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Preface

ASIACRYPT 2009, the 15th International Conference on the Theory and Appli-
cation of Cryptology and Information Security was held in Tokyo, Japan, during
December 6–10, 2009. The conference was sponsored by the International As-
sociation for Cryptologic Research (IACR) in cooperation with the Technical
Group on Information Security (ISEC) of the Institute of Electronics, Informa-
tion and Communication Engineers (IEICE). ASIACRYPT 2009 was chaired by
Eiji Okamoto and I had the honor of serving as the Program Chair.

The conference received 300 submissions from which two papers were with-
drawn. Each paper was assigned at least three reviewers, and papers co-authored
by Program Committee members were assigned at least five reviewers. We spent
eight weeks for the review process, which consisted of two stages. In the first four-
week stage, each Program Committee member individually read and evaluated
assigned papers (individual review phase), and in the second four-week stage,
the papers were scrutinized with an extensive discussion (discussion phase). The
review reports and discussion comments reached a total of 50,000 lines.

Finally, the Program Committee decided to accepted 42 submissions, of which
two submissions were merged into one paper. As a result, 41 presentations were
given at the conference. The authors of the accepted papers had four weeks to
prepare final versions for these proceedings. These revised papers were not sub-
ject to editorial review and the authors bear full responsibility for their contents.
Unfortunately there were a number of good papers that could not be included
in the program due to this year’s tough competition.

Tatsuaki Okamoto delivered the 2009 IACR Distinguished Lecture. The Pro-
gram Committee decided to give the Best Paper Award of ASIACRYPT 2009 to
the following paper: “Improved Generic Algorithms for 3-Collisions” by Antoine
Joux and Stefan Lucks. They received an invitation to submit a full version to
the Journal of Cryptology. In addition to the papers included in this volume,
the conference also featured a rump session, a forum for short and entertaining
presentations on recent works of both a technical and non-technical nature.

There are many people who contributed to the success of ASIACRYPT 2009.
First I would like to thank all authors for submitting their papers to the con-
ference. I am deeply grateful to the Program Committee for giving their time,
expertise and enthusiasm in order to ensure that each paper received a thorough
and fair review. Thanks also to 303 external reviewers, listed on the following
pages, for contributing their time and expertise. Finally, I would like to thank
Shai Halevi for maintaining his excellent Web Submission and Review Software.
Without this system, which covers all processes from paper submission to prepa-
ration of the proceedings, I could not have handled 300 papers so smoothly.

December 2009 Mitsuru Matsui
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José Villegas
Nguyen Vo
Martin Vuagnoux
Christian Wachsmann
Zhongmei Wan
Peishun Wang
Shengbao Wang
Brent Waters
Hoeteck Wee
Benne de Weger
Jian Weng
Christopher Wolf
Ronald de Wolf
Bo-Yin Yang
Kan Yasuda
Qingsong Ye
Yu Yu
Erik Zenner
Rui Zhang
Jinmin Zhong
Hong-Sheng Zhou



Table of Contents

Block Ciphers

Related-Key Cryptanalysis of the Full AES-192 and AES-256 . . . . . . . . . . 1
Alex Biryukov and Dmitry Khovratovich

The Key-Dependent Attack on Block Ciphers . . . . . . . . . . . . . . . . . . . . . . . . 19
Xiaorui Sun and Xuejia Lai

Cascade Encryption Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
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Related-Key Cryptanalysis of the Full AES-192
and AES-256

Alex Biryukov and Dmitry Khovratovich

University of Luxembourg

Abstract. In this paper we present two related-key attacks on the full
AES. For AES-256 we show the first key recovery attack that works for
all the keys and has 299.5 time and data complexity, while the recent
attack by Biryukov-Khovratovich-Nikolić works for a weak key class and
has much higher complexity. The second attack is the first cryptanalysis
of the full AES-192. Both our attacks are boomerang attacks, which are
based on the recent idea of finding local collisions in block ciphers and
enhanced with the boomerang switching techniques to gain free rounds
in the middle.

Keywords: AES, related-key attack, boomerang attack.

The extended version of this paper is available at
http://eprint.iacr.org/2009/317.pdf.

1 Introduction

The Advanced Encryption Standard (AES) [9] — a 128-bit block cipher, is one
of the most popular ciphers in the world and is widely used for both commercial
and government purposes. It has three variants which offer different security
levels based on the length of the secret key: 128, 192, 256-bits. Since it became
a standard in 2001 [1], the progress in its cryptanalysis has been very slow. The
best results until 2009 were attacks on 7-round AES-128 [10,11], 10-round AES-
192 [5,13], 10-round AES-256 [5,13] out of 10, 12 and 14 rounds respectively.
The two last results are in the related-key scenario.

Only recently there was announced a first attack on the full AES-256 [6]. The
authors showed a related-key attack which works with complexity 296 for one
out of every 235 keys. They have also shown practical attacks on AES-256 (see
also [7]) in the chosen key scenario, which demonstrates that AES-256 can not
serve as a replacement for an ideal cipher in theoretically sound constructions
such as Davies-Meyer mode.

In this paper we improve these results and present the first related-key attack
on AES-256 that works for all the keys and has a better complexity (299.5 data
and time). We also develop the first related key attack on the full AES-192.
In both attacks we minimize the number of active S-boxes in the key-schedule
(which caused the previous attack on AES-256 to work only for a fraction of all

M. Matsui (Ed.): ASIACRYPT 2009, LNCS 5912, pp. 1–18, 2009.
c© International Association for Cryptologic Research 2009

http://eprint.iacr.org/2009/317.pdf


2 A. Biryukov and D. Khovratovich

Table 1. Best attacks on AES-192 and AES-256

Attack Rounds # keys Data Time Memory Source

192

Partial sums 8 1 2127.9 2188 ? [10]

Related-key rectangle 10 64 2124 2183 ? [5,13]

Related-key

amplified boomerang
12 4 2123 2176 2152 Sec. 6

256

Partial sums 9 256 285 2226 232 [10]

Related-key rectangle 10 64 2114 2173 ? [5,13]

Related-key differential 14 235 2131 2131 265 [6]

Related-key boomerang 14 4 299.5 299.5 277 Sec. 5

keys) by using a boomerang attack [15] enhanced with boomerang switching tech-
niques. We find our boomerang differentials by searching for local collisions [8,6]
in a cipher. The complexities of our attacks and a comparison with the best
previous attacks are given in Table 1.

This paper is structured as follows: In Section 3 we develop the idea of local
collisions in the cipher and show how to construct optimal related-key differen-
tials for AES-192 and AES-256 . In Section 4 we briefly explain the idea of a
boomerang and an amplified boomerang attack. In Sections 5 and 6 we describe
an attack on AES-256 and AES-192, respectively.

2 AES Description and Notation

We expect that most of our readers are familiar with the description of AES and
thus point out only the main features of AES-256 that are crucial for our attack.

AES rounds are numbered from 1 to 14 (12 for AES-192). We denote the i-th
192-bit subkey (do not confuse with a 128-bit round key) by Ki, i.e. the first
(whitening) subkey is the first four columns of K0. The last subkey is K7 in
AES-256 and K8 in AES-192. The difference in Ki is denoted by ΔKi. Bytes
of a subkey are denoted by kl

i,j , where i, j stand for the row and column index,
respectively, in the standard matrix representation of AES, and l stands for the
number of the subkey. Bytes of the plaintext are denoted by pi,j , and bytes of the
internal state after the SubBytes transformation in round r are denoted by ar

i,j ,
with Ar depicting the whole state. Let us also denote by br

i,j byte in position
(i, j) after the r-th application of MixColumns.

Features of AES-256. AES-256 has 14 rounds and a 256-bit key, which is two
times larger than the internal state. Thus the key schedule consists of only 7
rounds. One key schedule round consists of the following transformations:
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kl+1
i,0 ← S(kl

i+1,7) ⊕ kl
i,0 ⊕ Cl, 0 ≤ i ≤ 3;

kl+1
i,j ← kl+1

i,j−1 ⊕ kl
i,j , 0 ≤ i ≤ 3, 1 ≤ j ≤ 3;

kl+1
i,4 ← S(kl+1

i,3 )⊕ kl
i,4, 0 ≤ i ≤ 3;

kl+1
i,j ← kl+1

i,j−1 ⊕ kl
i,j , 0 ≤ i ≤ 3, 5 ≤ j ≤ 7,

where S() stands for the S-box, and Cl — for the round-dependent constant.
Therefore, each round has 8 S-boxes.

Features of AES-192. AES-192 has 12 rounds and a 192-bit key, which is 1.5
times larger than the internal state. Thus the key schedule consists of 8 rounds.
One key schedule round consists of the following transformations:

kl+1
i,0 ← S(kl

i+1,5) ⊕ kl
i,0 ⊕ Cl, 0 ≤ i ≤ 3;

kl+1
i,j ← kl+1

i,j−1 ⊕ kl
i,j , 0 ≤ i ≤ 3, 1 ≤ j ≤ 5.

Notice that each round has only four S-boxes.

3 Local Collisions in AES

SubBytes

ShiftRows
MixColumns

Key schedule round

Key schedule round

disturbance

correction

Fig. 1. A local collision in AES-256

The notion of a local collision comes from
the cryptanalysis of hash functions with
one of the first applications by Chabaud
and Joux [8]. The idea is to inject a dif-
ference into the internal state, causing a
disturbance, and then to correct it with
the next injections. The resulting differ-
ence pattern is spread out due to the mes-
sage schedule causing more disturbances
in other rounds. The goal is to have as
few disturbances as possible in order to
reduce the complexity of the attack.

In the related-key scenario we are al-
lowed to have difference in the key, and
not only in the plaintext as in the pure
differential cryptanalysis. However the
attacker can not control the key itself and
thus the attack should work for any key
pair with a given difference.

Local collisions in AES-256 are best understood on a one-roundexample (Fig. 1),
which has one active S-box in the internal state, and five non-zero byte differences
in the two consecutive subkeys. This differential holds with probability 2−6 if we
use an optimal differential for an S-box:
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0x01
SubBytes

=⇒ 0x1f;

⎛⎜⎜⎝
0x1f

0
0
0

⎞⎟⎟⎠ MixColumns=⇒

⎛⎜⎜⎝
0x3e
0x1f
0x1f
0x21

⎞⎟⎟⎠
Due to the key schedule the differences spread to other subkeys thus forming

the key schedule difference. The resulting key schedule difference can be viewed
as a set of local collisions, where the expansion of the disturbance (also called
disturbance vector) and the correction differences compensate each other. The
probability of the full differential trail is then determined by the number of
active S-boxes in the key-schedule and in the internal state. The latter is just
the number of the non-zero bytes in the disturbance vector.

Therefore, to construct an optimal trail we have to construct a minimal-weight
disturbance expansion, which will become a part of the full key schedule differ-
ence. For the AES key schedule, which is mostly linear, this task can be viewed
as building a low-weight codeword of a linear code. Simultaneously, correction
differences also form a codeword, and the key schedule difference codeword is
the sum of the disturbance and the correction codewords. In the simplest trail
the correction codeword is constructed from the former one by just shifting four
columns to the right and applying the S-box–MixColumns transformation.

An example of a good key-schedule pattern for AES-256 is depicted in Figure 2
as a 4.5-round codeword. In the first four key-schedule rounds the disturbance
codeword has only 9 active bytes (red cells in the picture), which is the lower
bound. We want to avoid active S-boxes in the key schedule as long as possible,
so we start with a single-byte difference in byte k4

0,0 and go backwards. Due to
a slow diffusion in the AES key schedule the difference affects only one more
byte per key schedule round. The correction (grey) column should be positioned
four columns to the right, and propagates backwards in the same way. The last
column in the first subkey is active, so all S-boxes of the first round are active
as well, which causes an unknown difference in the first (green) column. This
“alien” difference should be canceled by the plaintext difference.

Disturbance

Correction
+

Key schedule
=

Fig. 2. Full key schedule difference (4.5 key-schedule rounds) for AES-256
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4 Related Key Boomerang and Amplified Boomerang
Attacks

In this section we describe two types of boomerang attacks in the related-key
scenario.

A basic boomerang distinguisher [15] is applied to a cipher EK(·) which is
considered as a composition of two sub-ciphers: EK(·) = E1 ◦E0. The first sub-
cipher is supposed to have a differential α → β, and the second one to have a
differential γ → δ, with probabilities p and q, respectively. In the further text
the differential trails of E0 and E1 are called upper and lower trails, respectively.

In the boomerang attack a plaintext pair results in a quartet with probability
p2q2. The amplified boomerang attack [12] (also called rectangle attack [4]) works
in a chosen-plaintext scenario and constructs N2p2q22−n quartets of N plaintext
pairs. We refer to [15,12] for the full description of the attacks.

In the original boomerang attack paper by Wagner [15] it was noted that
the number of good ciphertext quartets is actually higher, since an attacker may
consider other β and γ (with the same α and δ). This observation can be applied
to both types of boomerang attacks. As a result, the number Q of good quartets
is expressed via amplified probabilities p̂ and q̂ as follows:

Q = p̂2q̂22−nN2,

where

p̂ =
√∑

β

P [α → β]2; q̂ =
√∑

γ

P [γ → δ]2. (1)

4.1 Related-Key Attack Model

The related-key attack model [3] is a class of cryptanalytic attacks in which the
attacker knows or chooses a relation between several keys and is given access to
encryption/decryption functions with all these keys. The goal of the attacker is
to find the actual secret keys. The relation between the keys can be an arbitrary
bijective function R (or even a family of such functions) chosen in advance by
the attacker (for a formal treatment of the general related key model see [2,14]).
In the simplest form of this attack, this relation is just a XOR with a constant:
K2 = K1 ⊕ C, where the constant C is chosen by the attacker. This type of
relation allows the attacker to trace the propagation of XOR differences induced
by the key difference C through the key schedule of the cipher. However, more
complex forms of this attack allow other (possibly non-linear) relations between
the keys. For example, in some of the attacks described in this paper the attacker
chooses a desired XOR relation in the second subkey, and then defines the implied
relation between the actual keys as: K2 = F−1(F (K1) ⊕ C) = RC(K1) where
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F represents a single round of the AES-256 key schedule, and the constant C is
chosen by the attacker.1

Compared to other cryptanalytic attacks in which the attacker can manipulate
only the plaintexts and/or the ciphertexts the choice of the relation between
secret keys gives additional degree of freedom to the attacker. The downside of
this freedom is that such attacks might be harder to mount in practice. Still,
designers usually try to build “ideal” primitives which can be automatically used
without further analysis in the widest possible set of applications, protocols, or
modes of operation. Thus resistance to such attacks is an important design goal
for block ciphers, and in fact it was one of the stated design goals of the Rijndael
algorithm, which was selected as the Advanced Encryption Standard.

In this paper we use boomerang attacks in the related-key scenario. In the
following sections we denote the difference between subkeys in the upper trail
by ΔKi, and in the lower part by ∇Ki.

4.2 Boomerang Switch

Here we analyze the transition from the sub-trail E0 to the sub-trail E1, which
we call the boomerang switch. We show that the attacker can gain 1-2 middle
rounds for free due to a careful choice of the top and bottom differentials. The
position of the switch is a tradeoff between the sub-trail probabilities, that should
minimize the overall complexity of the distinguisher. Below we summarize the
switching techniques that can be used in boomerang or amplified boomerang
attacks on any block cipher.

Ladder switch. By default, a cipher is decomposed into rounds. However, such
decomposition may not be the best for the boomerang attack. We propose
not only to further decompose the round into simple operations but also to
exploit the existing parallelism in these operations. For example some bytes
may be independently processed. In such case we can switch in one byte be-
fore it is transformed and in another one after it is transformed, see Fig. 3 for
an illustration.

An example is our attack on AES-192. Let us look at the differential trails
(see Fig. 8). There is one active S-box in round 7 of the lower trail in byte
b7
0,2. On the other hand, the S-box in the same position is not active in the

upper trail. If we would switch after ShiftRows in round 6, we would “pay” the
probability in round 7 afterwards. However, we switch all the state except b0,2
after MixColumns, and switch the remaining byte after the S-box application in
round 7, where it is not active. We thus do not pay for this S-box.

Feistel switch. Surprisingly, a Feistel round with an arbitrary function (e.g., an
S-box) can be passed for free in the boomerang attack (this was first observed
in the attack on cipher Khufu in [15]). Suppose the internal state (X , Y ) is
1 Note that due to low nonlinearity of AES-256 key schedule such subkey relation

corresponds to a fixed XOR relation in 28 out of 32 bytes of the secret key, and a
simple S-box relation in the four remaining bytes.
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a1 a2 a3

S S S

k1

k2

k3

S S S

E0

E1E0 / E1 boundary

Fig. 3. The ladder switch in a toy three S-box block. A switch either before or after
the S-box layer would cost probability, while the ladder does not.

transformed to (Z = X ⊕ f(Y ), Y ) at the end of E0. Suppose also that the E0
difference before this transformation is (ΔX , ΔY ), and that the E1 difference
after this transformation is (ΔZ , ΔY ).

As a result, variable Y in the four iterations of a boomerang quartet takes two
values: Y0 and Y0 ⊕ ΔY for some Y0. Then the f transformation is guaranteed
to have the same output difference Δf in the quartet. Therefore, the decryption
phase of the boomerang creates the difference ΔX in X at the end of E0 “for
free”. This trick is used in the switch in the subkey in the attack on AES-192.

S-box switch. This is similar to the Feistel switch, but costs probability only
in one of the directions. Suppose that E0 ends with an S-box Y ⇐ S(X) with
difference Δ If the output of an S-box in a cipher has difference Δ and if the same
difference Δ comes from the lower trail, then propagation through this S-box is
for free on one of the faces of the boomerang. Moreover, the other direction can
use amplified probability since specific value of the difference Δ is not important
for the switch2.

5 Attack on AES-256

In this section we present a related key boomerang attack on AES-256.

5.1 The Trail

The boomerang trail is depicted in Figure 7, and the actual values are listed in
Tables 3 and 2. It consists of two similar 7-round trails: the first one covers rounds
2 This type of switch was used in the original version of this paper, but is not needed

now due to change in the trails. We describe it here for completeness, since it might
be useful in other attacks.
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Table 2. Key schedule difference in the AES-256 trail

ΔKi

0

? 00 00 00 3e 3e 3e 3e
? 01 01 01 ? 21 21 21
? 00 00 00 1f 1f 1f 1f
? 00 00 00 1f 1f 1f 1f

1

00 00 00 00 3e 00 3e 00
00 01 00 01 21 00 21 00
00 00 00 00 1f 00 1f 00
00 00 00 00 1f 00 1f 00

2

00 00 00 00 3e 3e 00 00
00 01 01 00 21 21 00 00
00 00 00 00 1f 1f 00 00
00 00 00 00 1f 1f 00 00

3

00 00 00 00 3e 00 00 00
00 01 00 00 21 00 00 00
00 00 00 00 1f 00 00 00
00 00 00 00 1f 00 00 00

4

00 00 00 00 3e 3e 3e 3e
00 01 01 01 ? ? ? ?
00 00 00 00 1f 1f 1f 1f
00 00 00 00 1f 1f 1f 1f

∇Ki

0

? ? ? ? ? ? ? 00
X X X X 1f 1f 1f 00
? ? ? ? 1f 1f 1f 00
? ? ? ? 21 21 21 00

1

? 01 ? 00 ? ? 00 00
X 00 X 00 1f 1f 00 00
? 00 ? 00 1f 1f 00 00
? 00 ? 00 21 21 00 00

2

? ? 00 00 ? 00 00 00
X X 00 00 1f 00 00 00
? ? 00 00 1f 00 00 00
? ? 00 00 21 00 00 00

3

? 01 01 01 3e 3e 3e 3e
X 00 00 00 1f 1f 1f 1f
? 00 00 00 1f 1f 1f 1f
? 00 00 00 21 21 21 21

4

01 00 01 00 3e 00 3e 00
00 00 00 00 1f 00 1f 00
00 00 00 00 1f 00 1f 00
00 00 00 00 21 00 21 00

5

01 01 00 00 3e 3e 00 00
00 00 00 00 1f 1f 00 00
00 00 00 00 1f 1f 00 00
00 00 00 00 21 21 00 00

6

01 00 00 00 3e 00 00 00
00 00 00 00 1f 00 00 00
00 00 00 00 1f 00 00 00
00 00 00 00 21 00 00 00

7

01 01 01 01 ? ? ? ?
00 00 00 00 1f 1f 1f 1f
00 00 00 00 1f 1f 1f 1f
00 00 00 00 21 21 21 21

1–8, and the second one covers rounds 8–14. The trails differ in the position of
the disturbance bytes: the row 1 in the upper trail, and the row 0 in the lower
trail. This fact allows the Ladder switch.

The switching state is the state A9 (internal state after the SubBytes in round
9) and a special key state KS , which is the concatenation of the last four columns
of K3 and the first four columns of K4. Although there are active S-boxes in
the first round of the key schedule, we do not impose conditions on them. As a
result, the difference in column 0 of K0 is unknown yet.

Related Keys. We define the relation between four keys as follows (see also
Figure 4). For a secret key KA, which the attacker tries to find, compute its
second subkey K1

A and apply the difference ΔK1 to get a subkey K1
B, from

which the key KB is computed. The relation between KA and KB is a constant
XOR relation in 28 bytes out of 32 and is computed via a function k′

i,0 =
ki,0 ⊕ S(ki+1,7) ⊕ S(ki+1,7 ⊕ ci+1,7), i=0,1,2,3, with constant ci+1,7 = Δk0

i+1,7
for the four remaining bytes.

The switch into the keys KC , KD happens between the 3rd and the 4th sub-
keys in order to avoid active S-boxes in the key-schedule using the Ladder switch
idea described above. We compute subkeys K3 and K4 for both KA and KB.
We add the difference ∇K3 to K3

A and compute the upper half (four columns)
of K3

C . Then we add the difference ∇K4 to K4
A and compute the lower half (four
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Table 3. Non-zero internal state differences in the AES-256 trail

ΔP

? 00 00 00
? ? ? ?
? 00 ? 00
? 00 00 ?

ΔA1

? 00 00 00
1f ? 1f 1f
00 00 ? 00
00 00 00 ?

ΔA3

00 00 00 00
00 1f 00 1f
00 00 00 00
00 00 00 00

ΔA5

00 00 00 00
00 1f 1f 00
00 00 00 00
00 00 00 00

ΔA7

00 00 00 00
00 1f 00 00
00 00 00 00
00 00 00 00

∇A7

1f 1f 1f 1f
00 00 00 00
00 00 00 00
00 00 00 00

∇A9

1f 00 1f 00
00 00 00 00
00 00 00 00
00 00 00 00

∇A11

1f 1f 00 00
00 00 00 00
00 00 00 00
00 00 00 00

∇A13

1f 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

ΔC

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

K0 K1

ΔK1

K1

KA

KB

∇K3

K4K3

KD

∇K4

K2 K3 K4 K5

∇K3

K4K3

KC

∇K4

Fig. 4. AES-256: Computing KB , KC , and KD from KA

columns) of K4
C . From these eight consecutive columns we compute the full KC .

The key KD is computed from KB in the same way.
Finally, we point out that difference between KC and KD can be computed in

the backward direction deterministically since there would be no active S-boxes
till the first round. The secret key KA, and the three keys KB, KC , KD computed
from KA as described above form a proper related key quartet. Moreover, due
to a slow diffusion in the backward direction, as a bonus we can compute some
values in ∇Ki even for i = 0, 1, 2, 3 (see Table 2). Hence given the byte value
kl

i,j for KA we can partly compute KB, KC and KD.

Internal State. The plaintext difference is specified in 9 bytes. We require that
all the active S-boxes in the internal state should output the difference 0x1f so
that the active S-boxes are passed with probability 2−6. The only exception is
the first round where the input difference in nine active bytes is not specified.
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Let us start a boomerang attack with a random pair of plaintexts that fit the
trail after one round. Active S-boxes in rounds 3–7 are passed with probability
2−6 each, so the overall probability is 2−30.

We switch the internal state in round 9 with the Ladder switch technique:
the row 1 is switched before the application of S-boxes, and the other rows are
switched after the S-box layer. As a result, we do not pay for active S-boxes at
all in this round.

The second part of the boomerang trail is quite simple. Three S-boxes in rounds
10–14 contribute to the probability, which is thus equal to 2−18. Finally we get one
boomerang quartet after the first round with probability 2−30−30−18−18 = 2−96.

5.2 The Attack

The attack works as follows. Do the following steps 225.5 times:

1. Prepare a structure of plaintexts as specified below.
2. Encrypt it on keys KA and KB and keep the resulting sets SA and SB in

memory.
3. XOR ΔC to all the ciphertexts in SA and decrypt the resulting ciphertexts

with KC . Denote the new set of plaintexts by SC .
4. Repeat previous step for the set SB and the key KD. Denote the set of

plaintexts by SD.
5. Compose from SC and SD all the possible pairs of plaintexts which are equal

in 56 bits

c

c

c

c
c

c

c

.
6. For every remaining pair check if the difference in pi,0, i > 1 is equal on both

sides of the boomerang quartet (16-bit filter). Note that ∇k0
i,7 = 0 so Δk0

i,0
should be equal for both key pairs (KA, KB) and (KC , KD).

7. Filter out the quartets whose difference can not be produced by active S-
boxes in the first round (one-bit filter per S-box per key pair) and active
S-boxes in the key schedule (one-bit filter per S-box), which is a 2 ·2+2 = 6-
bit filter.

8. Gradually recover key values and differences simultaneously filtering out the
wrong quartets.

Each structure has all possible values in column 0 and row 0, and constant values
in the other bytes. Of 272 texts per structure we can compose 2144 ordered
pairs. Of these pairs 2144−8·9 = 272 pass the first round. Thus we expect one
right quartet per 296−72 = 224 structures, and three right quartets out of 225.5

structures.
Let us now compute the number of noisy quartets. About 2144−56−16 =

272 pairs come out of step 6. The next step applies a 6-bit filter, so we get
272+25.5−6 = 291.5 candidate quartets in total.

The remainder of this section deals with gradual recovering of the key and
filtering wrong quartets. The key bytes are recovered as shown in Figure 5.
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2 1
0

13

0D

0D 4

3D
4

5

5 0

05

Fig. 5. Gradual key recovery. Digits stand for the steps, ’D’ means difference.

1. First, consider 4-tuples of related key bytes in each position (1, j), j < 4. Two
differences in a tuple are known by default. The third difference is unknown
but is equal for all tuples (see Table 2, where it is denoted by X) and gets
one of 27 values. We use this fact for key derivation and filtering as follows.
Consider key bytes k0

2,2 and k0
2,3. The candidate quartet proposes 22 candi-

dates for both 4-tuples of related-key bytes, or 24 candidates in total. Since
the differences are related with the X-difference, which is a 9-bit filter, this
step reveals two key bytes and the value of X and reduces the number of
quartets to 291.5−5 = 286.5.

2. Now consider the value of Δk0
1,0, which is unknown yet and might be different

in two pairs of related keys. Let us notice that it is determined by the value of
k0
2,7, and ∇k0

2,7 = 0, so that Δk0
1,0 is the same for both related key pairs and

can take 27 values. Each guess of Δk0
1,0 proposes key candidates for byte

k0
2,0, where we have a 8-bit filter for the 4-tuple of related-key bytes. We

thus derive the value of k0
1,0 in all keys and reduce the number of candidate

quartets to 285.5.
3. The same trick holds for the unknown Δk0

1,4, which can get 27 possible values
and can be computed for both key pairs simultaneously. Each of these values
proposes four candidates for k0

1,1, which are filtered with an 8-bit filter. We
thus recover k0

1,1 and Δk0
1,4 and reduce the number of quartets to 279.5.

4. Finally, we notice that Δk0
1,4 is completely determined by k0

1,0, k
0
1,1, k

0
1,2, k

0
1,3,

and k0
2,7. There are at most two candidates for the latter value as well as for

Δk0
1,4, so we get a 6-bit filter and reduce the number of quartets to 272.5.

5. Each quartet also proposes two candidates for each of key bytes k0
0,0, k0

2,2,
and k0

3,3. Totally, the number of key candidates proposed by each quartet
is 26.

The key candidates are proposed for 11 bytes of each of four related keys. How-
ever, these bytes are strongly related so the number of independent key bytes on
which the voting is performed is significantly smaller than 11×4. At least, bytes
k0
0,0, k0

1,1, k0
2,2 and k0

3,3 of KA and KC are independent so we recover 15 key
bytes with 278.5 proposals. The probability that three wrong quartets propose
the same candidates does not exceed 2−80.

We thus estimate the complexity of the filtering step as 277.5 time and memory.
We recover 3 · 7 + 8 · 8 = 85 bits of of KA (and 85 bits of KC) with 299.5 data
and time and 277.5 memory.

The remaining part of the key can be found with many approaches. One is
to relax the condition on one of the active S-boxes in round 3 thus getting four
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more active S-boxes in round 2, which in turn leads to a full-difference state
in round 1. The condition can be actually relaxed only for the first part of the
boomerang (the key pair (KA, KB)) thus giving a better output filter. For each
candidate quartet we use the key bytes, that were recovered at the previous
step, to compute ΔA1 and thus significantly reduce the number of keys that are
proposed by a quartet. We then rank candidates for the first four columns of
K0

A and take the candidate that gets the maximal number of votes. Since we
do not make key guesses, we expect that the complexity of this step is smaller
than the complexity of the previous step (299.5). The right quartet also provide
information about four more bytes in the right half of K0

A that correspond to
the four active S-boxes in round 2. The remaining 8 bytes of KA can be found
by exhaustive search.

6 Attack on AES-192

The key schedule of AES-192 has better diffusion, so it is hard to avoid active S-
boxes in the subkeys. We construct a related-key boomerang attack with two sub-
trails of 6 rounds each. The attack is an amplified-boomerang attack because we
have to deal with truncated differences in both the plaintext and the ciphertext,
the latter would be expensive to handle in a plain boomerang attack.

6.1 The Trail

The trail is depicted in Figure 8, and the actual values are listed in Tables 4
and 5. The key schedule codeword is depicted in Figure 6.

Table 4. Internal state difference in the AES-192 trail

ΔP

? ? 3e ?
1f 1f ? 1f
1f 1f 1f ?
? 21 21 21

ΔA1

1f ? 00 1f
00 00 ? 00
00 00 00 ?
? 00 00 00

ΔA2

00 1f 00 00
00 00 00 00
00 00 00 00
00 00 00 00

ΔA3

00 1f 1f 00
00 00 00 00
00 00 00 00
00 00 00 00

ΔA4

00 00 00 1f
00 00 00 00
00 00 00 00
00 00 00 00

ΔA5

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

ΔA6

00 1f 1f 1f
00 00 00 00
00 00 00 00
00 00 00 00

ΔA7

00 00 00 1f
00 00 00 00
00 00 00 00
00 00 00 00

∇A6

1f 1f 1f 1f
00 00 00 00
00 00 00 00
00 00 00 00

∇A7

00 00 1f 00
00 00 00 00
00 00 00 00
00 00 00 00

∇A8

1f 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

∇A9

1f 1f 00 00
00 00 00 00
00 00 00 00
00 00 00 00

∇A10

00 00 1f 00
00 00 00 00
00 00 00 00
00 00 00 00

∇A11

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

∇A12

? ? ? ?
00 00 00 00
00 00 00 00
00 00 00 00

ΔC

? ? ? ?
1f 1f 1f 1f
1f 1f 1f 1f
? ? ? ?
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Table 5. Key schedule difference in the AES-192 trail

ΔK0

00 3e 3e 3f 3e 01
00 1f 1f 1f 1f 00
00 1f 1f 1f 1f 00
? 21 21 21 21 00

ΔK1

00 3e 00 3f 01 00
00 1f 00 1f 00 00
00 1f 00 1f 00 00
00 21 00 21 00 00

ΔK2

00 3e 3e 01 00 00
00 1f 1f 00 00 00
00 1f 1f 00 00 00
00 21 21 00 00 00

ΔK3

00 3e 00 01 01 01
00 1f 00 00 00 00
00 1f 00 00 00 00
00 21 00 00 00 00

ΔK4

00 3e 3e 3f 3e 3f
00 1f 1f 1f 1f 1f
00 1f 1f 1f 1f 1f
? ? ? ? ? ?

∇K0

? ? ? 3e 3f 3e
? ? ? 1f 1f 1f
? ? ? 1f 1f 1f
? ? ? ? 21 21

∇K1

? ? 3f 01 3e 00
? ? 1f 00 1f 00
? ? 1f 00 1f 00
? ? ? 00 21 00

∇K2

? 3e 01 00 3e 3e
? 1f 00 00 1f 1f
? 1f 00 00 1f 1f
? ? 00 00 21 21

∇K3

3e 00 01 01 3f 01
1f 00 00 00 1f 00
1f 00 00 00 1f 00
? 00 00 00 21 00

∇K4

3e 3e 3f 3e 01 00
1f 1f 1f 1f 00 00
1f 1f 1f 1f 00 00
21 21 21 21 00 00

∇K5

3e 00 3f 01 00 00
1f 00 1f 00 00 00
1f 00 1f 00 00 00
21 00 21 00 00 00

∇K6

3e 3e 01 00 00 00
1f 1f 00 00 00 00
1f 1f 00 00 00 00
21 21 00 00 00 00

∇K7

3e 00 01 01 01 01
1f 00 00 00 00 00
1f 00 00 00 00 00
21 00 00 00 00 00

∇K8

3e 3e 3f 3e 3f 3e
1f 1f 1f 1f 1f 1f
1f 1f 1f 1f 1f 1f
? ? ? ? ? ?

Disturbance

Correction

Key schedule

+

=

E0

Disturbance

Correction

Key schedule

+

=

E1

Fig. 6. AES-192 key schedule codeword

Related Keys. We define the relation between four keys similarly to the attack
on AES-256. Assume we are given a key KA, which the attacker tries to find.
We compute its subkey K1

A and apply the difference ΔK1 to get the subkey K1
B,

from which the key KB is computed. Then we compute the subkeys K4
A and

K4
B and apply the difference ∇K4 to them. We get subkeys K4

C and K4
D, from

which the keys KC and KD are computed.
Now we prove that keys KA, KB, KC , and KD form a quartet, i.e. the subkeys

of KC and KD satisfy the equations K l
C⊕K l

D = ΔK l, l = 1, 2, 3. The only active
S-box is positioned between K3 and K4, whose input is k3

0,5. However, this
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Fig. 7. AES-256 E0 and E1 trails. Green ovals show an overlap between the two trails
where the switch happens.
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S-box gets the same pair of inputs in both key pairs (see the “Feistel switch” in
Sec. 4.2). Indeed, if we compute ∇k3

0,5 from ΔK4, then it is equal to Δk3
0,5 =

0x01. Therefore, if the active S-box gets as input α and α ⊕ 1 in KA and KB,
respectively, then it gets a ⊕ 1 and a in KC and KD, respectively. As a result,
K3

C ⊕ K3
D = ΔK3, the further propagation is linear, so the four keys form

a quartet.
Due to a slow diffusion in the backward direction, we can compute some values

in ∇K l even for small l (Table 5). Hence given kl
i,j for KA we can partly compute

KB, KC and KD, which provides additional filtration in the attack.

Internal State. The plaintext difference is specified in 10 bytes c

c

c

c
cc

c

cc

c , the dif-
ference in the other six bytes not restricted. The three active S-boxes in rounds
2–4 are passed with probability 2−6 each. In round 6 (the switching round) we
ask for the fixed difference only in a6

0,2, the other two S-boxes can output any
difference such that it is the same as in the second related-key pair. Therefore,
the amplified probability of round 6 equals to 2−6−2·3.5 = 2−13. We switch be-
tween the two trails before the key addition in round 6 in all bytes except b6

0,2,
where we switch after the S-box application in round 7 (the Ladder switch). This
trick allows us not to take into account the only active S-box in the lower trail
in round 7. The overall probability of the rounds 3–6 is 2−3·6−13 = 2−31.

The lower trail has 8 active S-boxes in rounds 8–12. Only the first four active
S-boxes are restricted in the output difference, which gives us probability 2−24

for the lower trail. The ciphertext difference is fully specified in the middle two
rows, and has 35 bits of entropy in the other bytes. More precisely, each ∇c0,∗ is
taken from a set of size 27, and all the ∇c3,∗ should be the same on both sides
of the boomerang and again should belong to a set of size 27. Therefore, the
ciphertext difference gives us a 93-bit filter.

6.2 The Attack

We compose 273 structures of type c

c

c

c
cc

c

cc

c with 248 texts each. Then we encrypt
all the texts with the keys KA and KC , and their complements w.r.t. ΔP on
KB and KD. We keep all the data in memory and analyze it with the following
procedure:

1. Compose all candidate plaintext pairs for the key pairs (KA, KB) and
(KC , KD).

2. Compose and store all the candidate quartets of the ciphertexts.
3. For each guess of the subkey bytes: k0

0,3, k0
2,3, and k0

0,5 in KA; k7
0,5 in KA

and KB:
(a) Derive values for these bytes in all the keys from the differential trail.

Derive the yet unknown key differences in ΔK0 and ∇K8.
(b) Filter out candidate quartets that contradict ∇K8.
(c) Prepare counters for the yet unknown subkey bytes that correspond to

active S-boxes in the first two rounds and in the last round: k0
0,0, k0

0,1,
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k0
1,2, k0

3,0 — in keys KA and KC , k8
0,0, k8

0,1, k8
0,2, k8

0,3 — in keys KA and
KB, i.e. 16 bytes in total.

(d) For each candidate quartet derive possible values for these unknown
bytes and increase the counters.

(e) Pick the group of 16 subkey bytes with the maximal number of votes.
(f) Try all possible values of the yet unknown 9 key bytes in K0 and check

whether it is the right key. If not then go to the first step.

Right quartets. Let us first count the number of right quartets in the data.
Evidently, there exist 2128 pairs of internal states with the difference ΔA2.
The inverse application of 1.5 rounds maps these pairs into structures that we
have defined, with 248 pairs per structure. Therefore, each structure has 248

pairs that pass 1.5 rounds, and 273 structures have 2121 pairs. Of these pairs
2(121−31)·2−128 = 252 right quartets can be composed after the switch in the
middle. Of these quartets 252−2·24 = 16 right quartets come out of the last round.

Now we briefly describe the attack. Full details will be published in the ex-
tended version. In steps 1 and 2 we compose 2152 candidate quartets. The guess
of five key bytes gives a 32-bit filter in step 3, so we leave with 2120 candidate
quartets, which are divided according to ∇c3,0 into 214 groups. Then we perform
key ranking in each group and recover 16 more key bytes. The exhaustive search
for the remaining 9 key bytes can be done with the complexity 272. The overall
time complexity is about 2176, and the data complexity is 2123.

7 Conclusions

We presented related-key boomerang attacks on the full AES-192 and the full
AES-256. The differential trails for the attacks are based on the idea of finding
local collisions in the block cipher. We showed that optimal key-schedule trails
should be based on low-weight codewords in the key schedule. We also exploit
various boomerang-switching techniques, which help us to gain free rounds in
the middle of the cipher. However, both our attacks are still mainly of theoretical
interest and do not present a threat to practical applications using AES.
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Abstract. In this paper, we formalize an attack scheme using the key-
dependent property, called key-dependent attack. In this attack, the in-
termediate value, whose distribution is key-dependent, is considered. The
attack determines whether a key is right by conducting statistical hy-
pothesis test of the intermediate value. The time and data complexity of
the key-dependent attack is also discussed.

We also apply key-dependent attack on reduced-round IDEA. This
attack is based on the key-dependent distribution of certain items in
Biryukov-Demirci Equation. The attack on 5.5-round variant of IDEA
requires 221 chosen plaintexts and 2112.1 encryptions. The attack on
6-round variant requires 249 chosen plaintexts and 2112.1 encryptions.
Compared with the previous attacks, the key-dependent attacks on 5.5-
round and 6-round IDEA have the lowest time and data complexity,
respectively.

Keywords: Block Cipher, Key-Dependent Attack, IDEA.

1 Introduction

In current cryptanalysis on block ciphers, widespread attacks use special proba-
bility distributions of certain intermediate values. These probability distributions
are considered as invariant under different keys used. For example, differential
cryptanalysis [7] makes use of the probability of the intermediate differential
with high probability. Its value is assumed not to vary remarkably with different
keys. Linear cryptanalysis [23] is based on the bias of the linear approximation,
which is also generally constant for different keys.

Instead of concentrating on the probability distribution which is invariant for
different keys, Ben-Aroya and Biham first proposed the key-dependent prop-
erty in [2]. Key-dependent property means that the probability distribution of
intermediate value varies for different keys. In [2], an attack on Lucifer using
key-dependent differential was presented. Knudsen and Rijmen also used similar
idea to attack DFC in [20].
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In this paper, we consider the key-dependent property further. The distribu-
tion of intermediate value which is key-dependent is called key-dependent dis-
tribution. Assume that there are some randomly chosen encryptions. For the
intermediate values calculated from these encryptions with the actual key, they
should conform to key-dependent distribution. On the other hand, if we use a
wrong key to calculate the intermediate values, they are assumed to conform
to random distribution. Basing on key-dependent distribution, we formalize a
scheme of discovering the actual key by performing statistical hypothesis test
[17] on possible keys, and we call this scheme key-dependent attack. For a given
key, the null hypothesis of the test is that the intermediate value conforms to the
key-dependent distribution determined by the key. The samples of the test are
the intermediate values calculated from a few encryptions. If the test is passed,
the given key is concluded to be the actual key, otherwise it is discarded. For the
keys that share the same key-dependent distribution and the same intermediate
value calculation, the corresponding hypothesis tests can be merged to reduce
the time needed. By this criterion, the whole key space is divided into several
key-dependent subsets.

Due to the scheme of the key-dependent attack, the time complexity of the
attack is determined by the time for distinguishing between the random dis-
tribution and the key-dependent distribution. The time needed relies on the
entropy of the key-dependent distribution: the closer the key-dependent distri-
bution is to the random distribution, the more encryptions are needed. For each
key-dependent subset, the number of encryptions and the criteria of rejecting
hypothesis can be chosen so that the attack on this subset is optimized. The
expected time of the attack on each subset is also obtained.

The total expected time complexity can be calculated from the expected time
on each key-dependent subset. Different orders of the key-dependent subsets
attacked have different expected time complexities. The order with minimal
expected time complexity is presented. The total expected time complexity is
also minimized in this way if the actual key is supposed to be chosen uniformly
from the whole key space.

This paper also presents a key-dependent attack on block cipher
IDEA. The block cipher IDEA (International Data Encryption Algorithm)
was proposed in [21,22]. The cryptanalysis of IDEA was discussed in
[1,3,4,5,6,8,9,11,12,13,14,15,16,18,19,24,25], and no attack on full version IDEA
is faster than exhaustive search so far. We investigate the Biryukov-Demirci
Equation, which is widely used in recent attacks on IDEA [1,5,6,13,16,18]. We
find that particular items of Biryukov-Demirci Equation satisfy key-dependent
distribution under some specific constraints. This makes it possible to perform
the key-dependent attack on IDEA. Biryukov-Demirci Equation is used to re-
cover the intermediate values from encryptions.

Our key-dependent attack on 5.5-round variant of IDEA requires 221 chosen
plaintexts and has a time complexity of 2112.1 encryptions. Our key-dependent
attack on the 6-round variant of IDEA requires 249 chosen plaintexts and has
a time complexity of 2112.1 encryptions. These attacks use both fewer chosen
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Table 1. Selected Results of attacks on IDEA

Rounds Attack type Data Time Ref.
4.5 Impossible Differential 264 CP 2112 [3]
4.5 Linear 16 CP 2103 [5]
5† Meet-in-the-Middle 224 CP 2126 [13]
5† Meet-in-the-Middle 224.6 CP 2124 [1]
5 Linear 218.5 KP 2103 [6]
5 Linear 219 KP 2103 [5]
5 Linear 16 KP 2114 [6]

5.5 Higher-Order Differential-Linear 232 CP 2126.85 [6]
6 Higher-Order Differential-Linear 264 − 252 KP 2126.8 [6]
5† Key-Dependent 217 CP 2125.5 Section 5.3
5† Key-Dependent 264 KP 2115.3 Section 5.3
5.5 Key-Dependent 221 CP 2112.1 Section 5.1
6 Key-Dependent 249 CP 2112.1 Section 5.2

CP - Chosen Plaintext, KP - Known Plaintext.
† Attack on IDEA starting from the first round.

plaintexts and less time than all the previous corresponding attacks. We also
give two key-dependent attacks on 5-round IDEA starting from the first round.
One requires 217 chosen plaintexts and needs 2125.5 encryptions.The other one
requires 264 known plaintexts and needs 2115.3 encryptions.We summarize our
attacks and previous attacks in Table 1, where the data complexity is measured
in the number of plaintexts and the time complexity is measured in the number
of encryptions needed in the attack.

The paper is organized as follows: In Section 2 we give a general view of the
key-dependent attack. In Section 3 we give a brief description of IDEA block
cipher. In Section 4 we show that the probability distribution of some items of
the Biryukov-Demirci Equation is a key-dependent distribution. In Section 5 we
present two key-dependent attacks on reduced-round IDEA. Section 6 concludes
this paper.

2 The Key-Dependent Attack

In [2], Ben-Aroya and Biham first proposed the key-dependent property and im-
plemented a key-dependent differential attack on Lucifer. Knudsen and Rijmen
also used similar idea to attack DFC in [20].

In this section, we formalize a scheme of identifying the actual key using the
following key-dependent property (with high success probability).

Definition 1. For a block cipher, if the probability distribution of an interme-
diate value varies for different keys under some specific constraints, then this
probability distribution is defined as key-dependent distribution.



22 X. Sun and X. Lai

Consider some randomly chosen encryptions satisfying the specific constraints.
If one uses the actual key to calculate the intermediate value, it should conform
to key-dependent distribution. If one uses a wrong key to calculate the inter-
mediate value, it is assumed to be randomly distributed. With such a property,
determining whether a given key is right can be done by distinguishing which
distribution the intermediate value conforms to, the key-dependent distribution
or the random distribution.

We propose an attack scheme, called key-dependent attack, using key-dependent
distribution. The attack uses statistical hypothesis test, whose idea is also used
in differential and linear attack [17], to distinguish between key-dependent dis-
tribution and random distribution. For a key, the null hypothesis of the test is
that the intermediate value conforms to the key-dependent distribution deter-
mined by the key. Then the attack uses some samples to determine whether the
hypothesis is right. The samples of the statistical hypothesis test are the inter-
mediate values obtained from the encryptions satisfying the specific constraints.
If the key passes the hypothesis test, the attack concludes that the key is right,
otherwise the key is judged to be wrong.

For the keys that share the same key-dependent distribution and the same in-
termediate value calculation, the corresponding hypothesis tests can be merged.
Hence the whole key space is divided into several key-dependent subsets. (Similar
idea is proposed in [2].)

Definition 2. A key-dependent subset is a tuple (P, U), where P is a fixed key-
dependent distribution of intermediate value, and U is a set of keys that share the
same key-dependent distribution P and the same intermediate value calculation.

Definition 3. The key fraction (f) of a key-dependent subset is the ratio be-
tween the size of U and the size of the whole key space.

The key-dependent attack determines which key-dependent subset the actual key
is in by conducting hypothesis tests on each key-dependent subset. Such process
on a key-dependent subset (P, U), called individual attack, can be described as
the following four phases:

1. Parameter Determining Phase Determine the size of the samples and
the criteria of rejecting the hypothesis that the intermediate values conform
to P .

2. Data Collecting Phase Randomly choose some encryptions according to
the specific constraints.1

3. Judgement Phase Calculate the intermediate values from the collected
encryptions. If the results satisfy the criteria of rejection, then discard this
key-dependent subset, otherwise enter the next phase.

4. Exhaustive Search Phase Exhaustively search U to find the whole key. If
the exhaustive search does not find the whole actual key, then start another
individual attack on the next key-dependent subset.

1 Though each individual attack chooses encryptions randomly, one encryption can be
used for many individual attacks thus to reduces the total data complexity.
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The time complexity of the key-dependent attack is determined by the time
complexity of each individual attack and the order of performing these individual
attacks.

For a key-dependent subset (P, U), the time needed for individual attacks re-
lies on the entropy of P : the closer P is to the random distribution, the more diffi-
cult the attack is—to ensure the same probability of making the right judgement,
the attack needs more encryptions. This indicates that individual attacks for
different key-dependent subsets have different time complexities. The time com-
plexity of each individual attack is determined by corresponding key-dependent
distribution P . For each key-dependent subset, the number of encryptions and
the criteria of rejecting hypothesis are then chosen to minimize the time com-
plexity of this individual attack.

To minimize the time complexity of an individual attack, the attack should
consider the probability of committing two types of errors: Type I error and
Type II error. Type I error occurs when the hypothesis is rejected for a key-
dependent subset while in fact the actual key is in U , and the attack will fail to
find the actual key in this case. The probability of Type I error is also defined as
significant level, denoted as α. Type II error occurs when the test is passed while
in fact it is not right, and in this case the attack will come into the exhaustive
search phase, but will not find the actual key. The probability of Type II error is
denoted as β. With a fixed size of samples (denoted as N) and the significance
level α, the criteria of rejecting the hypothesis is determined, and the probability
of Type II error β is also fixed. For a fixed size of samples, it is impossible to
reduce both α and β simultaneously. In order to reduce both α and β, the attack
has to use a larger size of samples, but time and data complexity will increase.
Hence, an individual attack needs to balance between the size of samples, and
the probability of making wrong judgement.

For a key-dependent subset (P, U), if the actual key is not in this subset,
the expected time complexity (measured by the number of encryptions) of the
individual attack on this subset is

W = N + β|U | (1)

If the actual key is in this subset, the expected time of the individual attack on
this subset is

R = N + (1 − α)
|U |
2

Since the time complexity is dominated by attacking on wrong key-dependent
subsets (there is only one key-dependent subset containing the actual key), the
attack only needs to minimize the time complexity of the individual attack for
each wrong key-dependent subset to minimize the total time complexity. Al-
though α does not appear in Equation (1), α affects the success probability of
the attack, so α should also be considered. We set one upper bound of α to
ensure that the success probability is above a fixed value, and then choose such
size of samples that Equation (1) is minimized, in order to minimize the time
complexity of individual attacks.
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In addition, it is entirely possible that some key-dependent distributions is
so close to random distribution that the expected time for performing hypoth-
esis tests is longer than directly searching the subsets. For these key-dependent
subsets, the attack exhaustively searches the subset directly instead of using
statistical hypothesis test method.

On the other hand, the time complexity of the key-dependent attack is also
affected by the order of performing individual attacks on different key-dependent
subsets. Because the expected time complexities of individual attacks are differ-
ent, different sequences of performing individual attacks result in different total
expected time complexity. Assume that a key-dependent attack performs individ-
ual attacks on m key-dependent subsets in the order of (P1, U1), . . . , (Pm, Um).
Let Ri denote the expected time for (Pi, Ui) if the actual key is in Ui, and Wi

denote the expected time if the actual key is not in Ui. We have following result:

Theorem 1. The expected time for the whole key-dependent attack is minimal
if the following condition is satisfied

f1

W1
≥ f2

W2
≥ · · · ≥ fm

Wm

Proof. The expected time of the attack in the order of (P1, U1), . . . , (Pm, Um) is

Φ =f1[R1 + α(W2 + W3 + · · · + Wm)] + f2[W1 + R2 + α(W3 + · · · + Wm))]

+ f3[W1 + W2 + R3 + α(W4 + . . . Wm)] + · · · + fm(W1 + W2 + . . . Wm−1 + Rm)

=
m∑

i=1

fiRi +
m∑

i=1

(fi

i−1∑
j=1

Wj) + α
m∑

i=1

(fi

m∑
j=i+1

Wj)

(2)

If the attack is performed in the order of (Ps1 , Us1), (Ps2 , Us2), . . . , (Psm , Usm),
where s1, s2, . . . , sm is a permutation of 1, 2, . . . , m. The expected time is

Φ′ =
m∑

i=1

fsiRsi +
m∑

i=1

(fsi

i−1∑
j=1

Wsj ) + α

m∑
i=1

(fsi

m∑
j=i+1

Wsj )

fiWj + αfjWi occurs in Φ if and only if j < i and occurs in Φ′ if and only if
j′ < i′ where si′ = i and sj′ = j. Hence

Φ − Φ′ =
∑

j<i and j′>i′
(fiWj + αfjWi − fjWi − αfiWj)

Since α ≤ 1 and fiWj − fjWi ≤ 0 for j < i, Φ − Φ′ ≤ 0 for any permutation
s1, s2, . . . sm. ��

In the following sections of this paper, we present a concrete key-dependent
attack on the block cipher IDEA.
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3 The IDEA Block Cipher

In this section, we give a brief introduction of IDEA and notations used later in
this paper.

IDEA block cipher encrypts a 64-bit plaintext with a 128-bit key by an 8.5-
round encryption. The fifty-two 16-bit subkeys are generated from the 128-
bit key Z by key-schedule algorithm. The subkeys are generated in the order
Z1

1 ,Z1
2 ,...,Z1

6 ,Z2
1 ,...,Z8

6 , Z9
1 ,...,Z9

4 . The key Z is partitioned into eight 16-bit words
which are used as the first eight subkeys. The key Z is then cyclically shifted to
the left by 25 bits, and then generate the following eight subkeys. This process
is repeated until all the subkeys are obtained. In Table 2, the correspondence
between the subkeys and the key Z is directly given.

The block cipher partitions the 64-bit plaintext into four 16-bit words and
uses three different group operations on pairs of 16-bit words: exclusive OR,
denoted by ⊕; modular addition 216, denoted by � and modular multiplication
216 + 1(0 is treated as 216), denoted by .

As Figure 1, each round of IDEA contains three layers: KA layer, MA layer and
Permutation layer.We denote the 64-bit input of round ibyX i = (X i

1, X
i
2, X

i
3, X

i
4).

In the KA layer, the first and the fourth words are modular multiplied with Zi
1 and

Zi
4 respectively. The second and the third words are modular added with Zi

2 and
Zi

3 respectively. The output of the KA layer is denoted by Y i = (Y i
1 , Y i

2 , Y i
3 , Y i

4 ).
In the MA layer, two intermediate values pi = Y i

1 ⊕ Y i
3 and qi = Y i

2 ⊕ Y i
4 are

computed first. These two values are processed to give ui and ti,

ui = (pi  Zi
5) � ti

ti = ((pi  Zi
5) � qi) Zi

6

We denote si the intermediate value pi ⊕ Zi
5 for convenience. The output of the

MA layer is then permutated to give the output of this round (Y i
1 ⊕ ui, Y i

3 ⊕
ui, Y i

2 ⊕ti, Y i
4 ⊕ti), which is also the input of round i+1, denoted by (X i+1

1 , X i+1
2 ,

X i+1
3 , X i+1

4 ). The complete diffusion, which means every bit of (X i+1
1 , X i+1

2 , X i+1
3 ,

X i+1
4 ) is affected by every bit of (Y i

1 , Y i
2 , Y i

3 , Y i
4 ), is obtained in the MA layer.

Table 2. The Key-Schedule of IDEA

Round Zi
1 Zi

2 Zi
3 Zi

4 Zi
5 Zi

6

1 0-15 16-31 32-47 48-63 64-79 80-95
2 96-111 112-127 25-40 41-56 57-72 73-88
3 89-104 105-120 121-8 9-24 50-65 66-81
4 82-97 98-113 114-1 2-17 18-33 34-49
5 75-90 91-106 107-122 123-10 11-26 27-42
6 43-58 59-74 100-115 116-3 4-19 20-35
7 36-51 52-67 68-83 84-99 125-12 13-28
8 29-44 45-60 61-76 77-92 93-108 109-124
9 22-37 38-53 54-69 70-85



26 X. Sun and X. Lai

Xi
1 Xi

2 Xi
3 Xi

4

� � � �
Zi

1 Zi
2 Zi

3 Zi
4

� � � �� �� �

� �

� �

Y i
1 Y i

3Y i
2 Y i

4

⊕

⊕

�

�

�

�

�

�

�

�

pi qi

�

��

�
� �

� �

�

�

�

�

si

Zi
5

Zi
6

ti ui

��

��⊕

⊕

⊕

⊕�

�

� �

�������������

�������������
� �

Xi+1
1 Xi+1

2 Xi+1
3 Xi+1

4

Fig. 1. Round i of IDEA

In this paper, we will use P = (P1, P2, P3, P4) and P ′ = (P ′
1, P

′
2, P

′
3, P

′
4) to de-

note a pair of plaintexts, where Pi and P ′
i are 16-bit words. C = (C1, C2, C3, C4)

and C′ = (C′
1, C

′
2, C

′
3, C

′
4) are their ciphertexts respectively. We also use the sym-

bol ′ to distinguish the intermediate values corresponding to P ′ from to P . For
example, si is obtained from plaintext P and P ′ will generate s′i. The notation
Δ will denote the XOR difference, for instance, Δsi is equal to si ⊕ s′i.

4 The Key-Dependent Distribution of IDEA

In this section, we describe the key-dependent distribution of the block cipher
IDEA, which will be used in our attack later. The notations used are the same
as in [6].

The Biryukov-Demirci relation was first proposed by Biryukov [16] and
Demirci [13]. Many papers have discussed attacking on IDEA using this re-
lation, such as [1,5,6,13,16,18]. The relation can be written in following form
(LSB denotes the least significant bit)
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LSB(C2 ⊕ C3) =LSB(P2 ⊕ P3 ⊕ Z1
2 ⊕ Z1

3 ⊕ s1 ⊕ Z2
2 ⊕ Z2

3 ⊕ s2

⊕ Z3
2 ⊕ Z3

3 ⊕ s3 ⊕ Z4
2 ⊕ Z4

3 ⊕ s4 ⊕ Z5
2 ⊕ Z5

3 ⊕ s5

⊕ Z6
2 ⊕ Z6

3 ⊕ s6 ⊕ Z7
2 ⊕ Z7

3 ⊕ s7 ⊕ Z8
2 ⊕ Z8

3 ⊕ s8

⊕ Z9
2 ⊕ Z9

3 )

(3)

It is shown in [5] that, for two pairs of plaintext and ciphertext (P, C) and
(P ′, C′), XOR their corresponding Biryukov-Demirci relation, we will obtain
from Equation (3)

LSB(C2 ⊕ C3 ⊕ C′
2 ⊕ C′

3) =LSB(P2 ⊕ P3 ⊕ P ′
2 ⊕ P ′

3 ⊕Δs1 ⊕Δs2

⊕Δs3 ⊕Δs4 ⊕Δs5 ⊕Δs6 ⊕Δs7 ⊕Δs8)
(4)

We call Equation (4) Biryukov-Demirci Equation.
The following theorem shows that the probability distribution of LSB(Δsi)

in Biryukov-Demirci Equation is a key-dependent distribution.

Theorem 2. Consider round i of IDEA. If one pair of intermediate value (pi, p′i)
satisfies Δpi = 8000x, then the probability of LSB(Δsi) = LSB(8000x  Zi

5) is

Prob(LSB(Δsi) = LSB(8000x  Zi
5)) =

#W

215 (5)

where W is the set of all such 16-bit words w that 1 ≤ w ≤ 8000x and that

(w ∗ Zi
5) + (8000x ∗ Zi

5) < 216 + 1

where * is defined as

a ∗ b =
{

a  b if a b �= 0
216 if a b = 0

Proof. Consider every intermediate pair (pi, p′i) which satisfies Δpi = 8000x,
excluding (0, 8000x). We have p′i = pi+8000x or pi = p′i+8000x. Without losing
generality, assume p′i = pi+8000x, where 1 ≤ pi < 8000x and 8000x < p′i < 216.

If we consider only the least significant bit, LSB(si) = LSB(pi ∗ Zi
5). The

following equations also hold

LSB(s′i) =LSB(p′i  Zi
5)

=LSB(p′i ∗ Zi
5)

=LSB((pi + 8000x) ∗ Zi
5)

=LSB(((pi ∗ Zi
5) + (8000x ∗ Zi

5)) (mod 216 + 1))

(6)

In the special case when (pi, p′i) is (0, 8000x), let pi = 8000x, and p′i = 0. The
Equations (6) also holds, because p′i = 0 is actually treated as 216 for inputs of
 and ∗.
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Fig. 2. The key-dependent distribution of Prob(LSB(Δs) = 1) on the value of Zi
5

If (pi ∗Zi
5)+ (8000x ∗Zi

5) is smaller than 216 +1, then LSB(s′i) = LSB(si)⊕
LSB(8000x∗Zi

5) holds because of the equivalence of XOR and modular addition
for the least significant bit. Moreover, LSB(Δsi) = LSB(8000x∗Zi

5) is satisfied,
which means LSB(Δsi) = LSB(8000x  Zi

5)
Otherwise, LSB(s′i) is equal to LSB(si) ⊕ LSB(8000x ∗ Zi

5) ⊕ 1 because of
the carry. So LSB(Δsi) equals to LSB(8000x  Zi

5)⊕ 1.
Therefore, we may conclude that LSB(Δsi) = LSB(8000x  Zi

5) if and only
if the pair (pi, p′i) satisfies (w ∗Zi

5)+ (8000x ∗Zi
5) < 216 +1, where w is either pi

or p′i, whichever between 1 and 8000x. And there are at most 215 such w, hence
Equation (6) holds. This completes the proof. ��

Remark 1. Figure 2 plots the relation between the subkey Zi
5 and the proba-

bility of LSB(Δsi) = 1. As shown in Figure 2, for most Zi
5, the probability of

LSB(Δsi) = 1 is different from random distribution. Hence, it is possible to
perform key-dependent attack on IDEA using this key-dependent distribution.

For most Zi
5, there are general four cases for the probability of LSB(Δsi) = 1

as Zi
5 grows from 0 to 216 − 1, which can be roughly approximated as following:

Prob(LSB(Δsi) = 1) ≈

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Zi

5
217 last two bits of Zi

5 = 00

0.5 − Zi
5

217 last two bits of Zi
5 = 01

1.0 − Zi
5

217 last two bits of Zi
5 = 10

0.5 + Zi
5

217 last two bits of Zi
5 = 11

(7)
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From Equation (7), following approximation also holds for most Zi
5

min{Prob(LSB(Δsi) = 0), P rob(LSB(Δsi) = 1)} ≈
{

Zi
5

217 , LSB(Zi
5)=0

0.5 − Zi
5

217 , LSB(Zi
5)=1

(8)
Calculation shows that, for only 219 out of all 216 possible Zi

5, the difference
between the approximation (Equation (7) or (8)) and the accurate provability is
larger than 0.01.

Equation (8) indicates that we can approximate left hand side of Equation (8)
by fixing several most significant bits and the least significant bit. In following
sections, we will show that we only need to distinguish the approximate probabil-
ity distribution from random distribution. Hence, for most Zi

5, this approxima-
tion is close enough to the accurate value. For Zi

5 that can not be approximated
in this way, we use other methods to deal with this situation.

5 The Key-Dependent Attack on IDEA

In this section, we will present two key-dependent attacks on reduced-round
IDEA. In Section 5.1, we will give a basic attack on the 5.5-round variant of
IDEA and then extend it to 6-round variant in Section 5.2. We also give two key-
dependent attacks on 5-round IDEA starting from the first round in Section 5.3.

5.1 The Attack on 5.5-Round Variant of IDEA

We first present one key-dependent attack on the 5.5-round variant of IDEA.
The attack starts from the third round and ends before the MA layer of the
eighth round. The main idea of this attack is to perform key-dependent attack
based on the key-dependent distribution of Δs4 described in Theorem 2.

Consider the 5.5-round variant of IDEA starting from the third round, the
Biryukov-Demirci Equation can be rewritten as

LSB(Δs4) = LSB(P2⊕P3⊕P ′
2⊕P ′

3⊕C2⊕C3⊕C′
2⊕C′

3⊕Δs3⊕Δs5⊕Δs6⊕Δs7)
(9)

Where P and P ′ are equivalent to X3 and X ′3, C and C′ are equivalent to Y 8

and Y ′8 by the variant of IDEA.
We first construct a pair of plaintexts satisfying the specific constraint Δp4 =

8000x. The construction is based on the following lemma.

Lemma 1. For any α, if two 16-bit words x and x′ have the same least 15
significant bits, then

• x ⊕ α and x′ ⊕ α have the same least 15 significant bits,
• x � α and x′ � α have the same least 15 significant bits.

Based on Lemma 1, the following proposition can be obtained.
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Proposition 1. If a pair of intermediate values Y 3 and Y ′3 satisfy the following
conditions:

a. ΔY 3
1 = ΔY 3

3 = 0
b. ΔY 3

2 = 8000x

c. Y 3
2 ⊕ Y 3

4 = Y ′3
2 ⊕ Y ′3

4

then Δs3 = 0 and the probability of LSB(Δs4) = 0 can be determined by
Equation (5).

Proof. From Condition (a), ΔY 3
1 = ΔY 3

3 = 0, p3 is equal to p′3. Then Δs3 = 0
is quite straightforward.

From Condition (c), q3 is equal to q′3. If p3 and q3 are fixed, u3 and t3 are
also fixed with respect to any Z3

5 and Z3
6 . It indicates that X4

1 = Y 3
1 ⊕u3 = X ′4

1 .
Note that Y 4

1 and Y ′4
1 are the results of modular-multiplying X4

1 and X ′4
1 with

the same Z4
1 , hence Y 4

1 is equal to Y ′4
1 .

On the other hand, ΔY 3
2 = 8000x means that the least significant 15 bits of

Y 3
2 are equal to those of Y ′3

2 and the most significant bit of Y 3
2 and that of Y ′3

2 are
different. Because u3 is fixed, by Lemma 1, the least significant 15 bits of X4

3 are
equal to those of X ′4

3 . Then ΔX4
3 is equal to 8000x and ΔY 4

3 = 8000x is obtained
by modular addition with the same Z4

3 . From ΔY 4
1 = 0 and ΔY 4

3 = 8000x, Δp4

is 8000x. By Theorem 2, the conclusion is obtained. ��

In our attack, we use the plaintext pairs satisfying Proposition 1. We obtain
Condition (a) by letting ΔP1 = ΔP3 = 0. By Lemma 2, P2 and P ′

2 are fixed
to have the same least significant 15 bits, and hence ΔY 1

2 = 8000x. In order to
fulfill Condition (c), we have to guess Z3

4 and then according to this guess, to
choose P4 and P ′

4 which satisfy ΔY 3
4 = 8000x.

By Proposition 1, Δs3 is equal to zero. In order to get the right hand side
of Equation (9), we still need to get Δs5, Δs6, Δs7. We need to guess Z5

5 , Z6
1 ,

Z6
2 , Z6

5 , Z6
6 , Z7

1 , Z7
2 , Z7

3 , Z7
4 Z7

5 , Z7
6 , Z8

1 , Z8
2 , Z8

3 , Z8
4 . As shown in [6], one can

partially decrypt one pair of encryptions using these 15 subkeys to calculate the
values of Δs5, Δs6, Δs7. These 15 subkeys only take key bits 125-99 and also
cover the subkey Z3

4 . Hence, for one guessed 103 key bits, we can calculate the
value of Δs4 from a special pair of encryptions.

We also note that these 103 bits also cover the key Z4
5 , which determine the

key-dependent distribution on Δs4 according to Theorem 2. Therefore, we can
perform the key-dependent attack on 5.5-round variant of IDEA. As described
in Section 2, the key space can be divided into 2103 key-dependent subsets by
the 103 key bits, each contains 225 keys.

For a key-dependent subset (P, U), let p denote the probability of LSB(Δs4)=
LSB(8000x  Z4

5 ). For simplicity, in the following analysis, we assume that p ≤
0.5, the case when p > 0.5 is similar. Assume the size of the samples is n pairs of
encryptions that satisfy the specific constraint on this key-dependent subset, and
t of them satisfy LSB(Δs4) = LSB(8000x  Z4

5 ). The criteria for not rejecting
the hypothesis is that t is smaller or equal to a fixed value k. The probability of
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Type I error is

α =
n∑

i=k+1

(
n

i

)
pi(1 − p)n−i

Type II error is

β =
k∑

i=0

(
n

i

)
0.5n

If (P, U) is a wrong key-dependent subset, the expected time complexity of
checking this subset is

W = 2n + 225β (10)

As shown in Section 2, the attack sets α smaller than or equal to 0.01 to ensure
that the probability of the false rejection will not exceed 0.01. Under this pre-
condition, the attack chooses n and β so that α < 0.01 and minimizes Equation
(10) to minimize the time complexity on each key-dependent subset (P, U). By
Section 2, we minimize the total expected time complexity with this method.
Because this choice is related only to the key Z4

5 , so we only need to get n and
k for 216 different values.

