptor address 

● Get_Dest_Encr_Addr – database lookup to return encryptor address mapped 
to a destination address 

Fig. 7 below show the interfaces provided by each model, alongside the generated 
SPARK procedure signature. 

procedure Init (
Rt_Tbl :  out Routing_Table_Types.Routing_Table_Type )

;
Init

Rt_Tbl

Get_ Dest_ Encr_ Addr

Rt_Tbl

Dest_Addr

Is_Valid

Dest_Encr_Addr

Get_ Dest_ Addr_List

Rt_Tbl

Dest_Encr_Addr

Is_Valid

Dest_Addr_List

Dest_ Addr_ Count

Dest_ Encr_ Addr_ Found

Rt_Tbl

Dest_Encr_Addr
Found

Delete

Rt_Tbl

Dest_Addr_in

Dest_ Encryptor_Addr_ Found

Routing_Table_out

Response

Add

Rt_Tbl

Dest_Addr

Dest_Encr_Addr

Rt_Tbl_out

Response

procedure Get_Dest_Encr_Addr (
Rt_Tbl :  in Routing_Table_Types.Routing_Table_Type ; 
Dest_Addr :  in Routing_Table_Types.Address_Type ; 
Is_Valid :  out Boolean ; 
Dest_Encr_Addr :  out Routing_Table_Types.Address_Type ) 

;

procedure Get_Dest_Addr_List (
Rt_Tbl :  in Routing_Table_Types.Routing_Table_Type ; 

Dest_Addr :  in R outing_Table_Types.Address_Type ; 
Is_Valid :  out Boolean ; 

Dest_Addr_List :  out Routing_Table_Types.Dest_Addr_List_Type ; 
Dest_Addr_Count :  out Unsigned.Word) 

;

procedure Dest_Encr_Addr_Found (
Rt_Tbl :  in Routing_Table_Types.Routing_Table_Type ;

Des t_Encr_Addr :  in Routing_Table_Types.Address_Type ;
Found :  out Boolean )

;

procedure Delete (
Rt_Tbl :  in out Routing_Table_Types.Routing_Table_Type ;
Dest_Addr :  in Routing_Table_Types.Address_Type ;
Dest_Encryptor_Addr_Found :  in Boolean ;

Response :  out Unsigned.Word)
;

procedure Add (
Rt_Tbl :  in out Routing_Table_Types.Routing_Table_Type ;
Dest_Addr :  in Routing_Table_Types.Address_Type ;
Dest_Encryptor_Addr :  in Rout ing_Table_Types.Address_Type ;
Response :  out Unsigned.Word)

;

e

 

Fig. 7. Transaction Models and associated SPARK Signatures 

3.3   Invariant Modeling 

To perform formal analysis on the transaction models, it is first necessary to model 
any invariants on the data structures.  These invariants are taken directly from the Z 
specification. As an example, the following invariants appear in the Z specification 
for the Routing Table: 

 

Fig. 8. Z Specification Invariant Sample 
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This specification indicates that no duplicate destination addresses or duplicate en-
cryptor addresses may appear in the Routing Table. These invariants are checked by 
the “no_dups” model (shown in Fig. 9 below). Given a routing table input (“Rt_Tbl”), 
the model checks that no duplicate destination encryptor addresses exist in the data 
structure and sets the output booleans accordingly. Note that the number of boolean 
outputs in the model is determined by the internal representation of the routing table 
data structure, and that the condition in which all four boolean outputs are “false” in-
dicates that both invariants hold. 

 

Fig. 9. Sample Invariant Model 

3.4   Formal Verification 

This section illustrates the approach to performing formal analysis on a database 
transaction.  The necessary models include both the transaction model and any invari-
ant models associated with the relevant database(s). In the formal analysis we are es-
tablishing two kinds of properties: 1.) data invariants over the databases (as defined 
by the Z schemas defining each database) and 2.) transaction requirements that ensure 
that the operation performed by a model matches the Z schema for that transaction. 

3.4.1   Proof Strategy 
The proof strategy employed for the data invariants is induction over the sequence of 
transactions that are performed. We first verify that the Simulink models responsible 
for initializing each database establish the data invariant for that database. This step 
provides the basis for our induction. We then prove every transaction that modifies a 
database maintains the invariant for that database. More concretely, on the “init” 
models, we use the model checker to determine whether or not the data invariants 
hold on the model outputs. For the other transactions, the proof strategy is to assume 
the invariants in the input “pre” database (prior to performing the transaction), and 
then use the model checker to determine whether the invariants hold in the output 
“post” database (resulting from performing the transaction).   

We prove all the invariants required by the Z specification and also additional in-
variants involving implementation details related to realizing the Z databases in Simu-
link/Stateflow.  For example, a linked-list representation is used for many of the finite 
sets described in the Z document.  In this case, additional invariants establish that the 
linked list is a faithful representation of the finite set.  

The transaction requirements for each operation are specified as additional properties 
that must hold on the “post” database. For example, when deleting an element, these 
properties ensure that the element in question has been removed from the database. 
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3.4.2   Stateless Transactions 
Transactions on HSCC databases (and transactional database systems in general) are 
designed to perform a complete unit of work, or fail without making any modifica-
tions to the database.   This indicates that each transaction can be developed without 
the use of internal state.  It is this property of transactional databases that greatly sim-
plifies the model-checking effort, because proofs can be obtained using just bounded 
model-checking to depth 1, instead of (for example) automated k-inductive reasoning.  
Taking advantage of this property made the most difficult proof obligations tractable, 
and reduced the time of simpler proofs from hours to minutes. 

3.4.3   Routing Table Example 
As an example, we present the proof system for the DeleteRoutingEntry transaction, 
which deletes an entry from a routing record in the routing table. The Z schema which 
specifies the RoutingTable is shown below in Fig. 10. The specification describes the 
contents of the database, the maximum size of the database, and further constraints on 
the data (no duplicate addresses, as discussed previously). 

 

Fig. 10. Z specification of the Routing Table database 

For a complete understanding of the proof strategy, it is necessary to present the un-
derlying representation of the Routing Table, shown in Fig. 11. 

The number of routing records currently in the database is represented as 
“num_routing_records”. The “addr_count_list” array maintains the number of valid 
destination addresses, on a “per routing record” basis. The “dest_addr_map” 2-D array 
holds pointers to the destination addresses. Each row corresponds to a routing record. 
The “dest_encr_addr_list” contains the destination encryptor addresses (one per rout-
ing record).  Since an “address” may be a IPv4 or IPv6, this array is sized to contain 
eight 16-bit values. Taken collectively, a slice across the three arrays (addr_count_list, 
dest_addr_map, and dest_encr_addr_list), as shown by the dashed arrows, represents a 
single routing record, which comprises one or more destination addresses mapped to a 
single destination address. Since 3-D arrays are not supported by the toolchain (spe-
cifically, not by Reactis), a mapping array is used. The dest_addr_map array contains  
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Fig. 11. Routing Table Data Structure Implementation 

not the actual destination address, but rather an index into another array which holds all 
of the known destination addresses. Together, the “dest_addr_valid_list” array and the 
“dest_addr_list” array form the list of known destination addresses. The dest_addr_ 
valid_list is an array of booleans, indicating whether the corresponding row of the 
dest_addr_list array contains a known address. (Note that all-zeros is accommodated as 
a valid address, so a valid flag must accompany the list of addresses.) As with the 
dest_encr_addr_list array, the dest_addr_list is sized to hold either an IPv4 or IPv6 ad-
dress (eight 16-bit values). In order to support reverse lookups (destination encryptor 
address  destination address), we employ a mapping array which contains the row 
and column indices (into the dest_addr_map array) for a given destination address. 
Constant array bounds are indicated in the figure. The maximum number of routing re-
cords in the table is defined as MAX_NUM_ROUTING_RECORDS. The maximum 
number of destination addresses mapped to a destination encryptor address is MAX_ 
NUM_DEST_ADDRS_PER_REC. The number of values required to represent the 
largest address (IPv6, in the current implementation) is WORDS_PER_ ADDRESS. 

The transaction to be model-checked in this example will be the DeleteRoutingEn-
try transaction. Its Z specification is shown in Fig. 12. 
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DeleteRoutingEntry
RoutingTable

ControlDB
destinationAddress?: NETWORK_ADDRESS
modRoutingRecord, delRoutingRecord: RoutingRecord
response!: Response

destinationAddress? knownDestAddresses
delRoutingRecord

= rr: routingRecords destinationAddress? rr.destinationAddresses
# delRoutingRecord.destinationAddresses 2

modRoutingRecord.destinationAddresses
= delRoutingRecord.destinationAddresses \ destinationAddress?
modRoutingRecord.destinationEncryptorAddress
= delRoutingRecord.destinationEncryptorAddress
routingRecords' = routingRecords \ delRoutingRecord modRoutingRecord

# delRoutingRecord.destinationAddresses = 1
delRoutingRecord.destinationEncryptorAddress

cr: controlRecords cr.destinationEncryptorAddress
routingRecords' = routingRecords \ delRoutingRecord

response! = success

 

Fig. 12. Z Specification of DeleteRoutingEntry 

From the specification of the DeleteRoutingEntry function, the inputs are the rout-
ing table object, the destination address (the address to be deleted), and a boolean 
(“Dest_Encryptor_Addr_Found”) which indicates whether the destination encryptor 
address (mapped to the destination address) exists in the Control database.  (This 
lookup is performed by the caller of the DeleteRoutingEntry function.)  Although the 
Z specification is for only the successful case (error cases are handled in separate 
schemas), the model must properly trap and handle all error cases.  The RoutingTable 
Delete model is shown in Fig. 13 below. Outputs are the updated routing table object 
(“Routing_Table_out”) and the response code (“Response”). Note that this is the 
same Simulink model (Delete.mdl) used for code generation.  The model for the in-
variant discussed previously is also shown in Fig. 13. This model checks for any du-
plicate entries in the routing table. 

no _dups

Rt_Tbl

dup_dest_addr_map_entry

dup_dest_encr_addr_list_entry

dup_dest_addr_list_entry

dup_dest_addr_revmap_entry
Delete

Rt_Tbl

Dest_Addr_in

Dest_Encryptor_Addr_Found

Routing_Table_out

Response

 

Fig. 13. DeleteRoutingEntry Model and “no_dups” Invariant Model 
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Given the underlying representation of the routing table, additional invariants must 
be constructed to complete the infrastructure for model verification. One such model, 
“is_consistent” determines whether the database is in a valid, consistent state. For ex-
ample, checks are performed to ensure that each “count” value (e.g. 
num_routing_records, addr_count_list array elements) is within valid bounds. Mapping 
array elements are checked to ensure they point to valid entries in their target arrays. 
Finally, all unused array elements are checked to ensure they have been cleared (set to 
zero) by any previous Delete operations. (The data structure is initialized to all zeros 
upon reset by calling an “init” function.) The “is_consistent” model is shown in Fig. 14 
below. 

is_consistent

Rt_Tbl

num_routing_records_too_large

addr_count_list_entry_too_large

dest_addr_revmap_entry_too_large

num_rt_rec_incons_addr_count_list

uncleared_map_entry

revmap_pointer_incons

valid_flag_error

uncleared_dest_encr_addr

uncleared_dest_addr

uncleared_revmap_entry

uncleared_addr_valid_entry

sum_addr_count_neq_sum_addr_valid

addr_count_list_not_compacted

dest_addr_map_entry_too_large

 

Fig. 14. Routing Table "is_consistent" Invariant Model 

Since the Delete operation removes at most one destination address, the resulting 
routing table must be a subset of the original table.  A transaction requirement model 
has been constructed to check that the “post” routing table object is a subset of the 
“pre” object. The t2_contains_tl model shown in Fig. 15 checks if Rt_Tbl_2 “con-
tains” Rt_Tbl_1, and sets the output boolean (“t2_contains_t1”) accordingly.  Addi-
tionally, the model returns the difference in counts (of destination addresses) between 
the two input routing table objects.  

Finally, the resulting routing table must not contain the destination address which 
was to be deleted.  The “address_deleted” requirement model in Fig. 15 checks for the 
existence of the specified address and returns a boolean result. 

t2_contains _t1

Rt_Tbl_1

Rt_Tbl_2

t2_contains_t1

count_incr

address _deleted

Rt_Tbl

Dest_Addr
addr_deleted

 

Fig. 15. Routing Table "t2_contains_t1" and "address_deleted" Invariant models 
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Fig. 16. Sample Formal Analysis Model (part 1) 

 
Fig. 17. Sample Formal Analysis Model (part 2) 

Given the transaction model, the collection of invariant models, and the transaction 
requirement models, the approach is to assume the data invariants hold prior to per-
forming the Delete operation, and then verify that the invariants and transaction re-
quirement models hold following the Delete operation.  The proof model is shown in 
Fig. 16 and Fig. 17. Due to the size of the model, the screenshot has been split into 
two parts for better readability. 
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Fig. 16 shows the preconditions portion of the proof model.  This contains the de-
lete transaction model along with the invariants which are assumed to be true for the 
“pre” table, namely the “no_dups” (check for duplicated addresses) and 
“is_consistent” (check for a valid, consistent state). 

 

Fig. 17 shows the postconditions portion of the proof model.  This includes the delete 
model and the invariants which are to be verified against the resulting routing table. The 
invariants are “no_dups”, “is_consistent”, “t2_contains_t1”, and “address_deleted”. If 
all these invariants are true (i.e. the post-conditions are true), then the correctness of the 
delete operation is verified. 

The model-hierarchy used to perform the proof analysis is translated to the Prover 
imperative language using the Gryphon translation framework and discharged by the 
Prover model checker. 

3.4.4   Formal Verification Results Summary 
The formal verification effort for the project as a whole resulted in the proof of some 
840 properties for the HSCC databases, of which 140 were written by the verification 
team, and the remainder (mainly well-formedness checks) automatically generated by 
the Gryphon framework. Verification required less than 5% of total project effort over 
the course of seven calendar months. 

3.4.5   Caveat 
Due to the demands of a fully-functioning cryptographic system, it will be necessary 
to populate databases with hundreds, if not thousands of elements. The extreme size 
of these databases makes model-checking the fully-sized system impossible, due to 
state-space explosion. Instead, in this effort, a small representative sized database 
(n=3) was verified in formal analysis. The design of each transaction model allows 
the user to configure the size of a database to be configured at compile time with a 
global variable. The claim can be made this is sufficient, due to the design of the da-
tabase transaction models, however no attempt to prove this claim have been made.  
Future work at Rockwell Collins will be focused on proving this claim, and it will be 
discussed further in the Future Work section of this document. 

3.5   Code Generation 

Code generation is performed after a transaction is proven to satisfy all of its invariant 
properties.  This is accomplished through the use of a proprietary translation tool that 
leverages the existing Gryphon framework to generate SPARK-compliant Ada95 
source code for use on the AAMP7G. 

All of the transactions are compiled into single Ada95 package for use by the sys-
tem programmer.  The procedures in the package declaration are shown in Fig. 7. 

4   Future Work 

Whenever all the subsystems are available, NSA researchers will integrate them into a 
demonstration system. We also plan to organize the assurance evidence produced in 
this phase and ask our evaluation organization for their assessment.  We won’t get a 
full evaluation of our prototype system, but expect to get expert advice on possible ar-
eas for improvement to our assurance case. Depending on available resources, we 
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plan to add functionality missing from the current system. For example, this version 
can use connections to peer system established and entered by hand. A full system 
must be capable of automatically establishing and tearing down connections as 
needed.  For another example, this version manages cryptographic key material inter-
nally, including limited key update capability.  It does not have the capability of re-
questing and receiving new key material from an external source.  This capability 
would be essential in a real system. 

Rockwell Collins will continue this research initiative by investigating two key  
issues.  

The selection of Simulink/Reactis tool-chain caused considerable difficulty due to 
the lack of an orthogonal type system: Simulink currently does not support arrays of  
record-types (called buses in Simulink).  Reactis further restricts the type system by 
only supporting arrays of one or two dimensions.  Consequently, databases could not 
be designed in an intuitive way, simply to satisfy the Simulink type system.  This fac-
tor drove up transaction development time, increased the number and complexity of 
proof obligations, and hampered the development of the proprietary code generator.  
SCADE, by Esterel Technologies, is a model-development environment similar to 
Simulink, but features an orthogonal type system, and fits directly into the Gryphon 
toolchain off the shelf.  A comparison of the transaction development process with 
both Simulink/Reactis and SCADE tool-chains would reveal whether or not the use of 
SCADE results in significant reductions in development time and cost. 

Each transaction was checked to satisfy invariants over a finite-sized database.  
This partial proof provides a high degree of assurance, however it would be ideal to 
obtain a proof that each transaction satisfies invariants over databases of arbitrary 
length.  One major obstacle to obtaining this general proof is the use of various FOR 
loops within each transaction to traverse the elements of a database.  Because these 
loops are typically limited by constants defined at compile time, it would be necessary 
to prove these loops preserve the transaction invariant over an arbitrary number of it-
erations.  Software model-checkers, such as SLAM by Microsoft, handle this problem 
with some degree of success.  Research would focus on techniques employed by 
software model-checkers to overcome this problem. 

5   Conclusion 

Our experiences developing the HSCC system have shown that the methodology de-
scribed in this paper is a viable process for the development of high-assurance soft-
ware for use in cryptographic systems.   

NSA-provided specifications written in the Z formal notation proved to be superior 
to those written in English-language in producing a complete and unambiguous set of 
software requirements.  Using these specifications as the main development artifact, 
Rockwell Collins was able to quickly and accurately determine the necessary pre and 
post conditions for each database transaction. 

The use of a model-based approach to transaction development provides early 
simulation capabilities, leading to earlier discovery of errors in both the specification 
and in the implementation.  The use of automated code generation removes the possi-
bility of human coding errors.  The application of automated model checkers provides 
a proof of correctness at a level unattainable through traditional software testing 
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methods. With all of these components in our software development approach, we 
have exercised a viable methodology to deliver high-assurance software with a much 
greater level of confidence than software developed through traditional approaches. 

The use of SPARK information flow annotations for Ada95 code at the system level 
provides assurance the system code is properly routing information to each of the de-
vices in the HSCC architecture.  Hardware enforced (AAMP7G partitioning) 
red/black separation serves as the final sentinel in preventing unintended red/black 
communication.  In our judgment, the methodology described in this paper is sturdy 
enough to support full EAL-7 certification of a production encryptor based on this re-
search prototype. 

Despite the apparent advantages of the proposed methodology, some aspects of the 
approach need further development before the methodology can readily be employed.   

The most serious limitation is the relatively poor support in portions of the tool-
chain for composite data structures.  For many of the databases in the HSCC system, 
multi-dimensional arrays would have been the natural representation chosen, had Re-
actis allowed their use.  Instead, multiple two-dimensional arrays were used, leading 
to a more complex implementation and an increased burden in development of the 
proof infrastructure models.  Arrays of structures would have been a natural choice to 
represent some of the databases, but Simulink does not support such data structures.  
The use of the SCADE tool, or improvements to the Mathworks tool-suite may ad-
dress some or all of these issues. 

Another limitation is the relatively small size of databases for which transaction 
proofs are able to be obtained.  Further research will look into identifying methods  
to leverage existing transaction proofs to obtain general proofs of arbitrarily sized  
databases. 
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Abstract. Bounded model checking has been proposed as a complemen-
tary approach to BDD based symbolic model checking for combating the
state explosion problem, esp. for efficient error detection. This has led to
a lot of successful work with respect to error detection in the checking of
LTL, ACTL (the universal fragment of CTL) and ACTL* properties by
satisfiability testing. The use of bounded model checking for verification
(in contrast to error detection) of LTL and ACTL properties has later
also been studied. This paper studies the potentials and limitations of
bounded model checking for the verification of CTL and CTL∗ formulas.
On the theoretical side, we first provide a framework for discussion of
bounded semantics, which serves as the basis for bounded model check-
ing, then extend the bounded semantics of ACTL to a bounded semantics
of CTL, and discuss the limitation of developing such a bounded seman-
tics for CTL∗. On the practical side, a deduction of a SAT-based bounded
model checking approach for ACTL properties from the bounded seman-
tics of CTL is demonstrated, and a comparison of such an approach with
BDD-based model checking is presented based on experimental results.

1 Introduction

Bounded semantics of LTL with existential interpretation and that of ECTL
(the existential fragment of CTL), and the characterization of these existen-
tially interpreted properties have been studied and used as the theoretical basis
for SAT-based bounded model checking [3,21]. This has led to successful works
with respect to error detection in the checking of LTL and ACTL (the univer-
sal fragment of CTL) properties by satisfiability testing [2]. It is considered as
a complementary technique to BDD-based model checking [5,4,20,7] for com-
bating the state explosion problem [6], esp. for efficient error detection [22].
Bounded semantics of existential LTL and that of ECTL, and the characteri-
zation of such properties are consistent with the fact that the witness of the
properties can be searched within a fragment of the valid paths. For verifica-
tion purposes, one need to reach a completeness threshold or some termination
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criteria [17,9,16,10,1] in order to show the non-existence of a counter-example.
This may not be as efficient. On the other hand, the principle of bounded model
checking for verification (called bounded verification for short) should be similar
to bounded error detection, such that we start with a small bounded model, if
this is not sufficient, we increase the bound, until we have a conclusion or we run
out of resources. With this principle in mind, bounded verification should check
whether every representative part (a k-path or a set of such paths) of the sys-
tem satisfies some property, and according to this, conclude whether the system
satisfies this property. Bounded verification of general LTL formulas has been
considered in [27], which can equivalently be formulated as that a model satisfies
an LTL formula ϕ if there is a k-model (a restricted model where all paths are
truncated to only have k transitions) such that every k-path starting with some
initial state satisfies ϕ. The paper provides a sufficient condition (not a sufficient
and necessary condition) and has discussed that in some special cases such as
when dealing with LTL formulas restricted to pUq, the sufficient condition is ac-
tually a sufficient and necessary condition (for formulas of the form Fp, a similar
characterization is already known [2]). Similar ideas have then been applied to
ACTL formulas [28] and a similar result was obtained, and an implementation
with experimental results was reported in [26]. These approaches for verifica-
tion of LTL and ACTL formulas are based on bounded semantics of existential
LTL and ECTL with some kinds of weakening, which result in an incomplete
bounded characterization (i.e. with only a sufficient condition) of LTL and ACTL
formulas. This problem has then been studied in [29] and a bounded semantics
for ACTL and a characterization of ACTL properties by propositional formulas
were provided. An improvement of the SAT-based encoding of the verification
problem was considered in [8].

In this paper, on the theoretical side, we first propose a framework for dis-
cussion of bounded semantics, then extend the bounded semantics of ACTL to
a sound and complete bounded semantics of CTL, and show that there is no
such sound and complete semantics for CTL* in the given framework. On the
practical side, we apply the bounded semantics of CTL to derive a SAT-based
characterization of ACTL properties, and compare such a characterization with
BDD based verification approaches.

2 Bounded Semantics

In this section, we provide a framework for discussion of bounded semantics. The
framework defines some properties of bounded semantics.

A Kripke structure is a quadruple M = 〈S, T, I, L〉 where S is a set of states,
T ⊆ S × S is a transition relation which is total, I ⊆ S is a set of initial states
and L : S → 2AP is a labeling function that maps each state to a subset of
propositions of AP .

An infinite path π = π0π1 · · · of M is an infinite sequence of states such that
(πi, πi+1) ∈ T for all i ≥ 0. A finite path π of M is a finite prefix of an infinite
path of M . Given a path π = π0π1 · · ·, we use πi to denote the subpath of π
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starting at πi, use π(s) to denote a path with π0 = s. Then ∃π(s).ϕ means that
there is a path π with π0 = s such that ϕ holds, and ∀π(s).ϕ means that for
every path π with π0 = s, ϕ holds.

Semantics of temporal logics is defined with respect to Kripke structures. For
brevity, a Kripke structure is called a model. We require a semantic relation to
be compositional. We first define what we mean by compositionality with respect
to path quantifiers (universal and existential) and with respect to propositional
connectives (conjunction and disjunction).

Definition 1 (Compositionality w.r.t. Path Quantifiers). Let M be a
model and s be a state. Let |= be a relation defined for path formulas and state
formulas. The relation |= is compositional with respect to path quantifiers, if the
following hold:

– M, s |= Aϕ iff M, π(s) |= ϕ for all π(s) of M .
– M, s |= Eϕ iff M, π(s) |= ϕ for some π(s) of M .

Let a structure be either a combination of M and a state or of M and a path
(either a finite one or an infinite one).

Definition 2 (Compositionality w.r.t. Prop. Connectives). Let S be a
structure. Let |= be a relation. The relation |= is compositional with respect to
propositional connectives, if the following hold:

– S |= ϕ ∨ ψ iff S |= ϕ or S |= ψ
– S |= ϕ ∧ ψ iff S |= ϕ and S |= ψ

The compositionality property is a formalization of the standard understanding
of the path quantifiers and the propositional connectives. In addition, we formu-
late a consistency property with respect to the labeling at given positions (in a
sequence of states).

Definition 3 (Consistency w.r.t. Labeling). Let M be a model and s be a
state. Let |= be a relation defined for path formulas and state formulas. Let X
be the next-time operator. Let p be a proposition. The relation |= satisfies the
consistency property, if the following hold:

– M, s |= p iff p ∈ L(s).
– M, π |= Xnp iff p ∈ L(πn) when πn is the (n + 1)-th state of π.

A simple compositional semantic relation is a relation which is compositional
with respect to both propositional connectives and path quantifiers (whenever
applicable) and satisfies the consistency property. For brevity, such a relation
is called a simple relation. A compositional semantic relation is either a simple
compositional semantic relation or a propositional combination of such relations.
For brevity, such a relation is called a semantic relation.

Without loss of generality, a propositional combination of simple relations
may be written as a disjunction of conjunctions of such relations, for instance,
a semantic relation |= may be written as

∨m
i=1

∧n
j=1 |=i,j . Then S |= ϕ iff there

is an i such that S |=i,j ϕ holds for all j.
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A bounded semantics is then represented by a family of semantic relations
each defined on a bounded structure with a parameter indicating the bound.
Let us call such a structure a k-structure.

Definition 4 (Soundness and Completeness). Let Sk be a k-structure of
S. The bounded semantics defined by |=k is sound and complete with respect to
a given relation |=, iff the following hold:

– (Soundness) If Sk |=k ϕ for some k ≥ 0, then S |= ϕ.
– (Completeness) If S |= ϕ, then there is a k ≥ 0 such that Sk |=k ϕ.

Remark. The purpose of this framework is to formalize the usual understanding
of good bounded semantics. It excludes some definitions from being considered as
semantic definitions, for instance, the following one: M, s |= Aϕ iff L(A(M, s)) ⊆
L(A(ϕ)) where L(A(M, s)) and L(A(ϕ)) are the languages of the automata
constructed from respectively the structure M, s and the LTL formula ϕ, because
it does not comply with compositionality and lacks good characteristics of a
semantic definition of temporal logics. For the definition of the semantics of
M, s |= Aϕ, it is reasonable to look for other kinds of definitions (with good
structure and intuition).

3 On CTL

In this section, we provide a bounded semantics for CTL, and formulate a
bounded model checking and verification principle for CTL properties.

Computation tree logic (CTL) is a propositional branching-time temporal
logic [13] introduced by Emerson and Clarke as a specification language for
finite state systems. Let AP be a set of propositional symbols. The set of CTL
formulas is defined as follows:

Every member of AP is a CTL formula.
The logical connectives of CTL are: ¬, ∧, and ∨.
If ϕ and ψ are CTL formulas, then so are:
¬ϕ, ϕ ∧ ψ, and ϕ ∨ ψ.
The temporal operators are: EX , ER, EU , AX , AR, and AU .
If ϕ and ψ are CTL formulas, then so are:
EX ϕ, EF ϕ, EG ϕ, E(ϕ R ψ), E(ϕ U ψ), AX ϕ, AF ϕ, AG ϕ, A(ϕ R ψ),
and A(ϕ U ψ).

3.1 Semantics of CTL

Let M be a model, s a state, ϕ a CTL formula. The relation that ϕ holds on s
in M is denoted M, s |= ϕ.

Definition 5 (Semantics of CTL). Let p be a propositional symbol, ϕ and
ψ CTL formulas. Let π = π0π1 · · · denote an infinite path of M . The relation
M, s |= ϕ is defined as follows.
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M, s |= p iff p ∈ L(s) .
M, s |= ¬ϕ iff M, s �|= ϕ
M, s |= ϕ ∧ ψ iff (M, s |= ϕ) and (M, s |= ψ)
M, s |= ϕ ∨ ψ iff (M, s |= ϕ) or (M, s |= ψ)
M, s |= AXϕ iff ∀π(s).(M, π1 |= ϕ)
M, s |= AFψ iff ∀π(s).(∃k ≥ 0.(M, πk |= ψ)
M, s |= AGψ iff ∀π(s).(∀k ≥ 0.(M, πk |= ψ)
M, s |= A(ϕUψ) iff ∀π(s).(∃k ≥ 0.(M, πk |= ψ∧ ∀j < k.(M, πj |= ϕ)))
M, s |= A(ϕRψ) iff ∀π(s).(∀k ≥ 0.(M, πk |= ψ∨ ∃j < k.(M, πj |= ϕ)))
M, s |= EXϕ iff ∃π(s).(M, π1 |= ϕ)
M, s |= EFψ iff ∃π(s).(∃k ≥ 0.(M, πk |= ψ)
M, s |= EGψ iff ∃π(s).(∀k ≥ 0.(M, πk |= ψ)
M, s |= E(ϕUψ) iff ∃π(s).(∃k ≥ 0.(M, πk |= ψ∧ ∀j < k.(M, πj |= ϕ)))
M, s |= E(ϕRψ) iff ∃π(s).(∀k ≥ 0.(M, πk |= ψ∨ ∃j < k.(M, πj |= ϕ)))

A CTL formula is in negation normal form (NNF), if the symbol ¬ is applied only
to propositional symbols. Every formula can be transformed into an equivalent
formula in NNF. The sublogic ACTL is the subset of CTL formulas that can be
transformed into NNF formulas such that the temporal operators are restricted
to {AX, AF, AG, AU, AR}. The sublogic ECTL is the subset of CTL formulas
that can be transformed into NNF formulas such that the temporal operators
are restricted to {EX, EF, EG, EU, ER}.

Definition 6. Let ϕ be an ACTL formula. ϕ is true in M , denoted M |= ϕ, iff
ϕ is true at all initial states of M .

Definition 7. Let ϕ be an ECTL formula. ϕ is true in M , denoted M |= ϕ, iff
ϕ is true at some initial states of M .

3.2 Bounded Semantics of CTL

Since every CTL formula can be transformed into an equivalent formula in NNF,
we only consider formulas in NNF. Therefore, in the following, a formula refers
to such a CTL formula unless otherwise stated. For simplicity, we fix the model
under consideration to be M = 〈S, T, I, L〉, and in the sequel, M refers to this
model, unless otherwise stated.

k-Path. Let k ≥ 0. A k-path of M is a finite path of M with length k + 1. π is
a k-path, if π = π0 · · ·πk such that πi ∈ S for i = 0, ..., k and (πi, πi+1) ∈ T for
i = 0, ..., k − 1. A k-path may start at anywhere in the model. For the idea of a
k-path, the reader is referred to [3].

Bounded Model. The k-model of M is a structure Mk = 〈S, Phk, I, L〉 where Phk

is the set of all different k-paths of M . Mk can be considered as an approximation
of M . For the idea of a bounded model, the reader is referred to [21].
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Loop. A loop is a k-path π such that πi = πj for some 0 ≤ i < j ≤ k. Let lp(π)
denote that π is a loop. An important property of a loop is that if π is a prefix
of π′, then lp(π) → lp(π′). Note that this notation of loop is different from the
one defined in [3], which is a loop such that the last element has a successor to
some element in the loop. Such a loop does not have the property stated above.

Definition 8 (Bounded Semantics of CTL). Let Mk be the k-model of M ,
s a state, p a propositional symbol, ϕ and ψ CTL formulas. The relation that
ϕ holds on s in Mk is denoted Mk, s |= ϕ. Let π = π0 · · ·πk denote a k-path of
Phk. The relation |= is defined as follows.

Mk, s |= p iff
p ∈ L(s) .
Mk, s |= ¬p iff
p �∈ L(s)
Mk, s |= ϕ ∧ ψ iff
(Mk, s |= ϕ) and (Mk, s |= ψ)
Mk, s |= ϕ ∨ ψ iff
(Mk, s |= ϕ) or (Mk, s |= ψ)
Mk, s |= AXϕ iff
k ≥ 1 ∧ ∀π(s).(Mk, π1 |= ϕ)
Mk, s |= AFψ iff
∀π(s).(∃i ≤ k.(Mk, πi |= ψ))
Mk, s |= AGψ iff
∀π(s).(lp(π)∧ (∀i ≤ k.(Mk, πi |= ψ)))
Mk, s |= A(ϕUψ) iff
∀π(s).(∃i ≤ k.(Mk, πi |= ψ∧ ∀j < i.(Mk, πj |= ϕ)))
Mk, s |= A(ϕRψ) iff
∀π(s).(∀i ≤ k.(Mk, πi |= ψ∨ ∃j < i.(Mk, πj |= ϕ)) ∧
(∃j ≤ k.(Mk, πj |= ϕ) ∨ lp(π)))
Mk, s |= EXϕ iff
k ≥ 1 ∧ ∃π(s).(Mk, π1 |= ϕ)
Mk, s |= EFψ iff
∃π(s).(∃i ≤ k.(Mk, πi |= ψ))
Mk, s |= EGψ iff
∃π(s).(lp(π)∧ (∀i ≤ k.(Mk, πi |= ψ)))
Mk, s |= E(ϕUψ) iff
∃π(s).(∃i ≤ k.(Mk, πi |= ψ∧ ∀j < i.(Mk, πj |= ϕ)))
Mk, s |= E(ϕRψ) iff
∃π(s).(∀i ≤ k.(Mk, πi |= ψ∨ ∃j < i.(Mk, πj |= ϕ)) ∧
(∃j ≤ k.(Mk, πj |= ϕ) ∨ lp(π)))

This semantics of CTL is an extension of the ACTL bounded semantics given
in [29]. Note that an extension of the ECTL and ECTL∗ bounded semantics
given in [21] to a bounded semantics of CTL∗ has been done in [23], however
the bounded semantics given in [23] is not regarded as a sound one within our
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framework1. We establish that for CTL, the bounded semantics given above is
sound by first presenting some lemmas.

Lemma 1. If Mk, s |= ϕ, then Mk+1, s |= ϕ.

A formal proof is to be based on structural induction. The main arguments
are explained as follows. For the first, we observe that every k-path in Mk is
a prefix of a path in Mk+1, and every (k + 1)-path in Mk+1 is an extension
of a path in Mk. By looking at the definition, we can be assured that there is
no problem in the cases of AX, AF, AU, EX, EF, EU . By recognizing that the
semantics of AG and EG can be derived from that of AR and ER (also in this
bounded semantics), we only need to look further at the two cases AR and ER.
We first consider the case of AR. Suppose that Mk, s |= A(ϕRψ) holds and
Mk+1, s |= A(ϕRψ) does not hold. Then there is a π(s) such that

∀i ≤ k + 1.(Mk+1, πi |= ψ ∨ ∃j < i.(Mk+1, πj |= ϕ))
∧(∃j ≤ k + 1.(Mk+1, πj |= ϕ) ∨ lp(π))

(denote hereafter by (*)) does not hold. Let π′ be the k-path that is at the
same time a prefix of π. If lp(π′) does not hold, then ∀i ≤ k.(Mk, πi |= ψ ∨
∃j < i.(Mk, πj |= ϕ)) ∧ (∃j ≤ k.(Mk, πj |= ϕ)) holds. Then by the induction
hypothesis, we have ∀i ≤ k.(Mk+1, πi |= ψ ∨ ∃j < i.(Mk+1, πj |= ϕ)) ∧ (∃j ≤
k.(Mk+1, πj |= ϕ)). This contradicts to that (*) does not hold. If lp(π′) holds,
then ∀i ≤ k.(Mk, πi |= ψ ∨ ∃j < i.(Mk, πj |= ϕ)) ∧ lp(π′) holds. Similarly, by
the induction hypothesis, we have ∀i ≤ k.(Mk+1, πi |= ψ ∨ ∃j < i.(Mk+1, πj |=
ϕ)) and since lp(π′) implies lp(π), the only possible case that may fail (*) is
that (Mk+1, πk+1 |= ψ ∨ ∃j < k + 1.(Mk+1, πj |= ϕ)) does not hold. Let π =
π0 · · ·πkπk+1. Since lp(π′) holds, we have that πi = πj for some 0 ≤ i < j ≤ k.
Let π′′ = π0 · · ·πiπj+1 · · ·πkπk+1. Then π′′ is a prefix (not necessarily a proper
one) of some k-path starting with s. Since Mk, s |= A(ϕRψ), ∀i ≤ k.(Mk, π′′

i |=
ψ ∨ ∃j < i.(Mk, π′′

j |= ϕ)) ∧ (∃j ≤ k.(Mk, π′′
j |= ϕ) ∨ lp(π′′)) holds. Let the

position of πk+1 in π be l + 1 (i.e. π′′
l = πk+1). We obtain that (Mk, π′′

l |=
ψ∨∃j < l.(Mk, π′′

j |= ϕ)) holds. Again, by the induction hypothesis, (Mk+1, π
′′
l |=

ψ ∨ ∃j < l.(Mk+1, π
′′
j |= ϕ)) holds. By comparing π and π′′, we obtain that

(Mk+1, πk+1 |= ψ ∨ ∃j < k + 1.(Mk+1, πj |= ϕ)) holds. This contradicts to that
(*) does not hold. For the case of ER, the reasoning is similar.

Lemma 2. If Mn, s |= ϕ for some n ≥ 0, then M, s |= ϕ.

According to Lemma 1, if Mn, s |= ϕ for some n, then Mk, s |= ϕ holds for a
large k. Given a model, all properties other than those of the form

AGψ, A(ϕRψ), EGψ, E(ϕRψ)

can be witnessed by finite paths. Let k be larger than the length of such paths and
also larger than the number of reachable states of M . Suppose that a property of
1 The bounded semantics stated that a property is true iff the property is true in a

bounded model for a given k (not for some k ≥ 0 as in our framework), and since the
given k is very large, it is not useful as a basis for establishing an efficient bounded
model checking approach.
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the form AGψ, A(ϕRψ), EGψ, E(ϕRψ) such that ϕ does not hold in any state
of π and ψ must hold in all states of π, and therefore a prefix is not sufficient
for showing the truth of such a property. Since AG and EG can be considered
as subcases of AR and ER, we only consider A(ϕRψ) and E(ϕRψ). Assume the
aforementioned situation occurs and A(ϕRψ) holds in the bounded semantics.
We want to show that ϕRψ also holds on such a path π. For the first, the situation
implies that ψ is true on every state of every k-path of which the set of states
is a subset of that of π. For the second, the set of states of all these k-paths
with the starting state π0 covers the set of states of π. These two conditions
guarantee that ψ is true on every state of π and therefore ϕRψ holds on π. For
the case of E(ϕRψ), since π satisfies (ϕRψ) in the bounded semantics such that
ψ holds on all states of π, an infinite path in which all states satisfying ψ can
be constructed, therefore E(ϕRψ) holds.

Lemma 3. If M, s |= ϕ, then Mk, s |= ϕ for some k ≥ 0.

By looking at the definitions, the bounded semantics is similar to the normal
semantics, except that the bounded semantics has a few additional constraints.
Let k be sufficiently large. Then the two conditions k ≥ 1 and lp(π) in the
bounded semantics hold without any problem. By simplifying the bounded se-
mantics based on this fact, the difference between the bounded semantics and
the normal semantics is that the paths in the bounded semantics are restricted
to k-paths, while the paths in the normal semantics are infinite paths. Therefore
if M, s |= ϕ holds, then Mk, s |= ϕ holds for a sufficiently large k (large enough
to make lp(π) true for all k-paths). In particular, the number of reachable states
of M will be such a k.

Theorem 1 (Soundness and Completeness). M, s |= ϕ iff Mk, s |= ϕ for
some k ≥ 0.

This theorem is a combination of the above lemmas.

Completeness Threshold. The completeness threshold of the problem M, s |= ϕ
is defined as the least k such that if Mk, s |= ϕ does not hold then Mk′ , s |= ϕ
does not hold for all k′ > k. Theorem 1 guarantees the existence of such a
completeness threshold.

Lemma 4. The completeness threshold of the problem M, s |= ϕ exists.

If the completeness threshold ct of the problem M, s |= ϕ is known, then the
problem is almost solved. If ct = 0, then we only need to check whether M0, s |= ϕ
holds. If ct > 0, then we know that Mct, s |= ϕ holds and therefore M, s |= ϕ
also holds. Therefore the complexity of knowing the completeness threshold is
the same as solving the problem.

Corollary 1. Let ct0 be an over-approximation of the completeness threshold of
M, s |= ϕ. M, s |= ϕ iff Mk, s |= ϕ for some k ≤ ct0.

Let |M | denote the number of reachable states of M . |M | is an over-approxi-
mation of the completeness threshold of M, s |= ϕ for any CTL formula ϕ.
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For a given triple M, s, ϕ, we may use a more accurate over-approximation.
Similar to the definitions in [17,9], let the initial recurrence diameter of a state
s of M be the number of states in the longest loop-free path between s and any
reachable state, and the recurrence diameter of M be the number of states in the
longest loop-free path between any two reachable states. Let ct(M, s, ϕ) denote
the completeness threshold of M, s |= ϕ. Let p, q be propositional formulas.
Then the initial recurrence diameter of s of M is an over-approximation of
ct(M, s, A(pUq)), while the recurrence diameter of M is an over-approximation
of ct(M, s, A(pUA(qUr))).

Bounded Model Checking Principle for CTL. Let M be a model, s a state and
ϕ a CTL formula. The bounded model checking principle2 may be formulated
as follows.

Let ct0 be an over approx. of ct(M, s, ϕ);
Let k = 0; .
If Mk, s |= ϕ holds, report that ϕ holds;
If k = ct0, report that ϕ does not hold;
Increase k, go to the first “if”-test;

Because CTL is closed under negation, Theorem 1 also provides a basis for
bounded model checking and verification (emphasizing the possibility to check
whether a formula is true or the negation of the formula is true without using a
completeness threshold or other termination criteria)3 of CTL properties.

Corollary 2. M, s |= ϕ iff there is a k such that Mk, s |= ϕ and there is no k
such that Mk, s |= ¬ϕ.

Note that ¬ϕ represents the NNF formula equivalent to ¬ϕ and Mk, s �|= ϕ is
not equivalent to Mk, s |= ¬ϕ.

Bounded Model Checking and Verification. Let M be a model, s a state and ϕ
a CTL formula. The bounded model checking and verification principle may be
formulated as follows.

Let k = 0; .
If Mk, s |= ϕ holds, report that ϕ holds;
If Mk, s |= ¬ϕ holds, report that ϕ does not hold;
Increase k, go to the first “if”-test;

2 We call this a principle, not a model checking approach, in the sense that a direct
implementation may not be efficient for general CTL properties. Later we shall
develop an implementable approach for bounded model checking and verification of
ACTL formulas.

3 This is not possible with the bounded semantics defined in [3,21] for model checking,
respectively, LTL and ACTL properties.
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This approach is guaranteed to terminate by Corollary 2. One of the features of
this bounded model checking and verification principle is that we do not have
to worry about the completeness threshold which is important in the previous
bounded model checking principle.

4 On CTL∗

In this section, we discuss the possibility of extending the bounded semantics of
CTL to CTL∗, and prove that there are no such extensions in our framework of
bounded semantics, in contrast to that there is a natural extension (within this
framework) of the bounded semantics of ECTL to that of ECTL∗ [24].

We first introduce CTL∗ . The temporal logic CTL∗ was proposed in [14] as
a unifying framework subsuming both CTL and LTL. This extension of CTL
waives the restriction of the use of path quantifiers and path operators such that
they can be used separately. Then there are two types of formulas in CTL∗. One
is state formulas and the other is path formulas. Let AP be a set of propositional
symbols. The set of CTL∗ formulas over AP is defined as follows:

If p ∈ AP , then p is a state formula.
If ϕ0 and ϕ1 are state formulas,
then ¬ϕ0, ϕ0 ∧ ϕ1 and ϕ0 ∨ ϕ1 are state formulas.
If ψ is a path formula, then Eψ and Aψ are state formulas.
If ϕ is a state formula, then ϕ is a path formula.
If ψ0 and ψ1 are path formulas,
then ¬ψ0, ψ0 ∧ ψ1, ψ0 ∨ ψ1, Xψ0, Fψ0, Gψ0, ψ0Uψ1 and ψ0Rψ1
are path formulas.

4.1 Semantics of CTL∗

Let M be a model, s a state of M , π a path of M . The relation ψ holds on π in
M for a path formula ψ is denoted by M, π |= ψ, and the relation ϕ holds on s
in M for a state formula ϕ is denoted by M, s |= ϕ.

Definition 9. (Semantics of CTL∗) Let ϕ be a state formula and ψ be a path
formula. The relation M, π |= ψ and M, s |= ϕ are defined as follows.

M, s |= p iff p ∈ L(s) .
M, s |= ¬ϕ0 iff M, s �|= ϕ0

M, s |= ϕ0 ∧ ϕ1 iff M, s |= ϕ0 and M, s |= ϕ1

M, s |= ϕ0 ∨ ϕ1 iff M, s |= ϕ0 or M, s |= ϕ1

M, s |= Eψ0 iff ∃π(s).(M, π |= ψ0)
M, s |= Aψ0 iff ∀π(s).(M, π |= ψ0)
M, π |= ϕ iff M, π0 |= ϕ
M, π |= ¬ψ0 iff M, π �|= ψ0

M, π |= ψ0 ∧ ψ1 iff M, π |= ψ0 and M, π |= ψ1

M, π |= ψ0 ∨ ψ1 iff M, π |= ψ0 or M, π |= ψ1
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M, π |= Xψ0 iff M, π1 |= ψ0

M, π |= Fψ0 iff ∃k ≥ 0.M, πk |= ψ0

M, π |= Gψ0 iff ∀k ≥ 0.M, πk |= ψ0

M, π |= ψ0Uψ1 iff
∃k ≥ 0.∀j < k.(M, πk |= ψ1 ∧ M, πj |= ψ0)
M, π |= ψ0Rψ1 iff
∀j ≥ 0.(M, πj |= ψ1)∨ ∃k ≥ 0.((M, πk |= ψ0) ∧ (∀j ≤ k.(M, πj |= ψ1))

The restriction of CTL∗ to path formulas such that path quantifers (E,A) do
not occur in the formulas is LTL. The restriction of CTL∗ to state formulas such
that temporal path operators (X ,F ,G,U ,R) and path quantifers (E,A) occur
in pair and each path operator is immediately preceded by a path quantifer is
CTL.

A CTL∗ formula is in NNF, if the negation ¬ is applied only to propositional
symbols. Every CTL∗ formula can be transformed into an equivalent formula in
NNF. The restriction of CTL∗ to NNF formulas not containing the existential
path quantifier is called ACTL∗. The restriction of CTL∗ to NNF formulas not
containing the universal path quantifier is called ECTL∗.

Definition 10. Let ϕ be an ACTL∗ formula. ϕ is true in M , denoted M |= ϕ,
iff ϕ is true at all initial states of M . Let ϕ be an ECTL∗ formula. ϕ is true in
M , also denoted M |= ϕ, iff ϕ is true at some initial state of M .

4.2 Bounded Semantics of CTL∗

Let |=k be a family of bounded relations each defined as a propositional combi-
nation of simple relations with respect to |= (for state formulas) as follows.

m∨
i=1

(
n∧

j=1

|=i,j
k )

Since |=i,j
k is a simple relation for state formulas, when evaluating formulas of

the form Aϕ, it must be related to the corresponding path relation. For clarity,
we use a different notation for the corresponding path relation. Let |=i,j

k,p denote
the relation |=i,j

k for path formulas. Then Mk, s |=i,j
k Aϕ iff Mk, π(s) |=i,j

k,p ϕ for
every k-path π(s), according to the compositionality of the relation.

Each |=i,j
k,p may also be defined by a disjunction of conjunctions of simple

relations for path formulas. Let such a definition be as follows.

ai,j∨
x=1

(
bi,j∧
y=1

|=i,j,x,y
k,p )

Suppose that Mk, s |=k Aϕ holds. Then there is some i such that for all j and
every k-path π(s), Mk, π(s) |=i,j

k,p ϕ holds.

Let R(i) be
∧n

j=1
∨ai,j

x=1(
∧bi,j

y=1 |=i,j,x,y
k,p ).
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Expanding R(i) to a disjunction of conjunctions of simple relations, we may
write R(i) as

∨r
x=1(|=k,p,i,x) where |=k,p,i,x is a conjunction of simple relations

consistent with the definition of R(i).
Suppose that Mk, s |=k Aϕ holds. Then there is some i and x such that for

every k-path π(s), Mk, π(s) |=k,p,i,x ϕ holds.

Lemma 5. Suppose a sound and complete bounded semantics with respect to |=
is defined by the family of bounded relations |=k. Then the following hold:

– If Mk, π |=k,p,i,x Gp, then p ∈ L(πn) for all n ∈ {0, ..., k}.
– If Mk, π |=k,p,i,x Fp, then p ∈ L(πn) for some n ∈ {0, ..., k}.

Proof. Suppose that |=k is such a family of relations defining the bounded se-
mantics and Mk, π |=k,p,i,x Gp without requiring every πi satisfy p. Then we can
construct a model M ′ such that π ∈ M ′

k and a formula ϕ (a disjunction of con-
junctions of formulas of the form Xnq where 0 ≤ n ≤ k and q is a propositional
formula characterizing the (n +1)-th state of a path) characterizing the k-paths
starting at π0 that are not identical to π. Then we have M ′

k, π′ |=k,p,i,x ϕ ∨ Gp
for every k-path π′ starting at π0. Then according to the completeness of |=k,
we obtain that M ′, π0 |= A(ϕ ∨Gp) which is obviously not true, since not every
state along the path starting with π0, not characterized by ϕ, satisfies p. This
is a contradiction. Therefore the first property must hold. Similarly, the second
property must hold.

Theorem 2. There is no sound and complete bounded semantics with respect
to the semantics of CTL∗.

Proof. Suppose that |=k is such a family of relations defining the bounded se-
mantics. Let M be the model shown in Fig. 1. Let ϕ be A(Gp ∨ Fr).

Fig. 1. Model with two loops

Since M, s0 |= ϕ, there is a k ≥ 0 such that Mk, s0 |=k ϕ according to the
completeness of |=k. There are following three types of k-paths in Mk that starts
with s0.

– (s0)k+1

– (s0)ks1 for k ≥ 1.
– (s0)is1(s2)j for k ≥ 1 and i + j = k.
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By Lemma 5 and the compositionality of the relation, the only possibility for
Mk, s0 |=k ϕ to hold is the case when k = 0, since (s0)ks1 does not satisfy
Gp ∨ Fr for any relation corresponding to |=k,p,i,x. When k = 0, there is only
one path in M0, namely s0. Then M0, s0 |=k ϕ.

Let M ′ be the modification of M such that a self-loop from s1 to s1 is added,
as shown in Fig. 2.

Fig. 2. Model with three loops

Let M ′
0 be the 0-model of M ′. Since M ′

0=M0, we have M ′
0, s0 |=k ϕ for k = 0

as well. Then we obtain M ′, s0 |= ϕ according to the soundness of |=k. This is
not a correct conclusion. Therefore |=k does not have the properties as claimed.
We conclude that the theorem holds.

On ACTL∗. The proof above also shows that there are no sound and complete
bounded semantics for ACTL∗. On the other hand, for ECTL∗, a sound and
complete bounded semantics is available [24].

5 Applications

The bounded semantics of CTL may serve as a basis for developing a bounded
model checking algorithm for checking CTL formulas based on QBF (quantified
boolean formulas)-solvers [19]. However, in this section, we will rather concen-
trate on checking ACTL formulas based on SAT (boolean satisfiability)-solvers,
because the universal properties are considered typical in system specifications
[11], and of the efficiency of SAT-solvers.

5.1 Further Development for ACTL Properties

For the practical use of the verification principle, the main problem is how to
verify Mk, s |= ϕ and Mk, s |= ¬ϕ. Since there are many bounded paths in Mk

(an over estimation of the number of bounded paths is |M |k+1), a brute-force
checking of the validity of the two problems is not practical. The development in
this section for the verification of ACTL properties is similar to that presented
in [21,29], only that this is now developed under the bounded semantics of CTL
that admits bounded model checking and verification principle.

Definition 11 (Submodels). Let Mk = 〈S, Phk, I, L〉 be the k-model of M .
Mn

k = 〈S, Phn
k , I, L〉 is a submodel of Mk, if Phn

k ⊆ Phk where n denotes the
size of Phn

k . We write Mn
k ≤ Mk for this relation and call Mn

k a (k, n)-submodel
of Mk.
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Let M b
k be a (k, b)-submodel of Mk. Let the relation M b

k, s |= ϕ be defined
similar to the relation Mk, s |= ϕ, only with paths restricted to that of M b

k. For
a sufficiently large n, an ACTL formula is satisfied in a k-model iff it is satisfied
in all submodels of size n, and an ECTL formula is satisfied in a k-model iff it is
satisfied in some submodel of size n. Note that since we do not have Mk, s |= ϕ iff
Mk, s �|= ¬ϕ, the above two statements are different, and need to be considered
separately. Obviously, if we put n = |M |k+1, the statements hold. However, we
are interested in smaller n.

Let ϕ be an ACTL formula and ψ be an ECTL formula. Let na
k(ϕ) be the

least number such that for all s, Mk, s |= ϕ iff M ′
k, s |= ϕ for all (k, na

k(ϕ))-
submodels M ′

k. Let ne
k(ψ) be the least number such that for all s, Mk, s |= ψ iff

M ′
k, s |= ψ for some (k, ne

k(ψ))-submodel M ′
k. We consider over-approximations

of na
k(ϕ) and ne

k(ψ).

Definition 12. Let ϕ be an ACTL formula. fk(ϕ) is defined as follows.

fk(p) = 0 if p ∈ AP
fk(¬p) = 0 if p ∈ AP
fk(ϕ0 ∧ ϕ1) = max(fk(ϕ0), fk(ϕ1))
fk(ϕ0 ∨ ϕ1) = fk(ϕ0) + fk(ϕ1)
fk(AXϕ) = fk(ϕ) + 1
fk(AFϕ) = (k + 1) · fk(ϕ) + 1
fk(AGϕ) = fk(ϕ) + 1
fk(A(ϕ0Uϕ1)) = k · max(fk(ϕ0), fk(ϕ1)) + fk(ϕ0) + fk(ϕ1) + 1
fk(A(ϕ0Rϕ1)) = k · fk(ϕ0) + max(fk(ϕ0), fk(ϕ1)) + 1

Lemma 6. Let ϕ be an ACTL formula. na
k(ϕ) ≤ fk(ϕ).

Let ϕ be an ACTL formula. Then Mk, s |= ϕ iff M ′
k, s |= ϕ for all (k, fk(ϕ))-

submodels M ′
k. The reasoning is similar to that presented in [21,29] and is omit-

ted, although the definition of the semantics and the definition of the over-
approximation of the necessary number of paths are different4. Similarly, we
have the following lemma.

Lemma 7. Let ψ be an ECTL formula. ne
k(ψ) ≤ fk(¬ψ).

By Corollary 2 and the above two lemmas, we have the following theorem.

Theorem 3. Let ϕ be an ACTL formula. M, s |= ϕ iff there is a k such that
M ′

k, s |= ϕ for all (k, fk(ϕ))-submodels M ′′
k and there is no k such that M ′′

k , s |=
¬ϕ for some (k, fk(ϕ))-submodel M ′′

k .

Definition 13. Let ϕ be an ACTL formula. M b
k |= ϕ iff M b

k, s |= ϕ for all s ∈ I.

4 For simplicity, we do not present functions for calculating over-approximations for
na

k(ϕ) and ne
k(ϕ) separately, such that the definition of fk() may in some cases seem

to be unnecessarily large.
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Definition 14. Let ψ be an ECTL formula. M b
k |= ψ iff M b

k, s |= ψ for some
s ∈ I.

The following statement follows from Theorem 3.

Corollary 3. Let ϕ be an ACTL formula. M |= ϕ iff there is a k such that
M ′

k |= ϕ for all (k, fk(ϕ))-submodels M ′′
k and there is no k such that M ′′

k |= ¬ϕ
for some (k, fk(ϕ))-submodel M ′′

k .

Bounded Model Checking and Verification for ACTL. Let M be a model and ϕ
an ACTL formula. The corresponding bounded model checking and verification
approach is as follows.

Let k = 0; .
If M ′

k |= ϕ for all (fk(ϕ), k)-models M ′
k,

report that the property holds;
If M ′

k |= ¬ϕ for some (fk(ϕ), k)-model M ′
k,

report that the property does not hold;
Increase k, go to the first “if”-test;

5.2 SAT-Based Implementation

A SAT-based characterization of the above approach for ACTL can then be
developed5. The development follows from the idea of [21,29] and is therefore
omitted. It has then been implemented (the tools is called VERBS6 hereafter)
and an experimental study has been carried out with a comparison to SMV
(release 2.5.4.3), an implementation of the BDD-based symbolic model checking
technique [20]. The experiments are carried out on a Sun Blade 1000 with 750
MHz and 512 MB. In the experiments, VERBS internally calls MiniSat-1.14 [12].

Model. The model consists of global boolean variables p[0],..., p[n − 1], q[0], ...,
q[n− 1], r[0], ..., r[n− 1] and three processes p,q,r, each of which has in addition
one local variable and has n transitions. The transitions of p written in the first
order transition system are as follows:

ss = a0 −→ (p[0], ss) := (¬p[0], a1);
ss = a1 −→ (p[1], ss) := (¬p[1], a2);
...
ss = an−2 −→ (p[n − 2], ss) := (¬p[n − 2], an−1);
ss = an−1 −→ (p[n − 1], ss) := (¬p[n − 1], a0);

Within the process, the variables p[i] are initially set to 0 for all i ∈ {0, ..., n−1},
and the variable ss (acting as the program counter, which takes one of the values
of {a0, ..., an−1}) is initially a0 (in practice, ai is interpreted as number i). The
other two processes are similar.
5 For CTL, as mentioned earlier, a QBF-based characterization maybe developed,

however, it is unclear whether it is possible to develop a SAT-based characterization.
6 This is available from the webpage “http://lcs.ios.ac.cn/∼zwh/verbs/”.
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Properties. Let ϕ(i) be ¬p[i] ∧ ¬q[i] ∧ ¬r[i]. The following types of properties
are considered.

PT 1 : A(¬ϕ(i)RA(¬ϕ(j)Rϕ(k)))
PT 2 : A(¬ϕ(i)RA(ϕ(j)U ¬ϕ(k)))
PT 3 : A(ϕ(i)U A(¬ϕ(j)Rϕ(k)))
PT 4 : A(ϕ(i)U A(ϕ(j)U ¬ϕ(k)))

Experimental Results and Discussion. There are n3 properties of each type (i, j, k
range from 0 to n − 1). The experimental data for n = 9 (with 729 properties
of each type) is summarized in Table 1. The explanation of the symbols in the
table is as follows.

A number of true properties of each of the types in the model
B number of false properties of each of the types in the model
C range of time (in seconds) for the true properties by SMV
D range of time (in seconds) for the false properties by SMV
E range of time (in seconds) for the true properties by VERBS
F range of time (in seconds) for the false properties by VERBS
G percentage of true properties in which VERBS has advantage
H percentage of false properties in which VERBS has advantage
600+ the time is greater than the given time limit, 600 seconds

The data show that SMV, within each type of properties, is not very sensitive to
the concrete properties being verified, with respect to the usage of time, on the
other hand, VERBS is sensitive to the concrete properties. As the types of prop-
erties are considered, VERBS has an advantage between 18.2 and 67.5 percent
(on the other hand, SMV has an advantage between 32.5 and 81.8 percent) for
the properties true in the model. In average, for these properties, VERBS has
advantage in 41.7 percent of cases, while SMV has advantage in 58.3 percent of
the cases. For the properties false in the model, VERBS performs a lot better7.

In order to have some idea on the asymptotic behavior of the performance,
we have also carried out experiments with n = 13 with 2197 properties of each
type. The experimental data is summarized in Table 2. As the types of properties
are considered, the relative advantage and disadvantage are similar (or slightly
better in average) when the size of the problem increases.

For the given time limit and the experimental environment, it is expected
that, for instance, when n increases to a relatively big number, the verification
of the properties using SMV will be ineffective for all of the problem instances,
on the other hand, a significant percentage of the problem instances can still be
verified or falsified by VERBS within the time limit.

In summary, this example has illustrated that, with respect to ACTL prop-
erties, VERBS and SMV have their own advantages both for verification and
falsification. The former has advantage when a small k is sufficient for either
verification or falsification. The latter has advantage on the opposite situations.
7 Note that VERBS does not have counterexample generation functionality yet, while

SMV uses some time on the counterexample generation.



302 W. Zhang

Table 1. Summary of the Experimental Data for n = 9

PT1 PT2 PT3 PT4
A 204 405 324 525
B 525 324 405 204
C 8 - 8 13-16 11-13 13 - 26
D 9 - 12 21-29 13-18 37 - 48
E 0 - 600+ 0 - 600+ 0- 600+ 0-600+
F 0 - 31 0-8 0-41 0 - 28
G 22.5% 18.2% 67.5% 58.8%
H 94.8% 100.0% 66.1% 100.0%

Table 2. Summary of the Experimental Data for n = 13

PT1 PT2 PT3 PT4
A 650 1183 1014 1547
B 1547 1014 1183 650
C 53 - 54 131 - 156 76 - 89 131 - 266
D 59 - 81 232 - 286 89 - 127 419 - 507
E 0 - 600+ 0 - 600+ 0 - 600+ 0 - 600+
F 0 - 340 0 - 600+ 0 - 600+ 0 - 600+
G 24.3% 18.1% 72.8% 59.5%
H 96.8% 99.6% 72.7% 96.3%

Mutual Exclusion. Experiments have also been carried out with a mutual exclu-
sion algorithm [18], with two processes. Three problem instances are considered,
one for verification of mutual exclusion property, one for liveness and one for
non-starvation. Let the two processes be identified by p1 and p2 and let req, cri
represent the process states for having just made request for entering the crit-
ical region and having just entered the critical region, respectively. The three
properties are as follows:

AG(¬(p1.cri ∧ p2.cri))
AG((p1.req ∨ p2.req) → AF (p1.cri ∨ p2.cri))
AG((p1.req → AF (p1.cri)) ∧ (p2.req → AF (p2.cri)))

The verification process correctly verified the first two properties and falsified
the last one. The bounds for verification and falsification are respectively 35, 35,
4 for the three properties in the experiment.

Coherence. Experiments have also been carried out with an asynchronous com-
munication mechanism (ACM) with rereading and overwriting [15]. The model
is specified as a set of conditional rewriting rules. The coherence property spec-
ified in [15] is that if some process starts to read and some starts to write,
then the read-process will operates on the first element of the ACM and the
write-process will operates on the last element of the ACM. The memory of the
ACM of the instance of our model has length 6. Let the memory be denoted by
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x[0]x[1]...x[5]. Let s ∈ {1, .., 6} denote the length of the part of the memory that
is in use. Let read-operation on a memory cell containing a be denoted by ra, let
the write-operation on a memory cell containing a be denoted by wa. Let y ∈ x
denote x[0] = y ∨ · · · ∨ x[5] = y. Then one instance of the property is specified
as follows.

AG(s = 6 →
(ra ∈ x → ra = a[0] ∧ (wa ∈ x → wa = a[5])))

The verification process correctly verified this property and falsified incorrect
ones, for instance, when we change wa = a[5] to wa = a[4] in the property. The
bounds reached are respectively 42, 12 for the two properties, the correct one
and the modified one, in the experiment.

6 Concluding Remarks

We have provided a framework for discussion of bounded semantics. This frame-
work has formalized what is the usual understanding of bounded semantics, such
that we have a framework to discuss this particular kind of semantics. The tra-
ditional bounded semantics presented in [3,21,24] fall into this framework and is
sound and complete for their target languages, while the bounded semantics of
CTL∗ presented in [23] are considered unsound. In this framework, we have pro-
vided a sound and complete bounded semantics for CTL formulas and identified
the limitation of such semantics, namely, there are no such sound and complete
bounded semantics for CTL∗.

The bounded semantics of CTL differs from the previously developed bounded
semantics [3,21,24,29] in that the target language is closed under negation such
that it can be used to check both a formula and its negation8, and used as
the basis for bounded model checking and verification in the sense discussed in
Section 3. The bounded semantics of CTL is then refined in order to develop
a SAT-based algorithm for checking ACTL properties. This algorithm is imple-
mented, and experimental comparison with a BDD-based model checking tool
SMV is carried out. The experimental results show that this bounded seman-
tics based approach has advantage when a small k is sufficient for verification
or error detection of given ACTL properties, while BDD-based approaches has
advantage in the rest of cases. One of the important features of this approach
based on CTL bounded semantics is that we do not have to be worried about
over-approximations of the completeness threshold and the termination crite-
ria which are one of the difficulties of bounded model checking and have been
devoted a lot of research effort [17,9,16,10,1].

Experiments have also been carried out on models for instances of a mutual
exclusion algorithm [18] and an asynchronous communication mechanism with
rereading and overwriting [15]. For future research, one the theoretical side,
8 The semantics of CTL∗ presented in [23] can also be used to check a formula and its

negation, but it is not a sound semantics in our framework as pointed out in Section
3.2.
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we may further investigate bounded semantics of temporal logics, and at the
practical side, we may improve the efficiency of the current bounded semantics
based approaches in order to extend potential advantages of such an approach.

Acknowledgments. The author thanks anonymous referees for their constructive
critics that helped improving this paper.
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theoretical side we give a simple algorithm to decide this logic, and we
prove that the satisfiability problem is ExpTime-complete when the con-
stants of the quantifiers are represented in unary. On the applicative side
we propose symbolic algorithms to solve the model checking problem. One
of the main characteristics of these algorithms is that, though the com-
putation of “distinct” counterexamples has inherently high complexity
when the model is represented symbolically, we have designed them to
make the generation of multiple counterexamples as easy and quick as
possible. The symbolic algorithms have been implemented using BDD
data structures, and have been integrated into the well known NuSMV
model checker, that has been modified to accept specifications expressed
in graded-CTL. The test results we report are very comfortable in the
sense that both the running time and the size of the BDDs produced are
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CTL.
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1 Introduction

Recently a new logic strictly more expressive than CTL has been introduced
by the same authors in [FNP08, FNP10], called graded-CTL. It augments the
existential and universal quantifiers with graded modalities that allow to reason
about either at least or all but any number of futures. In literature, graded modal-
ities have been intensively studied in various logic frameworks. In classical logics
∃>k and ∀≤k are called counting quantifiers, see e.g. [GOR97, GMV99, PST00],
in modal logics they are called graded modalities, see e.g. [Fin72, Tob01], and in
description logics one speaks about number restriction of properties describing
systems, see e.g. [HB91]. A different extension of CTL (RCTL) has been also de-
fined in [EMSS92], where bounds are placed on the temporal modalities, instead
of on the path quantifiers, bounding thus the maximum number of permitted
transitions along a path.

Simple examples of graded-CTL are the formula E>kF(critic1 ∧ critic2),
which expresses that there exist more than k possibilities to violate the mu-
tual exclusion property to enter the critical section of a system, and the formula
E>kFgood which expresses the fact that the system has several ways to reach a
good state. Formulas of these types cannot be expressed in CTL and not even in
classical µ-calculus. Consider the two Kripke structures in the following figure,
they cannot be distinguished by any CTL formula, while on the contrary, only
the first is a model for the graded-CTL formula E>1Xp, which says that there
is more than one next state where p holds.

Another favorable point for studying this new logic is when we want to express
that exactly one path satisfies a path formula, say for example Gϕ, which means
that ϕ holds forever in the states along a path: we can use the graded-CTL
formula E>0Gϕ∧¬E>1Gϕ. This latter example also shows that there is a great
difference between a graded-CTL formula and the CTL formula obtained simply
by ignoring the constant grading the path quantifiers: not only the models of
the two formulas are different but even the satisfiability may change since, the
deletion of the constants from E>0Gp∧¬E>1Gp produces a CTL formula which
is not satisfiable.

Our contribution is on both a theoretical and an applicative side. For the
former we give a simple algorithm to decide the satisfiability of a graded-CTL
formula ϕ in time 2O(|ϕ|4), when the grading constants occurring in the quan-
tifiers of ϕ are expressed in unary. On the applicative side, we deal with the
model-checking framework for the graded-CTL logic. In [FNP10] it has been
shown that the graded-CTL model-checking problem can be solved in polynomial
time and independently from the constant values grading the path quantifiers
of the formula (and thus the representation of the constants does not affect the
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running time of the model checking algorithm). Here, we propose symbolic al-
gorithms for solving the model checking problem. As widely known, symbolic
model checking [BCM+90] is a technique that allows, by representing and ma-
nipulating sets of vertices, to manage models with very high number of states.
This have also been applied to the model checking of CTL [CE81] by revealing
a very high efficiency in practice, especially in hardware verification [McM93].

We have implemented our algorithms with Binary Decision Diagrams, BDDs
[Bry92], and have integrated them in the NuSMV model-checker [CCG+02] (and
actually are collaborating with the development team for the integration of
graded-CTL in the next official release of NuSMV). Besides being more expres-
sive than CTL, a motivation for the use of graded-CTL in the model checking
framework, is its close relation to the counterexamples generated by the model-
checker tools. In fact these tools generate one counterexample for each run and
they are used as a step in the Check/Analyze/Fix loop: Check the model against
a specification, Analyze the counterexample generated by the tool and re-design
the model after having Fixed the errors. The Check stage is often expensive, in
terms of time resources, so it would be desirable to minimize the number of runs
of the model-checkers. The complexity of the Analyze stage depends on the time
the designer needs to interpret the counterexamples, and this task can be facili-
tated by providing more meaningful counterexamples. With respect to this, we
think that graded-CTL can be much useful, in fact by using the graded modal-
ities we can get more counterexamples with a unique run of the model checker
and, hopefully, one does not have to undergo again through the time-consuming
three stage cycle, c.f. [CG07, CIW+01, DRS03].

Clearly, it is possible in principle, to modify a tool checker to let it gener-
ate multiple counterexamples without changing the logic. Anyway, this is not
likely to be done for essentially two reasons. First suppose that for example a
system designer desires two evidences to the CTL formula EFEGp. He cannot
choose the ”type” of the evidences unless he uses a graded-CTL formula, either
E>0FE>1Gp or E>1FE>0Gp, which allow to get different evidences according
to the needs (and not following a policy hard-coded once and for all into the
tool). Second, it is not a trivial task to symbolically implement an algorithm
that analyzes the model looking for distinct counterexamples (consider, for ex-
ample, the inherent difficulty in the symbolic implementation of a DFS); our
algorithms, instead, have been explicitly designed to make the computation of
distinct counterexamples as quick and easy as possible.

We have implemented the symbolic algorithms into the well known NuSMV
model checker, version 2.4.3, and have tested it on various examples. We re-
port some results obtained from examples of the official NuSMV web site. Other
tests and the package for graded-CTL can be found at http://gradedctl.dia.
unisa.it. The experimental results indicate that there is no substantial over-
head both in time and in size of BDDs needed to process graded-CTL formulas
with respect to the classical CTL ones.

Related Works. In [KSV02], complexity issues related to the satisfiability
problem for the µ-calculus when the universal and existential quantifiers are

http://gradedctl.dia.unisa.it
http://gradedctl.dia.unisa.it
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augmented with graded modalities, have been investigated. They have shown
that this problem is ExpTime-complete, retaining thus the same complexity as
in the case of classical µ-calculus, though strictly extending it. There, the values
of the constants grading the quantifiers are represented in binary.

In [BMM09] a logic with the same expressivity of our graded-CTL logic is
considered, though their interpretation of the graded quantifiers is different and
seems to be less natural than ours. Consider in fact the formula E>kGTrue: in
our logic it extends the CTL formula EGTrue (having the intuitive meaning
that at least k different paths stem); in their interpretation it is a contradiction,
since it has no models. Also they solve the satisfiability problem, anyway the
complexity of the translations between our and their logics prevents the two
results to be derived from each other. The main differences between these two
results is that theirs is in time 2O(|ϕ|5).

In the last years, symbolic computations have also been applied to other
kinds of problems. In [BGS06] the authors show a symbolic algorithm for the
computation of the maximum flow in a 0-1 network, while in [GPP07] graph
connectivity related problems are studied from a symbolic point of view. Recently
symbolic techniques have also been applied to the satisfiability problem for the
modal logic K [PSV05] and for CTL [Mar05].

The rest of the paper is organized as follows: in Section 2 we give the definitions
of graded-CTL. In Section 3 we solve the satisfiability problem. In Section 4
we give the symbolic algorithms for the graded-CTL model checking problem.
In Section 5 we describe the implementation of our algorithm into NuSMV and
present the experimental results of the tests. In Section 6 we give our conclusions
and outline some future research directions.

2 Graded-CTL Logic

In this section we recall the graded-CTL logic introduced in [FNP10]. The well-
known temporal logic CTL [CE82] is a branching-time logic in which temporal
operators express properties about a possible future and are preceded by a path
quantifier. With this logic one can express properties that have to be true either
immediately after now (X ), or each time from now (G), or from now until some-
thing happens (U), and it is possible to specify, through a path quantifier, that
each property must hold either in some possible futures (E) or in each possible
future (A). The graded-CTL logic extends CTL with graded quantifiers allowing
to express also that a temporal property must hold either in more than a given
number or in all but a given number of possible futures. The graded-CTL oper-
ators consist of the temporal operators U and X , the boolean connectives ∧ and
¬, and the graded path quantifier E>k (for at least k+1 distinct futures). Given
a set of atomic propositions AP , the syntax of the graded-CTL formulas is:

ϕ := p | ¬ψ1 | ψ1 ∧ ψ2 | E>kXψ1 | E>kGψ1 | E>kψ1Uψ2

where p ∈ AP , ψ1 and ψ2 are graded-CTL formulas and k is a non-negative
integer. The graded-CTL formulas, as in standard CTL, are also called state-
formulas and Xψ1, Gψ1 and ψ1Uψ2, are called, as usual, path-formulas. The
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semantics of graded-CTL is defined with respect to a Kripke Structure, by means
of a satisfiability relation |=. A Kripke structure over a set of atomic propositions
AP is a tuple K = 〈S, sin, R, L〉, where S is a finite set of states, sin ∈ S is the
initial state, R ⊆ S × S is a transition relation, with the property that for each
state s there is a successor t such that (s, t) ∈ R, and L : S → 2AP is a state
labeling function. In the rest of the paper, with K we always denote the Kripke
structure 〈S, sin, R, L〉.

The relation |= is defined as follows:

– (K, s) |= p iff p ∈ L(s);
– (K, s) |= ψ1 ∧ ψ2 iff (K, s) |= ψ1 and (K, s) |= ψ2;
– (K, s) |= ¬ψ1 iff ¬((K, s) |= ψ1)
– (K, s) |= E>kXψ1 iff there exist k+1 different successors s0, . . . , sk of s such

that (K, si) |= ψ1 for all 0 ≤ i ≤ k;

To define the semantics for G and U operators, let us first introduce the notion
of distinct paths which plays an important role. The length |π| of a path π in
K is the number of its states, and π[i] denotes the i-th state in π, 0 ≤ i < |π|.
Two paths π1 and π2 are distinct if there exists an index 0 ≤ i < min{|π1|, |π2|}
such that π1[i] �= π2[i]. Observe that from this definition if a path is the prefix
of another path, then they are not distinct.

– (K, s) |= E>kGψ1 iff there exist k + 1 pairwise distinct infinite paths πj ,
0 ≤ j ≤ k, starting from s and such that (K, πj [h]) |= ψ1, for all h ≥ 0.
These paths πj are said to satisfy the path-formula Gψ1.

– (K, s) |= E>kψ1Uψ2 iff there exist k + 1 pairwise distinct finite paths πj of
length ij + 1, for 0 ≤ j ≤ k, and starting from s such that:

1. (K, πj [ij ]) |= ψ2, and
2. for every 0 ≤ h < ij , (K, πj [h]) |= ψ1;

These paths πj are said to satisfy the path-formula ψ1Uψ2.

We say that a state s in K satisfies a state-formula ϕ if (K, s) |= ϕ and K models
(or also is a model of) ϕ, if (K, s0) |= ϕ

Observe that we have expressed the syntax of graded-CTL with one of the
possible minimal sets of operators. Other temporal operators can be easily de-
rived from those. For example, the temporal operator F (eventually) can be
expressed by: E>kFψ1 ⇔ E>k

TrueUψ1. Moreover, the path quantifier E=k

can be expressed, as shown in the introduction, since E=kψ is equivalent to
E>k−1ψ∧¬E>kψ, and also the graded extension of the universal quantifier, A≤k,
can be defined, with the meaning that all the paths starting from a node s, but at
most k pairwise distinct paths, satisfy a given path-formula. The quantifier A≤k

is the dual operator of E>k and can obviously be re-written in terms of ¬E>k.
The formulas A≤kXψ1 and A≤kGψ1 are equivalent to respectively ¬E>kX¬ψ1
and ¬E>kF¬ψ1, while the formula A≤kψ1Uψ2 with k > 0 deserves more atten-
tion. In fact, we have that A≤kψ1Uψ2 is equivalent to ¬E>k¬(ψ1Uψ2), but this



Graded-CTL: Satisfiability and Symbolic Model Checking 311

formula is not a graded-CTL formula because of the occurrence of the innermost
negation. This latter can be expressed in graded-CTL in the following way:

A≤kψ1Uψ2 ⇐⇒ ¬E>kG(ψ1 ∧ ¬ψ2) ∧ ¬E>k(ψ1 ∧ ¬ψ2)U(¬ψ1 ∧ ¬ψ2)∧∧k−1
i=0 (¬E>k−1−iG(ψ1 ∧ ¬ψ2) ∨ ¬E>i(ψ1 ∧ ¬ψ2)U(¬ψ1 ∧ ¬ψ2))

(1)

Equivalence (1) holds because if a path does not satisfy ψ1Uψ2 then it satisfies
either θ1 = G(ψ1 ∧ ¬ψ2) or θ2 = (ψ1 ∧ ¬ψ2)U(¬ψ1 ∧ ¬ψ2) and, moreover, the
paths satisfying θ1 are all distinct from the paths satisfying θ2.

Let us now recall the definitions of the graded-CTL satisfiability and model-
checking problems. The graded-CTL SAT is the problem of verifying whether a
Kripke structure exists which models a given graded-CTL formula. The graded-
CTL model-checking, given a Kripke structure K and a graded-CTL formula
ϕ, is the problem of verifying whether K models ϕ.

In spite of the augmented expressiveness, the complexity of the graded-CTL
model-checking problem remains the same as that of CTL, since this problem is
solved in polynomial time and independently from the constant values grading
the path quantifiers of the formula.

Let |ϕ| be the number of the temporal and the boolean operators occurring
in a graded-CTL formula ϕ.

Theorem 1. [FNP10] The graded-CTL model-checking problem for a Kripke
structure K and a graded-CTL formula ϕ can be solved in time O(|R| · |ϕ|).

Distinct paths. Since graded-CTL requires to count the paths satisfying a for-
mula, we have introduced the notion of distinct paths. Now we briefly discuss
this definition. For the globally operator we had no choice since we have to dis-
tinguish infinite paths. On the contrary the other temporal operators require a
deeper reasoning. The most reasonable choice in this case is to count distinct
finite evidences of a formula. In fact, the different choice to count infinite dis-
tinct paths (as done for the globally operator) may cause loss of information,
as illustrated by the fact that the validity of the formula E>kF safe no longer
ensures that a system has more ways to reach safe states. In fact also paths that
diverge after the last safe state would be counted as distinct.

Another possible choice is to consider as distinct two evidences of ψ1Uψ2 also
in the case that one is the prefix of the other (this logic, in a certain sense,
allows to count the number of states satisfying a formula in a Kripke structure).
However, it can be proved quite immediately, that this choice leads to a logic
that is no more expressive than ours.

3 The SAT Problem

In this section we show that SAT problem for graded-CTL is ExpTime-complete
when the grading constants in the path quantifiers are expressed in unary. The
membership proof is based on the reduction of the SAT problem to the emptiness
problem for Büchi Automata on Infinite Trees. Since an infinite tree can be seen
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as a special Kripke structure with an infinite set of states, we can easily extend
the semantics of the graded-CTL logic to infinite trees and we say that an infinite
tree T is a model (i.e. satisfies) a graded-CTL formula ϕ iff (T, root(T )) |= ϕ.

Given a graded-CTL formula ϕ, we consider the set Eϕ of the subformulas
E>kθ of ϕ occurring in positive form, that is we do not include in Eϕ the
subformulas ¬E>kθ. Our algorithm to solve the graded-CTL SAT problem is
based on the fact that graded-CTL, as stated in the following lemma, obeys to
a Tree Model Property.

First, we define for a graded-CTL formula ϕ the set ecl(ϕ) (that we call
extended closure of ϕ) as the minimal set of graded-CTL formulas such that

– True is in ecl(ϕ) and ϕ is in ecl(ϕ);
– if ψ1 ∧ ψ2 is in ecl(ϕ), then both ψ1 and ψ2 are in ecl(ϕ)
– if E>kXψ1 (k ≥ 0) is in ecl(ϕ), then ψ1 is in ecl(ϕ);
– if E>0Gψ1 is in ecl(ϕ), then ψ1 is in ecl(ϕ);
– if E>0ψ1Uψ2 is in ecl(ϕ), then both ψ1 and ψ2 are in ecl(ϕ);
– if E>kθ is in ecl(ϕ) with k > 0 and either θ = Gψ1 or θ = ψ1Uψ2, then E>iθ

is in ecl(ϕ) for all 0 ≤ i ≤ k − 1;
– if ψ is in ecl(ϕ) then ¬ψ is in ecl(ϕ);

To get ecl finite, we assume that ¬¬ϕ is replaced by ϕ.

Lemma 1. If a graded-CTL formula ϕ is satisfiable, then it is satisfiable on a
2AP -labeled infinite tree with branching degree bounded by b = k̂ + l + 1, where k̂
is the sum of the grading constants occurring in the subformulas in Eϕ and l is
the number of these subformulas.

Proof. Let K be a model of ϕ and let us consider its unwinding T ; obviously
T satisfies ϕ. Suppose that the branching degree of T is greater than b; we will
show how to modify T to obtain a tree with branching degree at most b and that
still satisfies ϕ. Let x ∈ T be a node having n > b children. Let us denote by
F (x) a minimal subset ecl(ϕ) containing the graded-CTL formulas that have to
be satisfied in x in order to have that T is a model of ϕ. If F (x) contains only
boolean combinations of atomic proposition or formulas of the type ¬E>kθ, we
choose one child of x and prune all subtrees rooted in the remaining children of
x. Each other formula in F (x) not containing path quantifiers still holds true,
because it only depends on the labeling of the node x, and each other formula
in F (x) of the kind ¬E>kθ is still satisfied in x because we have only deleted
paths starting from x.

Suppose now that F (x) contains also the formulas E>k1θ1, . . . , E
>ktθt. From

the minimality of F (x), it follows that θi �= θj , for i �= j, and thus k1+. . .+kt ≤ k̂
and t ≤ l. Consider, for each 1 ≤ i ≤ t, a minimal set Ci of children of x that, all
together, allow x to satisfy E>kiθi. More precisely, called my = max{h|(K, y) |=
∃>h−1θi}, for a child y of x, ki <

∑
y∈Ci

my, and, for any proper subset C′
i of Ci,

ki ≥
∑

y∈C′
i
my. From this definition it follows that my �= 0 for every y ∈ Ci and

thus |Ci| ≤ ki+1 for all 1 ≤ i ≤ t. Now we prune from T all the subtrees rooted in
children of x that are not in C1∪. . .∪Ct. Since |C1∪. . .∪Ct| ≤ k1+. . .+kt+t ≤ b,
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now the node x has at most b children. Reasoning as above, formulas in F (x) that
either do not contain path quantifiers or are of kind ¬E>kθ are still satisfied in
x. Moreover, the formula E>kiθi is still satisfied in x because of the x’s children
that are in Ci.

By iterating this procedure on each node with degree greater than b, we
obtain that there exists an infinite tree with branching degree at most b whose
root satisfies ϕ, and this completes the proof. ��

Now we show how to solve the SAT problem for a graded-CTL formula in time
exponential in the size of the formula. Since |ϕ| is the number of the temporal
and the boolean operators occurring in a graded-CTL formula ϕ, we analyze the
complexity of the problem with respect to |ϕ|u = |ϕ| + k̂

Theorem 2. The satisfiability of a graded-CTL formula ϕ can be decided in
time 2O(|ϕ|4u) if the constants appearing in the graded operators of ϕ are expressed
in unary.

Proof. To prove the theorem, we reduce the satisfiability problem for graded-
CTL to the nonemptiness problem of Nondeterministic Büchi Tree Automata
(NBTA). In particular, we show that for each graded-CTL formula there is an
NBTA Aϕ = 〈2AP , Q, Q0, δ,F〉 that accepts all and only the 2AP -labeled infinite
trees satisfying ϕ, whose branching degree is bounded by b. It is easy to show
that L(Aϕ) �= ∅ iff ϕ is satisfiable. From Lemma 1 we have that if L(Aϕ) = ∅
then ϕ is not satisfiable. On the other side, if L(Aϕ) �= ∅, since an NBTA accepts
only regular trees, an infinite regular tree exists satisfying ϕ; and thus a model
for ϕ exists, since, as it is well known, any regular infinite tree is the unwinding
of a Kripke structure.

Let us now describe the automaton Aϕ. The idea is that each state of the
automaton is a set of graded-CTL formulas that have to be satisfied in a node x
and the automaton decides, based on the current state and on the label of x, the
formulas that have to be satisfied in each child of x. More precisely, the set of
the states of the automaton Aϕ is the subset Q ⊆ 2ecl(ϕ) such that for all q ∈ Q
the following consistency rules hold:

– if ψ1 ∧ ψ2 ∈ q then ψ1 ∈ q and ψ2 ∈ q,
– if ¬(ψ1 ∧ ψ2) ∈ q then either ¬ψ1 ∈ q or ¬ψ2 ∈ q,
– if E>kGψ1 ∈ q (k ≥ 0) then ψ1 ∈ q,
– if E>0ψ1Uψ2 ∈ q then either ψ1 ∈ q or ψ2 ∈ q,
– if E>kψ1Uψ2 ∈ q (k > 0) then ψ1 ∈ q,
– if ¬E>0ψ1Uψ2 ∈ q then ¬ψ2 ∈ q,
– for all ψ ∈ ecl(ϕ), ψ ∈ q iff ¬ψ �∈ q.

The set of initial states is the subset Q0 ⊆ Q containing all the states q such
that ϕ ∈ q. A state q ∈ Q is final iff it satisfies the following properties: (i)
False �∈ q, (ii) q doesn’t contain any formula of kind E>kθ with k > 0 and
either θ = Gψ1 or θ = ψ1Uψ2, (iii) if q contains a formula of kind E>0ψ1Uψ2
then it also contains ψ2 and (iv) if q contains a formula of kind ¬E>0Gψ1 then
it also contains ¬ψ1.
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Let us now describe the transition function of Aϕ. Let us suppose that the
automaton is in a state q ∈ Q and is reading the label σ of a node x with deg(x)
children. With its transition function, the automaton assigns to each child x a
state including a set of formulas chosen as follows, for each ψ ∈ q.

– if ψ = True, then True is added to the set of formulas of each child;
analogously for ψ = False;

– if ψ = p (p ∈ AP ) and p ∈ σ (resp. p �∈ σ), then True (resp. False)is added
to the set of formulas of each child; analogously for ψ = ¬p;

– if ψ = E>kXψ1 (k ≥ 0), then k + 1 children are chosen and ψ1 is added to
the sets of formulas of these children;

– if ψ = ¬E>kXψ1 (k ≥ 0), then at most k children are chosen and ψ1 is
added to the sets of formulas of these children and ¬ψ1 is added to the sets
of formulas of the remaining children;

– if ψ = E>kGψ1 (k ≥ 0), then t children x1, . . . , xt and t positive integers
k1 . . . , kt are chosen, such that k1 + . . . + kt + t = k + 1, and E>kjGψ1is
added to the set of formulas of xj , for all 1 ≤ j ≤ t;

– if ψ = E>0ψ1Uψ2 and ¬ψ2 ∈ q, then a child is chosen and E>0ψ1Uψ2 is
added to the set of formulas of that child;

– if ψ = E>kψ1Uψ2 (k > 0), then t children x1, . . . , xt and t positive integers
k1, . . . , kt are chosen, such that k1 + . . . + kt + t = k + 1, and E>kj ψ1Uψ2 is
added to the set of formulas xj , for all 1 ≤ j ≤ t;

– if ψ = ¬E>kθ (with either θ = Gψ1 or θ = ψ1Uψ2 and k ≥ 0) and ψ1 ∈
q, then deg(x) non negative integers k1, . . . , kdeg(x) are chosen, such that
k1 + . . .+kdeg(x) ≤ k, and ¬E>kj θ is added to the set of formulas of the j-th
child, for all 1 ≤ j ≤ deg(x);

– in the remaining cases, True is added to the set of formulas of each child.

Let us evaluate the size of the automaton and the running time of the algorithm.
It is easy to see that |ecl(ϕ)| = O(|ϕ|u), therefore the automaton has 2O(|ϕ|u)

states. In the worst case, the function δ contains all the tuples of states with
length b = O(|ϕ|u), therefore the transition function has total size |δ| ≤ |Q|b+1 =
2O(|ϕ|2u) and the size of the automaton is |Aϕ| = 2O(|ϕ|2u). Since the nonemptiness
problem for an NBTA can be solved in time quadratic in the length of the string
representing the automaton [VW86], we obtain that our algorithm works in time
O(|Aϕ|2) = 2O(|ϕ|4u). ��

From the previous theorem and the ExpTime-completeness of the SAT problem
for CTL, the following corollary holds.

Corollary 1. The SAT problem for graded-CTL is ExpTime-complete.

4 Symbolic Model Checking Algorithms

In this section we give symbolic algorithms to solve the graded-CTL model check-
ing problem. Let us recall that a symbolic algorithm manipulates sets and uses
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basic set operations, such as union, intersection, and complementation. In sym-
bolic model-checking, states and transitions are represented as boolean functions
on the set of the atomic propositions, that in turn, can be represented as the
set of variable assignments. In this framework, the fundamental symbolic oper-
ation is the computation of the pre-image of a set of destination states, (i.e.,
the states having a successor in the given set). This is performed by using the
classical existential quantification operation on boolean functions (correspond-
ing to a projection on sets). In graded-CTL model-checking, the counterpart
of the pre-image is the computation of the number of successors that a state has
in the destination set, called image-size. The image-size function is computed
with the existential quantification on multisets (corresponding to a projection on
multiset). A Multiset is used to distinguish multiple occurrences of elements and
is represented by a pair (M, m) where M is a set of elements and m is a multiplic-
ity function that returns the number of occurrences of the element in input. The
projection on multiset is performed with the

⊎
operator which sums the multi-

plicity functions of two multisets. Moreover, our algorithms use also the function
multisetT oSet((M, m), i) that returns the set of the elements of M having mul-
tiplicity greater than i, that is multisetT oSet((M, m), i) = {s ∈ M |m(s) > i}.
Some details on the implementation of the above functions can be found in the
next section.

It is known that symbolic model-checking algorithms are in the practical cases
very efficient, and this depends on the practical efficiency of the data structures
used to represent and manipulate sets and multisets. Therefore, as also suggested
in [BGS06], we will measure the asymptotic complexity of our algorithms in
terms of the number of pre-image and image-size computations (we will call pre
and imgSize the functions that compute respectively the pre-image and the
image-size).

We denote, for a graded-CTL formula ϕ, with [ϕ] the set of states of the
Kripke structure where ϕ holds.

Let us now show how to model check formulas of kind E>kθ (k ≥ 0). If
θ = Xψ1 and [ψ1] has already been computed, then ϕ can be easily checked
by a function existNext(K, k, [ψ1]) that first computes the image-size (S, m)
of [ψ1] and then returns the set of states s ∈ S such that m(s) > k (i.e.,
multisetT oSet((S, m), k)).

Therefore we have the following lemma.

Lemma 2. Given a formula ϕ = E>kXψ1 (k ≥ 0), there is a symbolic algo-
rithm that takes as input [ψ1] and solves the model checking problem for ϕ by
using O(1) imgSize computations.

Now let us show how to solve the model checking problem for a formula ϕ =
E>kθ with either θ = ψ1Uψ2 or θ = Gψ1 (k ≥ 0).

Lemma 3. Given a formula ϕ = E>kψ1Uψ2 (k ≥ 0), there is a symbolic algo-
rithm that takes in input [ψ1] and [ψ2] and solves the model checking problem
for ϕ with O(k · |S|) pre and imgSize computations.
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Proof. We can solve the model checking problem for ϕ by using the following
function existUntil.

Function existUntil(K, k, [ψ1], [ψ2])
1. S0 ← [ψ2]; PRED ← pre(K, S0) ∩ [ψ1];
2. while PRED �⊆ S0 do S0 ← S0 ∪ PRED; PRED ← pre(K, S0) ∩ [ψ1];
3. [E>0ψ1Uψ2] ← S0; Let (S, sumSucc) be such that sumSucc(s) = 0 for all s ∈ S;
4. for i ← 1 to k do
5. (S, succ) ← imgSize([E>i−1ψ1Uψ2]);
6. (S, sumSucc) ← (S, sumSucc)

⊎
(S, succ);

7. Si ← multisetToSet((S, sumSucc), i) ∩ [ψ1];
8. PRED ← pre(K, Si) ∩ [ψ1];
9. while PRED �⊆ Si do Si ← Si ∪ PRED; PRED ← pre(K, Si) ∩ [ψ1];
10. [E>iψ1Uψ2] ← Si;
11. end

12. return [E>kψ1Uψ2];

For k = 0, this function essentially resembles the classical CTL symbolic model
checking algorithm [BCM+90]. For k > 0 we use, for a state s ∈ S and 1 ≤ i ≤ k,
the functions succ and sumSucc, defined as follows:

succi−1
s = |{s′ ∈ [E>i−1ψ1Uψ2] s.t. (s, s′) ∈ R}| and

sumSucci
s =

∑i−1
j=0 succj

s.

The function succi−1
s is the number of successors of s satisfying E>i−1ψ1Uψ2.

Let us observe that if t is a successor of s from which i paths start, each satisfying
ψ1Uψ2, then t satisfies E>jψ1Uψ2, for 0 ≤ j < i, and thus t contributes for i
times in the computation of sumSucck

s . Then (K, s) |= ψ iff s ∈ [ψ1] and one of
these two conditions holds:

1. sumSucck
s > k, that is from the successors of s, k + 1 paths stem, each

satisfying ψ1Uψ2;
2. there is one successor of s satisfying E>kψ1Uψ2.

Based on the above observations, the function existUntil satisfies the following
invariants, at the end of the i-th iteration:

– the multiset (S, succ) contains the values succi−1
s for all s ∈ S,

– the multiset (S, sumSucc) contains the values sumSucci
s for all s ∈ S and

– Si = [E>iψ1Uψ2].

The proof can be easily obtained by induction on i ( it is useful to recall that,
given (M, m1) and (M, m2), (M, m1)

⊎
(M, m2) = (M, m) with m(s) = m1(s) +

m2(s) for all s ∈ M). In particular, to compute Si, the function computes first
the set {s ∈ S s.t. sumSucci

s > i} (line 6), that is the set of the states satisfying
the condition 1 above, and then it applies a least fixpoint algorithm starting from
this set (lines 7-8) to compute the set of the states having a successor satisfying
E>iψ1Uψ2, according to the condition 2. ��
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E>3pUq

i 1 2 3

Si−1 A, B, C, D,
E, F, G, H

A, B, C, E, F A, B

(S, succ)
(A, 1), (B, 3), (C, 1),
(D, 1), (E, 1), (F, 2),

(G, 1), (H, 1)

(A, 1), (B, 2), (C, 1),
(D, 0), (E, 1), (F, 0),

(G, 0), (H, 0)

(A, 1), (B, 0), (C, 0),
(D, 0), (E, 0), (F, 0),

(G, 0), (H, 0)

(S, sumSucc)
(A, 1), (B, 3), (C, 1),
(D, 1), (E, 1), (F, 2),

(G, 1), (H, 1)

(A, 2), (B, 5), (C, 2),
(D, 1), (E, 2), (F, 2),

(G, 1), (H, 1)

(A, 3), (B, 5), (C, 2),
(D, 1), (E, 2), (F, 2),

(G, 1), (H, 1)

Si (line 6) B, F B B

Si (line 9) A, B, C, E, F A, B A, B

(a) (b)

Fig. 1. An execution of the function existUntil

In Figure 1(b) an execution of the function existUntil on the Kripke structure
of figure 1(a) and the formula E>3pUq is reported.

Lemma 4. Given a formula ϕ = E>kGψ1 (k ≥ 0), there is a symbolic algorithm
that takes in input [ψ1] and solves the model checking problem for ϕ with O(k·|S|)
pre and imgSize computations.

Proof. By using a similar reasoning as done in Lemma 3, we can solve the model
checking for ϕ by using the following function existGlobally, that is quite similar
to the function existUntil.

Function existGlobally(K, k, [ψ1])
1. S0 ← [ψ1]; PRED ← pre(K, S0) ∩ [ψ1];
2. while PRED �= S0 do S0 ← PRED; PRED ← pre(K, S0) ∩ [ψ1];
3. [E>0Gψ1] ← S0; Let (S, sumSucc) be such that sumSucc(s) = 0 for all s ∈ S;
4. for i ← 1 to k do
5. (S, succ) ← imgSize([E>i−1Gψ1]);
5. (S, sumSucc) ← (S, sumSucc)

⊎
(S, succ);

6. Si ← multisetToSet((S, sumSucc), i) ∩ [ψ1];
7. PRED ← pre(K, Si) ∩ [ψ1];
8. while PRED �⊆ Si do Si ← Si ∪ PRED; PRED ← pre(K, Si) ∩ [ψ1];
9. [E>iGψ1] ← Si;
10. end
11. return [E>kGψ1];

They essentially differ in the calculus of the base [E>0θ], for which they resemble
the classical CTL symbolic model checking algorithm [BCM+90]. ��
Now we are ready to show our symbolic algorithm to solve the graded-CTL
model checking problem.

Theorem 3. The graded-CTL model checking problem can be solved with a sym-
bolic algorithm that performs O(k̃·|S|·|ϕ|) calls to the functions pre and imgSize,
where k̃ is the maximum grading constant appearing in ϕ.

Proof. Algorithm 1 solves the graded-CTL model-checking. It uses the functions
existNext, existUntil and existGlobally of Lemmas 2, 3 and 4.
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Algorithm 1. gradedCTL(K,ϕ)
1. Input: A Kripke structure and a graded-CTL formula ϕ.
2. Output: The set of states where ϕ holds.
3. If ϕ = p (p ∈ AP ) then return {s ∈ S s.t. p ∈ L(s)};
4. If ϕ = ¬ψ1 then return S \ GradedCTL(K, ψ1);
5. If ϕ = ψ1 ∧ ψ2 then return GradedCTL(K, ψ1) ∩ GradedCTL(K, ψ2);
6. If ϕ = E>kXψ1 (k ≥ 0) then return existNext(K, k, GradedCTL(K, ψ1));
7. If ϕ = E>kψ1Uψ2 (k ≥ 0) then return

existUntil(K, k, GradedCTL(K, ψ1), GradedCTL(K, ψ2));
8. If ϕ = E>kGψ1 (k ≥ 0) then return existGlobally(K, k, GradedCTL(K, ψ1));

From previous Lemmas, the number of calls to the functions pre and imgSize
is

T (K, ϕ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

O(1) if ϕ = p
O(1) + T (K, ψ1) if ϕ = ¬ψ1
O(1) + T (K, ψ1) + T (K, ψ2) if ϕ = ψ1 ∧ ψ2
O(1) + T (K, ψ1) if ϕ = E>kXψ1 with k ≥ 0
O(k · |S|) + T (K, ψ1) + T (K, ψ2) if ϕ = E>kψ1Uψ2 with k ≥ 0
O(k · |S|) + T (K, ψ1) if ϕ = E>kGψ1 with k ≥ 0

from which we have that T (K, ϕ) = O(k̃ · |S| · |ϕ|). ��

Let us remark that in the syntax of graded-CTL logic we have not included the
operator A≤k. In fact, as stated in section 2, this operator can be expressed
in terms of ¬E>k. Anyway, doing so there is an efficiency problem for the U
operator that causes an efficiency loss for the model checking algorithm. In fact,
from equivalence (1) one should evaluate k + 1 formulas of kind E>kGθ1 and
k + 1 formulas of kind E>kθ1Uθ2. Anyway, we show here that it is possible to
avoid these extra evaluations by using a smarter algorithm.

From the equivalence (1), indeed, it is easy to see that, given a state s ∈ S, if
max1(s) and max2(s) denote the maximum number of distinct paths, starting
from s, satisfying G(ψ1 ∧ ¬ψ2) and (ψ1 ∧ ¬ψ2)U(¬ψ1 ∧ ¬ψ2) respectively, then
(K, s) |= E>k¬(ψ1Uψ2) iff max1(s) + max2(s) > k. In fact, there do not exist
paths satisfying both the two path-formulas, thus the two sets are disjoint and
max1(s) + max2(s) is the maximum number of distinct paths violating ψ1Uψ2.

Function forallUntil(K, k, [ψ1], [ψ2])
1. [ψ1 ∧ ¬ψ2] ← [ψ1] ∩ (S \ [ψ2]); [¬ψ1 ∧ ¬ψ2] ← (S \ [ψ1]) ∩ (S \ [ψ2]);
2. (S,max1) ← maxPathsGlobally(K, [ψ1 ∧ ¬ψ2], k + 1);
3. (S,max2) ← maxPathsUntil(K, [ψ1 ∧ ¬ψ2], [¬ψ1 ∧ ¬ψ2], k + 1);
4. return multisetToSet((S,max1)

⊎
(S, max2), k);

The function forallUntil uses the functions maxPathsGlobally(K, [θ1], i) and
maxPathsUntil(K, [θ1], [θ2], i) to compute max1(s) and max2(s), respectively,
for all s ∈ S. These two functions returns, for each state s ∈ S, the maximum
number (bounded by i) of distinct paths starting from s and satisfying Gθ1 and
θ1Uθ2, respectively. The function maxPathUntil can be implemented with a
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simple modification of the function existUntil: execute the for loop until k + 1,
instead of k, and return the multiset (S, sumSucc). Analogously, the function
maxPathGlobally can be implemented as a simple modification of the function
existGlobally. In this way, if [ψ1] and [ψ2] are known, also the model checking
of a formula A≤kψ1Uψ2 requires time O(k · |S|) and we have the following
theorem.

Theorem 4. The model checking problem for a graded-CTL formula ϕ possibly
including forall subformulas can be solved with a symbolic algorithm that per-
forms O(k̃ · |S| · |ϕ|) calls to the functions pre and imgSize, where k̃ is the
maximum grading constant appearing in ϕ.

5 Implementation and Experimental Results

In this section we show the experimental results obtained by implementing
our symbolic algorithms that we have integrated into the model checker tool
NuSMV [CCG+02]. NuSMV is based on the CUDD library [Som05], for the
treatment of BDDs, that allows also the use of Algebraic Decision Diagrams,
ADDs in short [BFG+97]. These are a generalization of BDDs in which the
leaves can be integers and are used to represent multisets. By using ADDs to
manipulate multisets one gets several advantages, like natural transformations
between sets and multisets (that are frequently used in our algorithms) and very
efficient performances in practice. As said in the previous section, the basic op-
erations we use are

⊎
, imgSize and mutlisetT oSet. Their implementation quite

naturally come from simple applications on ADDs of known BDD operations.
More precisely, the

⊎
operator is obtained by applying to ADDs the classical

apply: when the computation reaches two leaves x and y of an ADD, the re-
sult is a leaf with the sum of x and y. In a similar way, the implementation of
the imgSize function is an application of the classical pre function, with the ∪
operator substituted by the

⊎
operator. Finally, the multisetT oSet function is

implemented by moving into a 1-node each leaf with value greater than k and
into a 0-node the remaining leaves and then by compacting the resulting BDD.
The enrichment of NuSMV with the graded-CTL model-checking capability, has
implied the modification of the internal parser to allow the use of the syntax for
graded-CTL specifications. Let us recall that NuSMV implements direct CTL
model-checking procedures only for the operators EX , EG and EU and derives
from these the procedures for all the other operators (since all the transfor-
mations are linear in the size of the formula). In our setting instead, since the
transformation of formulas A≤kU in terms of E>kG and E>kU is inefficient (the
size of the resulting formula is 2(k + 1) times the size of the original formula),
we directly implement all the procedures given in section 4.

We have also implemented the generation of the counterexamples, that dif-
ferently from what happens in CTL, returns trees (constituted by evidences of
the negation of the formula) instead of paths. As said into section 1, the im-
plementation of an algorithm for the generation of k + 1 distinct evidences of
a non trivial path-formula is not easy. More precisely, given a state s, while it
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is easy to implement an algorithm that returns k + 1 distinct evidences of the
path-formula Xψ1 (simply compute the forward-image of s, intersect it with
[ψ1] and pick k +1 states from the resulting set), for Gψ1 and ψ1Uψ2 we have to
implement a more complex algorithm. We explain here how to use some partial
results of our symbolic algorithms (namely, the sets [E>iθ], 0 ≤ i ≤ k, with
θ = Gψ1 or θ = ψ1Uψ2) to quickly compute a tree of evidences.

When one has to compute a tree of evidences, it is necessary to decide whether
it is better to compute a “wide” tree or a “tall” tree, in the sense that one
should decide whether, for the case under examination, it is more significative to
“distinguish” the evidences as soon as possible or as late as possible. Consider
for example the following model and let us look for a counterexample of the
formula ¬E>3Gp.

In this case a tall evidence tree will be constituted by all paths which differ only
for the number of times that they traverse the self-loop on the state 2, while a
large tree includes other more significative evidences.

The technique we have implemented in our tool can be used to find both kinds
of tree. The default is to return wide trees (which from our tests seems to be
better). Once we have computed the sets [E>iθ], 0 ≤ i ≤ k, by using the func-
tions existUntil and existGlobally, it is possible to compute a wide evidence
tree by executing the following procedure with s = sin.

Procedure evidences(K, k, s, θ)
1. if k = 0 then
2. compute an evidence for θ from s as done in NuSMV;
3. else;
4. count ← 0; i ← 0;
5. while count <= k do
6. if i < k then
7. SUCC(s, i) ← forwardImg(s)∩ ([E>iθ] \ [E>i+1θ]); k′ ← i
8. else

9. SUCC(s, i) ← forwardImg(s)∩ [E>iθ]; k′ ←
⌈

(k−count)
|SUCC(s,i)|

⌉
10. end
11. forall t ∈ SUCC(s, i) do
12. add t to as child of s; evidences(K, k′, t, θ); count ← count + k′

13. end
14. i ← i + 1;
15. end
16. end
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The procedure evidences determines k + 1 evidences starting from a state s in
the following way: for each 0 ≤ i < k it computes the set of successors of s
that satisfy E>iθ and do not satisfy E>i+1θ (line 7)1 and from each of these
successors it recursively computes a set of i + 1 distinct evidences. The variable
count counts the number of evidences that have already been computed. If they
are enough (that is, count > k) then the procedure ends; otherwise it repeats
the computation for i + 1. The load-balancing applied to the successors of a
node when i = k (lines 9) by giving k′ ←

⌈
(k−count)
|SUCC(s,i)|

⌉
is used to avoid to enter

in a loop of states all satisfying E>kθ. Note that, the procedure generates the
evidences by trying to differentiate them immediately on the successors of each
state, thus generating a wide evidence tree.

Our experiments have been executed on a workstation equipped with a CPU
Intel Core 2 duo 2.33GHz, with 4GB of RAM and Linux 2.6 operating system.
The tool software, other tests and other details (that due to lack of space we have
not included in the paper) can be found at http://gradedctl.dia.unisa.it.

As said into the introduction, our motivation to introduce this new graded
logic and use it to model check, is mainly to reduce the debugging times: thus
to measure the performance of our algorithm/approach one should take into
consideration also the potential savings obtained in avoiding to go through the
cycle Check/Analyze/Fix again. We report now some results measured on CPU
time and BDD size on various examples. The examples to test our algorithm have
been chosen from the official site of NuSMV. As said before there is no exact
method to compare the results of our approach with respect to the classical one.
We have chosen to proceed as follows: for each example, we have considered a
graded-CTL specification ϕ and have measured the CPU time and the BDD size
to model-check it by varying the values of the constants grading the quantifiers
in ϕ. The first row of each example is the result of running NuSMV on the

Table 1.

k
syncarb5 p-queue dme1.16

E>kX(e2.T oken) E>k[!e2.Token
U e2.T oken]

E>kG(out 1[1] = 0) A≤kF(out 1[1] = 0) E>kXe 1.req

Time �BDD Time �BDD Time �BDD Time �BDD Time �BDD
− 0, 000 1248 0, 000 1255 0, 024 33717 0, 020 33717 1, 320 244734
0 0, 000 1248 0, 000 1255 0, 024 33866 0, 020 33866 1, 320 244734
1 0, 000 1600 0, 000 1660 0, 056 82361 0, 020 41377 1, 460 320986
2 0, 000 1602 0, 000 1694 0, 060 92013 0, 020 41377 1, 664 416145
3 0, 000 1603 0, 000 1695 0, 060 92016 0, 024 41377 1, 740 443526
5 0, 000 1607 0, 000 1702 0, 060 101671 0, 024 41377 2, 064 572134
8 0, 000 1613 0, 000 1714 0, 064 102708 0, 024 41378 2, 736 783876
10 0, 000 1614 0, 000 1716 0, 064 102710 0, 024 41380 2, 860 830999
15 0, 000 1614 0, 000 1721 0, 068 102715 0, 024 41385 3, 304 949405
20 0, 000 1623 0, 000 1738 0, 072 104081 0, 028 41390 4, 248 1168181
50 0, 000 1614 0, 000 1798 0, 104 107395 0, 028 41420 9, 689 1732683

1 The forwardImg, giving the set of successors, can be computed analogously to the
computation of the pre − image.

http://gradedctl.dia.unisa.it
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given specification with (classical) non-graded quantifiers. The second row is the
result of running our tool on the given specification with all the grading values to
zero: this to underline that there is no overhead due to the grading, on formulas
semantically equivalent. All the remaining rows are the results obtained by using
other values of the grading quantifiers, to see how the complexity increases,
related to those values.

The Table 1 reports the results for formulas with one graded quantifier. In two
cases (dme1.16 and p-queue with specification E>kG(out 1[1] = 0)) one can ob-
serve a small increasing in the CPU time, with respect to the time needed for the
corresponding CTL formula. In the remaining examples, the CPU time remains
almost the same (most are approximatively equal to 0) for all the specifications
and for all the values of the constant k. Moreover, also the BDD size increases

Table 2.

k1 k2

robot syncarb5
k1 k2 k3

abp8

A≤k1G
(pT1.start →

A≤k2G
!pT1.finish)

A≤k1XA≤k2F
(e1.ack out∧

e1.P ersistent)

A≤k1G(A≤k2F
(sender.state =
get) ∧ A≤k3F

(receiver.state =
deliver))

E>k1G(E>k2F
(sender.state =
get) ∧ E>k3F

(receiver.state =
deliver))

Time �BDD Time �BDD Time �BDD Time �BDD
− − 0, 072 59240 0, 000 1321 − − − 3, 804 1743784 3, 052 1616154
0 0 0, 072 59449 0, 000 1321 0 0 0 3, 804 1743794 3, 296 1616164
1 0 0, 140 96107 0, 000 1739 1 0 0 3, 832 1750366 5, 316 679676
2 0 0, 152 97197 0, 000 1758 2 0 0 3, 832 1750366 6, 808 1541032
5 0 0, 172 98288 0, 000 1791 5 0 0 3, 836 1750366 11, 765 845117
10 0 0, 188 104991 0, 000 1829 10 0 0 3, 840 1750366 22, 321 845117
0 1 0, 148 96705 0, 000 1739 0 1 1 3, 832 1750366 8, 237 1345388
1 1 0, 160 96705 0, 000 1739 1 1 1 3, 840 1750366 10, 253 679137
2 1 0, 224 103426 0, 000 1828 5 1 1 3, 844 1750366 17, 177 845117
5 1 0, 236 104517 0, 000 1861 10 1 1 3, 848 1750366 27, 142 845117
10 1 0, 264 111220 0, 000 1899 0 3 1 3, 832 1750366 11, 929 1296220
0 2 0, 156 97795 0, 000 1758 1 3 1 3, 840 1750366 13, 957 679137
1 2 0, 220 103426 0, 000 1828 5 3 1 3, 860 1750366 20, 481 845117
2 2 0, 160 97795 0, 000 1758 10 3 1 3, 872 1750366 31, 722 845117
5 2 0, 240 104517 0, 000 1880 0 5 1 3, 864 1750366 15, 273 1320804
10 2 0, 268 111220 0, 000 1918 1 5 1 3, 872 1750366 17, 385 679137
0 5 0, 168 98886 0, 000 1792 10 5 1 3, 872 1750366 34, 058 845117
1 5 0, 240 104517 0, 000 1862 0 1 3 3, 860 1750366 11, 725 1345400
2 5 0, 244 104517 0, 000 1880 1 1 3 3, 864 1750366 13, 717 679137
5 5 0, 188 98886 0, 000 1792 10 1 3 3, 872 1750366 30, 718 845117
10 5 0, 276 105589 0, 000 1919 0 3 3 3, 860 1750366 14, 737 1658777
0 10 0, 196 105589 0, 000 1834 1 3 3 3, 868 1750366 16, 677 1026555
1 10 0, 256 111220 0, 000 1904 10 3 3 3, 876 1750366 32, 950 845117
2 10 0, 272 11220 0, 000 1922 0 5 3 3, 868 1750366 18, 141 1316462
5 10 0, 284 105589 0, 000 1921 1 5 3 3, 872 1750366 20, 145 679137
10 10 0, 220 105589 0, 000 1834 10 5 3 3, 880 1750366 37, 318 845117
50 10 0, 528 159213 0, 000 1946 10 10 10 3, 876 1750366 61, 120 845117
50 50 0, 564 152510 0, 004 1981 50 50 50 3, 884 1750366 310, 011 845117
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very slowly. The Table 2 reports the results for more complex formulas, with
two or three graded quantifiers. For some examples, one can observe that the
CPU time and the BDD size are not affected by the value of the constant, while
in the examples robot and abp8 with the second specification, one can notice an
increasing of the CPU time which grows.

Finally, let us note that we have used values for the grading constants in the
range [0, . . . , 50], but we think that in practice a reasonable upper bound should
be much smaller, as high values would mean a number of counterexamples too
big to deal with.

6 Conclusions and Future Works

In this paper we have considered an expressive extension of classical CTL and
have proved that the SAT problem is ExpTime-complete when the values in
the formula are represented in unary. An open problem is hence to establish the
complexity of the same problem when the values are in binary (recall that for the
case of the model checking problem the complexity for Graded CTL is the same
as CTL, even when the constants are expressed in binary). We have also shown
symbolic algorithms for model checking against specifications given in this logic
and have extended the NuSMV model checker to accept such specifications. The
experimental results have indeed shown that the usual performances of NuSMV
on classical CTL specifications are still retained.

Besides its augmented expressiveness, with respect to classical CTL spec-
ifications, the motivation to study this logic is in the possibility of reducing
debugging time. As it is well established, the generation of more than one coun-
terexample is highly desirable, though the size of the counterexamples and their
poor human-readability becomes more and more crucial, when more counterex-
amples are generated. One of the main problems arising is that of determining
counterexamples which are as much significant as possible. An approach to this
problem is given by a different semantics of graded-CTL which allows to dis-
tinguish system behaviors, satisfying a formula, that are completely disjoint.
This semantics, called edge-disjoint semantics, has been defined in [FNP10] and
requires the edge-disjointness of the paths satisfying a path-formula. With this
approach one can detect different counterexamples which depend on different and
completely independent “errors” in the model. Moreover, this edge-disjointness
requirement turns out to be useful also when fault tolerance is required. For this
reason, it should be useful to investigate the symbolic model checking problem
for edge-disjoint semantics of graded-CTL. Another aspect to consider is the
concurrency: partial order techniques have been used to avoid the state explo-
sion, c.f. [God90, GKPP99], also in symbolic model checking, [KGS06]. It would
be worthwhile to investigate whether such approach can be usefully applied in
our setting to get counterexamples which do not differ only for the interleaving
ordering of concurrent actions.

Finally, let us observe that during the model checking process, the system is
sometimes abstracted in order to deal with the state explosion problem of the
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Kripke structures. But since graded-CTL is a logic based on counting paths sat-
isfying given properties, it is not preserved under most of the usual abstractions
(since all of these modify the number of paths in the Kripke structure). Clearly,
this situation is inherent to every logic based on counting paths and/or suc-
cessors such as graded-µ-calculus [KSV02] and graded-HML (Hennessy-Milner
Logic) [CDL99]. However in [CDL99] the resource bisimulation has been intro-
duced to “discriminate processes according to the number of different compu-
tations they can perform to reach specific states”. It can be easily shown that
graded-CTL logic preserves the resource bisimulation.

Acknowledgments. The authors thank Francesco Sorrentino for his help and
his enthusiasm in the early stage of the implementation of our tool.
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Abstract. We study the problem of applying statistical methods for ap-
proximate model checking of probabilistic systems against properties en-
coded as PCTL formulas. Such approximate methods have been proposed
primarily to deal with state-space explosion that makes the exact model
checking by numerical methods practically infeasible for large systems.
However, the existing statistical methods either consider a restricted sub-
set of PCTL, specifically, the subset that can only express bounded until
properties; or rely on user-specified finite bound on the sample path
length. We propose a new method that does not have such restrictions
and can be effectively used to reason about unbounded until proper-
ties. We approximate probabilistic characteristics of an unbounded until
property by that of a bounded until property for a suitably chosen value
of the bound. In essence, our method is a two-phase process: (a) the first
phase is concerned with identifying the bound k0; (b) the second phase
computes the probability of satisfying the k0-bounded until property
as an estimate for the probability of satisfying the corresponding un-
bounded until property. In both phases, it is sufficient to verify bounded
until properties which can be effectively done using existing statistical
techniques. We prove the correctness of our technique and present its
prototype implementations. We empirically show the practical applica-
bility of our method by considering different case studies including a
simple infinite-state model, and large finite-state models such as IPv4
zeroconf protocol and dining philosopher protocol modeled as Discrete
Time Markov chains.

1 Introduction

A number of techniques has been developed over the past decade for model
checking probabilistic systems [16,15,8,13] against probabilistic temporal prop-
erties (e.g. PCTL [9], CSL [1]). While [9,3,7,1,2] rely on exploration of entire
state-space of the probabilistic systems and applying linear equation solvers to
obtain the exact probability with which the system satisfies a property; [22,10,17]
sample a finite set of paths in the system and infer the approximate probability
of satisfiability of a property by the whole system using probabilistic arguments.

While numerical verification method provides exact solutions, it requires com-
plete knowledge of the system and may fail for systems with large state-space

K. Breitman and A. Cavalcanti (Eds.): ICFEM 2009, LNCS 5885, pp. 326–346, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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(state-space explosion problem). It is in this situation, sampling based statisti-
cal verification methods are useful. However, two important issues need to be
addressed before any statistical verification approach can be applied effectively.
They stem from the fact that samples only explore partial state-space of the
system and therefore, the accuracy of the verification results depends on the size
N of the sample (i.e., the number of sample paths) and also on the length k of
each sample path. The bound k becomes particularly important when the prop-
erty of interest is unbounded, i.e., ϕ1 U ϕ2. The semantics of the property states
that a path satisfies the property if and only if there exists a state in the path
which satisfies ϕ2 and in all states before it ϕ1 is satisfied. Note that, ϕ1 can be
satisfied any number of times in a path before ϕ2 is satisfied for the first time.
Therefore, in any path of finite length, where every state satisfies ϕ1 ∧¬ϕ2, it is
impossible to infer whether the extension of the path will eventually satisfy or
not satisfy ϕ1 U ϕ2. However, such problem is not present when the property un-
der consideration has a specific bound (bounded path property): ϕ1 U≤k ϕ2, i.e.,
ϕ2 must be satisfied in k steps from the start state, which, in turn, implies that
paths of length k are enough to verify such properties. of the existing sampling
based statistical.

We propose to reduce the problem of verifying (ϕ1 U ϕ2) into that of its
bounded counter-part (ϕ1 U≤k0 ϕ2). The reduction is possible only when a suit-
able k0 can be obtained for which the P(s, ϕ1 U≤k0 ϕ2) (i.e., probability of
satisfying of ϕ1 U≤k0 ϕ2 at state s) is a good approximation of P(s, ϕ1 U ϕ2).
In other words, the bound k0 is large enough to make the difference between
P(s, ϕ1 U≤k0 ϕ2) and P(s, ϕ1 U ϕ2) small. Such k0 provides an approximate
upper bound of the sample path lengths needed for our statistical verification
technique. We obtain k0 using the probability of satisfying another bounded until
property: ψk := (ϕ1 U≤k ϕ2)∨(¬ϕ2 U≤k (¬ϕ1∧¬ϕ2)). It states that the property
(ϕ1 U ϕ2) is either satisfied (first disjunct) or unsatisfied (second disjunct) in at
most k steps. We prove that the suitable k0 is one for which P(s, ψk0) is close to
1, and the degree of “closeness” is related to ε, the overall measure of accuracy
of the entire statistical method.

In essence, there are two phases in our method. The first phase estimates
P(s, ψk) for k = 0, 1, 2, . . . and chooses k0 which satisfies P(s, ψk0) ≥ 1 − ε0,
where ε0 < ε. In the second phase, P(s, (ϕ1 U≤k0 ϕ2)) is estimated which, in
turn, serves as an estimate of P(s, (ϕ1 U ϕ2)). The computations for each phase
involves only bounded-path properties and can be carried out efficiently using
the existing sampling techniques such as [10].
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Fig. 1. A simple example

Illustrative Example. To provide an intu-
itive explanation of why the proposed tech-
nique is useful and effective, we present a
simple toy example (Figure 1) where the
proposed method is applied successfully and
where both the numerical method and the
existing statistical verification method as
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implemented in popular PRISM model checker [11] fail. The example contains
a probabilistic transition system containing 6 + n states where n is some large
integer. The state s0 is the start state of the system. The dotted segment in the
figure represents some “complicated” transition structure on n different states
(see [19] for the specification). We will refer to this segment as DS. Let proposition
ϕ1 hold in all states except s2 and s5, and proposition ϕ2 hold in states s3 and
s4. The objective is to find the probability of satisfying the property (ϕ1 U ϕ2)
at state s0. From the probabilities specified in the figure, we know that the re-
sultant probability is 0.66 as only two paths (s0, s3, . . .) and (s0, s4, . . .) satisfy
the property.

We experimented with the PRISM model checker [11] using the above exam-
ple. PRISM’s numerical method fails as the large state-space (large n) results in
state-space explosion. PRISM’s statistical method takes as input a parameter ε
and provides approximate result within ε error margin. Our experiments with
several ε > 0 failed to provide any estimate. This is because, PRISM’s statisti-
cal method requires that every sample of a pre-specified length can infer with
certainty whether the property (ϕ1 U ϕ2) is satisfied or not. The failure happens
when at least one sample ends in DS where the above requirement does not hold.

In terms of ψk introduced earlier, the above requirement in PRISM’s statistical
method is equivalent to P(s0, ψk) = 1, for some pre-specified bound k (k =
10, 000 by default in PRISM). In general, it is not possible to appropriately find
a good value for k such that P(s0, ψk) = 1. In contrast, we claim that it is not
necessary to verify whether P(s0, ψk) is equal to 1. The necessary precision in
sampling based method can be obtained by identifying a k (specifically a k0)
for which P(s0, ψk) is close to 1. In the above example, such a bound can be
immediately obtained as the sample paths (s0, s1, . . .) have very low probability
(≤ 0.01). Once such a bound is obtained, we compute P(s0, ϕ1 U≤k0 ϕ2) which
approximately coincides with P(s0, ϕ1 U ϕ2). In our experiments, with n ≈ 108,
while the PRISM model checker fails to provide any result, our method identifies
a bound k0 = 190 and estimates the probability to be equal to 0.6601.

Contributions. The contributions of our approach are summarized as follows:
1. We present a methodology for selecting a suitable bound k0 using which

unbounded until properties for probabilistic systems can be verified using
the corresponding k0-bounded until properties.

2. The reduction allows us to re-use existing results of statistical verification of
bounded until properties to identify the bound on sample size N required to
infer results within a pre-specified error margin. We present an implementa-
tion which directly uses the techniques developed and available in the widely
used PRISM model checker.

3. The technique is independent of the system model and property logic. For
explanation and experiments, we use probabilistic transition systems mod-
eled as Discrete Time Markov Chains (DTMC) and property logic expressed
in PCTL. However, the technique is equally applicable for Continuous Time
Markov Chains (CTMC) and until properties expressible in CSL.
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4. Our technique can be also effectively applied in setting where the probabilis-
tic system is viewed as a black-box and for probabilistic systems containing
infinite number of states; the reason being our technique does not depend on
the system state-space and transition structure, our technique only requires
the availability of sample simulations of the system under consideration.

5. We theoretically prove the correctness of our technique and present research
prototype of our implementation to empirically show the applicability of
our technique using several examples: probabilistic dining philosopher, IPv4
zeroconf protocol and a probabilistic model for queue. The prototype and
all examples are available at [19].

Organization. Section 2 discusses related work. Section 3 provides a brief
overview of probabilistic transition systems and probabilistic temporal logic
PCTL. Section 4 presents our solution methodology and its correctness proof.
The implementation and experimental results are discussed in Sections 5. Finally,
Section 6 concludes with the summary of our work.

2 Related Work
Statistical method based on Monte Carlo simulation and sequential hypothe-
sis testing [20] for verifying time bounded until CSL properties in CTMC is
developed by Younes and Simmons [22]. Similar techniques are proposed and
discussed in [21]. Sen et al. [17] introduce a new statistical model checking algo-
rithm for handling unbounded until properties based on Monte Carlo simulation
and hypothesis testing. However, the technique suffers from the drawback that it
requires some prior knowledge of the actual probability of satisfying unbounded
until property for obtaining valid results. Furthermore, the validity of the tech-
nique requires that the system being analyzed does not contain self-loops in
any state [23]. Zapreev [24] also proposes a statistical technique for verifying
unbounded until properties. However, this technique requires knowledge of the
model structure and relies on user-specified sample size and sample path lengths.

Closest to our approach is the technique proposed by Herault et al. in [10].
The proposed method based on Monte Carlo simulation uses estimation from
Chernoff-Hoeffding inequality [12] to verify a subset of LTL formula, EPF (Es-
sentially Positive Fragment) in DTMC. The algorithm includes the checking of
the unbounded until properties. However, it fails to completely control the error
in the procedure. The reason is essentially as follows. The sample path length
used in the procedure has a pre-specified upper bound. If a simulation reaches
that bound and fails to infer a decided result, the technique assumes that the
simulation, if allowed to proceed, will eventually have results defending the null
hypothesis ([5]) of the testing procedure. This assumption allows the method to
control Type I Error (the error that the null hypothesis H0 is true but the test
incorrectly rejects H0) within a pre-specified limit. However, as the authors state
in [10], the proposed technique cannot determine the appropriate upper bound
of simulation path length to control the number of the undecided simulations.
As such, the method loses the control of Type II Error (the error that the null
hypothesis H0 is false but the test incorrectly accepts H0).
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This technique ([10]) is incorporated in the popular probabilistic model
checker PRISM [11]. The distinguishing feature of PRISM’s statistical approach
is that unlike [10] which allows the undecided simulations, PRISM requires that
every simulation terminates with a decided result. This requirement makes it
necessary to appropriately identify the bound on sample length for which simu-
lation run of each sample will have a decided result; if such bound is not used,
PRISM’s simulation based technique fails to compute the result and requests
the user to re-run the experiment with a new bound.