For example, for a key-dependent subset (P, U) with Z4
5 = 8001x, p is about

0.666687. The attack checks every possible n and k to find the minimized ex-
pected time complexity of the individual attack for this subset. As shown in
Section 2, the expected time complexity for each subset is upper bounded by ex-
haustive search on the subset, which is 225 in this attack. Hence, the attack only
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Fig. 3. The number of encryptions used and expected time complexity for individual
attacks
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checks all the n and k smaller than 225. The expected time is minimized with
precondition α < 0.01 when n = 425 and k = 164. In this case, α = 0.009970,
β = 0.000001 and W = 899.094678.

Since all the key-dependent subsets have the same key fraction, the order
of performing individual attacks with minimal expected time complexity be-
comes the ascending order of W for all key-dependent subsets due to Theorem 1.
Figure 3 plots the number of encryptions used and expected time complexity for
all the individual attacks.

The total expected time complexity of the attack, described as Equation (2),
becomes

Φ =
m∑

i=1

fiRi +
m∑

i=1

(fi

i−1∑
j=1

Wj) + α

m∑
i=1

(fi

m∑
j=i+1

Wj)

=
1

2103 (
2103∑
i=1

Ri +
2103∑
i=1

i−1∑
j=1

Wj + 0.01
2103∑
i=1

2103∑
j=i+1

Wj)

≤ 1
2103 (

2103∑
i=1

226 +
2103∑
i=1

i−1∑
j=1

Wj + 0.01
2103∑
i=1

2103∑
j=i+1

Wj)

=
1

2103 (2103 · 226 +
2103∑
i=1

(2103 − i + 0.01i)Wi)

≈2112.1

with 99% success probability if the attack chooses n and β for each key-dependent
set and determines the order of performing individual attacks as shown above.
The number of pairs needed in one test is about 219 in the worst case. The attack
uses a set of 221 plaintexts, which can provide 220 plaintext pairs satisfying the
conditions in Proposition 1 for each key-dependent subset.

The attack is summarized as follows:

1. For every possible Z4
5 , calculate the corresponding number of plaintext pairs

needed n and the criteria of not rejecting the hypothesis k.
2. Suppose S is an empty set. Randomly enumerate a 16-bit word s, insert s

and s ⊕ 8000x into the set S. Repeat this enumeration until set S contains
25 different words. Ask for the encryption of all the plaintexts of the form
(A, B, C, D), where A and C are fixed to two arbitrary constants, B takes
all the values in S and D takes all the 16-bit possible values.

3. Enumerate the key-dependent sets in ascending order of W :
(a) Randomly choose a set of plaintext pairs with cardinality n from the

known encryptions. The plaintext pairs must satisfy the requirements of
Proposition 1.

(b) Partially decrypt all the selected encryption pairs and count the occur-
rence of LSB(Δs4) = 1.

(c) Test the hypothesis. If the hypothesis is not rejected, perform exhaustive
search for the remaining 25 key bits.
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5.2 The Attack on 6-Round Variant of IDEA

We now extend the 5.5-round attack to an attack on the 6-round variant of
IDEA starting before the MA layer of the second round. The data complexity
of the attack is 249 and the time complexity is 2112.1.

As shown in [6], Z2
5 and Z2

6 are included in the 103 key bits in the 5.5-
round attack. Hence, we can add this half round to the 5.5-round attack without
enlarging the time complexity.

It is more difficult to construct right plaintext pairs satisfying Proposition 1.
Consider a pair of intermediate values X3 and X ′3 before the third round, which
satisfy Proposition 1. If we partially decrypt X3 and X ′3 using any possible Z2

5
and Z2

6 , the only fact we know is that all the results have the same XOR of
the first and third words. The attack hence selects all the plaintexts P where
the least 15 significant bits of P1 ⊕ P3 are fixed to an arbitrary 15-bit constant.
The total number of selected plaintexts is 249. It is possible to provide 248 plain-
text pairs satisfying the conditions in Proposition 1 in the test for any Z2

5 , Z2
6

and Z3
4 . This number is sufficient in any situation.

5.3 Two Key-Dependent Attacks on 5-Round IDEA Starting from
the First Round

We apply the key-dependent attack to the 5-round IDEA starting from the first
round. Biryukov-Demirci Equation is reduced to

LSB(Δs2) = LSB(P2 ⊕ P3 ⊕ P ′
2 ⊕ P ′

3 ⊕ C2

⊕C3 ⊕ C′
2 ⊕ C′

3 ⊕Δs1 ⊕Δs3 ⊕Δs4 ⊕Δs5)
(11)

We choose the plaintext pairs to satisfy Proposition 1 before the first round
by guessing Z1

4 , and then Δs1 is equal to 0 as shown in Section 5.1. In order
to determine the right hand side of Equation (11), we need to know Z3

5 , Z4
1 ,

Z4
2 , Z4

5 , Z4
6 , Z5

1 , Z5
2 , Z5

3 , Z5
4 , Z5

5 , Z5
6 . These 12 subkeys take the bits 75-65

from key Z. These 119 bits only cover the most significant nine bits of Z2
5 , which

determines the probability distribution of LSB(Δs2). It is not necessary to guess
the complete subkey Z2

5 . The attack continues to guess the least significant
bit of Z2

5 (the 72nd bit of Z), and estimates the probability of LSB(Δs2) = 1
by Remark 1 instead. Hence, the attack divides the key space into 2120 key-
dependent subsets by the 120 key bits, and performs the individual attacks on
each key-dependent subset. The attack uses statistical hypothesis test method
to determine which subset the actual key is in. For the subkeys Z2

5 of which
Prob(LSB(Δs2) = 1) can not be approximated by Remark 1 as shown in Section
4, the attack exhaustively searches the remaining key bits.

In this attack, it is possible that the expected time of individual attacks
are larger than exhaustively search directly for some key-dependent subsets,
which means

2n + β · 28 ≥ 28

Under this condition, the attack also uses exhaustive key search to determine the
remaining eight keybits to make sure the time needed not exceed exhaustive search.
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This attack also choose α ≤ 0.01 to ensure that the attack successes with 99%
probability. In this case, the total expected time complexity is 2125.5 encryptions.

Our experiment shows that the attack needs at most 75 pairs of encryptions for
one test. We ask for 217 encryptions which can provide 216 pairs of encryptions,
which is sufficient for the test. This data complexity(217) is the least out of all
the known attacks on the 5-round IDEA starting from the first round.

In the second attack, we try to obtain the plaintext pairs satisfying Proposition
1 before the second round. In order to determine LSB(Δs3), we need to know
the least significant bits of Δs1, Δs2, Δs4 and Δs5. Hence, the subkeys we need
to know are Z1

1 , Z1
2 , Z1

3 , Z1
4 , Z1

5 , Z1
6 , Z2

4 , Z3
5 . Z4

5 , Z5
1 , Z5

2 , Z5
5 and Z5

6 . These 13
subkeys only cover 107 bits of key Z(0-106). For every guessed 107 key bits, we
use similar technique as before. The expected time complexity is 2115.3, which
is the least time complexity out of all the known attacks on the 5-round IDEA
starting from the first round.

Because it is not possible to predict the plaintext pairs which produces the
intermediate pairs satisfying Proposition 1 before the second round, the encryp-
tions of all the 264 plaintexts are required.

6 Conclusions

In this paper, we formalized a scheme of identifying the actual key using the
key-dependent distribution, called key-dependent attack. How to minimize the
time complexity of the key-dependent attack was also discussed. With the key-
dependent attack, we could improve known cryptanalysis results and obtain
more powerful attacks. We presented two key-dependent attacks on IDEA. Our
attack on 5.5-round and 6-round variant of IDEA has the least time and data
complexities compared with the previous attacks.

We only implemented a tentative exploration of the key-dependent distribution.
How to make full use of the key-dependent distribution, especially how to use the
key-dependent distribution to improve existing attacks, is worth further studying.

The attack on IDEA makes use of the relation between XOR, modular ad-
dition and modular multiplication. We believe that the operation XOR and
modular multiplication have more properties that can be explored further [10].
Similar relations among other operations are also valuable to research. The way
of making full use of the Biryukov-Demirci Equation to improve attacks on IDEA
is also interesting.
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1. Ayaz, E.S., Selçuk, A.A.: Improved DST Cryptanalysis of IDEA. In: Biham, E.,
Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 1–14. Springer, Heidelberg
(2007)

2. Ben-Aroya, I., Biham, E.: Differential Cryptanalysis of Lucifer. J. Cryptology 9(1),
21–34 (1996)



The Key-Dependent Attack on Block Ciphers 35

3. Biham, E., Biryukov, A., Shamir, A.: Miss in the Middle Attacks on IDEA and
Khufu. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 124–138. Springer,
Heidelberg (1999)

4. Biham, E., Dunkelman, O., Keller, N.: Related-Key Boomerang and Rectangle
Attacks. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 507–525.
Springer, Heidelberg (2005)

5. Biham, E., Dunkelman, O., Keller, N.: New Cryptanalytic Results on IDEA.
In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 412–427.
Springer, Heidelberg (2006)

6. Biham, E., Dunkelman, O., Keller, N.: A New Attack on 6-Round IDEA. In:
Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 211–224. Springer, Heidelberg
(2007)

7. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. In:
Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21.
Springer, Heidelberg (1991)

8. Biryukov, A., Nakahara Jr., J., Preneel, B., Vandewalle, J.: New Weak-Key Classes
of IDEA. In: Deng, R.H., Qing, S., Bao, F., Zhou, J. (eds.) ICICS 2002. LNCS,
vol. 2513, pp. 315–326. Springer, Heidelberg (2002)

9. Borst, J., Knudsen, L.R., Rijmen, V.: Two Attacks on Reduced IDEA. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 1–13. Springer, Heidelberg
(1997)

10. Contini, S., Rivest, R.L., Robshaw, M.J.B., Yin, Y.L.: Improved Analysis of Some
Simplified Variants of RC6. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636,
pp. 1–15. Springer, Heidelberg (1999)

11. Daemen, J., Govaerts, R., Vandewalle, J.: Weak keys for IDEA. In: Stinson, D.R.
(ed.) CRYPTO 1993. LNCS, vol. 773, pp. 224–231. Springer, Heidelberg (1994)

12. Demirci, H.: Square-like Attacks on Reduced Rounds of IDEA. In: Nyberg, K.,
Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 147–159. Springer, Heidelberg
(2003)

13. Demirci, H., Selçuk, A.A., Türe, E.: A New Meet-in-the-Middle Attack on the
IDEA Block Cipher. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS,
vol. 3006, pp. 117–129. Springer, Heidelberg (2004)

14. Hawkes, P.: Differential-Linear Weak Key Classes of IDEA. In: Nyberg, K. (ed.)
EUROCRYPT 1998. LNCS, vol. 1403, pp. 112–126. Springer, Heidelberg (1998)

15. Hawkes, P., O’Connor, L.: On Applying Linear Cryptanalysis to IDEA. In: Kim,
K.-c., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 105–115.
Springer, Heidelberg (1996)

16. Nakahara Jr., J., Preneel, B., Vandewalle, J.: The Biryukov-Demirci Attack on
Reduced-Round Versions of IDEA and MESH Ciphers. In: Wang, H., Pieprzyk,
J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 98–109. Springer,
Heidelberg (2004)

17. Junod, P.: On the Optimality of Linear, Differential, and Sequential Distinguishers.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 17–32. Springer,
Heidelberg (2003)

18. Junod, P.: New Attacks Against Reduced-Round Versions of IDEA. In: Gilbert, H.,
Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 384–397. Springer, Heidelberg
(2005)

19. Kelsey, J., Schneier, B., Wagner, D.: Key-Schedule Cryptoanalysis of IDEA, G-
DES, GOST, SAFER, and Triple-DES. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS,
vol. 1109, pp. 237–251. Springer, Heidelberg (1996)



36 X. Sun and X. Lai

20. Knudsen, L.R., Rijmen, V.: On the Decorrelated Fast Cipher (DFC) and Its Theory.
In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 81–94. Springer, Heidelberg
(1999)

21. Lai, X.: On the Design and Security of Block Ciphers. ETH Series in Information
Processing. Harturg-Gorre Verlag, Konstanz (1992)

22. Lai, X., Massey, J.L.: A Proposal for a New Block Encryption Standard. In:
Damg̊ard, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 389–404. Springer,
Heidelberg (1991)

23. Matsui, M.: Linear Cryptoanalysis Method for DES Cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

24. Meier, W.: On the Security of the IDEA Block Cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 371–385. Springer, Heidelberg (1994)

25. Raddum, H.: Cryptanalysis of IDEA-X/2. In: Johansson, T. (ed.) FSE 2003. LNCS,
vol. 2887, pp. 1–8. Springer, Heidelberg (2003)



Cascade Encryption Revisited
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Abstract. The security of cascade blockcipher encryption is an impor-
tant and well-studied problem in theoretical cryptography with practical
implications. It is well-known that double encryption improves the secu-
rity only marginally, leaving triple encryption as the shortest reasonable
cascade. In a recent paper, Bellare and Rogaway showed that in the
ideal cipher model, triple encryption is significantly more secure than
single and double encryption, stating the security of longer cascades as
an open question.

In this paper, we propose a new lemma on the indistinguishability of
systems extending Maurer’s theory of random systems. In addition to
being of independent interest, it allows us to compactly rephrase Bellare
and Rogaway’s proof strategy in this framework, thus making the argu-
ment more abstract and hence easy to follow. As a result, this allows
us to address the security of longer cascades. Our result implies that
for blockciphers with smaller key space than message space (e.g. DES),
longer cascades improve the security of the encryption up to a certain
limit. This partially answers the open question mentioned above.

Keywords: cascade encryption, ideal cipher model, random system,
indistinguishability.

1 Introduction

The cascade encryption is a simple and practical construction used to enlarge the
key space of a blockcipher without the need to switch to a new algorithm. Instead
of applying the blockcipher only once, it is applied l times with l independently
chosen keys. A prominent and widely used example of this construction is the
Triple DES encryption [2,13,14].

Many results investigating the power of the cascade construction have been
published. It is well-known that double encryption does not significantly improve
the security over single encryption due to the meet-in-the-middle attack [7]. The
marginal security gain achieved by double encryption was described in [1]. Even
and Goldreich [8] show that a cascade of ciphers is at least as strong as the
strongest of the ciphers against attacks that are restricted to operating on full
blocks. In contrast, Maurer and Massey [11] show that for the most general
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attack model, where it is for example possible that an attacker might obtain
only half the ciphertext block for a chosen message block, the cascade is only at
least as strong as the first cipher of the cascade.

In a recent paper [4], Bellare and Rogaway have claimed a lower bound on the
security of triple encryption in the ideal cipher model. Their bound implies that
for a blockcipher with key length k and block length n, triple encryption is indis-
tinguishable from a random permutation as long as the distinguisher is allowed
to make not more than roughly 2k+ 1

2 min{n,k} queries. This bound is significantly
higher than the known upper bound on the security of single and double encryp-
tion, proving that triple encryption is the shortest cascade that provides a rea-
sonable security improvement over single encryption. Since a longer cascade is at
least as secure as a shorter one, their bound applies also to longer cascades. They
formulate as an interesting open problem to determine whether the security im-
proves with the length of the cascade also for lengths l > 3. However, the proof in
[4] contains a few bugs, which we describe in the appendix of this paper. The first
part of our contribution is to fix these errors and to reestablish the lower bound
on the security of triple encryption up to a constant factor.

Second, we have rephrased the proof into the random systems framework in-
troduced in [10]. Our goal here is to simplify the proof and express it on the most
abstract level possible, thus making the main line of reasoning easy to follow and
clearly separated from the two technical arguments required. To achieve this, we
extend the random systems framework by a new lemma. This lemma is a general-
ization of both Lemma 7 from [10] and hence also of its special case for the game-
playing scenario, the Fundamental lemma of game-playing. This was introduced
in [4] and subsequently used as an important tool in the game-playing proofs (see
for example [15,3,5]). We illustrate the use of this new lemma in our proof of the
security of cascade encryption. Apart from the simplification, this also gives us
an improvement of the result by a constant factor.

Finally, our reformulation makes it natural to consider also the security of
longer cascades. The lower bound we prove improves with the length of the cas-
cade l for all blockciphers where k < n and for moderate values of l. With increas-
ing cascade length, the bound approaches very roughly the value 2k+min{n/2,k}

(the exact formula can be found in Theorem 1). The condition k < n is satisfied
for example for the DES blockcipher, where the length of the key is 56 bits and
the length of one block is 64 bits. For these parameters, the result from [4] that
we reestablish proves that the triple encryption is secure up to 278 queries, but
our result shows that a cascade of length 5 is secure up to 283 queries. The larger
the difference n− k, the more a longer cascade can help. This partially answers
the open question from [4].

2 Preliminaries

2.1 Basic Notation

Throughout the paper, we denote sets by calligraphic letters (e.g. S). For a fi-
nite set S, we denote by |S| the number of its elements. A k-tuple is denoted as
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uk = (u1, . . . , uk), and the set of all k-tuples of elements of U is denoted as Uk.
The composition of mappings is interpreted from left to right, i.e., f ◦ g denotes
the mapping g(f(·)). The set of all permutations of {0, 1}n is denoted by Perm(n)
and id represents the identity mapping, if the domain is implicitly given. The no-
tation xn represents the falling factorial power, i.e., xn = x(x−1) · · · (x−n+1).
The symbol pcoll(n, k) denotes the probability that k independent random vari-
ables with uniform distribution over a set of size n contain a collision, i.e., that
they are not all distinct. It is well-known that pcoll(n, k) < k2/2n. By CS(·)
we shall denote the set of all cyclic shifts of a given tuple, in other words,
CS(π1, π2, . . . , πr)= {(π1, π2, . . . , πr), (π2, π3, . . . , πr, π1), . . . , (πr, π1, . . . , πr−1)}.

We usually denote random variables and concrete values they can take on by
capital and small letters, respectively. For events A and B and random variables
U and V with ranges U and V , respectively, we denote by PUA|V B the corre-
sponding conditional probability distribution, seen as a function U ×V → 〈0, 1〉.
Here the value PUA|V B(u, v) is well-defined for all u ∈ U and v ∈ V such that
PV B(v) > 0 and undefined otherwise. Two probability distributions PU and
PU ′ on the same set U are equal, denoted PU = PU ′ , if PU (u) = PU ′(u) for
all u ∈ U . Conditional probability distributions are equal if the equality holds
for all arguments for which both of them are defined. To emphasize the ran-
dom experiment E in consideration, we sometimes write it in the superscript,
e.g. PE

U|V (u, v). The expected value of the random variable X is denoted by
E[X ] =

∑
x∈X (x · P[X = x]). The complement of an event A is denoted by A.

2.2 Random Systems

In this subsection, we present the basic notions of the random systems frame-
work, as introduced in [10], along with some new extensions of the framework.
The input-output behavior of any discrete system can be described by a random
system in the spirit of the following definition.

Definition 1. An (X ,Y)-random system F is a (generally infinite) sequence of
conditional probability distributions PF

Yi|XiY i−1 for all i ≥ 1.

The behavior of the random system is specified by the sequence of conditional
probabilities PF

Yi|XiY i−1(yi, x
i, yi−1) (for i ≥ 1) of obtaining the output yi ∈ Y

on query xi ∈ X given the previous i − 1 queries xi−1 = (x1, . . . , xi−1) ∈ X i−1

and their corresponding outputs yi−1 = (y1, . . . , yi−1) ∈ Yi−1. A random system
can also be defined by a sequence of conditional probability distributions PF

Y i|Xi

for i ≥ 1. This description is often convenient, but is not minimal.
We shall use boldface letters (e.g. F) to denote both a discrete system and

a random system corresponding to it. This should cause no confusion. We em-
phasize that although the results of this paper are stated for random systems,
they hold for arbitrary systems, since the only property of a system that is rel-
evant here is its input-output behavior. It is reasonable to consider two discrete
systems equivalent if their input-output behaviors are the same, even if their
internal structure differs.
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Definition 2. Two systems F and G are equivalent, denoted F ≡ G, if they
correspond to the same random system, i.e., if PF

Yi|XiY i−1 = PG
Yi|XiY i−1 for

all i ≥ 1.

We shall usually define a system (and hence also the corresponding random sys-
tem) by a description of its internal working, as long as the transition to the
probability distributions is straightforward. Examples of random systems that
we consider in the following are the uniform random permutation P : {0, 1}n →
{0, 1}n, which realizes a function randomly chosen from Perm(n); and the ideal
blockcipher E : {0, 1}k × {0, 1}n → {0, 1}n, which realizes an independent uni-
formly random permutation for each key K ∈ {0, 1}k. In this paper we assume
that both P and E can be queried in both directions.

We can define a distinguisher D for an (X ,Y)-random system as a (Y,X )-
random system which is one query ahead, i.e., it is defined by the conditional
probability distributions PD

Xi|Xi−1Y i−1 for all i ≥ 1. In particular, the first query
of D is determined by PD

X1
. After a certain number of queries (say q), the distin-

guisher outputs a bit Wq depending on the transcript (Xq, Y q). For a random
system F and a distinguisher D, let DF be the random experiment where D
interacts with F. Then for two (X ,Y)-random systems F and G, the distinguish-
ing advantage of D in distinguishing systems F and G by q queries is defined as
ΔD

q (F,G) =
∣∣PDF(Wq = 1)− PDG(Wq = 1)

∣∣. We are usually interested in the
maximal distinguishing advantage over all such distinguishers, which we denote
by Δq(F,G) = maxD ΔD

q (F,G).
For a random system F, we often consider an internal monotone condition

defined on it. Such a condition is initially satisfied (true), but once it gets vi-
olated, it cannot become true again. We characterize such a condition by a se-
quence of events A = A0, A1, . . . such that A0 always holds, and Ai holds if the
condition holds after query i. The probability that a distinguisher D issuing q
queries makes a monotone condition A fail in the random experiment DF is
denoted by νD(F, Aq) = PDF(Aq) and we are again interested in the maximum
over all distinguishers, denoted by ν(F, Aq) = maxD νD(F, Aq). For a random
system F with a monotone condition A = A0, A1, . . . and a random system
G, we say that F conditioned on A is equivalent to G, denoted F|A ≡ G, if
PF

Yi|XiY i−1Ai
= PG

Yi|XiY i−1 for i ≥ 1, for all arguments for which PF
Yi|XiY i−1Ai

is
defined. The following claim was proved in [10].

Lemma 1. If F|A ≡ G then Δq(F,G) ≤ ν(F, Aq).

Let F be a random system with a monotone condition A. Following [12], we
define F blocked by A to be a new random system that behaves exactly like F
while the condition A is satisfied. Once A is violated, it only outputs a special
blocking symbol ⊥ not contained in the output alphabet of F. More formally,
the following mapping is applied to the ith output of F:

yi �→
{

yi if Ai holds
⊥ otherwise.
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The following new lemma relates the optimal advantage in distinguishing two
random systems to the optimal advantage in distinguishing their blocked
counterparts.

Lemma 2. Let F and G be two random systems with monotone conditions A
and B defined on them, respectively. Let F⊥ denote the random system F blocked
by A and let G⊥ denote G blocked by B. Then for every distinguisher D we have
ΔD

q (F,G) ≤ Δq(F⊥,G⊥) + νD(F, Aq).

Proof. Let D be an arbitrary distinguisher for F and G. Let D′ be a distinguisher
that works as follows: it simulates D, but whenever it receives an answer ⊥ to its
query, it aborts and outputs 1. Then we have PDG[Wq = 1] ≤ PD′G⊥

[Wq = 1]
and PD′F⊥

[Wq = 1] ≤ PDF[Wq = 1] + νD(F, Aq).
First, let us assume that PDG[Wq = 1] ≥ PDF[Wq = 1]. Then, using the

definition of advantage and the above inequalities, we get

ΔD
q (F,G) =

∣∣PDG[Wq = 1]− PDF[Wq = 1]
∣∣

= PDG[Wq = 1]− PDF[Wq = 1]

≤ PD′G⊥
[Wq = 1]− (PD′F⊥

[Wq = 1]− νD(F, Aq))
≤ Δq(F⊥,G⊥) + νD(F, Aq),

which proves the lemma in this case. On the other hand, if PDG[Wq = 1] <
PDF[Wq = 1], we can easily construct another distinguisher D∗ with the same
behavior as D and the opposite final answer bit. Then we can proceed with
the argument as before and since ΔD

q (F,G) = ΔD∗
q (F,G) and νD(F, Aq) =

νD∗
(F, Aq), the conclusion is valid also for the distinguisher D. ��

Lemma 2 is a generalization of both Lemma 7 from [10] and of its special case,
the Fundamental lemma of game-playing from [4]. Both these lemmas describe
the special case when Δq(F⊥,G⊥) = 0, i.e., when the distinguished systems
behave identically until some conditions are violated. Our lemma is useful in
the situations where the systems are not identical even while the conditions are
satisfied, but their behavior is very similar. A good example of such a situation
is presented in the proof of Theorem 1.

A random system F can be used as a component of a larger system: in par-
ticular, we shall consider constructions C(·) such that the resulting random
system C(F) invokes F as a subsystem. We state the following two observations
about the composition of systems.

Lemma 3. Let C(·) and C′(·) be two constructions invoking an internal random
system, and let F and G be random systems. Then

(i) Δq(C(F),C(G)) ≤ Δq′(F,G), where q′ is the maximum number of invo-
cations of any internal system H for any sequence of q queries to C(H),
if such a value is defined.

(ii) There exists a fixed permutation S ∈ Perm(n) (represented by a determin-
istic stateless system) such that Δq(C(P),C′(P)) ≤ Δq(C(S),C′(S)).
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Proof. The first claim comes from [10], so here we only prove the second one.
Since the random system P can be seen as a system that picks a permutation
uniformly at random from Perm(n) and then realizes this permutation, we have:

Δq(C(P),C′(P)) ≤ 1
(2n)!

∑
S∈Perm(n)

Δq(C(S),C′(S)).

If all the values Δq(C(S),C′(S)) were smaller than Δq(C(P),C′(P)) it would
contradict the inequality above, hence there exists a permutation S ∈ Perm(n)
such that Δq(C(P),C′(P)) ≤ Δq(C(S),C′(S)). ��

2.3 Ideal Blockciphers and Chains

We introduce some specific notions related to the cascade encryption setting.
Our terminology follows and extends that in [4].

A blockcipher with keyspace {0, 1}k and message space {0, 1}n is a mapping
E : {0, 1}k × {0, 1}n → {0, 1}n such that for each K ∈ {0, 1}k, E(K, ·) is a
permutation on the set {0, 1}n. Typically EK(x) is written instead of E(K, x)
and E−1

K (·) refers to the inverse of the permutation EK(·).
Throughout the paper, we shall work in the ideal blockcipher model, which was

recently shown to be equivalent to the random oracle model [6]. The ideal block-
cipher model is widely used to analyze blockcipher constructions (e.g. [1,4,9])
and consists of the assumption that for each key, the blockcipher realizes an
independent random permutation.

A blockcipher can be seen as a directed graph consisting of 2n vertices repre-
senting the message space and 2n+k edges. Each vertex x has 2k outgoing edges
pointing to the encryptions of the message x using all possible keys. Each of the
edges is labeled by the respective key. For a fixed blockcipher E, we denote by1

w(E) = max
x,y

|{K | EK(x) = y}|

the maximal number of distinct keys mapping the plaintext x onto the ciphertext
y, the maximum taken over all pairs of blocks (x, y). Intuitively, w(E) is the
weight of the heaviest edge in the graph corresponding to E. This also naturally
defines a random variable w(E) for the random system E realizing the ideal
blockcipher.

If a distinguisher makes queries to a blockcipher E, let x
K→ y denote the fact

that it either made a query EK(x) and received the encryption y or made a query
E−1

K (y) and received the decryption x. An r-chain for keys (K1, . . . , Kr) is an

(r + 1)-tuple (x0, K1, . . . , Kr) for which there exist x1, . . . , xr such that x0
K1→

x1
K2→ · · · Kr→ xr holds. Similarly, if a fixed permutation S is given and 1 ≤ i < r,

then an i-disconnected r-chain for keys (K1, . . . , Kr) with respect to S is an (r+1)-
tuple (x0, K1, . . . , Kr) for which there exist x1, . . . , xr such that we have both

1 w(E) was denoted as KeysE in [4].
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x0
Kr−i+1→ x1

Kr−i+2→ · · · Kr→ xi and S−1(xi)
K1→ xi+1

K2→ · · · Kr−i→ xr. When de-
scribing chains, we sometimes explicitly refer to the permutations instead of the
keys that define them. For disconnected chains, we sometimes omit the reference
to the permutation S if it is clear from the context. The purpose of the following
definition will be clear from the proof of Theorem 1.

Definition 3. Let S be a fixed permutation. A distinguisher examines the key
tuple (K1, K2, . . . , Kr) w.r.t. S if it creates either an r-chain or an i-disconnected
r-chain w.r.t. S for (K1, K2, . . . , Kr) for any i ∈ {1, . . . , r − 1}.

3 The Security of Cascade Encryption

In this section we reestablish the lower bound on the security of triple encryption
from [4] in a more general setting. Our goal here is to simplify the proof and
make it more comprehensible thanks to the level of abstraction provided by the
random systems framework. Using Lemma 2 we also gain an improvement by
a constant factor of 2 (cf. equation (10) in [4]). However, in order to fix the
problem of the proof in [4], a new factor l appears in the security bound.

Although Theorem 1 only explicitly states the security of cascades with odd
length, we point out that a simple reduction argument proves that longer cas-
cades cannot be less secure than shorter ones, except for a negligible term l/2k.
Therefore, our result also implicitly proves any even cascade to be at least as
secure as a one step shorter odd-length cascade.

We also point out that our bound is only useful for cascades of reasonable
length, for extremely long cascades (e.g. l ≈ 2k/2) it becomes trivial.

3.1 Proof of the Main Result

Since this subsection aims to address the overall structure of the proof, we shall
use two technical lemmas without proof (Lemmas 4 and 5). These lemmas cor-
respond to Lemmas 7 and 9 from [4], which they improve and generalize. We
shall prove them in later subsections.

Let l ≥ 3 be an odd integer. Let C1(·, ·) denote a construction which expects
two subsystems: a blockcipher E and a permutation P . It chooses in advance l
uniformly distinct keys K1, . . . , Kl. These are not used by the system, their pur-
pose is to make C1(·, ·) comparable to the other constructions. C1(·, ·) provides
an interface to make forward and backward queries both to the blockcipher E
and to the permutation P .

On the other hand, let C2(·) denote a construction which expects a blockci-
pher E as the only subsystem. It chooses in advance l uniformly random keys
K1, . . . , Kl. It provides an interface to make forward and backward queries both
to the blockcipher E and to a permutation P , which it realizes as EK1 ◦· · ·◦EKl

.
To achieve this, C2(·) queries its subsystem for all necessary values. Let Cd

2(·)
be the same construction as C2(·) except that it chooses the keys K1, . . . , Kl to
be uniformly distinct.
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Finally, let C3(·, ·) denote a construction which again expects two subsys-
tems: a blockcipher E and a permutation P . It chooses in advance l uniformly
distinct keys K1, . . . , Kl. It provides an interface to make forward and back-
ward queries both to the blockcipher E and to the permutation P . However,
answers to the blockcipher queries involving the key Kl are modified to satisfy
the equation EK1 ◦ · · · ◦ EKl

= P . More precisely, forward queries are real-
ized as EKl

(x) = P (E−1
K1

(· · ·E−1
Kl−1

(x) · · · )) and backward queries are realized as
E−1

Kl
(y) = EKl−1(EKl−2(· · ·EK1(P−1(y)) · · · )). To achieve this, C3(·, ·) queries

its subsystems for all necessary values.
Recall that P and E denote the uniform random permutation and the ideal

blockcipher, respectively. The following theorem bounds Δq(C1(E,P),C2(E)),
the advantage in distinguishing cascade encryption of length l from a random
permutation, given access to the underlying blockcipher.

Theorem 1. For the constructions C1(·, ·), C2(·) and random systems E, P
defined as above we have

Δq(C1(E,P),C2(E)) ≤ 2lα�l/2� q	l/2


(2k)l
+ 1.9
(

lq

2k+n/2

)2/3

+
l2

2k+1 ,

where α = max{2e2k−n, 2n + k�l/2�}.

Proof. First, it is easy to see that Δq(C2(E),Cd
2(E)) ≤ pcoll(2k, l) < l2/2k+1

and hence we have Δq(C1(E,P),C2(E)) ≤ Δq(C1(E,P),Cd
2(E)) + l2/2k+1.

However, note that Cd
2(E) ≡ C3(E,P); this is because in both systems the

permutations EK1 , . . . , EKl
, P are chosen randomly with the only restriction

that EK1 ◦ · · · ◦EKl
= P is satisfied. Now we can use Lemma 3 to substitute the

random permutation P in both C1(E,P) and C3(E,P) for a fixed one. Let S
denote the permutation guaranteed by Lemma 3. Then we have

Δq(C1(E,P),Cd
2(E)) = Δq(C1(E,P),C3(E,P)) ≤ Δq(C1(E, S),C3(E, S)).

Since the permutation S is fixed, it makes now no sense for the distinguisher to
query this permutation; it can have the permutation S hardwired.

From now on, we shall denote all queries to a blockcipher that involve one of
the keys K1, K2, . . . , Kl as relevant queries. Let us now consider a monotone
condition Ah (h ∈ N is a parameter) defined on the random system C1(E, S).
The condition Ah

q is satisfied if the keys (K1, K2, . . . , Kl) were not examined
w.r.t. S (in the sense of Definition 3) by the first q queries and at most h of these q
queries were relevant. Let Bh be an analogous condition defined on C3(E, S): Bh

q

is satisfied if the first q queries did not form a chain for the tuple (K1, K2, . . . , Kl)
and at most h of these queries were relevant. Let G and H denote the random
systems C1(E, S) and C3(E, S) blocked by Ah and Bh, respectively. Then by
Lemma 2,

Δq(C1(E, S),C3(E, S)) ≤ Δq(G,H) + ν(C1(E, S), Ah
q ).



Cascade Encryption Revisited 45

Let us first bound the quantity ν(C1(E, S), Ah
q ). We can write Ah

q as Uq ∧V h
q ,

where Uq is satisfied if the first q queries did not examine the tuple of keys
(K1, K2, . . . , Kl) and V h

q is satisfied if at most h of the first q queries were
relevant. Since Ah

q ⇔ Uq ∨ V h
q , the union bound gives us

ν(C1(E, S), Ah
q ) ≤ ν(C1(E, S), Uq) + ν(C1(E, S), V h

q ).

We prove in Lemma 4 that ν(C1(E, S), Uq) ≤ 2lα�l/2�q	l/2
/(2k)l. Since the
keys K1, . . . , Kl do not affect the outputs of C1(E, S), adaptivity does not help
when trying to violate the condition V h

q , therefore we can restrict our analysis to
nonadaptive strategies for provoking V h

q . The probability that a given query is
relevant is l/2k, hence the expected number of relevant queries among the first q

queries is lq/2k and by Markov’s inequality we have ν(C1(E, S), V h
q ) ≤ lq/h2k.

All put together, ν(C1(E, S), Ah
q ) ≤ 2lα�l/2�q	l/2
/(2k)l + lq/h2k.

It remains to bound Δq(G,H). These systems only differ in their behavior
for the first h relevant queries, so let us make this difference explicit. Let Gr
be a random system that allows queries to l independent random permutations
π1, π2, . . . , πl, but returns ⊥ once the queries create an l-chain for any tuple in
CS(π1, π2, . . . , πl). Let Hr be a random system that allows queries to l random
permutations π1, π2, . . . , πl such that π1 ◦ π2 ◦ . . . ◦ πl = id, but returns ⊥ once
the queries create an l-chain for the tuple (π1, π2, . . . , πl). Let Ch,S(·) be a con-
struction that allows queries to a blockcipher, let us denote it by E. In advance,
it picks l random distinct keys K1,K2,. . . ,Kl. Then it realizes the queries to
EK1 ,EK2 ,. . . ,EKl

as π1, π2,. . . ,πl−1 and πl ◦S respectively, where the permuta-
tions πi for i ∈ {1, . . . , l} are provided by a subsystem. EK for all other keys K
are realized by Ch,S(·) as random permutations. However, Ch,S(·) only redirects
the first h relevant queries to the subsystem, after this number is exceeded, it
responds to all queries by ⊥. Intuitively, the subsystem used is responsible for
the answers to the first h relevant queries (hence the subscript ”r”). Since the
disconnected chains in Ch,S(Gr) correspond exactly to the ordinary chains in
Gr, we have Ch,S(Gr) ≡ G and Ch,S(Hr) ≡ H. According to Lemma 3 and
Lemma 5 below, we have Δq(G,H) ≤ Δh(Gr,Hr) ≤ h2/2n.

Now we can optimize the choice of the constant h. The part of the advan-
tage that depends on h is f(h) = lq/h2k + h2/2n. This term is minimal for

h∗ = (lq2n−k−1)1/3 and we get f(h∗) < 1.9
(

lq
2k+n/2

)2/3
. This completes the

proof. ��

3.2 Examining the Relevant Keys

Here we analyze the probability that the adversary examines the relevant keys
(K1, . . . , Kl) w.r.t. S during its interaction with the random system C1(E, S).
This is a generalization of Lemma 7 from [4] to longer cascades, also taking
disconnected chains into account.
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Lemma 4. Let the random system C1(E, S) and the condition Uq be defined as
in the proof of Theorem 1, with the number of keys l being odd. Then we have
ν(C1(E, S), Uq) ≤ 2lα�l/2�q	l/2
/(2k)l, where α = max{2e2k−n, 2n + k�l/2�}.

Proof. Recall that the relevant keys K1, . . . , Kl are examined by the distin-
guisher if it creates either an l-chain or an i-disconnected l-chain for the tuple
(K1, K2, . . . , Kl) for any i ∈ {1, . . . , l − 1}.

Let i ∈ {1, . . . , l− 1} be fixed. We first bound the probability that the distin-
guisher creates an i-disconnected l-chain. Since the relevant keys do not affect
the behavior of the system C1(E, S), this probability is equal to the number of
l-tuples of distinct keys for which an i-disconnected l-chain was created, divided
by the number of all l-tuples of distinct keys, which is (2k)l. The numerator can
be upper bounded by the number of all i-disconnected l-chains that were created
(here we also count those created for non-distinct key tuples). Hence, let ChE

i,l,q

denote the maximum number of i-disconnected l-chains any distinguisher can
create by issuing q queries to a fixed blockcipher E and let ChE

i,l,q denote the
expected value of ChE

i,l,q with respect to the choice of E by E.
Let G be a directed graph corresponding to a blockcipher E, as described in

Subsection 2.3. Let H be the spanning subgraph of G containing only the edges
that were queried by the distinguisher. Any i-disconnected l-chain consists of
l edges in H , let us denote them as e1, e2, . . . , el, following the order in which
they appear in the chain. Then for each of the odd edges e1, e3, . . . , el there
are q possibilities to choose which of the queries corresponds to this edge. Once
the odd edges are fixed, they uniquely determine the vertices x0, x1, . . . , xl such
that ej is xj−1 → xj for j ∈ {1, 3, . . . , l} \ {i + 1} and ei+1 is S−1(xi) → xi+1
if i is even. Since there are at most w(E) possible edges to connect any pair of
vertices in G, there are now at most w(E) possibilities to choose each of the even
edges e2, e4, . . . , el−1 so that ej is xj−1 → xj for j ∈ {2, 4, . . . , l − 1} \ {i + 1}
and ei+1 is S−1(xi) → xi+1 if i is odd. Hence, ChE

i,l,q ≤ w(E)�l/2�q	l/2
 and
ChE

i,l,q ≤ w(E)�l/2�q	l/2
.
It remains to bound the value w(E). For this, we use the bound from [4],

where the inequality P[w(E) ≥ β] < 22n+1−β is proved for any β ≥ 2e2k−n.
Using this inequality gives us

ChE
i,l,q ≤ E[ChE

i,l,q | w(E) < α] + E[ChE
i,l,q | w(E) ≥ α] · 22n+1−α

≤ α�l/2�q	l/2
 + 2k�l/2�q	l/2
22n+1−α ≤ 2α�l/2�q	l/2
,

where the last two inequalities hold since w(E) ≤ 2k and α ≥ 2n + k�l/2� ≥ 2.
Putting all together, we get that the probability of forming an i-disconnected l-

chain for the keys (K1, K2, . . . , Kl) can be upper bounded by 2α�l/2�q	l/2
/(2k)l.
Since this holds for each i ∈ {1, 2, . . . , l − 1} and the probability of creating an
l-chain for the keys (K1, . . . , Kl) can be bounded in the same way, by the union
bound we get ν(C1(E, S), Uq) ≤ 2lα�l/2�q	l/2
/(2k)l. ��
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3.3 Distinguishing Independent and Correlated Permutations

Now we shall improve the bound on Δh(Gr,Hr) stated by Lemma 9 in [4].
Using the concept of conditional equivalence from [10], our result is better by a
constant factor and is applicable for the general case of l-cascade encryption.

Recall that Gr is a random system that provides an interface to query l
random independent permutations2 π1, . . . , πl in both directions. However, if
the queries of the distinguisher form an l-chain for any tuple of permutations
in CS(π1, . . . , πl), the system Gr becomes blocked and answers all subsequent
queries (including the one that formed the chain) with the symbol ⊥. On the
other hand, Hr is a random system that provides an interface to query l random
permutations π1, . . . , πl such that π1 ◦ · · · ◦ πl = id, again in both directions.
Similarly, if an l-chain is created for any tuple in CS(π1, . . . , πl) (which is in this
case equivalent to creating an l-chain for (π1, . . . , πl)), Hr answers all subse-
quent queries with the symbol ⊥. Therefore, the value Δh(Gr,Hr) denotes the
best possible advantage in distinguishing l independent random permutations
from l random permutations correlated in the described way, without forming
an l-chain.

Lemma 5. Let Gr and Hr be the random systems defined in the proof of The-
orem 1. Then Δh(Gr,Hr) ≤ h2/2n.

Proof. First, let us introduce some notation. In any experiment where the per-
mutations π1, . . . , πl are queried, let domj(πi) denote the set of all x ∈ {0, 1}n

such that among the first j queries, the query πi(x) was already answered or
some query π−1

i (y) was answered by x. Similarly, let rangej(πi) be the set of all
y ∈ {0, 1}n such that among the first j queries, the query π−1

i (y) was already
answered or some query πi(x) was answered by y. In other words, domj(πi) and
rangej(πi) denote the domain and range of the partial function πi defined by
the first j answers. For each pair of consecutive permutations3 πi and πi+1, let
X (j)

i denote the set {0, 1}n \ (rangej(πi)∪domj(πi+1)) of fresh, unused values. If
x

πi→ y then we call the queries πi(x) and π−1
i (y) trivial and the queries πi+1(y)

and π−1
i−1(x) are said to extend a chain if they are not trivial too.

Now we introduce an intermediate random system S and show how both Gr
and Hr are conditionally equivalent to S. This allows us to use Lemma 1 to
bound the advantage in distinguishing Gr and Hr. The system S also provides
an interface to query l permutations π1, . . . , πl. It works as follows: it answers any
non-trivial forward query πi(x) with a value chosen uniformly from the set X (j−1)

i

and any non-trivial backward query π−1
i (x) with a value chosen uniformly from

the set X (j−1)
i−1 (assuming it is the jth query). Any trivial queries are answered

consistently with previous answers. Moreover, if the queries form an l-chain for
any tuple in CS(π1, . . . , πl), S also gets blocked and responds with ⊥ to any
further queries. Note that S is only defined as long as |X (j−1)

i | ≥ 0, but if this
is not true, we have h ≥ 2n and the lemma holds trivially.
2 All permutations considered here are defined on the set {0, 1}n.
3 The indexing of permutations is cyclic, e.g. πl+1 denotes the permutation π1.
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Let us now consider the jth query that does not extend an (l − 1)-chain
(otherwise both Gr and S get blocked). Then the system Gr answers any non-
trivial forward query πi(x) by a random element uniformly chosen from {0, 1}n\
rangej−1(πi) or gets blocked if this answer would create an l-chain by connecting
two shorter chains. On the other hand, the system S answers with a random el-
ement uniformly chosen from X (j−1)

i , which is a subset of {0, 1}n \ rangej−1(πi).
The situation for backward queries is analogous. Therefore, let us define a mono-
tone condition K on Gr: the event Kj is satisfied if Kj−1 was satisfied and the
answer to the jth query was picked from the set X (j−1)

i if it was a non-trivial
forward query πi(x) or from the set X (j−1)

i−1 if it was a non-trivial backward query
π−1

i (y). Note that as long as K is satisfied, no l-chain can emerge by connecting
two shorter chains. By the previous observations and the definition of K, we have
Gr|K ≡ S which by Lemma 1 implies Δh(Gr,S) ≤ ν(Gr, Kh). The probability
that K is violated by the jth answer is

|domj−1(πi+1) \ rangej−1(πi)|
|{0, 1}n \ rangej−1(πi)|

≤ |{0, 1}n \ X (j−1)
i |

|{0, 1}n| ≤ j − 1
2n

,

which gives us ν(Gr, Kh) ≤
∑h

j=1(j − 1)/2n ≤ h2/2n+1.
In the system Hr, the permutations π1, . . . , πl can be seen as 2n cycles of

length l, each of which is formed by the edges connecting the vertices x, π1(x), . . . ,
πl−1(· · ·π1(x) · · · ), x for some x ∈ {0, 1}n and labeled by the respective permu-
tations. We shall call such a cycle used if at least one of its edges was queried
in either direction4, otherwise we call it unused. Let us now define a monotone
condition L on Hr: the event Lj is satisfied if during the first j queries, any non-
trivial query which did not extend an existing chain queried an unused cycle.

We claim that Hr|L ≡ S. To see this, let us consider all possible types of
queries. If the jth query πi(x) is trivial or it extends an (l − 1)-chain, both sys-
tems behave identically. Otherwise, the system Hr answers with a value y, where
y �∈ rangej−1(πi) (because πi is a permutation) and y �∈ domj−1(πi+1), since that
would mean that L was violated either earlier (if this query extends an existing
chain) or now (if it starts a new chain). All values from X (j−1)

i have the same
probability of being y, because for any y1, y2 ∈ X (j−1)

i , there exists a straightfor-
ward bijective mapping between the arrangement of the cycles consistent with
πi(x) = y1 or πi(x) = y2 (and all previous answers). Therefore, Hr answers with
an uniformly chosen element from X (j−1)

i and so does S. For backward queries,
the situation is analogous. By Lemma 1 this gives us Δh(S,Hr) ≤ ν(Hr, Lh).

Let the jth query be a non-trivial forward query πi(x) that does not extend a
chain, i.e., x ∈ X (j−1)

i−1 . Let u denote the number of elements in X (j−1)
i−1 that are

in a used cycle on the position between πi−1 and πi. Then since every element
in X (j−1)

i−1 has the same probability of having this property (for the same reason
as above), this query violates the condition L with probability u/|X (j−1)

i−1 | ≤
4 We consider a separate edge connecting two vertices for each cycle in which they

follow each other, hence each query creates at most one used cycle.



Cascade Encryption Revisited 49

(u + |rangej−1(πi−1) ∪ domj−1(πi)|)/2n ≤ (j − 1)/2n. Hence ν(Hr, Lh) ≤
∑h

j=1
(j − 1)/2n ≤ h2/2n+1.

Putting everything together, we have Δh(Gr,Hr) ≤ Δh(Gr,S)+Δh(S,Hr) ≤
h2/2n, which completes the proof. ��

4 Conclusions

In this paper, we have studied the security of the cascade encryption. The most
important recent result on this topic [4] contained a few mistakes, which we
pointed out and corrected. We have formulated the proof from [4] in the random
systems framework, which allows us to describe it on a more abstract level and
thus in a more compact argument. This abstraction leads to a minor improve-
ment for the case of triple encryption, as well as a generalization for the case of
longer cascades. We prove that for the wide class of blockciphers with smaller
key space than message space, a reasonable increase in the length of the cascade
improves the encryption security. Our intention here was also to demonstrate
the power of the random systems framework as a tool for modelling the behav-
ior and interactions of discrete systems, with a focus towards analyzing their
indistinguishability.
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A Problems with the Proof in [4]

The proof of a lower bound for the security of triple encryption presented in [4]
contains some errors. We describe briefly where these errors come from, assuming
the reader is familiar with the terminology and the proof from [4]. We shall be re-
ferring to the version 2.3 of the paper published at the online ePrint archive. The
proof eventually comes down to bounding the advantage in distinguishing inde-
pendent random permutations π0, π1, π2 from random permutations π0, π1, π2
such that π0 ◦ π1 ◦ π2 = id (distinguishing games G and H). This can be done
easily if the distinguisher is allowed to extend a 2-chain by his queries, therefore
the adversary is not allowed to do that in games G and H . To justify this, before
proceeding to this part of the proof, the authors have to argue in a more complex
setting (games DS and R3) that the probability of extending a 2-chain for the
relevant keys is negligible. However, due to the construction of the adversary
BS,b from the adversary B, extending a 2-chain by BS,b in the experiment HBS,b

does not correspond to extending a 2-chain by B in DB
S , but to something we

call a disconnected chain. The same can be said about the experiments RB
3 and

GBS,b . Therefore, by bounding the probability of extending a 2-chain for the
relevant keys in the experiment RB

3 , the authors do not bound the probability
of extending a 2-chain in the experiment GBS,b , which they later need.

The second problem of the proof in [4] lies in bounding the probability of cre-
ating a chain using the game L. This is done by the equation P[RB

3 sets x2ch] ≤
3·2−k+P[BL sets bad] on page 19, which is also invalid. To see this, note that the
game L only considers chains using subsequently the keys (K0, K1, K2), while
the flag x2ch in the experiment RB

3 can also be set by a chain for any cyclic
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shift of this triple, e.g. (K2, K0, K1). This is why a new multiplicative factor l
appears in the security bound we have proved.

In the version 3.0 of the paper [4], the second bug mentioned here was fixed,
while the first is still present in a different form. Now the games G and HS

can be easily distinguished by forming a disconnected chain, for example by the
following trivial adversary B:

Adversary B

x1
$← {0, 1}n;

x2 ← Π(1, x1); x3 ← Π(2, x2); x0 ← S−1(x3); x′
1 ← Π(0, x0);

if x1 = x′
1 return 1 else return 0;

This problem can be fixed by introducing the concept of disconnected chains
and bounding the probability of them being constructed by the adversary, as we
do for the general case of l-cascades in Lemma 4.
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Abstract. In this paper, we prove classical coin-flipping secure in the
presence of quantum adversaries. The proof uses a recent result of Wa-
trous [20] that allows quantum rewinding for protocols of a certain form.
We then discuss two applications. First, the combination of coin-flipping
with any non-interactive zero-knowledge protocol leads to an easy trans-
formation from non-interactive zero-knowledge to interactive quantum
zero-knowledge. Second, we discuss how our protocol can be applied to
a recently proposed method for improving the security of quantum pro-
tocols [4], resulting in an implementation without set-up assumptions.
Finally, we sketch how to achieve efficient simulation for an extended
construction in the common-reference-string model.

Keywords. quantum cryptography, coin-flipping, common reference
string, quantum zero-knowledge.

1 Introduction

In this paper, we are interested in a standard coin-flipping protocol with classical
messages exchange but where the adversary is assumed to be capable of quantum
computing. Secure coin-flipping allows two parties Alice and Bob to agree on a
uniformly random bit in a fair way, i.e., neither party can influence the value of
the coin to his advantage. The (well-known) protocol proceeds as follows: Alice
commits to a bit a, Bob then sends bit b, Alice opens the commitment and the
resulting coin is the exclusive disjunction of both bits, i.e. coin = a⊕ b.

For Alice’s commitment to her first message, we assume a classical bit com-
mitment scheme. Intuitively, a commitment scheme allows a player to commit
to a value, while keeping it hidden (hiding property) but preserving the pos-
sibility to later reveal the value fixed at commitment time (binding property).
More formally, a bit commitment scheme takes a bit and some randomness as
input. The hiding property is formalized by the non-existence of a distinguisher
able to distinguish with non-negligible advantage between a commitment to 0
and a commitment to 1. The binding property is fulfilled, if it is infeasible for a
forger to open one commitment to both values 0 and 1. The hiding respectively
binding property holds with unconditional (i.e. perfect or statistical) security
in the classical and the quantum setting, if the distinguisher respectively the
forger is unrestricted with respect to his (quantum-) computational power. In
case of a polynomial-time bounded classical distinguisher respectively forger, the

M. Matsui (Ed.): ASIACRYPT 2009, LNCS 5912, pp. 52–69, 2009.
c© International Association for Cryptologic Research 2009
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commitment is computationally hiding respectively binding. The computation-
ally hiding property translates to the quantum world by simply allowing the
distinguisher to be quantum. However, the case of a quantum forger can not be
handled in such a straightforward manner, due to the difficulties of rewinding in
general quantum systems (see e.g. [12,5,20] for discussions).

For our basic coin-flip protocol, we assume the commitment to be uncon-
ditionally binding and computationally hiding against a quantum adversary.1

Thus, we achieve unconditional security against cheating Alice and quantum-
computational security against dishonest Bob. Such a commitment scheme
follows, for instance, from any pseudorandom generator [15], secure against a
quantum distinguisher. Even though the underlying computational assumption,
on which the security of the embedded commitment is based, withstands quan-
tum attacks, the security proof of the entire protocol and its integration into
other applications could previously not be naturally translated from the clas-
sical to the quantum world. Typically, security against a classical adversary is
argued using rewinding of the adversary. But in general, rewinding as a proof
technique cannot be directly applied, if Bob runs a quantum computer: First,
the intermediate state of a quantum system cannot be copied [21], and second,
quantum measurements are in general irreversible. Hence, in order to produce a
classical output, the simulator had to (partially) measure the quantum system
without copying it beforehand, but then it would become generally impossible
to reconstruct all information necessary for correct rewinding. For these rea-
sons, no simple and straightforward security proofs for the quantum case were
previously known.

In this paper, we show the most natural and direct quantum analogue of the
classical security proof for standard coin-flipping, by using a recent result of Wa-
trous [20]. Watrous showed how to construct an efficient quantum simulator for
quantum verifiers for several zero-knowledge proof systems such as graph isomor-
phism, where the simulation relies on the newly introduced quantum rewinding
theorem. We now show that his quantum rewinding argument can also be applied
to classical coin-flipping in a quantum world.

By calling the coin-flip functionality sequentially a sufficient number of times,
the communicating parties can interactively generate a common random string
from scratch. The generation can then be integrated into other (classical or quan-
tum) cryptographic protocols that work in the common-reference-string model.
This way, several interesting applications can be implemented entirely in a simple
manner without any set-up assumptions. Two example applications are discussed
in the second part of the paper.

The first application relates to zero-knowledge proof systems, an important
building block for larger cryptographic protocols. Recently, Hallgren et al. [13]
showed that any honest verifier zero-knowledge protocol can be made zero-
knowledge against any classical and quantum verifier. Here we show a related

1 Recall that unconditionally secure commitments, i.e. unconditionally hiding and
binding at the same time, are impossible in both the classical and the quantum
world.
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result, namely, a simple transformation from non-interactive (quantum)
zero-knowledge to interactive quantum zero-knowledge. A non-interactive zero-
knowledge proof system can be trivially turned into an interactive honest veri-
fier zero-knowledge proof system by just letting the verifier choose the reference
string. Therefore, this consequence of our result also follows from [13]. However,
our proof is much simpler. In general, the difference between us and [13] is that
our focus is on establishing coin-flipping as a stand-alone tool that can be used in
several contexts rather than being integrated in a zero-knowledge construction
as in [13].

As second application we discuss the interactive generation of a common ref-
erence string for the general compiler construction improving the security of a
large class of quantum protocols that was recently proposed in [4]. Applying the
compiler, it has been shown how to achieve hybrid security in existing protocols
for password-based identification [6] and oblivious transfer [1] without significant
efficiency loss, such that an adversary must have both large quantum memory
and large computing power to break the protocol. Here we show how a common
reference string for the compiler can be generated from scratch according to the
specific protocol requirements in [4].

Finally, we sketch an extended commitment scheme for quantum-secure coin-
flipping in the common-reference-string model. This construction can be effi-
ciently simulated without the need of rewinding, which is necessary to claim
universal composability.

2 Preliminaries

2.1 Notation

We assume the reader’s familiarity with basic notation and concepts of quantum
information processing as in standard literature, e.g. [16]. Furthermore, we will
only give the details of the discussed applications that are most important in
the context of this work. A full description of the applications can be found in
the referenced papers.

We denote by negl(n) any function of n, if for any polynomial p it holds that
negl(n) ≤ 1/p(n) for large enough n. As a measure of closeness of two quantum
states ρ and σ, their trace distance δ(ρ, σ) = 1

2 tr(|ρ−σ|) or square-fidelity 〈ρ|σ|ρ〉
can be applied. A quantum algorithm consists of a family {Cn}n∈N of quantum
circuits and is said to run in polynomial time, if the number of gates of Cn is
polynomial in n. Two families of quantum states {ρn}n∈N and {σn}n∈N are called
quantum-computationally indistinguishable, denoted ρ

q≈ σ, if any polynomial-
time quantum algorithm has negligible advantage in n of distinguishing ρn from
σn. Analogously, they are statistically indistinguishable, denoted ρ

s≈ σ, if their
trace distance is negligible in n. For the reverse circuit of quantum circuit Q, we
use the standard notation for the transposed, complex conjugate operation, i.e.
Q†. The controlled-NOT operation (CNOT) with a control and a target qubit
as input flips the target qubit, if the control qubit is 1. In other words, the value
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of the second qubit corresponds to the classical exclusive disjunction (XOR). A
phase-flip operation can be described by Pauli operator Z. For quantum state ρ
stored in register R we write |ρ〉R.

2.2 Definition of Security

We follow the framework for defining security which was introduced in [8] and
also used in [4]. Our cryptographic two-party protocols run between player Al-
ice, denoted by A, and player Bob (B). Dishonest parties are indicated by A∗

and B∗, respectively. The security against a dishonest player is based on the
real/ideal-world paradigm that assumes two different worlds: The real-world that
models the actual protocol Π and the ideal-world based on the ideal function-
ality F that describes the intended behavior of the protocol. If both executions
are indistinguishable, security of the protocol in real life follows. In other words,
a dishonest real-world player P∗ that attacks the protocol cannot achieve (sig-
nificantly) more than an ideal-world adversary P̂∗ attacking the corresponding
ideal functionality.

More formally, the joint input state consists of classical inputs of honest
parties and possibly quantum input of dishonest players. A protocol Π con-
sists of an infinite family of interactive (quantum) circuits for parties A and
B. A classical (non-reactive) ideal functionality F is given by a conditional
probability distribution PF(inA,inB)|inAinB

, inducing a pair of random variables
(outA, outB) = F(inA, inB) for every joint distribution of inA and inB, where
inP and outP denote party P’s in- and output, respectively. For the definition
of (quantum-) computational security against a dishonest Bob, a polynomial-
size (quantum) input sampler is considered, which produces the input state of
the parties.

Definition 2.1 (Correctness). A protocol Π correctly implements an ideal
classical functionality F , if for every distribution of the input values of hon-
est Alice and Bob, the resulting common outputs of Π and F are statistically
indistinguishable.

Definition 2.2 (Unconditional security against dishonest Alice). A pro-
tocol Π implements an ideal classical functionality F unconditionally securely
against dishonest Alice, if for any real-world adversary A∗, there exists an ideal-
world adversary Â∗, such that for any input state it holds that the output state,
generated by A∗ through interaction with honest B in the real-world, is statisti-
cally indistinguishable from the output state, generated by Â∗ through interaction
with F and A∗ in the ideal-world.

Definition 2.3 ((Quantum-) Computational security against dishonest
Bob). A protocol Π implements an ideal classical functionality F (quantum-)
computationally securely against dishonest Bob, if for any (quantum-) computa-
tionally bounded real-world adversary B∗, there exists a (quantum-) computation-
ally bounded ideal-world adversary B̂∗, such that for any efficient input sampler,
it holds that the output state, generated by B∗ through interaction with honest A
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in the real-world, is (quantum-) computationally indistinguishable from the out-
put state, generated by B̂∗ through interaction with F and B∗ in the ideal-world.

For more details and a definition of indistinguishability of quantum states,
see [8]. There, it has also been shown that protocols satisfying the above defini-
tions compose sequentially in a classical environment. Furthermore, note that in
Definition 2.2, we do not necessarily require the ideal-world adversary Â∗ to be
efficient. We show in Section 5 how to extend our coin-flipping construction such
that we can achieve an efficient simulator.

The coin-flipping scheme in Section 5 as well as the example applications in
Sections 4.1 and 4.2 work in the common-reference-string (CRS) model. In this
model, all participants in the real-world protocol have access to a classical public
CRS, which is chosen before any interaction starts, according to a distribution
only depending on the security parameter. However, the participants in the ideal-
world interacting with the ideal functionality do not make use of the CRS. Hence,
an ideal-world simulator P̂∗ that operates by simulating a real-world adversary
P∗ is free to choose a string in any way he wishes.

3 Quantum-Secure Coin-Flipping

3.1 The Coin-Flip Protocol

Let n indicate the security parameter of the commitment scheme which underlies
the protocol. We use an unconditionally binding and quantum-computationally
hiding commitment scheme that takes a bit and some randomness r of length
l as input, i.e. com : {0, 1} × {0, 1}l → {0, 1}l+1. The unconditionally binding
property is fulfilled, if it is impossible for any forger to open one commitment to
both 0 and 1, i.e. to compute r, r′ such that com(0, r) = com(1, r′). Quantum-
computationally hiding is ensured, if no quantum distinguisher can distinguish
between com(0, r) and com(1, r′) for random r, r′ with non-negligible advantage.
As mentioned earlier, for a specific instantiation we can use, for instance, Naor’s
commitment based on a pseudorandom generator [15]. This scheme does not
require any initially shared secret information and is secure against a quantum
distinguisher.2

We let Alice and Bob run the Coin− Flip Protocol (see Fig. 1), which inter-
actively generates a random and fair coin in one execution and does not require
any set-up assumptions. Correctness is obvious by inspection of the protocol: If
both players are honest, they independently choose random bits. These bits are
then combined via exclusive disjunction, resulting in a uniformly random coin.

The corresponding ideal coin-flip functionality FCOIN is described in Figure 2.
Note that dishonest A∗ may refuse to open com(a, r) in the real-world after
learning B’s input. For this case, FCOIN allows her a second input REFUSE, leading
to output FAIL and modeling the abort of the protocol.

2 We describe the commitment scheme in this simple notation. However, if it is based
on a specific scheme, e.g. [15], the precise notation has to be slightly adapted.
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Coin− Flip Protocol

1. A chooses a ∈R {0, 1} and computes com(a, r). She sends com(a, r) to B.
2. B chooses b ∈R {0, 1} and sends b to A.
3. A sends open(a, r) and B checks if the opening is valid.
4. Both compute coin = a ⊕ b.

Fig. 1. The Coin-Flip Protocol

Ideal Functionality FCOIN:

Upon receiving requests START from Alice and Bob, FCOIN outputs a uniformly
random coin to Alice. It then waits to receive Alice’s second input OK or REFUSE

and outputs coin or FAIL to Bob, respectively.

Fig. 2. The Ideal Coin-Flip Functionality

3.2 Security

Theorem 3.1. The Coin− Flip Protocol is unconditionally secure against
any unbounded dishonest Alice according to Definition 2.2, provided that the
underlying commitment scheme is unconditionally binding.

Proof. We construct an ideal-world adversary Â∗, such that the real output of
the protocol is statistically indistinguishable from the ideal output produced by
Â∗, FCOIN and A∗.

First note that a, r and com(a, r) are chosen and computed as in the real
protocol. From the statistically binding property of the commitment scheme, it
follows that A∗’s choice bit a is uniquely determined from com(a, r), since for any
com, there exists at most one pair (a, r) such that com = com(a, r) (except with
probability negligible in n). Hence in the real-world, A∗ is unconditionally bound
to her bit before she learns B’s choice bit, which means a is independent of b.
Therefore in Step 2, the simulator can correctly (but not necessarily efficiently)
compute a (and r). Note that, in the case of unconditional security, we do not
have to require the simulation to be efficient. We show in Section 5 how to
extend the commitment in order to extract A∗’s inputs efficiently. Finally, due
to the properties of XOR, A∗ cannot tell the difference between the random b
computed (from the ideal, random coin) in the simulation in Step 3 and the
randomly chosen b of the real-world. It follows that the simulated output is
statistically indistinguishable from the output in the real protocol. ��

To prove security against any dishonest quantum-computationally bounded B∗,
we show that there exists an ideal-world simulation B̂∗ with output quantum-
computationally indistinguishable from the output of the protocol in the



58 I. Damg̊ard and C. Lunemann

Ideal− World Simulation Â∗:

1. Upon receiving com(a, r) from A∗, Â∗ sends START and then OK to FCOIN as first
and second input, respectively, and receives a uniformly random coin.

2. Â∗ computes a and r from com(a, r).
3. Â∗ computes b = coin ⊕ a and sends b to A∗.
4. Â∗ waits to receive A∗’s last message and outputs whatever A∗ outputs.

Fig. 3. The Ideal-World Simulation Â∗

real-world. In a classical simulation, where we can simply use rewinding, a
polynomial-time simulator works as follows. It inquires coin from FCOIN, chooses
random a and r, and computes b′ = coin⊕ a as well as com(a, r). It then sends
com(a, r) to B∗ and receives B∗’s choice bit b. If b = b′, the simulation was suc-
cessful. Otherwise, the simulator rewinds B∗ and repeats the simulation. Note
that our security proof should hold also against any quantum adversary. The
polynomial-time quantum simulator proceeds similarly to its classical analogue
but requires quantum registers as work space and relies on the quantum rewind-
ing lemma of Watrous [20] (see Lemma 1 in Appendix A).

In the paper, Watrous proves how to construct a quantum zero-knowledge
proof system for graph isomorphism using his (ideal) quantum rewinding lemma.
The protocol proceeds as a Σ-protocol, i.e. a protocol in three-move form, where
the verifier flips a single coin in the second step and sends this challenge to the
prover. Since these are the essential aspects also in our Coin− Flip Protocol,
we can apply Watrous’ quantum rewinding technique (with slight modifications)
as a black-box to our protocol. We also follow his notation and line of argument
here. For a more detailed description and proofs, we refer to [20].

Theorem 3.2. The Coin− Flip Protocol is quantum-computationally secure
against any polynomial-time bounded, dishonest Bob according to Definition 2.3,
provided that the underlying commitment scheme is quantum-computationally
hiding and the success probability of quantum rewinding achieves a non-negligible
lower bound p0.

Proof. Let W denote B∗’s auxiliary input register, containing an ñ-qubit state
|ψ〉. Furthermore, let V and B denote B∗’s work space, where V is an arbitrary
polynomial-size register and B is a single qubit register. A’s classical messages
are considered in the following as being stored in quantum registers A1 and
A2. In addition, the quantum simulator uses registers R, containing all possible
choices of a classical simulator, and G, representing its guess b′ on B∗’s message
b in the second step. Finally, let X denote a working register of size k̃, which is
initialized to the state |0k̃〉 and corresponds to the collection of all registers as
described above except W .
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The quantum rewinding procedure is implemented by a general quantum cir-
cuit Rcoin with input (W, X, B∗, coin). As a first step, it applies a unitary (ñ, k̃)-
quantum circuit Q to (W, X) to simulate the conversation, obtaining registers
(G, Y ). Then, a test takes place to observe whether the simulation was suc-
cessful. In that case, Rcoin outputs the resulting quantum register. Otherwise,
it quantumly rewinds by applying the reverse circuit Q† on (G, Y ) to retrieve
(W, X) and then a phase-flip transformation on X before another iteration of Q
is applied. Note that Rcoin is essentially the same circuit as R described in [20],
but in our application it depends on the value of a given coin, i.e., we apply
R0 or R1 for coin = 0 or coin = 1, respectively. In more detail, Q transforms
(W, X) to (G, Y ) by the following unitary operations:

(1) It first constructs the superposition

1√
2l+1

∑
a,r

|a, r〉R|com(a, r)〉A1
|b′= coin⊕ a〉G|open(a, r)〉A2

|0〉B
∣∣∣0k̃′
〉

V
|ψ〉W ,

where k̃′ < k̃. Note that the state of registers (A1, G, A2) corresponds to a
uniform distribution of possible transcripts of the interaction between the
players.

(2) For each possible com(a, r), it then simulates B∗’s possible actions by apply-
ing a unitary operator to (W, V, B, A1) with A1 as control:

1√
2l+1

∑
a,r

|a, r〉R|com(a, r)〉A1
|b′〉G|open(a, r)〉A2

|b〉B
∣∣∣φ̃〉

V

∣∣∣ψ̃〉
W

,

where φ̃ and ψ̃ describe modified quantum states.
(3) Finally, a CNOT-operation is applied to pair (B, G) with B as control to

check whether the simulator’s guess of B∗’s choice was correct. The result of
the CNOT-operation is stored in register G.

1√
2l+1

∑
a,r

|a, r〉R|com(a, r)〉A1
|b′ ⊕ b〉G|open(a, r)〉A2

|b〉B
∣∣∣φ̃〉

V

∣∣∣ψ̃〉
W

.

If we denote with Y the register that contains the residual ñ+ k̃−1 -qubit state,
the transformation from (W, X) to (G, Y ) by applying Q can be written as

Q
(
|ψ〉W
∣∣∣0k̃
〉

X

)
=
√

p|0〉G|φgood(ψ)〉Y +
√

1 − p|1〉G|φbad(ψ)〉Y ,

where 0 < p < 1 and |φgood(ψ)〉 denotes the state, we want the system to be
in for a successful simulation. Rcoin then measures the qubit in register G with
respect to the standard basis, which indicates success or failure of the simulation.
A successful execution (where b = b′) results in outcome 0 with probability p. In
that case, Rcoin outputs Y . A measurement outcome 1 indicates b �= b′, in which
case Rcoin quantumly rewinds the system, applies a phase-flip (on register X)
and repeats the simulation, i.e.
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Q

(
2
(
I ⊗
∣∣∣0k̃
〉〈

0k̃
∣∣∣)− I
)

Q† .

Watrous’ ideal quantum rewinding lemma (without perturbations) then states
the following: Under the condition that the probability p of a successful sim-
ulation is non-negligible and independent of any auxiliary input, the output
ρ(ψ) of R has square-fidelity close to 1 with state |φgood(ψ)〉 of a successful
simulation, i.e.,

〈φgood(ψ)|ρ(ψ)|φgood(ψ)〉 ≥ 1 − ε

with error bound 0 < ε < 1
2 . Note that for the special case where p equals 1/2

and is independent of |ψ〉, the simulation terminates after at most one rewinding.
However, we cannot apply the exact version of Watrous’ rewinding lemma in our

simulation, since the commitment scheme in the protocol is only (quantum-) com-
putationally hiding. Instead, we must allow for small perturbations in the quan-
tum rewinding procedure as follows. Let adv denote B∗’s advantage over a random
guess on the committed value due to his computing power, i.e. adv = |p − 1/2|.
From the hiding property, it follows that adv is negligible in the security param-
eter n. Thus, we can argue that the success probability p is close to independent
of the auxiliary input and Watrous’ quantum rewinding lemma with small pertur-
bations, as stated in the appendix (Lemma 1), applies with q = 1

2 and ε = adv.
All operations in Q can be performed by polynomial-size circuits, and thus, the
simulator has polynomial size (in the worst case). Furthermore, for negligible ε
but non-negligible lower bound p0 on the success probability p, it follows that the
“closeness” of output ρ(ψ) with good state |φgood(ψ)〉 is slightly reduced but quan-
tum rewinding remains possible.

Finally, to proof security against quantum B∗, we construct an ideal-world
quantum simulator B̂∗ (see Fig. 4), interacting with B∗ and the ideal func-
tionality FCOIN and executing Watrous’ quantum rewinding algorithm. We then
compare the output states of the real process and the ideal process. In case of
indistinguishable outputs, quantum-computational security against B∗ follows.

Ideal− World Simulation B̂∗:

1. B̂∗ gets B∗’s auxiliary quantum input W and working registers X.
2. B̂∗ sends START and then OK to FCOIN. It receives a uniformly random coin.
3. Depending on the value of coin, B̂∗ applies the corresponding circuit Rcoin

with input W,X, B∗ and coin.
4. B̂∗ receives output register Y with |φgood(ψ)〉 and “measures the conversation”

to retrieve the corresponding (com(a, r), b, open(a, r)). It outputs whatever B∗

outputs.

Fig. 4. The Ideal-World Simulation B̂∗
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First note that the superposition constructed as described above in circuit Q
as Step (1) corresponds to all possible random choices of values in the real pro-
tocol. Furthermore, the circuit models any possible strategy of quantum B∗ in
Step (2), depending on control register |com(a, r)〉A1

. The CNOT-operation on
(B, G) in Step (3), followed by a standard measurement of G, indicate whether
the guess b′ on B∗’s choice b was correct. If that was not the case (i.e. b �= b′

and measurement result 1), the system gets quantumly rewound by applying re-
verse transformations (3)-(1), followed by a phase-flip operation. The procedure
is repeated until the measurement outcome is 0 and hence b = b′. Watrous’ tech-
nique then guarantees that, assuming negligible ε and non-negligible p0, then ε′

is negligible and thus, the final output ρ(ψ) of the simulation is close to good
state |φgood(ψ)〉. It follows that the output of the ideal simulation is indistin-
guishable from the output in the real-world for any quantum-computationally
bounded B∗. ��

4 Applications

4.1 Interactive Quantum Zero-Knowledge

Zero-knowledge proofs are an important building block for larger cryptographic
protocols. The notion of (interactive) zero-knowledge (ZK) was introduced by
Goldwasser et al. [11]. Informally, ZK proofs for any NP language L yield no
other knowledge to the verifier than the validity of the assertion proved, i.e.
x ∈ L. Thus, only this one bit of knowledge is communicated from prover to
verifier and zero additional knowledge. For a survey about zero-knowledge, see
for instance [9,10].

Blum et al. [2] showed that the interaction between prover and verifier in any
ZK proof can be replaced by sharing a short, random common reference string
according to some distribution and available to all parties from the start of the
protocol. Note that a CRS is a weaker requirement than interaction. Since all
information is communicated mono-directional from prover to verifier, we do not
have to require any restriction on the verifier.

As in the classical case, where ZK protocols exist if one-way functions exist,
quantum zero-knowledge (QZK) is possible under the assumption that quantum
one-way functions exist. In [14], Kobayashi showed that a common reference
string or shared entanglement is necessary for non-interactive quantum zero-
knowledge. Interactive quantum zero-knowledge protocols in restricted settings
were proposed by Watrous in the honest verifier setting [19] and by Damg̊ard et
al. in the CRS model [5], where the latter introduced the first Σ-protocols for
QZK withstanding even active quantum attacks. In [20], Watrous then proved
that several interactive protocols are zero-knowledge against general quantum
attacks.

Recently, Hallgren et al. [13] showed how to transform a Σ-protocol with
stage-by-stage honest verifier zero-knowledge into a new Σ-protocol that is zero-
knowledge against all classical and quantum verifiers. They propose special bit
commitment schemes to limit the number of rounds, and view each round as a
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IQZKFCOIN Protocol:

(COIN)
1. A and B invoke FCOIN k times. If A blocks any output coini for i = 1, . . . , k

(by sending REFUSE as second input), B aborts the protocol.
(CRS)
2. A and B compute ω = coin1 . . . coink.

(NIZK)
3. A sends π(ω,x) to B. B checks the proof and accepts or rejects accordingly.

Fig. 5. Intermediate Protocol for IQZK

stage in which an honest verifier simulator is assumed. Then, by using a technique
of [7], each stage can be converted to obtain zero-knowledge against any classical
verifier. Finally, Watrous’ quantum rewinding lemma is applied in each stage to
prove zero-knowledge also against any quantum verifier.

Here, we propose a simpler transformation from non-interactive (quantum)
zero-knowledge (NIZK) to interactive quantum zero-knowledge (IQZK) by com-
bining the Coin− Flip Protocol with any NIZK Protocol. Our coin-flipping
generates a truly random coin even in the case of a malicious quantum verifier.
A sequence of such coins can then be used in any subsequent NIZK Protocol,
which is also secure against quantum verifiers, due to its mono-direction. Here,
we define a (NIZK)-subprotocol as given in [2]: Both parties A and B get com-
mon input x. A common reference string ω of size k allows the prover A,
who knows a witness w, to give a non-interactive zero-knowledge proof π(ω, x) to
a (quantum-) computationally bounded verifier B. By definition, the
(NIZK)-subprotocol is complete and sound and satisfies zero-knowledge.

The IQZK Protocol is shown in Figure 7. To prove that it is an interactive
quantum zero-knowledge protocol, we first construct an intermediate
IQZKFCOIN Protocol (see Fig. 5) that runs with the ideal functionality FCOIN.
Then we prove that the IQZKFCOIN Protocol satisfies completeness, soundness
and zero-knowledge according to standard definitions. Finally, by replacing the
calls to FCOIN with our Coin− Flip Protocol, we can complete the transfor-
mation to the final IQZK Protocol.

Completeness: If x ∈ L, the probability that (A, B) rejects x is negligible in the
length of x.

From the ideal functionality FCOIN it follows that each coini in Step 1 is
uniformly random for all i = 1, . . . , k. Hence, ω in Step 2 is a uniformly random
common reference string of size k. By definition of any (NIZK)-subprotocol, we
have acceptance probability

Pr[ω ∈R {0, 1}k, π(ω, x) ← A(ω, x, w) : B(ω, x, π(ω, x)) = 1] > 1 − ε′′,
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where ε′′ is negligible in the length of x. Thus, completeness for the
IQZKFCOIN Protocol follows.

Soundness: If x /∈ L, then for any unbounded prover A∗, the probability that
(A∗, B) accepts x is negligible in the length of x.

Any dishonest A∗ might stop the IQZKFCOIN Protocol at any point during
execution. For example, she can block the output in Step 1 or she can refuse to
send a proof π in the (NIZK)-subprotocol. Furthermore, A∗ can use an invalid ω
(or x) for π. In all of these cases, B will abort without even checking the proof.
Therefore, A∗’s best strategy is to “play the entire game”, i.e. to execute the
entire IQZKFCOIN Protocol without making obvious cheats.

A∗ can only convince B in the (NIZK)-subprotocol of a π for any given (i.e.
normally generated) ω with negligible probability

Pr[ω ∈R {0, 1}k, π(ω, x) ← A∗(ω, x) : B(ω, x, π(ω, x)) = 1] .

Therefore, the probability that A∗ can convince B in the entire IQZKFCOIN Protocol
in case of x /∈ L is also negligible (in the length of x) and its soundness follows.

Zero-Knowledge: An interactive proof system (A, B∗) for language L is quan-
tum zero-knowledge, if for any quantum verifier B∗, there exists a simulator
ŜIQZKFCOIN , such that ŜIQZKFCOIN

q≈ (A, B∗) on common input x ∈ L and arbitrary
additional (quantum) input to B∗.

We construct simulator ŜIQZKFCOIN , interacting with dishonest B∗ and simulator
ŜNIZK. Under the assumption on the zero-knowledge property of any NIZK Protocol,
there exists a simulator ŜNIZK that, on input x ∈ L, generates a randomly looking
ω together with a valid proof π for x (without knowing witness w). ŜIQZKFCOIN is de-
scribed in Figure 6. It receives a random string ω from ŜNIZK, which now replaces
the string of coins produced by the calls to FCOIN in the IQZKFCOIN Protocol.
The “merging” of coins into ω in Step 2 of the protocol (Fig. 5) is equivalent
to the “splitting” of ω into coins in Step 3 of the simulation (Fig. 6). Thus, the
simulated proof π(ω, x) is indistinguishable from a real proof, which shows that
the IQZKFCOIN Protocol is zero-knowledge.

ŜIQZKFCOIN :

1. ŜIQZKFCOIN gets input x.
2. It invokes ŜNIZK with x and receives π(ω,x).
3. Let ω = coin1 . . . coink. ŜIQZKFCOIN sends each coini one by one to B∗.
4. ŜIQZKFCOIN sends π(ω, x) to B∗ and outputs whatever B∗ outputs.

Fig. 6. The Simulation of the Intermediate Protocol for IQZK
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IQZK Protocol:

(CFP) For all i = 1, . . . , k repeat Steps 1. – 4.
1. A chooses ai ∈R {0, 1} and computes com(ai, ri). She sends com(ai, ri) to B.
2. B chooses bi ∈R {0, 1} and sends bi to A.
3. A sends open(ai, ri) and B checks if the opening is valid.
4. Both compute coini = ai ⊕ bi.

(CRS)
5. A and B compute ω = coin1 . . . coink.

(NIZK)
6. A sends π(ω,x) to B. B checks the proof and accepts or rejects accordingly.

Fig. 7. Interactive Quantum Zero-Knowledge

It would be natural to think that the IQZK Protocol could be proved secure
simply by showing that the IQZKFCOIN Protocol implements some appropriate
functionality and then use the composition theorem from [8]. Unfortunately, a
zero-knowledge protocol – which is not necessarily a proof of knowledge – cannot
be modeled by a functionality in a natural way. We therefore instead prove ex-
plicitly that the IQZK Protocol has the standard properties of a zero-knowledge
proof as follows.

Completeness: From the analysis of the Coin− Flip Protocol and its indistin-
guishability from the ideal functionality FCOIN, it follows that if both players hon-
estly choose random bits, each coini for all i = 1, . . . , k in the (CFP)-subprotocol
is generated uniformly at random. Thus, ω is a random common reference string
of size k and the acceptance probability of the (NIZK)-subprotocol as given above
holds. Completeness for the IQZK Protocol follows.

Soundness: Again, we only consider the case where A∗ executes the entire
protocol without making obvious cheats, since otherwise, B immediately aborts.
Assume that A∗ could cheat in the IQZK Protocol, i.e., B would accept an invalid
proof with non-negligible probability. Then we could combine A∗ with simulator
Â∗ of the Coin− Flip Protocol (Fig. 3) to show that the IQZKFCOIN Protocol
was not sound. This, however, is inconsistent with the previously given soundness
argument and thus proves by contradiction that the IQZK Protocol is sound.

Zero-Knowledge: A simulator ŜIQZK can be composed of simulator ŜIQZKFCOIN

(Fig. 6) and simulator B̂∗ for the Coin− Flip Protocol (Fig. 4). ŜIQZK gets
classical input x as well as quantum input W and X . It then receives a valid proof
π and a random string ω from ŜNIZK. As in ŜIQZKFCOIN , ω is split into coin1 . . . coink.
For each coini, it will then invoke B̂∗ to simulate one coin-flip execution with
coini as result. In other words, whenever B̂∗ asks FCOIN to output a bit (Step 2,
Fig. 4), it instead receives this coini. The transcript of the simulation, i.e. π(ω, x)
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as well as (com(ai, ri), bi, open(ai, ri)) ∀i = 1, . . . , k and ω = coin1 . . . coink, is
indistinguishable from the transcript of the IQZK Protocol for any quantum-
computationally bounded B∗, which concludes the zero-knowledge proof.

4.2 Generating Commitment Keys for Improved Quantum
Protocols

Recently, Damg̊ard et al. [4] proposed a general compiler for improving the se-
curity of a large class of quantum protocols. Alice starts such protocols by trans-
mitting random BB84-qubits to Bob who measures them in random bases. Then
some classical messages are exchanged to accomplish different cryptographic
tasks. The original protocols are typically unconditionally secure against cheat-
ing Alice, and secure against a so-called benignly dishonest Bob, i.e., Bob is
assumed to handle most of the received qubits as he is supposed to. Later on in
the protocol, he can deviate arbitrarily. The improved protocols are then secure
against an arbitrary computationally bounded (quantum) adversary. The com-
pilation also preserves security in the bounded-quantum-storage model (BQSM)
that assumes the quantum storage of the adversary to be of limited size. If the
original protocol was BQSM-secure, the improved protocol achieves hybrid secu-
rity, i.e., it can only be broken by an adversary who has large quantum memory
and large computing power.

Briefly, the argument for computational security proceeds along the following
lines. After the initial qubit transmission from A to B, B commits to all his
measurement bases and outcomes. The (keyed) dual-mode commitment scheme
that is used must have the special properties that the key can be generated
by one of two possible key-generation algorithms: GH or GB. Depending of the
key in use, the scheme provides both flavors of security. Namely, with key pkH
generated by GH, respectively pkB produced by GB, the commitment scheme is
unconditionally hiding respectively unconditionally binding. Furthermore, the
scheme is secure against a quantum adversary and it holds that pkH

q≈ pkB. The
commitment construction is described in full detail in [4].

In the real-life protocol, B uses the unconditionally hiding key pkH to main-
tain unconditional security against any unbounded A∗. To argue security against
a computationally bounded B∗, an information-theoretic argument involving
simulator B̂′ (see [4]) is given to prove that B∗ cannot cheat with the uncon-
ditionally binding key pkB. Security in real life then follows from the quantum-
computational indistinguishability of pkH and pkB.

The CRS model is assumed to achieve high efficiency and practicability. Here,
we discuss integrating the generation of a common reference string from scratch
based on our quantum-secure coin-flipping. Thus, we can implement the entire
process in the quantum world, starting with the generation of a CRS without any
initially shared information and using it during compilation as commitment key.3

3 Note that implementing the entire process comes at the cost of a non constant-round
construction, added to otherwise very efficient protocols under the CRS-assumption.



66 I. Damg̊ard and C. Lunemann

As mentioned in [4], a dual-mode commitment scheme can be constructed from
the lattice-based cryptosystem of Regev [18]. It is based on the learning with
error problem, which can be reduced from worst-case (quantum) hardness of the
(general) shortest vector problem. Hence, breaking Regev’s cryptosystem implies
an efficient algorithm for approximating the lattice problem, which is assumed to
be hard even quantumly. Briefly, the cryptosystem uses dimension k as security
parameter and is parametrized by two integers m and p, where p is a prime,
and a probability distribution on Zp. A regular public key for Regev’s scheme is
indistinguishable from a case where a public key is chosen independently from
the secret key, and in this case, the ciphertext carries essentially no information
about the message. Thus, the public key of a regular key pair can be used as the
unconditional binding key pkB′ in the commitment scheme for the ideal-world
simulation. Then for the real protocol, an unconditionally hiding commitment
key pkH′ can simply be constructed by uniformly choosing numbers in Zk

p × Zp.
Both public keys will be of size O(mk log p), and the encryption process involves
only modular additions, which makes its use simple and efficient.

The idea is now the following. We add (at least) k executions of our
Coin− Flip Protocol as a first step to the construction of [4] to generate
a uniformly random sequence coin1 . . . coink. These k random bits produce a
pkH′ as sampled by GH, except with negligible probability. Hence, in the real-
world, Bob can use coin1 . . . coink = pkH′ as key for committing to all his basis
choices and measurement outcomes. Since an ideal-world adversary B̂′ is free
to choose any key, it can generate (pkB′, sk′), i.e. a regular public key together
with a secret key according to Regev’s cryptosystem. For the security proof,
write pkB′ = coin1 . . . coink. In the simulation, B̂′ first invokes B̂∗ for each coini

to simulate one coin-flip execution with coini as result. As before, whenever B̂∗

asks FCOIN to output a bit, it instead receives this coini. Then B̂′ has the possi-
bility to decrypt dishonest B∗’s commitments during simulation, which binds B∗

unconditionally to his committed measurement bases and outcomes. Finally, as
we proved in the analysis of the Coin− Flip Protocol that pkH′ is a uniformly
random string, Regev’s proof of semantic security shows that pkH′

q≈ pkB′, and
(quantum-) computational security of the real protocols in [4] follows.

5 On Efficient Simulation in the CRS Model

For our Coin− Flip Protocol in the plain model, we cannot claim universal
composability. As already mentioned, in case of unconditional security against
dishonest A∗ according to Definition 2.2, we do not require the simulator to be
efficient. In order to achieve efficient simulation, Â∗ must be able to extract the
choice bit efficiently out of A∗’s commitment, such that A∗’s input is defined
after this step. The standard approach to do this is to give the simulator some
trapdoor information related to the common reference string, that A∗ does not
have in real life. Therefore, we extend the commitment scheme to build in such
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a trapdoor and ensure efficient extraction. To further guarantee UC-security,
we circumvent the necessity of rewinding B∗ by extending the construction also
with respect to equivocability.

We will adapt an approach to our set-up, which is based on the idea of UC-
commitments [3] and already discussed in the full version of [4]. We require a
Σ-protocol for a (quantumly) hard relation R = {(x, w)}, i.e. an honest verifier
perfect zero-knowledge interactive proof of knowledge, where the prover shows
that he knows a witness w such that the problem instance x is in the language
L ((x, w) ∈ R). Conversations are of form (aΣ , cΣ , zΣ), where the prover sends
aΣ , the verifier challenges him with bit cΣ , and the prover replies with zΣ. For
practical candidates of R, see e.g. [5]. Instead of the simple commitment scheme,
we use the keyed dual-mode commitment scheme described in Section 4.2 but
now based on a multi-bit version of Regev’s scheme [17]. Still we construct it
such that depending of the key pkH or pkB, the scheme provides both flavors of
security and it holds that pkH

q≈ pkB.
In real life, the CRS consists of commitment key pkB and an instance x′ for

which it holds that � w′ such that (x′, w′) ∈ R, where we assume that x
q≈ x′.

To commit to bit a, A runs the honest verifier simulator to get a conversation
(aΣ , a, zΣ). She then sends aΣ and two commitments c0, c1 to B, where ca =
compkB(zΣ, r) and c1−a = compkB(0z′

, r′) with randomness r, r′ and z′ = |z|.
Then, a, zΣ, r is send to open the relevant one of c0 or c1, and B checks that
(aΣ , a, zΣ) is an accepting conversation. Assuming that the Σ-protocol is honest
verifier zero-knowledge and pkB leads to unconditionally binding commitments,
the new commitment construction is again unconditionally binding.

During simulation, Â∗ chooses a pkB in the CRS such that it knows the match-
ing decryption key sk. Then, it can extract A∗’s choice bit a by decrypting both
c0 and c1 and checking which contains a valid zΣ such that (aΣ , a, zΣ) is ac-
cepting. Note that not both c0 and c1 can contain a valid reply, since otherwise,
A∗ would know a w′ such that (x′, w′) ∈ R. In order to simulate in case of
B∗, B̂∗ chooses the CRS as pkH and x. Hence, the commitment is uncondition-
ally hiding. Furthermore, it can be equivocated, since ∃ w with (x, w) ∈ R and
therefore, c0, c1 can both be computed with valid replies, i.e. c0 = compkH(z0Σ , r)
and c1 = compkH(z1Σ , r′). Quantum-computational security against B∗ follows
from the indistinguishability of the keys pkB and pkH and the indistinguishablity
of the instances x and x′, and efficiency of both simulations is ensured due to
extraction and equivocability.
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A Watrous’ Quantum Rewinding Lemma

Lemma 1 (Quantum Rewinding Lemma with small perturbations [20]).
Let Q be the unitary (ñ, k̃)-quantum circuit as given in [20]. Furthermore, let
p0, q ∈ (0, 1) and ε ∈ (0, 1

2 ) be real numbers such that

1. |p− q| < ε
2. p0(1 − p0) ≤ q(1 − q), and
3. p0 ≤ p

for all ñ-qubit states |ψ〉. Then there exists a general quantum circuit R of size

O

(
log(1/ε)size(Q)

p0(1 − p0)

)
such that, for every ñ-qubit state |ψ〉, the output ρ(ψ) of R satisfies

〈φgood(ψ)|ρ(ψ)|φgood(ψ)〉 ≥ 1 − ε′

where ε′ = 16ε log2(1/ε)
p2
0(1−p0)2 .

Note that p0 denotes the lower bound on the success probability p, for which
the procedure guarantees correctness. Furthermore, for negligible ε but non-
negligible p0, it follows that ε′ is negligible. For a more detailed description of
the lemma and the corresponding proofs, we refer to [20].
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Abstract. We study quantum protocols among two distrustful par-
ties. Under the sole assumption of correctness—guaranteeing that hon-
est players obtain their correct outcomes—we show that every protocol
implementing a non-trivial primitive necessarily leaks information to a
dishonest player. This extends known impossibility results to all non-
trivial primitives. We provide a framework for quantifying this leakage
and argue that leakage is a good measure for the privacy provided to the
players by a given protocol. Our framework also covers the case where
the two players are helped by a trusted third party. We show that de-
spite the help of a trusted third party, the players cannot amplify the
cryptographic power of any primitive. All our results hold even against
quantum honest-but-curious adversaries who honestly follow the proto-
col but purify their actions and apply a different measurement at the
end of the protocol. As concrete examples, we establish lower bounds on
the leakage of standard universal two-party primitives such as oblivious
transfer.

Keywords: two-party primitives, quantum protocols, quantum informa-
tion theory, oblivious transfer.

1 Introduction

Quantum communication allows to implement tasks which are classically impos-
sible. The most prominent example is quantum key distribution [4] where two
honest players establish a secure key against an eavesdropper. In the two-party
setting however, quantum and classical cryptography often show similar limits.
Oblivious transfer [22], bit commitment [24,23], and even fair coin tossing [18]
are impossible to realize securely both classically and quantumly. On the other
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hand, quantum cryptography allows for some weaker primitives impossible in
the classical world. For example, quantum coin-flipping protocols with maxi-
mum bias of 1√

2
− 1

2 exist1 against any adversary [8] while remaining impossible
based solely on classical communication. A few other weak primitives are known
to be possible with quantum communication. For example, the generation of an
additive secret-sharing for the product xy of two bits, where Alice holds bit x and
Bob bit y, has been introduced by Popescu and Rohrlich as machines modeling
non-signaling non-locality (also called NL-boxes) [29]. If Alice and Bob share
an EPR pair, they can simulate an NL-box with symmetric error probability
sin2 π

8 [29,3]. Equivalently, Alice and Bob can implement 1-out-of-2 oblivious
transfer (1-2-ot) privately provided the receiver Bob gets the bit of his choice
only with probability of error sin2 π

8 [1]. It is easy to verify that even with such
imperfection these two primitives are impossible to realize in the classical world.
This discussion naturally leads to the following question:

– Which two-party cryptographic primitives are possible to achieve using quan-
tum communication?

Most standard classical two-party primitives have been shown impossible to im-
plement securely against weak quantum adversaries reminiscent to the classical
honest-but-curious (HBC) behavior [22]. The idea behind these impossibility
proofs is to consider parties that purify their actions throughout the protocol
execution. This behavior is indistinguishable from the one specified by the pro-
tocol but guarantees that the joint quantum state held by Alice and Bob at any
point during the protocol remains pure. The possibility for players to behave that
way in any two-party protocol has important consequences. For instance, the im-
possibility of quantum bit commitment follows from this fact [24,23]: After the
commit phase, Alice and Bob share the pure state |ψx〉 ∈ HA⊗HB corresponding
to the commitment of bit x. Since a proper commitment scheme provides no in-
formation about x to the receiver Bob, it follows that trA |ψ0〉〈ψ0| = trA |ψ1〉〈ψ1|.
In this case, the Schmidt decomposition guarantees that there exists a unitary
U0,1 acting only on Alice’s side such that |ψ1〉 = (U0,1⊗ IB)|ψ0〉. In other words,
if the commitment is concealing then Alice can open the bit of her choice by
applying a suitable unitary transform only to her part. A similar argument al-
lows to conclude that 1-2-ot is impossible [22]: Suppose Alice is sending the
pair of bits (b0, b1) to Bob through 1-2-ot. Since Alice does not learn Bob’s
selection bit, it follows that Bob can get bit b0 before undoing the reception of
b0 and transforming it into the reception of b1 using a local unitary transform
similar to U0,1 for bit commitment. For both these primitives, privacy for one
player implies that local actions by the other player can transform the honest
execution with one input into the honest execution with another input.

In this paper, we investigate the cryptographic power of two-party quan-
tum protocols against players that purify their actions. This quantum honest-
but-curious (QHBC) behavior is the natural quantum version of classical HBC

1 In fact, protocols with better bias are known for weak quantum coin flip-
ping [25,26,27].
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behavior. We consider the setting where Alice obtains random variable X and
Bob random variable Y according to the joint probability distribution PX,Y .
Any PX,Y models a two-party cryptographic primitive where neither Alice nor
Bob provide input. For the purpose of this paper, this model is general enough
since any two-party primitive with inputs can be randomized (Alice and Bob
pick their input at random) so that its behavior can be described by a suitable
joint probability distribution PX,Y . If the randomized version PX,Y is shown
to be impossible to implement securely by any quantum protocol then also the
original primitive with inputs is impossible.

Any quantum protocol implementing PX,Y must produce, when both parties
purify their actions, a joint pure state |ψ〉 ∈ HAA′⊗HBB′ that, when subsystems
of A and B are measured in the computational basis, leads to outcomes X and Y
according the distribution PX,Y . Notice that the registers A′ and B′ only provide
the players with extra working space and, as such, do not contribute to the output
of the functionality (so parties are free to measure them the way they want).
In this paper, we adopt a somewhat strict point of view and define a quantum
protocol π for PX,Y to be correct if and only if the correct outcomes X, Y are
obtained and the registers A′ and B′ do not provide any additional information
about Y and X respectively since otherwise π would be implementing a different
primitive PXX′,Y Y ′ rather than PX,Y .

The state |ψ〉 produced by any correct protocol for PX,Y is called a quantum
embedding of PX,Y . An embedding is called regular if the registers A′ and B′ are
empty. Any embedding |ψ〉 ∈ HAA′⊗HBB′ can be produced in the QHBC model
by the trivial protocol asking Alice to generate |ψ〉 before sending the quantum
state in HBB′ to Bob. Therefore, it is sufficient to investigate the cryptographic
power of embeddings in order to understand the power of two-party quantum
cryptography in the QHBC model.

Notice that if X and Y were provided privately to Alice and Bob—through
a trusted third party for instance—then the expected amount of information
one party gets about the other party’s output is minimal and can be quantified
by the Shannon mutual information I(X ; Y ) between X and Y . Assume that
|ψ〉 ∈ HAA′ ⊗ HBB′ is the embedding of PX,Y produced by a correct quantum
protocol. We define the leakage of |ψ〉 as

Δψ := max {S(X ; BB′) − I(X ; Y ) , S(Y ; AA′)− I(Y ; X) } , (1)

where S(X ; BB′) (resp. S(Y ; AA′)) is the information the quantum registers
BB′ (resp. AA′) provide about the output X (resp. Y ). That is, the leakage is the
maximum amount of extra information about the other party’s output given the
quantum state held by one party. It turns out that S(X ; BB′) = S(Y ; AA′) holds
for all embeddings, exhibiting a symmetry similar to its classical counterpart
I(X ; Y ) = I(Y ; X) and therefore, the two quantities we are taking the maximum
of (in the definition of leakage above) coincide.

Contributions. Our first contribution establishes that the notion of leakage
is well behaved. We show that the leakage of any embedding for PX,Y is lower
bounded by the leakage of some regular embedding of the same primitive. Thus,
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in order to lower bound the leakage of any correct implementation of a given
primitive, it suffices to minimize the leakage over all its regular embeddings. We
also show that the only non-leaking embeddings are the ones for trivial primi-
tives, where a primitive PX,Y is said to be (cryptographically) trivial if it can be
generated by a classical protocol against HBC adversaries2. It follows that any
quantum protocol implementing a non-trivial primitive PX,Y must leak infor-
mation under the sole assumption that it produces (X, Y ) with the right joint
distribution. This extends known impossibility results for two-party primitives
to all non-trivial primitives.

Embeddings of primitives arise from protocols where Alice and Bob have full
control over the environment. Having in mind that any embedding of a non-
trivial primitive leaks information, it is natural to investigate what tasks can be
implemented without leakage with the help of a trusted third party. The notion
of leakage can easily be adapted to this scenario. We show that no cryptographic
two-party primitive can be implemented without leakage with just one call to the
ideal functionality of a weaker primitive3. This new impossibility result does not
follow from the ones known since they all assume that the state shared between
Alice and Bob is pure.

We then turn our attention to the leakage of correct protocols for a few con-
crete universal primitives. From the results described above, the leakage of any
correct implementation of a primitive can be determined by finding the (regular)
embedding that minimizes the leakage. In general, this is not an easy task since
it requires to find the eigenvalues of the reduced density matrix ρA = trB |ψ〉〈ψ|
(or equivalently ρB = trA |ψ〉〈ψ|). As far as we know, no known results allow
us to obtain a non-trivial lower bound on the leakage (which is the difference
between the mutual information and accessible information) of non-trivial primi-
tives. One reason being that in our setting we need to lower bound this difference
with respect to a measurement in one particular basis. However, when PX,Y is
such that the bit-length of either X or Y is short, the leakage can be computed
precisely. We show that any correct implementation of 1-2-ot necessarily leaks
1
2 bit. Since NL-boxes and 1-2-ot are locally equivalent, the same minimal leak-
age applies to NL-boxes [38]. This is a stronger impossibility result than the
one by Lo [22] since he assumes perfect/statistical privacy against one party
while our approach only assumes correctness (while both approaches apply even
against QHBC adversaries). We finally show that for Rabin-OT and 1-2-ot of
r-bit strings (i.e. rot

r and 1-2-ot
r respectively), the leakage approaches 1 ex-

ponentially in r. In other words, correct implementations of these two primitives
trivialize as r increases since the sender gets almost all information about Bob’s
2 We are aware of the fact that our definition of triviality encompasses cryptograph-

ically interesting primitives like coin-tossing and generalizations thereof for which
highly non-trivial protocols exist [27,8]. However, the important fact (for the pur-
pose of this paper) is that all these primitives can be implemented by trivial classical
protocols against HBC adversaries.

3 The weakness of a primitive will be formally defined in terms of entropic monotones
for classical two-party computation introduced by Wolf and Wullschleger [36], see
Section 4.2.
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reception of the string (in case of rot
r) and Bob’s choice bit (in case of 1-2-ot

r).
These are the first quantitative impossibility results for these primitives and cer-
tainly the first time the hardness of implementing different flavors of string OTs
is shown to increase as the strings to be transmitted get longer.

Finally, we note that our lower bounds on the leakage of the randomized prim-
itives also lower-bound the minimum leakage for the standard versions of these
primitives4 where the players choose their inputs uniformly at random. While
we focus on the typical case where the primitives are run with uniform inputs,
the same reasoning can be applied to primitives with arbitrary distributions
of inputs.

Related Work. Our framework allows to quantify the minimum amount of
leakage whereas standard impossibility proofs as the ones of [23,24,22,2,7] do
not in general provide such quantification since they usually assume privacy
for one player in order to show that the protocol must be totally insecure for
the other player5. By contrast, we derive lower bounds for the leakage of any
correct implementation. At first glance, our approach seems contradictory with
standard impossibility proofs since embeddings leak the same amount towards
both parties. To resolve this apparent paradox it suffices to observe that in
previous approaches only the adversary purified its actions whereas in our case
both parties do. If a honest player does not purify his actions then some leakage
may be lost by the act of irreversibly and unnecessarily measuring some of his
quantum registers.

Our results complement the ones obtained by Colbeck in [10] for the set-
ting where Alice and Bob have inputs and obtain identical outcomes (called
single-function computations). [10] shows that in any correct implementation of
primitives of a certain form, an honest-but-curious player can access more in-
formation about the other party’s input than it is available through the ideal
functionality. Unlike [10], we deal in our work with the case where Alice and
Bob do not have inputs but might receive different outputs according to a joint
probability distributions. We show that only trivial distributions can be imple-
mented securely in the QHBC model. Furthermore, we introduce a quantitative
measure of protocol-insecurity that lets us answer which embedding allow the
least effective cheating.

Another notion of privacy in quantum protocols, generalizing its classical
counterpart from [9,21], is proposed by Klauck in [19]. Therein, two-party quan-
tum protocols with inputs for computing a function f : X×Y → Z, where X and
Y denote Alice’s and Bob’s respective input spaces, and privacy against QHBC

4 The definition of leakage of an embedding can be generalized to protocols with inputs,
where it is defined as max{supVB

S(X; VB) − I(X; Y ) , supVA
S(VA; Y ) − I(X; Y )},

where X and Y involve both inputs and outputs of Alice and Bob, respectively. The
supremum is taken over all possible (quantum) views VA and VB of Alice and Bob
obtained by their (QHBC-consistent) actions (and containing their inputs).

5 Trade-offs between the security for one and the security for the other player have
been considered before, but either the relaxation of security has to be very small [22]
or the trade-offs are restricted to particular primitives such as commitments [34,6].
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adversaries are considered. Privacy of a protocol is measured in terms of privacy
loss, defined for each round of the protocol and fixed distribution of inputs PX′,Y ′

by S(B; X |Y ) = H(X |Y )− S(X |B, Y ), where B denotes Bob’s private working
register, and X := (X ′, f(X ′, Y ′)), Y := (Y ′, f(X ′, Y ′)) represent the complete
views of Alice and Bob, respectively. Privacy loss of the entire protocol is then
defined as the supremum over all joint input distributions, protocol rounds,
and states of working registers. In our framework, privacy loss corresponds to
S(X ; Y B) − I(X ; Y ) from Alice point’s of view and S(Y ; XA) − I(X ; Y ) from
Bob’s point of view. Privacy loss is therefore very similar to our definition of
leakage except that it requires the players to get their respective honest outputs.
As a consequence, the protocol implementing PX,Y by asking one party to pre-
pare a regular embedding of PX,Y before sending her register to the other party
would have no privacy loss. Moreover, the scenario analyzed in [19] is restricted
to primitives which provide the same output f(X, Y ) to both players. Another
difference is that since privacy loss is computed over all rounds of a protocol,
a party is allowed to abort which is not considered QHBC in our setting. In
conclusion, the model of [19] is different from ours even though the measures of
privacy loss and leakage are similar. [19] provides interesting results concerning
trade-offs between privacy loss and communication complexity of quantum pro-
tocols, building upon similar results of [9,21] in the classical scenario. It would be
interesting to know whether a similar operational meaning can also be assigned
to the new measure of privacy, introduced in this paper.

A recent result by Künzler et al. [20] shows that two-party functions that are
securely computable against active quantum adversaries form a strict subset of
the set of functions which are securely computable in the classical HBC model.
This complements our result that the sets of securely computable functions in
both HBC and QHBC models are the same.

Roadmap. In Section 2, we introduce the cryptographic and information-theoretic
notions and concepts used throughout the paper. We define, motivate, and ana-
lyze the generality of modeling two-party quantum protocols by embeddings in
Section 3 and define triviality of primitives and embeddings. In Section 4, we de-
fine the notion of leakage of embeddings, show basic properties and argue that it is
a reasonable measure of privacy. In Section 5, we explicitly lower bound the leak-
age of some universal two-partyprimitives. Finally, in Section 6 we discuss possible
directions for future research and open questions.

2 Preliminaries

Quantum Information Theory. Let |ψ〉AB ∈ HAB be an arbitrary pure
state of the joint systems A and B. The states of these subsystems are ρA =
trB |ψ〉〈ψ| and ρB = trA |ψ〉〈ψ|, respectively. We denote by S(A) := S(ρA) and
S(B) := S(ρB) the von Neumann entropy (defined as the Shannon entropy of
the eigenvalues of the density matrix) of subsystem A and B respectively. Since
the joint system is in a pure state, it follows from the Schmidt decomposition
that S(A) = S(B) (see e.g. [28]). Analogously to their classical counterparts, we
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can define quantum conditional entropy S(A|B) := S(AB)−S(B), and quantum
mutual information S(A; B) := S(A) + S(B) − S(AB) = S(A) − S(A|B). Even
though in general, S(A|B) can be negative, S(A|B) ≥ 0 is always true if A is
a classical register. Let R = {(PX(x), ρx

R}x∈X be an ensemble of states ρx
R with

prior probability PX(x). The average quantum state is ρR =
∑

x∈X PX(x)ρx
R.

The famous result by Holevo upper-bounds the amount of classical information
about X that can be obtained by measuring ρR:

Theorem 2.1 (Holevo bound [14,32]). Let Y be the random variable describ-
ing the outcome of some measurement applied to ρR for R = {PX(x), ρx

R}x∈X .
Then, I(X ; Y ) ≤ S(ρR)−

∑
x PX(x)S(ρx

R), where equality can be achieved if and
only if {ρx

R}x∈X are simultaneously diagonalizable.

Note that if all states in the ensemble are pure and all different then in order to
achieve equality in the theorem above, they have to form an orthonormal basis
of the space they span. In this case, the variable Y achieving equality is the
measurement outcome in this orthonormal basis.

Dependent Part. The following definition introduces a random variable de-
scribing the correlation between two random variables X and Y , obtained by
collapsing all values x1 and x2 for which Y has the same conditional distribu-
tion, to a single value.

Definition 2.2 (Dependent part [36]). For two random variables X, Y , let
fX(x) := PY |X=x. Then the dependent part of X with respect to Y is defined
as X ↘ Y := fX(X).

The dependent part X ↘ Y is the minimum random variable among the random
variables computable from X for which X ↔ X ↘ Y ↔ Y forms a Markov chain
[36]. In other words, for any random variable K = f(X) such that X ↔ K ↔
Y is a Markov chain, there exists a function g such that g(K) = X ↘ Y .
Immediately from the definition we get several other properties of X ↘ Y [36]:
H(Y |X ↘ Y ) = H(Y |X), I(X ; Y ) = I(X ↘ Y ; Y ), and X ↘ Y = X ↘ (Y ↘
X). The second and the third formula yield I(X ; Y ) = I(X ↘ Y ; Y ↘ X).

The notion of dependent part has been further investigated in [13,15,37].
Wullschleger and Wolf have shown that quantities H(X ↘ Y |Y ) and H(Y ↘
X |X) are monotones for two-party computation [37]. That is, none of these
values can increase during classical two-party protocols. In particular, if Al-
ice and Bob start a protocol from scratch then classical two-party protocols
can only produce (X, Y ) such that: H(X ↘ Y |Y ) = H(Y ↘ X |X) = 0,
since H(X ↘ Y |Y ) > 0 if and only if H(Y ↘ X |X) > 0 [37]. Conversely,
any primitive satisfying H(X ↘ Y |Y ) = H(Y ↘ X |X) = 0 can be imple-
mented securely in the honest-but-curious (HBC) model. We call such primitives
trivial6.

6 See Footnote 2 for a caveat about this terminology.
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Purification. All security questions we ask are with respect to (quantum)
honest-but-curious adversaries. In the classical honest-but-curious adversary
model (HBC), the parties follow the instructions of a protocol but store all in-
formation available to them. Quantum honest-but-curious adversaries (QHBC),
on the other hand, are allowed to behave in an arbitrary way that cannot be
distinguished from their honest behavior by the other player.

Almost all impossibility results in quantum cryptography rely upon a quantum
honest-but-curious behavior of the adversary. This behavior consists in purifying
all actions of the honest players. Purifying means that instead of invoking clas-
sical randomness from a random tape, for instance, the adversary relies upon
quantum registers holding all random bits needed. The operations to be exe-
cuted from the random outcome are then performed quantumly without fixing
the random outcomes. For example, suppose a protocol instructs a party to pick
with probability p state |φ0〉C and with probability 1 − p state |φ1〉C before
sending it to the other party through the quantum channel C. The purified ver-
sion of this instruction looks as follows: Prepare a quantum register in state√

p|0〉R +
√

1 − p|1〉R holding the random process. Add a new register initially in
state |0〉C before applying the unitary transform U : |r〉R|0〉C �→ |r〉R|φr〉C for
r ∈ {0, 1}, send register C through the quantum channel and keep register R.

From the receiver’s point of view, the purified behavior is indistinguishable
from the one relying upon a classical source of randomness because in both cases,
the state of register C is ρ = p|φ0〉〈φ0|+ (1− p)|φ1〉〈φ1|. All operations invoking
classical randomness can be purified similarly [23,24,22,17]. The result is that
measurements are postponed as much as possible and only extract information
required to run the protocol in the sense that only when both players need
to know a random outcome, the corresponding quantum register holding the
random coin will be measured. If both players purify their actions then the joint
state at any point during the execution will remain pure, until the very last step
of the protocol when the outcomes are measured.

Secure Two-Party Computation. In Section 5, we investigate the leakage
of several universal cryptographic two-party primitives. By universality we mean
that any two-party secure function evaluation can be reduced to them. We in-
vestigate the completely randomized versions where players do not have inputs
but receive randomized outputs instead. Throughout this paper, the term prim-
itive usually refers to the joint probability distribution defining its randomized
version. Any protocol implementing the standard version of a primitive (with in-
puts) can also be used to implement a randomized version of the same primitive,
with the “inputs” chosen according to an arbitrary fixed probability distribution.

3 Two-Party Protocols and Their Embeddings

3.1 Correctness

In this work, we consider cryptographic primitives providing X to honest player
Alice and Y to honest player Bob according to a joint probability distribution
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PX,Y . The goal of this section is to define when a protocol π correctly implements
the primitive PX,Y . The first natural requirement is that once the actions of π are
purified by both players, measurements of registers A and B in the computational
basis7 provide joint outcome (X, Y ) = (x, y) with probability PX,Y (x, y).

Protocol π can use extra registers A′ on Alice’s and B′ on Bob’s side pro-
viding them with (quantum) working space. The purification of all actions of π
therefore generates a pure state |ψ〉 ∈ HAB ⊗ HA′B′ . A second requirement for
the correctness of the protocol π is that these extra registers are only used as
working space, i.e. the final state |ψ〉ABA′B′ is such that the content of Alice’s
working register A′ does not give her any further information about Bob’s out-
put Y than what she can infer from her honest output X and vice versa for B′.
Formally, we require that S(XA′; Y ) = I(X ; Y ) and S(X ; Y B′) = I(X ; Y ) or
equivalently, that A′ ↔ X ↔ Y and X ↔ Y ↔ B′ form Markov chains8.

Definition 3.1. A protocol π for PX,Y is correct if measuring registers A and
B of its final state in the computational basis yields outcomes X and Y with
distribution PX,Y and the final state satisfies S(X ; Y B′) = S(XA′; Y ) = I(X ; Y )
where A′ and B′ denote the extra working registers of Alice and Bob. The state
|ψ〉 ∈ HAB ⊗HA′B′ is called an embedding of PX,Y if it can be produced by the
purification of a correct protocol for PX,Y .

We would like to point out that our definition of correctness is stronger than the
usual classical notion which only requires the correct distribution of the output
of the honest players. For example, the trivial classical protocol for the primitive
PX,Y in which Alice samples both player’s outputs XY , sends Y to Bob, but
keeps a copy of Y for herself, is not correct according to our definition, because
it implements a fundamentally different primitive, namely PXY,Y .

3.2 Regular Embeddings

We call an embedding |ψ〉ABA′B′ regular if the working registers A′, B′ are empty.
Formally, let Θn,m := {θ : {0, 1}n × {0, 1}m → [0 . . . 2π)} be the set of functions
mapping bit-strings of length m + n to real numbers between 0 and 2π.

Definition 3.2. For a joint probability distribution PX,Y where X ∈ {0, 1}n

and Y ∈ {0, 1}m, we define the set

E(PX,Y ) :=

⎧⎨⎩|ψ〉 ∈ HAB : |ψ〉 =
∑

x∈{0,1}n, y∈{0,1}m
eiθ(x,y)

√
PX,Y (x, y)|x, y〉AB , θ ∈ Θn,m

⎫⎬⎭ ,

7 It is clear that every quantum protocol for which the final measurement (providing
(x, y) with distribution PX,Y to the players) is not in the computational basis can
be transformed into a protocol of the described form by two additional local unitary
transformations.

8 Markov chains with quantum ends have been defined in [11] and used in subse-
quent works such as [12]. It is straightforward to verify that the entropic condition
S(XA′; Y ) = I(X;Y ) is equivalent to A′ ↔ X ↔ Y being a Markov chain and
similarly for the other condition.
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and call any state |ψ〉 ∈ E(PX,Y ) a regular embedding of the joint probability
distribution PX,Y .

Clearly, any |ψ〉 ∈ E(PX,Y ) produces (X, Y ) with distribution PX,Y since the
probability that Alice measures x and Bob measures y in the computational basis
is |〈ψ|x, y〉|2 = PX,Y (x, y). In order to specify a particular regular embedding
one only needs to give the description of the phase function θ(x, y). We denote
by |ψθ〉 ∈ E(PX,Y ) the quantum embedding of PX,Y with phase function θ. The
constant function θ(x, y) := 0 for all x ∈ {0, 1}n, y ∈ {0, 1}m corresponds to
what we call canonical embedding |ψ0〉 :=

∑
x,y

√
PX,Y (x, y)|x, y〉AB .

In Lemma 4.3 below we show that every primitive PX,Y has a regular embed-
ding which is in some sense the most secure among all embeddings of PX,Y .

3.3 Trivial Classical Primitives and Trivial Embeddings

In this section, we define triviality of classical primitives and (bipartite) embed-
dings. We show that for any non-trivial classical primitive, its canonical quantum
embedding is also non-trivial. Intuitively, a primitive PX,Y is trivial if X and Y
can be generated by Alice and Bob from scratch in the classical honest-but-
curious (HBC) model9. Formally, we define triviality via an entropic quantity
based on the notion of dependent part (see Section 2).

Definition 3.3. A primitive PX,Y is called trivial if it satisfies H(X ↘ Y |Y ) =
0, or equivalently, H(Y ↘ X |X) = 0. Otherwise, the primitive is called
non-trivial.

Definition 3.4. A regular embedding |ψ〉AB ∈ E(PX,Y ) is called trivial if either
S(X ↘ Y |B) = 0 or S(Y ↘ X |A) = 0. Otherwise, we say that |ψ〉AB is
non-trivial.

Notice that unlike in the classical case, S(X ↘ Y |B) = 0 ⇔ S(Y ↘ X |A) =
0 does not hold in general. As an example, consider a shared quantum state
where the computational basis corresponds to the Schmidt basis for only one
of its subsystems, say for A. Let |ψ〉 = α|0〉A|ξ0〉B + β|1〉A|ξ1〉B be such that
both subsystems are two-dimensional, {|ξ0〉, |ξ1〉} �= {|0〉, |1〉}, 〈ξ0|ξ1〉 = 0, and
|〈ξ0|0〉| �= |〈ξ1|0〉|. We then have S(X |B) = 0 and S(Y |A) > 0 while X = X ↘ Y
and Y = Y ↘ X .

To illustrate this definition of triviality, we argue in the following that if a
primitive PX,Y has a trivial regular embedding, there exists a classical protocol
which generates X, Y securely in the HBC model. Let |ψ〉 ∈ E(PX,Y ) be trivial
and assume without loss of generality that S(Y ↘ X |A) = 0. Intuitively, this
means that Alice can learn everything possible about Bob’s outcome Y (Y could
include some private coin-flips on Bob’s side, but that is “filtered out” by the
dependent part). More precisely, Alice holding register A can measure her part of

9 See Footnote 2 for a caveat about this terminology.
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the shared state to completely learn a realization of Y ↘ X , specifying PX|Y =y.
She then chooses X according to the distribution PX|Y =y. An equivalent way of
trivially generating (X, Y ) classically is the following classical protocol:

1. Alice samples PX|Y =y′ from distribution PY ↘X and announces its outcome
to Bob. She samples x from the distribution PX|Y =y′ .

2. Bob picks y with probability PY |Y ↘X=PX|Y =y′ .

Of course, the same reasoning applies in case S(X ↘ Y |B) = 0 with the roles
of Alice and Bob reversed.

In fact, the following lemma (whose proof can be found in the full version [33])
shows that any non-trivial primitive PX,Y has a non-trivial embedding, i.e. there
exists a quantum protocol correctly implementing PX,Y while leaking less infor-
mation to QHBC adversaries than any classical protocol for PX,Y in the HBC
model.

Lemma 3.5. If PX,Y is a non-trivial primitive then the canonical embedding
|ψ0〉 ∈ E(PX,Y ) is also non-trivial.

4 The Leakage of Quantum Embeddings

We formally define the leakage of embeddings and establish properties of the
leakage. The proofs of all statements in this section can be found in the full
version [33].

4.1 Definition and Basic Properties of Leakage

A perfect implementation of PX,Y simply provides X to Alice and Y to Bob and
does nothing else. The expected amount of information that one random vari-
able gives about the other is I(X ; Y ) = H(X)−H(X |Y ) = H(Y )−H(Y |X) =
I(Y ; X). Intuitively, we define the leakage of a quantum embedding |ψ〉ABA′B′

of PX,Y as the larger of the two following quantities: the extra amount of in-
formation Bob’s quantum registers BB′ provide about X and the extra amount
Alice’s quantum state in AA′ provides about Y respectively in comparison to
“the minimum amount” I(X ; Y ).10

Definition 4.1. Let |ψ〉 ∈ HABA′B′ be an embedding of PX,Y . We define the
leakage |ψ〉 as

Δψ(PX,Y ) := max {S(X ; BB′) − I(X ; Y ) , S(AA′; Y ) − I(X ; Y )} .

Furthermore, we say that |ψ〉 is δ-leaking if Δψ(PX,Y ) ≥ δ .
10 There are other natural candidates for the notion of leakage such as the difference in

difficulty between guessing Alice’s output X by measuring Bob’s final quantum state
B and based on the output of the ideal functionality Y . While such definitions do
make sense, they turn out not to be as easy to work with and it is an open question
whether the natural properties described later in this section can be established for
these notions of leakage as well.
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It is easy to see that the leakage is non-negative since S(X ; BB′) ≥ S(X ; B̃) for B̃
the result of a quantum operation applied to BB′. Such an operation could be the
trace over the extra working register B′ and a measurement in the computational
basis of each qubit of the part encoding Y , yielding S(X ; B̃) = I(X ; Y ).

We want to argue that our notion of leakage is a good measure for the privacy
of the player’s outputs. In the same spirit, we will argue that the minimum
achievable leakage for a primitive is related to the “hardness” of implementing
it. We start off by proving several basic properties about leakage.

For a general state in HABA′B′ the quantities S(X ; BB′) − I(X ; Y ) and
S(AA′; Y ) − I(X ; Y ) are not necessarily equal. Note though that they coincide
for regular embeddings |ψ〉 ∈ E(PX,Y ) produced by a correct protocol (where
the work spaces A′ and B′ are empty): Notice that S(X ; B) = S(X) + S(B) −
S(X, B) = H(X)+S(B)−H(X) = S(B) and because |ψ〉 is pure, S(A) = S(B).
Therefore, S(X ; B) = S(A; Y ) and the two quantities coincide. The following
lemma states that this actually happens for all embeddings and hence, the def-
inition of leakage is symmetric with respect to both players.

Lemma 4.2 (Symmetry). Let |ψ〉 ∈ HABA′B′ be an embedding of PX,Y . Then,

Δψ(PX,Y ) = S(X ; BB′) − I(X ; Y ) = S(AA′; Y )− I(X ; Y ) .

The next lemma shows that the leakage of an embedding of a given primitive is
lower-bounded by the leakage of some regular embedding of the same primitive,
which simplifies the calculation of lower bounds for the leakage of embeddings.

Lemma 4.3. For every embedding |ψ〉 of a primitive PX,Y , there is a regular
embedding |ψ′〉 of PX,Y such that Δψ(PX,Y ) ≥ Δψ′(PX,Y ).

So far, we have defined the leakage of an embedding of a primitive. The natural
definition of the leakage of a primitive is the following.

Definition 4.4. We define the leakage of a primitive PX,Y as the minimal leak-
age among all protocols correctly implementing PX,Y . Formally,

ΔPX,Y
:= min

|ψ〉
Δψ(PX,Y ) ,

where the minimization is over all embeddings |ψ〉 of PX,Y .

Notice that the minimum in the previous definition is well-defined, because by
Lemma 4.3, it is sufficient to minimize over regular embeddings |ψ〉 ∈ E(PX,Y ).
Furthermore, the function Δψ(PX,Y ) is continuous on the compact (i.e. closed
and bounded) set [0, 2π]|X×Y| of complex phases corresponding to elements
|x, y〉AB in the formula for |ψ〉AB ∈ E(PX,Y ) and therefore it achieves
its minimum.

The following theorem shows that the leakage of any embedding of a prim-
itive PX,Y is lower-bounded by the minimal leakage achievable for primitive
PX↘Y,Y ↘X (which due to Lemma 4.3 is achieved by a regular embedding).
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Theorem 4.5. For any primitive PX,Y , ΔPX,Y ≥ ΔPX↘Y,Y ↘X
.

Proof (Sketch). The proof idea is to pre-process the registers storing X and Y
in a way allowing Alice and Bob to convert a regular embedding of PX,Y (for
which the minimum leakage is achieved) into a regular embedding of PX↘Y,Y ↘X

by measuring parts of these registers. It follows that on average, the leakage of
the resulting regular embedding of PX↘Y,Y ↘X is at most the leakage of the
embedding of PX,Y the players started with. Hence, there must be a regular
embedding of PX↘Y,Y ↘X leaking at most as much as the best embedding of
PX,Y . See [33] for the complete proof. ��

4.2 Leakage as Measure of Privacy and Hardness of Implementation

The main results of this section are consequences of the Holevo bound
(Theorem 2.1).

Theorem 4.6. If a two-party quantum protocol provides the correct outcomes
of PX,Y to the players without leaking extra information, then PX,Y must be a
trivial primitive.

Proof. Theorem 4.5 implies that if there is a 0–leaking embedding of PX,Y than
there is also a 0–leaking embedding of PX↘Y,Y ↘X . Let us therefore assume
that |ψ〉 is a non-leaking embedding of PX,Y such that X = X ↘ Y and Y =
Y ↘ X . We can write |ψ〉 in the form |ψ〉 =

∑
x

√
PX(x)|x〉|ϕx〉 and get ρB

=
∑

x PX(x)|ϕx〉〈ϕx|. For the leakage of |ψ〉 we have: Δψ(PX,Y ) = S(X ; B) −
I(X ; Y ) = S(ρB)− I(X ; Y ) = 0. From the Holevo bound (Theorem 2.1) follows
that the states {|ϕx〉}x form an orthonormal basis of their span (since X = X ↘
Y , they are all different) and that Y captures the result of a measurement in
this basis, which therefore is the computational basis. Since Y = Y ↘ X , we get
that for each x, there is a single yx ∈ Y such that |ϕx〉 = |yx〉. The primitives
PX↘Y,Y ↘X and PX,Y are therefore trivial. ��

In other words, the only primitives that two-party quantum protocols can imple-
ment correctly (without the help of a trusted third party) and without leakage
are the trivial ones! We note that it is not necessary to use the strict notion of
correctness from Definition 3.1 in this theorem, but a more complicated proof
can be done solely based on the correct distribution of the values. This result
can be seen as a quantum extension of the corresponding characterization for the
cryptographic power of classical protocols in the HBC model. Whereas classical
two-party protocols cannot achieve anything non-trivial, their quantum counter-
parts necessarily leak information when they implement non-trivial primitives.

The notion of leakage can be extended to protocols involving a trusted third
party (see [33]). A special case of such protocols are the ones where the players
are allowed one call to a black box for a certain non-trivial primitive. It is
natural to ask which primitives can be implemented without leakage in this case.
As it turns out, the monotones H(X ↘ Y |Y ) and H(Y ↘ X |X), introduced
in [36], are also monotones for quantum computation, in the sense that all joint
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random variables X ′, Y ′ that can be generated by quantum players without
leakage using one black-box call to PX,Y satisfy H(X ′ ↘ Y ′|Y ′) ≤ H(X ↘ Y |Y )
and H(Y ′ ↘ X ′|X ′) ≤ H(Y ↘ X |X).

Theorem 4.7. Suppose that primitives PX,Y and PX′,Y ′ satisfy H(X ′ ↘ Y ′|Y ′)>
H(X ↘ Y |Y ) or H(Y ′ ↘ X ′|X ′) > H(Y ↘ X |X). Then any implementation of
PX′,Y ′ using just one call to the ideal functionality for PX,Y leaks information.

4.3 Reducibility of Primitives and Their Leakage

This section is concerned with the following question: Given two primitives PX,Y

and PX′,Y ′ such that PX,Y is reducible to PX′,Y ′ , what is the relationship be-
tween the leakage of PX,Y and the leakage of PX′,Y ′? We use the notion of
reducibility in the following sense: We say that a primitive PX,Y is reducible in
the HBC model to a primitive PX′,Y ′ if PX,Y can be securely implemented in
the HBC model from (one call to) a secure implementation of PX′,Y ′ . The above
question can also be generalized to the case where PX,Y can be computed from
PX′,Y ′ only with certain probability. Notice that the answer, even if we assume
perfect reducibility, is not captured in our previous result from Lemma 4.3, since
an embedding of PX′,Y ′ is not necessarily an embedding of PX,Y (it might vi-
olate the correctness condition). However, under certain circumstances, we can
show that ΔPX′,Y ′ ≥ ΔPX,Y .

Theorem 4.8. Assume that primitives PX,Y and PX′,Y ′ = PX′
0X′

1,Y ′
0Y ′

1
satisfy

the condition: ∑
x,y:PX′

0,Y ′
0 |X′

1=x,Y ′
1=y�PX,Y

PX′
1,Y ′

1
(x, y) ≥ 1 − δ,

where the relation # means that the two distributions are equal up to relabeling
of the alphabet. Then, ΔPX′,Y ′ ≥ (1 − δ)ΔPX,Y .

This theorem allows us to derive a lower bound on the leakage of 1-out-of-2
Oblivious Transfer of r-bit strings in Section 5.

5 The Leakage of Universal Cryptographic Primitives

In this section, we exhibit lower bounds on the leakage of some universal two-
party primitives. In the following table, rot

r denotes the r-bit string version
of randomized Rabin OT, where Alice receives a random r-bit string and Bob
receives the same string or an erasure symbol, each with probability 1/2. Sim-
ilarly, 1-2-ot

r denotes the string version of 1-2-ot, where Alice receives two
r-bit strings and Bob receives one of them. By 1-2-otp we denote the noisy
version of 1-2-ot, where the 1-2-ot functionality is implemented correctly only
with probability 1 − p. Table 1 summarizes the lower bounds on the leakage of
these primitives (the derivations can be found in the full version [33]). We note
that Wolf and Wullschleger [38] have shown that a randomized 1-2-ot can be
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Table 1. Lower bounds on the leakage for universal two-party primitives

primitive leaking at least comments

rot
1 (h( 1

4
) − 1

2
) ≈ 0.311 same leakage for all regular embeddings

rot
r (1 − O(r2−r)) same leakage for all regular embeddings

1-2-ot, sand
1
2

minimized by canonical embedding

1-2-ot
r (1 − O(r2−r)) (suboptimal) lower bound

1-2-otp

(
1/2−p−

√
p(1−p)

)2
8 ln 2

if p < sin2(π/8) ≈ 0.15, (suboptimal) lower bound

transformed by local operations into an additive sharing of an AND (here called
sand). Therefore, our results for 1-2-ot below also apply to sand.

1-2-ot
r and 1-2-otp are primitives where the direct evaluation of the leakage

for a general embedding |ψθ〉 is hard, because the number of possible phases
increases exponentially in the number of qubits. Instead of computing S(A)
directly, we derive (suboptimal) lower bounds on the leakage.

Based on the examples of rot
r and 1-2-ot, it is tempting to conjecture that

the leakage is always minimized for the canonical embedding, which agrees with
the geometric intuition that the minimal pairwise distinguishability of quantum
states in a mixture minimizes the von Neumann entropy of the mixture. However,
Jozsa and Schlienz have shown that this intuition is sometimes incorrect [16].
In a quantum system of dimension at least three, we can have the following
situation: For two sets of pure states {|ui〉}n

i=1 and {|vi〉}n
i=1 satisfying |〈ui|uj〉| ≤

|〈vi|vj〉| for all i, j, there exist probabilities pi such that for ρu :=
∑n

i=1 pi|ui〉〈ui|,
ρv :=
∑n

i=1 pi|vi〉〈vi|, it holds that S(ρu) < S(ρv). As we can see, although each
pair |ui〉, |uj〉 is more distinguishable than the corresponding pair |vi〉, |vj〉, the
overall ρu provides us with less uncertainty than ρv. It follows that although
for the canonical embedding |ψ0〉 =

∑
y |ϕy〉|y〉 of PX,Y the mutual overlaps

|〈ϕy|ϕy′〉| are clearly maximized, it does not necessarily imply that S(A) in
this case is minimal over E(PX,Y ). It is an interesting open question to find a
primitive whose canonical embedding does not minimize the leakage or to prove
that no such primitive exists.

For the primitive P
otp

X,Y , our lower bound on the leakage only holds for p <

sin2(π/8) ≈ 0.15. Notice that in reality, the leakage is strictly positive for any
embedding of P

otp

X,Y with p < 1/4, since for p < 1/4, P
otp

X,Y is a non-trivial
primitive. On the other hand, P

ot1/4
X,Y is a trivial primitive implemented securely

by the following protocol in the classical HBC model:

1. Alice chooses randomly between her input bits x0 and x1 and sends the
chosen value xa to Bob.

2. Bob chooses his selection bit c uniformly at random and sets y := xa.

Equality xc = y is satisfied if either a = c, which happens with probability
1/2, or if a �= c and xa = x1−a, which happens with probability 1/4. Since the
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two events are disjoint, it follows that xc = y with probability 3/4 and that
the protocol implements P

ot1/4

X,Y . The implementation is clearly secure against
honest-but-curious Alice, since she does not receive any message from Bob. It
is also secure against Bob, since he receives only one bit from Alice. By letting
Alice randomize the value of the bit she is sending, the players can implement
P

otp

X,Y securely for any value 1/4 < p ≤ 1/2.

6 Conclusion and Open Problems

We have provided a quantitative extension of qualitative impossibility results
for two-party quantum cryptography. All non-trivial primitives leak information
when implemented by quantum protocols. Notice that demanding a protocol to
be non-leaking does in general not imply the privacy of the players’ outputs.
For instance, consider a protocol implementing 1-2-ot but allowing a curious
receiver with probability 1

2 to learn both bits simultaneously or with probability
1
2 to learn nothing about them. Such a protocol for 1-2-ot would be non-leaking
but nevertheless insecure. Consequently, Theorem 4.6 not only tells us that any
quantum protocol implementing a non-trivial primitive must be insecure, but
also that a privacy breach will reveal itself as leakage. Our framework allows to
quantify the leakage of any two-party quantum protocol correctly implementing
a primitive. The impossibility results obtained here are stronger than standard
ones since they only rely on the cryptographic correctness of the protocol. Fur-
thermore, we present lower bounds on the leakage of some universal two-party
primitives.

A natural open question is to find a way to identify good embeddings for a
given primitive. In particular, how far can the leakage of the canonical embedding
be from the best one? Such a characterization, even if only applicable to special
primitives, would allow to lower bound their leakage and would also help to
understand the power of two-party quantum cryptography in a more concise way.

It would also be interesting to find a measure of cryptographic non-triviality
for two-party primitives and to see how it relates to the minimum leakage of any
implementation by quantum protocols. For instance, is it true that quantum
protocols for primitive PX,Y leak more if the minimum (total variation) distance
between PX,Y and any trivial primitive increases?

Another question we leave for future research is to define and investigate other
notions of leakage, e.g. in the one-shot setting instead of in the asymptotic regime
(as outlined in Footnote 10). Results in the one-shot setting have already been
established for data compression [30], channel capacities [31], state-merging [35,5]
and other (quantum-) information-theoretic tasks.

Furthermore, it would be interesting to find more applications for the concept
of leakage, considered also for protocols using an environment as a trusted third
party. In this direction, we have shown in Theorem 4.7 that any two-party quan-
tum protocol for a given primitive, using a black box for an “easier” primitive,
leaks information. Lower-bounding this leakage is an interesting open question.
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We might also ask how many copies of the “easier” primitive are needed to
implement the “harder” primitive by a quantum protocol, which would give us
an alternative measure of non-triviality of two-party primitives.
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Abstract. Code-based cryptography is often viewed as an interesting
“Post-Quantum” alternative to the classical number theory cryptogra-
phy. Unlike many other such alternatives, it has the convenient advan-
tage of having only a few, well identified, attack algorithms. However,
improvements to these algorithms have made their effective complexity
quite complex to compute. We give here some lower bounds on the work
factor of idealized versions of these algorithms, taking into account all
possible tweaks which could improve their practical complexity. The aim
of this article is to help designers select durably secure parameters.

Keywords: computational syndrome decoding, information set decod-
ing, generalized birthday algorithm.

Introduction

Code-based cryptography has received renewed attention with the recent interest
for “Post-Quantum Cryptography” (see for instance [5]). Several new interesting
proposals have been published in the last few months [3,20,18]. For those new
constructions as well as for previously known code-based cryptosystems, precise
parameters selection is always a sensitive issue. Most of the time the most threat-
ening attacks are based on decoding algorithms for generic linear codes. There
are two main families of algorithms, Information Set Decoding (ISD), and Gen-
eralized Birthday Algorithm (GBA). Each family being suited for some different
parameter ranges.

ISD is part of the folklore of algorithmic coding theory and is among the most
efficient techniques for decoding errors in an arbitrary linear code. One major
step in the development of ISD for the cryptanalysis of the McEliece encryption
scheme is Stern’s variant [22] which mixes birthday attack with the traditional
approach. A first implementation description [10], with several improvements,
led to an attack of 264.2 binary operations for the original McEliece parameters,
that is decoding 50 errors in a code of length 1024 and dimension 524. More re-
cently [6], a new implementation was proposed with several new improvements,
with a binary workfactor of 260.5. Furthermore, the authors report a real attack
(with the original parameters) with a computational effort of about 258 CPU
cycles. The above numbers are accurate estimates of the real cost of a decoding
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attack. They involve several parameters that have to be optimized and further-
more, no close formula exists, making a precise evaluation rather difficult.