Our technique, a natural extension of [10], addresses this problem by using
a two phase method where in the first phase an appropriate bound in sample
length is obtained and in the second phase the bound obtained in the first phase
is used to compute the result for unbounded until properties.

3 Background

The explanation and theoretical results of our technique are presented for prob-
abilistic transition systems modeled as DTMC and until properties expressed
in the logic of PCTL. However, the results are extensible to other modeling
paradigms (CTMC and semi-Markov chains [6]) and until properties expressed
in corresponding property logics (CSL).

3.1 Probabilistic Transition Systems and PCTL

Definition 1. A probabilistic transition system [10] PTS = (S, sI , T, L), where
S is a finite set of states, sI ∈ S is the initial or start state, T : S × S → [0, 1]
is a transition probability function such that ∀s :

∑
s′∈S T (s, s′) = 1, and L :

S → P(AP ) is the labeling function which labels each state with a set of atomic
propositions ⊆ AP that holds in that state.

Paths and Probability Measures. A path in PTS, denoted by π, is a finite
or infinite sequence of states (s0, s1, s2, s3, . . .) such that for all i ≥ 0 : si ∈ S
and T (si, si+1) > 0. We denote the set of all infinite paths starting from s as
Path(s). π[i] denotes the i-th state in the path π and |π| is the length of π in
terms of the number of transitions in π. For example, for an infinite path π,
|π| = ∞, while for a finite path π = (s0, . . . , sn), |π| = n, n ≥ 0. The cylinder
set, denoted by Cs(π), for a state s and π a finite length path starting from s,
is defined as Cs(π) = {π′ : π′ ∈ Path(s) ∧ π is prefix of π′}. Essentially, Cs(π)
is the set of all infinite paths ∈ Path(s) with the common finite length prefix π.
For any finite path π with |π| = n we define

P (π) =
{

1 if n = 0
T (π[0], π[1]) × . . . × T (π[n − 1], π[n]) otherwise

For a cylinder Cs(π), define Pr(Cs(π)) = P (π). It is well-known that this prob-
ability measure Pr(·) extends uniquely over all sets in the relevant σ−algebra.

PCTL Syntax and Semantics. Properties of PTS can be expressed
using PCTL, an extension of standard CTL augmented with probabilistic
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specifications. Let ϕ represent a state formula and ψ represent a path formula.
Then PCTL syntax is defined as follows:

ϕ → tt | a ∈ AP | ¬ϕ | ϕ ∧ ϕ | P��r(ψ) and ψ → Xϕ | ϕ U ϕ| ϕ U≤k ϕ

In the above, �� ∈ {≤,≥, <, >}, r ∈ [0, 1] and k ∈ {0, 1, . . .}. Note that we always
use state formulas to specify the properties of a PTS and path formulas only
occur inside P��r(.). A state s (or a path π) satisfying a state formula ϕ (or a
path formula ψ) is denoted by s |= ϕ (or π |= ψ), and is inductively defined as
follows:

s |= tt for all s ∈ S s |= a ⇔ a ∈ L(s) s |= ¬ϕ ⇔ s �|= ϕ
s |= ϕ1 ∧ ϕ2 ⇔ s |= ϕ1 and s |= ϕ2 s |= P��r(ψ) ⇔ P(s, ψ) �� r

In the above, P(s, ψ) = Pr({π ∈ Path(s) : π |= ψ}). In other words, s |= P��r(ψ)
holds if and only if the probability that ψ is true for an outgoing infinite path
from state s is �� r. For any infinite path π:

π |= Xϕ ⇔ π[1] |= ϕ
π |= ϕ1 U≤k ϕ2 ⇔ ∃0 ≤ i ≤ k : π[i] |= ϕ2 ∧ ∀j < i : π[j] |= ϕ1
π |= ϕ1 U ϕ2 ⇔ ∃i ≥ 0 : π[i] |= ϕ2 ∧ ∀j < i : π[j] |= ϕ1

Note that ϕ1 U ϕ2 ≡ ∃k : ϕ1 U≤k ϕ2. We refer to properties of the form ϕ1 U ϕ2
as unbounded as the bound k is not known.

4 Verifying Unbounded Until Properties

The objective of our work is to reduce the probabilistic model checking for un-
bounded until properties to bounded until properties. The main problem that
needs to be addressed to realize such a reduction involves identifying (a) a suit-
able bound k0 for checking the bounded until property (in each simulation) (done
in Phase I ), and (b) a bound on the number of simulations (each of length k0)
(done in Phase II ), such that a suitable statistical sampling based verification
result of bounded until property approximately coincides with that of the un-
bounded until property within a pre-specified error limit (See Theorem 1 for a
precise statement).

4.1 Rationale

The paths belonging to the semantics of ϕ1 U ϕ2 (Section 3.1) can be partitioned
into two groups for each k ≥ 1: one includes the paths that satisfy the property
in ≤ k steps; while the other includes the paths that satisfy the property in > k
steps. I.e., the semantics of ϕ1 U ϕ2 can be written as

π |= ϕ1 U ϕ2

⇔ ∀k :

⎡⎣∃0 ≤ i < k : π[i] |= ϕ2 ∧ ∀j < i : π[j] |= ϕ1∨
∃i > k : π[i] |= ϕ2 ∧ ∀j1 < i : π[j1] |= ϕ1 ∧ ∀j2 ≤ k : π[j2] |= ¬ϕ2

⎤⎦
⇔ π |= ∀k :

[
(ϕ1 U≤k ϕ2) ∨ (ϕ1 U>k ϕ2)

]
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Since, (ϕ1 U≤k ϕ2) ∧ (ϕ1 U>k ϕ2) = ff, by law of total probability

P(s, ϕ1 U ϕ2) = P(s, ϕ1 U≤k ϕ2) + P(s, ϕ1 U>k ϕ2) (1)

In other words, from the fact that probabilities ∈ [0, 1],

0 ≤ P(s, ϕ1 U ϕ2) − P(s, ϕ1 U≤k ϕ2) = P(s, ϕ1 U>k ϕ2) (2)

Next consider the property ϕ1 U>k ϕ2.

π |= ϕ1 U>k ϕ2
⇔ ∃i > k : π[i] |= ϕ2 ∧ ∀j1 < i : π[j1] |= ϕ1 ∧ ∀j2 ≤ k : π[j2] |= ¬ϕ2
⇒ ∀i ≤ k : π[i] |= ϕ1 ∧ ¬ϕ2
⇔ ϕ1 U ϕ2 is neither satisfied nor unsatisfied in k steps from π[0]
⇔ π |= ¬(ϕ1 U≤k ϕ2) ∧ ¬(¬ϕ2 U≤k (¬ϕ1 ∧ ¬ϕ2))

Let ψk = (ϕ1 U≤k ϕ2) ∨ (¬ϕ2 U≤k (¬ϕ1 ∧ ¬ϕ2)), i.e., ψk is the property that
is satisfied by a path π only when the satisfiability of ϕ1 U ϕ2 can be proved
or disproved in k steps from the start state (π[0]). Therefore, from the above
(ϕ1 U>k ϕ2) ⇒ ¬ψk and

P(s, ϕ1 U>k ϕ2) ≤ P(s,¬ψk) = 1 − P(s, ψk) (3)

From Equations 2 and 3, for any k ≥ 1 we obtain

0 ≤ P(s, ϕ1 U ϕ2) − P(s, ϕ1 U≤k ϕ2) ≤ 1 − P(s, ψk) (4)

Our objective is to select a k0 such that for any given ε0.

P(s, ψk0) ≥ 1 − ε0 (5)

In that case,

0 ≤ P(s, ϕ1 U ϕ2) − P(s, ϕ1 U≤k0 ϕ2) ≤ 1 − P(s, ψk0) ≤ ε0 (6)

In other words, by choosing an appropriate k0, the probability of satisfying
unbounded path property ϕ1 U ϕ2 can be made close (within an error margin
of ε0, for any arbitrarily small choice of ε0) to the probability of satisfying the
bounded path property ϕ1 U≤k0 ϕ2.

Remark 1. The above argument assumes that as k → ∞, limit of P(s, ψk) ≥
1− ε0 (Equation 5). But since, P(s, ψk) = 1− P(s,¬ψk), the above requirement
is equivalent to stating

lim
k→∞

P(s,¬ψk) ≤ ε0 (7)

When the above limit is zero, Equation 7 is satisfied for any ε0 and hence our
method is also valid for any ε0 ≥ 0. When the limit is non-zero, our method works
for any ε0 that satisfies the inequality in Equation 7. Note that, the requirement
of satisfying this inequality does not restrict the applicability of our technique to
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any specific class of properties or models; our technique can be applied for any
until property and for any model as long as the above requirement is satisfied.
Further note that, PRISM’s statistical method is equivalent to choosing ε0 =
0 in our method and hence will fail to provide result whenever this limit is
non-zero. In other words, whenever PRISM’s statistical verification method is
successful in computing a result, our method also terminates with a result, and
furthermore, our method is able to estimate probabilities for some cases where
PRISM’s statistical method fails (as discussed in Section 1).

The implication of a non-zero limit is that P(s,¬(tt U (ϕ2∨¬ϕ1))) > 0, which
happens if and only if there exists an infinite path in the model with positive
probability where every state satisfies (ϕ1 ∧ ¬ϕ2). In this case, any statistical
verification method, which does not analyze model transition structure, may not
be able to provide result. However, this feature of not analyzing the model allows
application of statistical verification methods (including ours) for the purpose
of estimating the probability of properties in black-box systems and in systems
with infinite number of states (see Section 5.1), where information regarding
transition structure may not be available. The proposed method will work as
long as it is possible to obtain sample paths of any finite length from such
systems and the property can be verified (to be true, untrue or undecided) for
these paths.

4.2 Two-Phase Model Checking

The discussion in previous subsection (specifically, Equations 5 and 6) motivates
our two phase method. In the first phase, we determine k0 suitably and in the
second phase we estimate P(s, ϕ1 U≤k0 ϕ2).

The main challenge in achieving the first objective is that the function F (·),
where F (k) = P(s, ψk), k ≥ 1, is not known in a typical situation. If this func-
tion was known, getting k0 that satisfies Equation 5 could have been achieved
by simply inverting this (non-decreasing) function. We address this issue by con-
sidering a natural estimator of this function: for each k, estimate P(s, ψk) by the
proportion of N1 Monte Carlo simulation paths that satisfy ψk (similar to the
GAA (Generic Approximation Algorithm) algorithm described in [10]). This is
done for all k ≥ 1 until for some k0, the estimate satisfies Equation 5.

Once k0 is obtained, in the second phase we estimate P(s, ϕ1 U≤k0 ϕ2). This
estimate is computed as the proportion of N2 Monte Carlo simulation paths
(each of length at most k0) that satisfy ϕ1 U≤k0 ϕ2. This also can be thought
of as a simple application of the GAA algorithm for bounded until properties
described in [10].

Finally, motivated by Equation 6, P(s, ϕ1 U ϕ2) is estimated from the esti-
mated value of P(s, ϕ1 U≤k0 ϕ2). The two phases for computing k0 and then
computing P(s, ϕ1 U≤k0 ϕ2) are carried out “independently”, i.e., involving sep-
arate samples (of sizes N1 and N2 respectively), which enables us to combine
the errors in two phases to guarantee a certain precision. The number of Monte
Carlo simulation paths used in the two phases and the value of k0 are chosen
in such a way that the final estimate is correct within a pre-specified error limit
(see Theorem 1). The steps in our method are summarized as follows:
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Main Steps. Algorithm: U2B(M, s, ϕ1 U ϕ2, ε, δ)

Input : model M , initial state s, property ϕ1 U ϕ2, precision parameter ε,
confidence parameter δ

1. Phase I : Obtaining k0
(a) Choose N1 ≥ N∗

1 = 9 log(4
δ )/2ε2. From M , obtain N1 Monte Carlo

simulation paths of length k = 1. Let for i = 1, . . . , N1, Xi = 1 if the
i-th simulation satisfies ψk; Xi = 0 otherwise.

(b) Estimate P(s, ψk) as the proportion of the simulation paths satisfying
ψk, i.e

P̂(s, ψk) =
1

N1

N1∑
i=1

Xi. (8)

(c) Verify if Equation 5 is satisfied by the estimate in Equation 8 with the
current value of k and ε0 = ε

3 . More precisely, if

P̂(s, ψk) ≥ 1 − ε0 ≥ 1 − ε

3
, (9)

then k0 = k and proceed to Phase II. Otherwise, increase k by 1 and
generate one more transition for each of the existing N1 simulation paths,
creating N1 paths of increased (by 1) length. Define Xi, i = 1, . . . , N1 as
in Step 2(a) using these extended simulation paths and repeat the Step
2(b)-(c).

2. Phase II : Estimating P(s, ϕ1 U≤k0 ϕ2)
(a) Choose N2 ≥ N∗

1 = 36 log(4
δ )/ε2. From M , obtain N2 Monte Carlo

simulation paths (of length at most k0). Let for i = 1, . . . , N2, Yi = 1 if
the i-th simulation path satisfies ϕ1 U≤k0 ϕ2; Yi = 0 otherwise.

(b) Estimate P(s, ϕ1 U≤k0 ϕ2) as the proportion of the simulation paths that
satisfy ϕ1 U≤k0 ϕ2, i.e

P̂(s, ϕ1 U≤k0 ϕ2) =
1

N2

N2∑
i=1

Yi. (10)

Return P̂(s, ϕ1 U≤k0 ϕ2), as the estimate for P(s, ϕ1 U ϕ2)

The proof of the following result provides the proof of correctness of our approach
described above.

Theorem 1. Given any precision parameter ε > 0 and confidence parameter
δ > 0, the estimator U2B(M, s, ϕ1 U ϕ2, ε, δ) with the chosen values of k0, N

∗
1 , N∗

2
satisfies the following:

Pr (| U2B(M, s, ϕ1 U ϕ2, ε, δ) − P(s, ϕ1 U ϕ2) | > ε) ≤ δ. (11)

4.3 Proof of Correctness

This subsection is devoted to the proof of the Theorem 1. We begin by discussing
auxiliary results in theoretical statistics that will be used in the proof. We discuss
properties of the estimation procedure separately for the two phases.

Phase I: Estimating k0
The function F (·) introduced in Subsection 4.2 can be thought of as the cu-
mulative distribution function (c.d.f) of a random variable K = the minimum
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number of transitions required to verify ϕ1 U ϕ2 along a randomly selected sim-
ulation path in the given model. In that case, our estimation process in Phase
I is equivalent to estimating this c.d.f using N1 independent samples collected
from the distribution of this variable K. In fact, our estimate P̂(s, ψk) (as a
function of k) is the usual empirical c.d.f estimator F̂N1(·) of the true c.d.f F (·).
It is well-known that k ≥ 1, F̂N1(k) converges to F (k), as N1 → ∞ at a suit-
able rate, for each k. For the proof of Theorem 1, we need the rate, uniform
in k, at which this convergence takes place. This is provided by the celebrated
Dvoretzky-Kiefer-Wolfowitz (DKW) inequality (see for example, [14]): For each
ε1 > 0, N1 ≥ 1, Pr

(
supk≥1 |F̂N1(k) − F (k)| > ε1

)
≤ 2e−2N1(ε1)2 . This result,

restated in terms of P(s, ψk) = F (k) and P̂(s, ψk) = F̂N1(k), for each k, yields
the following lemma, which will be needed for our proof of Theorem 1.

Lemma 1. Given any ε1 > 0 and N1 ≥ 1,

Pr

(
sup
k≥1

| P̂(s, ψk) − P(s, ψk) |> ε1

)
≤ 2e−2N1(ε1)2 .

Phase II: Estimating P(s, ϕ1 U≤k0 ϕ2)
In this phase, we estimate the probability of the bounded until property
ϕ1 U≤k0 ϕ2 in M , with k0 ≥ 1 determined in Phase I. For any given k ≥ 1,
our algorithm in Phase II is simply the GAA algorithm (c.f. [10]) of estimating
the probability of a bounded until property ϕ1 U≤k ϕ2 in M . Hence using the
same technique (i.e. using Chernoff-Hoeffding bound) we get for each ε2 > 0,
Pr

(
| P̂(s, ϕ1 U≤k ϕ2) − P(s, ϕ1 U≤k ϕ2) |> ε2

)
≤ 2e−N2(ε2)2/4. Now since the

above inequality is true for all k ≥ 1, it is true conditional on the simulations
of Phase I, for k = k0. But the two phases are carried out independently, which
means the above statement must be true unconditionally as well, for k = k0.
Summarizing this discussion, we have

Lemma 2. Given any ε2 > 0 and N2 ≥ 1,

Pr
(
| P̂(s, ϕ1 U≤k0 ϕ2) − P(s, ϕ1 U≤k0 ϕ2) |> ε2

)
≤ 2e−N2(ε2)2/4.

Now we use the results in Lemmas 1 and 2 to complete the proof of Theorem 1.

Proof (of Theorem 1). Using triangle inequality (after adding and subtracting
suitable terms) yields the following

| U2B(M, s, ϕ1 U ϕ2, ε, δ) − P(s, ϕ1 U ϕ2) |=| P̂(s, ϕ1 U≤k0 ϕ2) − P(s, ϕ1 U ϕ2) |
≤ | P̂(s, ϕ1 U≤k0 ϕ2) − P(s, ϕ1 U≤k0 ϕ2) |

+ | P(s, ϕ1 U ϕ2) − P(s, ϕ1 U≤k0 ϕ2) | . (12)

Recall that, from Equation 9, we have 1 − P̂(s, ψk) ≤ ε/3. Hence, using
Equation 4 and triangle inequality, we get the following bound on the last term
in Equation 12
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| P(s, ϕ1 U ϕ2) − P(s, ϕ1 U≤k0 ϕ2) | ≤ (1 − P(s, ψk0))

≤ (1 − P̂(s, ψk0))+ | P̂(s, ψk0) − P(s, ψk0) |
≤ ε

3
+ sup

k≥1
| P̂(s, ψk) − P(s, ψk) | . (13)

Combining Equation 12 with Equation 13, we get the following bound

| U2B(M, s, ϕ1 U ϕ2, ε, δ) − P(s, ϕ1 U ϕ2) | ≤
| P̂(s, ϕ1 U≤k0 ϕ2) − P(s, ϕ1 U≤k0 ϕ2) | + ε

3 + supk≥1 | P̂(s, ψk) − P(s, ψk) |

Hence, the left side of the above inequality is greater than ε (see Equation 11
in Theorem 1) implies that at least one of the terms on the right side is greater
than ε/3. Therefore, we obtain the following:

Pr (| U2B(M, s, ϕ1 U ϕ2, ε, δ) − P(s, ϕ1 U ϕ2) |> ε)

≤ Pr
(
| P̂(s, ϕ1 U≤k0 ϕ2) − P(s, ϕ1 U≤k0 ϕ2) |>

ε

3

)
+ Pr

(
sup
k≥1

| P̂(s, ψk) − P(s, ψk) |> ε

3

)
≤ δ. (14)

The last inequality follows from the bounds in Lemmas 1 and 2 with ε1 = ε/3
and ε2 = ε/3, since with Ni ≥ N∗

i , i = 1, 2, we have 2e−2N1(ε1)2 ≤ δ/2 (i.e, N1 ≥
1

2ε21
log(4

δ ) ≥ 9
2ε2 log(4

δ )) and 2e−N2(ε2)2/4 ≤ δ/2 (i.e., N2 ≥ 4
ε22

log(4
δ ) ≥ 36

ε2 log(4
δ )).

This completes the proof of Theorem 1.

Remark 2. Observe that there are three error bounds that are derived from ε
each of which is assigned to ε

3 : ε0 (From Equation 9), ε1 (From Lemma 1) and
ε2 (From Lemma 2). While ε0 is the measure of closeness of P̂(s, ψk) to 1, ε1 and
ε2 capture the closeness of the estimated and true probabilities in each phase.
In other words, smaller ε0 will lead to larger value for k0 (sample path length),
while smaller ε1 and ε2 values will result in larger values for sample size in each
phase, N1 and N2. The proof of our theorem holds as long as ε0 + ε1 + ε2 = ε.
The choice of these values can be fine tuned in the experiments.

5 Prototype Implementation and Experiments

In the following sections we discuss the implementation of our technique. We
have developed two variations of implementation; one is based on the PRISM
model checker, and the other is a stand-alone implementation using XSB [18]
logic programming environment. We will refer to the former as IPRISM and the lat-
ter as IXSB. The reason for these two variations is that the PRISM model checker
does not allow input models with infinite state-space, while our technique can be
applied to such models. As such, to provide proof of concept, IXSB has been de-
veloped which can take input models with any state-space. The IPRISM is used to
directly compare the precision of our technique against that of PRISM’s numer-
ical and statistical methods. The prototype implementations and all examples
are available at [19].
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trans(s0, 0.01, s1).
trans(s0, 0.33, s3).
trans(s0, 0.33, s4).
trans(s0, 0.33, s5).
trans(s3, 1.0, s3).
trans(s4, 1.0, s4).
trans(s5, 1.0, s5).
trans(s1, 0.9, t(0)).
trans(s1, 0.1, s2).
trans(s2, 1.0, s2).

%% Infinte number of states
trans(t(N), 0.8, t(M)) :-

M is N + 1.
trans(t(N), 0.15, t(N)).
trans(t(_), 0.05, s1).

%% satisfiability of
%% propositions
sat(s0, phi1).
sat(s4, phi1).
sat(s3, phi1).
sat(s1, phi1).
sat(t(_), phi1).
sat(s3, phi2).
sat(s4, phi2).

startstate(s0).

(a) (b)

Fig. 2. (a) Model of infinite state system. (b) Logical encoding of the model.

Experimental Setup. For our experiments, we have used ε = 0.025 and ε0 =
ε
10 , ε1 = ε

2 , ε2 = 2 ε
5 (see Remark 2). For these values, the sample size in phase I is

N∗
1 = 19172 and in phase II is N∗

2 = 239658 (see Section 4.3, proof of Theorem 1).
These values allow for high precision in terms of sample path length without
compromising on the time required to obtain the results, where the computation
time is directly proportional to the number of the samples being used in each
phases. All experiments are conducted on Red Hat Enterprise Linux 5.1 running
on Intel Core 2 Duo 3GHz CPU and 2GB memory.

5.1 Logical Encoding of U2B: IXSB

We use XSB tabled logic programming language [18] to encode the algorithm
U2B. XSB system is an extension of Prolog-style SLD resolution with tabling.
Predicates or relations in XSB are defined as logical rules of the form

Goal :- SubGoal 1, SubGoal 2, ..., SubGoal N

where the predicate Goal evaluates to true if each of the SubGoals in the rhs
of :- evaluates to true, i.e., SubGoal 1 ∧ SubGoal 2 ∧ ... ∧ SubGoal N ⇒ Goal.
A rule with empty rhs is referred to as a fact. We encode the model using such
logical rules. Details of our implementation and its usage are available at [19].

Case study: infinite state system. Figure 2(a) presents a variant of the
model presented in Figure 1. The segment DS in Figure 1 is replaced by an
infinite chain of states: t0, t1, . . . , tn where n ≥ 0 is not pre-specified. It is not
possible to specify such a system in PRISM as it requires the input model to be
of finite state-space.

Figure 2(b) presents our logical encoding of the model in Figure 2(a). Each tran-
sition is specified using a trans predicate which has three parameters: the source
state (first parameter), the destination state (third parameter) and the probabil-
ity associated with the transition (second parameter). Observe that the transition
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relation with source state t(N) is defined using three rules. The first rule leads to
infinite transition sequence as it specifies that the destination state is t(M) where
M is obtained by increasing N by 1. The predicates sat and startstate specifies
the propositions/formulas satisfied at each state and the start state of the model
respectively. In this case, ϕ1 is satisfied in all states except s2 and s5, ϕ2 is satisfied
in s3 and s4, and the start state is s0.

Given that the objective is to compute P(s0, ϕ1 U ϕ2), our implementation
successfully identifies the bound k0 = 248 (phase I) and estimates the probability
to be equal to 0.6598 (phase II). Observe from the transition probabilities, the
actual value for P(s0, ϕ1 U ϕ2) is 0.66 as there are two paths that satisfies ϕ1 U ϕ2.

Recall that it is not possible to specify the infinite state model (Figure 2(a))
in PRISM. Furthermore, PRISM’s numerical method is not applicable due to
infinite number of states in the model. However, technique used in PRISM’s
statistical model checking method can be applied as (similar to ours) it does not
depend on the model transition structure. As such, we have also implemented in
IXSB a prototype version of PRISM’s statistical technique. Our experiments using
PRISM’s statistical method is not successful in estimating the probability as in
every sample there exists at least one sample execution where the given until
property is not verifiable (i.e., it cannot be decided whether the path satisfies
the until property or not). In Section 1, we have discussed similar results for the
example model in Figure 1.

5.2 Implementation Based on PRISM: IPRISM

We re-use sampling based statistical verification method implemented in the
PRISM model checker to evaluate the effectiveness of our technique. Given a
property ϕ = ϕ1 U ϕ2, our implementation generates ψ1

k = ϕ1 U≤k ϕ2 and
ψ2

k = ¬ϕ2 U≤k (¬ϕ1 ∧ ¬ϕ2) for different values of k. The PRISM sampling
based technique is then used with sample size N∗

1 to estimate the probabilities
p1(k) and p2(k) of satisfying ψ1

k and ψ2
k respectively. Observe that ψk = ψ1

k ∨ψ2
k

and ψ1
k ∧ ψ2

k = ff. As such, the probability of satisfying ψk is obtained from
p(k) = p1(k) + p2(k). Once, p(k) ≥ 1 − ε0 is obtained for some k, where ε0 is
suitably selected from ε, the corresponding value of k is recorded as k0 (Step 1c
of Algorithm U2B). In the second phase, the k0 is used to obtain the probability
of satisfying the property ϕ1 U≤k0 ϕ2 and PRISM’s sampling based technique is
again invoked with sample size N∗

2 (Step 2 of Algorithm U2B). The result is the
estimate of probability for satisfying ϕ1 U ϕ2.

5.3 Precision Evaluation Using PRISM

We have described an example (Figure 1) where PRISM’s numerical and sta-
tistical methods fail to provide result. The exact specification of the model
(in PRISM specification language) is provided in [19]. For PRISM’s numerical
method, we have experimented using both Jacobi and Gauss-Seidel variations.
The numerical method fails to compute the result due to state-space explosion.
For PRISM’s statistical method, we have experimented by varying the error mar-
gin from 0.01 (default) to 0.05 and sample path length from 10000 (default) to
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Table 1. Experimental results for illustrative example in Figure 1 where exact prob-
ability is 0.66

PRISM Our Technique

Numerical Statistical ε = 0.025, δ = 0.01
ε Sample path-length k0 prob

out-of-
memory

0.010 100000 (no-result)

2649 0.6587
0.015 100000 (no-result)
0.020 500000 (no-result)
0.025 500000 (no-result)
0.030 1000000 (no-result)
0.050 1000000 (no-result)

1000000; in each experiment, PRISM fails to provide result due to the presence
of a sample path where the given until property is not verifiable. On the other
hand, our method successfully estimates the probability within the pre-specified
error bound (actual probability is 0.66, estimate from our technique is 0.6587
with ε = 0.025 and δ = 0.01). Table 1 summarizes the results.

In the following, we will further compare our technique using examples from
the existing literature. The objective of the comparison is to show that (a) our
technique does not require users to pre-specify the upper-bound of the length
of the sample paths; (b) our technique uses smaller sample path lengths than
PRISM’s statistical method; and (c) our technique provides good probability
estimates, i.e., close to the probability results computed by numerical methods.

Zeroconf Protocol. We have experimented using IPv4 zeroconf protocol mod-
eled as PTS [4] (Figure 3(a)); the same model is used in [17]. The model con-
tains n+3 states {s0, s1, . . . , sn, sok, serr}. The state s0 is the start state and the
propositions ok and err are satisfied in states sok and serr respectively. The tran-
sition labels denote the probability of the corresponding transitions. Our objec-
tive is to compute P(s0,¬ok U err) for the model. The top half of Table 2 presents
our experimental results for different values of the n and the transition proba-
bilities q and r. The results show that both PRISM’s sampling based method
and our method provide good probability estimates (close to PRISM’s numerical
solutions). In all the experiments, PRISM is able to provide results using the de-
fault setting for number of Jacobi iterations (10000 for numerical method) and

1−r

1S0 S2 Sn

Sok Serr

.....
q

1−r

r

1−r

r rr

1−q

S

1−r

1S0 S2 Sn

Sok Serr

.....
q

r

1−r

r rr

1−q

1−r

S

(a) (b)

Fig. 3. (a) Ipv4 zeroconf protocol and (b) n-buffer Queue
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Table 2. Experimental results for (a) Zeroconf and (b) Queue Protocol

(n, q, r)

PRISM Our Technique
Statistical (Default settings) ε = 0.025

Numerical ε = 0.01, δ = 1.0E-10 δ = 0.01
prob (#Jacobi) prob (max sample path-length) k0 prob

(10, 0.9, 0.9) 0.8097 (86) 0.8117 (86) 47 0.8095
(20, 0.9, 0.9) 0.5975 (308) 0.6020 (398) 183 0.6000
(40, 0.9, 0.9) 0.1529 (824) 0.1562 (1173) 555 0.1542
(60, 0.9, 0.9) 0.0215 (1009) 0.0223 (1334) 667 0.0213
(80, 0.9, 0.9) 0.0026 (1056) 0.0027 (1586) 708 0.0028
(100, 0.9, 0.9) 3.24E-4 (1080) 3.42E-4 (1489) 676 3.55E-4

Results for model in Figure 3(a)

(80, 0.9, 0.5) 0.1022 (12176) 0.1087 (20111) 8768 0.1071
(100, 0.7, 0.5) 0.0230 (15728) 0.0237 (23057) 7552 0.0223
(100, 0.9, 0.5) 0.0832 (17452) 0.0876 (27727) 12677 0.0875
(120, 0.9, 0.5) 0.0702 (23444) 0.0745 (39537) 18057 0.0742
(140, 0.9, 0.5) 0.0607 (30102) 0.0639 (56189) 22034 0.0646
(160, 0.9, 0.5) 0.0534 (37376) 0.0574 (65429) 26372 0.0553
(180, 0.9, 0.5) 0.0477 (45228) 0.0507 (94567) 32565 0.0498
(200, 0.9, 0.5) 0.0431 (53662) fail (100000) 41192 0.0452

Results for model in Figure 3(b)

the maximum length of sample path (10000 for statistical method). However,
observe that the maximum sample path length (max sample path-length) re-
quired by PRISM’s statistical method is larger than the bound k0 obtained and
used by our method in all experiments.

Queue with parameterized size. We have also experimented using the same
property against an n-size queue model (Figure 3(b)) which is similar to Zeroconf
protocol model. The bottom half of Table 2 shows the corresponding experimen-
tal results. Observe that PRISM’s numerical method fails to compute results
using default number of Jacobi iterations (10000). We have increased the num-
ber of these iterations for obtaining the result and the corresponding maximum
iteration required is also shown in the table. PRISM’s sampling based technique
also fails to provide result using the default sample path length (10000). We have
experimented by increasing the sample path lengths and report the correspond-
ing maximum sample path length required for each case. It should be noted that
in general, it is not possible to pre-specify these parameters (number of Jacobi
iterations or the maximum sample path length). For (n, q, r) = (200, 0.9, 0.5)
and for sample path length 100000, PRISM’s statistical method is not able to
consistently provide results; it fails whenever a sample path is examined where
it cannot be decided whether the given until property is satisfied or not. For
each experiment, our method consistently uses smaller sample path length (k0
computed in phase I) compared to PRISM’s statistical method, and is successful
in providing a good probability estimate.

Dining Philosopher Protocol. We use a DTMC model for dining philosopher
protocol. Our objective is to compute for the start state s0,
P(s0, allhungry U eat1), where allhungry is true in states where none of the
philosophers are eating (do not have one of the forks) and eat1 is true in states
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Table 3. Experimental results for Dining Philosopher Protocol

# Philos

PRISM Our Technique
Statistical (Default Settings) ε = 0.025

Numerical ε = 0.01, δ = 1.0E-10 δ = 0.01
prob prob (max sample path-length) k0 prob

10 0.0999 0.0997 (50) 33 0.0989
20 - 0.0492 (64) 46 0.0495
30 - 0.0333 (80) 58 0.0327
40 - 0.0242 (103) 68 0.0242
50 - 0.0199 (107) 76 0.0196
60 - 0.0164 (114) 83 0.0163
70 - 0.0140 (127) 91 0.0137
100 - 0.0099 (162) 114 0.0096

where philosopher 1 is eating (has both forks). In short, the objective is to com-
pute probability that 1-st philosopher eats before anyone else can eat.

Table 3 presents the experimental results obtained by varying the number
of philosophers. PRISM’s numerical method fails to compute the probability of
satisfying the property due to memory constraints when the number of philoso-
phers is ≥ 20, while both our method and PRISM’s sampling based method are
successful in estimating the probability.

5.4 Summary of Experimental Results

The experimental results empirically show the advantages of our method. First,
our method provides good estimates of the exact result and uses smaller sample
path lengths than PRISM’s statistical method in all experiments. Whenever
PRISM statistical verification provides an estimate, our method also terminates
with an estimate using comparatively smaller sample path lengths (Tables 2,
3). Second, our method does not require the user to pre-specify a sample path
length which is required in PRISM’s statistical method and which may not be
possible to correctly specify in general. In fact, as PRISM’s statistical method
requires the verifiability of the given until property in all samples, its result (i.e.,
whether it can provide an estimate or fail due to at least one sample where
property is unverifiable) may vary from one experiment to another for the same
sample path length. In short, our method succeeds in computing results even for
some cases when PRISM’s statistical method fails (Table 1). Finally, being based
on sampling, our method does not require the construction of the entire model
and does not suffer from the state-space explosion problem which may render
numerical method unusable (Table 3). Our method can be effectively used in the
setting where the system is a black-box or has infinite number of states, and only
samples in the form of simulation runs of the system are available (Section 5.1).

5.5 Discussion on Optimization

In the above experiments, we are not addressing optimization with respect to
execution time directly. This is because, our first objective is to present a prov-
ably correct, systematic sampling based method for automatically verifying un-
bounded until probabilistic properties. Our experiments show that the proposed
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technique indeed can solve the problem of probabilistic model checking of un-
til properties in an unsupervised fashion (as opposed to trial-and-error method
relying on the user to try different sample path length bounds). However, for
complete understanding of our current implementation we present here brief dis-
cussion on timing results of our technique and provide a roadmap for developing
a full-fledged standalone tool based on our technique that is likely to be as fast as
existing statistical verification tools like the one implemented in PRISM model
checker.

Efficiently Obtaining k0. We have shown that the upper bound of sample
path length required for our technique is considerably smaller than that required
by PRISM’s statistical method. Naive approach for computing such a bound will
involve iteratively computing the P̂(s, ψk) for k = 1, 2, 3, . . . till a k0 is obtained
for which P̂(s, ψk0) ≥ 1 − ε0 (Equation 9).

However, in our experiments we have observed that this approach is be too
time consuming when the value of k0 is large. For instance, the experiments
with queue model (Table 2(b)) require a large number of iterations (starting
from initial value of k being 1) to obtain the appropriate value of k0 (≥ 8500).
To address this issue (i.e., reduce the number of iterations), we have developed
and optimized iterative procedure for computing k0. The optimization involves
increasing the value of k not by pre-specified fixed increments (e.g., by 1), but
by ∆k such that the bound k0 can be computed in lesser number of iterations
in phase I. This strategy involves computing ∆i (the increment of k after i −
1 iterations) from the proportion of the differences between two consecutive
estimates (p(i − 1) = P̂(s, ψki−1) and p(i − 2) = P̂(s, ψki−2)) and the target
1 − ε0. That is,

∀i ≥ 2 : ∆i =

{
∆i−1

[
(1−ε0)−p(i−1)
p(i−1)−p(i−2)

]
if the denominator is non-zero

∆i−1 otherwise
We initialize k1 = 1, ∆1 = 1 and assume that p(0) = 0. Using this strategy, it
is likely that the target (1 − ε0) will be reached with fewer jumps (compared
to the strategy which employs pre-specified fixed incremented of k). However,
it may happen that k0, thus obtained, is not be the smallest possible one. Note
that the choice of k0 is not unique, and having a small k0 actually reduces the
computational overhead for the second phase of our method. To remedy this
possibility of “overshooting”, we use a binary-search strategy to ensure a small
value of k0: If for some i ≥ 2, for a = ki−1, P̂(s, ψa) is below the target (1 − ε0)
and for b = ki, P̂(s, ψb) overshoots the target by certain pre-specified margin
(e.g., P̂(s, ψb) > 1 − ε0/2), then we choose next ki+1 = a + a+b

2 ; we also reset
a = ki+1. If for this new ki+1, P̂(s, ψki+1) is less than the target, then the next
value of ki+2 = b − b−a

2 and we reset b = ki+2; otherwise, ki+2 = a + b−a
2 as

before. The computation terminates either (a) when a value of k0 is obtained for
which P̂(s, ψk0) is above the target but within the pre-specified margin; or (b)
when b− a ≤ 1 and k0 is set to b. Clearly, for different models and choice of the
property, the value of k0 will be different and it will depend on the behavior of
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the random variable K (with c.d.f F (·)). (For more discussion on how different
the probability distributions of this random variable can look like, see [19].)

(a)

(b)

(c)

Fig. 4. F (k) = P̂(s,ψk) against k for (a) Zero-
conf, (b) Queue, and (c) Dining philosopher

Figures 4(a), (b) and (c) illus-
trate the increments in k with
successive estimates of P̂(s, ψk)
(iteration number is shown in
parenthesis wherever possible;
e.g., in Figure 4(a), at iteration
2, k = 91 and P̂(s, ψk) = F (k) =
0.5989). The graphs show that
the increment in k adapts to
the rate at which the corre-
sponding estimated probability
increases with k, assuming a lo-
cal linear approximation of the
F (·) function (see Section 4.2).
Using this strategy, k increases
with smaller “jumps” (smaller
∆−values) when P (s, ψk) has a
high rate of increase, while the
increments in k gets larger when
the rate of increase of P (s, ψk) is
slow. Observe that in Figure 4(b)
(queue model with (n, q, r) =
(120, 0.9.0.5)), the binary search
strategy is not deployed as the
first k for which 1−ε0 ≤ P̂(s, ψk)
is such that P̂(s, ψk) < 1 − ε0/2.
However, in Figures 4(a) and (c),
the binary search strategy is used
to obtain a smaller value of k0.
For example (Figure 4(a)), for
zeroconf model with (n, q, r) =
(80, 0.9, 0.9), at 11-th iteration where k = 792, P̂(s, ψk) > 1− εo/2, i.e., P̂(s, ψk)
overshoots the target value by the pre-specified margin (ε0/2). The binary search
strategy is fired, which uses the current value (792 in iteration 11) and previous
value (625 in iteration 10) of k and computes the new value of k = 708.

The bounds (k0) and the probability estimates presented in Tables 1, 2 and
3) are obtained by using the above optimized strategy. Table 4 presents some of
the experiments already discussed and shows the number of iterations used in
Phase I of our technique to obtain the appropriate k0. The table also compares
the timing results of our method as implemented in IPRISM against PRISM’s sta-
tistical verification method. Note that the time taken by our technique is of the
same order as the time taken by PRISM’s statistical method. The main over-
head in our implementation is due to the fact that it requires multiple sample
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Table 4. Timing results (in seconds)

Model
PRISM Statistical Method

Our Technique
Phase I Phase II

Time k0 iterations Time Time

Example (Figure. 1) no-result 2649 8 21 75

Zeroconf (n : 20, q : 0.9, r : 0.9) 11 183 10 5 7
Zeroconf (n : 80, q : 0.9, r : 0.9) 31 708 12 16 20

Queue (n : 80, q : 0.9, r : 0.5) 219 8768 11 77 139
Queue (n : 180, q : 0.9, r : 0.5) 532 32565 14 225 331

Dining philosopher (# philos: 20) 61 46 8 23 43
Dining philosopher (# philos: 100) 709 114 9 278 523

analysis for each increments in k in phase I. For example, consider that in the
i-th iteration of phase I, our method examines sample of size N∗

1 , where each
sample path is of length ki. Further consider that, the estimate of satisfying ψki

is not greater than 1− ε0 (Equations 8, 9). In that case, we increase (either by a
fixed value or by ∆i) the sample path length to ki+1 and recompute the estimate
of satisfying ψki+1 . In other words, in the i-th iteration, if a path (s0, s1, . . . , ski)
does not satisfy ψki , then in the i + 1-th iteration, we want to consider the
path (s0, s1, . . . , ski , . . . , ski+1) and check whether ψki+1 is satisfied in this path.
However, as our current implementation relies on the PRISM-generated samples
and the implementation does not modify the way such samples are generated, in-
stead of extending (s0, s1, . . . , ski) by (s0, s1, . . . , ski , . . . , ski+1), our implementa-
tion obtains a completely new sample path of length ki+1, i.e., (s′0, s

′
1, . . . , s

′
ki+1

)
where s′0 = s0. While this does not invalidate the theoretical basis of our tech-
nique, it incurs an additional overhead of obtaining new sample paths (instead
of extending the existing ones). The overhead can be completely avoided if the
PRISM sample generation method is updated to allow for the extension of sam-
ple paths. Incorporating our method inside PRISM by updating the existing
sample generation technique is likely to further enhance the efficiency of our
optimized two-phase technique and, in turn, will further broaden the scope of
application of the PRISM model checker.

6 Conclusion

We presented an approximate statistical method for probabilistic model check-
ing of unbounded until properties. Our technique is based on the reduction of
verification of such properties to verification of bounded path properties in two
phases. We theoretically proved the correctness of our technique and empirically
showed the applicability of our technique. As our technique does not require
knowledge of the system transition structure, it can be applied effectively for
black-box systems and also for systems containing infinite number of states.

In our experiments, we observed that even if PRISM’s statistical method
fails with the default value of simulation path length, it can be made to work
for some of the experiments if one can choose a sufficiently large path length.
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Such a choice can be made by some strategy similar to what we proposed here.
However, such a strategy cannot guarantee the correctness of the result within
the error bounds. This is because this method would amount to (a) choosing k0
and (b) estimating the probability using the same set of simulation paths, and
this will not provide the estimates that are provably correct within the specified
error bounds. That is why we recommend a two-phase procedure, where these
two objectives ((a) and (b)) are met using two independent samples of paths
and it also enables us to prove its correctness (Theorem 1).

In addition to incorporating our technique in the PRISM model checker (see
discussion in Section 5.5), as part of future work, we are planning to investigate
the applicability of our technique for probabilistic LTL properties where prop-
erties of the form ϕ1 U ϕ2 U ϕ3 are expressible, unlike PCTL (the logic used in
this paper) which cannot express nested path properties.
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Abstract. We present a mathematical model of class graphs, object
graphs and state graphs which naturally capture the essential oo fea-
tures. A small-step operational semantics of oo programs is defined in
the style of classical structural operational semantics, in which an exe-
cution step of a command is defined as a transition from one state graph
to another obtained by simple operations on graphs. To validate this
semantics, we give it an implementation in Java. This implementation
can also be used for simulation and validation of oo programs, with the
visualization of state graph transitions during the execution. A distinct
feature of this semantics is location or address independent. Properties
of objects and oo programs can be described as properties of graphs in
terms of relations of navigation paths (or attribute strings).

Keywords: OO programs, operational semantics, object graphs, state
graphs.

1 Introduction

A formal semantic model in general makes (or should make) two major contri-
butions. The first is to provide conceptual clarification for better understanding
so as to master the complexity better, and the second is to support the develop-
ment of techniques and tools for reasoning about programs. The work we present
in this paper is primarily motivated by the former, but it is promising in help
to establish a basis for advancing the state of the art of the techniques and tool
support for verification and analysis of oo programs.

1.1 Motivation

The behavior of an oo program is complex and reasoning about it is hard. The
main reason is that its execution states contain related objects with complex
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structures and properties. These structures are determined by the class structure
of the program. Complexity is in general the cause of breakdowns of a system
and oo programs are typically prone to errors of null pointers (or references),
inaccessible objects and aliases [20].

Because of the complexity and the challenge in understanding oo programs,
there are a big number of traditional semantic theories of oo programs (e.g.
[25,1,18,8]), operational or denotational, which use the basic theory of sets, func-
tions and relations in defining the states of a program. As pointed out in [23],
such an approach “often needs to include in the syntax definition of runtime
concepts”, such as locations to indicate a value that may change over time. This
need and the lack of clarity about the structural properties of the states of oo
programs are the main source of the complexity of these traditional theories. The
complexity hinders the way of our thinking about the execution of a program
and makes it difficult to formulate clear assertions about executions. Formulat-
ing clear assertions is the first step for analysis of the correctness of a program
[20]. We should admit that the existing operational semantic definitions of oo
programs are not as elaborate and comprehensive as the classical structural op-
erational semantics (SOS) for traditional procedural programs and the rewriting
systems for functional programming. There are a range of work on defining logics
for oo programs [31,30,32]. But those logics are not as easy to understand as the
Hoare-logic for the analysis and design of traditional procedural programs.

1.2 Contribution

We define an operational semantics for an oo programming language of the rCOS
method of component-based and object-oriented model driven design [26]. This
language is originally defined with a denotational semantics and a refinement
calculus [18,37]. We define objects of a class and execution states of a program
as directed labeled graphs. A node represents an object or a simple datum.
However, in the former case, a node is not labeled by an explicit reference value,
but by the name of its runtime type, which is a name of a class of the program.
An edge is labeled by the name of a field of the source object referring to the
target object.

It is well known that an object or a family of related objects can be represented
as a graph, in which nodes are objects and edges are their attributes [15,19,37].
Intuitively, a state at anytime of the execution of an oo program consists of the
existing objects and their relations at that time, and can thus be represented as
a graph. Each step of the execution is to change the graph, and the changes of
a graph can be defined by operations on graphs, such as swinging an edge and
adding a new subgraph denoting a newly created object.

However, the definitions of the execution states and the operational semantics
are more subtle. First, an invocation to a method of an object does not only
manipulate the fields of “this” object (self instead of “this” is used in this paper),
but also the temporarily declared variables. Moreover, the scope of the execution
changes when another method is called inside this method. To address this issue,
the edges of the temporary variables are arranged on the top of the state graph
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in a stack, according to their scopes, linked by specially $-labeled edges. Hence,
a change of the scope of execution is done by pushing in or popping out a scope
node of the state graph (see Sec. 3). Second, a small step semantics of a method
invocation is not straight forward in general. Furthermore, unlike the existing
semantic definitions such as that of [25], our definition does not use address
variables.

Nevertheless, with the careful combination of the notions of scope stacks and
object graphs (representing the object heaps in classical models) in the concept
of execution state graphs, the model is indeed simple and defined as a classical
SOS transition system, using only the basic notion of graphs and operations on
graphs.

A distinct feature of our model is its location or address independency. In
other words, it does not explicitly refer to object references or nodes in state
graphs. This is important as oo programs only use variables and navigation
paths, but do not refer to addresses or references. Variables and navigation
paths are “evaluated” as nodes in a state graph. Properties of objects and states,
such as conflict-freedom among aliases, accessibility of one object by another
and absence of null references, can be described as predicates [9] or relations of
such paths. Some concrete examples of properties of oo programs are given in
Section 6. This shows that the graphs can be used to interpret a graph-based
logic, such as Logics of Aliasing [6], and the operational semantics as the basis
to develop a graph-based Hoare-logic for static analysis of oo programs.

While we are lifting objects and states to graphs and treating them as instance
values of variables in the manner as we model programs with only pure data, we
also lift the class definitions of a program and the declarations as a whole as type
graphs, called class graphs [37]. This allows us to define a simple type system
of the language. Furthermore, with structural refinement relations defined for
class graphs in our earlier work [37], the operational semantics will support a
rewriting system for proving equivalence upto structural refinement mapping
among programs.

We also show in Section 5 that both the type system and the operational
semantics are easy to implement. The implementation is written in Java directly
according to the semantic rules, and a program produces the visualized graphs
step by step during its execution. Therefore, the language can be directly used
for simulation and validation.

We introduce in the next section the syntax of our oo language. We define in
Section 3 class graphs, object graphs and state graphs, followed by their opera-
tions. The operational semantics is defined in Section 4, and its implementation
in Section 5. We show in Section 6 examples of properties of oo programs that
can be stated and analyzed within this model. Conclusions are drawn in Section 7
with a discussion on related work and future work.

2 An Object-Oriented Language

We assume four disjoint sets: C of class names, D of names of primitive data types
such as Int and Bool , A of names of attributes and variables and M of names
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prog ::= cdecls • Main cdecls ::= cdecl | cdecl ; cdecls
adef ::= visib T a = l visib ::= private | protected | public
mdef ::= m(S x; T y){c} Main ::= (ext ; c)
e ::= le | self | (C)e | l | f(e) le ::= x | e.a
l ::= d | null ext ::= T x = l

cdecl ::= [private] class C [extends D] {adef ;mdef }
c ::= skip | C.new (le) | le := e | var T x [= e] | end x | e.m(e; le) | c; c | c � b � c | b ∗ c
b ::= true | false | e = e | ¬b | b ∧ b | b ∨ b

Fig. 1. Syntax of rCOS

of methods. Let T be the union of C and D. The oo programming language we
consider is the one of rCOS [18] and its syntax is given in Fig. 1. It supports
most of the essential oo features, including inheritance, type casting, dynamic
binding and recursive objects.

In Fig. 1, the terminals T and S are type names in T , a an attribute (or field)
name, m a method name, d a constant datum of a primitive type, f a built-in
operation of a primitive data type, and x and y variables. Any text occurring in
a pair of square brackets is optional, while an overlined text u denotes a sequence
of elements u1 ·u2 · · ·uk. The concatenation of two sequences is denoted by u ·v.
We do not distinguish between an element and a singleton sequence.

The language is similar to Java. A program prog is a sequence of class declara-
tions cdecls followed by a main method Main . Main also declares prog ’s external
variables ext . We could follow Java to declare a class with ext as its attributes
and the method main(), but it would cause some hiccups in our discussion. We
would like to follow the classical manner in defining the semantics and do not
want expressions to have side effects. Therefore, object creation is of the form
C.new (le) rather than le := C.new (). And method invocations are not allowed
to occur in expressions. Instead, a method can have result parameters. Because
rCOS is also used as a specification language, it allows a method to return a
number of outputs. It also allows direct assignments to a navigation path of
the form x.a1. . . . .ak, denoted in general by le, according to the accessibility of
the attributes. For simplicity, the overriding of attributes is not allowed and the
overriding of a method preserves the method signature.

3 Class Graphs, Object Graphs and State Graphs

We define class graphs, object graphs, and state graphs; and discuss their rela-
tions. We also define some graph operations that we need.

3.1 Class Graphs

The class graph is a directed and labeled graph [37]. A node represents a class of
objects or a type of data and it is labeled by its type name in T . All nodes are
labeled by different names (this is different from object graphs that are defined
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Fig. 2. Class and object graphs

later). There are two kinds of edges. An edge of the first kind is an attribute edge
representing that an instance of the source node has a property (attribute) of
the type of the target node, and it is labeled by the attribute name. An edge of
the other kind represents that the source node is a direct subclass of the target
node, and it is labeled by the designated symbol �. The class graph of a program
is the one containing all the classes defined in the program.

The class graph of a well-formed program has the following conditions:

1. a node labeled by a primitive data type is a leaf,
2. the labels of the outgoing edges of a node are all different, and this implies

that we do not consider multiple inheritance, and
3. there is no �-loop in the graph.

An example of class graph is shown in Fig. 2(1) which contains four classes.
We use C � D to denote that C is a direct subclass of D, and 	 the subtype

relation, which is the extension of the reflexive and transitive closure of � on T .
Given a class C in a class graph of a program, attr(C) is the set of labels of

the outgoing edges from C and thus the attributes directly defined in C, and
Attr(C) defines the set of attributes of C as well as those of all its superclasses.
These functions can be calculated from the class graph.

To represent more static features of the program, we extend the class graph.
For example, we can annotate an attribute edge a of the source node C with
the initial value init(C, a). Let method(C) be the methods defined in C. Then
the partial functions mtype(C, m) and mbody(C, m) give the type and body of a
method m of class C, respectively.

mtype(C, m) =̂

{
(S; T ) if m(S x; T y){c} ∈ method(C)
mtype(D, m) otherwise, if C � D

mbody(C, m) =̂

{
(x; y; c) if m(S x; T y){c} ∈ method(C)
mbody(D, m) otherwise, if C � D

These functions are used for method look-up when defining the semantics of
method invocation. The main use of the class graph of a program is first for static
type checking of the expressions and commands of the program by traversing
the graph and using the information and the associated functions defined on it.
It is also used for the dynamic checking of the validity of the execution state,
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which is defined as an instance graph of a class graph, called a state graph (see
Section 3.3). For details, we refer to the full version of the paper [24].

3.2 Object Graphs

An object graph describes a family of objects and their relations, with nodes rep-
resenting objects or values and their outgoing edges labeled by their attributes.
The target of an edge is the node representing the object or value that the
attribute refers to.

Let N be an infinite set of node names and L the set of constant values
including the null object and values of primitive types.

Definition 1 (Object Graph). An object graph is a directed and labeled graph
G = 〈N, E, T, F 〉, where

– N ⊆ N is the set of nodes, denoted by G.node ,
– E ⊆ N ×A× N is the set of edges, denoted by G.edge ,
– T : N ⇀ C is a partial mapping from nodes to types, denoted by G.type,
– F : N ⇀ L is a partial mapping from nodes to values, denoted by G.value ,

such that

1. a node is either an object node or a value node: dom(T ) ∩ dom(F ) = ∅ and
dom(T ) ∪ dom(F ) = N ,

2. labels of the outgoing edges from a node are different, and
3. all value nodes are leaves, having no outgoing edges.

An example of object graph is shown in Fig. 2(2) with three objects of class Q,
J and I, respectively.

We write n1
a−→ n2 for the edge (n1, a, n2) ∈ G.edge . Given a set ns ⊆ G.node

of nodes (or a single node), in(ns) and out(ns) respectively denote the sets
of incoming edges to and outgoing from them. For a non-empty path p, i.e.
a sequence of consecutive edges, we define source(p) and target(p) to be the
starting node and the destination of p, respectively; first(p) and last(p) the first
and last edges, respectively.

3.3 State Graphs

A state at a moment of time in the execution of an oo program consists of the
existing objects, the attribute links between them, the values of data attributes,
which form an object graph at that time; together with the variables and their
values.

Roughly speaking, each step of the execution of the program in a state is to
change the state by creating a new object, forming a new link, changing a link,
or modifying a data attribute. Obviously, all these changes of the state can be
considered as simple operations on the initial object graph.

However, we are interested in a small step semantics, and we need to define
the semantics of changes of local variables and nested method invocations. We
first define the notion of state graph which introduces stacks into object graphs.
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Definition 2 (State Graph). A state graph is a rooted, directed and labeled
graph G = 〈N, E, T, F, r〉, where

– N , T and F are defined as in Definition 1 of object graphs,
– E ⊆ N × (A ∪ {self , $}) × N is the set of edges, denoted by G.edge,
– r ∈ N is the root of the graph and it has no incoming edges, denoted by

G.root ,
– starting from r, the $-edges, if there are any, form a path such that except r

each node on the path has only one incoming edge.

An example of state graph is shown in Fig. 3.
Informally, a $-edge connects a pair of nodes that correspond to adjacent

scopes. We call the $-path of G the stack of the state graph and call the nodes
on this path, the scope nodes. When entering a new scope, a new node together
with an edge from it to the current top node are pushed onto the top of the
stack, and when exiting a scope, the top node is popped out (together with
the outgoing edges from it). The outgoing edges of a scope node, other than the
$-edge, represent the variables defined in the scope.

Take the example shown in Fig. 3. When the execution enters var y; var x; · · · ;
end x; end y, it pushes a new node s onto the top of node n with variable y being
attached to it; then when the execution proceeds to var x; · · · ; end x; end y, a
new scope is entered and thus a new node r is pushed onto the top of node s
with the newly declared variable x being attached to it. Note that it is allowed
to define variables in different scopes with the same name, for example x in both
scopes r and n. In this case, the one defined in the most recent scope, for example
x in scope r, will hide the others. At the end, when the execution proceeds to
end x; end y, r together with x is popped out, then the node s will be popped
out together with y.

A state graph represents a proper execution state of a program only if it
satisfies the conditions 2 and 3 of object graphs and the following two well-
formedness conditions:

1. the sets of scope nodes, object nodes and value nodes are disjoint, and
2. the source of each edge labeled by self is a scope node and its target is an

object node.

In the rest of the paper, we always assume a state graph is well-formed. Besides,
a state graph is called stable if it does not contain $-edges, i.e. the stack is empty.
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A node n is accessible in G, denoted by access(G, n), if it is reachable via a
path starting from the root node, and G is connected if all nodes are accessible.
Given a state graph G, we can always get a connected subgraph by removing all
the inaccessible nodes together with their associated edges. Such a subgraph of
G is unique, called the connected part of G, denoted by G•.

The sequence of edge labels a1.a2 . . . ak uniquely determines the target node
of a path from the root node G.root a1−→ · · · ak−→ nk, and it therefore uniquely
represents an object or a value, depending on the type of the target node. We
call such a sequence of edge labels a trace and ignore the difference between a
path starting from the root and its trace.

In an abstract model, we do not distinguish graphs with only different node
names, and this can be formalized by the notion of graph isomorphism. Two
connected state graphs G and G′ are isomorphic if there is a bijective function
g from G.node to G′.node such that

1. g(G.root) = G′.root ,
2. n1

a−→ n2 in G.edge iff g(n1)
a−→ g(n2) in G′.edge, and

3. G.type(n) = G′.type(g(n)) and G.value(n) = G′.value(g(n)).

Two state graphs are isomorphic if their connected parts are isomorphic. Iso-
morphic state graphs have the same set of traces. For simplicity, we assume the
mapping G.value is injective and thus all leaves represent different values. We
do not distinguish a value node from its value. We assume a value node is in the
state when needed, as otherwise it can always be added.

3.4 Correctly Typed Object Graphs and State Graphs

An object (or state) graph G is correctly typed w.r.t. a class graph Γ (called
Γ -typed) if

1. the type of each object node of G is a type in Γ , and
2. for the label a of each attribute edge of G, there is an a-edge from some

supertype of the source node to some supertype of the target node in Γ ,

For example, the object graph in Fig. 2(2) is correctly typed w.r.t. the class
graph in Fig. 2(1).

A state graph G is a valid state of a program prog if G is correctly typed w.r.t.
the class graph of prog and the outgoing edges of the target of the $-path in G
are labeled by the external variables of prog .

In the rest of the paper, we are only interested in correctly typed object graphs
and valid state graphs, while we do not explicitly mention the program or its
class graph when there is no confusion.

3.5 Graph Operations

We define a few basic operations on state graphs, which we will use in the
semantic definitions. Assume a state graph G = 〈N, E, T, F, r〉.
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Swing an edge. The most often operation for changing a state G is done by
an assignment e′.a := e. It causes the swing of the a-edge to point to the object
or value of e. For an edge d = (n1

a−→ n2) and a node n of G,

swing(G, d, n) =̂ G[E[d → n]/E] where E[d → n] =̂ (E \ {d}) ∪ {n1
a−→ n}.

The substitution G[E′/E] means that only the component E is substituted by
E′, without changing anything else. Fig. 4 shows the edge swing. For a path p,
we use swing(G, p, n) for swing(G, last(p), n).

Create an object. Adding an object node is slightly tricky and we need to
consider the type of the node and its attributes. Creation of a new object of class
C and attach it to the trace p in G is defined by

new(G, C, p) =̂ swing(G′, p,n) where n �∈ N,

G′ = 〈N ∪ {n}, E ∪ {n a−→ init(C, a) | a ∈ Attr(C)}, T ∪ {n �→ C}, F, r〉.

Stack operations. For a sequence of variables x = x1 · · ·xk and nodes n =
n1 · · ·nk, push(G, x, n) adds a new scope with outgoing edges labeled by x and
pointing to the nodes n, accordingly:

push(G, x, n) =̂ 〈N ∪ {r′}, E ∪ {r′ x1−→ n1, · · · , r′
xk−→ nk, r′

$−→ r}, T, F, r′〉
where r′ �∈ N.

As shown in Fig. 5, ending a scope pops the root out of the stack by simply
removing it, as well as all its outgoing edges, from the graph, but the next node
on the stack becomes the root.

pop(G) =̂ 〈N \ {r}, E \ out(r), T, F, rnext〉 if r
$−→ rnext ∈ E
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4 Operational Semantics

Using the state graphs, we now simply follow the classical routine to define the
evaluation of an expression and then the state transition rules.

4.1 Evaluation of Expressions

In an oo program, an expression is formed from constants and navigation paths.
A navigation path represents a node, either a value node or an object node, which
is the target node of the path from the root of the current execution state. A
composite expression of the form f(e1, . . . , en) only applies to expressions which
are evaluated to data values.

Formally speaking, given a state G, the evaluation of an expression e returns
an object node or value. We use eval(G, e) to denote the value of e in state G,
and rtype(G, e) to denote the type G.type(eval(G, e)) if eval(G, e) is an object
node. Type rtype(G, e) is called the runtime type or current type of e in state G.

For an expression e, the trace of e, trace(G, e), is the trace starting from the
root and ending at the node which represents the result of the evaluation of e
in G. To calculate trace(G, e), we first define a partial function search(G, n, w)
which finds the trace of w, which is either a simple variable x or self , from the
scope node n node-by-node down the stack:

search(G, n, w) =̂

{
w if ∃n′ • n

w−→ n′ ∈ G.edge

$.search(G, n1, w) otherwise, if ∃n1 • n
$−→ n1 ∈ G.edge

The recursion always terminates as there is only finite number of scope nodes,
and there is no $-loop. The function trace(G, e) is defined as

trace(G, w) =̂ search(G, G.root , w)
trace(G, e.a) =̂ trace(G, e).a

trace(G, (C)e) =̂ trace(G, e)

For the example graph G0 in Fig. 3, trace(G0, x) = x and trace(G0, y) = $.y.
From now on, when there is only one state graph, we omit the argument G in
the graph operations that we have defined.

The evaluation and the runtime type of an expression e in G are determined
inductively as follows.

1. If e is a constant value l of type T , then eval (e) = l and rtype(e) = T ,
2. If e is a variable x or self , e can be evaluated in G only when trace(e) exists

in G. Let n = target(trace(e)). If n is an object node, eval(e) = n and
rtype(e) = G.type(n), otherwise eval (e) = G.value(n) and rtype(e) is the
type of eval (e).

3. If e is of the form e′.a, e can be evaluated in G only when trace(e) exists
in G. Let n = target(trace(e)). If n is an object node, eval(e) = n and
rtype(e) = G.type(n), otherwise eval (e) = G.value(n) and rtype(e) is the
type of eval (e).
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(Assign) 〈le := e,G〉 → swing(G, trace(le), eval(e))

(New) 〈C.new (le), G〉 → new(G, C, trace(le)) (End) 〈end x,G〉 → pop(G)

(Dcl-I) 〈var T x = e, G〉 → push(G, x, eval(e)) (Dcl) 〈var T x, G〉 → add(push(G, x, init(T ))

(Enter)
〈enter (C, S, T, x, y, e, ve , re) , G〉 → push(G, self · x · y · y∗, eval(e) · eval(ve) · init(T ) · po(G, re))

(Leave) 〈leave (y, re) , G〉 → pop(swing(G, spo(G, y∗, re), eval(y)))

(Invk)
rtype(e) = C mtype(C,m) = (S; T ) mbody(C,m) = (x; y; c)

〈e.m(ve; re), G〉 → 〈enter (C, S, T, x, y, e, ve, re) ; c; leave (y, re) , G〉

Fig. 6. Operational semantics for commands in rCOS

4. If e is a type cast (C)e′, then eval(e) = eval(e′) and rtype(e) = rtype(e′),
provided rtype(e′)	C.

5. If e is of the form f(e′), eval(e) = f(eval(e′)) and rtype(e) is the type of
eval (e).

4.2 Semantic Rules

We define a small step semantics for our language by giving the transition rela-
tion between configurations. There are two kinds of configurations:

– a non-terminated configuration is a pair 〈c, G〉, where c is a command and
G is a state;

– a terminated configuration is a state G, representing the completion of the
execution of a command.

Fig. 6 gives only the semantic rules that are relevant to the object-oriented
features. The rules of sequential composition, conditional choice and iteration
are defined in [24] in the standard way in which an operational semantics for an
imperative language is defined.

The semantics of assignment, object creation, local scope declaration and
un-declaration are defined by simple graph operations. The assignment le := e
swings the trace of le to the value of e, and C.new (le) creates a new initial
instance of class C and swings the trace of le to the new instance. A local
variable declaration var T x [= e] adds the variable x to a new scope by pushing
it onto the stack of the state; while end x pops the root out of the state. We
use init(T ) to denote the initial value (or “zero” value) of type T . For example,
init(Int) = 0, init(Bool ) = false and init(C) = null for any class type C. An
uninitialized variable will be set to the initial value of its declared type.

The semantics of method invocations deserves some more explanation because
of the dynamic binding and early binding of return parameters. Intuitively, the
method invocation e.m(ve, re) first records the value of the actual value param-
eter ve in the formal value parameter of m, and then executes the body c of



358 W. Ke et al.

m. At the end it returns the value of the formal return parameter to the actual
return parameter re. However, the precise definition is more complex because of
the following issues.

Method look-up. First, dynamic binding of the method to the runtime type of
e requires the look-up for the signature mtype(C, m) = (S; T ) and the definition
mbody(C, m) = (x; y; c) of m. This is handled in Rule (Invk).

Enter to set execution environment. Then, the parent object of actual
result parameter re in the initial state should be recorded before it is possibly
changed by the body command of the method. This is the “early result parameter
binding” semantics. In addition to have self for recording e, the formal value
parameter x for holding the actual value parameter ve and the formal return
parameter y being the initial value of T , we need an auxiliary variable y∗, which
corresponds to the formal return parameter y and does not occur in the program,
to record the parent object of re in the initial state. Therefore, we introduce an
implementation command enter (C, S, T, x, y, e, ve, re) whose semantics is defined
by Rule (Enter), which sets a new scope with variables self , x, y and y∗ which
are respectively initialized properly according to the above discussion. Function
po(G, re) returns the parent object of re in G which is going to be recorded
by y∗.

po(G, re) =̂

{
eval (G, e) if re = e.a

⊥ otherwise

Return result. When the execution is leaving the body of m, if re is of the
form e.a, the attribute a of the old parent object of re must be swung to
the value of the formal result parameter y. For this, we recover the trace by
the function

spo(G, y∗, re) =̂

{
y∗.a if re = e.a

$.trace(pop(G), x) if re = x

The return of the method invocation is carried out by the implementation com-
mand leave (y, re) whose semantics is in Rule (Leave) defined by the swing and
pop operations.

Note that the use of these implementation commands instead of the direct use
of commands var S x = ve; var T y and re := y; end y; end x is to avoid possible
name conflicts between actual parameters ve, re and formal parameters x, y used
as local variables in the method body. Instead of implementation commands,
literal values of the form Val v are used in [25], which actually model addresses
of variables.

For the type safety of the semantics, we expect to prove that a type-correct
command can be well executed, but there are the following cases of exceptions.

– Exception 1 (null reference): the evaluation of an expression e.a or the
execution of a command e.m(ve, re) fails, if e is evaluated to null .

– Exception 2 (illegal downcast): the evaluation of an expression (C)e
fails, if the runtime type of e is not a subtype of C.
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These two cases of exceptions cannot be checked and avoided statically. However,
if none of them happens, the execution of a type-correct command will not get
blocked, i.e. it never enters a configuration which is non-terminated but unable
to run according to any semantic rule.

Theorem 1 (Type safety of commands). For a non-terminated configura-
tion 〈c, G〉, if c is type-correct, then

– either there exists a state G′ such that 〈c, G〉 → G′,
– or there exists a configuration 〈c′, G′〉 such that c′ is type-correct and 〈c, G〉

→ 〈c′, G′〉,

unless one of the exception cases happens.

The strict definition of type-correctness and the proof of this theorem are given
in our technical report [24].

Execution of programs. The semantics of a program is to execute the main
command under the initial state graph, whose root records the external variables
referring to their initial values. For example, the initial configuration of the
program cdecls • (T1 x1 = l1, · · · , Tk xk = lk; c) is 〈c, Ginit〉, where

Ginit = 〈{r, n1, · · · , nk}, {r
xi−→ ni | 1 ≤ i ≤ k}, ∅, {ni �→ li | 1 ≤ i ≤ k}, r〉.

As a direct deduction of Theorem 1, the execution of a well-typed program will
not get blocked. And if it terminates, the final state is also a stable one.

Theorem 2 (Type safety of programs). For a well-typed program prog =
Γ • (T1 x1 = l1, · · · , Tk xk = lk; c),

– either there exists a stable state Gend such that 〈c, Ginit〉 → Gend,
– or there exists a configuration 〈c′, G′〉 such that c′ is type-correct and 〈c, Ginit〉

→ 〈c′, G′〉,

unless one of the exception cases happens.

5 Implementation

We use Java as the implementation language, and antlr as the parser generator,
because of its Java origin and powerful grammar specification language. The
implementation consists of

1. a parser (pa), which translates programs into class graphs and commands;
2. a type checker (tc), which checks class graphs and commands following the

well-typedness rules and definitions;
3. a transformer (tr), which transforms state graphs by applying the main

command to an initial graph, in small steps, following the semantic rules;
4. an observer (ob), which intercepts, layouts and exports intermediate graphs

to descriptions in the pgf/tikz language to be incorporated into TEX
documents.
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Γ, (ext , c) := pa program tc (Γ, ext) as ∆init, c,Γ 〈c,G〉 := 〈c, ext as Ginit〉

Gend := G 〈c,G〉 := tr Γ, 〈c,G〉 ob G
c = null

Fig. 7. Flowchart of program processing

Fig. 7 shows the overall flow of how a program is processed, where ∆, Γ and G
stand for type context, class and state graphs, respectively. The Kamada-Kawai
algorithm [22] is used in our implementation to auto-layout state graphs, and
the results appear to be reasonably pleasing.

Graph representation. Class graphs and state graphs forbid a node having
outgoing edges with duplicated labels. This enables us to store the nodes N ⊆ N
and the edges E ⊆ N × A × N of a graph G in a mapping S : N → A → N .
With such a representation, it is efficient to retrieve the target from a source
and a label, and all the outgoing edges from a source. Leaf nodes are also stored
as sources mapped to nothing in the mapping for membership tests. We have
N = domS, label(out(n)) = domS(n) and target(n, a) = S(n)(a), where n is a
node and a is a label.

Nodes are implemented as a Java interface Node, and they are identified by
instance identities of the objects, such as type names and constant values, im-
plementing the interface. These objects can thus be treated as nodes directly.

The Java API uses two kinds of equality: reference equality (==) and content
equality (equals). According to their natures, nodes are identified by references,
while names, values and labels are identified by contents. Since each name or
value instance stored in a graph is also a node, we introduce an additional
mapping to look up its identity (if exists in the graph) from its content. This
resembles the intern method of class String in the Java API, which ensures
that there is only one string object for each string value in use. Ordered contents
can be stored as keys in class TreeMap, while unordered object identities have
to be used as hash values and stored in class HashMap.

Graph transformation and optimization. State graphs are immutable in
our implementation, which allows intermediate graphs to be retrieved. Every
transformation of a graph returns a new graph. Identical nodes and labels in
different graphs may refer to the same representation objects, while each graph
keeps its own mappings of the elements, reducing the cost of new graph creations.

A garbage collection operation (gc) is performed after each step of execution
to get rid of those inaccessible elements, and the operation is effectively done
by a depth first search (dfs) on the graph. Primitive graph operations are first
performed on a temporary graph, that we call the increment graph, and their
grand effect is added upon the base graph with only one dfs . The relations in
the increment graph override those in the base graph. There is no need for a
decrement graph, since the only operation that may remove elements is the gc.
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Fig. 8. Examples of auto-generated state graphs

A new graph is constructed while performing the dfs by adding visited entries
to the mappings representing the new graph. We never remove entries from the
mappings, allowing us to implement our curried mappings using Maps of Maps,
where removals of entries may cause a domino effect.

Examples. Two examples in Fig. 8 illustrate the graph system. Fig. 8(1) is
an instance of the bridge pattern, and Fig. 8(2) illustrates the capture of par-
ent objects of actual result parameters. They are generated by the auto-layout
algorithm.

In Fig. 8(1), there is an explicit pointer in each abstraction object pointing
to its implementor object. It is hard to see subclass relations in state graphs,
since attribute origins are merged along the inheritance path when objects are
instantiated. Q is a subclass of P , and they are abstractions; J is a subclass of I,
and they are implementors. We also see the relation between formal and actual
parameters, for the graph is obtained within a method invocation.

In Fig. 8(2), the result parameter r will be bound to an attribute c1.ca upon
the method return. We record the parent object c1 using an edge with auxiliary
label r∗ to avoid losing it, in the case of c1 being pointed to somewhere else
during the method invocation.

6 Properties of OO Programs

A main motivation of the semantics is that we wish to help in reasoning about
oo programs. It is then crucial that properties can be clearly, easily and precisely
thought about, described and understood. The advantage of our model in this
aspect comes from intuitiveness and theoretical maturity of graphs. As shown
in [20], many important properties of oo programs can easily be interpreted as
assertions of state graphs. Simple but useful assertions include acyclic nodes,
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acyclic graphs, sink (or leaf) nodes, and reachability (credibility) of one node
from another. In this section we show how within our semantics, properties of
programs can be described without explicitly referring to locations.

6.1 Object Aliasing and Confinement

In an oo program, an accessible object is referred to by a navigation expression
(or path) which is evaluated as a trace in our model. In a state, a navigation
path e can represent an object that can further extend to e.a for any attribute a
of the object or a sink node (or called leaf). It is a leaf, denoted by leaf (e), when
in the state, e is an object whose attributes are not defined (i.e. e.a is evaluated
to ⊥ for all attributes a of the object), an object whose class does not declare
any attribute, a null object, or a constant value of a data type.

Two paths are aliasing, denoted by e1 ≈ e2, if their traces target at the same
node. This is obviously an equivalence relation, and thus aliasing expressions share
many properties. For example, they can reach the same objects, and they reach any
of these objects through the same paths. Formally, let p be a sequence of attribute
names, e1〈p〉e2 means that the object referred to by e2 can be reached from the
object referred to by e1 via p. We have e ≈ e1 ∧ e1〈p〉e2 ⇒ e〈p〉e2. We can use
e1

+−→ e2 to denote that e2 is reachable from e1 through a non-empty path, and
e1

∗−→ e2 is defined as (e1 ≈ e2)∨ (e1
+−→ e2). Notice that aliasing is also a cause of

cycles in a state. Formally, e is cyclic, denoted by cyc(e), if it can reach itself via
a non-empty path, i.e. e

+−→ e. We use acyc(e) to denote that e is acyclic.
There are more subtle and interesting graph properties, such as dominance of

one node by another. Node n1 dominates node n2, denoted by n1 dominates n2,
if every trace to n2 passes through n1. It holds for G iff

n2 /∈ delete(G, {n1})•.node.

where delete(G,ns) removes from G the nodes ns and all their associated edges.
We can use these properties to define language mechanisms for managing

aliasing and encapsulation of heap-allocated objects. Ownership [11,10] is one of
them, and it provides a notion of object-level encapsulation. Each object has an
owner, and it can only be accessed through its owner, i.e. it is dominated by its
owner. With predicates of navigation paths, this relation can be represented as
e1 owns e2, asserting that the object that e1 refers to owns the object that e2
refers to, if the node of e1 dominates the node of e2.

Similarly, an edge d is the bridge for a node n, denoted by d bridges n, if
every trace to n goes through d. It holds for G iff

n /∈ G[(E \ {d})/E]•.node

Given two navigation paths e1 and e2, we can then define the relation bridges,
such that e1 bridges e2 if the last edge of e1 is the bridge for the node of e2.
The property of unique or aliasing free references [27,5] can then be specified:
a variable or field annotated by the keyword uniq is a null object or the only



A Graph-Based Operational Semantics of OO Programs 363

name to refer the object. We define uniq e to denote that e is either null or the
unique trace to its target object.

uniq e =̂ e = null ∨ ∀e′ � e • e′ bridges e

where e′ � e denotes that e′ is a (non-empty) prefix of e.

6.2 Separation of Graphs

Given a connected state graph G, let G.store be the subgraph, called the store
of G, which contains the nodes on the $-path of G and their outgoing edges. The
subgraph obtained from G by removing the edges of the store (and the nodes
becoming isolated because of the removal of these edges) is called the heap of
G, denoted by G.heap. Note that G = G.store ∪ G.heap, and G.store.edge ∩
G.heap.edge = ∅.

The separation logic [32,29] can be interpreted in our model. A state G is a
separating composition of two graphs G1 and G2, denoted by G = G1 ∗ G2, if
G = G1 ∪ G2, G1.store = G2.store and G1.heap.edge ∩ G2.heap.edge = ∅. The
separating conjunction p ∗ q, asserting that the heap graph can be split into two
object graphs for which p and q hold respectively, is defined as

�p ∗ q� G =̂ ∃G1, G2 • G = G1 ∗ G2 ∧ �p�G1 ∧ �q�G2.

For example, assume that q is an invariant of a class C. To ensure that a method
(possibly overriding a method of C) of an object of a subclass D of C preserves
this invariant, the assertion {q ∗ true}mbody(D, m){q ∗ true} is checked. Notice
that q only mentions fields of C, and the separation is to divide the state of the
object into the attributes inherited from C and those newly declared in D.

Chen and Sanders [9] propose a pointer logic based on a mixed model of
graphs and functions, which extends separation logic with more flexible relational
compositions. Our graphs are simpler, but can also define those compositional
relations such as the relation G1 access G2, which asserts that there is a node
(object) of G1 that can access a node of G2.

Hoare and O’Hearn [21] propose a unification of the ideas of separation in
CSP and Concurrent Separation Logic [7]. We can also write properties by the
idea of trace separation since traces and nodes are unified in our model .

7 Conclusions

Different semantic models provide different ways of thinking about the programs
they define. Compared to other semantic models in the large body of literature,
the simple graph model of this paper provides, in our opinion, more clarity on the
oo features, including inheritance, type casting, dynamic binding, aliasing, local
variable (un-)declaration, and early binding of result parameters in method invo-
cations. Furthermore, the discussion on possible applications in Section 6 shows
that this model is simple enough and helps in formulating clear assertions about



364 W. Ke et al.

executions of programs. It is also rich enough for defining more sophisticated
language mechanisms, such as ownership and confinement, and a powerful logic
to describe and prove important properties of programs.

The semantics is location independent and thus more abstract compared to
most existing operational semantic definitions. We believe that a trace model
similar to the one of Hoare and He [20] can be defined for our language and
proved fully abstract w.r.t. the operational semantics given in this paper.

In an UTP approach, Harwood, Cavalcanti, and Woodcock use “path groups”
to represent aliasing sets and defined a relation semantics for oo programs with-
out explicit reference to memories [17]. Predicate-transformer models of object
orientation have been considered by Naumann [28] and Cavalcanti and Nau-
mann [8] and have been progressively developed by Sampaio and Borba et al.
[3,4]. We believe that the structural properties of the state graphs and the simple
operations on them would leverage the understanding of these theories too.

Another advantage of our approach, and of graph-based approach in general
[23], is that it allows us to use a single mathematical structure, for the static
class structure (class graph), the runtime state (state graph), and the flow of
control (transition graph), of the program.

There is a large community working on graph-based approaches to software
design, known as the area of graph transformations [33,13,14,16,36,2]. However,
the major focus in this area is software architecture design and reconfiguration,
and thus graphs are required to have hierarchies and hyper-edges. The graph
transformation systems there are mostly developed within a heavy use of the-
ories of algebras and categories, which most computer scientists and software
engineers find difficult to comprehend. There is, however, some work on defining
programming languages, including execution semantics, by graph transformation
systems (e.g. [23,12]). However, it heavily uses the Rich Abstract Syntax Graph
(R-ASG) to gain the power of unification of context information and formal syn-
tactical transformations from programs to graphs. It leaves the formal semantics
of R-ASG undefined. Therefore, while the simulation of a program is nicely sup-
ported by a tool, it is not clear how assertions of executions can be formulated
and reasoned about. The community of functional programming also applies
graph rewriting systems to definitions of functional languages, e.g. [35,34].

Future work. We plan to develop a graph-based assertional logic for static
analysis of oo programs, and then investigate its application in automated tech-
niques of verification and analysis. We will define a fully abstract semantics
for rCOS, which is now used for component-based model driven development
[26]. Further, we plan to extend the work to define an operational semantics of
multi-threaded programs for their verification and analysis.
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Abstract. Thread pools are often used as a pattern to increase the
throughput and responsiveness of software systems. Implementations
of thread pools may differ considerably from each other, which urges
the need to analyze these differences in a formal manner. We use an
object-oriented paradigm to model different thread pools in the context
of the ASK system, an industrial communication platform. We use be-
havioral interfaces, high-level behavioral specifications for the objects, as
a starting-point for analysis. Based on these behavioral interfaces, func-
tional aspects are modeled in Creol, a high-level modeling language for
concurrent objects. We use Uppaal to create real-time models and to
perform schedulability analysis with respect to the behavioral interfaces.
We finally check conformance between the real-time and Creol models
using test-cases generated from the behavioral interfaces.

1 Introduction

Thread pools are an important design pattern used frequently in industrial prac-
tice to increase the throughput and responsiveness of software systems, as for
instance in the ASK system [4]. The ASK system is an industrial communica-
tion platform providing mechanisms for matching users requiring information
or services with potential suppliers. A thread pool administrates a collection
of computation units referred to as threads and assigns tasks to them. This
administration includes dynamic creation or removal of such units, as well as
scheduling the tasks based on a given strategy like ‘first come first served’ or
priority based scheduling.

In this paper, we propose the use of the Credo tool suite in order to capture
the various aspects of thread pools and provide a general framework for their
analysis. The Credo tool suite offers a methodology for the top-down design
and compositional analysis of dynamically reconfigurable systems of concurrent
objects [11]. We tailor Credo methodology to model and analyze the thread

� This work has been supported by the EU-project IST-33826 Credo: Modeling and
analysis of evolutionary structures for distributed services.

K. Breitman and A. Cavalcanti (Eds.): ICFEM 2009, LNCS 5885, pp. 367–386, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



368 F.S. de Boer et al.

pools in ASK. The core of this methodology consists of two different executable
modeling languages:

Creol [13] is a high-level object-oriented modeling language for describing the
interactions between concurrent objects. Creol focuses on modeling the data
and control flow thus reflecting the architectural issues of the implementation
at a high level of abstraction. It abstracts from scheduling issues.

Timed Automata [3] are used to model scheduling policies as well as the be-
havioral interfaces of objects which describe the timings of incoming mes-
sages and their deadlines. At this level, we abstract from architectural details
of the model and focus on schedulability analysis (no deadline miss).

After modeling in Creol and analyzing schedulability with timed automata, we
need to establish the conformance between the two models. This is achieved
by testing. Test cases are generated from behavioral interface specifications. As
observed, the behavioral interfaces are central to the analyses in Credo.

Modeling the Architecture. The ASK system has been developed and evolved
over years; different subsystems of ASK use specialized thread pools to address
issues like the size of the pool, dynamic creation of threads, load balancing, etc.
The implementation of ASK contains thousands of lines of C code, that are
difficult to understand and analyze. In this paper, we provide a high-level Creol
model that is only tens of lines of Creol code with less distracting implementation
details, and is thus more amenable to analysis.

The intended use of the Creol modeling language is to provide a formal object-
oriented solution to modeling distributed software systems [13,8]. The Creol
modeling language is implemented by means of an interpreter given in Maude [5]
and supported by an Eclipse modeling and analysis environment (developed in
the Credo project [7]) which includes a compiler and type-checker, a simulation
platform that allows both closed world and open world simulation as well as
guided simulation, and a graphic display of the simulations.

In Creol, objects are concurrent, i.e., conceptually, each object encapsulates
its own processor. Therefore, each object has a single thread of execution. Creol
objects communicate by asynchronous message passing. The message queue is
implicit in the objects. Furthermore, the scheduling policy is underspecified, i.e.,
messages in the queue are processed in a nondeterministic order. The running
method can voluntarily release the processor using special commands allowing
another message to be scheduled. For example, a method can test whether an
asynchronous call has been completed, and if not, release the processor; thus
modeling synchronous calls.

The abstraction from the internal message queue of each object and the related
scheduling policies is one of the most important characteristics of Creol which
allows for abstractly modeling a variety of thread pools. In this paper, we give
an example of an abstract model in Creol of a basic pool where the threads share
the task queue. The shared task queue is naturally represented implicitly inside
a Creol object (called a resource-pool) that basically forwards the queued tasks
to its associated threads also represented as Creol objects (called monks).



Modeling and Analysis of Thread-Pools 369

Analyzing Schedulability. We perform schedulability analysis on the automata
models of thread pools; this verifies whether tasks are performed within their
deadlines. In the context of the ASK system, schedulability ensures that the
response times for service requests are always bounded by the deadlines. We use
Uppaal [16] for this purpose. To analyze the schedulability of thread pools, their
behavioral interfaces are modeled with timed automata. A behavioral interface
describes the (expected) arrival times and the deadlines of the tasks; namely, the
workload on the thread pool. A given scheduling policy, e.g., earliest deadline
first (EDF), is also specified with timed automata. This determines where to
insert a newly generated task in the message queue of the resource-pool object.
The tasks correspond to the monks in the Creol model.

We provide two approaches to schedulability analysis of thread pools. Once
the threads are assumed to run in parallel. This is in line with the assumption
in Creol that monk objects, representing the threads, have dedicated processors.
Next, we model a situation in which all threads share the same processor. In this
case, we model a time-sharing CPU allocation scheme to the concurrent threads.
To this end, we use one extra clock for each thread to compute the idle times
when it is preempted.

Finally, we test conformance between the timed automata models and the
underlying Creol models by generating test cases from the behavioral interfaces.
We use the test cases to drive the execution of the Creol model extended with
an abstract implementation of the given scheduling policy on the simulation
platform.

Related Work. The schedulability analysis in this paper can be seen as the
continuation of our previous work [12] on modular analysis of a single-threaded
concurrent object with respect to its behavioral interface. In this paper, we ex-
tend the schedulability analysis to the case of a multi-threaded scheduler (rep-
resenting an object-oriented thread pool).

Schedulability has been studied for actor languages [18] and event driven dis-
tributed systems [10]. Unlike these works, we work with non-uniformly recurring
tasks as in task automata [9] which fits better to the nature of message passing
in object-oriented languages. The main difference is that in our work, multiple
objects share the same task queue. These objects are once modeled as using the
same processor, therefore scheduled using a time-sharing policy; next we model
them as using independent processors, therefore each object runs in parallel to
the others.

The work of [6,15] is based on extracting automata from code for schedula-
bility analysis. However, they deal with programming languages and timings are
usually obtained by profiling the real system. Our work is applied on high-level
model. Therefore, our main focus is on studying different scheduling policies
and design decisions. Credo offers techniques for testing conformance with the
C code [1], which is not covered in this paper.

Outline. In section 2 we give a short introduction to timed automata and the
Creol language. The current implementation of the ASK system is explained
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in section 3. We model the different features and the scheduling of selected
thread pools of the ASK system in section 4. Schedulability analysis and testing
of conformance between the Creol model of a thread-pool and its behavioral
interface is discussed in section 5. We conclude with section 6.

2 Preliminaries

2.1 Timed Automata

In this section, we define timed automata. We use timed automata to specify
behavioral interfaces and perform schedulability analysis.

Definition 1 (Timed Automata). Suppose B(C) is the set of all clock con-
straints on the set of clocks C. A timed automaton over actions Σ and clocks C
is a tuple 〈L, l0,−→, I〉 representing

– a finite set of locations L (including an initial location l0);
– the set of edges −→⊆ L× B(C) ×Σ × 2C × L; and,
– a function I : L �→ B(C) assigning an invariant to each location.

An edge (l, g, a, r, l′) implies that action ‘a’ may change the location l to l′ by
resetting the clocks in r, if the clock constraints in g (as well as the invariant of
l′) hold. Since we use Uppaal [16], we allow defining variables of type boolean
and bounded integers. Variables can appear in guards and updates.

A timed automaton is called deterministic if and only if for each a ∈ Σ, if
there are two edges (l, g, a, r, l′) and (l, g′, a, r′, l′′) from l labeled by the same
action a then the guards g and g′ are disjoint (i.e., g ∧ g′ is unsatisfiable).

Networks of timed automata. A system may be described as a collection of timed
automata communicating with each other. In these automata, the action set is
partitioned into input, output and internal actions. The behavior of the system
is defined as the parallel composition of those automata A1 ‖ · · · ‖ An. Semanti-
cally, the system can delay if all automata can delay and can perform an action if
one of the automata can perform an internal action or if two automata can syn-
chronize on complementary actions (inputs and outputs are complementary). In
a network of timed automata, variables can be defined locally for one automaton,
globally (shared between all automata), or as parameters to the automata.

A location can be marked urgent in an automaton to indicate that the au-
tomaton cannot spend any time in that location. This is equivalent to resetting
a fresh clock x in all of its incoming edges and adding an invariant x ≤ 0 to
the location. In a network of timed automata, the enabled transitions from an
urgent location may be interleaved with the enabled transitions from other au-
tomata (while time is frozen). Like urgent locations, committed locations freeze
time; furthermore, if any process is in a committed location, the next step must
involve an edge from one of the committed locations.
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IF ::= interface N{(Par)}?{inherits Inh}?

begin {with N Msig+}? end
Inh ::= {N {(E)}?}+

,

Par ::= {{v}+
, : N }+

,

Msig ::= op N{({in Par}? {out Par}?)}?

CL ::= class N{(Par)}?

{contracts Inh}? {inherits Inh}?

begin Vdcl?{{with N }? Mtd}∗ end
Vdcl ::= var {{v}+

, : N {= e}?}+
,

Mtd ::= {Msig == {Vdcl ; }? S}+

g ::= b | t? | ¬g | g ∧ g
p ::= x.m | m
S ::= ε | s; S
s ::= (S) | V := E | skip

| v := new N(E) | !p(E)
| t!p(E) | t?(V ) | p(E;V )
| if b then S else S end
| await g | await t?(V )
| await p(E;V ) | release

Fig. 1. BNF grammar for Creol. Curly brackets are used as meta parenthesis, super-
script ? for optional parts, superscript * for repetition zero or more times, whereas
{...}+

, denotes repetition one or more times with , as delimiter. Identifiers N denote
interface, class, type, or method names. Capitalized terms such as E, V , and S, denote
lists of the syntactic categories of the corresponding lower-case terms [13,14].

2.2 Creol

The (simplified) syntax of Creol is given in Fig. 1. Here we introduce the basic
concepts of Creol. A comprehensive presentation of the formal semantics of Creol
(given in rewrite logic, see [13]) is beyond the scope of this paper.

Creol objects are typed by interfaces, whereas classes can implement (indi-
cated by the keyword contracts) as many interfaces as necessary. Co-interfaces
are used to restrict possible callers, i.e., if a co-interface is specified only ob-
jects implementing the co-interface are allowed to call methods in the scope of
the interface. A co-interface is specified by the keyword with. The combination
of interfaces as types and co-interfaces enforces type-safe communication. Creol
provides the keyword this to refer to the actual object and the keyword caller to
refer to a caller of a method. In Creol concurrent objects communicate via asyn-
chronous method calls. After sending an asynchronous method call, e.g. t!p(E)
where t denotes a future to retrieve the value later and p(E) the method call,
the process continues execution. The return value of a method call is retrieved
via a get operation on the future, e.g. t?(V ) where t denotes the future and V
the variables to store the result in. Note that get is a blocking operation, i.e. the
process blocks until the return value of the method call is computed. A process
can also test a method call for termination, e.g. await t?(V ). In case the future
has been calculated the statement is equivalent to t?(V ). In case the future has
not yet been calculated the statement releases control over the processor. We
use p(E;V ) as a shorthand for t!p(E); t?(V ) and await p(E;V ) as a shorthand
for t!p(E);await t?(V ).

Each object in Creol, upon creation, starts its active behavior by executing
its run operation if defined. When receiving a method call a new process is
created inside the object to handle the method call. The processes inside an
object are interleaved by means of processor release points. A processor release
point is reached if a process terminates or reaches a special condition. The await

keyword opens such a condition. If the condition is false, the processor is released;
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1 interface Simple begin

2 with Simple op cal lMe
3 with Any op re sponse
4 end

6 class Easy contracts Simple begin

7 op run == await this . cal lMe ( )
8 with Simple op cal lMe == ! cal ler . r e sponse ( )
9 with Any op re sponse == skip

10 end

Fig. 2. A simple Creol model

otherwise, the process continues. The conditions can also query method calls for
termination, e.g. await t?(V ). A process which has not yet started its execution
or which is waiting on a condition, that is true, is called enabled. Upon processor
release, an enabled process is (nondeterministically) chosen to start or continue
its execution.

Creol is backed by its formal operational semantics and its strong typing
allows for dynamic class upgrades [19]. Since Creol semantics is given in rewrite
logic [17], Creol specifications can be executed and analyzed on the Maude [5]
platform. Maude is a rewrite engine that offers analyses like simulation, model
checking, etc., on transition systems specified using rewrite logic.

Fig. 2 shows a simple Creol model. The Simple interface defines a callMe op-
eration that can be called only by instances of type Simple, while the response
operation does not require any special co-interface. The run method in a class
defines its active behavior; thus the class Easy starts with calling its own callMe
operation. It waits until the call to callMe has terminated.

3 ASK System

ASK is an industrial software system for connecting people to each other. The
system uses intelligent matching functionality in order to find effective connec-
tions between requesters and responders in a community. ASK has been devel-
oped by Almende [2], a Dutch research company focusing on the application
of self-organisation techniques in human organisations and agent-oriented soft-
ware systems. The system is marketed by ASK Community Systems [4]. ASK
provides mechanisms for matching users requiring information or services with
potential suppliers. Based on information about earlier established contacts and
feedback of users, the system learns to bring people into contact with each other
in the most effective way. Typical applications for ASK are workforce planning,
customer service, knowledge sharing, social care and emergency response. Cus-
tomers of ASK include the European mail distribution company TNT Post,
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the cooperative financial services provider Rabobank and the world’s largest
pharmaceutical company Pfizer. The amount of people using a single ASK con-
figuration varies from several hundreds to several thousands.

An Overview of the ASK System

The primary goal of the ASK system is to connect people to other people in the
most effective way. The system acts as a mediator in establishing the contacts:
people can contact the system via various media like telephone or email, and the
system itself is also able to contact people via those media. In determining the
effectiveness of contact establishment, multiple aspects play a role. For example,
the rating of human knowledge and skills is important in cases where people
request contact with specialists or service providers. In these cases, the ASK
system is able to ask participants for feedback on the quality of service after the
contact. This feedback can be used for optimization of subsequent requests of
the same kind. A different role is played by time schedules, which indicate when
certain people can be reached for certain purposes. The ASK system differenti-
ates between regular plannings and ad-hoc schedules caused by sudden events
or delays. Different communication media play another role. In most ASK con-
figurations, voice communication (phone, VoIP) is the primary communication
medium used, but different media like email and SMS are supported by ASK as
well. Moreover, people can own various phone numbers and email addresses, for
which they can indicate preferences and time or service dependent usage con-
straints. The ASK system is able to exploit knowledge about the reachability
of people via specific media, for example in the context of emergency response
systems, where people must be contacted within a certain time window. In gen-
eral, learning from past experiences of all kinds and forecasting based on these
experiences plays a crucial role in ASK.

The software of ASK can be technically divided into three parts: the web
front-end, the database and the contact engine (see Figure 3). The web front-
end acts as a configuration dashboard, via which typical domain data like users,
groups, phone numbers, mail addresses, interactive voice response menus, ser-
vices and scheduled jobs can be created, edited and deleted. This data is stored
in a database, one for each configuration of ASK. The feedback of users and
the knowledge derived from earlier established contacts are also stored in this
database. Finally, the contact engine consists of a quintuple of components Re-
ception, Matcher, Executer, Resource Manager and Scheduler, which handle in-
bound and outbound communication with the system and provide the intelligent
matching and scheduling functionality.

The “heartbeat” of the contact engine is the Request loop, indicated with thick
arrows. Requests loop through the system until they are fully completed. The
Reception component determines which steps must be taken by ASK in order
to fulfil (part of) a request. The Matcher component searches for appropriate
participants for a request. The Executer component determines the best way
in which the participants can be connected. ASK clearly separates the medium
and resource independent request loop from the level of media-specific resources
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Fig. 3. ASK System Overview

needed for fulfilling the request, called connectoids (e.g., a connected phone line, a
sound file being played, an email being written, an SMS message to be sent). The
Resource Manager component acts as a bridge between these two levels. Finally,
a separate Scheduler component schedules requests based on job descriptions in
the database.

Thread-Pools in ASK

Each component in the ASK system is equipped with a thread-pool called an
abbey. The threads within the pool are called monks. Two types of abbeys are
currently in use, although many more have been created in the past at Almende:
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– The so-called Determinate Abbey (Dabbey) uses a fixed amount of monks,
which get their tasks from a task array with an amount of “slots” equal to
the number of monks. The operation of putting a task in an empty slot of
the task array blocks if no empty slot is available.

– Another type of abbey is the Self-scaling Abbey (Sabbey). This abbey uses
an infinite task queue and a variable amount of monks. Monks are created
and “poisoned” at run-time by a special monk called the shepherd, which
does so by keeping track of the ratio between the amount of tasks to be
handled and the amount of available monks.

4 Modeling

4.1 Object-Oriented Modeling

In this section, we introduce the “low-level” Creol model of the Determinate
Abbey in order to illustrate the need for abstraction. The low-level model covers
all implementation-level details like locks on global variables, explicit tasks and
explicit task queues, etc.

In the Determinate Abbey, tasks and monks are kept in lists of fixed size, and
tasks are implemented (cf. Appendix A). The Dabbey class contains two class
variables DabbeyTaskList and DabbeyMonkList to store the tasks-to-be-executed
and the monks. In the more abstract model, we represent the task queue by the
message queue of an object and we abstract from the explicit list of monks.

In the low-level model, an array of tasks is represented by a list, called states .
An element of the list models a slot for a task resp. the status of the task assigned
to the slot:

– ‘‘ READY” denotes an empty spot for a task.
– ‘‘ CREATING” denotes a task in creation.
– ‘‘ OPEN” denotes a task ready for execution.
– ‘‘ BUSY” denotes a task that is executed.

We use two functions operating on the list:

– index( list , status) returns the index of an element with the given status.
– replace( list , status ,index) sets the status of the element at the given index.

A pair of counters keeps track of the number of free spots in the array,
readyCounter, and the task waiting for execution, openCounter. The methods te-
stAndSetCreating, testAndSetBusy, setTaskOpen, setTaskReady and setTask use
the replace function to model the different phases of the execution of a task.
In this manner, we realize an explicit representation of an array in terms of a
simple list. For the analysis of the thread-pool, the fact that we use an array
is an implementation detail and irrelevant to the analysis. Creol methods are
executed mutually exclusive so the methods testAndSetCreating and testAnd-
SetBusy in fact model “test-and-set” operations. Overall we model a lock on the
array providing us with mutually exclusive access and ensuring consistency of
the list and the task handling.
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1 class Monk(myPool : ResourcePool ) contracts Monk begin

2 op run == ! myPool . r eque s t ( )
3 with ResourcePool op task == skip ; run ( ; )
4 end

5 class ResourcePool ( nofMonks : Int ) contracts ResourcePool
6 begin

7 var freeMonks : Set [Monk ] ;
8 op i n i t == var monk : Monk ; var n : Int := nofMonks ;
9 freeMonks := {} ;

10 while (n>0) do monk:=new Monk( this ) ; n:=n−1 end

11 op chooseMonk (out monk :Monk) == await ˜ isempty ( freeMonks ) ;
12 monk := choose ( freeMonks ) ;
13 freeMonks := remove ( freeMonks ,monk)
14 op task == var monk : Monk ; chooseMonk ( ; monk ) ; !monk . task ( )
15 with Monk op r eque s t == freeMonks := add ( freeMonks , cal ler )
16 with Outside op addTask == ! task ( )
17 end

Fig. 4. The high-level Minimal Abbey

The low-level model of the Self-scaling Abbey is even more complex. Tasks
and Monks are kept in queues, while a triplet of counters is used to count the
number of tasks, monks and busy monks. Creation and deletion of monks is done
by a “shepherd” monk. Monks are killed by letting them execute a “poison” task,
which causes the monk to terminate. In Appendix C, the looping shepherd task
is shown. Once this task is executed by a monk, that monk acts as the shepherd
in the abbey. Note in particular the large amount of class parameters, which are
needed inside the task to manage the amount of monks in the monk queue. In
fact, the dynamicity of the amount of monks, which is in itself an important
property of the Self-scaling Abbey, can be modeled in a more abstract manner.
The focus should be on the principle of and constraints on creation and deletion,
instead of on the specific solution as implemented in the ASK system.

High-Level Models. As a high-level base model, we created a Minimal Abbey
(Mabbey), as shown in Figure 4. The Mabbey acts as the “mother” of all abbeys
– the Determinate Abbey and the Self-scaling Abbey are derived from it, as well
as other types of abbeys. The two most important classes are the Monk class and
the ResourcePool class. Their class specifications and interfaces they contract are
shown in Figure 4.

The task list is modeled implicitly, in terms of the message queue of the
object. By using the proper way of messaging, i.e. synchronous or asynchronous,
blocking and non-blocking behavior for inserts in the queue can be modeled.
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The size of the queue can be limited by means of a class variable nofTasks which
represents the number of tasks currently in the task queue (this construct is used
in the Determinate Abbey). A list for the monks is not modeled: it is not needed
at this level of abstraction. A variable freeMonks is used to hold all monks which
are currently not executing a task. Based on simple requests issued by the monks
themselves, the monks are added to the list of free monks. Tasks are modeled
in terms of simple methods inside the monk class – this is enough, as for our
analysis the functional differences between tasks, as opposed to the differences
between thread-pools, is irrelevant.

4.2 Real-Time Modeling in Uppaal

In this section, we model a thread-pool using timed automata in Uppaal. We use
these Uppaal models in the next section for schedulability analysis of real-time
models of the ASK system. We model a thread-pool as a scheduler automaton
taking tasks from a queue and dispatching them among concurrent threads. This
model can be seen as an extension of the framework for schedulability analysis
of concurrent objects [12] to a situation in which objects share the message/task
queue.

We separate the task queue in two parts: an execution part and a buffer. The
execution part includes the tasks that are being executed. This part needs one
slot for each thread and is therefore as big as the number of threads; we assume
a fixed number of threads given a priori. Before beginning their execution, tasks
are queued based on a given scheduling strategies, e.g., EDF, FPS, etc., in the
rest of the queue (i.e., the buffer part).

In the rest of this section, we show two approaches in modeling concurrent
threads sharing a task queue. At a higher level of abstraction, we can assume
that the threads run in parallel as if each has its own processing unit. We can al-
ternatively model a time-sharing scheduling policy where the ‘executing’ threads
share the processor; therefore, each task runs a period of time before it is in-
terrupted by the scheduler to run the next one. In both cases, when a task
reaches the execution part, it will not be put back to the buffer part. We call
this weak non-preemption, i.e., in the special case of one thread, it behaves like a
non-preemptive scheduler. The scheduler (responsible for dispatching methods)
and the queue (responsible for receiving messages) can be modeled in the same
automaton or separately.

Time-Sharing. In this model, execution threads share one CPU. Therefore, the
tasks in the execution part of the queue are interleaved. We call a thread active
if a task is assigned to it. At its turn, each active thread gets a fixed time slot
(called a quantum) for execution. If the assigned task does not finish within
this quantum, the thread is preempted and the control is given to the next
active thread. Recall that we use weak non-preemption, i.e., once a task is in the
execution part it cannot be put back into the buffer part.
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Error

(qc<=quantum && c[turn]<=r[turn])
  || q[turn]==EMPTY

q[turn]!=EMPTY &&
qc==quantum && 
comp[turn]>quantum
qc := 0, 
update_turn(quantum)

c[turn] == r[turn] && 
q[turn] != EMPTY
rem := comp[turn], 
qc := 0, shift(turn,TRD),
update_turn(rem)

msg : int[0,MSG],
sender : int [0,2]

tail < MAX

invoke[msg][s][sender] ?
insertInvoke(msg, sender)

tail == MAX

i : int[0,MAX-1]
x[i] > d[i] &&
counter[i] > 0

(a) Executing three tasks (quantum = 2) (b) Scheduler including a queue

Fig. 5. Modeling a time-sharing scheduler for a thread-pool

In this model, each task is modeled only as a computation time. This ab-
straction is necessary to enable the modeling of preemption of tasks at any
arbitrary time (i.e., the selected quantum). Figure 5.(a) shows intuitively how
three threads are scheduled. The up-arrows show when a task is released. A
down-arrow indicates the completion of the task, after which the thread remains
inactive in this scenario. The tasks assigned to t1, t2 and t3 have the compu-
tation times of 6, 3 and 5, respectively, and the preemption quantum is 2.

We associate to each thread a clock c and an integer variable r for response
time, i.e., the execution plus idle time, which is updated dynamically while an
active thread is idle. A task finishes when its clock reaches the expected response
time value (c=r shown in green in Figure 5.(a)). When a task is assigned to a
thread, only at the next quantum the thread becomes active, i.e., the thread clock
is reset to zero and r is given the computation time of the task. In Figure 5.(a),
the active period of the threads is shown in gray, during which the hatched
pattern denotes when the thread has the CPU. At every context-switch (shown
by dashed lines in Figure 5.(a)), the response-time variables of all idle threads
are increased to reflect their recent idle time.

Figure 5.(b) shows the formal model of the time-sharing scheduler, which
includes the message queue. The clock qc is used to keep track of time slots.
The invariant on the initial location of the automaton ensures progress when
a context-switch should occur and on the other hand it does not deadlock
when the queue is empty (q[turn]==EMPTY). The edges on the right-side of the
automaton model context-switch; in update_turn response-time variables are
updated:

for (i = 0; i < TRD; i++) {

if (q[i] != EMPTY) {

if (i != turn) r[i] += quantum;

else comp[ca[i]] -= quantum; // remaining computation time

} }

The first check q[i] != EMPTY makes sure that the thread i is active, i.e., a
task is assigned to it. The variable turn shows the thread that was just running.
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For threads i != turn the response time r[i] is increased to cover their idle
time, whereas for the thread that is just stopped we update comp, the remain-
ing computation time. The value of comp is used when a task finishes before a
quantum is reached, e.g., tasks t2 and t3 in Figure 5.(a). In this case, the re-
sponse time of idle threads is increased by comp instead of quantum.

Finally the variable turn is updated at every context-switch, such that the
next active thread is selected. If it happens that there are no more active threads,
i.e., the last task just finished, turn will keep its old value, as modeled in the
for loop below:

turn = (turn + 1) % TRD;

for (i=0; q[turn]==EMPTY && i<TRD-1; i++) {

turn = (turn + 1) % TRD;

}

The edges on the left model insertion of tasks into the queue using the
insertInvoke function, in which the scheduling policy can be modeled. In
this model, the deadline or priority values for tasks can be modeled statically.
Each queue slot is assigned a clock x which shows how long a task sits in that
queue slot. The automaton also takes care that when a task misses its dead-
line (x[i] > d[i]) or the queue is full (tail == MAX), it goes to the Error
state.

Parallel Threads. In this model, every thread is assumed to have a dedicated
processing unit, but they share one task queue. This model is more accurate when
we can rely on the fact that the real system will run on a multi-core CPU and
each thread will in fact run in parallel to the others. In this model, the queue and
the scheduling strategy are modeled in separate automata. Figure 6.(a) shows
a queue of size MAX which stores the tasks in the order of their arrival. This
automaton is parameterized in s which holds the identity of the object. It accepts
any message from any sender on the invoke channel, using the Uppaal ‘select’
statement on msg and sender. To check for deadlines, a clock x is assigned to each
task in the queue, which is reset when the task is added, i.e., in insertInvoke
function.

Error

msg : int[0,MSG],
sender : int [0,2]

tail < MAX

invoke[msg][s][sender] ?
insertInvoke(msg, sender)

msg : int[0,MSG],
t : int[0,TRD-1]

tail < MAX

delegate[msg][s][t] ?
insertDelegate(msg, t)

tail == MAX
i : int[0,MAX-1]

counter[i] > 0 
&& x[i] > d[i]

tail <= TRD
finish[t][s]?
contextSwitch(s,t,TRD) start[q[t]][t][s]!

i:int[TRD,MAX-1]
i < tail && 
forall (m : int[TRD,MAX-1])
(x[ca[i]] - x[ca[m]] > d[ca[i]] - d[ca[m]])

finish[t][s]?
contextSwitch(s, t, i)

(a) A queue shared between threads (b) An EDF scheduler

Fig. 6. A scheduler for parallel threads in Uppaal



380 F.S. de Boer et al.

This model allows us to specify tasks as timed automata; therefore, tasks can
create subtasks with self-calls. As a result, we don’t need c and r. The delegate
channel is dedicated to self calls that create subtasks inheriting the parent’s
deadline. To identify the parent, it receives the thread identity as t. Inheriting the
deadline is modeled by reusing the clock x assigned to the parent task (which is in
turn assigned to thread t). The number of tasks (and subtasks) assigned to clock
x[i] is stored in counter[i]. This is handled in the insertDelegate function.
The queue goes to Error state if a task misses its deadline (x[i] > d[i]) or
the queue is full.

Figure 6.(b) shows how a scheduling strategy can be implemented. This au-
tomaton should be replicated for every thread, thus parameterized in t as well
as the object identity s. The different instances of this automaton will be as-
signed each to one slot in the queue, namely q[t]. This example models an EDF
(earliest deadline first) scheduling strategy. The remaining time to the deadline
of a task at position i in the queue is obtained by x[ca[i]]-d[ca[i]]. When
the thread t finishes its current task (finish[t][s]), it selects the next task
from the buffer part of the queue for execution by putting it in q[t]; next, it is
started (start[q[t]][t][s]).

5 Analysis

We use timed automata to do schedulability analysis of our program model in
Uppaal. This analysis provides as a result a scheduling for a given strategy like
Earliest-Deadline-First. We take the resulting strategy to the Maude level and
test the model against it.

5.1 Schedulability Analysis of the Automata Model

Schedulability analysis is checking whether tasks can be accomplished before
their deadlines. In this section, we analyze the schedulability of the timed au-
tomata models of thread pools given in the previous section. Tasks in this model
correspond to the methods of monk objects (cf. the Creol models in Section 4).
The model of a thread pool is not enough for schedulability analysis, because
we need to know how fast tasks are generated and what their deadlines are. The
timed automaton specifying the task generation patterns serves as the behavioral
interface of the thread pool. The behavioral interface can be seen as a model of

x2 > 4

invoke[task1][self][Right]!
deadline=D1, x2 = 0

x1 > 8
invoke[task2][self][Right]!
deadline=D2, x1 = 0

x2 > 9
invoke[task1][self][Right]!

deadline=D1, x2 = 0

x1 > 9

invoke[task2][self][Right]!
deadline=D2, x1 = 0

Fig. 7. Generating task instances sequentially (left) or in parallel (right)
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the environment and captures the work-load of the ASK system. In this section,
we assume two threads and therefore two instances of the monk object.

Figure 7 shows two models of behavioral interfaces for our model of thread
pools. In these diagrams, Right shows the identity of an object in the environ-
ment that sends messages task1 and task2 to the resource pool under analysis;
the identity of the thread pool is given as self. In one model, the tasks are gen-
erated independently with an inter-arrival time of at least 9 time units between
every two occurrences of the instances of the same task type. In the other model,
tasks are generated one after the other in a sequential manner.

To perform schedulability analysis by model checking, we need to find a rea-
sonable queue length to make the model finite. The execution part of the queue
is as big as the number of threads, and the buffer part is at least of size one.
As in single-threaded situation of objects [12], a system is schedulable only if
it does not put more than 
Dmax/Bmin� messages in its queue, where Dmax is
the biggest deadline in the system, and Bmin is the best-case execution time of
the shortest task. As a result, schedulability is equivalent to the Error state not
being reachable with a queue of length 
Dmax/Bmin�. Therefore, schedulability
analysis does not depend on whether an upper bound on queue length is assumed
(Dabbey) or not (Sabbey). When analyzing the Determinate Abbeys (Dabbeys),
one can assume a smaller queue bound if necessary to check for queue overflow
situations.

To use the time-sharing model of a thread pool, a task is modeled as a com-
putation time. The two task types are given the computation times of 3 and 6
time units. This model is analyzed with a queue length of three where two con-
current threads are assumed. Given the behavioral interface with parallel task
generation, the minimum deadline for which the model is schedulable is 7 and
9 for task1 and task2, respectively. For sequential task generation, the deadlines
can be reduced to 5 and 6 for task1 and task2, respectively.

When the thread pool for parallel threads is applied, one can model tasks as
timed automata; two simple task models are given in Figure 8.(a). In this model,
task1 has a computation time of between 2 to 3 time units, and task2 takes 6
time units to execute. Using either of the two behavioral interfaces above, the
model is schedulable with the deadlines 3 and 6 for task1 and task2, respectively.
In parallel generation of tasks, parallel threads can handle the tasks faster, and

x <= 3

finish[t][self]!

start[task1][t][self]?
x = 0

x >= 2

x <= 6

finish[t][self]!

start[task2][t][self]?
x = 0

x >= 6

x <= 3

finish[t][self]!

start[task1][t][self]?
x = 0

x >= 2
delegate[task2][self][t]!

(a) Modeling tasks as computation times (b) Generating a subtask

Fig. 8. Modeling tasks (corresponding to monks) for parallel threads
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therefore, smaller deadlines are needed for schedulability. It turns out that the
parallelism of the threads does not affect the schedulability of tasks that are
created sequentially.

More complicated models can include sub-task generation. Figure 8.(b) shows
a model of task1 which creates an instance of task2. The schedulability analysis of
this model with a queue length of three fails due to queue overflow. This implies
that a determinate abbey with a too small buffer size can fail. By increasing the
size of the queue to four, the model will be schedulable given a deadline of 9 to
the task1 (and task2 still needs a deadline of 6). This shows that a determinate
abbey can still be useful if a big enough buffer size is used.

5.2 Conformance Testing

From the analysis of the behavioral interfaces we get a sequence of time-stamped
tasks with their deadlines of the form

(t1, task1(c1, d1)), . . . , (tn, taskn(cn, dn))

where ti denotes the time at which taski has been queued, where taski has
the computation time ci and deadline di. For analysis, we assume a scheduling
strategy like Earliest Deadline First (EDF).

We use this information to provide a discrete time model for our Creol model.
Instead of modeling continuos time, e.g., by means of ticks, we jump from a time-
stamp to the next time-stamp. This is implemented by a variation of the Creol
interpreter. Assuming (ti, taski(ci, di)) is the task with the smallest time-stamp
at a given point, (ti, taski(ci, di)) is removed from the queue and execution of
taski starts. The first thing to check is whether taski can be computed in time,
i.e. whether ti + ci ≤ di. If this condition is violated we report a scheduling
error indicating a conformance conflict, since the analysis of the timed automata
returns a sound scheduling. Otherwise, assume that taski was assigned to monkj
a new time-stamp ti + ci is introduced indicating when monkj is available again.
Depending on an assumption on the execution times of the tasks (optimistic or
pessimistic) the shortest or longest execution time can be chosen or an arbitrary
execution time within the given limits.

As long as there are monks available we jump to the next smallest time-stamp
and schedule the associated event. In case we run out of monks we jump to the
next time-stamp tf at which point a monk is again available. Now every taski
with time-stamp ti ≤ tf can be scheduled and the actual task to be scheduled is
selected according to the implemented strategy, e.g., in the case of a EDF, the
task with the closest deadline among the schedulable tasks is selected.

When all the tasks in the test case have been consumed, we compare the
Maude scheduling to the Uppaal scheduling. The Uppaal scheduling can be
easily obtained by simulating the scheduler automaton (cf. Section 4) put to-
gether with a linear timed automaton representing the test-case. If any devia-
tion between the Maude and Uppaal schedulings is observed, we have found a
counter-example to conformance.
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6 Conclusion

In this paper, we employed the Credo methodology for the design and analysis
of thread pools in an industrial communication platform. This methodology is
based on a separation of concerns between high-level modeling of architectural
features of thread pools (in Creol) and their analysis for schedulability (using
timed automata). We use timed automata to specify scheduling policies; whereas
the high-level Creol models abstract from scheduling concerns and focus on the
architectural modeling using concurrent objects.

Behavioral interfaces are central to the analyses. Thread pools are analyzed
for schedulability with respect to the task generation pattern given in the be-
havioral interfaces modeling the work-load. We also derive test cases from the
behavioral interfaces for checking conformance between the timed automata and
Creol models, thus bridging the gap between the two levels of abstraction.

Future work consists, first of all, of an implementation of the method for
testing conformance between a Creol model of a thread-pool and the timed
automata models. Another line of future research consists of real-time extensions
of the Creol language itself to support a full development cycle, so that one can
generate code for application-specific schedulers from Creol models.
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A A Class for the Low-Level Determinate Abbey

1 interface Dabbey inherits Abbey begin

2 end

4 class Dabbey( s i z e : Int ) contracts Dabbey begin

5 var t a skL i s t : DabbeyTaskList ;
6 var monkList : DabbeyMonkList ;
7 op i n i t ==
8 ta skL i s t := new DabbeyTaskList ( s i z e ) ;
9 monkList := new DabbeyMonkList ( s i z e , t a skL i s t )

10 with Any op dispatchTask ( in task : Task ) ==
11 var i : Int ;
12 t a skL i s t . testAndSetCreat ing ( ; i ) ;
13 t a skL i s t . setTask ( i , task ; ) ;
14 t a skL i s t . setTaskOpen ( i ; )
15 end
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B The TaskList Class for the Low-Level Determinate
Abbey

1 class DabbeyTaskList ( s i z e : Int ) contracts DabbeyTaskList
2 begin

3 . . .
4 with Dabbey op testAndSetCreat ing (out index : Int ) ==
5 await readyCounter > 0 ;
6 index := index ( s tat e s , ”READY” ) ;
7 s t a t e s := r ep l a c e ( s tat e s , ”CREATING” , index ) ;
8 readyCounter := readyCounter − 1
9 with DabbeyMonk op testAndSetBusy (out index : Int ) ==

10 await openCounter > 0 ;
11 index := index ( s tat e s , ”OPEN” ) ;
12 s t a t e s := r ep l a c e ( s tat e s , ”BUSY” , index ) ;
13 openCounter := openCounter − 1
14 with Dabbey op setTaskOpen ( in index : Int ) ==
15 s t a t e s := r ep l a c e ( s tat e s , ”OPEN” , index ) ;
16 openCounter := openCounter + 1
17 with DabbeyMonk op setTaskReady ( in index : Int ) ==
18 s t a t e s := r ep l a c e ( s tat e s , ”READY” , index ) ;
19 readyCounter := readyCounter + 1
20 . . .
21 end

C The Shepherd Task Class of the Self-scaling Abbey

1 class ShepherdTask (
2 task Id : Int , taskCounter : Counter , monkCounter : Counter ,
3 busyCounter : Counter , mmax: Int , mrate : Int ,
4 taskQueue : SabbeyTaskQueue , monkQueue : SabbeyMonkQueue)
5 contracts ShepherdTask
6 begin

7 op shepherdLoop ==
8 . . .
9 taskCounter . val ( ; t ) ; monkCounter . val ( ;m) ;

10 busyCounter . val ( ; mbusy ) ; mfree := m − mbusy ;
11 i f ( (m < mmax) && ( ( mfree − t ) < (m / mrate ) ) ) then

12 amountToCreate := t − mfree + (m / mrate ) ;
13 i f ( amountToCreate > (mmax − m)) then

14 amountToCreate := mmax −m
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15 end ;
16 monkQueue. createMonks ( amountToCreate ; )
17 end ;
18 i f ( mfree > (m / 2) ) then

19 task := new PoisonTask ( 0 ) ;
20 taskQueue . enqueueTask ( task ; )
21 end ;
22 release ;
23 shepherdLoop ( ; )
24 . . .
25 end

D ResourcePool Class for the High-Level Self-scaling
Abbey

1 class ResourcePool ( nofMonks : Int , maxNofMonks : Int )
2 contracts ResourcePool begin

3 var freeMonks : Set [Monk ] ; var nofTasks : Int ;
4 . . .
5 op task ==
6 var monk : Monk ; chooseMonk ( ; monk ) ;
7 !monk . task ( ) ; nofTasks := nofTasks − 1
8 op poisonTask ==
9 var monk : Monk ;

10 chooseMonk ( ;monk ) ;
11 !monk . poisonTask ( )
12 op shepherd == var monk : Monk ;
13 await ( nofTasks>nofMonks∗2) | | (#(freeMonks)>nofMonks /2 ) ;
14 i f ( nofTasks > nofMonks∗2) then

15 i f ( nofMonks < maxNofMonks) then

16 monk := new Monk( this ) ;
17 nofMonks := nofMonks + 1
18 end else i f ( nofMonks > 1) then

19 poisonTask ( ; ) ;
20 nofMonks := nofMonks − 1
21 end end

22 . . .
23 with Outside op addTask ==
24 nofTasks := nofTasks + 1 ;
25 ! task ( ) ; ! shepherd ( )
26 end
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Abstract. We present a verification system for Creol, an object-oriented
modeling language for concurrent distributed applications. The system
is an instance of KeY, a framework for object-oriented software verifica-
tion, which has so far been applied foremost to sequential Java. Building
on KeY characteristic concepts, like dynamic logic, sequent calculus, ex-
plicit substitutions, and the taclet rule language, the system presented
in this paper addresses functional correctness of Creol models featuring
local cooperative thread parallelism and global communication via asyn-
chronous method calls. The calculus heavily operates on communication
histories which describe the interfaces of Creol units. Two example sce-
narios demonstrate the usage of the system.

1 Introduction

The area of object-oriented program verification made significant progress during
the last decade. Systems like Boogie [6], ESC/Java2 [23], KeY [9], and Krakatoa
[22] provide a high degree of automation, elaborate user interfaces, extensive tool
integration, support for various specification languages, and high coverage of a
real world target language (Spec# in case of Boogie, Java in case of the other
mentioned tools).

However, this development mostly concerns sequential, free-standing applica-
tions. When it comes to verifying functional properties of concurrent and dis-
tributed applications, the situation is different. Even if there is a rich literature
on the verification of ‘distributed formalisms’ (based for instance on process cal-
culi [35,27,36]), there are hardly any systems yet matching the aforementioned
characteristics. Moreover, many formalisms lack a connection to the dominating
paradigm of today’s software engineering, object-orientation, which is an obstacle
for the integration into software development environments and methods.

This work is a contribution towards effective and integrated verification of
concurrent, distributed systems. We present a verification system that is built
on two foundations: the Creol modeling language for concurrent and distributed
object-oriented systems [32], and the KeY approach and system for the verifi-
cation of object-oriented programs [9]. By combining KeY’s proving technology
� This work has partially been supported by the EU-project FP7-ICT-2007-3 HATS:

Highly Adaptable and Trustworthy Software using Formal Methods. and the EU
COST action IC0701: Formal Verification of Object-Oriented Software.

K. Breitman and A. Cavalcanti (Eds.): ICFEM 2009, LNCS 5885, pp. 387–406, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



388 W. Ahrendt and M. Dylla

with Creol’s novel approach to modular modeling of components, we achieve a
system for highly modular verification of concurrent, distributed object-oriented
applications. While being a prototype system yet, past experience with the tech-
nological and conceptual basis justifies the perspective of future versions to enjoy
similar features as state-of-the-art sequential verification systems already do.

Creol is an executable object-oriented modeling language. It features concur-
rency in two ways. First of all, different objects execute truly in parallel, as if
each object had its own processor. Objects have references to each other, but
cannot access each other’s internal state. Consequently, there is no remote access
to attributes, like ‘o.a’ in other languages. The only way for objects to exchange
information is through methods. Calls to methods are asynchronous [31], in the
sense that the calling code is able to continue execution even before the callee
replies. Mutual information hiding is further strengthened by object variables
being typed by interfaces only, not by classes. The loose coupling of objects,
their strong information hiding and true parallelism, is what suggest distributed
scenarios, with each object being identified with a node. The second type of
concurrency is object internal. Each call to a method spawns a separate thread
of execution. Within one object, these threads execute interleaved, with only one
thread running at a time. Here, the key to modularity is the cooperative nature
of the scheduling: a thread is only ever interrupted when it actively releases
control, at ‘release points’.

Altogether, Creol allows highly modular verification. Within one class, the
various methods can be proved correct in isolation, in spite of the shared memory
(the attributes), by guaranteeing and assuming a class invariant at each release
point in the code. At the inter-object level, the vehicle to connect the verification
of the various classes is the ‘history’ of inter-object communications. Interface
specifications are expressed in terms of the history, and class invariants relate
the history with the internal state. The fact that each object has only partial
knowledge about the global communication history is modeled by projecting the
global history onto the individual objects [30].

Our system is based on the KeY framework for verifying object-oriented soft-
ware. The most elaborate instance of KeY is a verification system for sequential
Java [9]. Other target languages of KeY are C [39], ASMs [40], and hybrid systems
[42]. All these have in common that they use dynamic logic, explicit substitutions,
and a sequent calculus realized by the ‘taclet’ language. These concepts, to be
introduced in the course of the paper, have proved to be a solid foundation of a
long lasting and far reaching research project and system for verifying functional
correctness of Java [9]. Dynamic logic features full source code transparency, like
Hoare logic, but is more expressive than that. Explicit (simultaneous) substitu-
tions, called updates, provide a compact representation of the symbolic state,
and allow a natural forward style symbolic execution. Apart from verification,
updates are also employed for test case generation and symbolic debugging. Se-
quent calculi are well-suited for the interleaved automated and interactive usage.
And finally, taclets provide a high-level rule language capturing both the logi-
cal and the operational meaning of rules. They are well suited both for the base
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logic and for the axiomatization of application specific operations and predicates.
KeY has been used in a number of case studies, like the verification of the Java
Card API Reference Implementation [38], the Mondex case study (the most sub-
stantial benchmark in the Grand Challenge repository) [44], the Schoor-Waite
algorithm [12], and the electronic purse application Demoney [37]. The system
is also used for teaching in various courses at Chalmers University and several
other universities.

However, the KeY approach has so far almost only been applied to the sequen-
tial setting.1 It is precisely the described modularity of Creol that allowed us
to base our verification system on the same framework. The main challenges for
adjusting the KeY approach to Creol were the handling of asynchronous method
calls, the handling of release points, and, most of all, the extensive usage of the
communication history throughout the calculus.

The structure of the paper is as follows. Sect. 2 introduces Creol, and gives
examples of its usage. In Sect. 3, we describe the logic and calculus character-
istic for KeY, insofar as they are (largely) independent of the particular target
language. Thereafter, Sect. 4 presents a KeY style logic and calculus for Creol
specifically. Sect. 5 discusses system oriented aspects of KeY for Creol, including
a small account on taclets. Sect. 6 then demonstrates the usage of the systems
in examples. In Sect. 7, we discuss related work, and draw conclusions.