GBA was introduced by Wagner in 2002 [25] but was not specifically designed
for decoding. Less generic version of this algorithm had already been used in
the past for various cryptanalytic applications [9,11]. Its first successful use to
cryptanalyse a code-based system is due to Coron and Joux [12]. In particular,
this work had a significant impact for selecting the parameters of the FSB hash
function [1].

Most previous papers on decoding attacks were written from the point of view
of the attacker and were looking for upper bounds on the work factor of some
specific implementation. One exception is the asymptotic analysis for ISD that
has been recently presented in [8]. Here we propose a designer approach and we
aim at providing tools to easily select secure parameters.

For both families, we present new idealized version of the algorithms, which
encompass all variants and improvements known in cryptology as well as some
new optimizations. This allows us to give easy to compute lower bounds for
decoding attacks up to the state of the art.

We successively study three families of algorithms, first the “standard” birth-
day attack, then two evolutions of this technique, namely Stern’s variant of infor-
mation set decoding and Wagner’s generalized birthday algorithm. In each case
we propose very generic lower bounds on their complexity. Finally, we illustrate
our work with case studies of some of the main code-based cryptosystems.

1 The Decoding Problem in Cryptology

Problem 1 (Computational Syndrome Decoding - CSD). Given a matrix
H ∈ {0, 1}r×n, a word s ∈ {0, 1}r and an integer w > 0, find a word e ∈ {0, 1}n

of Hamming weight ≤ w such that eHT = s.

We will denote CSD(H, s, w) an instance of that problem. It is equivalent to
decoding w errors in a code with parity check matrix H . The decision problem
associated with computational syndrome decoding, namely, Syndrome Decoding,
is NP-complete [4].

This problem appears in code-based cryptography and for most systems it is
the most threatening known attack (sometimes the security can be reduced to
CSD alone [1,23]). Throughout the paper we will denote

Wn,w = {e ∈ {0, 1}n | wt(e) = w}

the set of all binary words of length n and Hamming weight w. The instances
of CSD coming from cryptology usually have solutions. Most of the time, this
solution is unique. This is the case for public-key encryption schemes [17,21] or
for identification schemes [23,24]. However, if the number w of errors is larger
than the Gilbert-Varshamov distance1 we may have a few, or even a large num-
ber, of solutions. Obtaining one of them is enough. This is the case for digital
signatures [13] or for hashing [1,2].
1 The Gilbert-Varshamov distance is the smallest integer d0 such that

(
n
d0

) ≥ 2r.
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2 The Birthday Attack for Decoding

We consider an instance CSD(H, s, w) of the computational syndrome decoding.
If the weight w is even, we partition the columns of H in two subsets (a priori
of equal size). For instance, let H = (H1 | H2) and let us consider the sets
L1 = {e1H

T
1 | e1 ∈ Wn/2,w/2} and L2 = {s + e2H

T
2 | e2 ∈ Wn/2,w/2}. Any

element of L1 ∩ L2 provides a pair (e1, e2) such that e1H1 = s + e2H2 and
e1 + e2 is a solution to CSD(H, s, w). This collision search has to be repeated
1/Prn,w times on average where Prn,w is the probability that one of the solutions
splits evenly between the left and right parts of H . Let Cn,r,w denote the total
number of columns sums we have to compute. If the solution is unique, we
have2

Prn,w =

(n/2
w/2

)2(
n
w

) and Cn,r,w =
|L1|+ |L2|

Prn,w
=

2
(

n
w

)(n/2
w/2

) ≈ 2

√(
n

w

)
4

√
πw

2

This number is close to the improvement expected when the birthday paradox
can be applied (i.e. replacing an enumeration of N elements by an enumeration
of 2

√
N elements). In this section, we will show that the factor 4

√
πw/2 can be

removed and that the formula often applies when w is odd. We will also provide
cost estimations and bounds.

2.1 A Decoding Algorithm Using the Birthday Paradox

The algorithm presented in Table 1 generalizes the birthday attack for decoding
presented above. For any fixed values of n, r and w this algorithm uses three
parameters (to be optimized): an integer � and two sets of constant weight words
W1 and W2.

The idea is to operate as much as possible with partial syndromes of size � < r
and to make the full comparison on r bits only when we have a partial match.
Increasing the size of W1 (and W2) will lead to a better trade-off, ideally with a
single execution of (main loop).

Definition 1. For any fixed value of n, r and w, we denote WFBA(n, r, w) the
minimal binary work factor (average cost in binary operations) of the algorithm
of Table 1 to produce a solution to CSD, for any choices of parameters W1, W2
and �.

An Estimation of the Cost. We will use the following assumptions (discussed
in appendix):

(B1) For all pairs (e1, e2) examined in the algorithm, the sums e1 + e2 are
uniformly and independently distributed in Wn,w.

2 We use Stirling’s formula to approximate factorials. The approximation we give is
valid because w � n.
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Table 1. Birthday decoding algorithm

For any fixed values of n, r and w, the following algorithm uses three param-
eters: an integer � > 0, W1 ⊂ Wn,�w/2� and W2 ⊂ Wn,�w/2	. We denote by
h�(x) the first � bits of any x ∈ {0, 1}r.

procedure BirthdayDecoding
input: H0 ∈ {0, 1}r×n, s ∈ {0, 1}r

repeat (main loop)

P ← random n × n permutation matrix
H ← H0P
for all e ∈ W1

i ← h�(eHT ) (ba 1)

write(e, i) // store e in some data structure at index i
for all e2 ∈ W2

i ← h�(s + e2H
T ) (ba 2)

S ← read(i) // extract the elements stored at index i
for all e1 ∈ S

if e1H
T = s + e2H

T
(ba 3)

return (e1 + e2)P T
(success)

(B2) The cost of the execution of the algorithm is approximatively equal to

� · �(ba 1) + � · �(ba 2) + K0 · �(ba 3), (1)

where K0 is the cost for testing e1H
T = s+ e2H

T given that h�(e1H
T ) =

h�(s + e2H
T ) and �(ba i) is the expected number of execution of the

instruction (ba i) before we meet the (success) condition.

Proposition 1. Under assumptions (B1) and (B2). We have3

WFBA(n, r, w) ≈ 2L log (K0L) with L = min
(√(

n
w

)
, 2r/2
)

and K0 is the cost for executing the instruction (ba 3) ( i.e. testing eHT = s).

Remarks

1. When
(

n
w

)
> 2r, the cost will depend of the number of syndromes 2r instead

of the number of words of weight w. This corresponds to the case where w is
larger than the Gilbert-Varshamov distance and we have multiple solutions.
We only need one of those solutions and thus the size of the search space is
reduced.

3 Here and after, “log” denotes the base 2 logarithm (and “ln” the Neperian
logarithm).
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2. It is interesting to note the relatively low impact of K0, the cost of the
test in (ba 3). Between an extremely conservative lower bound of K0 = 2,
an extremely conservative upper bound of K0 = wr and a more realistic
K0 = 2w the differences are very small.

3. In the case where w is odd and
(

n
�w/2�
)

< L, the formula of Proposition 1 is
only a lower bound. A better estimate would be

WFBA(n, r, w) ≈ 2L′ log
(

K0
L2

L′

)
with L′ =

(
n

�w/2�
)2 + L2

2
(

n
�w/2�
) . (2)

4. Increasing the size of |W1| (and |W2|) can be easily and efficiently achieved
by “overlapping” H1 and H2 (see the introduction of this section). More
precisely, we take for W1 all words of weight w/2 using only the n′ first
coordinates (with n/2 < n′ < n). Similarly, W2 will use the n′ (or more) last
coordinates.

2.2 Lower Bounds

As the attacker can make a clever choice of W1 and W2 which may contradict as-
sumption (B1), we do not want to use it for the lower bound. The result remains
very close to the estimate of the previous sections except for the multiplicative
constant which is

√
2 instead of 2.

Theorem 1. For any fixed value of n, r and w, we have

WFBA(n, r, w) ≥
√

2L log(K0L) with L = min
(√(

n
w

)
, 2r/2
)
.

where K0 is the cost for executing the instruction (ba 3).

3 Information Set Decoding (ISD)

We will consider here Stern’s algorithm [22], which is the best known decoder
for cryptographic purposes, and some of its implemented variants by Canteaut-
Chabaud [10] and Bernstein-Lange-Peters [6]. Our purpose is to present a lower
bound which takes all known improvements into account.

3.1 A New Variant of Stern’s Algorithm

Following other works [15,16], J. Stern describes in [22] an algorithm to find
a word of weight w in a binary linear code of length n and dimension k (and
codimension r = n − k). The algorithm uses two additional parameters p and
� (both positive integers). We present here a generalized version which acts on
the parity check matrix H0 of the code (instead of the generator matrix). Table 2
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Table 2. Generalized ISD algorithm

For any fixed values of n, r and w, the following algorithm uses four pa-
rameters: two integers p > 0 and � > 0 and two sets W1 ⊂ Wk+�,�p/2� and
W2 ⊂ Wk+�,�p/2	. We denote by h�(x) the last � bits of any x ∈ {0, 1}r .

procedure ISDecoding
input: H0 ∈ {0, 1}r×n, s0 ∈ {0, 1}r

repeat (main loop)

P ← random n × n permutation matrix
(H ′, U) ← PGElim(H0P ) // partial elimination as in (3)
s ← s0U

T

for all e ∈ W1

i ← h�(eH ′T ) (isd 1)

write(e, i) // store e in some data structure at index i
for all e2 ∈ W2

i ← h�(s + e2H
′T ) (isd 2)

S ← read(i) // extract the elements stored at index i
for all e1 ∈ S

if wt
(
s + (e1 + e2)H ′T

)
= w − p (isd 3)

return (P, e1 + e2) (success)

describes the algorithm. The partial Gaussian elimination of H0P consists in
finding U (r × r and non-singular) and H (and H ′) such that4

r − � k + �
1

. . .
UH0P = H = 1 H ′

� 0

(3)

where U is a non-singular r × r matrix. Let s = s0U
T . If e is a solution of

CSD(H, s, w) then ePT is a solution of CSD(H0, s0, w). Let (P, e′) be the output
of the algorithm, i.e., wt(s + e′H ′T ) = w− p, and let e′′ be the first r− � bits of
s + e′H ′T , the word e = (e′′ | e′) is a solution of CSD(H, s, w).

Definition 2. For any fixed value of n, r and w, we denote WFISD(n, r, w) the
minimal binary work factor (average cost in binary operations) of the algorithm of
Table 1 to produce a solution toCSD, for any choices of parameters �, p, W1 and W2.

3.2 Estimation of the Cost of the New Variant

To evaluate the cost of the algorithm we will assume that only the instructions
(isd i) are significant. This assumption is stronger than for the birthday attack,
4 In the very unlikely event that the first r− � columns are linearly dependent, we can

change P .



94 M. Finiasz and N. Sendrier

because it means that the Gaussian elimination at the beginning of every (main

loop) costs nothing. It is a valid assumption as we only want a lower bound.
Moreover, most of the improvements introduced in [10,6] are meant to reduce
the relative cost of the Gaussian elimination. We claim that within this “free
Gaussian elimination” assumption any lower bound on the algorithm of Table 2
will apply on all the variants of [6,10]. Our estimations will use the following
assumptions:

(I1) For all pairs (e1, e2) examined in the algorithm, the sums e1 + e2 are uni-
formly and independently distributed in Wk+�,p.

(I2) The cost of the execution of the algorithm is approximatively equal to

� · �(isd 1) + � · �(isd 2) + Kw−p · �(isd 3), (4)

where Kw−p is the average cost for checking wt
(
s + (e1 + e2)H ′T ) = w−p

and �(isd i) is the expected number of executions of the instruction (isd

i) before we meet the (success) condition.

Proposition 2. Under assumptions (I1) and (I2). If
(

n
w

)
< 2r (single solution)

or if
(

n
w

)
> 2r (multiple solutions) and

(
r

w−p

)(
k
p

)
% 2r, we have (we recall that

k = n − r)

WFISD(n, r, w) ≈ min
p

2� min
((

n
w

)
, 2r
)

λ
(

r−�
w−p

)√(
k+�

p

) with � = log
(
Kw−p

√(
k
p

))
with λ = 1− e−1 ≈ 0.63. If

(
n
w

)
> 2r (multiple solutions) and

(
r

w−p

)(
k
p

)
≥ 2r, we

have

WFISD(n, r, w) ≈ min
p

2� 2r/2√(
r−�
w−p

) with � = log
(
Kw−p

2r/2√
( r

w−p)

)
.

Remarks

1. For a given set of parameters the expected number of execution of (main

loop) is N = 1/(1 − exp(−X)) where X =
(

r+�
w−p

)(
k+�

p

)
/ min(2r,

(
n
w

)
).

2. The second formula applies when X > 1, that is when the expected number
of execution of (main loop) is (not much more than) one. In that case, as
for the birthday attack, the best strategy is to use W2 = Wk+�,	p/2
 (i.e. as
large as possible) and W1 is as small as possible but large enough to have
only one execution of (main loop) with probability close to 1.

3. When X % 1, we have N = 1/(1 − exp(−X)) ≈ 1/X and the first formula
applies.

4. When X < 1, the first formula still gives a good lower bound. But it is less
tight when X gets closer to 1.

5. When p is small and odd the above estimates for WFISD are not always
accurate. The adjustment is similar to what we have in (2) (see the remarks

following the birthday decoder estimation). In practice, if
(

k+�
�p/2�
)

<
√(

k+�
p

)
it is probably advisable to discard this odd value of p.
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6. We use the expression � = log (Kw−pLp(0)) for the optimal value of � (where

Lp(�) =
√(

k+�
p

)
or Lp(�) = 2r/2/

√(
r−�
w−p

)
respectively in the first case or in

the second case of the Proposition). In fact a better value would be a fixpoint
of the mapping � �→ Lp(�). In practice Lp(0) is a very good approximation.

3.3 Gain Compared with Stern’s Algorithm

Stern’s algorithm corresponds to a complete Gaussian elimination and to a par-
ticular choice of W1 and W2 in the algorithm of Table 2. A full Gaussian elimi-
nation is applied to the permuted matrix H0P and we get U and H ′ such that:

r k
1

H ′

UH0P = H =
.. .

1 H1 H2 �

(5)

The �-bit collision search is performed on k columns, moreover p is always even
and W1 and W2 will use p/2 columns of H1 and H2. The variants presented
in [6,10] consist in reducing the cost of the Gaussian elimination, or, for the
same H ′, to use different “slices” (H1 | H2) of � rows. All other improvements
lead to an operation count which is close to what we have in (4). The following
formula, obtained with the techniques of the previous section, gives a tight lower
bound all those variants.

WFStern(n, r, w) ≈ min
p

2�
(

n
w

)(
r−�
w−p

)(k/2
p/2

) with � = log
(
Kw−p

(k/2
p/2

))
.

The gain of the new version of ISD is ≈ λ 4
√

πp/2 which is rather small in
practice and correspond to the improvement of the “birthday paradox” part of
the algorithm.

4 Generalized Birthday Algorithm (GBA)

4.1 General Principle

The generalized birthday technique is particularly efficient for solving Syndrome
Decoding-like problems with a large number of solutions. Suppose one has to
solve the following problem:

Problem 2. Given a function f : N �→ {0, 1}r and an integer a, find a set of
2a indexes xi such that:

2a−1⊕
i=0

f(xi) = 0.
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In this problem, f will typically return the xi-th column of a binary matrix H .
Note that, here, f is defined upon an infinite set, meaning that there are an
infinity of solutions. To solve this problem, the Generalized Birthday Algorithm
(GBA) does the following:

– build 2a lists L0, . . . , L2a−1, each containing 2
r

a+1 different vectors f(xi)
– pairwise merge lists L2j and L2j+1 to obtain 2a−1 lists L′

j of XORs of 2
vectors f(xi). Only keep XORs of 2 vectors starting with r

a+1 zeros. On
average, the lists L′

j will contain 2
r

a+1 elements.
– pairwise merge the new lists L′

2j and L′
2j+1 to obtain 2a−2 lists L′′

j of XORs
of 4 vectors f(xi). Only keep XORs of 4 vectors starting with 2 r

a+1 zeros.
On average, the lists L′′

j will still contain 2
r

a+1 elements.
– continue these merges until only 2 lists remain. These 2 lists will be composed

of 2
r

a+1 XORs of 2a−1 vectors f(xi) starting with (a− 1) r
a+1 zeros.

– as only 2 r
a+1 bits of the previous vectors are non-zero, a simple application of

the standard birthday technique is enough to obtain 1 solution (on average).

As all the lists manipulated in this algorithm are of the same size, the com-
plexity of the algorithm is easy to compute: 2a − 1 merge operations have to
be performed, each of them requiring to sort a list of size 2

r
a+1 . The complexity

is thus O(2a r
a2

r
a+1 ). For simplicity we will only consider a lower bound of the

effective complexity of the algorithm: if we denote by L the size of the largest
list in the algorithm, the complexity is lower-bounded by O(L log L). this gives
a complexity of O( r

a+12
r

a+1 ).

Minimal Memory Requirements. The minimal memory requirements for
this algorithm are not as easy to compute. If all the lists are chosen to be of the
same size (as in the description of the algorithm we give), then it is possible to
compute the solution by storing at most a lists at a time in memory. This gives
us a memory complexity of O(a2

r
a+1 ). However, the starting lists can also be

chosen of different sizes so as to store only smaller lists.
In practice, for each merge operation, only one of the two lists has to be stored

in memory, the second one can always be computed on the fly. As a consequence,
looking at the tree of all merge operations (see Fig. 1), half the lists of the tree
can be computed on the fly (the lists in dashed line circles). Let L = 2

r
a+1 and

suppose one wants to use the Generalized Birthday Algorithm storing only lists
of size L

λ for a given λ. Then, in order to get, on average, a single solution in the
end, the lists computed on the fly should be larger. For instance, in the example
of Fig. 1 one should have:

– |L′′
1 | = λL, |L′

3| = λ2L, and |L7| = λ3L,
– |L′

1| = L and |L3| = λL,
– |L1| = L and |L5| = L.

In the general case this gives us a time/memory tradeoff when using GBA:
one can divide the memory complexity by λ at the cost of an increase in time
complexity by a factor λa. However, many other combinations are also possible
depending on the particular problem one has to deal with.
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L1 L2 L3 L4 L5 L6 L7L0

L0́

L0̋ L1̋

L1́ L2́ L3́

solution

Fig. 1. Merge operations in the Generalized Birthday Algorithm. All lists in dashed
line circles can be computed on the fly.

4.2 GBA under Constraints

In the previous section, we presented a version of GBA where the number of
vectors available was unbounded and where the number of vectors to XOR was
a power of 2. In practice, when using GBA to solve instances of the CSD problem
only n different r-bit vectors are available and w can be any number. We thus
consider an idealized version of GBA so as to bound the complexity of “real
world” GBA. The bounds we give are not always very tight. See for instance [7]
for the analysis of a running implementation of GBA under realistic constraints.

If w is not a power of 2, some of the starting lists Lj should contain vectors
f(xi) and others XORs of 2 or more vectors f(xi). We consider that the starting
lists all contain XORs of w

2a vectors f(xi), even if this is not an integer. This
will give the most time efficient algorithm, but will of course not be usable in
practice.

The length of the matrix n limits the size of the starting lists. For GBA to
find one solution on average, one needs lists Lj of size 2

r
a+1 . As the starting lists

contain XORs of w
2a vectors, we need

(
n
w
2a

)
≥ 2

r
a+1 . However, this constraint on

a is not sufficient: if all the starting lists contain the same vectors, all XORs will
be found many times and the probability of success will drop. To avoid this, we
need lists containing different vectors and this can be done by isolating the first
level of merges.

– first we select 2a−1 distinct vectors sj of a bits such that
⊕

sj = 0.
– then we pairwise merge lists L2j and L2j+1 to obtain lists L′

j containing
elements having their a first bits equal to sj .

After this first round, we have 2a−1 lists of XORs of 2w
2a vectors such that, if we

XOR the a first bits of one element from each list we obtain 0. Also, all the lists
contain only distinct elements, which means we are back in the general case of
GBA, except we now have 2a−1 lists of vectors of length r − a. These lists all
have a maximum size L = 1

2a

(
n
2w
2a

)
and can be obtained from starting lists Lj of

size
√(

n
2w
2a

)
(see Sect. 2). We get the following constraint on a:

1
2a

(
n
2w
2a

)
≥ 2

r−a
a . (6)
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(a) (c)(b)

Fig. 2. Logarithm of the complexity of the Generalized Birthday Algorithm for given
n and r when w varies. (a) with no optimization, (b) when the lists are initialized with
shortened vectors, and (c) when a is not an integer.

In practice, after the first level of merges we are not exactly in the general
case of GBA: if, for example, s0 ⊕ s1 = s2⊕ s3, after the second merges, lists L′′

0
and L′′

1 would contain exactly the same elements. This can be avoided by using
another set of target values s′j such that

⊕
s′j = 0 for the second level of merges

(as for the first level) and so on for the subsequent levels of merges (except the
last two levels).

Using Non-Integer Values for a. Equation (6) determines the largest pos-
sible value of a that can be used with GBA. For given n and r, if w varies,
the complexity of the algorithm will thus have a stair-like shape (see Fig. 2(a)).
The left-most point of each step corresponds to the case where Equation (6) is
an equality. However, when it is not an equality, it is possible to gain a little:
instead of choosing values sj of a bits one can use slightly larger values and
thus start the second level of merge with shorter vectors. This gives a broken-
line complexity curve (see Fig. 2(b)). This is somehow similar to what Minder
and Sinclair denote by “extended k-tree algorithm” [19]. In practice, this is al-
most equivalent to using non-integer values for a (see Fig. 2(c)). We will thus
assume that in GBA, a is a real number, chosen such that Equation (6) is an
equality.

Proposition 3. We can lower bound the binary work factor WFGBA(n, r, w) of
GBA applied to solving an instance of CSD with parameters (n, r, w) by:

WFGBA(n, r, w) ≥ r − a

a
2

r−a
a , with a such that

1
2a

(
n
2w
2a

)
= 2

r−a
a .

Note that this gives us a bound on the minimal time complexity of GBA but
does not give any bound on the memory complexity of the algorithm. Also, this
bound is computed using an idealized version of the algorithm: one should not
expect to achieve such a complexity in practice, except in some cases where a is
an integer and w a power of 2.
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5 Case Studies

Now that we have given some bounds on the complexities of the best algorithms
to solve CSD problems, we propose to study what happens when using them to
attack existing constructions.

Note that in this section, as in the whole paper, we only consider the resis-
tance to decoding attacks. Code-based cryptosystems may also be vulnerable
to structural attacks. However, no efficient structural attack is known for bi-
nary Goppa codes (McEliece encryption and CFS signature) or for prime order
random quasi-cyclic codes (FSB hash function).

5.1 Attacking the McEliece Cryptosystem

In the McEliece [17] and Niederreiter [21] cryptosystems the security relies on two
different problems: recovering the private key from the public key and decrypting
an encrypted message. Decrypting consists in finding an error pattern e of weight
w, such that e×HT = c where H is a binary matrix derived from the public key
and c is a syndrome derived from the encrypted message one wants to decrypt.
Here, we suppose that the structural attack consisting in recovering the private
key is infeasible and can assume that H is a random binary matrix. Decryption
thus consists in solving an instance of the CSD problem where one knows that
one and only one solution exists.

Having a single solution rules out any attempt to use GBA, or at least, any
attempt to use GBA would consist in using the classical birthday attack. For this
reasons the best attacks against the McEliece and Niederreiter cryptosystems
are all based on ISD. Table 3 gives the work factors we obtain using our bound
from Sect. 3. For the classical McEliece parameters (10, 50) this bound can be
compared to the work factors computed by non-idealized algorithms. Canteaut
and Chabaud [10] obtained a work factor of 264.2 and Bernstein, Lange and
Peters [6] a work factor of 260.5. As one can see, the gap between our bound and
their complexities is very small indicating two things:

– our bound on ISD is tight when evaluating the practical security of some
McEliece parameters,

– the best ISD-based algorithms are sufficiently advanced to make our assump-
tion that Gaussian elimination is free almost realistic. Almost no margin is
left for these techniques to improve and better attacks will need to introduce
new methods.

5.2 Attacking the CFS Signature Scheme

The attack we present here is due to Daniel Bleichenbacher, but was never pub-
lished. We present what he explained through private communication including
a few additional details.

The CFS signature scheme [13] is based on the Niederreiter cryptosystem:
signing a document requires to hash it into a syndrome and then try to decode
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Table 3. Work factors for the ISD lower-bound we computed for some typical
McEliece/Niederreiter parameters. The code has length n = 2m and codimension
r = mw and corrects w errors.

(m,w) optimal p optimal � binary work factor
(10, 50) 4 22 259.9

(11, 32) 6 33 286.8

(12, 41) 10 54 2128.5

this syndrome. However, for a Goppa code correcting w errors, only a fraction
1
w! of the syndromes are decodable. Thus, a counter is appended to the message
and the signer tries successive counter values until one hash is decodable. The
signature consists of both the error pattern of weight w corresponding to the
syndrome and the value of the counter giving this syndrome.

Attacking this construction consists in forging a valid signature for a chosen
message. One must find a matching counter and error pattern for a given doc-
ument. This looks a lot like a standard CSD problem instance. However, here
there is one major difference with the case of McEliece or Niederreiter: instead of
having one instance to solve, one now needs to solve one instance among many
instances. One chooses a document and hashes it with many different counters
to obtain many syndromes: each syndrome corresponds to a different instance.
It has no importance which instance is solved, each of them can give a valid
“forged” signature.

For ISD algorithms, having multiple instances available is of little help, how-
ever, for GBA, this gives us one additional list. Even though Goppa code param-
eters are used and an instance has less than a solution on average, this additional
list makes the application of GBA with a = 2 possible. This will always be an
“unbalanced” GBA working as follows:

– first, build 3 lists L0, L1, and L2 of XORs of respectively w0, w1 and w2
columns of H (with w = w0 + w1 + w2). These lists can have a size up to(

n
wi

)
but smaller sizes can be used,

– merge the two lists L0 and L1 into a list L′
0 of XORs of w0 + w1 columns of

H , keeping only those starting with λ zeros (we will determine the optimal
choice for λ later). L′

0 contains 1
2λ

(
n

w0+w1

)
elements on average.

– All the following computations are done on the fly and additional lists do
not have to be stored. Repeat the following steps:
• choose a counter and compute the corresponding document hash (an

element of the virtual list L3),
• XOR this hash with all elements of L2 matching on the first λ bits (to

obtain elements of the virtual list L′
1),

• look up each of these XORs in L′
0: any complete match gives a valid

signature.
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The number L of hashes one will have to compute on average is such that:

1
2λ

(
n

w0 + w1

)
× L

2λ

(
n

w2

)
= 2r−λ ⇔ L =

2r+λ(
n

w0+w1

)(
n

w2

) .
The memory requirements for this algorithm correspond to the size of the largest
list stored. In practice, the first level lists Li can be chosen so that L′

0 is always
the largest, and the memory complexity is 1

2λ

(
n

w0+w1

)
. The time complexity cor-

responds to the size of the largest list manipulated: max( 1
2λ

(
n

w0+w1

)
, L, L

2λ

(
n

w2

)
).

The optimal choice is always to choose w0 = &w
3 ', w2 = �w

3 �, and w1 =
w − w0 − w2. Then, two different cases can occur: either L′

1 is the largest list,
or one of L′

0 and L3 is. If L′
1 is the largest, we choose λ so as to have a smaller

list L′
0 and so a smaller memory complexity. Otherwise, we choose λ so that

L′
0 and L3 are of the same size to optimize the time complexity. Let T be the

size of the largest list we manipulate and M the size of the largest list we
store. The algorithm has time complexity O(T log T ) and memory complexity
O(M logM) with:⎧⎪⎨⎪⎩

if 2r

( n
w−�w/3�)

≥
√

2r

( n
�w/3�)

then T = 2r

( n
w−�w/3�)

and M = ( n
w−�w/3�)
( n
�w/3�)

,

else T = M =
√

2r

( n
�w/3�)

.

This algorithm is realistic in the sense that only integer values are used,
meaning that effective attacks should have time/memory complexities close to
those we present in Table 4. Of course, for a real attack, other time/memory
tradeoffs might be more advantageous, resulting in other choices for λ and the wi.

5.3 Attacking the FSB Hash Function

FSB [1] is a candidate for the SHA-3 hash competition. The compression func-
tion of this hash function consists in converting the input into a low weight word
and then multiplying it by a binary matrix H . This is exactly a syndrome com-
putation and inverting this compression function requires to solve an instance

Table 4. Time/memory complexities of Bleichenbacher’s attack against the CFS sig-
nature scheme. The parameters are Goppa code parameters so r = mw and n = 2m.

w = 8 w = 9 w = 10 w = 11 w = 12
m = 15 251.0/251.0 260.2/243.3 263.1/255.9 267.2/267.2 281.5/254.9

m = 16 254.1/254.1 263.3/246.5 266.2/260.0 271.3/271.3 285.6/259.0

m = 17 257.2/257.2 266.4/249.6 269.3/264.2 275.4/275.4 289.7/263.1

m = 18 260.3/260.3 269.5/252.7 272.4/268.2 279.5/279.5 293.7/267.2

m = 19 263.3/263.3 272.5/255.7 275.4/272.3 283.6/283.6 297.8/271.3

m = 20 266.4/266.4 275.6/258.8 278.5/276.4 287.6/287.6 2101.9/275.4

m = 21 269.5/269.5 278.7/261.9 281.5/280.5 291.7/291.7 2105.9/279.5

m = 22 272.6/272.6 281.7/265.0 284.6/284.6 295.8/295.8 2110.0/283.6
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Table 5. Complexities of the ISD and GBA bounds we propose for the official FSB
parameters

inversion collision
n r w ISD GBA ISD GBA

FSB160 5 × 218 640 80 2211.1 2156.6 2100.3 2118.7

FSB224 7 × 218 896 112 2292.0 2216.0 2135.3 2163.4

FSB256 221 1 024 128 2330.8 2245.6 2153.0 2185.7

FSB384 23 × 216 1 472 184 2476.7 2360.2 2215.5 2268.8

FSB512 31 × 216 1 984 248 2687.8 2482.1 2285.6 2359.3

of the CSD problem. Similarly, finding a collision on the compression function
requires to find two low weight words having the same syndrome, that is, a word
of twice the Hamming weight with a null syndrome. In both cases, the security of
the compression function (and thus of the whole hash function) can be reduced
to the hardness of solving some instances of the CSD problem. For inversion (or
second preimage), the instances are of the form CSD(H, w, s) and, for collision,
of the form CSD(H, 2w, 0).

Compared to the other code-based cryptosystems we presented, here, the
number of solutions to these instances is always very large: we are studying a
compression function, so there are a lot of collisions, and each syndrome has a lot
of inverses. For this reason, both ISD and GBA based attacks can be used. Which
of the two approaches is the most efficient depends on the parameters. However,
for the parameters proposed in [1], ISD is always the best choice for collision
search and GBA the best choice for inversion (or second preimage). Table 5
contains the attack complexities given by our bounds for the proposed FSB
parameters. As you can see, the complexities obtained with GBA for inversion
are lower than the standard security claim. Unfortunately this does not give an
attack on FSB for many reasons: the version of GBA we consider is idealized
and using non-integer values of a is not practical, but most importantly, the
input of the compression of FSB is not any word of weight w, but only regular
words, meaning that the starting lists for GBA will be much smaller in practice,
yielding a smaller a and higher complexities.

Conclusion

In this article we have reviewed the two main families of algorithms for solving
instances of the CSD problem. For each of these we have discussed possible
tweaks and described idealized versions of the algorithms covering those tweaks.
The work factors we computed for these idealized versions are lower bounds
on the effective work factor of existing real algorithms, but also on the future
improvements that could be implemented. Solving CSD more efficiently than
these bounds would require to introduce new techniques, never applied to code-
based cryptosystems.
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For these reasons, the bounds we give can be seen as a tool one can use to
select parameters for code-based cryptosystems. We hope they can help other
designers choose durable parameters with more ease.
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A Comments on the Assumptions

We have assumed the following in Sect. 2:

(B1) For all pairs (e1, e2) examined in the algorithm, the sums e1 + e2 are
uniformly and independently distributed in Wn,w.

(B2) The cost of the execution of the algorithm is approximatively equal to

� · �(ba 1) + � · �(ba 2) + K0 · �(ba 3),

where K0 is the cost for testing e1H
T = s+ e2H

T given that h�(e1H
T ) =

h�(s + e2H
T ) and �(ba i) is the expected number of execution of the

instruction (ba i) before we meet the (success) condition.

The first assumption has to do with the way the attacker chooses the sets W1
and W2. In the version presented at the beginning of Sect. 2, they use different
sets of columns and thus all pairs (e1, e2) lead to different words e = e1 + e2.
When W1 and W2 increase, there is some waste, that is some words e = e1 + e2
are obtained several times. A clever choice of W1 and W2 may decrease this
waste, but this seems exceedingly difficult. The “overlapping” approach

H = H1 H2

http://eprint.iacr.org/
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is easy to implement and behaves (almost) as if W1 and W2 where random (it
is even sometimes slightly better). The second assumption counts only � binary
operations to perform the sum of w/2 columns of � bits. This can be achieved by
a proper scheduling of the loops and by keeping partial sums. This was described
and implemented in [6]. We also neglect the cost of control and memory handling
instructions. This is certainly optimistic but on modern processors most of those
costs can be hidden in practice. The present work is meant to give security levels
rather than a cryptanalysis costs. So we want our estimates to be implementation
independent as much as possible.

Similar comments apply to the assumptions (I1) and (I2) of Sect. 3.

B A Sketch of the Proof of Proposition 2

We provide here some clues for the proof of Proposition 2. More details on this
proof and on the proofs of the other results of this paper can be found in the
extended version [14].

Proof. (of Proposition 2 - Sketch) In one execution of (main loop) we exam-
ine λ(z)

(
k+�

p

)
distinct value of e1 + e2, where z = |W1||W2|/

(
k+�

p

)
and λ(z) =

1 − exp(−z). The probability for one particular element of Wk+�,p to lead to a
solution is

P =

(
r−�
w−p

)
min
((

n
w

)
, 2r
) .

Thus the probability for one execution of (main loop) to lead to (success) is

Pp(�) = 1− (1−P )λ(z)(k+�
p ) ≈ 1− exp

(
− λ(z)

Np(�)

)
where Np(�) =

min
((

n
w

)
, 2r
)(

r−�
w−p

)(
k+�

p

)
When Np(�) is large (much larger than 1), we have Pp(�) ≈ λ(z)/Np(�) and a
good estimate for the cost is

Np(�)
λ(z)

(
�|W1| + �|W2| + Kw−p

λ(z)
(
k+�

p

)
2�

)
.

Choosing |W1|, |W2|, � and z which minimize this formula leads to the first
formula of the statement.

Else we have Np(�) < 1 and the expected number of execution of (main

loop) is not much higher than one (obviously it cannot be less). In that case
we are in a situation very similar to a birthday attack in which the list size is
L =
√

1/P = 2r/2/
√(

r−�
w−p

)
. This gives a cost of 2L log(Kw−pL) which has to

be minimized in �, leading to the second formula of the statement.
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Abstract. In this work, we apply the rebound attack to the AES based
SHA-3 candidate Lane. The hash function Lane uses a permutation
based compression function, consisting of a linear message expansion
and 6 parallel lanes. In the rebound attack on Lane, we apply several
new techniques to construct a collision for the full compression function
of Lane-256 and Lane-512. Using a relatively sparse truncated differen-
tial path, we are able to solve for a valid message expansion and collid-
ing lanes independently. Additionally, we are able to apply the inbound
phase more than once by exploiting the degrees of freedom in the parallel
AES states. This allows us to construct semi-free-start collisions for full
Lane-256 with 296 compression function evaluations and 288 memory,
and for full Lane-512 with 2224 compression function evaluations and
2128 memory.
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1 Introduction

In the last few years the cryptanalysis of hash functions has become an important
topic within the cryptographic community. The attacks on the MD4 family of
hash functions (MD5, SHA-1) have especially weakened the confidence in the
security of this design strategy [13,14]. Many new and interesting hash function
designs have been proposed as part of the NIST SHA-3 competition [11]. The
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large number of submissions and different design strategies require different and
improved cryptanalytic techniques as well.

At FSE 2009, Mendel et al. published the rebound attack [9] - a new technique
for analysis of hash functions which has been applied first to reduced versions of
the Whirlpool [2] and Grøstl [4] compression functions. Recently, the rebound
attack on Whirlpool has been extended in [8], which in some parts is similar to
our attack. The main idea of the rebound attack is to use the available degrees
of freedom in the internal state to efficiently fulfill the low probability parts in
the middle of a differential trail. The straight-forward application of the rebound
attack to AES based constructions allows a quick and thorough analysis of these
hash functions.

In this work, we improve the rebound attack and apply it to the SHA-3 candi-
date Lane. The hash function Lane [5] uses an iterative construction based on
the Merkle-Damg̊ard design principle [3,10] and has been first analyzed in [15].
The permutation based compression function consists of a linear message ex-
pansion and 6 parallel lanes. The permutations of each lane are based on the
round transformations of the AES. In the rebound attack on Lane, we first
search for differences and values, according to a specific truncated differential
path. This truncated differential path is constructed such that a collision and
a valid expanded message can be found with a relatively high probability. By
using the degrees of freedom in the chaining values, we are able to construct a
semi-free-start collision for the full versions of Lane-256 with 296 compression
function evaluations and memory of 288, and for Lane-512 with 2224 compres-
sion function evaluations and memory of 2128. Although these collisions on the
compression function do not imply an attack on the hash functions, they violate
the reduction proofs of Merkle and Damg̊ard, and Andreeva [1].

2 Description of Lane

The cryptographic hash function Lane [5] is one of the submissions to the NIST
SHA-3 competition [11]. It is an iterated hash function that supports four digest
sizes (224, 256, 384 and 512 bits) and the use of a salt. Since Lane-224 and
Lane-256 are rather similar except for truncation, we write Lane-256 whenever
we refer to both of them. The same holds for Lane-384 and Lane-512.

The hashing of a message proceeds as follows. First, the initial chaining value
H−1, of size 256 bits for Lane-256, and 512 bits for Lane-512, is set to an initial
value that depends on the digest size n and the optional salt value S. At the same
time, the message is padded and split into message blocks Mi of length 512 bits
for Lane-256, and 1024 bits for Lane-512. Then, a compression function f is
applied iteratively to process message blocks one by one as Hi = f(Hi−1, Mi, Ci),
where Ci is a counter that indicates the number of message bits processed so
far. Finally, after all the message blocks are processed, the final digest is derived
from the last chaining value, the message length and the salt by an additional
call to the compression function.
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2.1 The Compression Function

The compression function of Lane-256 transforms 256 bits (512 in the case of
Lane-512) of the chaining value and 512 bits (resp. 1024 bits) of the message
block into a new chaining value of 256 bits (512 bits). It uses a 64-bit counter
value Ci. For the detailed structure of the compression function we refer to
the specification of Lane [5]. First, the chaining value and the message block
are processed by a message expansion that produces an expanded state with
doubled size. Then, this expanded state is processed in two layers. The first
layer is composed of six permutation lanes P0,. . . ,P5 in parallel, and the second
layer of two parallel lanes Q0, Q1.

2.2 The Message Expansion

The message expansion of Lane takes a message block Mi and a chaining value
Hi−1 and produces the input to six permutations P0,. . . ,P5. In Lane-256, the
512-bit message block Mi is split into four 128-bit blocks m0, m1, m2, m3 and
the 256-bit chaining value Hi−1 is split into two 128-bit words h0, h1 as fol-
lows m0||m1||m2||m3 ← Mi, h0||h1 ← Hi−1. Then, six more 128-bit words
a0, a1, b0, b1, c0, c1 are computed

a0 = h0 ⊕m0 ⊕m1 ⊕m2 ⊕m3 , a1 = h1 ⊕m0 ⊕m2 ,

b0 = h0 ⊕ h1 ⊕m0 ⊕m2 ⊕m3 , b1 = h0 ⊕m1 ⊕m2 ,

c0 = h0 ⊕ h1 ⊕m0 ⊕m1 ⊕m2 , c1 = h0 ⊕ m0 ⊕m3 .

(1)

Each of these 128-bit values, as in AES, can be seen as 4 × 4 matrix of bytes.
In the following, we will use the notion x[i, j] when we refer to the byte of the
matrix x with row index i and column index j, starting from 0.

The values a0||a1, b0||b1, c0||c1, h0||h1, m0||m1, m2||m3 become inputs to the
six permutations P0, . . . , P5 described below. The message expansion for larger
variants of Lane is identical but all the values are doubled in size.

2.3 The Permutations

Each permutation lane Pi operates on a state that can be seen as a double AES
state (2 × 128-bits) in the case of Lane-256 or quadruple AES state (4 × 128-
bits) for Lane-512. The permutation reuses the transformations SubBytes (SB),
ShiftRows (SR) and MixColumns (MC) of the AES with the only exception, that
due to the larger state size, they are applied twice or four times in parallel.

Additionally, there are three new round transformations introduced in Lane.
AddConstant adds a different value to each column of the lane state and AddCounter
adds part of the counter Ci to the state. Since our attacks do not depend on these
functions, we skip their details here. The third transformation is SwapColumns
(SC) - used for mixing parallel AES states. Let xi be a column of a lane state. In
Lane-256,SwapColumns swaps the two right columns of the left half-state with the
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two left columns of the right half-state, and in Lane-512, SwapColumns ensures
that each column of an AES state gets swapped to a different AES state:

SC256(x0||x1|| . . . ||x7) = x0||x1||x4||x5||x2||x3||x6||x7

SC512(x0||x1|| . . . ||x15) = x0||x4||x8||x12||x1||x5||x9||x13||
x2||x6||x10||x14||x3||x7||x11||x15 .

The complete round transformation consists of the sequential application of all
these transformations in the given order. The last round omits AddConstant and
AddCounter. Each of the permutations Pj consists of six rounds in the case of
Lane-256 and eight rounds for Lane-512.

The permutations Q0 and Q1 are irrelevant to our attack because we will get
collisions before these permutations. An interested reader can find a detailed
description of Q0 and Q1 in [5].

3 The Rebound Attack on Lane

In this section first we give a short overview of the rebound attack in general
and then, describe the different phases of the rebound attack on Lane in detail.

3.1 The Rebound Attack

The rebound attack was published by Mendel et al. in [9] and is a new tool
for the cryptanalysis of hash functions. The rebound attack uses truncated dif-
ferences [6] and is related to the attack by Peyrin [12] on the hash function
Grindahl [7]. The main idea of the rebound attack is to use the available degrees
of freedom in the internal state to fulfill the low probability parts in the middle
of a differential path. It consists of an inbound and subsequent outbound phase.
The inbound phase is an efficient meet-in-the-middle phase, which exploits the
available degrees of freedom in the middle of a differential path. In the mostly
probabilistic outbound phase, the matches of the inbound phase are computed
backwards and forwards to obtain an attack on the hash or compression function.
Usually, the inbound phase is repeated many times to generate enough starting
points for the outbound phase. In the following, we describe the inbound and
outbound phase of the rebound attack on Lane.

3.2 Outline of the Rebound Attack on Lane

Due to the message expansion of Lane, at least 4 lanes are active in a differential
attack. We will launch a semi-free-start collision attack, and therefore we assume
the differences in (h0, h1) to be zero. Hence, lane P3 is not active and we choose
P1 and thus, (b0, b1) to be not active as well. The active lanes in our attack
on Lane are P0, P2, P4 and P5. The corresponding truncated differential path
for the P-lanes of Lane-256 is shown in Fig. 2. This path is very similar to
the truncated differential path for Lane-256 shown in the Lane specification
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Fig. 1. The inbound phase for Lane-256 (left) and Lane-512 (right). Black bytes are
active, gray bytes fixed by solutions of the inbound phase.

[Fig. 4.2, page 33], but turned upside-down. The truncated differential path used
in the attack on Lane-512 is the same as in the Lane specification [Fig. 4.3,
page 34] and shown in Fig. 3. The main idea of these paths is to use differences
in only one of the parallel AES states for the inbound phases. This allows us
to use the freedom in the other states to satisfy the outpound phases. Since we
search for a collision after the P-lanes, we do not need to consider the Q-lanes.

The main idea of the attack on Lane is that we can apply more than one
efficient inbound phase by using the degrees of freedom and the relatively slow
diffusion due to the 2 (or 4) parallel AES states of Lane-256 (or Lane-512). The
positions of the active bytes of two consecutive inbound phases are chosen such
that when merging them, the number of the common active bytes of these phases
is as small as possible. Since we can find many independent solutions for these
inbound phases, we store them in some lists to be merged. In the outbound
phase of the attack we merge the results of the inbound phases and further,
merge the results of all active P-lanes. Note that the merging of two lists can be
done efficiently. In each merging step, a number of conditions need to be fulfilled
for the elements of the new list. We merge the lists in a clever order, such that
we find one colliding pair for the compression function at the end.

In more detail, we first filter the results of each inbound phase for those
solutions, which can connect both inbound phases (see Fig. 2). Then, we merge
the resulting lists of two lanes such that we get a collision after the P-lanes,
and parts of the message expansion are fulfilled. Finally, we filter the results of
the left P-lanes (P0, P2) and the right P-lanes (P4, P5), such that the conditions
on the whole message expansion are fulfilled. In the attack, we try to keep the
size of the intermediate results at a reasonable size. We need to ensure, that the
complexity of generating the lists is below 2n/2, but still get enough solutions in
each phase to continue with the attack.
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3.3 The Inbound Phase

In the rebound attack on Lane, we first apply the inbound phase for a number of
times. Therefore, we will explain this phase and the corresponding probabilities
in detail here. In the inbound phase, we search for differences and values conform-
ing to the truncated differential path for Lane-256 or Lane-512 shown in Fig. 1,
with active bytes marked by black bytes. We only describe the application of one
inbound phase here. In the example of Fig. 1, we have 16 active S-boxes between
state #4 and state #5. It follows from the MDS property of MixColumns, that
this path has at least one active byte in each of the 4 corresponding columns
prior to the first, and after the second MixColumns transformation (state #2 and
state #7). Note that the active bytes in state #2 and state #7 can also be at
any position marked by gray bytes.

In the inbound phase, we first choose random differences for the 4 active
bytes after the second MixColumns transformation (state #7). These differences
are linearly propagated backward to 16 active bytes at the output of the previous
SubBytes layer (state #5). Next, we take random differences for the 4 active bytes
prior to the first MixColumns transformation (state #2) and linearly propagate
forward to 16 active bytes at the input of SubBytes (state #4). Then, we need
to find a match for the input and output differences of all 16 active S-boxes. For
a single S-box, the probability that a random S-box differential exists is about
one half, which can be verified easily by computing the differential distribution
table of the AES S-box (see [9] for more details).

For each matching S-box, we get at least two (in some cases 4) possible byte
values such that the S-box differential holds. Hence, we get at least 216 possible
values for one full AES state, such that the differential path for the chosen
differences in state #2 and state #7 holds. In other words, after trying 216 non-
zero differences of state #2 and state #7, we get at least 216 solutions for the
truncated differential path between state #2 and state #7. Hence, the average
complexity to find one solution for the inbound phase (differences and values) is
about 1. Note that this holds for both, Lane-256 and Lane-512.

3.4 The Outbound Phase

After we have found differences and values for each inbound phase of the active
lanes, we need to connect these results and propagate them outwards in the
outbound phase. In backward direction, we need to match the message expansion
at the input of each lane. In forward direction, we need to match the differences
of two P-lanes on each side to get a collision. We describe the conditions for
these two parts according to our truncated differential path in the following.

The Message Expansion. After the inbound phases, we get values and differ-
ences at the input and output of the 4 active lanes P0, P2, P4 and P5. Since we
have zero differences in (h0, h1) and (b0, b1), we get using the message expansion
for lane P1 (see Equation (1)):

Δb0 = 0 = Δm0 ⊕Δm2 ⊕Δm3 , Δb1 = 0 = Δm1 ⊕Δm2
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Hence, we get the following relation for the message differences in m0, m1, m2,
and m3:

Δm1 = Δm2 = Δm0 ⊕Δm3 (2)

Using (1) we get for the differences in the expanded message words (a0, a1) and
(c0, c1):

Δa0 = Δm1 , Δa1 = Δm3 , Δc0 = Δm0 , Δc1 = Δm2 (3)

and thus, the following relations between a0, a1, c0, and c1:

Δa0 = Δc1 = Δa1 ⊕Δc0 (4)

Beside the differences, we also need to match the values of the message expansion.
Since we aim for a semi-free-start collision, we can freely choose the chaining
value (h0, h1) such that the conditions on (a0, a1) are satisfied:

h0 = a0 ⊕m0 ⊕m1 ⊕m2 ⊕m3 , h1 = a1 ⊕m0 ⊕m2

That means we have conditions on the input (c0, c1) left, which we need to match
with the message words m0, m1, m2 and m3. Since we can vary lanes P0,P2 and
P4,P5 independently in the following attacks, we can satisfy these conditions by
merging the results of both sides. Using the equations of the message expansion,
we get for (c0, c1) using the values of (a0, a1):

c0 = a0 ⊕ a1 ⊕m0 ⊕m2 ⊕m3 , c1 = a0 ⊕m1 ⊕m2

We can rearrange these equations in order to have all terms corresponding to
P0,P2 on the left side and all terms of P4,P5 on the right side:

m0 ⊕m2 ⊕m3 = c0 ⊕ a0 ⊕ a1 , m1 ⊕m2 = c1 ⊕ a0 (5)

For merging the two sides, we will compute, store and compare the following
values of each list:

v1 = c0 ⊕ a0 ⊕ a1 , v2 = c1 ⊕ a0 , v3 = m0 ⊕m2 ⊕m3 , v4 = m1 ⊕m2

Colliding P-Lanes. In the forward direction, we need to find a collision for the
differences in P0 and P2, such that ΔP0 ⊕ΔP2 = 0 and for the differences in P4
and P5, such that ΔP4 ⊕ΔP5 = 0. Note that we can swap the order of the last
MixColumns with the XOR operation of the P-lanes since both transformations
are linear. Hence, we only need to match the differences after the last SubBytes
layer in each of the two active lanes. The blue bytes in Fig. 2 of Lane-256, or
the red, blue and yellow bytes in Fig. 3 of Lane-512 are independent of the
inbound phase. Hence, we can use the freedom in these bytes to find a collision
after the P-lanes.
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4 Semi-Free-Start Collision for Lane-256

In the rebound attack on Lane-256, we construct a semi-free-start collision for
the full compression function using 296 compression function evaluations and
memory requirements of 288. We will use the 6-round truncated differential path
given in Fig. 2 which is very similar to the one shown in the Lane specification
[Fig. 4.2, page 33]. We search for a collision after the P-lanes of Lane and use
the same truncated differential path in the 4 active lanes P0, P2, P4 and P5. Since
we do not consider differences in h0 and h1, but we fix their values, the result
will be a semi-free-start collision. The attack on Lane-256 consists basically of
the following parts:

1. First Inbound Phase: Apply the inbound phase at the beginning of the
truncated differential path (state #2 to state #7) for each lane P0, P2, P4,
P5 independently.

2. Second Inbound Phase: Apply the inbound phase in the middle of each
lane again (state #10 to state #15).

3. Merge Inbound Phases: Merge the results of the two inbound phases
(state #7 to state #10).

4. Merge Lanes: Merge the two neighboring lanes P0,P2 and P4,P5 and satisfy
according differences of the message expansion.

5. Message Expansion: Merge the two sides (P0, P2) and (P4, P5) and satisfy
the remaining conditions on the message expansion (differences and values).

6. Find Collisions: Choose remaining free values (neutral bytes) to find a
collision for each side (P0, P2) and (P4, P5) independently.

7. Message Expansion: Merge the two sides (P0, P2) and (P4, P5) and satisfy
the conditions on the message expansion of the remaining bytes.

4.1 First Inbound Phase

We start the attack on Lane-256 by applying the first inbound phase to each
of the 4 active lanes P0, P2, P4, P5 independently. In each lane, we start with 5
active bytes in state #2 and 8 active bytes in state #7 and choose 296 random
non-zero differences for these 13 bytes (note that we could choose up to 2104

differences). We propagate backward and forward to 16 active bytes at the input
(state #4) and output (state #5) of the SubBytes layer in between. We get at
least 296 solutions for the inbound phase with a complexity of 296 (see Sect. 3.3).
For each result, only the red and black bytes in Fig. 2 are determined, i.e. the
differences as well as the actual values of the bytes are found. Note that we
have chosen the position of active bytes in state #0, such that at least one term
of Equation (2) or (4) is zero for each byte. At this point, we can compute
backwards to state #0 and independently verify the condition on one byte of
the input differences:

P0 : Δa0[0, 0] = Δa1[0, 0] , P4 : Δm0[2, 3] = Δm1[2, 3]
P2 : Δc0[2, 3] = Δc1[2, 3] , P5 : Δm2[0, 0] = Δm3[0, 0]
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The condition on each of these bytes is fulfilled with a probability of 2−8 and we
store the 288 valid results of each lane P0, P2, P4 and P5 in the corresponding
lists L0, L2, L4 and L5. Note that we store the values and differences of state
#10 (red and black bytes) in these lists, since we need to merge these bytes with
the second inbound phase in the following. For an efficient merging step, the
lists are stored in hash tables (or sorted) according to the bytes to be merged
(diffences and values of active bytes in state #10).

4.2 Second Inbound Phase

Next, we apply the inbound phase again to match the differences at SubBytes
between state #12 and state #13. We start with 264 differences in the 8 active
bytes of state #10 and 232 differences in the 4 active bytes of state #15. Hence,
we get about 296 solutions for the second inbound phase with a complexity of
296. For each result, the gray and black values in Fig. 2 between state #7 and
state #18 are determined. Again, this means we fix the actual values of these
bytes. The results of the second inbound phase for each lane are stored in lists
L′

0, L′
2, L′

4 and L′
5. A node of each lists holds the values and differences of state

#10 (gray and black bytes). Again, the lists are stored in hash tables (or sorted)
according to the bytes (black bytes) to be merged.

4.3 Merge Inbound Phases

The two previous inbound phases overlap in 8 active bytes (state #7 to state
#10). We connect the two inbound phases by checking the conditions on the
overlapping bytes of state #10. Since both values and differences need to match,
we get a condition on 128 bits. We merge the 288 results of the first inbound
phase and 296 results of the second inbound phase to get 288×296×2−128 = 256

differential paths for each lane. A pair connecting both inbound phases is found
trivially. For each node of the first list (for example L0), we check the overlapping
bytes against the values of the second list (L′

0). Since the second list is a hash
table, the effort for producing all 256 valid pairs is 288 hash table lookups.

Note that for each pair which satisfies and connects both inbound phases,
the differences and values between state #0 and state #18 (black, red and gray
bytes) are determined. We compute and store the 256 input values and differences
of state #0 in lists L0, L2, L4 and L5. Altough we still do not know half of the
state, each of these input pairs conforms to the whole truncated differential path
from state #0 to state #24 with a probability of 1. In other words, we know
that in state #24, there are at most the given bytes active.

4.4 Merge Lanes

Next, we continue with merging the solutions of each lane by considering the
message expansion. We first combine the inputs of lane P0 and P2 by merging
lists L0 and L2. When merging these lists, we need to satisfy the conditions on
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the differences of the message expansion. We have conditions on 5 active bytes
of state #0 in lane P0 and P2 (see Fig. 2). Remember that we have chosen the
position of these active bytes, such that at least one term of Equation (2) or (4)
is zero. Hence, we only need to check if two corresponding byte differences are
equal. Since we have already verified one byte difference (see Sect. 4.1), we have
4 byte condition left:

Δa0[0, 0] = Δc1[0, 0] , Δa1[0, 1] = Δc0[0, 1] (6)
Δa1[1, 1] = Δc0[1, 1] , Δa0[2, 3] = Δc0[2, 3] (7)

These conditions are fulfilled with a probability of 2−32 and by merging two lists
(L0 and L2) of size 256, we get 256 × 256 × 2−32 = 280 valid matches which we
store in list L02. We repeat the same for lane P4 and P5 by merging lists L4 and
L5. We get 280 matches for list L45 as well, since we need to fulfill the 32-bit
conditions on the differences of the following 4 bytes:

Δm1[0, 0] = Δm2[0, 0] , Δm0[0, 1] = Δm3[0, 1] (8)
Δm0[1, 1] = Δm3[1, 1] , Δm0[2, 3] = Δm2[2, 3] (9)

Again, if we use hash tables or the previous lists are sorted according to the
bytes to match, the merge operation can be performed very efficiently. Hence,
the total complexity to produce the lists L02 and L45 is determined by their final
size and requires an effort of around 280 computations.

4.5 Message Expansion

For all entries of the lists L02 and L45, the values in 32 bytes and differences in
10 bytes of each of (a0, a1, c0, c1) and (m0, m1, m2, m3) have been fixed (red and
black bytes in state #0 of Fig. 2). Note that the conditions on the differences of
each side on its own have already been fulfilled (P0 ↔ P2 and P4 ↔ P5). Hence,
if we just fulfill the conditions on the remaining differences between P0 ↔ P4,
then the conditions on P2 ↔ P5 are satisfied as well. Using Equations (2)-(4),
the position of active bytes in Fig. 2 and the already matched differences of
Sect. 4.1 and Sect. 4.4, we only have the following 4 byte conditions left:

Δa0[0, 0] = Δm1[0, 0] , Δa1[0, 1] = Δm0[0, 1]
Δa1[1, 1] = Δm0[1, 1] , Δa0[2, 3] = Δm0[2, 3]

Note that we also need to fulfill the conditions on the values of the states.
Remember that we can freely choose the chaining values (h0, h1) to satisfy the
values in the first 16 bytes of the message expansion (a0, a1). To fulfill the con-
ditions on the 16 bytes of (c0, c1) we need to satisfy Equation (5) using the
corresponding values v1, v2, v3 and v4. Hence, we need to find a match for the
following values and differences by merging lists L02 and L45:
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– 8 bytes of v1 from L02 with v3 from L45,
– 8 bytes of v2 from L02 with v4 from L45,
– 4 bytes of differences in L02 and in L45.

Since we have 280 elements in each list and conditions on 160 bits, we expect to
find 280 × 280 × 2−160 = 1 result. This result satisfies the message expansion for
all lanes and is a solution for the truncated differential path of each active lane
between state #0 and state #24. However, we do not get a collision at the end
of the P-lanes yet, since we do not know the differences of state #24.

4.6 Find Collisions

In this phase of the attack, we search for a collision at the end of the P-lanes
(P0, P2) and (P4, P5) using the remaining freedom in the second half of the state.
Note that the 16-byte difference in state #24 is obtained from 8-byte difference
in state #22 with the linear transforms MixColumns and SwapColumns. Hence,
the collision space (the 16 bytes where the two lanes differ) has only 264 distinct
elements. If we take a look at Fig. 2, we get for the values in state #7:

– The black, red and gray bytes represent values which have already been
determined by the previous parts of the attack.

– The blue bytes represent values not yet determined and can be used to vary
the differences in state #22.

To find a collision between two lanes, we can still choose 264 values for the blue
bytes in state #7 of each lane and store these results in lists L0, L2, L4 and
L5. Note that for these 264 values, we get only 232 different values for the two
free bytes in the first and fifth column of state #18. Hence, we can only iterate
through 232 differences in state #22 for each lane. However, this is enough to
find one colliding difference for each side, since 232×232×2−64 = 1. By repeating
this step 232 times for each side, we expect 264 × 264 × 2−64 = 264 results for
each merged list L02 and L45.

4.7 Message Expansion

Finally, we need to match the message expansion for the remaining 32 bytes
of each side. Hence, we just repeat the same procedure as we did for the first
half of state #0, except that we only need to match the values of 32 bytes but
no differences. Again, we can use the remaining bytes of (h0, h1) to fulfill the
conditions on 16 bytes of (a0, a1). Since, we have 264 solutions in each list L02
and L45, we expect to find 264 × 264 × 2−128 = 1 colliding pair for (c0, c1) and
thus, a collision for the full compression function of Lane-256.

4.8 Complexity

Let us find the complexity of the whole attack. The first inbound phase requires
296 computations and 288 memory, the second inbound requires 296 computations
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and 296 memory, and the merging of the inbound phases requires 288 hash table
lookups and 256 memory. Obviously, the second inbound phase and the merge
inbound phases can be united to lower the memory requirement of these three
steps. Namely, we create the lists L0, L2, L4 and L5 in the first inbound phase.
Then, for each differential path of the second inbound phase, instead of storing
it in a list, we immediately check if it can be merged with some differential from
the lists. Only if it can be merged, we do the outbound phase and compute state
#0. Hence, the first three steps of our attack require around 296 computations
and 288 memory. The merge lanes step requires 280 computations and memory.
The message expansion steps require 280 computations, while the find collisions
steps require 232 computations. Hence, the total attack complexity is around
296 computations and 288 memory. Note that the cost of each computation is
never greater than the cost of one compression function evaluation. Therefore,
the complexity to find a semi-free-start collision for all 6 rounds of Lane-256 is
about 296 compression function evaluations and 288 memory.

5 Semi-Free-Start Collision for Lane-512

In the rebound attack on Lane-512, we construct a semi-free-start collision for
the full, 8-round compression function using 2224 compression function evalu-
ations and memory requirements of 2128. We use the same iterative truncated
differential path as shown in the specification of Lane-512 [Fig. 4.3, page 34],
which is given in Fig. 3. Similar to the attack on Lane-256, we search for a
collision after the P-lanes and use the same truncated differential path in the 4
active lanes P0, P2, P4 and P5. The attack on Lane-512 consists basically of the
following parts:

1. First Inbound Phase: Apply the inbound phase at the beginning of the
truncated differential path (state #2 to state #7) for each lane P0, P2, P4,
P5 independently.

2. Merge Lanes: Merge the two neighboring lanes P0,P2 and P4,P5 and satisfy
according differences of the message expansion.

3. Message Expansion: Merge the two sides (P0, P2) and (P4, P5) and satisfy
the remaining conditions on the message expansion (differences and values).

4. Second Inbound Phase: Apply the inbound phase in the middle of each
lane again (state #10 to state #15).

5. Merge Inbound Phases: Merge the results of the two inbound phases.
6. Starting Points: Choose random values for the brown bytes in state #7 to

get enough starting points for the subsequent phases.
7. Merge Lanes: Merge the values of the starting points for the two neigh-

boring lanes P0,P2 and P4,P5 and satisfy the according differences of the
message expansion.

8. Message Expansion: Merge the two sides (P0, P2) and (P4, P5) and satisfy
the remaining conditions on the message expansion (differences and values)
for the starting points.
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9. Third Inbound Phase: Apply the inbound phase at the end of each lane
for a third time (state #18 to state #23).

10. Merge Inbound Phases: Merge the results of the three inbound phases
and use the remaining freedom in between.

11. Find Collisions: Merge the corresponding two lanes to find a collision for
each side (P0, P2) and (P4, P5) independently.

12. Message Expansion: Merge the two sides (P0, P2) and (P4, P5) and satisfy
the conditions on the message expansion of the remaining bytes.

5.1 First Inbound Phase

We start the attack on Lane-512 by applying the first inbound phase to each
of the 4 active lanes P0, P2, P4, P5 independently. In each lane, we start with 8
active bytes in state #2 and 4 active bytes in state #7 and choose 284 random
non-zero differences for these 12 bytes (note that we could choose up to 296

differences). We propagate backward and forward to 16 active bytes at the input
(state #4) and output (state #5) of the SubBytes layer in between. We get at
least 284 matches for the inbound phase with a complexity of 284 (see Sect. 3.3).
For each result, the gray and black bytes in Fig. 3 are determined. Hence, we
can already verify the condition on one byte of the input differences for each
lane by computing backwards to state #0:

P0 : Δa0[2, 2] = Δa1[2, 2] , P0 : Δa0[2, 6] = Δa1[2, 6]
P2 : Δc0[1, 1] = Δc1[1, 1] , P2 : Δc0[1, 5] = Δc1[1, 5]
P4 : Δm0[1, 1] = Δm1[1, 1] , P4 : Δm0[1, 5] = Δm1[1, 5]
P5 : Δm2[2, 2] = Δm3[2, 2] , P5 : Δm2[2, 6] = Δm3[2, 6]

The conditions on each of the lanes are fulfilled with a probability of 2−16 and we
store the 268 valid matches of each lane P0, P2, P4 and P5 in the corresponding
lists L0, L2, L4 and L5.

5.2 Merge Lanes

Next, we continue with merging the solutions of each lane by considering the
message expansion. We first combine the results of lane P0 and P2 by merging
lists L0 and L2. When merging these lists, we need to satisfy the conditions on
the differences of the message expansion for the following 6 bytes:

Δa1[0, 0] = Δc0[0, 0] , Δa1[0, 4] = Δc0[0, 4]
Δa0[1, 1] = Δc0[1, 1] , Δa0[1, 5] = Δc0[1, 5]
Δa0[2, 2] = Δc1[2, 2] , Δa0[2, 6] = Δc1[2, 6]

Since this match is fulfilled with a probability of 2−48 and we merge two lists
of size 268, we get 268 × 268 × 2−48 = 288 valid matches which we store in L02.
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Fig. 3. The truncated differential path for 8 rounds of Lane-512. Lane P0 shows the
plain truncated differential path, lane P2 other possible truncated differential paths
and lane P4 and P5 are used to describe the attack.
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We repeat the same for lane P4 and P5 merge lists L4 and L5. We get 288 matches
for list L45, since we need to fulfill conditions on differences of 6 bytes as well:

Δm0[0, 0] = Δm3[0, 0] , Δm0[0, 4] = Δm3[0, 4]
Δm0[1, 1] = Δm2[1, 1] , Δm0[1, 5] = Δm2[1, 5]
Δm1[2, 2] = Δm2[2, 2] , Δm1[2, 6] = Δm2[2, 6]

5.3 Message Expansion

For all entries of lists L02 and L45, the values in 32 bytes and differences in 16
bytes of each of (a0, a1, c0, c1) and (m0, m1, m2, m3) have been fixed (gray and
black bytes in state #0 of Fig. 3). Since the conditions on the differences of each
side on its own have already been fulfilled, we just need to match the conditions
on the remaining 6-byte differences between each side (P0, P2) and (P4, P5):

Δa1[0, 0] = Δm0[0, 0] , Δa1[0, 4] = Δm0[0, 4]
Δa0[1, 1] = Δm0[1, 1] , Δa0[1, 5] = Δm0[1, 5]
Δa0[2, 2] = Δm1[2, 2] , Δa0[2, 6] = Δm1[2, 6]

Remember that we can freely choose the chaining values (h0, h1) to satisfy the
values in the first 16 bytes of the message expansion (a0, a1). To fulfill the condi-
tions on the 16 bytes of (c0, c1) we need to find matches for the following values
and differences using lists L02 and L45:

– 8 bytes of v1 from L02 with v3 from L45,
– 8 bytes of v2 from L02 with v4 from L45,
– 6 bytes of differences in L02 and in L45.

Since we have 288 elements in each list and conditions on 176 bits, we expect to
find 288 × 288 × 2−176 = 1 result. This result satisfies the message expansion for
all lanes and is a solution for the truncated differential path of each active lane
between state #0 and state #10.

5.4 Second Inbound Phase

Next, we apply the inbound phase again to match the differences at SubBytes
between state #12 and state #13. After the first inbound phase, the values of
16 bytes in state #10 (black and gray bytes), and the difference in 16 bytes (1st
AES-block) of state #12 (black bytes) have already been fixed. Hence we can
start with 232 possible 4-byte differences in state #15, compute backwards to
state #13 and need to match the differences in the SubBytes layer. We expect
to find at least 232 solutions for the second inbound phase (see Sect. 3.3).

5.5 Merge Inbound Phases

The result of the second inbound phase are 232 values for the 16 bytes in state
#10 (green and black bytes). From the first inbound phase, we have obtained
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one solution for 16 bytes in state #10 (gray and black bytes) as well. In these
16 bytes, the values of the 4 active bytes (black) overlap between both inbound
phases and the probability for a successful match is 2−32. Among the 232 results
of the second inbound phase, we expect to find one solution to match the values
of state #10. Once we have found a match, we can compute the values of the
newly determined 12 bytes in state #7, marked by green bytes in Fig. 3.

5.6 Starting Points

In this phase of the attack, we will compute a number of starting points which
we will need for the subsequent steps. For each lane, we choose random values
for the 12 bytes in state #7 (marked by brown bytes in Fig. 3) and compute
the corresponding 16-byte values in state #0. We repeat this step 264 times and
store the results in the corresponding lists L′

0, L′
2, L′

4 or L′
5.

5.7 Merge Lanes

Next, we merge lists L′
0 and L′

2 to get the list L′
02, consisting of 2128 values for

the 32 newly determined bytes of (m0, m1, m2, m3) (brown bytes of state #0 in
lane P0 and P2). Further, we merge lists L′

4 and L′
5 to get the list L′

45 of size
2128 containing the 32 byte values of (a0, a1, c0, c1).

5.8 Message Expansion

Finally, we satisfy the conditions of the message expansion on (a0, a1) using the
values of (h0, h1), and use the two lists L′

02 and L′
45 to satisfy the conditions on

(c0, c1). Since we need to match 16 bytes of (c0, c1) and have 2128 elements in
both lists, we expect 2128 × 2128 × 2−128 = 2128 matching pairs which we store
in list Ls. We will use these values in a later phase of the attack.

5.9 Third Inbound Phase

Now, we extend the truncated differential path by applying a third inbound
phase between state #18 and state #23 for each active lane. Note that the
values in 16 bytes of state #18 (black and green bytes), and the differences in 16
bytes (1st AES-block) of state #20 (black bytes) have already been fixed due to
the second inbound phase. Similar to the second inbound phase, we start with
232 4-byte differences in state #23 and compute backwards to state #21 to get
a match for the SubBytes layer. Since we have 232 starting differences, we expect
to find 232 results for the third inbound phase, with fixed values and differences
for the 16 bytes in state #15 (purple and black bytes).

5.10 Merge Inbound Phases

The values of the second and the third inbound phase overlap in 4 active bytes
(black) of state #18. Since we have 232 results of the third inbound phase, we
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expect to find one solution after merging the two phases. Once we have found
a match, we can compute the values of the newly determined 12 bytes in state
#15, marked by purple bytes in Fig. 3. Next, we need to connect all three
inbound phases. For all possible 8-byte values of state #10 marked by red bytes,
we compute the 16 corresponding bytes in state #15 (2nd AES-block). If the
computed values satisfy the 4 bytes in state #15 marked by purple, we store
the result of each lane in the corresponding lists La

0 , La
2 , La

4 and La
5 . In total,

we obtain 264 · 2−32 = 232 entries in each list. We repeat the same for the bytes
marked by blue and yellow, and generate the lists Lb

i and Lc
i for each of the

active lanes with index i ∈ {0, 2, 4, 5}. For each lane, we merge the three lists
La

i , Lb
i and Lc

i and store the 296 results in lists L∗
i . Note that for each entry in

these lists, we can determine all values and differences of the corresponding lane.

5.11 Find Collisions

In this phase of the attack, we finally search for a collision at the end of the
P-lanes (P0, P2) and (P4, P5) using the elements of lists L∗

i . To find a collision at
the end of the P-lanes, we need to match the 16 byte differences in state #32 of
the two corresponding active lanes such that Δ(P0⊕P2) = 0 and Δ(P4⊕P5) = 0.
Note that we can satisfy these conditions independently for each side (P0, P2)
and (P4, P5). Since we need to match 128 bits and we have 296 elements in each
list L∗

i , we expect to find 296 · 296 · 2−128 = 264 collisions for each side. We store
the corresponding inputs (a0, a1, c0, c1) for the collisions between lane P0 and
P2 in list L∗

02 and the inputs (m0, m1, m2, m3) for the collisions between lane P4
and P5 in list L∗

45.

5.12 Message Expansion

Finally, we need to match the message expansion for the remaining 32 bytes
of each side. Hence, we just repeat the same procedure as we did for the first
part of state #0, except that we only need to match the values of 32 bytes
but no differences. Again, we use the values of (h0, h1) to satisfy the conditions
on (a0, a1) first. Then, we match the values of the 32 bytes in (c0, c1). Since
we only have 264 entries in both of L∗

02 and L∗
45, the success probability for a

match is 264 · 264 · 2−256 = 2−128. However, we can still repeat from Sect. 5.6
using a different starting point stored in list Ls. Since we have 2128 elements in
list Ls, we can repeat the previous steps up to 2128 times. Hence, we expect to
find one valid match for the message expansion and thus, a collision for the full
compression function of Lane-512.

5.13 Complexity

The total complexity of the rebound attack on Lane-512 is determined by
the merging step after the third inbound phase. This step has a complexity
of 296 compression function evaluations and is repeated 2128 times. The memory
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requirements are determined by the largest lists, which are L′
02 and L′

45 (or Ls)
with a size of 2128. Hence, the total complexity to find a semi-free-start collision
for Lane-512 is about 2128 · 296 = 2224 compression function evaluations and
2128 in memory.

6 Conclusion

In this work, we have applied the rebound attack to the hash function Lane.
In the attack we use a truncated differential path with differences concentrating
mostly in one part of the lanes. Due to the relatively slow diffusion of parallel
AES rounds, we are therefore able to solve parts of the lanes independently.
First, we search for differences and values (for parts of the state) according to
the truncated differential path and also satisfy the message expansion. Then, we
choose values which can be changed such that the truncated differential path and
according message expansion still holds. The freedom in these values is then used
to search for a collision at the end of the lanes without violating the differential
path or message expansion.

In the rebound attack on Lane, we are able to construct semi-free-start col-
lisions for full round Lane-224 and Lane-256 with 296 compression function
evaluations and memory of 280, and for full round Lane-512 with complexity of
2224 compression function evaluations and memory of 2128. Although these colli-
sions on the compression function do not imply an attack on the hash functions,
they violate the reduction proofs of Merkle and Damg̊ard, or Andreeva in the
case of Lane. However, due to the limited degrees of freedom, a collision attack
on the hash function seems to be difficult for full round Lane.
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1 Institute for Applied Information Processing and Communications
Graz University of Technology, Inffeldgasse 16a, A–8010 Graz, Austria

2 Department of Electrical Engineering ESAT/COSIC, Katholieke Universiteit
Leuven. Kasteelpark Arenberg 10, B–3001 Heverlee, Belgium

3 Interdisciplinary Institute for BroadBand Technology (IBBT), Belgium
mario.lamberger@iaik.tugraz.at

Abstract. Whirlpool is a hash function based on a block cipher that
can be seen as a scaled up variant of the AES. The main difference is the
(compared to AES) extremely conservative key schedule. In this work,
we present a distinguishing attack on the full compression function of
Whirlpool. We obtain this result by improving the rebound attack on
reduced Whirlpool with two new techniques. First, the inbound phase of
the rebound attack is extended by up to two rounds using the available
degrees of freedom of the key schedule. This results in a near-collision
attack on 9.5 rounds of the compression function of Whirlpool with a
complexity of 2176 and negligible memory requirements. Second, we show
how to turn this near-collision attack into a distinguishing attack for the
full 10 round compression function of Whirlpool. This is the first result
on the full Whirlpool compression function.

Keywords: hash functions, cryptanalysis, near-collision, distinguisher.

1 Introduction

In the last few years the cryptanalysis of hash functions has become an important
topic within the cryptographic community. Especially the collision attacks on the
MD4 family of hash functions (MD4, MD5, SHA-1) have weakened the security
assumptions of these commonly used hash functions [6,7,17,24,25,26]. Still, most
of the existing cryptanalytic work has been published for this particular family
of hash functions. Therefore, the analysis of alternative hash functions is of great
interest. In this article, we will present a security analysis of the Whirlpool hash
function with respect to collision resistance.

Whirlpool is the only hash function standardized by ISO/IEC 10118-3:2004
(since 2000) that does not follow the MD4 design strategy. Furthermore, it has
been evaluated and approved by NESSIE [20]. Whirlpool is commonly considered
to be a conservative block-cipher based design with an extremely conservative
key schedule and follows the wide-trail design strategy [4,5]. Since its proposal
in 2000, only a few results have been published.
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Table 1. Summary of results for Whirlpool. Complexities are given in compression
function evaluations, a memory unit refers to a state (512 bits). The complexities in
brackets refer to modified attacks using a precomputed table taking 2128 time/memory
to set up.

target rounds
complexity

type sourceruntime/memory
block cipher W 6 2120/2120 distinguisher Knudsen [11]
hash function 4.5 2120/27 collision
hash function 6.5 2128/27 near-collision Mendel et al.

compression function 5.5 2120/27 collision FSE 2009 [16]
compression function 7.5 2128/27 near-collision

hash function 5.5 2120+s/264−s collision Appendix A
hash function 7.5 2128+s/264−s near-collision Appendix A

compression function 7.5 2184/28 (2120/2128) collision Sect. 4
compression function 9.5 2176/28 (2112/2128) near-collision Sect. 4
compression function 10 2188/28 (2121/2128) distinguisher Sect. 5

Related Work. At FSE 2009, Mendel et al. proposed a new technique for
the analysis of hash functions: the rebound attack [16]. It can be applied to both
block cipher based and permutation based constructions. The idea of the rebound
attack is to divide an attack into two phases, an inbound and an outbound phase.
In the inbound phase, degrees of freedom are used, such that in the outbound
phase several rounds can be bypassed in both forward- and backwards direction.
This led to successful attacks on round-reduced Whirlpool for up to 7.5 (out of
10) rounds. The results are summarized in Table 1.

For the block cipher W that is implicitly used in the Whirlpool compression
function, Knudsen described an integral distinguisher for 6 out of 10 rounds [11].
Furthermore, it is assumed that this property may extend also to 7 rounds. Note
that in [12] similar techniques were used to obtain known-key distinguishers for
7-rounds of the AES.

Our Contribution. The main contribution of this paper is a distinguishing
attack on the full compression function of Whirlpool which is achieved by im-
proving upon the work of Mendel et al. in [16] in several ways.

We start with a description of the hash function Whirlpool. Then, in Sect. 3,
we give an overview of the rebound attack and show how it is applied to reduced
versions of Whirlpool. In Sect. 4, we describe our improvement of the rebound
attack on Whirlpool in detail. This technique enables us to add two rounds in
the inbound phase of the attack and thus gives a collision and near-collision
attack on the Whirlpool compression function reduced to 7.5 and 9.5 rounds,
respectively. Based on this, we describe in Sect. 5 a new generic attack and show
how to distinguish the full (all 10 rounds) compression function of Whirlpool
from a random function by turning the near-collision attack for 9.5 rounds into
a distinguishing attack for 10 rounds. To the best of our knowledge this is the
first result on the full Whirlpool compression function. Table 1 summarizes the
previous results on Whirlpool as well as the contributions of this paper.
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2 Description of Whirlpool

Whirlpool is a cryptographic hash function designed by Barreto and Rijmen in
2000 [1]. It is an iterative hash function based on the Merkle-Damg̊ard design
principle (cf. [18]). It processes 512-bit message blocks and produces a 512-bit
hash value. If the message length is not a multiple of 512, an unambiguous
padding method is applied. For the description of the padding method we refer
to [1]. Let M = M1‖M2‖ · · · ‖Mt be a t-block message (after padding). The hash
value h = H(M) is computed as follows:

H0 = IV (1)
Hj = W (Hj−1, Mj) ⊕Hj−1 ⊕Mj for 0 < j ≤ t (2)

h = Ht (3)

where IV is a predefined initial value and W is a 512 bit block cipher used in
the Miyaguchi-Preneel mode [18]. The block cipher W used by Whirlpool is very
similar to the Advanced Encryption Standard (AES) [19].

The state update transformation and the key schedule update an 8 × 8 state
S and K of 64 bytes in 10 rounds. In one round, the state is updated by the
round transformation ri as follows:

ri ≡ AK ◦ MR ◦ SC ◦ SB.

The round transformations are briefly described here:

– the non-linear layer SubBytes (SB) applies an S-Box to each byte of the state
independently.

– the cyclical permutation ShiftColumns (SC) rotates the bytes of column j
downwards by j positions.

– the linear diffusion layer MixRows (MR) is a right-multiplication by the 8×8
circulant MDS matrix cir(1, 1, 4, 1, 8, 5, 2, 9).

– the key addition AddRoundKey (AK) adds the round key Ki to the 8×8 state,
and AddConstant (AC) adds the round constant Ci to the 8× 8 state of the
key schedule.

After the last round of the state update transformation, the initial value or
previous chaining value Hj−1, the message block Mj, and the output value of
the last round are combined (xored), resulting in the output of one iteration. A
detailed description of the hash function is given in [1].

We denote the resulting state of round transformation ri by Si and the in-
termediate states after SubBytes by SSB

i , after ShiftColumns by SSC
i and af-

ter MixRows by SMR
i . The initial state prior to the first round is denoted by

S0 = Mj ⊕K0. The same notation is used for the key schedule with round keys
Ki with K0 = Hj−1.

3 The Rebound Attack

The rebound attack is a new tool for the cryptanalysis of hash functions and
was published by Mendel et al. in [16]. It is a differential attack. The main
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idea is to use the available degrees of freedom in a collision attack to efficiently
fulfill the low probability parts in the middle of a differential trail. The rebound
attack consists of an inbound phase with a meet-in-the-middle part in order to
exploit the available degrees of freedom, and a subsequent probabilistic outbound
phase. AES based hash functions are a natural target for this attack, since their
construction principle allows a simple application of the idea.

3.1 Basic Attack Strategy

In the rebound attack, the compression function, internal block cipher or permu-
tation of a hash function is split into three sub-parts. Let W be a block cipher,
then W = Wfw ◦ Win ◦ Wbw.

Wbw Win Wfw

inbound
outbound outbound

Fig. 1. A schematic view of the rebound attack. The attack consists of an inbound and
two outbound phases.

The rebound attack can be described by two phases (see Fig. 1):

– Inbound phase: Is a meet-in-the-middle phase in Win, which is aided by
the degrees of freedom that are available to a hash function cryptanalyst.
This very efficient combination of meet-in-the-middle techniques with the
exploitation of available degrees of freedom is called the match-in-the-
middle approach.

– Outbound phase: In the second phase, the matches of the inbound phase
are computed in both forward- and backward direction through Wfw and
Wbw to obtain desired collisions or near-collisions. If the differential trail
through Wfw and Wbw has a low probability, one has to repeat the inbound
phase to obtain more starting points for the outbound phase.

3.2 Preliminaries for the Rebound Attack on Whirlpool

In the following, we want to briefly summarize some well known facts that will
be frequently used in the subsequent sections.

– Truncated differentials: Knudsen [10] proposed truncated differentials as a
tool in block cipher cryptanalysis. In a standard differential attack (cf. [2]),
the full difference between two inputs/outputs is considered whereas in the
case of truncated differentials, the differences is only partially determined,
i.e. for every byte, we only check if there is a difference or not. A byte having
a non-zero difference is called active.
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– Difference Propagation in MixRows: Since the MixRows operation is a linear
transformation, standard differences propagate through MixRows in a deter-
ministic way whereas truncated differences behave in a probabilistic way.
The MDS property of the MixRows transformation ensures that the sum of
the number of active input and output bytes is at least 9 (cf. [1]). In general,
the probability of any x → y transition with 1 ≤ x, y ≤ 8 satisfying x+y ≥ 9
is approximately 2(y−8)·8. For a detailed description of the propagation of
truncated differences in MixRows we refer to [16], see also [21].

– Differential Properties of SubBytes: Let a, b ∈ {0, 1}8. For the Whirlpool
S-box, we are interested in the number of solutions to the equation

S(x) ⊕ S(x ⊕ a) = b. (4)

Exhaustively counting over all 216 differentials shows that the number of
solutions to (4) can only be 0, 2, 4, 6, 8 and 256, which occur with frequency
39655, 20018, 5043, 740, 79 and 1, respectively. The task to return all solu-
tions x to (4) for a given differential (a, b) is best solved by setting up a
precomputed table of size 256× 256 which stores the solutions (if there are
any) for each (a, b).

However, it is easy to see that for any permutation S (to be more precise,
for any injective map) the expected number of solutions to (4) is always
1. We get that 2−16∑

a

∑
b #{x |S(x ⊕ a) ⊕ S(x) = b} = 2−16∑

a 28 = 1,
because for a fixed a, every solution x belongs to a unique b. Since the inputs
to all the S-boxes are independent, the same reasoning is valid for the full
SubBytes transformation.

3.3 Application to Round-Reduced Whirlpool

In this section, we will briefly describe the application of the rebound attack
to the hash function Whirlpool. A detailed description of the attack is given
in [16]. For a good understanding of our results, it is recommended to study
these previous results on Whirlpool very carefully.

The rebound attack on Whirlpool is a differential attack which uses a differ-
ential trail with the minimum number of active S-boxes according to the wide
trail design strategy. The core of the rebound attack on Whirlpool is a 4 round
differential trail, where the fully active state is placed in the middle:

1 r1−→ 8 r2−→ 64 r3−→ 8 r4−→ 1

In the rebound attack, one first splits the block cipher W into three sub-ciphers
W = Wfw ◦Win ◦Wbw, such that the most expensive part of the differential trail
is covered by the inbound phase Win. In the inbound phase, the available degrees
of freedom (in terms of actual values of the state) are used to guarantee that
the differential trail in Win holds. The differential trail in the outbound phase
(Wfw, Wbw) is supposed to have a relatively high probability. While standard
XOR differences are used in the inbound phase, truncated differentials are used
in the outbound phase of the attack.
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K3

AK
MR
SC
SB

r4

K4

inbound phaseoutbound phase outbound phase

Fig. 2. A schematic view of the rebound attack on 4 rounds of Whirlpool with round
key inputs. Black state bytes are active.

In the following, we briefly describe the inbound and outbound phase of the
rebound attack on 4 rounds of Whirlpool. For a more detailed description, we
refer to the original paper [16].

Inbound Phase. In the first step of the inbound phase, we choose a random
difference with 8 active bytes at the input of MixRows of round r2 (SSC

2 ). Note
that we need an active byte in each row of the state (see Fig. 2) to get a fully
active state after the MixRows transformation. Since AddRoundKey does not
change the difference, we get a fully active state at the input of SubBytes of
round r3 (S2). Then, we start with another difference in 8 active bytes at the
output of MixRows of round r3 (SMR

3 ) and propagate backwards. Again, since
we have an active byte in each row, we get a fully active state at the output of
SubBytes of round r3.

In the second step of the inbound phase, the match-in-the-middle step, we
look for a matching input/output difference of the SubBytes layer of round r3.
This is done as described in Sect. 3.2 with a precomputed 256 × 256 lookup
table. Note that we can repeat the inbound phase at most about 2128 times. As
indicated in Sect. 3.2, we expect one solution per trial, that is, we can produce
at most 2128 actual values that follow the differential trail in the inbound phase.

Outbound Phase. In contrast to the inbound phase, we use truncated dif-
ferentials in the outbound phase of the attack. By propagating the matching
differences and state values through the next SubBytes layer outwards, we get a
truncated differential in 8 active bytes in both backward and forward direction.
These truncated differentials need to propagate from 8 to 1 active byte through
the MixRows transformation, both in the backward and forward direction (see
Fig. 2). The propagation of truncated differentials through the MixRows trans-
formation can be modelled in a probabilistic way, see Sect. 3.2. Since we need
to fulfill one 8 → 1 transitions in the backward and forward direction, the prob-
ability of the outbound phase is 2−2·56 = 2−112. In other words, we have to
repeat the inbound phase about 2112 times to generate 2112 starting points for
the outbound phase of the attack.

3.4 Previous Results on Round-Reduced Whirlpool

Extending the 4 round trail in both, the inbound and outbound phase, leads
to attacks on round reduced Whirlpool for up to 7.5 (out of 10) rounds (where
0.5 rounds consist only of SubBytes and ShiftColumns). To be more precise, by



132 M. Lamberger et al.

extending the outbound phase of the attack by 0.5 and 2.5 rounds, one can con-
struct a collision and near-collision for the Whirlpool hash function reduced to
4.5 and 6.5 rounds, respectively. The collision attack has a complexity of about
2120 and the near-collision attack has a complexity of about 2128. Furthermore,
by additionally extending the inbound phase of the attack by 1 round, one can
find a collision and a near-collision for the compression function of Whirlpool
reduced to 5.5 and 7.5 rounds with a complexity of 2120 and 2128, respectively.
Note that adding this round in the inbound phase is possible, since in a com-
pression function attack, one can use the degrees of freedom of the key schedule
(chaining value) to guarantee that the trail in the inbound phase holds. All re-
sults are summarized in Table 1 and for more details on these results we refer
to [16].

4 Improved Rebound Attack on the Whirlpool
Compression Function

In this section, we improve the inbound phase of the original rebound attack on
Whirlpool. By using a new differential trail and extensively using the available
degrees of freedom of the key schedule, we can add 2 additional rounds to the
inbound phase of the attacks. The basic idea is to have two instead of one inbound
phase (match-in-the-middle step) and connect them using the available degrees
of freedom from the key schedule. The outbound phase of the attacks is identical
as in the previous attacks on 5.5 and 7.5 rounds for the compression function of
Whirlpool. As a result, we obtain a collision and a near-collision attack for the
compression function of Whirlpool reduced 7.5 and 9.5 rounds, respectively.

4.1 Inbound Phase

In this section, we describe the improved inbound phase of the attack in detail.
We use the following sequence of active bytes:

8 r1−→ 64 r2−→ 8 r3−→ 8 r4−→ 64 r5−→ 8

In order to find inputs following the differential of the inbound phase, we split
it into two parts. In the first part, we apply the match-in-the-middle step with
active bytes 8 → 64 → 8 twice in rounds 1-2 and 4-5. In the second part, we
need to connect the resulting 8 active bytes and 64 (byte) values of the state
between round 2 and 4 using the degrees of freedom we have in the choice of the
round key values (see Fig. 3).

Inbound Part 1. In this part of the inbound phase, we apply the match-in-the-
middle step twice for rounds 1-2 and 4-5 (see Fig. 3), which can be summarized
as follows:

1. Precomputation: For the S-box, compute a 256 × 256 lookup table as
described in Sect. 3.2.
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Fig. 3. The inbound phase of the attack

2. Match-in-the-middle (rounds 1-2):
(a) Start with 8 active bytes at the output of AddRoundKey in round r2 (S2)

and propagate backward to the output of SubBytes in round r2 (SSB
2 ).

(b) Start with 8 active bytes at the input of MixRows in round r1 (SSC
1 )

and propagate forward to the input of SubBytes in round r2 (S1). Note
that we can compute forward and solve the following step for each row
independently.

(c) Connect the input and output of the S-boxes of round r2 by choosing
the actual values of the state S1, respectively SSB

2 , using the lookup
table generated in the precomputation step. After repeating step (b)
for each row about 28 times we expect to find a match for the 8 S-
boxes and thus 28 actual values (see Sect. 3.2). Since we do this for all
rows independently, we get about 264 actual values for the full state S1,
respectively SSB

2 , such that the trail holds.
3. Match-in-the-middle (rounds 4-5): Do the same as in Step 2.

Hence, we get 264 candidates for SSB
2 and 264 candidates for S4 after the first

part of the inbound phase of the attack with a complexity of about 29 round
transformations.

Inbound Part 2. In the second part of the inbound phase, we have to connect
the 8 active bytes (64 (bit) conditions) as well as the actual values (512 (bit)
conditions) of SSB

2 and S4 by choosing the subkeys K2, K3 and K4 accordingly.
Therefore, we have to solve the following equation:

MR(SC(SB(MR(SC(SB(MR(SC(SSB
2 )) ⊕K2))) ⊕K3))) ⊕K4 = S4 (5)

with
K3 = MR(SC(SB(K2))) ⊕ C3

K4 = MR(SC(SB(K3))) ⊕ C4.
(6)

Since we have 264 candidates for SSB
2 , 264 candidates for S4 and 2512 candidates

for the 3 subkeys K2, K3, K4 (because of (6)), we expect to find 264 solutions.
Since SMR

2 = MR(SC(SSB
2 )), we can rewrite the above equation as follows:

MR(SC(SB(MR(SC(SB(SMR
2 ⊕K2))) ⊕K3))) ⊕K4 = S4 (7)

Note that one can always change the order of SC and SB in the Whirlpool
block cipher without affecting the output of one round. In order to make the
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subsequent description of the attack easier, we do this here and get the following
equation.

MR(SC(SB(MR(SB(SC(SMR
2 ⊕K2))) ⊕K3))) ⊕K4 = S4 (8)

Furthermore, MR and SC are linear transformations and hence we can rewrite
the above equation as follows:

SB(MR(SB(S∗
2 ⊕K∗

2 )) ⊕K3) ⊕KSB
4 = X (9)

with S∗
2 = SC(SMR

2 ), K∗
2 = SC(K2), KSB

4 = SB(K3), X = SC−1(MR−1(S4⊕C4)).
In the following, this equivalent description is used to connect the values and

differences of the two states SMR
2 and S4.

S∗

2 S2 SSC
3 SMR

3 S3 SSB
4 X

K∗

2 K2 KSC
3 KMR

3 K3 KSB
4 KSB

4

SB

r3
MR

r3
SB

r4

SB

r3
MR

r3
SB

r4

K∗

2

C3

K3 KSB
4

Fig. 4. The second part of the inbound phase. Black state bytes are active.

Remember that the two 8-byte differences of S∗
2 and X have already been

fixed due to the previous steps. Furthermore, we can choose from 264 values for
each of the states S∗

2 and X . Now, we use equation (9) to determine the subkey
K∗

2 such that we get a solution for the inbound phase of the attack. Note that
we can solve (9) for each row of the equation independently (see Fig. 4). It can
be summarized as follows.

1. Compute the 8-byte difference and the 264 values of the state S∗
2 from SSB

2 ,
and compute the 8-byte difference and the 264 values of the state X from
S4. Note that we can compute and store the values of S∗

2 and X row-by-row
and independently. Hence, both the complexity and memory requirements
for this step are 28 instead of 264.

2. Repeat the following steps for all 264 values of the first row of S2 to get 264

matches for S∗
2 to S4:

(a) For the chosen value of the first row of S2, forward compute the differ-
ences and values to the first row of S3.

(b) Choose the first row of the key K3 such that the differential of the S-box
between S3 and SSB

4 holds.
(c) Compute the first row of K∗

2 , S∗
2 , KSB

4 and X . Since we have 264 values
for the first row of S∗

2 and 264 values for the first row of X , we expect to
find a match on both sides. In other words, we have now connected the
values and differences of the first row.

(d) Next, we connect the values of rows 2-8 independently by a simple brute-
force search over all 264 corresponding key values of K∗

2 . Since we have
to connect 64 bit values and we test 264 key values we expect to always
find a solution.
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In total, we get 264 matches connecting state S∗
2 to state X with a complexity of

2128 and memory requirements of 28. In other words, with the values of S∗
2 , X and

the corresponding key K∗
2 , we get 264 starting points for the outbound phase of the

attack. Hence, the average complexity to find one starting point for the outbound
phase is 264. It is important to note that one can construct a total of 2192 starting
points in the inbound phase to be used in the outbound phase of the attack.

Note that step 2 (d) can be implemented using a precomputed lookup table
of size 2128. In this lookup table each row of the key K2 (64 bits) is saved for the
corresponding two rows of S∗

2 and X (64 bits each). Using this lookup table, we
can find one starting point for the outbound phase with an average complexity
of 1. However, the complexity to generate this lookup table is 2128.

4.2 Outbound Phase

In the outbound phase of the attack, we further extend the differential path
backward and forward. By propagating the matching differences and state values
through the next SubBytes layer, we get a truncated differential in 8 active bytes
for each direction. These truncated differentials need to follow a specific active
byte pattern to result in a collision on 7.5 rounds and a near-collision on 9.5
rounds, respectively. In the following, we will describe the outbound phase for
the collision and near-collision attack in detail.

Collision for 7.5 Rounds. By adding 1 round in the beginning and 1.5 rounds
at the end of the trail, we get a collision for 7.5 rounds for the compression
function of Whirlpool. In the attack, we use the following sequence of active
bytes:

1 r1−→ 8 r2−→ 64 r3−→ 8 r4−→ 8 r5−→ 64 r6−→ 8 r7−→ 1 r7.5−−→ 1

As described in Sect. 3.2, the propagation of truncated differentials through
the MixRows transformation is modelled in a probabilistic way. For the differ-
ential trail to hold, we need that the truncated differentials in the outbound
phase propagate from 8 to 1 active byte through the MixRows transformation,
both in the backward and forward direction (see Fig. 5). Since the transition
from 8 active bytes to 1 active byte through the MixRows transformation has a
probability of about 2−56, the probability of this part of the outbound phase is
2−2·56 = 2−112. Furthermore, to construct a collision at the output (after the
feed-forward), the exact value of the input and output difference has to match.
Since only one byte is active (see Fig. 5), this can be fulfilled with a probability
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Fig. 5. Differential trail for collision attack on 7.5 rounds
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of 2−8. Hence, the probability of the outbound phase is 2−112 · 2−8 = 2−120. In
other, words, we have to generate 2120 starting points (for the outbound phase)
in the inbound phase of the attack to find a collision for the compression function
of Whirlpool reduced to 7.5 rounds.

Since we can find one starting point with an average complexity of about 264

and memory requirements of 28, we can find a collision with a complexity of
about 2120+64 = 2184. The complexity of the attack can be further improved
on the cost of higher memory requirements. By using a lookup table with 2128

entries (generated in a precomputation step), we can find one starting point for
the inbound phase with an average complexity of 1. In other words, we can find
a collision for the compression function reduced to 7.5 rounds with a complexity
of about 2120. However, the precomputation step (constructing the lookup table)
has a complexity of about 2128.

Near-Collision for 9.5 Rounds. The collision attack on 7.5 rounds for the
compression function can be further extended by adding one round at the begin-
ning and one round at the end of the trail in the outbound phase. The result is
a near-collision attack on 9.5 rounds for the compression function of Whirlpool
with the following sequence of active bytes:

8 r1−→ 1 r2−→ 8 r3−→ 64 r4−→ 8 r5−→ 8 r6−→ 64 r7−→ 8 r8−→ 1 r9−→ 8 r9.5−−→ 8

Since the 1-byte difference at the beginning and end of the 7.5 round trail will
always result in 8 active bytes after one MixRows transformation (see Sect. 3.2),
we can go backward 1 round and forward 1 round with no additional cost.
Using the feed-forward, the position of two active S-boxes match and cancel
each other with a probability of 2−16. Hence, we get a collision in 50 and 52
bytes for the compression function of Whirlpool with a complexity of about 2176

and 2176+16 = 2192, respectively. With a precomputation step with complexity
of 2128 and similar memory requirement, one can find a near-collision for the
compression function of Whirlpool with a complexity of about 2112 (collision in
50 bytes) and 2128 (collision in 52 bytes), respectively.

Mt S0 S1 S2 S7 S8 S9 SSC
10 Ht

AK

K0

AK
MR
SC
SB

r1

K1

AK
MR
SC
SB

r2

K2

AK
MR
SC
SB

r8

K8

AK
MR
SC
SB

r9

K9

SC
SB

r10

inbound phase

round 3-7

outbound phase outbound phase

Fig. 6. In the attack on 9.5 rounds we extend the trail one more round at the beginning
and at the end of the outbound phase to get a near-collision of Whirlpool

5 A Subspace Distinguisher for 10 Rounds

In this section, we present the first cryptanalytic result on the full Whirlpool
compression function. The method for extending the previous result on 9.5
rounds is extended to full 10 rounds of the compression function by defining
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a different attack scenario. Instead of aiming for a near-collision, we are in-
terested in distinguishing the Whirlpool compression function from a random
function. For this, we will introduce a new kind of distinguishing attack, a so
called subspace distinguisher. In the following, F2 = GF (2) always denotes the
finite field of order 2.

For the subspace distinguishing attack, we consider the following problem:

Problem 1. Given a function f mapping to FN
2 , try to find t input pairs such

that the corresponding output differences belong to a vector space of dimension
at most n for some n ≤ N .

Remark. We define Problem 1 in this generic way in order to make it more
generally applicable. This will be shown in the extended version of this paper.

5.1 Solving Problem 1 for the Whirlpool Compression Function

In this section, we show how the compression function attack described in Sect. 4
can be used to distinguish the full Whirlpool compression function from a ran-
dom function.

Obviously, the difference between two Whirlpool states can be seen as a vector
in the vector space of dimension N = 512 over F2. The crucial observation is
that the attack of Sect. 4 can be interpreted as an algorithm that can find t
difference vectors in F512

2 (output differences of the compression function) that
form a vector space of dimension n ≤ 128.

To see this, observe that by extending the differential trail from 9.5 to 10
rounds, the 8 active bytes in SSC

10 will always result in a fully active state S10
due to the properties of the MixRows transformation. Thus the near-collision is
destroyed. However, if we look again at Fig. 6, the differences in Mt and the
differences in SSC

10 can be seen as (difference) vectors belonging to subspaces of
F512

2 of dimension at most 64.
Even though after the application of MixRows and AddRoundKey the state S10

is fully active in terms of truncated differentials, the differences in S10 still belong
to a subspace of F512

2 of dimension at most 64 due to the properties of MixRows.
Therefore, after the feed-forward, we can conclude that the differences at the out-
put of the compression function form a subspace of F512

2 of dimension n ≤ 128.
Hence, we can use the attack of Sect. 4 to find t difference vectors forming a

vector space of dimension n ≤ 128 with a complexity of t · 2176 or t · 2112 using
a precomputation step with complexity 2128. Note that t ≤ 2192−112 = 280 due
to the remaining degrees of freedom in the inbound phase of the attack.

Now the main question is for which values of t our attack is more efficient
than a generic attack. In other words, how do we have to choose t such that we
can distinguish the compression function of Whirlpool from a random function.
Therefore, we first have to bound the complexity of the generic attack. This is
described in the next section.

5.2 Solving Problem 1 for a Random Function

Remarks on the Security Model. In order to discuss generic attack sce-
narios, we will have to choose a security model. We will adopt the black box
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model introduced by Shannon [23]. In this model, a block cipher can be seen
as a family of functions parameterized by the secret key k ∈ K, that is, E :
{0, 1}|k| × {0, 1}N �→ {0, 1}N , where for each k ∈ K, Ek is seen as a uniformly
chosen random permutation on {0, 1}N .

In [3] it was shown, that an ideal block cipher based hash function in the
Miyaguchi-Preneel mode is collision resistant and non-invertible. Based on this,
we model our compression function f as black box oracle to which only forward
queries are admissible. We also want to note that in all of the following, when
we are talking about complexity, we are talking about query complexity. Note
that the practical complexity is always greater or equal to the query complexity.

The Generic Approach. In this generic approach the only property used
about f is the fact that the outputs of f are contained in the vector space FN

2 .
Let us now assume that an adversary is making Q queries to the function f .

Assuming that Q % 2N/2, we thus get K =
(
Q
2

)
differences (∈ FN

2 ) coming from
these Q queries. For given n and t ) n, we now want to calculate the probability
that among these K difference vectors, we have t vectors that span a space of
dimension less or equal to n.

We will need the following fact about matrices over finite fields. Let E(t, N, d)
denote the number of t × N matrices over F2 that have rank equal to d. Then,
it is well known (cf. [9] or [13]) that

E(t, N, d) =
d−1∏
i=0

(2N − 2i) ·
(

t

d

)
2

=
d−1∏
i=0

(2N − 2i) · (2t − 2i)
2d − 2i

, (10)

where
(

t
d

)
2 denotes the q-binomial coefficient with q = 2.

Proposition 1. Let n, t, N ∈ N be given such that t ) N > n. We assume a
set of K vectors chosen uniformly at random from FN

2 . Let Pr(K, t, N, n) denote
the probability that t of these K vectors span a space of dimension not larger
than n. Then, we have

Pr(K, t, N, n) ≤
(

K

t

)
2−t·N

n∑
d=1

E(t, N, d) (11)

≤ 1√
2πt

(
Ke

t

)t

2−(N−n)(t−n)−(n−1). (12)

Proof. Based on the definition of E(t, N, d), it is easy to see that (11) is an upper
bound for Pr(K, t, N, n).

Computing the second bound consists of two steps. Bounding the binomial
coefficient and bounding the rest. We get

2−t·N
n∑

d=1

E(t, N, d) ≤ 2−t·N · 2 · E(t, N, n) (13)

≤ 2−t·N+1
(

(2t − 2n−1) · (2N − 2n−1)
2n − 2n−1

)n

(14)
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≤ 2−t·N+1
(
2n−1 · 2t−(n−1) · 2N−(n−1)

)n
(15)

= 2−(t−n)(N−n)−(n−1). (16)

These inequalities are based on two facts. First, it is easy to show that for
t ) N > n, we have E(t, N, n) ≤

∑n
d=1 E(t, N, d) ≤ 2 · E(t, N, n). This can be

proven by using induction over n and elementary properties of the q-binomial
coefficient. Second, (14) follows from the fact that the function defined by f(x) =
(2t − x)(2N − x)/(2n − x) is strictly increasing on the interval x ∈ [0, 2n−1].

For the binomial coefficient
(
K
t

)
we combine the simple estimate

(
K
t

)
≤ Kt/t!

with the following inequality based on Stirling’s formula [22]:

√
2πtt+

1
2 e

−t+ 1
12t+1 < t! <

√
2πtt+

1
2 e−t+ 1

12t (17)

From this we get
(
K
t

)
≤ 1√

2πt

(
K·e

t

)t
and with (16), this proves the proposition. �

As a corollary, we can give a lower bound for the number of random vectors
needed to fulfill the conditions of the proposition with a certain probability.

Corollary 1. For a given probability p and given N, n, t as in Proposition 1,
the number K of random vectors needed to contain t vectors spanning a space of
dimension not larger than n with a probability p is lower bounded by

K ≥ 1
e

(
p
√

2πt
) 1

t · t · 2
(N−n)(t−n)+(n−1)

t . (18)

and the number of queries Q to f needed to produce t vectors spanning a space
of dimension not larger than n with a probability p is lower bounded by

Q ≥
√

2
e

(
p
√

2πt
) 1

2t ·
√

t · 2
(N−n)(t−n)+(n−1)

2t . (19)

Proof. Equation (18) follows immediately from (12) and (19) follows from setting
K =
(
Q
2

)
= Q(Q− 1)/2 in (18). �

5.3 Complexity of the Distinguishing Attack

Table 2 shows the complexities of the generic approach and our dedicated ap-
proach for several values of t. As can be seen in the table, one can distinguish the
full Whirlpool compression function from random with a complexity of about
2188 with t = 212 (or 2121 with t = 29 using a precomputation table). In other
words, when performing 2188 queries to a random function (19) shows that the
probability for solving Problem 1 for t = 212 is % 1. To the best of our knowledge
this is the first result on the full Whirlpool compression function.
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Table 2. Values for t, Q (query complexity), C (complexity of our attack), and
Cp (complexity of our attack with precomputation) for p = 1, N = 512, n = 128

log2(t) log2(Q) log2(C) log2(Cp) log2(t) log2(Q) log2(C) log2(Cp)
9 148.41 185 121 13 195.29 189 125
10 172.84 186 122 14 197.28 190 126
11 185.31 187 123 15 198.53 191 127
12 191.80 188 124 16 199.40 192 128

6 Conclusion

In this paper, we have proposed a new kind of distinguishing attack for cryptanal-
ysis of hash functions. We have successfully attacked the Whirlpool compression
function. To the best of our knowledge this is the first attack on full Whirlpool.

We have obtained this result by improving the rebound attack on reduced
Whirlpool. First, the inbound phase of the rebound attack was extended by up
to two rounds using the available degrees of freedom from the key schedule. This
resulted in a near-collision attack on 9.5 rounds of the compression function
of Whirlpool. Second, we have shown how to turn this rebound near-collision
attack into a distinguishing attack for the full 10 round compression function of
Whirlpool.

The idea seems applicable to a wider range of hash function constructions.
In particular, the attacks described in this paper can be applied to the hash
function Maelstrom [8] in a straight forward manner because of the similarity to
Whirlpool (see also [16]). Several SHA-3 candidates are a natural target for this
new kind of attack, see for instance [14,15]. Furthermore, subspace distinguishers
can be applied to block ciphers as well. This will be discussed in an extended
version of this paper.
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A Attacks on the Hash Function

In this section, we present a collision and near-collision for the Whirlpool hash
function. The attacks are a straight forward extension of the collision and near-
collision attack on 4.5 and 6.5 rounds of Whirlpool presented in [16]. By adding
one round in the inbound phase we can find a collision and a near-collision for
Whirlpool reduced to 5.5 and 7.5 rounds, respectively. The core of the attack is a
5 round differential trail, where two fully active states are placed in the middle:

1 r1−→ 8 r2−→ 64 r3−→ 64 r4−→ 8 r5−→ 1

Since the outbound phase of the attacks is identical to the previous attacks (see
Sect. 4), we only discuss the inbound phase of the attack here (see Fig. 7).

SSC
2 S2 SSB

3 S3 SSB
4 SMR

4

AK
MR

r2

SB

r3 AK
MR
SC

r3

SB

r4
MR
SC

r4

K2 K3

Fig. 7. The inbound phase of the collision attack and near-collision attack on the hash
function

It can be summarized as follows.

1. Precomputation: For the S-box, compute a 256 × 256 lookup table as de-
scribed in Sect. 3.2.

2. Start with 8 active bytes (differences) at the input of MixRows in round r2
(SSC

2 ) and propagate forward to the input of SubBytes in round r3 (S2).
3. Start with 8 active bytes at the output of MixRows in round r4 (SMR

4 ) and
propagate backward to the output of SubBytes in round r4 (SSB

4 ).
4. Next we have to connect the states S2 and SSB

4 such that the differential trail
holds. In other words, we have to find the actual values for S2 such that:

SB(MR(SC(SB(S2))) ⊕K3) ⊕ SB(MR(SC(SB(S2 ⊕Δ1))) ⊕ K3) = Δ2

where Δ1 denotes the active bytes (differences) in S2 and Δ2 denotes the
active bytes (differences) in SSB

4 . In the following, we will show how this
equation can be solved with a complexity of about 264 by solving the equation
for sets of 8 bytes independently. It can be summarized as follows.
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(a) For all 264 values of S2[0, 0], S2[1, 7], . . . , S2[7, 1] compute the first row of
SSB

4 and check if the above equation holds. Note that due to ShiftColumns,
these bytes are shifted to the first row of SSC

3 and MixRows works on each
row independently. In other words, we get 264 candidates for each row
of SSB

4 . Hence, after testing all 264 candidates for the first row of SSB
4 we

expect to find a match for the first row of Δ2.
(b) Do the same for the corresponding 8 bytes for row 2-8 of SSB

4 .
After testing each set of 8 bytes independently, we will find a state S2 such
that the differential trail is connected. Finishing this step of the attack has
a complexity of about 8 · 264 MixRows (≈ 264 round computations).

Hence, we can compute one starting point for the outbound phase with a com-
plexity of about 264. Note that the complexity of the inbound phase can be sig-
nificantly reduced at the cost of higher memory requirements. By saving 264−s

candidates for SSB
4 in a list, we can do a standard time/memory tradeoff with a

complexity of about 2120+s and memory requirements of 264−s. By setting s = 0
we can find 264 starting points with a complexity of 264 and similar memory
requirements of 264.

Hence, we can find a collision for Whirlpool reduced to 5.5 rounds with a
complexity of about 2120 and a near-collision for 7.5 rounds in 50 (respectively
52) bytes with a complexity of about 2120 and 2112 (respectively 2128). All attacks
have memory requirements of 264.
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Abstract. We consider a long standing problem in cryptanalysis: at-
tacks on hash function combiners. In this paper, we propose the first
attack that allows collision attacks on combiners with a runtime below
the birthday-bound of the smaller compression function. This answers
an open question by Joux posed in 2004.

As a concrete example we give such an attack on combiners with the
widely used hash function MD5. The cryptanalytic technique we use
combines a partial birthday phase with a differential inside-out tech-
nique, and may be of independent interest. This potentially reduces the
effort for a collision attack on a combiner like MD5||SHA-1 for the first
time.

Keywords: hash functions, cryptanalysis, MD5, combiner, differential.

1 Introduction

The recent spur of cryptanalytic results on popular hash functions like MD5
and SHA-1 [28,30,31] suggests that they are (much) weaker than originally an-
ticipated, especially with respect to collision resistance. It seems non-trivial to
propose a concrete hash function which inspires long term confidence. Even more
so as we seem unable to construct collision resistant primitives from potentially
simpler primitives [27]. Hence constructions that allow to hedge bets, like con-
catenated combiners, are of great interest. Before we give a preview of our results
in the following, we will first review work on combiners.

Review of work on combiners. The goal of combiners is to have at least some
bound on the expected security even if (some of the) hash functions get broken,
for various definitions of “security” and “broken”. Joux [12] showed (by using
multi-collisions) that the collision resistance of a combiner can not be expected
to be much higher than the birthday bound of the component (=hash function)
with the largest output size.

On the other hand, combiners seem to be very robust when it comes to collision
security up to the birthday bound (of the component with the smallest output
size): By using techniques similar to Coron et al. [3], Hoch and Shamir [11]
showed that only very mild assumptions on a compression function are needed to

M. Matsui (Ed.): ASIACRYPT 2009, LNCS 5912, pp. 144–161, 2009.
c© International Association for Cryptologic Research 2009
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achieve a collision resistance of at least O(2n/2). In fact, using a model proposed
by Liskov [15], they show that none of the compression functions need to be
collision, nor preimage resistant in the usual sense.

Motivation: cryptanalysis of combiners. Concatenating the output of hash
function is often used by implementors to “hedge bets” on hash functions. A
combiner of the form MD5||SHA-1 as used in SSL 3.0/TLS 1.0 and TLS 1.1 [7,8]
is an example of such a strategy. Let’s assume we are given a combiner of the
form MD5||SHA-1. Let’s further assume that a breakthrough in cryptanalysis of
SHA-1 brings down the complexity of a collision search attack to 252. We know
that the best collision search attacks on MD5 are as fast as 215 [29]. So what is
the best collision attack on the combiner? The best known method due to Joux
is only as good as a birthday attack on the smaller of the two hash functions in
the combiner. There is no known method which would allow to reduce the total
effort below this bound, i.e. 264:

Currently, the best solution at our disposal is to combine the (hypothetic)
SHA-1 attack with Joux’s multicollision approach. Find a 264-multicollision for
SHA-1 with effort 252 · 64 = 258, and then perform a birthday-type search in
this 264 collision to single out a collision which also collides for MD5. The total
effort will be 264. In fact, reductions of the effort for SHA-1 collision search will
only marginally improve the attack on the combiner. How to improve upon this?
Analyzing the combiner as a whole may by prohibitively complicated. The resis-
tance of two-pipe designs with sufficiently different pipes like RIPEMD-160 [10]
against recent collision search attacks also gives hints in this direction.

Preview of our results: We propose a new method that allows a cryptanalyst
to focus on the hash functions individually while still potentially allowing attacks
on combiners with a runtime below the birthday-bound of the smaller compres-
sion function. This also answers an open question by Joux posed in 2004 [12].
For this, we start with definitions in Section 2. In Section 3 we give a high-level
description of our attack strategy on a concatenation combiner without going
into the details of a particular compression function. Next, we consider as a
concrete cryptanalytic example combiners that use MD5. We first give an alter-
native description of MD5 in Section 4, which will turn out to be beneficial (and
in fact as our experiments suggest necessary) in Section 5, where we describe
the cryptanalytic techniques we need, to be able to use the high-level attack
description.

For the cryptanalysis, we employ a combination of a birthday-style attack and
a differential inside-out technique that uses different parts of a collision charac-
teristic at different stages of an attack, both before and after a birthday phase.
The differential technique may be of independent interest, also for improving
known types of collision attacks on MD5, or for finding one-block collisions. In
Section 6 we give practical results which allow us to estimate the actual secu-
rity MD5 is able to give in a combiner. Finally, we conclude and discuss open
problem in Section 7.
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2 Definitions

In the reminder of the paper we give a few definitions. We give a classification
of collision attacks on compression functions and hash functions. Let an iterated
hash function F be built by iterating a compression function f : {0, 1}m ×
{0, 1}n → {0, 1}n as follows:

– Split the message M of arbitrary length into k blocks xi of size m.
– Set h0 to a pre-specified IV
– Compute ∀xi : hi = f(hi−1, xi)
– Output F (M) = hk

Classification for compression function collision attacks. Higher numbers mean
less degrees of freedom for an attacker and are hence more difficult to obtain
cryptanalytically.

– Compression collision attacks of type 0
Compute hi−1, h∗i−1, mi and m∗

i s. t. f(hi−1,mi) = f(h∗i−1,m
∗
i ). Note that

early attacks by den Boer and Bosselaers [1], and Dobbertin [9] on MD5 are
of this type.

– Compression collision attacks of type 1
Given hi−1, compute mi and m∗

i s. t. f(hi−1,mi) = f(h∗i−1,m
∗
i ).

– Compression collision attacks of type 2
Given hi−1 and h∗i−1, compute mi and m∗

i s. t. f(hi−1,mi) = f(h∗i−1,m
∗
i )

– Compression collision attacks of type 3
Given hi−1 and h∗i−1, compute mi s. t. f(hi−1,mi) = f(h∗i−1,mi)

Later in the paper, it will be useful to have a weakened version of the collision
attack on the compression function of type 3.

– Compression collision attacks of type 3w
Given hi−1 and h∗i−1 from an efficiently enumerable subset s (of size |s| =
2n−z) of all 22n possible pairs (hi−1,h∗i−1), compute mi s. t. f(hi−1,mi) =
f(h∗i−1,mi).

Complementing types 1-3 of the compression function attacks, one may define
similar attack settings for the hash function as well. For sake of concreteness, we
also give examples related to MD5.

– Hash collision attacks of type 1: Given m0, compute m1 and m∗
1 such

that F (m0||m1) = F (m0||m∗
1). This is the most simple way to violate the

collision resistance of a hash function. For MD5, see Wang et al. [31]. The
prefix m0 may be the string of length 0, or any other message block.

– Hash collision attacks of type 2: Given m0 and m∗
0, compute m1 and

m∗
1 such that F (m0||m1) = F (m∗

0||m∗
1). This type of attack is much more

demanding from a cryptanalytic view as it needs to cope with arbitrary
prefixes and hence arbitrary chaining input differences (Stevens et al. [28]).
In turn it allows much more powerful attacks, as can be seen by the recent
attacks on certificate authorities using MD5 [29].



MD5 Is Weaker Than Weak: Attacks on Concatenated Combiners 147

– Hash collision attacks of type 3 (new, in this paper): Given m0 and
m∗

0, compute m1 such that F (m0||m1) = F (m∗
0||m1). This type of attack

is in turn much more difficult than type 2, as it halves the degrees of free-
dom available to an attacker. The message difference is fixed (to zero), this
means that for each MD5 compression function, instead of 1024 degrees of
freedom, only 512 degrees of freedom via the message input are available to
an attacker.

This leads us to the informal definition of a weak hash function, complementing
the concept of a weak compression function from [15]. A weak hash function
may be modeled as a random oracle, but offers additionally oracles that allow
collision attacks on the hash function of type 1 and type 2, but not of type 3.
The purpose of this introduction of a weak hash function is to show that MD5
can not even meet the requirements of a weak hash function, even though no
type 3 collision attack on the MD5 compression function are known.

We may define the security of a hash function as a component in a con-
catenated combiner against collision attacks (concatenated combiner collision
security, or simply C3 security) of an n-bit hash function as the effort to find
a collision attack of type 3. For MD5, despite all cryptanalytic advances in re-
cent years, this is 264. In this paper, we show an attack suggesting that the C3

security of MD5 is less.

3 Outline of Attack Strategies

In the following we assume it is possible to devise collision attacks of type 3w
on the compression function below the birthday bound. These collision attacks
will need a suitable differential path, and a method to find message pair which
conforms to such a differential path. We will discuss this problem for the case of
MD5 in Section 5. This alone is not enough for our attack to work, but based
on such a result we propose to continue as follows. We first show how to devise
a collision attack of type 3 on a hash function using a combination of birthday
techniques and differential shortcut techniques. Then we continue and apply such
an attack on a combiner.

3.1 Collision Attack of Type 3

The attack we propose (see Fig. 1 for an illustration) consists of three phases. A
preparation phase that computes target differences (1), a birthday phase (using
M1) (2) and a differential phase (using M2) that performs a type 3w collision
attack (3), and is executed in this order.

Before the birthday phase (2), the differential phase needs to be “prepared”
as follows (1). We generate a number of 2x distinct characteristics (also called
paths) through the compression function on a heap with the following property:
no message difference, an arbitrary input difference (δ2), and no output difference
(δ2 � δ3 = 0). Let’s assume each of them, when given a suitable chaining input
pair, results in an effort of 2w (or less) to find a conforming message pair. Let 2y
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      state update      state updatestate update

msg expansion

state update

msg expansion

M1= M2 = 0

h0 = 0

 = 1  = 3

h2 = 0h1 = 2

Birthday Attack2 Type 3w Collision3

Target Differences1

Fig. 1. Outline of attack strategy

be the cost of this path generation in terms of equivalent compression function
computations. Let’s further assume that each of these paths has an average
number of z independent conditions on the chaining input (CI).

A single path with z conditions on the CI in fact can be used for 2n−z possible
pairs of CIs. Since there exist 22n pairs, 2n+z randomly generated pairs would
be needed before one matches the CI described by the path (δ1 matches δ2, and
the conditions are fulfilled). Using birthday techniques, this is expected to take
2(n+z)/2 time. Given all 2x paths, only 2n+z−x randomly generated pairs are
needed, which in turn is expected to take 2(n−x+z)/2 time. Hence, if x > z, the
runtime is expected to be below the birthday bound.

For obtaining a single hash collision of type 3, the overall method may be
seen as a successful cryptanalytic attack, if the sum of the runtimes for the path
generation, the birthday phase, and the work to find a conforming message pair
using a particular path is below the birthday bound, i.e. if 2y + 2(n−x+z)/2 +
2w < 2n/2. For obtaining many hash collisions of type 3, the effort to generate
the heap of paths (1) may be negligible, hence to goal would be reduced to
2(n−x+z)/2 + 2w < 2n/2.

3.2 Attack on the Combiner F1(M)||F2(M)

We now discuss how to use a type 3 collision attack on a hash to devise an
attack on a combiner of two hash functions using it, where the first of two hash
functions suffers from a type 1 collision attack.

The setting: Let F1(·) and F2(·) be two hash functions with output size n1
and n2. For the sake of simplicity we assume in the following that n1 = n2 = n.
Let’s further assume that F1 suffers from a type 1 collision attack, i.e. given
m0, let the effort to find a m1 and m∗

1 such that F1(m0||m1) = F1(m0||m∗
1) be

2c1 < 2n/2. Furthermore, assume that F2 suffers from a type 3 collision attack,
i.e. given m2 and m∗

2, compute m3 such that F2(m2||m3) = F2(m∗
2||m3) be

2c2 < 2n/2. In more detail, as noted above, 2n+z−x randomly generated pairs
(m2, m∗

2) are needed. The introduced symbols are summarized in Table 1.
We are now ready to formulate the new collision attack on the combiner

F1(M)||F2(M) that combines both attacks. It is also illustrated in Fig. 2.
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Table 1. Symbols used in the description of the attack

symbol description
n output size
w log2 of the cost of finding a conforming message pair
x log2 of the number of distinct characteristics
y log2 of the cost of the preparatory path generation
z number of conditions on the chaining input
c1 log2 of the cost of type 1 collision attack on the first hash function
c2 log2 of the cost of type 3 collision attack on the second hash function

F1(M) || F2(M)

mi mi*

type 1 
collision

type 1 
collision

type 1 
collision

birthday attack

m2

m1m1

m1

m1*

m2*m1

m1

m1 m1

(a) The known approach due to Joux
does not allow to exploit shortcut
collision attacks on both hash func-
tions. The lower bound is hence a
birthday attack on the “smaller”
hash function.

type 1 
collision

type 1 
collision

type 1 
collision

type 3w 
collision

birthday part of 
type 3 collision

m2

mi

m1m1

m1

m1 mi*

m1*

m1

m2*m1

m1

m3

F1(M) || F2(M)

(b) New collision construction using
type 3 collisions allows to exploit
shortcuts attacks in both hash func-
tions without considering the inter-
action in the cryptanalysis.

Fig. 2. Comparison of collision attack on a combiner

1. Let m0 be the string of size zero and perform the type 1 collision attack on
F1 and obtain a (m1

1,m
1∗
1 ) such that F1(m1

1) = F1(m1∗
1 ). Note that F2(m1

1)
does not collide with F2(m1∗

1 ).
2. Repeat the step above while replacing m0 with the concatenation of all

previously found messages (n+ z − x)/2− 1 times. This means, for the i-th
step (for i = 2 . . . (n+z−x)/2), let m0 = m1

1|| . . . ||mi
1 and obtain a (mi

1,mi∗
1 )

such that F1(mi
1) = F1(mi∗

1 ).
3. Note that by using Joux’s multicollision method, we have produced a

2(n+z−x)/2-collision for F1.
4. Perform the type 3 attack of F2 as follows. For the birthday-part of the type

3 attacks, use the (n+z-x)/2 collisions in F1 to obtain the required 2n+z−x

pairs of prefixes m2 and m∗
2.

5. Continue with the differential shortcut part of the type 3 attack as outlined
in the previous subsection, i.e. find a suffix m3 such that there is a collision
between

F2(m1
1||m2

1|| . . . ||m
(n+z−x)/2
1 ||m3)



150 F. Mendel, C. Rechberger, and M. Schläffer

and
F2(m1∗

1 ||m2∗
1 || . . . ||m

((n+z−x)/2)∗
1 ||m3).

6. Also, the collision in F1 remains.

F1(m1
1||m2

1|| . . . ||m
(n+z−x)/2
1 ||m3)

collides with
F1(m1∗

1 ||m2∗
1 || . . . ||m

((n+z−x)/2)∗
1 ||m3),

as after the multicollision the message blockm3 without a difference is added.
7. As the same message constitutes a collision for both F1 and F2, this in turn

results in a collision for the combiner.

The computational complexity of this procedure is as follows. The type 1 collision
search on F1 in step 1 is repeated (n+z−x)/2 times, which sums up to an effort
of (n+ z − x)/2 · 2c1 . Afterwards the type 3 collision search in F2 is performed
using the obtained multicollision. This consists of a birthday part and a type 3w
compression function attack, in total costing 2c2 computations. Hence, the total
complexity is (n + z − x) · 2c1−1 + 2c2 , and reusing the calculation for c2 from
Section 3 we arrive at

(n+ z − x) · 2c1−1 + 2y + 2(n−x+z)/2 + 2w. (1)

4 Alternative Description of MD5

MD5 is an iterative hash function based on the Merkle-Damg̊ard design princi-
ple [4,19]. It processes 512-bit input message blocks and produces a 128-bit hash
value. If the message length is not a multiple of 512, an unambiguous padding
method is applied. For the description of the padding method we refer to [24].
The design of MD5 is similar to the design principles of MD4 [23]. In the follow-
ing, we briefly describe the compression function of MD5. It basically consists
of two parts: message expansion and state update transformation. A detailed
description of the MD5 hash function is given in [24].

4.1 Message Expansion

The message expansion of MD5 is a permutation of the 16 message words mi

in each round. For each of the four rounds, a permutation of these 16 message
words is used, resulting in 64 32-bit words, denoted by Wi, with 0 ≤ i ≤ 63. For
the permutation defining the ordering of message words we refer to [24].

4.2 State Update Transformation

The state update transformation of MD5 starts from a (fixed) initial value IV
(A−4, A−3, A−2, A−1) of four 32-bit registers and updates them in 4 rounds of
16 steps each. The state update transformation of MD5 works on four state
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variables. The state update transformation can be written to update one variable
only:

Ai = Ai−1 + (Ai−4 + f(Ai−1, Ai−2, Ai−3) +Wi +Ki) ≪ si.

However, in our case it turned out that a description which updates 2 state
variables Ai and Bi is beneficial. In this case, one step is computed as follows
(see also Fig. 3):

Bi = (Ai−4 + f(Ai−1, Ai−2, Ai−3) +Wi +Ki) ≪ si

Ai = Ai−1 +Bi.

In each step of MD5, different step constants Ki, rotation values si and Boolean
functions f are used. For the definition of the constants and the rotation values
we refer to [24]. The Boolean function f differs for each round of MD5: IF is
used in the first round, IF3 is used in round 2, and XOR is used in round 3 and
ONX is used in the last round:

IF(x, y, z) = xy ⊕ ¬xz
IF3(x, y, z) = zx⊕ ¬zy
XOR(x, y, z) = x⊕ y ⊕ z
ONX(x, y, z) = y ⊕ (x ∨ ¬z)

After the last step of the state update transformation, the initial value and the
output values of the last four step are combined, resulting in the final value
of one iteration known as Davies-Meyer hash construction (feed forward). The
result is the final hash value or the initial value for the next message block.

Ki

f

      si

Wi

<<<

Bi-4

Bi-3

Bi-2

Bi-1

Bi

...

...

Ai-4

Ai-3

Ai-2

Ai-1

Ai

Fig. 3. Alternative description of the step update transformation of MD5 using two
state variables Ai and Bi
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5 Path Search Technique for MD5 Type 3 Collisions

We now tackle the problem of finding collision attacks on the compression function
of MD5 of type 3w. Various automated path search techniques for MD4-like hash
functions have been proposed in the past.In this section, we describe the new path
search technique we developed to solve the problem. In fact it can be seen as a
variation of the fine grained condition propagation originally proposed in [6].

5.1 Overview

As illustrated in Fig. 4, the MSB-path of [1] is a building block of our technique.
Starting from this MSB-path in the middle of the compression function we will
study and search for many characteristics which propagate through the ONX
round in the forward direction, and through the IF round in the backward direc-
tion in a non-linear way. The constraint is that, despite different rotation values
and Boolean functions, resulting differences in both ends of the state update will
cancel out after the feed-forward operation.

MSB path ONX pathIF path

15 31 63470

Fig. 4. The outline of the type 3w collision search with IF-path, MSB-path and ONX

path

5.2 Reviewing the Path Search of De Cannière/Rechberger

In 2006, De Cannière/Rechberger [6] propose the concept of generalized condi-
tions. The generalized conditions on a particular pair of words will be denoted
by ∇X . ∇X represents as a set the values for which the conditions are satisfied.
In order to write this in a compact way, we will reuse the notation listed in
Table 2.

In [6], the authors describe a heuristic method to find complex nonlinear
characteristics for SHA-1 in an efficient way. Follow-up work directly applied
this method in various settings in the context of SHA-0 and SHA-1 [5,13,16,32].
The approach may be described as follows.

1. The starting point is a number of constraints (on the message difference and
some target differences in the state) for the characteristic.

2. The basic idea of the algorithm is to randomly pick a bit position which is
not restricted yet (i.e. , a ‘?’-bit), impose a zero-difference at this position (a
‘-’-bit), and calculate how the condition propagates. This is repeated until all
unrestricted bits have been eliminated, or until it runs into an inconsistency,
in which case it starts again.
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Table 2. Notation for generalized conditions, possible conditions on a pair of bits. The
right half is for completeness only, and will not be used in the paper.

(xi, xi
∗) (0, 0) (1, 0) (0, 1) (1, 1)

? � � � �
- � - - �
x - � � -
0 � - - -
u - � - -
n - - � -
1 - - - �
# - - - -

(xi, x
∗
i ) (0, 0) (1, 0) (0, 1) (1, 1)

3 � � - -
5 � - � -
7 � � � -
A - � - �
B � � - �
C - - � �
D � - � �
E - � � �

3. The basic idea was improved by also sometimes picking ‘x’-bits once they
start to appear, guessing the sign of their differences (‘u’ or ‘n’), and doing
a backtracking if this does not lead to a solution.

5.3 The Path Search for MD5

We found that a direct mapping of this strategy to the case of MD5 did not
lead to satisfactory results. It was not possible, with significant computational
resources, to find a non-linear characteristic for the given setting. There are
two main reasons for this difficulty. The first problem is caused by having two
modular additions (separated by a rotation operation) within one state update.
Fig. 3 shows the iterative step function of MD5 with variables Ai and Bi. Hence,
two different carry expansions may occur and by guessing only bits of the state
Ai, conditions propagate slowly and contradictions are detected at a very late
stage. Table 3 shows an example with many free (‘?’) bits in Bi due to guessing
bits only on Ai.

The second problem are the reduced starting constraints with only a few bit
differences set in the chaining input. In the case of the type 3w collision search,
there are no input difference in the message and only very few differences in
the chaining input and at the chaining output. By guessing even more zero-
differences (‘-’-bits), the found characteristics tend to get very sparse. In fact,
these sparse characteristics are impossible, which is not detected early enough by
the path search algorithm. Hence, most of the time is spent with paths whose im-
possibility should be detected earlier. An example for a sparse (in state variable
Ai), but impossible characteristic is given in Table 3.

To avoid these problems, the new MD5 path search strategy works as follows:

1. The starting point are only a small number of constraints (the chaining input
difference, no message difference and the MSB path) for the characteristic.

2. Instead of just picking bits of Ai, randomly pick non-restricted bits of the
state Bi as well.

3. Immediately guess the sign of any unrestricted difference (‘x’-bits), as soon
as it occurs and do a backtracking if the guess leads to a contradiction.

4. If all ‘x’-bits have been determined, continue with randomly guessing zero-
differences until the next ‘x’-bit occurs.
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Table 3. A sparse but impossible characteristic due to guessing too many zero-
differences in Ai. Further, conditions do not quickly propagate into Bi and contra-
dictions are detected at a very late stage.

i ∇Bi,∇Ai ∇Wi

-4 A: n-------------------------u-----

-3 A: n0----------------B?------n-----

-2 A: n1---------------n-?-?-?-?n-----

-1 A: un---------------0?x-----?x-----

B: ???????????????????------?x-----

0 A: -n-----0----------Du------------ W: --------------------------------

B: ???????-------------------------

1 A: 7n--x-?0----------Du------0----- W: --------------------------------

B: ???????x-------????x------------

2 A: -B-?7--n------------------------ W: --------------------------------

B: ????x---------------------------

3 A: --D?E?#u-----------0------------ W: --------------------------------

B: --------------------------------

4 A: -------n------------------------ W: --------------------------------

B: ???????x------------------------

5 A: -------------------------------- W: --------------------------------

B: --------------------------------

6 A: 0------0------------------------ W: --------------------------------

B: ----------------#---------------

7 A: 0------------------------------- W: ------#-------------------------

B: x-------------------------------

8 A: n------------------------------- W: --------------------------------

Whenever a contradiction occurs, a simple backtracking strategy (depth first
search) is applied. Using this improved strategy, global contradictions (impossi-
ble characteristics) are found at an earlier stage and impossible paths are less
likely. The disadvantage of this strategy is that long carry expansions are more
likely to occur and the resulting characteristic are less sparse. However, since we
apply the path search mostly in the first round of MD5, even a high number of
conditions can be fulfilled using simple message modification techniques [31].

6 Practical Realization and Results

We now describe implementations of several parts of the attack. This illustrates
and details the method, and also serves are a validity check of the attack. To
recapitulate our earlier description, the practical implementation of a type 3
collision is divided into three steps:

– Preparatory phase. Many special paths are searched and put on a heap.
– Birthday phase. Looking through possible pairs of prefixes, a pair needs

to be found that matches one of the paths on the heap.
– Differential attack phase. Search for a conforming message pair using one

of the characteristics generated earlier.

An optimization that is important in practice, is as follows. Starting form the
MSB path in the middle of the MD5 compression function, it suffices to compute
many paths through the last round (ONX part). The last steps of this path will
impose conditions (of type ’n’ and ’u’) on the chaining input. This information
is enough for the birthday phase. The result of the birthday phase is a prefix
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pair that is compatible with a particular path on the heap. It remains to finish
the characteristic, the IF part, to connect to the MSB part in the middle (see
Fig. 4 for an illustration of the different parts). Having to deal with an actual
chaining input pair in this phase of the attack imposes more constraints on the
path search. However, as we detail in Section 6.1 and also illustrate with the
characteristic in the table in Appendix A, these constraints can be dealt with in
practice and do not impose any limitation on the attack.

6.1 Runtime for IF Path Search

In experiments involving the equivalent of about 2000 hours on a single core, we
have verified the average runtime to find a single IF path is about 36 hours on a
single core, which is about 217 seconds in which about 238 MD5 computations1

could be done. For these experiments, we not only generated paths for a partic-
ular starting point, as the choice of a particular starting point has unpredictable
consequences for a particular heuristic (this was also observed in [6]). Instead
we generated many (about 30) starting points (i.e. different sets of conditions
on the chaining input) in a random way to derive meaningful average runtime
estimates. This suggests that, using the proposed strategy, we can expect to find
a path for every set of constraints, albeit with somewhat varying runtime. In
turn, this allows us to estimate the workfactor for a type 3w collision attack on
MD5.

We found that the runtime for the search for IF-path does not depend on the
number of differences in the CV2. The generation of the corresponding IF-paths
can be delayed until after the birthday phase, contributes to the final search
complexity only in an additive way, and is hence negligible.