2 Overview of Creol

In this section, we introduce our slightly adapted version of Creol, using an
automated teller machine scenario adapted from [29]. The example will also be
used to discuss Creol verification in later sections.

The scenario we consider has three kinds of actors. There are several teller
machines (class ATM), several users (class User), and one server (class Server).
In the course of a certain session, a teller machine communicates with one user,
and with the server, as depicted in Fig. 1.

Fig. 1. Communication of the automated teller machine

The picture shows that, while User and Server implement one interface each
(USR resp. S), the class ATM implements two interfaces, ATMU and ATMS,
dedicated for the communication in either of the directions. The Creol definition
of the interfaces is given in Fig. 2. (We omit ATMS, which is empty.)

We can observe that the signature of operations contains (possibly empty) lists
for in- and out-parameters. The operations offered by interfaces appear in the
1 See Sect.7 for an exception.
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interface USR
begin

with ATMU
op giveCode(in; out code:Int)
op withdraw(in; out amount:Int)
op dispense(in amount:Int; out)
op returnCard(in; out)

end

interface ATMU
begin

with USR
op insert(in cardId:Int; out)

end

interface S
begin

with ATMS
op authorize(in cardId:Int, code:Int; out ok:Bool)
op debit(in cardId:Int, amount:Int; out ok:Bool)

end

Fig. 2. The interfaces of the automated teller machine

scope of ‘with cointerface’, with the meaning that those operations can only be
called from instances of classes implementing that cointerface. For instance, the
server cannot call insert on a teller machine, not even if it was in the possession
of an ATMU typed reference. Another consequence of cointerfaces is that the
implementations of operations have a well-typed reference to the caller, without
that reference being passed explicitly as an input parameter.

The class ATM in Fig. 3 is an example for a class definition. Variables are im-
plicitly initialized with false or 0 for primitive types, and null for labels and object
references. Some variables are declared of type Label[...], like var li:Label[Int].

class ATM implements ATMS, ATMU
begin

var server : S;
with USR

op insert(in card:Int; out) ==
var li:Label[Int]; var lb:Label[Bool]; var l:Label[];
var l2:Label[]; var code:Int; var ok:Bool; var am:Int;
li!caller.giveCode(); li?(code);
lb!server.authorize(card,code); lb?(ok);
if ok
then li!caller.withdraw(); li?(am);

lb!server.debit(card,am); lb?(ok);
if ok
then l!caller.dispense(am); l2!caller.returnCard(); l?(); l2?()
else l!caller.returnCard(); l?() end

else l!caller.returnCard(); l?() end; return()
end

Fig. 3. The class implementing the teller machine
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Later, the execution of the call li!caller.giveCode(), for instance, allocates a new
label, and assigns it to li. The label is later used in the reply statement li?(code),
to associate the reply with the respective call. The effect of the reply is that
code is assigned the output of the (li-labeled) call to giveCode, provided that
the corresponding reply message has already arrived. Otherwise, the statement
blocks, without the thread releasing control. (This ‘busy waiting’ can be avoided
by the await statement, see below.) The effect of li?(x) is similar to treating x as
a future variable [15,5] or promise [34]. In a label type Label[T ], the T indicates
the type of the output of the called operation.

Note that the calls to dispense and returnCard are executed before any of the
replies is asked back. This allows the two called methods to execute interleaved
on the processor of the called object. (Note that the calls went to the same
object.) In general, arbitrary code can be executed in between a call and the
corresponding reply. We want to highlight that the implementation of insert ex-
tensively uses the caller reference, which is known to be of type USR, for callbacks.
This style of coupling communicating objects might clarify the distribution of
operations over interfaces in the teller machine scenario (cf. Fig. 2).

We discuss further features of Creol not captured by the above example. New
objects are created by x := new C(e∗), where C is a class identifier supplied with
a list of class parameters. As indicated earlier, l?(x∗) blocks execution, without
releasing control, until the corresponding reply message has arrived. In contrast,
the command await l? releases control if the reply for l has not yet arrived,
such that the scheduler can pass control to another thread of this object. Other
release points are await b, releasing control if the Boolean expression b is false,
and the unconditioned release. The example code above did not contain release
points, but see the buffer example in Sect.6.1 (Fig. 7).

In Creol, expressions have no effect on the state. We model errors, like division
by zero, by non-terminating (and non-releasing) blocking. The same holds for a
call on the null reference and a reply on the null label.

3 The KeY Approach: Logic, Calculus, and System

3.1 Dynamic Logic with Explicit Substitutions

KeY is a deductive verification system for functional correctness. Its core is a the-
orem prover for formulas in dynamic logic (DL) [25], which, like Hoare logic [26],
is transparent with respect to the programs that are subject to verification. DL
is a particular kind of modal logic. Different parts of a formula are evaluated
in different worlds (states), which vary in the interpretation of functions and
predicates. The modalities are ‘indexed’ with pieces of program code, describing
how to reach one world (state) from the other. DL extends full first-order logic
with two additional (mix-fix) operators: 〈 . 〉 . (diamond) and [ . ] . (box). In both
cases, the first argument is a program (fragment), whereas the second argument
is another DL formula. A formula 〈p〉φ is true in a state s if execution of p
terminates when started in s and results in a state where φ is true. As for the
other operator, a formula [p]φ is true in a state s if execution of p, when started
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in s, either does not terminate or results in a state where φ is true. In other
words, the difference between the operators is the one between total and partial
correctness.2

DL is closed under all logical connectives. For instance, the following formula
states equivalence of p and q w.r.t. the “output”, the program variable x.

∀ v . ( 〈p〉 x
.= v ↔ 〈q〉 x

.= v )

A frequent pattern of DL formulas is φ → 〈p〉ψ, stating that the program p,
when started from a state satisfying φ, terminates with ψ being true afterwards.
The formula φ → [p]ψ, on the other hand, does not claim termination, and
corresponds to the Hoare triple {φ} p {ψ}.

The main advantage of DL over Hoare logic is increased expressiveness: pre-
or postconditions can contain programs themselves, for instance to express that
a linked structure is acyclic. Also, the relation of different programs to each other
(like the correctness of transformations) can be expressed elegantly.

All major program logics (Hoare logic, wp calculus, DL) have in common that
the resolving of assignments requires substitutions in the formula, in one way or
the other. In the KeY approach, the effect of substitutions is delayed, by having
explicit substitutions in the logic, called ‘updates’. This allows for accumulating
and simplifying the effect of a program, in a forward style. Elementary updates
have the form x := e, where x is a location (in the case of Creol, an attribute
or local variable) and e is a (side-effect free) expression. Elementary updates
are combined to simultaneous updates, like in x1 := e1 |x2 := e2, where e1
and e2 are evaluated in the same state. For instance, x := y | y := x stands for
exchanging the values of x and y. Updates are brought into the logic via the
update modality { . } . , connecting arbitrary updates with arbitrary formulas,
like in x < y → {x := y | y := x} y < x. A typical usage of updates during proving
is in formulas of the form {U}〈p〉φ, where U is an update, accumulating the
effects of program execution up to a certain point, p is the remaining program
yet to be executed, and φ a postcondition. A full account of KeY style DL is
found in [11].

3.2 Sequent Calculus

The heart of KeY, the prover, uses a sequent calculus for reducing proof obliga-
tions to axioms. A sequent is a pair of sets of formulas written as φ1, ..., φm �
ψ1, ..., ψn. The intuitive meaning is that, if all φ1, ..., φm hold, at least one of
ψ1, ..., ψn must hold. Rules are applied bottom-up, reducing the provability of
the conclusion to the provability of the premises. In Fig. 4 we present a selection
of the rules dealing with propositional connectives and quantifiers (see [24] for
the full set). φ[v/e] denotes a formula resulting from replacing v with e in φ.

2 Just as in standard modal logic, the diamond vs. box operators quantify existentially
vs. universally over states (reached by the program). In case deterministic programs,
however, the only difference between the two is whether termination is claimed or
not.
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impRight
Γ, φ � ψ, ∆

Γ � φ → ψ, ∆
andRight

Γ � φ,∆ Γ � ψ, ∆

Γ � φ ∧ ψ, ∆

allRight
Γ � φ[v/c], ∆
Γ � ∀v.φ, ∆

with c a new constant

Fig. 4. A selection of first-order rules

When it comes to the rules dealing with programs, many of them are not
sensitive to the side of the sequent and can even be applied to subformulas. For
instance, 〈skip; ω〉φ can be rewritten to 〈ω〉φ regardless of where it occurs. For
that we introduce the following syntax

�φ′ �
�φ �

for a rule stating that the premise sequent �φ′ � is constructed by replacing φ
with φ′ anywhere in the conclusion sequent �φ �. In Fig. 5 we present some
rules dealing with statements. (assign and if are simplified, see Sect. 4.1.) The
schematic modality 〈[·]〉 can be instantiated with both [·] and 〈·〉, though con-
sistently within a single rule application. Total correctness formulas of the form
〈while ...〉φ are proved by combining induction with unwind.

assign
� {x := e}〈[ω]〉φ �
� 〈[x := e; ω]〉φ �

if
� (b → 〈[s1; ω]〉φ) ∧ (¬b → 〈[s2; ω]〉φ) �
� 〈[if b then s1 else s2 end; ω]〉φ �

unwind
� 〈[if b then s; while b do s end end; ω]〉φ �

� 〈[while b do s end; ω]〉φ �

Fig. 5. Dynamic logic rules

Because updates are essentially delayed substitutions, they are eventually re-
solved by application to the succeeding formula, e.g., {u := e}(u > 0) leads to
e > 0. Update application is only defined on formulas not starting with box or
diamond. For formulas of the form {U}〈s〉φ or {U}[s]φ, the calculus first applies
rules matching the first statement in s. This leads to nested updates, which are
in the next step merged into a single simultaneous update. Once the box or
diamond modality is completely resolved, the entire update is applied to the
postcondition.

4 A Calculus for Creol Dynamic Logic

Building on the logic and the calculus presented in the previous section, we
proceed with the sequent rules handling Creol statements. For the full set of
rules, see [20].
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4.1 Sequential Constructs

We start with assignments. As soon as the right side is simply a variable or literal
(summarized as ‘terminal expression’, te) the assignment can be transformed to
an update, such that the effect will eventually (not immediately) be applied to
the postcondition. The same applies for implicit assignments in variable decla-
rations. We give only the rule for integer variable declaration.

assign
� {x := te}〈[ω]〉φ �
� 〈[x := te; ω]〉φ �

intDecl
� {i := 0}〈[ω]〉φ �

� 〈[var i : Int; ω]〉φ �

The same mechanism can be used for operator expressions, as long as all argu-
ments are terminal and errors can be excluded. For instance, a division can be
shifted to an update iff the divisor is not zero. Otherwise, execution blocks. This
semantics is captured by the following rule.

DivTerminal
� (¬te2

.= 0 → {x := te1/te2}〈[ω]〉φ) ∧ (te2
.= 0 → 〈[block; ω]〉φ) �

� 〈[x := te1/te2; ω]〉φ �

An error could occur arbitrarily deep in an expression. Therefore, expressions
are unfolded until they consist only of a top level operator applied to terminal
expressions. This is exemplified by the following rules (x′ and x′′ are new program
variables).

� 〈[x′ := e1; x
′′ := e2 ; x := x′ + x′′; ω]〉φ �

� 〈[x := e1 + e2; ω]〉φ �
� {x := te1 + te2}〈[ω]〉φ �
� 〈[x := te1 + te2; ω]〉φ �

In the left rule ei are non-terminal expressions. As all expressions are unfolded,
nested divisions will eventually be analyzed by DivTerminal. Other statements
using expressions, like if, are unfolded in the same way, until the condition is
terminal and the following rule applies:

if
� (tb .= true → 〈[p; ω]〉φ) ∧ (tb .= false → 〈[q; ω]〉φ) �

� 〈[if tb then p else q end; ω]〉φ �

Note that application of this rule may lead to proof branching in subsequent
steps. As for while, the unwind rule was presented in Sect. 3.2. An alternative
rule using a loop invariant is discussed in section 4.3. That rule, however, only
covers the box operator. Finally, the rules for the block statement reflect the
fact that a non-terminating program is always partially correct, but never totally
correct:

blockBox
� true �

� [block; ω]φ �
blockDia

� false �
� 〈block; ω〉φ �

4.2 Interface and Class Invariants

The verification process of Creol programs is completely modular. This means
we verify only one method (of one class) at the time and do not consider any
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other code during this process. Instead, we take into account the other threads
of the object by guaranteeing the class invariant at release points and assuming
it again when execution proceeds. As for the behavior of other objects, that is
represented by using specification of their interfaces. An additional construct in
the proof is the communication history, which both the specifications as well as
the class invariants talk about. These concepts for reasoning about Creol were
introduced in [17,19].

The communication history can be viewed as a list of messages of method
invocations, method completions, and object creations. For modular reasoning
we always consider projections of the system wide history H. Every interface is
specified by an interface invariant invI(H/o/I), with o ranging over objects of
type I. The system wide history H is projected (H/o/I) to messages concerning o
and talking about methods declared in I. During verification at method calls and
replies, H/this/I is checked against the specification. Continuing the previous
example of Fig. 2 the interface USR is equipped with the following invariant:

H/o/USR ≤ (→ giveCode[· → withdraw[· → dispense]]· → returnCard)∗

where · is appending, → are invocation messages, ← are completion messages,
brackets are used for optional occurrence, and ∗ is the Kleene star. The parame-
ters and communication partners are omitted for brevity. The invariant expresses
that the history of the interface is always a prefix of this regular expression, such
that an interaction with the user always begins with requesting PIN code and
ends with requesting removal of the card. The interface S is specified by:

H/o/S ≤
(
→ authorize(cid , .) ·

(
← authorize(false)|
← authorize(true)· → debit(cid , .)· ← debit(.)

))∗
Communication partners are omitted. The dot ‘.’ is used as a wildcard for a
parameter. Parameters (including the card id cid) and communication partners
are quantified universally. The meaning of the invariant is that only after autho-
rization can the debit procedure be attempted.

We turn to the class invariant invC(H/this,W), which forms a contract be-
tween all threads of the object. W is the vector of class attributes. Those might
get overwritten by other threads during suspension of this thread, but the in-
variant expresses properties of W every thread is respecting. The class invariant
is parametrized by H/this which is the projection of the system wide history to
the object the invariant belongs to. It contains all messages sent to or by the
object this. A class invariant consists of several parts:

invC(H/this,W) � F (H/this,W) ∧ Wf (H/this) ∧ ∀obj
∧
I

invI(H/this/obj/I)

F (H/this,W) relates the state of the ordinary class attributes W with the his-
tory, reflecting the refinement of the fully abstract interface specification to the
local state. Wf (H/this) is a predicate being interpreted to true for well-formed
histories. A well-formed history starts with the creation message of this, con-
tains invocation messages for all completion messages, and does not include any
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object references being null. Then, all invariants of all interfaces I invoked or
implemented by the class of this put in a conjunction to ensure that all meth-
ods respect them. obj are the objects known by this. Now we can formulate the
proof obligation for a method. The precondition is the class invariant, instan-
tiated with a history ending on an invocation of the method. After executing
the body the invariant holds again for the history ending with its completion
message.

� invC(H/this,W) → [body ]invC(H/this,W) (1)

Let us proceed with an example for a class invariant. For class ATM of Fig. 3,
the formula F is:

FATM (H/this,W) � ¬server
.= null ∧ ∀cid .sumwd (H/cid) .= sumdeb(H/cid)

It states that the reference server is never null and the sum of all withdrawn
money for all cards cid equals the sum of the money debited. More detailed,
sumwd (h) calculates the sum of the money withdrawn in the history h. (In the
equations, msg is used as the ‘otherwise case’.)

sumwd (ε) = 0
sumwd (h· → withdraw(am)) = sumwd (h) + am

sumwd (h ·msg) = sumwd (h)

sumdeb(h) is the sum of the money debited from the corresponding bank account.
Only successful debit calls are counted.

sumdeb(ε) = 0
sumdeb(h· → debit(am , cid)· ← debit(true)) = sumdeb(h) + am

sumdeb(h ·msg) = sumdeb(h)

In the system such equations are realized as taclets (see Sect. 5).

4.3 Concurrent Constructs

There are two different levels of communication, namely inter-thread communi-
cation within one object via shared memory (the class attributes W) and inter-
object communication via method calls and replies. We start with the rules
concerning the first and focus on the latter further below. In this section we
abbreviate H/this by H.

The simplest form of a release point is release. As mentioned before the class
invariant forms a contract between all threads of an object. So the rule for
release forces us to show that the class invariant is established in the current
state, before releasing the processor. When this thread resumes, the invariant
can be assumed before the remaining code ω is executed.

release
Γ � invC(H,W), ∆ Γ � {UH,W}[ω]φ,∆

Γ � [release; ω]φ,∆



A Verification System for Distributed Objects 397

Here, UH,W is the update H,W := some H,W.(invC(H,W ) ∧ H ≤ H). The
update UH,W represents an arbitrary but fixed system state satisfying the class
invariant in which execution continues. By H ≤ H we denote that the old history
H is a prefix of the new one H . The update is necessary because values of the
class attributes could have been overwritten by other threads, and because H
might have grown meanwhile.

Note that this rule, as well as all rules in this section, can also be applied
when the modality is preceded by updates, which is the typical scenario. These
updates are preserved in the instantiation of the premises (see [11]).

The await b statement is handled by a similar rule, with the additional as-
sumption that the guard b holds when execution resumes. A minor complication
is that we also must assume that evaluation of b does not block due to an error.
The two assumptions together are expressed via 〈x := b〉x .= true.

awaitExp
Γ � invC(H,W), ∆ Γ � {UH,W}(〈x := b〉x .= true → [ω]φ), ∆

Γ � [await b; ω]φ,∆

By replacing 〈x := b〉x .= true with Comp(H, l) in the above rule, we get a rule
for await l?. The predicate Comp(H, l) is valid if a completion message with the
label l is contained in the history H. The handling of Comp(H, l) in the proof
is discussed further below.

Partial correctness of a loop can also be shown with help of a loop invariant
inv loop(H,mod), where mod is the modifier set of the loop (all variables assigned
in the loop). To be most general, all class attributes could be included in the
modifier set. The history could be omitted as a parameter of the loop invariant
if there are no method calls, method completions or object creations in the loop
body.

loopInv

Γ � 〈x:=b〉true → inv loop(H,mod) ∧ Wf (H), ∆ (init. valid)
Γ � {U loop

H,mod
}(〈x:=b〉x .= true → [p]inv loop(H,mod)), ∆ (preserving)

Γ � {U loop

H,mod
}(〈x:=b〉x .= false → [ω]φ), ∆ (use-case)

Γ � [while b do p end; ω]φ,∆

The update U loop

H,mod
is defined as:

H,mod := some H,m.(Wf (H) ∧H ≤ H ∧ inv loop(H,m))

It creates a new history H and a new modifier set, such that the loop invariant
holds. If the condition b of the loop contains an exceptions the implication of all
branches are true.

Analogous to Comp(H, l) there are predicates Invoc(H, l) and New(H, o)
which guarantee the existence of an invocation message with label l and an
object creation message with reference o in the history H, respectively. During
a proof, uncertainty is inherent in the projection of the history to this, as there
could be incoming method invocations at any time. When dealing with method
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calls we only state the existence of a corresponding message in the history. We
do not append it to the history. In general all rules of Sect. 4.1 would need to
cover potential extensions, using the prefix predicate ≤. It is however equivalent
to extend the history on access (release points, method calls, etc.).

To exemplify some properties of the predicates dealing with the history we
give the following formula which is a tautology.

Comp(H0, l) ∧H0 ≤ H1 → Comp(H1, l) (2)

Besides Comp, New , as well as Invoc are monotonous w.r.t. ≤. Additionally, the
contra-position is used in our proof system.

We turn attention towards method invocation l!o.mtd(pin). Its execution as-
signs a unique reference to l, and extends the history by the corresponding
invocation message:

invoc

Γ � Wf (H) ∧ invI(H/o/I), ∆
Γ � o

.= null → 〈[block; ω]〉φ,∆
Γ � ¬o .= null → {l := (this, o,mtd , pin, i)}{U invoc

H }〈[ω]〉φ,∆
Γ � 〈[l!o.mtd(pin); ω]〉φ,∆

If o is null, execution blocks. In the first branch, the invariant of the remote
interface I must be shown (I being the type of o). The index i is new and
assures uniqueness of the label l. The abbreviation U invoc

H for the update, is in
its full form:

H := some H.(Wf (H)∧H ≤ H ∧ invI(H/o/I, pin)∧ Invoc(H, l)∧¬Invoc(H, l))

The new history contains the invocation message Invoc(H, l). As the label l is
unique the invocation message must not be included in the previous history
(¬Invoc(H, l)), which prefixes the new one (H ≤ H). The new history H is
well-formed (Wf (H)) and it respects the interface invariant invI(H/o/I, pin)
where the in-parameters pin are added as they occur in the appended invocation
message.

A completion statement l?(pout) assigns the return parameters of the method
call identified by the label l to pout. If the label l is null, execution blocks.

comp

Γ � Invoc(H, l) ∧ Wf (H) ∧ inv I(H/l.callee/I), ∆
Γ � l

.= null → [block; ω]φ,∆
Γ � ¬l .= null → {U comp

H,pout
}[ω]φ,∆

Γ � [l?(pout); ω]φ,∆

As we are extending the history with a completion message, we check the ex-
istence of the corresponding invocation message by Invoc(H, l) to ensure well-
formedness. The selector callee delivers the reference of the sender of the com-
pletion message. U comp

H,pout
is analogous to U invoc

H where the only difference is that
pout is overwritten and Comp is used instead of Invoc.

H, pout := some H, p̄.

(
Wf (H) ∧H ≤ H ∧ invI(H/l.callee/I, p)

∧Comp(H, l) ∧ ¬Comp(H, l)

)
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We omit the rule for object creation, mentioning only that the new reference
is constructed by the pair (this, i), here i is an object local, successively incre-
mented index. An alternative, fully abstract modeling of object creation in DL
is investigated in [4] and can be adapted also here.

Finally, we consider the return statement. It sends the completion message
belonging to the method call of the verification process and the thread terminates
afterwards. The class invariant is not explicitly mentioned in the following rule
as it is contained in φ (see previous section).

return
Γ � Invoc(H, l) ∧ Wf (H) ∧ inv I(H/caller/I), ∆ Γ � {U return

H }φ,∆
Γ � 〈[return(pout)]〉φ,∆

Here, l is the label of the message which created the thread subject to verification,
I the corresponding interface, and caller the corresponding caller. The update
U return
H adds the completion message to the history which must not occur in the

previous history.

H := some H.(Wf (H)∧H ≤ H ∧ invI(H/caller/I)∧Comp(H, l)∧¬Comp(H, l))

5 A System for Creol Verification

The verification system for Creol is based on KeY[9]. Written in Java and pub-
lished under the GNU general public license, it is available from the project’s
website3. The current version is a prototype which provides the functionalities
presented in this paper. It has a graphical user interface where the proof tree and
open proof goals are displayed. Other features are pretty-printing and syntax-
highlighting of the subformula/subterm currently pointed at with the mouse
pointer. This enables a context sensitive menu offering only the rules applica-
ble to the highlighted subformula/subterm. Apart from the rule name, tool-tips
describe the effect of a rule. Besides interactive application of rules, automatic
strategies can be configured. A more detailed description of the KeY interface is
available in [3].

Problem files, logical rules, and axiomatizations of data types are written in
the taclet language [43]. In Fig. 6 the rule impRight from Fig. 4 and the equation
Eq. (2) are defined in the taclet language. A find describes the formula the rule
is applicable to, replacewith specifies the replacement for the find formula,
assumes characterizes further assumptions not subject to replacements, and add
causes its argument to be added. The arrow ==> indicates on which side of the
sequent the formulas are found, replaced or added. Writing a semicolon between
two occurrences of replacewith or add causes a branching. Taclets omitting the
sequence arrow ==> are rewriting rules applicable in all contexts.

The theory explained in the previous section needed some small extensions
to be run in the system. First, the some quantifier was not implemented, but

3 www.key-project.org



400 W. Ahrendt and M. Dylla

impRight {\find(==> phi -> psi)

\replacewith(==> psi)

\add(phi ==>) }

compMon {\find(Comp(H1,L) ==>)

\assumes(Prefix(H1,H2) ==>)

\add(Comp(H2,L) ==>) }

Fig. 6. Rules in the taclet language

is expressed by another formula. For example, the update formula like {H :=
some H.(Wf (H) ∧H ≤ H)}φ is rewritten to:

∀H0.(H .= H0 → ∀H1.{H := H1}((Wf (H1) ∧H0 ≤ H1) → φ))

The old value of H is saved in H0, and the new variable H1 is assigned to H.
The implication assures that H1 has the desired properties when evaluating φ.

Finally, there are different prefix predicates≤I where I is an interface. Thereby
the interface invariant for I ′ is monotonous on ≤I if I ′ �= I. The rules invoc, comp,
and return use ≤I where I is the interface the message the rule adds corresponds
to. Release points and the loop invariant use a prefix predicate ≤all which is not
monotonous for interface specifications.

The Creol parser is written in about 3900 lines of code using ANTLR as parser
generator. The adaptions in the KeY-system took another 5000 lines. Finally, the
rules written in the taclet language are about 1700 lines long.

6 Verification Examples

6.1 Unbounded Buffer

We give an implementation for an unbounded first-in-first-out (FIFO) buffer.
This example is adapted from [18]. The interface contains two methods put and
get which can be used to put into and to obtain an element from the buffer.

interface FifoBuffer
begin with Any

op put(in x:Any; out)
op get(in; out x:Any)

end

The interface invariant expresses that the sequence of elements retrieved from
the buffer are a prefix of the elements put into the buffer. This ensures the FIFO
property. Additionally, no element must equal null. We define invI(H, callee)
(slightly simplified) as:

out(H/I, callee) ≤ in(H/I, callee) ∧ ∀x.(x ∈ in(H/I, callee) → ¬x .= null)

where I is FifoBuffer and in, out are defined as:

in(ε, o) = ε out(ε, o) = ε
in(h · o2 ← o.put(x; ), o) = in(h, o) · x out(h · o2 ← o.get(;x), o) = out(h, o) · x
in(h ·msg, o) = in(h, o) out(h ·msg, o) = out(h, o)
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Note that we do not guarantee that a caller gets the same objects it has put into
the buffer. Such a buffer can be used for fair work balancing where a request is
put into the buffer and workers take them out again.

The implementation of the buffer, given in Fig. 7, uses a chain of objects
where each of them can store one element. The attribute cell is null if the object
does not store an element. In next the reference to the following chain of objects
is stored. Requests are forwarded to it if the object cannot serve them alone.
The variable cnt holds the number of elements stored in cell and all following
objects. Calls of get on an empty buffer are suspended until there are elements
in the buffer.

class BufferImpl implements FifoBuffer
var cell:Any; var cnt:Int; var next:FifoBuffer;
begin with Any

op put(in x:Any; out) ==
if cnt=0 then cell:=x

else if next=null then next:=new Buffer end;
var l:Label[]; l!next.put(x); l?()

end;
cnt:= cnt+1; return()

op get(in ; out x:Any) ==
await (cnt>0);
if cell=null then var l:Label[Any]; l!next.get(); l?(x)

else x:=cell; cell:=null
end;
cnt:=cnt−1; return(x)

end

Fig. 7. The class implementing the buffer

For the class invariant we define another term buf (o1, o2, h) which for an
object o1 and its next object o2 reconstructs from the history h the elements in
cell and all following objects.

buf (o1, o2, h) =

⎧⎪⎪⎨⎪⎪⎩
ε if h .= ε ∨ o1

.= null ∨ o2
.= null

buf (o1, o2, h
′) · x if h .= h′ · o1 ← o2.put(x; )

rest(buf (o1, o2, h
′)) if h .= h′ · o1 ← o2.get(;x)

buf (o1, o2, h
′) otherwise h

.= h′ · msg

rest removes the first element of a sequence. Let us proceed with the class in-
variant. The attribute cnt equals the number of elements in cell and all following
buffer cells. The interface invariant of FifoBuffer has to hold for both the interface
called and implemented by the class. Additionally, we state that the sequence of
values put into the current cell equals the sequence of values obtained from the
buffer with the cell and the content of the following buffer appended.

|cell · buf (H/next, this, next)| .= cnt
∧(¬next

.= null → invI(H/next, next)) ∧ invI(H, this)
∧in(H, this) .= out(H, this) · cell · buf (H/next, this, next)
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In the above formula I, is instantiated by FifoBuffer and H is an abbreviation for
H/this. If cell is null it is omitted. The example with the given specifications was
proved interactively by the system. The method put was verified in 1024 proof
steps and 80 branches, whereas get needed 587 proof steps and 43 branches.
Great parts of the proof were transformations of the sequences the buffer was
specified with. However they went rather smoothly as the problem of the equality
of two sequences is human-readable even if the automated strategy gets stuck. It
seems that a logical toolbox expressing sets, relations and other well-understood
mathematical notions would simplify the process of specifying and verifying other
case studies.

6.2 Automated Teller Machine

The example of the automated teller machine distributed throughout the paper
was successfully verified in 2495 steps (27 branches) by the system. As the im-
plementation of the class makes heavy use of asynchronous method calls and
(co)interfaces, it has been shown that our system can deal with them. The
amount of method calls produces a chain of prefixed histories where the mono-
tonicity of properties has to be used often. This leads to a number of predicates
expressing properties of histories on the left-hand-side of the sequent. Hence, the
automated strategy must use the monotonicity with care to improve readability
if a branch cannot be closed by it. The experiences with specifications in form
of regular expressions were promising. They are easy to write down and a auto-
mated strategy can deal with them as the number of successor states is usually
limited which narrows the search space of the proof.

7 Discussion and Conclusion

Creol’s notion of inter-object communication is inspired by notions from process
algebras (CSP [27], CCS [35], π-calculus [36]), which however model synchronous
communication mostly. Moreover, Creol differs from those in integrating the no-
tion of processes in the object-oriented setting, using named objects and methods
rather than named channels. This also introduces more structure to the mes-
sage passing (calls, replies, caller references, cointerfaces). The message passing
paradigm on the inter-object level is combined with the shared memory paradigm
on the local inter-thread level. Early approaches to the verification of shared
memory concurrency are interference freedom based on proof outlines [41] and
the rely/guarantee method [33]. Other approaches use object invariants as a
combined assumption/guarantee, both in the sequential setting to achieve mod-
ularity [7,8], and in the concurrent setting [28]. Compared to the last mentioned
works, Creol is more restrictive in that it forces shared memory to be entirely ob-
ject internal. All knowledge of remote data is contained in fully abstract interface
specifications talking about the communication history. Communication histo-
ries appeared originally both in the CSP as well as the object-oriented setting
[14,27], and were used for specification and verification for instance in [45,16].



A Verification System for Distributed Objects 403

KeY is among the state-of-the-art approaches to the verification of (at first)
sequential object-oriented programs, together with systems like Boogie [6], ES-
C/Java(2) [23], and Krakatoa [22]. In comparison to those, KeY is unique in
that it does not merely generate verification conditions for an external off-the-
shelf prover, but employs a calculus where symbolic execution of programs is
interleaved with first-order theorem proving strategies. This goes together with
the nature of first-order DL, which syntactically interleaves modalities and first-
order operators. The cornerstone for KeY style symbolic execution, the updates,
have similarities to generalized substitutions in formalisms such as the B method
[2]. Updates are, however, tailored to symbolic execution rather than modeling
(for instance, conflicts are resolved via right-win). The KeY tool uses these up-
dates not only for verification, but also for test case generation with high code
based coverage [21] and for symbolic debugging. The role of updates is largely
orthogonal to the target language, allowing us to fully reuse this machinery for
Creol.

As for Creol’s thread concurrency model, this differs from many other lan-
guages in that it is cooperative, meaning the programmer actively releases control
(conditionally). This simplifies reasoning considerably as compared to reasoning
about preemptive concurrency, where atomicity has to be enforced by dedicated
constructs. There is work on verifying a limited fragment of concurrent Java
with KeY [10]. Here, the main idea is to prove the correctness of all permuta-
tions of schedulings at once. In [1], concurrent correctness of Java threads is
addressed by combining sequential correctness with interference freedom tests
and cooperation tests.

Very related to our work is the extension of the Boogie methodology to con-
current programs [28], targeting concurrent Spec#. From the beginning, this
work is deeply integrated into an elaborate formal development environment,
with all the features mentioned the first paragraph of this paper. The methodol-
ogy requires users to annotate code with commands in between which an object
is allowed to violate its invariant. This is combined with ownership of objects
by threads. Just as in our system, invariants have to be established at specific
points, and can be assumed at others. Also similar is the erasing of knowledge,
there with the havoc statement, here with the some operator. Differences (apart
from the asynchronous method calls) are the purely cooperative nature of our
threads, and that our shared memory is object local, which makes ownership
trivial. Connected to this is the inherently fully abstract specification of remote
object interfaces, employing histories. The Boogie approach can simulate histo-
ries as well (see Fig. 1 in [28]), but it lies in the responsibility of the user whether
or not the simulated history reflects the real one.

The system presented in this paper is still a prototype. It supports Creol dy-
namic logic, but the front-end for loading code and generating proof obligations
is yet unfinished. This however will not be a real challenge, given the KeY infras-
tructure. Also, the automated strategies are very rudimentary yet. We currently
achieve an automation of 90% (automatic per total proof steps), which is very
low by our standards. As we are only at the beginning of the work on automated
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strategies tailored to Creol, there is great potential here. The true challenge has
been the omnipresence of the history, and it is here that future research on veri-
fication in this domain will focus on. This concerns various levels: better support
for history based specifications, like a library of frequently used queries on histo-
ries, or the usage of specification patterns [13], extended and configurable proof
support for history based reasoning, and improved presentation on the syntax
level and in the user interface.

We consider Creol’s approach to modular object-oriented modeling as a good
basis for scaling ‘sequential formal methods’ to the concurrent distributed set-
ting, in particular when targeting functional correctness. The key is a very strong
separation of concerns, which however naturally follows ultimate object-oriented
principles. KeY has proved to be a good conceptual and technical basis for such
an undertaking, which we argue can lead to an efficient and user-friendly envi-
ronment for the verification of distributed object applications.
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Abstract. One of the most important open problems of parallel LTL
model-checking is to design an on-the-fly scalable parallel algorithm with
linear time complexity. Such an algorithm would give the optimality we
have in sequential LTL model-checking. In this paper we give a partial
solution to the problem. We propose an algorithm that has the required
properties for a very rich subset of LTL properties, namely those express-
ible by weak Büchi automata.

1 Introduction

Formal verification is nowadays an established part of the design methodology
in many industrial applications. Moreover, it is no more regarded only as a sup-
plementary vehicle to more traditional coverage oriented testing and simulation
activities, ruther it takes in many situation the role of the primary validation
technique. In [14] the authors report about replacing testing with symbolic ver-
ification in the recent Intel Core i7 processor design.

Traditional verification techniques are computationally demanding and
memory-intensive in general and their scalability to extremely large and com-
plex systems routinely seen in practice these days is limited. Verifying complex
systems with a high degree of fidelity implies exceedingly large state spaces that
must be analyzed. These state spaces are typically too large to fit into memory of
a single contemporary computer, unless substantial simplification leading to re-
moval of important features from the model are made. One solution to deal with
the memory problems is to use more powerfull parallel computers. Enormous
recent progress in hardware architectures, which has measured several orders of
magnitude with respect to various physical parameters such as computing power,
memory size at all hierarchy levels from caches to disks, power consumption, net-
working, physical size and cost, has made parallel computers easily available. On
the other hand, this architectural shift requires introducing algorithmic changes
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to our tools. Without them we will not be able to fully utilize the power of
parallel computers.

In this paper we consider parallel explicit-state LTL model-checking. Explicit-
state model checking is a branch of model checking in which the states and
transitions are stored explicitly as the model checking program traverses through
the state space. The main practical problem with explicit model checking is
the state space explosion. To reduce the state explosion effect, explicit model
checking works on-the-fly to gradually generate and check the state space, being
thus able to find a counter-example without ever constructing the complete state
space.

In the case of automata-based approach to explicit-state LTL model-checking
the verification problem is reduced to checking the non-emptiness of a Büchi
automaton, hence the detection of a reachable accepting cycle in a rooted di-
rected graph. The best known on-the-fly algorithms use depth-first-search (DFS)
strategies.

It is well-known that DFS based algorithms are difficult to parallelize. For this
reason parallel explicit-state LTL model-checking algorithms rely on other state
exploration strategies than DFS. Typically, they use some variant of breath-first-
search (BFS) strategy, which is well suited for parallelization. Several different
algorithms have been proposed for parallel explicit-state LTL model-checking.
Contrary to the serial case, it is difficult to identify the best algorithm among
them. One of the reasons is that some of these algorithms have higher time
complexity, but work on-the-fly, while others are on-the-fly with worse time
complexity.

One of the main open problems in explicit-state LTL model-checking is to
develop a parallel algorithm that works on-the-fly and has linear time com-
plexity. In this paper we propose a parallel on-the-fly linear algorithm for LTL
model-checking of weak LTL properties. Weak LTL properties are those that are
expressible by weak Büchi automata, i.e. automata in which there is no cycle
with both accepting and non-accepting state on its path. The studies of tempo-
ral properties [8,5] reveal that verification of up to 90% of LTL properties leads
to a weak case. The most common weak LTL properties are the response prop-
erties, e.g. properties stating that whenever A happens, B happens eventually.
An important aspect of our approach is that there is no difference in handling
weak and non-weak LTL formulas. However, if it is required, we can perform test
for a weak case within the model checking procedure with no impact on both
theoretical complexity and practical performance.

Our algorithm extends the linear parallel OWCTY algorithm [5] by a heuris-
tic for early accepting cycle discovery. The heuristic is based on the MAP algo-
rithm [4], in partiucalr it employs the fact that if an accepting state is its own
predecessor, it lies on an accepting cycle. The new algorithm thus combines the
basic OWCTY algorithm with a limited propagation of selected accepting states
as performed within MAP algorithm.

The new algorithm is able to detect accepting cycle and produce the so called
counter-example without constructing the entire state space, hence it can be
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classified as on-the-fly algorithm. Since it relies on a heuristic method, a natural
question is how much on-the-fly the algorithm actually is. Unfortunately, there
is no standard way to compare LTL model-checking algorithms regarding this
aspect. For DFS-based sequential algorithms the question is easier to answer
and has been discussed by several authors. For parallel algorithms the situation
is much complicated. Therefore, we identify some simple criteria for the degree
of “on-the-flyness” of an algorithm, and subsequently classify our algorithm ac-
cording these criteria.

Our new algorithm has been implemented in the multi-core version of the
parallel LTL model-checker DiVinE [3,2]. The tool is available from its web-
page [7] and is also distributed as a part of Fedora 11 release.

We proceed as follows: Section 2 establishes the necessary notions used in
the algorithm. Section 3 then presents the algorithm itself. Section 4 discusses
the on-the-fly notion in more detail and also contains discussion on related
work. Section 5 reports results on experimental evaluation of the algorithm, and
Section 6 contains the conclusions and an open questions.

2 Preliminaries

Automata-theoretic approach to explicit-state LTL model-checking [19] exploits
the fact that every set of executions expressible by an LTL formula can be
described by a Büchi automaton. In particular, the approach suggests to express
all system executions by a system automaton and all executions not satisfying
the formula by a property or negative claim automaton. These automata are
combined into their synchronous product in order to check for the presence
of system executions that violate the property expressed by the formula. The
language recognized by the product automaton is empty if and only if no system
execution is invalid.

The language emptiness problem for Büchi automata can be expressed as
an accepting cycle detection problem in a graph. Each Büchi automaton can be
naturally identified with an automaton graph which is a directed graph G =
(V,E, s, A) where V is the set of states (n = |V |), E is a set of edges (m = |E|),
s is an initial state, and A ⊆ V is a set of accepting states. We say that a cycle
in G is accepting if it contains an accepting state. Let A be a Büchi automaton
and GA the corresponding automaton graph. Then A recognizes a nonempty
language iff GA contains an accepting cycle reachable from s. The LTL model-
checking problem is thus reduced to the accepting cycle detection problem in
the automaton graph.

The optimal sequential algorithms for accepting cycle detection use depth-first
search strategies to detect accepting cycles. The individual algorithms differ in
their space requirements, length of the counter-example produced, and other
aspects. For a recent survey we refer to [18]. The well-known Nested DFS algo-
rithm is used in many model checkers and is considered to be the best suitable
algorithm for explicit-state sequential LTL model checking. The algorithm was
proposed by Courcoubetis et al. [6] and its main idea is to use two interleaved
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searches to detect reachable accepting cycles. The first search discovers accepting
states while the second one, the nested one, checks for self-reachability. Several
modifications of the algorithm have been suggested to remedy some of its dis-
advantages [12]. Another group of optimal algorithms are SCC-based algorithms
originating in Tarjan’s algorithm for the decomposition of the graph into strongly
connected components (SCCs) [17]. While Nested DFS is more space efficient,
SCC-based algorithms produce shorter counter-examples in general. For a sur-
vey we refer to [16]. The time complexity of all these algorithms is linear in the
size of the graph, i.e. O(m + n), where m is the number of edges and n is the
number of states.

The effectiveness of the Nested DFS algorithm is achieved due to the partic-
ular order in which the graph is explored and which guarantees that states are
not re-visited more than twice. In fact, all the best-known algorithms rely on the
same exploring principle, namely the postorder as computed by the DFS. It is a
well-known fact that the postorder problem is P-complete and, consequently a
scalable parallel algorithm which would be directly based on DFS postorder is
unlikely to exist.

Several solutions to overcome the postorder problem in a parallel environment
have been suggested. The parallel algorithms were developed employing addi-
tional data structures and/or different search and distribution strategies. In the
next section we present two of them. For a survey on other algorithms we refer
to [1].

3 Algorithm

The proposed algorithm combines the OWCTY [5] approach with a heuristic for
early accepting cycle discovery based on the MAP algorithm [4].

The basic OWCTY algorithm uses topological sort for cycle detection – a
linear time algorithm that does not depend on DFS postorder and can thus be
parallelized reasonably well. However, topological sort algorithm cannot detect
accepting cycles as such. Therefore, the OWCTY algorithm uses other provi-
sions to eliminate detection of non-accepting cycles. In particular, the algorithm
computes a set of states predecessed by an accepting cycle, the so called ap-
proximation set. If the algorithm terminates and the set is empty, there is no
accepting cycle in the graph. The set is computed in several phases as follows.
First, a phase called Initialize is executed to explore the complete state space
of the automaton and to set up internal data for use by subsequent phases. Note
that all reachable states are initially part of the approximation set. This phase
is the one where we apply our “on-the-fly” heuristics. The latter two phases
are called Elim-No-Accepting and Elim-No-Predecessors. These phases
remove states from the approximation set that cannot be part of an accepting
cycle. They are executed repeatedly until a fix-point is reached. An important
observation is that if the underlying automaton graph is weak (system automa-
ton was producted with weak negative claim Büchi automaton), the phases need
to be executed exactly once. Further details of the algorithm and its phases can
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Algorithm 1. DetectAcceptingCycle

Require: Implicit definition of G=(V,E,ACC)
1: Initialize()
2: oldSize ← ∞
3: while (ApproxSet.size �= oldSize) ∧ (ApproxSet.size > 0) do
4: oldSize ← ApproxSet.size
5: Elim-No-Accepting()
6: Elim-No-Predecessors()
7: return ApproxSet .size > 0

Algorithm 2. Initialize

1: s ← GetInitialState()
2: ApproxSet ← {s}
3: ApproxSet .setMap(s, 0)
4: Open .pushBack(s)
5: while Open.isNotEmpty() do
6: s ← Open .popFront()
7: for all t ∈ GetSuccessors(s) do
8: if t �∈ ApproxSet then
9: ApproxSet ← ApproxSet ∪ {t}

10: Open.pushBack(t)
11: if IsAccepting(t) then
12: if t = s ∨ ApproxSet .getMap(s) = t then
13: AcceptingCycleFound()
14: return true
15: ApproxSet .setMap(t ,max(t ,ApproxSet .getMap(s)))
16: else
17: ApproxSet .setMap(t ,ApproxSet .getMap(s))

be found in [5]. For clarity, we just list the pseudo-code of the new combined
algorithm.

The original MAP algorithm is based on propagation of maximum accepting
predecessors and, similarly to OWCTY, its execution is organized into multiple
passes. Each pass fully propagates (this includes re-propagation) maximum (ac-
cording to given order) accepting predecessors of all states. Even a single pass
of such algorithm is super-linear, up to n passes may need to be executed. After
each pass, states constituting maximum accepting predecessors are marked as
non-accepting and next pass is executed. The MAP algorithm finishes when a
state is found to be its own maximum accepting predecessor (this means that
an accepting cycle has been discovered in the state space), or when there are no
reachable accepting states.

The idea of propagating one accepting predecessor along all newly discovered
edges is at heart of the proposed heuristic extension of OWCTY. If the propa-
gated accepting state is propagated into itself, an accepting cycle is discovered
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Algorithm 3. Elim-No-Accepting

1: ApproxSet’ ← ∅
2: for all s ∈ ApproxSet do
3: if IsAccepting(s) then
4: Open.pushBack(s)
5: ApproxSet’ ← ApproxSet’ ∪ {s}
6: ApproxSet’ .setPredecessorCount(s , 0)
7: ApproxSet ← ApproxSet’
8: while Open.isNotEmpty() do
9: s ← Open .popFront()

10: for all t ∈ GetSuccessors(s) do
11: if t ∈ ApproxSet then
12: ApproxSet .increasePredecessorCount(t)
13: else
14: Open.pushBack(t)
15: ApproxSet ← ApproxSet ∪ {t}
16: ApproxSet .setPredecessorCount(t , 0)

Algorithm 4. Elim-No-Predecessors

1: for all s ∈ ApproxSet do
2: if ApproxSet .getPredecessorCount(s) = 0 then
3: Open.pushBack(s)
4: while Open.isNotEmpty() do
5: s ← Open .popFront()
6: ApproxSet ← ApproxSet � {s}
7: for all t ∈ GetSuccessors(s) do
8: ApproxSet .decreasePredecessorCount(t)
9: if ApproxSet .getPredecessorCount(t) = 0 then

10: Open.pushBack(t)

and the computation is terminated. Likewise the MAP algorithm, an accept-
ing state to be propagated is selected as a maximal accepting state among all
accepting states visited by the traversal algorithm on a path from the initial
state of the graph to the currently expanded state. Since the Initialize phase
of OWCTY needs to explore full state space, we can employ it to perform limited
accepting cycle detection using maximal accepting state propagation. Unlike the
MAP algorithm, we however avoid any re-propagation to keep the Initialize

phase complexity linear in the size of the graph. This means that some accepting
cycles that would be actually discovered using re-propagation, may be missed.
In particular, there are three general reasons for not discovering an accepting
cycle with our heuristics. First, the maximum accepting predecessor of the cycle
may not lie on the cycle itself, see Figure 1(a). Second, the maximum accepting
predecessor value does not reach the originating state due to the absence of a
fresh path (path made of yet unvisited states), see Figure 1(b). And third, the
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(a) (b) (c)
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C D

A > B > C
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C D

C A>D>
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B

C D

B> > AC

C

Fig. 1. Three scenarios where no accepting cycle will be discovered using accepting
state propagation. a) Maximal accepting predecessor is out of the cycle. b) There is
no fresh path back to the maximal accepting state. c) Wrong order of propagation,
C → D is explored before B → D, hence, C is propagated from D.

maximum accepting predecessor value does not reach the originating state due
to a wrong propagation order, see Figure 1(c).

When the algorithm encounters an accepting state that is being propagated,
it terminates early, producing a counter-example. On the other hand, if the
Initialize phase of OWCTY fails to notice an accepting cycle, the rest of the
original OWCTY algorithm is executed. Either the algorithm finds an accepting
cycle (and again, produce a counter-example) or, it proves that there are no
accepting cycles in the underlying graph.

An interesting feature of our algorithm is a possibilty to propagate more values
simultaneously. Generally, the more values are propagated the more successful
the Initialize phase might be in discovering accepting cycles. Consider for ex-
ample the case (a) in Figure 1. If two largest accepting states are propagated,
A and B in this case, the cycle would be detected. Similarly, if the algorithm
considers multiple distinct orderings and propagates maximal accepting states
for each of them, the cycle in the case (a) in Figure 1 could be detected. This
would, however, require B to be a maximal accepting state for some ordering.

4 On-the-Fly Verification

In automated verification, parallel techniques both for symbolic and explicit
state approaches have been considered. While the symbolic set representations,
which often employs canonical normal forms for propositional logic like BDDs,
have been a breakthrough in the last decade (with the capacity to handle spaces
of the size 1020 and beyond), they often turned out to not scale well with the
problem sizes. Moreover, the success of their application to a given verification
problem cannot be estimated in advance, since neither the size of the system in
terms of lines of code nor other known metrics for the system size have proved
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to be useful for such estimates. Moreover, the use of BDDs is often sensible to
the used variable ordering, which is sometimes difficult to determine.

For this reason, SAT-based model checking, in particular in the forms of
bounded model checking and equivalence checking have recently become very
popular. They still benefit from the use of symbolic methods, but tend to be more
scalable as they no longer rely on canonical normal forms like BDDs. Many algo-
rithms used in SAT solvers could also benefit from parallel processing capabilities,
even though this has not yet been a topic of the mainstream research.

An alternative is the use of explicit state set representations. Clearly, for most
real world systems, the state spaces are far too big for a simple explicit repre-
sentation. However, many techniques like partial order reduction approach have
been developed to reduce the state spaces to be examined. In contrast to sym-
bolically represented state sets, explicit state space representations can directly
benefit from multiprocessor systems and explicit state based model checking
scales very well with the number of available processors.

Let alone partial order reduction techniques, another important method for
coping with the state explosion problem in explicit state model checking, is the so
called on-the-fly verification. The idea of the on-the-fly verification builds upon
an observation that in many cases, especially when a system does not satisfy its
specification, only a subset of the system states need to be analyzed in order
to determine whether the system satisfies a given property or not. On-the-fly
approaches to model checking (also reffered to as local algorithmic approaches)
attempt to take advantage of this observation and construct new parts of the
state space only if these parts are needed to answer the model checking question.

As mentioned in Section 2 explicit-state automata-theoretic LTL model check-
ing relies on three procedures: the construction of an automaton that represents
the negation of the LTL property (negative-claim automaton), the construction
of the state space, i.e. the product automaton of system and negative-claim au-
tomata, and the check for the non-emptiness of the language recognized by the
product automaton.

An interesting observation is that only those behaviors of the examined system
are present in the product automaton graph that are possible in the negative-
claim automaton. In other words, by constructing the product automaton graph
the system behaviors that are not relevant to the validity of the verified LTL
formula are pruned out. As a result, any LTL model checking algorithm that
builds upon exploration of the product automaton graph may be considered as
an on-the-fly algorithm. We will denote such an algorithm as Level 0 on-the-fly
algorithm in the classification given below.

When the product automaton graph is constructed, an accepting cycle detec-
tion algorithm is employed for detection of accepting cycles in the product au-
tomaton graph. However, it is not necessary for the algorithm to have the prod-
uct automaton constructed before it is executed. On the contrary, the run of the
algorithm and the construction of the underlying product automaton graph may
interleave in such a way that new states of the product automaton are constructed
on-the-fly, i.e. when they are needed by the algorithm. If this is the case, the
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algorithm may terminate due to the detection of an accepting cycle before the
product automaton graph is fully constructed and all of its states are visited.

Those LTL model checking algorithms that may terminate before the state
space is fully constructed are generally denoted as on-the-fly algorithms. If there
is an error in the state space (accepting cycle), an on-the-fly algorithm may
terminate in two possible phases: either an error is found before the interleaved
generation of the product automaton graph is complete (i.e. before the algorithm
detects that there are no new states to be explored), or an error is found after
all states of the product automaton have been generated and the algorithm is
aware of it. The first type of the termination is henceforward referred to as
early termination (ET). Note that the awareness of completion of the product
automaton construction procedure is important. If the algorithm detects the
error by exploring the last state of the product automaton graph before it detects
that it was actually the last unexplored state of the graph, we consider it to be
an early termination.

We classify “on-the-flyness” of accepting cycle detection algorithms according
to the capability of early termination as follows. An algorithm is

– level 0 on-the-fly algorithm, if there is a product automaton graph containing
an error for which the algorithm will never early terminate.

– level 1 on-the-fly algorithm, if for all product automaton graphs containing
an error the algorithm may terminate early, but it is not guaranteed to do
so.

– level 2 on-the-fly algorithm, if for all product automaton graphs containing
an error the algorithm is guaranteed to early terminate.

Note that level 0 algorithms are sometimes considered as on-the-fly algorithms
and sometimes as non-on-the-fly algorithms depending on research community.
Since a level 0 algorithm explores full state space of the product automaton
graph it may be viewed as if it does not work on-the-fly. However, as explained
above, just the fact that the algorithm employs product automaton construction
is a good reason for considering the whole procedure of LTL model checking with
a level 0 algorithm as an on-the-fly verification process.

To give examples of algorithms with appropriate classification we consider
algorithms OWCTY, MAP, and Nested DFS. OWCTY algorithm is level 0 algo-
rithm, MAP algorithm is level 1 algorithm and Nested DFS is level 2 algorithm.
From the description in the previous section it is clear, that the algorithm we
propose in this paper falls in the category of level 1.

It is not possible to give an analytical estimate of the percentage of the state
space an on-the-fly algorithm needs to explore before early termination happens.
Therefore, it is always important to accompany the classification of an algorithm
by an experimental evaluation. This is in particular the case for level 1, where the
experiments may give more accurate measure of the effectiveness of the method
involved.

So far we have spoken only about the on-the-flyness status of a state space
exploration algorithm. Nevertheless, on-the-fly LTL model checking procedure
also denotes an approach that avoids explicit a priori construction of the negative
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claim automaton. We adapt the notation of [13] and denote this type of on-the-
flyness as truly on-the-fly approach to LTL model checking. Note that truly
on-the-flyness and algorithmic on-the-flyness are independent of each other and
truly on-the-fly approach may be combined with on-the-fly algorithms of any
level.

As for the state space exploration algorithms, the efficiency of the on-the-
flyness of the algorithm may also be improved by other techniques. It might
be the case that even the level 2 on-the-fly algorithm fails to discover an error,
if the examined state space is large enough to exhaust system memory before
an error is found. This issue has been addressed by methods of directed model
checking [10,11,9], which combines model-checking with heuristic search. The
heuristic guides the search process to quickly find a property violation so that
the number of explored states is small. It is worthy to note that our approach
can be extended with directed search as well.

5 Experiments

To experimentally evaluate efficiency of our approach we conducted numerous
experiments employing models from BEEM [15]. All measured values were ob-
tained using the verification tool DiVinE-MC version 1.4 [3,7]. The experiments
were performed on a workstation equipped with two dual-core Intel Xeon 5130
@ 2.00 GHz processors, 16 GB of RAM, and 64-bit Linux-based operating sys-
tem. For scalability experiments we also employed 16 way AMD Opteron 885
(8x dual-core) with 64 GB of RAM.

5.1 On-the-Flyness

For validation of the on-the-fly aspect of our new algorithm we originally selected
212 instances of verification problems with invalid LTL specification from BEEM
database. However, we discovered that many of the instances resulted in a state
space containing a self-loop over an accepting state (trivial accepting cycle). Such
an accepting cycle can be easily detected using any graph traversal algorithm
using just a simple self-loop test for each accepting state. After pruning out these
unwanted cases, our benchmark contained 90 verification problems. An overview
of the verification problems used to validate on-the-flyness of our approach is
given in Figure 2.

We list experimental results in a few tables that all have a common structure.
Each table row represents a single experimental configuration of the algorithm
we run. Column Algorithm gives the configuration of the experiment. Columns
Visited states, Memory (MB), and Time (s) give the total number of distinct
states generated, the total amount of memory consumed, and the total time of
verification, respectively, for the whole benchmark set of verification problems.
Column ET ratio reports on the number of Early terminations that happened for
the experiment configuration. For example, if the ET ratio says 78/90, it means
that for 78 verification problems out of 90, an accepting cycle was detected before
the full state space was constructed.
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Model LTL Properties Validity

anderson G((!cs0) -> F cs0) No

driving phils G(ac0 -> F gr0) No

GF ac0 No

elevator2 G(r1->(F(p1 && co))) No

G(r1->(!p1U(p1U(p1&& co)))) No

G(r1->(!p1U(p1U(!p1U(p1U(p1&&co)))))) No

F(G p1) No

elevator G(waiting0 ->(F in elevator0)) No

iprotocol F consume No

G F consume No

((G F dataok) && (G F nakok)) -> (G F consume) No

lamport G (wait0 -> F (cs0) ) No

G((!cs0) -> F cs0) No

lifts (GF pressedup0) -> (GF moveup) No

G (pressedup0 -> F moveup) No

((! moveup) U pressedup0) || G (! moveup) No

mcs G (wait0 -> F (cs0) ) No

G((!cs0) -> F cs0) No

peterson G (wait0 -> F (cs0) ) No

G((!cs0) -> F cs0) No

GF someoneincs No

phils GF eat0 No

G (one0 -> F eat0) No

GF someoneeats No

protocols (pready U prod0) -> ((cready U cons0) || G cready) No

F (consume0 || consume1) No

G F (consume0 || consume1) No

rether G (res0 -> (rt0 R !cend)) No

GF rt0 No

G (want0 -> (! ce U (ce U (!ce && (rt0 R !ce))))) No

szymanski G (wait0 -> F (cs0) ) No

G((!cs0) -> F cs0) No

GF someoneincs No

Fig. 2. Selected BEEM models with invalid LTL properties
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To identify the configuration of the algorithm in the experiment we use the
following notation. W = x denotes that the algorithm was performed using
x CPU cores (x workers in DiVinE-MC terminology), V = y denotes that the
algorithm involved y different value propagations at the same time. Note that for
V = 0 no values were propagated in order to early detect accepting cycles and the
full state space of all verification problems had to be constructed. By DFS and
BFS keys we distinguish whether the underlying search order employed for the
initial reachability was a local depth-first or local breadth-first one, respectively.
Also, since the behavior of the algorithm is non-deterministic (if more than one
CPU cores are used) all values reported are actually average values obtained
from ten independent runs of the corresponding experiment.

Before analyzing the experimental results, it is also important to explain the
implementation of the technique we use to identify accepting states to be prop-
agated. In particular, the algorithm always propagates the maximal accepting
state it has encountered with respect to the given order of accepting states. To
be able to efficiently decide about order of two given states, we decided not to
compare the contents of the corresponding state vectors, but rather to use the
unique pointers to memory addresses where the two state vectors are stored. For
a state s, we denote the pointer by ptr(s). Note that the ordering of states
depends on properties of the memory managment system of the platform the
program is running on. in practice, the ordering of states depends on the order
in which the states were allocated, hence, on the order in which the states were
examined. Some experiments employed multiple different orderings for identifica-
tion of states to be propagated. Different orderings were achieved by performing
various bit alternations in the bit representation of the pointer. Concrete tech-
niques used in different configurations of our algorithm are listed in the following
table.

Algorithm Propagated values

Configuration 1st 2nd 3rd

V=0 — — —

V=1 ptr(s) — —

V=2 ptr(s) ptr(s) xor 0x555 —

V=3 ptr(s) ptr(s) xor 0x555 ptr(s) xor 0xFFFF

In Figure 3 we report results for single core experiments. It can be seen that
the value propagation is quite successful regarding the early termination. Com-
pared with the algorithm that performs no value propagation the algorithms
with value propagations can save non-trivial amount of memory and reduce the
runtime needed for verification, which definitely justifies our new algorithm to be
considered as an algorithm that works on-the-fly. Other interesting aspect that
can be read from the table are as follows. The more values are propagated, the
larger is the ratio of early terminations, DFS mode seems to be slightly better in
states and memory, but the BFS mode is better in detecting the presence of an
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Algorithm Visited states Memory (MB) Time (s) ET ratio

BFS, V=0, W=1 52 047 342 6 712 760 0/90

BFS, V=1, W=1 23 157 474 4 858 295 66/90

BFS, V=2, W=1 23 173 041 4 949 297 67/90

BFS, V=3, W=1 20 175 952 4 796 237 78/90

DFS, V=0, W=1 52 047 342 6 716 760 0/90

DFS, V=1, W=1 19 849 655 4 583 272 56/90

DFS, V=2, W=1 20 971 228 4 753 277 61/90

DFS, V=3, W=1 17 090 024 4 502 240 68/90

Nested DFS 622 984 1 736 7 90/90

Fig. 3. Single core experiments

Algorithm Visited states Memory (MB) Time (s) ET ratio

BFS, V=1, W=1 6 820 499 2 829 40 66/66

BFS, V=2, W=1 6 854 458 2 893 41 67/67

BFS, V=3, W=1 5 621 320 3 194 36 78/78

DFS, V=1, W=1 3 930 520 2 257 23 56/56

DFS, V=2, W=1 5 173 954 2 546 31 61/61

DFS, V=3, W=1 1 802 949 2 518 12 68/68

Nested DFS 622 984 1 736 7 90/90

Fig. 4. Single core experiments restricted to runs with early termination

Algorithm Visited states Memory (MB) Time (s) ET ratio

BFS, V=0, W=1 52 047 342 6 712 760 0/90

BFS, V=0, W=2 52 047 342 9 072 503 0/90

BFS, V=0, W=3 52 047 342 10 065 441 0/90

BFS, V=0, W=4 52 047 342 10 874 395 0/90

DFS, V=0, W=1 52 047 342 6 716 760 0/90

DFS, V=0, W=2 52 047 342 9 069 504 0/90

DFS, V=0, W=3 52 047 342 10 036 441 0/90

DFS, V=0, W=4 52 047 342 10 888 396 0/90

Fig. 5. Experiments involving various number of CPU cores but no value propagation
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Algorithm Visited states Memory (MB) Time (s) ET ratio

BFS, V=1, W=1 23 157 474 4 858 295 66/90

BFS, V=1, W=2 17 203 306 5 748 130 74/90

BFS, V=1, W=3 20 244 429 6 955 122 74/90

BFS, V=1, W=4 18 632 114 7 576 102 72/90

DFS, V=1, W=1 19 849 655 4 583 272 56/90

DFS, V=1, W=2 18 996 947 5 890 136 77/90

DFS, V=1, W=3 22 826 318 7 037 138 73/90

DFS, V=1, W=4 18 833 201 7 685 100 72/90

Algorithm Visited states Memory (MB) Time (s) ET ratio

BFS, V=2, W=1 23 173 041 4 949 297 67/90

BFS, V=2, W=2 17 540 622 5 976 132 75/90

BFS, V=2, W=3 19 199 233 6 956 115 76/90

BFS, V=2, W=4 18 856 858 7 647 102 73/90

DFS, V=2, W=1 20 971 228 4 753 278 61/90

DFS, V=2, W=2 18 557 211 5 909 136 76/90

DFS, V=2, W=3 21 429 842 6 944 125 75/90

DFS, V=2, W=4 18 601 625 7 712 98 72/90

Algorithm Visited states Memory (MB) Time (s) ET ratio

BFS, V=3, W=1 20 175 952 4 796 237 78/90

BFS, V=3, W=2 16 421 989 6 006 127 78/90

BFS, V=3, W=3 17 335 622 6 765 108 80/90

BFS, V=3, W=4 15 462 219 7 435 89 78/90

DFS, V=3, W=1 17 090 024 4 502 240 68/90

DFS, V=3, W=2 17 932 103 5 882 129 80/90

DFS, V=3, W=3 21 174 728 6 984 126 76/90

DFS, V=3, W=4 18 676 721 7 754 97 75/90

Fig. 6. Experiments involving various configurations of the algorithm and various num-
ber of CPU cores

accepting cycle on-the-fly. An interesting observation is the correspondence of
the ratio of early terminations and the amount of visited states and time needed.
For example, in DFS, V=3, W=1 case, the ET ratio is 68/90 = 75%, the amount
of avoided states is 35 millions which is 67% of the total of state spaces, and the
time spared is 520 seconds, i.e. 72%. For comparison we also report the overall
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Algorithm Visited states Memory (MB) Time (s) ET ratio

exp 0, BFS, V=3, W=4 15 271 625 7 408 85 79/90

exp 1, BFS, V=3, W=4 14 831 048 7 388 86 78/90

exp 2, BFS, V=3, W=4 16 324 239 7 541 90 78/90

exp 3, BFS, V=3, W=4 14 979 049 7 400 91 78/90

exp 4, BFS, V=3, W=4 16 064 605 7 453 90 77/90

exp 5, BFS, V=3, W=4 15 950 789 7 445 87 80/90

exp 6, BFS, V=3, W=4 14 726 197 7 401 85 79/90

exp 7, BFS, V=3, W=4 15 601 260 7 441 94 78/90

exp 8, BFS, V=3, W=4 15 308 205 7 413 90 79/90

exp 9, BFS, V=3, W=4 15 565 178 7 462 90 75/90

Maximum 16 324 239 7 541 94 80/90

Minimum 14 726 197 7 388 85 75/90

Average 15 462 220 7 435 88.8 78.1/90

Algorithm Visited states Memory (MB) Time (s) ET ratio

exp 0, DFS, V=3, W=4 19 126 324 7 802 98 75/90

exp 1, DFS, V=3, W=4 17 513 441 7 622 101 75/90

exp 2, DFS, V=3, W=4 19 289 379 7 814 98 73/90

exp 3, DFS, V=3, W=4 18 234 139 7 734 97 73/90

exp 4, DFS, V=3, W=4 16 135 286 7 504 87 78/90

exp 5, DFS, V=3, W=4 19 586 932 7 833 98 74/90

exp 6, DFS, V=3, W=4 19 237 964 7 803 94 78/90

exp 7, DFS, V=3, W=4 20 121 416 7 885 105 74/90

exp 8, DFS, V=3, W=4 18 956 781 7 784 93 78/90

exp 9, DFS, V=3, W=4 18 565 549 7 767 97 75/90

Maximum 20 121 416 7 885 105 78/90

Minimum 16 135 286 7 504 87 73/90

Average 18 676 721 7 754 96.8 75.3/90

Algorithm Visited states Memory (MB) Time (s) ET ratio

BFS, V=3, W=4 15 462 220 7 435 88.8 78.1/90

DFS, V=3, W=4 18 676 721 7 754 96.8 75.3/90

Fig. 7. Non-deterministic behavior of the algorithm demonstrated on version V=3 and
4 CPU cores. Comparison of BFS and DFS search order strategies.
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Model LTL Properties Validity

anderson GF someoneincs Yes
elevator2 G(r0->(!p0U(p0U(!p0U(p0U(p0&&co)))))) Yes
lamport GF someoneincs Yes

leader filters F leader Yes
rether GF (nact0) Yes

szymanski GF someoneincs Yes

Fig. 8. Selected BEEM model instances with valid LTL properties

16-way AMD Opteron 4-way Intel Xeon

Model 1 2 4 8 16 1 2 3 4

anderson 11:41 6:27 4:46 2:45 1:56 9:39 5:23 4:10 3:56

elevator2 9:27 5:40 3:28 2:07 1:35 8:18 4:51 3:50 3:05

lamport 23:12 13:23 8:10 5:16 3:39 19:41 10:58 8:28 6:49

leader filters 9:04 5:10 3:08 2:25 1:45 7:34 5:02 3:23 2:53

rether 2:22 1:12 58 38 27 2:06 1:05 58 55

szymanski 1:20 51 39 33 28 1:09 43 39 35

Fig. 9. Scalability experimental results of liveness checking on a selection of models
with valid properties

values of visited states and time needed if the serial Nested DFS algorithm is
used.

Figure 4 gives the overall values if only the cases, where early termination
happened, are considered. The table demonstrates, that if early termination
succeeds, the efficiency of our new algorithm is quite close to the optimal but
serial Nested DFS algorithm. Note the increase in the number of visited states
in case DFS, V=2, W=1 compared to DFS, V=1, W=1. We explain this by the
fact, that in the case of V=2 the memory requirements to store a single state
vector differs from the case V=1, hence, pointers to addresses of state vectors
are reordered due to the underlying memory management.

Before we discuss how the algorithm performs with respect to early termi-
nation if multiple CPU cores are used, we first look into how the algorithm
behaves if no value propagation is used. As it can be seen from Figure 5, using
more CPU cores not only renders shorter running times, but it also increases
the overall memory consumption. This can be easily explained by the overhead
related to multiple threads. For example, in DiVinE-MC every thread maintains
its own hash table. However, there is an interesting phenomenon, also indepen-
dent of the search order used, that the increase from one core to two cores is
approximately twice as big as any further increase from n cores to n+1 cores.
Our guess is that for a single core run, the tool consumes less memory as the
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Fig. 10. Runtimes and speedup plots as measured on 16-way AMD Opteron 885 and
4-way Intel Xeon platforms

underlying memory management need not pre-allocate large memory blocks to
prevent fragmentation.

In Figure 6 we present an overview of our experimental study. We conclude
from the experimental results that our parallel algorithm for accepting cycle
detection works in an on-the-fly manner. The experimental data demonstrate
that using more accepting states for the propagation increases the successfulness
of early termination, though it is disputable whether it actually reduces demands
on computing resources. An interesting point is that unlike the single core case,
in parallel processing BFS variants outperform DFS ones. This result is however,
bound to the ordering of states in the state space.

Finally, data in Figure 5 demonstrate the non-deterministic behavior of paral-
lel runs. It can be observed that the early termination ratio and the demands on
computational resources vary, however, the deviation is relatively small which is
very important from the practical point of view.

5.2 Scalability

In order to demonstrate the scalability aspects of the new algorithm we selected
various valid instances from the BEEM database. See Figure 8 for details. In
Figure 9 we report on run-times needed to complete the corresponding verifica-
tion tasks. It can be seen that the efficiency of parallel computation is slightly
deteriorating as the number of cores involved in the computation reaches the
maximum number of available cores. Nevertheless, the run-times consistently
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decrease as the number of cores involved increases. The speedup and run-times
are also given as graphs in Figure 10.

6 Conclusions

In this paper we described a new parallel algorithm for accepting cycle detection
problem, i.e. explicit-state LTL model-checking. The algorithm emerged as a
combination of two existing parallel algorithms, OWCTY and MAP, keeping
the best of both. In particular, the new parallel algorithm is scalable and time-
optimal for majority of LTL properties, likewise the OWCTY algorithm, but it is
also able to detect some accepting cycles on-the-fly, likewise the MAP algorithm.
No such algorithm has been known so far.

We also performed large experimental study. It demonstrated that using our
new algorithm significantly reduces computation resources needed to complete
the verification task in many cases.

As for the future work, we can see many options. First of all, we have the im-
pression that one could further improve the results by clever selection of ordering
function. It is clear that technique to select states to be propagated influences
the experimental results a lot. It is still unclear how far one can get with a good
ordering function in practice. Another future goal is to incorporate directed
search in the Initialize phase of the algorithm. Directed search is known to
significantly increase efficiency of early termination in serial case, we expect this
to be the case also for parallel algorithms. And finally, we still do not have the
answer to the open problem of existence of parallel scalable and optimal level 2
on-the-fly algorithm for weak LTL properties and level 1 or better for full LTL.
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5. Černá, I., Pelánek, R.: Distributed Explicit Fair Cycle Detection. In: Ball, T.,
Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 49–73. Springer, Heidelberg
(2003)

6. Courcoubetics, C., Vardi, M., Wolper, P., Yannakakis, M.: Memory efficient algo-
rithms for the verification of temporal properties. In: Clarke, E., Kurshan, R.P.
(eds.) CAV 1990. LNCS, vol. 531, pp. 233–242. Springer, Heidelberg (1991)



A Time-Optimal On-the-Fly Parallel Algorithm 425

7. DiVinE – Distributed Verification Environment, Masaryk University Brno,
http://divine.fi.muni.cz

8. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property Specification Patterns for
Finite-State Verification. In: Proc. Workshop on Formal Methods in Software Prac-
tice, pp. 7–15. ACM Press, New York (1998)

9. Edelkamp, S., Jabbar, S.: Large-scale directed model checking LTL. In: Valmari,
A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 1–18. Springer, Heidelberg (2006)

10. Edelkamp, S., Leue, S., Lluch-Lafuente, A.: Directed explicit-state model checking
in the validation of communication protocols. STTT 5(2-3), 247–267 (2004)

11. Edelkamp, S., Lluch-Lafuente, A., Leue, S.: Directed Explicit Model Checking with
HSF-SPIN. In: Dwyer, M.B. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 57–79. Springer,
Heidelberg (2001)

12. Geldenhuys, J., Valmari, A.: More efficient on-the-fly LTL verification with Tarjan’s
algorithm. Theor. Comput. Sci. 345(1), 60–82 (2005)

13. Hammer, M., Knapp, A., Merz, S.: Truly On-the-Fly LTL Model Checking. In:
Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 191–205.
Springer, Heidelberg (2005)

14. Kaivola, R., Ghughal, R., Narasimhan, N., Telfer, A., Whittemore, J., Pandav,
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Abstract. Rapid development in hardware industry has brought the
prevalence of multi-core systems with shared-memory, which enabled the
speedup of various tasks by using parallel algorithms. The Linear Tempo-
ral Logic (LTL) model checking problem is one of the difficult problems to
be parallelized or scaled up to multi-core. In this work, we propose an on-
the-fly parallel model checking algorithm based on the Tarjan’s strongly
connected components (SCC) detection algorithm. The approach can be
applied to general LTL model checking or with different fairness assump-
tions. Further, it is orthogonal to state space reduction techniques like
partial order reduction. We enhance our PAT model checker with the
technique and show its usability via the automated verification of sev-
eral real-life systems. Experimental results show that our approach is
scalable, especially when a system search space contains many SCCs.

1 Introduction

In recent years, the growth of computer CPU speed is slowly being replaced
by the growth of number of CPUs (or CPU-cores) in the industry. To make
full usage of the CPU cores naturally raises interest in applying parallelism in
various problems. In this work, we focus on the parallelism of model checking
fairness enhanced systems, which emits two challenges stated as follows.

Firstly, efficient parallel solution of many problems may result in dramatically
different approaches from those to solve the same problems sequentially. Classical
examples are list rankings, connected components, depth-first search in planar
graphs etc. In the area of Linear Temporal Logic (LTL) model checking, the two
best known enumerative sequential algorithms based on fair-cycle detection are
the Nested Depth First Search (NDFS) algorithm [10,18] (e.g., implemented in
the model checker SPIN [16]) and SCC-based algorithms [32,31] based on Tar-
jan’s algorithm for strongly connected components (SCCs) detection [33]. How-
ever, both algorithms strongly rely on inherently sequential depth-first search
of post-ordering of vertices (P-complete computation [28]). Hence it is difficult
to adapt them to parallel architectures. Consequently, different techniques and
algorithms are needed. Several existing parallel versions of LTL model checking
algorithms are ineffective or hard to scale up. For example, SCC based parallel
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algorithms [8,12,9,7,3] gives quadratic or cubic order of the search space. Multi-
core SPIN [17] is only applicable to two cores for liveness properties. Note that
unlike LTL model checking, deadlock-free or reachability analysis is a verifica-
tion problem with efficient parallel solution. The reason is that the exploration
of the state space can be partitioned using breadth-first search [17]. In this work,
we will focus on the liveness properties.

Second, fairness, concerned with a fair resolution of non-determinism, is of-
ten important but expensive to be combined with model checking algorithms.
Fairness is an abstraction of the fair scheduler in a multi-threaded programming
environment or the relative speed of the processors in distributed systems. With-
out fairness, verification of liveness properties often produces unrealistic loops
during which one process or event is infinitely ignored by the scheduler or one
processor is infinitely faster than others. It is important to rule out those coun-
terexamples and utilize the computational resource to identify the real bugs.
However, systematically ruling out counterexamples due to lack of fairness is
highly non-trivial. It requires flexible specification of fairness as well as efficient
verification under fairness. Fairness and model checking with fairness have at-
tracted much theoretical interests for decades [14,24,21]. Their practical implica-
tions in system/software design and verification have been discussed extensively.
In our previous works [32,31], we present a unified on-the-fly model checking al-
gorithm which handles a variety of fairness including process-level weak/strong
fairness, event-level weak/strong fairness, strong global fairness, etc. However,
none of these works paid attention to parallel verification.

Contributions. In this work, we propose an algorithm with the capacity of
parallel verification of systems with various fairness constraints in the multi-
core architecture with share-memory.

SCC-based LTL model checking algorithms conduct a depth first search start-
ing from the root node, and check whether the SCC in the subtree is fair when-
ever a SCC is identified. Previous parallel algorithms focus on partition of the
graph based on special properties of the nodes inside the SCCs, which requires
multiple traverses of the whole search graph. These approaches are not practical
for large systems, especially when there is a counterexample. Based on our pre-
vious work, we propose an on-the-fly parallel algorithm based on an improved
version of Tarjan’s algorithm. In our approach, a main thread performs the DFS
searching of Tarjan’s algorithm. Whenever a SCC is detected, a new worker
thread is forked to process the found SCC. SCC processing contains both fair
loop detection and fairness constraints satisfaction checking (if there is fairness
assumption in the system), hence a fair amount of workload is divided to the
worker threads to achieve load balancing. When a counterexample is identified in
any worker thread, it will inform the main thread to stop the DFS and all other
live worker threads. This makes our approach on-the-fly, i.e., without generating
the entire search space. We have proved the correctness of our approach in the
multi-core architecture with shared memory.

Effective reduction techniques are the keys to resolve the infamous “state
explosion" problem in model checking, such as partial order reduction (to reduce
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the search space by exploring independence of system transitions), symmetric
reduction (to handle large or even unbounded number of similar processes).
We show that all these reductions are compatible with our algorithm, if these
reductions are applicable (see Section 4.3 for details).

Our engineering effort realizes this technique in our home-grown PAT model
checker (available at http://pat.comp.nus.edu.sg). We show its usability via au-
tomated verification of several real-life systems. The experiments show that our
technique offers a scalable verification support for multi-core model checking.

Section Organization. The rest of the paper is structured as follows. Section 2
introduces our computational model, together with a family of different fairness
notions. Section 3 presents a sequential fairness model checking algorithm based
on SCC detection. Section 4 describes our proposed parallel algorithm in the
shared-memory platform. Section 5 shows some experimental results to demon-
strate the effectiveness of parallel algorithm. Section 6 discusses related work
and Section 7 concludes.

2 Background

In this work, system models are described in the setting of Labeled Transition
Systems (LTS). All the algorithms proposed in this paper are applicable to the
models that can be interpreted as LTSs implicitly by defining a complete set of
operational semantics. For example, PAT accepts modeling languages like Com-
municating Sequential Processes# (CSP#) [29], Web Service modeling language,
real-time system modeling language. This section gives the LTS semantics and
defines different fairness constraints based on it.

Let e be an event (in process algebra, e.g., CSP), which could be either an
abstract event (e.g., a synchronization barrier if shared by multiple processes)
or a data operation (e.g., a sequential program). Let Σ be the set of all events
in the model.

Definition 1 (LTS). A Labeled Transition System L is a 3-tuple (S , init ,→)
where S is a set of system configurations/states, init ∈ S is the initial system
configuration and →⊆ S ×Σ × S is a labeled transition relation.

In this work, we focus on infinite system executions explained as follows. Finite
behaviors are extended to infinite ones by appending infinite idling events at the
rear. Given two states s and s ′ in S , we write s e→ s ′ to denote a transition
from s to s ′ with event e. Given a LTS L = (S , init ,→), an execution E =
〈s0, e0, s1, e1, · · ·〉 is an infinite sequence of alternating states and events, where
s0 = init and for all i ≥ 0 such that si

ei→ si+1. Given a LTL property φ, L
satisfies φ if and only if every execution of L satisfies φ.

Without fairness constraints, a system may behave freely as long as it starts
with an initial state and conforms to the transition relation. A fairness constraint
restricts the set of system behaviors to only those fair ones. Given a LTL property
φ, verification under fairness means verifying whether all fair executions of the
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system satisfy φ. In the following, we briefly review a variety of different fairness
constraints. The following notions are used to define fairness. enabledEvt(s) is
the set of enabled events at state s , i.e., e is in enabledEvt(s) if and only if there
exist s ′ ∈ S such that s e→ s ′. If the system is constituted by multiple processes
running in parallel, we write enabledPro(s) to be the set of enabled processes,
which may make a move given the system state s . Given a transition s e→ s ′,
we write engagedPro(s , e, s ′) to be the set of participating processes, which have
made some progress during the transition. Notice that if e is synchronized by
multiple processes, the set contains all the participating processes. We write
engagedEvt(s , e, s ′) to denote {e}. In the following, we use E = 〈s0, e0, s1, e1, · · ·〉
to denote an execution.

Weak fairness [24,25]. There are two different levels of weak fairness, i.e.
event-level weak fairness (EWF) or process-level weak fairness (PWF). E satisfies
event-level weak fairness, if and only if for every action e, if e eventually becomes
enabled forever in E , then ei = e for infinitely many i , i.e., �� e is enabled ⇒
�� e is engaged . Intuitively, event-level weak fairness states that if an event
becomes enabled forever after some steps, then it must be engaged infinitely
often. E satisfies process-level weak fairness, if and only if for every process p,
if p eventually becomes enabled forever in E , then p ∈ engagedProc(si , ei , si+1)
for infinitely many i , which equals to �� p is enabled ⇒ �� p is engaged
in LTL. Intuitively, process-level weak fairness states that if a process becomes
enabled forever after some steps, then it must be engaged infinitely often. From
another point of view, process-level weak fairness guarantees that each process is
only finitely faster than the others. Weak fairness is equivalent to justice condi-
tions [25]. An alternative formulation of weak fairness is that every computation
should contain infinitely many particular states (e.g. states where an event or a
process is disabled or has just engaged).

Strong fairness [23,11,27]. Strong fairness is particularly useful in the anal-
ysis of systems that use semaphores, synchronous communication, and other
special coordination primitives. Likewise, there are two levels of strong fairness.
E satisfies event-level strong fairness (ESF) if and only if, for every event e,
if e is infinitely often enabled, e = ei for infinitely many i , which equals to
�� e is enabled ⇒ �� e is engaged in LTL. It states that if an event is
infinitely often enabled, it must be infinitely often engaged. E satisfies process-
level strong fairness (PSF) if and only if, for every process p, if p is infinitely
often enabled, then p ∈ engagedProc(si , ei , si+1) for infinitely many i , which
equals to �� p is enabled ⇒ �� p is engaged in LTL. Process-level strong
fairness means that if a process is repeatedly enabled, it must eventually make
some progress. Verification under (event-level/ process-level) strong fairness (or
compassion condition) has been discussed previously [13,15,20,26,32,31].

Strong global fairness [11]. E satisfies strong global fairness (SGF) if and
only if, for every s , e, s ′ such that s e→ s ′, if s = si for infinite many i , si = s
and ei = e and si+1 = s ′ for infinitely many i . Intuitively, it states that if a
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step (from s to s ′ by engaging in event e) can be taken infinitely often, then it
must actually be taken infinitely often. Different from the previous notions of
fairness, strong global fairness concerns about both events and states, instead of
events only. It can be shown by a simple argument that strong global fairness is
stronger than event-level strong fairness. Because it concerns about both events
and states, it is ‘event-level’ and ‘process-level’. Strong global fairness requires
that an infinitely enabled event must be taken infinitely often in all contexts,
whereas event-level strong fairness only requires the enabled event to be taken
in one context. Many population protocols reply on strong global fairness, e.g.,
protocols presented in [1,11].

3 Sequential Model Checking under Fairness

Given a LTS L and a LTL formula φ, model checking is about searching for an
execution of L which fails φ. In automata-based model checking, the negation
of φ is translated to an equivalent Büchi automaton B, which is then composed
with the LTS representing the system model. Model checking under fairness is to
search for an infinite execution which is accepting to the Büchi automaton and
at the same time satisfies the fairness constraints. Equivalently, it is to search a
loop or a Strongly Connected Components (SCC) in the state graph such that
the infinite execution traversing through every state/edges of the loop or SCC
satisfies the fairness constraints.

SCC-based verification algorithms rely on the SCC detection, most of which
are based on Tarjan’s algorithm for identifying SCCs [33]. Figure 1 presents a
sequential unified algorithm for automata-based model checking of LTL under
fairness [31]. The algorithm works by searching on-the-fly for fair strongly con-
nected subgraphs, which may constitute counterexamples. The basic idea is to
identify one SCC at a time and then check whether it is fair or not. If it is,
the search is over. Otherwise, the SCC may be partitioned into several smaller
strongly connected subgraphs, which are then checked recursively one by one.

We briefly explain how the algorithm works. Interested readers should refer
to [31] for details. Assumes that States is the set of states and Transitions is the
set of transitions1. At the top level is a while-loop, which stops only if all states
have been visited. At line 2, Tarjan’s algorithm is used to identify a SCC [13]. If
the found scc is fair, a counterexample is generated (at line 5) and the algorithm
returns false. Without fairness assumptions, a SCC is fair if and only if it is
accepting to the Büchi automaton (i.e. Büchi fair). The complexity of checking
whether scc is fair or not under fairness assumption is linear in the size of scc. For
instance, under weak fairness, we must first identify the set of processes/events
that are always enabled and compare the set with the set of processes/events
that make progress.

If scc is not fair, a procedure prune is used to prune bad states from scc (at
line 8). Bad states are the reasons why scc is not fair. The intuition behind the
pruning is that there may be a fair strongly connected subgraph in the remaining
1 Both of which may be constructed on-the-fly instead of known before-hand.
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procedure mc(States, Transitions)
1. while there are un-visited states
2. let scc := tarjan(States, Transitions);
3. mark states in scc as visited;
4. if isFair(scc) = true then – *
5. generate a counterexample; – *
6. return false; – *
7. else – *
8. scc = prune(scc); – *
9. if mc(scc, Transitions) = false then – *
10. return false; – *
11. endif – *
12. endif – *
13. endwhile
14. return true;

Fig. 1. Algorithm for sequential model checking under fairness [31]

states after eliminating the bad states. By simply modifying isFair and prune
method, the algorithm can be used to handle different fairness. For instance,the
following defines the functions for event-level strong fairness [31].

isFair(scc) = true if and only if ∀ s : scc enabledEvt(s) ⊆ engagedEvt(scc)

where engagedEvt(scc) = {a | ∃ s , s ′ : scc s a→ s ′} is the set of events labeling a
transition between two states in scc, i.e. the set of events that can be engaged if
an execution visits only states in scc. Intuitively, scc satisfies event-level strong
fairness if and only if all enabled events are engaged in the SCC.

prune(scc) = {s : scc | enabledEvt(s) ⊆ engagedEvt(scc)}

In this setting, a state is bad if it enables an event which is not engaged in the
SCC. It is clear that if the SCC contains a fair strongly connected subgraph, no
state constituting the subgraph is pruned.

At line 9, a recursive call is made to check whether there is a fair strongly
connected subgraph within the remaining states. The call terminates in two
ways. One is that a fair subgraph is found (at line 6) and the other is that all
states in scc are pruned (at line 14).

Example 1. Assume that the automaton shown in Figure 2 is the product of
a LTS and a Büchi automaton. Further assume that state 2 is an accepting
state, i.e. any traces which visits state 2 infinitely often is accepting the Büchi
automaton. There are two SCCs, namely scc1 which is composed of state 1
only and scc2 which is composed of state 0, 2 and 3. State 0 is a bad state
in scc2 under event-level strong fairness since a ∈ enabledEvt(state 0) whereas
a �∈ engagedEvt(scc2). Notice that state 3 is not a bad state. As a result, state
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Fig. 2. ESF Model Checking Example

0 is pruned. Next, in the recursive call, the SCC composed of state 2 and 3
are identified. However, state 3 becomes a bad state now because event c is
now enabled but not engaged. State 3 is pruned then. Lastly, state 2 is pruned.
Because scc1 does not contain an accepting state, it fails all isFair test. As a
result, no counterexample is found. �

After a SCC has been fully examined (i.e., all pruned) at line 12, the algorithm
repeats from line 2 to check the next SCC. We remark that the algorithm is a nat-
ural candidate for exploring multi-core parallelism. Firstly, examining weather
a SCC is fair or whether it contains fair strongly connected subgraph is time
consuming, and hence checking multiple SCCs in parallel is likely to generate
significant saving. SCC fairness checking is linear in the number of transitions
connecting states of the SCC. Checking whether a SCC contains a fair strongly
connected subgraph is expensive. In the worst case, only one state is pruned each
time and therefore the complexity is bounded by the number of transitions times
the number of states. Secondly, different SCCs naturally exclude each other and
therefore checking them in parallel will not cause significant computational or
communication overhead.

4 Parallel Model Checking in Shared-Memory Platform

In this section, we present a parallel approach at the challenges of shared-memory
architecture and its specific characteristics. We will detail the algorithm design,
its complexity and correctness.

4.1 Shared-Memory Platform

We work with a model based on threads that share all memory, although they
have separate stacks in their shared address space and a special thread-local
storage to store thread-private data. Our working environment is .NET frame-
work (version 2.0) in Microsoft Windows platform, with its implementation of
threads as lightweight processes. Switching contexts among different threads is
cheaper than switching contexts among full-featured processes with separate
address spaces, so using threads in the system incurs only a minor penalty.

Critical Sections, Locking and Lock Contention. In a shared-memory
setting, access to memory, that may be used for writing by more than a single
thread, has to be controlled through the use of mutual exclusion, otherwise,
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race conditions will occur. This is generally achieved through use of a “mutual
exclusion device”, so-called mutex. A thread wishing to enter a critical section has
to lock2 the associated mutex, which may block the calling thread if the mutex is
locked already by some other thread. An effect called resource or lock contention
is associated with this behavior. This occurs, when two or more threads happen
to need to enter the same critical section (and therefore lock the same mutex),
at the same time. If critical sections are long or they are entered very often,
contention starts to cause observable performance degradation, as more and
more time is spent waiting for mutexes.

Memory Management and Thread Communication. Microsoft .NET
common language runtime requires that all resources be allocated from the man-
aged heap. Objects are automatically freed when they are no longer needed by
the application. The communication between threads can be achieved simply by
object reference passing.

4.2 Parallel Fairness Model Checking Algorithm

The SCC-based verification algorithm presented in the previous section is re-
cursive and employs a sequential DFS search, which exhibits some challenges in
parallelism.

scc1 scc2
scc4

scc3

The sequential algorithm in Figure 1 can be illustrated in the figure above.
When a SCC is detected, it will be analyzed and pruned until empty or there
is a counterexample detected (scc4 in above graph). Taking a close look at the
algorithm, we observe that there are four actions applied in each detected SCC:
(1) fairness testing (line 4), (2) bad states pruning (line 8), (3) counterexample
generation (line 5), (4) recursive sub-SCC detection (line 9). The first three ac-
tions are local to the detected SCC. Although the recursive sub-SCC detection
is complicated, we can create a local copy of the Tarjan algorithm to search
for “SCC” in the pruned states. In this way, each SCC can be processed in-
dependent. Therefore, we can put the workload of SCC analysis into separate
threads to achieve concurrency. Inspired by these observations, we present a
SCC-based parallel model checking algorithm with four parts: Tarjan thread ,
SCC worker thread , SCC worker thread pool and parallel model checker . The
detailed algorithms are illustrated as follows.

2 In .NET framework, keyword lock is used to achieve this effect.
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stopped = false;
procedure run(threadPool , States, Transitions)
1. visited = ∅;
2. while there are states in States but not in visited

3. if stopped then {return; }
4. let scc = tarjan(States, Transitions);
5. visited = visited ∪ scc;
6. if forking conditions then
7. threadPool .forkWorkerThread(scc, Transitions);
8. else
9. process scc locally
10. endif
11. endwhile
12. return;

Fig. 3. Tarjan Thread Implementation

Tarjan thread. Figure 3 presents the implementation of Tarjan thread , which
identifies all SCCs using Tarjan’s algorithm. Tarjan thread has one public vari-
able stopped and the thread starting procedure run. stopped is a control variable
to stop this thread (line 3) as soon as a worker thread reports a counterexample.
When Tarjan thread starts, the run procedure will perform a DFS to detect all
SCCs in the search space using Tarjan’s algorithm. This process is similar to
mc procedure in Figure 1. When a SCC scc is detected at line 4, if the fork-
ing conditions at line 6 are satisfied, then a new SCC worker thread will be
forked and added in to the worker thread pool (line 7). Otherwise scc will pro-
cessed locally in the Tarjan thread (line 9). This local process is the same as the
SCC worker thread (which will be explained later), which stops this thread if a
counterexample is found. Forking conditions can be that the size of scc is bigger
than some threshold or the thread pool is full. We add this checking to achieve
better efficiency and workload balance. If the size of scc is small (e.g., only few
nodes), the overhead of creating a thread is much bigger than processing it lo-
cally. If the thread pool is full, processing the found scc locally is probably more
efficient than creating a long waiting queue in the thread pool.

SCC worker thread. SCC worker thread works on a detected SCC to report
whether the SCC contains a counterexample or not within the given SCC states
and transitions. It basically resembles the code from line 4 to 12 (highlighted
using *) in Figure 1. If the detected SCC is not fair, it will prune the states
according to the given fairness type. Otherwise it will terminate and return
false. If the pruned scc has fewer states, a local copy of the Tarjan’s algorithm
will continue the searching. Upon the termination of SCC worker thread , a
notification will send to the thread pool to notify the result.
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threadQueue = empty queue;
jobFinished = false;
procedure forkWorkerThread(States, Transitions)
1. lock(threadQueue);
2. if(!jobFinished)
3. let wt = new workerThread(States, Transitions);
4. register wt .termination to threadTermination procedure
5. threadQueue.enqueue(wt);
6. endif
7. unlock(threadQueue);

procedure threadTermination(thread)
8. lock(threadQueue);
9. if thread produces counterexample ∧ !jobFinished then
10. terminate all other threads
11. terminate tarjan thread
12. jobFinished = true;
13. endif
14. threadPool .remove(thread)
15. unlock(threadQueue);

procedure allThreadsJoin()
16. while(has running threads)
17. busy wait
18. endwhile

Fig. 4. Thread Pool Implementation

SCC worker thread pool. The implementation of the SCC worker thread pool
is presented in Figure 4. The thread pool has a working queue threadQueue3 to
store all active worker threads. Private variable jobFinished indicates whether
a counterexample has been found or not. Procedure forkWorkerThread creates
a new worker thread (line 3) and puts it into the working queue (line 5), if
the counterexample is not found (line 2). A lock is used on threadQueue (at
line 1 and 7) to prevent Tarjan thread working too fast to add two or more
threads at same time. This is possible because during the process of forking
the first thread, Tarjan thread may find another SCC and want to fork a new
thread. At line 4, we register the termination event of the worker thread to
procedure threadTermination, which means upon the termination of the worker
thread, the thread pool will be notified and procedure threadTermination will
be triggered. When procedure threadTermination is triggered, if the termination
thread has located a counterexample and no one does it before (line 9), thread

3 In our implementation, threadQueue is realized by System.Threading.ThreadPool
object in .NET Framework. The thread scheduling is managed by the thread pool
automatically.
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procedure pmc(States, Transitions)
1. initialize worker thread pool threadPool

2. let tarjan = tarjanThread .run(threadPool , States, Transitions);
3. tarjan.join();
4. threadPool .allThreadsJoin();
5. if counterexample is found then
6. return false;
7. return true;

Fig. 5. Parallel Model Checker Implementation

pool will terminate4 all other active threads (line 10) and Tarjan thread (by
setting stopped flag to true) (line 11). Flag jobFinished is set to true at line 12,
hence new threads shall not be forked anymore. !jobFinished checking in line 9 is
necessary to prevent terminating same threads twice. In the end, the termination
thread is removed from thread pool in line 12. During this process threadQueue
is locked to prevent data race. Procedure allThreadsJoin does busy-waiting until
all threads terminate.

Parallel model checker. Lastly, parallel model checker is shown in Figure 5.
It conducts the verification by creating the Tarjan thread and thread pool. Once
Tarjan thread starts, it will wait for Tarjan thread to join (i.e., successfully
terminate) (line 3). The termination can be that all states are explored, or a
counterexample is found locally, or stopped flag is set to false. Afterwards, it will
wait for thread pool to terminate (line 4). The procedure will return false if any
counterexample is found in tarjan thread or any worker thread.

4.3 Complexity and Soundness

In this section, we discuss the complexity of the parallel model checking algo-
rithm and prove its soundness.

For the sequential version of the algorithm, the time complexity for verifica-
tion under no fairness, event-level or process-level weak fairness or strong global
fairness are similar, i.e., all linear in the number of system transitions. All states
in one SCC are discarded at once in all cases and, therefore, no recursive call is
necessary. Furthermore, the prune function is linear in the number of transitions
of a SCC. In comparison, SPIN’s model checking algorithm under process-level
weak fairness increases the run-time expense of a verification run by a factor
that is linear in the number of running processes. Verification under event-level
or process-level strong fairness is in general expensive. In the worst case (i.e.,
the whole system is strongly connected and only one state is pruned every time),
the prune method may be invoked at most #S times, where #S is the number
4 Thread termination can be achieved by thread killing or asking the thread to volun-

tarily give up. The second way is safer and adopted in our approach. One example
is the stopped flag in Tarjan thread .
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of system states. Thus, the time complexity is bounded by #S × #T where
#T is the number of transitions. In practice, however, if the property is false,
a counterexample is usually identified quickly, because our algorithm constructs
and checks SCCs on-the-fly. Even if the property is true, our experience suggests
that the worst case scenario is rare in practice.

For the parallel version of the algorithm, the time and space complexity is
exactly same as the sequential version. This is not surprising because the parallel
algorithm simply splits SCC analysis into worker threads. The parallel algorithm
is designed for a shared memory framework, the SCCs and their transitions are
shared between Tarjan thread and worker threads. There is no communication
overhead. If to migrate this approach into distributed systems, we may consider
to pass SCC only and let the worker threads to build the transitions locally to
avoid the communication overhead. The is because the number of transitions of
a SCC is often much larger than the number of vertices.

If the verification result is true, the number of states and transitions visited
in the parallel and sequential version are same. If there is a counterexample, the
parallel version may visit more states depending on when the counterexample is
identified. If a counterexample is present in the first few SCCs encountered during
the search, then the sequential version may find one quickly, while the parallel
version may have forked multiple threads to search in more SCCs. Hence parallel
version visits more states and transitions. On the other hand, if a counterexample
is present only in the last few SCCs, the parallel version can be faster than
the sequential version if the counterexample is identified quickly in one worker
thread, which then terminates all other SCC checking. This is evidenced by the
experiment results presented in Section 5. Notice that when there are more than
one counterexamples in the system, it is possible that the parallel verification
may produce different counterexample at different runs.

Regarding the soundness, the following theorem establishes correctness of the
sequential algorithm. The proof for different fairness can be found in our tech-
nical report [30].

Theorem 1. Let L be an LTS. Let φ be a property. Let F be a fairness type
(i.e., EWF, PWF, ESF, PSF or SGF). L �F φ if and only if the algorithm mc
returns true.

The following theorem states the correctness of the parallel algorithm pmc. We
argue the total correctness of the parallel algorithm by showing it is terminating
and equivalent to the sequential mc algorithm.

Theorem 2. Let L be an LTS. Let φ be a property. Let F be a fairness type
(i.e., EWF, PWF, ESF, PSF or SGF). L �F φ if and only if the algorithm pmc
returns true.
Proof. Firstly, we show that the pmc algorithm is terminating. By the assump-
tion, we know that the number of states is finite, so is the number of the SCCs.
In Tarjan thread , the number of visited states and the pruned states are mono-
tonically increasing, hence the Tarjan thread is terminating. Worker threads are
terminating since they are working on the detected SCC and the number of
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pruned states are monotonically increasing. Since the number of SCC is finite,
worker thread pool is terminating. Therefore pmc is terminating.

Secondly, we show that pmc returns the same result as mc. The key of this
proof is to prove that each SCC analysis is independent of each other. If this
true, then checking the SCCs in parallel is same as checking them sequentially.
We have listed the four actions performed in the SCCs in Section 4.1, which can
be applied independently.

Lastly, the correctness of data sharing and race condition prevention by using
locks have been discussed in Section 4.2. We skip it here. �

Following the above theorem, we conclude that the sequential algorithm and
the parallel algorithm are equivalent in terms of correctness. Therefore as long
as the reduction is compatible with sequential algorithm, then it is compati-
ble with the parallel algorithm. For example, our previous work [32] shows that
partial order reduction is possible by employing fairness annotations on indi-
vidual events, which means this technique can also be used with our parallel
algorithm. We remark that pmc is orthogonal to state reduction techniques like
partial order reduction, symmetry reduction or data abstraction. Intuitively, the
parallel algorithm would perform better since it may utilize more CPU power.
Nonetheless, thread forking/terminating or communication between threads can
be costly. We present detailed analysis using real-world examples as well as hand
craft examples in the next section.

5 Experimental Results

Process Analysis Toolkit (hereafter PAT) is designed for systematic validation of
distributed/concurrent systems using state-of-art model checking techniques. Its
main functionalities include simulation, explicit on-the-fly model checking, and
verification under fairness. The model checker combines complementary model
checking techniques for system verification. In the following, we show its per-
formance on both benchmark systems as well as recently developed population
protocols, which require fairness for correctness. All the models (with config-
urable parameters) are embedded in the PAT package and available online at
our web site http://pat.comp.nus.edu.sg.

Regarding the threads scheduling, there are two approaches. The first ap-
proach is to manually assign a newly created thread to a free CPU-core. If
all CPU-cores are used, the new thread is pushed into the working queue and
wait.The second approach is to make each thread as operating system thread5,
and let the OS CPU scheduler to do the scheduling. We compared the two ap-
proaches, it shows that when the size of the SCCs is big, the two approaches
have same results. When the number of SCCs is big, the second approach is
more efficient. We applied second approach in our experiments.

In our experiments below, Size denotes the number processes in the mod-
els. Besides the execution time of the sequential algorithm (mc) and parallel
5 In our implementation, we use System.Threading.ThreadPool object in .NET frame-

work 2.0 to create system threads in Microsoft Windows system.
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Table 1. Experiment results on a PC running Windows XP with 2.83 GHz quad-core
Intel Q9550 CPU and 2 GB memory

Model Size Avg SCC/ SCC EWF ESF SGF
#SCC Ratio Result mc pmc Result mc pmc Result mc pmc

DP 5 67/13 0.36 No 0.08 0.08 Yes 0.22 0.20 Yes 0.19 0.19
DP 6 178/21 0.38 No 0.13 0.13 Yes 0.97 0.84 Yes 0.86 0.78
DP 7 486/31 0.4 No 0.38 0.37 Yes 4.62 3.39 Yes 4.42 3.38
DP 8 1368/43 0.41 No 1.41 1.33 Yes 29.28 19.49 Yes 32.90 22.14

LE C 3 22/3 0.33 Yes 0.11 0.11 Yes 0.11 0.11 Yes 0.10 0.10
LE C 4 24/15 0.47 Yes 0.53 0.47 Yes 0.52 0.47 Yes 0.46 0.45
LE C 5 34/43 0.58 Yes 4.04 3.66 Yes 4.03 3.65 Yes 3.66 3.49
LE C 6 48/103 0.64 Yes 23.12 21.39 Yes 23.05 21.54 Yes 21.91 20.14
LE C 7 66/227 0.68 Yes 128.8 124.4 Yes 129.5 124.3 Yes 133.9 127.2
LE C 8 86/479 0.71 Yes 604.3 600.5 Yes 615.8 606.6 Yes 721.9 684.4
LE R 3 9/268 0.36 No 0.11 0.11 No 0.12 0.12 Yes 1.40 1.27
LE R 4 9/2652 0.4 No 0.11 0.28 No 0.59 0.60 Yes 21.65 15.73
LE R 5 9/25274 0.42 No 0.71 0.72 No 2.22 2.19 Yes 587.0 456.4
TC R 4 16/1 0.01 No 0.06 0.07 No 0.07 0.06 Yes 0.11 0.12
TC R 5 60/1 0.01 No 0.08 0.08 No 0.08 0.08 Yes 0.45 0.48
TC R 6 84/2 0.01 No 0.11 0.11 No 0.11 0.11 Yes 2.20 2.38
TC R 7 210/2 0.01 No 0.14 0.14 No 0.15 0.16 Yes 11.28 12.31
TC R 8 330/3 0.01 No 0.19 0.20 No 0.25 0.23 Yes 69.55 72.98
TC R 9 756/3 0.01 No 0.27 0.31 No 0.36 0.37 Yes 494.4 572.7

algorithm (pmc), we present additional measurements which reflect the amount
of workload pmc can put in parallel if the verification result is true6. One is the
average size of nontrivial SCCs (denoted as Avg SCC Size) and the number of
SCC (denoted as #SCC ). A SCC is trivial if and only if it has only one state.
Intuitively, the parallel algorithm gains more saving with larger and more SCCs.
The other is the ratio of the number of states of all (non-trivial) SCCs and the
whole state space (denoted as SCC Ratio). Intuitively, a higher SCC Ratio shall
lead to more saving. The forking condition is that the SCC must have at least
100 states. ‘-’ means out of memory. The unit of time measurement is second.

Table 1 summarizes the verification statistics on classic dinning philosophers
problem (DP), and recently developed population protocols. The population
protocols include leader election for complete networks (LE C ) [11], for network
rings (LE R) [11] and token circulation for network rings (TC R) [1]. We modify
the DP model so that it is deadlock-free (i.e., by letting one of the philosophers to
pick up the forks in a different order). The property is that a philosopher never
starves to death, i.e., ��eat .0, where eat .0 is the event of 0-th philosopher
eating. The property for the leader election protocols is that eventually always
there is one and only one leader in the network, i.e., ��oneLeader . Correctness
of all these algorithms relies on different notions of fairness.

6 When the property is false, SCC Ratio can be different for different runs.
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Table 2. Experiment results on a PC running Windows XP with 2.83 GHz quad-core
Intel Q9550 CPU and 2 GB memory

Model Size Avg SCC/ SCC EWF ESF SGF
#SCC Ratio Result mc pmc Result mc pmc Result mc pmc

PAR1 5 10001/5 0.2 No 1.75 2.11 Yes 22.50 12.03 Yes 11.33 6.97
PAR1 6 10001/6 0.2 No 1.74 2.07 Yes 27.10 14.81 Yes 13.59 8.13
PAR1 7 10001/7 0.2 No 1.71 2.29 Yes 31.22 16.66 Yes 15.89 9.14
PAR1 8 10001/8 0.2 No 1.71 2.16 Yes 36.08 18.04 Yes 18.09 10.60
PAR1 9 10001/9 0.2 No 1.71 2.15 Yes 40.59 20.85 Yes 20.40 11.90
PAR1 10 10001/10 0.2 No 1.73 2.15 Yes 45.29 22.63 Yes 22.81 13.07
PAR2 4 20000/5 0.5 No 5.46 7.12 NA - - Yes 8.87 5.52
PAR2 5 20000/6 0.5 No 6.05 9.53 NA - - Yes 18.32 8.64
PAR2 6 20000/7 0.5 No 6.39 10.51 NA - - Yes 21.37 9.32
PAR2 7 20000/8 0.5 No 6.90 11.41 NA - - Yes 24.50 9.69
PAR2 8 20000/9 0.5 No 7.77 11.65 NA - - Yes 27.86 11.82
PAR2 9 20000/10 0.5 No 8.06 12.76 NA - - Yes 30.89 13.68
PAR3 7 2000/8 1 No 0.29 0.20 Yes 411.5 117.6 Yes 0.41 0.28
PAR3 8 2000/9 1 No 0.21 0.24 Yes 463.1 135.7 Yes 0.45 0.29
PAR3 9 2000/10 1 No 0.25 0.23 Yes 515.7 155.8 Yes 0.49 0.31

In Table 1, we can see that when the verification result is false, either pmc or
mc can be faster, which is expected. When the verification result is true, pmc
is faster in most of the cases, except in the case of model checking the TC R
example under strong global fairness. In this particular example, SCC ratio is
very low (0.01), which means that there are many trivial SCCs. Furthermore,
there are only few non-trivial SCCs. As a result, there is little work that can
be separated out for the worker threads to speed up the model checking, and
the communication overhead makes pmc slower. On the other hand, the pmc
slowdown in this case is only several percents of mc, which shows that the
communication overhead in pmc is low.

Table 2 summarizes the verification statistics on some hand craft examples
to show the potential effectiveness of the parallel algorithm. We create three
models (PAR1, PAR2 and PAR3) such that the their state space contains several
SCCs, each of which has big number of states. As a result, worker threads can
be dispatched with substantial workload. Correctness of all these algorithms
requires ESF and SGF.

In Table 2, we can see that pmc is working well in PAR1 example, where the
average SCC size is big and the SCC ratio is not very low. The performance
is even better (60% speedup) when the SCC ratio increases to 0.5 in PAR2
example. The PAR3 example almost produces the ideal case (72% speedup)
such that the four cores are fully loaded. Since there are more SCCs than cores,
further speedup could be achieved if there were more cores. ESF case in PAR2
gives a worst case mentioned in Section 4.3 for strong fairness checking, hence
it ends up with out of memory exception.
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Fig. 6. Results on Intel Core2 6600 CPU
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Fig. 7. Results on Intel Q9550 CPU

The experiment results in Table 1 and 2 confirm that the speedup of parallel
verification relies on the size and the number of non-trivial SCCs. Each SCC has
four analysis actions as described in Section 4.1. If the size of SCCs is big and/or
the number of SCCs is more than the number of cores, each worker thread will
make full use of the available CPU-cores. Overall, pmc performs better than mc
for big average SCC size and high SCC ratio.

To study the scalability of our approach with different number of CPU cores,
we conduct the same experiments (model checking examples in Table 1 and
PARA1 example under strong global fairness)7 on a dual-core CPU (Figure 6)
and a quad-core CPU8 (Figure 7). The coordinate of each point (x , y) in the
graphs represents mc execution time and pmc execution time of a model corre-
spondingly. From the figures we can see that, points in Figure 6 are scattered
between line y = x and y = 2x , while points in Figure 7 are scattered be-
tween line y = 2x and y = 3x . The average speedup of the parallel algorithm is
22.9% for quad-core CPU and 11.2% for dual-core CPU. This suggests that our
approach is scalable for more CPU cores in general.

Besides PAT, there are a number of model checkers which are designed for sim-
ilar application domains. It is, however, not easy to compare PAT with them. For
instance, the refinement checker FDR does not support shared variables/arrays,
and therefore, FDR’s model is significantly different from PAT’s. Further, FDR
has no support for multi-core. The model checker SPIN supports verification of
LTL properties. The multi-core parallel algorithm in SPIN is designed for model
checking based on nested depth-first search. Nested depth-first-search works well
for verification under no fairness. It can be twisted to perform model checking
under fairness in the price of significant computational overhead, which has been

7 PARA2 and PARA3 have high average SCC size and SCC ratio which is rare in real
systems, so we exclude them in the salability testing.

8 Since we calculate the speedup of pmc compared to mc, the absolute speed of the
two CPUs is not important.
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shown in [31]. As a result, it makes little sense here to compare performance of
our parallel algorithm with SPIN’s.

6 Related Works

LTL parallel verification is an active research area due to the prevalence of the
multi-core CPU and distributed systems. There are various approaches in the
literature, as discussed below.

Holzmann proposed an extension of the SPIN model checker for dual-core ma-
chines in [17]. The algorithms keep their linear time complexity and the liveness
checking algorithm supports full LTL. The algorithm for checking safety prop-
erties scales well to N-core systems. The algorithm for liveness checking, which
is based on the original SPIN’s nested DFS algorithm, can only be applied in
dual-core systems. Furthermore, our approach handles different forms of fairness,
while SPIN handles only process level weak fairness.

Lafuente [22] presented a cycle localization algorithm based on nested DFS,
which is very similar to our ideas. In their approach, the main thread performs
the first DFS to identify an accepting state, and the worker threads perform the
second DFS to detect the fair cycle from the accepting state. Compared to this
solution, our approach has the advantage that each SCC will be checked by one
and only one worker thread.

A multi-core LTL model checking algorithm based on known distributed-
memory algorithms is presented in [2]. This algorithm is linear for properties
expressible as weak Büchi automata. However, the worst case complexity is
quadratic. Our approach has no restriction on the types of LTL, and has linear
time complexity in worst case.

A different approach to shared-memory model checking is presented in [19]
based on CTL* translation to Hesitant Alternating Automata. The proposed
algorithm uses non-emptiness game for deciding validity of the original formula
and is therefore largely unrelated to the algorithms based on fair-cycle detection.

Barnat, Chaloupka and Pol gave a comprehensive survey in the distributed
SCC decomposition algorithms [3]. We briefly list some of important ones in
the following. These algorithms are designed for distributed systems and has
quadratical or cubic order of complexity.

MAP. The idea of the Maximal Accepting Predecessor algorithm [6,8] relies on
the fact that every accepting vertex inside an accepting cycle is its own prede-
cessor. Direct implementation from this idea would give expensive computation
and store all proper accepting predecessors of all (accepting) vertices. To solve
this problem, the MAP algorithm stores only a single representative of all proper
accepting predecessor. The time complexity of the algorithm is O(a2×m), where
a is the number of accepting vertices and m is the number of edges.

OWCTY. The One Way Catch Them Young algorithm [12,9] is to try to re-
peatedly remove vertices from the graph that cannot lie on an accepting cycle.
The two removal rules of this algorithm are explained as follows: (1) a vertex is
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removed from the graph if it has no successors in the graph (the vertex cannot
lie on a cycle), and (2) a vertex is removed if it cannot reach an accepting vertex
(a potential cycle the vertex lies on is non-accepting). The algorithm continues
the removal steps until there are more vertices to be removed. In the end, either
there are some vertices remaining in the graph meaning that the original graph
contained an accepting cycle, or all vertices have been removed meaning that the
original graph had no accepting cycles. The time complexity of the algorithm is
O(h × m) where h is the height of the SCC quotient graph. Here the factor m
comes from the computation of elimination rules while the factor h relates to
the number of global iterations the removal rules must be applied.

NEGC. The idea behind the Negative Cycle Algorithm [7] is to transform the
LTL model checking problem to the problem of negative cycle detection. Every
edge of the graph outgoing from a non-accepting vertex is labeled with 0 while
every edge outgoing from an accepting vertex is labeled with 1. Clearly, the graph
contains a negative cycle if and only if it has an accepting cycle. The worst case
time complexity of the algorithm is O(n×m), where n is the number of vertices
and m is the number of edges.

OBF. This algorithm is based on a recent technique OWCTY-BWD-FWD
(OBF) [4,5]. It identifies a number of independent subgraphs (called OBF slices)
in O(n + m) time, where n is the number of vertices and m is the number
of edges. The slices are then decomposed using the FB algorithm. This algo-
rithm assumes the input graph to be rooted, i.e., we have an initial vertex from
which all other vertices are reachable. The time complexity of the algorithm is
O(n × (n + m)).

7 Conclusion

In this work, we proposed a parallel LTL-verification on fairness enhanced sys-
tems in multi-core shared-memory architecture. Based on the Tarjan’s algorithm,
our approach separated the SCC analysis into workers threads by careful algo-
rithm design. Our approach is holistic, which does not only take care of LTL
verification but also check the fairness constraints satisfaction in one goal. Fair-
ness enhanced systems may contains big and complicated SCC structures in the
state space. Our approach can split the workload to worker threads to achieve
performance improvement. The solution is on-the-fly and the complexity is linear
to the size of state space. We have implemented this technique in our home grown
model checker PAT. The experimental results on real world systems suggested
our solution is efficient and scalable to multi-cores.

It is a well known fact, that a distributed-memory, parallel algorithm is
straightforwardly transformed into a shared-memory one. But not vise verse.
One of the future work is to migrate our approach into distributed systems with
the aim of minimizing the communication overhead. Furthermore, we will con-
duct more experiments in the future to see both the scalability and limitations
with more CPU cores.
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Abstract. Internet protocols encapsulate a significant amount of state,
making implementing the host software complex. In this paper, we de-
fine the Statecall Policy Language (SPL) which provides a usable middle
ground between ad-hoc coding and formal reasoning. It enables pro-
grammers to embed automata in their code which can be statically
model-checked using SPIN and dynamically enforced. The performance
overheads are minimal, and the automata also provide higher-level de-
bugging capabilities. We also describe some practical uses of SPL by de-
scribing the automata used in an SSH server written entirely in
OCaml/SPL.

Constructing modern Internet servers is a difficult proposition, since the soft-
ware must encapsulate a significant amount of state and deal with a variety
of incoming packet types, complex configurations and versioning inconsistencies.
Network applications are also expected to be liberal in interpreting received data
packets and must reliably deal with timing and ordering issues arising from the
“best-effort” nature of Internet data traffic.

Due to this complexity, mechanical verification techniques are very useful to
guarantee safety, security and reliability properties. One mature formal method
used to verify properties about systems is model checking. Software model-
checking involves: (i) creating an abstract model of a complex application; (ii)
validating this model against the application; and (iii) checking safety properties
against the abstract model. To non-experts, steps (i) and (ii) are often the most
daunting. How does one decide which aspects of the application to include in the
abstract model? How does one determine whether the abstraction inadvertently
“hides” critical bugs? If a counter-example is found, how does one determine
whether this is a genuine bug or just a modeling artifact?

In this paper, we present the Statecall Policy Language (SPL) which simplifies
the model specification and validation tasks with a view to making model check-
ing more accessible to regular programmers. SPL is a high-level modelling lan-
guage which enables developers to specify models in terms of allowable program
events (e.g. valid sequences of received network packets). We have implemented
a compiler that translates SPL into both Promela and a general-purpose pro-
gramming language (e.g. OCaml). The generated Promela can be used with
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SPIN [1] in order to check static properties of the model. The OCaml code pro-
vides an executable model in the form of a safety monitor . A developer can link
this safety monitor against their application in order to dynamically ensure that
the application’s behaviour does not deviate from the model. If the safety mon-
itor detects that the application has violated the model then it logs this event
and terminates the application.

Although this technique simplifies model specification and validation it is, of
course, not appropriate for all systems. For example, dynamically shutting down
a fly-by-wire control system when a model violation is detected is not an option.
However, we observe that there is a large class of applications where dynamic ter-
mination, while not desirable, is preferable to (say) a security breach. Melange [2]
focusses on constructing correct, clean-room implementations of Internet appli-
cations using statically type-safe languages, and SPL delivers real benefits in this
area. None of the major implementations of protocols such as HTTP (Apache),
SMTP (Sendmail/Postfix), or DNS (BIND) are regularly model-checked by their
development teams. All of them regularly suffer from serious security flaws rang-
ing from low-level buffer overflows to subtle high-level protocol errors, some of
which could have been caught by using model checking. In this paper, we use
the Melange SSH [3] server as an example of how an application using SPL can
be model-checked without sacrificing performance (§3.1) and enforcing critical
security properties (§3.2) that are informally specified in the RFC documents.

There is no “perfect” way of specifying complex state machines, and the liter-
ature contains many different languages for this purpose (e.g. SDL [4], Estelle [5],
Statemate [6], or Esterel [7]). In recognition of this, the SPL language is very
specialised to expressing valid sequences of packets for Internet protocols and is
translated into a more general intermediate “Control Flow Automaton” repre-
sentation first proposed by Henzinger et al. [8]. The output code is generated
from this graph, allowing for other state machine languages to be used in the
future without requiring the backend code generators to be rewritten.

1 Statecall Policy Language

SPL is used to specify sequences of events which represent non-deterministic
finite state automata. The automaton inputs are referred to as statecalls—these
can represent any program events such as the transmission of receipt of net-
work packets or the completion of some computation. The syntax of the lan-
guage is written using a familiar ’C’-like syntax, with built-in support for non-
deterministic choice operators in the style of Occam’s ALT [9]. Statecalls are
represented by capitalized identifiers, and SPL functions use lower-case identi-
fiers. Semicolons are used to specify sequencing (e.g. S1; S2 specifies that the
statecall S1 must occur before the statecall S2).

1.1 Case Study

Before specifying SPL more formally, we explain it via a simple case study—
the UNIX ping utility which transmits and receives ICMP Echo requests and
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measures their latencies. A simple ping automaton with just 3 statecalls could
be written as:

automaton ping () {

Initialize ;

multiple (1..) {

Transmit_Ping ;

Receive_Ping ;

}

}

This automaton guarantees that the statecalls must initially operate in the fol-
lowing order: Initialize, Transmit Ping, and Receive Ping. Since a realistic
implementation of ping transmits and receives packets continuously, we also use
the multiple keyword in our SPL specification. Using this automaton, the ping
process can perform initialisation once, and then transmit and receive ping pack-
ets forever; an attempt to initialise more than once is not permitted. In a realis-
tic network a ping response might never be received, and the non-deterministic
either/or operator allows programmers to represent this scenario.

automaton ping () {

Initialize ;

multiple (1..) {

Transmit_Ping ;

either {

Receive_Ping ;

} or {

Timeout_Ping ;

};

}

}

ping provides a number of command-line options that can modify the program
behaviour. For example, ping -c 10 requests that only 10 ICMP packets be sent
in total, and ping -w specifies that we must never timeout, but wait forever for
a ping reply. We represent these constraints by introducing state variables into
SPL as follows:

automaton ping(int max_count , int count , bool can_timeout ) {

Initialize ;

during {

count = 0;

do {

Transmit_Ping ;

either {

Receive_Ping ;

} or (can_timeout ) {

Timeout_Ping ;

};

count = count + 1;

} until (count >= max_count );
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} handle {

Sig_INFO ;

Print_Summary ;

};

}

Observe that the either/or constructs can be conditionally guarded in the style
of Occam’s ALT, and state variables can be assigned in an imperative style. A
long-running ping process would need to receive UNIX signals at any point in its
execution, take some action, and return to its original execution. Signal handlers
are often a source of bugs due to their extremely asynchronous nature [10]—SPL
provides a during/handle construct (used in the example above) which models
them by permitting a state transition into alternative statement blocks during
normal execution of an SPL specification.

Once we are satisfied that our SPL specification is of suitable granularity,
the SPL compiler is run over it. The compiler outputs several targets: (i) a
graphical visualisation using the Graphviz tool [11] as seen in Figure 1 for the
example above; (ii) a non-deterministic model in the Promela language; and
(iii) an executable model designed to be linked in with an application. The
OCaml interface for the executable model is shown below:

exception Bad_statecall

type t = [ ‘Initialize | ‘Print_summary | ‘Receive_ping

| ‘Sig_info | ‘Timeout_ping | ‘Transmit_ping ]

type s

val init : max_count :int -> count:int -> can_timeout :bool ->

unit -> s

val tick : s -> t -> s

This code is linked in with the main ping application, and appropriate calls to
initialize the automaton and invoke statecalls are inserted in the code. Crucially,
we do not mandate a single style of invoking statecalls; instead the program-
mer can choose between automatic mechanisms (e.g. MPL [2] packet parsing
code can automatically invoke statecalls when transmitting or receiving pack-
ets), language-assisted means (e.g. functional combinators, object inheritance,
or pre-processors such as cpp), or even careful manual insertion in places where
other methods are inconvenient.

1.2 Syntax and Typing Rules

SPL syntax is presented in Figure 2 with an extended Backus-Naur Form [12].
We represent terminals as term, tokens as token, alternation with {one | two},
optional elements as [optional], elements which must repeat once or more as
(term)+ and elements which may appear never or many times as (term)*.

SPL is a first order imperative language, extended from Cardelli’s simple
imperative language [13]. We distinguish between commands (without a return
value) and expressions which do have a return value. Function and automaton
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S_h_init_6

S_seq_8

{Sig_INFO}

S_h_exit_7

{Print_Summary}

S_do_11

S_assign_10

(!(ping_count > ping_max_count))

S_final_2

(ping_count > ping_max_count)

h_ret_5=13

S_seq_12

{Transmit_Ping}

S_or_20

ping_can_timeout

S_or_16

true

h_ret_5=22

S_either_or_15

{Timeout_Ping}

h_ret_5=18

{Receive_Ping}

(h_ret_5 == 13)

(h_ret_5 == 22) (h_ret_5 == 18)

ping_count=(ping_count + 1)

S_initial_1

S_seq_3

{Initialize}

ping_count=0

Fig. 1. Graph output of the example ping state machine. Red nodes indicate the start
and final states, black edges are statecalls, blue edges are conditional, and green edges
are state variable assignments.
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main → (fdecl)+ eof
fdecl → {automaton | function} id [ fargs ] fbody
fargs → ( {int id | bool id} [, fargs] )

fcall-args → id [, fcall-args]
statecall-args → statecall [, statecall-args]

fbody → { (statement)* } [;]
int-range → ( [int] .. [int] ) | ( int )
statement → statecall ; | id ( fcall-args ) ;

| always-allow ( statecall-args ) fbody
| multiple int-range fbody | optional fbody
| either [ guard ] fbody (or [ guard ] fbody)+
| do fbody until guard ;

| while guard fbody
| id = expr ;

| during fbody (handle fbody)+
| exit ; | abort ;

guard → ( expr )

expr → int | id | ( expr )

| expr + expr | expr - expr
| expr * expr | expr / expr
| - expr | true | false

| expr && expr | expr || expr | not expr
| expr > expr | expr >= expr
| expr < expr | expr <= expr
| expr = expr

Fig. 2. EBNF grammar for SPL specifications

names are distinct, and are considered commands. Function types are written
ρ1 × . . . × ρi, or abbreviated to ρ. Γα represents a global environment with
type signatures for functions and Γ a per-function environment containing state
variable bindings. SPL does not have any built-in functions, so all type signatures
are obtained from the SPL specifications.

Table 1 lists the imperative type judgements and Table 2 establishes the ba-
sic typing rules. Note that procedure environments contain only the variables
passed in as arguments to the function declaration, and no global variables
are permitted. Table 3 and Table 4 list the type rules for expressions and
statements.

Table 1. Type Judgments for SPL

Γ � � Γ is a well-formed environment
Γ � A A is a well-formed type in Γ
Γ � C C is a well-formed command in Γ
Γ � E : A E is a well-formed expression of type A in Γ
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Table 2. Basic environment and typing rules

(Env φ)

φ � �

(Env x)

Γ � A I /∈ dom(Γ )

Γ, I : A � �

(Type Int)

Γ � �
Γ � Int

(Type Bool)

Γ � �
Γ � Bool

(Decl Proc)

φ,x : ρ � C Γα, I : ρ � �
Γα � (fun I (x × ρ) = C)

Table 3. Expression typing rules

(Expr Bool)

Γ � � x ∈ {true, false}
Γ � x : Bool

(Expr Int)

Γ � �
Γ � N : Int

(Expr Val)

Γ1, I : A,Γ2 � �
Γ1, I : A, Γ2 � I : A

(Expr Not)

Γ � E1 : Bool

Γ � not E1 : Bool

(Expr BoolOp)

Γ � E1 : Bool Γ � E2 : Bool O1 ∈ {and,or}
Γ � O1(E1, E2) : Bool

(Expr IntOp)

Γ � E1 : Int Γ � E2 : Int O1 ∈ {+,−,×,÷}
Γ � O1(E1, E2) : Int

(Expr CompOp)

Γ � E1 : Int Γ � E2 : Int O1 ∈ {=, >,≥, <,≤}
Γ � O1(E1, E2) : Bool

Table 4. Command typing rules

(Cmd Assign)

Γ � I : A Γ � E : A

Γ � I ← E

(Cmd Sequence)

Γ � C1 Γ � C2

Γ � C1;C2

(Cmd Allow)

Γ � C

Γ � allow C

(Cmd Either Or )

Γ � C1..n Γ � E1..n : Bool

Γ � either (C1 × E1 . . . Cn × En)

(Cmd Do Until)

Γ � E : Bool Γ � C

Γ � (until E = C)

(Cmd Multiple)

Γ � E1 : Int Γ � E2 : Int Γ � C

Γ � (multiple E1 E2 = C)

(Cmd While)

Γ � E : Bool Γ � C

Γ � (while E = C)

(Cmd Function Call)

Γ 1
α, I : ρ, Γ 2

α � � Γ � x : ρ

Γ 1
α, I : ρ, Γ 2

α � call I x

(Cmd Exit)

Γ � exit

(Cmd Abort)

Γ � abort
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2 Intermediate Representation

This section defines the Control Flow Automaton graph used as an intermediate
representation of SPL specifications (§2.1), the semantics of multiple automata
in the same SPL specification (§2.2), and finally optimisations applied to the
CFA to reduce the number of states (§2.3). The CFA is a good abstraction for
a software-based non-deterministic model and it is often used by model extrac-
tion tools (e.g. BLAST [8]) as the representation into which C source code is
converted. Since there are a myriad of state-machine languages similar to SPL
which share the properties formalised by Schneider’s software automata [14], our
adoption of the CFA representation ensures that the back-ends of the SPL tool-
chain (e.g. the Promela output) remain useful even if the front-end language
is changed into something specialised for another task.