6.2 A Type 3 Collision Attack Based on Actually Generated Paths

For the practical generation of type 3w collision attacks on the compression
function of MD5, that in turn lead to a type 3 collision attack on the MD5
hash, we constrain ourselves to differential paths which result in runtimes for
finding a colliding message pair below 258. For the preparatory step, it suffices
to generate useful ONX paths. An ONX path is useful if it has a high probability, as
the probability of a collision characteristic in the last round affects the resulting
effort for finding a conforming message pair in a direct way. In order to give
a bound on the allowable probability for the ONX path, we argue as follows.
Among the four rounds (consisting of 16 steps each) the first round can easily
be dealt with via simple message modification. The second round is an MSB-path
and contains 16 conditions (the Boolean function needs to behave as expected
at every step once, see also [1]), the third round contains no conditions as the
Boolean function is an XOR, and the fourth round contains the more complex
ONX-path. Improvements upon the original type 1 collision attack on MD5 by
1 Each of our 2.0 GHz AMD Opteron(tm) cores performs about 221 MD5 computations

per second using OpenSSL 0.9.8g.
2 We tested a range between 1 and 20.
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Wang et al. concentrated on fulfilling more conditions in round 2. In a work from
2005 [25], 14 conditions could already be fulfilled. Subsequent work by Klima [14]
and Stevens et al. [29] significantly improved upon this. Conservatively assuming
to be able to only fulfill 14 conditions suggests that round number four should
not have more than 58− 16 + 14 = 56 conditions. In Section 6.4 we give several
reasons why this is a very conservative assumption.

Another important parameter of ONX paths is the number and position of
differences it has in the last four steps, as this determines (except for carries via
the feed-forward operation) the uniqueness of the set of allowed pairs of chaining
inputs that can be canceled.

Inhere, we report on empirical findings using an actual implementation of
parts of the attack. In total we spent an equivalent of about 15000 hours on
a single core. The number of distinct paths for type 3w compression function
attacks on MD5 we found together with their number of conditions on the IV is
as follows:

number of conditions on IV 1 2 3 4 5 6 7 8 9 10
number of paths 0 0 10 130 1216 6556 21523 49293 87116 127018

Not all found paths may be of use. Let pi be the number of distinct paths
with i conditions on the IV, we want to find a j such that (

∑j
i=1 pi) − 2j is

maximal. Using the actually generated paths as described above, we found about
217.34 paths with distinct constraints (with at most 9 relevant conditions) on the
chaining input. Including also all found paths with 10 conditions would only
improves the attack only if more than 217.34 paths would be added, which is not
the case.

Using the notation of Section 3, this means x=17.3, w < 58, and z ≤ 8. Based
on this, a type 3 collision has a runtime of 2(128−17.34+9)/2(+258) = 260.19, which
is faster than the expected 264 for an ideal hash function of this size. Hence,
MD5 offers a C3 security of no more than 60 bits.

Note however, that in this calculation, there is a gross imbalance between time
spent on generating paths (15000 CPU hours are about 247 MD5 computations)
and the total runtime of the attack. Assuming to spend e.g. 27 times more
computational resources in the path generation might well lead to an increase.
from x = 17 to 24, which in turn would decrease the runtime of the overall type
3 collision attack on MD5 to 257, and would lead to an attack on the combiner
MD5||SHA-1 with complexity less than 259 (assuming the type 1 collision attack
on SHA-1 is fast enough).

6.3 On Memory Requirements

Both, the generic method due to Joux and the new approach using a type 3
collision attack, can be implemented without requiring access to large memory.
For both cases, this results in a runtime loss of about a factor n/2, hence the
relativ advantage of the new approach over the generic method remains. Memory
requirements of the attack (birthday phase and differential shortcut phase) are
as follows.
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Birthday phase. A naive implementation of the birthday phase would require
a table of size 2(n−x+z)/2 in order to generate enough pairs to find a match with
one of the 2x paths. However, distinguished point methods may be used on a
truncated version of the output of the compression function.3

Let t be the size of the subset of bits that is needed to represent all 2x

paths. A lower bound for t is 2x/3, since every bit that is truncated leaves three
possibilities for a path (’n’, ’u’, or ’-’). In practice, t is higher. A memory-less
method will find a partially suitable pair in time 2(n−t)/2, which would need to be
repeated 2(t−x+z) times if done independently (and hence impose the additional
condition x− z > t/2 on the attack to be more efficient than a generic attack).

However, as described in [21,22], the distinguished points method can be used
to take advantage of the birthday effect also for generating more collisions (or
suitable pairs), by keeping the entries in the list of each of the distinguished
points. A parallelizable version with linear speed gain is described in [20]. Hence
the search needs to be repeated only 2(t−x+z)/2 times. As a result, a “memory-
less” version of the birthday phase for the dedicated combiner attack behaves
to a large extend as a “memoryless” version of a generic birthday attack. What
is needed is memory to store 2z candidate pairs which are the outcome of the
birthday phase. In all practical settings, z is small.

Differential shortcut phase. Storing the precomputed paths for the shortcut
attacks: in the order of a kilobyte per path. For practical values of x between
10 and 20, storage costs are negligible and access to this memory is only needed
once.

6.4 On Conservative Estimates

There are several reasons our estimates can be considered to be very conservative:

– Basing assumption on speed-up methods (message modification, tunnels) is
very conservative for the following reason. The lack of message differences,
and the very simple MSB path in round 2 gives more freedom to apply speed-
up methods as is the case in type 1 collision search attacks in earlier work.

– Also, early stop methods which further speed-up collision search are not
considered.

– Runtime of various path search scenarios are measurements of actual imple-
mentations, whose runtime may be optimized by some constant factor.

– For our calculations, we use the highest possible allowed value for w (worst
case). The expected value is in fact lower.

7 Conclusions and Open Problems

We proposed a new attack that allows collision attacks on combiners with a
runtime below the birthday-bound of the smaller compression function when
3 We will use the term “memoryless” to refer to these techniques, although they do in

fact require some memory, albeit much less than a naive table-based approach.
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the smaller compression function is MD5, potentially reducing a collision attack
on a combiner like MD5||SHA-1 for the first time. This also answers an open
question by Joux posed in 2004. The cryptanalytic technique we proposed for
this is a combination of a birthday-style attack and a differential inside-out tech-
nique that uses different parts of a collision characteristic at different stages of
an attack, both before and after a birthday phase. This technique may be of
independent interest. Based on only the characteristics we generated in practi-
cal experiments with limited computational resources, a collision attack on the
combiner with MD5 would already be around 260 (if the “normal” collision at-
tack on the other hash functions is fast enough), however we argued that such
an estimate is very conservative for various reasons.

This illustrates that the MD5 hash function can not meet the requirements
of a “weak hash function” as informally defined in this paper. Various open
questions arise from this work: In a vein similar to concatenated combiners, or the
Zipper construction [15], is it possible to come up with other collision resistant
constructions that can use MD5, even though our results can be interpreted as
showing that MD5 is “weaker than weak”? Another open problem is related to
the application of our new cryptanalytic method to hash function constructions
that use two or more parallel streams, like RIPEMD-160 [10], as well as several
SHA-3 candidates4. So far it proved difficult to obtain results on RIPEMD-160,
even for interesting reduced variants [17].
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A Supplementary Material for Obtained Results

A particular low-weight input chaining difference becomes the MSB-path in the
course of 10 steps. The following table contains the full characteristics illustrating
a candidates for a type 3w compression function attack. As a proof-of-concept,
we provide a representative example of a conforming message pair in Table 4.

i ∇Ai ∇Wi

-4 A: u---------------------u---------

-3 A: u-------------------------------

-2 A: n--------------0----------------

-1 A: 1--------------0----------------

0 A: 0-------------0u111110000000010- W: --------------------------------

1 A: --------------1u000000000000000- W: --------------------------------

2 A: -------------unnnnnnnnnnnnnnnnn1 W: --------------------------------

3 A: --unnnnn-----0110001011100000000 W: --------------------------------

4 A: --000000---n-u11u00000000110111- W: --------------1----00001000111--

5 A: --011111---0-n11n0-------------- W: --------------0000-----1100-----

6 A: -----------nuuuuuu-------------- W: --------------------------------

7 A: -----------0110000-------------- W: --------------------------------

8 A: 0----------1101101-------------- W: --------------------------------

9 A: 0------------------------------- W: --------------------------------

10 A: u------------------------------- W: --------------------------------

11 A: n------------------------------- W: --------------------------------

12 A: n------------------------------- W: --------------------------------

13 A: n------------------------------- W: --------------------------------

... ...

54 A: n------------------------------- W: --------------------------------

55 A: n---------------------0--------- W: --------------------------------

56 A: u---------------------1--------- W: --------------------------------

57 A: n--------------------0n--------- W: --------------------------------

58 A: u---------------------n--------- W: --------------------------------

59 A: n--------------------nu--------- W: --------------------------------

60 A: n---------------------n--------- W: --------------------------------

61 A: n--------------------11--------- W: --------------------------------

62 A: n---------------------0--------- W: --------------------------------

63 A: -------------------------------- W: --------------------------------

FF: --------------------------------

FF: --------------------------------

FF: --------------------------------

FF: --------------------------------
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Table 4. A conforming message pair for the first 16 steps

H1 C4F12702 D25873C9 5B88CE47 9A8EBB1D

H∗
1 44F12502 525873C9 DB88CE47 9A8EBB1D

ΔH1 80000200 80000000 80000000 00000000

M1
D830883A AA2456AA 24B9260C D2F17AE9 F893211E 08F4298C 8A0C7756 3492552F
C7CB7D9D 7FB6804C 9336A183 44256E0D 6D095FCF 08D8D9EA 5D79C0BA 0F2CD7C5

M∗
1

D830883A AA2456AA 24B9260C D2F17AE9 F893211E 08F4298C 8A0C7756 3492552F
C7CB7D9D 7FB6804C 9336A183 44256E0D 6D095FCF 08D8D9EA 5D79C0BA 0F2CD7C5

ΔM1
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

H2 156733C4 4A05644B 20E6A26E 7718EBA4

H∗
2 956733C4 CA05644B A0E6A26E F718EBA4

ΔH2 80000000 80000000 80000000 80000000



The Intel AES Instructions Set
and the SHA-3 Candidates

Ryad Benadjila1, Olivier Billet1, Shay Gueron2,3, and Matt J.B. Robshaw1

1 Orange Labs, Issy les Moulineaux, France
{ryad.benadjila,olivier.billet,matt.robshaw}@orange-ftgroup.com

2 University of Haifa, Israel
3 Intel Corporation, Haifa, Israel

shay.gueron@intel.com, shay@math.haifa.ac.il

Abstract. The search for SHA-3 is now well-underway and the 51 sub-
missions accepted for the first round reflected a wide variety of design
approaches. A significant number were built around Rijndael/AES-based
operations and, in some cases, the AES round function itself. Many of the
design teams pointed to the forthcoming Intel AES instructions set, to
appear on Westmere chips during 2010, when making a variety of perfor-
mance claims. In this paper we study, for the first time, the likely impact
of the new AES instructions set on all the SHA-3 candidates that might
benefit. As well as distinguishing between those algorithms that are AES-
based and those that might be described as AES-inspired, we have de-
veloped optimised code for all the former. Since Westmere processors are
not yet available, we have developed a novel software technique based on
publicly available information that allows us to accurately emulate the
performance of these algorithms on the currently available Nehalem pro-
cessor. This gives us the most accurate insight to-date of the potential
performance of SHA-3 candidates using the Intel AES instructions set.

1 Introduction

Intel has announced that a new AES instructions set1 will be introduced in new
processors such as Westmere and available early in 2010. These instructions will
provide resistance to a range of software side-channel attacks [3,30] and offer
significant performance benefits for encryption and decryption using AES [24].
Simultaneously the NIST SHA-3 effort [25] to establish a new cryptographic
hash algorithm is well-underway and several teams of submitters have used AES-
like transformations as a cryptographic building block. Several of these teams
have explicitly expressed the assumption that their hashing algorithms could
take advantage of AES-NI and thereby enjoy significant performance benefits.
Since the Westmere processor is still unavailable, there have been no substantive
efforts to assess the possible implications of this important issue. In this paper,

1 Denoted AES-NI in this paper for “new instructions”.

M. Matsui (Ed.): ASIACRYPT 2009, LNCS 5912, pp. 162–178, 2009.
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we provide the first quantitative analysis that estimates the likely impact of the
Intel AES instructions set on SHA-3 candidates.

The first step is to identify which SHA-3 candidates should be considered, and
this is not as straightforward as it might appear. AES-NI can be used in different
combinations to carry out different transformations, and so AES-NI might be
used in many more ways than would näıvely be expected. As a result, there are
submissions for which the variant that provides (say) 256-bit digests gains from
AES-NI, while the same algorithm providing a 512-bit digest cannot.

The second step is to develop a sound methodology for implementing the differ-
ent algorithms, optimising them, and measuring their performance. Clearly this
is a challenge when Westmere processors are unavailable. So we developed new
techniques from publicly available information—in effect, uncovering the behavior
of AES-NI—and this allowed us to emulate Westmere behavior on the publicly-
available Nehalem chips. While this might appear to detract from the value of
the performance figures we derive, the level of validation and confirmation that
took place during this work makes us confident that our results are close to the
Westmere reality.

Our sole goal in this paper has been to compare the performance of SHA-3
candidates when using AES-NI. To this end, we have set aside cryptanalytic
discussions [10] and we have implemented and optimised all the algorithms that
we believe might benefit from AES-NI. While the authors of this paper are
independent (co-)submitters of two SHA-3 proposals, we have strived to be fair
and consistent. In addition, all the code is publicly available via [29] and we
welcome interested parties to download and improve upon it. When Westmere
processors appear, the same samples can be used for real silicon running AES-NI.

2 The Intel AES Instructions

To start we provide a brief description of the Intel AES instructions, and com-
plete details can be found in [13,14]. Intel’s AES instructions set consists of six
instructions, four of which aesenc, aesenclast, aesdec, and aesdeclast are
designed to support data encryption and decryption. The names of these instruc-
tions are short for AES encryption (inner and last) round and AES decryption
(inner and last) round, see Table 4 from Appendix A. These instructions have
register/register and register/memory variants.

There are two other instructions for the AES key expansion but they seem to
be of little use to the SHA-3 submissions and are omitted from this paper.

2.1 What Operations Can We Use AES-NI for?

Clearly, AES instructions can be used whenever a SHA-3 proposal uses one
of the internal or final AES encryption (or decryption) rounds. But they can
be used more widely than this. For instance, calling aesdeclast and aesenc
back-to-back, both with a zeroed second operand, is functionally equivalent to
performing AES MixColumns on the first operand, see Appendix A.
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In fact if we use the pshufb instruction which shuffles bytes in a 128-bit
word, see Appendix A, then we can isolate all of the AES-constituents using
AES-NI [14], namely:

SubBytes , ShiftRows , MixColumns ,
InvSubBytes , InvShiftRows , InvMixColumns .

To illustrate the versatility this gives us, we combine standard xmm instructions
with AES-NI to perform encryption with Rijndael [8] operating on 256-bit blocks.
The plaintext is stored in xmmi and xmmj , but AES-NI cannot be used directly
since half the bytes of xmmi must be swapped with half the bytes of xmmj . However,
this swap can be efficiently implemented using two pshfub (1) to pack the bytes
to-be-swapped into two 32-bit words, two pblendw (2) to swap the 32-bit words,
and two pshufb (3) to re-order the bytes giving, in total, the following state
permutation:

xmmi

3 7 11 15

2 6 10 14

1 5 9 13

0 4 8 12

xmmj

3 7 11 15

2 6 10 14

1 5 9 13

0 4 8 12

1→

xmmi

12 14 1 15

8 13 10 11

4 9 6 7

0 5 2 3

xmmj

12 14 1 15

8 13 10 11

4 9 6 7

0 5 2 3

2→

xmmi

12 14 1 15

8 13 10 11

4 9 6 7

0 5 2 3

xmmj

12 14 1 15

8 13 10 11

4 9 6 7

0 5 2 3

3→

xmmi

37 11 15

14 26 10

5 9 131

0 4 8 12

xmmj

37 11 15

14 26 10

5 9 131

0 4 8 12

After this, aesenc can be applied in parallel to xmmi and xmmj , thereby giving the
appropriate ShiftRows for the large state, and Rijndael encryption on a larger
state has been emulated. Techniques like these are important to us since it is
possible that several SHA-3 candidates that do not use the complete AES round,
or that use a larger state, might still benefit from AES-NI.

2.2 The “In-Scope” SHA-3 Candidates

Obviously SHA-3 candidates that use the AES round as a building block can
benefit from using AES-NI. In addition, algorithms that use the AES S-box
along with some byte shuffling with or without the AES MDS mixing matrix
can benefit. One can also apply these operations to larger states, as we have seen
for Rijndael with 256-bit blocks. The main problems in using AES-NI tend to
arise when designs move away from the AES MDS matrix. Generally speaking,
this dramatically limits any potential performance gain from AES-NI, partic-
ularly since most optimised assembly implementations would incorporate the
MDS matrix operation into table look-ups, potentially combined with other op-
erations. AES-NI might however still be of interest to these designs, especially
in thwarting some side-channel attacks.

There are four submissions that directly, and transparently, use AES rounds
for all hash output lengths. These are echo [2], lane [18], shavite-3 [4], and
vortex [23]. For these algorithms it is clear that we can directly use AES-NI.
There are others that are clearly inspired by Rijndael-like techniques in their
construction. These include cheetah [22], fugue [15], grøstl [12], lesam-

nta [16], lux [27], and twister [11]. The submission shamata [1] has already
been withdrawn, and while some other surveys [5] describe sarmal [31] as being
AES-inspired, a non-AES S-box and MDS mixing layer take it out-of-scope.
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Table 1. The SHA-3 submissions with substantial Rijndael-based components. Check-
marks indicate those that might benefit from AES-NI, for different hash output lengths.

Algorithm 224-bit 256-bit 384-bit 512-bit

arirang � � no no

cheetah � � no no

echo � � � �
fugue no no no no

grøstl no no no no

lane � � � �
lesamnta � � � �

lux � � no no

shavite-3 � � � �
vortex � � � �

While lesamnta offers advantages for 256- and 512-bit hash outputs, it is
interesting that only the 256-bit versions of cheetah and lux benefit from
AES-NI. By contrast, it appears that no variant of fugue, grøstl, or twister

are likely to benefit. These algorithms use a very different MDS mixing matrix
to the AES and, as a result, end-up being too distant to use AES-NI in any
efficient way. So even though a combination of AES-NI instructions could be
used to isolate the S-box operations for fugue and grøstl, say, the table look-
ups typically used for the MDS operations in current optimised implementations
mean that there is no easy way for these algorithms to benefit from AES-NI.

Finally, even though the submission arirang [6] is quite different from the
Rijndael-based constructions, it might potentially benefit from AES-NI. We have
therefore included it in our considerations and Table 1 summarizes the (alpha-
betically ordered) list of algorithms and hash output lengths that we consider.

3 Implementation and Measurements

Obviously the best way to get performance timings is to write the appropriate
code, run it on a Westmere processor (the first with AES-NI), and measure the
performance. However, since this processor is not yet available, we propose a
new methodology that can be used to get an accurate emulation of AES-NI. We
rely on the fact that Westmere (formerly Nehalem-C) and Nehalem processors
share the same micro-architecture. This means that if we can find suitable in-
structions patterns that behave exactly as AES-NI instructions, we will get very
good estimates for the future performance of AES-based SHA-3 candidates on
a Westmere processor, but using today’s Nehalem processor.

Previously, a substitution instruction was proposed [23] for future processors.
However this substitution does not exhibit the correct behaviour for Westmere
and can give misleading results, see Section 3.1 and Appendix B. Here we pro-
vide a particularly accurate replacement instructions pattern for aesenc and we
explain how to derive it from publicly available information only.
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3.1 Replacement Instructions Pattern

The first step is to understand the exact behavior of the AES-NI instructions at
the micro-operation (μop) level,2 in particular that of aesenc and aesenclast.

An Intel code analyzer tool (IACA [21]) is publicly available and gives the
following information about aesenc (aesdec yields the same output):

Total Latency: 6 Cycles; Total number of Uops: 3

| Num of | Ports pressure in cycles | |
| Uops | 0 - DV | 1 | 2 - D | 3 - D | 4 | 5 | |
------------------------------------------------------------
| 3 | 2 | | | | | | | | 1 | CP | aesenc xmm1, xmm0

(In this trace, ‘DV’ stands for the divider pipe of port 0, ‘D’ for the data fetch
pipe of ports 2 and 3. Additionally, an ‘X’ in the trace will be used to denote the
possible ports a μop can be dispatched to.)

This shows that aesenc consists of three μops, two of which are dispatched
to a unit on port 0 and one which is dispatched to a unit on port 5, and that
the instruction’s latency is 6 cycles. However, this information is too coarse to
provide hints for the right instructions pattern replacement: we need to derive
the exact scheduling of these μops. In what follows, we represent μops by bars
for which the length varies according to their latency. The gray bars denote the
μops on port 5 while the white ones denote the μops on port 0. Hence is a
2 cycle μop on port 5 and is a 3 cycle μop on port 0.

From Intel’s white paper [13] we know that AES-NI are highly parallelizable.
This discards the sequential μop patterns on port 0. Moreover, the white paper
explains (see Fig. 9 and 15) that aesdec is structured using the equivalent inverse
cipher (described in Appendix B), which is confirmed by an IACA trace identical
to that of aesenc displayed above (see Appendix B). This leads us to assume
that the μop on port 5 is the exclusive-or with the key, which is corroborated by
the purpose of unit 5, see [19]. Therefore, the μop on port 5 runs in cycle 6 and
requires that μops from port 0 are finished.

Intel’s optimization reference manual [19] gives additional information on the
possible μop latencies and throughput for each port on the Nehalem micro-
architecture. In particular, we see that μops dispatched on port 0 can only have
latencies 1, 4, or 5 cycles, and that μops on port 5 all have a 1 cycle latency.
Since aesenc has a total latency of 6 cycles, this only leaves the following possible
patterns: , , and . (Two μops cannot start at the same
cycle in the same unit but a μop is started as soon as possible to maximize the
overall throughput). It is impossible that a μop on port 0 performs the SubBytes
and/or ShiftRows step while it runs in parallel with the other μop performing
the MixColumns step which would then need the output of the first μop. So both
μops on port 0 perform at least one of the four MixColumn multiplications of the
MixColumns step. The most natural way of doing this is to symmetrically split
the computation on two independent halves of the state. In this case, the two
μops on port 0 have the same latency, which only leaves the pattern.
This is again supported by the IACA trace of aesimc instruction, as well as the
choice of inverse equivalent cipher for aesdec.

2 Instructions are split into micro-operations and dispatched to specialized CPU units.



The Intel AES Instructions Set and the SHA-3 Candidates 167

Now we turn to the replacement instructions set which would give exactly the
same μop-behavior as the instruction aesenc reg, reg. A previously proposed
replacement [23,17] is not appropriate for Westmere (see Appendix B). Instead,
a sequence that closely simulates the μop behavior of aesenc xmmi, xmmj is:

movdqu xmmk, xmmi

mulps xmmi , xmmj

mulps xmmk, xmmj

xorps xmmi , xmmk

For now, let us ignore the movdqu instruction. The IACA trace displayed below
shows that the last three instructions of the replacement behave exactly as the
aesenc xmm0, xmm1 instruction with a latency of 6 cycles. It yields two identical
and independent μops (they both come from mulps) on port 0, a 1 cycle μop on
port 5 which is forced to start after the two μops on port 0 since xorps has a
1 cycle μop on port 0 together with a dependency on register xmm2:

Total Latency: 6 Cycles; Total number of Uops: 4

| Num of | Ports pressure in cycles | |
| Uops | 0 - DV | 1 | 2 - D | 3 - D | 4 | 5 | |
------------------------------------------------------------
| 1 | X | | 1 | | | | | | X | CP | movdqu xmm2, xmm0
| 1 | 1 | | | | | | | | | | mulps xmm0, xmm1
| 1 | 1 | | | | | | | | | CP | mulps xmm2, xmm1
| 1 | | | | | | | | | 1 | CP | xorps xmm0, xmm2

The reader might wonder why we added the movdqu instruction to the beginning
of the replacement: by introducing a dependency on xmm0, we try to prevent the
processor from re-ordering the instructions at the prefetch and re-order step.
Hence, movdqu acts as a fence and ensures that the replacement fragment exhibits
a similar atomic behavior as aesenc. Since movdqu only has a latency of one cycle
and can be dispatched on port 0, 1, or 5, it will in most cases execute on port 1
in parallel of the other μops—and does not interfere with the replacement, and
rarely on port 5 or 0 which would add one cycle to the replacement latency.

Note however, that though the replacement allows for a very good simulation
of aesenc in terms of latency, throughput, and port behavior, it does introduce
a significant issue: the use of a third register xmmk (k = 2 in IACA’s trace) might
interfere with code surrounding the replacement by introducing false dependen-
cies. We took extra care in our implementations to avoid these when using the
replacement. This was not an easy task, especially for those SHA-3 candidates
that make heavy use of AES-NI parallelism such as echo and lane.

Another potential issue is that the aesenc instruction is 5 to 10 bytes long
depending on the variant whereas our replacement is 13 to 22 bytes. This can lead
to an efficiency penalty as the prefetch buffer of the Nehalem micro-architecture
has a size of 16 bytes. However an experiment (see Appendix B) shows that the
size of replacement is unlikely to be a significant factor.

Finally, we refer the reader to Appendix B for a justification of our choice of
the following replacement for memory-based variants like aesenc xmmi, [mem]:

movdqu xmmk, xmmi

mulps xmmi , [mem]
mulps xmmk, xmmj

xorps xmmi , xmmk

as well as for a discussion regarding replacements for other AES-NI instructions.
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3.2 Timing Methodology

For each in-scope candidate and for each hash output length, we implemented
two versions of the submission. These were identical in every way, except one
had AES-NI instructions and was used to ensure the correctness of our AES-NI
optimized implementation against the NIST-submitted test vectors with Intel’s
Emulator [20]; the other had AES-NI instructions substituted with their replace-
ments allowing it to run on a Nehalem to derive performance estimates.

To get consistent results over the candidates, we measured the number of
cycles (using rdtsc instructions and averaging over more than 108 samples to get
stable results) taken by the compression function of each algorithm on the same
Nehalem machine running Linux. However NIST’s API was fully implemented
to check correctness and, in many cases, these were taken from the reference
code sent to NIST by the submitters. To eliminate as much noise as possible
from the OS, high priority scheduling was allocated to the measured code. All
algorithms were implemented by the same programmers, providing a somewhat
uniform level of optimization.

4 Candidate Descriptions and AES-NI Implementations

In this section we consider the design and discuss the implementation of the
in-scope candidates. Full details of the algorithms can be found in the respective
algorithm descriptions, so we only give a brief overview of their functionality
along with insights into their design with regards to AES-NI. Our implementa-
tion proposals will be available from our website [29].

ARIRANG is a single-pipe compression function-based proposal. The bulk of
the computation in the compression function consists of the 40-step expansion of
a 512-bit message block, which is highly efficient in general purpose registers and
can be pre-computed, and a StepFunction that is repeated 40 times. StepFunction
requires eight exclusive-ors, four fixed rotations, and two calls to a function G256

that uses elements of the AES. For longer hash outputs, the equivalent function
G512 uses a larger MDS matrix that cannot be emulated using AES-NI, and so
any potential gain is restricted to 256-bit outputs.

However, the extent of this gain is very limited since arirang uses 1
4 of

an AES round as a building block, but the latency cost of aesenc while only
performing 1

4 of an AES round means that the performance of AES-NI, when
compared to the use of lookup tables, is not competitive. Attempts to parallelize
two of the 1

4 AES rounds introduced too many overheads. We conclude that
AES-NI is unlikely to offer any substantial benefits to arirang.

CHEETAH is a single-pipe compression function-based proposal. The com-
pression function consists of two strands of computation: a message-dependent
expanded block is generated which provides a key-like input to encrypt the
internal state. While the computations on expanded block and internal

state are both Rijndael-inspired, the former uses a different non-AES MDS
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matrix that is hard to emulate. Thus this key derivation is unlikely to benefit
from AES-NI and the use of look-up tables seems better suited.

For operations on the internal state, the 224- and 256-bit versions of chee-

tah use an operation InternalRound that can be emulated using AES-NI. How-
ever, the inherent sequential nature of the rounds and the fact that AES-NI
cannot be used in the most straightforward way means that while there are
gains, they are not as significant as they might be for some other submissions.

For the 384- and 512-bit versions, the operation InternalRound is modified to
use a larger MDS matrix that, once again, cannot exploit AES-NI. So for these
larger outputs, there is unlikely to be any gain with AES-NI.

ECHO is a double-pipe compression-based hash function. The 224- and 256-bit
(resp. 384- and 512-bit) versions encrypt a sixteen 128-bit words state in eight
(resp. ten) rounds of a compression function calculation. The encryption round
applies two AES rounds to each word of the state with a counter or salt as a
key, followed by a BIG.MixColumns MDS and row shift operation that provides
mixing across the entire state. For all hash output lengths, echo can benefit
from AES-NI and, while echo is primarily a double-pipe compression-based
hash function, a simple single-pipe variant was announced at the first NIST
workshop. We therefore include it in our considerations.

The AES encryption rounds are directly performed with aesenc with pre-
computed keys in memory. This allows the algorithm to take full advantage of
the AES-NI parallelism. The BIG.MixColumns operation however cannot further
benefit from AES-NI, though it is based on MixColumns. As an echo encryption
round does not vary with the output length, the same optimizations apply.

LANE is a single-pipe compression function-based hash function. Compress

consists of a message expansion, a set of six p-permutations, and then a set
of two q-permutations. As both sets of permutations are based on the AES
round, lane benefits from AES-NI at all hash function output lengths.

Both permutations are made of L = 2 (resp. L = 4) lines of AES rounds for
hash outputs of 256 (resp. 512) bits and after each round of AES in each line,
an operation SwapColumns mixes the L computation strands. lane therefore
offers two levels of parallelism: the p- and q-permutations and the lines inside
the permutations. The latter does not allow to take full advantage of AES-
NI parallelism as SwapColumns breaks the instructions flow so we use the two
levels of parallelism simultaneously: we compute an AES round for each of the
6L lines of the p-permutations in parallel before applying SwapColumns in
each p-permutation, and do the same for the q-permutations. (The code is
completely unrolled and all keys are precomputed.)

For 256-bit outputs, the state nicely fits the available xmm registers. But for
512-bit outputs, the state does not fit anymore and only three p-permutations

are computed in parallel instead of all six as before. This, in itself, does not
change the AES-NI throughput as the number of lines is doubled in each per-

mutation and thus the same number of AES rounds as before is performed
in parallel. However, the 512-bit version of SwapColumns imposes an additional
overhead.
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LESAMNTA is a single-pipe compression function-based hash function. The
underlying block cipher has the general topology of an unbalanced Feistel cipher;
at each round two strands of the eight that comprise the cipher state are updated
using a message dependent “subkey” and the round function f256 (resp. f512)
for the 256-bit (resp. 512-bit) hash output. The subkey generation and the f256
and f512 functions in the encryption path all involve AES-like operations and
lesamnta can potentially benefit from AES-NI.

For the 256-bit version, the key schedule poses few problems. However, one
difficulty for encryption path is that the AES-like transformations operate on
64-bit values and the MDS matrix is distinct from that of AES. The MDS matrix( 2

1
1
2

)
that is used is however a submatrix of MixColumn and so inserting zero

bytes at the entry of the appropriate MixColumns entries will allow to perform the
AES-like transformation using AES-NI. This can be achieved with the sequence:
pshufb, pxor with a particular constant, aesenc, and pshufb. Note that in this
case, aesenc is used at 1

2 of its normal efficiency.
In the case of 512-bit hash outputs, the AES-like transformation in the key

schedule involves an MDS that is too different from MixColumns, and so AES-NI
is not really of any use there: the keys are therefore precomputed in a classical
way. However, on the encryption side the round functions now use the full AES
round, which gives nice advantages.

For both sets of outputs, it is possible to use the unbalanced nature of the
Feistel construction to perform four f functions in parallel for both output sizes.
In the 256-bit version, this carries a greater benefit: the four instances of the
sequence preparing the data mentioned above can also be grouped to increase
the overall throughput.

LUX is a stream-cipher based hash function that uses two banks of cipher state;
the buffer and the core. At each iteration a block of message is input to both
the buffer and core, both of which are then updated with information being
passed between them. Sixteen blank rounds of computation seal the hashing
process after the last block of message has been processed. While the buffer

transformation is very simple, the core transformation is built on Rijndael-like
operations. And it is the Rijndael-like operations in the core that are the most
time-consuming parts of lux, with mixing of the core and buffer requiring
only a few, simple xmm instructions.

For all hash output lengths, the core transformation operates on a larger
state than we find in the AES. However for 256-bit hash outputs it is equivalent
to Rijndael operating on 256-bit blocks and techniques described in Section 2.1
can be used. Thus lux with 256-bit outputs will benefit from AES-NI.

When used to generate longer hash outputs, however, lux changes the form
of the MDS transformation in such a way that it cannot easily be emulated
using AES-NI. It appears for these longer outputs that AES-NI will not offer
any advantage. In fairness, the optimised implementations of lux for 512-bit
outputs are already extremely competitive.

As an aside on the timing methodology, it is worth observing that we imple-
mented sixteen iterations of the classical compression function found in lux as a
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single compress operation. This avoided buffer rotations and helped treat lux

in a way that was more consistent with the other algorithms.

SHAVITE-3 is a single-pipe compression function-based design, with the com-
pression function being built closely on a Feistel cipher. The round function for
this Feistel cipher is built directly from an AES round, and the accompanying
message expansion also uses the AES round function. As a result, all hash output
sizes can expect to benefit from AES-NI.

For the 256-bit hash output, the round function for the 12-round Feistel cipher
consists of three rounds of the AES and we can therefore use AES-NI directly. To
avoid any interaction with the memory, it is much more efficient to perform key
derivation inside the xmm registers. Key derivation produces 36 subkeys of 128 bits
using a combination of a non-linear layer based on four aesenc operations and
a linear layer. It is possible to interleave key derivation with encryption since
there are sufficient registers. The linear part of the key derivation only requires
a few xmm manipulations (if handled properly) while the four AES rounds in the
key schedule can be performed in parallel. The Feistel round function involves
three AES rounds, but this time they are chained. shavite-3 derives a significant
benefit from avoiding memory access.

For the 512-bit hash output, the underlying 14 rounds block cipher is a gen-
eralised Feistel network. At each round there are two parallel invocations of four
AES rounds. Now, however, key derivation produces new 128-bit words in sets of
eight, rather than four, and so this needs to be performed in place while keeping
the rest of the state in registers. The linear part of key derivation can still be im-
plemented efficiently and the eight AES rounds can be parallelized. Within the
encryption operation, there are now two Feistel round functions, each with four
dependent AES rounds but these can be interleaved, increasing the throughput
slightly. shavite-3 is very closely built around the AES round operation and
gains substantially from AES-NI.

VORTEX is a single-pipe compression function-based design that uses the en-
veloped Merkle-Damg̊ard construction and builds upon MDC-2 [7]. The building
blocks of vortex are Rijndael rounds on 128-bit blocks for vortex-256 and Ri-
jndael rounds on 256-bit blocks for vortex-512. Cross-mixing between the 128-
bit strands (resp. 256-bit strands for vortex 512) is multiplication-based. The
parameter MT determines whether integer multiplication (MT = 1) or carry-less
multiplication (MT = 0) is used. A motivation behind vortex was to directly
exploit AES-NI and the carry-less multiplication instructions on future Intel pro-
cessors. In this paper we consider the case of MT = 1. For vortex with 256-bit
outputs we can directly exploit the aesenc operation. The key schedule calls
upon the AES S-box but this can be easily emulated. For the 512-bit outputs,
the underlying cipher operates on 256-bit states and, using similar techniques
to those described in Section 2.1, it is straightforward to operate on this larger
state. In contrast to some other algorithms, e.g. echo and lane, vortex fits
into the registers. On the other hand, it turns out that there is a bit less room
to exploit AES-NI parallelism.
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5 Implementation Results

Performance estimates for all SHA-3 candidates considered in this paper are
given in Table 5. The Nehalem measurements were made on a Core i7 920 pro-
cessor3 clocked at 2.67 GHz with GNU/Linux Debian running a 2.6.26-1-amd64
kernel. The compiler was icc for amd64, Version 11.0, Build 20081105.
As explained in Section 3, we believe that these results will be very close to the
real performance of the algorithms when run on the Westmere processor. For
reference, some performance figures using assembly code from OpenSSL [28] for
SHA-256 and SHA-512 timed under the same methodology on the same proces-
sor are 18.6 and 12.0 cycles/Byte respectively. While our results are preliminary,
we feel they are sound enough to make some general observations.

Table 2. The predicted Westmere performance in cycles/Byte for those algorithms
that can benefit from the Intel AES instructions set. For illustration, we provide the
optimised performance figures given by submitters at the first NIST SHA-3 workshop.
Other performance data can be found at [9]. Since in all cases 224- and 384-bit outputs
are obtained by truncating 256- and 512-bit outputs, we only give figures for the latter.

256-bit 512-bit

Algorithm AES-NI previous AES-NI previous
arirang 14.9 14.9 − 11.3
cheetah 7.6 9.3 − 13.6
echo (double-pipe) 6.6 28.5 12.3 53.5
echo-sp (single-pipe) 5.7 24.4 8.1 35.7
lane 5.5 25.7 13.9 145.0
lesamnta 30.8 52.7 19.9 51.2
lux 6.6 10.2 − 9.5
shavite-3 5.6 26.7 5.5 38.2
vortex (mT = 1) 4.4 46.3 5.2 56.1

While it is tempting to group all AES/Rijndael-based SHA-3 submissions
together [5], one significant point of difference is that some will not be able to
take advantage of AES-NI. Further, there are some algorithms, e.g. cheetah and
lux, for which the shorter hash outputs are likely to gain from AES-NI while the
longer hash outputs, i.e. 384 and 512-bit, won’t. Interestingly, cheetah is one
of the fastest AES-inspired SHA-3 submissions on the NIST reference platform.
But its performance when used with AES-NI is somewhat constrained by other
non-AES components and cheetah may be slightly less competitive than the
other algorithms when using AES-NI. That said, currently optimised code for
this algorithm is reasonably efficient anyway. Our results for lesamnta differ
from those at [17] which unfortunately use a different, inappropriate replacement
instruction (see Section 3.1 and Appendix B).
3 Note that to ensure stable and clean results, we disabled two features of the processor:

Hyperthreading and Turbo Boost.
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Table 3. For those algorithms that solely use the AES round in its entirety, we give
the number of AES rounds/Byte as a crude measure of how much the AES is used
during the hashing process. We also give the cost, which is computed as the number of
cycles/AES round. In general terms, the lower the cost, the more efficiently the AES
round is being used with respect to AES-NI.

256-bit 512-bit

Algorithm AES-NI #AES/Byte cost AES-NI #AES/Byte cost

echo (double-pipe) 6.6 1.33 4.96 12.3 2.50 4.92
echo-sp (single-pipe) 5.7 1.14 5.00 8.1 1.67 4.85
lane 5.5 1.31 4.20 14.3 1.75 8.17
shavite-3 5.6 0.81 6.91 5.5 1.31 4.20
vortex (mT = 1) 4.4 0.72 6.11 5.2 0.72 7.22

As would be expected, algorithms that are specifically designed around the
AES round operation—echo, lane, shavite-3, and vortex—have the most
to gain by appealing to AES-NI. If we consider the figures for 256-bit hash
outputs then, for single-pipe variants, the throughput performance of these four
algorithms is similar. However there is a much greater contrast in performance
when we turn to 512-bit hash outputs, and this is due to differences in design. For
instance, shavite-3 for 512-bit outputs gains substantially from AES-NI since
the modified round function for 512-bit outputs offers many opportunities for
parallelism. This is something that is especially suited to AES-NI. On the other
hand, when we move from 256- to 512-bit outputs with lane, while the number
of AES operations per byte increases in roughly the same proportion as was the
case for shavite-3, there is a performance impact that comes from doubling the
size of the lanes in the p- and q-permutations. Of course, when compared to
existing optimised implementations lane will still gain considerably when using
AES-NI. But it does demonstrate how different design decisions can lead to very
different performance profiles.

6 Conclusions

In this paper we have provided the first in-depth analysis of the likely impact
of Intel’s AES instructions set on the first round SHA-3 candidates. To do this
we designed a new methodology to replicate and anticipate the likely behavior
of AES-NI in Westmere and we feel that this, in itself, will be of considerable
interest. We have also provided the first performance estimates for those submis-
sions that are likely to gain from AES-NI. Throughout we have tried to make a
consistent and comprehensive comparison, and we have used the best currently-
available information. We believe that our predictions are accurate and, in fact,
may even be conservative. All the code we have developed is public [29] and this
will allow others to develop their own optimized versions and to obtain improved
performance projections.
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Finally this paper sheds light on what has, until now, been a somewhat hidden
issue. It is clear that the new Intel AES instructions set will have a profound
effect on the performance of some of the SHA-3 submissions. At the same time,
this low-level support for AES will become very widespread within a few years.
Certainly this is only one factor among many for the SHA-3 candidates; but it
may well be one of the important ones.
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Appendix A: Instructions

Table 4. The instructions that provide AES encryption

aesenc xmm1, xmm2/m128 aesenclast xmm1, xmm2/m128

Tmp := xmm1; Tmp := xmm1;
Round Key := xmm2/m128; Round Key := xmm2/m128;

Tmp := ShiftRows (Tmp); Tmp := ShiftRows(Tmp);
Tmp := SubBytes (Tmp); Tmp := SubBytes (Tmp);
Tmp := MixColumns (Tmp); xmm1 := Tmp xor Round Key
xmm1 := Tmp xor Round Key;

Table 5. How to derive the MixColumns operation from AES-NI

aesdeclast xmm1, 0x0 · · · 0
aesenc xmm1, 0x0 · · · 0

Tmp := xmm1
Tmp := InvShiftRows (Tmp);
Tmp := InvSubBytes (Tmp);

xmm1 := Tmp xor 0x0;

Tmp := xmm1
Tmp := ShiftRows (Tmp);
Tmp := SubBytes (Tmp);
Tmp := MixColumns (Tmp);

xmm1 := Tmp xor 0x0;

Description of Some Additional Operations Used in This Work

pshufb xmm1, xmm2/m128 This instruction is used to generate a byte-wise per-
mutation of the contents of the first 128-bit operand, where the permutation is
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defined by the second operand (xmm register or a memory location). The sec-
ond source operand (xmm2/m128) is used as a mask, as follows. For each byte of
xmm2/m128, the least significant four bits specify from where to select the corre-
sponding byte of the source operand (xmm1). In addition, if the most significant
bit of a byte of xmm2/m128 equals one, then, regardless of the values of the other
bits in that byte, zero is written in the result byte.

pblendw xmm1, xmm2/m128, imm8 This operation “blends” the contents of
two 128-bit operands (two registers or a register and a memory location) at the
granularity of 16-bit words. Words from the second operand are conditionally
written to the destination operand, depending on the setting of bits in the byte
operand imm8. If bit k of this byte is set, then word k of the source is copied to
the destination. If bit k is zero, word k of the destination is unchanged.

Appendix B: Rationale Behind the Replacements

Additional IACA Traces

AES-NI provides the aesimc instruction to perform InvMixColumns:

Total Latency: 6 Cycles; Total number of Uops: 3

| Num of | Ports pressure in cycles | |
| Uops | 0 - DV | 1 | 2 - D | 3 - D | 4 | 5 | |
------------------------------------------------------------
| 3 | 2 | | | | | | | | 1 | CP | aesimc xmm0, xmm1

The IACA tool supports the aesdec instruction the trace of which is shown
below but does not support the aesdeclast instructions. From what has been
derived for aesenc, aesdec, and aesimc, it is reasonable to assume its trace
would have been identical to that of aesdec.

Total Latency: 6 Cycles; Total number of Uops: 3

| Num of | Ports pressure in cycles | |
| Uops | 0 - DV | 1 | 2 - D | 3 - D | 4 | 5 | |
------------------------------------------------------------
| 3 | 2 | | | | | | | | 1 | CP | aesdec xmm0, xmm1

Instructions Replacement Size

In order to evaluate the possible impact on the prefetching step (the prefetch
buffer has a size of 16 bytes) or on the instruction cache, we conducted the
following experiment: we went through the same kind of analysis as we conducted
on aesenc and we replaced pmulld xmm15, [mem] which has two sequential μops
of 3 cycles on port 1 by

phminposuw xmm15,[mem]
phminposuw xmm15, xmm15

which have a single μop on port 1 each, but are interdependent. While the size of
pmulld is 7 bytes and the size of the proposed replacement is 17 bytes, they both
ran on the Nehalem with identical timings. Not only does this lend support to our
approach, but it also suggests that the increased size of our AES-NI instructions
set replacement is unlikely to have a significant effect.
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Instructions Replacement for the Memory Variant

The aesenc reg, [mem] replacement we propose is actually quite similar to the
aesenc reg, reg one. The only difference lies in the simulation of the memory
access: it shouldn’t impact the μop flows and, to accurately simulate aesenc
reg, [mem], the corresponding μop should start at the same cycle as the first
μop on port 0. This is why we chose to launch the memory access at the first
mulps instruction:

movdqu xmmk, xmmi

mulps xmmi , [mem]
mulps xmmk, xmmj

xorps xmmi , xmmk

The validity of this replacement is assessed by the two following IACA traces:

Total Latency: 12 Cycles; Total number of Uops: 4

| Num of | Ports pressure in cycles | |
| Uops | 0 - DV | 1 | 2 - D | 3 - D | 4 | 5 | |
------------------------------------------------------------
| 4 | 2 | | | 1 | 1 | X | X | | 1 | CP | aesenc xmm0, [0x6008f0]

Total Latency: 11 Cycles; Total number of Uops: 5

| Num of | Ports pressure in cycles | |
| Uops | 0 - DV | 1 | 2 - D | 3 - D | 4 | 5 | |
------------------------------------------------------------
| 1 | X | | 1 | | | | | | X | | movdqu xmm2, xmm0
| 2 | 1 | | | 1 | 1 | X | X | | | CP | mulps xmm0, [0x6008f0]
| 1 | 1 | | | | | | | | | | mulps xmm2, xmm1
| 1 | | | | | | | | | 1 | CP | xorps xmm0, xmm2

An unfortunate side-effect of this replacement is that it affects an additional xmm
register, putting additional constraints when avoiding false dependencies. This
mainly concerns the echo and lane algorithms.

Equivalent Inverse Cipher

The equivalent inverse cipher [8] allows for a decryption structure that is very
similar to that of encryption. This is achieved by noticing that the straightfor-
ward decryption algorithm

InvShiftRows , InvSubBytes , AddRoundKey , InvMixColumns ,

can be replaced by the equivalent one

InvSubBytes , InvShiftRows , InvMixColumns , AddRoundKey ,

as the two first rounds commute and the last two commute when the key expan-
sion is tweaked accordingly; decryption is now similarly structured to encryption:

SubBytes , ShiftRows , MixColumns , AddRoundKey .

An Inappropriate Replacement

In this paragraph, we give the IACA trace for the pmuludq instruction. This
shows that the replacement proposed in [23] is not appropriate as a generic
aesenc replacement on the Nehalem architecture. In the trace below, pmuludq
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has a latency of 3 cycles whereas the aesenc instruction has a latency of 6 cycles,
so the two instructions behave differently. It is even worse at the μop level, as
aesenc has 3 μops dispatched through ports 0 and 5 whereas pmuludq has a
single μop dispatched on port 1: this will lead to very distinct behaviors, and
almost certainly a different throughput.

Total Latency: 3 Cycles; Total number of Uops: 1

| Num of | Ports pressure in cycles | |
| Uops | 0 - DV | 1 | 2 - D | 3 - D | 4 | 5 | |
------------------------------------------------------------
| 1 | | | 1 | | | | | | | CP | pmuludq xmm0, xmm1

This explains the differences in the performance of lesamnta derived in this
paper and quoted at [17].
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1 Introduction

Group encryption (GE) schemes, introduced by Kiayias, Tsiounis and Yung [29],
are the encryption analogue of group signatures [16]. The latter primitives ba-
sically allow a group member to sign messages in the name of a group without
revealing his identity. In a similar spirit, GE systems aim to hide the identity of
a ciphertext’s recipient and still guarantee that he belongs to a population of
registered members in a group administered by a group manager (GM). A sender
can generate an anonymous encryption of some plaintext m intended for a re-
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(analogously to the opening operation in group signatures) and uncover the re-
ceiver’s name. At the same time, the sender should be able to convince a verifier
that (1) the ciphertext is a valid encryption under the public key of some group
member holding a valid certificate; (2) if necessary, the opening authority will
be able to find out who the receiver is; (3) (optionally) the plaintext is a witness
satisfying some public relation.

Motivations. The GE primitive was motivated by various privacy applications
such as anonymous trusted third parties or oblivious retriever storage. Many
cryptographic protocols such as fair exchange, fair encryption or escrow encryp-
tion, involve trusted third parties that remain offline most of the time and are
only involved to resolve problems. Group encryption allows one to verifiably
encrypt some message to such a trusted third party while hiding his identity
among a set of possible trustees. For instance, a user can encrypt a key (e.g., in
an “international key escrow system”) to his own national trusted representative
without letting the ciphertext reveal the latter’s identity, which could leak infor-
mation on the user’s citizenship. At the same time, everyone can be convinced
that the ciphertext is heading for an authorized trustee.

Group encryption also finds applications in ubiquitous computing, where
anonymous credentials must be transferred between peer devices belonging to
the same group. Asynchronous transfers may require to involve an untrusted
storage server to temporarily store encrypted credentials. In such a situation,
GE schemes may be used to simultaneously guarantee that (1) the server retains
properly encrypted valid credentials that it cannot read; (2) credentials have
a legitimate anonymous retriever; (3) if necessary, an authority will be able to
determine who the retriever is.

By combining cascaded group encryptions using multiple trustees and accord-
ing to a sequence of identity discoveries and transfers, one can also implement
group signatures where signers can flexibly specify how a set of trustees should
operate to open their signatures.

Prior Works. Kiayias, Tsiounis and Yung (KTY) [29] formalized the con-
cept of group encryption and provided a suitable security modeling. They pre-
sented a modular design of GE system and proved that, beyond zero-knowledge
proofs, anonymous public key encryption schemes with CCA2 security, digital
signatures, and equivocal commitments are necessary to realize the primitive.
They also showed how to efficiently instantiate their general construction using
Paillier’s cryptosystem [35] (or, more precisely, a modification of the Camenisch-
Shoup [13] variant of Paillier). While efficient, their scheme is not a single mes-
sage encryption, since it requires the sender to interact with the verifier in a
Σ-protocol to convince him that the aforementioned properties are satisfied. In-
teraction can be removed using the Fiat-Shamir paradigm [20] (and thus the
random oracle model [4]), but only heuristic arguments [22] (see also [14]) are
then possible in terms of security.

Independently, Qin et al. [36] considered a closely related primitive with non-
interactive proofs and short ciphertexts. However, they avoid interaction by
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explicitly employing a random oracle and also rely on strong interactive assump-
tions. As we can see, none of these schemes is a truly non-interactive encryption
scheme without the random oracle idealization.

Our Contribution. As already noted in various contexts such as anonymous
credentials [2], rounds of interaction are expensive and even impossible at times
as, in some applications, proofs should be verifiable by third parties that are
not present when provers are available. In the setting of group encryption, this
last concern is even more constraining as it requires the sender, who may be
required to repeat proofs with many verifiers, to maintain a state and remember
the random coins that he uses to encrypt every single ciphertext. In the frequent
situation where many encryptions have to be generated using independent ran-
dom coins, this becomes a definite bottleneck.

This paper solves the above problems and describes the first realization of
group encryption which is a fully non-interactive encryption scheme with CCA2-
security and anonymity in the standard model. In our scheme, senders do not
need to maintain a state: thanks to the Groth-Sahai [27] non-interactive proof
systems, the proof of a ciphertext can be generated once-and-for-all at the same
time as the ciphertext itself. Furthermore, using suitable parameters and for a
comparable security level, we can also shorten ciphertexts by a factor of 2 in
comparison with the KTY scheme. As far as communication goes, the size of
proofs allows decreasing by more than 75% the number of transmitted bits be-
tween the sender and the verifier.

Since our goal is to avoid interaction, we also design a joining protocol (i.e., a
protocol whereby the user effectively becomes a group member and gets his pub-
lic key certified by the GM) which requires the smallest amount of interaction:
as in the Kiayias-Yung group signature [30], only two messages have to be ex-
changed between the GM and the user and the latter need not to prove anything
about his public key. In particular, rewinding is not necessary in security proofs
and the join protocol can be safely executed in a concurrent environment, when
many users want to register at the same time. The join protocol uses a non-
interactive public key certification scheme where discrete-logarithm-type public
keys can be signed as if they were ordinary messages (and without knowing the
matching private key) while leaving the ability to efficiently prove knowledge
of the certificate/public key using the Groth-Sahai techniques. To certify users
without having to rewind1 in security proofs, the KTY scheme uses groups of
hidden order (and more precisely, Camenisch-Lysyanskaya signatures [12]). In
public order groups, to the best of our knowledge, our construction is the first
certification method that does not require any form of proof of knowledge of
private keys. We believe it to be of independent interest as it can be used to
construct group signatures (in the standard model) where the joining mecha-
nism tolerates concurrency in the model of [30] without demanding more than
two moves of interaction.

1 Although the simulator does not need to rewind proofs of knowledge in [29], users
still have to interactively prove the validity of their public key.
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Organization. In section 2, we describe the intractability assumptions that
we need and recall the KTY model of group encryption. Section 3 explains
the building blocks of our construction and notably describes our certification
scheme. Our GE system is depicted in section 4.

2 Background

In the paper, when S is a set, x $← S denotes the action of choosing x at random
in S. By a ∈ poly(λ), we mean that a is a polynomial in λ while b ∈ negl(λ) says
that b is a negligible function of λ. When a and b are two binary strings, a||b
stands for their concatenation.

2.1 Complexity Assumptions

We use groups (G,GT ) of prime order p with an efficiently computable map
e : G × G → GT such that e(ga, hb) = e(g, h)ab for any (g, h) ∈ G × G, a, b ∈ Z
and e(g, h) 
= 1GT whenever g, h 
= 1G.

In this setting, we rely on an assumption introduced in [7] that allows con-
structing efficient non-interactive proofs as pointed out in [27].

Definition 1. The Decision Linear Problem (DLIN) in G, is to distinguish
the distribution D1 = {(g, ga, gb, gac, gbd, gc+d)|a, b, c, d $← Z∗

p} from the distri-
bution D2 = {(g, ga, gb, gac, gbd, gz)|a, b, c, d, z $← Z∗

p}. The Decision Linear
Assumption is the intractability of DLIN for any PPT algorithm D.

This problem amounts to deciding whether vectors �g1 = (ga, 1, g), �g2 = (1, gb, g)
and �g3 are linearly dependent or not. We also consider a related computational
problem which bears similarities with simultaneous pairing problems [26,25].

Definition 2. The Simultaneous Double Pairing problem (S2P) in G is,
given (g1, g2, g1,c, g2,d) ∈ G4, to find a triple (u, v, w) ∈ G3\{(1G, 1G, 1G)} such
that e(g1, u) = e(g1,c, w) and e(g2, v) = e(g2,d, w).
Like the simultaneous triple pairing assumption [25], the hardness of this prob-
lem is implied by the DLIN assumption: given (g, g1, g2, gc

1, g
d
2 , η

?= gc+d) any
algorithm that, on input of (g1, g2, gc

1, g
d
2), outputs a non-trivial (u, v, w) such

that e(g1, u) = e(gc
1, w), e(g2, v) = e(gd

2 , w) allows telling whether η = gc+d by
testing if e(g, u · v) = e(η, w) (since u = wc and v = wd).

We also use the Hidden Strong Diffie-Hellman (HSDH) assumption introduced
in [10] as a strengthening of the Strong Diffie-Hellman assumption [6].

Definition 3. The �-Hidden Strong Diffie-Hellman problem (�-HSDH) in
G is, given (g,Ω = gω, u) $← G3 and triples (g1/(ω+si), gci , uci) with c1, . . . , c�

$←
Z∗

p, to find another triple (g1/(ω+c), gc, uc) such that c 
= ci for i = 1, . . . , �.

We finally need the following variant of the Diffie-Hellman assumption.
Definition 4. The Flexible Diffie-Hellman problem (FlexDH) is, given
(g, ga, gb) ∈ G3, where a, b $← Z∗

p, to find a triple (C,Ca, Cab) such that C 
= 1G.
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A potentially easier problem considered in [33] only requires to output (C,Cab)
on input of the same values. The latter problem was proved generically hard in
prime order groups [33]. In bilinear groups, any algorithm solving either of these
two problems would make it easy to recognize gabc on input of (g, ga, gb, gc),
which is a problem suggested for the first time in [8, Section 8].

2.2 Model and Security Notions

Group encryption schemes involve a sender, a verifier, a group manager (GM)
that manages the group of receivers and an opening authority (OA) that is
able to uncover the identity of ciphertext receivers. A group encryption system
is formally specified by the description of a relation R as well as a collection
GE =
(
SETUP, JOIN, 〈Gr ,R, sampleR〉,ENC,DEC,OPEN, 〈P ,V〉

)
of algorithms

or protocols. Among these, SETUP is a set of initialization procedures that all
take (explicitly or implicitly) a security parameter λ as input. They can be split
into one that generates a set of public parameters param (a common reference
string), one for the GM and another one for the OA. We call them SETUPinit(λ),
SETUPGM(param) and SETUPOA(param), respectively. The latter two procedures
are used to produce key pairs (pkGM, skGM), (pkOA, skOA) for the GM and the OA.
In the following, param is incorporated in the inputs of all algorithms although
we sometimes omit to explicitly write it.

JOIN = (Juser, JGM) is an interactive protocol between the GM and the prospec-
tive user. As in [30], we will restrict this protocol to have minimal interaction and
consist of only two messages: the first one is the user’s public key pk sent by Juser

to JGM and the latter’s response is a certificate certpk for pk that makes the user’s
group membership effective. We do not require the user to prove knowledge of his
private key sk or anything else about it. In our construction, valid keys will be
publicly recognizable and users do not need to prove their validity. After the exe-
cution of JOIN, the GM stores the public key pk and its certificate certpk in a public
directory database.

Algorithm sample allows sampling pairs (x,w) ∈ R (made of a public value
x and a witness w) using keys (pkR, skR) produced by Gr. Depending on the
relation, skR may be the empty string (as will be the case in our scheme). The
testing procedure R(x,w) returns 1 whenever (x,w) ∈ R. To encrypt a witness
w such that (x,w) ∈ R for some public x, the sender fetches the pair (pk, certpk)
from database and runs the randomized encryption algorithm. The latter takes
as input w, a label L, the receiver’s pair (pk, certpk) as well as public keys pkGM

and pkOA. Its output is a ciphertext ψ ← ENC(pkGM, pkOA, pk, certpk, w, L). On
input of the same elements, the certificate certpk, the ciphertext ψ and the ran-
dom coins coinsψ that were used to produce it, the non-interactive algorithm
P generates a proof πψ that there exists a certified receiver whose public key
was registered in database and that is able to decrypt ψ and obtain a witness w
such that (x,w) ∈ R. The verification algorithm V takes as input ψ, pkGM, pkOA,
πψ and the description of R and outputs 0 or 1. Given ψ, L and the receiver’s
private key sk, the output of DEC is either a witness w such that (x,w) ∈ R or a
rejection symbol ⊥. Finally, OPEN takes as input a ciphertext/label pair (ψ,L)
and the OA’s secret key skOA and returns a receiver’s public key pk.
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The security model considers four properties termed correctness, message
security, anonymity and soundness. In the following, we sometimes denote by
〈outputA|outputB〉 ← 〈A(inputA), B(inputB)〉(common-input) the execution of a
protocol between A and B obtaining their own outputs from their inputs.

Correctness. The correctness property requires that the following experiment
returns 1 with overwhelming probability.

Experiment Exptcorrectness(λ)
param← SETUPinit(λ); (pkR, skR)← Gr(λ); (x,w) ← sampleR(pkR, skR);
(pkGM, skGM)← SETUPGM(param); (pkOA, skOA)← SETUPOA(param);
〈pk, sk, certpk|pk, certpk〉 ← 〈Juser, JGM(skGM)〉(pkGM);
ψ ← ENC(pkGM, pkOA, pk, certpk, w, L);
πψ ← P(pkGM, pkOA, pk, cert, w, L, ψ, coinsψ);
If
(
(w 
= DEC(sk, ψ, L)) ∨ (pk 
= OPEN(skOA, ψ, L))
∨(V(ψ,L, πψ, pkGM, pkOA) = 0)

)
return 0 else return 1;

Message Security. The message secrecy property is defined by an experiment
where the adversary has access to oracles that may be stateful (and maintain a
state across queries) or stateless:

- DEC(sk): is a stateless oracle for the user decryption function DEC. When
this oracle is restricted not to decrypt a ciphertext-label pair (ψ,L), we
denote it by DEC¬〈ψ,L〉.

- CHb
ror(λ, pk, w, L): is a real-or-random challenge oracle that is only queried

once. It returns (ψ, coinsψ) such that ψ ← ENC(pkGM, pkOA, pk, certpk, w, L)
if b = 1 whereas, if b = 0, ψ ← ENC(pkGM, pkOA, pk, certpk, w

′, L) encrypts a
random plaintext uniformly chosen in the space of plaintexts of length O(λ).
In either case, coinsψ are the random coins used to generate ψ.

- PROVEb
P,P′(pkGM, pkOA, pk, certpk, pkR, x, w, ψ, L, coinsψ): is a stateful ora-

cle that the adversary can query on multiple occasions. If b = 1, it runs the
real prover P on the inputs to produce an actual proof πψ. If b = 0, the
oracle runs a simulator P ′ that uses the same inputs as P except witness
w, coinsψ and generates a simulated proof.

These oracles are used in an experiment where the adversary controls the GM,
the OA and all members but the honest receiver. The adversary A is the dishon-
est GM that certifies the honest receiver in an execution of JOIN. She has oracle
access to the decryption function DEC of that receiver. At the challenge phase,
she probes the challenge oracle for a label and a pair (x,w) ∈ R of her choice.
After the challenge phase, she can also invoke the PROVE oracle on multiple
occasions and eventually aims to guess the bit b chosen by the challenger.

As pointed out in [29], designing an efficient simulator P ′ (for executing
PROVEb

P,P′(.) when b = 0) is part of the security proof and might require a
simulated common reference string.

Definition 5. A GE scheme satisfies message security if, for any PPT adver-
sary A, the experiment below returns 1 with probability at most 1/2 + negl(λ).
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Experiment Exptsec
A (λ)

param← SETUPinit(λ); (aux, pkGM, pkOA)← A(param);
〈pk, sk, certpk|aux〉 ← 〈Juser,A(aux)〉(pkGM);
(aux, x, w, L, pkR)← ADEC(sk,.)(aux); If (x,w) 
∈ R return 0;
b

$← {0, 1}; (ψ, coinsψ)← CHb
ror(λ, pk, w, L);

b′ ← APROVEb
P,P′(pkGM,pkOA,pk,certpk,pkR,x,w,ψ,L,coinsψ),DEC¬〈ψ,L〉(sk,.)(aux, ψ);

If b = b′ return 1 else return 0;

Anonymity. In anonymity attacks, the adversary controls the whole system but
the opening authority and performs a kind of chosen-ciphertext attack on the
encryption scheme of the OA. She registers two keys pk0, pk1 in database and, for
a pair (x,w) ∈ R of her choosing, obtains an encryption of w under pkb for some
b ∈ {0, 1} chosen by the challenger. She is granted access to decryption oracles
w.r.t. both keys pk0, pk1. In addition, she may invoke the following oracles:

- CHb
anon(pkGM, pkOA, pk0, pk1, w, L): is a challenge oracle that is only queried

once by the adversary. It returns a pair (ψ, coinsψ) consisting of a ciphertext
ψ ← ENC(pkGM, pkOA, pkb, certpkb

, w, L) and the coin tosses coinsψ that were
used to generate ψ.

- USER(pkGM): is a stateful oracle simulating two executions of Juser to intro-
duce two honest users in the group. It uses a string keys where the outputs
of the two executions are written.

- OPEN(skOA, .): is a stateless oracle that simulates the opening algorithm on
behalf of the OA and, on input of a GE ciphertext, returns the receiver’s
public key.

Definition 6. A GE scheme satisfies anonymity if, for any PPT adversary A,
the experiment below returns 1 with a probability not exceeding 1/2 + negl(λ).

Experiment Exptanon
A (λ)

param← SETUPinit(λ); (pkOA, skOA)← SETUPOA(param);
(aux, pkGM)← A(param, pkOA); aux← AUSER(pkGM),OPEN(skOA,.)(aux);
If keys 
= (pk0, sk0, certpk0

, pk1, sk1, certpk1
)(aux) return 0;

(aux, x, w, L, pkR)← AOPEN(skOA,.),DEC(sk0,.),DEC(sk1,.)(aux);
If (x,w) 
∈ R return 0;
b

$← {0, 1}; (ψ, coinsψ)← CHb
anon(pkGM, pkOA, pk0, pk1, w, L);

b′ ← AP(pkGM,pkOA,pkb,certpkb
,x,w,ψ,L,coinsψ,

OPEN¬〈ψ,L〉(skOA,.),DEC¬〈ψ,L〉(sk0,.),DEC¬〈ψ,L〉(sk1,.))(aux, ψ);
If b = b′ return 1 else return 0;

As shown in [29], GE schemes satisfying the above notion necessarily subsume a
key-private (a.k.a. receiver anonymous) [3,28] cryptosystem.

Soundness. In a soundness attack, the adversary creates the group of receivers
by interacting with the honest GM. Her goal is to produce a ciphertext ψ and a
convincing proof that ψ is valid w.r.t. a relation R of her choice but either (1)
the opening reveals a receiver’s public key pk that does not belong to any group
member; (2) the output pk of OPEN is not a valid public key (i.e., pk 
∈ PK,
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where PK is the space of valid public keys); (3) the ciphertext C is not in the
space Cx,L,pkR,pkGM,pkOA,pk of valid ciphertexts. This notion is formalized by a game
where the adversary is given access to a user registration oracle REG(skGM, .)
that simulates JGM. This oracle maintains a repository database where registered
public keys and their certificates are stored.

Definition 7. A GE scheme is sound if, for any PPT adversary A, the experi-
ment below returns 1 with negligible probability.

Experiment Exptsoundness
A (λ)

param← SETUPinit(λ); (pkOA, skOA)← SETUPOA(param);
(pkGM, skGM)← SETUPGM(param);
(pkR, x, ψ, πψ, L, aux)← AREG(skGM,.)(param, pkGM, pkOA, skOA);
If V(ψ,L, πψ, pkGM, pkOA) = 0 return 0;
pk← OPEN(skOA, ψ, L);
If
(
(pk 
∈ database) ∨ (pk 
∈ PK) ∨ (ψ 
∈ Cx,L,pkR,pkGM,pkOA,pk)

)
then return 1 else return 0;

2.3 Groth-Sahai Proof Systems

In the following notations, for equal-dimension vectors �A and �B containing group
elements, �A� �B stands for their component-wise product.

When based on the DLIN assumption, the Groth-Sahai (GS) proof systems
[27] use a common reference string comprising vectors �g1, �g2, �g3 ∈ G3, where
�g1 = (g1, 1, g), �g2 = (1, g2, g) for some g1, g2 ∈ G. To commit to X ∈ G, one
sets �C = (1, 1, X)� �g1

r � �g2
s � �g3

t with r, s, t $← Z∗
p. When the proof system is

configured to give perfectly sound proofs, �g3 is chosen as �g3 = �g1
ξ1 � �g2

ξ2 with
ξ1, ξ2

$← Z∗
p. Commitments �C = (gr+ξ1t

1 , gs+ξ2t
2 , X ·gr+s+t(ξ1+ξ2)) are then Boneh-

Boyen-Shacham (BBS) ciphertexts that can be decrypted using α1 = logg(g1),
α2 = logg(g2). In the witness indistinguishability (WI) setting, vectors �g1, �g2, �g3
are linearly independent and �C is a perfectly hiding commitment. Under the
DLIN assumption, the two kinds of CRS are indistinguishable.

To commit to an exponent x ∈ Zp, one computes �C = �ϕx � �g1
r � �g2

s, with
r, s

$← Z∗
p, using a CRS comprising vectors �ϕ, �g1, �g2. In the soundness setting

�ϕ, �g1, �g2 are linearly independent vectors (typically �ϕ = �g3 � (1, 1, g) where �ϕ =
�g1

ξ1� �g2ξ2) whereas, in the WI setting, choosing �ϕ = �g1
ξ1� �g2ξ2 gives a perfectly

hiding commitment since �C is always a BBS encryption of 1G.
To prove that committed variables satisfy a set of relations, the GS techniques

replace variables by the corresponding commitments in each relation. The whole
proof consists of one commitment per variable and one proof element (made of
a constant number of group elements) per relation.