2.1 Control Flow Automaton

The SPL compiler transforms specifications into an extended Control Flow Au-
tomaton (CFA) [8] graph. A CFA represents program states and a finite set of
state variables in blocks, with the edges containing conditionals, assignments,
statecalls or termination operations. The CFA is non-deterministic and multiple
states can be active simultaneously. More formally, our extended control flow
automaton C is a tuple (Q, q0, X, S,Op,→) where Q is a finite set of control
locations, q0 is the initial control location, X a finite set of typed variables, S a
finite set of statecalls, Op a set of operations, and →⊆ (Q×Op×Q) a finite set
of edges labeled with operations. An edge (q, op, q′) can be denoted q

op−→ q′. The
set Op of operations contains: (i) basic blocks of instructions, which consist of
finite sequences of assignments svar = exp where svar is a state variable from
X and exp is an equivalently typed expression over X ; (ii) conditional predi-
cates if(p), where p is a boolean expression over X that must be true for the
edge to be taken; (iii) statecall predicates msg(s), where s is a statecall (s ∈ S)
received by the automaton; and (iv) abort traps, which immediately signal the
termination of the automaton. From the perspective of a Mealy machine, the
input alphabet Σ consists of statecall predicates and the output alphabet ∧ is
the remaining operations. Thus a CFA graph is driven purely by statecall inputs,
and the other types of operations serve to hide the state space explosion of a
typical software model.

The CFA graph is constructed from SPL statements by recursively applying
transformation rules to an initial state I and a final state O. Figure 3 illustrates
the transformations for the basic SPL statements diagrammatically with the
circles and lines representing CFA nodes and edges. The diamonds indicate a
recursive application of the transformation rules with the initial and final states
mapped to the input and outputs of the diamond node. Nodes within the dashed
ellipses (named α, β, γ and so on) are newly created by the transformation rule.
The abort and exit keywords signal the end of the automaton and thus do not
connect to their output states. Each transformation rule has an environment
(Γ×∆) where Γ is the list of always allowed statecalls as seen in allow blocks and
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Fig. 3. Transformations of SPL statements into the corresponding CFA nodes

∆ represents statecalls which result in a transition to a handle clause (generated
by the during/handle statement). A during/handle statement first creates all
the handler nodes and transforms the main block with the handlers registered
in the ∆ environment. A statecall node creates a statecall edge and inserts
appropriate edges to deal with allow and during handlers.
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Some statements require the creation of new internal variables. The multiple
call can optionally specify upper and lower bounds to the number of iterations;
extra variables are automatically created to track these bounds in the CFA.
during/handle statements create a new internal variable to track the state
to which a handler must return. Function calls are either macro-expanded (if
only called once) or temporary variables used to push and pop arguments in a
single copy of the function graph (if called multiple times). An example of these
internal variables can be seen in Figure 1 in our earlier ping sample.

2.2 Multiple Automata

It is often more convenient and readable to break down a complex protocol into
smaller blocks which express the same protocol but with certain aspects factored
out into simpler state machines. Accordingly, SPL specifications can define mul-
tiple automata, but the external interface hides this abstraction and only exposes
a single, flat set of statecalls. The scope of automata names are global and flat;
this is a deliberate design decision since the language is designed for light-weight
abstractions that are embedded into portions of the main application code. Even
a complex protocol such as SSH [3] can be broken down into smaller, more man-
ageable automata—we have listed some of these in Appendix A. In this section,
we explain how statecalls are routed to the individual automata contained in an
SPL specification.

Each automaton executes in parallel and sees every statecall. If an automaton
receives a statecall it was not expecting it reports an error. If any of the parallel
automata report an error then the SPL model has been violated. When a statecall
is received, it is dispatched only to automata which can potentially use that
statecall at some stage in their execution.

More formally, let A represent an automaton or function definition in an SPL
specification. Let V(A) represent the union of all the statecalls referenced in
A, and F(A) be the list of all functions called from A. The potentially visible
statecalls P(A) are the set of statecalls which the automaton A will use at some
stage in its execution where P(A) = V(A) ∪ {P(F0) . . .P(Fn)}. A statecall is
only dispatched to an automaton A if it is present in its potentially visible set
P(A). Since the set of externally exposed statecalls Pall = {P(A0) . . .P(An)}
is calculated by the union of all the potentially visible sets of the automata
contained in an SPL specification, it trivially follows that every statecall will be
dispatched to at least one automaton.

This mechanism allows complex protocols such as SSH to be broken down
into simpler automata which are still connected together by common messages.
The SPL compiler can output the list of statecalls which are shared between
automata as a development aid; in practise while specifying Internet proto-
cols we have observed that most automata share only one or two statecalls be-
tween them (normally global messages to indicate protocol termination or auth
status).
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2.3 Optimisation

The transformation rules defined earlier (§2.1) result in a CFA which has a
number of redundant edges (e.g. if(true) conditionals). The SPL compiler reduces
the number of states in the CFA without modifying the graph semantics. We
iterate over the graph and perform constant folding [15] to simplify conditional
expressions. Since SPL only has expressions with booleans and integers, the
folding is a simple recursive pattern match.

The CFA is then traversed to eliminate redundant nodes: (i) for a node Qi,

all edges from the node are of the form Qi
if(true)−−−−−→ Qo or (ii) for a node Qo,

all edges pointing to the node are of the form Qi
if(true)−−−−−→ Qo. The initial state

of the automaton is left unoptimised, so that automata can have a single entry
point for simplicity.

3 Compiler Outputs

The SPL compiler outputs automata in: (i) OCaml to be embedded as a dy-
namic safety monitor; (ii) Promela to statically verify safety properties using a
model checker such as Spin; and (iii) HTML/AJAX to permit debugging of SPL
models embedded in an executing application. Although we specifically describe
an OCaml interface here, the compiler can also be easily extended to other type-
safe languages (e.g. Java or C#), allowing application authors to write programs
in their language of choice and still use the SPL tool-chain.

When describing each output, we will also analyze that output’s use in the
Melange SSH server. The Melange SSH server is written in pure OCaml, and
uses the Meta Packet Language [2] to do the low-level packet parsing, and SPL to
enforce the higher-level protocol constraints. The SSH protocol itself is defined
in the form of Internet RFC documents [3].

3.1 OCaml

The OCaml output from the SPL compiler is designed to: (i) dynamically enforce
the SPL model and raise an exception if it is violated; and (ii) provide real-
time monitoring, debugging and logging of the SPL models. The SPL compiler
generates OCaml code with a simple external interface which provides a: (i)
variant type of statecalls for that model; (ii) constructor for a fresh automaton;
and (iii) tick function which accepts a statecall and advances the automaton.

If a bad statecall is received, the automaton raises an exception. The interface
is purely functional, thus allowing an automaton to be “rolled back” by keeping
a list of previous automaton values.

The internal implementation takes several steps to make transitions as fast as
possible. Since the only edges in the CFA which can “block” during execution are
the statecall edges, all other edges are statically unrolled during compile-time
code generation. When unrolling non-statecall edges during code generation,
assignment operations are statically tracked by the SPL compiler in a symbol
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table. This permits the compiler to apply constant folding when the resultant
expressions are used as part of conditional nodes (or when creating new state
descriptors). Multiple conditional checks involving the same variable are grouped
into a single pattern match (this is useful in SPL specs with during/handle
clauses). These are necessary even when using the optimising OCaml compiler
since they represent constraints present in the SPL specification which are diffi-
cult to spot in the more low-level OCaml code output.

The performance impact of several automata running in parallel in an applica-
tion is minimal. In the Melange SSH server, written purely in OCaml and using
SPL specifications to enforce constraints in the transport and connection layers
of the protocol, it has around a 2-3% impact on the throughput of the server
during bulk copy operations (see Figure 4). Some of the SPL specifications used
in the SSH server are listed in Appendix A, with the full versions present in the
Melange source code at http://melange.recoil.org/.

Fig. 4. Performance of the OCaml SSH server with and without the SPL automata

3.2 Model Checking

The SPL compiler also output Promela models from the SPL input, providing
an easy way to statically reason about properties which are then dynamically
enforced by the OCaml run-time automata. In the case of the SSH protocol, the
SPL specification for the transport, authentication and global channel handling is
a complex state machine, and an exhaustive safety verification in Spin without
any additional LTL constraints (i.e. testing assertions and invalid end-states)
requires around 400MB of RAM and one minute to verify on a dual-G5 1.25GHz
PowerMac. Spin reports the following statistics:

http://melange.recoil.org/
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State-vector 48 byte, depth reached 78709, errors: 0

1.41264e+07 states, stored (1.99736e+07 visited)

2.59918e+07 states, matched

4.59654e+07 transitions (= visited+matched)

7.85945e+07 atomic steps

The large number of atomic steps show the complexity reduction which results
from the SPL compiler inserting atomic statements in the generated Promela

to simulate the execution semantics of the OCaml safety monitors. Before this
optimisation, messages would unnecessarily be interleaved and verification took
orders of magnitude longer.

We now list some of the LTL formulae applied to the Promela output of the
SSH global automaton and describe the security properties which they enforce.
Unlike some other tools which translate state machine languages into Promela

(e.g. Scott’s SWIL language for interface descriptions [16]), we never require the
manual modification of the Promela code (which would be dangerous since the
equivalence between the model and the dynamically enforced SPL automaton
would not be guaranteed any more). Instead, globally allocated state variables1

are exposed within the model which can be referenced with LTL formulae, as
shown below:

– �(a → �a) where (a ← transport encrypted) which informally reads
“once the transport is encrypted, it will remain encrypted”. This check en-
sures that the transport layer can never turn off encryption once a secure
transport has been established for the lifetime of that connection.

– �(a → �(a && b)) where (a ← transport serv auth) and
(b ← transport encrypted) which informally reads “in the transport au-
tomaton, once serv auth is true, both serv auth and encrypted remain
true forever”. This guarantees that authentication can only happen over an
encrypted connection.

– �a where (a ← auth success+ auth failed < 2) informally reads “in the
auth automaton, success and failuremust never simultaneously be true”.
This restriction lets us use two boolean variables instead of a larger integer
to store the 3 values for undecided, success or failure authentication states.

– �(a → X(b || �♦c)) where (a ← p == Transmit Auth Success) and (b ←
auth success) and (c ← err) informally reads “when an authentication suc-
cess packet is transmitted, it must immediately be followed by the success
variable being true or always eventually lead to an error.”

– �(a → (b || �♦c)) where (a ← p == Transmit Transport Accept Auth)
and (b ← transport encrypted) and (c ← err) which informally reads “if
the authentication service is unlocked then the transport layer must be en-
crypted or an error always eventually occurs”. This matches the security con-
siderations section of the SSH authentication specification in RFC4252 [17]
which states that “it assumed (sic) that this runs over a secure transport

1
Spin does not support partial order evaluation over local variables, so the SPL
compiler safely promotes automaton-local variables to a global scope.
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layer protocol, which has already authenticated the server machine, estab-
lished an encrypted communications channel [...]”.

– �(a → (b || �♦c)) where (a ← p == Receive Channel Open Session) and
(b ← auth success) and (c ← err) which informally reads “requests to
open a new channel are only allowed when authentication has been suc-
cessful, or an error state is always eventually reached”. This is in line with

Fig. 5. Screen capture of the AJAX debugger embedded into the SSH daemon, showing
the global SPL automaton. The green states are valid statecalls, the pie chart shows
the 5 most popular statecalls in real time, and the list on the left show recent statecalls.
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the security considerations section of the SSH connection specification in
RFC4254 [18] which states that “this protocol is assumed to run on top of
a secure, authenticated transport”.

These properties all reflect restrictions expressed informally in the SSH specifi-
cations [3,17,18], and can now be sure to either work correctly in the running
SSH server, or terminate the connection to prevent a potential security breach.

3.3 AJAX Debugging

The SPL compiler can also include debugging stubs in the executable automata,
most usefully in the form of HTML/AJAX code which can be accessed via a
web browser. This page contains a real-time graphical view of all the automata
embedded in the program, along with the set of valid states they can transition to
next. Since the granularity of the SPL automata are chosen by the programmer,
this is much more useful than the “raw” models obtained through static code
analysis which often include a lot of superfluous information.

Figure 5 shows a screen capture of the SPL AJAX debugger single-stepping
through the global SPL automaton for the Melange SSH server. The mlssh server
is blocked waiting for password authentication, having previously attempted to
authenticate via null and public-key authentication. In our experience, the de-
bugger was a valuable tool to debug complex protocol bugs in our implemen-
tation, as the single-stepping view via this debugger is significantly higher level
than the alternative provided by either the native OCaml debugger or gdb.

4 Related Work

The Bandera tool-chain [19] is designed to ease the model-checking of Java source
code. It includes components for program analysis and slicing, transformation,
and visualisation. Bandera accepts Java source as input and requirements writ-
ten in the Bandera Specification Language (BSL) [20]. A key design goal of
BSL is to hide the intricacies of temporal logic by placing emphasis on common
specification coding patterns (e.g. pre- and post-conditions to functions). BSL
is also strongly tied to the source program code via references to variables and
methods names. Much of Bandera’s utility arises from its tools for model con-
struction which eliminate redundant components [21], simplifying the eventual
output.

The BLAST [8] project introduced the lazy abstraction paradigm for verify-
ing safety properties about systems code. Lazy abstractions follows the following
steps: (i) an abstraction is extracted from the source code; (ii) the abstraction is
model-checked; and (iii) the model is then refined using counter-example anal-
ysis. The process is repeated until the model is sufficiently refined, and the
resulting proof certificates are based on Proof Carrying Code [22]. This mech-
anism helps make the model extraction process more scalable by reducing the
amount of time and effort required to create abstractions of systems code. In
contrast to the conventional abtract-verify-refine loop, lazy abstraction builds
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abstract models on demand from the original source code. This results in a non-
uniformedly detailed model which contains just enough detail to show a counter-
example to the developer. SPL also provides an alternative way to provide
non-uniform models by permitting the programmer to choose the level of gran-
ularity they want to write the models in.

Alur and Wang have tackled the problem of model checking real-world pro-
tocols by extracting a specification from RFCs and using symbolic refinement
checking to verify the model against protocol implementations written in C [23].
They evaluate their technique by creating and verifying models of DHCP and
PPP, and conclude that “[manual model extraction] is unavoidable for extracting
specification models since RFC documents typically describe the protocols in a
tabular, but informal, format”.

The Model-Carrying Code (MCC) project led by Sekar combines the model-
extraction techniques described earlier with system call interception to provide
a platform for the safe execution of untrusted binaries [24]. Untrusted code is
bundled with a model of its security-relevant behaviour which can be formally
verified against a local security policy by a model checker. The execution of the
binary is dynamically verified by syscall interception to fit the model and the
application terminated if a violation occurs. As Wagner and Soto point out [25],
the low-level nature of syscall interception makes it easy for attackers to launch
an observationally equivalent attack by crafting a valid sequence of syscalls,
and so this technique is only useful as a last-resort if more formal and reliable
verification techniques against the source code cannot be applied. We have drawn
inspiration from the work described above, in particular the MCC approach of
providing static models and dynamic enforcement, but our work operates at a
higher level with explicit support from the application source code.

5 Conclusions

We have described the Statecall Policy language, which aims to provide a us-
able mechanism for programmers to integrate lightweight models into complex
networked software. We solve the code/model equivalence problem by specify-
ing models in our SPL language, and compiling them to multiple outputs for
different purposes—model checking using Spin by outputting Promela code,
dynamical enforcement executables in OCaml, and even HTML/AJAX stubs for
run-time debugging. It is currently targeted at applications written in OCaml
and model checked using Spin, but is simple to port to other languages and tools
due to its use of the Control Flow Automaton intermediate graph.

We have also described practical uses of SPL in our complex Secure Shell
server which uses several complex models to enforce critical security properties
that are only informally specified in the official SSH RFCs.

We gratefully acknowledge funding from Intel Research and the UK Engineer-
ing and Physical Sciences Research Council grant EP/F024037/1.
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A SPL Policies for Secure Shell

In this appendix, we list an excerpt of the SPL policies for the Secure Shell
(SSH) protocol. The full policies may be found in the Melange source code.
There are two automata listed here which run in parallel (§2.2) and represent the
transport and authentication layers respectively. The transport layer establishes
an encrypted connection, and the authentication layer handles the negotiation
of user credentials.

automaton transport (bool encrypted , bool serv_auth ) {

during {

always_allow (Transmit_Transport_Debug ,

Receive_Transport_Debug , Transmit_Transport_Ignore ,

Receive_Transport_Ignore) {

multiple {

either {

either {

Transmit_Transport_KexInit;

Receive_Transport_KexInit;

} or (encrypted ) {

Receive_Transport_KexInit;

Transmit_Transport_KexInit;

}

either {

Expect_DHInit ;

Receive_Dhgroupsha1_Init;

Transmit_Dhgroupsha1_Reply;

} or {

Expect_GexInit ;

Receive_Dhgexsha1_Request;

Transmit_Dhgexsha1_Group;
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Receive_Dhgexsha1_Init;

Transmit_Dhgexsha1_Reply;

}

Receive_Transport_NewKeys;

Transmit_Transport_NewKeys;

encrypted = true;

} or (encrypted && !serv_auth ) {

Receive_Transport_ServiceReq_UserAuth;

Transmit_Transport_ServiceAccept_UserAuth;

serv_auth = true;

}

}

}

} handle {

either { Signal_HUP ; }

or {

either { Receive_Transport_Disconnect; }

or {

optional { Signal_QUIT ; }

Transmit_Transport_Disconnect;

exit;

}

} or { Receive_Transport_Unimplemented; }

}

}

automaton auth (bool success , bool failed) {

Transmit_Transport_ServiceAccept_UserAuth;

during {

do {

always_allow (Transmit_Auth_Banner ) {

either {

Receive_Auth_Req_None ;

Transmit_Auth_Failure ;

} or {

Receive_Auth_Req_Password_Request;

either {

Transmit_Auth_Success ;

success = true;

} or {

Transmit_Auth_Failure ;

}

} or {

Receive_Auth_Req_PublicKey_Request;

either {

Transmit_Auth_Success ;

success = true;

} or {

Transmit_Auth_Failure ;
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}

} or {

Receive_Auth_Req_PublicKey_Check;

either {

Transmit_Auth_PublicKey_OK;

} or {

Transmit_Auth_Failure ;

}

} or {

Notify_Auth_Permanent_Failure;

failed = true;

}

}

} until (success || failed);

} handle {

Transmit_Transport_Disconnect;

exit;

}

}
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Abstract. It is believed that reusability in formal development should
reduce the time and cost of formal modelling within a production envi-
ronment. Along with the ability to reuse formal models, it is desirable
to avoid unnecessary re-proof when reusing models. Event-B is a formal
method that allows modelling and refinement of systems. Event-B sup-
ports generic developments through the context construct. Nevertheless
Event-B lacks the ability to instantiate and reuse generic developments
in other formal developments. We propose a way of instantiating generic
models and extending the instantiation to a chain of refinements. We
define sufficient proof obligations to ensure that the proofs associated to
a generic development remain valid in an instantiated development thus
avoiding re-proofs.

Keywords: formal methods, event-B, reusability, generic instantiation.

1 Introduction

Reusability has always been sought in several areas as a way to reduce time,
cost and improve the productivity of developments [1]. Examples can be found in
areas like software, mathematics and even formal methods. Generic Instantiation
can be seen as a way of reusing components and solving difficulties raised by the
construction of large and complex models [2,3]. The goal is to reuse generic
developments (single model or a chain of refinements) and create components
with similar properties instead of starting from scratch. Reusability is applied
through the use of a pattern as the basic structure and afterwards each new
component is generated through parameterisation.

We propose a generic instantiation approach for Event-B by instantiating
machines. The instances inherit properties from the generic development (pat-
tern) and afterwards are parameterised by renaming/replacing those properties
to more specific names according to the instance. Proofs obligations are gener-
ated to ensure that assumptions used in the pattern are satisfied in the instan-
tiation. In that sense our approach avoids re-proof pattern proof obligations in
the instantiation. The models are developed in the Rodin platform [4], which is a
toolset for Event-B [5]. A simple case study modelling a protocol communication
is described to illustrate the use of instantiation.
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A brief overview of the Event-B Language is given in Section 2. Section 3
defines how generic instantiation is interpreted by us. In section 4 instantiated
machines are introduced. Section 5 gives an application of instantiation in com-
bination with shared event composition. The application of instantiation to a
chain of refinements is described in Section 6. Section 7 discusses an open ques-
tion that arises when instantiating theorems and invariants in a pattern.

2 Event-B Language

Event-B is a formal methodology that uses mathematical techniques based on
set theory and first order logic allowing the specification of systems. An abstract
Event-B specification is divided into two parts: a static part called context and a
dynamic part called machine. A machine SEES as many contexts as desired. The
context consists of sets, constants and assumptions (axioms) of the system. Sets
in the context can be seen as a collection of elements or a type definition. The
machine contains the state variables whose values are assigned in events. Events
can only occur when enable by their guards being true and as a result actions
are executed. Events can have parameters that are local variables to the event
and can be used by the guards or by the actions. The INVARIANT defines the
dynamic properties of the specification. Proof obligations are generated to verify
that the invariant is maintained before and after an event is enabled. Theorems
are properties of the system that have proof obligations associated and usually
are discharged based on other properties of the specified system.

An abstract Event-B specification can be refined by adding more details and
becoming closer to the implementation (more concrete). A context EXTENDS
an abstract context by adding sets, constants or axioms. Nonetheless the abstract
context properties are still assumed. Refinement of a machine consists in refining
existing events. The relation between variables in the concrete and abstract
model is given by a gluing invariant. Proof obligations are generated to ensure
that this invariant is preserved in the concrete model. Also it is possible to add
new events that refine skip as long as the new events do not execute forever and
the abstract events are not hampered.

3 Generic Instantiation

In order to explain our approach for Generic Instantiation we will use a simple
case study. A protocol is modelled between two entities, Source and Destination,
which communicate by sending messages through a channel. The content of the
channel has a maximum dimension. To send a message it is necessary to add the
content of the message to the channel. Based on the proposed requirements it is
possible to create a context ChannelParameters to model the channel as seen in
Fig. 1b.

The content of the message is of type Message and has a maximum dimension
max size. Figure 1a represents the machine side where a variable channel stores
all the sent/received messages. The channel messages have type Message and
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(a)

(b)

Fig. 1. Machine Channel and respective context ChannelParameters

the number of messages in the channel is limited. Messages are introduced in
the channel to be sent as seen in event Send. The event Receive models the
reception of the message in the destination by extracting the messages from the
channel. Elements in ChannelParameters context are the parameters ( type and
constant) for the Channel machine.

Now suppose we wish to model a bi-directional communication between two
entities using two channels. Both channels are similar so an option is to instan-
tiate machine Channel twice to create two instances: one channel called Request
and the other Response. The protocol, represented in Fig. 2 starts by a mes-
sage being sent from the Source. After arriving at the Destination, the reception
of the message is acknowledged in the Source. Then a response is sent from
the Destination and after arriving at the Source, it is also acknowledged in the
Destination.

The instantiation of Channel is achieved by applying machine instantiation.
An instance of the pattern Channel is created with more specific properties.
A detailed description of the machine instantiation is described in Section 4.
Moreover, a context containing the specific instances properties is required to
model the protocol. In our case study we use the context ProtocolTypes in Fig. 3,
where types Request and Response replace the more generic type Message and
constants qmax size and pmax size replace max size. This context must be pro-
vided by the modeller/developer.
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Fig. 2. Protocol diagram

Fig. 3. ProtocolTypes Context

Abrial and Hallerstede [3] and Métayer et al [2] propose the use of generic
instantiation for Event-B. It is suggested that the contexts of a development
(equivalent to the pattern) can be merged and reused through instantiation in
other developments. That proposal lacks a mechanism to apply the instantiation
from the pattern to the instances. Therefore our work proposes a mechanism to
instantiate machines and extend the instantiation to a refinement chain. The
reusability of a development is expressed by instantiating a development (pat-
tern) according to a more specific problem.

4 Generic Instantiation and Instantiated Machines

Inspired by the previous case study and having the ability to compose ma-
chines (Shared Event Composition plug-in [6]) and rename elements (Refactory
plug-in[7]) in the Rodin platform, we propose an approach to instantiate ma-
chines. As mentioned the context plays an important role while instantiating
since this is where the specific properties of the instance are defined (parameter-
isation). The use of context is briefly discussed before instantiated machines are
introduced.

4.1 Contexts

As aforementioned, contexts in Event-B are the static part of a model containing
properties of the modelled system through the use of axioms and theorems.
Furthermore, having a closer look at the possible usage of contexts, there are
two possible viewpoints:
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Parameterisation: the context is seen only by one machine (or one chain of
machine refinements) and defines specific properties for that machine (sets,
constants, axioms, theorems). These properties are unique for that machine
and any other machine would have different properties.

Sharing: a context is seen by several machines and there are some properties
(sets, constants, axioms, theorems) that are shared by the machines. There-
fore the context is used to share properties.

Several model developments mix both usages for the same context. For the or-
dinary modeller this distinction is not very clear and perhaps not so important.
Our approach of generic instantiation reuses components and personalises each
instance implying the use of Parameterisation .

4.2 Example of INSTANTIATED MACHINE

An INSTANTIATED MACHINE instantiates a generic machine (pattern). If the
generic machine sees a context, then the context elements (sets and constants)
have to be replaced by instance elements. The instance elements must exist
already in a context seen by the instantiated machine (in our case study, this
corresponds to ProtocolTypes - see Fig. 3).

Returning to the case study, the instantiated machine QChannel that is an
instance of the machine Channel for requests looks like this:

INSTANTIATED MACHINE QChannel
INSTANTIATES Channel VIA ChannelParameters
SEES ProtocolTypes /* context containing the instance properties*/
REPLACE /* replace parameters in ChannelParameters*/

SETS Message := Request
CONSTANTS max size := qmax size

RENAME /* rename variables and events in machine Channel*/
VARIABLES channel := qchannel
EVENTS Send := QSend

m := q /*optional:rename parameter m in event Send */
Receive := Receive
m := q /*optional:rename parameter m in event Receive */

END

Fig. 4. Instantiated Machine: QChannel instantiates Channel

Note that ChannelParameters elements (sets and constants) are replaced
because the replacement elements are already defined in ProtocolTypes. Machine
elements (variables, parameters and events) are renamed since they did not exist
before. The instantiated machine PChannel that is an instance of Channel for
responses is similar.

Axioms in contexts are assumptions about the system and are used for
discharging proofs obligations. When instantiating, we need to show that as-
sumptions in the pattern are satisfied by the replacement sets and constants.
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A possible solution is to convert the pattern axioms into instantiated machine
theorems after the replacement is applied. A theorem has a proof obligation
associated. By ensuring that a proof obligation related to each axiom is gener-
ated and discharged, we are confirming the correctness of the instantiation by
satisfying the pattern assumptions (see theorem thm1 in Fig. 5). “Expanding”
machine QChannel can be seen in Fig. 5.

Fig. 5. Expanded version of instantiated machine QChannel

The instance QChannel sees the context ProtocolTypes (provided by the mod-
eller/developer) that contains the context information for the instances. The type
Message in context ChannelParameters is replaced by Request in ProtocolTypes,
the constant max size is replaced by qmax size, the variable channel in Channel
is renamed qchannel and event Send is renamed QSend. The axiom that exists
in ChannelParameters is converted into a theorem in QChannel (but easily dis-
charged by the axioms in ProtocolTypes). We convert the axiom axm1 from the
generic context ChannelParameters :

@axm1 max size ∈ N

into the theorem thm1 in the instance QChannel :

@thm1 qmax size ∈ N



472 R. Silva and M. Butler

This results from the replacement of the constant max size by qmax size. A proof
obligation is a sequent of the shape:

Hypothesis
�
Theorem

For a machine theorem, the respective proof obligation is [8]:

Axioms
Invariants
�
Theorem

For theorem thm1, the proof obligation to be generated is the following:

qmax size ∈ N /*axiom from ProtocolTypes*/
pmax size ∈ N /* axiom from ProtocolTypes*/
qchannel ⊆ Request /*invariant from QChannel*/
. . .
�
qmax size ∈ N

The first axiom of ProtocolTypes easily discharge this proof obligation. Note the
expansion of Qchannel is not required in practice. We use it to show the meaning
of an instantiated machine.

4.3 Definition of Generic Instantiation of Machines

Based on the instantiated machine QChannel, a general definition for generic
instantiation of machines can be drawn. Considering Context Ctx and machine
M in Fig. 6 together as a pattern, we can create a generic Instantiatiated Machine
IM as seen in Fig. 7.

The context D contains the replacement properties (sets DS1, . . . , DSm and
constants DC1, . . . , DCn) for the elements in context Ctx. The variables, events
and parameters are also renamed by new variables nv1, . . . , nvq, new events
nev1, . . . , nevr and new parameters np1, . . . , nps. From the pattern we are able
to create several instances that can be used in a more specific problem. During
the creation of instances validity checks are required:

CONTEXT Ctx
SETS S1...Sm

CONSTANTS C1...Cn

AXIOMS Ax1...Axp

(a)

MACHINE M
SEES Ctx
VARIABLES v1...vq

EVENTS ev1...evr

(b)

Fig. 6. Generic view of a context and a machine
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INSTANTIATED MACHINE IM
INSTANTIATES M VIA Ctx
SEES D /* context containing the instance properties */
REPLACE /* replace parameters defined in context C */

SETS S1 := DS1, . . . , Sm := DSm /* Carrier Sets or Constants */
CONSTANTS C1 := DC1, . . . , Cn := DCn

RENAME /*rename elements in machine M*/
VARIABLES v1 := nv1, . . . , vq := nvq /* optional */
EVENTS ev1 := nev1 /* optional */

p1 := np1, . . . , ps := nps /* parameters: optional */
:
evr := nevr

END

Fig. 7. An Instantiated Machine

1. A static validation of replaced elements is required, e.g., a type must be
replaced with a type, or a constant set and a constant with a constant.

2. All sets and constants should be replaced, i.e., no uninstantiated parameters.
3. A static check must be done to ensure that the instantiated machine specifies

which generic context is being instantiated.

4.4 Avoiding Reproofs

As described above, a proof obligation (P.O.) is a sequent of the form H � G
(short for Hypothesis � Goal). Renaming variable (or constant) v to w and type
(carrier set) T to S results in instantiated P.O. as following:

[v := w] (H � G) (variable/constant instantiation)
[T := S] (H � G) (type instantiation)

H � G is valid means that the proof has been proved. We assume that if H � G
is valid then any valid instantiation of H � G that avoids name clashes is also
valid. Instantiation of variables and constants maintains validity since a sequent
is implicitly universally quantified over its free variables. We are currently ex-
ploring a formal justification for why type instantiation maintains validity. Since
instantiation maintains the validity of the sequent, the P.O. generated for the
pattern can be reused in the instance and we avoid having to discharge the
instantiated P.O..

5 Example of Instantiation and Composition

The creation of the instances is a intermediary step in the overall model devel-
opment. In our case study, we model a protocol between entities that sends and
receives messages. By using the created instances and the Shared Event Com-
position [9,10] plug-in for the Rodin platform we share events between Request



474 R. Silva and M. Butler

COMPOSED MACHINE Protocol
REFINES -
INCLUDES

QChannel
PChannel

EVENTS
SendRequest

Combines Events QChannel.QSend
RecvReq SendResp

Combines Events QChannel.Receive ‖ PChannel.Send
RecvResp

Combines Events combines PChannel.Receive
END

Fig. 8. Composed Machine Protocol

(a)

(b)

Fig. 9. Machine Protocol

and Response and model the protocol. A composed machine Protocol modelling
this system can be seen in Fig. 8.

As seen in Fig. 2, while composing the instance machines QChannel and
PChannel we add the events that are unique for each entity (SendRequest and
RecvResp). SendRequest sends a message through the channel from Source to
Destination. RecvResp models the reception of the response in the Source after
being sent by Destination. Moreover the event that relates the communication
between the two entities is also modelled (RecvReq SendResp). The request is
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received and acknowledged and the response to that request is sent in parallel
(from this combined event, a possible refinement is processing the request mes-
sage before sending the response). We opt not to refine an abstract machine in
Fig. 8 (REFINES clause is empty: “-”) although it is possible. The composed
machine Protocol corresponds to the expanded machine in Fig. 9.

The two instances of machine Channel model a bi-directional communication
channel between two entities. This allows us to express the applicability of generic
instantiation for modelling distributed systems without being restricted to this
kind of system. When modelling a finite number of similar components with
some specific individual properties, instantiated machines are a suitable option.

6 Generic Instantiation Applied to a Chain of
Refinements

The above sections describe generic instantiation applied to individual machines.
Although it is already an interesting way of reusing, in a large model it would be
more interesting to instantiate a chain of machines, or in other words instantiate
a chain of refinements. Suppose we have a development Dv containing several
refinement levels (Dv1, Dv2, . . . , Dvn). The most concrete model Dvn matches a

Fig. 10. Instantiation of a generic chain of refinements
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generic model (pattern) P1 that is part of a chain of refinements P1, P2, . . . , Pm

as seen in Fig. 10. By applying generic instantiation we instantiate the pattern
P1 according to Dvn. That instantiation is a refinement of Dvn and it is called
Dvn+m abs (the suffix abs stands for abstract). In addition we can extend the
instantiation to one of the refinement layers of the pattern and apply it to the
development Dv. As an outcome we get a further refinement layer for Dvn for
free (Dvn+m abs corresponds to the instantiation of P1 and Dvn+m corresponds
to the instantiation of Pm). The refinement between Dvn+m abs and Dvn+m

does not introduce refinement proof obligations since the proof obligations were
already discharged in the pattern chain. This follows from the instantiated ma-
chines where it is avoided the re-proof of pattern proof obligations. Afterwards
Dvn+m can be further refined to Dvn+m+z. For a better understanding of this
approach, we will refine our case study and apply an instantiation over the
pattern chain.

6.1 Refinement of the Channel Case Study

We will refine the Channel machine. For the first refinement, the requirement is
to include buffers before and after adding a message to the channel. A second
refinement specifies the type Message. In particular, Message will be divided in
two parts: header and body. The header of the Message contains the destination
identification and the body represents the content of the message (data). header
and body are based on the records proposal for Event-B suggested by Evans and
Butler [11] and also in work developed by Rezazadeh et al [12].

The first refinement requires an introduction of two new variables sending-
Buffer and receivingBuffer and a new event addMessageBuffer that loads the

(a)

(b)

Fig. 11. Channel M1 : refinement of Channel
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Fig. 12. Context ChannelParameters C2

(a)
(b)

Fig. 13. Channel M2 : refinement of Channel M1

message to sendingBuffer before being introduced in the channel in the Send
event. The latter event reflects the introduction of the buffers. In the event Re-
ceive, messages in channel are extracted and loaded to receivingBuffer as seen
in Fig. 11.

The second refinement is a data refinement over the type Message by dividing
it in header and body. The header contains the destination identification and the
body contains the data of the message. Constants header and body are defined
in the context ChannelParameters C2 as in Fig. 12.

In Fig. 13 the machine Channel M2 data refines the variable channel and
introduces a new event, processMessage that processes the received message
after being retrieved from the receiving buffer. A variable storeDATA is also
introduced to store the data that each destination receives.
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6.2 Instantiation of a Chain of Refinements

We can consider the chain of refinements of Channel as a pattern. In that case,
having all the proof obligations discharged we can reuse this pattern in a more
specific development. The chain of refinements is seen as a single entity where
it is possible to choose an initial and a final refinement level.

Fig. 14. Instantiation of a chain of refinements: Channel to Channel M2

INSTANTIATED REFINEMENT QChannel M2
INSTANTIATES Channel M2 VIA ChannelParameters C2
REFINES -
SEES ProtocolTypes C2
REPLACE

SETS Message := Request
CONSTANTS max size := qmax size

header := qHeader
body := qBody

RENAME
VARIABLES channel := qchannel

receivingBuffer := qReceivingBuffer
sendingBuffer := qSendingBuffer

EVENTS Send := QSend
m := q
receive := Receive
m := q

END

Fig. 15. Instantiation of a chain of refinements
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(a)
(b)

(c)

Fig. 16. Expanded version of instantiated machine QChannel M2 and context Proto-
colTypes C2

Using our case study, we intend to instantiate and refine QChannel with the
chain of refinements of machine Channel, selecting Channel and Channel M2
as our initial and final refinement levels respectively. In Fig. 14 the shaded
chain of refinement is seen as a single entity. After the selection of the two
refinement levels to be instantiated, QChannel M2 abs and QChannel M2 are
created. QChannel M2 is treated as a refinement of QChannel M2 abs as a con-
sequence of the instantiation. Subsequently, QChannel M2 can be further refined
to QChannel Mz.

The refinement relationship between Channel and Channel M2 is ensured by
discharging all the proof obligations in the chain of refinement (all the proofs are
discharged automatically in the Rodin platform). By instantiating Channel and
Channel M2 implicitly we are also referring to Channel M1. Some of the prop-
erties of Channel M2 are inherited from Channel M1 (for instance the buffers)
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but for the instantiation purpose it is not necessary to incorporate Channel M1
explicitly. The instantiation of a chain of refinements follows the instantiation of
a single machine as seen in Fig. 15.

The initial refinement level corresponds to the most abstract machine of the
pattern. The final refinement level is any of the other refinement levels in the
chain. The replacement and renaming is applied to the occurrences in both
instances whenever applicable. Once again it is not necessary to “expand”
QChannel M2 but that can be seen in Fig. 16.

In an instantiation of a chain of refinements, the pattern context is seen as
a flat context comprising all the properties seen by the refinements until the
selected final refinement level is reached. Therefore context ProtocolTypes C2
is the parameterisation context for QChannel M2 and extends ProtocolTypes
similarly to the relation between contexts ChannelParameters C2 and Channel-
Parameters. As before, axioms in ProtocolTypes C2 must be respected in the
instance, so axioms are converted in theorems in QChannel M2.

6.3 Definition of Generic Instantiation of Refinements

From the case study it is possible to draw a generic definition for the instantiation
of a chain of refinements. If we consider a pattern that consists of a chain of
refinements M1, M2, . . .Mt , we can create a generic Instantiated Refinement
IR as seen in Fig. 17.

The instantiated refinement IR instantiates one of the refinements of the pat-
tern Mt via the parameterisation context Ctxt. IR refines an abstract machine
IR0 and sees the context Dw containing the instance properties. The replace-
ment and renaming are similar to the machine instantiation but apply to both
M1 and Mt. In addition to the validity checks for instantiated machines, instan-
tiated refinements require:

INSTANTIATED REFINEMENT IR
INSTANTIATES Mt VIA Ctxt

REFINES IR0 /* abstract machine */
SEES Dw /* context containing the instance properties */
REPLACE /* replace parameters defined in context C */

SETS S1 := DS1, . . . , Sm := DSm /* Carrier Sets or Constants */
CONSTANTS C1 := DC1, . . . , Cn := DCn

RENAME /*rename variables, events and params in M1 to Mt*/
VARIABLES v1 := nv1, . . . , vq := nvq

EVENTS ev1 := nev1 / ∗ optional ∗ /
p1 := np1, . . . , ps := nps / ∗ parameters :optional ∗ /

...
evr := nevr

END

Fig. 17. An Instantiated Refinement
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1. A static validation for the existence of a chain of refinements for M
(M1,M2, . . . ,Mt).

2. The types and constants in the contexts seen by the initial and final level of
refinement should be instantiated.

The instantiation of refinements reuses the pattern proof obligations in the sense
that the instantiation renames and replaces elements in the model but does
not change the model itself ( nor the respective properties). The correctness of
the refinement instantiation relies in reusing the pattern proof obligations and
ensuring the assumptions in the context parameterisation are satisfied in the
instantiation.

7 Instantiating Theorems and Invariants

Theorems in contexts and machines are assertions about characteristics and
properties of the system. Theorems have proof obligations associated that are
discharged based on the model assumptions (axioms and invariants) . Once the
theorems are discharged, they can be used as hypotheses for discharging other
proof obligations in the model since they work as a consequence of the assump-
tions. On the other hand, invariants in machines are properties of the model that
need to be maintained by all events.

An interesting question arises when a pattern is instantiated and contains
theorems and invariants. If a proof obligation of a theorem is discharged by cre-
ating an instance we would not want to re-prove the theorem proof. Regarding
the invariants and respective proof obligations we would have a similar situa-
tion where we would not want to discharge proof obligations in the instance if
they were already discharged in the pattern. Ideally we would like to add to the
instance the assumptions and assertions given by the theorems and invariants
without re-proving them. Although addressed here as an open question, this sit-
uation suggests a different kind of theorem that does not exist in Event-B, a
pre-proved theorem to be used in the instance. A pre-proved theorem would be
similar to a theorem but it would not have associated a proof obligation. The
invariants imported from the pattern fall under the same category where the
respective proof obligations should not be re-generated. Informally the instances
are just renaming and replacing elements without changing the semantics un-
der the original pattern (if the validity checks are followed) so theorems and
invariants would work as assumptions in the instantiated machine. The assump-
tions in the pattern (axioms) need to be satisfied by the instances through the
generation of proof obligations but the same does not apply for invariants and
theorems that are assertions in the pattern.

8 Conclusions

Reusability is of significant interest in the general software engineering research
community. Advantages and disadvantages have been discussed in terms of how
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to reuse. Examples are given by Standish [1] and Cheng [13]. Reusing patterns in
a style similar to design patterns is proposed in [14] using the KAOS specifica-
tion language and temporal logic. The patterns are proved correct and complete
and proofs can be reused. Sabatier [15] discusses the reuse of formal models as
a detailed component specification or as a high level requirement and presents
some real project examples. In classical B [16,17], reuse is expressed using the
keywords INCLUDES and USES where an existing machine can be used in other
developments. Instantiation is a way of reusing. Instantiation is well-established
in areas such as mathematics and other formal methods like classical B or the-
orem provers like Isabelle [18]. [19] reuses Gang of Four (GoF) design pattern
adapted to formal specifications (denominated specification patterns) for clas-
sical B. Several reuse mechanisms are suggested like instantiation, composition
and extension. Proof obligations are also reused when the patterns are applied.
Focusing on the instantiation, this is achieved by renaming sets (machine pa-
rameters), variables and operations. Unlike our work, this approach only defines
patterns as single abstract machine whereas we define the parameterisation in
contexts and extend the pattern to a chain of refinements. Abrial and Hallerstede
[3] and Métayer et al [2] make use of generic instantiation for Event-B. It is pro-
posed the flattening of the context in a way that the contexts of the pattern are
merged and it is suggested the reuse by instantiating the flat context. Following
that approach, we decide to propose an implementation of generic instantiation.
The motivation for such implementation is concerned with reusability of compo-
nents and existing developments. By creating an instance from a generic model,
a new parameterised model is created based on the pattern with new specific
properties.

Event-B supports generic developments but lacks capacity to instantiate and
reuse those generic developments. As a solution, generic instantiation is applied
to patterns and as an outcome instantiated machines are created and parame-
terised. An instantiated machine instantiates a generic machine, is parameterised
by a context and the pattern elements are renamed/replaced according to the
instance. In a similar style, an instantiated refinement instantiates a chain of
refinements reusing the pattern proof obligations assuming that the instantiated
proof obligations are as valid as the pattern ones. As future work we intend
to prove this assumption. By quantifying the variables/constants and types we
want to ensure that pattern proof obligations remain valid when instantiating.
Event-B is not a high-order formalism: although it is possible to quantify vari-
ables and constants, it is not possible to quantify types. So we need to use a
higher-order formalism to ensure that the instantiation of types maintains the
validity of associated proof obligations. A practical case that models a commu-
nication protocol between two entities illustrates the advantages of using generic
instantiation and in particular how to use our approach in the Rodin platform.
Although a simple case study, we believe that it can be applied to more complex
cases.

Further study is required to determine if context instantiation similar to instan-
tiated machines is a worthwhile approach while modelling. Some methodological
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points will arise in a possible implementation of instantiated machines and refine-
ments in the Rodin platform. As an example, Section 7 addresses the situation
of instantiating theorems and invariants and is left as an open question. A future
step for the instantiation of a chain of refinements is to study the possibility of
selecting any of the refinement levels as the initial refinement level giving more
freedom to the modeller. In a long term perspective, any refinement chain could be
considered a pattern or a library of patterns should be provided when modelling:
whenever a formal development fits in a pattern, instantiation could be applied
taking advantage of the reusability of the model and respective proof obligations.
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Abstract. Formal specification languages are traditionally supported
by theorem provers, but recently model checkers have proven to be useful
tools. In this paper we present Eboc, an explicit state model checker for
Event-B. Eboc is based on lazy techniques that allow it to fairly perform
an exhaustive state space search without bounding the size of the sets
used in the specification. We describe the implementation of Eboc and
provide a preliminary comparison with ProB, an existing bounded model
checker for classical B.

1 Introduction

Model checking has been the focus of many research papers in recent years,
with successes in both hardware and software development. In formal methods,
languages are usually supported by theorem provers but model checking has
recently been investigated as well and model checkers have been developed for
languages like Z [1,2,3], CSP [4], or classical B [5]. This paper addresses the
problem of model checking Event-B.

The B-method, originally devised by J.-R. Abrial [5], is a theory and method-
ology for the formal development of computer systems. It is used by industries
in a range of critical domains, most notably railway control [6]. Event-B [7], an
evolution of the classical B, focuses on the formal development of discrete sys-
tems based on refinement. An Event-B specification consists of machines and
contexts. A machine defines a state and several events which repeatedly update
the state by means of update rules or actions, and so provide dynamics to the
system. Contexts, which are seen by machines, provide static data to the model.
Proof obligations ensure the correctness of the model and its dynamics [8], by
for example assuring that invariants remain true after each event’s actions.

In this paper, we describe Eboc, an explicit state model checker for Event-B.
Like other model checkers, Eboc does not discharge proof obligations, but simu-
lates the execution of the model, searching each state for an invariant violation.
It thus complements theorem proving, which leaves users in the lurch if it fails
to discharge a proof obligation, as the users cannot tell whether the proof obli-
gation is provable in principle or not. In the latter case, Eboc will (eventually)
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Machine Simple
Variables x
Invariants

x �= 5
Initialisation =̂

x := 0
Event Simple =̂

any y where y ∈ Z then x := y end
End

Fig. 1. Simple machine causing a false claim in ProB’s bounded model checking

find a counterexample, describing which state violates which invariant and how
it can be reached from the initial state. If the state space is finite, Eboc can
even search the complete state space and decisively show whether any invariant
is violated. Even if the state space is infinite and the proof obligation is provable
Eboc can search through enough of this space to give the user enough confidence
to proceed and try to discharge it manually.

Eboc’s state space exploration is driven by a scheduler that expands all states
and searches for a violation of an invariant in the original (i.e., unbounded) state
space. Eboc traverses this potentially infinite state space by lazily enumerating
the values for any given variable such that no value is ever repeated and the space
is fairly covered. The way Eboc handles the problem of infinite search space is
fundamentally different than for example ProB [9], an existing model checker
for classical B. ProB bounds the state space to be explored by bounding the
size of the deferred sets, the integers, the number of initial states computed,
and the number of enablings for each state. This up-front bounding however,
is of course problematic when the invariant is only violated for values outside
the bounds. Consider for example the (deliberately simple) machine shown in
Figure 1. Obviously, the invariant is violated if y = 5 is chosen. However, ProB’s
default lower and upper bounds for the integers are -1 and 4, respectively, so
the guard will return no violation of the invariant. In this simple example it
is of course possible to inspect the model, see that a higher bound is required
and overwrite ProB’s defaults, but with larger models this will generally become
harder, and eventually setting the right bound becomes a trial-and-error issue.
The problem is aggravated by the fact that if ProB returns no error, it is unclear
whether this is because the model is consistent with the invariants or because
the bounds are too restrictive. Moreover, more obscure problems might be due
to bounding the number of initial states computed by ProB or due to any other
bound imposed by ProB before the search starts. Our approach avoids these
bounds, thereby solving this problem. The solution involves the combination of
a lazy exploration of the values in the domain with a priority system that avoids
the search being deadlocked in a single infinite stream of values. This allows us
to fairly explore even infinite domains, or more precisely, given finite time, fairly
chosen finite subsets of unbounded size. In this context, laziness means that all
the nodes in the search space are considered however, they are only computed
when required for processing.
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In Section 2 we present some background concepts important for the rest of
the paper, in Section 3 we will present in detail the model checker for Event-B.
Section 4 will focus on the architecture of the system and Section 5 will provide a
preliminary comparison between our model checker and ProB with a discussion
of the results. The paper finishes with an overview of related work in Section 6
and conclusions in Section 7.

2 Event-B Essentials

Event-B is a modelling notation and method for formal development of discrete
systems based on refinement [10] which evolved from the B-Method [5]. Here,
we give a brief overview of Event-B; for details see [7]. Since our model checker
focuses on model checking the validity of invariants, we will ignore the concepts
and constructs of Event-B that are irrelevant to this end. In particular, we
will ignore the concept of refinement, which makes the specification of large and
complex systems more tractable by gradually adding more details to an abstract
base model. However, we are not constraining the amount of models that can be
model checked: since model checking generally focuses on a specific refinement
level, it is possible to remove the more abstract levels by flattening the model
into the required level. Moreover, statuses and witnesses will not be discussed
either since they are associated with the refinement of events. Similarly, we will
not discuss theorems which are associated with contexts and machines, because
they do not influence the execution of an Event-B machine.

An Event-B specification consists of machines which specify the behavioral
properties of the model, and contexts which axiomatically provide static aspects
of the model. Event-B’s mathematical language is based on first-order logic
and set theory (as in classical B) and its syntax, type inference rules, and
legibility rules are defined in [11].

Figure 2 presents a simple Event-B model which consists of a single machine
and a single context. The context Colors consists of the deferred set Colors whose
elements are left undefined, three constants and an axiom. The interpretation of
the constants is given by the Axioms; in this case, the axioms specify that the
deferred set consists of three different values represented by the identifiers red,
green, and blue, respectively. The machine Example has two state variables x and
y, which are initialized to 0 and red, respectively. It can see the Colors context,
hence all the definitions of the context can be referred to in the machine. The
machine defines an event e with two parameters xx and yy, a set of predicates
referred to as guards, and a set of update rules referred to as actions. Events
are guarded atomic actions that drive the execution of the model. Once all
the variables are initialized, all events are checked for enabledness. An event
is enabled if there is an assignment to its parameters that satisfies the guards
in the current state. An enabled event is then chosen non-deterministically to
be triggered and, once triggered, values are chosen non-deterministically for its
parameters and the state is updated according to its actions. In the initial state
x = 0, y = red, e is enabled. Since this is the only event of the machine, it is
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Machine Example
Sees

Colors
Variables

x y
Invariants

x ∈ Z ∧ y ∈ Colors
x = 2 ⇒ y �= red

Initialisation =̂
x, y := 0, red

Event e =̂
any

xx yy
where

xx ∈ Z

yy ∈ Colors
yy �= y

then
x := x + xx
y := yy

end
End

Context Colors
Sets

Colors

Constants
red green blue

Axioms
partition(Colors, {red}, {green}, {blue})

End

Fig. 2. Example Event-B specification

triggered and if for example xx = 1 and yy = green are chosen as values for
the parameters, the new state becomes x = 1, y = green. Note that xx = 1 and
yy = red would not be a valid choice for the parameters as this would violate
the guard yy �= y. Once a new state is generated, the process continues until no
event is enabled, in which case it is said the model reached a deadlock state.

The initialization of the state variables is given by a set of actions which can
take three forms:

v := E(c) (1)
v :∈ S(c) (2)

v :| P (v′, c) (3)

Here, E(c) represents a set of expressions over the seen constants, S(c) is a single
set expression over the seen constants and P (v′, c) is a before-after predicate,
where v′ is the set of variables v in the after-state. The first form is a determinis-
tic assignment form which assigns the value of each expression on the right-hand
side to the set of variables in the left-hand side in order. The second form is a
non-deterministic assignment form which assigns to the variable on the left-hand
side one of the elements of the set that result from the evaluation of S(c). The
third form, which is the most general form, assigns a value non-deterministically
to the variables v that satisfy the predicate P (v′, c). Event actions can, in gen-
eral, also take different forms. However, we will assume without loss of generality
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that all the non-determinism is represented in the guards and that event actions
always take the deterministic form. The following is thus the canonical form used
for events:

Event e =̂ any x where P (v,x, c) then v := E(v,x, c)

Here, x represents the event’s parameters whose scope are the the event’s body
and whose value are constrained by the guard P (v,x, c). The guard enables the
event and generates a new state through the application of the actions v :=
E(v,x, c), which are analogous to the form shown in Equation (1).

Proof obligations play an important role in Event-B and their purpose is
two-fold. On one hand, they show that a model is sound with respect to some
behavioral semantics. On the other hand, they serve to verify properties of the
model [8].

In this paper, we will focus on checking invariants. Invariants are the predi-
cates that must be satisfied in all states of the model. Event-B ensures that a
machine is consistent by constructing proof obligations that formalize the intu-
ition that the machine preserves the invariant. Each event thus induces a proof
obligation of the form:

I(v) ∧ Pe(v,x, c) ⇒ I(v′) (4)

Intuitively this means that if the invariants and the guard for event e hold in
the current state, then the invariants also hold in the post-state. If this is proven
for each event, then the machine is consistent. Eboc focuses on checking that
these invariants are never violated. Eboc checks this by simulating the model,
generating and exploring a state space by repeatedly applying all possible events
that are enabled in the given state.

3 Explicit State Model Checking of Event-B

In contrast to ProB, Eboc performs a lazy, unbounded, explicit state search of
an Event-B model. Before going into the details of how Eboc model checks an
Event-B model, we present a brief discussion on what it means to do explicit
state model checking of an Event-B model. Consider a slightly simplified version
of event e of Figure 2:

Event e1 =̂ when � then x := x + 1

where x is always incremented. Consider also a second event:

Event e2 =̂ any zz where zz ∈ Colors ∧ x mod 2 = 1 then x, y := x + 1, zz

which increments x and non-deterministically chooses a new color for y if x is
odd. Figure 3 shows the search tree for the machine of Figure 2 but with the
events e and e1 above. The initial state is created and from it, all the enabled
events are expanded: initially only event e because x is 0. In the resulting state
both events are enabled however, four transitions occur to three different states.
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x = 0, y = red x = 1, y = red

x = 2, y = red

x = 2, y = green
e1(zz = green)

x = 2, y = blue

e

e

e1(
zz

= red
)

e1(zz = blue)

Fig. 3. Example of a search tree on an Event-B model

One transition is due to event e and the remaining three are due to the non-
deterministic assignment of zz to one of the possible colors. Note what would
have happened if there was a non-deterministic assignment to an integer vari-
able, instead of a variable whose type is finite. The branching from this state
would have been infinite. Current model checkers opt to bound these infinite
sets so they can perform a search on the state space. However, our approach
is to leave the infinite sets unbounded and lazily unroll them during search.
Therefore, Eboc has the advantage of finding violations others may not find be-
cause their domains may be bounded to too restrictive values. This means that
nothing is bound a priori and the search space (potentially infinite) is possibly
exhaustively searched for a counterexample. However, this space is only unfolded
when required. Therefore a counterexample, if it exists, is eventually found. The
downside is that the model checker will not stop if the space is infinite and the
model is correct. That is why we allow the user of Eboc to input a bound on
the number nodes (which represent states in the system) to explore. In this case,
Eboc assures the user that within that space no counterexample exists. The
remainder of the section presents our approach in more detail.

3.1 Enumerations

In order to have an exhaustive search of an infinite state space, we need to have a
methodology to list for every variable in the model all the values they can take,
which are possibly infinite, so we need to lazily enumerate them. Whenever
we need to choose non-deterministically a value for a given variable we take a
value from a lazy stream of possible values (which depend on the type of the
variable) and if the value does not fit the constraints the variable is subject to,
we backtrack and try another. To this end, we discuss enumerations.

Consider again the simple example in Figure 1. Event Simple is always en-
abled, and can be triggered an infinite amount of times from a given state and
for different values of y. From the initial state x = 0, each time we trigger event
Simple we take a new y from the lazy stream of values [0,−1, 1,−2, 2, . . .], which
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generate the states x = 0, x = −1, x = 1, . . . respectively. If instead the event
was of the form:

Event Simple1 =̂ any y z where y ∈ Z ∧ z ∈ Colors . . .

where it can be assumed that Colors is the set defined in Figure 2, then we would
need to lazily enumerate all values in Z ×Colors, assign each of the values to y
and z respectively and evaluate the state, thereby generating an infinite amount
of states. The lazy stream this time would look like [0 �→ red, 0 �→ green, 1 �→
red, 0 �→ blue, . . .], where x �→ y is Event-B’s representation of the pair (x, y).

In general, an enumeration of a set S is a surjection f from N onto S. This
definition allows that two different natural numbers have the same image under
f , which is something we do not want for efficiency reasons, so f is, in our case,
also injective.

Event-B has a flat type system that includes as basic types user defined sets,
the booleans, the integers and cartesian product along with the powerset as type
constructors. For each of these types we define enumerations that allow us to
lazily step through each possible value induced by the type. However, we had to
make sure these enumerations are not only injective but also fair. There are two
dimensions to fairness:

1. it has to explore all the possible values the variable can have. For example, for
an integer variable, it would not be fair to first explore all the positive number
and then all the negative numbers because since the positive numbers are
infinite the negative numbers would never be explored, even if given infinite
time;

2. and, given a list of variables whose values we need to enumerate, we need
to alternate the variable we change the value for next. For example, when
enumerating all the values of a list of two integer variables, we cannot first
enumerate all the values for the first and then, increase the second, enumerate
all the values for the first and so on. If the first variable has an infinite
domain, we end up never increasing the second variable. We need to alternate
the variables to modify.

How each of the presented enumerations is fair will become clear during their
presentation. To enumerate all possible values that a variable of given type can
have, we will generate them recursively and them compose them. Assume a
variable x has type P(Z × BOOL) and the following enumerations:

– an enumeration h for powersets from N to P(N);
– an enumeration g for cartesian products from N to N × N;
– an enumeration f1 for integers from N to Z, and;
– an enumeration f2 for booleans from N to BOOL.

To obtain an enumeration for P(Z × BOOL), we need to compose the above
enumerations in the following way: given an n, we apply h to obtain a set of
naturals {h0, . . . , hs}. To every element of this set we apply g resulting in {g00 �→
g01, . . . , gs0 �→ gs1}. Then we can apply f1 to all the first elements of each pair
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and f2 to all the second elements of each pair obtaining a set in P(Z × BOOL):
{f11 �→ f21, . . . , f1s �→ f2s}. This is a powerful method because it only requires us
to define a few types of enumerations which by composition allows up to obtain
enumerations for any possible Event-B type. The following enumerations will
be defined:

– An enumeration for carrier sets S, mapping a subset of N to S;
– an enumeration for the integers, mapping N to Z;
– an enumeration for the powerset, mapping N to P(N), and;
– an enumeration for fixed size lists, mapping N to N × . . . × N. We require

this enumeration to provide a lazy stream of values for a list of variables, for
example, the list of local variables in an event. Furthermore, this enumeration
for size 2 provides an enumeration of pairs.

The simplest enumeration is the one defined for user defined sets. Considering a
set S = {s0, s1, . . . , sn}, the enumeration is a function that maps the first n + 1
natural numbers to each of the elements of the set S. An enumeration for the
set Colors defined in the context shown in Figure 2 would be {0 �→ red, 1 �→
green, 2 �→ blue}.

The enumeration of the integers is given by a function f , where f(x) = −(x+
1)/2 if x is even and f(x) = x/2 otherwise. This generates an enumeration that
jumps between the positive and negative numbers, without giving precedent to
the positive or the negative numbers making it a fair enumeration for the whole
set of integers.

Enumerating pairs is the same as enumerating lists of size 2. To enumer-
ate lists, we enumerate first all of those whose elements sum 0, then all whose
elements sum 1, and so on. This generates a diagonal perspective on the enumer-
ation. Figure 4, on the left, represents diagrammatically how the enumeration
proceeds for pairs of naturals. In the case of pairs, the only pair summing 0 is
0 �→ 0, then all comes all of those summing 1: 0 �→ 1 and 1 �→ 0, and so on.
Consider the enumeration of Colors × Z, where Colors is defined in Figure 2,
in this case since Colors is finite, the enumeration will not generate pairs whose
first element is bigger than 2, therefore having a diagrammatic representation as
the one shown in the right of Figure 4.

Even though sometimes it is easy to find an explicit form as a function for an
enumeration (as in the case of the integers), it is not so easy for more complex
structures like lists or sets, so we will not pursue such representation and instead
we will in these cases focus on how to go from one value to the next. The process
of generating all lists (enum sz s) which have a specific sum can be thought of
recursively as two cases:
1. (enum 1 s) =̂ (list (list s))

2. (enum sz s) =̂ ((cons i (enum (− sz 1) (− s i))) . . . )

The first case is the base case that returns a list of all the lists of size 1 and a
given sum. The second case builds all the lists of size sz and sum s by noting
that the problem can be reduced by building on the lists one element smaller
thus generating a recursive solution to the problem.
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Fig. 4. Diagrammatic representation of enumeration of pairs in N×N (on the left) and
{0, 1, 2} × N (on the right)

card(si)
0 s0

1 s1, s2, s4, s5, s8, s9, s11, s12

2 s3, s6, s10, s13

3 s7, s14

4 s15

0
1
2
3
4

Fig. 5. Diagrammatic representation of set enumeration with step = 2

The enumeration for sets is analogous to lists, with the constraint that two
elements in a set cannot be the same and that we need to generate sets of different
sizes in a fair order. We have a parameter which we called step that defines how
many sets of size n we have to generate until we generate a set of size n+ 1. As
such, we can then lazily enumerate all the sets fairly by starting with the empty
set and increasing their size. Figure 5 explains how the step parameter works,
where f(i) = si, and f is a powerset enumeration.

3.2 Model Checking

In what follows we explain the search method used to find an invariant violation
in Eboc through an example and discussing some important details in the end.
Consider again the machine Example in Figure 2 and the part of the generated
search tree in Figure 6.

In Figure 6, each of the shaded rectangles represent a state and the white
rectangles with rounded corners represent choice points.

The simulation starts by setting up a choice point for the initial states. A
choice point represents a suspension of an assignment, which might possibly
have infinite results. This happens whenever a choice is required, as for example
in the case of choosing a value for the parameters of an event or in the use of
quantifiers.

In this case there is only one initial state since the initialization is determin-
istic, x = 0, y = red, and therefore the choice point does not branch. Then, all
events generate a suspension which represents a choice point for all the param-
eters. Event e generates a suspension for the choice of two parameters: xx ∈ Z,



494 P.J. Matos, B. Fischer, and J. Marques-Silva

Choice Value
(1) [0/x, red/y]
(2) [0/xx, red/yy]
(3) [0/xx, green/yy]
(4) [−1/xx, green/yy]
(5) [0/xx, red/yy]
(6) [2/xx, red/yy]

x = 0, y = red

x = 0, y = red

xx ∈ Z, yy ∈ Colors

(2)

x = 0, y = green

xx ∈ Z, yy ∈ Colors

x = 0, y = red

(5)

. . . x = 2, y = red

(6)

. . .

. . . . . .

Event e Triggered

(3)

x = −1, y = green

(4)

. . .

. . . . . .

Event e Triggered

Initialisation, (1)
ha
sh
ed

Fig. 6. Search space of the model shown in Figure 2

yy ∈ Colors. As it can be seen in 6 we are representing states with rectangles
with a gradient background and choice points with rectangles with rounded cor-
ners and white background. The choice points are where the lazy enumeration
happens. In this case the scheduler will enumerate values of the for Z × Colors.
The first enumeration xx = 0, yy = red generates no state since it violates one
of the guards: yy �= y. Note the thickness of the lines out of choice points, rep-
resenting the priority with which a state is generated from a given choice. The
next enumeration is: xx = 0, yy = green generating the state x = 0, y = green.
This state generates again a suspension for the triggering of event e. At this
point it is important to note the relevance of priorities in the search. The choice
point has still infinitely many states to generate, but their priorities decrease as
it generates more and more states from this. The second choice point has a in-
finitely more states to generate but the first state has again the highest possible
priority and that will be the one that will be generated. The first enumeration
is xx ∈ Z, yy ∈ red generating the state x = 0. y = red but since states are
hashed, the state is promptly discarded. From this point, both choice points will
generate new states whose order will depend on their priorities. Once the second
choice point tries the enumeration x = 2, y = red, generating the state x = 2,
y = red the invariant evaluator, signals a violation and the process stops return-
ing the trace: Initialisation, Event e(xx = 0, yy = green), (x = 0, y = green),
Event e(xx = 2, yy = red), (x = 2, y = red). This is exactly the path shaded in
Figure 6 and represents the path to the state violating the invariant.



A Lazy Unbounded Model Checker for Event-B 495

Event Mean =̂
any

v
where

v > 0 ∧ v < 0
then

. . .
end

v > 0 ∧ v < 0

[0/
v]

[−
1/
v] [1/v]

[−
2/v]

. . . . . .

Fig. 7. Event and tree presenting an impossible guard to satisfy

This lazy method assures that all the space will be searched and if the model
is finite the process will stop. If the model is infinite, the user either aborts the
search after some time, or sets up the number of states that should be searched.
This method generates a search tree that mixes depth with breadth first search
and focusses the attention on the values which have the highest priority of gen-
erating a state which violates the invariant. For example, the enumeration of the
integers starts at zero but it is possible to change the enumeration to allow it
to start at any other point by adding to each of the values of the enumeration a
specified offset. The priorities, which can be thought of as probabilities, are gen-
erated from a normal distribution. Note, that they are not exactly probabilities
because their values range from 0 to 1, and the sum of all the priorities from a
choice point does not sum 1.

Consider the event shown in Figure 7. This event has an impossible guard to
satisfy which generates a choice point during the search that will never succeed
in generating a state. The only reason why the search does not stop here in an
infinite loop is because choice points generate branches with decreasing priority.
After a while, depending on what the scheduler has on queue, the search will
focus on some other part of the tree. This does not mean this choice point will
be forgotten, but it will not be tried out as often as the rest. This is so that
cases like v > 1000000 have a chance of ever generating a state.

Event-B supports definitions of constants whose value is constrained by a set
of predicates, known as axioms. The model checking process handles them in the
example same way as parameters. Constants are left undefined in the beginning
and their value is only searched for once we notice an event needs their value. In
this case, the choice point of the event will contain a choice for all the constants
defined by the model constrained by all the axioms of the model and from that
point onwards the scheduler will not worry about them anymore since below
that branch their value is already assigned. This is highly inefficient: a value is
assigned to all the constants once one of them is referenced, however, it should
only be required to assign a value to the constants referenced in the event and
those that require a value because they share the same constraint. For example,
if an event uses a constant x constrained by the axioms x < y, then we need to
assign a value to x and y but no other constant that might exist. We hope to
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Event-B
Spec.

Parser
& Static
Checker

Simplifier Code Gen-
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Lib. Scheduler Simulator

Fig. 8. Eboc system architecture

address this in the future to improve the efficiency of Eboc on models dealing
with a lot of constants.

4 System Architecture

Eboc is fully implemented in PLT-Scheme [12] and was designed to be an easily
extensible tool to work with Event-B models. Even though we implemented a
model checker in the backend, it would be very easy to integrate other types of
tools. We will focus this section on the system architecture and some implemen-
tation details which are important to understand how Eboc performs the lazy
model checking.

Eboc is a command line tool that in its simplest form receives a file describing
an Event-B specification and a natural number (the number of states to verify)
and returns either that the verification was successful, or a trace to a state that
violates one of the invariants. Figure 8 shows the system architecture. An Event-
B specification is received as an argument and passed into the parser and static
checker. The parser is responsible for generating an abstract syntax tree and the
static checker besides assigning a type to each node through type inference, check
that the tree is legible. The type inference and legibility rules for Event-B can be
found in [11]. After the static check has been performed the simplifier does a series
of simplifications to the model in order to simplify the simulation without affecting
its performance. The code generator outputs the simulator code specific to the
simulation of the input model which is linked to the scheduler and the Event-B
library to produce the final answer.

4.1 Scheduling

The scheduling is performed by a function which given a search structure and
the number of states to explore explores the state space of the model until either
a violation is found or the number of states to explore has been reached.
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(define (begin-search! n s)
(pq:enq! (search-igen s) ((search-igen s) ’prt))
(let loop ((violations ’()))

(cond ((not (null? violations)) violations)
((> (search-ns s) n) ’()) ; State bound achieved
((pq:empty?) ’()) ; State space fully explored
(else
(let∗ ((element (pq:next-el!))) ;; Returns Removes high priority element

(if (element ’empty?)
(loop ’())
(let ((new-state (element ’stt)) (new-prt (element ’prt)))

(pq:enq! element new-prt)
(if (hashed? new-state)

(loop ’())
(let ((vprops (foldl (λ (p acum)

(if (p new-state)
acum
(cons p acum)))

’()
(search-props s))))

(inc1! (set-search-ns! s))
(if (not (null? vprops))

(loop vprops)
(begin

(hash! new-state)
(for-each (λ (proc)

(let∗ ((gen (proc new-state)))
(when (not (gen ’empty?))

(pq:enq! gen (gen ’prt)))))
(search-evgen s))

(loop ’()))))))))))))

Fig. 9. Simplified algorithm of the scheduler in pseudo-Scheme code

The search structure

(define-struct search (ns igen evgen props))

has four elements, the number of states to explore, the initialization suspension,
a list of suspension generators representing the events and a list of procedures
that represent the properties that each state needs to verify.

Figure 9 shows a simplification of the scheduling algorithm. The functions
pq:enq!, pq:next-el, and pq:empty? act on a global priority queue that contains sus-
pensions and their respective priorities. These functions enqueue a suspension
with a given priority, dequeue and remove the element with the highest prior-
ity from the queue and check if the queue is empty respectively. The scheduling
function begins by enqueueing the initialization suspension which corresponds to
the suspension that will generate all possible initialization states. Then it enters
a loop that only stops on one of three conditions:

1. Either the number of violations found until now is not zero, in which case it
returns the violations;

2. the number of states to explore as been reached, in which case it returns
that no violations where found, or;

3. the queue is empty, which means that no states are left to explore and the
whole state space has been explored.
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Otherwise the procedures enters the else clause of the cond in the loop. Here we
get the element with the highest priority in the queue. If this element is empty,
meaning that no states are left to generate from this suspension, then we loop,
otherwise we proceed by getting the new state the suspension has to generate
(new-state) and the priority of the next state of the suspension (new-prt). Since the
element was not empty, it is enqueued with the new priority and the code that
follows handles the new state. If the new state has already been explored, then
we loop and forget the new state, otherwise we increment the number of explored
states and verify which properties have been violated in this state (vprops). If the
number of violated properties is non-zero we loop with the violated properties
to return to the user. If there are no violated properties in this state we hash
the new state and enqueue all event suspensions that are not empty, meaning
they generate some state and then we loop.

4.2 Code Generation and Simulation

Eboc makes use of units [13] in order to plugin automatically generated code.
Code that simulates this model is generated, linked with the scheduler and the
Event-B library, plugged into the main system and executed. Once the simu-
lator terminates, its code is discarded and an answer is provided to the user.

The most important thing to consider is what are suspensions? Suspensions
are closures over some variables that dictate how the next state is generated.
Consider the following non-deterministic event NDet:

Event NDet =̂ any x when x > 0 then y := y + x end

The code generated for this particular event is shown in Figure 10. Each event
generates a pair: guard/action procedures and it is the guard procedure that
handles all the complexity related to non-determinism. The actions are always
deterministic (which is not a restriction as described in section 2). The variable
enum is a function that generates a lazy stream of values whose types are listed
in the argument for type-list-enumerator, in this case INT. The closure receives a
message which is then handled as appropriate. If a state is requested through
the message ’stt, then the local state is generated, the guard is evaluated and if
the guard evaluates to true, the action is then invoked returning a new state. A
pair of procedures, as shown in Figure 10, is generated per each event besides
initialization code that sets up the search structure discussed in section 4.1 and
the initial call to the begin-search! procedure. All this code is wrapped around a
unit, which can be thought of as a pluggable module, compiled on the fly and
linked to the main Eboc components.

4.3 Event-B Library

The Event-B deals with the evaluation of expressions and predicates. It mainly
implements the operations of Event-B and provides two function: eval-predicate

and eval-expression which evaluate a predicate or an expression respectively in a
given state. Note that during the code generation each event guard and action
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(define (NDet-guard state)
(let∗ ((enum (type-list-enumerator ’(INT)))

(next-enum (enum))
(next-prt (enum ’prt)))

(λ (msg)
(case msg

((empty?) (not next-enum))
((stt)
(let ((local-state (map cons ’(var:x) next-enum)))

(begin0
(if (eval-predicate ’(> var:x 0) state local-state)

(NDet-action state local-state)
#f)

(set! next-enum (enum))
(set! next-prt (enum ’prt)))))

((prt) next-prt)))))

(define (NDet-action state local-state)
(foldl (λ (assign-pair acum)

(state-update acum
(car assign-pair)
(eval-expression (cdr assign-pair) state local-state)))

state
(list (cons ’var:y ’(+ var:y var:x)))))

Fig. 10. Code generated for deterministic event NDet

contains symbolic expressions that represent Event-B predicates and expres-
sions. All of this is done through code generation and the simulation is performed
on a symbolic expression representation of Event-B.

5 Experiments

In this section we will report some preliminary experiments with Eboc. We will
present four different models, show some results of their execution in ProB and
Eboc and comment on the results.

All experiments were run on a Pentium-D 3.2GHz, with 2Gb of memory under
a 64bit Gentoo Linux operating system with a timeout of 1200 seconds. Eboc was
ran from the console and ProB was executed from its GUI. The measured time is
shown always in seconds and in ProB reflects the time from the button to start
the model checking is pushed until the experiment is completed (either because a
violation is found or because the number of state to explore has been reached. For
the remainder of this section, by run we mean a single execution of the model
checkers with a given bound. Unless noted otherwise all the ProB runs were
executed using the default settings of ProB-1.3.0-rc3 (compiled for 64bit). More
over, ProB was set to only verify the invariants during model checking (which
differs from the default option which includes also the check for deadlocks).

The first model is the Bakery1 model, which is distributed with ProB. It is a
B model that we converted to Event-B syntax so that we could model check
it with Eboc. This is a simple deterministic model where the invariants are not
violated. The first row of Table 1 shows the timings for the execution of Eboc
and ProB for different number of states to explore.
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Table 1. Experimental results of running Eboc and ProB on four different models
(runtime is shown in seconds)

100 States 1000 States 10000 States 100000 States
Eboc ProB Eboc ProB Eboc ProB Eboc ProB

Bakery1 3 1 4 2 13 11 141 317
Jukebox 3 1 4 59 10 217 108 >1200
Huffman 3 1 5 3 49 40 820 >1200
Consts 3 1 4 3 23 42 26 >1200

The Bakery1 model has four integer variables whose value is updated by six
different events through simple arithmetic operations. One interesting point is
that even though ProB is very fast for small number of states it gets slower as
more and more states are explored until the point that it gets slower than Eboc.
Given that this model has no invariant violation, none of the model checkers
reported a violation.

The following model is the Jukebox and its experimentation table is shown in
the second row of Table 1. The Jukebox is a model from a book about classical
B [14], which is also distributed by ProB as an example. Once again we converted
the model from classical B to Event-B so that we could use it with Eboc. The
Jukebox machine sees a context that declares a deferred set and a constant, all of
the machine events are non-deterministic and the update rules are set expressions.

In this example, after the first case ProB asked to increase the bound on the
number of computed initializations because otherwise it would have no more
states to explore. So, for all the bounds higher than 100, ProB default setting
of computing 4 initializations was changed to 100. This is the reason why ProB
got slower than Eboc for the remaining tests. Again, since there no violation of
invariants in the model, none was reported.

Third row of Table 1 shows the experiments regarding the Huffman model by
John Colley [15]. The model simulates the encoding and decoding of an infinite
string of vowels from a fixed huffman tree. The model, which has 14 events, is non-
deterministic and declares an enumerated set among several variables. The vari-
ables are sets or integers and most of the update rules deal with set expressions.

Eboc deals very well with these models and scaled very well. HoweverProB after
a certain number of nodes have been explored the performance deteriorates very
quickly. No invariant is violated and none of the model checker report a violation.

The Consts model is an artificial model created by us (ref. appendix A) to
explore the handling of the constants when under a lot of non-determinism and
which has a violation very far from the initial of the search. Last row of Table 1
shows the results for this experiment.

For the first 3 runs, neither of the model checkers found a violation and had
similar performance (even though ProB already took three times more than Eboc
on its third run). However, on the fourth run, Eboc found a violation after 26 sec-
onds and ProB ran past the timeout without returning any violation. This is a case
where ProB would not find the bug due to its default bounds and where Eboc had
no problem finding the bound if given enough freedom to search the state space.
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In conclusion, ProB is a very mature model checker with a wide range of
options and model checking techniques. ProB seems to be extremelly fast for
a small number of states (< 1000) but then its performance detiorates quickly.
Unfortunately, at this point we did not any find real world examples that violate
its invariant and where ProB is unable to detect it due to its restrictive bounds.

6 Related Work

Traditionally formal languages are supported by automated theorem provers
with the notable exception of Alloy [16] which is supported by KodKod [17], a
model finder.

However, other formal languages, more notably classical B, Z and CSP,
have already included a model checker to their available tools, but none has
attempted to perform lazy unbounded model checking. Since the languages
Event-B and classical B are closely related we will concentrate our discussion
in the B model checker, ProB.

ProB [9] is an animator, constraint-based checker and temporal bounded
model checker for classical B developed in SICStus Prolog. We will focus
on its use as a bounded model checker. ProB requires the input of several types
of bounds: bound on the size of the set of integers, bound on the number of com-
puted initializations, and bound on the number of computed enablings (along
with a timeout for computing them). Even though ProB provides default values
for each of these, in practice there might be models whose faults lie outside the
state space set by these bounds forcing the user to tweak them so that a faulty
state can be reached. ProB as a model checker tries to find whether a machine
violates its invariant by finding a sequence of operations that, starting from the
initial state of the machine, navigates the machine into a state in which the
invariant is violated. The exploration is done using an adaptation of the A* al-
gorithm with cycle detection, and can be tuned to perform in the extreme cases
as either a depth-first or breadth-first search. By default every node had 25%
chance of being treated in a depth-first manner. ProB has been adapted over
the years to check goals written in Linear Temporal Logic (LTL), and to model
check Z, CSP and Promela [18]. ProB integrates symmetry reduction [19] and
more recently, introduced support for Event-B.

On the subject of Event-B model checking, besides ProB we know about an
attempt to use SAL, KodKod and BDDs to model check Event-B [20] however,
at the time of writing there is no software available to experiment with.

7 Conclusions

In this paper we presented a new model checker for Event-B based on a lazy
strategy to explore the state space of the models in an unbounded way. We fo-
cused our discussion around the problem we were trying to solve: how to perform
explicit state model checking and yet avoid bounding our domains? We presented
techniques to fairly enumerate the space of values of Event-B expressions, the
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model checking algorithm that makes use of these enumerations to lazily explore
the state space and the Eboc system architecture details.

The work proposed in this paper is based on lazy streams coupled with a
priority scheme and seems to work well in theory as well as in practice, even
though there are still improvements to be made to the implementation in order
to improve the efficiency of Eboc. Another important step is in finding complex
case studies that demonstrate the importance of this approach and that Eboc is
successful in finding invariants violations in these case studies, which would be
otherwise impossible using bounded approaches.
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A Consts Model

Machine cons t s

Sees cons t s

Variables x

Event e1 =̂
any

xx
where

�
then

x := x + xx
end

Initialisation =̂
x := 0

Invariants
c1 = 2 ⇒ x �= 150
(x ≥ −5000) ∧ (x ≤ 5000)

End

Event e2 =̂
any

xx
where

xx > c2
then

x := xx + x + c1
end

Event e3 =̂
when

�
then

x := c1 + c2 + x
end

Context cons t s
Constants c1 c2
Axioms

c1 < c2
End
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Abstract. With the aid of the ProB Plugin, the Rodin Platform pro-
vides an integrated environment for editing, proving, animating and
model checking Event-B models. This is of considerable benefit to the
modeler, as it allows him to switch between the various tools to validate,
debug and improve his or her models. The crucial idea of this paper is
that the integrated platform also provides benefits to the tool developer,
i.e., it allows easy access to information from other tools. Indeed, there
has been considerable interest in combining model checking, proving and
testing. In previous work we have already shown how a model checker
can be used to complement the Event-B proving environment, by acting
as a disprover. In this paper we show how the prover can help improve
the efficiency of the animator and model checker.

Keywords: Model Checking, B-Method, Theorem Proving, Experiment,
Tool Integration.

1 Introduction

There has been considerable interest in combining model checking, proving and
testing (e.g., [22,23,25,11,28,4,12,15,13,14,32,29,24,5]). The Rodin platform for
the formal Event-B notation provides an ideal framework for integrating these
techniques. Indeed, Rodin is based on the extensible Eclipse platform and as
such it is easy for provers, model checkers and other arbitrary tools to interact.
In this paper we make use of this feature of Rodin to improve the ProB [18,19]
model checking algorithm by using information provided by the various Rodin
provers.

More concretely, in this paper we show how we can optimize the consistency
checking of Event-B and B models, i.e., checking whether the invariants of the
model hold in all reachable states. The key insight is that from the proof in-
formation we can deduce that certain events are guaranteed to preserve the
correctness of specific parts of the invariant. By keeping track of which events
lead to which states, we can avoid having to check a (sometimes considerable)
amount of invariants.
� This research is being carried out as part of the DFG funded research project

GEPAVAS and the EU funded FP7 research project 214158: DEPLOY (Indus-
trial deployment of advanced system engineering methods for high productivity and
dependability).
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The paper is structured as follows. In Section 2 we introduce the Event-B
formal method and the Rodin platform, while in Section 3 we provide background
about consistency checking and the ProB model checker, which itself already
employs a combination of model checking and constraint solving techniques. In
Section 4 we explain our approach to using proof information for optimizing
the process of checking invariants in the ProB model checker, and present an
improved model checking algorithm. Section 5 introduces a fully proven formal
model of our approach. In Section 6 we evaluate our approach on a series of case
studies, drawn from the Deploy project. The experiments show that there can be
considerable benefit from exploiting proof information during model checking.
In Section 7 we discuss how our method can be used in the context of classical
B without easy access to proof information. We conclude with related work and
discussions in Section 8.

2 Event-B and Rodin

Event-B is a formal method for state-based system modeling and analysis evolved
from the B-method [1]. The B-method itself is derived from Z and based upon
predicate logic combined with set theory and arithmetic, and provides several
sophisticated data structures (sets, sequences, relations, higher-order functions)
and operations on them (set union, intersection, relational composition, rela-
tional image, to name but a few).

An Event-B development consists of two types of artifacts: contexts and ma-
chines. The static properties are expressed in contexts, the dynamic properties
of a system are specified in machines. A context contains definitions of carrier
sets, constants as well as a set of axioms. A machine basically consists of finite
sets of variables v and a finite set of events. The variables form the state of
the machine, they are restricted and given a type by an invariant. The events
describe transitions from one state into another state. An event has the form:

event =̂ ANY t WHERE G(v, t) THEN S(v, t) END

It consists of a set of local variables t, a predicate G(v, t), called the guard and
a substitution S(v, t). The guard restricts possible values for t and v. If the
guard of an event is false, the event cannot occur and it is called disabled. The
substitution S modifies some of the variables in v, it can use the old values
of v and the local variables t. For instance, an event that chooses two natural
numbers a, b and adds their product ab to the state variable x ∈ v could be
written as

evt1 =̂ ANY a, b WHERE a ∈ N ∧ b ∈ N THEN x := x + ab END

The Rodin tool [2] was developed within the EU funded project RODIN [26] and
is an open platform for Event-B. The Rodin core puts emphasis on mathematical
proof of models, while other plug-ins allow, for instance, UML-like editing, ani-
mation or model checking. The platform interactively checks a model, generates
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and discharges proof obligations for Event-B. These proof obligations deal with
different aspects of the correctness of a model. In this paper we only deal with
proofs that are related to invariant preservation, i.e., if the invariant holds in a
state and we observe an event, the invariant still holds in the successor state:

I(v) ∧G(v, t) ∧ SBA(v, t, v′) =⇒ I(v′)

By SBA(v, t, v′) we mean the substitution S expressed as a Before-After pred-
icate. The primed variables refer to the state after the event happened, the
unprimed variables to the state before the event happened. In our small exam-
ple, SBA(v, t, v′) is the predicate x′ = x + ab. If we want to express, that x is a
positive integer, i.e. x ∈ N1, we need to prove:

x ∈ N1 ∧ a ∈ N ∧ b ∈ N ∧ x′ = x + ab =⇒ x′ ∈ N1

This implication is obviously very easy to prove, in particular, it is possible to
automatically discharge this obligation using the Rodin tool.

For each pair of invariant and event the Rodin Proof Obligation Generator,
generates a proof obligation (PO) that needs to be discharged in order to prove
correctness of a model as mentioned before. A reasonable number of these POs
are discharged fully automatically by the tool. If an obligation is discharged,
we know that if we observe an event and the invariant was valid before, then
it will be valid afterwards. Before generating proof obligations, Rodin statically
checks the model. Because this also includes type checking, the platform can
eliminate a number of proof obligations that deal with typing only. For instance
the invariant x ∈ Z does not give rise to any proof obligation, its correctness is
guaranteed by the type checker.

The propagation and exploitation of this kind of proof information to help
the model checker is the key concept of the combination of proving and model
checking presented in this paper.

3 Consistency Checking and ProB

ProB [18,19] is an animator for B and Event-B built in Prolog using constraint-
solving technology. It incorporates optimizations such as symmetry reduction
(see, e.g., [30]) and has been successfully applied to several industrial case studies
such as a cruise control system [18], parts of the Nokia Mobile Internet Technical
Architecture (MITA) and the most recent one: the application of ProB to verify
the properties of the San Juan Metro System deployment [20].

One core application of ProB is the consistency checking of a B model, i.e.,
checking whether the invariant of a B machine is satisfied in all initial states
and whether the invariant is preserved by the operations of the machine. ProB

achieves this by computing the state space of a B model, by

– computing all possible initializations of a model and
– by computing for every state all possible ways to enable events and comput-

ing the effects of these events (i.e., computing all possible successor states).
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root

State3

Initial
State2

Initial
State2 Event1

State4Event1

Event2

Event3

Event3

Event2

Fig. 1. A simple state space with four states

Graphically, the state space of a B model looks like in Figure 1. Note that the
initial states are represented as successor states of a special root node.

ProB then checks the invariant for every state in the state space. (Note that
ProB can also check assertions, deadlock absence and full LTL properties [21].)

Another interesting aspect is that ProB uses a mixture of depth-first and
breadth-first evaluation of the state space, which can lead to considerable per-
formance improvements in practice [17].

4 Proof-Supported Consistency Checking

The status of a proof obligation carries valuable information for other tools,
such as a model checker. As described, ProB does an exhaustive search, i.e.
it traverses the state space and verifies that the invariant is preserved in each
state. This section describes how we incorporate proof information from Rodin
into the ProB core.

Assuming we have a model, that contains the invariant [I1, I2, I3]1 and we
follow an event evt to a new state. If we would, for instance, know that evt
preserves I1 and I3, there would be no need to check these invariants. This
kind of knowledge, which is precisely what we get from a prover, can potentially
reduce the cost of invariant verification during the model checking.

The ProB plug-in translates a Rodin development, consisting of the model
itself, its abstractions and all necessary contexts into a representation used by
ProB. We evolved this translation process to also incorporate proof information,
i.e., our representation contains a list of tuples (Ei, Ij) of all discharged POs,
that is event Ei preserves invariant Ij .

Using all this information, we determine an individual invariant for each event
that is defined in the machine. Because we only remove proven conjuncts, this
specialized invariant is a subset of the model’s invariant. When encountering a
new state, we can evaluate the specialized invariant rather than the machine’s
full invariant.
1 Sometimes it is handier to use a list of predicates rather than a single predicate, we

use both notations equivalently. If we write [P1, P2, . . . , Pn], we mean the predicate
P1 ∧ P2 ∧ . . . ∧ Pn.
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As an example we can use the Event-B model shown in Figure 2. The full state
space of this model and the proof status delivered by the automatic provers of
the Rodin tool are shown in Figure 3.

VARIABLES
f, x

INVARIANTS
inv1 : f ∈ N �→ N

inv2 : x > 3
EVENTS
Initialisation
f := {1 �→ 100}||x := 10
Event a =̂
f := {1 �→ 100}||x := f(1)
Event b =̂
f := f ∪ {1 �→ 100}||x := 100

Fig. 2. Example for intersection of invariants

S1 S2

x = 100
f(1) = 100

x = 10
f(1) = 100

a

b

a,bInitialize

a / inv1

a / inv2

b / inv1

b / inv2

Fig. 3. State space of the model in figure 2

The proof status at the right shows, that Rodin is able to discharge the proof
obligations a/inv1 and b/inv2 but not a/inv2 and b/inv1. This means, if a
occurs, we can be sure that f ∈ N �→N holds in the successor state if it holds in
the predecessor state. Analogously, we know, that if b occurs, we are sure, that
x > 3 holds in the successor state if it holds in the predecessor state.

Consider a situation, where we already verified that all invariants hold for
S1 and we are about to check S2 is consistent. We discovered two incoming
transitions corresponding to the events a and b. From a, we can deduct that
f ∈ N �→ N holds. From b, we know that x > 3 holds. To verify S2, we need to
check the intersection of unproven invariants, i.e., {f ∈ N �→ N} ∩ {x > 3} = ∅,
thus we already know that all invariants hold for S2.

This is of course only a tiny example but it demonstrates, that using proof
information we are able to reduce the number of invariants for each event sig-
nificantly, and sometimes by combining proof information from different events,
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we are able to get rid of the whole invariant. We actually have evidence that this
is not only a theoretical possibility, but happens in real world specifications (see
Section 6).

Algorithm 4.1 [Proof-Supported Consistency Checking ]

Input: An Event-B model with invariant I = inv1 ∧ . . . ∧ invn

Queue := {root} ; Visited := {}; Graph := {}
for all events evt do Unproven(evt) := {invi | invi not proven for evt}; end do

while Queue is not empty do
if random(1) < α then
state := pop from front(Queue); /* depth-first */

else
state := pop from end(Queue); /* breadth-first */

end if
if ∃invi ∈ Inv(state) s.t. invi is false then

return counter-example trace in Graph
from root to state

else
for all succ,evt such that state →evt succ do
Graph := Graph ∪ {state →evt succ}
if succ �∈ Visited then

push to front(succ, Queue);
Visited := Visited ∪ {succ}
Inv(succ) := Unproven(evt)

else
Inv(succ) := Inv(succ) ∩ Unproven(evt)

end if
end if

end for
od
return ok

Algorithm 4.1 describes ProB’s consistency checking algorithm, we will justify
it formally in section 5. The algorithm employs a standard queue data structure
to store the unexplored nodes. The key operations are:

– Computing the successor states, i.e., “state →evt succ”.
– Verification of the invariant “∃invi ∈ Inv(state) s .t . invi is false”
– Determining whether “succ �∈ Visited”

The algorithm terminates when there are no further queued states to explore or
when an error state is discovered. The underlined parts highlight the important
differences with the algorithm in [19].

In contrast to the algorithm, the actual implementation does the calculation
of the intersection (Inv(succ) := Inv(succ) ∩ Unproven(op)) in a lazy manner,
i.e., for each state �∈ V isited, we store the event names as a list. As soon as
we evaluate the invariant of a state, we calculate and evaluate the intersection
on the fly. The reason is, that storing the invariant’s predicate for each state is
typically more expensive than storing the event names.



510 J. Bendisposto and M. Leuschel

5 Verification

To show, that our approach is indeed correct, we developed a formal model
of an abstraction of algorithm 4.1. We omitted few technical details, such as
the way the state space is traversed by the actual implementation and also
we omitted the fact, that our implementation always uses all available infor-
mation. Instead, we have proven correctness for any traversal and any sub-
set of the available information. Our model was developed using Event-B and
fully proven in Rodin. The model is available as a Rodin 1.0 archive from
http://deploy-eprints.ecs.soton.ac.uk/152/. In this paper we present only
some parts of the model and some lemmas, without their proofs. All the proofs
can be found in the file, we thus refer the reader to the Rodin model.

We used three carrier sets STATES, INVARIANTS and EVENTS. We assume,
that these sets are finite. For invariants and events this is true by definition in
Event-B, but the state space can in general be unbounded. However, the as-
sumption of only dealing with finite state spaces is reasonable in the context of
our particular model, because we can interpret the STATES set as the subset of
all states that can be traversed by the model checker within some finite number
of steps.2 The following definitions are used to prove some properties of Event-B:

truth ⊆ STATES × INVARIANTS
trans ⊆ STATES × STATES
preserve = {s | {s} × INVARIANTS ⊆ truth}
violate = STATES \ preserve
label ⊆ trans× EVENTS
discharged ⊆ EVENTS × INVARIANTS

The model also contains a set truth: pair of a state s and an invariant i is in
truth if and only if i holds in s. The set preserve is defined as the set of states
where each invariant holds, the relations trans and label describe, how two states
are related, i.e. a triple (s �→ t) �→ e is in label (and therefore s �→ t ∈ trans) if
and only if t can be reached from s by executing e. The observation that is the
foundation of all theorems we proved and is the following assumption:

∀i, t · (∃s, e · s ∈ preserve ∧ (s �→ t) ∈ trans∧

(s �→ t) �→ e ∈ label ∧ (e �→ i) ∈ discharged)

⇒ (t �→ i) ∈ truth

The assumption is, that if we reach a state t from a state swhere all invariants hold
by executing an event e and we know, that the invariant i is preservedby e, we an be
sure, that i holds in t. This statement is what we prove by discharging an invariant
proof obligation in Event-B, thus it is reasonable to assume that it holds.
2 Alternatively, we can remove this assumption from our Rodin models. This only

means that we are not be able to prove termination of our algorithm; all other
invariants and proofs remain unchanged.



Proof Assisted Model Checking for B 511

We are now able to prove a lemma, that will capture the essence of our
proposal; it is enough to find for each invariant i one event that preserves this
invariant leading from a consistent state into a state t to prove, that all invariants
hold in t.

Lemma 1. ∀t · t ∈ STATES∧ (∀i · i ∈ INVARIANTS∧ (∃s, e · s ∈ preserve∧ e ∈
EVENTS ∧ (s �→ t) ∈ trans ∧ (s �→ t) �→ e ∈ label ∧ e �→ i ∈ discharged)) ⇒ t ∈
preserve

Proof. All proofs have been done using Rodin and can be found in the model
archive. ��

We used five refinement steps to prove correctness of our algorithm. We will de-
scribe the first three steps, the last two steps are introduced to prove termination
of new events. The first refinement step mc0 contains two events check state ok
and check state broken. The events take a yet unprocessed state and move it
either into a set containing consistent or inconsistent states. Algorithm 5.1 shows
the check state ok event, check state broken is defined analogously, except that
it has the guard s �∈ preserve and it puts the state into the set inv broken .

Algorithm 5.1 [Event check state ok from mc0]

event check state ok
any s
where

s ∈ open
s ∈ preserve

then
inv ok := inv ok ∪ {s}
open := open \ {s}

end

At this very abstract level this machine specifies that our algorithm separates
the states into two sets. If they belong to preserve, the states are moved into the
set inv ok . Otherwise, they are moved into inv broken. Lemma 2 guarantees,
that our model always generate correct results.

Lemma 2. mc0 satisfies the invariants

1. inv ok ∪ inv broken = STATES \ open
2. open = ∅ ⇒ inv ok = preserve ∧ inv broken = violate

The next refinement strengthens the guard and removes the explicit knowl-
edge of the sets preserve and violate, the resulting proof obligation leads to
lemma 3.

Lemma 3. For all s ∈ open

{s} × INVARIANTS \ discharged[label[inv ok � trans � {s}]]) ⊆ truth

⇔ s ∈ preserve
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The third refinement introduces the algorithm. We introduce a new relation
invs to verify in this refinement. The relation keeps track of those invariants,
that need to be checked, in the initialization, we set invs to verify := STATES×
INVARIANTS.

The algorithm has three different phases. It first selects a state that has
not been processed yet then it checks if the invariant holds and moves the
state into either inv ok or inv broken. Finally, it uses the information about
discharged proofs to remove some elements from invs to verify as shown in
algorithm 5.2.

Algorithm 5.2 [Event mark successor from mc2]

event mark successor
any p s e
where

p ∈ inv ok
s ∈ trans[{p}]
(p �→ s) �→ e ∈ label
(p �→ s) �→ e �∈ marked
ctrl = mark

then
invs to verify := invs to verify �− ({s} × (invs to verify [{s}] ∩ unproven[{e}]))
marked := marked ∪ {(p �→ s) �→ e}

end

We take some state s and event e, where we know that s is reachable via e from
a state p, where all invariants hold. Then we remove all invariants but those,
that are not proven to be preserved by e. This corresponds to the calculation of
the intersection in algorithm 4.1.

The main differences between the formal model and our implementation are,
that the model does not explicitly describe how the states are chosen and the
algorithm uses all available proof information while the formal model can use any
subset. In addition, the model does not stop if it detects an invariant violation.
We did not specify these details because it causes technical difficulties (e.g., we
need the transitive closure of the trans relation) but does not seem to provide
enough extra benefit.

Correctness of algorithm 4.1 is established by the fact that the outgoing edges
of a state are added to the Graph only after the invariants have been checked
for state. Hence, the removal of a preserved invariant only occurs after it has
been established that the invariant is true before applying the event. This cor-
responds to the guard p ∈ inv ok . However, the proven proof obligations for an
event only guarantee preservation of a particular invariant, not that this invari-
ant is established by the event. Hence, if the invariant is false before applying
the event, it could be false after the event, even if the corresponding proof obli-
gation is proven and true. If one is not careful, one could easily set up cyclic
dependencies and our algorithm would incorrectly infer that an incorrect model
is correct.
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6 Experimental Results

To verify that the combination of proving and model checking results in a consid-
erable reduction of model checking effort, we prepared an experiment consisting
of specifications we got from academia and industry. In addition we prepared a
constructed example as one case, where the prover has a very high impact on
the performance of the model checker. The rest of this section describes how
we carried out the measurement. We will also briefly introduce the models and
discuss the result for each of them. The experiment contains models where we
expected to have a reasonable reduction and models where we expected to have
only a minor or no impact.

6.1 Measurement

The latest development versions of ProB can do consistency checking of a re-
finement chain. Previous versions of ProB checked a specific refinement level
only and removed all gluing invariants. We carried out both, single refinement
level and multiple refinement level checks. The results have been gathered using
a Mac Book Pro, 2.4 GHz Intel Core 2 Duo Computer with 4 GB RAM running
Mac OS X 10.5. For the single level animation, we collected 40 samples for each
model and calculated the average and standard deviation of the times measured
in milliseconds. For the multi level animation, we collected 5 samples for each
model. The result of the experiment is shown in tables 1, 2 and 3. The absolute
values of tables 1 and 2 are very difficult to compare, because we used different
versions of ProB.

Except for the case of the Siemens specification, we removed all interactive
proofs from the models and used only those proof information, that Rodin was
able to automatically generate using default settings. In the case of the Siemens
model, we used both, a version with automatic proofs only and a development
version with few additional interactive proofs; the development version was not
fully proven.

6.2 Mondex

The mechanical verification of the Mondex Electronic Purse was proposed for the
repository of the verification grand challenge in 2006. We use an Event-B model
developed at the University of Southampton [8]. We have chosen two refinements
from the model, m2 and m3. The refinement m2 is a rather big development step
while the second refinement m3 was used to prove convergence of some events
introduced in m2, in particular, m3 only contains gluing invariants.

In case of single refinement level checking, it is obvious that it is not possible
to further simplify the invariant of m3 but we noticed, that we do not even lose
performance caused by the additional specialization of the invariants. This is
important because it is evidence, that our implementation’s performance is in
the order of the standard deviation in our measurement. For the case of m2,
where we have machine invariants, we measured a reduction of about 12%.
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In case of multiple refinement level checking, we have the only case, where we
lost a bit of performance for m2. However, the absolute value is in the order of
the standard deviation. For m3 we also did not get significant improvements of
performance, most likely because the gluing invariant is very simple, actually it
only contains simple equalities.

6.3 Siemens Deploy Mini Pilot

The Siemens Mini Pilot was developed within the Deploy Project. It is a speci-
fication of a fault-tolerant automatic train protection system, that ensures that
only one train is allowed on a part of a track at a time. The Siemens model shows
a very good reduction, as the invariants are rather complex. This model does
contain a single machine, thus multi level refinement checking does not affect
the speedup.

6.4 Scheduler

This model is an Event-B translation of the scheduler from [16]. The model de-
scribes a typical scheduler that allows a number of processes to enter a critical
section. The experiment has shown, that the improvement using proof informa-
tion is rather small, which was no surprise. The model has a state space that
grows exponential when increasing the number of processes. It is rather cheap
to check the invariant

ready∩waiting = ∅∧active∩(ready∪waiting) = ∅∧active = ∅ ⇒ ready = ∅

because the number of processes is small compared to the number of states. But
nevertheless, we save a small amount of time in each state and these savings can
sum up to a reasonable speedup. The scheduler also contains a single level of
refinement.

6.5 Earley Parser

The model of the Earley parsing algorithm was developed and proven by Abrial.
Like in the mondex example, we used two refinement steps that have different
purposes. The second refinement step m2 contains a lot of invariants, while the
m3 contains only very few of them. This is reflected in the savings we gained from
using the proof information in the case of single refinement level checking. While
m3 showed practically no improvement, in the m2 model the savings sum up to a
reasonable amount of time. In the case of multiple refinement level checking the
result are very different, while m2 is not affected, the m3 model benefits a lot.
The reason is, that it contains several automatically proven gluing invariants.

6.6 SAP Deploy Mini Pilot

Like the Siemens model this is a Deploy pilot project. It is a model of system
that coordinates transactions between seller and buyer agents. In the case of
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single refinement level case, we gain a very good speedup from using proof infor-
mation, i.e., model checking takes less than half of the time. Like in the Siemens
example, the model contains rather complicated invariants. In case of the multi
refinement level checking the speedup is still good, but not as impressive as in
single refinement level checking.

6.7 SSF Deploy Mini Pilot

The Space Systems Finland example is a model of a subsystem used for the
ESA BepiColombo mission. The BepiColombo spacecraft will start in 2013 on
its journey to Mercury. The model is a specification of parts of the BepiColombo
On-Board software, that contains a core software and two subsystems used for
tele command and telemetry of the scientific experiments, the Solar Intensity
X-ray and particle Spectrometer (SIXS) and the Mercury Imaging X-ray Spec-
trometer (MIXS). The time for model checking could be reduced by 7% for a
single refinement level and by 16% for multiple refinement checking.

6.8 Cooperative Crosslayer Congestion Control CXCC

CXCC [27] is a cross-layer approach to prevent congestion in wireless networks.
The key concept is that, for each end-to-end connection, an intermediate node
may only forward a packet towards the destination after its successor along the
route has forwarded the previous one. The information that the successor node
has successfully retrieved a package is gained by active listening. The model is
described in [6]. The invariants used in the model are rather complex and thus
we get a good improvement by using the proof information in both cases.

6.9 Constructed Example

The constructed example is mainly to show a case, where we get a huge saving
from using the proofs. It basically contains an event, that increments a number x
and an invariant ∀a, b, c �a ∈ N∧ b ∈ N∧ c ∈ N ⇒ (a = a∧ b = b∧ c = c∧x = x).
Because the invariant contains the variable modified by the event, we cannot
simply remove it. But Rodin can automatically prove that the event preserves
the invariant, thus our tool is able to remove the whole invariant. Without proof
information, ProB needs to enumerate all possible values for a,b and c which
results in an expensive calculation.

7 Proof-Assisted Consistency Checking for Classical-B

In the setting of Event-B and the Rodin platform, ProB can rely on the other
tools for providing type inference and as we have seen the proof information.

In the context of classical B, we are working on a tighter integration with
Atelier B [31]. However, at the moment ProB does not have access to the proof
information of classical B models.

ProB does perform some additional analyses of the model and annotates the
AST (Abstract Syntax Tree) with additional information. For instance for each
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Table 1. Experimental results (single refinement level check)

w/o proof using proof
information [ms] information [ms] Speedup-Factor

Mondex m3 1454 ± 5 1453 ± 5 1.00
Earley Parser m3 2803 ± 8 2776 ± 7 1.01
Earley Parser m2 140310 ± 93 131045 ± 86 1.07
SSF 31242 ± 64 29304 ± 44 1.07
Scheduler 9039 ± 15 8341 ± 14 1.08
Mondex m2 1863 ± 7 1665 ± 6 1.12
Siemens (auto proof) 54153 ± 50 25243 ± 22 2.15
Siemens 56541 ± 57 26230 ± 28 2.16
SAP 18126 ± 18 8280 ± 14 2.19
CXCC 18198 ± 21 6874 ± 12 2.65
Constructed Example 18396 ± 26 923 ± 8 19.93

Table 2. Experimental results (multiple refinement level check)

w/o proof using proof
information [ms] information [ms] Speedup-Factor

Mondex m2 1747 ± 21 1767 ± 38 0.99
Mondex m3 1910 ± 20 1893 ± 6 1.01
Earley Parser m2 309810 ± 938 292093 ± 1076 1.06
Scheduler 9387 ± 124 8167 ± 45 1.15
SSF 35447 ± 285 30590 ± 110 1.16
SAP 50783 ± 232 34927 ± 114 1.45
Earley Parser m3 7713 ± 40 5047 ± 15 1.53
Siemens (auto proof) 51560 ± 254 24127 ± 93 2.14
Siemens 51533 ± 297 23677 ± 117 2.18
CXCC 18470 ± 151 6700 ± 36 2.76
Constructed Example 18963 ± 31 967 ± 6 19.61

event we calculate a set of variables that are possibly modified. For instance if
we analyze the operation3

Operation1 = BEGIN x := z || y := y ∧ {x �→ z} END

the analysis will discover that the set of variables that could potentially influence
the truth value of the invariant is {x, y}.

This analysis was originally used to verify the correct usage of SEES in the
classical B-Method. The SEES construct was used in the predecessor of Event-B,
so-called classical B, to structure different models. In classical B a machine can
see another machine, i.e., it is allowed to call operations that do not modify
the state of the other machine. To support this behavior, it was necessary to
know if an operation has effect on state variables, that is the set of modified

3 Operations are the equivalent of events in classical B.
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Table 3. Number of invariants evaluated (single refinement level check)

w/o Proof [#] w Proof [#] Savings [%]

Earley Parser m2 − − -
Mondex m3 440 440 0
Earley Parser m3 540 271 50
Constructed Example 42 22 50
SAP 48672 16392 66
Scheduler 20924 5231 75
Mondex m2 6600 1560 76
SSF 24985 5009 80
CXCC 88480 15368 83
Siemens 280000 10000 96
Siemens (auto proof) 280000 10000 96

variables is the empty set. It turned out, that the information is more valuable
than originally thought, as it is equivalent to some proof obligation:

If u and v are disjoint sets of state variables, and the substitution of an oper-
ation is SBA(v, t, v′) we know that u = u′ and thus a simplified proof obligation
for the preservation of an invariant I(u) over the variables u is

I(u) ∧G(u ∪ v, t) ∧ SBA(v, t, v′) ⇒ I(u)

which is obviously true. These kind of proof obligations are not generated by
any of the proving environments for B we are aware of. In particular Rodin does
not generate them. For a proving environment, this is a good idea as they do not
contain valuable information for the user and they can be filtered out by simple
syntax analysis. But for the model checker these proofs are very valuable; in most
cases they allow us to reduce the number of invariants we need to check. As this
type of proof information can be created from the syntax, we can use them even
if we do not get proof information from Rodin, i.e., when working on classical B
machines. As such, we were able to use Algorithm 4.1 also for classical B models
and also obtain improvements of the model checking performance (although less
impressive than for Event-B).

8 Conclusion and Future Work

First of all, we never found a model where using proof information significantly
reduced the performance, i.e., the additional costs for calculating individual in-
variants for each state are rather low. Using proof information is the new default
setting in ProB.

We got a number of models, in particular those coming from industry, where
using the proof information has a high impact on the model checking time. In
other cases, we gained only a bit or no improvement. This typically happens if
the invariant is rather cheap to evaluate compared to the costs of calculating the
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guards of the events. We used an out-of-the-box version of Rodin4 to produce our
experimental results. Obviously, it is possible to further improve them by adding
manual proof effort. In particular, it gives the user a chance to influence the speed
of the model checker by proving invariant preservation for those parts that are
difficult to evaluate, i.e., those predicates that need some kind of enumeration.

Related Work. A similar kind of integration of theorem proving into a model
checker was previously described in [25]. In their work Pnueli and Shahar intro-
duced a system to verfify CTL and LTL properties. This system works as a layer
on top of CMU SMV and was sucessfully applied to fragments of the Futurebus+
system [10]. SAL is a framework and tool to combine different symbolic analysis
[28], and can also be viewed as an integration of theorem proving and model
checking. Mocha [3] is another work where a model checker is complemented by
proof, mostly for assume-guarantee reasoning. Some more works using theorem
proving and model checking together are [11,4,12,15].

In the context of B, the idea of using a model checker to assist a prover has
already been exploited in practice. For example, in previous work [7] we have
already shown how a model checker can be used to complement the proving
environment, by acting as a disprover. In [7] it was also shown that sometimes
the model checker can be used as a prover, namely when the underlying sets
of the proof obligation are finite. This is for example the case for the vehicle
function mentioned in [18]. Another example is the Hamming encoder in [9],
where Dominique Cansell has used ProB to prove certain theorems which are
difficult to prove with a classical prover (due to the large number of cases).

Future Work. We have done but a first step towards exploiting the full poten-
tial for integrating proving and model checking. For instance, we may feed the
theorem prover with proof obligations generated by the model checker in order
to speed up the model checking. A reasonable amount of time is spent evaluating
the guards. If the model checker can use the theorem prover to prove that an
event e is guaranteed to be disabled after an event f occurs, we can reduce the
effort of checking guards. We may need to develop heuristics to find out when
the model checker should try to get help from the provers.

Also we might feed information from the model checker back into the proving
environment. If the state space is finite and we traverse all states, we can use this
as a proof for invariant preservation. ProB restricts all sets to finite sets [19]
to overcome the undecidability of B, so this needs to be handled with care. We
need to ensure, that we do not miss states because ProB restricted some sets.
Also we need to ensure that all states are reachable by the model checker, thus
we may need some additional analysis of the model.

We also think of integrating a prover for classical B, to exploit proof informa-
tion. The integration is most likely not as seamless as in Rodin and the costs of
getting proof information is higher.

4 For legal reasons, it is necessary to install the provers separately.
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Although the cost of calculating the intersections of the invariants for each
state is too low to measure it, the stored invariants take some memory. It might
be possible to find a more efficient way to represent the intersections of invariants.
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Abstract. This paper presents the development of a correct-by-construction
block sequencer for GENEAUTO1 a qualifiable (according to DO178B/ED12B
recommendation) automatic code generator. It transforms SIMULINK models to
MISRA C code for safety critical systems. Our approach which combines clas-
sical development process and formal specification and verification using proof-
assistants, led to preliminary fruitful exchanges with certification authorities. We
present parts of the classical user and tools requirements and derived formal spec-
ifications, implementation and verification for the correctness and termination
of the block sequencer. This sequencer has been successfully applied to real-
size industrial use cases from various transportation domain partners and led to
requirement errors detection and a correct-by-construction implementation.

Keywords: automatic code generator, formal verification, software engineering,
block sequencing, Coq proof assistant.

1 Introduction

Both the complexity of software in safety critical systems and the level of requirements
from the certification authorities are rising regularly. Test-based verification of confor-
mance between tool requirements (low level, conception related) and implementation
(unit or integration related tests) are getting more and more expensive and less and
less efficient w.r.t. the number of errors detected (according to several software depart-
ments in major industrial actors from the transportation domain). Test-based validation
of user requirements and verification of conformance between user requirements (high
level, specification related) and implementation (functional or deployment related tests)
are mandatory and efficient but they occur very late in the development process.

Model driven engineering relies on the use of domain specific model verification
in the development cycle and on automated code generation (ACG) from the verified
models to software in order to avoid the costly and inefficient unit and integration tests.
The use of model simulation and animation allows both early validation of user require-
ments and verification that tool requirements refine user requirements. The key point is
not only to reduce the financial cost, but also to be able to do fast maintenance cycles.

1 www.geneauto.org
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In order to remove these tests on generated code, certification authorities require the
ACG to be qualified, i.e. developed with the same kind of constraints as the safety criti-
cal system whose parts they will generate. ACG are handling modeling languages, it is
thus quite difficult to define efficient test coverage criteria. This contribution presents
the work done in the ITEA GENEAUTO project around the use of formal methods for
the verification of some components of an ACG.

1.1 Motivation

The SIMULINK/STATEFLOW coupled tools from the MathWorks2 are widely used in the
domain of control and command systems for transportation. Several commercial code
generators exist for SIMULINK (for example, Real-time workshop-embedded coder
from the MathWorks and TargetLink from dSpace). However, to the authors knowledge,
none of them have been qualified using formal technologies in the code generator. For
instance, the code generator of SCADE/KCG accepts input models in SCADE3 (model-
based design toolset similar to SIMULINK) with LUSTRE-like synchronous semantics
and generates C code. This code generator [1] is qualified using a classical develop-
ment process: detailed specification and development cycle, test-based verification and
analysis of potential sources of errors. Another example is the code generator presented
in [2] where a formal verification is focused on the source code. However, code gen-
erator errors may invalidate correct source code. In addition, when classical tests are
applied on the generated code, detected errors may include compiler errors as well as
generated code errors. Hence the sequencer case study is particularly pertinent.

1.2 Previous Work

We presented in [3] a first block sequencer for GENEAUTO. In the beginning, it com-
putes a total preorder of circuit blocks according to data-flow constraints, as illustrated
in the figure 1(a). Then, it further distinguishes between equivalent blocks orders, thus
providing a total order, using user provided block priorities and on the graphical position
as done in SIMULINK. For example, let us consider the blocks with identical execution
order such as CompareToZero and Abs illustrated in the figures 1(a) and 1(b), the block
Abs cannot be evaluated before the block CompareToZero if the later has higher priority
because its initial execution order is lower. Let us note that this algorithm also did not
handle well the various kinds of control-flows. This previous work required a significant
adaptation in order to handle both priorities and control-flows which are widely used
in SIMULINK by industrial end users to manage side-effects (environment input/output
and memory management).

1.3 Contribution

In this paper, we present the formal development of a correct-by-construction block
sequencer for a qualifiable automatic code generator dedicated to safety critical real-
time embedded systems. Our contribution is the integration of formal methods in a

2 www.mathworks.com
3 www.esterel-technologies.com
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(a) Computed total preorder (b) Computed total order

Fig. 1. SIMULINK data-flow model with conflict execution order

real qualifiable tool for the development of safety critical systems taking into account
real industrial requirements and not only idealized academic ones. We rely on a for-
mal specification of the input language derived from SIMULINK and of the user and
tool requirements, to develop and to formally verify the sequencer. This approach al-
lowed us to detect some requirement errors, remove unit tests and produce an error-free
component (no bug reports related to the block sequencer so far after end users ex-
periments, there are around 500 bug reports for the other components). First, we have
transcribed the classical industrial requirements into a formal specification and devel-
oped the sequencing algorithm using the proof assistant COQ [4]. Extracted OCAML

code from COQ preserves all properties proved in the specification. The extracted code
is integrated in the classical development of the code generator tool chain as a qualified
component.

1.4 Paper Outline

The remainder of this paper is organized as follows. Section 2 presents GENEAUTO,
the code generator our work was integrated in, SIMULINK sequencing constraints and
the derived requirements. Section 3 describes the specification of the input language
of the code generator and dependency equations used in the sequencer. The sequenc-
ing algorithm is presented in Section 4. Section 5 outlines the main properties of the
sequencer algorithm: its termination and correctness (related to execution order) prop-
erties. The code generator was applied to several real-size industrial applications from
transportation domain. One case study among several industrial applications is illus-
trated in Section 6. Implementation and optimization aspects of the approach are dis-
cussed in Section 7. Some of earlier work on verification of code generators and compil-
ers is sketched in Section 8. Concluding remarks and perspectives appear in Section 9.

2 Overview

2.1 Context

GENEAUTO’s purpose is the development of a qualifiable automated code genera-
tor from a subset of SIMULINK and STATEFLOW to MISRA C (or any sequential
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Fig. 2. GENEAUTO ACG architecture

programming language). The GENEAUTO toolset (cf. Figure 2) is composed of several
elementary tools which exchange XML files representing either systems or code models:

– Model importer and exporter: converts model between GENEAUTO system model
format and tool specific ones (currently SIMULINK/STATEFLOW and SCICOS);

– Preprocessor: expands virtual subsystems, check that elementary blocks are defined
in the selected libraries, . . . ;

– Block sequencer: assigns a unique execution order fulfilling the data-flow, control-
flow, user provided priority and assigned priority constraints (graphical position in
SIMULINK);

– Block and signal type propagation and verification: forwards propagation of type
information and verification that, for each block the computed and provided types
are compatible with the block specific type as defined in the block library;

– Block and signal clock propagation and verification: System models are clock and
event driven. GENEAUTO is restricted to events that are emitted on a clock basis
(or buffered until the next cycle). Systems are thus synchronous. Clock information
indicates if a value is available for a signal at a given clock cycle. This component
does a forward propagation of clock information and verification that, for each
block the computed and provided clocks are compatible with the block specific
semantics as defined in the block library;

– System model optimizer: relies on clock information in order to apply transforma-
tion on the system model and reduce the memory or CPU time consumption;

– Code model generator: traverses the system model in the block execution order and
produces for each block of the system model an appropriate code model according
to the code pattern defined in the block library;

– Code model optimizer: applies local code restructuring rules in order to remove in-
termediate variables and factorize conditions. This reduces the overhead introduced
by the code model generator technique;

– Target code generator: translates the generic code model to a specific target lan-
guage (currently MISRA ANSI C, soon ADA).

This paper focuses on the development of the Block Sequencer, its verification using
formal technologies and its integration into the tool chain development. Qualification
of and compliance with SIMULINK execution model are the strongest constraints in the
GENEAUTO project. GENEAUTO development process relies on the following classical
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steps: user and tool requirements specification, tool implementation, tool verification
(the implementation fulfills the tool requirements), user verification and validation (the
implementation fulfills the user requirements and intended uses).

Formal technologies have been applied in GENEAUTO in order to provide a formal
specification of the requirements and implementation, and to prove that the implemen-
tation fulfills the requirements. Classical verification technologies such as proof reading
or unit testing were applied where it was required or more efficient (for instance, to ver-
ify that the formal specification was correct w.r.t. the requirements written using natural
language, to verify the input/output parts of the block sequencer, . . . ) Exchanges were
conducted with certification authorities which concluded that the whole approach was
sound w.r.t. the current rules of DO178B/ED12B and could be followed in order to
produce a toolset that could be submitted to qualification in the appropriate domain.

2.2 Sequencing in SIMULINK

SIMULINK is a high-level graphical modeling language widely used in many applica-
tion domains such as automotive and aerospace for the design of control and command
systems. SIMULINK models are made of boxes linked by wires. Boxes are blocks and
represent operators over the data carried by wires which stand for data signals (e.g.,
transporting values) or control signals (e.g., event signal for activating a sub-system).

Data-Flow Diagrams

In order to ease the development of the sequencer, we distinguish in our study between
two kinds of SIMULINK blocks: combinatorial and sequential blocks without describ-
ing their operational semantics. Combinatorial blocks compute their outputs according
to their inputs in the same clock instant. The sequencing of blocks linked only with
data signals simply tracks data-flow propagation. An example of data-flow is illustrated
in the figure 3. For instance, the Divide block must be executed after the Sum and
Gain1 blocks. A data-flow model expresses implicit concurrency between the blocks,
however, we will focus on sequential execution of the blocks. A major requirement of
the algorithm presented in this paper is that it must be deterministic and produces an
unique execution order for each block in a SIMULINK model. This ordering must follow
SIMULINK constraints which have been transcribed in GENEAUTO requirements.

Sequential blocks compute their outputs depending on the value of their inputs com-
puted in previous cycles. For instance, the output of the block UnitDelay, in the figure 3,

Fig. 3. SIMULINK data-flow circuit



526 N. Izerrouken, M. Pantel, and X. Thirioux

is a copy of the value of its input from the previous clock cycle. Thus, the block Sum
cannot be executed until the input value of UnitDelay computed in the previous cycle
is read. Consequently, sequential blocks are split into read and write parts which are
sequenced at two different steps. We only consider the read part and the other one is
sequenced at the end of the cycle. Currently, we don’t handle mixed blocks (combinato-
rial and sequential at the same time). However, any mixed block could be hierarchically
decomposed to both pure combinatorial and sequential parts.

Control-Flow Diagrams

Control-flow is expressed using a mechanism similar to function call in programming
languages (called “Function-call events and subsystems” in SIMULINK). A control sig-
nal links the controlling to the controlled blocks. The difficulty in models presenting
imbricated control, as illustrated in the figure 4(a), is that we need to consider the tran-
sitive closure of the control relation, because the inputs of all controlled blocks must
be available at the beginning of the execution of the root controlling blocks. The gener-
ated code related to Function-Call sub-systems is illustrated in Figure 4. For instance,
to compute the sub-system g, it is required to compute the blocks controlled by g and
their inputs. However, controlled sub-systems are often nested. Users can choose to in-
line the circuit by a pre-processing phase of the code generator. Non-inlined circuits are
called atomic blocks and virtual otherwise. As a result, the execution of the sub-system
f requires a prior evaluation of the input blocks In1, In2 and In3.

Subsystem f

In1

function()

function()

1

2

3

function−call
Subsystem g

In1

In2

In3

In2

In3 4

Out2

Out1

Out3
Out4

function−call
Subsystem h

(a) Circuit with control-flow

                     h(e2);
void f(In1){

void g(In2){

}

void h(In3){

}

 }

                   g(e1);
...

...

...

...
...

(b) C code of the circuit with control-flow

Fig. 4. SIMULINK control-flow synthesis

Requirements for the Block Sequencing

The generated code must behave exactly as the model simulation provided by the
SIMULINK tool. It is, thus, necessary that the sequencer algorithm meets requirements
of SIMULINK, then sequencing constraints depend on:

– Data-flow: blocks computing values used by another block must be executed
before;

– Control-flow: blocks linked by control-flows are considered as function calls in
programs: caller blocks must be executed during callees blocks after their inputs;

– Sequential blocks: read part of UnitDelay blocks are executed before the write one;
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– User priority: if two blocks cannot be sequenced with the above requirements, they
must be sequenced using the user provided priority eventually defined in the model;

– Graphical position: if two blocks cannot be sequenced with the above requirements,
they must be sequenced using the graphical position implicitly defined in the model.

Let us recall that the proposed sequencer is dedicated to mono-clock systems. There-
fore, specification constraints of the input model include only data-flow and control-
flow information and no clock data. However, these requirements did not provide an
unique sequencing for all diagrams. This was exhibited during the translation to a for-
mal specification. It was not possible to show that the result of the merging of these
constraints produced a total ordering relation. This is related to the use of the graphical
position by SIMULINK. It is used to order two blocks when all the other constraints are
not concluding. Graphical positions are not required to be compatible with the other
constraints, whereas SIMULINK requires the user priorities to be compatible with the
data and control flows.

In order to overcome this default, we have introduced the notion of inheritance of
user priority and position priority along the flows: a block inherits the priority and the
position from the blocks that feeds it if these are stronger than its own. This allows us
to derive a single block sequencing for any diagrams (Section 4.3).

3 Specification

We give a formal specification of the input language representing SIMULINK models
inside the code generator, and then present a verified block sequencer.

3.1 GENEAUTO System Modeling Language

An input model called circuit is defined as a particular graph described by D. The input
language of the code generator is described using the following simple grammar:

D ::= 〈G, E〉
G ::= 〈C1, . . . , Cn〉
E ::= 〈S1, . . . , Sm〉
C ::= B |D
B ::= op(−→i ,−→o ) | seq(−→i ,−→o )
S ::= data(s, t) | control(s, t) (s, t ∈ N)

A SIMULINK block diagram D is described by G a sequence of nodes Ci and E a se-
quence of edges Si. The size of a circuit represents the length of its node sequence.
A node C can be a basic block B or a block sub-diagram D. Basic blocks can be:
combinatorial blocks which compute outputs −→o according to all input parameters −→i
of the block op(−→i ,−→o ), or sequential ones seq(−→i ,−→o ), characterized by the predicate
isSequential( ), computing outputs according to input values from previous cycles.
A sequential block cannot be involved in the control-flow. Blocks are linked by sig-
nals S that might be data signals data(s, t) or control signals control(s, t), where
s and t are respectively positions of source and target nodes belonging to the node
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sequence of the concerned circuit, i.e. integers ranging from 0 to (size − 1). For a
given circuit A, we denote A.In the set of its input blocks, A.Out the set of its output
blocks, A.Callers the set of its controlling blocks, and finally A.Callees the set of its
controlled blocks.

This grammar is devoted to the sequencer component and must be extended to allow
other analysis, such as type or clock verification. To simplify the presentation, we sup-
pose that input models are flat. User can choose to inline the hierarchical circuits by a
pre-processing phase in the code generator. This will not be detailed in this paper.

3.2 Dependency Equations

The adaptation of the rank calculus from our previous work to models with arbitrar-
ily complex control-flow is not straightforward. Regarding requirements of Section 2,
where data and control constraints are discussed, we propose, for a correct sequencing,
to compute two sets of dependencies for each block, which must be propagated accord-
ing to both data-flow and control-flow. In this section, the dependency equations are
stated relatively to a circuit d ∈ D, which is left implicit when not needed. We use the
terminology event to indicate start or end of the execution of a block.

– Input Dependencies (Din): is the set of events that must have occurred in order to
be able to start the execution of a block

– Output Dependencies (Dout): is the set of events that must have occurred in order
to produce the output of a given block

Furthermore, a precise dependency specification must take into account the fact that a
controlled block is executed inside its controller block. Thus we need to determine the
start and end of blocks linked with control-flow. So, we tag blocks so that we distinguish
between the start and end events of the execution for each block. Let Call and Return
tags indicate respectively the beginning of reading inputs and writing outputs of a given
block. We distinguish dependencies for combinatorial and sequential blocks. Thus, we
define the domain of dependencies as ∆ � P(T ) where T � {Call(i), Return(i)| i ∈
[0, size[} is the type describing event constructors for each block.

Definition 1. Input Dependencies Din

∀A s.t. isSequential(A), Din(A) � Dout(A.In) ∪ Return(A) (1)

∀As.t.¬isSequential(A), Din(A) � Dout(A.In) ∪ Return(A.In)
∪Din(A.Callers) ∪ Call(A.Callers)

(2)

The input values of a sequential block will be used in the next cycle, so they must be
memorized. Thus, the start of sequential block execution (cf. equation 1) requires us to
compute all blocks connected to its inputs blocks (Dout(A.In)) and write the output
of the sequential block into memory (Return(A)). Before computing a combinato-
rial block (cf. equation 2), all the blocks connected to its inputs have to be finished
(Dout(A.In) and Return(A.In)) and all its controlling blocks must be ready to be
called (Din(A.Callers) and Call(A.Callers)) before any other forthcoming event.
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A A

AA

B B

(b)(a)

(c) (d)

Return(A) ∈ Dout(A)
Call(A) ∈ Din(A)

Call(A) ∈ Din(A)
Return(A) ∈ Dout(A)

Call(A) ∈ Din(A)

Return(B) ∈ Din(B)
Return(B) ∈ Din(B)

Return(A) ∈ Din(A)

Fig. 5. SIMULINK Basic Loops

Definition 2. Output Dependencies Dout

∀A s.t. isSequential(A), Dout(A) � Call(A) (3)

∀A s.t. ¬isSequential(A), Dout(A) � Dout(A.Callees) ∪ Call(A)
∪Return(A.Callees) ∪ Din(A)

(4)

The output of sequential blocks corresponds to read memory access (Call(A)). These
accesses have to be executed first (cf. equation 3). The evaluation of the output of a given
combinatorial block A (cf. equation 4) requires to compute its input blocks (Din(A) and
Call(A)) and its controlled blocks must be ready to be finished (Dout(A.Callees) and
Return(A.Callees)) before any other forthcoming event.

3.3 Causality Issues

One main property related to design correctness for SIMULINK models is to verify the
absence of causal loops. We differentiate two kinds of loops: data algebraic loop and
control loop. Data algebraic loop, as illustrated by the most simple case of Figure 5(a),
states that a given block inputs depend on the same block outputs at the same cycle.
Control loop stands for a recursive call of the block (see Figure 5(b)). In such a case,
the block may be executed, in the same cycle, an unbound number of times which is for-
bidden in finite time discrete SIMULINK control-flow. These two kinds of loops break
the sequencing process. Consequently, models presenting such case must be rejected as
model errors. Data and control loops can also be mixed as illustrated in the figures 5(c)
and 5(d). These are considered as potential model errors in our analysis. Nevertheless
SIMULINK accepts such models since it considers a default value (the one in the previ-
ous cycle) for data signals in case of non available values. All these errors are gathered



530 N. Izerrouken, M. Pantel, and X. Thirioux

under the following single property, inspired by the typical cases of Figure 5. Mim-
icking the SIMULINK distinction between potential and unquestionable errors would
involve a more complex analysis, for instance detecting in advance pure data and con-
trol loops. Note that a pure control-flow or data-flow loop will be correctly spotted as a
(potential) error, as Return(b) ∈ Dout(b) holds in both cases.

Property 1. Absence of Loop related Potential Errors
∀ b ∈ d, Return(b) /∈ Dout(b)

4 Sequencing Algorithm

4.1 Generic Framework

We define a generic framework, pertaining to the world of static analysis by least fix-
point computation, which computes for a given circuit the required information over
blocks and signals. This information is defined by recursive equations according to the
flow propagation. We apply the algorithm of Kleene to compute the least fixpoint of
these equations. The generic framework will be instantiated to different analysis com-
ponents of the code generator we are developing. It eases the development and allows
the reuse of factorized proofs. The framework is parametrized by:

– Semantic domain: it represents the semantic information associated to circuit parts,
such as block dependencies, types, clocks, etc.;

– Well-founded ordering: domain must be supplied with a well-founded ordering re-
lation. This ordering is required to guide the undertaken analysis and ensures its
termination;

– Lattice structure: the lattice operators will be used to express the abstract semantics
of the blocks used in the flow equations based on the SIMULINK semantics and the
user annotations;

– Transfer function: last, we need to propagate information between blocks and sig-
nals using a monotonic function with respect to the order relation.

4.2 Fixpoint Calculus

We define the domain of environments of size m as Γm � {i ∈ N | i < m} → ∆. The
main domain of input and output dependencies in our analysis is Θ � Γsize × Γsize.
In order to propagate the dependencies through the circuit structure, we need a transfer
function which spreads dependencies according to data-flow and control-flow.

Let F : Θ → Θ be the global transfer function where 〈Din, Dout〉=F (〈Din, Dout〉).
F is composed of two transfer functions : E′

in the transfer function for input dependen-
cies and E′

out the transfer function for output dependencies.

Definition 3. Transfer function

F = 〈Ein, Eout〉 �→ 〈E′
in, E

′
out〉

E′
in = A �→

⎧⎨⎩
Eout(A.In) ∪Return(A.In)
∪Ein(A.Callees) , when ¬isSequential(A)

Eout(A.In) ∪Return(A) , when isSequential(A)
E′

out = A �→ . . .
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Initially, the calculus starts from an empty set of dependencies. The result 〈Din, Dout〉
is computed as the least fixpoint of the transfer function F . Once the least fixpoint is
reached, in our ordering analysis, we will be interested in output dependencies Dout,
i.e. dependencies needed to finish execution of blocks. As for sequential blocks, follow-
ing their usual decomposition into two Read and Write sub-blocks, comparing output
dependencies amounts to considering only the Read part in our sequencing algorithm.
For that purpose, relatively to a given element θ ∈ Θ (in our case, the lfp of F ), blocks
are compared to each other via the following order relation defined on ∆. Notice that
this relation is not to be confused with the global order relation on Θ needed to prove
termination of the fixpoint calculus, as defined in Section 5.

Definition 4. Order relation over block dependencies (≤θ) (4)
b ≤θ b′ � snd(θ)(b) ⊆ snd(θ)(b′)

However, all blocks are not necessarily comparable within ≤θ. Furthermore, additional
requirements have to be considered.

4.3 Enforcing Additional Requirements

Aside from pure data and control flow dependencies, in SIMULINK we must take into
account another sequencing constraints about blocks priorities. Priorities can be explic-
itly set by the user (user priority) or implicitly deduced from the circuit model which
is based on the graphical position in SIMULINK (given priority). The last step of our
sequencing algorithm consists in sorting, in decreasing order, output dependencies for
each block using an order on priorities. Assume that α(b) (respectively β(b)) represents
the user priority and the given priority for a block b.

Definition 5. Lexicographical order over block priorities ≤P

b ≤P b′ � α(b) < α(b′) ∨ α(b) = α(b′) ∧ β(b) < β(b′))

Let Σ � {b | Call(b) ∈ T }� be the set of Call events sequence. Assume a function
sort : ∆ → Σ that sorts Call(b) dependencies in decreasing order on b according to
≤P , while removing Return(b) dependencies. Therefore, the priority for a block is in-
herited from its dependencies. Moreover, we may immediately notice that two different
blocks cannot have the same output dependencies, because the dependency of any block
b contains at least the Call(b) event. So considering them as sequences, lexicograph-
ically ordered, seems a natural way so to provide a total order between blocks. Also,
first sorting the dependency sequence of a block b in decreasing priority order naturally
allows us to emphasize greatest priorities.

Definition 6. Lexicographical order over dependency sequences ≤Σ

〈bn, . . . , b1〉 ≤Σ 〈b′m, . . . , b′1〉 �
n = 0 ∨ bn <P b′m ∨ (bn =P b′m ∧ 〈bn−1, . . . b1〉 ≤Σ 〈b′m−1, . . . b

′
1〉

Finally, blocks will be given an execution order, as their position in the following total
order on blocks.

Definition 7. Order relation over prioritized block dependencies ≤θ�

b ≤θ� b′ � sort(snd(θ)(b)) ≤Σ sort(snd(θ)(b′))
4 snd(p) is the second projection of a pair p.
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5 Formal Verification

One of the main purpose of GENEAUTO is to verify the code generator using formal
methods and exchange with certification authorities about the acceptance of these tech-
nologies for qualification. The most important part of the development process is the
verification phase. It consists in proving the conformance to requirements as well as
auxiliary properties, such as termination of algorithms, correction of execution order
with respect the circuit structure and loop detection.

5.1 Monotonicity of Transfer Function

This property states that each iterate of the transfer function F , starting from an initial
empty set of dependencies, brings a new dependency set for a given block of the circuit,
unless the fixpoint is reached. We define a relation order over pair of dependencies as:

Definition 8. Well-founded order on main domain (≤Θ)
〈γin, γout〉 ≤Θ 〈γ′

in, γ
′
out〉 � γin ≤Γsize γ′

in ∧ γout ≤Γsize γ′
out

γ ≤Γsize γ′ � ∀b ∈ d, γ(b) ⊆ γ′(b)

We need to prove that the transfer function is monotonic with respect to ≤Θ.

Theorem 1. Monotonicity of F
∀ θ, θ′ ∈ Θ, θ ≤Θ θ′ ⇒ F (θ) ≤Θ F (θ′)

Proof. We prove that both the input transfer function E′
in and the output transfer func-

tion E′
out are monotonic with respect to Ein and Eout. E′

in is monotonic as it is
defined using the join operator which is monotonic. The proof can be conducted by
structural decomposition. Symmetrically, E′

out is proved monotonic. Once the two aux-
iliary transfer functions are proved monotonic, the demonstration that F is monotonic
is done structurally by applying the 2 above proofs.

5.2 Termination

One complex proof is to check whether the fixpoint calculus terminates. This property
states that the computation of the successive iterates of F shall not loop.

Theorem 2. The order relation ≤Θ is well-founded.

Proof. First, ∆, the set of subsets of T , is well-founded with respect to inclusion order
as T is finite. Second, Γsize well-foundedness is proved by induction on the circuit size.
Finally, ≤Θ is well-founded as a classical lattice product.

5.3 Order Correctness

The correctness order property ensures that the sequencing algorithm computes a cor-
rect order w.r.t. to the structure of input model. It must, first, implement the data-flow
requirement.

Theorem 3. Data-flow Order Correctness
∀ b, b′ ∈ d, ¬isSequential(b′) ⇒ b ∈ b′.In ⇒ Dout(b) ⊆ Dout(b′)
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Proof. Let b and b′ be blocks, block b′ being combinatorial, such that b ∈ b′.In. By
expanding the definition of Din(b′) (resp. Dout(b′)), we prove Dout(b) ⊆ Din(b′)
(resp. Din(b′) ⊆ Dout(b′)). Then, the order correctness holds by transitivity.

Second, correctness order concerns also control-flows. Since a controlled block oc-
curs inside a controlling one, this means that it is executed during the evaluation of its
controlling block. We need to prove that a controlling block depends somehow on its
controlled blocks.

Theorem 4. Control-flow Order Correctness
∀ b, b′ ∈ d, b ∈ b′.Callees ⇒ Dout(b) ⊆ Dout(b′)

Proof. Let b and b′ be blocks, such that b ∈ b′.Callees. By expanding the definition of
Dout(b′), we directly prove Dout(b) ⊆ Dout(b′).

Besides the principal theorems, some of which are sketched above, auxiliary theorems
are proved in order to decompose complex demonstrations into simple lemmas. Notice
that demonstrated theorems may be reused in other modules than the sequencer one
(type, clocks, etc.).

6 Experimental Issues

The whole component implemented in COQ is correct-by-construction (around 500 re-
ports were submitted for the other components, whereas, there was no bug reports re-
lated to the Block Sequencer). The extracted OCAML code is then integrated in the
code generator as a qualified part. The specification and proofs are more that 4500 COQ

code lines long, including input models data structure, sequencing and demonstrations
of more than 130 theorems. Because of lack of space, the COQ development is not de-
tailed in the paper. Nevertheless, it can be found at http://izerrouken.perso.
enseeiht.fr/.

6.1 Integration of Elementary Tool

The source code of the elementary tool is extracted automatically in OCAML from the
tool specification design and correctness proof using the program extractor from the
COQ toolset. Currently, some parts (we have called elementary tools) in GENEAUTO

are written with classical technologies using the JAVA programming language, and other
parts are written with COQ and extracted to OCAML programming language. In order to
interface the extracted code from COQ with the other parts of the GENEAUTO toolset,
each elementary tool developed using formal technologies is composed of two software
artifacts as illustrated in the figure 6.

The JAVA front-end model (reader and writer), on the one hand, relies on the com-
mon Model Factory to read and write the full XML model files representing the
system and code models, and on the other hand executes the OCAML wrapper for the
extracted implementation of the elementary tool from the COQ development. In order
to exchange information with the concerned module, it writes simple text files which
contain the minimal description of the model. This choice relies on simple verification

http://izerrouken.perso.enseeiht.fr/
http://izerrouken.perso.enseeiht.fr/
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Fig. 6. Elementary tool architecture in GENEAUTO

of text files printers and parsers by cross-reading instead of the more complicated XML

ones. Then, after executing OCAML wrapper, it reads a simple text file which contains
minimal required information for building the outputs of the elementary tool. This arti-
fact will also read the text log file produced by the OCAML model wrapper and output
the messages through the standard GeneAuto logging facility. The OCAML wrapper
which reads the simple text model file and computes the necessary information for the
wrapper. For instance, the OCAML model sequencer computes the input and output de-
pendencies, sorts the blocks according to the rules in the tool requirements, assigns an
execution order to all blocks of the model and writes these to the execution order simple
file. This artifact will also produce a log file.

6.2 Automotive Use Case

An industrial model is illustrated in figure 7. It exhibits the intricate mix of data and
control flows. This use case is part of a larger Continental model describing functional
behavior of the KNOCK reduction sub-system of a powertrain engine control function
(gasoline for this model). We don’t describe the operational part of the different blocks
composing the studied system. Control signals are represented by dotted wires. The en-
tire SIMULINK model has a hierarchical depth of 9 layers. It contains more than 5790
blocks (including subsystems, basic blocks as well as trigger/enabled ports). Sequenc-
ing the whole automotive system takes one second. The full code generator toolset
including the formal Block Sequencer takes less than 18 seconds.

First, the OCAML wrapper indexes all blocks of the SIMULINK model. Then, the
sequencing process starts computing input and output dependencies according to data
and control flows. Due to lack of space, we will focus on sequencing some relevant
blocks. For instance, the block READARRAY (which has the index 20) is connected
through pure data-flow signals. The code generator tool shows the following fragments
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Fig. 7. Automotive powertrain engine control function

[INFO][TBlockSequencer_coq]09-07-15 21:38:56.667
[INFO] Input dependencies:
[INFO] block( 20 ) = {Call(Adaptive-In,CC-M2),
Return(Adaptive-In,CC-M2)}
[INFO][TBlockSequencer_coq]09-07-15 21:38:56.668
[INFO] Output dependencies:
[INFO] block( 20 ) = {Call(Adaptive-In,CC-M2,Readarray),
Return(Adaptive-In,CC-M2)}

Fig. 8. Evaluated dependencies for block READARRAY

of dependency calculus according respectively to READARRAY block and CC-M2 as
shown in Figure 8 and Figure 9. To start evaluating the block READARRAY, the blocks
ADAPTIVE-IN and CC-M2 have to be called (Call(ADAPTIVE-IN,CC-M2)) and fin-
ished (Return(ADAPTIVE-IN,CC-M2)). CC-M2 input dependencies is empty because
there is no input to this block, while to produce its output, the block CC-M2 has to
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[INFO][TBlockSequencer_coq]09-07-15 21:38:56.667
[INFO] Input dependencies:
[INFO] block( 1 ) = { }
[INFO][TBlockSequencer_coq]09-07-15 21:38:56.667
[INFO] Output dependencies:
[INFO] block( 1 ) = { Call(CC-M2) }

Fig. 9. Evaluated dependencies for block CC-M2

[INFO][TBlockSequencer_coq]09-07-15 21:38:56.667
[INFO]Input dependencies:
[INFO] block( 11 ) = { Call(ENA,Engine,NN,Adaptive-In,CC-M2,
Constant1,Relational,Readarray,IfThenElse1),
Return(ENA,Engine,NN,Adaptive-In,CC-M2,Constant1,
Relational,Readarray)}
[INFO][TBlockSequencer_coq]09-07-15 21:38:56.668
[INFO] Output dependencies:
[INFO] block( 11 ) = { Call(ENA,Engine,NN,Adaptive-In,CC-M2,
Constant1,Loop1,Relational,Readarray,IfThenElse1),
Return(ENA,Engine,NN,Adaptive-In,CC-M2,Constant1,
Relational,Readarray)}

Fig. 10. Evaluated dependencies for block LOOP-1

[INFO][TBlockSequencer_coq.]09-07-15 21:38:56.667
[INFO] Input dependencies:
[INFO] block( 16 ) = { Call(ENA,Adaptive-In,CC-M2,Constant1,
Math,Relational,Readarray,IfThenElse1),
Return(ENA,Adaptive-In,CC-M2,Constant1,Relational,
Readarray}
[INFO] Output dependencies:
[INFO][TBlockSequencer_coq]09-07-15 21:38:56.668
[INFO] block( 16 ) = { Call(ENA,Adaptive-In,CC-M2,Constant1,
Relational,Init,Readarray,IfThenElse1),
Return(ENA,Adaptive-In,CC-M2,Constant1,Relational,
Readarray}

Fig. 11. Evaluated dependencies for block INIT

execute its code (Call(CC-M2)). We remark thatDout(CC-M2)⊂Dout(READARRAY),
consequently, the block CC-M2 is sequenced before READARRAY. All output depen-
dencies are often not comparable. For instance, LOOP-1 and INIT are two incomparable
blocks. They are indexed respectively 11 and 16 and their respective dependencies are
shown in Figure 11 and Figure 10. In order to sequence the two incomparable blocks
LOOP-1 and Init, only finished events are considered. So, the Call part of each output
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Table 1. Industrial case studies size

Case Satellite Orbit “Knock” reduction Airpline Flight Satellite Agile Sensor
Study Control Software Control System Control System Networks

Model blocks 1085 5793 2800 1931 1108
Depth 8 9 7 6 7

dependency is sorted according to lexicographical order ≤P defined in Section 4.1. The
resulting sorted sequence in decreasing order of output dependencies for LOOP-1 is:

〈NN,ENGINE,ENA,RELATIONAL,CONSTANT1,READARRAY,ADAPTIVE-IN,CC-M2,
LOOP1,IFTHENELSE1〉

and the one for the block INIT is:

〈ENA,RELATIONAL,CONSTANT1,READARRAY,ADAPTIVE-IN,CC-M2,
INIT,IFTHENELSE1〉
The two sequences are, then, element-wise compared using ≤Σ (cf. Section 4.1). In
our case, the block ENA has higher priority than the block NN. Consequently, the block
INIT is sequenced before the block LOOP-1.

6.3 Experimental Evaluation

Our scheduler was experimented on several industrial real-size applications. The code
generator was successfully applied with the verified Block Sequencer to several indus-
trial modules. Some case studies are illustrated in Table 1. Model blocks exhibits the
blocks number of industrial case studies. The corresponding number of hierarchical
nested levels is represented by depth. The cost of the sequencer is in line with the ex-
ecution time of the others components. We have also applied the sequencer on “worst
case” pipeline models of length 5000 with a memory cost of 2 Gb and runtime cost of
45 min on a 2.6 GHz core 2 duo.

7 Limitations and Optimization

In this section, we highlight some implementation issues about the sequencer module.

7.1 Efficient Handling of Integers

In COQ, data structures are defined using inductive types such as “nat” for the set of
natural numbers. Then, the extracted OCAML code, reflecting the structure of COQ

types, contains for instance the Peano integer coding for “nat”. This coding allows to
express any natural number as a unique sequence of S (successor) operators, followed
by O (zero). For instance the number “3” is extracted as “S(S(S O))”. Therefore, manip-
ulating these Peano numbers is very costly in terms of memory and computing power.
For instance, the addition n + m, instead of being executed in constant time as it is the
case for primitive integers, is executed in time O(n), as the result of a full recursive
matching of its first parameter. The solution we have adopted so far consists in patching
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the extraction mechanism (as allowed by COQ), in order to map the original natural
numbers to the primitive 32-bits integers of OCAML. As some arithmetical operations
may now overflow, due to the fixed size of primitive integers, we make use of some de-
fensive programming techniques, i.e. dynamically checked assertions about absence of
overflows, in place of offensive techniques, i.e. proofs that manipulated integers always
lie in a fixed range. Although this mapping is not formally proved harmless, it may still
be fully qualified in our opinion, as the correction of our simple assertions surrounding
our simple (primitive) arithmetical operations is easily done by careful code reading.
Moreover, from a practical standpoint, GENEAUTO models are obviously unlikely to
contain more elements than primitive integers would handle.

7.2 Efficient Handling of Function Applications

Still, the generated OCAML code without any further optimization can be very ineffi-
cient because of a rather undisciplined extraction mechanism. The extraction process
tends first to replace some intermediate variables by their defining expressions (thus
computing the value each time the variable is accessed) and second to perform some
η-expansions, that adds extra parameters, turning straightaway evaluable expressions
into functions (whose body is computed each time the function is applied). In our block
sequencer, we chose to implement dependency environments (“Din” and “Dout”) as
simple functions, which are plain first-class citizens in COQ, whereas specific data-
structures, such as lists or hash-tables, would have deserved a special care and some
related extra correction proofs. Concerning the fixpoint calculus of these functions,
at each iteration the OCAML dependency evaluation (“E′

in” and “E′
out”) of a given

block computes over and over the dependencies of all related blocks, due to the extrac-
tion mechanism. The problem is solved by using a safe write once/read many caching
mechanism, taking place during the extraction process, that puts once and for all evalu-
ated values for an iteration in a local vector. The garbage collector allows the reuse of
these vectors, so it doesn’t affect the overall memory usage. Again, the management of
these caches has been carefully designed in order to avoid any possible (unspecified)
side-effect that would ruin the whole COQ development effort. Again, confidence in the
correction of our caches seems easily obtainable by code proof reading.

8 Related Work

There exists a huge background of work related both to automatic code generation
for model-based languages and to the verification of ACG. Large part of this work
is dedicated to synchronous language-based models such as SCADE/KCG/LUSTRE, see
[5,6,7,8]. Semantics of models supported by GENEAUTO, however, mix data-flow and
control-flow. These can be expressed using synchronous languages (see [9,10]), but
these do not allow us to easily respect the model/code structural traceability constraint
expressed in GENEAUTO by several industrial partners. In addition to these works,
semantics and features of code generation for synchronous languages are treated in
[9,10,11,12], but besides the difficulty to handle traceability constraint, there is no for-
mal verification applied to the code generator itself. The code generator of [2] focus



Machine-Checked Sequencer for Critical Embedded Code Generator 539

on the verification of the source code. Important related works rely on compiler ver-
ification and validation, e.g., see [13,14], but the verification is focused on instances
of compilation. A promising approach consists in the formal development of a correct-
by-construction compiler, e.g. [15], our work is based on this later approach. However,
there is a significant difference with our proposal. Formal technologies applied for prov-
ing compiler correctness usually rely on formal specification of the semantics of both
input and output languages, the translation itself, and on the proof that the observed
semantics of the source and target are always equivalent, similar or bi-similar. We have
chosen in GENEAUTO not to depart too much from the usual industrial approach to
qualification in order to ease its acceptance by certification authorities, thus we do not
work at the semantic level directly. In fact, we developed a two-step approach: in a
first step, tool components developers write a classical natural language specification
of requirements that is translated in a formal specification used for a formal correct-by-
construction development; then, in a second step, these requirements are proved correct
w.r.t. the semantics of the languages. In this paper, we have focused on the first step.

9 Conclusion

We propose a formal framework for sequencing SIMULINK models as a first step for a
qualified code generator for embedded critical systems. We have formally specified the
input language of SIMULINK models, their requirements and formally implemented and
verified the correctness properties of the sequencer. We think our work being challeng-
ing since the test phase is removed from the review process of the scheduler. The pro-
posed tool not only produces a correct execution order with respect to requirements but
also rejects models with loops. It appears that, once optimization problems were solved,
we ended up with a prototype written in a pure functional style, that favorably compares
in terms of memory and time consumption with the other GENEAUTO modules of sim-
ilar complexity, that are still at this time hand-written in JAVA. The code source of the
Block sequencer is now available at http://izerrouken.perso.enseeiht.
fr/. Current and further work will include the development of other modules such as
typing and clock calculus, on the one hand to improve the mixed classical/formal ver-
ification for qualification purpose and on the other hand to provide a complete ACG

verified using formal technologies.
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Abstract. Certificate translation is a method that transforms certifi-
cates of source programs into certificates of their compilation. It provides
strong guarantees on low-level code, and is useful for eliminating trust
in the compiler (for high assurance code) and in the code producer for
mobile code security. The theory of certificate translation has been de-
veloped in earlier work, but no implementation exists. As a result, it has
been difficult to evaluate its practicality, and in particular the impact of
certificate translation on the size of certificates.

In this paper, we report on the development of a certificate transla-
tor prototype. The tool takes as input a high-level program, defined in a
small subset of the C programming language, and a logical specification à
la ACSL, and computes a set of verification conditions for the Coq proof
assistant. Once proof obligations are discharged, the tool compiles the
source program into an intermediate RTL (i.e., three-address code) rep-
resentation, and then performs a sequence of compiler optimizations. At
each step, certificates are transformed automatically to produce a proof
for the transformed programs. For optimizations that rely on arithmetic
reasoning, such as constant propagation and common subexpression, the
tool implements a new certificate translation strategy that minimizes
certificate growth.

1 Introduction

Reasoning about source programs is important: it helps guarantee that programs
have been correctly designed to meet some functionality, or some non-functional
requirement. Reasoning about source programs is also successful: modern pro-
gram verifiers for C, C#, Java, perform well, and their user base is growing across
different areas of computer science.

Yet, reasoning about source programs does not provide guarantees about the
behavior of executable code. The dissimilarity between a compliant source pro-
gram and a misbehaved executable can arise on many accounts: the compiler
may modify the functional semantics of the program, or it may preserve its
functional semantics and yet alter its non-functional behavior (execution time,
resource consumption), leading to security vulnerabilities or to ill-functioning
� Partially funded by the EU projects MOBIUS and HATS.
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applications. Or, the executable code may be produced by a malicious third
party that deliberately aims to provide users with code that does not respect
the behavior of the source programs. Or, the compiled code might have been
tampered prior to execution, for example for efficiency reasons. Thus, source
code verification must be complemented with verification of executable code.

Program verification is costly, and there is little chance that programmers
will agree to verify their source programs, and then to verify again the corre-
sponding executable code. Verification across the compilation chain is even more
problematic for source programs that are compiled to different targets, as the
verification effort would need to be repeated for each potential target. Therefore,
it is important to develop methods that allow transferring the results of source
code verification to lower levels in the compilation chain.

Certificate translation is a method to transfer evidence from source programs
to compiled programs. They manipulate so-called certificates, i.e. mathematical
objects that capture program correctness proofs, and amenable to transforma-
tion by syntactic methods. In short, certificate translators are functions that
map certificates of source programs, into certificates of their compilation.

The theory of certificate translation has been developed in previous work: in
particular, Barthe et al [3] show in the setting of a RTL language that certificate
translators exist for common program optimizations; later, Barthe and Kunz [2]
show that certificate translators are guaranteed to exist under mild conditions.
However, the theoretical development has not been matched by a practical im-
plementation. As a result, it has not been possible to validate experimentally the
theoretical developments, nor to assess the practicality of certificate translation.

In this paper, we report on a prototype implementation1 of certificate trans-
lation for a subset of the C language. Although our verifier for C programs and
our examples remain modest in comparison with the state-of-the-art (compared
e.g. with Spec# [1] or Frama-C [5]), our work allows to draw for the first time
some preliminary conclusions about the practicality of certificate translation. In
particular, we are able to provide a preliminary analysis of the impact of certifi-
cate translation on the size of certificates, which is an essential metrics for Proof
Carrying Code [7]—the initial motivation of our work. In addition to the tool, we
report on a new method for transforming certificates for optimizations based on
arithmetic reasoning, such as constant propagation, and common subexpression
elimination. The method is simpler, in that it treats the certificate of the original
program as a black-box, whereas the previous method in [3] involved weaving
certificates, using a well-founded induction principle on the control flow graph
of the program. In comparison, the new method also yields smaller certificates,
and thus contributes to the practicality of certificate translation.

2 Overview

Figure 2 provides an overview of the tool. The tool operates on programs writ-
ten in a subset of the C language. A program consists of a declaration of global
1 The tool is available at http://mobius.inria.fr/CertificateTranslation

http://mobius.inria.fr/CertificateTranslation
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l1 : i := 0;
l2 : while (i < m){
l3 : j := 0;
l4 : while (j < p){
l5 : k := 0;
l6 : c[i ∗ p + j] := 0;
l7 : while (k < n){
l8 : c[i ∗ p + j] := c[i ∗ p + j] + a[i ∗ n + k] ∗ b[k ∗ p + j];
l9 : k := k + 1;

}
l10 : j := j + 1;

}
l11 : i := i + 1;

}
l12 : return 0

Fig. 1. Source code of matrix multiplication example

variables, followed by a sequence of function declarations. Each function defines
the return type, the name and type of the formal parameters, a set of local vari-
ables, and the statement that defines its body. Variable types are restricted to
integers and pointers to integer values. Statements include assignments to scalar
and pointer variables, function invocation, conditional and loop statements. Pro-
gram points can be labeled to be used as the target of a goto statement. Local
declarations of pointer variables and expressions containing pointer arithmetic
operations are not allowed.

Although minimalistic, the fragment considered is sufficiently expressive for
writing many algorithms of interest. We have programmed (and verified) sorting
algorithms, and algorithms that manipulate matrices. Our running example is a
matrix multiplication algorithm.

Example 1 (Matrix Multiplication: source code). Consider as a running example
the following algorithm, that computes the multiplication of two matrices a and
b, and stores it in c. Matrices are encoded as uni-dimensional arrays; for example,(

a b
c d

)
is encoded as

(
a b c d

)
. More generally, if a m × n matrix A is represented by

the uni-dimensional array a of size mn, we encode the array element Ai,j as
a[i∗n+ j]. The code is given in Figure 1. In the algorithm, the array variables a,
b, and c represent a m×n matrix, a n×p matrix, and a m×p matrix, respectively.
The lis are program labels, and are used to add annotations in the program text.

The program verifier operates on annotated source programs. In order to support
effective and modular verification, the program verifier requires that procedures
are annotated with their preconditions and postconditions, and that loops are
annotated with their invariants. However, the verifier allows assertions to be
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inserted at arbitrary points in the program, which is particularly useful to ver-
ify some non-functional properties. Procedure specifications are triples of the
form 〈Pre, annot,Post〉, where Pre and Post are assertions and annot is a partial
function from program labels to assertions. Assertions are written in a language
similar to (but smaller than) the ACSL language used in the Frama-C project [5];
they are also allowed to refer to functions and predicates defined in an external
Coq module. One minor difference with ACSL is that the specification language
does not provide any syntactic sugar for modifiable clauses.

Example 2 (Matrix Multiplication: specification). The specification for matrix
multiplication is given by the triple 〈Pre, annot,Post〉 where:

Pre
.= 0 < m ∧ 0 < n ∧ 0 < p

annot(l2)
.= ∀i, j. ((0 ≤ i < i) ⇒ (0 ≤ j < p) ⇒ c[i, j] = (a× b)[i, j]) ∧ i ≤ m

annot(l4)
.= ∀j.((0 ≤ j < j) ⇒ c[i, j] = (a × b)[i, j]) ∧ (0 ≤ j ≤ p)∧
∀i, j. ((0 ≤ i < i) ⇒ (0 ≤ j < p) ⇒ c[i, j] = cl2 [i, j])

annot(l7)
.= c[i, j] =

∑k−1
r=0(a[i, r] ∗ b[r, j]) ∧ (0 ≤ j ≤ p)∧

∀j. ((0 ≤ j < j) ⇒ c[i, j] = cl4 [i, j])
Post

.= ∀i, j. ((0 ≤ i < m) ⇒ (0 ≤ j < p) ⇒ c[i, j] = (a× b)[i, j])}

For notational convenience, we write x[i, j] instead of x[i ∗ n + j] if the array x
represents an m × n matrix. The postcondition ensures that the array c is the
result of matrix multiplication between a and b, i.e. for every i and j, c[i, j] is
equal to

∑n−1
k=0 a[i, k] ∗ b[k, j], denoted (a× b)[i, j].

The innermost loop, defined in terms of the induction variable k, computes
the sum

∑n−1
k=0 a[i, k] ∗ b[k, j], for the current value of the variables i and j. The

first term in the conjunction that defines the loop invariant annot(l7) expresses
exactly this condition. In addition, annot(l7) states that for any other pair (i′, j′)
different from (i, j), the array value c[i′, j′] remains unmodified (cl4 stands for
the value of c before the assignment k = 0). The loop statements at labels l2 and
l4 traverses the rows and columns of the matrix represented by c, respectively.
The invariants annot(l4) and annot(l2) extend the condition c[i, j] = (a×b)[i, j]
for the previous values of the variables j and i, respectively.

The program verifier generates for each annotated program a set of proof obli-
gations. The generation of proof obligations proceeds in two phases: first, a sym-
bolic execution algorithm is used to strengthen program annotations. Then, a
weakest precondition calculus generates proof obligations using the strengthened
annotations. In order to avoid bloated proof obligations, the weakest precondi-
tion calculus does not strengthen annotations with all the results of symbolic
execution, but only with those that refer to variables that would appear in the
proof obligation.

The use of symbolic execution to strengthen invariants allows users provide
weaker specifications2.

Example 3 (Matrix Multiplication: symbolic execution). At program point l4, a
standard VCgen would generate, for the execution that does not enter the loop,
2 A similar technique is implemented in the Caveat tool, the predecessor of Frama-C.
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Fig. 2. Overall Tool Scheme

the proof obligation: annot(l4) ⇒ ¬j < p ⇒ annot(l2)[i+1/i]. Unfortunately, in
this example the loop invariant annot(l4) is not strong enough to discharge the
proof obligation. In contrast, symbolic execution propagates automatically the
condition provided by the outer invariants to strengthen the inner invariants,
and generates provable proof obligations.

The obligations are collected in a Coq file, and must be discharged to guarantee
that the program is correct w.r.t. its specification. This process is done interac-
tively by the user, using the Coq proof assistant. The certificate of the program
is the set of proof terms that are built automatically by Coq upon successful
verification of the proof obligations.

Certificate translation starts after the user has completed the verification of
the source program. The program is first compiled to an intermediate represen-
tation, written in a RTL language with arrays and procedure calls. The compiler
from the source language to the target language does not perform any opti-
mization, but replaces booleans, which do not exist in the RTL language, by
integers—we do not discuss this transformation further.

Example 4 (Matrix multiplication: RTL code). The result of compiling the run-
ning example can be found in Figure 3. The boxes in gray show the optimized
version of the RTL code, as explained in Section 5.2.

The checker of RTL programs is based on the same principles as the verifier for
source programs: annotated RTL programs are sent to a weakest precondition
calculus that generates a set of proof obligations; then the programs certificates
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i := 0
l2 : set il2 := i

set jl2 := j

set kl2 := k

set cl2 := c

lb2 : cjmp i < m lo2
jmp l′2

lo2 : j := 0
l4 : set jl4 := j

set kl4 := k

set cl4 := c

lb4 : cjmp j < p lo4
jmp l′4

lo4 : k := 0

r1 := i ∗ p
r2 := r1 + j

c[r2] := 0
l7 : set kl7 := k

set cl7 := c

lb7 : cjmp k < n lo7
jmp l′7

lo7 : r3 := i ∗ p r3 := r1

r4 := r3 + j r4 := r2

r5 := c[r4]
r6 := i ∗ n
r7 := r6 + k

r8 := a[r7]
r9 := k ∗ p

r10 := r9 + j

r11 := b[r10]
r12 := r8 ∗ r11

r13 := r5 + r12

r14 := i ∗ p r14 := r1

r15 := r14 + j r15 := r2

c[r16] := r15

k := k + 1
jmp l7

l′7 : j := j + 1
jmp l4

l′4 : i := i + 1
jmp l2
return 0

Fig. 3. RTL representation of the matrix multiplication example

integer expressions e ::= n | x | a[e] | e + e | e ∗ e | ...
boolean expressions b ::= true | false | ¬b | b ∧ b | e ≤ e | e = e | . . .

statements c ::= skip | x := e | a[e] := e | c; c
| x := invoke f(e) | return e
| if b then c else c | while b do c

Fig. 4. Source Programs

are checked against the proof obligations. Unlike the verifier for source programs,
the checker for RTL programs does not rely on symbolic execution—one reason
for this discrepancy is that the RTL checker is trusted, and hence should be
as simple as possible. To bridge the gap between the source code verifier and
the RTL checker, the tool relies on a specification compiler that strengthens the
original specification with the result of the symbolic execution. Although the
proof obligations between source code and RTL programs are very similar, there
are some minor differences that prevent directly reusing certificates—for many
examples, including the running example, the proof obligations coincide syntac-
tically. The tool implements a Coq tactic to transform the original certificates
into certificates for their RTL compilation.

The tool then performs a series of optimizations: constant propagation, com-
mon subexpression elimination, partial redundancy elimination, and unreach-
able code elimination. For each optimization, the tool transforms the program,
its specification and the certificates. This is done by comparing the original and
final proof obligations as a black-box, instead of considering the definition of the
compiler. Therefore, although we consider a particular compiler, the certificate
transformation technique presented here can be applied to any optimization
based on arithmetic simplification. However, it is not completely independent
on the compiler, in that sense that the certificate transformation may fail if the
transformation is not semantically correct.
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As noted in [3], certificate translation require program analyzers to generate a
certificate for the result of the analysis. The certificates of the analyses are then
merged with the original certificates. In Section 5, we present a new method to
perform the merging of certificates. Section 6 provide experimental results.

3 Source Program Verification

For the clarity of exposition, we base the presentation on a simpler language,
restricting the heap model to array operations. The set of statements is given in
Figure 4. V and A represent the set of scalar and array variables, respectively.

Scalar variables are local to the execution of a procedure body, and array vari-
ables are global to the execution of the whole program. Array variables represent
pointers from a common and global heap. In order to avoid pointer aliasing, array
variables hold distinct memory pointers, that are statically defined and cannot
be modified along the execution of the program. To enforce this, assignments
of the form a := a′, where a and a′ are array variables, are not allowed in this
paper. The program semantics is standard.

3.1 Specification

A procedure specification is provided by a set of logical formulae. The specifica-
tion may refer to any program variable, and to the special purpose variable res
that refers to the value returned by a procedure, and to ghost variables, which
are used only for specification purposes. A particular subset of ghost variables
are the starred variables x�, referring to the initial value of the variable x. In ad-
dition to starred variables, we consider also labeled variables. One can interpret
the ghost variable xl as standing for the value held by the program variable x
at the program point l.

Preconditions are logical formulae that only refers to any array variable and
any scalar arguments of the procedure. Postconditions can refer to the variable
res, any array variables, and any ghost variable.

To compute verification conditions from a procedure and a specification
〈Pre, annot,Post〉, the verification framework requires that every loop statement
l : while b do c is annotated, that is, that l is in dom(annot).

3.2 Symbolic Execution

In this section, we describe the invariant strengthening technique based on the
symbolic propagation of invariants and path conditions.

A symbolic state is defined by a pair (S,C), where S is an execution store that
maps variables to integer expressions composed of only ghost variables. Similarly,
C is a formula whose every free variable is a ghost variable. We denote [[e]]S and
[[φ]]S the syntactic substitution in e and φ, respectively, of every variable v by Sv.

The symbolic execution of a statement c from a symbolic state (S,C) and
returning the symbolic state (S′, C′), is denoted (S,C, c) → (S′, C′). The rules
that define the symbolic execution can be found in Figure 5. In the figure, a
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〈S, C, skip〉 → 〈S, C〉

〈S,C, a[e] := e′〉 → 〈[S : a �→ [[[a : e �→ e′]]]S], C〉

〈S,C, x := e〉 → 〈[S : x �→ [[e]]S], C〉

〈S, C, l : x := invoke f(e)〉 → 〈[S : (x, a) �→ (xl, al)], C〉

〈S,C, c1〉 → 〈S1, C1〉 〈S1, C1〉 �l2 〈S2, C2〉 〈S2, C2, c2〉 → 〈S′, C′〉
〈S, C, l1 : c1; l2 : c2〉 → 〈S′, C′〉

〈S, C ∧ [[b]]S, c1〉 → 〈St, Ct〉 〈S, C ∧ [[¬b]]S, c2〉 → 〈Sf , Cf 〉
〈S, C, l : if b then c1 else c2〉 → 〈St ⊕l Sf , ([[b]]S ⇒ Ct) ∧ ([[¬b]]S ⇒ Cf )〉

for all x modifiable by c, Sx = xl 〈S, C ∧ [[annot(l)]]S ∧ [[b]]S, c〉 → 〈S′, C′〉
〈S,C, l : while b do c〉 → 〈S, C ∧ [[¬b]]S〉

Fig. 5. Symbolic Execution Rules

stands for the array variables modified by the procedure f . The expression [f :
x �→ n] stands for the function f ′ such that f ′x = n and f ′y = fy for all y �= x.

The symbolic execution is assumed to start in an initial state (S0, C0) such
that S0 maps every variable x to x�, that is, to its initial value. The execution
proceeds by case analysis on the statement. In the following paragraphs we
explain some of the execution rules:

Assignment: In the case of an assignment x := e, the symbolic store S is
updated so that after the assignment is executed, the variable x holds the
corresponding symbolic value [[e]]S. A similar substitution is applied in the
case of assignments to array variables.

Conditional statement: In the case of the conditional statement of the form
if b then c1 else c2, each branch c1 and c2 is evaluated under the conditions b
and ¬b, respectively. To this end, the symbolic conditional C is strengthened
with the interpretation of the boolean expressions b and ¬b, denoted [[b]]S and
[[¬b]]S, respectively. Finally, the symbolic states St and Sf , resulting from
the execution of each branch are merged into a symbolic state St ⊕l Sf . The
definition of the merging operation preserves the assignments of variables in
which St and Sf coincide. If St and Sf differ on a variable x, this variable
is mapped to a fresh labeled variable xl. That is

(S1 ⊕l S2)x =
{
S1x if S1x = S2x
xl otherwise

Loop statements: The execution of a loop statement may invalidate symbolic
conditions if they refer to a variable that may be modified by the loop body.
We follow thus a safe approach and require the symbolic execution to start in



Implementing a Direct Method for Certificate Translation 549

an initial state that sets every modifiable variable to a fresh ghost variable xl,
from which nothing is known. The loop body, is then executed in a state in
which the interpretation of the guard [[b]]S is incorporated to the conditional
C. As the final state, the conditional expression C is strengthened with the
negation of the loop guard [[¬b]][S : x �→ xl].
The tool expects a procedure specification to provide the set of variables that
each loop may modify. In return, the tool outputs a set of proof obligations
that ensures the correctness of this part of the specification. To simplify
the presentation, we assume here that the set of modifiable variables are
automatically overapproximated by a static analysis.

Sequential composition: Loops statements require initial symbolic stores S
to map modifiable variables to fresh ghost variables from which nothing is
known in C. To satisfy this requirement, the composition rule allows one to
weaken symbolic states. In the figure, 〈S,C〉 �l 〈S′, C′〉 is defined as C = C′,
dom(S) = dom(S′) and for all x ∈ dom(S) we have S(x) = S′(x) or S′x = xl.

Note that the symbolic result can be arbitrarily weak by application of the rule
for sequential composition, from the requirement 〈S,C〉 �l 〈S′, C′〉. However,
since the only statement that put restrictions on the symbolic pre-state is the
while statement, one can make it as strong as possible by choosing S′ = [S :
x �→ xl], where x represents every variable modifiable by the loop body, and l
is the label of the loop statement. For any other case, one can simply choose
〈S,C〉 = 〈S′, C′〉. As a result, the symbolic execution becomes deterministic.
Therefore, in the rest of the paper we associate every program label l to exactly
one symbolic state, represented by the pair (Sl, Cl).

3.3 Verification Condition Generator

In this section we define a verification framework for source-level programs. A
verification condition generator (VCgen) takes as input a source program and its
specification, and returns a set of proof obligations. The validity of the generated
proof obligations ensure that the program satisfies its specification.

The verification framework defined in this section relies on the symbolic ex-
ecution presented in the paragraphs above. When computing the set of proof
obligations, the VCgen strengthens invariants by incorporating the information
that is computed by the symbolic analyzer.

The extraction of verification conditions are defined by the function VCG,
formalized by the rules in Figure 6. During the computation, every reference
to the intermediate specification annot is strengthened with the result of the
symbolic execution, and denoted annot:

annot(l) .= annot(l) ∧ Cl ∧
∧

v∈dom(Sl)

v = Sl(v)

Since the VCgen process incorporates the result of the symbolic analysis, the
definition of VCG is tightly coupled with the symbolic execution rules. Indeed,
the standard weakest precondition must be modified to deal with the fresh ghost
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VCG(skip, φ) = 〈φ, ∅〉 VCG(return e, φ) = 〈Post[e/res], ∅〉

VCG(l : x := e, φ) = 〈φ[x/xl ][e/x], ∅〉

VCG(l : a[e1] := e2, φ) = 〈φ[a/al ][[a:e1 �→e2]/a], ∅〉

Φ = Pref [e/xf ] ∧ ∀res, V ′. Postf [V
′,V/V,V � ][e/xf

� ] ⇒ φ[a/al ][v/vl ][V
′
/V ][res/v ]

V array variables modified by f

VCG(l : v := invoke f(e), φ) = 〈Φ, ∅〉
VCG(c1, φ) = 〈φ1, θ1〉 VCG(c2, φ) = 〈φ2, θ2〉

VCG(if b then c1 else c2, φ) = 〈b ⇒ φ1 ∧ ¬b ⇒ φ2, θ1 ∪ θ2〉
VCG(c, annot(l)[x/xl ]) = 〈φ1, θ〉 Ψ

.= annot(l) ⇒ (b ⇒ φ1) ∧ (¬b ⇒ φ)

VCG(l : while b do c, φ) = 〈annot(l)[x/xl ], {Ψ} ∪ θ〉
VCG(c1, φ2) = 〈φ1, θ1〉 VCG(c2, φ) = 〈φ2, θ2〉

VCG(c1; c2, φ) = 〈φ1, θ1 ∪ θ2〉
〈φ, θ〉 = VCG(c, Post) c the body of p

PO(p) .= {Pre ⇒ φ[
�V/�V � ]} ∪ θ

Fig. 6. Source Code VCgen Rules

variables that are introduced by the symbolic execution. Consider for instance
the case of the function invocation v := invoke f(e). Recall that, from the
definition of symbolic execution, the final state S′ maps v to the fresh ghost
variable vl, and similarly with the arrays that may be modified by f . Then,
one must substitute the ghost variable vl by v, as well as al by a, for all array
variable a that may be modified by f . A similar situation occurs with loop and
conditional statements.

The set of verification conditions is defined as PO(p) in Figure 6. We say that
a procedure p is correct with respect to its specification if PO(p) is a set of valid
formulae. Let the judgment 〈c, σ〉 � 〈n, σ′〉 represent the determinist execution
of the statement c, starting in a state σ and returning a value n and a final state
σ′. The VCgen defined above is sound, that is, the execution of a valid procedure
p satisfies its specification. Formally, if c is the statement of a procedure that
is valid w.r.t. 〈Pre, annot,Post〉, and the σ satisfies the precondition Pre, the
execution 〈c, σ〉 � 〈n, σ′〉 implies that σ′ satisfies the postcondition Post[n/res].

Example 5. Consider again the source code specification provided in Example 2
for the matrix multiplication example. The program code between labels l2 and
l4 does not modify the array c in the range 0 ≤ i < i and 0 ≤ j < p. Therefore,
the symbolic execution can propagate the information provided by the invariant
annot(l2):

ϕ
.= i = il2 ∧ ∀i, j. ((0 ≤ i < il2) ⇒ (0 ≤ j < p) ⇒ cl2 [i, j] = (a× b)[i, j])
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to strengthen the invariant annot(l4), making thus the specification valid. In this
particular case, one can see that the new proof obligation is

annot(l4) ∧ ϕ ⇒

∣∣∣∣∣∣
(∀i, j. ((0 ≤ i < i) ⇒ (0 ≤ j < p) ⇒ c[i, j] = (a × b)[i, j])
∧
∀j. ((0 ≤ j < p) ⇒ c[i, j] = (a× b)[i, j]))

which is a valid logical formula.

4 RTL Program Checking

As a compiler intermediate program representation we assume a Register Trans-
fer Language (RTL), that is, three-address based code. It is an unstructured
low-level language with conditional jumps, assignments of atomic expressions
and function invocations.

A RTL program is defined as a collection of RTL procedures. Each RTL pro-
cedure is defined by its formal parameters and a sequence of labeled low-level
instructions. RTL instructions and expressions are defined in Figure 7.

In Figure 7, x stands for a scalar program variable or an integer constant and
a stands for an array variable. Assignments involve at most one array access or
two scalar variables. In the figure, ē represents an atomic integer expression (one
array access or an arithmetic operation between at most two scalar variables), e
an integer expression as defined in the source program syntax, and v̂ stands for
a ghost variable. The symbol �� stands for any integer comparison. Since ghost
variables cannot interfere with the program semantics, they can only appear on
set instructions. RTL instructions include also a return instruction, procedure
invocation and conditional and unconditional jumps.

For a RTL procedure p and a label l, we denote p[l] the instruction located
at the position with label l. For a label of a RTL procedure p, we define the
successors labels, denoted succ(l), by case analysis on the instruction p[l]. For
p[l] equal to return x we have succ(l) = ∅, for jmp l′ we have succ(l) = {l′}, and
for cjmp l′, succ(l) = {l′, l + 1}, where l + 1 is the label of the next instruction
in the sequence p. In any other case, succ(l) = {l + 1}.

Program Verification. Procedure specifications are provided by triples of the
form 〈Pre, annot,Post〉, where Pre and Post are assertions representing the pre
and postconditions and annot is a partial function that maps labels to asser-
tions specifying the loop invariants. Pre, Post and annot are written in the same
language and follow the same restrictions as source program specifications.

(atomic expressions) ē ::= x | x + x | x ∗ x | . . . | a[x]
(instructions) ins ::= nop | v := ē | a[x] := ē

| invoke f (�x) | return x | set v̂ := e
| cjmp x �� x l | jmp l

Fig. 7. RTL Instructions
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wpi(l : nop) = wp(l + 1)
wpi(l : v := e) = wp(l + 1)[e/v ]
wpi(l : set v̂ := e) = wp(l + 1)[e/̂v ]
wpi(l : a[v1] := v2) = wp(l + 1)[[a:v1 �→v2]/a]
wpi(l : cjmp v1 �� v2 l′) = ((v1 �� v2) ⇒ wp(l′)) ∧ (¬(v1 �� v2) ⇒ wp(l + 1))
wpi(l : invoke f x) = Pref [x/xf ] ∧ ∀res,a′Postf [a

′,a/a,a� ][xf
�

/x] ⇒ wp(l + 1)[a
′
/a]

wpi(return v) = Post[v/res]

wp(l) =
{

annot(l) if l ∈ dom(annot)
wpi(l : p[l]) otherwise

Fig. 8. RTL VCgen rules

To compute a set of proof obligations from a procedure p and its specifi-
cation, the RTL checker requires that p is well-annotated. A procedure p with
specification (Pre, annot,Post) is well-annotated if every cyclic path in its control
flow graph contains at least one annotated label in dom(annot). The result of
compiling a well-annotated source procedure is a well-annotated RTL procedure:
without further ado, we thus consider only well-annotated programs.

For a RTL procedure p with specification 〈Pre, annot,Post〉, the proof obliga-
tions are defined by the set:

po(p) = {Pre ⇒ wp(lin)[V/V � ]} ∪ {annot(l) ⇒ wpi(l : p[l]) | l ∈ dom(annot)}

where the predicate transformers wpi and wp are defined in Figure 8. In the fig-
ure, a represents every array variable that may get modified by f . The assertion
ϕ[V/V � ] stands for the substitution in ϕ of every array variable a� ∈ V � by a.

Consider a RTL program such that every procedure is verified correct with
respect to its specification. Then, as with source programs, every terminating
execution of a procedure with specification 〈Pre, annot,Post〉, from an initial
state that satisfies the precondition Pre, will reach a final state satisfying the
postcondition Post.

5 Certificate Translation

In this section, we deal with certificate transformation along a common com-
pilation process. We show that the first compiler step, that is, non-optimizing
compilation, preserves verification conditions up to minor differences. Then we
explain how we deal with the transformation of certificates in the presence of
compiler optimizations. We first provide an introduction to certificate trans-
lation in the most general case. Then, we provide a more ad-hoc technique,
implemented in the tool, that considers a particular class of optimizations, for
which the growth of the original certificate size is reduced.

5.1 Non-optimizing Compilation

The non-optimizing compiler transforms every source code statement into an
intermediate RTL representation. The transformation is defined as a function
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C(l′)(v := e) = Ce(v, e) :: jmp l′

C(l′)(l : if b then c1 else c2) = Cb
(lt,lf )(b) :: lf : C(l′′)(c2) :: lt : C(l′′)(c1) ::

l′′ : set xl := x :: jmp l′

C(l′)(l : while b do c) = l : set xl := x :: lb : Cb
(lo,l′)(b) :: lo : C(l)(c)

C(l′)(v := invoke p(e1, .., ek)) = Ce(v1, e1) :: .. :: Ce(vk, ek) ::
v := invoke f(v1, .., vk) :: set vl := v :: set al := a :: jmp l′

C(l′)(c1; c2) = C(l′′)(c1) :: l′′ : C(l′)(c2) :: jmp l′

C(l′)(return e) = Ce(v, e) :: return v

Fig. 9. Non-optimizing Compiler (Excerpt)

C, shown in Figure 9, that takes a source code statement and a label l′ where
execution must continue after the execution of the compiled statement. In ad-
dition, auxiliary functions are defined, in order to compile boolean and integer
expressions. Cb takes a boolean expression, and two output labels, to which ex-
ecution must flow depending on the evaluation of the boolean expression. This
function decomposes the evaluation of the boolean condition into two sequences
of RTL instructions. Each of them evaluates an atomic conditional expression.
Similarly, the function Ce takes a variable v and an expression e and returns
RTL code that stores the evaluation of e in the variable v. It does so by de-
composing the evaluation of the expression e into the evaluation of its atomic
subexpressions.

Since we adopt a standard VCgen for RTL procedures, the compiler must
incorporate the result of the symbolic execution, used to assist source code ver-
ification, to the specification of the resulting RTL procedure.

Consider a source code procedure p, with specification 〈Pre, annot,Post〉. Let
p′ = lin : C(lout)(c), where c is the body of p. We define the specification for p′ as
〈Pre, annot′,Post〉, where dom(annot′) = {lb | l ∈ dom(annot)} and

annot′(lb) = annot(l) ∧ Cl

∧
v∈dom(Sl)

v = Sl(v)

and (Sl, Cl) is the result of the symbolic execution at the source program point
labeled as l.

In order to deal with the ghost variables that appear in the final specification,
the compilation of every statement that may introduce a ghost variable in the
symbolic state must be followed by a set statement on that ghost variable.

Consider for instance the case of loop statements. Recall that for every variable
x that may be modified by the loop, a while statement introduces a fresh ghost
variable xl in the symbolic state. Then, the VCG function is defined accordingly to
deal with the introduction of these variables. In the case of a standardRTL verifica-
tion, the compiler must introduce set statements in order to make the augmented
specification valid. Similar criteria are used to define the compilation of conditional
statements and function invocation. In Figure 9, x stands for every variable that
may get modified by any of the two statements. In the case of function invocation,
a stands for every array variable that the function may modify.
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Consider a source procedure p with body c and specification 〈Pre, annot,Post〉,
and the RTL procedure p′ = lin : C(c). From the definition of the non-optimizing
compiler, one can show that the proof obligations in PO(p) are equivalent to
the proof obligations in po(p′). The only source of syntactic differences is due to
the compilation of boolean expressions. For instance, for the statement c defined
as if b1 ∧ b2 then c1 else c2, the function VCG(c, ϕ) returns a precondition of
the form (b1 ∧ b2 ⇒ ϕt) ∧ (¬(b1 ∧ b2) ⇒ ϕf ). If we compute the wp(l) for the
subgraph that results from the compilation l : C(l′)(c) we get a precondition of
the form (b1 ⇒ ((b2 ⇒ ϕt) ∧ (¬b2 ⇒ ϕf ))) ∧ (¬b1 ⇒ ϕf ). Both assertions are
trivially equivalent, but since proof obligations do not coincide syntactically, the
tool implements a Coq tactic to transform the original certificates.

Example 6. The result of compiling the running example can be found in
Figure 3. In this case, proof obligations coincide syntactically since every boolean
condition of the source program is atomic.

Consider for instance one of the proof obligations for the code in Figure 3:

annot′(lb4) ⇒
∣∣∣∣ (j < p ⇒ annot′(lb7)[

k,c/kl4 ,cl4 ][[c:r2 �→0]/c][r1+j/r2 ][i∗p/r1 ][0/k])∧
(¬j < p ⇒ Post)

By definition of annot′, and since r1 and r2 are fresh variables that do not appear
in annot(l7), this is equal to:

annot(l4) ⇒ (j < p ⇒ annot(l7)[k,c/kl4 ,cl4 ][[c:i∗p+j �→0]/c][0/k]) ∧ (¬j < p ⇒ Post)

which coincides with the proof obligation computed for the source program at
label l4.

5.2 Optimizing Compilation

In this section, we describe how the tool implements a certificate translator in
the context of a basic but common class of program transformations. Standard
compiler optimizations operates in a two-step basis. First, an automatic analysis
gathers static information from the procedure. Then, based on this information,
a second compiler step transforms the code preserving the original semantics.

We provide first a representation of an analysis framework and a character-
ization of the result of an analysis. Then, we explain how the tool returns, in
addition to the analysis results, a certificate of its representation in the ver-
ification setting. We then show that for these optimizations one can define a
certificate translator that avoids the growth of certificate size caused by the
more general technique developed in previous work [3].

Certifying Analyzers. In general, program transformations not only mod-
ify proof obligations, but may render the original specification invalid. For the
class of optimizations considered in this paper, the certificate translator must
strengthen the specification with the result of the analysis that motivates the
program transformation. Therefore, a certificate translation procedure automat-
ically generates a certificate for the analysis result, and then merges it with the
original certificate.
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An analysis module is implemented in the tool as a data type A that represents
properties on states, and a transfer function T . The transfer function T takes
an instruction ins and an element of type A and returns a new element in A.
To give an intuition, if a state satisfies a property a, then the state after the
execution of a satisfies the property T (ins, a).

The result of the analysis, represented by a mapping S from program labels
to elements in A, is computed by the tool by fixpoint approximation. For every
label l, the property S(l) characterizes the execution states that may reach that
program point.

In order to certify the result of the analysis, the tool must define, for each
analysis module, a function that maps every element a in A to its representation
as a logical assertion. We omit, however, the application of this function and do
not make the distinction between an element a in A and its logical representation.

From an analysis result S, the tool generates automatically a certificate for
the procedure specification 〈true, S, true〉. First, the tool computes a set of veri-
fication conditions. Then, proof obligations are automatically discharged in Coq
by application of the ring tactic, that solves equations on ring structures by
associative and commutative rewriting.

Example 7. Consider for instance the analysis in which common-subexpression
elimination is based. For the program in Figure 3, consider a labeling S, rep-
resenting a result of the analysis such that S(lb7)

.= r1 = i ∗ p ∧ r2 = i ∗ p + j
and S(l) = true for l ∈ {lb2, lb4}. Ignoring for simplicity the symbolic execution
process that strengthens invariants, the verification condition computed with
specification 〈true, S, true〉 at label lb4 has the form

true ⇒ (j < p ⇒ true) ∧ (¬j < p ⇒ i ∗ p = i ∗ p ∧ i ∗ p + j = i ∗ p + j)

At label lb7, the proof obligation is

r1 = i∗p∧r2 = i∗p+j⇒ (k < n ⇒ r1 = i∗p∧r2 = i∗p+j)∧(¬k < n ⇒ true)

The implemented Coq tactic can clearly discharge these verification conditions.

Optimization Based on Arithmetic Simplification. The class of optimiza-
tions considered in this section consists in the replacement of expressions in the
instructions of a RTL procedure, without modifying its control-flow graph.

We can formalize the result of applying these class of optimizations to a
procedure p, as a procedure p′ such that for every label l, p′[l] = p[l] or one of
the following conditions holds:

– p[l] = cjmp x1 �� x2 l′ and p′[l] = cjmp x′
1 �� x′

2 l′ for some variables or
constants x1, x2, x′

1 and x′
2, or

– p[l] = v := e and p′[l] = v := e′, or
– p[l] = a[x] := e and p′[l] = a[x′] := e′, or
– p[l] = invoke f(�x) and p′[l] = invoke f(�x′), or
– p[l] = return x and p′[l] = return x′.

for some atomic expressions x, x′, e, e′.



556 G. Barthe et al.

� e1 �� e2 ∼ e1 �� e2 e1 = e′1, e2 = e′2 � e1 �� e2 ∼ e′1 �� e′2

e1 = e′1 � e1 �� e2 ∼ e′1 �� e2 e2 = e′2 � e1 �� e2 ∼ e1 �� e′2

Γ � φ ∼ φ′

Γ � ¬φ ∼ ¬φ′
Γ � φ ∼ φ′

Γ � ∀v. φ ∼ ∀v. φ′
Γ � φ ∼ φ′ Γ ′ � ψ ∼ ψ′

Γ, Γ ′ � φ � ψ ∼ φ′ � ψ′ � ∈ {∧,∨,⇒}

Fig. 10. Definition of Structural Congruence

The main result of this characterization, is that the computation of verifi-
cation conditions along the graph of the optimized program coincides in their
logical structure with the original ones. That is, there is a syntactical correspon-
dence between the logical formulae, up to substitution of equal expressions. This
condition on a pair of assertions φ and φ′ are formalized, for a set of equalities
Γ , by the relation Γ � φ ∼ φ′ defined by the rules in Figure 10.

The tool relies on the fact that if p′ is the result of applying arithmetic sim-
plification to p, then, for every label l, there is a set of equations Γ ′ such that
the relation Γ ′ � wpi(p[l]) ∼ wpi(p′[l]) holds.

Consider two logical formulae ϕ and ϕ′, and assume they coincide modulo
substitution of equalities in the set Γ , that is, Γ � ϕ ∼ ϕ′. It should be clear
that from a set of certificates for the equalities in Γ , one can produce a cer-
tificate for the goal ϕ ⇒ ϕ′. The tool implements a tactic that produces this
certificate, by traversing the logical structure of ϕ, and applying the Coq rewrite
rule when needed, taking as input the certificate of the equations in Γ . In the
following paragraphs, we explain how the tool obtains the certificates for the set
of equations in Γ .

Consider the procedure p with specification 〈Pre, annot,Post〉, and S a result
of the analysis. Let p′ be the result of transforming p by arithmetic simplification.
Then, if the transformation is correct, for every label l there is a set Γ such that
Γ � wpp(l) ∼ wpp′(l), and such that S(l) implies e = e′, for every e = e′ in Γ .
Based on this result, the tool constructs a certificate of S(l) ⇒ e = e′, for every
label l, and equality e = e′ in Γ , where Γ is such that Γ � wpp(l) ∼ wpp′(l). It
does so by relying on the Coq tactic ring. By composing these results the tool
generates a certificate for the goal S(l) ⇒ wpp(l) ⇒ wpp′(l) for every label l.

Then, the tool strengthens the original specification with the result of the
analysis. The resulting specification 〈Pre, annot∧S,Post〉 will be used also as the
specification of the transformed program. To transform the certificates according
to the new specification, the analysis is required to produce a certificate for its
results, as explained before. Then, a Coq tactic implements a transformation
that merges the certificate for the analysis with the original certificate. As a
result, we have, for every l ∈ annot, a proof for annot(l) ∧ S(l) ⇒ wpip(l :p[l]).

The tool then generates a certificate for the proof obligation corresponding to
the transformed program annot(l) ∧ S(l) ⇒ wpip′(l : p′[l]). As mentioned above,
the tool implements a Coq tactic, combining the ring tactic with rewriting of
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expressions, to discharge the goal annot(l) ⇒ wpip(l :p[l]l) ⇒ wpip′(l :p′[l]). The
final certificate is then created by composition of the latter certificate and the
original certificate annot(l) ⇒ wpip(l :p[l]).

Example 8 (Matrix Multiplication: Common-subexpression elimination). From
the analysis result computed in Example 7, one can apply common-subexpression
elimination on the RTL code shown in Figure 3. In the figure, the optimization
replaces the original instructions, in the white boxes, by the optimized instruc-
tions inside the gray boxes. The assignments are simplified taking advantage of
the conditions r1 = i ∗ p and r2 = i ∗ p + j.

If we compute the proof obligation at label lb7 in the RTL program of Figure 3
we get something of the form:

annot′(lb7) ⇒ (k < n ⇒ annot′(lb7)[
[c:e1 �→e2]/c][k+1/k]) ∧ ϕ

for some ϕ, where e1 stands for i ∗ p + j and e2 stands for the expression
c[i ∗ p + j] + a[i ∗ n + k] ∗ b[k ∗ p + j]. The corresponding proof obligation at
label lb7 in the optimized program of Figure 3 has the form:

annot′(lb7) ⇒ (k < n ⇒ annot′(lb7)[
[c:e′

1 �→e′
2]/c][k+1/k]) ∧ ϕ

where e′1 stands for r2 and e2 stands for c[r2] + a[i ∗ n+ k] ∗ b[k ∗ p+ j]. Clearly,
the two formulae differ only on the substitution of the terms e1 by e′1, and e2 by
e′2. The result of the analysis r2 = i ∗ p+ j can prove the equations e1 = e′1 and
e2 = e′2. Therefore, by strengthening the original annotation with the result of
the analysis, the tool can generate a certificate for:

S(lb7) ∧ annot′(lb7) ⇒ (k < n ⇒ annot′(lb7)[
[c:e′

1 �→e′
2]/c][k+1/k] ∧ ϕ

Redundant Conditional Elimination. The tool also implements redundant
conditional elimination, that replaces conditional instruction cjmp l′ by a non-
conditional jump jmp l′ (or jmp l+1) if we can statically infer that a condition
(or its negation) is always valid.

After the application of this transformation, for an annotated label l such that
p[l] = cjmp v1 �� v2 l′, the tool must provide, from a certificate of the form

annot(l) ⇒ ((v1 �� v2) ⇒ wp(l′)) ∧ (¬(v1 �� v2) ⇒ wp(l + 1))

a certificate for the transformed proof obligation: annot(l) ⇒ ϕ where ϕ is equal
to wp(l′) or wp(l+1) depending on which of the conditions v1 �� v2 or ¬(v1 �� v2)
is always valid. The transformation is restricted to the case in which the tool
can automatically prove the condition v1 �� v2 true or false. Therefore, it can
straightforwardly generate a certificate for wp(l′) or wp(l+1) from the certificate
of the original proof obligation.

Dead Code Elimination. Another optimization implemented by the tool con-
sists in removing unreachable program points from a sequence of labeled RTL
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instructions. This optimization is useful for the elimination of redundant condi-
tional jumps. As a side effect, proof obligations are not modified. Instead, some
of them may disappear if the optimization removes an unreachable annotated
program label. Therefore, the new set of proof obligations is a subset of the
original one, and no certificate transformation is needed.

6 Experimental Results

We have experimented with several examples to estimate the impact of certificate
transformation in the size of the final certificates. Most of the examples are
relatively small, but specifically suited to test the optimizations covered by the
tool. To describe the size of certificates, we have considered the number of nodes
of the tree structure that represents each Coq λ-term. In average, from the
original certificate we have obtained a slight reduction on the certificate for the
non-optimized RTL code. The size of the certificate of the result of the analysis
is on average 0.43 times the size of the original certificate. Merging the RTL
certificates with the certificates of the analysis yields certificates that are almost
three times the size of the original certificate. Certificate translation for common-
subexpression elimination increases the previous certificate by a factor of 1.46
on average. In total, the final certificates are on average approximately 4 times
the size of the original certificates.

We show in the following table a more detailed analysis of the certificate size
for the multiplication matrix example.

PO Source RTL Analysis Merge CSE
Pre 2922 2960 109 7615 7615
annot(l2) 8746 8272 138 23276 23276
annot(l4) 33232 32418 261 86962 86962
annot(l7) 95195 93907 229 178012 253575

The table shows each certificate size for each step of the compilation. The sec-
ond column represents the original certificate discharged interactively by the tool
user. The third column represents the certificate size after non-optimizing com-
pilation. The fourth column represents the size of the certificate of the analysis
result, automatically generated by the tool. The fifth column represents the cer-
tificate size after merging the certificate for the RTL program and the certificate
for the result of the analysis. Finally, the last column show the certificate size
for the optimized program.

Other optimizations, such as redundant conditional elimination and dead code
elimination, reduce the size of certificates, since verification conditions are always
simplified.

7 Concluding Remarks

This paper reports on a prototype implementation of certificate translation for a
fragment of the C language to a RTL language. Although the prototype is modest
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with respect to state-of-the-art verification tools, it brings a practical perspective
on certificate translation and complements the theoretical developments.

Related work. We refer to [3] for a more comprehensive account of related
work, and only focus on closely related work. Most of the practical attempts
to transfer evidence from source code to lower levels are based on type systems:
type-preserving compilers [6,4] aim at translating typable source programs into
typable lower level programs; sometimes, they also generate typing information
that can be used to make type checking of compiled code more efficient. Cer-
tifying compilers [7] aim at translating typable source programs into provably
correct lower level programs: they generate logical annotations from the typing
derivations, and a certificate for the annotated programs. However, there are
only few practical efforts to transform provable source code programs into prov-
able lower level programs, and to generate certificates of the latter. Pavlova [9]
implements a certificate translator for a non-optimizing compiler from Java to
the JVM. Nordio et al [8] formalize non-optimizing proof-transforming compilers
from Eiffel to MSIL.

Future work. Our prototype is still in a preliminary stage, and there are many
opportunities for improvements and extensions. A first improvement would be
to reduce certificate size. We envision two complementary efforts: firstly, one
can reduce the size of certificates for source programs using hybrid methods,
combining program analysis and program verification. Secondly, one can reduce
the growth of certificates during strengthening by symbolic execution and by
certificate translation using methods to slice unused parts of the specification;
some work in this direction is reported in [10].

Extensions may also be pursued in two complementary efforts. Firstly, one
may extend the compilation scheme from RTL to assembly, and provide a cor-
responding certificate translator. Compiling RTL to assembly involves defining
calling conventions, linearizing code, and spilling. We believe that writing certifi-
cate translators for these transformations is feasible, and no more difficult than
dealing with the optimizations studied here. Secondly, one may extend language
coverage, and aim to cover increasingly large fragments of C.

An ambitious goal, that encompasses many of these directions, would be to
build a certificate translator that uses Frama-C [5] as a front end.
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Abstract. We consider parameterised verification problem, where pa-
rameters are sets and relations over these sets, typically used to denote
sets of identities of replicated components and connections between the
components. A specification and a system are given as (multiply) param-
eterised labelled transition systems, parameter values are encoded using
first-order logic and correctness is understood as the traces refinement.
We provide an algorithm that reduces the (infinite) set of parameter val-
ues to a finite one without changing the answer to the verification task,
which can be then solved with the aid of existing tools. To the best of our
knowledge, the algorithm is the most general one that is both complete
and applicable to systems with multiple and nested parameters.

Keywords: parameterised verification, refinement checking, process
algebra.

1 Introduction

Probably all real-life systems can be naturally modelled as parameterised finite-
state machines. Unfortunately, the related verification task is undecidable in
general [1], which means that all algorithmic solutions to the problem are some-
how restricted. Typically, the number of parameters is limited (to one) and the
state-space of the components of the system is not allowed to be parameter-
dependent, which raises problems especially when modelling software applica-
tions. Moreover, many algorithms are not complete, i.e. guaranteed to provide
an answer for all inputs, which means it is difficult know in advance when they
are applicable. In practice, also the lack of tool support is a problem.

We address all these issues by improving the theory of labelled transition
systems (LTSs) [2,3]. To enable parameterisation, LTS operators are replaced
by symbolic equivalents and some actions and sets of actions are represented by
variables leading to a structure we call an LTS schema. Hence, in our approach,
parameters are sets and relations over these sets, typically used to denote sets of
identities of replicated components and connections between the components. As
the values of variables are fixed using a valuation, an instance of the LTS schema,
an LTS, is obtained. Sets of valuations are expressed as a valuation formula, an
expression of first-order logic. The parameterised verification problem can now be
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stated as follows: given a specification and a system LTS schema and a valuation
formula, determine whether the instance of the system LTS schema is correct
with respect to the corresponding instance of the specification LTS schema for
all valuations.

We present a complete algorithm that reduces the (infinite) set of valuations
expressed as a valuation formula to a finite one without changing the answer
to the verification task. Hence, after the application of the reduction algorithm,
the problem can be solved using existing tools. The algorithm assumes that
the traces refinement is used to establish correctness, the specification does not
involve hiding, and existential quantification is not used to specify parameter
values. The reduction exploits algebraic properties, mainly the precongruence,
of the traces refinement, which allow the correctness of large system instances to
be derived from that of small ones. The idea is introduced in [4] and it is called
the precongruence reduction. The same paper also provides a simple algorithm
that does the reduction automatically.

In this paper, we develop the concept of an LTS schema introduced in [4] fur-
ther by allowing relation variables that can be used to represent system topology
more precisely. We also propose a finite representation for (infinite) sets of val-
uations. This enables an enhanced reduction algorithm with a strictly wider
application domain than the one in [4], which necessitates a full or empty re-
lation between system components of the same type. Hence, the algorithm in
[4] is not applicable to the shared resource system considered here, because a
maximal irreflexive relation is needed to distinct between different users.

However, also the algorithm presented here has its restrictions. The sets of
valuations arising from existential-free valuation formulae are downward closed,
which informally means that we can study only specification-system that are
closed under the removal of a replicated component. For example, systems with
a star, bipartite and totally (un)connected topology are such, but those with
a ring, linear or tree topology are not. However, if it is possible to capture the
behaviour of the system from the viewpoint of any two components connected to
each other using only finitely many LTS schemata, then one can study transitive
closures of rings, arrays and forests instead, which are closed under the removal
of a replicated component.

An other restriction is that in our formalism parameterisation is achieved
through the use of replicated parallel composition, which roughly corresponds
to replicated conjunction or universal quantification in logics. From the specifi-
cation point of view it means that one can study for-all-type safety properties.
For example, specifications of the form

∧
x1,...,xk

f(x1, . . . , xk), where x1, . . . , xk

range over identities of different replicated components and f(x1, . . . , xk) is a
safety property related to x1, . . . , xk, can be represented in our formalism.

Systems expressible in our formalism are those that can be composed from
finitely many parts each of which represents the system from the viewpoint
of a fixed number of processes. In this sense, the most related works are the
complete methods by Bouajjani et al. [5] and Emerson and Kahlon [6] that
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enable parameterised verification by providing bounds (cut-offs) for the values
of parameters.

Request-take-release (RTR) systems considered by Bouajjani et al. [5] can
be faithfully modelled from the view of two processes, because every illegal be-
haviour can be traced back to two processes served in a wrong order. Hence,
RTR systems can be modelled as LTS schemata, which implies that the results
in [5] concerning for-all-type safety properties can be obtained as an application
of our theory.

Also systems with conjunctive guards considered by Emerson and Kahlon [6]
can be expressed in our formalism, but those with disjunctive guards not. That
is because every process must agree on the execution of a transition with a con-
junctive guard, whereas a disjunctive guard can be enabled by a single process.
Hence, systems with conjunctive guards can be modelled from the view of two
processes, but by looking at the fixed number of processes it is impossible to
say whether a disjunctive guard is disabled. Therefore, systems with disjunctive
guards cannot be modelled in our formalism, but the results concerning conjunc-
tive guards and for-all-type safety properties can be obtained as an application
of our theory.

Other complete cut-off results are more or less incomparable to ours. In their
other paper, Emerson and Kahlon consider systems with arbitrary many pro-
cesses generated from the same template and properties related to one or two
processes [7]. However, because transition guards can be disjunctive, the results
are incomparable to ours.

The same applies to data-independence results of Wolper [8], and Lazić and
Nowak [9,10]. These methods treat systems that can send and receive data values
of an arbitrary large or infinite type, but the structure of a system is not allowed
to be parameterised. On the other hand, as receiving of data cannot be natu-
rally expressed using the replicated parallel composition, also data-independence
results are incomparable to ours.

The results of Emerson and Namjoshi [11], Emerson and Kahlon [12,13] and
Nazari and Thistle [14] are related to rings of processes communicating through
token passing. The models of computation are (close to) LTSs, but the results
are still incomparable to ours, because applying them outside rings is obviously
difficult and applying our method to rings requires additional modelling work.

Clarke et al. [15] consider networks of homogeneous fixed-size processes com-
municating through token passing. Their results provide only an upper bound
for the size of network graphs, but no method to determine the networks below
the bound. Moreover, as only one process type is allowed and a family of net-
works does not have to be closed under the removal of a process, the method is
incomparable to ours.

There are also methods that establish a cut-off by inductive reasoning
[16,17,18,19], but they apply to rings of similar fixed-sized processes only and
are not complete. An exception is the approach of Valmari and Tienari [19]
which is shown to terminate if certain structural conditions are met [14]. An
other exception is the method of Pyssysalo [18] that allows the state-space
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of the processes to be parameter-dependent. Nevertheless, all the methods are
incomparable to ours.

Other parameterised verification methods are based on abstract interpretation
or inductive reasoning, but despite few exceptions they are not fully algorith-
mic or guaranteed to terminate. The exceptions are based on either counter
abstraction [20] or infinite-state verification algorithms [21] naturally applicable
to systems with non-parameterised components only.

In the next section, the relevant parts of the theory of LTSs are reviewed.
The formalism, LTS schemata, valuations and valuation formulae, is introduced
in Sect. 3. Also the research problem and the precongruence reduction method
for parameterised verification are presented in this section. The following sec-
tion discusses modelling issues and presents a shared resource system used as a
running example. In Sect. 5, the verification method is lifted in the level of val-
uations, and in the following section, an enhanced reduction algorithm is given.
The paper concludes with discussion on future work.

2 Labelled Transition Systems

A labelled transition system, an LTS, is our fundamental model of computation
[3]. Intuitively, an LTS is a graph the nodes of which are called states, the edges
are labelled by actions and they are called transitions, and one of the states is
marked as the initial one. To introduce LTSs formally, we assume a countably
infinite set A of atoms. Tuples of atoms are called actions. The empty tuple (),
also denoted by τ , is called the invisible action and the rest of the actions are
visible. The set of all the visible actions is referred to by V.

Definition 1 (LTS). A labelled transition system is a four-tuple (S,Σ,R, ŝ),
where S is a non-empty set of states, Σ ⊆ V is a set of visible actions, R ⊆
S × (Σ ∪ {τ}) × S is a set of transitions and ŝ ∈ S is the initial state.

If L = (S,Σ,R, ŝ) is an LTS, the set S is called the state-space of L and the set
Σ, also denoted by alph(L), is said to be the alphabet of L. The size of an LTS
is the sum of the sizes of its state-space and alphabet. An LTS of finite size is
simply called finite.

A system modelled as an LTS is typically built of smaller LTSs representing
its parts. Let I be a finite index set and Li = (Si, Σi, Ri, ŝi) an LTS for every
i ∈ I. The parallel composition of LTSs in the set {Li}i∈I , denoted by (‖i∈I Li),
is a four-tuple (

∏
i∈I Si,

⋃
i∈I Σi, RI , ŝI), where

∏
i∈I Si denotes the set of all

functions s : I �→
⋃

i∈I Si is such that s(i) ∈ Si for all i ∈ I, ŝI ∈
∏

i∈I Si such
that ŝI(i) = ŝi for all i ∈ I, and RI consists of all tuples (s, α, s′) such that
either

– α �= τ , (s(i), α, s′(i)) ∈ Ri whenever α ∈ Σi and i ∈ I, and s(i) = s′(i)
whenever α /∈ Σi and i ∈ I; or

– α = τ and there is i ∈ I for which (s(i), τ, s′(i)) ∈ Ri and s(j) = s′(j) for
every j ∈ I \ {i}.
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Hence, an LTS can execute a visible action α in the parallel composition, if and
only if all the other LTSs having α in their alphabet can execute the action as
well, but the invisible actions each LTS executes individually. If I = {1, . . . , n}
or other totally ordered set, we can write (L1 ‖ . . . ‖ Ln) or ‖n

i=1 Li alterna-
tively for ‖i∈I Li. In this case, the states s of ‖i∈I Li can be identified with
tuples (s(1), . . . , s(n)), which corresponds to the standard definition of the par-
allel composition.

Renaming and hiding are defined in the usual manner. Let L = (S,Σ,R, ŝ)
be an LTS, ζ : V �→ V a function and Λ ⊆ V a set of visible actions. The LTS
L renamed by ζ is a four-tuple (S, {ζ(α) | α ∈ Σ}, Rζ, ŝ), denoted by ζ(L),
where Rζ consists of all tuples (s, τ, s′) ∈ R and all tuples (s, ζ(α), s′) such that
(s, α, s′) ∈ R and α ∈ Σ. Hence, ζ(L) is obtained from L by mapping all the
visible actions using ζ. The LTS L hiding Λ, is a four-tuple (S,Σ \ Λ,RΛ, ŝ),
denoted by (L \ Λ), where RΛ consists of all tuples (s, α, s′) such that either
α /∈ Λ and (s, α, s′) ∈ R, or α = τ and there is β ∈ Λ such that (s, β, s′) ∈ R.
Hence, (L \ Λ) is obtained from L by changing the transition labels in Λ to the
invisible action and removing the actions in Λ from the alphabet. It is easy to
see that the structures obtained from LTSs by parallel composition, hiding and
renaming are LTSs, and that the operators preserve finiteness.

In the analysis of LTSs, we are usually interested in the sequences of visible
actions reachable from the initial state. A finite alternating sequence of states
and actions, s1α1s2 . . . αn−1sn, of an LTS L, is a path in L from s1, if (si, αi, si+1)
is a transition of L for every i ∈ {1, . . . , n − 1}. A finite sequence t of visible
actions is a trace (of L), if there is path in L from the initial state such that
t can be obtained from the path by removing all the states and the invisible
actions. The set of all the traces of L, the traces of L for short, is referred to by
tr(L).

An LTS L2 is a traces refinement of an LTS L1, denoted by L1 "tr L2, if L1
and L2 have the same alphabet and tr(L2) ⊆ tr(L1). If L1 "tr L2 and L2 "tr L1,
denoted by L1 =tr L2, then L1 and L2 are called traces equivalent or one says
that L1 is traces equivalent to L2. Clearly, "tr is a preorder, i.e. a reflexive and
transitive relation, and =tr is an equivalence in the set of LTSs. However, unlike
in [3], we require the alphabets to match in the definition of the traces refinement.
This is necessary to make the traces refinement a precongruence, because in our
definition of the parallel composition the actions to be synchronised are not
explicitly given but implicitly determined by the alphabets.

Proposition 2. Let I and K be finite index sets, Li and L′
i LTSs for all i ∈ I,

Li,k an LTS for all (i, k) ∈ I ×K, L, L1, L2 LTSs, ζ a function: V �→ V and
Λ,Λ′ sets of visible actions.

1. ‖i∈I‖k∈K Li,k =tr‖k∈K‖i∈I Li,k.
2. ‖i∈I Li =tr‖j∈J‖i∈Ij Li, if J is an index set s.t. {Ij}j∈J is a partition of I.
3. ‖i∈I Li =tr‖i∈I,Σ(Li) �=∅ Li.
4. ‖i∈I Li =tr L, if I is non-empty and Li = L for every i ∈ I.
5. ζ(‖i∈I Li) =tr‖i∈I ζ(Li), if ζ is a bijection.
6. ζ(L \ Λ) =tr ζ(L) \ {ζ(α) | α ∈ Λ}, if ζ is a bijection.
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7. ‖i∈I (Li \ Λ) "tr (‖i∈I Li) \ Λ.
8. L \ Λ =tr L, if Λ and alph(L) are disjoint.
9. (L \ Λ) \ Λ′ =tr L \ (Λ ∪ Λ′).

10. ‖i∈I Li "tr‖i∈I L′
i, if Li "tr L′

i for every i ∈ I.
11. ζ(L1) "tr ζ(L2), if L1 "tr L2.
12. L1 \ Λ "tr L2 \ Λ, if L1 "tr L2.

Informally, the proposition states that (1) the order of successive parallel com-
positions can be changed, if the index sets are mutually independent, (2) the
index set of a parallel composition can be partitioned, (3) LTSs with the empty
alphabet and (4) redundant LTSs can be removed from the parallel composi-
tion, (5,6) bijective renaming can be pushed inside other operators, (7) pushing
hiding inside the parallel composition results to an LTS greater in the preorder,
(8) any LTS is an idempotent element with respect to hiding a set of actions
disjoint from its alphabet, (9) successive hiding operators can be combined and
vice versa, and (10–12) the operators preserve the traces refinement, which im-
plies that the traces refinement is a precongruence. The proposition is based on
the results in [2,3].

3 Formalism

A parameterised system and a related parameterised specification can be mod-
elled as a family {(Speci,Sysi)}i∈I of pairs of finite LTSs, where I denotes a
(typically infinite) set of parameter values, and Speci and Sysi represent respec-
tively the specification and the system with the parameter value i ∈ I. The
system is considered to be correct with respect to a specification if and only if
Speci "tr Sysi for every i ∈ I. This way, it is possible to prove absence of illegal
behaviour, i.e. to check safety or reachability properties [3].

Checking the correctness of a parameterised system modelled as a family of
pairs of finite LTSs is obviously impossible in general. However, finite subsets of
the family can be automatically checked, and in practical situations, the LTSs
share a common structure, which could be exploited to reduce the number of
refinement checks needed.

To formalise the structure of a specification and system LTS, three kinds of
parameters, or variables, are introduced. Atom variables represents atoms and
they are typically used to denote identities of system components. A non-empty
tuple (x1, . . . , xk, a1, . . . , al), where x1, . . . , xk are atom variables, a1, . . . , al are
atoms and k + l ∈ Z+, is called an action schema. Type variables denote sets
of atoms and they represent sets of identities of system components of the same
kind. Finally, relation variables denote sets of tuples of atoms (i.e. sets of visible
actions), and they are used to describe the topology of a system and relationships
between its components. The sets of all the type, relation and atom variables
are denoted by respectively T, G and X, and they are assumed to be countably
infinite, disjoint and also disjoint from the set of atoms.

The structure of a parameterised LTS is represented as an LTS schema defined
as follows.



Algorithmic Verification with Multiple and Nested Parameters 567

Definition 3 (LTS schema). An LTS schema is an expression obtained by
finite application of the steps below. There are no other LTS schemata.

1. If S is a non-empty set of states, Γ is a set of action schemata, ∆ ⊆
S × (Γ ∪ {τ}) × S is a set of transition schemata and ŝ ∈ S is the initial
state, then (S, Γ,∆, ŝ) is an (elementary) LTS schema.

2. If P1 and P2 are LTS schemata, then (P1 ‖P2) is a (parallel) LTS schema.
3. If P is an LTS schema, k is a positive integer, T1, . . . , Tk are type variables,

Π is a relation variable and x1, . . . , xk are distinct atom variables, then
(‖(x1,...,xk)∈Π:T1×...×Tk

P) is a ((Π-)replicated parallel) LTS schema.
4. If P is an LTS schema, Γ is a set of action schemata, k is a non-negative

integer, T1, . . . , Tk are type variables and x1, . . . , xk are distinct atom vari-
ables, then (P \

⋃
(x1,...,xk)∈T1×...×Tk

Γ ) is a (hiding) LTS schema.

An LTS schema P is finite, if every set of states and every set of action schemata
occurring in P is finite. An LTS schema P ′ is said to be an LTS subschema (of
P), if P ′ is a subexpression of P . A structure

⋃
(x1,...,xk)∈T1×...×Tk

Γ that is the
part of a hiding LTS schema is called a set schema. An atom variable x is free
in P , if there is an occurrence of x in P that is not within an LTS subschema
‖(x1,...,xk)∈Π:T1×...×Tk

P ′ nor within a set schema
⋃

(x1,...,xk)∈T1×...×Tk
Γ such

that x = xi for some i ∈ {1, . . . , k}. An LTS schema with no free atom variable
is said to be closed.

The parameters of an LTS schema are the type, relation and free atom vari-
ables occurring in it. The set of all the parameters of P is called the signature of
P and it is denoted by sig(P). The set of all the atoms occurring in P is referred
by at(P). If ‖(x1,...,xk)∈Π:T1×...×Tk

P ′ is a replicated parallel LTS subschema of
P , then T1 × . . . × Tk is a type of Π (in P). In practical situations, there is
precisely one type for each relation variable in sig(P).

The parameter values are formally represented as a valuation, a partial func-
tion mapping atom, type and relation variables to respectively atoms, sets of
atoms and sets of visible actions (sets of non-empty tuples of atoms), where the
atoms occurring in the values of atom and relation variables are restricted to
those occurring in the images of type variables.

Definition 4 (Valuation). A valuation is a partial function

φ : X ∪ T ∪ G �→ A ∪ IP(A) ∪ IP(V)

such that

– φ|T maps type variables to finite, non-empty, disjoint sets of atoms,
– φ|G maps relation variables to

⋃
k∈Z+

⋃
A1,...,Ak∈im(φ|T) IP(A1× . . .×Ak), and

– φ|X maps atom variables to
⋃

A∈im(φ|T) A.

A valuation φ is said to be compatible with an LTS schema P , if φ defines values
for all the parameters of P , the atoms occurring in P are not used in the values
of variables (i.e. at(P) ∩ (

⋃
A∈im(φ|T) A) = ∅) and whenever T1 × . . . × Tk is a

type of a relation variable Π in P , then φ(Π) is a subset of φ(T1)× . . .× φ(Tk).
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If φ is compatible with P , then the instance of P (generated by φ), denoted
by [[P ]]φ, is obtained from P by first substituting the parameters according to φ,
then converting symbolic operators to standard ones, and finally applying them
as usual.

To define [[P ]]φ formally, let x1, . . . , xk be distinct atom variables and Π a rela-
tion variable in sig(P). We write φ[(x1 . . . , xk) �→ Π ] for the set of all valuations
φ′ such that

1. the domain of φ′ is dom(φ) ∪ {x1, . . . , xk},
2. (φ′(x1), . . . , φ′(xk)) ∈ φ(Π) and
3. φ′ maps the elements in dom(φ′) \ {x1, . . . , xk} like φ does.

In other words, φ[(x1, . . . , xk) �→ Π ] denotes the set of all the valuations obtained
by (re)defining φ for x1, . . . , xk such that the value of (x1, . . . , xk) is in φ(Π). A
set φ[x1 �→ T1, . . . , xk �→ Tk], where T1, . . . , Tk are type variables, of all valuations
φ′ obtained by (re)defining φ for x1, . . . , xk such that φ′(xi) ∈ φ(Ti) for all i ∈ I
is defined analogously.

Now, the instance of P generated by φ can be defined inductively as follows.

1. [[(S, Γ,∆, ŝ)]]φ = (S, [[Γ ]]φ, [[∆]]φ, ŝ),
where [[Γ ]]φ and [[∆]]φ are obtained from respectively Γ and ∆ by substitut-
ing φ(x) for every occurrence of an atom variable x.

2. [[(P1 ‖P2)]]φ = [[P1]]φ ‖ [[P2]]φ .

3. [[( ‖
(x1,...,xk)∈Π:T1×...×Tk

P ′)]]φ = ‖
φ′∈φ[(x1,...,xk) �→Π]

[[P ′]]φ′ .

4. [[(P ′ \
⋃

(x1,...,xk)∈T1×...×Tk

Γ )]]φ = [[P ′]]φ \
⋃

φ′∈φ[x1 �→T1,...,xk �→Tk]

[[Γ ]]φ′ .

It is easy to see that the instance of an LTS schema is an LTS, and if the LTS
schema is finite then all its instances are finite too.

We may now assume that a specification and a system are given as respectively
LTS schemata Q and P , and the allowed parameter values are encoded as a set
Φ of valuations. The problem whether [[Q]]φ "tr [[P ]]φ for all valuations φ ∈ Φ
compatible with Q and P is called Parameterised Traces Refinement. Our goal
is to determine a finite subset Ψ of Φ such that the instances Q, P , Ψ and Q, P ,
Φ of Parameterised Traces Refinement have the same answer.

Without loss of generality, we may assume that the valuations in Φ have
the domain sig(Q) ∪ sig(P), i.e. the valuations specify values precisely to the
parameters of Q and P . We also assume that the LTS schemata are finite, because
we are interested in the verification of real systems. Without the loss of generality,
we may then assume that the LTS schemata are closed as well, because finitely
many atom variables can be eliminated by introducing new relation variables.

Now, suppose that we have proven the system correct with respect to the
specification for finitely many parameter values. By exploiting the precongru-
ence property, it is possible to generalise the result to specification-system in-
stances that can be obtained from the examined ones by the application of LTS
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operators. In the best case, the whole system can be proven correct this way.
The method is called the precongruence reduction. It is first introduced in [4]
and captured in the following proposition.

Theorem 5. Let Q, P, Φ be an instance of Parameterised Traces Refinement.
If Ψ is a subset of Φ such that for every φ ∈ Φ\Ψ compatible with Q and P there
are a positive integer n, an n-place function f that is a composition of parallel
composition, renaming and hiding operators, and ψ1, . . . , ψn ∈ Ψ compatible with
Q and P such that

[[Q]]φ "tr f([[Q]]ψ1 , . . . , [[Q]]ψn) and f([[P ]]ψ1 , . . . , [[P ]]ψn) "tr [[P ]]φ ,

then the answer to Q, P, Ψ is the same as the answer to Q, P, Φ.

The theorem follows straightforwardly from the precongruence of traces refine-
ment, see [4] for details.

Because checking traces refinement is a computationally expensive task, we
want to pick Ψ in such a way that the valuations in Ψ generate small specification-
system instances. Hence, it is sufficient to consider only functions f that are
compositions of parallel composition and bijective renaming, because other op-
erators do not help in constructing large instances. Such functions can be always
represented in the form ‖n

i=1 ζi(·i), where ζi is a bijection: V �→ V for every
i ∈ {1, . . . , n}. So, assuming the family {[[Q]]φ, [[P ]]φ}φ∈Φ′, where Φ′ is the set of
all the valuations in Φ compatible with Q and P , to be sufficiently closed under
bijective renaming, one can do the generalisation from Ψ to Φ in two steps. First,
one generalises the result to all the instances that can be obtained by bijective
renaming, and after that to all the instances that can be represented as the
parallel composition of those obtained in the first step.

To automate the reduction method, we still need a finite representation for
sets of valuations. Because the main purpose of such a formalism is to encode
the values of relation variables, using logics of some sort is a natural choice.
For that purpose, we need to be able to pick atoms from the sets represented
by type variables, compare them and test whether a tuple of them is in the set
represented by a relation variable. These constructs are formalised as a valuation
formula.

Definition 6 (Valuation formula). A valuation formula is an expression gen-
erated by the Backus-Naur form grammar

c ::= (x1, x2, . . . , xn) ∈ Π | x0 = x1 | (¬c) | (c ∧ c) | (c ∨ c) | (∀x0 ∈ T.c) ,

where x0, x1, x2, . . . , xn denote any atom variables (n ∈ Z+), Π any relation
variable and T any type variable.

The notation and concepts of a valuation subformula, a free atom variable, a
closed valuation formula and the signature of a valuation formula are defined
analogously to LTS schemata. A valuation formula is called existential-free, if
no universal valuation subformula ∀x ∈ T.c′ occurs within a negated valuation
subformula ¬c′′.
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We say that a valuation φ is compatible with a valuation formula c, if the
signature of c is a subset of the domain of φ. If φ is compatible with c, then
[[c]]φ denotes a formula obtained from c by substituting the variables in sig(c)
according to φ. The formula [[c]]φ is called the instance (of c) (generated by φ)
and it is evaluated in the usual way. Now, the set of valuations represented by a
valuation formula c is naturally defined as the one the members of which satisfy
c and have the domain sig(c). We write va(c) for the set of all valuations φ with
the domain sig(c) such that [[c]]φ is true.

We may now concentrate on instances Q,P , va(c) of Parameterised Traces
Refinement such that Q and P are closed, and c is a valuation formula for which
sig(c) = sig(Q) ∪ sig(P).

4 Modelling Using LTS Schemata

Using LTS schemata to represent parameterised systems and specifications ne-
cessitates a compositional modelling technique; the system and the specification
have to be constructed from smaller parts using a parallel composition such that
each part represents the behaviour of the system or the specification from the
viewpoint certain components. However, to successfully use the technique, i.e.
to avoid introducing false positive verification results, one should recall that it is
safe to replace the system with a bigger one and the specification with a smaller
one in the preorder, but not otherwise.

Proposition 7. Let Spec and Sys be LTSs, I a finite index set and Speci and
Sysi LTSs for all i ∈ I such that alph(Spec) =

⋃
i∈I alph(Speci) and alph(Sys) =⋃

i∈I alph(Sysi).

1. Spec "tr ‖i∈I Speci if and only if whenever t is a (minimal) sequence over
alph(Spec) such that t /∈ tr(Spec), there exists i ∈ I such that the projection
of t on alph(Speci) is not a trace of Speci.

2. ‖i∈I Sysi "tr Sys if and only if Sysi "tr Sys \ (alph(Sys) \ alph(Sysi)) for
all i ∈ I.

The proposition follows easily from the definitions.
Informally, the proposition states that when creating the specification from

smaller parts, every illegal behaviour must be forbidden by some of the parts.
Similarly, every part of the system model must cover all the behaviours of the
system from its own point of view. In the context of LTS schemata, it means
that we have to restrict our attention to systems and specifications the behaviour
of which can be faithfully modelled from the viewpoint of a bounded number
of components, because each elementary LTS schema can refer to finitely many
components only.

The restriction could be overcome by introducing a replicated choice or equiv-
alent construct. The replicated choice can be though as a dual of the replicated
parallel composition. Whereas the instances composed in parallel can all make
progress, the replicated choice picks only one the instances for execution. The
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construct is useful for modelling purposes, but it seems to be very difficult to
include it in our formalism without making the problem undecidable.

As an example, consider a shared resource system with an arbitrary number
of users and shared resources, where a user may get a read or write access
to any resource after obtaining the corresponding lock. A resource itself has
no mechanism for concurrency control and several users can hold a lock for a
resource simultaneously only if all of them have only the read lock. Our goal is
to formally prove it is not possible for a user to access a resource if an other one
is writing to it.

The behaviour of a user u from the viewpoint of a single resource r is captured
in an LTS schema User in Fig. 1. Obtaining the read (write) lock for the re-
source is modelled by an action schema (u, r, rdlock ) (respectively (u, r,wrlock))
and releasing the lock by (u, r, unlock), where u and r are atom variables. Read-
ing (writing to) the resource is modelled using two action schemata, namely
(u, r, rdbeg) and (u, r, rdend) (respectively (u, r,wrbeg) and (u, r,wrend)) denot-
ing respectively the beginning and the end of the event. The invisible actions
represent user’s other activities which may take place at any time.

Similarly, the behaviour of a lock from the viewpoint of a user and a resource
is first captured in an LTS schema Lock1. However, as the locking sequences of
users are mutually dependent, the lock has to be modelled from the viewpoint
of two users and a resource, too. This behaviour is captured in an LTS schema
Lock2 in Fig. 1, and Lock1 can be now obtained from Lock2 by removing tran-
sition schemata involving u2. The resources are modelled in the level of action
schemata only.

Clearly, the LTS schemata User , Lock1 and Lock2 capture all the behaviours
of the system from their own point of view. By Proposition 7, the system model
can be build by composing all the users and locks in parallel, which results to
the LTS schema

SRS := ( ‖
u∈∗U :U

‖
r∈∗R:R

User)‖( ‖
r∈∗R:R

( ‖
(u1,u2)∈�=U :U×U

Lock2)‖( ‖
u1∈∗U :U

Lock1)) ,

where U and R are type variables denoting sets of respectively user and re-
source identifiers, ∗U and ∗R are relation variables representing the same sets
as respectively U and R, and �=U denotes the set of all pairs of distinct user
identifiers.

The specification is formalised in a similar way as a lock; it is first modelled
from the viewpoints of a resource and one and two users, and then all such parts
are put together using the parallel composition. This gives the LTS schema

Mtx := ‖
r∈∗R:R

(( ‖
(u1,u2)∈�=U :U×U

Prop2)‖( ‖
u1∈∗U :U

Prop1)) ,

where Prop2 is an LTS schema in Fig. 1 and Prop1 is obtained from Prop2 by
removing transition schemata involving u2. Note that Mtx is a correct model
of the specification, because every illegal behaviour (two users access a resource
simultaneously) is forbidden by some instance of Prop2.
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User :

(u, r,wrlock)(u, r, rdlock)

(u, r, rdbeg)
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τ ττ

Lock2:
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1 , r, rdlock)(u2,
r, r

dlo
ck

)

(u1, r, unlock) (u2, r, unlock)

(u1, r,wrlock)(u2, r,wrlock)

(u
1 , r, unlock)

(u2, r, rdlock)

(u2
, r,

un
loc

k)

(u1, r, rdlock)

(u1, r, unlock)(u2, r, unlock)

(u1, r,wrlock)(u2, r,wrlock)

Prop2:
(u

1 , r, rdbeg)(u2,
r, r

dbe
g)

(u1, r, rdend) (u2, r, rdend)

(u
1 , r, rdend)

(u2, r, rdbeg)

(u2,
r, r

den
d)

(u1, r, rdbeg)

(u1, r,wrend)(u2, r,wrend)

(u1, r,wrbeg)(u2, r,wrbeg)

Fig. 1. Parts of the shared resource system

As the locking actions are irrelevant to the specification, the actions repre-
sented by La :=

⋃
(u,r)∈U×R{(u, r, rdlock), (u, r,wrlock ), (u, r, unlock)} are hid-

den in the system model. The problem whether the system works correctly can
be now formalised as an instance Mtx , SRS \ La, va(cSRS ) of Parameterised
Traces Refinement, where cSRS is a valuation formula

(∀x ∈ U.x ∈ ∗U ) ∧ (∀x ∈ R.x ∈ ∗R) ∧
∀x1 ∈ U.∀x2 ∈ U.(x1 = x2 ∧ ¬(x1, x2) ∈�=U ) ∨ ((x1, x2) ∈�=U ∧¬x1 = x2) .

It represents the set of valuations φ with the domain {U,R, ∗R, ∗U , �=U} such that
φ(T ) = φ(∗T ) for T ∈ {U,R} and φ(�=U ) = {(a1, a2) | a1, a2 ∈ φ(U), a1 �= a2}.

The algorithm in [4] applies to LTS schemata without relational parameters,
so it is of no use here. Nevertheless, our intuition says that in order to prove
the system correct one should check at least an instance with two users and a
resource and another one with one user and one resource. Next, we show that it
is actually sufficient and develop an enhanced algorithm for the task.

5 Precongruence Reduction for Valuations

Let φ1, φ2 ∈ va(cSRS ) compatible with Mtx and SRS \ La such that φi(R) is
a singleton and φi(U) is a set of size i for both i ∈ {1, 2}. Using a finite-state
refinement checker, like FDR2 [3], one can show that [[Mtx ]]φi "tr [[SRS \ La]]φi

for both i ∈ {1, 2}. Hence, at least two instances of the shared resource system,
one with two users and a resource and another one with a single user and a
resource, work as specified.

By above, it is actually quite easy to believe that the system works correctly
in the presence of any two users and any resource. In other words, [[Mtx ]]φ "tr



Algorithmic Verification with Multiple and Nested Parameters 573

[[SRS \ La]]φ for all φ ∈ Φ′
SRS , where Φ′

SRS denotes the set of all valuations
φ ∈ va(cSRS ) compatible with Mtx and SRS \La that map R to a singleton and
U to a set of size two.

The result holds also more generally. One can generalise the verification results
made using some valuations to all valuations that can be obtained from them
using bijective mapping. We say that a valuation φ is isomorphic to a valuation
ψ or that φ and ψ are isomorphic, denoted by φ # ψ, if they have the same
domain and there is a bijection g : A �→ A such that

1. ψ(T ) = {g(a) | a ∈ φ(T )} for all type variables T ∈ dom(ψ),
2. ψ(x) = g(φ(x)) for all atom variables x ∈ dom(ψ), and
3. ψ(Π) = {g∗(α) | α ∈ φ(Π)} for all relation variables Π ∈ dom(ψ),

where g∗ is a function: V �→ V such that g∗((a1, . . . , ak)) = (g(a1), . . . , g(ak))
for all visible actions (a1, . . . , ak). Valuations φ and ψ that are not isomorphic
are non-isomorphic, denoted by φ �# ψ. Clearly, # is an equivalence in the set
of valuations.

Lemma 8. If φ and ψ are isomorphic valuations, then there is a bijection g :
A �→ A such that g∗([[P ]]φ) =tr [[P ]]ψ whenever P is an LTS schema with which
φ and ψ are compatible.

The claim is evident and a generalisation of Lemma 3 in [4]. To formally prove
it, take g to be a bijection: A �→ A that maps φ to ψ and preserves the atoms
not in

⋃
A∈im(φ|T)∪im(ψ|T) A, take P to be any LTS schema with which φ and ψ

are compatible, and proceed by induction on the structure of P .
The lemma implies that adding or removing isomorphic valuations compatible

with the system and specification LTS schema has no effect on the answer to
the parameterised verification task. This is formally captured in the following
proposition that follows straightforwardly from Lemma 8 and Theorem 5.

Proposition 9. Let Q, P, Φ be an instance of Parameterised Traces Refinement
such that the valuations in Φ are compatible with Q and P. If Ψ is a subset of
Φ containing a maximal set of representatives of # in Φ, then deciding Q, P, Φ
gives the same answer as deciding Q, P, Ψ .

To show that the correctness of any shared resource system instance can be
derived from the correctness of instances with at most two users and a resource,
by Theorem 5, it is sufficient to prove that for every φ ∈ va(cSRS ) compatible
with Mtx and SRS \ La there is a finite non-empty set Θ ⊆ Φ′

SRS of valuations
such that [[Mtx ]]φ "tr‖θ∈Θ [[Mtx ]]θ and ‖θ∈Θ [[SRS \ La]]θ "tr [[SRS \ La]]φ.

Intuitively, the instances of Mtx generated by valuations in Θ should not be
greater than [[Mtx ]]φ, which implies that also the valuations in Θ should be equal
to or smaller than φ in some sense. Formally, a valuation θ is said to be equal
to or smaller than φ, denoted by θ ≤ φ, if the valuations have the same domain
and

– θ(T ) ⊆ φ(T ) for all type variables T ∈ dom(φ),
– θ(x) = φ(x) for all atom variables x ∈ dom(φ) and
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– θ(Π) = φ(Π) ∩ (
⋃

k∈Z+

⋃
A1,...,Ak∈im(θ|T) A1 × . . .×Ak) for all relation vari-

ables Π ∈ dom(φ).

Hence, we assume that θ ≤ φ for all θ ∈ Θ.
On the other hand, the valuations in Θ should contain enough information to

construct [[Mtx ]]φ. Note that both [[Mtx ]]φ and ‖θ∈Θ [[Mtx ]]θ are created from in-
stances of Prop2 and Prop1 using the parallel composition. Because the order in
which LTSs are put in parallel and the number of times an LTS occurs in a par-
allel composition are insignificant from the viewpoint of the traces equivalence,
and LTSs with the empty alphabet can be removed from a parallel composition,
to prove that [[Mtx ]]φ "tr‖θ∈Θ [[Mtx ]]θ, it is sufficient to show that whenever
an instance of Propi, where i ∈ {1, 2}, occurs in [[Mtx ]]φ, then it occurs also in
‖θ∈Θ [[Mtx ]]θ, and vice versa.

The precise form of an instance of Prop2 depends on the values assigned to
atom variables r, u1, u2. The values of these atom variables are picked from the
values of relation variables ∗R and �=U that occur in nested replicated parallel
LTS schemata. We need to make sure that no matter how we pick the values
of r and u1, u2 from φ(∗R) and φ(�=U ), then there is some θ ∈ Θ such that
the values r and u1, u2 can be picked in the same way from θ(∗R) and θ(�=U ).
Similarly, an instance of Prop1 is created by picking the values of r, u1 from
the values of relation variables ∗R and ∗U occurring in nested replicated parallel
LTS schemata. Therefore, one must also guarantee that whenever a1 ∈ φ(∗R)
and a2 ∈ φ(∗U ) then there is θ ∈ Θ such that a1 ∈ θ(∗R) and a2 ∈ θ(∗U ).

The conditions above are satisfied if Θ consists of all valuations θ such that
θ ≤ φ, |θ(R)| = 1 and |θ(U)| ≤ 2. It implies that every instance of Propi that
occurs in [[Mtx ]]φ occurs in ‖θ∈Θ [[Mtx ]]θ, too, whenever i ∈ {1, 2}. On the other
hand, because all the valuations in Θ are smaller than or equal to φ, it is easy
to see that also the opposite holds. Hence, both the LTSs are created from the
same instances of Prop2 and Prop1 using the parallel composition only, which
actually implies that [[Mtx ]]φ =tr‖θ∈Θ [[Mtx ]]θ.

The result can be generalised to any LTS schema Q that has no hiding LTS
subschema. However, to generalise the restrictions concerning φ and Θ, the con-
cept of nested relation variables has to be clarified. We say that LTS schemata
P0, . . . ,Pn are nested if Pi is an LTS subschema of Pi−1 for all i ∈ {1, . . . , n}.
A sequence Π1 · · ·Πk of relation variables is called a branch of Q, if there are
nested LTS subschemata Q1, . . . ,Qk of Q such that Qi is a Πi-replicated LTS
schema for all i ∈ {1, . . . , k}. Now, the to guarantee that [[Q]]φ =tr‖θ∈Θ [[Q]]θ, we
require that

P1 (φ,Θ) : θ ≤ φ for all θ ∈ Θ, and
P2 (Q, φ,Θ) : whenever Π1 · · ·Πk is a branch of Q and α1, . . . , αk are actions

in respectively φ(Π1), . . . , φ(Πk), then there is θ ∈ Θ such that αi ∈ θ(Πi)
for all i ∈ {1, . . . , k}.

Lemma 10. If Q is an LTS schema which has no hiding LTS schema, φ a
valuation compatible with Q and Θ a finite non-empty set of valuations such
that P1(φ,Θ) and P2(Q, φ,Θ), then [[Q]]φ =tr ‖θ∈Θ[[Q]]θ.
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The formal proof exploits Proposition 2 and proceeds by induction on the struc-
ture of Q using the lemma as an induction hypothesis. The lemma is a general-
isation of Lemma 2 in [4].

To generalise the verification results made using two users and a resource to
the whole system, we still have to show that ‖θ∈Θ [[SRS \La]]θ "tr [[SRS \La]]φ.
Using similar reasoning as earlier, one can see that the LTSs ‖θ∈Θ [[SRS \ La]]θ
and [[SRS \ La]]φ are constructed from the same instances of User , Lock1 and
Lock2 using the parallel composition and hiding. Moreover, it is quite easy to see
that the same actions are hidden in the both the LTSs, which implies that the
alphabets of the LTSs must match. However, because hiding takes place earlier
in the former LTS, it may have more traces than the latter one. Therefore,
‖θ∈Θ [[SRS \ La]]θ "tr [[SRS \ La]]φ. Also this result can be generalised to any
LTS schema P .

Lemma 11. If P is an LTS schema, φ a valuation compatible with P and Θ
a finite non-empty set of valuations such that P1(φ,Θ) and P2(P , φ,Θ), then
‖θ∈Θ[[P ]]θ "tr [[P ]]φ.

The formal proof exploits Proposition 2 and proceeds by induction on the struc-
ture of P using the lemma as an induction hypothesis. The lemma is a general-
isation of Lemma 1 in [4].

Hence, we have shown that every instance of the shared resource system and
its specification can be represented as the parallel composition of smaller ones
involving at most two users and a resource. Furthermore, all such small instances
are shown to be correct, which by Theorem 5 implies the correctness of the whole
shared resource system independent of the parameter values.

Generalisation of this result follows straightforwardly from Lemmas 10 and
11, and Theorem 5.

Proposition 12. Let Q, P, Φ be an instance of Parameterised Traces Refine-
ment such that Q has no hiding LTS subschema, and let Φ′ be a subset of Φ.
If for every φ ∈ Φ \ Φ′ there is a finite non-empty subset Θ of Φ′ such that
P1(φ,Θ), P2(Q, φ,Θ) and P2(P , φ,Θ), then deciding Q, P, Φ gives the same
answer as deciding Q, P, Φ′.

6 Reduction Algorithm

Recall that our goal is to algorithmically reduce an instance Q, P , va(c) of Pa-
rameterised Traces Refinement to an instance Q, P , Ψ having the same answer,
where the LTS schemata Q and P are closed, c is a valuation formula such that
sig(c) = sig(Q) ∪ sig(P), and Ψ is a finite subset of va(c).

Unfortunately, there is no generic algorithmic solution to the problem. The
reason is that one can simulate a Turing machine with an LTS schema. The full
construction is far too complicated to be presented here, but the idea is that
the behaviour of a cell of the tape of a Turing machine can be expressed as an
elementary LTS schema that communicates with the neighbouring cells using
token passing. The token carries state information and indicates the location
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of the read-write head. The model of the Turing machine is then obtained by
enclosing the model of a cell in a Π-replicated parallel LTS schema such that a
relation variable Π encodes a ring. For example, a question on Turing machine
halting with the empty input, a famous undecidable problem, can be encoded
this way.

Actually, using the precongruence reduction, it is not possible to reduce any
instance of Parameterised Traces Refinement that represents a verification task
of a family of systems with a ring topology. Intuitively, the reason is that large
rings cannot be constructed from small ones without breaking the structure.

The reason why the method works in the case of the shared resource system is
that the specification does not involve hiding and the set va(cSRS ) of valuations
is downward closed, which means that whenever a valuation φ is in the set
and ψ is a valuation smaller than or equal to φ, then ψ is in the set, too.
This property enables us to represent large specification-system instances as the
parallel composition of smaller ones.

Now, an obvious question is that which valuation formulae represent down-
ward closed sets of valuations. The answer is that those that are existential-free.
Actually, allowing the use of existential quantification makes it possible to ex-
press rings and hence renders the problem undecidable, so the restriction to
existential-free valuation formulae is very natural.

Lemma 13. Let c be an existential-free valuation formula. If φ and ψ are val-
uations compatible with c such that ψ ≤ φ and [[c]]φ is true, then [[c]]ψ is true.

Intuition behind the result is that if c is existential-free and [[c]]φ is true, and
one removes some atoms from the values of type variables, the formula must
be still satisfied, because type variables are used in quantification only, and if
quantification over some set gives a positive result, then quantification over its
subset must give a positive result, too. Moreover, as one cannot refer to atoms
that do not occur in the values of type or free atom variables, it is also possible to
take away actions involving removed atoms from the values of relation variables
without making the formula false, which means that [[c]]ψ must be true for all
valuations ψ ≤ φ.

The formal proof proceeds by induction on the structure of the valuation
formula using the lemma as an induction hypothesis strengthened by the claim
that if c has no universal valuation subformula, then [[c]]φ is true if and only if
[[c]]ψ is true.

Now, we have limited our attention instances Q, P , va(c) of Parameterised
Traces Refinement such that Q and P are closed, Q has no hiding LTS subschema
and c is an existential-free valuation formula with the signature sig(Q)∪ sig(P).
We show that for such instances one can always compute a finite subset Ψ of
va(c) such that deciding Q,P , Ψ gives the same answer as deciding Q,P , va(c).

Let Ψ be a subset of va(c) such that the valuations in Ψ are compatible with Q
and P . Then there is a subset of Φ′ of va(c) such that Φ′ contains all valuations
in va(c) isomorphic to some valuations in Ψ . By Proposition 9, deciding Q,P , Ψ
gives the same answer as deciding Q,P , Φ′. To guarantee that deciding Q,P , Φ′

gives the same answer as deciding Q,P , va(c), it is sufficient to make sure that
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Φ′ is large enough to satisfy the assumptions of Proposition 12. In other words,
for every φ ∈ va(c) \ Φ′ there has to be a finite non-empty subset Θ of Φ′ such
that P1(φ,Θ), P2(Q, φ,Θ) and P2(P , φ,Θ).

To see how large Φ′ should be some new concepts are needed. Let T be a
type variable, Π a relation variable and R an LTS schema. The T -degree of Π
(in R), denoted by degT (Π,P), is the maximum number of occurrences of T
in a type of Π in P . For example, degU (�=U ,SRS) is two, degR(∗R,SRS) and
degU (∗U ,SRS) are one, and degU (∗R,SRS) is zero. Moreover, the T -degree of
R, denoted by degT (R), is the maximum number of occurrences of T in the
types of relation variables in a branch of R. In other words,

degT (R) = max{degT (Π1,R)+. . .+degT (Πn,R) |Π1 · · ·Πn is a branch of R} .

For example, the branches of Mtx are the empty sequence, ∗R, ∗U , �=U , ∗R∗U

and ∗R �=U . The LTS schema SRS \ La has additionally the branch ∗U∗R.
Consequently, for both the LTS schemata, the U -degree is two and the R-degree
is one.

Now, let φ be a valuation in va(c) \ Φ′, Π1Π2 · · ·Πn a branch of R, where R
is either P or Q, and αi an action in φ(Πi) for all i ∈ {1, . . . , n}. At worst, the
atoms occurring in the actions α1, . . . , αn are all different. It means that for each
type variable T in sig(Q) ∪ sig(P), there are at most max{degT (Q), degT (P)}
atoms that occur both in the actions α1, . . . , αn and in φ(T ). Because va(c) is
downward closed, it is sufficient that Φ′ includes all valuations φ ∈ va(c) such
that |φ(T )| ≤ max{1, degT (Q), degT (P)} for all type variables T ∈ dom(φ).

In other words, if one first takes all valuations φ ∈ va(c) compatible with
Q and P such that |φ(T )| ≤ max{1, degT (Q), degT (P)} for all type variables
T ∈ dom(φ), and then picks a maximal set of representatives of # among those,
one obtains a subset Ψ of va(c) such that Q,P , Ψ gives the same answer as
deciding Q,P , va(c).

It is also quite easy to see that the set Ψ determined in such a way is finite, too.
Consider the valuations in Ψ . The size of the values of type variables is bounded,
so each type variable can have only finitely many essentially different (non-
isomorphic) values. Moreover, because all the valuations ψ ∈ Ψ are compatible
with the LTS schemata and every relation variable Π ∈ dom(ψ) occurs in Q
or P , the values of Π are limited to subsets of the values of its types. Hence,
also every relation variable can have only finitely many non-isomorphic values.
Finally, as all the valuations in Ψ are non-isomorphic and have the same finite
domain which contains no atom variable, it is clear Ψ cannot be infinite. Hence,
we have proved the following theorem.

Theorem 14. Let Q and P be finite and closed LTS schemata and c a valuation
formula such that sig(c) = sig(P) ∪ sig(Q). If Q has no hiding LTS subschema
and c is existential-free, then any maximal set Ψ of representatives of # in

{φ ∈ va(c) | φ is compatible with Q and P, and
∀T ∈ dom(φ) ∩ T.|φ(T )| ≤ max{1, degT (P), degT (Q)}}

is finite and deciding Q, P, va(c) gives the same answer as deciding Q, P, Ψ .
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input: closed finite LTS schemata Q, P and an existential-free valuation formula c
such that Q has no hiding LTS subschema and sig(c) = sig(Q) ∪ sig(P)

output: a finite subset Ψ of va(c) such that deciding Q, P , Ψ
gives the same answer as deciding Q, P , va(c)

let T1, . . . , Tk be the type variables in sig(c)
let Ψ := ∅
for each i ∈ {1, . . . , k} let li := max{1, degT (Q), degT (P)}
let a1,1, . . . , a1,l1 , a2,1, . . . , a2,l2 , . . . , ak,1, . . . , ak,lk be distinct atoms

different from those in at(Q) ∪ at(P)
for all υ ∈ {1, . . . , l1} × {1, . . . , l2} × . . . × {1, . . . , lk} do

for all valuations φ compatible with Q and P such that
dom(ψ) = sig(c) and ∀i ∈ {1, . . . , k}.ψ(Ti) = {ai,1, . . . , ai,υ(i)} do
if [[c]]φ is true and ∀ψ ∈ Ψ.φ �� ψ then let Ψ := Ψ ∪ {φ}

end do
end do
return Ψ

Fig. 2. Reduction algorithm

To automate the application of the theorem, one should be able to pick valuations
from the set and perform isomorphism test between them. The latter task is
actually not a problem, because it is clearly decidable for valuations with a
finite domain. To perform the former task, one needs to know which atoms can
be used for the values of type variables. Fortunately, any atoms not occurring
in Q or P will do, because the set va(c) is isomorphism closed, meaning that
whenever a valuation φ in the set and ψ is a valuation isomorphic to φ, then ψ
is in the set, too.

Lemma 15. Let c be a valuation formula. If φ and ψ are isomorphic valuations
compatible with c, then [[c]]φ is true if and only [[c]]ψ is true.

The proof is straightforward and proceeds by induction on the structure of the
valuation formula using the lemma as an induction hypothesis.

With this information, Theorem 14 converts straightforwardly to an algorithm
in Fig. 2. It is obviously computationally quite complex, because it generates
a great amount of valuations and performs isomorphism tests between them.
On the other hand, the algorithm reduces a parameterised verification task to
a finite one, so in this sense generating only finitely many valuations should
be acceptable. Moreover, if one wants to avoid isomorphism testing, then one
has to perform extra refinement checks. It does not make much sense, because
testing isomorphism between valuations is generally simpler than checking traces
refinement of instances generated by those valuations.

The algorithm is clearly applicable to Mtx , SRS \ La, cSRS . Because the
maximum of {1, degT (Mtx), degT (SRS \ La)} is two for T = U and one for
T = R, and there are only two non-isomorphic valuations φ ∈ va(cSRS ) such
that |φ(U)| ≤ 2 and |φ(R)| ≤ 1, the algorithm produces the same result as we
obtained earlier by manual reasoning.
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7 Conclusions and Discussion

We have presented an algorithm that enables the infinite family of verification
tasks arising from parameterised specification and system descriptions to be
solved just by examining its finite subset. After that, the subset can be checked
using existing refinement checkers. The algorithm allows the use of multiple and
nested parameters, which makes it possible to express systems with components
of a parameterised state-space. To the best of our knowledge, it is the most
generic such an algorithm.

The most serious limitations of the algorithm are the lack of a replicated
choice construct and restriction to existential-free valuation formulae. The for-
mer deficiency means that we have to restrict our attention to systems and
specifications the behaviour of which can be faithfully captured in parts each of
which represents the system or the specification from the viewpoint of a bounded
number of components only. The latter restriction implies that we can study only
specification-system families closed under the removal of a replicated component.
For example, systems with a star, bipartite and totally (un)connected topology
are such, but those with a ring, linear or tree topology are not.

Despite that, we have applied the results to verify taDOM+ tree-locking pro-
tocols [22] used in XML databases. The protocols were modelled as LTS schemata
parameterisedby the number of concurrent transactions and the size and the shape
of a tree. In the case of these protocols, it is possible to describe the behaviour of a
transaction from the viewpoint of a node and its arbitrary ancestor using finitely
manyLTS schemata, sowe could study transitive closures of forests instead of trees.
As the family of transitive closures of forests is closed under the removal of a node,
it was possible to prove a mutual exclusion property for these protocols. The same
property is earlier proved in [23] but using a theory tailored for the protocols.

Future work covers implementing and extending the algorithm. It looks like
that with the cost of worse reduction, one can allow hiding in a specification
LTS schema and richer semantic models that enable verification of deadlock
and liveness properties. Generalising the approach that enables the analysis of
systems with a linear, ring or tree topology is also a topic of future research.
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Abstract. In this work, we study model checking of compositional real-time
systems. A system is modeled using mutable data variables as well as a compo-
sitional timed process. Instead of explicitly manipulating clock variables, a num-
ber of compositional timed behavioral patterns are used to capture quantitative
timing requirements, e.g. delay, timeout, deadline, timed interrupt, etc. A fully
automated abstraction technique is developed to build an abstract finite state ma-
chine from the model. The idea is to dynamically create/delete clocks, and main-
tain/solve a constraint on the clocks. The abstract machine weakly bi-simulates
the model and, therefore, LTL model checking or trace-refinement checking are
sound and complete. We enhance our home-grown PAT model checker with the
technique and show its usability via the verification of benchmark systems.

1 Introduction

Specification and verification of real-time systems are important research topics which
have practical implications. During the last decade or so, a popular approach for
specifying real-time systems is based on the notation Timed Automata [1,23]. Timed
Automata are powerful in designing real-time models with explicit clock variables.
Real-time constraints are captured by explicitly setting/reseting clock variables. A num-
ber of automatic verification support for Timed Automata have proven to be successful
(e.g. UPPAAL [20], KRONOS [4] and RED [36]).

Models based on Timed Automata often adapt a simple structure, e.g. a network of
Timed Automata with no hierarchy [20]. The benefit is that efficient model checking is
made feasible. Nonetheless, designing and verifying compositional real-time systems
is becoming an increasingly difficult task due to the widespread applications and in-
creasing complexity of such systems. High-level requirements for real-time systems are
often stated in terms of deadline, time out, and timed interrupt [18,11,22]. In industrial
case studies of real-time system verification, system requirements are often structured
into phases, which are then composed sequentially, in parallel and alternatively [14,19].
Unlike statecharts (with clocks) or timed process algebras, Timed Automata lack high-
level compositional patterns for hierarchical design. As a result, users often need to
manually cast those terms into a set of clock variables with carefully calculated clock
constraints. The process is tedious and error-prone.
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Contributions. We investigate an alternative approach for modeling and verifying
compositional real-time systems. In this work, a system is modeled using a compo-
sitional timed process as well as mutable data variables and data operations. A rich
set of process constructs are supported, a number of which are adapted from Timed
CSP [30]. Additional behavioral patterns which are useful in modeling and analyzing
real-time systems are introduced. Examples are deadline (which constrains a process
to terminate within some time units), timed interrupt , etc. Instead of explicitly manip-
ulating clock variables (as in Timed Automata), the time related process constructs are
designed to build on implicit clocks. Further, we augment a system model with mutable
variables and data structures (e.g. arrays, stacks, queues, or any user created data types),
synchronous/asynchronous channels, etc.

In order to offer efficient mechanical verification support, a fully automated abstrac-
tion technique is developed to build an abstract finite state machine from the model.
The idea is to dynamically create clocks (only if necessary) to capture constraints in-
troduced by the timed process constructs. A clock may be shared for many constructs
in order to reduce the number of clocks. Further, the clocks are deleted as early as
possible. During system exploration, a constraint on the active clocks is maintained
and solved using techniques based on Difference Bound Matrix (DBM [7]). We show
that the abstraction is finite state and is subject to model checking. Further, it weakly
bi-simulates the concrete model and, therefore, we may perform sound and complete
LTL-X (i.e. LTL without the next operator) model checking or refinement checking
upon the abstraction. We enhance our home-grown PAT model checker [33] (available
at http://pat.comp.nus.edu.sg) with the technique and show its usability via automated
verification of benchmark systems. We compare PAT with UPPAAL to show that our
technique offers complementary support for analysis of real-time systems.

Section Organization. The remainder of the paper is organized as follows. Section 2
presents the syntax and operational semantics of a subset of our modeling language.
Section 3 presents the zone abstraction using dynamical clocks. Section 4 discusses the
soundness of the abstraction and its implication on model checking. Section 5 discusses
automation of the technique in the PAT model checker. Section 6 reviews related work
and discusses future research direction.

2 Language Syntax and Operational Semantics

In this section, we introduce the compositional language to model real-time systems
and then define its operational semantics. Let Σ be the set of event names.