Such proofs are available for pairing-product relations, which are of the type

n∏
i=1

e(Ai,Xi) ·
n∏

i=1

·
n∏

j=1

e(Xi,Xj)aij = tT ,
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for variables X1, . . . ,Xn ∈ G and constants tT ∈ GT , A1, . . . ,An ∈ G, aij ∈ G,
for i, j ∈ {1, . . . , n}. Efficient proofs also exist for multi-exponentiation equations

m∏
i=1

Ayi

i ·
n∏

j=1

X bj

j ·
m∏

i=1

·
n∏

j=1

X yiγij

j = T,

for variables X1, . . . ,Xn ∈ G, y1, . . . , ym ∈ Zp and constants T,A1, . . . ,Am ∈ G,
b1, . . . , bn ∈ Zp and γij ∈ G, for i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}.

Multi-exponentiation equations admit zero-knowledge proofs at no additional
cost. On a simulated CRS (prepared for the WI setting), a trapdoor makes it is
possible to simulate proofs without knowing witnesses and simulated proofs are
perfectly indistinguishable from real proofs. As for pairing-product equations,
zero-knowledge proofs are often possible but usually come at some expense. In
the paper, we only resort to such NIZK simulators in one occasion.

In both cases, proofs for quadratic equations cost 9 group elements. Linear
pairing-product equations (when aij = 0 for all i, j) take 3 group elements
each. Linear multi-exponentiation equations of the type

∏n
j=1 X

bj

j = T (resp.∏m
i=1A

yi

i = T ) demand 3 (resp. 2) group elements.

3 Building Blocks

Our certification scheme uses a trapdoor commitment to group elements as an
important ingredient to dispense with proofs of knowledge of users’ private keys.

3.1 A Trapdoor Commitment to Group Elements

We need a trapdoor commitment scheme that allows committing to elements of
a group G where bilinear map arguments are taken. Commitments will have to
be themselves elements of G, which prevents us from using Groth’s scheme [25]
where commitments lie in the range GT of the pairing.

Such commitments can be obtained using the perfectly hiding Groth-Sahai
commitment based on the linear assumption recalled in section 2.3. This com-
mitment uses a common reference string describing a prime order group G and
a generator f ∈ G. The commitment key consists of vectors (�f1, �f2, �f3) chosen as
�f1 = (f1, 1, f), �f2 = (1, f2, f) and �f3 = �f1

ξ1 � �f2
ξ2 � (1, 1, f)ξ3 , with f1, f2

$← G,
ξ1, ξ2, ξ3

$← Z∗
p. To commit to X , the sender picks φ1, φ2, φ3

$← Z∗
p and sets

�CX = (1, 1, X)� �f1
φ1 � �f2

φ2 � �f3
φ3

, which, if �f3 is parsed as (f3,1, f3,2, f3,3), can
be written �CX = (fφ1

1 ·f
φ3
3,1, f

φ2
2 ·f

φ3
3,2, X ·fφ1+φ2 ·fφ3

3,3). Due to the use of GS proofs,
commitment openings need to only consist of group elements (and no scalar). To
open �CX = (C1, C2, C3), the sender reveals (D1, D2, D3) = (fφ1 , fφ2 , fφ3) and
X . The receiver is convinced that the committed value was X by checking that⎧⎨⎩ e(C1, f) = e(f1, D1) · e(f3,1, D3)

e(C2, f) = e(f2, D2) · e(f3,2, D3)
e(C3, f) = e(X ·D1 ·D2, f) · e(f3,3, D3).
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If a cheating sender can come up with distinct openings of �CX , we can easily
solve a S2P instance (g1, g2, g1,c, g2,d). Namely, the commitment key is set as
(f1, f2, f3,1, f3,2) = (g1, g2, g1,c, g2,d) and f, f3,3 are chosen at random. When
the adversary outputs (X, (D1, D2, D3)) and (X ′, (D′

1, D
′
2, D

′
3)), we must simul-

taneously have e(f1, D1/D
′
1) = e(f3,1, D

′
3/D3), e(f2, D2/D

′
2) = e(f3,2, D

′
3/D3)

and e((XD1D2)/(X ′D′
1D

′
2), f) = e(f3,3, D

′
3/D3). Hence, setting u = D1/D

′
1,

v = D2/D
′
2 and w = D′

3/D3 solves the S2P problem as (u, v, w) can only be
trivial if X ′ = X .

Using the trapdoor (ξ1, ξ2, ξ3), the receiver can equivocate commitments.
Given a commitment �CX and its opening (X, (D1, D2, D3)), one can trapdoor
open �CX to any other X ′ ∈ G (and without knowing logg(X

′)) by computing

D′
1 = D1 · (X ′/X)ξ1/ξ3 , D′

2 = D2 · (X ′/X)ξ2/ξ3 , D′
3 = (X/X ′)1/ξ3 ·D3.

3.2 A Public Key Certification Scheme

We use a primitive that we call non-interactive certification scheme, which can
be viewed as a signature scheme that only allows signing public keys from a
specific public key space PK. These keys should be signed while retaining alge-
braic properties that make it possible to prove knowledge of a public key and its
corresponding certificate in an efficient way. In particular, signing hashed public
keys is proscribed. In the interactive setting, several papers (e.g., [5,24]) describe
efficient interactive protocols where a public key is jointly generated by a user
and a certification authority in such a way that the user eventually obtains a
certified public key and no one else learns the underlying private key. In this pa-
per, we aim at minimizing the amount of interaction and let users generate their
public key entirely on their own before requesting their certification. Ideally, we
would like to be able to sign public keys without even requiring users to prove
knowledge of their private key and, in particular, without having to first rewind
a proof of knowledge so as to extract the user’s private key in the security proof.

A certification scheme consists of algorithms (Setup,Certify,CertVerify). The
first one is run by a certification authority (CA) that, on input of global param-
eters cp, generates a key pair (SK,PK) ← Setup(cp). On input of cp, SK and
a user’s public key pk, Certify generates a certificate certpk. The procedure Verify
takes as input cp, PK, pk and certpk and outputs either 0 or 1.

Correctness mandates that CertVerify(cp, PK, pk, certpk) = 1 when certpk ←
Certify(cp, SK, pk). The (strong) unforgeability [1] requirement is the same as in
signature schemes. The adversary is supplied with a CA’s public key PK and
access to a certification oracle Certify(SK, .) that can be queried for arbitrary
public keys pk ∈ PK. Her goal is to produce a new pair (pk∗, cert∗pk∗) (i.e., if pk∗

was queried to Certify(SK, .), the output must have been different from cert∗pk∗).
In the description hereafter, we assume common public parameters cp consist-

ing of of bilinear groups (G,GT ) of prime order p > 2λ, for a security parameter
λ, and a generator g $← G. We also assume that certified public keys always
consist of a fixed number n of group elements (i.e., PK = Gn).
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Intuition. The scheme borrows from the Boyen-Waters group signature [10]
in the use of the HSDH assumption. A simplified version involves a CA that
holds a public key PK = (Ω = gω, A = (g, g)α, u, u0, u1 = gβ1, . . . , un = gβn),
for private elements SK = (ω, α, β1, . . . , βn), where n denotes the number of
groups elements that certified public keys consist of. To certify a public key
pk = (X1 = gx1 , . . . , Xn = gxn), the CA chooses an exponent cID

$← Z∗
p and

computes S1 = (gα)1/(ω+cID), S2 = gcID , S3 = ucID , S4 = (u0 ·
∏n

i=1X
βi

i )cID

and S5 = (S5,1, . . . , S5,n) = (XcID
1 , . . . , XcID

n ). Verification then checks whether
e(S1, Ω · S2) = A and e(S2, u) = e(g, S3) as in [10]. It must also be checked that
e(S4, g) = e(u0, S2) ·

∏n
i=1 e(ui, S5,i) and e(S5,i, g) = e(Xi, S2) for i = 1, . . . , n.

The security of this simplified scheme can only be proven if, when answering
certification queries, the simulator can control the private keys (x1, . . . , xn) and
force them to be random values of its choice. To allow the simulator to sign ar-
bitrary public keys without knowing the private keys, we modify the scheme so
that the CA rather signs commitments (calculated as in the trapdoor commit-
ment of section 3.1) to public key elements X1, . . . , Xn. In the security proof, the
simulator first generates a signature on n commitments �Ci = (Ci,1, Ci,2, Ci,3) to
1G that are all generated in such a way that it knows logg(Ci,j) for i = 1, . . . , n
and j = 1, 2, 3. Using the trapdoor of the commitment scheme, it can then open
�Ci to any arbitrary public key element Xi without knowing logg(Xi).

This use of the trapdoor commitment is reminiscent of a technique (no-
tably used in [18]) to construct signature schemes in the standard model using
chameleon hash functions [32]: the simulator first signs messages of its choice
using a basic signature scheme and then “equivocates” the chameleon hashes to
make them correspond to adversarially-chosen messages.

Setup(cp): given common public parameters cp = {g,G,GT}, select u, u0
$←

G, α, ω $← Z∗
p and set A = e(g, g)α, Ω = gω. Pick βi,1, βi,2, βi,3

$← Z∗
p

and set ui = (ui,1, ui,2, ui,3) = (gβi,1 , gβi,2 , gβi,3) for i = 1, . . . , n. Choose
f, f1, f2, f3,1, f3,2, f3,3

$← G that define a commitment key consisting of vec-
tors �f1 = (f1, 1, f), �f2 = (1, f2, f) and �f3 = (f3,1, f3,2, f3,3). Define the
private/public key pair as SK =

(
α, ω, {βi = (βi,1, βi,2, βi,3)}i=1,...,n

)
and

PK =
(
f = (�f1, �f2, �f3), A = e(g, g)α, Ω = gω, u, u0, {ui}i=1,...,n

)
.

Certify(cp, SK, pk): parse SK as
(
α, ω, {βi}i=1,...,n

)
, pk as (X1, . . . , Xn) and do

the following.

1. For each i ∈ {1, . . . , n}, pick φi,1, φi,2, φi,3
$← Z∗

p and compute a commit-
ment Ci = (Ci,1, Ci,2, Ci,3) = (fφi,1

1 ·fφi,3
3,1 , f

φi,2
2 ·fφi,3

3,2 , Xi·fφi,1+φi,2 ·fφi,3
3,3 )

and the matching de-commitment (Di,1, Di,2, Di,3) = (fφi,1 , fφi,2 , fφi,3).
2. Choose cID

$← Z∗
p, compute S1 = (gα)1/(ω+cID), S2 = gcID , S3 = ucID and

S4 =
(
u0 ·

n∏
i=1

(Cβi,1
i,1 · Cβi,2

i,2 · Cβi,3
i,3 )
)cID

S5 = {(S5,i,1, S5,i,2, S5,i,3)}i=1,...,n = {(CcID
i,1 , C

cID
i,2 , C

cID
i,3 )}i=1,...,n
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Return certpk=
(
{(Ci,1, Ci,2, Ci,3), (Di,1, Di,2, Di,3)}i=1,...,n, S1, S2, S3, S4, S5

)
.

CertVerify(cp, PK, pk, certpk): parse pk as (X1, . . . , Xn) and certpk as above. Re-
turn 1 if, for i = 1, . . . , n, it holds that Xi ∈ G and

e(Ci,1, f) = e(f1, Di,1) · e(f3,1, Di,3) (1)
e(Ci,2, f) = e(f2, Di,2) · e(f3,2, Di,3) (2)
e(Ci,3, f) = e(Xi ·Di,1 ·Di,2, f) · e(f3,3, Di,3), (3)

and if the following checks are also satisfied. Otherwise, return 0.

e(S1, Ω · S2) = A (4)
e(S2, u) = e(g, S3) (5)

e(S4, g) = e(u0, S2) ·
n∏

i=1

(
e(ui,1, S5,i,1) · e(ui,2, S5,i,2) · e(ui,3, S5,i,3)

)
, (6)

e(S5,i,j , g) = e(Ci,j , S2) for i = 1, . . . , n, j = 1, 2, 3 (7)

A certificate comprises 9n+ 4 group elements. It would be interesting to avoid
this linear dependency on n without destroying the algebraic properties that
render the scheme compatible with Groth-Sahai proofs.

Regarding the security of this scheme, the idea of the proof of the following
theorem is sketched in appendix A. Due to space limitation, the complete proof
is detailed in the full version of the paper.

Theorem 1. The scheme is a secure non-interactive certification system if the
HSDH, FlexDH and S2P problems are all hard in G.

We believe that the above certification scheme is of interest in its own right.
For instance, it can be used to construct non-frameable group signatures that
are secure in the concurrent join model of [30] without resorting to random
oracles. To the best of our knowledge, the Kiayias-Yung construction [30] has
remained the only scalable group signature where joining supports concurrency
at both ends while requiring the smallest amount of interaction. In the standard
model, our certification scheme thus appears to provide the first2 way to achieve
the same result. In this case, we have n = 1 (since prospective group members
only need to certify one group element if non-frameability is ensured by signing
messages as in Groth’s group signature [24]) so that membership certificates
comprise 13 group elements and their shape is fully compatible with GS proofs.
2 Non-frameable group signatures described in [19,9] achieve concurrent security by

having the prospective user generate an extractable commitment to some secret
exponent (which the simulator can extract without rewinding using the trapdoor of
the commitment) and prove that the committed value is the discrete log. of a public
value. In the standard model, this technique requires interaction and the proof should
be simulatable in zero-knowledge when proving security against framing attacks.
Another technique [21] requires users to prove knowledge of their secret exponent
using Groth-Sahai non-interactive proofs. It is nevertheless space-demanding as each
bit of committed exponent requires its own extractable GS commitment.
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3.3 Public Key Encryption Schemes Based on the Linear Problem

We need cryptosystems based on the DLIN assumption. The first one is
Shacham’s variant [37] of Cramer-Shoup [17] and, since it is key-private [3],
we use it to encrypt witnesses. We also use Kiltz’s tag-based encryption (TBE)
scheme [31], where the validity of ciphertexts is publicly verifiable, to encrypt
receivers’ public keys under the public key of the opening authority.

Shacham’s Linear Cramer-Shoup. If we assume public generators g1, g2, g
that are parts of public parameters, each receiver’s public key is made of n = 6
group elements

X1 = gx1
1 g

x X3 = gx3
1 g

y X5 = gx5
1 g

z

X2 = gx2
2 g

x X4 = gx4
2 g

y X6 = gx6
2 g

z.

To encrypt m ∈ G under the label L, the sender picks r, s $← Z∗
p and computes

ψCS =
(
U1, U2, U3, U4, U5

)
=
(
gr
1, g

s
2, g

r+s, m ·Xr
5X

s
6 , (X1X

α
3 )r · (X2X

α
4 )s
)
,

where α=H(U1, U2, U3, U4, L) ∈ Z∗
p is a collision-resistant hash3. Given (ψCS, L),

the receiver computes α. He returns ⊥ if U5 
= Ux1+αx3
1 Ux2+αx4

2 Ux+αy
3 and

m = U4/(Ux5
1 Ux6

2 Uz
3 ) otherwise.

Kiltz’s Tag-Based Encryption Scheme. In [31], Kiltz described a TBE
scheme based on the same assumption. The public key is (Y1, Y2, Y3, Y4) =
(gy1 , gy2 , gy3, gy4) if g ∈ G is part of public parameters. To encrypt m ∈ G
under a tag t ∈ Z∗

p, the sender picks w1, w2
$← Z∗

p and computes

ψK = (V1, V2, V3, V4, V5) =
(
Y w1

1 , Y w2
2 , (gtY3)w1 , (gtY4)w2 , m · gw1+w2

)
To decrypt ψK, the receiver checks that V3 = V

(t+y3)/y1
1 , V4 = V

(t+y4)/y2
2 . If so,

it outputs the plaintext m = V5/(V
1/y1
1 V

1/y2
2 ). Unlike ψCS, the well-formedness

of ψK is publicly verifiable in bilinear groups. The Canetti-Halevi-Katz [15]
paradigm turns this scheme into a full-fledged CCA2 scheme by deriving the
tag t from the verification key VK of a one-time signature, the private key SK of
which is used to sign (V1, V2, V3, V4, V5).

4 A GE Scheme with Non-interactive Proofs

We build a non-interactive group encryption scheme for the Diffie-Hellman re-
lation R = {(X,Y ),W} where e(g,W ) = e(X,Y ), for which the keys are
pkR = {G,GT , g} and skR = ε.

The construction slightly departs from the modular design of [29] in that com-
mitments to the receiver’s public key and certificate are part of the proof (instead
of the ciphertext), which simplifies the proof of message-security. The security
of the scheme eventually relies on the HSDH, FlexDH and DLIN assumptions.
All security proofs are available in the full version of the paper.
3 The proof of CCA2-security [17,37] only requires a universal one-way hash function

(UOWHF) [34] but collision-resistance is required by the proof of key-privacy in [3].
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SETUPinit(λ): choose bilinear groups (G,GT ) of order p > 2λ, g $← G and
g1 = gα1 , g2 = gα2 with α1, α2

$← Z∗
p. Define �g1 = (g1, 1, g), �g2 = (1, g2, g)

and �g3 = �g1
ξ1 � �g2

ξ2 with ξ1, ξ2
$← Z∗

p, which form a CRS g = (�g1, �g2, �g3)
for the perfect soundness setting. Select a strongly unforgeable (as defined
in [1]) one time signature scheme Σ = (G,S,V) and a random member
H : {0, 1}∗ → Zp of a collision-resistant hash family. Public parameters
consists of param = {λ,G,GT , g,g, Σ,H}.

SETUPGM(param): runs the setup algorithm of the certification scheme de-
scribed in section 3.2 with n = 6. The obtained public key consists of
pkGM =

(
f , A = e(g, g)α, Ω = gω, u, u0, {ui}i=1,...,6

)
and the match-

ing private key is skGM =
(
α, ω, {βi = (βi,1, βi,2, βi,3)}i=1,...,6

)
.

SETUPOA(param): generates pkOA = (Y1, Y2, Y3, Y4) = (gy1 , gy2, gy3 , gy4), as a
public key for Kiltz’s tag-based encryption scheme [31], and the correspond-
ing private key as skOA = (y1, y2, y3, y4).

JOIN: the user sends a linear Cramer-Shoup public key pk = (X1, . . . , X6) ∈ G6

to the GM and obtains a certificate

certpk =
(
{(Ci,1, Ci,2, Ci,3), (Di,1, Di,2, Di,3)}i=1,...,6, S1, S2, S3, S4, S5

)
.

ENC(pkGM, pkOA, pk, certpk,W,L): to encryptW ∈ G such that ((X,Y ),W ) ∈ R
(for public elements X,Y ∈ G), parse pkGM, pkOA and pk as above and do
the following.

1. Generate a one-time signature key pair (SK,VK)← G(λ).
2. Choose r, s $← Z∗

p and compute a linear CS encryption of W , the result
of which is denoted by ψCS, under the label L1 = L||VK as per section
3.3 (and using the collision-resistant hash function specified by param).

3. For i = 1, . . . , 6, choose wi,1, wi,2
$← Z∗

p and encrypt Xi under pkOA using
Kiltz’s TBE with the tag VK as described in section 3.3 . Let ψKi be the
ciphertexts.

4. Set the ciphertext ψ as ψ = VK||ψCS||ψK1 || · · · ||ψK6 ||σ where σ is ob-
tained as σ = S(SK, (ψCS||ψK1 || · · · ||ψK6 ||L)).

Return (ψ,L) and coinsψ consist of {(wi,1, wi,2)}i=1,...,6, (r, s). If the one-
time signature of [23] is used, VK and σ take 3 and 2 group elements,
respectively, so that ψ comprises 40 group elements.

P(pkGM, pkOA, pk, certpk, (X,Y ),W, ψ, L, coinsψ): parse pkGM, pkOA, pk and ψ
as above. Conduct the following steps.

1. Generate commitments (as explained in section 2.3) to the 9n+ 4 = 58
group elements that certpk consists of. The resulting overall commitment
comcertpk

contains 184 group elements.
2. Generate commitments to the public key elements pk = (X1, . . . , X6) and

obtain compk = {comXi}i=1,...,6, which consists of 18 group elements.
3. Generate a proof πcertpk

that comcertpk
is a commitment to a valid cer-

tificate for the public key contained in compk. For each i = 1, . . . , 6,
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relations (1)-(3) cost 9 elements to prove (and thus 54 elements alto-
gether). The quadratic equation (4) takes 9 elements and linear ones
(5)-(6) both require 3 elements. Finally, (7) is a set of 18 linear equa-
tions which demand 54 elements altogether. The whole proof πcertpk

thus
takes 123 group elements.

4. For i = 1, . . . , 6, generate a NIZK proof πeq-key,i that comXi (which
is part of compk) and ψKi are encryptions of the same Xi. If ψKi com-
prises (Vi,1, Vi,2, Vi,5) = (Y wi,1

1 , Y
wi,2
2 , Xi ·gwi,1+wi,2) and comXi is parsed

as (cXi1 , cXi2 , cXi3) = (gθi1
1 · gθi3

3,1 , g
θi2
2 · gθi3

3,2 , Xi · gθi1+θi2 · gθi3
3,3), where

wi,1, wi,2 ∈ coinsψ, θi1, θi2, θi3 ∈ Z∗
p and �g3 = (g3,1, g3,2, g3,3), this

amounts to prove knowledge of values wi,1, wi,2, θi1, θi2, θi3 such that( Vi,1

cXi1

,
Vi,2

cXi2

,
Vi,3

cXi3

)
=
(
Y

wi,1
1 · g−θi1

1 · g−θi3
3,1 ,

Y
wi,2
2 · g−θi2

2 · g−θi3
3,2 , gwi,1+wi,2−θi1−θi2 · g−θi3

3,3

)
.

Committing to wi,1, wi,2, θi1, θi2, θi3 introduces 90 group elements
whereas the above relations only require two elements each. Overall,
proof elements πeq-key,1, . . . , πeq-key,6 incur 126 elements.

5. Generate a NIZK proof πval-enc that ψCS = (U1, U2, U3, U4, U5) is a valid
CS encryption. This requires to commit to underlying encryption ex-
ponents r, s ∈ coinsψ and prove that U1 = gr

1, U2 = gs
2, U3 = gr+s

(which only takes 3 times 2 elements as base elements are public) and
U5 = (X1X

α
3 )r(X2X

α
4 )s (which takes 9 elements since base elements are

themselves variables). Including commitments comr and coms to expo-
nents r and s, πval-enc demands 21 group elements overall.

6. Generate a NIZK proof πR that ψCS encrypts a group element W ∈ G
such that ((X,Y ),W ) ∈ R. To this end, generate a commitment comW =
(cW,1, cW,2, cW,3) = (gθ1

1 ·gθ3
3,1, g

θ2
2 ·gθ3

3,2,W ·gθ1+θ2gθ3
3,3) and prove that the

underlying W is the same as the one for which U4 = W ·Xr
5X

s
6 in ψCS.

In other words, prove knowledge of r, s, θ1, θ2, θ3 such that( U1

cW,1
,
U2

cW,2
,
U4

cW,3

)
=
(
gr−θ1
1 · g−θ3

3,1 ,

gs−θ2
2 · g−θ3

3,2 , g
−θ1−θ2 · g−θ3

3,3 ·Xr
5 ·Xs

6
)
. (8)

Commitments to r, s are already part of πval-enc. Committing to θ1, θ2, θ3
takes 9 elements. Proving the first two relations of (8) requires 4 elements
whereas the third one is quadratic and its proof is 9 elements. Proving
the linear pairing-product relation e(g,W ) = e(X,Y ) in NIZK4 demands
9 elements. Since πR includes comW , it entails a total of 34 elements.

4 It requires to introduce an auxiliary variable X and prove that e(g,W) = e(X , Y )
and X = X, for variables W,X and constants g,X, Y . The two proofs take 3 elements
each and 3 elements are needed to commit to X .
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The proof πψ = comcertpk
||compk||πcertpk

||πeq-key,1|| · · · ||πeq-key,6||πval-enc||πR
eventually takes 516 elements.

V(param, ψ, L, πψ, pkGM, pkOA): parse pkGM, pkOA, pk, ψ and πψ as above. Re-
turn 1 if and only if V(VK, σ, (ψCS||ψK1 || · · · ||ψK6 ||L)) = 1, all proofs verify
and if ψK1 , . . . , ψK6 are all valid tag-based encryptions w.r.t. the tag VK.

DEC(sk, ψ, L): parse the ciphertext ψ as VK||ψCS||ψK1 || · · · ||ψK6 ||σ. Return ⊥ if
V(VK, σ, (ψCS||ψK1 || · · · ||ψK6 ||L)) = 0. Otherwise, use sk to decrypt (ψCS, L).

OPEN(skOA, ψ, L): parse the ciphertext ψ as VK||ψCS||ψK1 || · · · ||ψK6 ||σ. Return
⊥ if ψK1 , . . . , ψK6 are not all valid TBE ciphertexts w.r.t. the tag VK or if
V(VK, σ, (ψCS||ψK1 || · · · ||ψK6 ||L)) = 0. Otherwise, decrypt ψK1 , . . . , ψK6 using
skOA and return the resulting pk = (X1, . . . , X6).

From an efficiency standpoint, the length of ciphertexts is about 1.25 kB in an
implementation using symmetric pairings with a 256-bit group order, which is
more compact than in the Paillier-based scheme of [29] where ciphertexts take 2.5
kB using 1024-bit moduli. Moreover, our proofs only require 16.125 kB, which
is significantly cheaper than in the original GE scheme [29], where interactive
proofs reach a communication cost of 70 kB to achieve a 2−50 knowledge error.
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A Sketch of the Proof of Theorem 1

The security proof of the certification scheme considers three kinds of forgeries
in the attack game.

- Type I forgeries: are such that the fake certificate cert�pk� contains a tuple of
elements (S�

1 , S
�
2 , S

�
3) that never appeared in outputs of certification queries.

- Type II forgeries: are such that cert�
pk� contains a triple (S�

1 , S
�
2 , S

�
3 ) that

appeared in the output of some query but cert�pk� also contains commitments
{(C�

i,1, C
�
i,2, C

�
i,3)}i=1,...,n that do not match those in the output of that query.

- Type III forgeries: are such that (S�
1 , S

�
2 , S

�
3) and {(C�

i,1, C
�
i,2, C

�
i,3)}i=1,...,n

are identical in cert�pk� and in the output of some certification query. On
the other hand, the public key pk� = (X�

1 , . . . , X
�
n) is not the one that was

certified in that query.

Type I forgeries are easily seen to break the HSDH assumption whereas Type
II and Type III forgeries give rise to algorithms solving the FlexDH and S2P
problems, respectively. Due to space limitations, the details are deferred to the
full version of the paper. ��

http://shoup.net/
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Abstract. Predicate encryption is a recent generalization of identity-
based encryption (IBE), broadcast encryption, attribute-based encryp-
tion, and more. A natural question is whether there exist black-box
constructions of predicate encryption based on generic building blocks,
e.g., trapdoor permutations. Boneh et al. (FOCS 2008) recently gave a
negative answer for the specific case of IBE.

We show both negative and positive results. First, we identify a com-
binatorial property on the sets of predicates/attributes and show that,
for any sets having this property, no black-box construction of predicate
encryption from trapdoor permutations (or even CCA-secure encryption)
is possible. Our framework implies the result of Boneh et al. as a special
case, and also rules out, e.g., black-box constructions of forward-secure
encryption and broadcast encryption (with many excluded users). On
the positive side, we identify conditions under which predicate encryp-
tion schemes can be constructed based on any CPA-secure (standard)
encryption scheme.

1 Introduction

In a predicate encryption scheme [6,13] an authority generates a master public
key and a master secret key, and uses the master secret key to derive personal
secret keys for individual users. A personal secret key corresponds to a pred-
icate in some class F , and ciphertexts are associated (by the sender) with an
attribute in some set A; a ciphertext associated with the attribute I ∈ A can be
decrypted by a secret key SKf corresponding to the predicate f ∈ F if and only
if f(I) = 1. The basic security guarantee provided by such schemes is that a
ciphertext associated with an attribute I hides all information about the under-
lying message unless one has a personal secret key giving the explicit ability to
decrypt; in other words, if an adversary A holds keys SKf1 , . . . , SKf�

for which
f1(I) = · · · = f�(I) = 0, then A should learn nothing about the message. (A
formal definition is given later.)

By choosing F and A appropriately, predicate encryption yields as special
cases many notions that are interesting in their own right. For example, by taking
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A = {0, 1}n and letting F = {fID}ID∈{0,1}n be the class of point functions
(so that fID(ID′) = 1 iff ID = ID′) we recover the notion of identity-based
encryption (IBE) [19,4]. Similarly, it can be observed that predicate encryption
encompasses fuzzy IBE [18], forward-secure (public-key) encryption [7], (public-
key) broadcast encryption [9], attribute-based encryption [11,2,15], and more as
special cases.

Most (though not all) existing constructions of predicate encryption schemes
rely on bilinear maps. A natural question is: what are the minimal assumptions
on which predicate encryption can be based? Of course, the answer will depend
on the specific predicate class F and attribute set A of interest; in particular,
Boneh and Waters [6] show that if F is polynomial size then (for any A) one can
construct a predicate encryption scheme for (F ,A) from any (standard) public-
key encryption scheme. On the other hand, Boneh et al. [5] have recently shown
that there is no black-box construction of IBE from trapdoor permutations.

1.1 Our Results

The specific question we consider is: for which (F ,A) can we construct a predicate
encryption scheme over (F ,A) based on CPA-secure encryption? We show both
negative and positive results. Before describing these results in more detail, we
provide some background intuition.

A natural combinatorial construction of a predicate encryption scheme over
some (F ,A) from a CPA-secure encryption scheme (Gen,Enc,Dec) is as follows:
The authority includes several public keys pk1, . . . , pkq in the master public
key, and each personal secret key is some subset of the corresponding secret
keys sk1, . . . , skq. Encryption of a message m with respect to an attribute I re-
quires “sharing”m in some way to yieldm1, . . . ,mq, and the resulting ciphertext
is Encpk1(m1), . . . ,Encpkq (mq). Intuitively, this works if:

Correctness: Let SKf = {ski1 , . . . , skit} be a personal secret key for which
f(I) = 1. Then the “shares” mi1 , . . . ,mit should enable recovery of m.

Security: Let {ski1 , . . . , skik
} =
⋃

f∈F :f(I)=0 SKf . Then the set of “shares”
mi1 , . . . ,mik

should leak no information about m.1

Roughly, our negative result can be interpreted as showing that this is essentially
the only way to construct predicate encryption (in a black-box way) from CPA-
secure encryption; our positive result shows how to implement the above for a
specific class of predicate encryption schemes. We now provide further details.

Impossibility results. Our negative results are in the same model used by
Boneh et al. [5], which builds on the model used in the seminal work of Impagli-
azzo and Rudich [12]. Specifically, as in [5] our negative results hold relative to
a random oracle (with trapdoor) and so rule out black-box constructions from
trapdoor permutations as well as from any (standard) CCA-secure public-key
encryption scheme.
1 This is stronger than what is required, but makes sense in a black-box setting where

computational hardness comes only from the underlying CPA-secure scheme.
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A slightly informal statement of our result follows. Fix {(Fn,An)}n∈N
, a se-

quence of predicate classes and attribute sets indexed by the security parame-
ter n. We say that {(Fn,An)}n can be q-covered if for every set system {Sf}f∈Fn

with Sf ⊆ [q(n)] ([q] def= {1, . . . , q}), there are polynomially-many predicates
f∗, f1, . . . , fp ∈ Fn such that, with high probability:

1. Sf∗ ⊆
⋃p

i=1 Sfi .
2. There exists an I ∈ An with f1(I) = · · · = fp(I) = 0 but f∗(I) = 1.

{(Fn,An)}n is easily covered if it is q-covered for every polynomial q. We show:

Theorem. If {(Fn,An)}n is easily covered, there is no black-box construction
of a predicate encryption scheme over {(Fn,An)}n based on trapdoor permuta-
tions (or CCA-secure encryption).

Intuitively, if {(Fn,An)}n is easily covered then the combinatorial approach dis-
cussed earlier cannot work: letting q(n) be the (necessarily) polynomial number
of keys for the underlying (standard) encryption scheme, no matter how the se-
cret keys {ski}q

i=1 are apportioned to the personal secret keys {SKf}f∈Fn , an
adversary can carry out the following attack (cf. Definition 2, below):

1. Request the keys SKf1 , . . . , SKfp , where each SKfi ={sk1, . . . , } ⊆ {ski}q
i=1.

2. Request the challenge ciphertext C to be encrypted using an attribute I for
which f1(I) = · · · = fp(I) = 0 but f∗(I) = 1.

3. Compute the key SKf∗ ⊆
⋃

i SKfi and use this key to decrypt C.

This constitutes a valid attack since SKf∗ suffices to decrypt C yet the adversary
only requested SKf1 , . . . , SKfp , none of which suffices on its own to decrypt C.

Turning this intuition into a formal proof must, in particular, implicitly show
that the combinatorial approach sketched earlier is essentially the only black-box
approach to building predicate encryption schemes from trapdoor permutations.
Moreover, we actually prove a stronger quantitative version of the above theorem
showing, roughly, that if {(Fn,An)}n is q-covered then any predicate encryption
scheme over {(Fn,An)}n must use at least q + 1 underlying encryption keys.

One might wonder whether the “easily covered” condition is useful for de-
termining whether there exist black-box constructions of predicate encryption
schemes over {(Fn,An)}n of interest. We show that it is, in that the following
corollary can be proven fairly easily given the above:

Corollary. There are no black-box constructions of (1) identity-based encryp-
tion, (2) forward-secure encryption (for a super-polynomial number of time pe-
riods), or (3) broadcast encryption (where a super-polynomial number of users
can be excluded) from trapdoor permutations.

The first result was shown in [5]; the point is that our impossibility result strictly
generalizes theirs. Moreover, as indicated earlier, we prove a quantitative version
of their result (as well as all other results stated in the above corollary).

Positive result. On the positive side, we show that the combinatorial approach
suggested at the outset can be implemented for {(Fn,An)}n having the following
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property: for each I ∈ An there are at most polynomially-many f ∈ Fn for which
f(I) = 0; i.e., for each I there are at most polynomially-many predicates that
are “excluded”. (The positive result from [6], where there are only polynomially-
many predicates, is thus obtained as a corollary.) This is proved by analogy to
broadcast encryption, using the combinatorial techniques from [14].

1.2 Comparison to the Results of Boneh et al.

Our proof relies heavily on the impossibility result from [5]. Our contribution
lies in finding the right combinatorial generalization (specifically, the “easily
covered” property described earlier) of the specific property used by Boneh et al.
for the particular case of IBE, adapting their proof to our setting, and applying
their ideas to the more general case of predicate encryption. Our generalization,
in turn, allows us to show impossibility for several cryptosystems of interest
besides IBE (cf. the corollary stated earlier), as well as to give quantitative
versions of their earlier result. Our positive results have no analogue in [5].

2 Definitions

2.1 Predicate Encryption

We provide a functional definition of predicate encryption, followed by a weak
definition of security that we use when proving impossibility and the standard
definition of security [13] that we use when proving our positive result.

Definition 1. Fix {(Fn,An)}n∈N
, where Fn is a set of (efficiently computable)

predicates over the set of attributes An. A predicate encryption scheme over
{Fn,An}n∈N consists of four ppt algorithms (Setup,KeyGen,Enc,Dec) such that:

– Setup is a deterministic algorithm that takes as input a master secret key
MSK ∈ {0, 1}n and outputs a master public key MPK.

– KeyGen is a deterministic algorithm that takes as input the master secret key
MSK and a predicate f ∈Fn and outputs a secret key SKf=KeyGenMSK(f).
(The assumption that KeyGen is deterministic is without loss of generality,
since MSK may include a key for a pseudorandom function.)

– Enc takes as input the public key MPK, an attribute I ∈ An, and a bit b. It
outputs a ciphertext C ← EncMPK(I, b).

– Dec takes as input a secret key SKf and ciphertext C. It outputs either a
bit b or the distinguished symbol ⊥.

It is required that for all n, all MSK ∈ {0, 1}n and MPK = Setup(MSK),
all f ∈ Fn and SKf = KeyGenMSK(f), all I ∈ An, and all b ∈ {0, 1}, that if
f(I) = 1 then DecSKf

(EncMPK(I, b)) = b.

Definition 2. A predicate encryption scheme over (F ,A) is weakly payload hid-
ing if the advantage of any ppt adversary A in the following game is negligible:
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1. A(1n) outputs I∗ ∈ An and (f1, . . . , fp) ∈ Fn such that fi(I∗) = 0 for all i.
2. Choose MSK ← {0, 1}n; let MPK := Setup(MSK) and set SKfi :=

KeyGen(MSK, fi) for all i. Choose b ← {0, 1}, and compute the ciphertext
C∗ ← EncMPK(I∗, b). Then A is given (MPK,SKf1 , . . . , SKfp , C

∗).
3. A outputs b′ and succeeds if b′ = b.

The advantage of A is defined as
∣∣Pr[A succeeds]− 1

2

∣∣.
Definition 3. A predicate encryption scheme over (F ,A) is payload hiding if
the advantage of any ppt adversary A in the following game is negligible:

1. A random MSK ∈ {0, 1}n is chosen, and A is given MPK :=Setup(MSK).
2. A adaptively requests keys SKf1 , . . . corresponding to predicates f1, . . . ∈ Fn.
3. At some point, A outputs I∗ ∈ An. A random b ∈ {0, 1} is chosen and A is

given the ciphertext C∗ ← EncMPK(I∗, b). A may continue to request keys
for predicates of its choice.

4. A outputs b′ and succeeds if (1) A never requested a key for a predicate f
with f(I∗) = 1, and (2) b′ = b.

The advantage of A is defined as
∣∣Pr[A succeeds]− 1

2

∣∣.
Our construction of Section 5 can be modified to achieve the even stronger notion
of attribute hiding; we refer to [13] for a definition.

2.2 A Random Trapdoor Permutation Oracle

We assume the reader is familiar with the usual model in which black-box impos-
sibility results are proved; see [12,17,5] for further details. We show an oracle O
relative to which trapdoor permutations and CCA-secure encryption exist, yet
any construction of a predicate encryption scheme (for certain (F ,A)) relative
to O is insecure against a polynomial-time adversary given access to O and a
PSPACE oracle. Our oracle O = (g, e, d) is defined as follows, for each n ∈ N:

– g is chosen uniformly from the space of permutations on {0, 1}n. We view g
as taking a secret key sk as input, and returning a public key pk.

– e : {0, 1}n × {0, 1}n → {0, 1}n maps a public key pk and a “message”
m ∈ {0, 1}n to a “ciphertext” c ∈ {0, 1}n. It is chosen uniformly subject
to the constraint that e(pk, ·) is a permutation on {0, 1}n for every pk.

– d : {0, 1}n × {0, 1}n → {0, 1}n maps a secret key sk and a ciphertext c
to a message m. We require that d(sk, c) outputs the unique m for which
e(g(sk),m) = c.

With overwhelming probability O is a trapdoor permutation [10,5]. Moreover,
since the components of O are chosen at random subject to the above con-
straints (and not with some “defect” as in, e.g., [10]), O implies CCA-secure
encryption [1].

We denote a query α to O as, e.g., α def= [g(sk) = pk] and similarly for e and
d queries. In describing our attack in the next section, we often use a partial
oracle O′ that is defined only on some subset of the possible inputs. We always
enforce that such oracles be consistent :
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Definition 4. A partial oracle O′ = (g′, e′, d′) is consistent if:

1. For every pk ∈ {0, 1}n, the (partial) function e′(pk, ·) is one-to-one.
2. For every sk ∈ {0, 1}n, the (partial) function d′(sk, ·) is one-to-one.
3. For all x ∈ {0, 1}n, and all sk such that g′(sk) = pk is defined, the value
e′(pk, x) = c is defined if and only if d′(sk, c) = x is defined.

3 An Impossibility Result for Predicate Encryption

We define a combinatorial property on (Fn,An) and formally state our impossi-
bility result. We describe in Section 3.1 an adversary A attacking any black-box
construction of a predicate encryption scheme satisfying the conditions of our
theorem; an analysis of A is given in Appendix A and the full version.

Fix a set F and a positive integer q, and let [q] def= {1, . . . , q}. An F-set system
over [q] is a collection of sets {Sf}f∈F where each f ∈ F is associated with a
set Sf ⊆ [q].

Definition 5. Let {(Fn,An)}n∈N be a sequence of predicates and attributes. We
say {(Fn,An)}n∈N can be q-covered if there exist ppt algorithms (A1, A2, A3),
where A2(1n, f) is deterministic and outputs I ∈ An with f(I) = 1, such that
for n sufficiently large:

For any Fn-set system {Sf}f∈Fn over [q(n)], if we compute

f∗ ← A1(1n); I∗ := A2(1n, f∗); f1, . . . , fp ← A3(1n, f∗),

then with probability at least 4/5,
1. Sf∗ ⊆

⋃
Sfi ;

2. fi(I∗) = 0 for all i.

{(Fn,An)}n∈N is easily covered if it can be q-covered for every polynomial q.

Although the above definition may seem rather complex and hard to use, we
show in Section 4 that it can be applied quite easily to several interesting classes
of predicate encryption schemes. Moreover, the definition is natural given the
attack we will describe in the following section.

A black-box construction of predicate encryption is q-bounded if each of its
algorithms makes at most q queries to O. We now state our main result:

Theorem 1. If {(Fn,An)} can be q-covered, then there is no q-bounded black-
box construction of a weakly payload-hiding predicate encryption scheme over
{(Fn,An)} from trapdoor permutations (or CCA-secure encryption).

Since each algorithm defining the predicate encryption scheme can make at most
polynomially-many queries to its oracle, we have

Corollary 1. If {(Fn,An)} is easily covered, there is no black-box construction
of a weakly payload-hiding predicate encryption scheme over {(Fn,An)} from
trapdoor permutations (or CCA-secure encryption).
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3.1 The Attack

Fix an {(Fn,An)} that can be q-covered, and let PE = (Setup,KeyGen,Enc,Dec)
be a predicate encryption scheme over {(Fn,An)} each of whose algorithms
makes at most q = poly(n) queries to O = (g, e, d). We assume, without loss of
generality, that before any algorithm of PE makes a query of the form [d(sk, �)],
it first makes the query [g(sk)].

We begin the proof of Theorem 1 by describing an adversary A attacking PE.
Adversary A is given access to O and makes a polynomial number of calls to this
oracle; as described, A is not efficient but it runs in polynomial time given access
to a PSPACE-complete oracle (or if P = NP) and this suffices to prove black-
box impossibility as in previous work [12,17,5]. Our description of the attack is
directly motivated by the attacker described in [5].

Let A1, A2, and A3 be as guaranteed by Definition 5, and let p = poly(n)
bound the number of predicates output by A3. Throughout A’s execution, when
it makes a query to O it stores the query and the response in a list L. We also
require that before A makes any query of the form [d(sk, �)], it first makes the
query [g(sk)]. Furthermore, once the query [g(sk) = pk] has been made then
[e(pk, x) = y] is added to L if and only if [d(sk, y) = x] is added to L.

Setup and challenge. A(1n) computes f∗ ← A1(1n), I∗ := A2(1n, f∗), and
(f1, . . . , fp)← A3(1n, f∗). Then:

1. If fi(I∗) = 0 for all i, then A outputs (I∗, f1, . . . , fp) and receives the values
(MPK,SKf1 , . . . , SKfp , C

∗) from the challenger (cf. Definition 2).
2. Otherwise, A aborts and outputs a random bit b′ ← {0, 1}.

Step 1: Discovering important public keys. For i = 1 to p, adversary A
does the following:

1. Compute Ifi = A2(1n, fi), and choose random b← {0, 1} and r ← {0, 1}n.

2. Compute DecOSKfi

(
EncOMPK(Ifi , b; r)

)
, storing all O-queries in the list L.

Step 2: Discovering frequent queries for I∗. A repeats the following q · p3
times: Choose random b ← {0, 1} and r ← {0, 1}n; compute EncOMPK(I∗, b; r),
storing all O-queries in L.

Step 3: Discovering secret queries and decrypting the challenge. A
chooses k ← [q · p3] and runs the following k times.

1. A uniformly generates a secret key MSK ′ and a consistent partial ora-
cle O′ for which (1) SetupO

′
(MSK ′) = MPK; (2) for all i it holds that

KeyGenO
′

MSK′(fi) = SKfi ; (3) the oracle O′ is consistent with L; and (4) the

key SK ′
f∗

def= KeyGenO
′

MSK′(f∗) is well-defined.

We denote by L′ the set of queries in O′ that are not in L (the “invented
queries”). Note that |L′| ≤ q·(p+2), since at most q queries are made by Setup
and KeyGen(f) makes at most q queries for each of SKf∗, SKf1 , . . . , SKfp .



204 J. Katz and A. Yerukhimovich

2. A chooses b← {0, 1} and r← {0, 1}n, and computes C := EncOMPK(I∗, b; r)
(storing all O-queries in L). For an oracle O′′ defined below, A then does:
(a) In iteration k′ < k, adversary A computes DecO

′′
SK′

f∗ (C).

(b) In iteration k, adversary A computes b′ = DecO
′′

SK′
f∗ (C∗).

Output: A Outputs the bit b′ computed in the kth iteration of step 3.

Before defining the oracle O′′ used above, we introduce some notation. Let L,
O′, and MSK ′ be as above, and note that we can view L and O′ as a tuple of
(partial) functions (g, e, d) and (g′, e′, d′) where g′, e′, and d′ extend g, e, and d,
respectively. Define the following:

– Q′
S is the set of pk for which [g′(sk) = pk] is queried during computation of

SetupO
′
(MSK ′).

– Q′
K is the set of pk for which [g′(sk) = pk] is queried during computation of

KeyGenO
′

MSK′(f) for some f ∈ {f∗, f1, . . . , fp}.
– Q′

K−S = Q′
K \ Q′

S.
– Lg is the set of pk for which the query [g(sk) = pk] is in L.

Note that A can compute each of these sets from its view. Note further that
Q′

S ,Q′
K ,Q′

K−S ,O′ are fixed throughout an iteration of step 3, but Lg may
change as queries are answered.

Oracle O′′ is defined as follows. For any query whose answer is defined by O′,
return that answer. Otherwise:

1. For an encryption query e(pk, x) with pk ∈ Q′
K−S \ Lg, return a random

y consistent with the rest of O′′. Act analogously for a decryption query
d(sk, y) with pk ∈ Q′

K−S \ Lg (where pk = g(sk)).
2. For a decryption query d(sk, y), if there exists a pk with [g(sk) = pk] ∈ O′

but2 there exists an sk′ 
= sk with [g(sk′) = pk] ∈ L, then use O′′ to answer
the query d(sk′, y).

3. In any other case, query the real oracle O and return the result. Store the
query/answer in L (note that this might affect Lg as well).

An analysis ofA, proving Theorem 1, appears in Appendix A and the full version
of our paper. The analysis is very similar to the one given in [5], with the main
difference being Proposition 1.

4 Impossibility for Specific Cases

We use Theorem 1 to rule out black-box constructions of predicate encryption
schemes in several specific cases of interest. Specifically, we consider the cases of
identity-based encryption, forward-secure encryption, and broadcast encryption.
We begin with a useful lemma.
2 Although O′ is chosen to be consistent, a conflict can occur since L is updated as A

makes additional queries to the real oracle O.
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Lemma 1. Fix q(·), and assume {(Fn,An)}n∈N has the following property: For
sufficiently large n, there exist f1, . . . , f5q ∈ Fn and I1, . . . , I5q ∈ An such that:

For all i ∈ {1, . . . , 5q} it holds that fi(Ii) = 1 but fj(Ii) = 0 for j > i.

Then {(Fn,An)}n∈N can be q-covered. If the above holds for every polynomial q,
then {(Fn,An)}n∈N is easily covered.

Proof. We show that, under the stated assumption, {(Fn,An)}n∈N satisfies Def-
inition 5. Fix q and n large enough so that the condition of the lemma holds,
and let f1, . . . , f5q and I1, . . . , I5q be as stated. Define algorithms A1, A2, A3 as
follows:

1. A1(1n) chooses i← {0, . . . , 5q} and outputs f∗ = fi.
2. A2(1n, f∗) finds i for which f∗ = fi and outputs I∗ = Ii.
3. A3(1n, f∗) finds i for which f∗ = fi and outputs fi+1, . . . , f5q. (If i = 5q

then output nothing.)

Note that A2(1n, f∗) always outputs I∗ with f∗(I∗) = 1. We show that for any
Fn-set system {Sf}f∈Fn over [q], the conditions of Definition 5 hold. We begin
with the following claim:

Claim. For any Fn-set system {Sf}f∈Fn over [q], there are at most q values
i ∈ {1, . . . , 5q} for which Sfi �

⋃
i<j≤5q Sfj . (By convention, the union is the

empty set if j = 5q.)

Proof. Define Si
def=
⋃

i<j≤5q Sfj , with S5q = ∅. Note that Si−1 = Si ∪ Sfi , and
so Sfi �

⋃
i<j≤5q Sfj = Si iff Si � Si−1. Since

S5q ⊆ S5q−1 ⊆ · · · ⊆ S1 ⊆ [q],

there can be at most q indices i where this occurs. ��

Fixing an arbitrary Fn-set system {Sf}f∈Fn over [q], let I ⊂ {1, . . . , 5q} be the
set of indices for which Sfi ⊆

⋃
i<j≤q Sfj ; the claim above shows that |I| ≥ 4q.

If A1 chooses i ∈ I then:

1. Sf∗ = Sfi ⊆
⋃

i<j≤q Sfj .
2. fj(I∗) = fj(Ii) = 0 for all the predicates fi+1, . . . , fq output by A3.

Since A1 chooses i ∈ I with probability 4/5, this proves the lemma. ��

We now apply Lemma 1 to several specific cases.

Identity-based encryption. It is easy to see that IBE for identities {In}
can be viewed as an instance of predicate encryption by setting An = In and
Fn = {fID}ID∈In where

fID(ID′) def=
{

1 if ID′ = ID
0 otherwise .

Let N = |In| denote the size of the identity space. Boneh et al. [5] already
rule out black-box constructions of IBE from trapdoor permutations for N =
ω(poly(n)); the next theorem shows that our Theorem 1 generalizes their result:
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Theorem 2. There is no black-box construction (from trapdoor permutations
or CCA-secure encryption) of an IBE scheme for 5N identities where each al-
gorithm makes fewer than N queries to its oracle.

As a corollary, there is no black-box construction of an IBE scheme (from
trapdoor permutations or CCA-secure encryption) for a super-polynomial number
of identities.

Proof. Let In = {ID1, . . . , ID5N}. It is not hard to see that {(Fn,An)}n∈N

can be N -covered: take fID1 , . . . , fID5N and set Ii = IDi for all i. Then apply
Theorem 1. ��

Forward-secure public-key encryption. In a forward-secure public-key en-
cryption scheme [7] secret keys are associated with time periods; the secret key
at time period i enables decryption for ciphertexts encrypted at any time j ≥ i.
(We refer the reader to [7] for further discussion.) A forward-secure encryption
scheme supporting N = N(n) time periods can be cast as a predicate encryption
scheme by letting An = {1, . . . , N} and Fn = {fi}1≤i≤N where

fi(j)
def=
{

1 if j ≥ i
0 otherwise .

(A forward-secure encryption scheme imposes the additional requirement that
SKfi+1 can be derived from SKfi ; since we do not impose this requirement
our impossibility result is even stronger.) A black-box construction of a forward-
secure encryption scheme from any CPA-secure encryption scheme exists for any
N = poly(n): the master public key contains public keys {pk1, . . . , pkN}, and the
secret key at period i is SKfi = {ski, . . . , skN}; encryption at period j uses pkj .
While such a scheme is trivial as far as forward-secure encryption goes (since
the public/secret key lengths are linear in N), it satisfies the definition. The
next theorem indicates that, in some sense, this trivial construction is almost
optimal as far as black-box constructions are concerned; moreover, there is no
black-box construction supporting a super-polynomial number of time periods.
(In contrast, there exist schemes based on specific assumptions [7,3] that support
an unbounded number of time periods.)

Theorem 3. There is no black-box construction (from trapdoor permutations or
CCA-secure encryption) of a forward-secure encryption scheme for 5N periods
where each algorithm in the scheme makes fewer than N queries to its oracle.

As a corollary, there is no black-box construction of a forward-secure encryp-
tion scheme (from trapdoor permutations or CCA-secure encryption) supporting
a super-polynomial number of time periods.

Proof. {(Fn,An)}n∈N can be N -covered, as taking f1, . . . , f5N and setting Ii = i
for all i satisfies the conditions of Lemma 1. Then apply Theorem 1. ��

Broadcast encryption. Finally, we look at the case of (public-key) broadcast
encryption [9]. Here, there is a fixed public key and a set of users U = {1, . . . , U}
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each with their own personal secret key; it should be possible for a sender to
encrypt a message in such a way that only some subset U ′ ⊂ U of users can
decrypt. Consider the case where at most k = k(n) < U users are excluded;
we refer to this as k-exclusion broadcast encryption. This can also be modeled
by predicate encryption, if we let An = {U ′ ⊆ U | |U ′| ≥ U − k} and define
Fn = {fi}i∈U where

fi(U ′) def=
{

1 if i ∈ U ′

0 otherwise .

Theorem 4. There is no black-box construction (from trapdoor permutations or
CCA-secure encryption) of a (5k)-exclusion broadcast encryption scheme where
each algorithm in the scheme makes k or fewer queries to its oracle.

As a corollary, there is no black-box construction of a k-exclusion broadcast
encryption scheme (from trapdoor permutations or CCA-secure encryption) for
super-polynomial k.

Proof. We show that {(Fn,An)}n∈N can be k-covered. Take f1, . . . , f5k and de-
fine

Ii
def= U \ {i, . . . , 5k}

for i ∈ {1, . . . , 5k}. (So I5k = U .) Note that |Ii| ≥ U − 5k always, and these
satisfy the conditions of Lemma 1. Applying Theorem 1 concludes the proof. ��

5 A Possibility Result for Predicate Encryption

Here we show that for the class of predicates and attributes {(Fn,An)} where
(roughly) for each I ∈ An there are at most polynomially-many f ∈ Fn with
f(I) = 0, there is a black-box construction of a predicate encryption scheme
over {(Fn,An)} based on any CPA-secure encryption scheme. We remark that
while we only prove payload hiding, our construction can in fact be shown to be
attribute hiding [13] as well.

Our construction relies on the notion of an (N, k)-cover free family [8]:

Definition 6. An (N, k)-cover free family over [U ] is a family S = {S1, . . . , SN},
with Si ⊆ [U ], such that for any distinct sets S, S1, . . . , Sk ∈ S it holds that
S \
⋃k

i=1 Si 
= ∅.

For any k = poly(n) and N = 2poly(n) there exist [14,16] explicit, polynomial-
time constructions of an (N, k)-cover free family over [U ] with |U | = poly(n).
(The specific results of [14,16] can be used to improve the efficiency of the con-
struction that follows, but our only goal here is to show a construction that can
be implemented in polynomial time.)

Theorem 5. Fix {(Fn,An)} and set NegI
def= {f ∈ Fn : f(I) = 0} for I ∈ An. If

there is a poly-time algorithm ListNeg for which ListNeg(1n, I) = NegI , then there
is a black-box construction of a predicate encryption scheme over {(Fn,An)}
from any CPA-secure encryption scheme.
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Proof. Since ListNeg runs in polynomial time, there is a polynomial k for which
|NegI | ≤ k(n) for all I ∈ An. Say predicates in Fn can be represented using
�(n) = poly(n) bits. Let {Un} be such that Un = poly(n) and such that, for
each n, there is an explicit (2�(n), k(n))-cover free family S = {S1, . . . , S2�(n)}
over [Un]. Identifying Fn with a subset of [2�(n)], we can view the cover-free
family as S = {Sf}f∈Fn .

Let (Gen′,Enc′,Dec′) be a CPA-secure encryption scheme. Our construction
of a predicate encryption scheme over {(Fn,An)} is as follows:

– Setup, on input 1n and a sufficiently long random stringMSK, runs Gen′(1n)
a total of U = Un times to generate keys (pk1, sk1), . . . , (pkU , skU ). The
master public key is {pk1, . . . , pkU}.

– KeyGen, given the secret keys {ski}U
i=1 and a predicate f ∈ Fn, outputs the

subset {ski}i∈Sf
.

– Enc, given the public key, an attribute I ∈ An, and a message m, computes
NegI = ListNeg(I) and sets Ū = [U ] \

(⋃
f∈NegI

Sf

)
. The ciphertext is

(I, {Ci}i∈Ū ) where Ci ← Enc′pki
(m).

– Dec, given the secret key {ski}i∈Sf
for a predicate f and a ciphertext

(I, {Ci}i∈Ū ) for which f(I) = 1, first finds an index i for which i ∈ Sf ∩ Ū .
(Such an index must exist, since

Sf \ Ū = Sf \
⋃

f ′:f ′(I)=0 Sf ′ ,

and there are at most k predicates f ′ that the union is taken over.) The
output is Dec′ski

(Ci).

It is easy to see that the above construction satisfies correctness. We now prove
security (in the sense of Definition 3). Let A be an adversary attacking the
scheme. We may assume without loss of generality that A never requests a
secret key for a predicate f for which f(I∗) = 1 (where I∗ is the attribute used
to encrypt the challenge ciphertext), since A cannot succeed if that occurs.

For simplicity we prove security in a non-uniform model, but the proof can be
modified easily to hold in the uniform model in the standard way. We consider
U+1 hybrid experimentsH0, . . . , HU+1, whereH0 corresponds to the experiment
of Definition 3 when b = 0 is encrypted, andHU+1 corresponds to the experiment
of Definition 3 when b = 1 is encrypted. Let δi denote the probability that A
outputs ‘0’ in Hi. We show that |δi − δi+1| is negligible for all i; since U = Un

is polynomial in n, this proves that |δ0 − δU+1| is negligible and thus completes
the proof.

Experiment Hi is defined as follows: Steps 1 and 2 are exactly as in Defi-
nition 3. In step 3, however, when encrypting the challenge ciphertext for the
attribute I∗, let Ū∗ = [U ] \NegI∗ and set the ciphertext equal to

(
I, {Cj}j∈Ū∗

)
,

where

Cj ←
{

Enc′pkj
(1) j < i

Enc′pkj
(0) j ≥ i .

A may continue to request secret keys as in Definition 3.
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We now prove that |δj − δj+1| is negligible for any j. Fix j and consider the
following adversary A′ attacking the underlying encryption scheme (Gen′, Enc′,
Dec′). Given public key pk and ciphertext C (which is either an encryption of 0
or 1), the adversary A′ proceeds as follows:

1. Set pkj = pk. For i 
= j, compute (pki, ski) ← Gen′(1n). Give the master
public key {pk1, . . . , pkU} to A.

2. When A requests a secret key for a predicate f , then if j 
∈ Sf give to A the
secret keys {ski}i∈Sf

. Otherwise, abort and output a random bit.
3. When A outputs I∗, compute NegI∗ = ListNeg(I∗) and then set

Ū∗ = [U ] \

⎛⎝ ⋃
f∈NegI∗

Sf

⎞⎠ .
If j 
∈ Ū∗ then abort and output a random bit. Otherwise, give A the ci-
phertext (I, {Ci}i∈Ū∗) where

Ci ←

⎧⎨⎩
Enc′pki

(1) i < j
C i = j
Enc′pki

(0) i > j
.

4. Subsequent secret key queries made by A are answered as before. Finally,
A′ outputs whatever bit is output by A.

Let Prj [·] denote the probability of an event in experiment Hj . We have∣∣Pr[A′ outputs 0 | C ← Enc′pk(0)]− Pr[A′ outputs 0 | C ← Enc′pk(1)]
∣∣

=
∣∣Pr
[
j ∈ Ū∗] · Prj

[
A outputs 0 | j ∈ Ū∗]

− Pr
[
j ∈ Ū∗] · Prj+1

[
A outputs 0 | j ∈ Ū∗]∣∣ ,

using the facts that (1) Pr[j ∈ Ū∗] is independent of whether C is an encryption
of 0 or 1 and (2) when C is an encryption of 0 (resp., 1) then the view of A
(assuming j ∈ Ū∗) is identical to its view in Hj (resp., Hj+1). Note further that

Prj [A outputs 0 | j 
∈ Ū∗] = Prj+1[A outputs 0 | j 
∈ Ū∗]

since the challenge ciphertext is distributed identically in each case. It follows
that ∣∣Pr[A′ outputs 0 | C ← Enc′pk(0)]− Pr[A′ outputs 0 | C ← Enc′pk(1)]

∣∣
=
∣∣Pr
[
j ∈ Ū∗] · Prj

[
A outputs 0 | j ∈ Ū∗]

−Pr
[
j ∈ Ū∗] · Prj+1

[
A outputs 0 | j ∈ Ū∗]∣∣

= |δj − δj+1| ,

concluding the proof. ��
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A Proof Details

We analyze the success probability of the adversary A from Section 3.1. Due to
space limitations, the proof cannot be reproduced here in its entirety; we have
instead aimed to describe those parts of our proof that differ most prominently
from the proof of Boneh et al. [5]. The most significant new element in our proof
is Proposition 1.

Toward analyzing the success probability of A, we describe a series of ex-
periments, the first of which corresponds to adversary A interacting in the ex-
periment from Definition 2. We show that, as long as no “bad” events (to be
defined later) occur, the statistical distance between the transcripts generated in
each of these experiments is not too large. This allows us to bound A’s success
probability by comparing it to an appropriate event in the final experiment.

Expt0: This corresponds to A interacting in the experiment from Definition 2.

Expt1: This is the same as Expt0 except that O′′ (as defined after the kth repe-
tition of step 3) is used instead of O to compute the challenge ciphertext C∗.

Expt2: This is the same as Expt1 except that O′′ never queries O (cf. step 3 in
the definition of O′′); instead, any such queries are answered randomly (subject
to ensuring that O′′ remains consistent).

Expt3: This is the following experiment with no adversary and using the real
oracle O:

Setup and challenge

1. Compute f∗ ← A1(1n), I∗ = A2(1n, f∗), and {f1, . . . , fp} ← A3(1n, f∗).
2. Choose at random MSK ← {0, 1}n and compute MPK := SetupO(MSK).

If fi(I∗) = 1 for some i, abort and output a random bit.
3. For every predicate f ∈ {f∗, f1, . . . , fp} compute SKf := KeyGenOMSK(f).
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Step 1: Discovering important public keys. For i = 1 to p do:

1. Compute Ifi ← A2(1n, fi), and choose random bi ← {0, 1} and ri ← {0, 1}n.
2. Compute DecOSKfi

(EncOMPK(Ifi , bi; ri)).

Step 2: Decrypting the challenge

1. Choose r ← {0, 1}n, b← {0, 1} and compute C∗ := EncOMPK(I∗, b; r).
2. Compute b′ := DecOSKf∗ (C∗) and output b′. Note that b′ = b always.

This completes the description of Expt3.

For i ∈ {0, 1, 2} we will be interested in the following transcripts defined in the
course ofExpti. These transcripts contain, inparticular, all oracle queries/answers.

– transi
setup: The transcript of the setup phase. This includes the computation

of MPK and SKf1 , . . . , SKfp , as well as the computation of SKf∗ for the
f∗ chosen by the adversary. (Even though SKf∗ is not computed in the
experiment, SKf∗ is well defined given f∗, MSK, and O.)

– transi
pks: The transcript of step 1 (“discovering important public keys”).

– transi
freq: The transcript of step 2 (“discovering frequent queries for I∗”).

– transi
sim-setup: This is the transcript defined by the adversary’s choice of

MSK ′ and O′ in the kth repetition of step 3, and can be viewed as the
adversary’s “guess” for transi

setup.
– transi

∗: The transcript of the encryption of C/decryption of C∗ in the kth

repetition of step 3.
– transi = (transi

setup, transi
pks, transi

sim-setup, transi
∗).

For Expt3 we define

– trans3sim-setup: The transcript of the “setup and challenge” step.
– trans3pks: The transcript of step 1 (“discovering important public keys”).
– trans3∗: The transcript of step 2 (“decrypting the challenge”).
– trans3 = (trans3pks, trans3sim-setup, trans3∗).

For a given transcript, we partition the set of public keys used (i.e., the set of
pk’s for which [g(·) = pk] ∈ trans) into the following sets:

– We let QS(trans) denote the public keys queried during execution of Setup:

QS(trans) def= {pk | the query [g(·) = pk] ∈ trans is asked by Setup}.
Intuitively, these are the pk’s whose corresponding sk’s are “useful” for de-
crypting ciphertexts.

– We let QK(trans) denote the public keys queried by the KeyGen algorithm
when some personal secret key is derived:

QK(trans) def= {pk | [g(·) = pk] ∈ trans is asked by KeyGenMSK(·)}

QK−S(trans) def= QK(trans) \ QS(trans).

– Finally, we will also look at the public keys “discovered” during encryption
and decryption (cf. step 3 of the experiments):

QENC+DEC(trans, I, f) def= {pk | [g(·) = pk] asked by DecSKf (EncMPK(I, ·; ·))}
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A.1 Bounding Probabilities of Bad Events

Fixing the master secret key MSK and the oracle O (this fixes MPK as well
as {SKf}f∈F), we define four “bad” events and bound the probabilities of each
of them. Here, we will only describe and bound one of these events; we refer to
the full version of our paper for the remainder of the proof.

Let Ei
NC be the event that either of the following is true (in Expti):

1. ∃fi ∈ {f1, . . . , fp} such that fi(I∗) = 1.
2. The following condition holds:

QENC+DEC(transi
∗, I

∗, f∗)
⋂
QS(transi

sim-setup)

�

⎛⎝ ⋃
f∈{f1,...,fp}

QENC+DEC(transi
pks, If , f)

⎞⎠⋂QS(transi
sim-setup),

where If := A2(1n, f).

Intuitively, the second condition above is the event that the public keys that are
“useful” for f1, . . . , fp does not contain the public keys that are “useful” for f∗.

We bound the probability of E3
NC using the assumed easily-covered property

of {(Fn,An)}; this is the crux of our proof, and is what motivates Definition 5.

Proposition 1. Pr[E3
NC ] ≤ 1/5.

Proof. Fix O and MSK ∈ {0, 1}n, thus fixing trans3sim-setup. If for each f ∈ Fn

we fix a random tape rf that is sufficiently long to run DecSKf
(EncMPK(I, b; r))

(where I def= A2(f)), then this defines, for each f , the set

Sf

def=
{
pk | [g(·) = pk] asked by DecSKf

(EncMPK(I, b; r))
}
∩ QS(trans3sim-setup).

Numbering the (at most q) public keys in QS(trans3sim-setup) in lexicographic
order, we can view these {Sf}f∈Fn as an Fn-set system over [q]. The fact that
{(Fn,An)} can be q-covered implies that there exists a polynomial p such that

Pr

⎡⎣ ∀f ∈ Fn : rf ← {0, 1}∗
f∗ ← A1, I

∗ := A2(1n, f∗)
{f1, . . . , fp} ← A3(f∗)

:

(
Sf∗ ⊆

p⋃
i=1

Sfi

)∧(
∀i : fi(I∗) = 0

)⎤⎦ ≥ 4
5
.

The above is a lower bound on the probability that E3
NC does not occur. ��
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Abstract. This paper presents a hierarchical predicate encryption
(HPE) scheme for inner-product predicates that is secure (selectively
attribute-hiding) in the standard model under new assumptions. These
assumptions are non-interactive and of fixed size in the number of adver-
sary’s queries (i.e., not “q-type”), and are proven to hold in the generic
model. To the best of our knowledge, this is the first HPE (or dele-
gatable PE) scheme for inner-product predicates that is secure in the
standard model. The underlying techniques of our result are based on a
new approach on bilinear pairings, which is extended from bilinear pair-
ing groups over linear spaces. They are quite different from the existing
techniques and may be of independent interest.

1 Introduction

1.1 Background

The notion of predicate encryption (PE) was explicitly presented by Katz, Sahai
and Waters [16] as a generalized (fine-grained) notion of encryption that covers
identity-based encryption (IBE) [2,3,5,9,10,15], hidden-vector encryption (HVE)
[7] and attribute-based encryption (ABE) [1,13,19,20,21].

Informally, secret keys in a predicate encryption scheme correspond to predi-
cates in some class F , and a sender associates a ciphertext with an attribute in
a set Σ; a ciphertext associated with the attribute I ∈ Σ can be decrypted by
secret key skf corresponding to the predicate f ∈ F if and only if f(I) = 1.

In addition, a stronger security notion for PE, attribute-hiding, than basic
security requirement, payload-hiding, was defined in [16]. Roughly speaking,
attribute-hiding requires that a ciphertext conceal the associated attribute as
well as the plaintext, while payload-hiding only requires that a ciphertext con-
ceal the plaintext. If attributes are identities, i.e., PE is IBE, attribute hiding
PE implies anonymous IBE.