Definition 1 (LTS). A labeled transition system is 3-tuple L = (S , init ,→) where
S is a set of system configurations, init : S is an initial system configuration and
→: S ×Σ × S is a labeled transition relation.

A run of a LTS is a finite or infinite sequence of alternating configurations/events,
i.e. 〈s0, e0, s1, e1, · · ·〉 such that s0 = init and si

ei→ si+1 for all i . An execution is
a sequence of events 〈e0, e1, · · ·〉 such that there exists a run 〈s0, e0, s1, e1, · · ·〉. For
simplicity, we write c x→ to mean that there exists c′ such that c x→ c′.
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2.1 Syntax

Definition 2 (Timed process). A timed process (hereafter process) is defined by the
following grammar1.

P = Stop | Skip – primitives
| e → P – event prefixing
| [b]P – state guard
| P | Q – general choice
| P ‖ Q – parallel composition
| P ; Q – sequential composition
| Wait [d ] – delay
| P timeout [d ] Q – timeout
| P interrupt [d ] Q – timed interrupt
| P deadline[d ] – deadline
| P =̂ Q – process definition

where P and Q range over processes, e ∈ Σ is an observable event, b is a Boolean
expression on global variables or process parameters and d is an integer constant.

Process Stop does nothing but idling. Process Skip terminates (possibly after some
idling). Process e → P engages in event e first and then behaves as P . Notice that
e may be an abstract event or a data operation, e.g. written in the form of e{x = 5;
y = 3; } or an external C# program. The data operation may update data variables
(and is assumed to be executed atomically). For simplicity, the resultant data valuation
is written as e(V ). A guarded process is written as [b]P . If b is true, then it behaves
as P , else it idles until b becomes true. Process P | Q offers a choice between P and
Q . Parallel composition of two processes is written as P ‖ Q , where P and Q may
communicate via multi-party event synchronization or shared variables. Process P ; Q
behaves as P until P terminates and then behaves as Q immediately.

A number of timed process constructs can be used to capture common real-time sys-
tem behavior patterns. Without loss of generality, we assume d is an integer constant.
Process Wait [d ] idles for exactly d time units. In process P timeout [d ] Q , the first ob-
servable event of P shall occur before d time units elapse (since the process starts). Oth-
erwise, Q takes over control after exactly d time units elapse. Process P interrupt [d ] Q
behaves exactly as P (which may engage in multiple observable events) until d time
units elapse, and then Q takes over control. Process P deadline[d ] constrains P to ter-
minate before d time units. We remark additional process constructs (e.g. if-then-else,
while, etc.) can be defined using the above. In this setting, clock variables are made
implicit and hence they cannot be compared with each other directly, which potentially
allows efficient clock manipulation and hence system verification.

Definition 3 (System model). A system model is a 3-tuple S = (Var , init ,P) where
Var is a set of global variables, init is the initial valuation of the variables and P is a
process.

1 Hiding, external/internal choice, waituntil and more are skipped for simplicity. It should be
clear that the discussion applies to those operators.
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Example 1 (Fischer’s Algorithm). The following models Fischer’s mutual exclusion
algorithm.

var x = −1;
var ct = 0;
Proc(i) = [x = −1]Active(i)
Active(i) = (update.i{x = i} → Skip)deadline[δ];

Wait [ε];
if (x = i) {

cs .i{ct = ct + 1} →
exit .i{ct = ct − 1; x = −1} → Proc(i)

} else {
Proc(i)

}
Protocol = Proc(0) ‖ Proc(1) ‖ Proc(2);

where δ and ε are two integer constants with δ < ε; x and ct are global variables. The
protocol is modeled as process Protocol , which is the parallel composition of three
processes. Each of the three processes attempts to enter the critical section when x is
-1, i.e. no other process is currently attempting. Once the process is active, it sets x to
its identity i within δ time units (captured by deadline[δ]). Then it idles for ε time units
(captured by Wait [ε]) and then checks whether x is still i . If so, it enters the critical
section and leaves later. Otherwise, it restarts from the beginning. �

2.2 Semantics

In order to define the operational semantics of a system model, we define the notion of
a configuration to capture the global system state during system execution.

Definition 4 (System configuration). A system configuration is a pair c = (V ,P)
where V is a variable valuation function and P is a process.

A transition of the system is of the form c x→ c′ where c and c′ are the system con-
figurations before and after the transition respectively. We adopt the following naming
convention for transition labels: t denotes a non-negative real number; τ denotes an
invisible event; 	 is the event of process termination; e ∈ Σ ∪ {	} is an observable

event; x ∈ Σ ∪ {τ,	}. For instance, c t→ c′ denotes a transition of t time units elaps-
ing. In the following, we present the firing rules which are associated with the timed
process constructs, adopting the approach in [29].

t ≤ d
[ de1 ]

(V ,Wait [d ]) t→ (V ,Wait [d − t ])
[ de2 ]

(V ,Wait [0]) τ→ (V ,Skip)

The above captures behaviors of process Wait [d ]. Rule de1 states that the process may
idle for any amount of time as long as it is less than or equal to d time units; Rule de2
states that the process terminates immediately after d becomes 0.

(V ,P) e→ (V ′, P ′)
[ to1 ]

(V ,P timeout [d ] Q) e→ (V ′,P ′)
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(V ,P) τ→ (V ′, P ′)
[ to2 ]

(V ,P timeout [d ] Q) τ→ (V ′,P ′ timeout [d ] Q)

(V ,P) t→ (V ,P ′), t ≤ d
[ to3 ]

(V ,P timeout [d ] Q) t→ (V ,P ′ timeout [d − t ] Q)

[ to4 ]
(V ,P timeout [0] Q) τ→ (V ,Q)

If an observable event x can be engaged by P , then P timeout [d ] Q becomes P ′ (rule
to1). An invisible transition does not solve the choice (rule to2). If P may idle for less
than or equal to d time units, so is the composition (rule to3). When d becomes 0, Q
takes over control by a silent transition (rule to4).

(V ,P) x→ (V ′, P ′)
[ it1 ]

(V ,P interrupt [d ] Q) x→ (V ′,P ′ interrupt [d ] Q)

(V ,P) t→ (V ,P ′), t ≤ d
[ it2 ]

(V ,P interrupt [d ] Q) t→ (V ,P ′ interrupt [d − t ] Q)

[ it3 ]
(V ,P interrupt [0] Q) τ→ (V ′,Q)

Rule it1 states if P engages in event x , P interrupt [d ] Q becomes P ′ interrupt [d ] Q .
Rule it2 states that if P may idle for less than or equal to d time units, so is the com-
position. When d time units elapse, Q takes over by a τ -transition.

(V ,P) x→ (V ′, P ′)
[ dl1 ]

(V ,P deadline[d ]) x→ (V ′,P ′ deadline[d ])

(V ,P) t→ (V ,P ′), t ≤ d
[ dl2 ]

(V ,P deadline[d ]) t→ (V ,P ′ deadline[d − t ])

Intuitively, P deadline[d ] behaves exactly as P except that it must terminate before
d time units. The rest of the rules are straightforward extensions of those introduced
in [29], which are presented in Appendix A.

Definition 5 (Concrete transition system). Let S = (Var , init ,P) be a system model.
The concrete transition system corresponding to S is a LTS LS

c = (Cc , initc ,→) where
Cc is the set of reachable concrete system configurations, initc is the initial configura-
tion (init ,P) and → is the smallest transition relation closed under the firing rules.
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3 Zone Abstraction

For the sake of model checking, we assume that all variables have finite domains and
the process forbids unbounded non-tail recursion. Nonetheless, the number of concrete
configurations (and hence the concrete transition system) is infinite because of the time
transitions. In the following, we apply zone abstraction to build an abstract configu-
ration system. Different from zone abstraction applied to Timed Automata [7,38], we
dynamically create/delete a set of clocks to precisely encode the timing requirements.
We show that the abstract transition system is finite state and subject to model checking.

3.1 Clock Activation and De-activation

A clock is a variable ranging from 0 to some bounded natural number. Given a config-
uration (V ,P), a clock is necessary to measure time elapsing if, and only if, a timed
process is (e.g. Wait [d ], P timeout [d ] Q , P interrupt [d ] Q , or P deadline[d ]) has
been enabled. If a timed process (say Wait [d ]) is enabled, we associate a clock (say tm)
with the process to record time elapsing (written as Wait [d ]tm ). The timing require-
ments can be captured using a constraint on the valuation of the clock. During system
execution, multiple clocks may be used to capture quantitative timing constraints. A
clock may become irrelevant as soon as the related process takes a transition. For in-
stance, if P in P timeout [d ]tm Q engages in an observable event, then the process
transforms to P ′ and clock tm becomes irrelevant. It is known that model checking of
real-time systems is exponential in the number of clocks. Therefore, it is desirable to
use clocks only necessary and discharge them as early as possible.

Definition 6 (Abstract system configuration). An abstract system configuration is a
triple (V ,P ,D), where V is a variable valuation, P is a process and D is a zone.

A zone is the maximal set of clock valuations satisfying a set of primitive clock con-
straints. A primitive constraint on a clock is of the form tm ∼ d where tm is a timer,
d is a constant and ∼ is ≥, =, or ≤. Because clocks are implicit, clock readings cannot
be compared directly. A zone is not empty if, and only if, the constraint is not false.

Next, we show how to systematically activate and de-activate clocks using process
Wait [d ] and P timeout [d ] Q as examples. Let t be a fresh clock. Given an abstract
configuration, we define function A(P , t) to recursively determine whether a clock
is necessary and associate the clock with the relevant process constructs. A clock is
necessary if and only if one (or more) timed pattern has just been enabled. For instance,

A(Wait [d ]t′ , t) = Wait [d ]t′
A(Wait [d ], t) = Wait [d ]t

where Wait [d ]t′ denotes that the timed pattern is associated with a clock t ′, whereas
Wait [d ] denotes that it has not been associated with a clock. The intuition is for the
former case, A does nothing and t is not used (since it is not necessary to introduce
another clock); for the latter case, A associates t the the timer pattern. The following
shows how to apply A to process P timeout [d ] Q .

A(P timeout [d ]t′ , t) = P timeout [d ]t′ Q
A(P timeout [d ] Q , t) = A(P) timeout [d ]t A(Q)
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A(P | Q , t) = A(P , t) | A(Q , t)
A(P ‖ Q , t) = A(P , t) ‖ A(Q , t)
A(P ; Q , t) = A(P , t); Q

A(P , t) = A(Q , t) – if P =̂ Q

A(Wait [d ], t) = A(Wait [d ]t )
A(P timeout [d ] Q , t) = A(P , t) timeout [d ]t A(Q , t)
A(P interrupt [d ] Q , t) = A(P , t) interrupt [d ]t A(Q , t)
A(P deadline[d ], t) = A(P , t) deadline[d ]t

Fig. 1. Clock activation: A(P , t) is P except the above cases

If a clock t ′ has already been associated with P timeout [d ] Q , then function A simply
returns the abstract configuration. Otherwise, it is associated with t and further A is
applied to the sub-processes P and Q recursively. The complete definition of function
A is presented in Figure 1. In an abuse of notation, given an abstract configuration
c = [V ,P ]D , we write A(c) to be [V ,A(P)]D∧t=0 if t is used; otherwise A(c) is
simply c.

A runtime clock may later be discarded when the time-related process has evolved
such that the reading of the clock is no longer relevant. For instance, the clock associ-
ated with P timeout [d ] Q can be discarded when P engages in an observable event.
It should be clear that we can identify the set of active runtime clocks by a similar
procedure. To minimize clocks, all in-active runtime clocks, and the associated tim-
ing constraints, shall be pruned from D . Notice that tG is never pruned. We assume a
function D which performs clock de-activation in a sound and complete way.

3.2 Zone Abstraction

We define D↑ = {t + d | t ∈ D ∧ d ∈ R+}, i.e. the zone obtained by delaying
arbitrary amount of time. Notice that all clocks take the same pace. Next, we define
function ι to compute the zone which can be reached by idling from a given abstract
system configuration [38], presented in Figure 2. Given the current zone D , process
P timeout [d ]tm Q may keep idling as long as P may keep idling and the reading of
clock tm is less or equal to d (so that timeout has not occur). The rest are similarly
defined.

In the following, we define the firing rules based on the abstract system configura-
tions. The idea is to eliminate time transitions altogether and use the timing constraint to
ensure that the time-related process constructs behave correctly. An abstract transition
is of the form (V ,P ,D)

x
↪→ (V ′,P ′,D ′), where x ∈ Σ ∪ {	, τ}.

[ ade ]
(V ,Wait [d ]tm ,D)

τ
↪→ (V ,Skip,D↑ ∧ tm = d)

Process Wait(d) idles for exactly d time units and then engages in event τ and the
process transforms to Skip. Intuitively, it should be clear that this is ‘equivalent’ to the
concrete firing rules. We will define what equivalence means later in this section.
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ι(V ,Stop, D) = D↑

ι(V ,Skip,D) = D↑

ι(V , e → P ,D) = D↑

ι(V , [b]P ,D) = D↑

ι(V ,P | Q ,D) = ι(V ,P ,D) ∧ ι(V ,Q ,D)
ι(V ,P ‖ Q ,D) = ι(V ,P ,D) ∧ ι(V ,Q ,D)
ι(V ,P ; Q ,D) = ι(V ,P ,D)
ι(V ,Wait [d ]tm ,D) = D↑ ∧ tm ≤ d

ι(V ,P timeout [d ]tm Q ,D) = ι(V ,P ,D) ∧ tm ≤ d

ι(V ,P interrupt [d ]tm Q ,D) = ι(V ,P ,D) ∧ tm ≤ d

ι(V ,P deadline[d ]tm ,D) = ι(V ,P ,D) ∧ tm ≤ d

ι(V ,P ,D) = ι(V ,Q ,D) – if P =̂ Q

Fig. 2. Idling calculation

(V ,P ,D)
τ

↪→ (V ′,P ′,D ′)
[ ato1 ]

(V ,P timeout [d ]tm Q ,D)
τ

↪→ (V ′, P ′ timeout [d ]tm Q ,D ′ ∧ tm ≤ d)

(V ,P ,D)
x

↪→ (V ′,P ′,D ′)
[ ato2 ]

(V ,P timeout [d ]tm Q ,D)
x

↪→ (V ′, P ′,D ′ ∧ tm ≤ d)

[ ato3 ]
(V ,P timeout [d ]tm Q ,D)

τ
↪→ (V ,Q , tm = d ∧ ι(V ,P ,D))

Depending on when the first event of P takes place and whether it is observable, process
P timeout [d ] Q behaves differently in three ways. An observable transition of P must
occur no later than d time units since the process is enabled (rule ato1 and ato2). If the
first transition is observable, then the choice is resolved (rule ato2). If it is silent, then
the it transforms to P ′ timeout [d ] Q . If P may delay more than d time units (captured
by the constraint ι(V ,P ,D)), then it times out after exactly d time units (rule ato3).
The constraint tm = d ∧ ι(V ,P ,D) means that the delay is exactly d time units and
P must be idling during the period.

(V ,P ,D)
x

↪→ (V ′,P ′,D ′)
[ ait1 ]

(V ,P interrupt [d ]tm Q ,D)
x

↪→ (V ′, P ′ interrupt [d ]tm Q ,D ′ ∧ tm ≤ d)

[ ait2 ]
(V ,P interrupt [d ]tm Q ,D)

τ
↪→ (V ,Q , tm = d ∧ ι(V ,P ,D))

Process P interrupt [d ] Q behaves differently in two ways. Transitions of P must take
place no later than d time units since the process is enabled (rule ait1). If P may delay
more than d time units (captured by the constraint ι(V ,P ,D)), then it is interrupted
after exactly d time units (rule ait2).
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1 3 42
a c

Fig. 3. A simple example

(V ,P ,D)
x

↪→ (V ′,P ′,D ′), x �= 	
[ adl ]

(V ,P deadline[d ]tm ,D)
x

↪→ (V ′,P ′ deadline[d ]tm ,D ′ ∧ tm ≤ d)

Process P deadline[d ] behaves exactly as P except that any transition must occur be-
fore d time units.

The rest of the firing rules is present in Appendix B. A transition is valid if, and only
if, it conforms to the firing rules and the resultant zone is not empty. Intuitively, this
means that a transition must be allowed by the untimed system and at the same time
satisfy the additional timing requirement.

Definition 7 (Abstract transition system). Let S = (Var , init ,P) be a system model.
The abstract transition system corresponding to S is a LTS LS

a = (Ca , inita , ↪→)
where Ca is the set of reachable valid abstract system configurations, inita is the ini-
tial configuration (init ,P , true) and ↪→ is the smallest transition relation satisfying

∀ c, c′ : Ca . c
e
↪→ c′ ⇔ A(c)

e
↪→ D(c′).

Example 2 (A simple example). Assume a model (∅,∅,P) with no variable and P is
(a → Wait [5]; b → Stop) interrupt [3] c → Stop. The abstract transition system
is shown in Figure 3, where transition label τ is skipped for simplicity. Let 〈t1, t2〉 be
a sequence of clocks. The following illustrates how to construct the abstract transition
system. Let s0 be (∅,P , true).

– Step 1: apply A to s0 to get

s1 = (∅, (a → Wait [5]; b → Stop) interrupt [3]t1 c → Stop, t1 = 0)

– Step 2: apply rule ait1 to s1 to get

s2 = (∅, (Wait [5]; b → Stop) interrupt [3]t1 c → Stop, 0 ≤ t1 ≤ 3)

Notice that (t1 = 0)↑ equals to t1 ≥ 0.
– Step 3: apply D to s2. The result is exactly s2. We obtain the transition from state 1

to state 2.
– Step 4: apply rule ait2 to s1 to get

s3 = (∅, (c → Stop), t1 ≥ 0 ∧ t1 = 3)

Notice that ι(∅, a → Wait [5]; b → Stop, t1 = 0) is t1 ≥ 0.
– Step 5: apply D to s3 to get s4 = (∅, (c → Stop), true). We remark that because

t1 becomes inactive, it is pruned from the constraint. This generates the transition
from state 1 to state 3.
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– Step 6: apply A to s2 to get

s5 = (∅, (Wait [5]t2 ; b → Stop) interrupt [3]t1 c → Stop,
0 ≤ t1 ≤ 3 ∧ t2 = 0)

– Step 7: apply rule ait1 to s5, we get

s6 = (∅, (Skip; b → Stop) interrupt [3]t1 c → Stop, 0 ≤ t1 ≤ 3 ∧ t2 = 5)

Notice that the timing constraint is false given that all timers take the same pace.
Refer to next section on how this is discovered systematically.

– Step 8: apply rule ait2 to s5 to get

s7 = (∅, c → Stop, t1 ≥ 0 ∧ t2 ≥ 0 ∧ t2 ≤ 5 ∧ t1 = 3)

– Step 9: apply D to s7 to get s4. Notice that both clocks are inactive and therefore
pruned. This generates the transition from state 2 to state 3.

– Lastly, we generate the transition from state 3 to state 4. Notice that this transition
involves no quantitative timing.

3.3 Zone Operations

In order to construct and verify the abstract transition system, we need efficient and
sound procedures to manipulate zones. For instance, we need to determine whether a
zone is empty or not. The procedure must be sound (so that a valid configuration is not
missed) and complete (so that invalid configurations are ruled out).

A zone D can be equivalently represented as a difference bound matrices (DBM).
Let {t1, t2, · · · , tn} be a set of n clocks. Let t0 be a dummy clock whose value is always
0. A DBM representing a constraint on the clocks contains n + 1 rows, each of which
contains n +1 elements. Let D i

j represent entry (i , j ) in the matrix. A DBM represents
the constraint: ∀ i : 0 . . n. ∀ j : 0 . . n. ti − tj ≤ D i

j . The most important property
of DBM is that there is a relatively efficient procedure to compute a unique canonical
form. Given a DBM in canonical form, checking whether the zone is empty or not is
as easy as looking up an entry in the matrix. DBM has been well studied [7,2,3]. In
the following, we briefly introduce the relevant DBM operations/properties. We skip
the discussion on rest of the zone operations (e.g. D↑, adding a constraint, etc.) as they
resemble the discussion in [3].

Calculate canonical form. In theory, there are infinite different timing constraints
which represent the zone. For instance, 0 ≤ t1 ≤ 3 ∧ 0 ≤ t1 − t2 ≤ 3 is equiv-
alent to 0 ≤ t1 ≤ 3 ∧ 0 ≤ t1 − t2 ≤ 3 ∧ t2 ≤ 1000. In order to systematically
compare two zones, we compute their unique canonical forms. In other words, we com-
pute the tightest bound on each clock difference. If the clocks are viewed as vertices
in a weighted graph and the clock difference as the label on the edge connecting two
clocks, the tightest clock difference is the shortest path between the respective vertices.
The Floyd-Warshall algorithm [12] thus can be used to compute the canonical from.
Given that this algorithm is cubic in the number of clocks, it is desirable to reduce
the number of clocks. Besides, the algorithm must be invoked if necessary and ide-
ally (if possible) the result of performing an operation on a canonical DBM should be
canonical.
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Check satisfiability. In order to construct the abstract transition system, it is essential
to check whether a zone is empty. Given the DBM representing a zone, it is unsatisfiable
if, and only if, there is a clock which has a negative difference from itself, i.e. tk−tk < 0
for some k so that the constraint is false. If the DBM is in canonical form, then there
exists at least one D i

i which is negative. Further, it can be shown that the DBM is false
if, and only if, D0

0 is negative. Therefore, we compute the canonical form whenever it
is necessary to check for satisfiability.

Add clocks. In our setting, clocks may be introduced during system exploration. We
remark that clocks are a constant set in Timed Automata. Assume the new clock is tk
and the given DBM is canonical. The following shows how the DBM is updated with
entries for tk . For all i , D i

k = D i
0 and Dk

i = D0
i as the new clock always starts with

value 0. By a simple argument, it can be shown the resultant DBM is canonical.

t0 t1 · · · ti · · · tk−1 tk
t0 0 d0

1 · · · d0
i · · · d0

k−1 0
t1 d1

0 ∗ · · · * · · · * d1
0

· · · · · · · · · · · · · · · · · · · · · · · ·
ti d i

0 ∗ · · · ∗ · · · ∗ di
0

· · · · · · · · · · · · · · · · · · · · · · · ·
tk−1 dk−1

0 ∗ · · · ∗ · · · * dk−1
0

tk 0 d0
1 · · · d0

i · · · d0
k−1 0

Prune clocks. Because entries in a canonical DBM represent the tightest bound on
clock differences, pruning clocks is simply to remove the relevant row and column in
the table. It should be clear that the remaining DBM is canonical, i.e. the bounds can
not be possibly tightened with less constraints.

Notice that the number of reachable timing constraints in canonical form are finite
as proved in [7]. As a result, the abstraction system is finite state and therefore subject
to model checking2.

Example 3 (DBM manipulation example). The following illustrates how the DBM is
transformed through system exploration in Example 2.

t0
t0 0

Step1→
t0 t1

t0 0 0
t1 0 0

Step2→
t0 t1

t0 0 0
t1 3 0

Step6→

t0 t1 t2
t0 0 0 0
t1 3 0 3
t2 0 0 0

Step7→

t0 t1 t2
t0 0 0 -5
t1 3 0 3
t2 5 0 0

≡

t0 t1 t2
t0 -2 -5 -7
t1 1 -2 -4
t2 1 -2 -4

Step4
↓

Step8
↓

t0 t1
t0 0 -3
t1 3 0

Step5→ t0
t0 0

t0 t1 t2
t0 0 -3 0
t1 3 0 3
t2 ∞ 0 0

Step9→ t0
t0 0

The DBM obtained after Step 7 is indeed false, i.e. after applying the Floyd-Warshall
algorithm, D0

0 is −2. �

2 Assume that the variable domains are finite and the reachable process expressions are finite.
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4 System Verification

In this section, we prove that our abstraction is sound and complete with respect to a
number of properties. The abstract transition system is shown to be equivalent to the
concrete transition system using a specialized bi-simulation relationship [21]. We then
show that two different system verification methods are sound.

In the concrete transition system, if a configuration (V ′,P ′) can be reached from
(V ,P) by idling only, we write (V ,P) � (V ′,P ′). By a simple argument, it can be
shown that if (V ,P) � (V ′,P ′), then V = V ′. We write (V ,P) x� (V ′,P ′) if, and
only if, there exists (V ,P1), (V ′,P2) such that (V ,P) � (V ,P1) and (V ,P1)

x→
(V ′,P2) and (V ′,P2) � (V ′,P ′).

Definition 8 (Time abstract bi-simulation). Let S = (Var , init ,P) be a model. Let
LS

c = (Cc , initc ,→) and LS
a = (Ca , inita , ↪→) be the concrete and abstract transition

systems. Lc and La are time abstract bi-similar (hereafter bi-similar) if, and only if,
there exists a binary relation R : Cc → Ca such that (initc , inita) ∈ R and ∀ x :
Σ ∪ {	, τ}; c = (Vc ,Pc); a = (Va ,Pa ,Da) such that (c, a) ∈ R implies,

– Vc = Va ,
– if c x� c′, then for some a′, a

x
↪→ a′ and (c′, a′) ∈ R.

– if a
x
↪→ a′, then for some c′, c x� c′ and (c′, a′) ∈ R.

We say that c and a are bi-similar, written as c ∼ a, if, and only if, there exists R such
that the transition systems are bi-similar. Notice that Lc and La are bi-similar if, and
only if, initc ∼ inita .

Theorem 1. Let S = (Var , init ,P) be a system model. LS
c and LS

a are time abstract
bi-similar. �

By definition, it suffices to construct a binary relation which satisfies the condition.
We present the proof based on structural induction in Appendix C. Time abstract bi-
simulation is strong enough to guarantee soundness on verification of a number of use-
ful properties.

LTL-X Model Checking. In this setting, the properties are linear temporal logic for-
mulae without the next operator (i.e. LTL-X), constituted by propositions on global
variables. Notice that no clocks are allowed in the property. The philosophy is that a
critical property may often be independent of the speed of the hardware on which the
system is deployed, whereas the model of the implementation shall incorporate known
hardware limitations.

Example 4. Given Example 1, the following are some critical properties.

�ct ≤ 1 – safety property
�(x = i ⇒ �cs .i) – liveness property

where � and � read as ‘always’ and ‘eventually’. The first property precisely states
mutual exclusion, i.e. at all time, there must not be 2 or more processes in the critical
section. The second states that if process i is attempting to access the shared resource,
it must eventually do so.
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In order to reflect model checking results on the abstract transition system to the original
system, we need to establish that the abstract transition system is equivalent to the
concrete one with respect to LTL-X formulae. The idea is to show stutter equivalence
between traces of the abstract system and the concrete system. Given two traces tr1 =
〈V0,V1, · · ·〉 and tr2 = 〈V ′

0,V
′
1, · · ·〉, tr1 and tr2 are stutter equivalent if, and only if,

tr1 and tr2 can be partitioned into blocks, so that the variable valuation in the k -th block
in tr1 is the same as those in the k -th block of tr2. Formally, tr1 is stutter equivalent
to tr2 if, and only if, there are two infinite sequences of integers 0 < i0 < i1 < · · ·
and 0 < j0 < j1 < · · · such that for every block k ≥ 0 holds Vsik

= Vsik+1 = · · · =
Vsik+1−1 = V ′

sjk
= V ′

sjk +1
= · · · = V ′

sjk+1−1
. It is known that tr1 satisfies a LTL-X

property if, and only if, tr2 does.
Let φ be such a property, we write L � φ to denote that the labeled transition system

L satisfies φ, i.e. every trace of L satisfies φ.

Lemma 1. Let S = (Var , init ,P) be a system model. For every trace of the concrete
transition system Lc , there is a stutter equivalent trace of the abstract transition system
La and vice versa.

The above lemma can be proved by structural induction or implied from Theorem 1.
Consequently, the following theorem can be proved straightforwardly.

Theorem 2. Let S = (Var , init ,P) be a system model. Let φ be a LTL-X formula
constituted by propositions on Var . LS

c � φ if, and only if, LS
a � φ. �

Refinement Checking. In this setting, we investigate an alternative verification schema
for finite system executions. That is, to verify whether the system satisfies the property
by showing a refinement relationship between the system and a model which models the
property. A variety of refinement relationships have been studied, e.g. trace-refinement,
stable failures refinement and failures/divergence refinement [16]. In order to check re-
finement between two (timed) models, time abstraction must be applied to both models.

Example 5. Given the model presented in Example 1, a natural question is whether ε
and δ are necessary or their values would make a difference. Equivalently, the former
is to ask whether (init , uProcotol) where init = {x �→ −1, ct �→ 0} and uProcotol
defined as follows, trace-refines the original one (init ,Procotol).

uProc(i) = [x = −1]uActive(i)
uActive(i) = update.i{x = i} →

if (x = i) {
cs .i{ct = ct + 1} →
exit .i{ct = ct − 1; x = −1} → uProc(i)

} else {
uProc(i)

}
uProtocol = uProc(0) ‖ uProc(1) ‖ uProc(2);

By showing trace refinement in both directions, we may establish trace equivalence. Or,
the users may change the value of ε and δ check for equivalence. �
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Let L be a LTS. A finite sequence of observable events, e.g. 〈x0, x1, · · · , xm〉, is a trace
of L if, and only if, there exists a finite execution 〈c0, e0, c1, e1, · · · , en , cn+1〉 such that
〈e0, e1, · · · , en〉 
 {τ} = 〈x0, x1, · · · , xm〉 where tr 
 X removes the events in X from
the sequence tr . The set of all traces of L is written as traces(L).

Given a finite trace tr and a configuration c in L, we write c/tr to denote the set
of system configurations that can be reached from c via trace tr or idling. Because of
nondeterminism, multiple configurations can be reached via the same trace. The refusals
are the sets of observable event sets which may be refused.

refusals(c) = {X : PΣ | ∀ e : X � ∃ c′ c e� c′}

where PΣ is the power sets of Σ. The failures of L is defined as follows.

failures(S) = {(tr ,X ) | tr ∈ traces(L) ∧ X ∈ refusals(init/tr)}

If (tr ,X ) is a failure of the model, this means that the model can engage in the sequence
of events recorded by tr , and then refuse to perform any event in X .

Definition 9. Let Si = (Vari , initi ,Pi) where i ∈ {1, 2} be two system models.
S1 trace-refines S2 if, and only if, traces(LS1

c ) ⊆ traces(LS2
c ). S1 refines S2 in the

failures semantics if, and only if, traces(LS1
c ) ⊆ traces(LS2

c ) and failures(LS1
c ) ⊆

failures(LS2
c ).

In the following, we argue that it is sound and complete to show stable failures refine-
ment (i.e. assuming both models are divergence-free) between the abstraction transition
systems in order to show failures refinement between the concrete models.

Theorem 3. Let Si where i ∈ {1, 2} be two models. S1 refines S2 in stable failures
semantics iff traces(LS1

a ) ⊆ traces(LS2
a ) and failures(LS1

a ) ⊆ failures(LS2
a ). �

By Theorem 1, it should be clear that our abstraction preserves failures. Intuitively,
this is because not only observable transitions but also τ -transitions are preserved by
the abstraction. The theorem can then be proved straightforwardly. We remark that it
is clear the failures refinement subsumes trace-refinement and, therefore, it too can be
supported by only checking the abstract transition systems.

5 Implementation and Evaluation

PAT is a self-contained environment for system specification, simulation and verifica-
tion. It supports multi-languages targeting concurrent/distributed systems. The
techniques presented in this paper have been implemented in PAT. PAT verifies LTL
properties using an on-the-fly automata-based approach [35]. PAT verifies refinement
relationship using an on-the-fly simulation checking approach [32]. In the following, we
present the experiments results on two bench models. The models and PAT are available
at http://pat.comp.nus.edu.sg.

Table 1 shows the experiment results on the Fischer’s mutual exclusion algorithm
and a railway control system [38]. The data is obtained with Intel Core 2 Quad 9550
CPU at 2.83GHz and 2GB memory. In both examples, PAT performs reasonably well.
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Table 1. Experiment results

Model Size Property States/Transitions PAT (s)
Fischer 4 �ct ≤ 1 3452/8305 0.22
Fischer 5 �ct ≤ 1 26496/73628 2.49
Fischer 6 �ct ≤ 1 207856/654776 27.7
Fischer 7 �ct ≤ 1 1620194/5725100 303
Fischer 4 �(x = i ⇒ �cs.i) 5835/16776 0.53
Fischer 5 �(x = i ⇒ �cs.i) 49907/169081 5.83
Fischer 6 �(x = i ⇒ �cs.i) 384763/1502480 70.5
Fischer 4 Protocol refines uProtocol 7741/18616 5.22
Fischer 5 Protocol refines uProtocol 72140/201292 126.3
Fischer 6 Protocol refines uProtocol 705171/2237880 3146

Railway Control 4 deadlock-free 853/1132 0.11
Railway Control 5 deadlock-free 4551/6115 0.42
Railway Control 6 deadlock-free 27787/37482 3.07
Railway Control 7 deadlock-free 195259/263641 24.2
Railway Control 8 deadlock-free 1563177/2111032 223.1
Railway Control 4 �(appr .1 → �leave.1) 1504/1985 0.16
Railway Control 5 �(appr .1 → �leave.1) 8137/10862 0.95
Railway Control 6 �(appr .1 → �leave.1) 50458/67639 6.58
Railway Control 7 �(appr .1 → �leave.1) 359335/482498 58.63

It handles 107 states/transition in a few hours, which is comparable to existing model
checkers [17,28]. Further, a simple experiment shows that the computational overhead
of calculating clocks/DBMs is around one third of the overall time.

The data on UPPAAL [20] or RED [36] verifying the same models has been omitted
from the table. Because UPPAAL and PAT are based on a different modeling language,
the results must be taken with a grain of salt. The state graph generated from a PAT
model may contain unnecessary τ -transitions introduced by the compositional process
constructs, e.g. the τ in rule ato3. In hand-crafted UPPAAL models, however, the τ -
transitions may be removed by carefully manipulating the clock guards and grouping
clock guards and events on the same transition. In such a setting, verification of the
UPPAAL is faster (by a factor related to the number of such τ -transitions). However,
our experiment show that if we manually construct a PAT model and a UPPAAL model
with the same state graph, then PAT and UPPAAL have a similar performance.

6 Conclusion

This work is related to specification and verification of real-time systems. Composi-
tional specification based on process algebras for real-time systems has been studied
extensively, e.g. the algebra of timed processes ATP [31,24], CCS + real time [37]
and timed CSP [26,30]. Verification support has been developed for these specifica-
tion language. For instance, a preliminary PVS encoding of Timed CSP was presented
in [5], which rely heavily on user interaction for formal proving of real-time systems.
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In [38], a constraint solving method was proposed to verify CCS + real time. A num-
ber of verification support for ATP were evidenced in [25,6]. The modeling language
Timed Automata [1] gathered more attention later on, especially in terms of mechani-
cal verification. Several model checkers have been developed with Timed Automata (or
a simplified version named timed safety automata [15]) being the core of their input
languages [20,4,34]. The zone abstraction is closely related to works presented in [38],
where a similar compositional abstraction method is discussed for CCS + real time.
The difference is that we use implicit clocks and make the specification fully compo-
sitional. The soundness discussion of our abstraction is inspired by [21]. A remotely
related modeling language is statecharts [13] with clocks, which too is compositional.
This work follows the approach of Timed CSP and significantly extends the notion to
cover a wide range of application domains. We developed a self-contained toolkit PAT
to verify our models. To the best of our knowledge, there are few verification support
for Timed CSP, e.g. the theorem proving approach documented in [5], the translation
to UPPAAL models [8,9] and the approach based on constraint solving [10]. The PAT
model checker is the first dedicated verification tool support for Timed CSP models
adapting advanced verification techniques for real-time systems. In addition, PAT com-
plements UPPAAL with the ability to check full LTL-X property and check refinement
relationship. PAT is remotely related to the Spin model checker (on automata-based LTL
model checking) [17] and the FDR refinement checker (on refinement checking) [28].

We remark that verification on CSP-based models has been traditional based on re-
finement checking [27], e.g. using the FDR checker [28]. One research direction we
are currently investigating is to check timed refinement relationship between two timed
models. The main challenge is that abstraction must be applied separately to two timed
models and yet preserve timed trace/failures equivalence.
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Appendix A: Concrete Operational Semantics

The following are firing rules associated with process constructs other than those dis-
cussed in Section 2. They are extension of those presented previously by Schneider
in [29]. αP ⊆ Σ ∪ {	} is the alphabet of process P ; init(V ,P) is the set of enabled
events, as defined in [29]. In an abuse of notations, we use � to denote any event in
Σ ∪ {τ,	} or a real number.

[ st ]
(V ,Stop) t→ (V ,Stop)

[ sk1 ]

(V ,Skip) 	→ (V ,Skip)

[ sk2 ]
(V ,Skip) t→ (V ,Skip)

[ as1 ]
(V , e → P) t→ (V , e → P)

[ as2 ]
(V , e → P) e→ (e(V ),P)

[ gu1 ]
(V , [b]P) t→ (V , [b]P)

V � b
[ gu2 ]

(V , [b]P) τ→ (V ,P)

(V ,P) x→ (V ′,P ′)
[ ex1 ]

(V ,P | Q) x→ (V ′,P ′)

(V ,Q) x→ (V ′,Q ′)
[ ex2 ]

(V ,P | Q) x→ (V ′,Q ′)

(V ,P) t→ (V ,P ′),
(V ,Q) t→ (V ,Q ′)

[ ex3 ]
(V ,P | Q) t→ (V ,P ′ | Q ′)

(V ,P) x→ (V ′, P ′), x �∈ αQ
[ pa1 ]

(V ,P ‖ Q) x→ (V ′,P ′ ‖ Q)

(V ,Q) x→ (V ′,Q ′), x �∈ αP
[ pa2 ]

(V ,P ‖ Q) x→ (V ′,P ‖ Q ′)
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(V ,P) x→ (V ,P ′), (V ,Q) x→ (V ,Q ′), x ∈ (αP ∩ αQ) ∪ R+
[ pa3 ]

(V ,P ‖ Q) x→ (V ,P ′ ‖ Q ′)

(V ,P) 	→ (V ,P ′)
[ pa4 ]

(V ,P ; Q) τ→ (V ,Q)

(V ,P) t→ (V ′,P ′), 	 �∈ init(V ,P)
[ se1 ]

(V ,P ; Q) t→ (V ′,P ′; Q)

(V ,P) x→ (V ′, P ′), 	 �∈ init(V ,P)
[ se2 ]

(V ,P ; Q) x→ (V ′,P ′; Q)

(V ,Q) �→ (V ′,Q ′),P =̂ Q
[ def ]

(V ,P) �→ (V ′,Q ′)

Appendix B: Abstract Operational Semantics

The following are abstract firing rules associated with process constructs other than
those discussed in Section 2.

[ aki ]

(V ,Skip,D)
	
↪→ (V ,Stop, D↑)

V � b
[ agu ]

(V , [b]P ,D)
τ

↪→ (V ,P ,D↑)

[ aev ]
(V , e{prg} → P ,D)

e
↪→ (prg(V ),P ,D↑)

(V ,P ,D)
x

↪→ (V ′,P ′,D ′)
[ aex1 ]

(V ,P | Q ,D)
x

↪→ (V ′,P ′,D ′ ∧ ι(V ,Q ,D))

(V ,Q ,D)
x

↪→ (V ′,Q ′,D)
[ aex2 ]

(V ,P | Q ,D)
x

↪→ (V ′,Q ′,D ′ ∧ ι(V ,P ,D))

(V ,P ,D)
e

↪→ (V ′,P ′,D ′), e �∈ αQ
[ apa1 ]

(V ,P ‖ Q ,D)
e

↪→ (V ′,P ′ ‖ Q ,D ′ ∧ ι(V ,Q ,D))

(V ,Q ,D)
e

↪→ (V ′,Q ′,D ′), e �∈ αP
[ apa2 ]

(V ,P ‖ Q ,D)
e

↪→ (V ′,P ‖ Q ′,D ′ ∧ ι(V ,P ,D))

(V ,P ,D)
e

↪→ (V ,P ′,D ′), (V ,Q ,D)
e

↪→ (V ,Q ′, D ′′), e ∈ αP ∩ αQ
[ apa3 ]

(V ,P ‖ Q ,D)
e

↪→ (V , P ′ ‖ Q ′,D ′ ∧ D ′′)

(V ,P ,D)
x

↪→ (V ′,P ′,D ′), x �= 	
[ ase1 ]

(V ,P ; Q ,D)
x

↪→ (V ′,P ′; Q ,D ′ ∧ (	 �∈ init(V ,P) ∨ D))

(V ,P ,D)
	
↪→ (V ′,P ′,D ′)

(V ,P ; Q ,D)
τ

↪→ (V ,Q ,D ∧ D ′)

(V ,P ,D)
x

↪→ (V ′,P ′,D ′),Q =̂ P

(V ,Q ,D)
x

↪→ (V ′,P ′,D ′)
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Appendix C: Proof of Theorem 1

Let S = (Var , i ,P) be the model; Lc and La be the concrete and abstract transition
system respectively. By definition, it suffices to construct a binary relation which sat-
isfies the condition. The theorem is proved by structural induction on the all types of
process expressions. The following are the base cases.

– Stop: R = {(i ,Stop) �→ (i ,Stop, true)}. Trivially true.
– Skip: R = {(i ,Skip) �→ (i ,Skip, true), (i ,Stop) �→ (init ,Stop, true)}. Trivially

true.
– Wait [d ]: R = {(i ,Wait [d ]) �→ (i ,Wait [d ], true), (i ,Skip) �→ (i ,Skip, true),

(i ,Stop) �→ (i ,Stop, true)}. The transition (i ,Wait [d ]) τ� (i ,Skip) of Lc corre-

sponds to the transition (i ,Waid [d ], true)
τ
↪→ (i ,Skip, true). Notice that the clock

introduced by function A would be pruned by D. The rest is trivial.

Next, we prove the induction step.

– e → P : (i , e → P) and (i , e → P , true) are bi-similar since (i , e → P) e�
(prg(i),P) (by rule as1 and as2) and (i , e → P , true)

e
↪→ (e(i),P , true) (by

rule aev ), and (e(i),P) ∼ (e(i),P , true) (by hypothesis).
– [b]P : if i � b, then [b]P behaves exactly as P (rule gu2 and rule agu), hence by

hypothesis, (i , [b]P) ∼ (i , [b]P , true). If i �� b, then [b]P behaves exactly as Stop
(rule gu1 and no abstract firing rule), hence (i , [b]P) ∼ (i , [b]P , true).

– P | Q : P | Q behaves either as P or Q , in both cases, by hypothesis (i ,P | Q) ∼
(i ,P | Q , true).

– P ‖ Q : there is one-to-one correspondence on the concrete firing rules (rule pa1,
pa2 and pa3) and the abstract firing rules ((rule apa1, apa2 and apa3)). It is clear
that by hypothesis (i ,P ‖ Q) ∼ (i ,P ‖ Q , true).

– P ; Q . Similarly as above.
– P timeout [d ] Q : let the associated clock be tm. We show that each abstract transi-

tion is possible if, and only if, there is a corresponding concrete transition (i ,P) �
(i ′,P ′). Rule ato1 is applicable if, and only if, tm ≤ d and (i ,P ,D) may perform
a τ -transition. By hypothesis, (i ,P ,D) may perform a τ -transition if, and only if,
(i ,P) does. By rule to2, to3 and to4, a τ of P may happen if, and only if, tm ≤ d .
Therefore, we conclude rule ato1 is applicable if, and only if, there is a correspond-
ing concrete transition. Similarly, we argue that rule ato2 and ato3 are applicable
if, and only if, there is a corresponding concrete transition. This concludes that
(i ,P timeout [d ] Q) ∼ (i ,P timeout Q , true).

– P interrupt [d ] Q : Similarly as above.
– P deadline[d ]: Similarly as above.
– P =̂ Q : By induction.
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Abstract. Operation modes are useful structuring units that facilitate
design of several safety-critical systems such as such as avionic, trans-
portation and space systems. Although some support to the construction
of modal systems can be found in the literature, modelling abstractions
for the formal specification, analysis and correct construction of modal
systems are still lacking.

This paper discusses existing support for the construction of modal
systems and proposes both a formalisation and a refinement notion for
modal systems. A modal system, specified using the proposed abstrac-
tions, can be realised using different specification languages. Comple-
menting the contribution, we define the requirements for an Event-B
model to realise a modal system specification. A case study illustrates
the proposed approach.

1 Introduction

Several systems, many of them safety-critical ones, are modal, i.e., they are de-
scribed using the notion of ‘operation modes’. While there is no widely accepted
definition of operation mode and modal system, several authors use operation
modes to denote the expected system functionality under distinguished working
conditions of the system. A modal system denotes the assembly of a set of such
modes1, related by mode transitions that represent the possible changes in the
working conditions of a system, originated either by environmental changes or
by system evolution.

Given the importance of modal systems, several abstractions for their mod-
elling are provided. Examples of modal systems and a brief survey of modelling
approaches are discussed in Section 2. That efforts not withstanding, there is
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a lack of abstraction to allow the formal specification of modal systems as well
as approaches to analysing and rigorously deriving implementations from these
systems.

In our previous work [1], we introduced modal systems and discussed their
use for structuring dependable systems (focusing specifically on the recovery and
degradation modes).

As one contribution, this paper presents the formal definitions of the abstrac-
tions used to specify modal systems. According to our approach, a modal system
is an abstract specification of the modes as well as mode transitions that may
occur in a system. It does not specify concretely how the system operates while
it is in some specific mode nor how mode transitions occur. It rather imposes re-
quirements on concrete implementations, complementing traditional modelling
but not replacing it. The construction of a concrete model that realizes a modal
system specification can be done using any existing formalism. Therefore it is
important to define when a concrete model realizes a modal system.

Event-B [2] is a state-based formal method closely related to Classical B [3]. It
has been successfully used in several applications, having available tool support
for both model specification and analysis. Another contribution of the paper
are the satisfaction conditions stating when an Event-B model realises a modal
system. A series of proof obligations on the Event-B model are derived from the
modal system to show its satisfaction. The realisation of a modal system using
state-based formal methods is especially interesting since the modal system helps
to structure state-based systems.

A final contribution of this paper is the formalization of the notion of modal
system refinement. A modal system can be step-wise detailed to model system
requirements, allowing an organized way to construct the system and reason
about its properties.

The rest of the paper is structured in 4major parts: first, relatedwork is surveyed
in Section 2; second, modal systems and modal system refinement are formally de-
fined in Sections 3 and 4; then Event-B is briefly introduced and its relation to
modal systems defined in Sections 5 and 6; finally, Section 7 presents a case study
to illustrate and evaluate the ideas introduced in the paper. Section 8 concludes
the paper with a summary and an outline of future extensions of the approach.

2 Related Work

A considerable number of systems are described using the notion of ‘operation
modes’, which serves to structure their operation. These are called ‘modal sys-
tems’. For example, in [4,5] the authors specify and analyse the operation mode
logics of space and avionic systems. In both avionics and space systems, modes
denote phases of a flight and operational status of on-board instruments, among
others. An extension of an Automated Highway System with degraded operation
modes that tolerates several kinds of faults is discussed in [6]. The Steam Boiler
Control [7], a classic case study showing the use of formal methods, is based on the
notion of operation modes. More recent examples of the extensive use of modes for
the specification of transportation and space systems can be found in [8].
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The use of operation modes is very common in real-time systems. Timing
properties are analysed considering operation modes of the system: deadlines to
enter or leave modes, or to perform mode changes are investigated. Modecharts
[9] focus on the specification of real-time properties of mode and mode switching.
The authors propose modes both as partitions of the state space, representing
different working conditions of the system, as well as a way to define control
information in large state machines, imposing structure on the operation of the
system. However, Modecharts lacks adequate support to specifying and reason
about functional properties.

According to [10], also focused on real-time systems, a mode is characterized
by a group of tasks. The system initiates in a given mode, with a specific set
of active tasks. During system evolution or to react to external stimuli, the
system may change modes. This involves stopping and starting tasks, keeping
or changing parameters of tasks. The approach discusses real-time systems and
how to meet deadlines. In such systems, a mode change may result in transient
stages where tasks are deleted/created. Mode changes take time but are atomic -
not iterrupted by other mode changes. The problem of meeting deadlines during
mode changes in real-time systems is also addressed in [11].

Since the notion of operation modes is rather generic and many modal systems
are critical, modelling abstractions to support modal system definitions appeared
recently, which are not focused on real-time aspects. In the Architecture Anal-
ysis & Design Language (AADL) [12] a system is built out of communicating
components and each component may have modes, representing alternative op-
erational states. Modes serve to identify configurations of components. A state
machine abstraction is used, such that a distinct configuration is a modal state
and specific events cause transition among them. A component may have distinct
behaviour according to the current mode.

The Dependability Requirement Engineering Process (DREP) [13] provides a
methodology for developing modal systems using UML diagrams. A system is
considered to offer a set of services and, depending on the mode, different subsets
of services may be available. Switching modes means to change the configuration
of the system such that the profile of offered services changes. Since DREP
is specially focused on the representation of degraded service outcomes, some
modes are specially discussed: normal, degraded, emergency and restricted. The
use of modes to represent degraded system operation is commonly found in the
literature [14].

According to our literature survey, none of the existing approaches discusses
refinement of modal systems. Moreover, most of them are not formal, and thus
can neither be used as a basis for formal development nor to check whether
possible realisations are correct.

3 Modal Systems

As mentioned in the Introduction and observed in Section 2, operation modes
are generally used to denote expected system functionality under distinguished
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working conditions of the system. A modal system consists of the assembly of a
set of such modes related by mode transitions. As a brief example, the Steam
Boiler Control [7] states that the normal mode is characterized by a working
water level sensor and the water level in normal range - in such conditions the
system works to keep the water level (read from sensor) in normal range. In the
event of a detected failure of a water level sensor, the system switches to rescue
mode where the sensor is not trusted - in such conditions the system operates
differently, based on the amount of water pumped into the boiler and amount of
steam generated. The case study in Section 7 discusses a cruise control system
with several modes, each organized in similar way and related by transitions.

We are interested in how to specify, analyse and build correct modal systems.
Instead of proposing a specification method, our approach is to provide abstrac-
tions that allow to formally specify the requirements of modal systems towards
concrete models that realize them. A modal system specification is a comple-
mentary view on the system that does not replace traditional formal modelling.
The construction of a concrete model that realises a modal system specification
can be done using any existing formalism, provided it is possible to demonstrate
that the model satisfies the modal system specification. This is further discussed
in Section 6.

Due to the nature of modal systems, we follow a state-based approach to
propose suitable abstractions. We consider that the state of a model is detailed
enough to allow one to distinguish its different operating conditions and also to
characterize required mode functionality and possible mode switching in terms
of state transitions.

Below we introduce the necessary elements (in definitions 1 and 2) to formally
define modal systems (definition 3).

Definition 1 (State, Invariant, Assumption, Guarantee). Given a set of
variables V ar and a set of values V al, the state of a system is a (total) func-
tion v : V ar → V al. We denote as State the set of all states. Invariant and
assumption are predicates over state variables. A guarantee is a predicate over
V ar × V ar′, where V ar′ = {x′|x ∈ V ar}. It is interpreted over State × State.
We assume that there is a special value called Undef in V al, and the undefined
state (a state in which all values are mapped to Undef) is called Undef .

Invariant is a property preserved at each point in a systems life time. Often it
is interpreted as a characterisation of safe states of a system. A guarantee is
used to express the requirements towards the functionality of a mode, while an
assumption expresses the requirements of a mode, to the rest of the system, to
assure the functionality required by the guarantee. A pair assume/guarantee can
be seen as a contract between the mode and the rest of the system, and is what
defines a mode, as follows.

Definition 2 (Mode). Given an invariant I, a Mode is a pair A/G where A
is an assumption, G is a guarantee and:

– the assumption characterises a non-empty set of states: ∃v · A(v), assuring
that a mode contributes to system functionality;
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– G is feasible: ∃v, v′ · I(v) ∧ A(v) ⇒ G(v, v′). I.e. a mode should permit a
concrete implementation of the required functionality;

– G preserves the invariant I and the mode’s assumption A:
I(v) ∧A(v) ∧G(v, v′) ⇒ I(v′) ∧A(v′).

Given a mode Mi we denote its assumption by Ai and its guarantee by Gi.

Concerning the last condition, it would not make sense if a guarantee would
require the mode to violate the invariant. Also, we postulate that a mode guar-
antee should neither violate its assumption: this helps to clearly separate the
specification of actions that may cause mode switching from those that preserve
current mode, an important feature in modal systems.

Definition 3 (Mode Transition, Modal System). Given a set of modes M ,
a transition t is a pair (i, j), with i, j ∈ M . A transition is denoted by i � j,
and the source i and target j modes of a transition t are denoted by src(t) and
target(t), respectively.

A Modal System is a tuple MSys = (V ar, V al, I,M, T ) where:

1. V ar is a set of variables of the system;
2. V al is the set of possible values for variables;
3. I is an invariant;
4. M is a finite set of modes (Mi = Ai/Gi)i≤n,n∈N ∪ {'M ,⊥M} such that

(a) I(v) ⇒ A1(v) ⊕ · · · ⊕An(v), where ⊕ is the exclusive or operator.
This implies that for each mode a different assumption is declared, that
mode assumptions are exclusive, and that assumptions are valid with
respect to the invariant.

5. T ⊆ M ×M is a set of mode transitions, with the following restrictions:
(a) i � 'M �∈ T ∧ ⊥M � j �∈ T ∧ 'M � ⊥M �∈ T
(b) ∀m ∈ M − {⊥M} · ('M ,m) ∈ T ∗, where T ∗ is the transitive closure of

T .

A modal system is an assembly of several modes (M) related by mode transitions
(T ). Modes 'M and ⊥M are called start and terminal modes, respectively. It is
assumed that a system is only in one mode at a time, represented by condition
4a. The meaning and implications of a system being simultaneously in more
than one mode are not trivial and subject of further study. A mode transition
is an atomic step switching from one source mode i to one destination mode j.
The possible mode transitions of a modal system are defined by T . According to
condition 5b, the start mode 'M is present in any modal system specification.
A transition 'M � Mi defines that Mi is a possible initial mode of the modal
system. Other such transitions may exist defining more than one initial mode.
Some systems may be non-terminating, in which case there will be no mode
transition to the terminal mode ⊥M . Condition 5a states that it is not possible
to switch to a state before initialization or from the terminal mode to another
mode; and during its lifetime a system enters at least one operation mode. Now
we define the behavior of a modal system.
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Definition 4 (Modal System Behaviour). The behaviour of a modal system
MSys = (V ar, V al, I,M, T ), given by a transition system MST = (MState, S0,
→) where MState = {〈m, v〉 |m ∈ {1..n,'M ,⊥M} is a mode index and v is
a state}; the initial state S0 is 〈'M , Undef〉 and the transition relation →:
MState → MState is given by the rules:

start
'M � k ∧Ak(v)
〈'M , Undef〉 → 〈k, v〉

internal
Am(v) ∧Gm(v, v′) ∧Am(v′)

〈m, v〉 → 〈m, v′〉

switching
m � n ∧Am(v) ∧An(v′)

〈m, v〉 → 〈n, v′〉

The state of a system described using operation modes is a tuple 〈m, v〉 where
m is the index of a current operation mode and v is the current system state. In
the following, each of the transition rules is explained.

Initialisation. A system starts executing one of its initialization mode transitions
〈'M , Undef〉 → 〈k, v〉. The transition switches the system on, by establishing
a possible state defined by Ak(v), and places it into some system mode Mk =
Ak/Gk. This behaviour is described by rule start.

Evolution. A modal system may evolve either performing internal or mode switch-
ing transitions. Rule internal states that while the system is in some mode m
the state may evolve to a state v′ satisfying both the corresponding guarantee
Gm(v, v′) and the modes assumption Am(v′). Rule switching states that the sys-
tem may switch modes if there is a defined mode transition originating from the
current mode. Internal and switching transitions compete with each other: at
each step a non-deterministic choice is made among the enabled transitions.

Termination. A system terminates by executing one of terminating mode tran-
sition t � ⊥M . Not every system has to have this transition: a control system
would be typically designed as never aborting. There can be any number of ter-
minating mode transitions. Due to condition 5a, no mode transitions are possible
after ⊥M is reached

4 Refinement of Modal Systems

Modal System behavioural refinement details modes assumption or guarantee or
both. A mode can also be detailed in more than one corresponding modes at the
concrete level. Mode assumption cannot be strengthened during refinement. This
is based on the understanding that an assumption is a requirement of a mode
to its environment. As a system developer cannot assume control over the envi-
ronment of a modelled system, a stronger requirement to an environment may
not be realisable. On the other hand, a weaker requirement to an environment
means that a system is more robust as it would remain operational in a wider
range of environments. Therefore, weakening assumptions during refinement is
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desired. Symmetrically, a mode guarantee cannot be weakened as a mode guar-
antee is understood as a contract of a mode with the rest of a system and the
system environment. In other words, weakening a mode guarantee could violate
expectations of another system part.

Mode transitions must be consistently refined along with refinement of mo-
des. The general rules for refining mode transitions are: (i) a mode transition
present at an abstract model must have at least one corresponding transition at
a concrete model. If a source mode of a transition is split into two new modes,
the transition can be associated with any one of the new modes or both; (ii)
no new transitions may appear relating an abstract mode to another mode; (iii)
new transitions may be defined on concrete modes. Now we formalize the above
discussed notion of behavioural mode refinement.

Definition 5 (Modal System Behavioural Refinement). Given:

– a modal system MSysabs = (V arabs, V alabs, Iabs,Mabs, Tabs); and
– a modal system MSyscnc = (V arcnc, V alcnc, Icnc,Mcnc, Tcnc)

a refinement of MSysabs into MSyscnc is defined by a pair ref = (refM , refT )
of functions refM : Mcnc → Mabs and refT : Tcnc → Tabs such that:

1. refM is total, surjective and preserves the start and terminal modes; and
refT is partial and surjective;

2. an abstract mode assumption is stronger than the disjunction of assumptions
of its concrete modes: ∀m ∈ Mabs ·

∨
∀j·j∈Mcnc∧refM (j)=m Aj ⇐ Am

3. an abstract mode guarantee is weaker than the disjunction of guarantees of
its concrete modes: ∀m ∈ Mabs ·

∨
∀j·j∈Mcnc∧refM(j)=m Gj ⇒ Gm

4. concrete transitions not mapped to abstract ones have the same abstract mode
as source and target (i.e. it was an internal, or non-observable, transition of
an abstract mode): ∀t �∈ dom(refT ) · refM (srcref (t)) = refM (targetref (t))

5. for all transition t ∈ dom(refT ), the squares bellow commute:

Tabs Mabs

dom(Tcnc) Mcnc

� srcabs ��

refT

��

�
srccnc

��

refM

��

=

Tabs Mabs

dom(Tcnc) Mcnc

� targetabs ��

refT

��

�
targetcnc

��

refM

��

=

These conditions mean that: (1) all concrete modes have an abstract mode that
they refine, and all abstract modes are refined by at least one concrete mode; and
all abstract mode transitions are refined into one or more concrete mode transi-
tions; (2) considering variables in the abstract system, concrete modes cover the
same state space as the abstract one – it is not possible to restrict assumptions
by refinement; (3) guarantees of the concrete system may be stronger (more de-
terministic) than the corresponding abstract ones; (4) if a transitions is added
in a refinement step, it must have a non-observable effect on the abstract level
(same source and target modes); (5) the transitions that are mapped to the ab-
stract level (those in dom(Tcnc)) must be consistent with the mapping of source
and target modes.
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Via data refinement, the set v of model variables may change to a new set u
and model invariant I(v) is replaced with a new invariant J(v, u), often called
a gluing invariant. The presence of old variables v in new invariant J allows a
modeller to express a linking relation between the states of concrete and ab-
stract models. Given a gluing invariant J(v, u), data refinement can be added to
definition 5 by extending conditions 2 and 3 respectively as:

∀m ∈ Mabs ·
∨

∀j·j∈Mref∧refM (j)=m J(v, u) ∧Aj(u) ⇐ Am(v)
∀m ∈ Mabs ·

∨
∀j·j∈Mref∧refM (j)=m J(v, u) ∧ J(v′, u′) ∧Gj(u, u′) ⇒ Gm(v, v′)

Proposition 1. Given:

– an abstract modal system MSysabs = (V arabs, V alabs, Iabs,Mabs, Tabs);
– a concrete modal system MSyscnc = (V arcnc, V alcnc, Icnc,Mcnc, Tcnc);
– a refinement ref = (refM , refT ) where refT : Tcnc → Tabs;

any possible sequence of modes described by the transition system of MSyscnc

can be translated into a possible sequence of modes described by the transition
system of MSysabs.

Proof. By definitions 3 and 4 the initial mode of a modal system is 'M , and
by definition 5 refM ('M ) = 'M . So 'M is initial in any sequence of modes
described by both MSysabs and MSyscnc. Now consider the concrete modal
system in any mode mc1, corresponding through refM to an abstract mode ma.
By definition 5, conditions 1 and 4, a mode transition in the concrete level is
either a new transition or refinement of a transition in the abstract level.

Consider the first case: by condition 4 a new transition can be added only
among modes that refine a same abstract mode. In this case, switching from mc1
to mc2, both corresponding through refM to ma, has no effect at the abstract
level - ma is kept.

Consider the second case: in definition 5, by conditions 1, 4 and 5, any mode
transition, which is not new (case above), starting from mc1 refines a transition
starting from ma and any mode transition arriving in mc1 also refines a tran-
sition arriving in ma. This means that mc1 may offer a subset of possibilities
of transitions, compared to ma. However, since refT is surjective (condition 1),
all transitions where ma is involved have to be mapped to the concrete level.
Thus another mode mc2, that have to be refined from ma (due to condition 5),
will be associated to transitions that, together with the transitions where mc1
is involved, are equivalent to the transitions of ma. The switching from mc1 to
mc2, according to the case above, does not correspond to a mode change at the
abstract level because mc1 and mc2 refine the same ma. Thus, the transitions of
mc1 and mc2 correspond the transitions where ma is involved.

Since each refinement does not add new mode switching possibilities, except
those that have no observable effect at the abstract level, and since the tran-
sitions involving concrete modes of a same abstract mode exactly cover the
transitions involving the abstract mode, the observable sequence of modes of a
concrete modal system can be translated to an observable sequence of modes of
the respective abstract modal system by taking each concrete mode mci of the
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sequence and substituting by the corresponding abstract one (refM (mri)) while
eliminating consecutive switchings to the same resulting abstract mode. ��

5 Event-B

Event-B [2] is a state-based formalism closely related to Classical B [3] and
Action Systems [15].

Definition 6 (Event-B Model, Event). An Event-B Model is defined by a
tuple EBModel = (c, s, P, v, I, RI , E) where c are constants and s are sets known
in the model; v are the model variables2; P (c, s) is a collection of axioms con-
straining c and s; I(c, s, v) is a model invariant limiting the possible states of
v s.t. ∃c, s, v · P (c, s) ∧ I(c, s, v) - i.e. P and I characterise a non-empty set of
model states; RI(c, s, v′) is an initialisation action computing initial values for
the model variables; and E is a set of model events.

Given states v, v′ an event is a tuple e = (H,S) where H(c, s, v) is the guard
and S(c, s, v, v′) is the before-after predicate that defines a relation between cur-
rent and next states. We also denote an event guard by H(v), the before-after
predicate by S(v, v′) and the initialization action by RI(v′).

Model correctness is demonstrated by generating and discharging a collection
of proof obligations. The model consistency condition states that whenever an
event on an initialisation action is attempted, there exists a suitable new state
v′ such that the model invariant is maintained - I(v′). This is usually stated as
two separate proof obligations: a feasibility (I(v)∧H(v) ⇒ ∃v′ ·S(v, v′)) and an
invariant satisfaction obligation (I(v)∧H(v)∧S(v, v′) ⇒ I(v′)). The behaviour
of an Event-B model is the transition system defined as follows.

Definition 7 (Event-B Model Behaviour). Given EBModel = (c, s, P, v, I,
RI , E), its behaviour is given by a transition system BST = (BState,BS0,→)
where: BState = {〈v〉|v is a state}∪Undef , BS0 = Undef , and →⊆ BState×
BState is the transition relation given by the rules:

start
RI(v′) ∧ I(v′)
Undef → 〈v′〉

transition
∃(H,S) ∈ E · I(v) ∧H(v) ∧ S(v, v′) ∧ I(v′)

〈v〉 → 〈v′〉
According to rule start the model is initialized to a state satisfying RI ∧ I and
then, as long as there is an enabled event (rule transition), the model may evolve
by firing an enabled event and computing the next state according to the event’s
before-after predicate. Events are atomic. In case there is more than one enabled
event at a certain state, the demonic choice semantics applies. The semantics of
an Event-B model is given in the form of proof semantics, based on Dijkstra’s
work on weakest preconditions [16].
2 For convenience, as in [3], no distinction is made between a set of variables and a

state of a system.
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To refine model M one constructs a new model M ′ that is behaviourally equiv-
alent to the old one. In Event-B, this is achieved by constructing a refinement
mapping between M ′ and M and by discharging a number of refinement proof
obligations.

An extensive tool support through the Rodin Platform makes Event-B espe-
cially attractiveA development environment for Event-B is supported. An inte-
grated Eclipse-based development environment is actively developed, and open
to third-party extensions in the form of Eclipse plug-ins. The main verification
technique is theorem proving supported by a collection of theorem provers, but
there is also some support for model checking3.

6 Modal Systems and Event-B

As already discussed, a modal system defines a class of possible models which
may be specified using established formal methods. Therefore, a consistency
condition is needed such that we can evaluate if a given model satisfies a modal
system. In this section we discuss first such condition and then how to enrich the
set of proof obligations on an Event-B model to show that it satisfies a modal
system specification.

Definition 8 (Modal System Consistency Conditions for an Event-B
Model). Given:

– an Event-B model EBModel = (cE , sE, PE , vE , IE , RIE , EE) and
– a Modal System MSys = (V arM , V alM , IM ,MM , TM )

where V arM ⊆ vE;
– a state projection function fsEtoM(sE) = sM that, given a state sE of the

Event-B Model, constructs the corresponding state sM of the modal system
by projecting the modal system state;

– a predicate projection function fpEtoM(PE) = PM that, given a predicate
over vE constructs the corresponding predicate over V arM ;

EBModel satisfies MSys iff:

1. both specify the same invariant on V arM : fpEtoM(IE) = IM

2. the initialisation is compatible, i.e. the initial state EBModel is compatible
with the assumption of any initial mode of MSys:
fpEtoM(RIE ) ⇒

∨
∀t∈TM ·src(t)=�M

Atarget(t)

3. (a) every transition tE : s1E → s2E of the behaviour of EBModel has a
corresponding transition tM : 〈m1, s1M 〉 → 〈m2, s2M 〉 in the behaviour
of MSys, where fsEtoM(s1E) = s1M ∧ fsEtoM(s2E) = s2M

and tM is either:

3 See Rodin Platform http://www.event-b.org/ (last accessed September 21st 2009).
Rodin Development is supported by European Union ICT Projects DEPLOY (2008
to 2012) and RODIN (2004 to 2007).
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i. an internal transition of MSys, when m1 = m2 or
ii. a switching transition of MSys, when m1 �= m2;

(b) every transition tM : 〈m1, s1M 〉 → 〈m2, s2M 〉 in the behaviour of MSys
has a corresponding transition tE : s1E → s2E of the behaviour of
EBModel with fsEtoM(s1E) = s1M ∧ fsEtoM(s2E) = s2M .

The following proposition states the compatibility between the computations of
the mode system and an Event-B model that realises it, according to Def. 8. Note
that this realisation if not just a refinement relation because, besides requiring
that the event-B model does not introduce new behavior, it requires also that
the event-B model exhibits all possible behaviors defined in the mode system
being realised.

Proposition 2. Given:

– a Modal System MSys = (V arM , V alM , IM ,MM , TM )
where V arM ⊆ vE;

– an Event-B model EBModel = (cE , sE, PE , vE , IE , RIE , EE) and
– function fsEtoM and fpEtoM as in Def. 8 ;

any possible sequence in the transition system of MSys can be translated into a
sequence described by the transition system of EBModel and vice versa.

Proof. Condition 1 of Def. 8 assures that the state space is the same (restricted
to the variables of MSys).

First, we prove that given a transition sequence of MSys, we can generate
a corresponding one for EBModel. Any sequence of MSys must start with a
transition generated by rule start, that generates a state in which the assumption
of some initial mode Ak is true. Since this state is also possible in the EBModel
(because the state spaces are the same) and assumptions of a mode system are
disjoint, condition 2 of Def. 8 ensures that there must be a transition generated
by rule startEvent that leads to this state. From there on, 3b of Def. 8 guarantees
that there is a corresponding transition in the transition system of EBModel
for each transition of MSys.

The proof of the other direction (given a transition sequence of EBModel, a
corresponding one for MSsys can be found) is analogous, using 3a of Def. 8. ��
Based on these consistency conditions, we now define the proof obligations that
are necessary to discharge to show that an Event-B model satisfies a mode
system. The first two proof obligations correspond to the first two consistency
conditions. The other 3 are necessary to ensure condition 3.

Definition 9 (Proof Obligations).

PO1 (Invariant compatibility):

fpEtoM(IE) = IM

PO2 (Initial state compatibility):

fpEtoM(RIE ) ⇒
∨

∀t∈TM ·src(t)=�M

Atarget(t)
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PO3 (Events/Modes compatibility):

∀ Ei = (Hi, Si) ∈ EEBModel · ∀ Mj = Aj/Gj ∈ MMSys·
(Hi(v) ∧Aj(v) ∧ S(v, v′)) ⇒ (1)

( (Aj(v′) ∧Gj(v, v′))∨ (2)
((∃Mk = Ak/Gk ∈ MMSys ·Ak(v′)) ∧ (j � k) ∈ TMSys) ) (3)

PO4 (Event guard/Mode assumption compatibility):

∀ Ei = (Hi, Si) ∈ EEBModel, Hi(v) ⇒
∨

∀Mj=Aj/Gj∈MMSys

Aj(v)

PO5 (Events/Transitions compatibility):

∀ (i � j) ∈ TMSys,Mi = (Ai/Gi),Mj = (Aj/Gj) ∈ MMSys·
∃Ek = (Hk, Sk) ∈ EEBModel ∧ (Hk(v) ∧Ai(v) ∧ Sk(v, v′) ∧Aj(v′))

Condition 3 of Def. 8 relates the transitions of Event-B Model and Modal Sys-
tem. Condition 3a states that any transition in the Event-B Model is a possible
transition of the Modal System (3(a)i or 3(a)ii). This can be shown on the struc-
ture of events. Each event of the model, whenever enabled in a mode, will either:
preserve the modes assumption and guarantee in case of 3(a)i or switch mode
according to existing mode switching transition in case of 3(a)ii. Proof obligation
PO3 has to be discharged to cover this condition. If an event guard and a mode
assumption are true (line 1), the event is possible in that mode. In this case the
event either describes an internal transition (line 2) or a mode transition (line
3). In the first case, both assumption and guarantee of the current mode have
to be preserved by the event. In the second case, the modal system specifies the
possibility of such transition and the event establishes the new assumption.

Since our mode definition allows the invariant to be weaker than the conjunc-
tion of assumptions, it is needed to show that any event is enabled only when
an assumption is, otherwise the event is specifying some behaviour that does
nor match any mode definition. This is assured by discharging proof obligation
PO4.

Condition 3b of Def. 8 states that all defined mode switching transitions have
a corresponding event in the Event-B model. The corresponding proof obligation
is PO5.

Reachability Properties. To completely assure condition 3b, it has to be shown,
additionally to the given proof obligations, that each mode transition in the
Modal System behaviour is possible in the Event-B model behaviour. Proof
obligations to discharge such properties can not be generated in general, they are
specific for each model. They can be assured either by structuring a model such
that these properties can be proven or by using additional analysis techniques
such as model checking.
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7 Cruise Control Case Study

The Case Study is presented in the following parts: first we exemplify modelling
with modes; then we discuss aspects of building an Event-B model to realise a
modes specification; thirdly we exemplify proof obligations on the case study,
and then general comments are made.

7.1 Modelling with Modes

The Cruise Control case study illustrates the proposed technique to the develop-
ment of a simplified version of one of the DEPLOY case studies [8]. The system
assists a driver in reaching and maintaining some predefined speed. In the cur-
rent modelling we assume an idealised car and idealised driving conditions such
that the car always responds to the commands and the actual speed is updated
according to the control system commands.

Figure 1 presents the diagrams of the most abstract modal system for the
cruise control (A) and the resulting models of three successive refinement steps
(B to D). The assumption and guarantee for each mode is given in Figure 2.
The diagrams use a visual notation loosely based on Modechards [9]. A mode
is represented by a box with mode name; a mode transition is an arrow con-
necting two modes. The direction of an arrow indicates the previous and next
modes in a transition. Special modes 'M and ⊥M are omitted so that initiating
and terminating transitions appear connected with a single mode. Refinement is
expressed by nesting boxes. A refined diagram with an outgoing arrow from an
abstract mode is equivalent to outgoing arrows from each of the concrete modes.

At the most abstract level (Figure 1(A)) we introduce mode IGNITION CYCLE

to represent the activity from the instant the ignition is turned on to the instant
it is turned off, represented by transitions ignitionOn and ignitionOff . During
an ignition cycle, its guarantee must be respected independently of operation
by the driver or by the cruise control. The model includes: the state of ignition
(on/off) modelled by a boolean flag ig; the current speed of the car (a mod-
elling approximation of an actual car speed), stored in variable sa; a safe speed
limit speedLimit above which the car should not be; and a safe speed variation
maxSpeedV . No memory is retained about states in the previous ignition cycle.

In the first refinement step IGNITION CYCLE is refined by DRIVER, correspond-
ing to the activity when cruise control is off, and CRUISE CONTROL, when cruise
control is active (Figure 1(B)). on/off interface buttons to activate/deactivate
the cruise control are mapped to transition events ccOn and ccOff . This refine-
ment introduces: the state of cruise control (on/off), modelled by boolean flag
cc; the target speed that a cruise control is to achieve and maintain, represented
by variable st; an allowance interval isp that determines how much actual speed
could deviate from a target speed. The next refinement step (Figure 1(C)) intro-
duces different operating strategies: if the difference between current (sa) and
target (st) speeds is within an acceptable error interval (isp), the cruise control
works to MAINTAIN the current speed. Otherwise, it employs different procedures
to APPROACH the target speed. Switching from DRIVER to CRUISE CONTROL may
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(A) (B)

ignitionOn ignitionOff

IGNITION CYCLE CRUISE CONTROL

ignitionOn ignitionOff

DRIVER

IGNITION CYCLE

ccOn ccOff

(C) (D)

MAINTAIN APPROACH

DRIVER

ccOff

setSt

IGNITION CYCLE

ccOnccOn

CRUISE CONTROL

ignitionOn

readSa

ignitionOff

APPROACH

DRIVE
DEGRADEDNORMAL

ERROR
HAND-
LING

MAINTAIN

DRIVE

readSa

ccOn ccOnccOff

IGNITION CYCLE

ignitionOffignitionOn

fault

setSt

eoIEH

faultfault

eoREH
DRIVER

CRUISE CONTROL

Fig. 1. Cruise control refinement steps (A) to (D)

either establish the assumptions of APPROACH or MAINTAIN , depending on the
difference between st and sa. In either of these two modes the cruise control can
be switched off and the control returned to the driver.

At any time failures of the surrounding components (e.g. airbag activated,
low energy in battery, etc.) may happen and are signalled to the cruise control
system. In the presence of an error, the control is returned to the driver and
handling measures are activated. Errors can be reversible or irreversible. After
being handled, the first ones allow the cruise control to become available again;
the irreversible ones cause the cruise control to become unavailable during the
ignition cycle. According to the last refinement step (Figure 1(D)), when an er-
ror is detected it is registered in an error variable. If an error is signalled in any
of the system modes, the system switches to ERROR HANDLING, where control
is with the driver. Eventually error handling reestablishes DRIVE NORMAL, with
full functionality available, or switches to DRIVE DEGRADED mode where the
cruise control is not available. Note that although the guarantees of these three
concrete modes from DRIVER are the same, they have distinct mode transition
possibilities: in modes DRIVE DEGRADED and ERROR HANDLING the cruise con-
trol cannot be turned on. After finishing error handling the system continues in
either normal or degraded mode.

7.2 Building an Event-B Model to Realise the Modal System

Once a modal system is sufficiently developed (but not necessarily finalised) one
can start building an Event-B model implementing it. The static part of a model,
such as variables and invariant is already elaborated to some degree in a modal
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mode assumption guarantee
IGNITION ignition is on keep speed under limit and (ac/de)celarate safely

CYCLE ig = true (sa < speedLimit) ∧ (|sa′ − sa| < maxSpeedV )
DRIVER ignition cycle assumption ignition cycle guarantee

and cruise control off
ig = true ∧ cc = false (sa < speedLimit) ∧ (|sa′ − sa| < maxSpeedV )

CRUISE ignition cycle assumption ignition cycle guarantee and
CONTROL and cruise control on maintain or approach target speed or

ig = true ∧ cc = true (sa < speedLimit) ∧ (|sa′ − sa| < maxSpeedV )∧
(|sa′ − st′| ≤ isp ∨ |sa′ − st′| < |sa − st|)

APPROACH cruise control assumption and cruise control guarantee and
speed not close to target approach target speed
ig = true ∧ cc = true ∧ (sa < speedLimit) ∧ (|sa′ − sa| < maxSpeedV )∧
|sa′ − st′| > isp (|sa′ − st′| < |sa − st|)

MAINTAIN cruise control assumption and cruise control guarantee and
speed close to target maintain target speed
ig = true ∧ cc = true ∧ (sa < speedLimit) ∧ (|sa′ − sa| < maxSpeedV )∧
|sa′ − st′| ≤ isp (|sa′ − st′| ≤ isp)

DRIVE driver assumption and driver guarantee
NORMAL and no error (and cruise control available)

ig = true ∧ cc = false∧ (sa < speedLimit) ∧
error = false ( |sa′ − sa| < maxSpeedV )

ERROR driver assumption and error driver guarantee and recovery measures
HAND- and handling not finished (and cruise control not available)

ig = true ∧ cc = false∧ (sa < speedLimit) ∧
error = true ∧ eHand = true ( |sa′ − sa| < maxSpeedV )

DRIVE driver assumption and driver guarantee
DEGRADED error and handling finished (and cruise control not available)

ig = true ∧ cc = false∧ (sa < speedLimit) ∧
error = true ∧ eHand = false ( |sa′ − sa| < maxSpeedV )

Fig. 2. Modes assumptions and guarantees

system specification. These are simply copied into an initial Event-B machine.
Next, one has to study a mode diagram to grasp the general architecture of a
system: the modes and the mode transitions. It helps to begin such a study with
the most abstract diagram as it gives the understanding of the relation between
the system modes.

We present excerpts from an Event-B model realising the modal system de-
veloped for the case study. For the most detailed modal specification, we have
the Event-B declaration of variables and invariant on the right. It is merely a
result of mechanically translating definitions from the modal specification into
the Event-B syntax. The referenced context cc ctx contains declarations of sets
and constants such SPEED and speedLimit.

machine cruisecontrol
sees cc ctx
variables ig, cc, sa, st, error
invariant

ig ∈ BOOL
cc ∈ BOOL
sa ∈ SPEED
st ∈ SPEED
st > 0
error ∈ BOOL
eHand ∈ BOOL
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Initially, the invariant has no interesting statements relating to the safety prop-
erties of the system. This is because in a modal system safety properties are
put into the guarantees of individual modes. However, once it comes to the
verification of an Event-B model against a modal specification the proof obliga-
tions (see Def. 9), derived from the condition that an event must satisfy a mode
guarantee, would suggest additional invariants. Hence, the process of showing
modes/Event-B consistency gradually adds more details into an Event-B model
with each additional discharged proof obligation.

In Event-B an initialisation is a special event assigning initial values to all the
model variables. While in a modal specification there is no explicit discussion of
initialisation in terms of state computations, the conditions on all mode transi-
tions originating at 'M result in a rather detailed characterisation of possible
variable initialisations.

For the cruise control case study the initial state should satisfy the invariant
and the assumption of the initiating mode ‘Drive Normal’ and thus the least
constrained initialisation event has the form shown on the right.

initialisation
ig := TRUE ‖ cc := FALSE ‖
sa :∈ SPEED ‖ st :∈ N1 ‖
error := FALSE ‖ eHand :: BOOL

The non-deterministic initialisation of sa (car speed) should raise concerns as it
contradicts our understanding that a car is initially stationary. There is, how-
ever, nothing the mode specification that tells this and it is one of those many
details we have abstracted away in a mode specification. In this case we choose to
strengthen the initialisation event and state that initially sa is zero. Obviously,
such initialisation also satisfies the requirements to an event implementing ini-
tiating mode transitions. The counterpart of the initialisation event is an event
halting the current ignition cycle. This is implemented with an event setting ig
to FALSE:

ignition off = when ig = TRUE then ig := FALSE end

Let us now take a look at how a mode is implemented. There is no ready rule
for generating events from a mode description. This is the part where a designer
has the most freedom within the limits set by the assumption and guarantee of
a mode. There is no limitation on the number of events realising a mode. As
example, we have found it convenient to have two events for mode Drive Normal
Mode, each responsible for either decrease or increase in vehicle speed.

speed up = any si where
si ∈ SPEED
si < maxSpeedV
sa + si < speedLimit
ig = TRUE
cc = FALSE
then

sa := sa + si
end

speed down = any sd where

sd ∈ SPEED
sd < maxSpeedV
sa − sd ∈ SPEED
ig = TRUE
cc = FALSE
then

sa := sa − sd
end
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7.3 Examples of Proof Obligations Generated from the Modal
System

Now we exemplify the application of the proof obligations in Def. 9 to the case
study.

PO1 is discharged trivially because the Event-B model has the same variable
definitions of the modal system and the same invariant.

PO2 reduces to prove that the initialization implies the assumption of the
initial mode which is Drive Normal Mode.

According to PO4, for each of the events we have to demonstrate that it is
enabled only when the mode assumption holds. For instance, for event speed up
we have:

∀si · si ∈ SPEED ∧ si < maxSpeedV ∧
sa + si < speedLimit ∧ ig = TRUE ∧ cc = FALSE =⇒

ig = TRUE ∧ cc = FALSE

According to PO3, it is required to show for each event that it either respects
the mode guarantee (Def. 9, PO3, line 2) or that it switches to another mode
according to a possible mode transition (line 3). Below we show the proof to
event speed up in respecting guarantee of Drive Normal Mode.

∀si · si ∈ SPEED ∧ si < maxSpeedV ∧
sa + si < speedLimit ∧ ig = TRUE ∧ cc = FALSE ∧

sa′ = sa + si ∧ ig′ = ig ∧ cc′ = cc ∧
st′ = st ∧ error′ = error ∧ eHand′ = eHand =⇒

ig′ = TRUE ∧ cc′ = FALSE ∧
(sa′ < speedLimit)∧ |sa′ − sa| < maxSpeedV

According to PO5, for each transition there must be at least one event imple-
menting it. Event ignition off , for instance, is shown to implement transitions
from any mode to ⊥M .

The proof obligations, being formulated as Event-B theorem (extra conditions
on Event-B models), are automatically discharged by the Rodin platform theo-
rem prover. This is also true the rest of proof obligations, coming from modes
and native to Event-B.

7.4 General Comments on the Case Study

From our experience, the construction of an Event-B from a modal specification
is a fairly straightforward process. However, we have also found that, for the
few initial development steps, constructing an Event-B model for each step of a
modal system refinement makes little impact on understanding the system. This
because a mode specification embodies basically the same information (albeit in
a structured manner) as an abstract Event-B model.

On the other hand, in absence of a dedicated tool support for checking modal
specifications, an Event-B implementation provides a verification platform in the
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form of the Rodin toolkit. This also defines how we see the application of the
approach. A developer would start with translating requirements into a high-level
modal specification. More requirements are captured by refining modes and, at
some point, an Event-B model is constructed. For several further steps, modal
and Event-B developments go hand-in-hand until no further detalisation can be
done at the level of a modal specification. This would mark the final transition
into an Event-B model. However, even at that point a modal specification is
not forgotten. The consistency conditions proved at an earlier refinement are
preserved through a refinement chain and thus, even after several refinement
steps, an Event-B model still respects all the properties of a modal specification
from which it was initially derived.

8 Conclusions

A representative class of critical systems employs the notion of operation modes.
While this notion is supported in some languages [9,12], a formal definition for
modal systems as well as approaches for their rigorous construction could not be
found. Following previous work [1], in this paper we formalize modal systems and
modal systems refinement. The use of modes and modal system refinement helps
to organize system properties, to trace requirements into model definition and
helps to impose control structure in the system. Such advantages are specially
welcomed together with a state-based formal method. As a further contribution
of this paper we take Event-B and show how to demonstrate that a model in
Event-B is according to a modal system, i.e. respecting assumptions, guarantees
and mode switchings. Although the satisfaction conditions were shown for Event-
B, the same ideas can be generalised to other formal methods.

Using modal systems refinement and the notion of modal system consistency
for an Event-B model, both defined in this paper, together with the common
Event-B refinement notion, it is possible to build a concrete Event-B model
EBModelC refining an EBModelA and show that it satisfies an MSysC which
refines MSysA. A natural extension of this work is to formally define restrictions
on the refinement starting from EBModelA leading to EBModelC which by
construction satisfies MSysC . Such restrictions would be based on the refinement
from MSysA to MSysC . Additionally, in future work we intend to investigate
the implications of mode concurrency.
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Abstract. Software changes during its lifetime. Likewise, specifications
change during their design time, e.g. by removing, adding or changing
operations. In a refinement-based approach to software design, we more-
over do not deal with a single but with a chain of specifications, related
via refinement. Changes thus need to be consistently made to all speci-
fications in the chain so as to keep the refinement structure.

In this paper, we describe such co-evolutions of specifications in the
context of the formal method Object-Z. More specifically, given a par-
ticular evolution of a specification we show how to construct a corre-
sponding evolution for its refinements. We furthermore formally prove
our co-evolutions to maintain refinement, thus giving rise to a notion of
refinement-preserving co-evolution.

1 Introduction

Today, Model Driven Development (MDD) is advocated as a means for designing
high-quality software. The MDD approach puts models into the center of soft-
ware design and proposes a stepwise development, from a platform-independent
through a platform-specific model to the final implementation. In a formal ap-
proach to MDD, such models are written in a formal specification language, and
the incrementally designed models are related by refinement [5, 3] to guarantee
consistency of lower level with higher level specifications. This approach gives
rise to a chain of specifications with a refinement ordering.

While in use, software changes along with its specifications. Every time a
fault is detected or the requirements of a system change, models as well as
software have to be modified. The ongoing continuous modification of software
or specifications is referred to as evolution. This includes the correction of faults,
the addition of new features, or the change of the architectural structure.

The main challenge evolution imposes on a formal MDD approach lies in
the maintenance of the refinement structure: how can we guarantee that an
evolution of the platform-independent model is consistently reflected in lower
level models, i.e. how can we co-evolve all specifications in the chain while keeping
their refinement relationship? Figure 1 graphically depicts this question for a
chain of just two models: given a specification SpecA, its refinement SpecC (these
two forming our chain) and A’s evolution into ŜpecA, can we construct (from the
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SpecA

refine

��

evolve �� ŜpecA

��
SpecC �� ŜpecC ?

Fig. 1. Challenge: Constructing co-evolutions

known refinement between SpecA and SpecC and the known way of evolution) a
specification ŜpecC out of SpecC , such that ŜpecC is a refinement of ŜpecA?

Co-evolution maintaining some sort of consistency between models has so far
mainly been looked at in the area of UML models. Here, usually two sorts of con-
sistency are distinguished: vertical consistency relates models at different levels
of abstraction whereas horizontal consistency treats different views (or diagrams)
within one model. The preservation of vertical consistency is for instance tack-
led in [25] and [1], horizontal consistency (there, deadlock-freedom) is treated in
[6]. Consistency between models and corresponding implementations has been
investigated in for instance [2, 10]. According to this classification into vertical
and horizontal consistency, our interest is in finding co-evolutions which preserve
vertical consistency, i.e. refinement. We moreover aim at employing our approach
in a formal design with models written in a formal specification language, thus
necessitating a precise definition of consistency (which is given when fixing a
notion of refinement) and a formal proof of preservation for co-evolutions.

In the area of formal methods, an approach aiming at a similar task, however,
with a different technique, has been proposed in [26]. The assumption there is that
the chain of refinements has been constructed using some rules of a refinement cal-
culus. Once the top level specification changes, the chain is tried to be rebuild by
applying the same rules in the same order on the changed specification. In some
cases, this necessitates manual adaptations of the constructed specifications. Sim-
ilar in spirit is the technique proposed in [19] which assumes evolutions to be re-
trenchments and then calculates lower level models, much in the sense of [4] which
calculates refinements. Contrary to these two approaches, we aim at construct-
ing appropriate corresponding evolutions for the lower level models which, when
applied, then - by construction - guarantee preservation of refinement.

In this paper, we thus present a constructive solution to the evolution of
refinement chains that allows for a co-evolution of a specification and its refine-
ments. As specification language we use the object-oriented state-based method
Object-Z [23]. This gives us the necessary formal background and immediately
supplies us with a definition of refinement, i.e. data refinement. The refinement
chains will thus consist of Object-Z models related via data refinement. Given
this setting, we then systematically investigate different forms of evolution (e.g.
new variables, new operations, changes and removal of operations). For every
such evolution we give rules for constructing the corresponding co-evolution on
a refinement. We prove soundness of our construction, i.e. show that every such
co-evolution preserves refinement.
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2 Evolution: An Example

In this section we will provide an example of the evolution of a simple prepaid
cash system, pas can sometimes be found in theme parks. A customer loads
money to a card and can then pay with it. For simplicity, we concentrate on the
payment only in the specification, loading is elided.

PCSA

� (pay)

deposit : N

Init

pay

∆(deposit)
amount? : N

amount? > 0
deposit ≥ amount?
deposit ′ = deposit − amount?

PCSC

� (pay)

loaded , spent : N

loaded ≥ spent

Init

pay

∆(spent)
amount? : N

amount? > 0
loaded − spent ≥ amount?
spent ′ = spent + amount?

Fig. 2. Initial specification PCSA and its refinement PCSC

In the left part of Fig. 2, we see the Object-Z class PCSA (Prepaid Cash
System A) which gives us the high level specification. The class description
consists of a visibility list, a state and an init schema and, here one operation
schema. In the example, the variable deposit defined in the state schema holds the
amount of money which can be spent. The init schema is empty and thus allows
for arbitrary values of deposit . The class furthermore defines one operation pay
modelling the payment. The delta list (∆(deposit)) enumerates all state variables
that can be changed by the operation. The input variable amount? of type
natural number is the amount to be paid. In the lower part of the schema there
are some constraints describing the operation, where primed variables always
refer to the after state of the operation.

Next to the high level specification PCSA, we see one possible refinement
called PCSC . In the following we will also refer to PCSA as the abstract or high
level and to PCSC as the concrete or low level specification. The main difference
between PCSA and PCSC is that for statistical reasons not the deposit but the
money loaded on the system and that spent are being held in different variables.
Operation pay consequently has to be adjusted to this idea. Specifications PCSA
and PCSC are in a refinement relation. To see this, we have to give a formal
definition of refinement.
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As we are dealing with Object-Z specification here, we use data refinement
[5], which is usually proven by downward and upward simulations. Here we
concentrate on downward simulation1. It assumes that two Object-Z classes
A and C are given, which both consist of a state schema, an initialization
schema, and some operation schemas: A = (StateA, InitA, {OpA

i }i∈I ) and C =
(StateC , InitC , {OpC

i }i∈I ), where I is some index set for operations. Note that
I is the same for A and C and serves as an enumeration of the operations which
constitute the interface of the class, i.e. its externally visible operations.

Definition 1. C is a downward simulation of A, A �DS C, if there is a retrieve
relation R between StateA and StateC such that the following holds:

1. Initialization: ∀StateC • InitC ⇒ (∃StateA • InitA ∧ R),
2. Applicability: ∀ i ∈ I , ∀StateA,StateC • R ⇒ (preOpA

i ⇔ preOpC
i ),

3. Correctness: ∀ i ∈ I , ∀StateA,StateC ,StateC ′ •
R ∧OpC

i ⇒ ∃StateA′ • R′ ∧OpA
i .

A downward simulation ensures that every refinement of an abstract specification
can be used as a substitute for the abstract specification. To this end, we need
to show that the concrete specification can simulate the abstract one. Given a
relation R between states of concrete and abstract, the first condition guarantees
that every initial state of the concrete has a corresponding initial abstract state.
The second condition guarantees that concrete and abstract operations are either
both applicable in related states or both not, and condition 3 ensures compatible
results of operation execution. In the definition we use preOp, which denotes
the precondition of the operation Op.

Definition 2 (Precondition [5]). For an operation Op on state State, with
inputs Inps and outputs Outs, its precondition is defined by

preOp = ∃State ′; Outs • Op.

Thus, preOp will be a schema on State and Inps indication for which before-state
and inputs Op provides a possible after-state and output.

In the correctness condition, we use State ′ to describe the after state of an
operation, and use the retrieve relation R on the primed states (R′). Sometimes
we also use the term downward simulation and refinement in the context of
operations. In this case, this term refers to the applicability and correctness of
a single operation.

In the remainder of this paper the class names of the abstract specification
will always end with the letter A (abstract) and the refinements will end with the
letter C (concrete). We will say that a class C refines a class A or is a refinement
of A if there is a downward simulation from A to C . For PCSA and PCSC we
can give a retrieve relation R such that PCSC is a refinement of PSCA:

1 All of our results given later hold in a similar way for upward simulations.
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This relation relates the value of variable deposit to the values of loaded and
spent .

Evolution of the initial specification. The two specifications give us our (two-
elements only) refinement chain. Next, we carry out several evolutions on our
top level specification PCSA as our cash system shall get more features. First
(1) we want to add a bonus system so that the customer can gain bonuses, which
can be used to gain benefits. Thus, in our first evolution we add a variable bonus
and an operation gainbonus to PCSA resulting in the class in Fig. 3.

Fig. 3. Abstract class after first evolution

Specification PCSBonusA is next further evolved in several steps. Figure 4
shows the final abstract specification, the intermediate steps are elided. Using
the bonus extension, it should be possible to pay and gain a bonus simulta-
neously, thus we add a further operation in the next evolution (evolution 2),
which is simply the combination of the operations pay and gainbonus (defined
as payWithBonus =̂ pay ∧ gainbonus). The third change (evolution 3) concerns
the conversion of bonuses into money when a customer has collected at least
10 bonuses. This lets us add an operation convertbonus . Up to here, we have
enhanced the specification with a bonus system, next we want the bonus pay
to be the only pay function. Therefore, we hide the operation pay (evolution 4)
and (evolution 5) expand the definition of payWithBonus so as to have a direct
definition in a schema (not by a conjunction of schemas) and finally remove the
now unused operation pay (evolution 6). The question is now whether and if
yes, how, we can carry out corresponding evolutions on PCSC so as to keep the
initially existing refinement relation between high and lower level specification.
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Fig. 4. Final abstract specification

3 Evolutions for Object-Z

Before answering the question raised in the last section, we will present a sys-
tematic view on evolutions and introduce a notation for evolutions in an object-
oriented context.

Groves [9] has shown that for the Z notation it is sufficient for the description
of evolutions to use schema operators together with the introduction of new
schemas. In contrast to Z, where the basic unit is a schema which has a simple
structure, in Object-Z the basic structure class has a complex interior. Therefore
we have to consider more complex evolutions that consider the different parts
such as state schema, init schema and different operation schemas. Table 1 gives a
summary of evolutions for Object-Z as covered by our approach. These evolutions
can be divided into groups that are distinguished by the sort (e.g. replacement or
modification) and the location of the evolution (e.g. operation or state schema).
The table gives - beside the name and the notation for an evolution - also the
definition in terms of a class tuple and a condition. In the conditions we use
some special helper functions which have been defined by Smith [23] for the
Object-Z semantics: the function vars gives all variables of an operation or state,
functions input and output return a set with the input resp. output variables
of an operation.

To explain just one notation in more depth, consider evolution “Init Conjunc-
tion” on init schemas:

A[Init ∧NInit/Init ] =̂ (State, Init ∧NInit , {Opi}i∈I )
if vars(State) ⊇ vars(NInit)

which defines the evolution to replace (/) schema Init with Init ∧ NInit in an
existing class A = (State, Init , {Opi}i∈I ), i.e. to add a new conjunct to the init
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schema assuming that the variables in the additional conjunct have all been de-
fined in the state schema. In a similar way, modifications to operation schemas
are defined, also allowing for composing an existing operation with a new part
using the Object-Z operators of parallel composition, choice or sequential com-
position. A special type of evolutions are all sorts of refactorings (last line in the
table). Refactorings for instance remove unused parts or change the structure
of specifications while maintaining their behaviour. Often they also take addi-
tional parameters, hence we have added some optional argument 〈para〉 to their
definition. For a more detailed discussion see for instance [22].

Next, we define all of our evolutions of the previous section in terms of this
notation. The first evolution has added a variable and a new operation to PCSA.
This can be seen as conjoining the existing class with a new one containing just
this variable and schema, thus is an application of class evolution “Disjoint
Conjunction” (with class Bonus):

The second evolution has introduced an operation payWithBonus defined as a
conjunction of two existing operations. In Table 1 we find this evolution in the
part New operation as combination of existing operations labelled as Conjunc-
tion. In a similar way, we can describe all evolutions of the example, in summary
we thus carry out the following five evolutions:

PCSBonusA =̂ PCSA � BonusA (1)

PCSBonus0A =̂ PCSBonusA ⊕ {payWithBonus =̂ pay ∧ gainbonus} (2)

PCSBonus1A =̂ PCSBonus0A ⊕ {convertBonus} (3)

PCSBonus2A =̂ PCSBonus1A\{pay} (4)

PCSBonus3A =̂ ExpandOperation(PCSBonus2A, payWithBonus) (5)

PCSBonus4A =̂ Remove(PCSBonus3A, pay) (6)

The last two evolutions are applications of refactorings: first with “Expand Op-
eration” we expand the definition of payWithBonus (hence payWithBonus is the
parameter for this refactoring) to give a direct operation definition and then we
remove the unused operation pay (thus pay is the parameter here).

Having obtained a clear description of the evolutions, we now need to find
out how to carry out the corresponding co-evolution on A’s refinement PCSC .
Figure 5 illustrates the problem: we need to find six concrete specifications which
are refinements of the six abstract specifications constructed by our evolutions.
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PCSA
evolve(1)��

refine

��

PCSBonusA
evolve(2)��

refine

��

PCSBonus1A
evolve(3) ��

refine

��

...
evolve(6)�� PCSBonus4A

refine

��
PCSC

? �� ?
? �� ?

? �� ... ? �� ?

Fig. 5. Overview: Evolutions and missing refinements

4 Constructing Sound Co-evolutions

We have evolved the specification of PCSA several times using the evolutions
described in the last section. In this section we answer the question, how to
construct corresponding evolutions for the concrete level. The thus co-evolutions
obtained should then preserve the refinement relationship between abstract and
concrete specification. To this end, we will in the following provide rules for co-
evolution steps, apply them to the example, and prove that they are refinement-
preserving. The idea is to compute - using a given specification A, its evolution
into Â and its refinement C - a new refinement Ĉ of Â by applying a similar
evolution to C .

Disjoint Class Conjunction. The first evolution step on the abstract specification
in the example was a disjoint class conjunction. The idea now is to simply apply
the same class conjunction on the more concrete specification. This is indeed a
valid co-evolution as can be seen from the following theorem:

Theorem 1. (Class Conjunction) Let A, B and C be Object-Z classes, C a
refinement of A. Then A � B is refined by C � B.

Proof. Because the proof of the upward simulation is similar, we show only
the proof for downward simulations. Let RAC be the retrieve relation for the
downward simulation between A and B and idStateB the identity function on the
state of B . Because of the condition for ’”Disjoint Class Conjunction’” (IA∩IB =
∅∧ IC ∩ IB = ∅) we can choose the retrieve relation between A� B and C � B
as R(A�B)(C�B) = RAC ∧ idStateB and prove that this is a downward simulation:
Initialization:

∀StateC�B • InitC�B

= ∀StateC�B • InitC ∧ InitB

⇒ (∃StateA • InitA ∧ RAC ) ∧ (∃ StateB • InitB ∧ idStateB )
= ∃StateA,StateB • InitA ∧ InitB ∧ RAC ∧ idStateB

= ∃StateA�B • InitA�B ∧ R(A�B)(C�B)

Applicability and Correctness: The idea of the proof is that for each operation
we only have to consider the part of the state the operation works on. Because of
the conditions for ”Disjoint Class Conjunction” these states are disjoint and we
can reduce each operation to its scope. We present as instance of these proofs the
applicability proof of an operation introduced through the class A, the others
are similar:
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∀ i ∈ IA • ∀StateA�B ,StateC�B • R(A�B)(C�B) ⇒ (preOpAB
i ⇔ preOpCB

i )
≡ {IA ∩ IB = ∅ ∧ IC ∩ IB = ∅ and Definition of R(A�B)(C�B)}
∀ i ∈ IA • ∀StateA,StateC • RAC ⇒ (preOpA

i ⇔ preOpC
i ) �

Thus to obtain a valid refinement of PCSBonusA (the abstract specification after
the first evolution), we apply exactly the same evolution to class PCSC resulting
in the new class PCSBonusC :

New operation as conjunction of existing operations. The second evolution con-
cerned the addition of operation payWithBonus described by building a new
operation as the combination of existing ones. In this case we combine the oper-
ations using the Object-Z conjunction operator. Thus, we can write this as (see
(2) in Sec. 3):

A ⊕ {OpA
new =̂ OpA

1 ∧OpA
2 }.

Unfortunately, we cannot just simply do the same kind of construction on the
concrete specification using the corresponding concrete operations since this does
not preserve refinement in every case. The issue of conjunction in Object-Z not
being compositional has already been treated in [15]. In that work, composition-
ality is achieved by modifying the operations in such a way that a refinement
relationship between operations only holds for the cases where conjunction is
indeed compositional. Here, we take a different approach and will instead ex-
plicitly state preconditions on the application of operation conjunction in evo-
lutions. Our setting here is the following: given classes A and C with operations
OpA

1 ,OpA
2 and OpC

1 ,OpC
2 such that

OpA
1 � OpC

1
OpA

2 � OpC
2

we try to achieve OpA
1 ∧OpA

2 � OpC
1 ∧OpC

2 . The correctness of this construction
can depend on the existence of an after state in the conjoined operation. The set
of possible after states can change through refinement (reduction of nondeter-
minism). Therefore, it is possible that there is no after state in the conjunction
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of the refined operations, while there is an after state in the conjunction of ab-
stract operations, or - if both exist - they might not be related by the retrieve
relation. In such cases refinement fails.

One possibility for ruling out these cases is to require that the operations to
be conjoined operate on distinct parts of the state, and this separation is also
reflected by the retrieve relation.

Definition 3. Let A and C be Object-Z classes such that C refines A via the
retrieve relation R. Classes A and C and the refinement are said to be separable
with respect to variable sets V A

1 ,V A
2 and V C

1 ,V C
2 , V A

1 ∩V A
2 = ∅, V C

1 ∩V C
2 =

∅, if

– StateA can be split into StateA
1 ,StateA

2 , i.e. StateA = StateA
1 ∧ StateA

2 , such
that StateA

i contains variables from V A
i only (and similarly for C), i = 1, 2,

and
– R can be split into R1,R2, i.e. R = R1 ∧R2, such that Ri contains variables

from V A
i and V C

i only, i = 1, 2.

A separable refinement effectively consists of two completely disjoint parts, which
are moreover also completely unrelated in the state schemas, i.e. the state in-
variants never relate variables of these sets. Though this seems to be overly
restrictive, it is in fact occuring quite often in evolutions, namely for instance
always after having executed the evolution step disjoint class conjunction (which
is the case in our example). For separable refinements we can allow for operation
conjunction if the operations operate on these distinct parts of the classes.

Theorem 2. (New operation as conjunction of existing operations) Let A and
C be Object-Z classes such that C refines A under R, and let A,C and R be
separable with respect to variable sets V A

1 ,V A
2 and V C

1 ,V C
2 .

Then the class C ⊕{OpC
new =̂ OpC

1 ∧OpC
2 } is a refinement of A⊕{OpA

new =̂
OpA

1 ∧OpA
2 } if

vars(OpA
1 ) ⊆ V A

1 ∧ vars(OpA
2 ) ⊆ V A

2 (i)

vars(OpC
1 ) ⊆ V C

1 ∧ vars(OpC
2 ) ⊆ V C

2 (ii)

Proof. Again we only provide the proof for downward simulation. Let R be the
retrieve relation showing downward simulation. The initialization condition as
well as applicability and correctness for existing operations are straightforward.
Only the new operation needs to be considered. We use Out1, Out2 to denote
the output variables of OpA

1 , OpC
1 and OpA

2 ,OpC
2 , respectively.

Applicability:

∀StateA,StateC • R ⇒ (preOpA
1 ⇔ preOpC

1 ) ∧
(preOpA

2 ⇔ preOpC
2 )

⇒ { Definition of pre}
∀StateA,StateC • R ⇒ ((∃ StateA′

,Out1 • OpA
1 ) ⇔ ∃StateC ′

,Out1 • OpC
1 ) ∧

(∃StateA′
,Out2 • OpA

2 ) ⇔ ∃StateC ′
,Out2 • OpC

2 )
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⇒ { Separability and i, ii }
∀StateA,StateC • R ⇒ ((∃ StateA′

1 ,Out1 • OpA
1 ) ⇔ ∃StateC ′

1 ,Out1 • OpC
1 ) ∧

(∃StateA′
2 ,Out2 • OpA

2 ) ⇔ ∃StateC ′
2 ,Out2 • OpC

2 )
⇒ { take StateA′

:= StateA′
1 ∧ StateA′

2 ,StateC ′
:= StateC ′

1 ∧ StateC ′
2 ,

Out := Out1 ∧ Out2}
∀StateA,StateC • R ⇒ ((∃ StateA′

,Out • OpA
1 ∧OpA

2 ) ⇔
∃StateC ′

,Out • OpC
1 ∧OpC

2 )
⇒ { Definition of pre}
∀StateA,StateC • R ⇒ (pre(OpA

1 ∧OpA
2 ) ⇔ pre(OpC

1 ∧OpC
2 ))

Correctness:

∀StateA,StateC ,StateC ′ • R ∧OpC
1 ⇒ ∃StateA′ • OpA

1 ∧ R′ ∧
R ∧OpC

2 ⇒ ∃StateA′ • OpA
2 ∧ R′

⇒ { Separability and i, ii}
∀StateA,StateC ,StateC ′

,StateA
1 ,StateA

2 | StateA = StateA
1 ∧ StateA

2 •
(R ∧ OpC

1 ⇒ ∃StateA′
1 ,StateA′

2 • ΞStateA
2 ∧ OpA

1 ∧ R′
1) ∧

(R ∧ OpC
2 ⇒ ∃StateA′

1 ,StateA′
2 • ΞStateA

1 ∧ OpA
2 ∧ R′

2)
⇒ {∆(OpA

1 ) ∩ vars(StateA
2 ) = ∅, ∆(OpA

2 ) ∩ vars(StateA
1 ) = ∅,

definition of schema conjunction in Object-Z }
∀StateA,StateC ,StateC ′

,StateA
1 ,StateA

2 | StateA = StateA
1 ∧ StateA

2 •
R ∧ (OpC

1 ∧OpC
2 ) ⇒ ∃StateA′

1 ,StateA′
2 • (OpA

1 ∧OpA
2 ) ∧ R′

1 ∧ R′
2

⇒ { take StateA′
:= StateA′

1 ∧ StateA′
2 }

∀StateA,StateC ,StateC ′ • R ∧ (OpC
1 ∧OpC

2 ) ⇒ ∃StateA′ • (OpA
1 ∧OpA

2 ) ∧ R′

�

Thus, for the second evolution in our example we have to prove the side-conditions
of Thm. 2, which are separability with the constraints (i) and (ii) on the con-
joined operations. These are fulfilled which can be seen by

vars(payA) = {deposit , amount?} ⊆ {deposit , amount?} = V A
1

vars(gainBonusA) = {bonus} ⊆ {bonus} = V A
2

vars(payC ) = {spent , loaded , amount?} ⊆ {spent , loaded , amount?} = V C
1 and

vars(gainBonusC ) = {bonus} ⊆ V C
2 = {bonus}.

As a consequence, we can apply the same evolution on the concrete specification
as given in the class PCSBonus0C (Fig. 6).

New operation. Evolution step (3) of the example is the addition of an operation
with a completely new body. This is an interesting kind of evolution, because
in contrast to the other evolutions in this paper, it requires to fully build a
new operation in the concrete class. For defining the corresponding co-evolution
we follow the approach for calculating refinements of [5], adapting them to our
setting and thus specifically to Object-Z. [5] gives conditions for calculating
operations in a refinement of a Z specification given a concrete state schema
and retrieve relation R. The basic idea is to use the definition of refinement to
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Fig. 6. Class PCSBonus0C

construct suitable concrete operations which are the weakest ones with respect to
the relation R. We have to slightly adapt this result so as to cope with difference
in Z and Object-Z data refinement (non-blocking vs. blocking semantics).

Theorem 3. Let A and C be Object-Z classes such that C is a downward simu-
lation of A under a retrieve relation R, and let OpA

new be an additional operation
for A.

1. For OpC
new defined as

OpC
new =̂ (∃StateA • R∧preOpA

new )∧(∀ StateA • R ⇒ ∃StateA′ • R′∧OpA
new )

we have

A ⊕ OpA
new �ds C ⊕ OpC

new iff preOpA
new ∧ R ⇒ preOpC

new

2. If the retrieve relation R is furthermore functional from concrete to abstract,
then for

OpC
new =̂ ∃StateA; StateA′ • (R ∧ OpA

new ∧ R′)

we get A ⊕ OpA
new �ds C ⊕ OpC

new .

This theorem is a direct corollary of Chapter 5 in [5]. To calculate the refinement
we need the retrieve relation of the refinement of the classes before the evolution:
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The retrieve relation R1 of our example is functional from concrete to abstract,
so we can use the second part of Thm. 3.

convertbonusC =̂ ∃StatePCSBonus1A; StatePCSBonus1A′ • (R ∧
[∆(bonus , deposit) | bonus > 10 ∧

bonus ′ = bonus − 10 ∧
deposit ′ = deposit + 10]

∧ R′)
≡ [∆(bonus , loaded , spent)

| bonus > 10
bonus ′ = bonus − 10
loaded ′ − spent ′ = loaded − spent + 10]

We have thus gained a valid refinement for PCSBonus1A. However, this refine-
ment somehow does not match the intention of the concrete level in which the
value of loaded should always be the total amount of money loaded to the system.
The new operation convertbonus can nondeterministically change the values of
loaded and spent as long as the condition holds, i.e. it could also increase both
loaded and spent . This problem can be solved using an additional refinement
step, which specializes the operation in the intended way. The result is given in
Fig. 7. This additional refinement is possible since we have only calculated the
weakest refinement.

Fig. 7. Class PCSBonus1C

Hide operation. The next evolution is the hiding of an operation, Hide oper-
ation (evolution 4). Hiding removes an operation from the class’ interface. In
the refined specification we simply hide the same operation, resulting in a valid
refinement chain.
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Theorem 4. (Hide Operation) Let A and C be two Object-Z classes such that
C refines A. Then A\{OpA

d } is refined by C\{OpC
d } for d ∈ IA.

Proof. The proof is straightforward as initialisation condition as well as appli-
cability and correctness of the remaining operations are kept. �

Refactoring: Expanding an operation and removing unused operation. The last
evolutions of the cash system were two refactorings: PSCBonus2A is simplified
by expanding schema payWithBonus and finally removing the unused operation
pay. Because refactorings are a well known topic for programming languages
[18, 21, 7] as well as in formal methods [15, 22, 24, 14], we do not discuss the
topic in detail here. For the description of refactorings special notations are used.
For simplicity, we omit these notations and treat refactoring as functions, which
takes some parameters describing the details of the refactoring. The assumption
that we make about refactorings is that they are transformations which keep the
semantics of specifications, i.e. unlike the other evolutions, applying refactorings
only change the internal structure of specifications and never their meaning.
Hence, whenever we apply a refactoring refName on a specification A using
some parameter value para, we get A ≡ refName(A, para) (where A ≡ A′ iff A
refines A′ and A′ refines A).

Due to this propery of refactorings, they can trivially be shown to be refine-
ment-preserving co-evolutions:

Theorem 5. Let A and C be Object-Z classes such that C refines A, and let
refName be the name of a refactoring and para some value for parameters. Then
refName(A, para) is refined by refName(C , para).

Proof
Follows from the fact that A ≡ refName(A, para) and C ≡ refName(C , para). �

In practice, refactorings are often used to prepare a change or enhancement of
software, that is why we have presented them here in the context of evolutions.
As co-evolutions for our example we simply apply the same refactoring with the
same parameter to our concrete specification. This completes the evolutions of
the example section. We have seen how to find a corresponding co-evolution for
the concrete level for every evolution carried out on the abstract specification.

Replacement of operations and composition. Finally we address a common prob-
lem of evolutions which replace existing operations in classes where the oper-
ation is used for the definition of other operations. Since the operation pay
in PSCBonus0A is used by the operation payWithBonus , we would change
payWithBonus if we change pay. Thus, we might implicitly also evolve oper-
ations which use evolved operations. A similar problem occurs when we are
dealing with a specification with several classes, potentially with one class hav-
ing variables which reference objects of other classes. An evolution carried out
in one class might thus affect several classes. Consequently the co-evolution has
to be carried out on several classes in the refinement as well.
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Overview over refinement-preserving evolutions. The co-evolutions of the ex-
ample and the corresponding theorems about preservation of refinement cover
only some of the evolutions in Table 1. However, the other co-evolutions can
be defined and proven correct in a similar way, often using corresponding side-
conditions (if necessary at all). Table 2 gives some co-evolutions together with
the side-conditions for refinement preservation. Some co-evolutions have no side
condition (like Disjoint Conjunction), others can be composed out of other co-
evolutions, e.g. A∧B in Table 2. A∧B can be done by first combining the disjoint
parts: A�B̂ where B̂ is the class B without the operations existing in class A. In
the second step, all remaining operations of B are combined with the operations
of A � B̂ using the evolution modification of existing operations - conjunction.
Thus, the matching co-evolution is also the combination of these steps.

5 Conclusion and Related Work

In this paper we have presented behavior-preserving co-evolutions. In the design
process, the evolution of a specification is used to adapt the model to changing
requirements. Co-evolution is then the joint evolution of two or more specifica-
tions, often related to each other by some notion of consistency. In this paper we
have analyzed the co-evolution of chains of specifications related by refinement.
To this end, we first of all formally defined a number of evolutions of Object-Z
specifications. Using these evolutions we have presented rules for co-evolution
which ensure that refinement relationships are kept.

The evolutions in this paper are not dealing with inheritance. The extension
to evolutions of classes in an inheritance structure is straightforward: leaf classes
(classes which have no subclasses themselves), can be evolved in the described
way, because the definition of semantic functions like vars already cope with
the inheritance and the conditions thus do not change. Other classes, i.e. classes
which have subclasses, can be evolved, if all their subclasses are also evolved in
the same way. The co-evolution needs to be performed for the whole inheritance
subtree simultaneously.

Related Work. We divide this section into two parts: evolutions for formal meth-
ods and, more importantly, co-evolution.

The notion of behavioral subtyping [13, 27] can be seen as a specific kind
of evolution. Behavioural subtyping requires the evolved specification to retain
a certain kind of consistency with the original specification, so as to allow for
substitutability of new for old specification. Hence not all evolutions can be
classified as being behavioural subtypes.

A notion of evolution derived from refinement is retrenchment [20]. Retrench-
ment weakens refinement in a controlled way. Retrenchment does not automat-
ically guarantee preservation of refinement but - as already discussed in the
introduction - can be used to construct co-evolutions for Z.

Co-evolution can address different layers of models or specifications, e.g in
UML, different diagrams can be evolved together, such that they are still
consistent after the co-evolution of these diagrams. Engels et al. [6] analyze
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co-evolutions on UML class and state diagrams. Kosiucznko [11] evolves UML
class diagrams together with contracts given in OCL and lays a special focus on
refactorings. Other works on UML ([25, 1]) focus mainly on consistency after a
change and do not give a set of rules which can be used to express consistency
preserving transformations.

Giese and Wagner [8] reinstall consistency between diagrams after the dia-
grams have been evolved separately. They use triple graph grammars to find the
inconsistencies and a rule based approach to correct the found inconsistencies
using an incremental procedure. Other approaches to reinstall the consistency
are described amongst others in [16, 17].

The co-evolution of an agent-oriented conceptual model (i�)and its represen-
tation in Z is described in [12]. In this work, they establish a mapping between
i� and Z which is then used to analyze the impact of a change in the i� model.
With this information the modeler can then change the Z specification.

A special case of evolution is refactoring which is required to not even change
the behaviour of the specification to which it is applied. Refactorings are also
sometimes considered in a co-evolution context [25]. Since they keep the be-
haviour of specification, refinement preservation is directly achieved.
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Abstract. Coinductive proofs of behavioral equivalence often require
human ingenuity, in that one is expected to provide a “good” relation
extending one’s goal with additional lemmas, making automation of coin-
duction a challenging problem. Since behavioral satisfaction is a Π0

2 -hard
problem, one can only expect techniques and methods that approximate
the behavioral equivalence. Circular coinduction is an automated tech-
nique to prove behavioral equivalence by systematically exploring the
behaviors of the property to prove: if all behaviors are circular then
the property holds. Empirical evidence shows that one of the major
reasons for which circular coinduction does not terminate in practice
is that the circular behaviors may be guarded by a context. However,
not all contexts are safe. This paper proposes a large class of contexts
which are safe guards for circular behaviors, called special contexts, and
extends circular coinduction appropriately. The resulting technique has
been implemented in the CIRC prover and experiments show that the
new technique can prove many interesting behavioral properties fully
automatically.

1 Introduction

Coinduction allows us to prove properties about infinite objects, such as, for ex-
ample, streams of numbers or infinite behaviors of systems. Since many system
specifications manifest infinite behaviors, coinduction is increasingly gaining in-
terest among computer scientists. There are many efforts to mechanize proofs
by coinduction, e.g., [8,18,6,19,13,17] among many others. Circular coinduction
[19] is an automated technique to prove behavioral equivalence by systematically
exploring the behaviors of the property to prove. More specifically, it derives the
behavioral task until one obtains, on every derived path, either a truth or a
cycle. Variants of circular coinduction have been implemented in at least three
systems so far: in a behavioral extension of OBJ called BOBJ [19] (not main-
tained anymore), in Isabelle/HOL for CoCasl [13], and in CIRC [15].

Circular coinduction can be formalized as a three-rule proof system deriving
pairs of the form B ∪ F �� G, where B is the (initial) specification (or initial
hypotheses), F is the set of frozen hypotheses, and G is the set of goals [22]

K. Breitman and A. Cavalcanti (Eds.): ICFEM 2009, LNCS 5885, pp. 639–659, 2009.
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(see also Figure 2). Both the hypotheses and goals are sets of equations. The
frozen hypotheses are written in a box (e.g., e ), with the intuition that those
cannot be used in contextual reasoning. The freezing operation is essential in
proving the soundness of the circular coinduction. We illustrate the circular
coinduction proof system using an intuitive behavioral specification of infinite
streams. We do not assume the reader is familiar with behavioral specifications
and/or coinduction, so our notions are explained in detail. We make use of
conventional algebraic specification notation, briefly explained in Appendix A.
Intuitively, a stream is an infinite sequence x1 :x2 :x3 : . . .. The derivatives ∆ for
streams are given by the operations head, hd , and tail, tl , defined by hd(x :S ) = x
and tl(x : S ) = S . The intuition for the derivatives is that they can be used to
completely “derive” any stream, in that they can eventually reach, or observe,
any of the stream’s elements; derivatives are dual to constructors in inductive
data types. Let STREAM be the specification of streams including besides data
axioms the following operations defined in terms of head and tail:

odd , even : Stream → Stream zip : Stream × Stream → Stream
hd(odd(S )) = hd(S ) hd(zip(S ,S ′)) = hd(S )
tl(odd(S )) = even(tl(S )) tl(zip(S ,S ′)) = zip(S ′, tl(S ))
even(S ) = odd(tl(S ))

Here are the intuitive definitions for the three stream operations above:

zip(x1:x2: . . . , y1:y2: . . .) = x1:y1:x2:y2: . . . ,
odd(x1:x2:x3:x4 . . .) = x1:x3: . . . , and even(x1:x2:x3:x4: . . .) = x2:x4: . . . .

Streams S, S′ are behaviorally equivalent in STREAM, written STREAM � S = S′,
iff STREAM � hd(tl i(S )) = hd(tl i(S ′)) for i = 0, 1, 2, . . .; this corresponds to the
intuition that S and S’ are indistinguishable under experiments using the deriva-
tives. The behavioral equivalence � over streams is a Π0

2 -hard problem [20], i.e.,
it is strictly harder than equational satisfaction; thus, there is no complete pro-
cedure to enumerate all the behavioral truths. Thus, the best we can do is to
approximate behavioral equivalence, which is what circular coinduction does.

Since the circular coinductive deduction �� is sound for the behavioral equiv-
alence � (see, e.g., Theorem 2), it follows that the following proof tree shows
that STREAM � e, where e is the property zip(odd(S ),even(S )) = S :

STREAM ∪
{

zip(odd(S), even(S)) = S
}

�� ∅

STREAM ∪
{

zip(odd(S), even(S)) = S
}

� hd(zip(odd(S), even(S))) = hd(S)

STREAM ∪
{

zip(odd(S), even(S)) = S
}

��
{

hd(zip(odd(S), even(S))) = hd(S)
}

STREAM ∪
{

zip(odd(S), even(S)) = S
}

� tl(zip(odd(S), even(S))) = tl(S)

STREAM ∪
{

zip(odd(S), even(S)) = S
}

��

⎧⎨⎩ hd(zip(odd(S), even(S))) = hd(S) ,

tl(zip(odd(S), even(S))) = tl(S)

⎫⎬⎭
STREAM ��

{
zip(odd(S), even(S)) = S

}
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We give a “bottom-up” description of the above proof tree, as it is built by
CIRC prover [15,14]. In the first step, STREAM � e is reduced to showing that
STREAM∪ { e } �� ∆[e] , where (when e is an equation t = t′, e is t = t′ )

∆[e] = {hd(zip(odd(S ), even(S ))) = hd(S ), tl(zip(odd(S ), even(S ))) = tl(S )}
= {hd(zip(odd(S ),odd(tl(S )))) = hd(S ), tl(zip(odd(S ),odd(tl(S )))) = tl(S )},

where the definition of even was applied. The first equation in ∆[e] is discarded
because it is a consequence of the STREAM axioms, hd(zip(odd(S ), odd(tl(S )))) =
hd(odd(S )) = hd(S ). The derivation of the second equation in ∆[e] is trickier:
first, STREAM� tl(zip(odd(S ),odd(tl(S )))) = zip(odd(tl(S )),odd(tl(tl(S )))) by the
STREAM axioms, then STREAM∪{ e }� zip(odd(tl(S )),odd(tl(tl(S )))) = tl(S) using
the frozen hypothesis e with the substitution θ(S) = tl(S ), and finally by equa-
tional transitivity it follows that STREAM ∪ { e } � tl(zip(odd(S ), odd(tl(S )))) =
tl(S) , so the second equation in ∆[e] is also discarded. Note that freezing is
necessary, otherwise the derivatives in ∆[e] would follow by the congruence rule
from e, no matter whether the property holds or not.

Many interesting properties like the above can be proved by simple circu-
lar coinduction. However, its success strictly depends upon the existence of a
finite set of frozen equations F extending the original set of proof goals that
would allow for the derivation of a circular coinductive proof (in the above
example F is { zip(odd(S ), even(S )) = S }). Unfortunately, the Π2

0 -hardness
result in [20] tells us that for some goals there is no such finite set of frozen
equations.

Let us next discuss an example where the simple circular coinduction system
fails to build a finite proof tree. A technique based on behavioral equivalence
for checking well-definedness of stream operations is proposed in [27]. For in-
stance, the well-definedness of zip follows by defining streams g and h by hd(g) =
hd(h) = 1 (or any other constant), tl(g) = zip(g, g), tl(h) = zip(h, h), and then
showing that STREAM � g = h.1 Circular coinduction fails to find a proof for this
property because the building process of the proof tree does not terminate. We
show that a finite proof tree can be quickly obtained if the additional hypotheses
defined by the special contexts are used (a context is a term with a hole, written
“∗” in this paper; special contexts are defined in Section 4). Two special con-
texts are needed, namely Γ ={zip(∗:Stream,S :Stream),zip(S :Stream,∗:Stream)}.
These contexts together with the frozen hypothesis (corresponding to the initial
goal) yield the following two special hypotheses:

Γ [g=h]={zip(g,S :Stream)=zip(h,S :Stream), zip(S :Stream,g)=zip(S :Stream,h)}.

Here is the proof tree generated by the extended proof system:

1 The authors warmly thank Hans Zantema for supplying this example.
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STREAM ∪ { g = h } ∪ Γ [g = h] �� ∅
STREAM ∪ { g = h } ∪ Γ [g = h] � hd(g) = hd(h)

STREAM ∪ { g = h } ∪ Γ [g = h] ��
{

hd(g) = hd(h)
}

STREAM ∪ { g = h } ∪ Γ [g = h] � tl(g) = tl(h)

STREAM ∪ { g = h } ∪ Γ [g = h] ��

⎧⎨⎩ hd(g) = hd(h) ,

tl(g) = tl(h)

⎫⎬⎭
STREAM �� g = h

The special hypotheses are used in the deduction of tl(g) = tl(h) (fourth line of
the proof tree above) as follows: we have tl(g) = zip(g, g) and tl(h) = zip(h, h) as
defining axioms, and zip(g, g) = zip(h, g) = zip(h, h) follow from Γ [g = h] .

Special contexts must satisfy a certain well-foundedness condition w.r.t.
derivatives (see Definition 5). Not all contexts are special. For example, if odd
(∗:Stream) were special then our proof system with special contexts would be
unsound, as shown by the following scenario inspired from [10]. Let a and b
be specified by hd(a) = hd(b), tl(a) = odd(a) and tl2 (b) = odd(b), and let
odd(b) = a be the goal we want to prove. Applying the third rule, this goal is
added as frozen hypothesis odd(b) = a and the following two new goals are gen-
erated: hd(odd(b)) = hd(a) and tl(odd(b)) = tl(a). The former is eliminated by
the second rule, and the latter is reduced to odd(odd(b)) = odd(a). If we assume
that odd(∗:Stream) is special, and hence the hypothesis odd(odd(b)) = odd(a)
is automatically added, then we would wrongly deduce that odd(b) = a. A
counter-example is given by a = 0 : 0 : 1 : 2∞ and b = 0 : 1 : 0∞.

In this paper we extend the basic circular coinduction proof system with
the ability to use hypotheses defined by special contexts. The result is a more
powerful proof system able to automatically prove a larger class of behavioral
properties than that of [22]. The soundness of the new proof system is proved.
The new system is effective for a given behavioral specification only if the spe-
cial contexts are known. An algorithm that computes the special contexts is
presented. Since the correctness proof and complexity of the algorithm needs
more space, it will be presented in an extended version of this paper.

The techniques presented in this paper have been implemented and extensively
evaluated in CIRC [15,14], a behavioral extension of Full Maude [5] tuned and
optimized for automated and combined inductive and coinductive proving. CIRC
implements the proof rules as reduction rules such that for an input (B,G), it in-
crementally computes F such that B ∪F �� G. CIRC implements a criterion for
automatic detection of special contexts and it can automatically prove both prop-
erties discussed above among many others requiring special contexts ; for example,
if the stream elements come from a commutative ring, CIRC can automatically
prove that zeros = 0:0:0:... and [1] = 1:zeros are zero and unit elements for ×
(the convolution product), the distributivity of × over + of streams, the equiva-
lence of the two definitions for the Thue-Morse stream (see Example 9), the well-
definedness of stream operations, etc. Similar properties are proved for the shuffle
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product of streams [24] and for infinite binary trees [25]. The special contexts are
also useful for proving equivalences of basic process algebra (BPA) processes (see
Example 8). All these and many other examples can be found on and executed
using the online version of CIRC (http://fsl.cs.uiuc.edu/CIRC).

The rest of the paper is structured as follows. Sections 2 and 3 recall from
[22] our proof theoretical approach for behavioral satisfaction and circular coin-
duction, focusing on the role of the freezing operator. Section 4 introduces the
concept of special hypotheses as a closure operator and extends the coinductive
circularity principle to the case when the special hypotheses are used. Then the
concept of special context is introduced and it is shown how it yields a particu-
lar class of special hypotheses. Section 5 presents how the CIRC theorem prover
implements both the circular coinduction and the special contexts. An algorithm
for automatically computing special contexts is briefly presented.

2 Behavioral Specifications and Coinduction

We assume the reader familiar with the basics of many sorted algebraic specifi-
cations. A list of terms and notations used in this paper is given in Appendix A.

A behavioral specification is a pair (B, ∆), where B = (S,Σ,E) is a many
sorted algebraic specification and ∆ is a set of Σ-contexts, called derivatives.
If δ[∗:h] ∈ ∆ then the sort h is called a hidden sort. Let H ⊆ S be the set
of all hidden sorts of B. Remaining sorts are called data, or visible, sorts ; let
V = S−H be their set. A data operator is an operator in Σ taking and returning
only visible sorts; a data term is a term built with only data operators and
variables of data sorts; a data or visible, equation is an equation built with only
data terms. Equation “(∀X) t = t′ if cond” is called a hidden equation iff the
common sort of t and t′ is hidden. We consider only equations whose conditions
are conjunctions of visible equalities. If G is a set of Σ-equations, let visible(G)
and hidden(G) be the sets of G’s visible and hidden equations, respectively.

Sorts are thus split into hidden and visible, so that one can derive terms of
hidden sort until they possibly become visible. Formally, a ∆-experiment is a
∆-context of visible sort, that is: (1) each δ[∗:h] ∈ ∆v with v ∈ V is an experi-
ment, and (2) if δ[∗:h] ∈ ∆h′ and C[∗:h′] is an experiment, then so is C[δ[∗:h]].
Note that we only consider unary contexts, that is, contexts with only one hole
“∗”. If ∆ is clear, we may write experiment for ∆-experiment and context for
∆-context.

Example 1. (Streams) A stream over D is an infinite sequence a1 : a2 : a3 : . . .
whose elements ai belong to D. In this paper we assume that (D,+, ·,not) is a
boolean ring (with 0 the unit for +, 1 the unit for ·, not(0) = 1, not(1) = 0, etc.).
The operations over D can be extended to streams using corecursive equations:

a : s + a′ : s′ = (a + a′) : (s + s′)
a : s× a′ : s′ = (a · a′) : (s× a′ : s′ + [a] × s′), where [a] = a : 0∞
not(a : s) = not(a) : not(s)

If s = a1:a2:a3: . . . and s′ = a′1:a′2:a′3: . . . are streams, then s × s′ is the stream
(a1 · a′1) : (a1 · a′2 + a2 · a′1) : (a1 · a′3 + a2 · a′2 + a3 · a′1) : . . . and is called the

http://fsl.cs.uiuc.edu/CIRC
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convolution product of s and s′. Other stream operations, e.g., zeros, ones, odd,
even, and zip can be defined like in Section 1. For more details on streams and
their properties see, e.g., [23,24,27].

The equational part B of the behavioral specification of streams includes a
hidden sort Stream, for streams, a visible sort Data, for elements of the streams,
the operations over data and streams, and the equations over data (e.g., the
axioms of the boolean ring) and streams. The set of the derivatives ∆ includes
two derivatives: hd(∗:Stream) and tl(∗:Stream). The experiments are of the form
hd(tl i(∗:Stream)), where i ≥ 0. Any specification of streams can be expressed
in terms of the derivatives. For instance, the constant stream zeros and the
convolution product are specified as follows:

hd(zeros) = 0 hd(S × S ′) = hd(S ) · hd(S ′)
tl(zeros) = zeros tl(S × S ′) = tl(S ) × S ′ + [hd(S )] × tl(S ′)

The other operations are specified in a similar way. Let STREAM denote the be-
havioral specification of streams expressed in terms of the derivatives hd and tl.

Example 2. (Processes) We next consider the particular class of processes defined
by basic process algebra (BPA) terms and guarded recursive specifications [9].

The equational specification of the processes is defined by the following items:
– a sort Alph for the atomic actions (the alphabet),
– a sort Pid for the process variables,
– a sort Pexp for the process terms (expressions),
– the constructors for the process terms (we regard subsorting as constructor):

Alph < Pexp Pid < Pexp
+ : Pexp Pexp → Pexp ; : Pexp Pexp → Pexp

which describe the grammar p ::= a | X | p + p | p ; p, where p ranges over
Pexp, a over Alph, and X over Pid,

– a sort Peq together with the constructor =def : Pid Pexp → Peq for the
possibly recursive process equations,

– a sort Set{Peq} together with the constructors

Peq < Set{Peq} , : Set{Peq} Set{Peq} → Set{Peq}

and associativity/commutativity/idempotence axioms for sets of process
equations, plus axioms ensuring that each Pid is defined at most once.
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a) X =def a + a ; a ; X b) A =def a + a ; A ; a

Fig. 1. Two infinitary completed trace equivalent processes
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Fig. 1 shows two processes specified by guarded recursive equations. Recall
that guarded recursive specifications allow a unique solution modulo bisimulation
equivalence [9]. A specification like X =def a + X is not guarded.

The behavioral aspect we consider here is intended to capture the infinitary
completed trace equivalence (see, e.g., [26]) and therefore it is given by two deriva-
tives: { } : Pexp → Pexp, with the intuitive meaning that p{a} is the process
+{q | p a−→ q}, and �? : Pexp → Bool , with the intuitive meaning that an ex-
periment �?(p{a1} . . . {an}) returns true if and only if a1 . . . an is a completed
trace for p, i.e., p a1−→ p1 . . .

an−−→ �.
The problem is that the transition relation is partial and we work with deriva-

tives which are totally defined. For instance, only an a-transition is defined for
a ; p. Since the derivatives are applied on all processes, we have to evaluate ex-
pressions like a ; p{b} with b �= a. Therefore we consider two new process con-
stants: ⊥ with the meaning p

a−→ ⊥ iff there is no q �= ⊥ such that p
a−→ q, and

� to denote the result obtained when we evaluate a{a} (this corresponds to a
successful termination).

We therefore consider only one hidden sort Pexp and the derivatives ∆ =
{∗:Pexp{A:Alph},�?(∗:Pexp)}. The definitions of the process operations in terms
of the derivatives are given by the following equations:

(p + q){a} = p{a} + q{a} a{a} = �
�?(p + q) = �?(p) ∨ �?(q) b{a} = ⊥ if b �= a

(p ; q){a} = p{a} ; q if p �= � ∧ p �= ⊥ �?(a) = false �?(�) = true
�?(p ; q) = �?(p) ∧ �?(q) � ; p = p

X{a} = p{a} for each equation X =def p �{a} = ⊥
�?(X) = false ⊥ ; p = ⊥ ⊥ + p = p

Let BPA denote the above behavioral specification of the basic process algebra.

The theoretical results in this paper will be parametric in a given entailment
relation � on many sorted equational specifications, which may, but is not en-
forced to, be the usual equational deduction relation [12]. For instance, it can
also be the “rewriting” entailment relation (E � t = t′ iff t and t′ rewrite to the
same term using E as a rewrite system), etc. We need though some properties
of �, which we axiomatize here by adapting to our context the general definition
of entailment system as given in [16]. Fix a signature Σ.

Definition 1. If ∆ is a set of Σ-contexts, then a ∆-contextual entailment
system is an (infix) relation � between sets of equations and equations, with:
(reflexivity) {e} � e; (monotonicity) If E1 ⊇ E2 and E2 � e then E1 � e;
(transitivity) If E1 � E2 and E2 � e then E1 � e; (∆-congruence) If E � e
then E � ∆[e]. In the above, E, E1, E2 range over sets of equations and e over
equations; also, we tacitly extend � to relate two sets of equations: E1 � E2 iff
E1 � e for any e ∈ E2. We let E• denote the set of equations {e | E � e}.
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One can use the above to prove many properties of � on sets of equations. Here
are some of them used later in the paper (their proofs are simple exercises):

E � ∅, E � E, if E1 � E2 and E2 � E3 then E1 � E3, if E1 � E2 then
E ∪ E1 � E ∪ E2, if E1 � E2 then E1 � ∆[E2], if E1 � E2 then E1 � E1 ∪ E2, if
E1 ⊇ E2 then E1 � E2, if E � E1 and E � E2 then E � E1 ∪ E2.

We take the liberty to slightly abuse the syntax of entailment and allow one
to write a specification instead of a set of equations, with the obvious meaning:
if B = (S,Σ,E) is a specification and e is a Σ-equation, then B � e iff E � e.
Also, if B = (S,Σ,E) then we may write B• instead of E•.

Definition 2. B behaviorally satisfies equation e, written B � e, iff: B � e if
e is visible, and B � C[e] for each appropriate experiment C if e is hidden. Let ≡
be the set of equations {e | B � e}, called the behavioral equivalence of B. A
set of equations G is behaviorally closed iff B � visible(G) and ∆[G −B•] ⊆ G.

For instance, if (∀X) t = t′ is a stream equation, then STREAM � (∀X) t = t′

if and only if (∀n ≥ 0) STREAM � (∀X) hd(tln(t)) = hd(tln(t ′)). Similarly, if
(∀X) t = t′ expresses a property over processes, then BPA � (∀X) t = t′ if and
only if (∀a1 . . . an) BPA � (∀X)�?((t{a1} . . . {an})) = �?((t ′{a1} . . . {an})). In
both cases we assume that � is the equational deduction relation.

It can be shown that � extends �, i.e., if B � e then B � e (see [22]).
Our approach in this paper is proof-theoretical rather than model-theoretical,
so our notion of behavioral equivalence is defined proof-theoretically rather than
using models like in [11,3,1]; also, our ≡ may contain conditional equations
(of visible conditions). A behaviorally closed set G of equations is one whose
visible equations are provable from B using the base entailment system and
whose equations not provable from B using the base system remain in G when
derived. Hence, the only way an equation can “escape” the derivation process in
a behaviorally closed set is to be proved using the base entailment system �.

Theorem 1. (Coinduction)[22] For any behavioral specification, the behav-
ioral equivalence ≡ is the largest behaviorally closed set of equations.

Theorem 1 is the foundation for the coinduction proving technique. An entailment-
based coinductive proving technique is presented in [22]. The main idea is to find
a set of equations G such that ∆(G) ⊆ G ∪ B•, where E denotes the closure of E
under substitution, symmetry, and transitivity.

Example 3. A proof by coinduction of the stream property S × zeros = zeros is
given by G = {S × zeros = zeros ,S × zeros + S ′ = S ′} and the following equa-
tions showing that ∆(G) ⊆ G = G ∪ STREAM•:

hd(S × zeros) = hd(zeros) (in STREAM•)
hd(S × zeros + S ′) = hd(S ′) (in STREAM•)
tl(S × zeros) = tl(S ) × zeros + [hd(S )] × zeros (in STREAM•)
tl(S ) × zeros + [hd(S )] × zeros = [hd(S )] × zeros (substitution)
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[hd(S )] × zeros = zeros (substitution)
tl(S ) × zeros + [hd(S )] × zeros = zeros (transitivity)
tl(S × zeros) = zeros (transitivity)
tl(S × zeros + S ′) = tl(S ) × zeros + [hd(S )] × zeros + tl(S ′) (in STREAM•)
tl(S ) × zeros + [hd(S )] × zeros + tl(S ′)=[hd(S )]×zeros + tl(S ′) (substitution)
[hd(S )] × zeros + tl(S ′) = tl(S ′) (substitution)
tl(S × zeros + S ′) = tl(S ′) (transitivity)

Example 4. Here we consider a proof by coinduction of a property over processes.
Having the guarded recursive specification U =def a ;V , V =def b ;U , Y =def

a ; b ;Y , then {V = b ;Y, U = Y } together with the equations given below is a
proof by coinduction of U = Y :

�?(U) = �?(Y ) (in BPA•) U{b} = Y {b} (in BPA•)
V {a} = b ;Y {a} (in BPA•) �?(V ) = �?(b ;Y ) (in BPA•)
V {b} = U (in BPA•) b ;Y {b} = Y (in BPA•)
V {b} = b ;Y {b} (transitivity)

As seen in the examples above, coinductive proofs of behavioral equivalence
require human intervention, to provide an appropriate behaviorally closed set of
equations G, which can be thought of as an “approximation” of ≡. It is worth
noting that it is virtually impossible to compute ≡ precisely, because, as shown
in [20], the problem of behavioral satisfaction is a Π0

2 hard problem even for the
particular specification of streams discussed in this paper. Circular coinduction
[21,19,22] automates coinductive proving by dynamically inferring a suitable
behaviorally closed set G including the property(ies) to prove.

3 Circular Coinduction

A key notion in our formalization and even implementation of circular coinduc-
tion is that of a “frozen” equation. The motivation underlying frozen equa-
tions is that they structurally inhibit their use underneath proper contexts;
because of that, they will allow us to capture the above-mentioned informal
notion of “circular behavior” elegantly, rigorously, and generally (modulo a re-
stricted form of equational reasoning). Formally, let (B, ∆) be a behavioral spec-
ification and let us extend its signature Σ with a new sort Frozen and a new
operation - : s → Frozen for each sort s. If t is a term, then we call t the frozen
(form of) t. Note that freezing only acts on the original sorts in Σ, so double
freezing, e.g., t , is not allowed. If e is an equation (∀X) t = t′ if c, then we
let e be the frozen equation (∀X) t = t′ if c; note that the condition c stays
unfrozen, but recall that we only assume visible conditions. By analogy, we may
call the equations over the original signature Σ unfrozen equations. If e is an
(unfrozen) visible equation then e is called a frozen visible equation; similarly
when e is hidden. It is important to note here that if E ∪ F � G for some un-
frozen equation set E and frozen equation sets F and G, it is not necessarily
the case that E ∪ F � C[G] for a context C. Freezing therefore inhibits the free
application of the congruence deduction rule of equational reasoning.
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Recall that, for generality, we work with an axiomatically defined entailment
system in this paper. We next add two more axioms:

Definition 3. A ∆-contextual entailment system with freezing is a ∆-
contextual entailment system extended as above such that:

(A1) If e is a visible unfrozen equation then E ∪ F � e iff E � e;
(A2) E ∪ F � G implies E ∪ δ[F ] � δ[G] for each δ ∈ ∆, equivalent to

saying that for any ∆-context C, E∪F � G implies E∪C[F ] � C[G].

(E ranges over unfrozen equations, and F and G over frozen hidden equations.)

Our working entailment system � is now defined over both unfrozen and frozen
equations. It is easy to check these additional axioms for concrete entailment
relations and to see that they are conservative [22].

Figure 2 defines circular coinduction as a proof system for deriving pairs
of the form B ∪ F �� G, where B is the original behavioral specification, F

·
B ∪ F �� ∅ [Done]

B ∪ F �� G, B ∪ F � e
B ∪ F �� G ∪ { e } [Reduce]

B ∪ F ∪ { e } �� G ∪ ∆[e]

B ∪ F �� G ∪ { e }
, if e hidden [Derive]

Fig. 2. Circular coinduction as a proof system: If
B �� G is derivable then B � G

is a set of frozen hypotheses,
and G is a set of (frozen)
goals. Initially, F is empty
and G is the frozen version
G of the original goals G to
prove. Circular coinduction
iteratively attempts to com-
plete G to a behaviorally
closed set of equations; freez-
ing is necessary to inhibit the
application of the congruence
rule of equational deduction
because, otherwise, the hy-
pothesis of [Derive] would
hold superfluously whenever B ∪ F �� G is derivable, so the proof system
would be unsound. An example circular coinduction proof tree is presented in
Section 1.

Theorem 2. (soundness of circular coinduction)[22] If B is a behavioral
specification and G is a set of equations such that B �� G is derivable using
the proof system in Figure 2, then B � G.

4 Special Hypotheses and Special Contexts

We now show that circular coinduction can be extended by adding “on the fly”
new hypothesis which are sound provided that the derivation process successfully
terminates. The result is a better approximation of the behavioral equivalence.

Definition 4. (special hypotheses) Let (B, ∆) be a behavioral specification
and F a set of hidden equations. Hidden equation e is a special hypothesis for
F iff (∀C)B � C[e] whenever B � C≤[F ], where C≤ is the set of ∆-experiments
D with |D| ≤ |C| (|C| is the depth of C; see Appendix A). The set of special
hypotheses for F , written F≤, is called the special-hypothesis closure of F .
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Therefore, a special hypothesis for a set of hidden equations F is a hidden
equation e which holds under experiment C whenever the equations in F hold
under all the experiments smaller than or equal to C (in depth, not in size). The
intuition for special hypotheses, formalized in Theorem 3, is that they can be
soundly used in reasoning when checking the closure of F under derivatives.

It is easy to check that ·≤ is a closure operator on sets of equations, that is, it
is extensive (F ⊆ F≤), increasing (F1 ⊆ F2 implies F≤

1 ⊆ F≤
2 ), and idempotent

((F≤)≤ = F≤). Also, (≡�H)≤ = ≡�H and ≡�H ⊆ F≤ for any hidden equation
set F , where recall from Section 2 that H is the set of hidden sorts, so ≡�H is
the set of hidden equations e such that B � e; in particular, if F ⊆ ≡�H then
F≤ = ≡�H . We next discuss some examples.

Example 5. If F consists of an equality of two streams a = b, then the following
equations are in F≤: S + a = S + b, a + S = b + S, S × a = S × b, a× S =
b× S, not(a) = not(b), zip(S , a) = zip(S , b), zip(a,S ) = zip(b,S ), where S is
a variable over streams. The equations odd(a) = odd(b) and even(a) = even(b)
are not in F≤. For instance, we cannot deduce hd(tl(odd(a))) = hd(tl(odd(b)))
knowing only hd(a) = hd(b) and hd(tl(a)) = hd(tl(b)) since hd(tl(odd(a))) =
hd(tl(tl(a))) and hd(tl(odd(b))) = hd(tl(tl(b))).

The coinductive circularity principle (Theorem 2 in [22]) states that if F is a
set of hidden equations such that B ∪ F � ∆(F ) then B � F . This coin-
ductive principle is the fundamental result underlying the soundness of circular
coinduction. We next extend it by allowing F≤ instead of F as hypotheses:

Theorem 3. (extended coinductive circularity principle) If F is a set of
hidden equations such that B∪ F≤ � ∆[F ] , then B � F≤ (in fact, F≤ = ≡�H).

Example 6. The additional equation S × zeros +S ′ = S ′ in Example 3 is special
for F = {S × zeros = zeros}, so, by Theorem 3, its frozen form can be used as
hypothesis without including it into the initial set of goals.

In practice, one needs not add all the special hypotheses in F≤, but only those
that help to derive ∆[F ] . Indeed, if SH is a subset of special hypotheses such
that one can derive B ∪ SH ∪ F � ∆[F ] , then Theorem 3 implies B � SH∪F .
In particular, if SH = ∅ then we obtain the coinductive circularity principle
(Theorem 2 in [22]) as a special case. It is worthwhile noticing that no proof
obligation is generated for the added special hypotheses; however, checking the
condition in Definition 4 may not be trivial. In what follows we give a more
effective approach to define useful special hypotheses, based on special contexts.

A first variant of special context was introduced in [10]: a context γ[∗:h] was
called “special” in [10] iff for any experiment C for γ there is some experiment
D with |D| ≤ |C| and B � C[γ[∗:h]] = D[∗:h]. The intuition for special contexts
is therefore that whenever they appear at the bottom of an experiment they can
be eliminated yielding a strictly smaller experiment. This way, again intuitively,
their application on top of goals to prove does not change the behavioral validity
status of those goals, so with our terminology above, their application on goals
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to prove can be added as special hypotheses. In what follows we formalize and
prove this claim. Before we do so, motivated by practical needs, we first extend
the definition of a special context by allowing the right hand side of the equation
above, D[∗:h], to be replaced by any Σ-term whose occurrences of ∗:h appear
only in subterms of the form D[∗:h], where D is an experiment with |D| ≤ |C|.

Definition 5. (special contexts) Context γ[∗:h] is special iff for any exper-
iment C for γ there is some term t such that B � C[γ[∗:h]] = t and each
occurrence of ∗:h in t appears only in a subterm in C≤ (see Definition 4).

Example 7. For the streams specified in Example 1, the following are special con-
texts: ∗:Stream+S :Stream,S :Stream+∗:Stream,∗:Stream×S :Stream, S :Stream×
∗ :Stream, not(∗:Stream), zip(∗:Stream,S :Stream), and zip(S :Stream, ∗:Stream).
Moreover, any combination of these contexts (e.g., (∗:Stream × S :Stream) +
S ′:Stream) is special, as well. In contrast, odd(∗:Stream) and even(∗:Stream) are
not special contexts: e.g., STREAM � hd(tl(odd(∗:Stream)))=hd(tl(tl(∗:Stream)))
and |hd(tl(tl(∗:Stream)))| > |hd(tl(∗:Stream))|.

The problem of detecting special contexts appears to be very hard in its full
generality. However, in practice it turns out that a small number of special con-
texts and compositions of them, like described in Section 5, are sufficient. More
precisely, it tends to suffice to search for special contexts among the operations
already defined by the specification, focusing on particular arguments of them.
For example, one may ask oneself if the operation zip on streams, with focus
on its first argument, is a special context. To check that, all one needs to do is
to show that for any experiment applied to the focused operation, in our case
to zip(∗:Stream,S :Stream), one can, via equational deduction, reduce the over-
all depth to the ∗ variable. In our case, it is easy to see that a generic stream
experiment hd(tln(∗:Stream)) applied to zip(∗:Stream,S :Stream) will eventu-
ally reduce the depth to ∗: if n = 0 one gets hd(∗:Stream) of depth 1, so the
depth is reduced by 1; if n = 1 one gets hd(S :Steam) so there is no ∗ any-
more; if n ≥ 2 then one can apply the two depth-most tl operations on the
zip(∗:Stream,S :Stream) context and obtain, via equational deduction, a new
context zip(tl(∗:Stream), tl(S :Stream)), so two tl operations have been removed
and only one has been inserted above ∗. One can do the same for the other
argument of zip. The above certify that zip is indeed special. While the above is
not a fully general technique to find all the special contexts, it works so well in
practice that we implemented it as integral part of the CIRC prover (Section 5).

From now on, we assume that � is also closed under substitution, that is, if
E � e and θ is a substitution, then E � θ(e). This requirement is reasonable and
satisfied by any entailment system that we are aware of.

Theorem 4. If F is a hidden equation set and γ a special context, γ[F ] ⊆ F≤.

Therefore, special contexts automatically yield a distinguished set of special
hypotheses for any set of hidden equations. We empirically found that these dis-
tinguished special hypotheses are sufficient to prove all the behavioral properties
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that we and other colleagues considered so far, so we next extend our circular
coinductive proof system with special contexts and then prove its soundness.

Let us replace the rule [Derive] in Figure 2 with the more general one below:

B ∪ F ∪ { e } ∪ Γ [e] �� G ∪ ∆[e]

B ∪ F �� G ∪ { e }
, when e is hidden and
Γ is a set of special contexts

[Derivescx]

Theorem 5. (soundness of circular coinduction with special contexts)
If B is a behavioral specification and G is a set of equations such that B �� G
is derivable using the proof system extended with rule [Derivescx], then B � G.

BPA ∪ F3 ∪ Γ3 �� ∅
BPA ∪ F3 ∪ Γ3 � A{a}{a}{a} = X{a}{a}{a}

BPA ∪ F3 ∪ Γ3 �� A{a}{a}{a} = X{a}{a}{a}

BPA ∪ F3 ∪ Γ3 � �?(A{a}{a}) = �?(X{a}{a})

BPA ∪ F3 ∪ Γ3 ��

⎧⎨⎩ A{a}{a}{a} = X{a}{a}{a}
�?(A{a}{a}) = �?(X{a}{a})

⎫⎬⎭
BPA ∪ F2 ∪ Γ2 �� A{a}{a} = X{a}{a}

BPA ∪ F3 ∪ Γ3 � �?(A{a}) = �?(X{a})

BPA ∪ F2 ∪ Γ2 ��

⎧⎨⎩ A{a}{a} = X{a}{a}
�?(A{a}) = �?(X{a})

⎫⎬⎭
BPA ∪ F1 ∪ Γ1 �� A{a} = X{a}

BPA ∪ F3 ∪ Γ3 � �?(A) = �?(X)

BPA ∪ F1 ∪ Γ1 ��

⎧⎨⎩ A{a} = X{a}
�?(A) = �?(X)

⎫⎬⎭
BPA �� A = X

Fig. 3. The proof tree for BPA �� A = X

Example 8. Figure 3 shows the proof tree for BPA �� A = X , where A and X
are defined in Fig. 1. The following notations are used:

F1 = {A = X} F2 = F1 ∪ {A{a} = X{a}} F3 = F2 ∪ {A{a}{a} = X{a}{a}}
Γi = Γ (Fi) for i = 1, 2, 3

where Γ is the closure under context composition of

{p + ∗:Pexp, ∗:Pexp + p, p ; ∗:Pexp, ∗:Pexp ; p}.
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The role of the special hypotheses is explained by showing how A{a}{a}{a} =
X{a}{a}{a} is deduced:

A{a} = � + A ; a (by the axioms in BPA)
� + A ; a = � + X ; a (a special hypothesis in Γ1 ⊂ Γ3)
(� + X ; a){a}{a} = � + X ; a (by the axioms in BPA)
A{a}{a}{a} = � + X ; a (congruence & transitivity)
X{a} = � + a ;X (by the axioms in BPA)
X{a}{a}{a} = � + a ;X (by the axioms in BPA)
A{a}{a}{a} = X{a}{a}{a} (by the axioms in F2 ∪ Γ1 ⊂ F3 ∪ Γ3)

The special hypothesis used above is obtained as follows: we have A = X in F1,
A ; a = X ;a is in Γ1 by using the special context ∗:Pexp ; p, and � + A ; a =
�+X ; a is in Γ1 by using the special context p+∗:Pexp. The behavioral closure
of F3 ∪ Γ3 is an infinite set, hence this example exhibits the ability of the proof
system with special contexts to handle infinite coinductive proofs.

Example 9. In this example we show that two (known) definitions for the famous
Thue-Morse sequence (see, e.g., [2]) are equivalent. The Thue-Morse sequence is
the stream of bits whose n-th bit is computed as follows: 1) write the number n

STREAM ∪ F4 ∪ Γ4 �� ∅
STREAM ∪ F4 ∪ Γ4 � tl2(f (S)) = tl2(zip(S , not(S)))

STREAM ∪ F4 ∪ Γ4 ��
{

tl2(f (S)) = tl2(zip(S , not(S)))
}

STREAM ∪ F4 ∪ Γ4 � hd(tl(f (S))) = hd(tl(zip(S , not(S))))

STREAM ∪ F4 ∪ Γ4 ��

⎧⎨⎩ tl2(f (S)) = tl2(zip(S , not(S)))

hd(tl(f (S))) = hd(tl(zip(S , not(S))))

⎫⎬⎭
STREAM ∪ F4 ∪ Γ4 � tl2(morse) = tl2(altMorse)

STREAM ∪ F4 ∪ Γ4 ��

⎧⎪⎪⎪⎨⎪⎪⎪⎩
tl2(f (S)) = tl2(zip(S , not(S)))

hd(tl(f (S))) = hd(tl(zip(S , not(S))))

tl2(morse) = tl2(altMorse)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
. . .

STREAM ∪ F1 ∪ Γ1 ��
{

f (S) = zip(S , not(S)) , tl(morse) = tl(altMorse)
}

STREAM ∪ F1 ∪ Γ1 � hd(morse) = hd(altMorse)

STREAM ∪ F1 ∪ Γ1 ��

⎧⎨⎩ f (S) = zip(S , not(S))

tl(morse) = tl(altMorse) , hd(morse) = hd(altMorse)

⎫⎬⎭
STREAM ��

⎧⎨⎩ f (S) = zip(S , not(S))

morse = altMorse

⎫⎬⎭
Fig. 4. The proof tree for STREAM �� {morse = altMorse, f (S) = zip(S ,not(S))}
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in binary; if the number of ones in this binary expansion is odd then the n-th
bit is 1; if even then the n-th bit is 0. The first definition we consider is given by

morse = 0 : zip(not(morse), tl(morse)).

The second definition uses an auxiliary function:

altMorse = f (0 : tl(altMorse)) where f (a : s) = a : not(a) : f (s)

Figure 4 shows the (partial) proof tree for STREAM �� morse = altMorse, using
the behavioral definitions expressed in terms of the derivatives head and tail.
The proof of this property requires the following lemma: f (S ) = zip(S ,not(S )).
Since the proof system is able to handle sets of goals, we prove the two properties
simultaneously. Only the special hypotheses generated by the special context
f(∗:Stream) are required. The following notations are used:

F1 = {morse = altMorse} F2 = F1 ∪ {f (S ) = zip(S ,not(S ))}
F3 = F2 ∪ {tl(morse)=tl(altMorse)} F4 = F3 ∪ {tl(f (S ))=tl(zip(S ,not(S )))}
Γi = {f(t) = f(t′) | t = t′ ∈ Fi}, i = 1, . . . , 4

In order to see the role of special hypotheses, we explain how tl2(morse) =

tl2(altMorse) is deduced. We get tl2(morse) = zip(tl(morse),not(tl(morse))) =
f (tl(morse)) and, similarly, tl2(altMorse) = f (tl(altMorse) by the definition of
the operations. The conclusion follows now by applying the special hypothesis
f (tl(morse)) = f (tl(altMorse)) from Γ3. Again, the behavioral closure of F4∪Γ4
is an infinite set, hence this example exhibits the ability of the proof system with
special contexts to handle infinite coinductive proofs.

It is worth noting that the above property can also be proved using the hy-
potheses generated by the special contexts in Example 7.

5 Implementation in CIRC

CIRC implements the circular coinduction proof system by the reduction rules in
Fig. 5. The entailment relation used in CIRC is E ��� (∀X)t = t′ if ∧i ui = vi

iff nf(t) = nf(t′), where nf(t), the normal form of t, is computed as follows:

– the variables of the equations are turned into fresh constants;
– the condition equalities are added as equations to the specification;
– the equations in the specification are oriented and used as rewrite rules.

It is easy to see that the reduction rules [Done], [Reduce], and [Derive] imple-
ment the proof rules with the same names given in Fig. 2. The reduction rules
[Normalize] and [Fail] have no correspondent in the proof system and are used
to ease the user interaction with the prover. A failure does not necessarily mean
that the answer is false. The failure relation E ���� e says that the corresponding
normal forms are different. Since we do not impose any confluence conditions
on the specification, it is possible that the normal forms are different even if the
equation is a �-consequence of the current specification. So, a failing ending of
the algorithm needs (human) analysis in order to know the source of the failure.
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[Done] : (B,F , ∅) ⇒ ·
[Reduce] : (B,F ,G ∪ { e }) ⇒ (B,F , G) if B ∪ F ��� e

[Derive] : (B,F ,G ∪ { e }) ⇒ (B,F ∪ { e },G ∪ { ∆(e) }) if B ∪ F ���� e
and e is hidden

[Normalize] : (B,F ,G ∪ { e }) ⇒ (B,F , G ∪ { nf(e) })

[Fail] : (B,F ,G ∪ { e }) ⇒ fail
if B ∪ F ���� e

and e is visible

Fig. 5. CIRC’s reduction rules implementing the circular coinduction

However, since CIRC includes an implementation of the circular induction (it
will be presented in a different paper), a technique similar to that in [4] can
be used to check if the failed visible equation or the inequality of the two nor-
mal forms is an inductive theorem. More details about CIRC tool can be found
in [14].

The implementation of the system extended with the special contexts is ob-
tained by replacing the implementation of [Derive] with that of [Derivescx]. In
order to make the rule [Derivescx] effective, we have to know which contexts are
special. A less efficient way is to manually prove that some contexts are special
and then include them in the behavioral specification. Though CIRC includes
such a facility, it is more challenging and elegant to automatically detect the
special contexts. If the composition γ1[γ2] of two special contexts γ1 and γ2 is a
special context as well, then it is enough to find a maximal subset Γ of contexts
γ of minimal depth. An example of such Γ is given in Example 7. Knowing Γ ,
there is a very simple and efficient way to implement [Derivescx]: for each special
context γ[∗:h] in Γ , the following equation is added to the specification:

γ[x] = γ[y] if y := x

where the execution of the matching equation y := x instantiates y by matching
y against the normal form of x . However, note that this elegant implementa-
tion works in our case thanks to the matching-in-condition mechanism specific
to Maude. Let us explain how this mechanism works for γ = ∗:Stream + S′ and
S × zeros = zeros . If x �→ S×zeros , then y := x returns y �→ zeros . Replacing
γ, x and y in γ[x] = γ[y] we obtain the desired result: S×zeros+S ′ = zeros+S ′.

The algorithm used by CIRC for computing a set Γ of special contexts of
minimal depth is quite complex and it will be presented in detail, together with
its correctness and complexity, in an extended version. Here we briefly describe
the intuition behind this algorithm.

We first introduce some notation. Let Ctx ◦be the set of contexts f(x1, . . . , xn)
with f ∈ Σhidden , xi = ∗ for exactly one hidden argument, say the ith, and in
the rest xj is a variable, where Σhidden is the set of operations with hidden result
and at least one hidden argument. If C is a ∆-context, then the hidden depth
|C|· of C is defined by |C|· = |C| if C is hidden, and |C|· = |C|−1 if C is visible.
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Thus, the hidden depth of a context is the number of operations in Σhidden on
the path to ∗. If k ≥ −1 and Γ ⊆ Ctx ◦, then a (k, Γ )-composite is defined as:

1. any non-star variable and any constant is a (−1, Γ )-composite;
2. any ∆-context C is a (|C|·, Γ )-composite;
3. if f : v1 . . . vn → v is a data operator or a generalized constant and ti is a

(ki, Γ )-composite for i = 1, . . . , n, then f(t1, . . . , tn) is a (k, Γ )-composite,
where k = max{k1, . . . , kn};

4. if γ ∈ Γ and t is a (k, Γ )-composite, then γ[t] is a (k, Γ )-composite;
5. if C is a ∆-context, t a (k, Γ )-composite with k = −1 or t of the form

g(t1, . . . , tn) with g a generalized constant, then C[t] is a (k, Γ )-composite.

The goal is to find a predicate Comp(C, t) and a set Γ ⊆ Ctx ◦ such that the
predicate Special (Γ ), given by

Special (Γ ) def= (∀γ ∈ Γ )(∀δ ∈ ∆) Comp(δ, γ),

implies that each Γ -context is special. If we have an algorithm for computing
such a predicate Comp(C, t), then the searching for a suitable Γ requires the
evaluation of the predicate for a small set of pairs (C, t). The algorithm imple-
mented in CIRC uses the following definition for Comp(C, t): if C is a ∆-context
and t is a (k, Γ )-composite term, then

Comp(C, t) def= B � C[t] = t′ ∧ t′ is (k′, Γ )-composite ∧ k′ ≤ k + |C|·

If the property Comp(δ, γ) can be algorithmically checked for δ ∈ ∆ and γ ∈ Γ ,
then the property Special (Γ ) can be checked as well. So, the only thing we have
to do is to find a suitable set Γ . Our algorithm starts with Γ = Ctx ◦. For each
δ ∈ ∆ and γ ∈ Γ , it computes the normal form of δ[γ] and it checks if this
normal form is (|δ|·, Γ )-composite (this can be algorithmically checked). If the
answer is yes in all the cases, then Special(Γ ) holds and the algorithm returns
Γ . If the answer is no for some δ and γ, then γ is removed from Γ and the algo-
rithm is applied again over the new set Γ . The algorithm stops when the current
set of contexts becomes empty (no special contexts found) or, as we have seen
above, we have Special(Γ ). The following algorithmic description summarizes
the procedure described above:

check(Γ)
if Γ �= ∅
then for each γ ∈ Γ

for each δ ∈ ∆
if not Comp(δ, γ)
then return check(Γ \ {γ})

return Γ

The special contexts basis Γ for a B is computed by the call check(Ctx◦).
Here is an excerpt of the dialog with CIRC exhibiting how the special contexts

in Example 9 are automatically computed:
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Maude> (set auto contexts on .)
Maude> in stream
__________________________________________

The special contexts are:
*:Stream + V#2:Stream not(*:Stream)
V#1:Stream + *:Stream zip(*:Stream,V#2:Stream)
*:Stream x V#2:Stream zip(V#1:Stream,*:Stream)
V#1:Stream x *:Stream

Setting on the switch auto contexts, CIRC automatically execute the algo-
rithm computing the special contexts for each behavioral theory loaded after
that. Recall that a behavioral theory includes, among other things, the declara-
tion of the derivatives. We see that f (∗:Stream) is not found as a special context.
This is because the definition of f is in terms of hd(∗:Stream), hd(tl(∗:Stream)),
and tl(tl(∗:Stream)). The algorithm can be specialized for such cases and this
specialization can be executed by introducing check scx command:

Maude> (check scx f(*:Stream) using hd(*:Stream) hd(tl(*:Stream))
tl(tl(*:Stream)) .)

f(*:Stream) is a special context

We can use CIRC to see that the special contexts are essential in proving the
properties described in Example 9. We first execute the circular coinduction
without special contexts by setting the switch auto contexts off:

Maude> (set auto contexts off .)
Contexts will not be automatically computed.
Maude> in stream
Maude> (add goal f(S:Stream) = zip(S:Stream, not(S:Stream))
Maude> (add goal morse = altMorse .)
Maude> (coinduction .)
Stopped: the number of prover steps was exceeded.

The output message saying that the number of prover steps was exceeded is a
clue that the algorithm does not terminate (we may check that by increasing the
number of steps). Then we execute the algorithm with the special contexts:

Maude> (set auto contexts on .)
Maude> in stream
Maude> (add goal f(S:Stream) = zip(S:Stream, not(S:Stream)) .)
Maude> (add goal morse = altMorse .)
Maude> (coinduction .)
Proof succeeded.

Number of derived goals: 8
Number of proving steps performed: 41
Maximum number of proving steps is set to: 256

Proved properties:

tl(f(S:Stream)) = zip(not(S:Stream),tl(S:Stream))
tl(morse) = tl(altMorse)
f(S:Stream) = zip(S:Stream,not(S:Stream))
morse = altMorse
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We see that the algorithm successfully terminated this time. Moreover, it displays
the set F of frozen hypotheses it discovered during the proving process. At this
point, the user can display the proof tree like the one in Example 9 by introducing
the command (show proof .) . We encourage the interested reader to try the
examples in this paper, as well as many others, in CIRC using its online web
interface at http://fsl.cs.uiuc.edu/CIRC (all the examples discussed in this
paper are already provided there).

6 Conclusion, More Related Work, and Future Work

The main contributions of this paper are: we introduced special hypotheses as
a closure operator and use it to extend the coinductive circularity principle; we
used special contexts to obtain a distinguished class of special hypotheses, and ex-
tended the circular coinductive proof system with special contexts; we explained
how the circular coinductive proof system and its extension with special contexts
are implemented in CIRC; we described an algorithm which automatically finds
special contexts in a given specification (the algorithm is already implemented in
CIRC); we showed on non-trivial examples that the special contexts are useful.

The proof system presented in this paper and its implementation in CIRC has
its roots in the circular coinductive rewriting algorithm given in [10] and early
implemented in the BOBJ system [19]. An advantage of our proof theoretical
approach discussed in this paper, which extends with special contexts the one
we previously proposed in [22], is that it can be relatively easily combined with
proof plans and proof critics similar to those defined in [7]. A part of them are
already supported in the current version of CIRC [14].

An important aspect of behavioral specifications, that we did not discuss in
this paper, is that of well-definedness. An ingenious method for checking well-
definedness of behavioral specifications over streams that follow a common core-
cursive specification style is given in [27], using a reduction to ordinary termina-
tion, which can further be checked using off-the-shelf termination tools. It would
be interesting to explore the relationship between behavioral well-definedness
and behavioral equivalence, and to understand under what conditions one could
reduce behavioral equivalence to termination; an incipient discussion on this
topic can be found in [27].

A closely related topic is observational logic; see [3] for a recent reference. In
particular, our proof theoretic definition of the behavioral entailment relation
� is reminiscent of the infinitary proof system defined in [3]. We believe that
our circular coinductive proof system can be seamlessly adapted to observational
logic and also that CIRC can be used as is to do sound observational logic proofs.

Our next goal is to incorporate case analysis into our automated behavioral
prover, CIRC, both at the level of its underlying proof system and within its
algorithm that computes special contexts. Finally, even though CIRC provides
support for combined inductive and coinductive proving, the proof theoretical
foundations for circular induction still need to be elaborated in detail.

http://fsl.cs.uiuc.edu/CIRC
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13. Hausmann, D., Mossakowski, T., Schröder, L.: Iterative circular coinduction for
CoCasl in Isabelle/HOL. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp.
341–356. Springer, Heidelberg (2005)

14. Lucanu, D., Goriac, E.-I., Caltais, G., Roşu, G.: CIRC: A behavioral verification
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A Glossary

Signature. A signature Σ over the set of sorts S is a (S∗ × S)-indexed set of
operation names. If σ ∈ Σw,s then w ∈ S∗ is the arity of σ and s is the sort
of σ; we typically write σ : w → s instead of σ ∈ Σw,s when Σ is understood;

Constant = an operation whose arity is empty and written as σ : → s.
Variable = a symbol x having associated a sort s and often written as x:s.
Σ-term. A Σ-term with variables in X is inductively defined as follows: any

variable x:s of sort s is a term of sorts s; any constant σ : → s in Σ is a
term of sorts s; if σ : s1 . . . sn → s is an operation name in Σ, ti is a term of
sort si for each i ∈ {1, . . . , n}, then σ(t1, . . . , tn) is a term of sort s.

Ground term = a term without variables.
Σ-equation = an expression e of the form (∀X) t = t′ if

∧
i∈{1,...,n} ui = vi

with t, t′, ui, and vi Σ-terms with variables in X for all i ∈ {1, . . . , n}; the
two terms appearing in any equality in an equation, that is the terms t, t′

and each pair ui, vi for each i ∈ {1, . . . , n}, have, respectively, the same sort.
When n = 0 we call the equation unconditional and omit the condition (i.e.,
we write it (∀X) t = t′). The sort of e is the common sort of t and t′.

Σ-context (for sort s) = a Σ-term C which has one occurrence of a distin-
guished variable ∗:s of sort s; we may write C[∗:s] instead of just C.

|C| = the depth of the context C: |∗:s| = 0 and |C[σ[∗:s]]| = |C| + 1, σ ∈ Σ.
C[e]. If C[∗:s] is a context and e is an equation (∀X) t = t′ if c of sort s,

then C[e] is the equation (∀X ∪ Y )C[t] = C[t′] if c, where Y is the set of
non-star variables occurring in C[∗:s]. When C is not a context (it does not
include the star variable ∗), C[e] is the identity equation (∀X)C = C. So, a
Σ-context C induces a partially defined equation transformer e �→ C[e].

C[E]. If C a context and e an equation, then C[E] = {C[e] | e ∈ E}.
Cs. If C is a set of contexts, Cs denotes all the contexts of sort s in C.
C[e]. If C is a set of contexts and e an equation, then C[e] = {C[e] | C ∈ C}.
C[E]. If C is a set of contexts and E a set of equations, then C[E] =

⋃
e∈E C[e].

Algebraic specification or simply a specification, is a triple (S,Σ,E), where
S is a set of sorts, Σ is a signature over S, and E is a set of Σ-equations.
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Abstract. We present the integration of refinement method of VSE verification
tool, successfully used in industrial applications, in the Heterogeneous Tool Set
HETS. The connection is done via introducing the dynamic logic underlying VSE
and two logic translations in the logic graph of HETS. Thus the logic-independent
layers of HETS are not modified and its proof management formalism can be
applied to VSE specifications.

1 Introduction

Heterogeneous specification becomes more and more important because complex sys-
tems are often specified using multiple viewpoints, involving various formalisms. More-
over, a formal software development process may lead to a change of formalism during
the development. However, current research in integrated formal methods only deals
with ad-hoc integrations of different formalisms.

The Heterogeneous Tool Set HETS [21,19], developed at DFKI Bremen, is a tool
for heterogeneous multi-logic specification, interfacing various theorem provers, model
checkers and model finders. The specification environment Verification Support Envi-
ronment (VSE) [3], developed at DFKI Saarbrücken, provides an industrial-strength
methodology for specification and verification of imperative programs.

We want to combine the best of both worlds by establishing a connection between
the VSE prover and the HETS proof management. For VSE, this brings additionally
flexibility: VSE specifications can now be verified not only with the VSE prover, but
also with provers like SPASS [25] and Isabelle [23] which are interfaced with HETS. On
the other hand, HETS benefits from VSE’s industrial experience, including a practical
relation between specification and programming languages together with the necessary
poof support. Being interactive the VSE prover offers enough flexibility to tackle even
challenging proof obligations, while a set of strong heuristics based on symbolic exe-
cution provide automation to keep the proof effort still small.

In order to understand the specific way of integrating HETS and VSE, one needs
to understand the philosophy behind HETS. The central idea of HETS is to provide
a general integration and proof management framework. One can think of HETS act-
ing like a motherboard where different expansion cards can be plugged in, the expan-
sion cards here being individual logics (with their analysis and proof tools) as well
as logic translations. Of course, a tool like VSE provides analysis and proof tools
for a specific logic, but not yet in a form that can directly be plugged into the HETS

motherboard. The challenge hence is to encapsulate VSE in an expansion card that is
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compatible to the HETS motherboard. The benefit of doing this is that for both verifi-
cation and refinement, we can use the general proof management mechanisms of the
HETS motherboard, instead of the specialised refinement tools hard-wired into VSE.
Moreover, the HETS motherboard already
has plugged in a number of expansion cards
(e.g., the theorem provers Isabelle, SPASS
and more, as well as model finders) that can
be used for VSE as well. The challenge is
that typically, tools that shall be plugged
into the HETS motherboard are not compat-
ible with HETS expansion slots. Often, this
is a matter of writing a suitable wrapper, but
sometimes, also the specification of the ex-
pansion slot has to be enhanced. Of course,
such enhancements should only be done for
very good reasons — otherwise, one will end up with slots containing hundreds of spe-
cial pins. Since VSE provides a special notion of refinement, one is tempted to enhance
the specification of the expansion slot in this case. However, we will see that we can do
without such an enhancement.

Related work includes ad-hoc integration of (tools for) formal methods, see e.g. the
integrated formal methods conference series [17], and integrations of decision proce-
dures, model checkers and automated theorem provers into interactive theorem provers
[10,18]. However, these approaches are not as flexible as the HETSmotherboard/expan-
sion card mechanism. In many approaches, the interfaces for these integrations are ad-
hoc and not re-used in many different contexts. Moreover, we will see in Sect. 6 below
that the use of logic translations as first class citizens in the expansion card mecha-
nism is crucial for integrating VSE and HETS in a modular way. This clearly is a novel
feature of our approach.

The paper is organised as follows: Section 2 contains an informal description of
HETS and its foundations. In particular, the notions of institution and institution comor-
phism can be imagined as the specification of two different types of expansion slot on
the HETS motherboard. Section 3 presents the VSE methodology, and in Section 4, its
underlying dynamic logic is (for the first time) organised as an institution, aka as an
expansion card that can easily be plugged into the HETS motherboard. Section 5 recalls
the algebraic specification notion of refinement and compares the the way this concept
is handled by HETS and VSE. In Section 6, we define two institution comorphisms,
which can be thought of as further expansion cards that provide the VSE notion of re-
finement in HETS. In Section 7 we briefly present a standard example, illustrating the
implementation of natural numbers as lists of binary digits, while Section 8 concludes
the paper.

2 Presentation of HETS

HETS is a multi-logic proof management tool that heterogeneously integrates many lan-
guages, logics and tools on a strong semantic basis. The core of HETS is a
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heterogeneous extension of the specification language CASL, designed by the “Com-
mon Framework Initiative for Algebraic Specification and Development”.

2.1 CASL

CASL has been designed from the outset as the central language in a family of lan-
guages. Soon sublanguages and extension of CASL, like the higher-order extension
HASCASL, the coalgebraic extension COCASL, the modal logic extension MODAL-
CASL the reactive extensions CASL-LTL and CSP-CASL and others emerged. Luckily,
the CASL follows a separation of concerns — it has been designed in four different
layers [2,4,9]:

basic specifications are unstructured collections of symbols, axioms and theorems,
serving the specification of individual software modules. The specific logic chosen
for CASL here is first-order logic with partial functions, subsorting and induction
principles for datatypes;

structured specifications organise large specifications in a structured way, by allow-
ing their translation, union, parameterisation. restriction to an export interface and
more. Still, structured specifications only cover the specification of individual soft-
ware modules;

architectural specifications allow for prescribing the structure of implementations,
thereby also determining the degree of parallelism that is possible in letting dif-
ferent programmers independently develop implementations of different subparts;

specification libraries allow the storage and retrieval of collections of specifications,
distributed over the Internet.

2.2 Institutions

A crucial point in the design of these layers is that the syntax and semantics of each layer
is orthogonal to that of the other layers. In particular, the layer of basic specifications can
be changed to a different language and logic (e.g. an extension of CASL, or even a logic
completely unrelated to CASL), while retaining the other layers. The central abstraction
principle to achieve this separation of layers is the formalisation of the notion of logical
system as institutions [12], a notion that arose in the late 1970ies when Goguen and
Burstall developed a semantics for the modular specification language Clear [7].

We recall informally this central notion here. An institution provides

– a notion of signature, carrying the context of user-defined (i.e. non-logical) sym-
bols, and a notion of signature morphisms (translations between signatures);

– for each signature, notions of sentence and model, and a satisfaction relation be-
tween these;

– for each signature morphism, a sentence translation and a model reduction (the di-
rection of the latter being opposite to the signature morphism), such that satisfaction
is invariant under translation resp. reduction along signature morphisms.

A very prominent example is the institution FOL= of many-sorted first-order logic
with equality. Signatures are many-sorted first-order signatures, i.e. many-sorted alge-
braic signatures enriched with predicate symbols. Models are many-sorted first-order
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structures, and model reduction is done by translating a symbol that needs to be inter-
preted along the signature morphism before looking up its interpretation in the model
that is being reduced. Sentences are first-order formulas, and sentence translation means
replacement of the translated symbols. Satisfaction is the usual satisfaction of a first-
order sentence in a first-order structure.

The institution CFOL= adds sort generation constraints to FOL=. These express
that some of the carriers sets are generated by some of the operations (and possibly the
other carrier sets). SubPCFOL=, the CASL institution, further equips CFOL= with
subsorting and partial functions (which, however, will not play a role in this paper).

With the notion
of institution provid-
ing the abstraction
barrier between the
layer of basic speci-
fications on the one
hand and the other
layers on the other
hand, it was quite nat-
ural (though also a
great challenge) to re-
alise this abstraction
barrier also at the
level of tools. HETS

provides an object-
oriented interface for
logics and their proof tools, realised through a Haskell type class. This is exactly the
specification of expansion slots mentioned in the introduction. This specification is
heavily based on institutions, that is, the individual components of an institution are
reflected in the interface. Of course, to be practically useful, the expansion slot spec-
ification contains additional components like concrete syntax, parsers, static analysis
tools, and, last but not least, proof tools. The interface captures both interactive and
automatic proof tools.

HETS allows for relating specifications written in different logics, e.g. CASL specifi-
cations can be imported for CASL extensions, or refinements can occur across different
logics. In order to support this, HETS treats logic translations, formalised as institu-
tion comorphisms (and morphisms) [13], as first-class citizens (i.e., they are a different
type of expansion card). An institution comorphism captures the idea of encoding or
embedding between two institutions. It provides

– a translation of signatures (and signature morphisms),
– a translation of sentences,
– a translation of models (going backwards to the direction of the comorphism),

such that satisfaction is invariant under translation of sentences resp. models.
HETS is based on a logic graph of institutions and comorphisms, which is a pa-

rameter to the tools acting at the structured, architectural and library layers. The logic
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graph can be changed and extended without the need even to recompile those logic in-
dependent analysis tools. The architecture of HETS is shown in figure below. HETS’
development graph component [20], inspired by the tool MAYA (a cousin of VSE, also
developed in Saarbrücken) provides a proof management for heterogeneous specifica-
tions, relying on proof tools for the individual logics involved.

3 Presentation of VSE

The Verification Support Environment (VSE) is a tool that supports the formal devel-
opment of complex large scale software systems from abstract high level specifications
down to the code level. It provides both an administration system to manage structured
formal specifications and a deductive component to maintain correctness on the various
abstraction levels (see figure below). Taken together these components guarantee the
overall correctness of the complete development. The structured approach allows the
developer to combine specifications in an algebraic functional style with state based
formal descriptions of concurrent systems.

VSE has been developed in two phases on behalf the German Bundesamt für Sicher-
heit in der Informationstechnik (BSI) to satisfy the needs in software developments
according to the upcoming standards ITSEC and Common Criteria. Since then VSE
has been successfully applied in several industrial and research projects, many of them
being related to software evaluation [15,3,16,8]. The models developed with VSE com-
prise among others the control system of a heavy robot facility, the control system of a
storm surge barrier, a formal security policy model conforming to the German signature
law and protocols for chip card based biometric identification.

3.1 The VSE Methodology

VSE supports a development
process that starts with a mod-
ular formal description of the
system model and possibly to-
gether with separate require-
ments or security objectives.
Logically the requirements have
to be derivable from the system
model. Therefore, the require-
ments lead to proof obliga-
tions that must be discharged by
using the integrated deductive
component of VSE.

In a refinement process the
abstract system model can be
related to more concrete mod-
els. This is in correspondence
with a software development that starts from a high level design and then descends to
the lower software layers such that in a sense higher layers are implemented based on
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lower layers. Each such step can be reflected by a refinement step in VSE. These steps
involve programming notions in the form of abstract implementations, that can later be
exploited to generate executable code. Each refinement step gives rise to proof obli-
gations showing the correctness of the implementations. Refinements also can be used
to prove consistency of specifications, because they describe a way how to construct
a model. This plays a major role for the formal specifications required for Common
Criteria, which only need to cover higher abstraction levels.

In addition to the vertical structure given by refinement steps, VSE also allows the
specification to be structured horizontally to organise the specifications on one abstrac-
tion level. Each single (sub)specification can be refined vertically or further decom-
posed horizontally, such that the complete development is represented by a development
graph. The deductive component is aware of this structure. And this is an important as-
pect for the interactive proof approach, as the structure helps the user to prove lemmas
or proof obligations that require properties from various parts of the specification.

4 Institution of Dynamic Logic

VSE provides an interactive prover, which supports a Gentzen style natural deduction
calculus for dynamic logic. This logic is an extension of first-order logic with two ad-
ditional kinds of formulas that allow for reasoning about programs. One of them is the
box formula [α]ϕ, where α is a program written in an imperative language, and ϕ is a
dynamic logic formula. The meaning of [α]ϕ can be roughly put as “After every ter-
minating execution of α, ϕ holds.”. The other new kind of formulas is the diamond
formula 〈α〉ϕ, which is the dual counter part of a box formula. The meaning of 〈α〉ϕ
can be described as “After some terminating execution of α, ϕ holds”.

We will now describe the formalisation of this dynamic logics as an institution, de-
noted CDyn=, in some detail, because this has not been done in the literature so far.
Moreover, as stated in the introduction, this step is crucial for turning VSE into an
expansion card that can be plugged into the HETS motherboard.

4.1 Signatures

The starting point for dynamic logic signatures are the signatures of first-order logic
with equality (FOL=) that have the form ΣFOL= = (S, F, P ) consisting of a set S of
sorts, a family F of function symbols and a family P of predicate symbols. Because
we need to name procedures, we add a S∗ × S∗-sorted family PR = (PRv,w)v,w∈S∗

of procedure symbols, leading to signatures of the form Σ = (S, F, P, PR). We have
two separate lists v and w of the argument sorts of the procedure symbols in PRv,w,
in order to distinguish the sorts of the input parameters (v) from those of the output
parameters (w).

A signature morphism between two signatures maps sorts, operation symbols, pred-
icate symbols and procedure symbols in a way such that argument and result sorts are
preserved.

Moreover, it is assumed that all signatures have a sort bool together with two con-
stants true and false on it and this subsignature is preserved by signature morphisms.
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4.2 Sentences

Let Σ = (S, F, P, PR) be a dynamic logic signature with PR = (PRv,w)v,w∈S∗ . For
each sort s we assume a fixed countably infinite set Xs of variables of sort s such that
the sets Xs are pairwise disjoint. We set X :=

⋃
s∈S Xs.

First we define the syntax of the programs that may appear in dynamic logic formu-
las. The programs contain Σ-terms, which are predicate logical terms of the signature
(S, (Fv,s ∪ PRv,s)v∈S∗,s∈S , P ), i.e. in addition to variables and function symbols we
allow symbols of predicates with a single result parameter to occur in these terms. The
set PΣ of Σ-programs is the smallest set containing:

– abort, skip
– x := τ
– α;β
– varx : s = τ inα
– varx : s =? inα
– if ε thenα else β fi
– while ε doα od
– p(x1, x2, ..., xn; y1, y2, . . . , ym) ,

where x, x1, x2, . . . , xn ∈ X are variables, y1, y2, . . . , ym ∈ X are pairwise different
variables, τ a Σ-term of the same sort s as x ∈ X , ε a boolean Σ-formula (i.e. a Σ-
formula without quantifiers, boxes and diamonds), α, β ∈ PΣ , p a procedure symbol,
such that the sorts of x1, . . . , xn, y1, . . . , ym match the argument and result sorts of p.

These kinds of program statements can be explained informally as follows: abort
is a program that never terminates. skip is a program that does nothing. x := τ is the
assignment. varx : s = σ inα is the deterministic form of a variable declaration which
sets x to the value of σ. Its nondeterministic form varx : s =? inα sets x to an arbitrary
value before executing α. α;β is the composition of the programs α and β, such that α
is executed before β. The conditional if ε thenα else β fi means that α is executed if ε
holds, otherwise β is computed. Finally, the loop while ε doα od checks the condition
ε, in case of validity executes α and repeats the loop.

There are three kinds of sentences that may occur in a Σ-dynamic logic specification.

1. The set of Dynamic Logic Σ-formulas is the smallest set containing
– the (S, F, P )-first-order formulas ϕ
– for any dynamic logic Σ-formulas ϕ, ψ, any variable x, and any Σ-program α

the formulas [α]ϕ, 〈α〉ϕ and ¬ϕ, ϕ ∧ ψ and ∀x.ϕ;
2. Procedure definitions are expressions of the form:

defprocs
procedurep(x1, . . . , xn, y1, . . . , ym)α
. . .

defprocsend

where p ∈ PRv,w for some v, w ∈ S∗, x1, . . . , xn, y1, . . . , ym are variables of the
corresponding sorts in v, w, and α ∈ PΣ is a Σ-program with free variables from
the set {x1, . . . , xn, y1, . . . , ym}.
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3. Restricted sort generation constraints express that a set of values defined by restric-
tion procedure can be generated by the given set of procedures, the constructors.
Sort generation constraints in the export specification will give rise to proof obli-
gations stated as a sentence of this kind. Syntactically a restricted sort generation
constraints takes the form

generated type s ::= p1(. . . )|p2(. . . )| . . . |pn(. . . ) restricted by r , (1)

where s is a sort symbol, p1,. . . ,pn are functional procedure symbols, the dots in
p1(. . . ) etc. have to be replaced by a list of the argument sorts, and r is a procedure
symbol taking one argument of sort s. The meaning is, that all elements of sort
s that fulfil the restriction r, i.e. for which r terminates, can be generated by the
constructors p1, p2, . . . , pn.

For any signature morphism ϕ : Σ → Σ′, the translation of Σ-sentences along φ
is done by translating each symbol according to the sort, operation symbol, predicate
symbol and procedure symbol mappings respectively and by changing the sort of a
variable x : s to ϕ(s). Notice that in the case of non-injective signature morphisms the
disjointness condition on the sets of variables ensures us that no identifications between
variables are made.

4.3 Models

Let Σ = (S, F, P, PR) be a dynamic logic signature with F = (Fw,s)w∈S∗,s∈S , P =
(Pw)w∈S∗ , PR = (PRv,w)v,w∈S∗ . A (dynamic logic) Σ-model M maps each sort
symbol s ∈ S to a carrier set Ms, each function symbol f ∈ Fw,s to a total function
f : Mw → Ms, each predicate symbol p ∈ Pw to a relation p ⊆ Mw and each
procedure symbol pr ∈ PRv,w to a relation Mpr ⊆ Mv × Mw, where M(s1,...,sn)
denotes Ms1 ×Ms2 × · · · ×Msn for (s1, s2, . . . , sn) ∈ S∗. Thus, such a model can be
viewed as a CFOL= structure extended with the interpretation of procedure symbols.

For any signature morphism ϕ : Σ → Σ′, the reduct of a Σ′-model inteprets x as
the interpretation of ϕ(x) in the original model, where x can be either a sort, a function
symbol, a predicate symbol or a procedure symbol.

4.4 Satisfaction of Dynamic Logic Formulas

Semantics is defined in a Kripke-like manner. For a given signature Σ and a Σ-model
M the (program) states are variable valuations, i.e. functions from the fixed infinite set
X of variables to M , such that for each sort s variables x ∈ Xs are mapped to values of
Ms. The semantics of a program α with respect to a model M is a predicate .�α�M . on
two program states. q�α�M r can be read as: If α is started in state q it may terminate
after having changed the state to r.

– q�skip�Mq
– not q�abort�Mr
– q�x := σ�Mr ⇔ r = q[x ← σM,q]
– q�x := p(τ1, τ2, . . . , τn)�r
⇔ q�var z1 : s1 = τ1, . . . , zn : sn = τn in x := p(z1, z2, . . . , zn)�r
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– q�α;β�M r ⇔ for some state s : q�α�M s and s�β�Mr
– q�varx : s = σ;α�Mr ⇔ q�x := σ;α�M r
– q�varx : s =?;α�Mr ⇔ for some a ∈ sM : q[x ← a]�α�Mr
– q�if ε thenα elseβ fi�Mr ⇔ (q |= ε and q�α�M r) or (q |= ¬ε and q�β�M r)
– q�while ε doα od�M r ⇔ q(�if ε thenα else skip fi�M )∗r and r |= ¬ε
– q�pr(x1, . . . , xn; y1, . . . , ym)�M r ⇔ prM (q(x1), . . . , q(xn); r(y1), . . . , r(ym))

where for any program α, (�α�M )∗ is the reflexive transitive closure of the relation

�α�M , and the state q[x ← a] is defined as q[x ← a](y) =

{
q(y) if y �= x

a if y = x
, σ is a Σ-

term without predicate symbols and σM,q is the evaluation of the term σ with respect to
the model M and state q, z1 ∈ Xs1 , z2 ∈ Xs2 , . . . , zn ∈ Xsn are variables not occurring
in the terms τ1, τ2,. . . τn.

We define satisfaction on a model M and a program state r as follows:

– M, r |= p(σ1, . . . σn) ⇔ pM (σM,r
1 , σM,r

2 , . . . , σM,r
n )

– M, r |= σ = τ ⇔ σM,r = τM,r

– M, r |= ¬ϕ ⇔ M, r �|= ϕ
– M, r |= ϕ ∧ ψ ⇔ M, r |= ϕ and M, r |= ψ
– M, r |= ϕ ∨ ψ ⇔ M, r |= ϕ or M, r |= ψ
– M, r |= ∀x.ϕ ⇔ for all a ∈ Ms:M, r[x ← a] |= ϕ
– M, r |= [α]ϕ ⇔ for all program states q with r�α�M q: M, q |= ϕ

The formula 〈α〉ϕ is to be read as an abbreviation for ¬[α]¬ϕ. Finally a formulaϕ holds
on a model M (M |= ϕ), if for all program states r it holds on M and r (M, r |= ϕ).

4.5 Satisfaction of Procedure Definitions

The procedures in our model will not have any side effects (except for modifying the
output parameters).

Unwinding a procedure call by replacing it by the body of the procedure and sub-
stituting the formal parameter variables by the actual parameters should not change
the result of a program. Therefore, for a signature Σ a Σ-model M is a model of a
procedure declaration

defprocs procedure pr(x1, . . . , xn, y1, . . . , ym)α defprocsend

without recursion if

M |= ∀x1, . . . , xn, r1, . . . , rm :
(〈pr(x1, . . . , xn; y1, . . . , ym)〉y1 = r1 ∧ · · · ∧ ym = rm)

⇔ 〈α〉y1 = r1 ∧ · · · ∧ ym = rm

holds. Abbreviating the procedure declaration as π, we then write M ||=π. It is obvious
how this can be extended to declarations of more than one procedure.

In the presence of recursion this is not sufficient to make the procedure definitions
non-ambiguous and adequate to conventional semantics of programming languages.
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Therefore, from several models complying with the definitions the minimal model with
respect to some order will be chosen. The order compares the interpretations of the
procedures symbols, such that the order relation M1 ≤ M2 holds for two models M1
and M2 for the same signature Σ = (S, F, P, PR), iff prM1 ⊆ prM2 for all pr ∈ PR
and the interpretations of sort, function and predicate symbols are identical. Then we
define that M satisfies a procedure declaration π (M |= π), iff M ||=π, and for all other
models M ′ only differing in the interpretations of the procedure symbols pr1, . . . , prk,
M ′ ||= π implies M ≤ M ′.

4.6 Satisfaction of Restricted Sort Generation Constraints

A restricted sort generation constraint as in (1) is said to hold, iff the subset of the
carrier on which the restriction procedure r terminates is generated by the constructor
procedures p1, p2, . . .pn. In more detail: for each state s with s |= 〈r(a)〉 there must by
a program α being the composition of calls of constructor procedures only such that for
all states t, u with t�α�u the equation u(a) = s(a) holds.

Proposition 1. The satisfaction condition for CDyn= holds and thus CDyn= is an
institution.

5 Refinement

The methodology of formal software development by stepwise refinement describes the
ideal process (which in practice is more a loop with continuous feedback) as follows:
starting from initial informal requirements, these are translated to a formal requirement
specification, which is then further refined to a formal design specification and then to
an executable program.

Simple refinements between specifications can be expressed as so-called views in
CASL, which are just theory morphisms. The degree of looseness diminishes along a
refinement (technically, the model class shrinks). For more complex refinements in-
volving architectural decompositions (i.e. branching points in the emerging refinement
tree), a refinement language has been designed [22]. Sometimes (e.g. when refining ar-
rays to stacks with pointers), an observational interpretation of specification is needed.
This means that values exhibiting the same observable behaviour are identified (that is,
observational congruence is generated implicitly). This has been developed in theory to
some degree [5], but not implemented in HETS yet. By contrast, the VSE specification
language supports a refinement approach based on explicit submodels and congruences
[24], an idea that dates back to Hoare [14]. This somewhat simpler approach has been
successfully applied in practice, and moreover, it is linked with a code generation mech-
anism. Hence, integrating this approach into HETS brings considerable advantages.

VSE’s refinements associate an abstract data type specification, called the export
specification of the refinement, with an implementation. The implementation is based
on another theory, called the import specification and contains several functional proce-
dures written in an imperative language. These procedures use the functions and pred-
icates of the import specifications. A so called mapping relates each sort of the export
specification to a sort of the import specification, while the functions and procedures
are mapped to procedures in the import specification.
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A refinement describes the construction of a model for the signature of the export
specification (export model) from a model of the import specification (import model).
The functions and predicates are interpreted by the computations of the procedures.
The elements of the carrier sets of the export model are constructed from the carrier
sets of the import model. The implementations are allowed to represent a single value
in the export specification by several values of the import specifications. For example,
when implementing sets by lists, a set might be represented by any list containing all
elements of the set in any order. Furthermore, VSE do not require that all values of
a sort in the import specification really represent a value of the export specification.
In the example below where we will implement natural numbers by binary words, we
will exclude words with leading zeroes. In order to describe the construction of the
carrier sets, the refinement contains two additional procedures for each sort: procedure
defining a congruence relation and a procedure defining a restriction. The restriction
terminates on all elements, that represent export specification values. The congruence
relation determines the equivalence classes that represent the elements of the export
model.

A refinement is correct, if for every import model the export model constructed ac-
cording to the refinement is actually a model of the export theory. The VSE system
generates proof obligations that are sufficient for the correctness.

6 VSE Refinement as an Institution Comorphism

When integrating VSE and its notion of refinement into HETS, a naive approach would
extend HETS with a new notion of restriction-quotient refinement link in HETS, and
would extend both the HETS motherboard and the expansion slot specification in way
that makes it possible to deal with such refinement link. VSE easily could be turned
into an expansion card that is able to prove these refinement links.

However, this approach has a severe disadvantage: the specification of expansion
slots needs to be extended! If we did this for every tool that is newly integrated into
HETS (and every tool comes with its own special features), we would quickly arrive at
a very large and unmanageable expansion slot specification.

Fortunately, the heterogeneity of HETS offers a better solution: we can encode VSE
refinement as ordinary refinement in HETS, with the help of an institution comorphism
that does the actually restriction-quotient construction. With this approach, only the
HETS logic graph needs to be extended by a logic and a comorphism; actually, we will
see that two comorphisms are necessary. That is, we add two further expansion cards
doing the work, while the logic-independent part of HETS, i.e. the motherboard and the
expansion slot specification, can be left untouched!

6.1 The Refinement Comorphism

We model the refinement notion of VSE by a comorphism from the CASL institution
CFOL= to the VSE institution CDyn=. The intuition behind it can be summarised
as follows. At the level of signatures, for each sort we need to introduce procedure
symbols for the equality relation and for the restriction formula together with axioms
specifying their expected behaviour, while for function and predicate symbols, we need
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to introduce procedure symbols for their implementations. For all these symbols, we
assign no procedure definition but rather leave them loosely specified; in this way, the
choice of a possible implementation is not restricted. The sentence translation is based
on translation of terms into programs implementing the representation of the term. The
model reduct performs the submodel/quotient construction, leaving out the values that
do not satisfy the restriction formula and quotienting by the congruence generated by
the equality procedure.

Each CASL signature (S, F, P ) is mapped to the CDyn= theory, denoted
((S, ∅, ∅, PR), E). PR contains (1) for each sort s, a symbol restr s ∈ PR[s],[] for the
restriction formula on the sort (the restriction predicate is then obtained as the set of
values for which restr s terminates) and a symbol eqs ∈ PR[s,s],[bool] for the equality
on the sort and (2) for each function symbol f : w → s ∈ Fw,s, a symbol f : w →
s ∈ PRw,[s] and for each predicate symbol p : w ∈ Pw, a symbol p : w → [bool] ∈
PRw,[bool].

The set of axioms E contains sentences saying that for each sort s, (1) eqs is a con-
gruence and it terminates for inputs satisfying the restriction and (2) the procedures that
implement functions/predicates terminate for inputs satisfying the restriction and their
results also satisfy the restriction. These properties are to be proven when providing an
actual implementation. For space limitations reasons, we don’t present these sentences
in full detail but rather refer the reader to the general pattern of Fig. 1, which presents
the symbols and the sentences introduced in the resulting VSE theory for each symbol
of the CASL theory that is translated.

Given a CASL signature (S, F, P ) and a model M ′ of its translation ((S, ∅, ∅, PR),
E), we define the translation of M ′ to an (S, F, P )-model, denoted M . The interpreta-
tion of a sort s in M is constructed in two steps. First we take the subset Mrestr s ⊆ M ′

s

of elements, for which the restriction terminates. Then we take the quotient Mrestr s/≡
according to the congruence relation ≡ defined by eqs, such that for all x1, x2 ∈ M ′

s,

CASL VSE VSE sentences

sort s

sort s 〈restr s(x)〉true ∧ 〈restr s(y)〉true ⇒
〈eq s(x, y; e)〉true

eq s ∈ PR[s,s],[bool] 〈restr s(x)true〉 ⇒ 〈eq s(x, x; e)〉e = true
restr s ∈ PR[s],[] 〈restr s(x)〉true ∧ 〈restr s(y)〉true ∧ 〈eq s(x, y; e)〉e =

true ⇒ 〈eq s(y, x; e)〉e = true
〈restr s(x)〉true ∧ 〈restr s(y)〉true ∧
〈restr s(z)〉true ∧ 〈eq s(x, y; e)〉e = true ∧
〈eq s(y, z; e)〉e = true ⇒ 〈eq s(x, z; e)〉e = true

f ∈ Fs→t
f ∈ PR[s],[t] 〈restr s(x)〉R∧〈restr s(y)〉R∧〈eq s(x, y; e)〉e = true ⇒

〈y1 := f(x; r1)〉〈y2 := f(y; r2)〉〈eq t(y1, y2, e)〉e = true
〈restr s(x)〉true =⇒ 〈f(x; y)〉〈restr t(y)〉true

p ∈ Ps
p ∈ PR[s],[bool] 〈restr s(x)〉true ∧ 〈restr s(y)〉true ∧ 〈eq s(x, y; e)〉e =

true ⇒ 〈p(x; r1)〉〈p(y; r2)〉r1 = r2
〈restr s(x)〉true ⇒ 〈p(x; e)〉true

Fig. 1. Summary of the signature translation part of the comorphism CASL2V SERefine (for
simplicity, only unary symbols are shown)
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x1 ≡ x2 is equivalent to M ′ |= 〈eqs(x1, x2; y)〉y = true. For each function sym-
bol f , we define the value of Mf in the arguments x1, ..., xn to be the value returned
by the call of procedure M ′

f on inputs x1, .., xn, that is Mf(x1, ..., xn) = b if and
only if 〈M ′

f (x1, ..., xn; y)〉y = b. The axioms (1) and (2) in E ensure that Mf is to-
tal and well-defined. Similarly, for each predicate symbol p, Mp(x1, ..., xn) holds iff
〈M ′

p(x1, .., xn; y)〉y = true.
Sentence translation is based on translation of terms into programs that compute

the representation of the term. Basically, each function application is translated to a
procedure call of the implementing procedure, and new output variables are introduced:

– a variable x is mapped to x := x, where the left-hand side x is the output variable
and the right-hand side x is the logical variable;

– an constant c is mapped to c(; y), where c is now the procedure implementing the
constant and y is a new output variable;

– a term f(t1, .., tn) is mapped to α1; ..αn; a := f(y1, .., yn), where αi is the trans-
lation of ti with the output variable yi and a is a new output variable

Then the sentence translation is defined inductively:

– a equation t1 = t2 is translated to

〈α1〉; 〈α2〉; 〈eqs(y1, y2; y)〉y = true

where αi is the translation of the term ti, with the output variable yi

– a predicate p(t1, .., tn) is translated to

〈α1〉..〈αn〉〈p(y1, .., yn; y)〉y = true

where αi is the translation of the term ti, with the output variable yi

– Boolean connectives of formulas are translated into the same connections of their
translated formulas;

– for universally and existentially qualified formulas one also has to make sure that
the bound variables are assigned a value that satisfies the restriction.

The complete translation is obtained by adding as hypotheses to the translation of
the formula a list of formulas of type 〈restr s(y)〉true, where y is a free variable
of the formula, of sort s. An example of how a CASL sentence is translated along
CASL2V SERefine comorphism will be introduced in the next section.

Sort generation constraints are translated to restricted sort generation constraints over
implementing procedures. For example, assume we have in the abstract specification of
natural numbers a sort generation constraint:

generated type nat ::= 0 | suc (nat)

Then in the VSE theory resulting from translation along comorphism, the restricted sort
generation constraint

generated typenat ::= 0 | suc(nat) restricted by restr nat .
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is introduced, where 0 and suc are now the procedures implementing the constructors
(and have same name) and restr nat is the restriction procedure symbol on sort nat.

The functoriality of the signature translation and the naturality of sentences and
models translations follow in a quite standard way, therefore we ommit them in this
presentation.

Theorem 1. The satisfaction condition for the comorphism CASL2V SERefine
holds.

Proof idea: As mentioned in section 2, the satisfaction conditions for comorphisms
means that truth remains invariant to translations of sentences/model. In our particular
case, the proof follows from noticing that given any term t in a arbitrary CASL signature
and any VSE model M ′ of the translated signature, the interpretation of t in the reduct
of the model M ′ coincides with the interpretation of the translation of the term t in
M ′.

Notice that this construction follows very faithfully the steps of the refinement method
of VSE, as described in section 5. The export specification of VSE is a first-order spec-
ification that we can translate along the comorphism CASL2V SERefine to generate
the same kind of proof obligations that VSE would generate to prove correctness of a
refinement. The difference is now they are built using abstract (i.e. loose) procedure
names and actual implementations are to be later plugged in by means of a view which
corresponds to the VSE mapping, with the exception that instead of pairing export spec-
ification symbols with implementations, the view rather pairs abstract procedures with
implementations. Moreover, the correctness of the view ensures us that a model of the
implementation reduces along the signature morphism induced by the view to a model
of the translation of the original export specification, that can we further translate along
the comorphism to obtain a model of the export specification. Thus we achieve that the
model semantics of the refinement in VSE [1] and of the refinement expressed using
the comorphism CASL2V SERefine coincide.

Theorem 2. The proof calculus for heterogeneous development graphs, combined with
the VSE prover, can be used for discharging refinement proof obligations in a sound
way.

Proof idea: This follows from the soundness of the development graph calculus [20],
the soundness of the VSE prover, and Thm. 1. ��
Unfortunately, we cannot expect completeness here, because first-order dynamic logic
is not finitely axiomatisable [6].

6.2 Structuring in Context of Refinement

Consider the situation where a theory of a library (e.g. the natural numbers) or a pa-
rameter theory that will be instantiated later occurs both in the abstract and the refined
specification. Such common import specifications should not be refined, but rather kept
identically — and this is indeed the case in VSE.1

1 This resembles a bit the notion of imports of parameterised specifications in CASL, where the
import is shared between formal and actual parameter and is kept identically.
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To handle this situation in the present context, the import of a first-order specifica-
tion into a dynamic logic one is not done along the trivial inclusion comorphism from
CFOL= to CDyn= — this would mean that the operations of the import need to be
implemented as procedures. Instead, we define a comorphism, CASL2V SEImport,
which, besides keeping the first-order part, will introduce for the symbols of import
specification new procedure symbols, similarly to CASL2V SERefine. The differ-
ence is that this time the interpretation of procedure symbols is not loosely specified,
but definitions are introduced in such a way that semantics is not affected. In the case of
sorts, this requires that no element is restricted and equality procedure on the sort is the
set-theoretic equality. In the case of functions, the procedure simply returns the value
of the function in the given arguments, while in the case of predicates, the procedure
returns true if the corresponding predicate holds. Sentences are translated identically,
and the model reduct keeps interpretation of symbols.

For example, let us consider the situation in the diagram below, where the natural
numbers are imported both in the abstract and the concrete specification (and the (het-
erogeneous) refinement link is represented by the double arrow):

CASL
Nat

id

����
��

��
��

� CASL2V SEImport

����
��

��
��

CASL Abstr
CASL2V SERefine

�� Impl V SE

Fig. 2. The naturals occur both in the abstract requirement and in the implementation. The quo-
tient represented by the double arrow is trivial for the naturals.

Assume there is a sort nat in Nat. When translating Abstr to CDyn= along the
refinement comorphism, we make no distinction between the sorts defined in Abstr
and the imported ones, so in the resulting translated theory we will have symbols for
the restriction on sort nat and for equality. The second comorphism, used for imports,
introduces the same symbols in Impl and imposes that they are implemented as them-
selves: no element of nat is restricted and the identification is implemented as the strong
equality. Thus, the expected behaviour is obtained: Impl provides default implementa-
tions, introduced by the importing comorphism, such that the sort nat can be regarded
as kept, modulo wrapping into procedures.

7 Example: Implementing Natural Numbers by Binary Words

As an example, we present the implementation of natural numbers as lists of binary dig-
its, slightly abridged from [24].2 The abstract CASL specification, NATS (introduced in
Fig. 3), is the usual specification of natural numbers with 0, successor and addition with

2 The complete example can be found at https://svn-agbkb.informatik.uni-
bremen.de/Hets-lib/trunk/Refinement/natbin refine.het.

https://svn-agbkb.informatik.uni-bremen.de/Hets-lib/trunk/Refinement/natbin_refine.het
https://svn-agbkb.informatik.uni-bremen.de/Hets-lib/trunk/Refinement/natbin_refine.het


The VSE Refinement Method in HETS 675

spec NATS =
free type
nats ::= zero n | succ n(nats)
op zero n : nats
op succ n : nats → nats
op prdc n : nats → nats
op add n : nats × nats → nats
vars m, n : nats
• prdc n(zero n) = zero n
• prdc n(succ n(m)) = m
• add n(m, zero n) = m
• add n(m, succ n(n))
= succ n(add n(m, n))
end

Fig. 3. CASL specification of natural
numbers

sort nats
PROCEDURES
gn add n : IN nats, IN nats → nats;
gn eq nats : IN nats, IN nats → Boolean;
gn prdc n : IN nats → nats;
gn restr nats : IN nats;
gn succ n : IN nats → nats;
gn zero n : → nats
∀ gn x0 : nats; gn x1 : nats; gn x2 : nats;

gn x3 : Boolean
• <:gn x1 := gn zero n;

gn x0 := gn prdc n(gn x1);
gn x2 := gn zero n;
gn x3 := gn eq nats(gn x0, gn x2):>
gn x3 = (op True : Boolean)

...

Fig. 4. Natural numbers translated along
CASL2VSERefine comorphism

the Peano axioms. In Fig. 43, we present a fragment of the theory obtained by translat-
ing NATS along the comorphism CASL2V SERefine: the resulting signature and the
translation of the first axiom - the other three translated axioms and the sentences intro-
duced by the comorphism are similar.

The VSE implementation, NATS-IMPL (Fig. 5), provides procedures for implementa-
tion of natural numbers as binary words, which are imported as data part along
CASL2V SEImport4 from the CASL specification BIN (here omitted). We illustrate
the way the procedures are written with the example of the restriction procedure, nlz,
which terminates whenever the given argument has no leading zeros. The implementa-
tion of the other procedures is similar and therefore omitted. Notice that the equality is
in this case simply the equality on binary words.

Fig. 6 presents the view BINARY ARITH expressing the fact that binary words, re-
stricted to those with non-leading zeros, represent a refinement of natural numbers,
where each symbol of NATS is implemented by the corresponding procedure in the
symbol mapping of the view.

In figure 7, we present some of the proof obligations introduced by the view. Notice
that they are translations of the sentences of the theory presented in Fig. 4 along the
signature morphism induced by the view. The first two sentences that we included here
are introduced by the signature translation of the comorphism and state that (1) equality
terminates on inputs for which the restriction formula nlz holds and (2) the procedure
implementing addition, i add, terminates for valid inputs and the result is again valid.
Also the translation of an axiom of NATS along the comorphism CASL2V SERefine
is presented.

3 HETS uses <: α :> φ as input syntax for 〈α〉φ.
4 The Hets construction SP with logic C translates a specification SP along the comor-

phism C.
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spec NATS IMPL =
BIN with logic CASL2VSEImport

then PROCEDURES
hnlz : IN bin; nlz : IN bin; i badd : IN bin, IN bin, OUT bin, OUT bin;
i add : IN bin, IN bin → bin; i prdc : IN bin → bin;
i succ : IN bin → bin; i zero : → bin; eq : IN bin, IN bin → Boolean
• DEFPROCS
• DEFPROCS

PROCEDURE hnlz(x)
BEGIN

IF x = b zero THEN ABORT
ELSE IF x = b one THEN SKIP ELSE hnlz(pop(x)) FI
FI

END;
PROCEDURE nlz(x)

BEGIN IF x = b zero THEN SKIP ELSE hnlz(x) FI END
DEFPROCSEND

%% PROCEDURE i zero(x) ...

Fig. 5. Implementation using lists of binary digits

view BINARY ARITH : { NATS with logic CASL2VSERefine } to NATS IMPL =
nats → bin, gn restr nats → nlz, gn eq nats → eq,
gn zero n → i zero, gn succ n → i succ, gn add n → i add

Fig. 6. Natural numbers as binary words

%% Proof obligations introduced by the view
%% equality procedure terminates on valid inputs
∀ gn x, gn y : bin• <:nlz(gn x):> true ∧ <:nlz(gn y):> true
⇒ <:gn b := eq(gn x, gn y):> true

%% procedure implementing addition terminates and gives valid results on valid inputs
∀ gn x1, gn x2 : bin • <:nlz(gn x1):> true ∧ <:nlz(gn x2):> true
⇒ <:gn x := i add(gn x1, gn x2):> <:nlz(gn x):> true

%% translation of : forall m : nats . add n(m, zero n) = m
∀ gn x0, gn x1, gn x2, gn x3 : bin; gn x4 : Boolean;
m : bin
• <:nlz(m):> true
⇒ <:gn x1 := m ;

gn x2 := i zero;
gn x0 := i add(gn x1, gn x2);
gn x3 := m;
gn x4 := eq(gn x0, gn x3):>

gn x4 = (op True : Boolean)

Fig. 7. Generated proof obligations
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The two comorphisms have been implemented and are part of the latest HETS re-
lease; the VSE tool is also going to become available under public licence. Provided
VSE is installed, the example can be fully checked in HETS.

8 Conclusions and Future Work

We have integrated VSE’s mechanism of refining abstract specifications into procedural
implementations into HETS. Via a new logic and two comorphisms, one of them doing
the usual restriction-quotient construction, we could avoid entirely the introduction of
new types of “refinement links” into HETS, but rather could re-use the present machin-
ery of heterogeneous development graphs and thus demonstrate its flexibility. Visually
spoken, we could avoid extending the HETS motherboard and expansion slot specifica-
tion, but rather just construct several expansion cards related to VSE and plug them into
the HETS motherboard.

However, there is a point when it actually makes sense to enhance the expansion slot
specification. Currently, it is based on the assumption that expansion cards (aka theo-
rem provers) can only handle flat unstructured theories. However, VSE can also handle
structured theories, and takes advantage of the structuring during proof construction.
Hence, we plan to extend the expansion slot specification in a way that allows the trans-
mission (between HETS and VSE) of whole acyclic directed development graphs of
theories with connecting definition links, reflecting the import hierarchy. We expect to
use this enhancement of the expansion slot specification also for other theorem provers
supporting structured theories, like Isabelle.

Another direction of future work will try to exploit synergy effects between VSE and
HETS e.g. by using automatic provers like SPASS (which are now available through the
integration) during some sample VSE refinement proofs. The refinement method could
also be extended from first-order logic to the richer language CASL, which also features
subsorting and partial functions.
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Abstract. On the one hand, modal specifications are classic, conve-
nient, and expressive mathematical objects to represent interfaces of
component-based systems. On the other hand, time is a crucial aspect of
systems for practical applications, e.g. in the area of embedded systems.
And yet, only few results exist on the design of timed component-based
systems. In this paper, we propose a timed extension of modal speci-
fications, together with fundamental operations (conjunction, product,
and quotient) that enable to reason in a compositional way about timed
system. The specifications are given as modal event-clock automata,
where clock resets are easy to handle. We develop an entire theory that
promotes efficient incremental design techniques.

1 Introduction

Nowadays, systems are tremendously big and complex, resulting from the assem-
bling of several components. These many components are in general designed by
teams, working independently but with a common agreement on what the inter-
face of each component should be. As a consequence, mathematical foundations
that allow to reason at the abstract level of interfaces, in order to infer properties
of the global implementation, and to design or to advisedly (re)use components
is a very active research area, known as compositional reasoning [16]. In a logi-
cal interpretation, interfaces are specifications and components that implement
an interface are understood as models. Aiming at practical applications as the
final goal, the software engineering point of view naturally leads to the following
requirements for a good theory of interfaces.

1. Satisfiability/Consistency and Satisfaction. It should be decidable whether
a specification admits a model, and whether a given component implements
a given interface. Moreover, for the synthesis of components to be effective,
satisfiable interfaces should always have finitely presentable models.

2. Refinement and shared refinement. Refinement of specifications [20,23] ex-
presses inclusion of sets of models, and therefore allows to compare interfaces.
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Related to this implication-like concept, the intersection, or greatest lower
bound, is an optimal interface refining two given interfaces.

3. Compositionality of the abstraction. The interface theory should also provide
a combination operator on interfaces, reflecting the standard composition of
models by, e.g. parallel product.

4. Quotient. Last but not least, a quotienting operation, dual to composition
is crucial to perform incremental design. Intuitively, the quotient enables to
describe a part of a global specification assuming another part is already
realized by some component. Together with the composition ⊗ the quotient
operator , enjoys the following fundamental property at the component
level:

C2 |= S , S1 ⇔ ∀C1 [C1 |= S1 ⇒ C1 ⊗ C2 |= S] (�)

where S,Si are interfaces, C, Ci components, and |= is the satisfaction
relation.

Building good interface theories is the subject of intensive studies which have led
to theories based on models such as interface automata [12,14], modal automata
or specifications [5,19,22,23,24], and their respective timed extension [9,13].
Modal specifications are deterministic automata equipped with transitions of
the following two types: may and must . The components that implement such
interfaces are deterministic labeled transition systems; an alternative language-
based semantics can therefore be considered, as presented in [22,23]. Informally,
a must transition is available in every component that implements the modal
specification, while a may transition needs not to be. Modal specifications are
interpreted as logical specifications matching the conjunctive nu-calculus frag-
ment of the mu-calculus [15]. As a corollary, but also proved directly in [22],
satisfaction and consistency of modal specifications are decidable, and the finite
model property holds. Refinement between modal specifications coincides with
a standard notion of alternating simulation. Since components can be seen as
specifications where all transitions are typed must (all possible implementation
choices have been made), satisfaction is also expressed via alternating simulation.
Shared refinement is effectively computed via a product-like construction. Com-
bination of modal specifications, handling synchronization products à la Arnold
and Nivat [6], and the dual quotient combinators can be efficiently handled in
this setting [23].

Recently, a timed extension of the theory of modal specifications has been in-
troduced [9], motivated by the fact that time can be a crucial parameter in prac-
tice, e.g. in embedded–system applications. In this piece of work, components
are timed automata as defined in [1], and naturally, an effective and expressive
region-based semantics allows to combine modalities and timing constraints.

In this paper, we build on this preliminary paper and develop a complete com-
positional approach for modal specifications of timed systems. This framework
favors methodologies for an incremental design process: Assume a global system
implementing specification S has to be synthesized, and assume a component
implements interface S1. Computing S ,S1 and synthesizing a model of S ,S1
yields a component that, in ⊗-combination with the component for S1, will yield
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a model for the global interface S, thanks to property (�). As a consequence,
low complexity algorithms are needed for computing product and quotient, as
well as for the satisfiability decision procedure.

The synchronous product of timed objects requires a tight control on clocks
[1], and so should its dual quotient. Actually, developing the theory in the gen-
eral framework where components can reset their clocks in an arbitrary manner
is a difficult question. Indeed, computing the resets of clocks of a product or of
a quotient depends on how the control of clocks is distributed among the com-
ponents. This information has to be provided a priori, which requires an extra
formalism. We therefore restrict the presentation to the class of components de-
finable by event-clock automata [2]: in these timed automata, resets are fully
determined by the actions. Interfaces whose models are event-clock automata
are called modal event-clock specifications (mecs).

Inheriting from the region-based semantics of timed modal specifications [9],
we study the satisfiability as well as the consistency problems for mecs. Satis-
fiability is PSPACE-complete, hence no harder than traditional decision prob-
lems in the class of timed automata. Refinement serves as a theoretical basis to
develop the product and the quotient of mecs. We propose two equivalent char-
acterizations of these operations. Not surprisingly according to the semantics,
inefficient EXPTIME constructions via the region graphs of the mecs (seen as
untimed specifications) are provided. More interestingly, we present alternative
direct and efficient PTIME constructions.

The rest of the paper is organized as follows. In Section 2, we introduce the
timed modal specification setting, with preliminaries on untimed modal specifi-
cations and the definition of modal event-clock specifications. Section 3 focuses
on mecs and exposes effective techniques to compute the binary operations of
greatest lower bound, product, and quotient. In Section 4, we compare our frame-
work with the existing literature. Section 5 concludes the paper. A long version
of the current paper, including proofs is available as a research report [8].

2 Timed Modal Specifications

In this section we recall the framework of modal specifications originaly defined
in [18] twenty years ago (see [5] for a survey), and its timed extension, recently
proposed in [9]: We discuss the semantic, the preorder refinement and the satis-
fiability problem for untimed and timed modal specifications.

2.1 Preliminaries on Untimed Specifications

A modal specification is an automaton equipped with two types of transitions:
must-transitions, that are required and may-transitions, that are allowed. We
fix Σ a finite set of actions.

Definition 2.1 (Modal specification). A modal specification (ms) is a tuple
R = (P⊥⊥, λ0, ∆m, ∆M ) where P⊥⊥ = P∪ ⊥⊥ is a finite set of states with ⊥⊥ ∩P =
∅, λ0 ∈ P⊥⊥ is the unique initial state, and ∆M ⊆ ∆m ⊆ P × Σ × P⊥⊥. ∆M
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and ∆m correspond respectively to must-transitions and may-transitions. We
additionally assume that ∆m is deterministic (hence so is ∆M ) and complete,
that is, for every state p ∈ P and every action a ∈ Σ, there is exactly one state
λ ∈ P⊥⊥ such that (p, a, λ) ∈ ∆m.

We use p (resp. λ) as typical element of P (resp. P⊥⊥). Note that completeness is
not a restriction since from any incomplete specification, one can derive a com-
plete one by adding may-transitions to a possibly new state ⊥ ∈⊥⊥. Intuitively,
in state p ∈ P a-may transition to some state λ ∈⊥⊥ labelled by action a means
that action a is forbidden in p. This interpretation will become clearer when we
define the set of models of a modal specification.

The condition ∆M ⊆ ∆m naturally imposes that every required transition is
also allowed; it guarantees the local consistency of the modal constraints. The set
of states ⊥⊥ denotes the “bad states” which carry local inconsistency. Elements
of ⊥⊥ are sink states with no outgoing transition since both ∆M and ∆m are
subsets of P ×Σ ×P⊥⊥. Global inconsistency can be derived as follows: we let I
be the set of inconsistent states that must lead (that is via a sequence of must -
transitions) to a local inconsistency; states in P⊥⊥\I are consistent. Formally I =
{λ0 | ∃n ≥ 0, ∃λ1 · · ·λn ∈ P⊥⊥ ∃a1 · · ·an ∈ Σ s.t. λn ∈⊥⊥ and (λi, ai+1, λi+1) ∈
∆M}. Notice that in particular ⊥⊥⊆ I. We say that the modal specification R
is consistent whenever its initial state is consistent, i.e. λ0 /∈ I; otherwise R is
inconsistent.

In the following, we write or draw p
a−→ λ (resp. p

a��� λ) to mean (p, a, λ) ∈
∆M (resp. (p, a, λ) ∈ ∆m \ ∆M ); in other words, solid arrows denote required
transition, whereas dashed arrow represent allowed but not required transitions.

Example 2.2. Consider a client for a given resource available in a system. The
alphabet of actions includes: get when the resource is requested; grant in case
of access to the resource; and, extra which occurs when a privileged access with
extended time is requested.

In order to simplify the figures, states in ⊥⊥ are not represented (except if
they are necessary) and transitions of the form q

a��� ⊥ are not depicted. Action
names may be preceded by some ”!” or ”?” when the occurrence of the actions
respectively stems from the designed component or by its environment.

The modal specification Cl for the client in Fig. 1(a) specifies that a get
request may be sent again. Moreover every get request must be granted. Addi-
tionally the client may request extended time at any moment.

Models of ms are deterministic automata1, with possibly infinitely many states,
which we shortly call automata in the sequel. An automaton is a structure of the
form M = (M,m0, ∆) where M is a (possibly infinite) set of states, m0 ∈ M is
a unique initial state, and ∆ ⊆ M ×Σ → M is a partial transition function. The
model relation |= defined below is a particular case of alternating simulation [4]
between the model and the consistent part, if any, of the specification.

1 Also called deterministic labeled transition systems.
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Fig. 1. The modal specification Cl accepts the automaton M

Definition 2.3 (Model Relation). Let R = (P⊥⊥, λ0, ∆m, ∆M ) be a ms. An
automaton M = (M,m0, ∆) is a model of R, written M |= R, if there exists a
binary relation ρ ⊆ M×(P \I) such that (m0, λ0) ∈ ρ, and for all (m, p) ∈ ρ, the
following hold: (1) for every (p, a, λ) ∈ ∆M there is a transition (m, a,m′) ∈ ∆
with (m′, λ) ∈ ρ, and (2) for every (m, a,m′) ∈ ∆ there is a transition (p, a, λ) ∈
∆m with (m′, λ) ∈ ρ.

We denote by Mod(R), the set of models of an ms R = (P⊥⊥, λ0, ∆m, ∆M ).
Remark in Definition 2.3 that inconsistent states of the specification cannot

appear in the relation ρ. Consequently, a transition of the form (p, a, λ) ∈ ∆m

where λ ∈ I is inconsistent interprets as: in any model, no a-transition from
a state in relation with p is allowed. Moreover, for λ0 ∈ I no ρ can exist and
actually we have:

Lemma 2.4. Let R be a ms. Mod(R) �= ∅ if, and only if, R is consistent.

Example 2.5. The automaton M in Fig. 1(b) is a model of the ms Cl in Fig. 1(a)
as the binary relation ρ = {(a, 0), (b, 1), (c, 1)} witnesses.

The semantic preorder between ms relies on an extension of Definition 2.3.

Definition 2.6 (Modal Refinement Preorder). Given two ms, R1 = (P⊥⊥
1 ,

λ0
1, ∆

m
1 , ∆M

1 ) and R2 = (P⊥⊥
2 , λ0

2, ∆
m
2 , ∆M

2 ), R1 is a refinement of R2, written
R1 - R2, whenever there exists a binary relation ρ ⊆ (I1×I2)∪(P⊥⊥

1 ×(P2\I2))
such that (λ0

1, λ
0
2) ∈ ρ, and for all (λ1, λ2) ∈ ρ ∩ ((P1 \ I1) × (P2 \ I2)):

(1) for every (λ2, a, λ
′
2) ∈ ∆M

2 there exists (λ1, a, λ
′
1) ∈ ∆M

1 with (λ′
1, λ

′
2) ∈ ρ

(2) for every (λ1, a, λ
′
1) ∈ ∆m

1 there exists (λ2, a, λ
′
2) ∈ ∆m

2 with (λ′
1, λ

′
2) ∈ ρ.

Definition 2.6 requires some explanations. First, by definition of the domain of
ρ, an inconsistent state of R2 can only be refined as an inconsistent state in
R1 whereas a consistent state in R2 can either be linked to a consistent or
inconsistent state in R1. Moreover, for pairs of consistent states, Condition (1)
ensures that all required transition in R2 are also required in R1, and Condition
(2) guarantees that each possible transition in R1 is also allowed in R2.
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Under our assumption that ms are deterministic, we can show that the pre-
order - between ms matches the model inclusion preorder. We establish an inter-
mediate result that exploits the embedding of automata into modal
specifications.

Definition 2.7 (Embedding in ms). An automaton M = (M,m0, ∆) can
be interpreted as a modal specification M∗ = (M ∪ {⊥∗},m0, ∆m

∗ , ∆M
∗ ) where

∆ = ∆M
∗ ⊆ ∆m

∗ , and (m, a,⊥∗) ∈ ∆m
∗ \∆M

∗ when ∆(m, a) is undefined in M.

Lemma 2.8. Given an automaton M and a ms R, M |= R iff M∗ - R.

Proposition 2.9. Let R1 and R2 be two ms, then:

R1 - R2 if, and only if, Mod(R1) ⊆ Mod(R2).

Note that the determinism of modal specifications is crucial for the Proposition
2.9. In the nondeterministic case, modal refinement is not complete [20], that is
Mod(R1) ⊆ Mod(R2) does not imply R1 - R2 in general.

As a consequence of Definition 2.6, inconsistent ms refine any ms, and consis-
tent ms can only refine consistent ms. In the following, we write R1 ≡ R2, and
say that R1 and R2 are equivalent, whenever R1 - R2 and R2 - R1. Remark
that by merging all states of I, every ms is equivalent to a ms where the set of
inconsistent states is a singleton.

2.2 Modal Event-Clock Specifications

Let X be a finite set of clocks and let IR≥0 denote the set of non-negative reals.
A clock valuation over X is a mapping ν : X → IR≥0. The set of clock valuations
over X is denoted V ; in particular, 0 ∈ V is the clock valuation such that 0(x) = 0
for all x ∈ X . Given ν ∈ V and t ∈ IR≥0, we let (ν+t) ∈ V be the clock-valuation
obtained by letting t time units elapse after ν, formally, (ν + t)(x) = ν(x)+ t for
every x ∈ X .

A guard over X is a finite conjunction of expressions of the form x ∼ c where
x ∈ X , c ∈ IN is a constant, and ∼ ∈ {<,≤,=,≥, >}. We then denote by ξ[X ]
the set of all guards over X . For some fixed N ∈ IN, ξN [X ] represents the set
of guards involving only constants equal to or smaller than N . The satisfaction
relation |=⊆ (V × ξ[X ]) between clock valuations and guards is defined in a
natural way and we write ν |= g whenever ν satisfies g. In the following, we
will often abuse notation and write g to denote the guard g as well as the set of
valuations which satisfy g.

Event-clock automata [2], form a subclass of timed automata where clock
resets are not arbitrary: each action a comes with a clock xa which is reset
exactly when action a occurs. We consider event-clock automata with possibly
infinitely many locations.

Definition 2.10 (Event-clock automata). An event-clock automaton (eca)
over Σ is a tuple C = (C, c0, δ) where C is a set of states, c0 ∈ C is the initial
state, and δ ⊆ C × ξN [XΣ ]×Σ×C is the transition relation (for some N ∈ N).
The pair (Σ,N) is the signature of C.
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The semantics of an eca is similar to the one of a timed automaton [1], except
that the set of clocks that are reset by a transition is determined by the action of
that transition: while firing a transition labeled by a, precisely clock xa is reset.
Event-clock automata do form a strict subclass of timed automata, but they
enjoy nice properties: they are closed under union and intersection, and more
interestingly they can be determinized (as opposed to the class of arbitrary timed
automata). The determinizability of event-clock automata comes from the way
clocks are reset and this property significantly eases the definition of binary
operators (such as lower bound, product and quotient) on modal variants of
event-clock automata.

For a fixed signature (Σ,N), a region is an equivalence class θ of clock-
valuations that satisfy the same guards in ξN [XΣ ]. We denote by ΘN , or sim-
ply Θ, the set of all regions. Given a region θ ∈ Θ, we write Succ(θ) for
the union of all regions that can be obtained from θ by letting time elapse:
Succ(θ) = {θ′′ | ∃ν′′ ∈ θ′′ ∃ν ∈ θ ∃t ∈ IR≥0 s.t. ν′′ = ν + t}.

Definition 2.11 (Region automaton [1]). The region automaton associated
to an eca C = (C, c0, δ) is the automaton R(C) = (C × Θ, (c0, 0), ∆) over the
alphabet Θ × Σ, where the set ∆ of transitions is defined as follows: for each
c, c′ ∈ C, θ, θ′, θ′′ ∈ Θ, and a ∈ Σ, ((c, θ), θ′′, a, (c′, θ′)) ∈ ∆ whenever there
exists (c, g, a, c′) ∈ δ with θ′′ ⊆ Succ(θ) ∩ g, and θ′ = θ′′[xa = 0] is the region
obtained from θ′′ by resetting clock xa.

Note that the region automata we consider extend the ones introduced in [1] since
their transition labels keep track of the intermediate region where the action is
fired. As a consequence, any automaton over the alphabet Θ×Σ uniquely defines
an eca whose signature is of the form (Σ,NΘ), with NΘ determined by the set
of regions Θ. We denote by T the natural injection of region automata into eca;
this mapping enables us to distinguish between the two interpretations of the
same syntactic object: R(C) is an automaton whereas T (R(C)) is an eca.

Definition 2.12 (Modal event-clock specification). A modal event-clock
specification (mecs) over the finite alphabet Σ is a tuple S = (Q⊥⊥, λ0, δm, δM )
where

– Q⊥⊥ := Q ∪ ⊥⊥ is a finite set of locations, with ⊥⊥ ∩ Q = ∅, and the initial
state is λ0 ∈ Q⊥⊥.

– δM ⊆ δm ⊆ Q × ξ[XΣ ] × Σ × Q⊥⊥ are finite sets of respectively must- and
may-transitions. Given a may-transition (q, g, a, λ) ∈ δm, q is the source
state, λ is the destination state, g ∈ ξ[XΣ ] is the guard that specifies the
valuations for which the transition can be taken, a ∈ Σ is the action labeling
the transition – recall that the only clock that is then reset is xa.

Moreover we require that δm is deterministic (hence, so is δM ) and complete:
for any state q ∈ Q, any action a ∈ Σ, and any clock valuation ν ∈ V, there is
exactly one transition (q, g, a, λ) ∈ δm such that ν |= g.
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Fig. 2. Client Cl and access controller Acc

Example 2.13. As an example of a mecs, we consider in Fig. 2(a) a timed variant
of the client Cl introduced earlier. The clock corresponding to the action get is
xget.

In this example again, for simplification purposes, transitions of the form
q

g,a��� ⊥ are not depicted. As mecs are complete, these transitions can easily be
recovered by taking g = ¬(

∨
i gi) where the gi’s are the guards appearing in the

transitions of the form q
gi,a��� λ or q

gi,a−→ λ. When the guard of a transition is not
indicated, it is implicitly true.

The mecs Cl for the client in Fig. 2(a) specifies that a get request may be
sent again at most one time unit after the last request.

In the sequel, we generalize the graphical convention already used for untimed
objects by writing q

g,a��� λ′ whenever (q, g, a, λ′) ∈ (δm \ δM ) and q
g,a−→ λ′

whenever (q, g, a, λ′) ∈ δM .
Remark that a natural untimed object associated to a mecs S is its region

modal automaton, obtained by generalizing Definition 2.11 from event-clock au-
tomata to their modal extension. More precisely, R(S) reflects the modalities of
S = (Q⊥⊥, λ0, δm, δM ) as done in [9], the initial state is (λ0, 0) and the set of lo-
cally inconsistent states in R(S) is ⊥⊥ S ×Θ. A mecs S is said to be inconsistent
if R(S) is inconsistent; otherwise, it is consistent. Given a modal event-clock
specification S over signature (Σ,N), R(S) is a modal specification over the
extended alphabet Σ × ΘN ; similarly, given an event-clock automaton C, R(C)
is an automaton over alphabet Σ×ΘN . Having this in mind, the model relation
in the timed case is inherited from the one in the untimed case via the region
construction:

Definition 2.14 (Model relation). Let S be a mecs. An event-clock automa-
ton C is a model of S, written C |= S, if R(C) |= R(S).

The set of models of a mecs S, is defined by Mod(S) := {C | C |= S}.
Observing that given a mecs S, R(T (R(S))) and R(S) are isomorphic, we

obtain the following:
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Lemma 2.15. Let S be a mecs. Then, Mod(T (R(S))) = Mod(S).

In the spirit of Def.2.14 for the model relation, the modal refinement preorder
between mecs also relies on a region-based construction:

Definition 2.16 (Modal refinement preorder). Given two mecs S1 and S2,
S1 refines S2, written S1 - S2, whenever R(S1) - R(S2).

As a corollary of the analogous results in the untimed setting on ms, it is decid-
able whether a mecs refines another one. Moreover, refinement and inclusion of
models match:

Corollary 2.17. Let S, S1 and S2 be mecs. Then,

– Mod(S) �= ∅ if, and only if S is consistent;
– S1 - S2 if, and only if Mod(S1) ⊆ Mod(S2).

About consistency We recall that a specification is consistent if, and only if, it
admits a model. According to Lemma 2.4, checking whether an untimed spec-
ification is consistent amounts to checking that the set of states ⊥⊥ cannot be
reached from its initial state by a sequence of must-transitions. The consistency
problem is thus NLOGSPACE-complete for modal specifications and PSPACE-
complete in the timed case.

3 Operations on Specifications

In this section, we introduce operations on modal event-clock specifications,
which enable compositional reasoning. More precisely, we define the greatest
lower bound, the product, and the quotient over mecs. For each of these opera-
tions, we establish important theoretical properties.

3.1 Greatest Lower Bound of mecs

We study the concept of greatest lower bound , which corresponds to the con-
junction of two modal specifications and equivalently to their best shared refine-
ment. We first recall the definition of the greatest lower bound in the untimed
case. Let R1 = (P⊥⊥

1 , λ0
1, ∆

m
1 , ∆M

1 ) and R2 = (P⊥⊥
2 , λ0

2, ∆
m
2 , ∆M

2 ) be two ms. The
greatest lower bound of R1 and R2 is R1 ∧ R2 = (P⊥⊥, (λ0

1, λ
0
2), ∆m

∧ , ∆M
∧ ) with

P := P1 × P2, ⊥⊥:= (⊥⊥1 × P⊥⊥
2 ) ∪ (P⊥⊥

1 × ⊥⊥2), and whose transition relations are
derived from the following rules:

λ1
a��� λ′

1 and λ2
a��� λ′

2

(λ1, λ2)
a��� (λ′

1, λ
′
2)

(Glb1)
λ1

a−→ λ′
1 and λ2

a��� λ′
2

(λ1, λ2)
a−→ (λ′

1, λ
′
2)

(Glb2)

λ1
a��� λ′

1 and λ2
a−→ λ′

2

(λ1, λ2)
a−→ (λ′

1, λ
′
2)

(Glb3)
λ1

a−→ λ′
1 and λ2

a−→ λ′
2

(λ1, λ2)
a−→ (λ′

1, λ
′
2)

(Glb4)

Remark in particular, that if in a state λ = (λ1, λ2), we have the contradictory
requirements that a is required (λ1

a−→ λ′
1 ∈ P1) and a should not happen

(λ2
a��� λ′

2 ∈⊥⊥2), then λ is inconsistent. This is indeed guaranteed by the
definition of R1 ∧R2 which imposes P1× ⊥⊥2 ⊆⊥⊥.
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Greatest lower bound of mecs. The notion of greatest lower bound easily extends
to mecs. Let S1,S2 be two mecs. The modalities for the transitions in S1 ∧ S2
are derived from those induced in the untimed case (Rules (Glb1) to (Glb4)), and
the labels of the transitions are obtained by intersecting the guards for common
actions. As an example, Rule (Glb1) becomes (tGlb1) as follows.

λ1
g1,a��� λ′

1 and λ2
g2,a��� λ′

2

(λ1, λ2)
g1∧g2,a��� (λ′

1, λ
′
2)

(tGlb1)

Thanks to Lemma 2.15, the set of models of a mecs S matches the set of mod-
els of its region version T (R(S)). The following proposition characterizes the
greatest lower bound of two mecs via the region graphs.

Proposition 3.1. For any two mecs S1 and S2, R(S1 ∧ S2) ≡ R(S1) ∧R(S2).

In Proposition 3.1, operator ∧ is overloaded: on the right hand side, it cor-
responds to the greatest lower bound of ms whereas on the left hand side, it
corresponds to the greatest lower bound of mecs.

Computing the conjunction of two ms via rules (Gbl1) to (Gbl4) is polynomial
in the size of the arguments. Due to the construction of the region graphs,
starting from two mecs S1 and S2 computing R(S1) ∧ R(S2) is exponential.
The direct construction of the greatest lower bound by using the timed variants
of (Gbl1) to (Gbl4) is polynomial and therefore worth adopting for effective
methods.

Finally, according to the above, one can establish that the greatest lower
bound yields the intersection of the models.

Theorem 3.2. For any two mecs S1 and S2, Mod(S1∧S2)=Mod(S1)∩Mod(S2).

Application of the greatest lower bound is the following: in the design of a
component one gives several specifications, each of them describing a particular
requirement. The greatest lower bound of these specifications enables to check
the compatibility of these requirements, by deciding consistency.

3.2 Product of mecs

The product of mecs relates to the synchronous parallel composition of models.
For ms, it generalizes the synchronized product of automata M1 ⊗ M2 that
denotes the intersection of their behaviors (languages).

We first recall the product of ms: Let R1 = (P⊥⊥
1 , λ0

1, ∆
m
1 , ∆M

1 ) and R2 =
(P⊥⊥

2 , λ0
2, ∆

m
2 , ∆M

2 ) be two ms over the same alphabet Σ. The product of R1 and
R2, denoted by R1 ⊗R2, is the ms (P⊥⊥, (λ0

1, λ
0
2), ∆m

⊗ , ∆M
⊗ ), with P := P1 ×P2,

⊥⊥:= (⊥⊥1×P⊥⊥
2 )∪(P⊥⊥

1 × ⊥⊥2), and whose transitions are derived from the following
rules:

λ1
a��� λ′

1 and λ2
a��� λ′

2

(λ1, λ2)
a��� (λ′

1, λ
′
2)

(Prod1)
λ1

a−→ λ′
1 and λ2

a��� λ′
2

(λ1, λ2)
a��� (λ′

1, λ
′
2)

(Prod2)

λ1
a��� λ′

1 and λ2
a−→ λ′

2

(λ1, λ2)
a��� (λ′

1, λ
′
2)

(Prod3)
λ1

a−→ λ′
1 and λ2

a−→ λ′
2

(λ1, λ2)
a−→ (λ′

1, λ
′
2)

(Prod4)
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Notice that Rules (Prod1) to (Prod4) uniformly consider consistent and incon-
sistent states.

Product of mecs. The product of mecs extends the synchronized product of
eca which consists in synchronizing transitions on action names and in taking
the conjunction of the guards of the combined transitions.

Let S1,S2 be two mecs. The modalities for the transitions in S1 ⊗ S2 are
derived from those proposed in the untimed case, and the labels of the transitions
are composed of the intersection of the guards together with the common action.
For example, the timed version of (Prod1) becomes (tProd1) as follows.

λ1
g1,a��� λ′

1 and λ2
g2,a��� λ′

2

(λ1, λ2)
g1∧g2,a��� (λ′

1, λ
′
2)

(tProd1)

Similarly to Proposition 3.1 for the greatest lower bound, the product of mecs

can be alternatively computed by building the product of the region graphs.
This construction however causes an exponential blow-up whereas the direct
construction is polynomial. Notice that operator ⊗ is overloaded to ease the
presentation.

Proposition 3.3. R(S1 ⊗ S2) ≡ R(S1) ⊗R(S2).

In the untimed setting, it is known [23] that the product is monotonic with
respect to the refinement, and that a product of models is a model of the product.
Those properties extend to the timed case as stated in the following theorem.

Theorem 3.4 (Properties of the product). For any mecs S1,S′
1,S2,S′

2,
and any eca C1, C2,

(S1 - S2 and S′
1 - S′

2) =⇒ S1 ⊗ S′
1 - S2 ⊗ S′

2; and
(C1 |= S1 and C2 |= S2) =⇒ C1 ⊗ C2 |= S1 ⊗ S2.

As a consequence, the product operation satisfies the property of independent im-
plementability, in the sense of [12]: an implementation of a specification of the form
S1 ⊗ S2 can be obtained by composing any two independent implementations of
S1 and S2 respectively.

Example 3.5. The mecs Acc in Fig. 2(b) page 686 specifies the behavior of an
access controller; the access to the resource will be granted for 2 time units after
the reception of a get request. In case of a privileged access with an extra time,
this duration will be extended to 4 time units.

The product Cl ⊗ Acc is depicted in Fig. 3(a). In the resulting specification,
extra can now only occur after a get request. Timing constraints on the grant
action issued from the access controller are also propagated.
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00′ 10′

01′ 11′

get

grant

xget ≤ 2

grant

xget ≤ 4

get
extra

get
xget ≤ 1

get
xget ≤ 1

(a) The product Cl ⊗ Acc

a b

c

get

grant
xget < 2

extra

grant
xget < 5

(b) A desired behavior G

Fig. 3. The global model Cl ⊗ Acc and its specified behavior G

3.3 Quotient of mecs

In this section, we define the quotient operation. Intuitively, the quotient de-
scribes a part of a global specification assuming another part will be realized
by some component. We thus consider quotient of specifications which is dif-
ferent from the constructions studied in [17] where at least one of the operand
is a system. We start by recalling the quotient operation on untimed modal
specifications, then extend it to mecs.

In the untimed setting, we aim at defining an operation dual to the product
of Section 3.2 in the following sense. Given two ms R = (P⊥⊥, λ0, ∆m, ∆M ) and
R1 = (P⊥⊥

1 , λ0
1, ∆

m
1 , ∆M

1 ), we want the quotient of R by R1 to be the ms written
R,R1 which satisfies the following properties.

Proposition 3.6. For every automaton M2,

M2 |= R,R1 ⇐⇒ ∀M1. [M1 |= R1 ⇒ M1 ⊗M2 |= R] (1)

and R,R1 is the greatest such one, namely

R1 ⊗R2 - R ⇐⇒ R2 - R,R1 (2)

The definition of the quotient follows [23], but it is here revisited with a uniform
way to handle both consistent and inconsistent states, as opposed to the original
definition where so-called pseudo-specifications needed being considered.

Formally, the quotient of R = (P⊥⊥, λ0, ∆m, ∆M ) by R1 = (P⊥⊥
1 , λ0

1, ∆
m
1 , ∆M

1 )
is the ms R,R1 = (P ′⊥⊥, (λ0, λ0

1), ∆
m
� , ∆M

� ), with P ′ ⊆ (P ×P1)∪{'}, where '
is fresh element, and the set ⊥⊥′ of locally inconsistent states of R,R1 contains
at least an element ⊥′ but also other elements: the rules below describe these
elements as well as the set of transitions. Notation λ

a��� I means that the a-
may-transition from λ leads to an inconsistent state in I. We also use notations
λ

a��� P \ I, λ a−→ I, and λ
a−→ P \ I with the expected meaning, and λ

a���
whenever there is no a-must-transition from state λ.
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λ ∈ I and λ1 /∈ I1

(λ, λ1) ∈⊥⊥′
(I∧¬I1)

λ ∈ I and λ1 ∈ I1

(λ, λ1)
a��� '

(I∧I1)

I �. λ
a��� and λ1 ∈ I1

(λ, λ1) ∈⊥⊥′
(¬Imust∧I1)

I �. λ
a��� and λ1 ∈ I1

(λ, λ1)
a��� '

(¬Imay∧I1)

' a��� '
(top)

Assume now that both λ and λ1 are consistent, i.e., λ /∈ I and λ1 /∈ I1:

λ
a��� I and (λ1

a��� P1 \ I1 or λ1
a−→ P1 \ I1)

(λ, λ1)
a��� ⊥′

(maynot)

λ
a��� and λ1

a��� I1

(λ, λ1)
a��� '

(may1)

λ
a��� λ′ /∈ I and (λ1

a��� λ′
1 /∈ I1 or λ1

a−→ λ′
1 /∈ I1)

(λ, λ1)
a��� (λ′, λ′

1)
(may2)

λ
a−→ λ′ and λ1

a��� λ′
1

(λ, λ1) ∈⊥⊥′
(inconsistency)

λ
a−→ λ′ and λ1

a−→ λ′
1

(λ, λ1)
a−→ (λ′, λ′

1)
(must)

We now give intuitive explanations for the rules above in particular with respect
to the first requirement of Proposition 3.6. To do so, let Rλ be the ms informally
defined as the sub-specification of R with initial state λ. When explaining a rule
involving transitions outgoing λ in R and λ1 in R1 we will thus speak about
models in Rλ, Rλ1

1 and Rλ ,Rλ1
1 . Rλ and Rλ1

1 are just introduced in order to
be able to regard local models of R and R1 from states λ and λ1. When, say
λ ∈ I, we have Mod(Rλ) = ∅.

Rule (I ∧ ¬I1) ensures that since there are no models for Rλ and there are
models for Rλ1

1 , there should not be models of Rλ , Rλ1
1 , otherwise we would

not have the right to left implication of Equation (1) in Proposition 3.6.
For Rules (¬Imust ∧ I1) and (¬Imay ∧ I1) (together with Rule (top)), since

Mod(Rλ1
1 ) = ∅, the right hand side of Equation (1) is trivially satisfied. There-

fore in (¬Imust ∧ I1), the a-transition required from λ cannot be guaranteed;
hence the quotient is not consistent. On the other hand for Rule (¬Imay ∧ I1),
since nothing particular is required from λ for the a-transition, nothing either
needs being required for models of the quotient; to guarantee Equation (2) of
Proposition 3.6 (which states the maximality of the quotient) we set the quotient
to be universal, i.e. it accepts every model.



692 N. Bertrand et al.

Rule (I ∧ I1) together with Rule (top), is the case where both Mod(Rλ) = ∅
and Mod(Rλ1

1 ) = ∅. In this case, the universal ms that accepts every model can
be in the quotient, and this is what is chosen in order to get the greatest such
ms, as required by Equation (2).

We now come to the set of rules where both λ and λ1 are consistent (λ /∈ I
and λ1 /∈ I1), which by Lemma 2.4 amounts to say that Mod(Rλ) �= ∅ and
Mod(Rλ1

1 ) �= ∅.
In Rule (may1), a is not possible from λ1, and a is not mandatory from λ, it

can therefore safely be authorized in the quotient. Rule (maynot) deals with the
case where a is forbidden in Rλ, but is authorized or even mandatory in Rλ1

1 : it
should be forbidden in the quotient.

Rule (may2) is very straightforward, as models of the quotient may have an
a-transition irrespectively of what is required in Rλ1

1 .
Finally, Rules (inconsistency) and (must) consider the case where we have

must transitions in Rλ. Rule (inconsistency) corresponds to the inability of guar-
anteeing the a-transition required in Rλ since it may not exist in some models of
Rλ1 . Hence only an inconsistent ms can be considered so that Equation (1) holds.
Rule (must) is the simple case of must requirements; notice that we implicitly have
λ′

1 /∈ I1, since by assumption λ1 /∈ I1.
One can easily verify that the conditions of the premises of Rules from (I∧¬I1)

to (must) are exclusive, hence the quotient construction yields a deterministic
object. Also, the quotient ms is complete.

Quotient of mecs. The quotient of a mecs S = (Q⊥⊥, λ0, δm, δM ) by a mecs

S1 = (Q⊥⊥
1 , λ0

1, δ
m
1 , δM

1 ) is the mecs S , S1 = (Q′⊥⊥, (λ0, λ0
1), δm

� , δM
� ), where

Q′ ⊆ (Q × Q1) ∪ {'} and where the set of locally inconsistent states and the
transition modalities follow the rules (I ∧ ¬I1) to (must) of the untimed case;
the guard of a transition is the conjunction of the local guards of S and S1. For
example, the untimed rule (must) becomes (tmust) as follows.

λ
g,a−→ λ′ and λ1

g1,a−→ λ′
1

(λ, λ1)
g∧g1,a−→ (λ′, λ′

1)
(tmust)

Besides, the rule (ttop) is the following:

' true,a��� '
(ttop)

This quotient operation for mecs can be used on eca as the class of deterministic
eca can be embedded into the one of mecs; it suffices to type with must every
existing transitions in the eca, and to complete it by adding transitions typed
by may to a state in ⊥⊥. Assuming determinacy of event-clock automata is not
restrictive, since they are known to be determinizable [2]. Observe that then the
quotient of two event-clock automata is not an event-clock automaton since e.g.
Rule (¬Imay ∧ I1) introduces a may transition to the top state.

Finally, the quotienting operation yields a deterministic and complete
specification. Hence:
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Lemma 3.7. Modal event-clock specifications are closed under quotient.

As for the product operation, the quotient operation in the timed and untimed
settings relate via the region construction (for the extended alphabet) as follows.

Proposition 3.8. R(S , S1) ≡ R(S) ,R(S1).

The correctness of the quotient construction is stated by the following.

Theorem 3.9 (Properties of the quotient). For any mecs S,S1,S2, and
any eca C2,

C2 |= S , S1 ⇐⇒ ∀C1. [C1 |= S1 ⇒ C1 ⊗ C2 |= S]; and (3)

S1 ⊗ S2 - S ⇐⇒ S2 - S , S1. (4)

From a practical point of view, the quotient operation enables incremental de-
sign: consider a desired global specification S, and the specification S1 of a
preexisting component. By computing S , S1 and by checking its consistency,
one can test whether a component implementing S1 can be reused in order to
realize S, or not. Note that by (4) the specification S , S1 is maximally per-
missive in the sense that it characterizes all components C2 such that for any C1
implementing S1, the composed system C1 ⊗ C2 implements S.

Example 3.10. A desired global behavior G is depicted in Fig. 3(b), page 690.
It specifies that any get request must be fulfilled; the access to the resource is
granted for 2 time units and 5 time units in the privileged mode.

A model of G/(Cl ⊗ Acc) will act as a protocol converter between Cl and
the access controller Acc ; the overall obtained system will satisfy G. The mecs

G/(Cl ⊗Acc) is represented in Fig. 4. Not surprisingly, the state c/11′ is incon-
sistent. This is because, in the state 11′ in Fig. 3(a), the resource is granted for 4
units of time whereas in the state c of the desired behavior G in Fig. 3(b), it must
be granted for 5 units of time. To avoid this inconsistency, the transition extra
from state b/10′ to c/11′ will not be implemented in any model of G/(Cl ⊗Acc).
Thus, the protocol converter will disallow the privileged mode.

The quotient operation we gave has nice properties: its construction is in essence
a cartesian product, thus yielding a polynomial time complexity, as opposed to
the exponential blow-up caused by the region graph construction of Proposi-
tion 3.8. Also the quotient, defined at the level of specifications and abstract-
ing from a particular choice of implementations, amounts to quotienting logical
statements denoted by specifications. In the untimed setting, the quotient op-
eration is a particular case of the exponential construction introduced by [7]
for arbitrary mu-calculus statements. However, we take here advantage of the
restricted logical fragment covered by the modal specifications, namely the con-
junction nu-calculus [15], to get an ad-hoc polynomial-time complexity of this
quotient construction. The present contribution suggests a similar situation for
a timed extension of the mu-calculus.
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a/00′ b/10′ c/11′ a/01′ b/11′

�

⊥′

get

xget < 2
grant

extra

xget ≤ 4
grant

get

xget < 4
grant

4 < xget < 5
grant

get, grant, extra

grant, extra

get, xget > 1
grant

get, xget > 1
extra

grant
extra

get, xget>1

grant, xget>4

extra

Fig. 4. The quotient G/(Cl ⊗ Acc)

4 Related Work

Regarding a theory of interfaces, we compare our approach with the following
settings: Interface automata of [12], timed interfaces of [13], and a timed exten-
sions of modal specifications of [10].

Interface automata. In interface automata [13], an interface is represented by
an input/output automaton [21], i.e., an automaton whose transitions are typed
with input and output rather than must and may modalities. The semantics of
such an automaton is given by a two-player game: the input player represents the
environment, and the output player represents the component itself. As explained
[24], interfaces and modalities are in essence orthogonal to each other. Moreover,
interface automata do not encompass any notion of model, and thus neither
the model relation nor the consistency, because one cannot distinguish between
interfaces and components. Alternatively, properties of interfaces are described
in game-based logics, e.g., ATL [3], with a high-cost complexity. Refinement
between interface automata corresponds to the alternating refinement relation
between games [4], i.e., an interface refines another one if its environment is
more permissive whereas its component is more restrictive. There is no notion
of component reuse and shared refinement is defined in an ad-hoc manner [14].
Composition of interface automata differs from the one over modal specifications.
Indeed, in interface automata, the game-based approach offers an optimistic
treatment of composition: two interfaces can be composed if there exists at least
one environment in which they can interact together in a safe way. In [19],
Larsen et al. proposed modal interfaces that are modal specifications composed
in a game-based manner. This work suggests that modal specifications subsume
interface automata.

Timed interfaces. In [13], de Alfaro et al. proposed timed interfaces which extend
timed automata just as interface automata extend automata. The composition of
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timed interfaces has only been partially studied, because of the underlying timed
games semantics: in particular, an extra feature needs being incorporated to pre-
vent players from winning by using Zeno strategies. Moreover, no refinement rela-
tion is defined. Recently, Chatain et al. [11] proposed a notion of alternating timed
refinement between timed automata, implemented in the UPPAAL toolset [25].
In all cases, operations between specifications have not been investigated in a sys-
tematic way, and to our knowledge, no quotient construction has been addressed.

A timed extension of modal specifications. A timed extension of modal speci-
fications appeared in [10] in a process algebra style. The formalism proposed
is a variant of CCS whose semantics relies on the configuration graph rather
than on the region graph, as done here. No logical characterization is developed,
neither any notion of model relation (satisfaction) or consistency (satisfiability).
Moreover, the quotient has not been considered at all.

5 Conclusion

Modal specifications offer a well-adapted algebraic framework for compositional
reasoning on component-based systems, that enables incremental design as well as
reuse of component. In this paper, we have presented a timed extension of modal
specifications using event-clock timed automata. All essential features expected
from a theory of interface (such as refinement, conjunction, satisfiability, product,
and quotient) are fully addressed and efficiently treated in this framework.

Several research directions still need being investigated in the future. We aim
at studying timed modal specifications in a broader framework than the one
of mecs, since event-clock automata are strictly less expressive than timed au-
tomata. However, a generalization to arbitrary timed modal specifications raises
complex issues on how different sets of clocks can be combined in the quotient.
Another topic concerns a logical characterization of modal event-clock specifica-
tions (or even more general timed modal specifications), in the spirit of [15] who
established the correspondence between simple modal specifications and con-
junctive ν-calculus. Such characterization brings insight on the expressiveness of
the specification formalism.

Acknowledgment. We are very thankful to the reviewers for relevant comments
that helped us improving the paper.
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10. Čerāns, K., Godskesen, J.C., Larsen, K.G.: Timed modal specification - theory
and tools. In: Fermüller, C., Tammet, T., Leitsch, A., Zamov, N. (eds.) Resolu-
tion Methods for the Decision Problem. LNCS, vol. 679, pp. 253–267. Springer,
Heidelberg (1993)

11. Chatain, T., David, A., Larsen, K.G.: Playing games with timed games. In: Pro-
ceedings of the 3rd IFAC Conference on Analysis and Design of Hybrid Systems,
ADHS 2009 (to appear, 2009)

12. de Alfaro, L., Henzinger, T.A.: Interface automata. In: Proceedings of the 9th ACM
SIGSOFT International Symposium on Foundations of Software Engineering (FSE
2001), pp. 109–120 (2001)

13. de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Timed interfaces. In: Sangiovanni-
Vincentelli, A.L., Sifakis, J. (eds.) EMSOFT 2002. LNCS, vol. 2491, pp. 108–122.
Springer, Heidelberg (2002)

14. Doyen, L., Henzinger, T.A., Jobstmann, B., Petrov, T.: Interface theories with
component reuse. In: Proceedings of the 8th International Conference on Embedded
Software (EMSOFT 2008), pp. 79–88. ACM Press, New York (2008)

15. Feuillade, G., Pinchinat, S.: Modal specifications for the control theory of discrete-
event systems. Discrete Event Dynamic Systems 17(2), 181–205 (2007)

16. Henzinger, T.A., Sifakis, J.: The embedded systems design challenge. In: Misra, J.,
Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 1–15. Springer,
Heidelberg (2006)

17. Jonsson, B., Larsen, K.G.: On the complexity of equation solving in process algebra.
In: Proceedings of the International Joint Conference on Theory and Practice of
Software Development (TAPSOFT 1991), pp. 381–396. Springer, Heidelberg (1991)

18. Larsen, K.G.: Modal specifications. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407,
pp. 232–246. Springer, Heidelberg (1990)

19. Larsen, K.G., Nyman, U., Wasowski, A.: Modal i/o automata for interface and
product line theories. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
64–79. Springer, Heidelberg (2007)

20. Larsen, K.G., Nyman, U., Wasowski, A.: On modal refinement and consistency. In:
Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 105–119.
Springer, Heidelberg (2007)

21. Lynch, N., Tuttle, M.R.: An introduction to Input/Output automata. CWI-
quarterly 2(3) (1989)



A Compositional Approach on Modal Specifications for Timed Systems 697

22. Raclet, J.-B.: Quotient de spécifications pour la réutilisation de composants. PhD
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Department of Computer Science
Aalborg University

Selma Lagerlöfs Vej 300
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Abstract. Bounded timed-arc Petri nets with read-arcs were recently
proven equivalent to networks of timed automata, though the Petri net
model cannot express urgent behaviour and the described mutual trans-
lations are rather inefficient. We propose an extension of timed-arc Petri
nets with invariants to enforce urgency and with transport arcs to gen-
eralise the read-arcs. We also describe a novel translation from the ex-
tended timed-arc Petri net model to networks of timed automata. The
translation is implemented in the tool TAPAAL and it uses UPPAAL
as the verification engine. Our experiments confirm the efficiency of the
translation and in some cases the translated models verify significantly
faster than the native UPPAAL models do.

1 Introduction

Time dependent models have been intensively studied because of the current
needs in software verification and development of embedded applications where
several reliability and safety requirements depend, to a large extent, on the
timing aspects. Among the most studied time dependent models are timed au-
tomata [3] and different time extensions of Petri nets (see e.g. [15]). A recent
overview comparing these models has been given in [21].

We consider a particular extension of the Petri net model called Timed-Arc
Petri Nets (TAPN) [7, 12] where an age (a real number) is assigned to each
token in the net and time intervals on arcs restrict the ages of tokens that can
be used to fire a transition. Recent studies show that bounded TAPN (where the
maximum number of tokens in the net is a priori given) offer a similar expressive
power as networks of timed automata, even though the models are conceptually
different and suitable for modelling of different systems. Sifakis and Yovine [19]
provided a translation of 1-safe timed-arc Petri nets into timed automata which
preserves strong timed bisimilarity but their translation causes an exponential
blow up in the size. Srba established in [20] a strong relationship (up to isomor-
phism of timed transition systems) between networks of timed automata and a
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superclass of 1-safe TAPN extended with read-arcs. For reachability questions
the reductions work in polynomial time. Recently Bouyer et al. [8] presented
a reduction from bounded TAPN (with read-arcs) to 1-safe TAPN (with read-
arcs), which preserves timed language equivalence (over finite words, infinite
words and non-Zeno infinite words). Nevertheless the translations described in
these papers are inefficient from a practical point of view as they either cause an
exponential blow-up in the size or create a new parallel component with a fresh
local clock (or more if the net is not 1-safe) for each place in the net, a situation
where even most developed tools like UPPAAL [22] show often a poor perfor-
mance. One limitation of the TAPN model is the impossibility to express urgent
behaviour (a TAPN model can always in any marking delay for ever without
taking any discrete transitions). While on one side this makes some problems
like coverability and boundedness decidable even for unbounded nets [1, 2, 8, 16],
it considerably limits the modelling power.

In this paper we extend the TAPN model with two new features: invariants1

on places to enforce urgent behaviour and transport arcs that generalise the pre-
viously studied read-arcs [8, 20]. We then suggest a novel translation of TAPN
to networks of timed automata where a fresh parallel component (with a local
clock) is created for every token in the net. This is a conceptually orthogonal
approach to the ones discussed in the previous works and it relies on different
reduction techniques. The proposed translation also transforms safety and live-
ness logical formulae into equivalent formulae on networks of timed automata.
One of the main advantages of this approach is the ability to use the active clock
reduction and the symmetry reduction techniques available in the rich theory of
timed automata.

The theory described in this paper translates TAPN models to UPPAAL-style
of timed automata with handshake synchronization because UPPAAL is prob-
ably the most frequently used industrial-strength tool for verification of timed
automata. For this reason, we chose at the moment not to use tools offering more
general notions of synchronization like e.g. KRONOS [9] and our experiments
confirm that the translation to timed automata with handshake synchronization
was indeed a good choice as the verification using this approach is rather efficient.
The suggested translations were implemented in a new tool TAPAAL [11], freely
available at www.tapaal.net, which offers modelling, simulation and verification
of timed-arc Petri nets with continuous time. We report here on two experiments:
verification of the Fischer’s mutual exclusion algorithm and the alternating bit
protocol. The results are promising and the translated timed automata models
verify in fact considerably faster than the native UPPAAL models do.

Related Tools. There is one related tool prototype for verification of timed-arc
Petri nets mentioned in [2] where the authors discuss a coverability algorithm for
general (unbounded) nets, though without any urgent behaviour. The tool does
not seem to be maintained anymore. Time features (time stamps) connected to

1 Invariants in our setting are time bounds restricting the ages of tokens in certain
places. They should not be confused with transition/place invariant techniques stud-
ied in the theory of (untimed) Petri nets.
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tokens can be modelled also in Coloured Petri Nets using CPN Tools [13], how-
ever, only discrete time semantics is implemented in CPN Tools with a limited
support for the automatic analysis.

A full version of this paper with complete proofs is available in [10].

2 Basic Definitions

A timed labelled transition system (TLTS) is a triple T = (S,Act,−→) where
S is a set of states, Act is a set of actions where Act ∩ R

≥0 = ∅ and R
≥0 are

nonnegative real numbers, and −→⊆ S×(Act∪R
≥0)×S is a transition relation.

We let a, a0, a1, . . . range over Act and d, d0, d1, . . . over R
≥0. We write s a−→ s′

if (s, a, s′) ∈−→ for the discrete transitions and s
d−→ s′ if (s, d, s′) ∈−→ for the

delay transitions. We use the notations s a−→ and s
d−→ if there exists some state

s′ such that s
a−→ s′ and s

d−→ s′, respectively. By s −→ s′ we mean that either
s

a−→ s′ for some a ∈ Act or s
d−→ s′ for some delay d. Let s ∈ S and d ∈ R

≥0.
By s[d] we denote the unique (here we impose the standard time-determinism
assumption—see e.g. [5]) state s′ such that s

d−→ s′, provided that the delay d
is possible from s.

The set I of time intervals is defined by the following abstract syntax where
a and b range over N and a < b:

I ::= [a, b] | [a, a] | (a, b] | [a, b) | (a, b) | [a,∞) | (a,∞) .

The set IInv of invariants is a subset of intervals that include 0.

2.1 Logic for Safety and Liveness Properties

We shall now define a subset of Computation Tree Logic (CTL) used in the
tool TAPAAL [11] (essentially mimicking the logic used in UPPAAL, except for
the leads-to operator). Let AP be the set of atomic propositions. The logical
formulae are given by the following abstract syntax

ψ ::= EFϕ | EGϕ | AFϕ | AGϕ
ϕ ::= p | ¬ϕ | ϕ ∧ ϕ

where p ∈ AP and EF, EG, AF and AG are the standard CTL temporal operators.
The semantics of formulae is defined with respect to a given TLTS T =

(S,Act,−→) together with a labelling function µ : S → 2AP which assigns a set
of true atomic propositions to each state. The satisfaction relation s |= ψ for a
state s ∈ S and a formula ψ is defined inductively as follows:

– s |= p iff p ∈ µ(s),
– s |= ¬ϕ iff s �|= ϕ,
– s |= ϕ1 ∧ ϕ2 iff s |= ϕ1 and s |= ϕ2,
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– s |= EFϕ iff s −→∗ s′ and s′ |= ϕ
– s |= EGϕ iff there is a (finite or infinite) alternating run ρ of the form

s = s1
d1−→ s′1

a1−→ s2
d2−→ s′2

a2−→ s3
d3−→ s′3

a3−→ s4
d4−→ s′4

a4−→ . . .

such that for all i and for all d, 0 ≤ d ≤ di, we have si[d] |= ϕ and
(i) ρ is infinite, or
(ii) ρ is finite and ends in sk where for all d ∈ R

≥0 we have sk
d−→ and

sk[d] |= ϕ, or
(iii) ρ is finite and ends in a state s′ (where s′ is either of the form sk or s′k)

such that whenever s′
d−→ s′[d] is possible for a d ∈ R

≥0 then s′[d] |= ϕ

and there is no state s′′ such that s′[d] a−→ s′′ for any a ∈ Act,
– s |= AFϕ iff s �|= EG¬ϕ, and
– s |= AGϕ iff s �|= EF¬ϕ.

Remark 1. The formula EGϕ means that there exists a maximal run such that
at any point the formula ϕ is satisfied. The conditions (i), (ii) and (iii) list the
three possibilities for a run to be maximal: (i) it consists of an infinite alternating
sequence of actions and time delays, or (ii) it ends in a state where time can
diverge, or (iii) it ends in a state from which no discrete transitions are possible
after any time delay (this includes time-locks).

2.2 Timed-Arc Petri Nets

A Timed-Arc Petri Net with transport arcs and place invariants (TAPN) is a
tuple N = (P, T, F, c, Ftarc , ctarc, ι), where P is a finite set of places, T is a finite
set of transitions such that T ∩P = ∅, F ⊆ (P ×T )∪ (T ×P ) is a flow relation,
c : F |P×T → I is a function assigning a time interval to every arc from a place
to a transition, Ftarc ⊆ (P × T × P ) is the set of transport arcs that satisfy for
all (p, t, p′) ∈ Ftarc and all r ∈ P :(
(p, t, r) ∈ Ftarc ⇒ p′ = r

)
∧
(
(r, t, p′) ∈ Ftarc ⇒ p = r

)
∧ (p, t) /∈ F ∧ (t, p′) /∈ F

ctarc : Ftarc → I is a function assigning a time interval to every transport arc,
and ι : P → IInv is an invariant assignment of invariants to places.

Remark 2. The conditions imposed on the transport arcs guarantee for any given
p and t that if there is a transport arc of the form (p, t, p′) or (p′′, t, p) then the
places p′ and p′′ are unique. Whenever the places p′ or p′′ are not relevant for
the context, we shall simply denote the transport arcs as (p, t, ) or ( , t, p).

The preset of a transition t in the net is defined as •t = {p ∈ P | (p, t) ∈
F ∨ (p, t, ) ∈ Ftarc}, and the postset of a transition t is defined as t• = {p ∈ P |
(t, p) ∈ F ∨ ( , t, p) ∈ Ftarc}. Without loss of generality assume that |•t∪ t•| > 0
for any t ∈ T . By B(R≥0) we denote the set of finite multisets on R

≥0. For
B ∈ B(R≥0) and d ∈ R

≥0 we let B + d
def= {b + d | b ∈ B}.
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Fig. 1. Example of a marked TAPN

Let N = (P, T, F, c, Ftarc , ctarc, ι) be a TAPN. A marking M on the net N
is a function M : P → B(R≥0) such that every p ∈ P and every x ∈ M(p)
satisfy x ∈ ι(p). Each place is thus assigned a certain number of tokens, and
each token is annotated with a real number (age). We moreover consider only
markings such that all their tokens satisfy the place invariants imposed by the
invariant assignment ι. By |M | we denote the total number of tokens in the
marking M . The set of all markings on N is denoted by M(N). For a finite
marking M (where |M | < ∞) we also use an alternative multiset notation M =
{(p1, r1), (p2, r2), . . . , (pk, rk)} where pi ∈ P and ri ∈ R

≥0, which lists explicitly
all tokens in the net by naming their positions and ages. A marked TAPN is a
pair (N,M0) where N is TAPN and M0 is an initial marking. As initial markings
we allow only markings with tokens of age 0.

Let us now outline the dynamics of TAPNs. We introduce two types of
transition rules: firing of a transition and time delay.

For a TAPN N we say that a transition t ∈ T is enabled in a marking M if

– in all places p ∈ •t there is a token x such that its age belongs to the time
interval on the arc from p to t, and

– if there is a transport arc of the form (p, t, p′) then moreover the age of the
token in p satisfies the invariant imposed by p′.

If a transition t is enabled then it can fire. It consumes one token (of an appro-
priate age) from each place in •t, and produces one new token to every place in
t•. The age of the newly produced token is either 0 for the standard arcs, or it
preserves the age of the consumed token for transport arcs.

Another behaviour of the net is a so-called time delay where all tokens in the
net grow simultaneously older by a given time factor (a real number in general).
A time delay is allowed only as long as invariants in all places are satisfied.

Example 1. Consider the marked TAPN from Fig. 1. There are 8 places (drawn
as circles) and 6 transitions (drawn as rectangles) that are connected either by
standard arcs (such that every arc from a place to a transition contains a time
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interval) or transport arcs like the one from p1 to p3 via t1. Transport arcs via a
given transition are numbered (the symbol :1 after the interval on the arc from
p1 to t1 and the symbol 1 on the arc from t1 to p3) so that the routes for tokens
that do not change their age after transition firing are clearly identified. The
initial marking contains only one token in place p0 of age 0 time units. Clearly,
before t0 can fire the net has to delay between 1 to 3 time units and after its
firing two new tokens of age 0 are produced into p1 and p2. In fact, a longer
delay of say 5 time units is also possible but then the transition t0 will not be
enabled again and the token in p0 is sometimes referred to as a dead token. The
place p2 contains an invariant ensuring that tokens in that place cannot grow
older than 2 time units. The other places do not show any invariant information,
which implicitly means that their associated invariant is [0,∞). The transport
arc between p1 and p3 ensures that when t1 is fired the age of the token produced
into p3 is equal to the age of the token consumed in p1 (the token produced to
p4 is of age 0).

Transition Firing. In a marking M , we can fire a transition t if it is enabled, i.e.

∀p ∈ •t. ∃x ∈ M(p). [x ∈ c(p, t) ∨ (x ∈ ctarc(p, t, p′) ∧ x ∈ ι(p′))] .

Before firing t, we fix the sets C−
t (p) and C+

t (p) for all places p ∈ P so that they
satisfy the following equations (note that all operations are on multisets, and
there may be several options for fixing these sets):

– for every p ∈ P such that (p, t) ∈ F
C−

t (p) = {x} where x ∈ M(p) and x ∈ c(p, t),
– for every p ∈ P such that (t, p) ∈ F

C+
t (p) = {0}, and

– for every p, p′ ∈ P such that (p, t, p′) ∈ Ftarc

C−
t (p) = {x} = C+

t (p′) where x ∈ M(p), x ∈ ctarc(p, t, p′) and x ∈ ι(p′);
– in all other cases (when the place in the argument is unrelated to the firing

of the transition t) we set the above sets to ∅.

Firing a transition t in the marking M yields a new marking M ′ defined as

∀p ∈ P. M ′(p) def=
(
M(p) \ C−

t (p)
)
∪ C+

t (p) .

Time Delays. In a marking M we can let time pass by d ∈ R
≥0 time units if

∀p ∈ P. ∀x ∈ M(p). (x + d) ∈ ι(p)

and this time delay then yields a marking M ′ defined as

∀p ∈ P. M ′(p) def= M(p) + d .

A given TAPN N = (P, T, F, c, Ftarc , ctarc, ι) generates a TLTS T (N) def=
(M(N), T,−→) where states are markings on N , the set of actions is T , and
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the transition relation −→ is defined by M
t−→ M ′ whenever the firing of a

transition t in a marking M yields a marking M ′, and M
d−→ M ′ whenever a

time delay of d time units in a marking M yields a marking M ′.
In a marked TAPN (N,M0) we say that a marking M is reachable iff M0 −→∗

M . The set of all reachable markings from marked TAPN (N,M0) is denoted
M(N,M0). A marked net N is k-bounded if the total number of tokens in any
of its reachable markings is less or equal to k. A marked net is called bounded if
it is k-bounded for some k. A net N is of degree k if every transition t ∈ T has
exactly k incoming and exactly k outgoing arcs, formally |•t| = |t•| = k.

In order to argue about the validity of logical formulae on transition systems
generated by timed-arc Petri nets, we also have to define the set of atomic
propositions AP and the labelling function µ : M(N) → 2AP . We let AP def=
{p "# n | p ∈ P, n ∈ N and "# ∈ {<,≤,=,≥, >}}. The interpretation is that a
proposition (p "# n) is true in marking M iff the number of tokens in the place p

satisfies the proposition in question with respect to n, formally µ(M) def= {(p "#
n) | |M(p)| "# n}, where "# is one of the (standard mathematical) operators in
the above definition.

Given a marked TAPN (N,M0) and a formula ψ, we shall write M0 |=N ψ
(or M0 |= ψ if N is clear from the context) whenever the marking M0 satisfies
the formula ψ in the TLTS T (N).

Consider again the marked TAPN from Fig. 1. It is easy to verify that it
satisfies e.g. the formula EF (p6 = 1) as the place p6 can be easily marked.
In our logic we do not consider queries that involve any timing information of
tokens but such formulae can be still verified with the presented logic by adding
new testing transitions like the one called testGoal moving tokens of the specified
age from the place p6 to timedGoal . Now the property whether p6 can become
marked with a token of age between 5 and 6 time units can be expressed as
the formula EF (timedGoal = 1). Similarly, by introducing a new place with a
token and resetting its age when a certain transition is fired, one can measure
the duration before some other transition is fired.

Remark 3. In standard P/T Petri nets there is a construction to ensure that
a transition can be fired only if a token is present in a certain place, without
removing the token. This is done by adding two arcs: one from the place to the
transition and one in the opposite direction. A similar construction, however,
does not work in TAPN with only standard arcs as consuming a (timed) token
and returning it back resets its age. Hence an extension of the model with read-
arcs was suggested in [20, 8]. A read-arc in TAPN setting is a special arc from
a place to a transition which is labelled by a time interval. The semantics is
that the transition can fire only if a token with its age in the given interval is
present in the input place of the read-arc, however, the token is not consumed
nor reset when the transition is fired. It is shown in [20, 8] that timed automata
and bounded TAPN with read-arcs are equally expressive. Transport arcs, newly
introduced in this paper, generalize the notion of read-arcs because a read-arc
can be simulated by a pair of transport arcs which consume a token and return it
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back without resetting its age (the same trick as in P/T nets). On the other hand,
transport arcs do not add any expressive power as we show in this paper that
bounded TAPN with transport arcs can be also translated to timed automata.
On the other hand, transport arcs are convenient for the modelling purposes
because the encoding tricks used in simulating transport arcs by read-arcs are
complex and they double the number of tokens in the net (as one token is used
to simulate the token position and the other one to remember its age).

2.3 Networks of Timed Automata

Let C be a finite set of clocks. A (time) valuation of clocks from C is a function
v : C → R

≥0. Let v be a valuation and d ∈ R
≥0. We define a valuation v + d :

C → R
≥0 by (v + d)(x) def= v(x) + d for every x ∈ C. For every set R ⊆ C we

define a valuation v[R := 0] : C → R
≥0 by v[R := 0](x) def= v(x) for x ∈ C � R

and v[R := 0](x) def= 0 for x ∈ R.
A clock guard is a partial function g : C ↪→ I assigning a time interval to

selected clocks. We denote the set of all clock guards as G(C). An invariant
is a clock guard g where for every x ∈ C holds g(x) ∈ IInv whenever g(x) is
defined. The set of all invariants is denoted by GInv(C). We say that a valuation
v satisfies a guard g ∈ G(C) (written v |= g) iff v(x) ∈ g(x) for all x ∈ dom(g).
To specify a guard g that only constrains the values of one clock x, we often use
the notation x ∈ I where I = g(x).

A timed automaton (TA) is a tuple A = (L,Act, C,−→, ι, $0) where L is a
finite set of locations, Act is a finite set actions such that L∩Act = ∅, C is a finite
set of clocks, −→⊆ L×G(C)×Act×2C ×L is a finite transition relation written

$
g,a,R−→ $′ for ($, g, a, R, $′) ∈−→, ι : L → GInv(C) is an invariant assignment of

clock guards to the locations, and $0 ∈ L is an initial location.
A configuration of a timed automaton A is a pair ($, v) where $ ∈ L is a loca-

tion and v : C → R
≥0 is a clock valuation on C such that the location $ satisfies

the respective invariant, i.e., v |= ι($). We denote the set of all configurations of
A by Conf (A). An initial configuration of A is ($0, v0) such that v0(x) def= 0 for
all x ∈ C. We assume that the initial configuration always satisfies the invariant
of the location $0, i.e., ($0, v0) ∈ Conf (A).

A timed automaton A = (L,Act, C,−→, ι, $0) determines a TLTS T (A) def=
(Conf (A),Act,−→) where states are configuration of A and the transition
relation −→ is defined by

($, v) a−→ ($′, v[R := 0]) if $
g,a,R−→ $′ in A s.t. v |= g and v[R := 0] |= ι($′)

($, v) d−→ ($, v + d) if d ∈ R
≥0 and for all d′ ∈ [0, d] we have v + d′ |= ι($).

We shall adopt the handshake communication scheme as it is used in the tool UP-
PAAL [22] for defining a parallel composition of automata. In the semantics, we
consider only synchronization moves as independent moves of single components
are not necessary for the reduction.
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Fig. 2. Example of an NTA

Let A1, . . . , An be timed automata where (for all i, 1 ≤ i ≤ n) Ai =
(Li,Act, C,−→i, ιi, $

0
i ) and where Act and C are fixed sets of actions and clocks,

respectively. We moreover require that Act is of the form Act = Act! ∪ Act?

where Act!
def= {a! | a ∈ Chan} and Act?

def= {a? | a ∈ Chan} for a given
nonempty set of channel names Chan . A network of timed automata (NTA) is
a parallel composition of A1, . . . , An denoted by P = A1|| · · · ||An. Note that it
is allowed to share the names of locations in different parallel components.

A configuration is a tuple ($1, . . . , $n, v) where $i ∈ Li for all 1 ≤ i ≤ n and
v : C → R

≥0 is a clock valuation on C such that for every i, 1 ≤ i ≤ n, we have
v |= ιi($i). We denote the set of all configurations of P by Conf (P ). An initial
configuration of P is ($01, . . . , $

0
n, v

0) such that v0(x) def= 0 for all x ∈ C. As before
we assume that ($01, . . . , $

0
n, v

0) ∈ Conf (P ).
An NTA P determines a TLTS T (P ) def= (Conf (P ),Chan ,−→) where states

are the configurations of P , the discrete transitions are labelled by channel
names, and the transition relation −→ is defined by

– (s1, . . . , sj , . . . , sk, . . . sn, v)
a−→ (s1, . . . , s

′
j , . . . , s

′
k, . . . , sn, v

′)
for 1 ≤ j �= k ≤ n whenever

• sj
gj ,a!,Rj−−−−−→j s′j and v |= gj,

• sk
gk,a?,Rk−−−−−−→k s′k and v |= gk,

• v′ = v[Rj ∪Rk := 0], and (s1, . . . , s
′
j , . . . , s

′
k, . . . , sn, v

′) ∈ Conf (P )

– (s1, . . . , sn, v)
d−→ (s1, . . . , sn, v + d)

if d ∈ R
≥0 and (si, v)

d−→i (si, v + d) for all i, 1 ≤ i ≤ n.

Example 2. Consider the NTA in Fig. 2 with three parallel components A, B and
C. We draw the parallel components as graphs where nodes represent locations
together with their invariants and edges decorated by guards, synchronisation
channels and clock updates represent the transition relation. The initial location
of each component is marked with a double circle. In the following example of a
computation in the network
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(p0
A, p

0
B, p0

C , [x = 0, y = 0, z = 0]) 3−→ (p0
A, p

0
B, p0

C , [x = 3, y = 3, z = 3])
g−→

(p1
A, p

0
B, p1

C , [x = 3, y = 3, z = 0]) 2.4−→ (p1
A, p

0
B, p1

C , [x = 5.4, y = 5.4, z = 2.4]) h−→

(p2
A, p

1
B, p1

C , [x = 5.4, y = 0, z = 2.4]) 0.6−→ (p2
A, p

1
B, p1

C , [x = 6, y = 0.6, z = 3])

we notice that in the last configuration the network is stuck as no further syn-
chronization is possible and because of the invariant x ≤ 6 in place p2

A time
cannot delay either.

In order to argue about validity of logical formulae on transition systems gener-
ated by networks of timed automata P , we have to define the set of atomic
proposition AP and the labelling function µ : Conf (P ) → 2AP . We let
AP def= {(#$ "# n) | $ ∈ ∪n

i=1Li, n ∈ N and "# ∈ {<,≤,=,≥, >}}. The in-
terpretation is that a proposition (#$ "# n) is true in a given configuration iff
the number of parallel components that are currently in the location $ respects
the given proposition with respect to n.

3 From Bounded TAPN to NTA

In this section we shall describe a reduction from bounded timed-arc Petri nets
with invariants and transport arcs to networks of timed automata. We first
describe a reduction from bounded nets to nets where each transition has exactly
two input and two output places. In the second step this reduction is followed
by a reduction to networks of timed automata.

3.1 From k-Bounded TAPN to TAPN of Degree 2

To translate a given k-bounded TAPN with transitions that have more than two
input or output places into a TAPN of degree 2 we have to simulate a single
transition firing in the original net by a series of transitions in the net of degree 2.
The problem is that when firing a given transition in a number of steps, other
transition firings may interleave—thus some extra behaviour can be introduced.
To prevent this from happening, we introduce a new mutex-like place called
plock , which contains a token that is consumed before the sequence of transition
firings begins and the token is returned back after the simulation of the selected
transition is ended.

The translation is demonstrated in Fig. 3 where a simple 3-bounded TAPN is
translated into a TAPN of degree 2. The idea is that the token in the place plock

will travel through intermediate places p(t1in), p(t2in), p(t2out), p(t1out) and finally
return to plock . When the first transition p(t1in) is fired, a token of a suitable age
from p0 is consumed and placed in the holding place ph(t1), then a token from
p1 is consumed and placed in ph(t2). Because |•t| < |t•| a special place called
pcapacity (used as a repository of the presently unused tokens) is created. By
firing the transition t3 a new token of age 0 is produced in p3. And finally the
tokens placed in ph(t2) and ph(t1) are moved to the appropriate output places
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-

p0 p1

p2 p3

t

0.0 0.0

[3,7) [0,9]:1

1

-

-

-

-

-

plock

pcapacity

p0 p1

p2 p3

ph(t1) ph(t2)

p(t1in)
Inv: ≤0

p(t2in)
Inv: ≤0

p(t2out)
Inv: ≤0

p(t1out)
Inv: ≤0

t1in

t1out

t2in

t2out

t3

[3,7) [0,9]:1

1

[0,∞)[0,∞)

[0,∞)

[0,∞)[0,∞)

[0,∞)

[0,∞) [0,∞):1

1

0.0 0.0

0.0

0.0

Fig. 3. An example of a 3-bounded net and the corresponding degree 2 net

by firing the transitions t2out and t1out. Note that because of the invariants on the
intermediate places, time cannot elapse during such a series of transition firing
and so the age of the token in p1 that is moved via the two transport arcs into p2
is preserved. Notice that the use of holding places is essential as without them
a token from p0 can be consumed by t1in while creating a new token in p1. This
may allow firing of t2in even if there were no tokens in p1 in the original net. Also
notice that by this construction we may introduce extra deadlocks (e.g. if there
is no token present in p1 and the transition t1in is fired). Nevertheless, for the
verification of safety properties we can detect such situations as demonstrated
in what follows.

Let us introduce some notation for a transition t ∈ T . We fix a set

Pairing(t) ={(p, I, p′, tarc) | (p, t, p′) ∈ Ftarc , I = ctarc(p, t, p′)} ∪
{(p1, I1, p

′
1,normal), . . . , (pm, Im, p′m,normal) |

{p1, . . . , p�} = {p | (p, t) ∈ F}, {p′1, . . . , p′�′} = {p | (t, p) ∈ F},
m = max($, $′), Ii = c(pi, t) if 1 ≤ i ≤ $ else Ii = [0,∞),
pi = pcapacity if $ < i ≤ m, p′i = pcapacity if $′ < i ≤ m}

and we define max(t) def= max(|•t|, |t•|). Note that the max operator with two
arguments is the classical maximum of two numbers.

The intuition is that Pairing(t) fixes the paths from input to output places
on which the tokens travel when firing the transition t, and it also remem-
bers the associated time intervals and the type of the path (tarc for trans-
port arcs and normal for the standard arcs that reset the ages of produced
tokens). Observe that for the example net in Fig. 3 where max(t) = 3
a possible pairing operator (used in the reduction) looks like Pairing(t) =
{(p0, [3, 7), p1,normal), (p1, [0, 9], p2, tarc), (pcapacity , [0,∞), p3,normal)}. More-

over, by p
I−→ t −→ p′ we shall abbreviate the presence of an arc from p to
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Algorithm 1. Translation from k-bounded TAPN to TAPN of degree 2
Input: A k-bounded TAPN N = (P, T, F, c, Ftarc , ctarc , ι) with marking M0.
Output: A TAPN N ′ = (P ′, T ′, F ′, c′, Ftarc

′, ctarc
′, ι′) of degree 2 and M ′

0.
begin

P ′ := P ∪ {plock , pcapacity} ∪ {ph(ti) | t ∈ T, 1 ≤ i < max(t)}
∪ {p(ti

in), p(ti
out) | t ∈ T, 1 ≤ i < max(t)}

T ′ := {ti
in, ti

out | t ∈ T, 1 ≤ i < max(t)} ∪ {tmax(t)}

ι′(p) :=

⎧⎪⎨⎪⎩
ι(p) if p ∈ P

[0, 0] if p ∈ {p(ti
in), p(ti

out) | t ∈ T, 1 ≤ i < max(t)}
[0,∞) otherwise

forall t ∈ T do
i := 1
while |Pairing(t)| > 1 do

Remove some (p, I, p′, type) from Pairing(t) and add arcs

p
I−→ ti

in −→ ph(ti) and ph(ti)
[0,∞)−−−→ ti

out −→ p′ of type type.
i := i + 1

Let {(p, I, p′, type)} := Pairing(t); add arcs p
I−→ ti −→ p′ of type type.

Add normal arcs plock
[0,∞)−→ t1in −→ p(t1in) and p(t1out)

[0,∞)−→ t1out −→ plock .

Add normal arcs p(ti
in)

[0,∞)−→ ti+1
in −→ p(ti+1

in ) for 1 ≤ i < max(t) − 1.

Add normal arcs p(tmax(t)−1
in )

[0,∞)−→ tmax(t) −→ p(tmax(t)−1
out ).

Add normal arcs p(ti+1
out )

[0,∞)−→ ti+1
out −→ p(ti

out) for 1 ≤ i < max(t) − 1.

M ′
0(p) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

M0(p) if p ∈ P

{0} if p = plock

{0, . . . , 0︸ ︷︷ ︸
k−|M0|

} if p = pcapacity

∅ otherwise
end

t with the time interval I and an arc from t to p′; the type of the arcs (normal
or transport) will be clear from the context. The translation is given in Alg. 1.

Notice that Alg. 1 for an input net N = (P, T, F, c, Ftarc , ctarc, ι) creates an
output net N ′ = (P ′, T ′, F ′, c′, Ftarc

′, ctarc
′, ι′) such that

– |P ′| ≤ |P | + 2 + 4(|F | + 2|Ftarc|),
– |T ′| ≤ 2(|F | + 2|Ftarc |), and
– |F ′| + |Ftarc

′| ≤ 8(|F | + 2|Ftarc |).

Hence the translation causes only a linear growth in the size.
We shall now introduce a precise relationship between markings in a given

marked k-bounded TAPN (N,M0) and markings in the TAPN (N ′,M ′
0) con-

structed by Alg. 1. A marking M ′ ∈ M(N ′,M ′
0) is called stable iff |M ′(plock )| =

1. Let M ∈ M(N,M0) and M ′ ∈ M(N ′,M ′
0). We say that M and M ′ correspond

to each other, written M ≡ M ′, if and only if
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M ′(p) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
M(p) if p ∈ P

{x} if p = plock

{x1, . . . , xk−|M|} if p = pcapacity

∅ otherwise

for some x, x1, . . . , xk−|M| ∈ R
≥0 .

Remark 4. Note that for a given marking M there may be many markings M ′

such that M ≡ M ′, but whenever M ≡ M ′ then M ′ is stable. Intuitively, the
age of the token x in the place plock represents the time that has elapsed since
the last transition firing.

Lemma 1. Let (N,M0) be a marked k-bounded TAPN and let (N ′,M ′
0) be the

marked TAPN of degree 2 constructed by Alg. 1. Let M ∈ M(N,M0) and M ′ ∈
M(N ′,M ′

0) such that M ≡ M ′.

1. If M
t−→ M1 then M ′ −→∗ M ′

1 such that M1 ≡ M ′
1 and the sequence by

which M ′
1 is reached from M ′ contains only discrete transitions.

2. If M d−→ M1 then M ′ d−→ M ′
1 such that M1 ≡ M ′

1.
3. If M ′ −→∗ M ′

1, M ′
1 is stable, none of the intermediate markings between

M ′ and M ′
1 are stable, and the first transition is not a time delay, then

M
t−→ M1 for some t ∈ T such that M1 ≡ M ′

1.
4. If M ′ d−→ M ′

1 then M
d−→ M1 such that M1 ≡ M ′

1.

We now describe how to translate queries. Formulae of the form ψ = EFϕ are
translated into ψ′ = EF(ϕ ∧ plock = 1), and formulae of the form ψ = AGϕ are
translated into ψ′ = AG(ϕ ∨ plock = 0).

Theorem 1. Let (N,M0) be a marked k-bounded TAPN and let ψ be a for-
mula of the form EFϕ or AGϕ. Let (N ′,M ′

0) be the marked TAPN of de-
gree 2 constructed by Alg. 1 and let ψ′ be the formula defined above. Then
M0 |=N ψ ⇐⇒ M ′

0 |=N ′ ψ′.

Proof. Notice that the translation returns M ′
0 such that M0 ≡ M ′

0. We will use
this fact implicitly in the arguments to follow. First, we prove the theorem for
the EF operator.

“⇒” (EF): Let M0 |= EFϕ, which means that M0 −→∗ M such that M |= ϕ.
By repeatedly using Lemma 1 we get that M ′

0 −→∗ M ′ such that M ≡ M ′,
which gives that M ′ |= ϕ. Because M ′ is stable we get M ′ |= ϕ ∧ plock = 1 and
this implies that M ′

0 |= EF(ϕ ∧ plock = 1).
“⇐” (EF): Let M ′

0 |= EF(ϕ ∧ plock = 1). This means that M ′
0 −→∗ M ′

such that M ′ is stable and M ′ |= ϕ. By repeatedly using Lemma 1 we get that
M0 −→∗ M such that M ≡ M ′, which means that M |= ϕ and hence M0 |= EFϕ.

The validity of the theorem for the AG operator follows for the definition and
the above proved facts about EF as follows: M0 |= AGϕ ⇐⇒ M0 �|= EF¬ϕ
⇐⇒ M ′

0 �|= EF(¬ϕ ∧ plock = 1) ⇐⇒ M ′
0 �|= EF¬(ϕ ∨ plock �= 1) ⇐⇒

M ′
0 �|= EF¬(ϕ ∨ plock = 0) ⇐⇒ M ′

0 |= AG(ϕ ∨ plock = 0). ��



An Efficient Translation of TAPN to NTA 711

3.2 From TAPN of Degree 2 to Networks of Timed Automata

We can now assume a given net of degree 2 produced by our previous translation
and we will continue with a construction of a network of timed automata. The
idea of the translation is to represent each token in the net by a single timed au-
tomaton with one local clock, and to simulate a transition firing by a handshake
synchronisation on a channel named after the transition.

The intuition is described on an example in Fig. 4. We can see that every
place in the net gives rise to an identically named location in the parallel com-
ponent corresponding to a given token, while all invariants are carried over. Time
intervals on arcs are naturally transformed into guards and the local clocks of
each parallel component are reset if and only if the transitions correspond to
normal arcs. In fact, the timed automata for all tokens in the net are identical,
except for their initial locations that are determined by the placement of tokens
in the initial marking and the names of local clocks. The full translation is given
in Alg. 2. For a TAPN of degree 2 with k tokens we hence create k parallel
components, each of them of a proportional size to the input net.

As for the first translation, we shall define a correspondence relation ≡ be-
tween markings in the net and configurations of the constructed network of timed
automata. Let M = {(p1, r1), (p2, r2), · · · , (pk, rk)} be a marking a TAPN of de-
gree 2 and let s = (l1, · · · , lk, v) be a configuration of the constructed NTA. We
write M ≡ s if and only if for some permutation {j1, j2, · · · , jk} = {1, 2, · · · , k}
we have pi = lji and v(xji ) = ri for all i, 1 ≤ i ≤ k.

Lemma 2. Let (N,M0) be a marked TAPN of degree 2. Let PTA be the NTA
constructed from (N,M0). Let M ∈ M(N,M0) and let s be a reachable configu-
ration of PTA such that M ≡ s.

1. If M t−→ M ′ then s
t−→ s′ and M ′ ≡ s′.

2. If M d−→ M ′ then s
d−→ s′ and M ′ ≡ s′.

3. If s t−→ s′ then M
t−→ M ′ and M ′ ≡ s′.

4. If s d−→ s′ then M
d−→ M ′ and M ′ ≡ s′.

-

p0
Inv: < 3

p1

p2 p3
Inv: ≤ 5

t

0.0 0.0

[1,4] (5,∞):1

1

p0
x1 < 3

p1

p2 p3
x1 ≤ 5

1 ≤ x1 ≤ 4

t!

x1 := 0

5 < x1

t?

p0
x2 < 3

p1

p2 p3
x2 ≤ 5

1 ≤ x2 ≤ 4

t!

x2 := 0

5 < x2

t?

Fig. 4. An example of the translation from TAPN to NTA
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Algorithm 2. Algorithm for translation of TAPN of degree 2 to NTA
Input: A TAPN N = (P, T, F, c, Ftarc, ctarc , ι) of degree 2 and a marking M0.
Output: An NTA PTA = A1||A2|| . . . ||A|M0| where Ai = (L,Act, C,−→i, ιi, 	

0
i ).

begin
L := P ; Act := {t!, t? | t ∈ T}; C := {x1, x2, . . . , x|M0|}
forall t ∈ T do

Let {(p1, I1, p
′
1, type1), (p2, I2, p

′
2, type2)} := Pairing(t).

for i := 1 to |M0| do

Add p1
xi∈I1,t!,R−−−−−−−→i p′

1 s.t. R = {xi} if type1 = normal else R = ∅.
Add p2

xi∈I2,t?,R−−−−−−−→i p′
2 s.t. R = {xi} if type2 = normal else R = ∅.

i := 1; forall p ∈ P , forall Token ∈ M0(p) do 	0i := p; i := i + 1;
for i := 1 to |M0| do forall p ∈ P do ιi(p)(xi) := ι(p)

end

Let ψ be a formula of our logic. By ψ′ we denote a formula where atomic Petri
net propositions of the form (p "# n) are replaced with propositions (#p "# n) in
the network of timed automata.

Theorem 2. Let (N,M0) be a marked TAPN of degree 2 and let ψ be a formula
of the form EFϕ, AGϕ, EGϕ or AFϕ. Let PTA be an NTA constructed by Alg. 2
with the initial configuration s0 = ($01, $

0
2, . . . , $

0
|M0|, v0) and let ψ′ be the formula

defined above. Then M0 |=N ψ ⇐⇒ s0 |=PTA ψ′.

Proof. Notice that the correspondence relation ≡ is in fact a timed bisimulation
and moreover M ≡ s means that M |=N ϕ iff s |=PTA ϕ′ for every ϕ which
is a Boolean combination of atomic propositions in the Petri net and ϕ′ is the
translated formula where every occurrence of (p "# n) is replaced with (#p "# n).
Because timed bisimilarity preserves TCTL model checking (and hence also our
logic) and the atomic propositions do not distinguish between configurations
related by the correspondence relation ≡, we have established the validity of the
theorem. ��

3.3 Final Remarks

In a summary, for safety properties (EF and AG) we provided a translation
from bounded timed-arc Petri nets to networks of timed automata by combining
Theorem 1 and Theorem 2. For liveness properties we achieved such a translation
for nets of degree 2 by using Theorem 2. Even though many net models of real-
systems are already of degree 2 or can be easily modified so that Theorem 2
becomes applicable, for the nets where it is necessary to have transitions with
more than two input places other translations have to be designed. The main
obstacle is that the translation presented in Alg. 1 introduces new time-locks
which cannot be distinguished from the time-locks in the original net.
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4 Experiments

We shall now report on two experiments testing the efficiency of the translations
from Section 3. The translations were implemented in the tool TAPAAL [11]
and the models used in the experiments can be downloaded at www.tapaal.net.
The reported running times were measured on a Dell PowerEdge 2950, with a
2.5 GHz, Dual Core Intel Xeon 5420 processor and 32GB ram. Notice, however,
that UPPAAL utilises only one core and addresses at most 4GB of RAM.

4.1 Fischer’s Protocol for Mutual Exclusion

Fischer’s protocol [14] for ensuring mutual exclusion for a number of timed pro-
cesses is a well-known protocol used for testing performances of tools. It is an easily
scalable algorithm and provides a suitable case study for our translation because it
requires that every process has its own independent clock. In other tools for Petri
nets, such as TINA [6] and ROMEO [18], it is inconvenient to model Fischer’s pro-
tocol as here clocks are usually associated to transitions and hence the number of
processes is a priory fixed. One has to necessarily modify the static structure of
the net when more processes need to be considered. In our approach we only need
to add extra tokens to the same underlying net in order to increase the number
of processes. The timed-arc Petri net model of Fischer’s protocol is taken from [2]
and it is available as an example in the TAPAAL distribution.

We verified the correctness of the Fischer’s protocol for a different number of
processes. The results were compared with the verification times of the UPPAAL
model of Fischer’s protocol from the UPPAAL demo folder. The experiments
were run with symmetry reduction turned on, both in TAPAAL and UPPAAL,
and with the default search options. The verification results are presented in
Fig. 5. Here TAPAAL standard reduction is the one from Section 3 and TAPAAL
optimised reduction replaces the locking token in the net with a global Boolean

# Processes
Time in seconds

Speed-upUPPAAL TAPAAL
Default Standard Optimised

50 7.8 9.8 4.5 73 %
60 18.7 21.1 8.9 110 %
70 40.5 42.0 17.0 138 %
80 78.2 75.7 30.4 157 %
90 138.7 136.1 49.7 179 %

100 235.9 206.4 77.3 205 %
150 31m 22m 8m 293 %
200 2h 22m 1h 25m 29m 393 %
300 22h 7m 10h 6m 3h 24m 549 %
400 – – 14h 9m –

Fig. 5. Fischer’s Protocol with Symmetry Reduction Turned On

www.tapaal.net
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variable in order to reduce the size of the produced UPPAAL templates. Details
of the optimised translation are given in [10]. The speed-up column compares
the running times between the UPPAAL model and the model produced by the
TAPAAL optimised reduction. Even though the number of explored states in
the network produced by TAPAAL is about two times as many as the ones in
the native UPPAAL model, the verification times are significantly shorter. The
reason for this seems to be the fact that the sizes of zones in the TAPAAL
produced model are smaller and hence the expensive operation of zone inclusion
checking is faster in our approach.

4.2 Alternating Bit Protocol

Alternating Bit Protocol (ABP) [4] is a simple instance of a sliding window proto-
col with windows of size one. ABP is an unbounded protocol, since in communica-
tion between a sender and a receiver, an arbitrary number of messages (each with
an individual time-stamp) can be in transfer via a lossy communication media.
Details of the model are given in the full version [10].

In Fig. 6 we present the verification results for a fixed number of messages in the
system. The translation described in Section 3 allows us to verify the protocol for
up to 50 messages in less than two hours. For comparison we created a UPPAAL
model of ABP where all messages in the system are symmetric. Notice that the
standard translation, contrary to the results from Fischer’s protocol, is consider-
ately faster than the optimised translation, which is comparable with the native
UPPAAL model we created. The reason seems to be the same as in Fischer’s proto-
col: even though the number of stored and explored states is about twice as large,
the zones are less complex and hence the inclusion check is faster.

In the future work we plan to study in detail this phenomenon and optimise
the reductions (perhaps depending on the analysis of the concrete net) in order
to achieve a further improvement in verification of TAPN models.

# Messages
Time in seconds

UPPAAL TAPAAL
Default Standard Optimised

12 7.7 2.4 8.9
13 17.6 3.6 21.8
14 19.4 5.1 62.6
15 136 7.3 192.2
16 10m 10.1 11m
17 32m 13.7 35m
20 18h 37m 32.5 19h 34m
30 – 5m –
40 – 29m –
50 – 1h 52m –

Fig. 6. Alternating Bit Protocol with Symmetry Reduction Turned On
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5 Conclusion

We studied timed-arc Petri nets extended with invariants on places and with
transport arcs—new features that allow for a more convenient modelling of sys-
tems. The extended Petri net model with a bounded number of tokens was
translated to networks of timed automata, preserving logical queries formulated
in a subset of CTL. We employed a novel translation where a new component
in the timed automata network was created for each token in the net.

The presented approach for verification of bounded timed-arc Petri nets is
efficient as documented on two case studies modelled in the tool TAPAAL and
in fact we outperform in the verification times of native UPPAAL models. We
kept the considered logic simple and it is essentially identical with the presently
implemented logical queries in UPPAAL. Nevertheless, we sketched that veri-
fication of TCTL queries and reasoning about the exact ages of tokens can be
done by simple encoding tricks.

One cannot hope for a fully automatic verification of unbounded timed-arc
Petri nets as, for example, the reachability problem becomes already undecid-
able [17]. On the other hand, the chosen reduction strategy enables one to further
extend the bounded model with e.g. urgent transitions, priorities, cost, probabil-
ity and game semantics, requiring only minor changes in the proposed reductions.
In the future work we shall address these issues.

Acknowledgments. We would like to thank Alexandre David, Krishna Prasad
Gundam and Ye Tian for their comments and suggestions. We also thank the
anonymous reviewers for their feedback.
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Abstract. This paper shows how Ptolemy II discrete-event (DE) mod-
els can be formally analyzed using Real-Time Maude. We formalize in
Real-Time Maude the semantics of a subset of hierarchical Ptolemy II DE
models, and explain how the code generation infrastructure of Ptolemy
II has been used to automatically synthesize a Real-Time Maude veri-
fication model from a Ptolemy II design model. This enables a model-
engineering process that combines the convenience of Ptolemy II DE
modeling and simulation with formal verification in Real-Time Maude.

1 Introduction

Model-based design principles put the construction of models at the center of
embedded system design processes [16,9]. Useful models are executable, pro-
viding simulations of system functionality, performance, power consumption, or
other properties. Ideally, models are translated (code generated) automatically
to produce deployable embedded software. Commercial examples of such mod-
eling and code generation frameworks include Real-Time Workshop (from The
MathWorks) and TargetLink (from dSpace), which generate code from Simulink
models, and LabVIEW Embedded, from National Instruments. Models can also
be used to guide formal verification, which can provide proofs of safety properties
or identification of security vulnerabilities.

Ptolemy II is a well-established modeling and simulation tool, developed at
UC Berkeley, that provides a powerful and intuitive graphical modeling language
to allow a user to build hierarchical models that combine different models of
computations [6]. In this paper, we focus on discrete-event (DE) models, which
are explicit about timing behavior of systems. Discrete-event modeling is a time
honored and widely used approach for system simulation [8]. More recently, it
has been proposed as basis for synthesis of embedded real-time software [17].
The Ptolemy II realization of DE has a rigorous formal semantics rooted in the
fixed-point semantics of synchronous languages [11].

This paper describes our work on enriching a significant subset of hierar-
chical Ptolemy II DE models with formal verification capabilities using Real-
Time Maude [13] as back-end. Real-Time Maude is a high-performance tool that
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extends the rewriting-logic-based Maude [3] system to support the formal spec-
ification and analysis of object-based real-time systems. Real-Time Maude pro-
vides a spectrum of formal analysis methods, including rewriting for simulation
purposes, reachability analysis, and linear temporal logic (LTL) model checking.

In particular, we explain how we have enriched Ptolemy II DE models with
formal verification capabilities by:

1. Formalizing the semantics of transparent hierarchical Ptolemy II DE models
in Real-Time Maude.

2. Defining useful atomic state propositions, so that the Ptolemy user can
specify temporal logic properties to be verified without understanding how
Ptolemy models are represented in Real-Time Maude.

3. Using Ptolemy II’s code generation infrastructure [18] to automatically syn-
thesize a Real-Time Maude verification model from a Ptolemy design model,
and by explaining how both code generation and verification have been inte-
grated into Ptolemy, so that a Ptolemy model can be verified within Ptolemy.

This integration of Ptolemy II and Real-Time Maude enables a model-engineer-
ing process that combines the convenience of Ptolemy II modeling with formal
verification in Real-Time Maude.

The main contributions of our work are:

– Enriching Ptolemy with formal verification capabilities to verify properties,
such as the liveness property in Section 6, that cannot be checked using
Ptolemy simulations. Furthermore, the synthesized verification model can
be formally analyzed w.r.t. other properties (e.g., determinism, etc.).

– We show how Real-Time Maude can define the semantics of synchronous
languages with fixed-point semantics. These techniques should be useful for
defining the formal semantics of other synchronous languages. Our semantics
also provides a basis for extensions to, e.g., probabilistic Ptolemy models,
that can then be subjected to statistical model checking using tools like
VeStA [15].

Our work is conducted in the context of the NAOMI project [4], where Lock-
heed Martin Advanced Technology Laboratories (LM ATL), UC Berkeley, UIUC,
and Vanderbilt University work together to develop a multi-modeling design
methodology. A key part of this project is the systematic use of model transfor-
mations and code generation to maintain consistency across models.

Section 2 briefly introduces Ptolemy II and Real-Time Maude. The Real-Time
Maude semantics of Ptolemy II DE models is described in Section 3. Section 4
presents the atomic propositions that allow the user to specify his/her LTL
properties without having the understand the Real-Time Maude translation of
a Ptolemy model. Section 5 explains the Real-Time Maude code generation and
integration into Ptolemy. Section 6 illustrates the use of our techniques to verify a
Ptolemy model. Finally, Section 7 presents some related work and Section 8 gives
some concluding remarks. More details about the Real-Time Maude semantics
of Ptolemy DE, as well as three additional verification case studies, can be found
in the longer technical report [1].
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2 Preliminaries on Real-Time Maude and Ptolemy

2.1 Rewriting Logic and Real-Time Maude

Modeling. A Real-Time Maude timed module specifies a real-time rewrite theory
of the form (Σ,E, IR,TR), where:

– (Σ,E) is a membership equational logic [3] theory with Σ a signature1 and
E a set of confluent and terminating conditional equations. (Σ,E) speci-
fies the system’s state space as an algebraic data type, and must contain a
specification of a sort Time modeling the (discrete or dense) time domain.

– IR is a set of (possibly conditional) labeled instantaneous rewrite rules spec-
ifying the system’s instantaneous (i.e., zero-time) local transitions, written
rl [l] : t => t′, where l is a label. Such a rule specifies a one-step transi-
tion from an instance of t to the corresponding instance of t′. The rules are
applied modulo the equations E.2

– TR is a set of tick (rewrite) rules, written with syntax

rl [l] : {t} => {t′} in time τ .

that model time elapse. {_} is a built-in constructor of sort GlobalSystem,
and τ is a term of sort Time that denotes the duration of the rewrite.

The initial state must be a ground term of sort GlobalSystem and must be
reducible to a term of the form {t} using the equations in the specifications.

The Real-Time Maude syntax is fairly intuitive. For example, function sym-
bols, or operators, are declared with the syntax op f : s1 . . . sn -> s. f is the
name of the operator; s1 . . . sn are the sorts of the arguments of f ; and s is
its (value) sort. Equations are written with syntax eq t = t′, and ceq t = t′ if
cond for conditional equations. The mathematical variables in such statements
are declared with the keywords var and vars. We refer to [3] for more details
on the syntax of Real-Time Maude.

We make extensive use of the fact that an equation f(t1, . . . , tn) = t with the
owise (for “otherwise”) attribute can be applied to a subterm f(. . .) only if no
other equation with left-hand side f(u1, . . . , un) can be applied.3

In object-oriented Real-Time Maude modules, a class declaration

class C | att1 : s1, ... , attn : sn .

declares a class C with attributes att1 to attn of sorts s1 to sn. An object of class
C in a given state is represented as a term < O : C | att1 : val1, ..., attn : valn >
of sort Object, where O, of sort Oid, is the object’s identifier, and where val1
to valn are the current values of the attributes att1 to attn. In a concurrent
1 i.e., Σ is a set of declarations of sorts, subsorts, and function symbols.
2 E is a union E′∪A, where A is a set of equational axioms such as associativity, com-

mutativity, and identity, so that deduction is performed modulo A. Operationally, a
term is reduced to its E′-normal form modulo A before any rewrite rule is applied.

3 A specification with owise equations can be transformed to an equivalent system
without such equations [3].
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object-oriented system, the state is a term of the sort Configuration. It has
the structure of a multiset made up of objects and messages. Multiset union
for configurations is denoted by a juxtaposition operator (empty syntax) that
is declared associative and commutative, so that rewriting is multiset rewriting
supported directly in Real-Time Maude.

The dynamic behavior of concurrent object systems is axiomatized by
specifying each of its transition patterns by a rewrite rule. For example, the
rule

rl [l] : < O : C | a1 : 0, a2 : y, a3 : w, a4 : z > =>

< O : C | a1 : T, a2 : y, a3 : y + w, a4 : z >

defines a parameterized family of transitions (one for each substitution instance)
which can be applied whenever the attribute a1 of an object O of class C has
the value 0, with the effect of altering the attributes a1 and a3 of the object.
“Irrelevant” attributes (such as a4, and the right-hand side occurrence of a2)
need not be mentioned in a rule (or equation).

A subclass inherits all the attributes and rules of its superclasses.

Formal Analysis. A Real-Time Maude specification is executable, and the tool
offers a variety of formal analysis methods. The rewrite command simulates
one behavior of the system up to a certain duration. It is written with syntax
(trew t in time <= τ .), where t is the initial state and τ is a term of sort
Time. The search command uses a breadth-first strategy to analyze all possible
behaviors of the system, by checking whether a state matching a pattern and
satisfying a condition can be reached from the initial state.

Real-Time Maude also extends Maude’s linear temporal logic model checker
to check whether each behavior, possibly up to a certain time bound, satisfies
a temporal logic formula. State propositions are terms of sort Prop, and their
semantics should be given by (possibly conditional) equations of the form

{statePattern} |= prop = b

for b a term of sort Bool, which defines the state proposition prop to hold in
all states {t} where {t} |= prop evaluates to true. A temporal logic formula
is constructed by state propositions and temporal logic operators such as True,
False, ~ (negation), /\, \/, -> (implication), [] (“always”), <> (“eventually”),
and U (“until”). The time-bounded model checking command has syntax

(mc t |=t formula in time <= τ .)

for initial state t and temporal logic formula formula .

2.2 Ptolemy II and Its DE Model of Computation

The Ptolemy project4 studies modeling, simulation, and design of concurrent,
real-time, embedded systems. The key underlying principle in the project is the
4 http://ptolemy.eecs.berkeley.edu/

http://ptolemy.eecs.berkeley.edu/
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use of well-defined models of computation (MoCs) that govern the interaction
between concurrent components. A major problem area being addressed is the
use of heterogeneous mixtures of MoCs [6]. A result of the project is a software
system called Ptolemy II, implemented in Java. Ptolemy II allows a user to build
hierarchical models that combine different MoCs, including state machines, data
flow, and discrete-event models. Models can be visually designed and simulated.
In addition, Ptolemy II’s code generation capabilities allow models to be trans-
lated into models in other languages or into imperative code, e.g., in C and Java.

Discrete-Event Models in Ptolemy II. The focus of this paper is the for-
malization of a subset of Ptolemy II discrete-event (DE) models in Real-Time
Maude. A Ptolemy II model is a hierarchical composition of actors with con-
nections between the actors’ input ports and output ports. The actors represent
data manipulation units, whose execution is governed by a special attribute be-
longing to the model called director. Such a model can itself be treated as an
actor, that we call a composite actor. (Non-composite actors are called atomic
actors.) Ptolemy II also supports modal models, which are models with finite
state machine controllers. See Section 2.3 for an example of a Ptolemy II model.

DE actors consume and produce events at their input and output ports, ac-
cording to the tagged signal model [10]. A tagged event is a pair (v, t) where v is
a value in a complete partial order (CPO) and t is a tag, modeling the time at
which the event occurs. Ptolemy II DE models use super-dense time, in which
a tag t is a pair (τ, n) ∈ �≥0 × �, where τ is the timestamp that indicates the
model time when this event occurs, and n is the microstep index. Super-dense
time is useful for modeling multiple events that happen at the same time (i.e.,
have the same timestamp), but in sequence, where perhaps some events cause
other events. Super-dense tags are totally ordered using a lexicographic order:
(τ1, n1) ≤ (τ2, n2) iff τ1 < τ2, or τ1 = τ2 and n1 ≤ n2.

The semantics of Ptolemy II DE models [10] combines a synchronous-reactive
fixed-point iteration with advancement of time governed by an event queue [11].
Events in that queue are ordered by their tags. Operation proceeds by iterations,
each time removing one or more events with the smallest tag from the queue.
That tag is considered the current model time. The removed events are fed to
their designated actors. After that, actors with events available are executed,
which may generate new events into the queue. A difference between Ptolemy II
and standard DE simulators is that, at any model time (τ, n), the semantics is
defined as the least fixed-point of a set of equations, similarly to a synchronous
model [5]. This allows Ptolemy II models to have arbitrary feedback loops. Se-
mantics of such models can always be given although they may result in unknown
(bottom) values, in case the model contains causality cycles. Conceptually, the
semantics can be captured as shown in Figure 1.

Code Generation Infrastructure. Ptolemy II offers a code generation frame-
work using an adapter-based mechanism. A codegen adapter is a component that
generates code for a Ptolemy II actor. An adapter essentially consists of a Java
class file and a code template file that together specify the actor’s behavior. The



722 K. Bae et al.

Q := empty; // Initialize the event queue to be empty.

for each actor A do

A.inititialize(); // Initialize A; may generate new events in Q

while Q is not empty do

E := set of all events in Q with smallest tag;

remove elements of E from Q;

initialize ports with values in E or "unknown" (bottom of CPO);

while port values changed do

for each actor A receiving new values do

if A.prefire() then // Determine whether A needs to be fired

A.fire(); // May increase port values according to CPO

end while; // Fixed-point reached for the current tag

for each actor A that has been fired do

A.postfire(); // Updates actor state; may generate new events in Q

end while;

Fig. 1. Pseudo-code of Ptolemy II DE semantics

code template file contains code blocks written in the target language. Supplied
with a set of adapters and an initial model, the code generation framework ex-
amines the model structure and invokes the adapters to harvest code blocks from
the code template files. The main advantage of this scheme is that it decouples
the writing of Java code and target code (otherwise the target code would be
wrapped in strings and interspersed with Java code).

2.3 Example: A Simple Traffic Light System

Figure 2 shows a Ptolemy DE model of a simple non-fault-tolerant traffic light
system consisting of one car light and one pedestrian light at a pedestrian

Fig. 2. Simple Traffic Light model in Ptolemy II
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Fig. 3. The PedestrianLightNormal FSM actor

Fig. 4. The CarLightNormal FSM actor

crossing. Each traffic light is represented by a set of set variable actors (Pred
and Pgrn represent the pedestrian light, and Cred, Cyel, and Cgrn represent
the car light). A light is considered to be on iff the corresponding variable has
the value 1. The lights are controlled by the two finite state machine (FSM) ac-
tors CarLightNormal and PedestrianLightNormal that send values to set the
variables; in addition, CarLightNormal sends signals to the PedestrianLight-
Normal actor through its Pgo and Pstop output ports. These signals are received
by the PedestrianLightNormal actor after a delay of one time unit.

Figure 3 shows the FSM actor PedestrianLightNormal. This actor has three
input ports (Pstop, Pgo, and Sec), two output ports (Pgrn and Pred), three
internal states, and three transitions. This actor reacts to signals from the car
light (by way of the delay actors) by turning the pedestrian lights on and off.
For example, if the actor is in local state Pred and receives input through its
Pgo input port, then it goes to state Pgreen, outputs the value 0 through its
Pred output port, and outputs the value 1 through its Pgrn port.
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Figure 4 shows the FSM actor CarLightNormal. Assuming that the clock
actor sends a signal every time unit, we notice, e.g., that one time unit after
both the red and yellow car lights are on, these are turned off and the green car
light is turned on by sending the appropriate values to the variables (output:
Cred = 0; Cyel = 0; Cgrn = 1). The car light then stays green for two time units
before turning yellow.

3 Real-Time Maude Semantics of Ptolemy DE Models

This section gives a brief overview of the Real-Time Maude formalization of the
Ptolemy DE semantics that is the basis for our work. Due to the lack of space,
and in order to convey our ideas without introducing too much detail, we present
a slightly simplified version of our semantics, in that we present a semantics for

1. flat Ptolemy models; that is, models without hierarchical actors, and
2. assume that all Ptolemy expressions are constants.

The report [1] explains the Real-Time Maude semantics that we actually use,
and that covers the subset of Ptolemy listed in Section 3.1, including hierarchical
actors and expressions with variables. The entire executable Real-Time Maude
semantics is available at http://www.ifi.uio.no/RealTimeMaude/Ptolemy.

3.1 Supported Subset of Ptolemy

We currently support Real-Time Maude analysis of transparent discrete event
(DE) Ptolemy models; that is, DE models where subdiagrams are also executed
under the DE director. We support composite actors, modal models, and the
following atomic actors: finite state machine (FSM), timed delay, variable delay,
clock, current time, timer, noninterruptible timer, pulse, ramp, timed plotter,
set variable, and single event actors. We also support connections with multiple
destinations, split signals, and both single ports and multi-input ports.

3.2 Representing Flat Ptolemy DE Models in Real-Time Maude

This section explains how a Ptolemy model is represented as a Real-Time Maude
term in (the slightly simplified version of) our semantics. We only show the
representation for a small subset of the actors listed above, and refer to [1] for
the definition of the other actors.

Our Real-Time Maude semantics is defined in an object-oriented style, where
the global state has the form of a multiset

{actors connections < global : EventQueue | queue : event queue >}

where

– actors are objects corresponding to the actor instances in the Ptolemy model,
– connections are the connections between the ports of the different actors, and
– < global : EventQueue | queue : event queue > is an object whose queue

attribute denotes the global event queue.

http://www.ifi.uio.no/RealTimeMaude/Ptolemy
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Actors. Each Ptolemy actor is modeled in Real-Time Maude as an object in-
stance of a subclass of the following class Actor:

class Actor | ports : Configuration, parameters : ValueMap .

The ports attribute denotes the set of ports of the actor. In our model, a port
is modeled as an object, as shown below. The parameters attribute represents
the parameters of the corresponding Ptolemy actor, together with their values,
as a semicolon-separated set of terms of the form ’parameter-name |-> value.

Current Time. Ptolemy’s current time actor produces an output token on each
firing with a value that is the current model time. In Real-Time Maude, such
actors are represented as object instances of the following class that extends the
class Actor with an attribute current-time denoting the current “model time”:

class CurrentTime | current-time : Time . subclass CurrentTime < Actor .

Timed Delay. A timed delay actor propagates an incoming event after a given
time delay. If the delay parameter is 0.0, then there is a ”microstep” delay on
the generation of the output event. Since the delay parameter is represented in
the parameters attribute of Actor, this subclass does not add any attributes:

class Delay . subclass Delay < Actor .

Set Variable. This actor contains a variable that is set by a signal:

class SetVariable | variableName : VarId . subclass SetVariable < Actor .

Finite State Machine (FSM) Actors. An FSM actor is a transition system con-
taining finite sets of states (or “locations”), local variables, and transitions. A
transition has a guard expression, and can contain a set of output actions and
variable assignments. When an FSM actor is fired, there is never more than one
enabled transition. If there is exactly one enabled transition then it is chosen
and the actions contained by the transition are executed. Under the DE director,
only one transition step is performed in each iteration.

An FSM-Actor is then characterized by its current state, its transitions, and
the current values of its local variables:

class FSM-Actor | currState : Location, initState : Location,

variables : ValueMap, transitions : TransitionSet .

subclass FSM-Actor < Actor .

A location is the sort of the local “states” of the transition system. In particular,
quoted identifiers (Qids) are state names. We model the transitions as a semi-
colon-separated set of transitions of the form
s1 --> s2 {guard: g output: pi1|-> ei′1;. . .; pik|-> ei′

k
set: vj1|-> ej′1;. . .; vjl|-> ej′

l
}

for state/locations s1 and s2, port names pi, variables vi, and expressions ei.
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Ports. A port is represented as an object, with a name (the identifier of the
port object), a status (unknown, present, or absent), and a value. We also
have subclasses for input and output ports:

class Port | status : PortStatus, value : Value .

class InPort . subclass InPort < Port .

class OutPort . subclass OutPort < Port .

sort PortStatus . ops unknown present absent : -> PortStatus [ctor] .

Connections. A connection is represented as a term po ==> pi1 ; . . . ; pin of
sort Connection, where the pjs have the form a!p for a a name of an actor
and p a name of a port. Such a connection connects the output port po to all
the input ports pi1 , . . . , pin Since connections appear in configurations, the sort
Connection is defined to be a subsort of the sort Object.

The Global Event Queue. The global event queue is represented by an object

< global : EventQueue | eventQueue : event queue >

where event queue is an ::-separated list, ordered according to time until firing,
of terms of the form

set of events ; time to fire ; microstep

where the set of events is a set of events, each event characterized by the “global
port name” where the generated event should be output and the corresponding
value, time to fire denotes the time until the events are supposed to fire, and
microstep is the additional “microstep” until the event fires.

Example: Representing the Flat Traffic Light Model. Consider the flat
non-fault-tolerant traffic light system given in Section 2.3. The Real-Time Maude
representation of the TimedDelay2 delay actor is then

< ’TimedDelay2 : Delay |

parameters : ’delay |-> # 1.0,

ports : < ’input : InPort | value : # 0, status : absent >

< ’output : OutPort | value : # 0, status : absent > >

Likewise, the FSM actor CarLightNormal is represented as the term5

< ’CarLightNormal : FSM-Actor |

initState : ’Cinit, currState : ’Cinit, variables : ’count |-> # 1,

ports : < ’Sec : InPort | value : # 0, status : absent >

< ’Pgo : OutPort | value : # 0, status : absent >

...,

transitions :

(’Cinit --> ’Cred

5 To save space, some terms are replaced by ‘...’
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{guard: (# true)

output: (’Cred |-> # 1) ; (’Cyel |-> # 0) ; (’Cgrn |-> # 0)

set: ’count |-> # 0}) ;

(’Cred --> ’Cred

{guard: (isPresent(’Sec) && (’count lessThan # 2))

output: emptyMap set: ’count |-> (’count + # 1)}) ; ... > .

The connection from the output port output of the Clock actor to the input
port Sec of CarLightNormal and the input port Sec of PedestrianLightNormal
is represented by the term

(’Clock !’output) ==> (’PedestrianLightNormal ! ’Sec) ; (’CarLightNormal ! ’Sec)

The entire state thus consists of two FSM actor objects, ten connections, two
delay objects, five SetVariable objects, and the global event queue object.

3.3 Specifying the behavior of Flat DE Models

As explained in Section 2.2, the behavior of Ptolemy DE models can be summa-
rized as repeatedly performing the following actions:

– Advance time until the time to fire the first events in the queue is (0, 0).
– Then an iteration of the system is performed. That is:

1. (Prefire) The events that are supposed to fire are added to the corre-
sponding output ports; the status of all other ports is set to unknown.

2. (Fire) Then the fixed point of all ports is computed by gradually increas-
ing the knowledge about the presence/absence of inputs to and output
from ports until a fixed-point is reached.

3. (Postfire) Finally, states are updated for actors with inputs or scheduled
events, and new events are generated and inserted into the event queue.

The following tick rule advances time until the time when the first events in
the event queue are scheduled (we first declare all the variables used):

vars SYSTEM OBJECTS PORTS PORTS’ REST : ObjectConfiguration . var N : Nat .

vars O O’ : Oid . var EVTS : Events . var NZT : NzTime . var NZ : NzNat .

vars P P’ : PortId . var QUEUE : EventQueue . vars T T’ : Time .

var PS : PortStatus . var EPIS : EportIdSet . vars V TV : Value .

var VAL : ValueMap . vars STATE STATE’ : Location .

var BODY : TransBody . var TG : TransGuard . var TRANSSET : TransitionSet .

rl [tick] :

{SYSTEM < global : EventQueue | queue : (EVTS ; NZT ; N) :: QUEUE >}

=>

{delta(SYSTEM, NZT)

< global : EventQueue | queue : (EVTS ; 0 ; N) :: delta(QUEUE, NZT) >}

in time NZT .
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In this rule, the first element in the event queue has non-zero delay NZT. Time
is advanced by this amount NZT, and, as a consequence, the (first component
of the) event timer goes to zero. In addition, the function delta is applied to
all the other objects (denoted by SYSTEM) in the system. The function delta
defines effect of time elapse on the objects. This function is also applied to the
other elements in the event queue, where it decreases the remaining time of each
event set by the elapsed time NZT (where x monus y equals max(0, x− y)):

op delta : EventQueue Time -> EventQueue .

eq delta((EVTS ; T ; N) :: QUEUE, T’)

= (EVTS ; T monus T’ ; N) :: delta(QUEUE, T’) .

eq delta(nil, T) = nil .

The function delta on configurations distributes over the elements in the
configuration, and must be defined on single objects, as shown later.

The next rule is a “microstep tick rule” that advances “time” with some
microsteps if needed to enable the first events in the event queue:

rl [shortTick] :

{SYSTEM < global : EventQueue | queue : (EVTS ; 0 ; NZ ) :: QUEUE >}

=>

{SYSTEM < global : EventQueue | queue : (EVTS ; 0 ; 0 ) :: QUEUE >} .

Finally, when the remaining time and microsteps of the first events in the
event queue are both zero, an iteration of the system can be performed:

rl [executeStep] :

{SYSTEM < global : EventQueue | queue : (EVTS ; 0 ; 0) :: QUEUE >}

=>

{< global : EventQueue | queue : QUEUE >

postfireAll(portFixPoints(addEventsToPorts(EVTS, prefire(SYSTEM))))} .

The function prefire initializes each actor before firing. In particular, it sets the
status of each port to unknown. The operator addEventsToPorts inserts the
events scheduled to fire into the corresponding output ports. The portFixPoints
function then finds the fixed points for all the ports (fire), and postfire “ex-
ecutes” the steps on the computed port fixed-points by changing the states of
the objects and generating new events and inserting them into the global event
queue. These functions have sort Configuration, whereas the equations defin-
ing them involve variables of the subsort ObjectConfiguration, ensuring that
each function has finished computing before the “next” function is computed:

ops prefire portFixPoints postfire : Configuration -> Configuration .

To completely define the behavior of a system, we must define the functions
prefire, portFixPoints, postfire, and delta on the different actors.
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Initialize Actors. In our simplified setting, the prefire function just clears
all the ports, that is, sets their status to unknown:

eq prefire(< O : Actor | ports : PORTS > REST)

= < O : Actor | ports : clearPorts(PORTS) > prefire(REST) .

eq prefire(SYSTEM) = SYSTEM [owise] .

op clearPorts : Configuration -> Configuration .

eq clearPorts(< P : Port | status : PS > PORTS)

= < P : Port | status : unknown > clearPorts(PORTS) .

eq clearPorts(none) = none .

Computing the Fixed-Point for Ports. The idea behind the definition of
the function portFixPoints, that computes the fixed-point for the values of all
the ports, is simple. The state has the form portFixPoints(actors and connec-
tions), where initially, the only port information are the events scheduled for
this iteration. For each possible case when the status of an unknown port can be
determined to be either present or absent, there is an equation

eq portFixPoints(< O : ... | ports : < P : Port | status : unknown > PORTS,

... >

connections and other objects) =

portFixPoints(< O : ... | ports : < P : Port | status : present ,

value : ... > PORTS, ... >

connections and other objects) .

(and similarly for deciding that input/output is absent). The fixed-point is
reached when no such equation can be applied. The portFixPoints operator is
then removed by using the owise construct of Real-Time Maude:

eq portFixPoints(OBJECTS) = OBJECTS [owise] .

The following equation propagates port status from a “known” output port
to a connecting unknown input port. The present/absent status (and possibly
the value) of the output port P of actor O is propagated to the input port P’ of
the actor O’ through the connection (O ! P) ==> ((O’ ! P’) ; EPIS):

ceq portFixPoints(

< O : Actor |

ports : < P : OutPort | status : PS , value : V > PORTS >

((O ! P) ==> ((O’ ! P’) ; EPIS))

< O’ : Actor | ports : < P’ : InPort | status : unknown > PORTS’ >

REST)

= portFixPoints(< O : Actor | > ((O ! P) ==> ((O’ ! P’) ; EPIS))

< O’ : Actor |

ports : < P’ : InPort | status : PS, value : V > PORTS’ >

REST)

if PS =/= unknown .



730 K. Bae et al.

The portFixPoints function must then be defined for each kind of actor to
decide whether the actor produces any output in a given port. For example, the
timed delay actor does not produce any output in this iteration as a result of
any input. Therefore, if its status is unknown (that is, the delay actor did not
schedule an event for this iteration), its output port should be set to absent:

eq portFixPoints(

< O : Delay | ports : < P : OutPort | status : unknown > PORTS > REST)

= portFixPoints(

< O : Delay | ports : < P : OutPort | status : absent > PORTS > REST) .

Other actors generate immediate output when receiving input. For example,
when a current time actor fires, it outputs the current model time:

ceq portFixPoints(

< O : CurrentTime | current-time : T,

ports : < P : InPort | status : PS >

< P’ : OutPort | status : unknown > >

REST)

= portFixPoints(

< O : CurrentTime | ports : < P : InPort | >

< P’ : OutPort | status : PS , value : # T >

REST)

if PS =/= unknown .

The definition of portFixPoints for FSM actors relies on the assumption
that at most one transition is enabled at any time. In the following conditional
equation, one transition from the current state STATE is enabled. In addition,
there is some input to the actor (through input port P’), and some output ports
have status unknown. The function updateOutPorts then updates the status and
the values of the output ports according to the current state and input:

ceq portFixPoints(< O : FSM-Actor |

ports : < P’ : InPort | status : present >

< P : OutPort | status : unknown > PORTS,

currState : STATE, variables : VAL,

transitions : (STATE --> STATE’ {BODY}) ; TRANSSET >

REST)

= portFixPoints(< O : FSM-Actor |

ports : updateOutPorts(VAL, BODY,

< P : OutPort | > < P’ : InPort | > PORTS) >

REST)

if transApplicable(< P : OutPort | > < P’ : InPort | > PORTS, VAL, BODY) .

Another equation sets all output ports to absent if there is enough information
to determine that no transition can become enabled in the current round.

Postfire. The postfire function updates internal states and generates new
events that are inserted into the event queue. The postfire function distributes
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over the actor objects in the configuration. An owise equation defines postfire
to be the identity function (that neither generates a future event nor changes its
local state) on those actors that do not have other equations defining postfire.

If a time delay actor has input in its ’input port, then it generates an event
with a delay equal to the current value of the ’delay parameter. If this delay is
0.0, the microstep is 1, otherwise the microstep is 0. This event is added to the
global event queue using the addEvent function that adds the new event into
the correct place in the event queue:

eq postfire(

< O : Delay | ports : < ’input : InPort | status : present, value : V >

< ’output : OutPort | >,

parameters : ’delay |-> TV ; MEM >)

< global : EventQueue | queue : EQ >

=

< O : Delay | >

< global : EventQueue | queue : addEvent(event(O ! ’output, V), toTime(TV),

if toTime(TV) == 0 then 1 else 0 fi, EQ) > .

An FSM actor does not generate future events, but postfire updates the
location and variables of the actor if it has input and has an enabled transition:

ceq postfire(< O : FSM-Actor |

ports : < P : InPort | status : present > PORTS,

variables : VAL, currState : STATE,

transitions : STATE --> STATE’ {guard: TG output: OL set: AL}

; TRANSSET) >)

= < O : FSM-Actor | variables : updateValues(VAL, AL), currState : STATE’ >

if transApplicable(< P : InPort | > PORTS, VAL, guard: TG output: OL set: AL).

Defining Timed Behavior. Finally, we must define the function delta, that
specifies the effect of time elapse, on single actors. Time elapse affects the in-
ternal state of CurrentTime actors by increasing the value of the current-time
attribute according to the elapsed time. Time elapse does not affect the other
actors we discuss here:

eq delta(< O : CurrentTime | current-time : T >, T’) =

< O : CurrentTime | current-time : T + T’ > .

eq delta(O:Object, T) = O:Object [owise] .

Defining Initial Events. The initial state is defined as the term

{init(< global : EventQueue | queue : nil > actors ) connections }

where init adds the initial events of the system to the global event queue.
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4 Formal Analysis of Ptolemy II DE Models

As mentioned in Section 2.1, the Real-Time Maude verification model synthe-
sized from a Ptolemy design model can be analyzed in different ways. In this
paper, we focus on linear temporal logic (LTL) model checking.

In Real-Time Maude, an LTL formula is constructed from a set of (possibly
parametric) atomic state propositions and the usual LTL operators, such as /\
(conjunction), ~ (negation), [] (“always”), <> (“eventually”), etc. Having to
define atomic state propositions makes the verification process nontrivial for
the Ptolemy user, since it requires some knowledge of the Real-Time Maude
representation of the Ptolemy model, as well as the ability to define functions
in Maude. To free the user from this burden, we have predefined some generic
atomic propositions. For example, the property

actorId | var1 = value1, . . . , varn = valuen

holds in a state if the value of each “variable” vari in the parameterss of an
actor equals valuei for each i ∈ {1, . . . , n}. Here, actorId is the global actor name
of a given actor (see below). For FSM actors (and modal models), the property

actorId @ location

holds if and only if the FSM actor with global name actorId is in location (or
“local state”) location . Since we may analyze also hierarchical models, the global
actor name actorId in the above formulas must be a list m . o1 . o2 . . . . . on, for
n ≥ 0, where m is the name of the (top-level) model, o1 is the object name of a
top-level actor in this model, and oi+1 is the name of an inner actor of the actor
oi. Section 6 shows how these propositions can be used to verify Ptolemy models.

5 Code Generation and Integration with Ptolemy

This section shows how Ptolemy’s adapter code generation infrastructure has
been used to automatically generate Real-Time Maude code from a Ptolemy DE
model, and to integrate Real-Time Maude analysis of DE models into Ptolemy.

5.1 Implementing the Real-Time Maude Code Generator

Ptolemy gives the user the possibility of adding a “code generation button” to a
(top-level) Ptolemy model. When this button is double-clicked, Ptolemy opens a
dialog window which allows the user to start code generation and give commands
to execute the generated code.

Ptolemy provides an adapter infrastructure to support the generation of code
into any target language. In particular, Ptolemy provides a Java class Code-
GeneratorHelper that contains utility methods such as getComponent(), which
returns a (Java) object containing all information about an actor, including
its name, parameters, ports, inner actors, etc. This class furthermore contains
“skeleton” functions like String generateFireCode(), which should generate
the code executed when the actor is “fired,” Set getSharedCode(), which should
generate code shared by multiple instances of the same actor class, and so on.
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An adapter class may have an associated template file containing code blocks
of the form /***header(parameters)***/ code pattern /**/, where the code
pattern is code written in the target language, but that can be parametrized
with variables, and also have macro functions. Macros are prefixed with ‘$’.

The Real-Time Maude code generation is implemented by redefining the func-
tions getSharedCode() and generateFireCode() in the adapter class for each
type of actor. For each adapter class A, its associated template file includes a
code block with header semantics_A that is just the Real-Time Maude module
defining the formal semantics of the actor A! The template file also includes
a code block with header attr_A that defines the attributes of the actor and
their initial values. In Ptolemy, each actor class is a subclass of the class Entity.
Therefore, we defined an adapter class for Entity that is a superclass of every
actor adapter class. The template file for Entity hence contains

/***semantics_Entity***/

(tomod ACTOR is

...

class Actor | ports : Configuration, parameters : ValueMap .

...

endtom)

/**/

/***fireBlock($attr_terms)***/

< ’$info(name) : $info(class) | $attr_terms >

/**/

/***attr_Entity***/

ports : ($info(ports)),

parameters : ($info(parameters))

/**/

The parameter attr_termswill be replaced by set of attr Actor code blocks for
each Actor a super class of the given actor. $info is a macro that uses Ptolemy’s
getComponent() to extract information, such as the name, the class, etc., about
the actor instance. Likewise, the template file for CurrentTime contains

/***semantics_CurrentTime***/

(tomod CURRENT-TIME is inc ACTOR .

...

class CurrentTime | current-time : Time . subclass CurrentTime < Actor .

...

eq portFixPoints(...) = ... .

endtom)

/**/

/***attr_CurrentTime***/

current-time : 0

/**/
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The function getSharedCode() is used to generate the Real-Time Maude
modules defining the semantics of those actors that appear in the Ptolemy model,
and is defined as a Java function that returns the set of all code blocks (from
the related template files) whose header starts with “semantics.” Hence, for a
CurrentTime actor, getSharedCode() returns the above two Real-Time Maude
modules (and adds modules for LTL model checking in the same way).

The function generateFireCode() is used to generate the Real-Time Maude
term representing the (initial state of the) given Ptolemy model. It generates
the code from the code templates with header fireBlock and $attr in the
appropriate adapter classes; that is, a Real-Time Maude object corresponding
to the initial state of the actor.

5.2 Verifying Ptolemy DE Models from within Ptolemy

We have integrated both code generation and verification into Ptolemy, so that
a Ptolemy DE model can be verified by pushing the RTMaudeCodeGenerator
button in the Ptolemy model. The dialog window that then pops up allows the
user to write his/her simulation and model checking commands. After clicking the
Generate button of the dialog window, the generated Real-Time Maude code and
the result of executing the analysis commands are shown in the dialog box.

6 Examples and Case Studies

This section shows how the LTL model checking infrastructure in Section 4 and
the Real-Time Maude code generation can be used to verify Ptolemy DE models.

Verifying the Traffic Light Model. In the Ptolemy model in Section 2.3, each traf-
fic light is represented by set of variables. The safety property we want to verify
is that it is never the case that both the car light and the pedestrian light show
green at the same time. If the name of the model is ’DE_SimpleTrafficLight,
then (’DE_SimpleTrafficLight | (’Pgrn = # 1, ’Cgrn = # 1)) holds in
all states where the Pgrn and Cgrn variables both have the value 1. The safety
property we are interested in, that such a state can never be reached, can be
defined as the LTL formula

[] ~ (’DE_SimpleTrafficLight | (’Pgrn = # 1, ’Cgrn = # 1))

Alternatively, the LTL formula

[] ~ (’DE_SimpleTrafficLight . ’CarLightNormal @ ’Cgrn /\

’DE_SimpleTrafficLight . ’PedestrianLightNormal @ ’Pgreen)

states that it is never the case that the CarLightNormal FSM actor is in local
state Cgrn when the PedestrianLightNormal actor is in local state Pgreen.

We can also check the liveness property that both pedestrian and cars can
cross infinitely often. That is, it is infinitely often the case the pedestrian light
is green when the car light is not green, and it also infinitely often the case the
car light is green when the pedestrian light is not green:
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[]<> (’DE_SimpleTrafficLight | (’Pgrn = # 1, ’Cgrn = # 0))

/\ []<> (’DE_SimpleTrafficLight | (’Pgrn = # 0, ’Cgrn = # 1))

As explained in Section 5.2, these formulas can be entered into the dialog box
that pops up when the RTMaudeCodeGenerator button is clicked in the Ptolemy
model; the dialog box will then display the results of the verification.

Other Examples and Case Studies. We have also verified the following three
larger Ptolemy DE models in the same way (see [1] for details):

1. A hierarchical fault-tolerant extension of the traffic light system,
2. the railroad crossing benchmark, and
3. an assembly line system originally due to Misra.

7 Related Work

A preliminary exploration of translations of synchronous reactive (i.e., untimed)
Ptolemy II models into Kripke structures, that can be analyzed by the NuSMV
model checker, and of DE models into communicating timed automata is given
in [2]. However, they require data abstraction to map models into finitary au-
tomata, and they do not use the code generation framework. On the other hand,
Maude has been used to give semantics to a wide range of programming and
modeling languages (see, e.g., [7,12]). Real-Time Maude is also used to analyze
AADL [14] models of avionics embedded systems, but we are not aware of any
translation of a synchronous real-time language into Maude or Real-Time Maude.

8 Concluding Remarks

We have formalized the semantics of a significant subset of transparent hierar-
chical Ptolemy II DE models in Real-Time Maude, and have shown how such
Ptolemy design models can be verified by integrating Real-Time Maude code
generation and model checking into Ptolemy, enabling a model-engineering pro-
cess for embedded systems that leverages the convenience of Ptolemy II DE
modeling and simulation with the formal verification of Real-Time Maude.

This work should continue in different directions. We should cover larger sub-
sets of Ptolemy II and verify larger and more sophisticated applications. We
should also add other relevant analysis methods, such as, e.g., statistical model
checking to analyze probabilistic Ptolemy II models. Finally, counterexamples
from Real-Time Maude verification should be visualized in Ptolemy II.
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Abstract. The Product Process Modeling Language (PPML) is a formal
language for the specification of business processes, which has a formal
semantics based on timed transition systems. As opposed to other busi-
ness process modeling languages, PPML puts an emphasis on products
(not only processes), allowing the specifier to describe properties of these,
and how processes affect them. This facilitates modeling of business pro-
cesses, and combined with other characteristics of the language, most
notably timing constraints in the form of time bounds associated with
processes, makes it an expressive vehicle for modeling business processes.

PPML is more a formalism than an actual modeling language, since
no syntax was ever defined for the formalism. In this paper, we define a
suitable syntax for PPML models, and provide a formal semantics for the
extended language in terms of timed automata. The formal semantics is
given as a translation from PPML into UPPAAL. This formal semantics
enables us to straightforwardly employ the UPPAAL model checker in
order to verify real time properties of PPML specifications.

We show some of the benefits of a product-oriented language for busi-
ness process modeling, the details of our translation and the results of
the use of the UPPAAL model checker for PPML specifications via a
simple case study, regarding a motherboard production line.

1 Introduction

The constant effort of different organizations for improving their business and
manufacturing processes for efficiency and control has led to the development of
languages and methods for business process modeling and analysis. Currently,
there exist several business process modeling languages, such as BPEL, WS-CDL
[14], etc. Most of these have been defined with a significant emphasis on modeling
service oriented systems [1], and generally lack a formal semantics, which makes
them less suitable for automated analysis.

PPML [19], on the other hand, is a formal business process modeling lan-
guage based on timed state transition systems [18]. PPML models are composed
of processes, and their effects on products. Also, processes may include temporal
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bounds, which enable one to specify timing constraints. These features make the
language appropriate for modeling concurrency related restrictions, process syn-
chronizations, etc. The main difference with other languages is that, in PPML,
products are explicit referents of the model. This provides us with greater flex-
ibility, compared to other business process modeling formalisms, particularly
when describing models in which products are complex, and their description
is as important as that of processes. We believe that having the possibility of
describing products and their structure is essential in cases in which the infor-
mation flow of processes and how products evolve in these processes need to be
explicitly specified, e.g., for stating invariants, properties describing relationships
between different products (or different states of the same product), etc. Some
situations in which this is clearly observed are the specification of certain indus-
trial processes, protocol descriptions such as CORBA, etc. PPML also allows us
to describe the structural state of products in particular moments in time; for
instance, one can describe the state of a product before and after a process is
executed on it. This facilitates the description of properties regarding product
traceability, and other properties not directly associated with the processes, but
with the products and their evolution in the system.

In the last two decades, the development of algorithmic methods for soft-
ware/hardware verification has led to powerful analysis mechanisms, such as
model checking [6]. These mechanisms have been enhanced by increasing com-
puter power, and, in the last decade or so, various tools for automated anal-
ysis/verification have been developed, and are being used in practice. Many
systems have requirements associated with real time (e.g., requirements associ-
ated with response within some preestablished bounds, etc.). For these kinds of
systems and properties, there exist special model checking tools, most notably
the tools Kronos [8] and UPPAAL [3]. Various kinds of timing constraints are
often found in business process descriptions (cf. [15] page 3, [26] Section 1.7),
and therefore, as it will be made clearer later on, we can benefit from the use of
model checking tools for real-time for analyzing business process specifications.

We are interested in formally specifying business processes using a richer lan-
guage for specifying products and their characteristics, as opposed to what
is normally found in business process modeling notations. Moreover, we are
also interested in verifying properties of these models, in particular real time
properties.

The PPML formalism has been carefully defined, and various of its features
have been thoroughly studied [19]. We refer both to the language and the logic
as PPML, as opposed to [19], where PPML is the logic underlying the language,
and the language is called Mensurae. Since no formal, precise syntax has been
provided for PPML, we define a suitable syntax for it, extending the original
language. Moreover, we also provide an encoding of the extended language into
the language associated with the UPPAAL model checking tool. This translation
provides the language with a formal semantics based on timed automata, the
semantic formalism behind UPPAAL. We describe the above mentioned encod-
ing, and develop a case study, based on a simplified version of a motherboard
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production line. This will enable us to justify the usefulness of the encoding,
for verifying interesting real time properties associated with business process
specification.

The paper proceeds as follows. First we describe the PPML language and
provide an overview of the UPPAAL language and tool. We then present our
extension of PPML, its formal syntax as well as the proposed semantics, as a
translation from PPML into the language of the UPPAAL model checker. We
use our case study as a reference for the presentation. We also use the translation
in order to verify properties associated with the case study. Finally, we discuss
related work in the area and draw some conclusions.

2 An Overview of PPML

PPML is a formal language which can be used to model business processes [19].
The basics of the method underlying the language are described in [17]. PPML
has three basic constructs: products, processes and gates. Products are entities
characterized by a set of measurable attributes. Products can be manipulated
by processes. Processes are entities that represent behaviours, which are not
necessarily instantaneous, i.e, they can take some time to be completed. They
are modeled via “single input, single output” tasks. If multiple inputs are nec-
essary, these have to be put together in a composite product. The main element
employed for composing/decomposing products, to be processed by processes, is
the gate. Basically, there exist three types of gate, namely, the multiplexer, the
demultiplexer and the semaphore.

One can also associate timing constraints with processes. This is done in
PPML via two bounds associated with processes: a lower bound (minimum time
that the process needs to fulfill its task) and an upper bound (maximum time
that the process can spend to complete its work).

2.1 Products

Products represent empirical referent objects (i.e., “things” in the world be-
ing modeled). Products are characterized by their measurable attributes, e.g.,
length, weight, color, etc. These characteristics may be directly observable or
can be calculated by functions applied to values of other existing features. The
characteristics associated with a product entity must be given in a suitable mea-
surement scale [9].

In order to define products, we assume a first order theory presentation 〈Σ,A〉,
called a proto-product, which defines the basic types (e.g., for attributes) nec-
essary for products, including a sort of codes (Code), a sort of names (Name),
and a sort for instants (T ime, which corresponds to a discrete totally ordered
set with a first element).

Products can then be either atomic, composite or structured. An atomic
product P is a tuple 〈code numberP , product nameP , timeP , attributesP 〉, where
code numberP is a Code constant, used to identify products; product nameP is a
constant of sort Name, which allows one to refer to particular products; timeP is
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a constant of sort T ime, and it is the time stamp of the product P , indicating the
last time that the product’s attributes have been updated; attributesP ⊆ Σ is a
set of attributes, the measurable characteristics of the corresponding empirical
referent (i.e., the entity in the real world being modeled by the product). Cer-
tain attributes, called direct attributesP , may be directly measured by means
of appropriate measurement procedures, while others, derived attributesP , are
calculated using rules and laws governed by the axioms A. As an example, sup-
pose that we need to model a memory bank with some basic characteristics
such as the memory’s size and a flag indicating if the memory was tested or
not:

〈code memory,memory, 0, {size : nat, tested : bool}〉.

A composite product P is either:

– a pair P = 〈code numberP ,⊗(Pc1, .., Pcn)〉 where ⊗(Pc1, .., Pcn) is an injec-
tion of the components Pci into the cartesian product. This type of composite
product is used to blend products emerging from several previous processes.
This is useful, in particular, for synchronizing products in time, to be con-
sumed as inputs by other processes,

– a pair P = 〈code numberP , ι(P)〉 where P is a finite set of products and
ι(P) ∈ P . This type is the choice product and is used in situations where
an input from any one of some previous processes is chosen based on some
defined condition.

Products that need to be treated as atomic artifacts, but whose definitions are
given in terms of constituent parts, are not the same as composite products.
These are a particular kind of product, called a structured product.

A structured product P may be refined (or specialized), which corresponds in
logic to extending the presentation 〈Σ,A〉 to some new proto-product 〈Σ′, A′〉
by adding some new constants, functions and relations, or aggregate, which cor-
responds to a type of product that allows us to aggregate several constituent
products into a new atomic product.

As it can be observed in the above specification, structured product descrip-
tions are akin of classes in object orientation. The instances of these product
descriptions will represent the individual referents in the real world. That is, the
instances of product descriptions will be involved in the executions of processes.

2.2 Processes

A process models an empirical referent process (i.e., some real world process or
procedure) that transforms an input product into an output one. As for products,
the processes may be atomic (a process without internal constituent “subpro-
cesses”) or structured. They model input/output transformations. In order to
carry out these transformations, each process has a virtual machine that in-
terprets its basic commands. Intuitively, a virtual machine is an object system
with routines, representing basic actions that it is capable of doing, such as
assignments in a conventional programming language.
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In order to specify a process, we define what input/output transformations
are required using basic actions or some combinations of these, via some control
structure of the virtual machine internal to the process. Not all actions of the
virtual machine are under the control of the process. Environmentally controlled
actions may appear. Another control structure that can be useful is parallel
execution.

The formalization of the concept of the virtual machine is based on object
specifications [10] and consists of a logical framework based on timed transition
systems, called RETOOL [4]. The RETOOL semantics is based on the notion of
computation over a timed object frame. The specification (theory presentation)
describing the virtual machine is a pair consisting of a signature and a collection
of sentences describing the behaviour of the system [19].

The definition of a process is given as a transaction defining a computa-
tion segment of the underlying virtual machine. It is specified by five elements,
namely, the initial and final conditions (q, p), the invariant I, and the lower and
upper bounds (l, u). The initial condition q specifies the states in which the
transaction can be initiated; the final condition describes the states in which the
transaction finishes (i.e., a kind of postcondition); the invariant I is a property
that is supposed to hold throughout the execution of the transaction (e.g., re-
quiring that the equipment being used for the process is not unplugged during
the execution of the process!); finally, the lower and upper bounds l and u state
the minimum and maximum time that the execution of the transaction can take,
in order to be completed.

A process behaviour, i.e., its associated transfer function (how the input prod-
uct is transformed into the output product), can then be formally characterized
by a formula (q, I)l∆

up, which is interpreted with respect to a timed state se-
quence 〈σ, T 〉 for a timed object frame, (where σ is an infinite sequence of states
and T is an infinite sequence of corresponding times), and an instant i of time
(the current time), in the following way: σ, T, i � (q, I)l∆

up iff, for some k such
that i + l < k ≤ i + u; σ, T, i � q, σ, T, k � p and σ, T, n � I hold, for every
i ≤ n ≤ k.

An atomic process p is a pair 〈proc, V M〉, where VM is the process’ virtual
machine (an object specification [4]) and proc = 〈process code, process name,
PI , PO, (q, I)l∆

up〉; process code, process name are state variables of the sorts
used for process codes and names, respectively. These variables are rigid (i.e.,
their interpretations are immutable along computations), and their sorts are
assumed to be defined and specified in the proto-product 〈Σ,A〉. PI , PO are the
input and output products and (q, I)l∆

up is the specification of the properties
of the process (i.e., its associated transfer function). Consider, for instance, the
following tuple describing an atomic tester process:

〈code, tester,memory,memory, (¬memory.tested, true)5∆10memory.tested〉

This tester process takes as input a non tested memory bank, and after i units
of time (5 ≤ i ≤ 10), the process returns a tested memory bank. For the sake of
simplicity, we skip the description of the virtual machine for this process.
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2.3 Gates

In order to make processes interact, by interconnecting them via products, it is
often necessary to combine products to build composite ones, or decompose prod-
ucts, for instance for feeding other processes with the parts. In order to do this,
PPML provides the concept of gate. Besides gates for composing/decomposing
products, there is a third kind of gate, the semaphore, which is useful for synchro-
nization. Gates are useful for modeling transfer functions that can be regarded as
instantaneous because the time taken is trivial and where the single input/single
output constraint is not met by purely trivial marshalling activities. The types
of gates are formally defined as follows:

– A multiplexer is a tuple M = 〈multiplexer code,P , P, F 〉, where
multiplexer code is a fixed value used to identify the gate, P is the set of
input products, P is the output product of the multiplexer and F is the
multiplexer action function defining P explicitly in terms of the set of input
products P .

– A demultiplexer is the dual of a multiplexer. In this case, the output products
are defined as projections of the input product.

– A semaphore is a tuple S= 〈semaphore code, P, S〉, where semaphore code
is a fixed value used to identify the semaphore, P is the input/output product
and S is the condition that must be satisfied to continue.

Graphically, gates are depicted as shown in Fig. 1 2 3, As an example, consider a
multiplexer gate that receives a memory bank and a processor and returns a com-
posite product putting together the input products. This is specified as follows:

〈codeM , {mem, proc}, 〈codeP ,⊗(p1, p2)〉, {(mem, p1), (proc, p2)}〉

Fig. 1. Multiplexer Fig. 2. Demultiplexer Fig. 3. Semaphore

2.4 Framework Processes

When modeling complex empirical referents, it is often the case that one needs
mechanisms providing us with abstraction and encapsulation, in order to deal
with complexity. This is the usual situation when one decides to model processes
in a bottom up way, i.e., modeling simpler processes first and composing these
later on, as well as in top down approaches, i.e., modeling complex processes
abstractly first and later on refining these into more detailed subprocesses [2].
PPML provides facilities for dealing with abstraction and encapsulation, partic-
ularly the notion of framework process. Framework processes are defined via pro-
cess combinators. These are the following: Let p1 = 〈p1 code, p1 name, p1I, p1O,
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(qp1, Ip1)lp1∆
up1pp1〉 and p2 = 〈p2 code, p2 name, p2I , p2O, (qp2, Ip2)lp2∆

up2pp2〉
be two processes,

– Sequential combination: Denoted as p1; p2, combines two processes into a
new one p = 〈p code, p name, p1I , p2O, (qp1, Ip)lp1+lp2∆

up1+up2pp2〉, in the
expected way. The p code and p name “fields” have new unique code and
name, respectively. The invariant Ip requires that the initial condition of the
first of the processes holds, while the invariant Ip1 holds for some time not
exceeding up1 units of time; after that, the final condition pp1 becomes true
in at least lp1 units of time. Then, eventually the initial condition qp2 holds,
while the invariant Ip2 holds, from that point onwards, for at most up2 units
of time; after that, the final condition pp2 becomes true in at least lp2 units
of time.

– Semaphore (conditional) combination: The semaphore composition of p1 and
p2, denoted by p1;s p2, is defined as for the sequential composition, but
the invariant of the transfer function is strengthened in the sense that s
(semaphore condition) must be true in order to start the second process.

– Parallel combination: Let mO = 〈multiplexer code,PO, PO, FO〉 and dI =
〈demultiplexer code, PI ,PI , FI〉 be a multiplexer and a demultiplexer, re-
spectively, each defined over the set of input and output products of p1 and
p2. Then, the parallel composition p of p1 and p2 with respect to mO and
dI , denoted by [p1; p2](dI ,mO) is defined as follows: The process code and
process name “fields” of p have new unique code and name respectively.
The input of p is the input of dI and its output is the output of mO. The
transfer function τ of p is (qp1∧qp2, Ip)max((lp1,lp2))∆

max((up1,up2))(pp1∧pp2),
where the invariant Ip is defined as (qp1∧qp2) ⇒ (τ1[(pp1U(pp1∧pp2))/pp1]∧
(τ2[(pp2U(pp1∧pp2))/pp2])) (where τ [(pUq)/r] denotes the replacement of the
final condition r in τ by the condition (pUq)). The symbol “U” denotes the
well known strong until temporal operator. This requires that, when the two
processes are ready to start, they are executed in parallel. Further, when one
of them finishes, it must wait for the other process to reach its final state.

A framework process p is an atomic process composed of a set of constituent
processes {p1, ..., pn} using the combinators defined above. We denote frame-
work processes by pairs of the form 〈p, fw.exp〉, where p is the standard PPML
definition of process and fw.exp is the specification of the constituent processes
in terms of the combinators.

3 UPPAAL

UPPAAL is a toolbox for the verification of real-time systems. It is based on
the theory of timed automata, and provides a subset of CTL (computational
tree logic) as a query language to specify properties to be checked. A model
in UPPAAL is a set of instances of templates which can be communicated by
means of various kinds of communication channels.
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An UPPAAL specification consists of three parts: global declarations, schemas
(automata templates) with their corresponding local declarations, and the system
specification.

3.1 Declarations

The global declaration, or the local declaration of a template, may include the
definition of variables, arrays, registers or types (as in the C programming lan-
guage). There exist four predefined types: int (integers), bool (booleans), clock
(clocks), and chan (communications channels). The communications channels
can be basic, urgent or broadcast. Constants can also be defined, using the const
keyword. UPPAAL provides a rich language for the declaration of functions that
can be invoked in the templates. Parameters, conditional sentences and iterative
sentences, such as ‘while’ or ‘for’ statements, can also be specified.

3.2 Templates

Templates are defined as extended timed automata. An automaton consists of
locations and edges, and can also have local declarations and parameters (by
value or by reference).

Locations can be labeled (reference names). We can specify invariants in the
location, indicating that some condition must hold in the state. The invariant
expressions can only be conjunctions of simple conditions over clocks, or boolean
expressions without clock variables. Conditions involving lower bounds on clocks
are not allowed. There are three modifiers for a template’s locations: initial (each
template must have exactly one initial state), urgent (time stops while a process
is in one of these states), and committed (time stops while a process is in one of
these states, as for urgent locations, but they also bind the system scheduler to
choose one of the committed locations in the next transition).

Locations are connected by edges. The edges can be annotated with selections,
guards, synchronizations or updates.

– Selections : Selections non-deterministically bind a given identifier to a value
in a given range. The other three labels of an edge are within the scope of
this binding.

– Guards : An edge is enabled in a state if and only if the guard in it evaluates
to true.

– Synchronization:Processes can synchronize over channels. Edges labeled with
complementary actions over a common channel synchronize.

– Updates : When an edge is “executed”, the update expression of the edge is
evaluated. The side effect of this expression changes the state of the system.

When two processes are synchronized, both synchronized edges are fired at the
same time. Their corresponding updates are performed in an ordered manner:
first the update of the sending process, and then the update of the receiver.
Notice that the edges allow only for a single synchronizing channel. Broadcast
channels represent one-to-many synchronizations, since the sender and all the
receiver edges are fired at the same time.
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3.3 System Specification

The specification of a system model consists of one or more concurrent processes
(template instances), variables and communication channels. The variables, chan-
nels and functions defined at this level are not available in the templates.

3.4 Temporal Properties

UPPAAL provides a CTL temporal logic [20], with some restrictions (only one
path quantifier), as a query language. Thus, the allowed query formulas are the
following:

– E�q: evaluates to true for a timed transition system if and only if there is a
sequence of alternating delay transitions and action transitions s0 → · · · →
sn, where s0 is the initial state and sn satisfies q.

– A�q: evaluates to true if and only if every reachable state satisfies q.
– E�q: evaluates to true for a timed transition system if and only if there is a

sequence of alternating delay or action transitions s0 → s1 → · · · → si → · · ·
for which q holds in all states si.

– A�q: evaluates to true if and only if all possible transition sequences even-
tually reach a state satisfying q.

In the above formulas, q is a well formed logical expression. The variables or
states of a process in an expression can be referenced. For instance,

A�Motherboard.End → Motherboard.hasProcessor

expresses that, for all execution sequences, it is always the case that, if a moth-
erboard is in its end state, then it must have a processor (its hasProcessor
variable is set to true).

4 PPML Syntax and Extensions

In previous work on PPML, all the elements that are part of business process
specifications are formally defined, but no actual syntax for the specifications is
proposed. In order to provide a suitable high level syntax for specifying PPML
models, we propose a syntax for products, processes and gates. This syntax has
two objectives, namely, it allows us to provide a more flexible and user friendly
way of writing PPML specifications (as in other business description languages),
and to standardize the syntax so that tools for the language, such as parsers and
analyzers, can be built.

For the sake of simplicity, we will mainly show the proposed syntax for PPML
using a case study as a reference. The case study is the following. Suppose that
we need to model a simplified version of part of a production line of a com-
pany that assembles motherboards. In this simplification, the assembly process
receives as initial source products base motherboards, with two (empty) slots,
one for a processor, and the other for a memory bank. Once assembled, each
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base motherboard is complemented with a processor and a memory bank, each
seated in its corresponding slot. At the end of the manufacturing process, the
assembled motherboard is tested, more precisely, the motherboard is tested in
combination with the memory bank, and in combination with the processor. In
order to reduce the manufacturing time, these tests can be done in parallel by
two independent testing processes.

Motherboards are structured products. Consider the definition of the Moth-
erboard product shown in Fig. 4, and illustrating the syntax of products.

Product MotherBoard {

Proccessor MProccessor,

Memory MMemory,

int Proccessor_Socket,

boolean hasProcessor,

boolean hasMemory,

boolean tested

}

Fig. 4. Structured Product MotherBoard

As it can be observed, structured product descriptions are akin to classes in ob-
ject orientation (although is not shown in the example, the only kind of “method”
allowed in product specifications are the definitions of derived attributes). The
instances of products will be involved in the executions of processes.

When modeling business processes, one often finds situations in which certain
products are built or transformed in several steps. In these cases, sometimes the
state of some of the products’ attributes being built or transformed are unknown,
e.g., when these have not yet been assigned a particular value. In order to model
these situations, it is necessary to introduce null values.

In order to illustrate a process definition, let us model part of the motherboard
production line, namely the process that takes a motherboard without processor
and a processor, and returns the partially assembled motherboard resulting from
seating the processor in its corresponding slot in the motherboard. The input
product is a composite product, consisting of a motherboard without processor,
and a processor. The initial condition requires the compatibility of sockets and
the processor slot in the motherboard being empty. The invariant for this process
should specify that the processor cannot be assembled in parallel with the seating
of the memory for this motherboard. The output product is simply the original
motherboard with the processor put in its corresponding slot. We might associate
time bounds with this process, for instance saying that the process cannot take
less than 5 units of time to be performed, and it takes 10 units of time or less
to be completed. This process is specified, in our proposed syntax, in Fig. 5.

Due to space restrictions, we include here only the formal syntax of atomic and
structured products (see Fig. 6) and atomic processes (see Fig. 7). More complex
processes, composed of simpler ones, are easier to express using a graphical
notation, as we will see later on in the paper.
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Process assem_1 {

input: [Motherboard Mother_in; Proccessor Proc_in],

output: MotherBoard Mother_out,

invariant: Mother_in.HasMemory == false,

requires: Mother_in.Proccessor_Socket == Proc_in.Proccessor_Socket

&& Mother_in.HasProccessor=false,

ensure: Mother_out == Mother_in && Mother_in.MProcessor == Proc_in

&& Mother_in.hasProcessor == true,

l_time: 5 ,

u_time:10

}

Fig. 5. Process that assembles a motherboard and a processor

Product → ’Product’ Product name ’{’ Product body ’}’
Product body → Product refs ’,’ Product atts | Product atts
Product refs → Product ref ’,’ Product refs | Product ref
Product atts → Product att ’,’ Product atts | Product att
Product ref → Product ref name Product ref ID
Product att → Product direct att | Product derived att
Product direct att → Product att type Product att ID
Product derived att → Product att type Product att ID ’=’ Expression
Product att type → ’int’ | ’boolean’
Expression → Expression Binary op Expression | Unary op Expression

| Product att ID | Product ref name’.’Product att ID
| ’(’Expression’)’ | NAT const | BOOLEAN const

Binary op → ’+’ | ’-’ | ’*’ | ’/’ | ’==’ | ’and’ | ’or’ | ’&&’ | ’||’
Unary op → ’-’ | ’not’ | ’ !’

Fig. 6. BNF for the syntax of atomic and structured products

Process → ’Process’ Process name ’{’ Process body ’}’
Process body → ’input:’ Input def ’,’ ’output:’ Output def ’,’

’invariant:’ Invariant def ’,’ ’requires:’ Requires def ’,’
’ensures:’ Ensure def ’,’ Times def

Input def → Product ref | Composite product ref
Output def → Product ref | Composite product ref
Invariant def → Expression
Requires def → Expression
Ensure def → Expression
Times def → ’l time :’ NAT ’,’ ’u time :’ NAT

Fig. 7. BNF for the syntax of atomic processes

5 From PPML to UPPAAL

With the aim of verifying temporal properties of PPML specifications, and provid-
ing a semantics for PPML in terms of timed automata, we propose a translation
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from PPML into UPPAAL. This will enable us, in particular, to employ the UP-
PAAL model checker for verifying real time properties of PPML models.

Essentially, the encoding of PPML into UPPAAL is defined in the following
way. Each product class will correspond to a template, which will represent the
product states in the system (i.e., all states that the product can have in the
system) and a type that represents the product configuration, i.e., a structure
that describes the product’s attributes.

Processes are encoded as templates that mimic the PPML processes’ be-
haviours in the system.

Gates are encoded as arrays of integers, declared as global variables. The
values of an array representing a gate will correspond to the presence of the
expected product at a given instant in the system. More precisely, if the array
has in position i a value n �= 0, then n is the code of a product available as input
for the gate at instant i. Code 0 represents the absence of products. Since codes
are unique for each product, they can be interpreted as references (with 0 being
the null reference).

The encoding of gates is merged with those of products and process templates,
in the following way:

– For a multiplexer gate M , the process that waits for the gate’s output will
have a conditional transition, checking whether M [i] �= 0, for every i. All
the products to be collected at the gate will also have in their corresponding
templates a conditional transition checking whether the values in their corre-
sponding positions in the gate are 0. If the condition holds and the transition
is fired, the products update the array values with their corresponding codes.

– For a demultiplexer gate D, each process waiting for D’s output checks if its
input product is available.

– Semaphore gates are encoded as multiplexers, but with the process transition
including an extra condition corresponding to the semaphore pass condition.

As is usual in model checking, we are forced to consider finite state systems, and
thus we have to consider a maximum number of instances for product classes.
For each product class (e.g., motherboard in our case study), we declare an array
whose length is the maximum number of instances of the class, and which will
hold the values of the attributes of these instances. For each process, we declare
a broadcast channel, which is shared between the process and its input products,
and is used to synchronize the start and finish tasks. The process manipulates
products by updating their attributes, stored in the corresponding data array.

The independence of templates for processes and products enables us to pro-
vide a flexible parametrization of the system domain. For example, we can change
the number of instances of products very easily, without altering the other con-
stituents of the system. In our case study, for instance, we exploit this flexibility
in order to “test” the system using different numbers of motherboards, processors
and memory banks.

In order to illustrate the encoding, let us consider the process depicted in
Fig. 8.
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Fig. 8. Diagram for PPML process: assem1;assem2;[test1 ;test2 ](D1,M 3)

The assembly process begins with the process assem1 that takes a mother-
board and a processor, and returns them assembled with a delay between 5 and
10 units of time. The next process is assem2, which receives the output of the
previous process and a memory bank, and assembles them with the same tem-
poral bounds as the previous process. After that, the components are tested in
parallel by the processes test1 and test2, whose lower and upper time bounds
are 3 and 5 units of time.

5.1 Translation of Products

For each PPML product we generate:

– As global declarations, a range definition 0..n of integers, which specifies
n instances of the product. These values will be used as codes for each of
the system products, with 0 representing the null product. For each prod-
uct class, a struct type declaration containing the data information of the
product is also defined. In the case of a structured product, for each of its
components, its type will have a variable of the corresponding product type.
These variables will have the code of the composite product, or the value 0
(null, for incomplete products). Finally we declare an array of the product
class type, whose length is the number of product instances. This array will
contain the data values associated with these instances.

– A template with:
• A clock variable declaration (time of the product in the system).
• A function definition that updates its derived attributes.
• A constant, used for representing the codes of the instances of products

in the system.
• Locations : an initial location, a location for each gate or process that

manipulates it, and a final location.
• Edges : without loss of generality, let us assume that we have a gate before

every process. Thus we have two possible scenarios for edges: the edges
go from a gate location to a process location, or from process locations
to gate locations. Edges of the form (egate, eproc), corresponding to the
first of the scenarios described, are labeled with a conditional array gate
update, where the update data is its code, and the condition expressing
that the gate’s product port is empty. Edges of the form (eproc, egate),
corresponding to the second kind of scenario described, are labeled with
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a waiting message in the channel corresponding to the process whose
code is in the gate. It also includes a call to the function that describes
the updates of its calculated attributes.

When products are “copied” by a demultiplexer, all possible interleav-
ings of processes modifying the product are taken into consideration.

– The instances of templates are declared in the system declarations.

As an example of product encoding, consider the specification given in Fig. 9,
which is the result of encoding the memory product.

Global Declarations

//number of instances 2

typedef int[1,2] n_memories;

//number of instances 2 + null

typedef int[0,2] n_memories0;

//Prod. Structures declarations

typedef struct {

int size;

bool assembled;

bool tested ;

} TMemory;

//Arrays for Prod. attr. values

TMemory

DataMemories[n_memories];

Template Declarations

clock x;

//Calculated Attr. Update

void UpdateAttr(){}

System Declarations

Memories (const n_memories id)

:= Memory(id);

Template states and edges

e1: Initial State (M2)
l1: Guard: gMult2[1]== 0;

Update: gMult2[1]:= id
e2: assem2

l2: Guard: gMultiplexer2[1]== id
Sync.: cassem2?
Update: UpdateAttr()

e3: D1

l3: Guard: gMultiplexer3[1]== 0;
Update: gMult3[1]:=id

e4: test2
l4: Guard: gMult3[1]== id

Sync.: ctest2?
Update: UpdateAttr()

e5: Final State (M3)

Fig. 9. Memory Product translation

5.2 Translation of Processes

For each PPML process we generate:

– As global system declarations, channels to communicate the process with the
products it is fed with, i.e., one channel and a variable of the corresponding
code type are declared for each product involved in the process. The mar-
shalled input products are simulated by the synchronizations of the above
declared channels. We also generate a broadcast channel used by the process
to “inform” the products that they are being processed.
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– A template with:
• A clock variable declaration (time within current process).
• An initial location.
• An update function, which expresses the action that the process per-

forms on the products being processed. This is defined as an update of
attributes of the products involved, defined as global shared variables.

• The locations corresponding to: the idle process’s location (a location for
awaiting the arrival of products), a ready to process location (a location
for the state in which all required products are queued for processing),
and a final location (for the post-process state).

• An edge connecting the idle location with the ready location, labeled
with the condition that every array cell (codes of necessary products to
start) be nonzero, and resetting its internal clock.

The edge from the ready location to the post-processing location rep-
resents the activity of the process. So, it is labeled with the time con-
straints over the internal process clock, a broadcasting signal to the prod-
ucts involved and the update function call described above. Finally, an
edge connecting the post-processing and idle locations is included, for
resetting the process to receive a new job.

– In the system declarations, we create an instance for each process template.

As an example clarifying the process encoding, consider the specification shown
in Fig. 10, which is the result of encoding the process of assembling a mother-
board with a memory bank.

Global Declarations

//processing communication channel

broadcast chan cAssem2;

Template Declarations

clock x;

//Process Updates

void pAssem2(){

//MotherBoard Update;

DataMotherB[gMult2[0]].id_Memory:=

gMult2[1];

}

System Declarations

Assem20 = Assem2();

States and Edges

e1: Initial State (M2)
l1: Guard: gMult2[0]!=0 and

gMult2[1]!=0
Update: x:=0;

e2: Pre-assem2
l2: Guard: x >=3 && x<=5

Sync.: cassem2!
e3: Pos-assem2
l3: Update: x:=0;

gMult2[0]:= 0;
gMult2[1]:= 0;

Fig. 10. assem2 Process translation
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5.3 System Specification and Verification of Real Time Properties

We finish the specification of the system by defining the product and process
templates. Once this is done, we have a complete UPPAAL specification, and we
can employ the UPPAAL model checker in order to verify real time properties
of our PPML model.

For our case study, we considered the following properties for verification:
1) Processors and memory chips cannot be shared by (different) motherboards.

A[] forall (i:n_motherboards) forall (j:n_motherboards)

i != j imply ((MotherBoards(i).End and MotherBoards(j).End)

imply (DataMotherBoards[i].id_Memory != DataMotherBoards[j].id_Memory

and DataMotherBoards[i].id_Processor!=DataMotherBoards[j].id_Processor))

2) Every motherboard that reaches the final location has its processor and memory
already tested.

A[] forall (i:n_motherboards) (MotherBoards(i).End imply

DataMotherBoards[i].tested)

3) The processing of the motherboards can be completed in less than 14 units of
time.
Notice that this corresponds to the testing phases being performed in parallel.

E<> exists(i:n_motherboards)(MotherBoards(i).End and

MotherBoards(i).x<=13)

4) There exists the possibility that all motherboards can be assembled and tested
successfully.

E<> forall(i:n_motherboards)(DataMotherBoards[i].tested)

The above properties were verified in a PC with an 2.33GHz Intel Core2 Duo
CPU processor, with 2GB of DDR2 memory, running GNU/Linux with kernel
version 2.6.28-11. The UPPAAL version employed was 4.1.1. The details of the
verifications are summarized in the following time table:

Test 1 Test 2 Test 3 Test 4 Test 5
1) 0,231 s 4,651 s 22,093 m 2,694 m -
2) 0,013 s 2,583 s 14,371 m 2,413 m -
3) 0,001 s 0,792 s 1,642 s 1,931 s 20,053 s
4) 0,001 s 3,970 s 13,339 m 6,017 m -

In the above table, (s) indicates seconds, (m) minutes and (-) indicates that
the verification process was stopped after the system memory was exhausted,
i.e., when the amount of virtual memory used doubled the size of real (hard)
memory. At this point the trashing process made the verification infeasible. The
experiments associated with the columns of the table, referred to as “tests”, are
the following:
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– Test 1: 2 instances of each of the products, i.e., two motherboards, two
processors and two memories.

– Test 2: 3 instances of each of the products.
– Test 3: 4 instances of each of the products.
– Test 4: three instances of motherboards and, five instances of processors and

memories.
– Test 5: 6 instances of each of the products.

Notice that the experiments were carried out with quantities of processors and
memories sufficient for assembling all the instances of Motherboard, i.e., at least
one processor and one memory per motherboard. If we run the verification with
fewer instances of memories or processors than instances of motherboards, some
properties, such as, for instance, properties 2 and 4, may not be satisfied by the
model.

These experiments are not only provided for illustration purposes, but also
to show how limited the straightforward real time model checking is, for these
kinds of specifications. Indeed, even though our case study is rather small, the
number of instances of products that the model checker is able to deal with (in
a standard desktop computer) is also quite small. The reader might argue that
the inefficiency might be due to our translation; however, checking an ad hoc
UPPAAL characterisation of the described case study yielded similar analysis
results.

This fact shows that abstraction mechanisms, such as those supported by
PPML via framework processes, are crucial for scaling up the analysis tasks.
We plan, as future work, to take advantage of framework processes in order
to improve the analyzability of PPML specifications (most likely, employing
abstraction techniques).

6 Related Work and Conclusions

There are several approaches proposing formalizations for business process lan-
guages and their web services extensions, such as BPEL and WS-BPEL. A survey
of formal verification for business process modelling approaches can be found in
[22], where a classification of proposals for formally analyzing business processes
is presented. Three kinds of formal semantics are the focus of the survey, namely
automata, Petri nets and process algebra based semantics. Exhaustive reviews
of approaches in the area of business process modeling and analysis are also
presented in [11,12], where a translation from UML web services into FSP is
proposed, so that web service specifications can be analyzed using LTSA.

Some approaches focus on providing formal semantics for the Business Process
Modeling Notation (BPMN), such as for instance the works presented in [27,29].
Such semantics allows for the analysis of compatibility of business collaborations
at design level. It also enables a pattern-based approach to the specification of
behavioural properties (which can be verified), using Dwyer et al.’s approach.
The same authors present a relative-timed semantic model for BPMN [28], and
show how properties can be automatically verified using model checking via the
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FDR tool. Another related approach is that presented in [16], where a semi
automated translation from business process diagrams (BPD) into TLA+ is
presented, using Petri nets as an intermediate formalism for the translation.
This (conservative) translation allows one to model check properties of business
processes, expressed as TLA formulas, using the TCL model checker.

A BPEL formalization, closely related to ours, is proposed in [23], mapping
BPEL into timed automata. This formalization allows for checking deadlock
freedom and reachability properties via the UPPAAL model checker, and is
integrated into the ActiveBPEL tool. Other related approaches based on BPEL
and BPEL4WS are the business process formalizations associated with the study
of transactions and fault handling via compensations [24].

Other attempts at formalizing and analyzing workflow languages, such as
UML activity diagrams, have been proposed; an example of this is that presented
in [13], translating these kinds of diagrams into PROMELA (the language of the
SPIN model checker). There exist various approaches providing formal semantics
for workflow languages based on Petri nets or timed extensions of Petri nets [25].

A primary difference of our approach with respect to the ones described above
is that PPML puts an emphasis on product description that, as far as we are
aware of, is not available in any other business process modeling language. This
capability enables the specifier to “balance” the description of business processes
adequately, using a rich language for describing products in order to make pro-
cess descriptions simpler. The language also offers timing constraints, given in
the form of two bounds associated with processes, the lower and upper bounds.
These are useful features with an intuitive meaning, that enable the specifier to
annotate activities with timing restrictions, so that timing related properties,
such as throughput or response time, can be analyzed. We took into consid-
eration these characteristics of the language, and proposed a translation from
PPML into UPPAAL, so that real time properties of PPML models can be ver-
ified using model checking. The query language (the language for expressing the
properties to be checked) is a rather expressive language (computational tree
logic with certain restrictions), enabling one to specify a wide range of proper-
ties, including safety and liveness properties. We have introduced a syntax for
the language (the constituent elements of the formalisms have been formally
defined in previous work, but no appropriate syntax for the language was pro-
vided), and an encoding of the language into UPPAAL, that provides, indirectly,
a timed automata semantics of the language, and the direct possibility of model
checking specifications. We have also illustrated the verification of some sample
properties, using the proposed translation into UPPAAL.

Currently, we are developing a software tool to assist in the creation of PPML
models, and the translation of PPML models into UPPAAL is being developed
as a plug-in of this tool. We believe that PPML is a language that is useful for
the formal specification (and now the analysis) of industrial processes. Directions
for future work include developing abstract interpretation mechanisms associated
with PPML models, so that the verification via model checking can be improved
(by tackling the well known state explosion problem). More precisely, we plan to
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work on predicate abstraction [7] techniques for PPML analysis, exploiting the
framework processes available in the language.

We also plan to prove that the new semantics, that is indirectly provided
for the language via the encoding into UPPAAL, is in fact compatible with the
original timed transition systems semantics of PPML given in [19].
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Barthe, Gilles 541
Basu, Samik 326
Bendisposto, Jens 504
Bertrand, Nathalie 679
Bokor, Péter 147
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Mossakowski, Till 660
Mota, Alexandre 20

Napoli, Margherita 306
Nogueira, Sidney 20
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