Katz, Sahai and Waters [16] also presented a concrete construction of PE for
a class of predicates called inner-product predicates, which represents a wide
class of predicates that includes an equality test (for IBE and HVE), disjunc-
tions or conjunctions of equality tests, and, more generally, arbitrary CNF or

M. Matsui (Ed.): ASIACRYPT 2009, LNCS 5912, pp. 214–231, 2009.
c© International Association for Cryptologic Research 2009
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DNF formulas (for ABE). Informally, an attribute of inner-product predicates
is expressed as vector −→x and predicate f−→v is associated with vector −→v , where
f−→v (−→x ) = 1 iff −→x · −→v = 0. (Here, −→x · −→v denotes the standard inner-product.)

Although the Katz-Sahai-Waters scheme [16] is the most expressive attribute-
hiding PE among the existing schemes, no delegation functionality was proposed.
Shi and Waters [22] presented a delegation mechanism for a class of PE, but the
admissible predicates of the system, which is a class of equality tests for HVE,
are more limited than inner-product predicates in [16]. Okamoto and Takashima
[18] presented hierarchical delegation of PE for inner-product predicates, but the
security proof was only given in the generic model.

1.2 Our Results

This paper addresses the above problems in [16,22,18].

– This paper proposes a hierarchical predicate encryption (HPE) scheme for
inner-product predicates, where a (natural) hierarchical delegation system
of inner-product predicates is provided e.g., our hierarchical system is con-
sistent with that for hierarchical IBE (HIBE) [4,8,11,12] (i.e., our HPE is
specialized to anonymous HIBE, if the predicate of HPE is specified to the
equality test of identities).

– The proposed HPE scheme is selectively attribute-hiding against chosen-
plaintext-attacks (CPA) in the standard model under two new assumptions,
the RDSP and IDSP assumptions. These assumptions are non-interactive,
falsifiable and of fixed size in the number of adversary’s queries (i.e., not
“q-type”), and are proven to hold in the generic model.

– To achieve the result, this paper advances an approach recently developed in
[17,18]. This approach is extended from bilinear pairing groups into higher
dimensional vector spaces, and a notion, dual pairing vector spaces (DPVS),
is employed in this paper. (We will explain this approach below.)

One of the most basic decisional assumptions in this approach is the de-
cisional subspace problem (DSP) assumption. (It is a higher-dimensional
generalization of the decisional DH and Linear assumptions, and the rela-
tionships of this assumption with the traditional ones are studied in [17].)

The assumptions introduced in this paper, the RDSP and IDSP assump-
tions, are variants of the DSP assumption in DPVS.

– The performance of the proposed HPE scheme is almost the same as (or
slightly worse than) that in [18], where the dimension of DPVS for our HPE
scheme is n + 3, whereas that for [18] is n + 2, when n is the dimension of
predicate/attribute vectors.

– Since HPE is a generalized (fine-grained) version of anonymous HIBE
(AHIBE) (or includes AHIBE as a special case), HPE covers (a generalized
version of) applications described in [8], fully private communication and
search on encrypted data. For example, we can use a two-level HPE scheme
where the first level corresponds to the predicate/attribute of (single-layer)
PE and the second level corresponds to those of “attribute search by a pred-
icate” (generalized “key-word search”).
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1.3 A New Approach – Dual Pairing Vector Spaces

We now explain how the approach works by using a typical construction example
on direct products of pairing groups (q,G1,G2,GT , g1, g2, gT , e), where q is a
prime, G1, G2 and GT are cyclic groups of order q, gi is a generator of Gi

(i = 1, 2), e : G1 × G2 → GT is a non-degenerate bilinear pairing operation,
and gT := e(g1, g2) 
= 1. Here we denote the group operation of G1, G2 and GT

by multiplication. Note that this construction also works on symmetric pairing
groups, where G1 = G2. As for the definitions of some notations, see Section 1.5.

Vector spaces V and V∗: V :=

N︷ ︸︸ ︷
G1 × · · · ×G1 and V∗ :=

N︷ ︸︸ ︷
G2 × · · · ×G2,

whose elements are expressed by N -dimensional vectors, x := (gx1
1 , . . . , g

xN
1 )

and y := (gy1
2 , . . . , g

yN

2 ), respectively (xi, yi ∈ Fq for i = 1, . . . , N).
Canonical bases A and A∗: A := (a1, . . . ,aN) of V, where a1 := (g1, 1, . . . , 1),

a2 := (1, g1, 1, . . . , 1), . . . ,aN := (1, . . . , 1, g1). A∗ := (a∗
1, . . . ,a

∗
N ) of V∗,

where a∗
1 := (g2, 1, . . . , 1), a∗

2 := (1, g2, 1, . . . , 1), . . . , a∗
N := (1, . . . , 1, g2).

Pairing operation: e(x,y) :=
∏N

i=1 e(g
xi
1 , g

yi

2 ) = e(g1, g2)
∑N

i=1 xiyi = g
−→x ·−→y
T ∈

GT for the above x ∈ V and y ∈ V∗.
Base change: Canonical basis A is changed to basis B := (b1, . . . , bN ) of V using

a uniformly chosen (regular) linear transformation,X := (χi,j)
U← GL(N,Fq),

such that bi =
∑N

j=1 χi,jaj , (i = 1, . . . , N). A∗ is also changed to basis B∗ :=
(b∗1, . . . , b

∗
N ) of V∗, such that (ϑi,j) := (XT )−1, b∗i =

∑N
j=1 ϑi,ja

∗
j , (i =

1, . . . , N). We see that e(bi, b
∗
j ) = g

δi,j

T , (δi,j = 1 if i = j, and δi,j = 0 if
i 
= j) i.e., B and B∗ are dual orthonormal bases of V and V∗.

Intractable Problem: One of the most natural decisional problems in our
approach is the decisional subspace problem (DSP) [17]. The DSP(N1,N2)
assumption is: it is hard to tell v := vN2+1bN2+1 + · · · + vN1bN1 from u :=
v1b1 + · · · + vN1bN1 , where (v1, . . . , vN1)

U← F N1
q and N2 + 1 < N1. DSP is

intractable if the generalized DDH or DLIN problem is intractable [17].
Trapdoor: Although the DSP problem is assumed to be intractable, it can

be efficiently solved by using trapdoor t∗ ∈ span〈b∗1, . . . , b∗N2
〉. Given v :=

vN2+1bN2+1 + · · ·+ vN1bN1 or u := v1b1 + · · ·+ vN1bN1 , we can tell v from
u using t∗ since e(v, t∗) = 1 and e(u, t∗) 
= 1 with high probability.

1.4 Related Works on Our Approach

Higher dimensional vector treatment of bilinear pairing groups have been already
employed in the literature especially in the areas of IBE, ABE and BE (e.g.,
[4,1,6,8,13,14,21]). For example, in a typical vector treatment, two vector forms
of P := (gx1

1 , . . . , g
xn
1 ) and Q := (gy1

2 , . . . , g
yn

2 ) are set and pairing for P and Q
is operated as e(P,Q) :=

∏n
i=1 e(g

xi
1 , g

yi

2 ). Such a treatment can be rephrased in
our approach using the (symmetric pairing) notations shown in Section 1.3 such
that P = x1a1 + · · ·+ xnan and Q = y1a

∗
1 + · · ·+ yna∗

n over canonical basis A
and A∗.
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The major drawback of this approach is the easily decomposable property over
A (and A∗). That is, it is easy to decompose xiai = (1, . . . , 1, gxi

1 , 1, . . . , 1) from
P := x1a1 + · · ·xnan = (gx1

1 , . . . , g
xn
1 ).

In contrast, the current approach employs basis B that is linearly transformed
from A using a secret random matrix X ∈ F n×n

q . A remarkable property over B
is that it seems hard to decompose xibi from P ′ := x1b1 + · · ·xnbn. In addition,
the dual orthonormal basis B∗ of V∗ can be used as a source of the trapdoors to
the decomposability (see Section 1.3) through the pairing operation over B and
B∗. The hard decomposability and its trapdoors are the key trick in this paper.
Note that composite order pairing groups are often employed with similar tricks,
hard decomposability of a composite order group into the prime order subgroups
and its trapdoors through factoring (e.g., [16,22]).

1.5 Notations

When A is a random variable or distribution, y R← A denotes that y is randomly
selected from A according to its distribution. When A is a set, y U← A denotes
that y is uniformly selected from A. y := z denotes that y is set, defined or
substituted by z. When a is a fixed value, A(x) → a (e.g., A(x) → 1) denotes
the event that machine (algorithm) A outputs a on input x. A function f : N→ R
is negligible in λ, if for every constant c > 0, there exists an integer n such that
f(λ) < λ−c for all λ > n.

We denote the finite field of order q by Fq. A vector symbol denotes a vector
representation over Fq, e.g., −→x denotes (x1, . . . , xn) ∈ F n

q . −→x · −→v denotes the
inner-product

∑n
i=1 xivi of two vectors −→x = (x1, . . . , xn) and −→v = (v1, . . . , vn).

XT denotes the transpose of matrix X . A bold face letter denotes an element
of vector space V (resp. V∗), e.g., x ∈ V (resp.x∗ ∈ V∗). span〈b1, . . . , bn〉
(resp. span〈−→x 1, . . . ,

−→x n〉) denotes the subspace generated by b1, . . . , bn (resp.
−→x 1, . . . ,

−→x n).

2 Dual Pairing Vector Spaces

Definition 1. “Dual pairing vector spaces (DPVS)” (q,V,V∗,GT ,A,A∗) are a
tuple of a prime q, two N -dimensional vector spaces V and V∗ over Fq, a cyclic
group GT of order q, and their canonical bases i.e., A := (a1, . . . ,aN) of V and
A∗ := (a∗

1, . . . ,a
∗
N ) of V∗ that satisfy the following conditions:

1. [Non-degenerate bilinear pairing] There exists a polynomial-time computable
nondegenerate bilinear pairing e : V × V∗ → GT i.e., e(sx, ty) = e(x,y)st

and if e(x,y) = 1 for all y ∈ V, then x = 0.
2. [Dual orthonormal bases] A, A∗, and e satisfy e(ai,a

∗
j) = g

δi,j

T for all i and
j, where δi,j = 1 if i = j, and 0 otherwise, and gT 
= 1 ∈ GT .

3. [Distortion maps] Endomorphisms φi,j of V s.t.φi,j(aj) = ai and φi,j(ak) =
0 if k 
= j are polynomial-time computable. Moreover, endomorphisms φ∗i,j
of V∗ s.t.φ∗i,j(a

∗
j ) = a∗

i and φ∗i,j(a
∗
k) = 0 if k 
= j are also polynomial-time

computable. We call φi,j and φ∗i,j “distortion maps”.
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Three typical constructions are given in [17]; a product of bilinear pairing groups,
or a Jacobian variety of a supersingular curve of genus ≥ 1 [23]. See Section 1.3
as well (where the description of distortion maps is omitted).

3 Assumptions

This section defines two variants of the DSP assumption, the RDSP and IDSP
assumptions. An intuition behind these assumptions are given in Remark below.

DPVS generation algorithm Gdpvs takes input 1λ (λ ∈ N) and N ∈ N, and
outputs a description of param := (q,V,V∗,GT ,A,A∗) with security parameter
λ and N -dimensional V and V∗. It can be constructed in a manner shown in [17].
We describe a random orthonormal basis generator Gob below, which is used as
a subroutine in the RDSP and IDSP instance generators.

Gob(1λ, N) : param := (q,V,V∗,GT ,A,A∗) R← Gdpvs(1λ, N),

X := (χi,j)
U← GL(N,Fq), (ϑi,j) := (XT)−1,

bi :=
∑N

j=1 χi,jaj, B := (b1, . . . , bN ), b∗i :=
∑N

j=1 ϑi,ja
∗
j , B∗ := (b∗1, . . . , b∗N),

return (param,B,B∗)

We now define the RDSP and IDSP instance generators, GRDSP
β and GIDSP

β .

GRDSP
β (1λ, n) :(param,B,B∗) R← Gob(1λ, n+ 3), −→y := (y1, . . . , yn) U← F n

q \ {
−→
0 },

δ1, δ2, ζ1, ζ2
U← Fq, dn+1 := bn+1 + bn+2, B̂ := (b1, . . . , bn,dn+1, bn+3),

(ω(k), γ
(k)
1 , γ

(k)
2 )k=1,2,3

U← GL(Fq, 3),
For i = 1, . . . , n; k = 1, 2, 3;

h
(k)∗
i := ω(k)b∗i + γ

(k)
1 yib

∗
n+1 + γ

(k)
2 yib

∗
n+2, τ

(k)
i := (γ(k)

1 + γ
(k)
2 )yi,

e0 := δ1(
∑n

i=1 yibi) + δ2bn+3,

e1 := δ1(
∑n

i=1 yibi) + ζ1bn+1 + ζ2bn+2 + δ2bn+3,

return (param, B̂, {h(k)∗
i , τ

(k)
i }i=1,...,n;k=1,2,3,

−→y , eβ).

GIDSP
β (1λ, n) : (param,B,B∗) R← Gob(1λ, n+ 3),
−→y := (y1, . . . , yn) U← F n

q \ {
−→
0 }, −→u := (u1, . . . , un) U← F n

q \ {
−→
0 },

δ1, δ2, ζ1, ζ2
U← Fq, dn+1 := bn+1 + bn+2, B̂ := (b1, . . . , bn,dn+1, bn+3),

For i = 1, . . . , n; (ω(k), γ
(k)
i,1 , γ

(k)
i,2 )k=1,2,3

U← GL(Fq, 3),
For i = 1, . . . , n; k = 1, 2, 3;

h
(k)∗
i := ω(k)b∗i + γ

(k)
i,1 b∗n+1 + γ

(k)
i,2 b∗n+2, τ

(k)
i := γ

(k)
i,1 + γ

(k)
i,2 ,

e0 := δ1(
∑n

i=1 yibi) + ζ1bn+1 + ζ2bn+2 + δ2bn+3,

e1 := δ1(
∑n

i=1 uibi) + ζ1bn+1 + ζ2bn+2 + δ2bn+3,

return (param, B̂, {h(k)∗
i , τ

(k)
i }i=1,...,n;k=1,2,3,

−→y , eβ).
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Definition 2 (RDSP: Decisional Subspace Problem with Relevant
Dual Vector Tuples). For all security parameter λ ∈ N, we define RDSP
advantage of a probabilistic machine B as follows:

AdvRDSP
B (λ) :=∣∣∣Pr
[
B(1λ, ρ)→1

∣∣∣ ρ R←GRDSP
0 (1λ, n)

]
−Pr
[
B(1λ, ρ)→1

∣∣∣ ρ R←GRDSP
1 (1λ, n)

]∣∣∣ .
The RDSP assumption is: for any probabilistic polynomial-time adversary B,
AdvRDSP

B (λ) is negligible in λ.

Definition 3 (IDSP: Decisional Subspace Problem with Irrelevant
Dual Vector Tuples). The IDSP advantage of B, AdvIDSP

B (λ), and the IDSP
assumption are defined similarly as in Definition 2.

In the generic DPVS model, basic operations in V,V∗, and GT , i.e., vector ad-
ditions in V and V∗, multiplication in GT , pairing, and distortion maps w.r.t. A
or A∗, are given by “generic” algorithms that act independently of the represen-
tations of vectors or group elements.

Theorem 1. The advantages AdvRDSP
B (λ) and AdvIDSP

B (λ) are O(d/2λ) for any
adversary B in the generic DPVS model, where d is the maximum of the degrees
of polynomials of formal variables (in the generic model game).

We will describe the proof of Theorem 1 in the full version of this paper.

Remark (Intuition behind the Assumptions)
Here we informally explain the RDSP assumption by using a simplified one.
In the simplified RDSP assumption, (h∗

1, . . . ,h
∗
n) is given to A in addition

to (B := (b1, . . . , bn+2),−→y := (y1, . . . , yn), eβ), such that h∗
i := ωb∗i + yib

∗
n+1

(i = 1, . . . , n; ω U← Fq) and eβ := δ1(
∑n

i=1 yibi)+βζbn+1 + δ2bn+2 (β U← {0, 1},
δ1, δ1, ζ

U← Fq). The simplified RDSP assumption is that it is hard for any adver-
sary A, given (B,−→y , eβ) along with (h∗

1, . . . ,h
∗
n), to correctly guess β. (In the

DSP assumption, only (B,−→y , eβ) is given to A.)
(h∗

1, . . . ,h
∗
n) is added in the RDSP assumption in order to simulate the key

generation oracle in the security proof of our encryption scheme as follows: for
any −→v := (v1, . . . , vn) with −→v · −→y 
= 0, the simulator can compute a secret
key k∗ for −→v such that k∗ := 1−→v ·−→y

∑n
i=1 vihi = ω−→v ·−→y (

∑n
i=1 vib

∗
i ) + b∗n+1 =

ω′(
∑n

i=1 vib
∗
i ) + b∗n+1 where ω′ := ω−→v ·−→y .

This secret key generation procedure, however, does not work for −→v with
−→v · −→y = 0, since 1−→v ·−→y cannot be computed. Therefore, (h∗

1, . . . ,h
∗
n) does not

seem helpful to break the RDSP assumption, since a secret-key k∗ for −→v with
“−→v · −→y = 0” is of use to guess β by checking whether e(eβ ,k

∗) = 1 or not.
Hence, the RDSP assumption seems to hold if the DSP assumption does.

Similarly the IDSP assumption is introduced as a variant of the DSP assump-
tion. In the RDSP and IDSP assumptions employed in this paper, we use a
public element dn+1 := bn+1 +bn+2 (in place of bn+1 in basis B in the simplified
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one), and bn+1 and bn+2 are not published. Such a modification is required for
the IDSP assumption since the simplified IDSP assumption does not hold.

In addition, in our RDSP (and IDSP) assumption, {h(k)∗
i }i=1,...,n; k=1,2,3

is employed in place of {h∗
i }i=1,...,n. This modification is introduced to re-

randomize the coefficients for each key generation of the simulation by a random
linear combination of h

(1)∗
i , h

(2)∗
i and h

(3)∗
i .

4 Definition of Hierarchical Predicate Encryption (HPE)

This section defines hierarchical predicate encryption (HPE) for the class of
hierarchical inner-product predicates and its security.1

In a delegation system, it is required that a user who has a capability can dele-
gate to another user a more restrictive capability. In addition to this requirement,
our hierarchical inner-product encryption introduces a format of hierarchy −→μ to
define common delegation structure in a system.

We call a tuple of positive integers −→μ := (n, d;μ1, . . . , μd) s.t.μ0 = 0 < μ1 <
μ2 < · · · < μd = n a format of hierarchy of depth d attribute spaces. Let Σ�

(� = 1, . . . , d) be the sets of attributes, where each Σ� := F μ�−μ�−1
q \ {−→0 }.

Let the hierarchical attributes Σ := ∪d
�=1(Σ1 × . . . × Σ�), where the union is

a disjoint union. Then, for −→v i ∈ F μi−μi−1
q \ {−→0 }, the hierarchical predicate

f(−→v 1,...,−→v �) on hierarchical attributes (−→x 1, . . . ,
−→x h) ∈ Σ is defined as follows:

f(−→v 1,...,−→v �)(
−→x 1, . . . ,

−→x h) = 1 iff � ≤ h and −→x i · −→v i = 0 for all i s.t. 1 ≤ i ≤ �.
Let the space of hierarchical predicates F := {f(−→v 1,...,−→v �) |

−→v i ∈ F μi−μi−1
q \

{−→0 }}. We call h (resp. �) the level of (−→x 1, . . . ,
−→x h) (resp. (−→v 1, . . . ,

−→v �)).

Definition 4. Let −→μ := (n, d;μ1, . . . , μd) s.t.μ0 = 0 < μ1 < μ2 < · · · < μd = n
be a format of hierarchy of depth d attribute spaces. A hierarchical predicate
encryption (HPE) scheme for the class of hierarchical inner-product predicates
F over the set of hierarchical attributes Σ consists of probabilistic polynomial-
time algorithms Setup,GenKey,Enc,Dec, and Delegate� for � = 1, . . . , d−1. They
are given as follows:

– Setup takes as input security parameter 1λ and format of hierarchy −→μ , and
outputs (master) public key pk and (master) secret key sk.

– GenKey takes as input the master public key pk, secret key sk, and predicate
vectors (−→v 1, . . . ,

−→v �). It outputs a corresponding secret key sk(−→v 1,...,−→v �).
– Enc takes as input the master public key pk, attribute vectors (−→x 1, . . . ,

−→x h),
where 1 ≤ h ≤ d, and plaintext m in some associated plaintext space, msg.
It returns ciphertext c.

– Dec takes as input the master public key pk, secret key sk(−→v 1,...,−→v �), where
1 ≤ � ≤ d, and ciphertext c. It outputs either plaintext m or the distinguished
symbol ⊥.

1 More general delegation structures (partial order structures) than tree hierarchical
structures can be easily realized in our HPE scheme. See Remark in Section 5.
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– Delegate� takes as input the master public key pk, �-th level secret key
sk(−→v 1,...,−→v �), and (�+ 1)-th level predicate vector −→v �+1. It returns (�+ 1)-th
level secret key sk(−→v 1,...,−→v �+1).

A HPE scheme should have the following correctness property: for all cor-
rectly generated pk and sk(−→v 1,...,−→v �), generate c R← Enc(pk,m, (−→x 1, . . . ,

−→x h))
andm′ := Dec(pk, sk(−→v 1,...,−→v �), c). If f(−→v 1,...,−→v �)(

−→x 1, . . . ,
−→x h) = 1, then m′ = m.

Otherwise, m′ 
= m except for negligible probability.
For f and f ′ in F , we denote f ′ ≤ f if the predicate vector for f is a prefix

of that for f ′. For the following definition for key queries, see [22].

Remark: We will explain the hierarchical structure by using a small (toy)
example that has three levels and each level consists of 2-dimensional space,
i.e., 6-dimensional space is employed in total. That is, −→μ := (n, d;μ1, . . . , μd)
= (6, 3; 2, 4, 6) in this example.

A user who possesses a secret key sk1 in the top level, associated with the
top level predicate vector −→v 1 := (v1, v2), can delegate any value (say −→v 2 :=
(v3, v4)) of the second level key sk2 such that the predicate vector for sk2 is
(−→v 1,

−→v 2). Similarly, a user who possesses a secret key in the second level, sk2
with (−→v 1,

−→v 2), can delegate any value (say −→v 3 := (v5, v6)) of the third level key
sk3 with (−→v 1,

−→v 2,
−→v 3).

Secret key sk1 with −→v 1, can decrypt a ciphertext associated with attribute
vector (−→x 1, (∗, ∗), (∗, ∗)) := ((x1, x2), (∗, ∗), (∗, ∗)) if −→x 1 · −→v 1 = 0, where ∗ de-
notes an arbitrary value. Secret key sk2 with (−→v 1,

−→v 2) can decrypt a ciphertext
with attribute vector (−→x 1,

−→x 2, (∗, ∗)) if −→x 1 · −→v 1 = 0 and −→x 2 · −→v 2 = 0. However
sk2 cannot decrypt a ciphertext with higher level (top level) attribute vector
−→x 1 := (x1, x2) (or (−→x 1, (∗, ∗), (∗, ∗))). Therefore, the capability of a delegated
key sk2 is more limited than the parent key sk1.

Hence, when (−→v 1,
−→v 2) := ((v1, v2), (v3, v4)) is a predicate vector for a secret

key, (−→v 1,
−→v 2) is considered to be (−→v 1,

−→v 2, (0, 0)), and when −→x 1 := (x1, x2) is
an attribute vector for a ciphertext, −→x 1 is considered to be (−→x 1, (∗, ∗), (∗, ∗))),
where (∗, ∗) · (0, 0) = 0 and (∗, ∗) · −→v 2 
= 0 unless −→v 2 = (0, 0).

Definition 5. A hierarchical inner-product predicate encryption scheme for hi-
erarchical predicates F over hierarchical attributes Σ is selectively attribute-hiding
(AH) against chosen plaintext attacks if for all probabilistic polynomial-time ad-
versaries A, the advantage of A in the following experiment is negligible in the
security parameter.

1. A outputs challenge attribute vectors X (0) := (−→x (0)
1 , . . . ,−→x (0)

h(0)),X (1) :=

(−→x (1)
1 , . . . ,−→x (1)

h(1)).
2. Setup is run to generate keys pk and sk, and pk is given to A.
3. A may adaptively makes a polynomial number of queries of the following

type:

– [ Create key ] A asks the challenger to create a secret key for a predicate
f ∈ F . The challenger creates a key for f without giving it to A.
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– [ Create delegated key ] A specifies a key for predicate f that has already
been created, and asks the challenger to perform a delegation operation
to create a child key for f ′ ≤ f . The challenger computes the child key
without giving it to the adversary.

– [ Reveal key ] A asks the challenger to reveal an already-created key for
predicate f s.t. f(X (0)) = f(X (1)) = 0.

Note that when key creation requests are made, A does not automatically see
the created key. A sees a key only when it makes a reveal key query.

4. A outputs challenge plaintexts m(0),m(1).
5. A random bit b is chosen. A is given c(b) R← Enc(pk,m(b),X (b)).
6. The adversary may continue to request keys for additional predicate vectors

subject to the restrictions given in step 3.
7. A outputs a bit b′, and succeeds if b′ = b.

We define the advantage of A as the quantity AdvHPE,AH
A (λ) := |Pr [b′ = b]− 1/2|.

Remark: In Definition 5, adversary A is not allowed to ask a key-query for
(−→v 1, . . . ,

−→v �) such that f(−→v 1,...,−→v �) (X (b)) = 1 for some b ∈ {0, 1}, while in the
security definition in [16], such a key-query is allowed provided that m(0) = m(1)

and f(−→v 1,...,−→v �)(X (0)) = f(−→v 1,...,−→v �)(X (1)) = 1. This restriction is introduced to
prove the security of the proposed HPE scheme only under the RDSP and IDSP
assumptions. If we introduce another variant of the assumptions, we can relax
this restriction. We will describe this case in the full version of this paper.

5 The Proposed HPE Scheme

5.1 Key Idea in Constructing the Proposed HPE

We will explain a key idea of the proposed HPE scheme.
First, as a special (1-level) case of the proposed construction of HPE, we will

show a predicate encryption (PE) construction for the inner-product predicate.
Through the orthonormal property of (random) dual bases (B := (b1, . . . , bn+3),
B∗ := (b∗1, . . . , b

∗
n+3)) in DPVS, (q,V,V∗,GT ,A,A∗), (Sections 1.3, 2 and 3), the

PE scheme for the (n-dimensional) inner-product predicate can be constructed
as below, where V and V∗ are (n+ 3)-dimensional spaces, the public parameter
is (b1, . . . , bn,dn+1 := bn+1 + bn+2, bn+3) as well as the parameters of DPVS,
and the master secret key is (X and) B∗. Ciphertext (c1, c2) for attribute −→x :=
(x1, . . . , xn) ∈ F n

q and plaintext m ∈ GT is c1 := δ1(x1b1 + · · · + xnbn) +

ζdn+1+δ2bn+3 and c2 := gζ
Tm, where δ1, δ2, ζ

U← Fq. Secret key k∗ with predicate
−→v := (v1, . . . , vn) ∈ F n

q is k∗ := σ(v1b∗1+· · ·+vnb∗n)+ηb∗n+1+(1−η)b∗n+2, where

σ, η
U← Fq. If −→x ·−→v = 0, plaintext m can be computed by m = c2/e(c1,k

∗), since
e(c1,k

∗) = (
∏n

i=1 e(δ1xibi, σvib
∗
i )) · e(ζbn+1, ηb

∗
n+1) · e(ζbn+2, (1 − η)b∗n+2) =

g
δ1σ(
∑n

i=1 xivi)+ζη+ζ(1−η)
T = g

δ1σ(−→x ·−→v )+ζ
T = gζ

T .
We now explain the key idea of the proposed HPE scheme by using a small

(toy) example. Let the dimension of (predicate/attribute) vectors be 6, in which
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there are three levels and each level has 2-dimensions, V and V∗ be 9-dimensional
spaces, the public parameter be B := (b1, . . . , b6,d7, b9) as well as the parameters
of DPVS, and the master secret key be (X and) B∗ := (b∗1, . . . , b∗9), where d7 :=
b7 + b8.

Ciphertext (c1, c2) for attribute −→x := (−→x 1,
−→x 2,

−→x 3) := ((x1, x2), (x3, x4),
(x5, x6)) ∈ F 6

q and plaintext m is constructed as c1 := δ1(x1b1 + x2b2) + · · · +
δ3(x5b5 + x6b6) + ζd7 + δ4b8 and c2 := gζ

Tm, where δ1, . . . , δ4, ζ
U← Fq. If the

attribute is a higher level such as −→x 1 := (x1, x2), generate a modified attribute
−→x + := ((x1, x2), (x+

3 , x
+
4 ), (x+

5 , x
+
6 )), where (x+

3 , x
+
4 , x

+
5 , x

+
6 ) U← F 4

q . Then, ci-
phertext c1 for attribute −→x 1 is computed as ciphertext c1 for the modified
attribute −→x +.

Top level secret key
−→
k ∗

1 := (k∗
1,0, . . . ,k

∗
1,6), for predicate −→v := (v1, v2) ∈ F 2

q

consists of three parts, k∗
1,0, (k∗

1,1,k
∗
1,2) and (k∗

1,3, . . . ,k
∗
1,6), where the first one

is used for decryption of ciphertexts, the second one for re-randomization (of
delegated key), and the last one for delegation. Each part is: k∗

1,0 := σ1,0(v1b∗1 +
v2b

∗
2) + η0b

∗
7 + (1− η0)b∗8, k∗

1,j := σ1,j(v1b∗1 + v2b
∗
2) + ηjb

∗
7 − ηjb

∗
8 (j = 1, 2), and

k∗
1,j := σ1,j(v1b∗1+v2b∗2)+ψbj+ηjb

∗
7−ηjb

∗
8 (j = 3, . . . , 6), where σ1,j , ψ

U← Fq for
j = 0, . . . , 6. The first one, k∗

1,0, can decrypt ciphertext (c1, c2) by c2/e(c1,k
∗
1,0),

since e(c1,k
∗
1,0) = gζ

T if an attribute of c1 is ((x1, x2), (∗, ∗), (∗, ∗)) with (x1, x2) ·
(v1, v2) = 0. To delegate a secret key for the 2nd level vector (v3, v4), σ2,j(v3k∗

1,3+
v4k

∗
1,4) is added to k∗

1,0 (j = 0), 0 (j = 1, 2, 3), and ψ+k∗
1,j (j = 5, 6). To re-

randomize the coefficients of (v1b∗1 + v2b
∗
2), b∗7 and b∗8 in the delegated key,

(αj,1k
∗
1,1 + αj,2k

∗
1,2) is also added. So, the delegated key (the second level key)

−→
k ∗

2 := (k∗
2,0, . . . ,k

∗
2,3,k

∗
2,5,k

∗
2,6), (where k∗

2,0 is for decryption, (k∗
2,1, . . . ,k

∗
2,3)

for re-randomization, and (k∗
2,5,k

∗
2,6) for delegation) is computed as k∗

2,0 :=
k∗

1,0 +(α0,1k
∗
1,1 +α0,2k

∗
1,2)+σ2,0(v3k∗

1,3 + v4k∗
1,4), k∗

2,j := (αj,1k
∗
1,1 +αj,2k

∗
1,2)+

σ2,j(v3k∗
1,3 + v4k

∗
1,4) (j = 1, 2, 3), and k∗

2,j := ψ+k∗
1,j + (αj,1k

∗
1,1 + αj,2k

∗
1,2) +

σ2,j(v3k∗
1,3+v4k∗

1,4) (j = 5, 6), where αj,1, αj,2, σ2,j , ψ
+ U← Fq (j = 0, 1, 2, 3, 5, 6).

Then, the distribution of the delegated key (by Delegate) is equivalent to that
obtained by the key generation query (GenKey) except negligible probability
(i.e., the simulation of ‘create delegated key query’ can be equivalent to that of
‘create key query’.)

In general, as for the �-th level secret key,
−→
k ∗

� := (k∗
�,0, . . . , k

∗
�,�+1, k

∗
�,μ�+1, . . . ,

k∗
�,n), the first one, k∗

�,0, is used for decryption, the second part of components,
k∗

�,1, . . . ,k
∗
�,�+1, are for re-randomization (of a delegated key), and the last part

of components, k∗
�,μ�+1, . . . ,k

∗
�,n, are for delegation.

5.2 HPE Scheme

Setup(1λ,−→μ := (n, d;μ1, . . . , μd)) : (param,B,B∗) R← Gob(1λ, n+ 3),

dn+1 := bn+1 + bn+2, B̂ := (b1, . . . , bn,dn+1, bn+3),

return sk := (X,B∗), pk := (1λ, param, B̂).
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GenKey(pk, sk, (−→v 1, . . . ,
−→v �) := ((v1, . . . , vμ1), . . . , (vμ�−1+1, . . . , vμ�

)) :

σj,i, ψ, ηj
U← Fq for j = 0, . . . , �+ 1, μ� + 1, . . . , n; i = 1, . . . , �,

k∗
�,0 :=
∑�

t=1 σ0,t(
∑μt

i=μt−1+1 vib
∗
i ) + η0b

∗
n+1 + (1 − η0)b∗n+2,

k∗
�,j :=
∑�

t=1 σj,t(
∑μt

i=μt−1+1 vib
∗
i ) + ηjb

∗
n+1 − ηjb

∗
n+2

for j = 1, . . . , �+ 1,
k∗

�,j :=
∑�

t=1 σj,t(
∑μt

i=μt−1+1 vib
∗
i ) + ψb∗j + ηjb

∗
n+1 − ηjb

∗
n+2

for j = μ� + 1, . . . , n,

return
−→
k ∗

� := (k∗
�,0, . . . ,k

∗
�,�+1,k

∗
�,μ�+1, . . . ,k

∗
�,n).

Enc(pk,m ∈ GT , (−→x 1, . . . ,
−→x �) := ((x1, . . . , xμ1 ), . . . , (xμ�−1+1, . . . , xμ�

)) :

(−→x �+1, . . . ,
−→x d)

U← F μ�+1−μ�
q × · · · × F n−μd−1

q , δ1, . . . , δd, δn+3, ζ
U← Fq,

c1 :=
∑d

t=1 δt(
∑μt

i=μt−1+1 xibi) + ζdn+1 + δn+3bn+3, c2 := gζ
Tm,

return (c1, c2).
Dec(pk,k∗

�,0, c1, c2) : m′ := c2/e(c1,k
∗
�,0),

return m′.
Delegate�(pk,

−→
k ∗

� ,
−→v �+1 := (vμ�+1, . . . , vμ�+1)) :

αj,i, σj , ψ
′ U← Fq for j = 0, . . . , �+ 2, μ�+1 + 1, . . . , n; i = 1, . . . , �+ 1,

k∗
�+1,0 := k∗

�,0 +
∑�+1

i=1 α0,ik
∗
�,i + σ0(

∑μ�+1
i=μ�+1 vik

∗
�,i),

k∗
�+1,j :=

∑�+1
i=1 αj,ik

∗
�,i + σj(

∑μ�+1
i=μ�+1 vik

∗
�,i) for j = 1, . . . , �+ 2,

k∗
�+1,j :=

∑�+1
i=1 αj,ik

∗
�,i + σj(

∑μ�+1
i=μ�+1 vik

∗
�,i) + ψ′k∗

�,j for j = μ�+1+1, . . . , n,

return
−→
k ∗

�+1 := (k∗
�+1,0, . . . ,k

∗
�+1,�+2,k

∗
�+1,μ�+1+1, . . . ,k

∗
�+1,n).

[Correctness] Assume that ciphertext (c1, c2) is generated by Enc(pk,m, (−→x 1,
. . . ,−→x h)) and secret key k∗

�,0 is generated by GenKey(pk, sk, (−→v 1, . . . ,
−→v �)). Note

that e(c1,k
∗
�,0) = g

∑
1≤i≤� σiδi

−→x i·−→v i+ζ

T . If � ≤ h and −→x i · −→v i = 0 for all i s.t. 1 ≤
i ≤ �, then e(c1,k

∗
�,0) = gζ

T . Otherwise, e(c1,k
∗
�,0) is uniformly distributed.

Hence, correctness holds for secret keys generated by GenKey, and it also holds
for keys generated by Delegate by Claim 1.

Remark: A generalized delegation (not limited to a hierarchical delegation)
system can be constructed on (1-level) PE described in the first part of Section
5.1, where the parameters are the same as above.

In the generalized delegatable PE scheme, secret key generation procedure
GenKey(pk, sk,−→v 1 := (v1,1, . . . , v1,n)) outputs

−→
k ∗

1 := (k∗
1,dec,k

∗
1,ran,1,k

∗
1,ran,2,

k∗
1,del,1, . . . ,k

∗
1,del,n), where k∗

1,dec := σdec(
∑n

i=1 v1,ib
∗
i )+ηdecb

∗
n+1+(1−ηdec)b∗n+2;

k∗
1,ran,j := σran,j(

∑n
i=1 v1,ib

∗
i ) + ηran,jb

∗
n+1 − ηran,jb

∗
n+2 (j = 1, 2); k∗

1,del,j :=
σdel,j(
∑n

i=1 v1,ib
∗
i ) +ψb∗j + ηdel,jb

∗
n+1 − ηdel,jb

∗
n+2 (j = 1, . . . , n).

To delegate secret key
−→
k ∗

1 for −→v 2 := (v2,1, . . . , v2,n), where −→v 2 
∈ span〈−→v 1〉,
Delegate1(pk,

−→
k ∗

1,
−→v 2) outputs

−→
k ∗

2 := (k∗
2,dec,k

∗
2,ran,1,k

∗
2,ran,2,k

∗
2,del,1, . . . ,
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k∗
2,del,n). Here, k∗

2,dec := k∗
1,dec +

∑2
i=1 αdec,ik

∗
1,ran,i + σ2,dec(

∑n
i=1 v2,ik

∗
1,del,i) ;

k∗
2,ran,j :=

∑2
i=1 αran,ik

∗
1,ran,i + σ2,ran,j(

∑n
i=1 v2,ik

∗
1,del,i) (j = 1, 2, 3); k∗

2,del,j :=∑2
i=1 αdel,i k∗

1,ran,i + σ2,del,j(
∑n

i=1 v2,ik
∗
1,del,i) + ψ′k∗

1,del,j (j = 1, . . . , n). Further

delegation for
−→
k ∗

� (� = 2, 3, . . .) can be done in the same manner.
Ciphertext (c1, c2) for attribute −→x := (x1, . . . , xn) and plaintext m ∈ GT is

the same as that of the 1-level PE. Key
−→
k ∗

1 can decrypt (c1, c2) if −→v 1 · −→x = 0,
and key

−→
k ∗

2 can decrypt (c1, c2) if (−→v 1 · −→x = 0) ∧ (−→v 2 · −→x = 0). Namely the
capability of delegated key

−→
k ∗

2 is more limited than that of its parent key
−→
k ∗

1.
In general, the �-th delegated secret key

−→
k ∗

� can decrypt (c1, c2) if (−→v 1 · −→x =
0) ∧ · · · ∧ (−→v � · −→x = 0), where −→v j 
∈ span〈−→v 1, . . . ,

−→v j−1〉 for 2 ≤ j ≤ �.

5.3 Security

Theorem 2. The proposed HPE scheme is selectively attribute-hiding against
chosen plaintext attacks under the RDSP and IDSP assumptions. For any ad-
versary A, there exist probabilistic machines B1 and B2, whose running times
are essentially the same as that of A, such that for any security parameter λ,

AdvHPE,AH
A (λ) ≤ AdvRDSP

B1
(λ) + AdvIDSP

B2
(λ) + 3ν/q

where ν is the number of adversary’s queries.

Proof Outline: To prove the security, we employ five games, Game 0 (origi-
nal selective-security game) to Game 4 whose advantage is 0, where, roughly,
Game 1 is conceptually changed (the timing of challenger’s coin flips is changed)
from Game 0, a delegated key query (i.e., a reveal query of an already-created
delegated key) is replied by using GenKey (in place of Delegate) in Game 2,
the plaintext part of the target ciphertext is randomized in Game 3, and the
attribute vector part of the target ciphertext is randomized in Game 4.

Since the distribution regarding each revealed key query in Game 2 is equiv-
alent to that in Game 1 except with probability at most 3/q, the gap between
Games 1 and 2 is bounded by 3ν/q.

To prove that the gap between Games 2 and 3 is bounded by the advantage of
the RDSP assumption, target ciphertext (c1, c2) for m(b) is generated by using
eβ from the RDSP assumption such that c1 := eβ + ζdn+1 and c2 := gζ

Tm
(b).

Then (c1, c2) is a ciphertext in Game 2 when β = 0, and it is a ciphertext in
Game 3 when β = 1. The key generation oracle simulation can be perfectly
executed by using {h(k)∗

i , τ
(k)
i }i=1,...,n;k=1,2,3 from the RDSP assumption (see

Remark after Theorem 1). It can be done similarly to evaluate the gap between
Games 3 and 4 (through the IDSP assumption).

Proof of Theorem 2
To prove Theorem 2, we consider the following five games.
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Game 0: Original game (Definition 5).
Game 1: Game 1 is the same as Game 0 except the following procedures:

1. When challenger C gets challenge attributes (−→x (0)
1 , . . . ,−→x (0)

h(0)) and (−→x (1)
1 ,

. . . ,−→x (1)
h(1)) in the first step of the game, C selects (challenge) bit b U←

{0, 1}, and computes

(x+
1 , . . . , x

+
n ) := (δ1−→x 1, . . . , δd

−→x d) ,

where h := h(b), (−→x 1, . . . ,
−→x h) := (−→x (b)

1 , . . . , −→x (b)
h ), (−→x h+1, . . . ,

−→x d)
U←

F μh+1−μh
q × · · · × F n−μd−1

q , and δ1, . . . , δd
U← Fq.

2. When C gets challenge plaintexts (m(0),m(1)) from adversary A, chal-
lenger C computes (c1, c2) as below and returns it to A.

c1 :=
∑n

i=1 x
+
i bi + ζdn+1 + δn+3bn+3, c2 := gζ

Tm
(b),

where δn+3, ζ
U← Fq.

Game 2: Game 2 is the same as Game 1 except the following procedures.
1. When a create key query is issued by A, challenger C only records the

specified predicates, and when a create delegated key query is issued, C
only records the specified keys and predicates. In this step, C just records,
but creates no corresponding keys.

2. When a reveal key query is issued for a hierarchical (level-�) predicate
(−→v 1, . . . ,

−→v �) which has been already recorded, C creates the queried
key by using GenKey. In addition, there is a special rule such that
(σ0,1, . . . , σ0,�)

U← F �
q is selected again if

∑�
t=1 σ0,tδt

−→x t · −→v t = 0 in the
computation process of GenKey.

Game 3: Game 3 is the same as Game 2 except the target ciphertext (c1, c2)
is generated as follows:

c1 :=
∑n

i=1 x
+
i bi + ζ1bn+1 + ζ2bn+2 + δn+3bn+3, c2 := gζ

Tm
(b),

where δn+3, ζ, ζ1, ζ2
U← Fq.

Game 4: Game 4 is the same as Game 3 except the target ciphertext (c1, c2)
is generated as follows:

c1 :=
∑n

i=1 uibi + ζ1bn+1 + ζ2bn+2 + δn+3bn+3, c2 := gζ
Tm

(b),

where δn+3, ζ, ζ1, ζ2
U← Fq and −→u := (u1, . . . , un) U← F n

q \ {
−→
0 }.

Let Adv
(0)
A (λ) be AdvHPE,AH

A (λ) in Game 0, and Adv
(i)
A (λ) (i = 1, . . . , 4) be the

advantage of A in Game i. It is clear that Adv
(0)
A (λ) = Adv

(1)
A (λ), since it is a

conceptual change. It is also clear that Adv
(4)
A (λ) = 0 by Lemma 4.

We will show three lemmas (Lemmas 1, 2, 3) that evaluate the gaps between
pairs of Adv

(i)
A (λ) (i = 1, 2, 3, 4). From these lemmas, we obtain AdvHPE,AH

A (λ) =

Adv
(0)
A (λ) = Adv

(1)
A (λ) ≤

∑3
i=1

∣∣∣Adv
(i)
A (λ) − Adv

(i+1)
A (λ)

∣∣∣ + Adv
(4)
A (λ) ≤ AdvRDSP

B1

(λ) +AdvIDSP
B2

(λ) + 3ν/q. ��
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Lemma 1. For any adversary A, |Adv
(1)
A (λ) − Adv

(2)
A (λ)| ≤ 3ν/q.

Proof. The distribution of
−→
k ∗

�+1 generated by GenKey for a level-(�+1) predicate
is equivalent to that by the combination of GenKey for the level-� predicate and
Delegate� except with probability 2/q, from Claim 1. Moreover, the special rule in
Game 2 causes probability gap at most 1/q for each GenKey operation. Therefore,
the revealed key distribution in Game 1 is equivalent to that in Game 2 except
with probability at most (1 − (1 − 3/q)ν) ≤ 3ν/q, since the number of delegate
queries is upper-bounded by ν. Hence (by using Shoup’s difference lemma), the
difference of Adv

(1)
A (λ) and Adv

(2)
A (λ) is upper-bounded by 3ν/q. ��

Claim 1. If
−→
k ∗

� is generated by GenKey(pk, sk, (−→v 1, . . . ,
−→v �)), the distribution

of
−→
k ∗

�+1 generated by Delegate(pk,
−→
k ∗

� ,
−→v �+1) is equivalent to that of

−→
k ∗

�+1 gen-
erated by GenKey(pk, sk, (−→v 1, ..,

−→v �,
−→v �+1)) except with probability at most 2/q.

Proof. The distribution of level-� key k∗
�,j (j = 1, . . . , � + 1) is represented by

that of the �+1 coefficients, (σj,1, . . . , σj,�, ηj), of
∑μt

i=μt−1+1 vib
∗
�,i (t = 1, . . . , �)

and b∗n+1 (and the coefficient, ψ, of b∗j in addition when j = μ� +1, . . . , n), since
the coefficient of b∗n+2 is dependent of that of b∗n+1.

Similarly, the distribution of level-(� + 1) key k∗
�+1,j (j = 1, . . . , � + 2) is

represented by that of the �+ 2 coefficients, (σj,1, . . . , σj,�+1, ηj).
When level-� key k∗

�,j (j = 1, . . . , �+1) is generated by GenKey(pk, sk, (−→v 1, . . . ,
−→v �)), (σj,1, . . . , σj,�, ηj)j=1,...,�+1 is uniformly distributed.

If coefficient matrix (σj,1, . . . , σj,�, ηj)j=1,...,�+1 ((� + 1) × (� + 1) matrix) of
(k∗

�,j)j=1,...,�+1 is regular and ψ 
= 0, then the coefficients, (σj,1, . . . , σj,�+1, ηj),

of Delegate(pk,
−→
k ∗

� ,
−→v �+1) is uniformly distributed, i.e., Delegate(pk,

−→
k ∗

� ,
−→v �+1)

is equivalently distributed as GenKey(pk, sk, (−→v 1, . . . ,
−→v �+1)).

Here, (σj,1, . . . , σj,�, ηj)j=1,...,�+1 ((� + 1)× (� + 1) matrix) of (k∗
�,j)j=1,...,�+1

is regular and ψ 
= 0 except with probability at most 2/q. ��

Lemma 2. For any adversary A, there exists a probabilistic machine B1, whose
running time is essentially the same as that of A, such that for any security
parameter λ, |Adv

(2)
A (λ)− Adv

(3)
A (λ)| = AdvRDSP

B1
(λ).

Proof. In order to prove Lemma 2, we construct a probabilistic machine B1
against the RDSP problem by using any adversaryA in a security game (Game 2
or 3) as a black box as follows:

1. B1 is given RDSP instance (param, B̂, {h(k)∗
i , τ

(k)
i }i=1,...,n;k=1,2,3,

−→y , eβ).
2. B1 plays a role of challenger C in the security game against adversary A.
3. When B1 (or challenger C) gets challenge attributes (−→x (0)

1 , . . . ,−→x (0)
h(0)) and

(−→x (1)
1 , . . . ,−→x (1)

h(1)) in the first step of the game, B1 selects (challenge) bit

b
U← {0, 1}, and computes

(x+
1 , . . . , x

+
n ) := (δ1−→x 1, . . . , δd

−→x d) ,
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where h :=h(b), (−→x 1,. . . ,
−→x h) := (−→x (b)

1 ,. . . ,−→x (b)
h ), (−→x h+1,. . . ,

−→x d)
U←F μh+1−μh

q

× · · · × F n−μd−1
q , and δ1, . . . , δd

U← Fq.
Let (πi,j)

U← {Π ∈ GL(n,Fq) | −→y = −→x + · Π, ΠT = Π}, and Π∗ :=
(π∗i,j) := ((πi,j)T)−1. Note that −→x + = −→y ·Π∗. Public parameter pk is then
calculated as follows and B1 returns pk to A:

b̃j :=
∑n

�=1 πj,�b�, b̃∗j :=
∑n

�=1 π
∗
j,�b

∗
� (j = 1, . . . , n),

B̃ := (b̃1, . . . , b̃n,dn+1, bn+3), pk := (1λ, param, B̃).

4. When a reveal key query is issued for a hierarchical (level-�) predicate
(−→v 1, . . . ,

−→v �) which has been already recorded, B1 answers as follows: for
j = 0, . . . , �+ 1, μ� + 1, . . . , n, B1 calculates

−→v +
j := (v+

j,1, . . . , v
+
j,μ�

) := (σj,1
−→v 1, . . . , σj,�

−→v �), (1)

where σj,1, . . . , σj,�
U← Fq. Then, B1 calculates and returns

−→
k ∗

� := (k∗
�,0, . . . ,

k∗
�+1,�+1,k

∗
�,μ�+1, . . . ,k

∗
�,n) using {h(k)∗

i , τ
(k)
i } in the RDSP instance:

θ0 :=
∑3

k=1 a0,k

∑μ�

i=1 v
+
0,i

∑n
�=1 π

∗
i,�τ

(k)
� ,

k∗
�,0 := θ−1

0
∑3

k=1 a0,k

∑μ�

i=1 v
+
0,i

∑n
�=1 π

∗
i,�h

(k)∗
� ,

For j = 1, . . . , �+ 1, μ� + 1, . . . , n; s = 1, 2,

θj,s :=
∑3

k=1 aj,k,s

∑μ�

i=1 v
+
j,i

∑n
�=1 π

∗
i,�τ

(k)
� ,

f∗
j,s :=
∑3

k=1 aj,k,s

∑μ�

i=1 v
+
j,i

∑n
�=1 π

∗
i,�h

(k)∗
� ,

k∗
�,j := θj,2f

∗
j,1 − θj,1f

∗
j,2,

For j = μ� + 1, . . . , n,
For i = 1, . . . , μ�, j,

ϕi :=
∑3

k=1 ãk

∑n
�=1 π

∗
i,�τ

(k)
� , m∗

i :=
∑3

k=1 ãk

∑n
�=1 π

∗
i,�h

(k)∗
� ,

zj := ϕj

(∑μ�

i=1 v
+
j,iϕi

)−1
, k∗

�,j := k∗
�,j + m∗

j − zj

∑μ�

i=1 v
+
j,im

∗
i ,

where a0,k, aj,k,s, ãk
U← Fq for j = 1, . . . , �+ 1, μ� + 1, . . . , n; k = 1, 2, 3; s =

1, 2.
If θ0 = 0, {σ0,t, a0,k

U← Fq}k=1,2,3;t=1,...,� is selected again. For j = μ� +

1, . . . , n, if
∑μ�

i=1 v
+
j,iϕi = 0, {σj,t, ãk

U← Fq}k=1,2,3;t=1,...,� is selected again.
5. When B1 (or C) gets challenge plaintexts (m(0),m(1)) (from A), B1 calculates

and returns (c1, c2) s.t. c1 := eβ + ζdn+1 and c2 := gζ
Tm

(b) using eβ in the

RDSP instance, ζ, and m(b), where ζ U← Fq.
6. After the encryption query, GenKey oracle simulation for a reveal key query

is executed as above.
7. A outputs bit b′. If b = b′, B1 outputs β′ := 1. Otherwise, B1 outputs β′ := 0.

To prove Lemma 2, we show Claims 2, 3, and 4.
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Claim 2. Public parameter pk generated in step 3 above has the same distribu-
tion as that in Game 2 (and Game 3).

Proof. Let D :=
(
Π 0
0 I3

)
be square (n + 3) × (n + 3) matrix composed of

Π and the identity matrix I3. Then basis (b̃1, . . . , b̃n, bn+1, bn+2, bn+3) of V is
obtained from basis B by the linear transformation determined by D. Hence, its
distribution is uniform. Therefore, B̃ = (b̃1, . . . , b̃n,dn+1, bn+3) in step 3 has the
same distribution as that in Game 2 (and Game 3). ��

Claim 3. Secret key
−→
k ∗

� generated in steps 4 and 6 above has the same distri-
bution as that in Game 2 (and Game 3).

Proof. First, we verify that basis (b̃∗1, . . . , b̃
∗
n, b

∗
n+1, b

∗
n+2, b

∗
n+3) of V∗ is obtained

by the linear transformation (DT)−1, where D is defined in the proof of Claim 2.
That is, it is dual orthonormal to basis (b̃1, . . . , b̃n, bn+1, bn+2, bn+3). Therefore,
we can consider k∗

�,j w.r.t. this dual orthonormal basis.
Secret key k∗

�,0 generated in steps 4 and 6 is θ−1
0 (
∑3

k=1 a0,kω
(k))
∑μ�

i=1 v
+
0,ib̃

∗
i

+θ−1
0 θ1b

∗
n+1+θ

−1
0 θ2b

∗
n+2,where θ1 := (

∑3
k=1 a0,kγ

(k)
1 )−→v +

0 ·−→x +, θ2 := (
∑3

k=1 a0,k

γ
(k)
2 )−→v +

0 · −→x +, and θ0 = θ1 + θ2. Let σ := θ−1
0 (
∑3

k=1 a0,kω
(k)). Then, σ, θ1, θ2 are

independently uniform, since a0,k are independently uniform, and θ−1
0 θ1+θ−1

0 θ2 =
1. Also, from (1), the coefficients of

∑μt

i=μt−1+1 vib̃
∗
i in k∗

�,0 for each 1 ≤ t ≤ � are all
uniformly and independently distributed. Therefore, generated k∗

�,0 has the same
distribution as in Game 2 and Game 3.

Similarly, for j = 1, . . . , �+1, μ�+1, . . . , n, the j-th key k∗
�,j has independently

uniform coefficients w.r.t.
∑μt

i=μt−1+1 vib̃
∗
i for each 1 ≤ t ≤ �, and the sum of the

coefficients of b̃∗n+1 and b̃∗n+2 is zero.
Finally, we investigate the distribution of the coefficients of b̃∗j in k∗

�,j for
j = μ� + 1, . . . , n. The additional term m∗

j − zj

∑μ�

i=1 v
+
j,im

∗
i is

−zj

(∑3
k=1 ãkω

(k)
)∑μ�

i=1 v
+
j,ib̃

∗
i +
(∑3

k=1 ãkω
(k)
)

b̃∗j

+
(
ϕ1,j − zj

∑μ�

i=1 v
+
j,iϕ1,i

)
b∗n+1 +

(
ϕ2,j − zj

∑μ�

i=1 v
+
j,iϕ2,i

)
b∗n+2, (2)

where ϕ1,i :=
(∑3

k=1 ãkγ
(k)
1

)
x+

i , ϕ2,i :=
(∑3

k=1 ãkγ
(k)
2

)
x+

i and ϕi = ϕ1,i+ϕ2,i.
Therefore, for j = μ� + 1, . . . , n, the sum of the coefficients of b∗n+1 and b∗n+2 in
(2) is zero, and the coefficients of b̃∗j in k∗

�,j are common,
∑3

k=1 ãkω
(k), which is

uniformly distributed. ��

Claim 4. If β = 0, the distribution of (c1, c2) generated in step 5 is the same
as that in Game 2. If β = 1, the distribution of (c1, c2) generated in step 5 is
the same as that in Game 3.

Proof. If β = 0, c1 = δ1
∑n

i=1 yibi + ζdn+1 + δ2bn+3 = δ1
∑n

i=1 x
+
i b̃i + ζdn+1 +

δ2bn+3 and c2 := gζ
Tm

(b). This is the target ciphertext in Game 2 with pk :=
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(1λ, param, B̃). If β = 1, c1 = δ1
∑n

i=1 x
+
i b̃i +(ζ+ζ1)bn+1+(ζ+ζ2)bn+2+δ2bn+3

and c2 := gζ
Tm

(b). Because ζ + ζ1, ζ + ζ2, and ζ are independently uniform, this
is the target ciphertext in Game 3 with pk := (1λ, param, B̃). ��

From Claims 2, 3, and 4, when β = 0, the advantage of A in the above game is
equal to that in Game 2, i.e., Adv

(2)
A (λ), and also is equal to Pr0 :=

Pr
[
B1(1λ, ρ)→1

∣∣∣ ρ R← GRDSP
0 (1λ, n)

]
. Similarly, when β = 1, we see that the ad-

vantage of A in the above game is equal to Adv
(3)
A (λ), and also is equal to Pr1 :=

Pr
[
B1(1λ, ρ)→1

∣∣∣ ρ R←GRDSP
1 (1λ, n)

]
. Therefore, |Adv

(2)
A (λ)−Adv

(3)
A (λ)| = |Pr0−

Pr1| = AdvRDSP
B1

(λ). This completes the proof of Lemma 2. ��

Lemma 3. For any adversary A, there exists a probabilistic machine B2, whose
running time is essentially the same as that of A, such that for any security
parameter λ, |Adv

(3)
A (λ)− Adv

(4)
A (λ)| = AdvIDSP

B2
(λ).

Proof. Lemma 3 is similarly proved as Lemma 2. The proof will be given in the
full version of this paper. ��

Lemma 4. For any adversary A, Adv
(4)
A (λ) = 0.

Proof. The value of b is independent from the adversary’s view in Game 4. Hence,
Adv

(4)
A (λ) = 0. ��
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Abstract. Public-key encryption schemes rely for their IND-CPA secu-
rity on per-message fresh randomness. In practice, randomness may be
of poor quality for a variety of reasons, leading to failure of the schemes.
Expecting the systems to improve is unrealistic. What we show in this
paper is that we can, instead, improve the cryptography to offset the
lack of possible randomness. We provide public-key encryption schemes
that achieve IND-CPA security when the randomness they use is of high
quality, but, when the latter is not the case, rather than breaking com-
pletely, they achieve a weaker but still useful notion of security that we
call IND-CDA. This hedged public-key encryption provides the best pos-
sible security guarantees in the face of bad randomness. We provide sim-
ple RO-based ways to make in-practice IND-CPA schemes hedge secure
with minimal software changes. We also provide non-RO model schemes
relying on lossy trapdoor functions (LTDFs) and techniques from deter-
ministic encryption. They achieve adaptive security by establishing and
exploiting the anonymity of LTDFs which we believe is of independent
interest.

1 Introduction

Cryptography ubiquitously assumes that parties have access to sufficiently good
randomness. In practice this assumption is often violated. This can happen be-
cause of faulty implementations, side-channel attacks, system resets or for a
variety of other reasons. The resulting cryptographic failures can be spectacu-
lar [22,24,29,2,15]. What can we do about this? One answer is that system de-
signers should build “better” systems, but this is clearly easier said than done.
The reality is that random number generation is a complex and difficult task,
and it is unrealistic to think that failures will never occur. We propose a different
approach: designing schemes in such a way that poor randomness will have as
little as possible impact on the security of the scheme in the following sense.
With good randomness the scheme achieves whatever (strong) security notion
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one is targeting, but when the same scheme is fed bad (even adversarially cho-
sen) randomness, rather than breaking completely, it achieves some weaker but
still useful notion of security that is the best possible under the circumstances.
We call this “hedged” cryptography.

Previous work by Rogaway [32], Rogaway and Shrimpton [33], and Kamara
and Katz [27] considers various forms of hedging for the symmetric encryption
setting. In this paper, we initiate a study of hedged public-key encryption. We
address two central foundational questions, namely to find appropriate defini-
tions and to efficiently achieve them. Let us now look at all this in more detail.

The problem. Achieving the standard IND-CPA notion of privacy [23] requires
the encryption algorithm to be randomized. In addition to the public key and
message, it takes as input a random string that needs to be freshly and indepen-
dently created for each and every encryption.

Weak (meaning, low-entropy) randomness does not merely imply a loss of
theoretical security. It can lead to catastrophic attacks. For example, weak-
randomness based encryption is easily seen to allow recovery of the plaintext
from the ciphertext for the quadratic residuosity scheme of [23] as well as the
El Gamal encryption scheme [21]. Brown [15] presents such an attack on RSA-
OAEP [10] with encryption exponent 3. Ouafi and Vaudenay [30] present such
an attack on Rabin-SAEP [13]. We present an alternative attack in [7].

The above would be of little concern if we could guarantee good randomness.
Unfortunately, this fails to be true in practice. Here, an “entropy-gathering”
process is used to get a seed which is then stretched to get “random” bits for
the application. The theory of cryptographically strong pseudorandom number
generators [11] implies that the stretching can in principle be sound, and extrac-
tors further allow us to reduce the requirement on the seed from being uniformly
distributed to having high min-entropy, but we still need a sufficiently good seed.
(No amount of cryptography can create randomness out of nothing!) In prac-
tice, entropy might be gathered from timing-related operating system events or
user keystrokes. As evidence that this process is error-prone, consider the recent
randomness failure in Debian Linux, where a bug in the OpenSSL package led
to insufficient entropy gathering and thence to practical attacks on the SSH [29]
and SSL [2,36] protocols. Other exploits include [25,19].

The new notion. The idea is to provide two tiers of security. First, when the
“randomness” is really random, the scheme should meet the standard IND-CPA
notion of security. Otherwise, rather than failing completely, it should gracefully
achieve some weaker but as-good-as-possible notion of security. The first impor-
tant question we then face is to pick and formally define this fallback notion.

Towards this, we begin by suggesting that the message being encrypted may
also have entropy or uncertainty from the point of view of the adversary. (If not,
what privacy is there to be preserved by encryption?) We propose to harvest this.
In this regard, the first requirement that might come to mind is that encryption
with weak (even adversarially-known) randomness should be as secure as deter-
ministic encryption, meaning achieve an analog of the PRIV notion of [6]. But
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achieving this would require that the message by itself have high min-entropy.
We can do better. Our new target notion of security, that we call Indistinguisha-
bility under a Chosen Distribution Attack (IND-CDA), asks that security is
guaranteed as long as the joint distribution of the message and randomness has
sufficiently high min-entropy. In this way, we can exploit for security whatever
entropy might be present in the randomness or the message, and in particular
achieve security even if neither taken alone is random enough.

Notice that if the message and randomness together have low min-entropy,
then we cannot hope to achieve security, because an adversary can recover the
message with high probability by trial encryption with all message-randomness
pairs that occur with a noticeable probability. In a nutshell, our new notion
asks that this necessary condition is also sufficient, and in this way is requiring
security that is as good as possible.

We denote by H-IND our notion of hedged security that is satisfied by encryp-
tion schemes that are secure both in the sense of IND-CPA and in the sense of
IND-CDA.

Adaptivity. Our IND-CDA definition generalizes the indistinguishability-style
formalizations of PRIV-secure deterministic encryption [8,12], which in turn ex-
tended entropic security [18]. But we consider a new dimension, namely, adaptiv-
ity. Our adversary is allowed to specify joint message-randomness distributions
on to-be-encrypted challenges. The adversary is said to be adaptive if these
queries depend on the replies to previous ones. Non-adaptive H-IND means IND-
CPA plus non-adaptive IND-CDA and adaptive H-IND means IND-CPA plus
adaptive IND-CDA.

Non-adaptive IND-CDA is a notion of security for randomized schemes that
becomes identical to PRIV in the special case that the scheme is deterministic.
Adaptive IND-CDA, when restricted to deterministic schemes, is an adaptive
strengthening of PRIV that we think is interesting in its own right. As a conse-
quence of the results discussed below, we get the first deterministic encryption
schemes that achieve this stronger notion.

Schemes with random oracles. Our random oracle (RO) model schemes and
their attributes are summarized in the first two rows of the table of Figure 1.
Both REwH1 and REwH2 efficiently transform an arbitrary (randomized) IND-
CPA scheme into a H-IND scheme with the aid of the RO. They are simple ways
to make in-practice encryption schemes H-IND secure with minimal software
changes. REwH1 has the advantage of not changing the public key and thus not
requiring new certificates. It always provides non-adaptive H-IND security. It
provides adaptive H-IND security if the starting scheme has the extra property
of being anonymous in the sense of [4]. Anonymity is possessed by some deployed
schemes like DHIES [1], making REwH1 attractive in this case. But some in-
practice schemes, notably RSA ones, are not anonymous. If one wants adaptive
H-IND security in this case we suggest REwH2, which provides it assuming only
that the starting scheme is IND-CPA. It does this by adding a randomizer to
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Non-adaptive H-IND Adaptive H-IND

REwH1 IND-CPA IND-CPA + ANON-CPA

REwH2 IND-CPA IND-CPA

RtD IND-CPA, PRIV IND-CPA, (u-)LTDF

PtD (u-)LTDF (u-)LTDF

Fig. 1. Table entries for the first two rows indicate the assumptions made on the (ran-
domized) encryption scheme that underlies the RO-model hedged schemes in question.
The entries for standard model scheme RtD are the assumptions on the underlying
randomized and deterministic encryption schemes, respectively, and for PtD, on the
underlying deterministic encryption scheme, which is the only primitive it uses.

the public key, so it does require new certificates. The schemes are extensions of
the EwH deterministic encryption scheme of [6] and similar to [20].

Schemes without random oracles. It is easy to see that even the existence
of a non-adaptively secure IND-CDA encryption scheme implies the existence of
a PRIV-secure deterministic encryption (DE) scheme. Achieving PRIV without
ROs is already hard. Indeed, fully PRIV-secure DE without ROs has not yet
been built. Prior work, however, does show how to construct PRIV-secure DE
without ROs for block sources [12]. (Messages being encrypted have high min-
entropy even conditioned on previous messages.) But H-IND introduces three
additional challenges: (1) the min-entropy guarantee is on the joint message-
randomness distribution rather than merely on the message; (2) we want a single
scheme that is not only IND-CDA secure but also IND-CPA-secure; and (3) the
adversary’s queries may be adaptive.

We are able to overcome these challenges to the best extent possible. We pro-
vide schemes that are H-IND-secure in the same setting as the best known PRIV
ones, namely, for block sources, where we suitably extend the latter notion to
consider both randomness and messages. Furthermore, we achieve these results
under the same assumptions as previous work.

Our standard model schemes and their attributes are summarized in the last
two rows of the table of Figure 1. RtD is formed by the generic composition
of a deterministic scheme and a randomized scheme and achieves non-adaptive
H-IND security as long as the base schemes meet their regular conditions. (That
is, the former is PRIV-secure for block sources and the latter is IND-CPA.)
Adaptive security requires that the deterministic scheme be a u-LTDF. (A lossy
trapdoor function whose lossy branch is a universal hash function [31,12].) PtD is
simpler, merely concatenating the message to the randomness and then applying
deterministic encryption. It achieves both non-adaptive and adaptive H-IND
under the assumption that the deterministic scheme is a u-LTDF. For both
schemes, the universality assumption on the LTDF can be dropped by modifying
the scheme and using the crooked leftover hash lemma as per [12]. (This is why
the “u” is parenthesized in the table of Figure 1.)
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Anonymous LTDFs. Also of independent interest, we show that any u-LTDF
is anonymous. Here we refer to a new notion of anonymity for trapdoor functions
that we introduce, one that strengthens the notion of [4]. This step exploits an
adaptive variant of the leftover hash lemma of [26].

Why anonymity? It is exploited in our proofs of adaptive security. Our new
notion of anonymity for trapdoor functions is matched by a corresponding one
for encryption schemes. We show that any encryption scheme that is both
anonymous and non-adaptive H-IND secure is also adaptively H-IND secure.
Anonymity of the u-LTDF, in our encryption schemes based on the latter prim-
itive, allows us to show that these schemes are anonymous and thereby lift their
non-adaptive security to adaptive.

Related work. In the symmetric setting, several works have recognized and
addressed the problem of security in the face of bad randomness. Concern over
the quality of available randomness is one of Rogaway’s motivations for introduc-
ing nonce-based symmetric encryption [32], where security relies on the nonce
never repeating rather than being random. Rogaway and Shrimpton [33] provide
a symmetric authenticated encryption scheme that defaults to a PRF when the
randomness is known.

Kamara and Katz [27] provide symmetric encryption schemes secure against
chosen-randomness attack (CRA). Here the adversary can obtain encryption un-
der randomness of its choice but privacy is only required for messages encrypted
with perfect, hidden randomness. Entropy in the messages is not considered or
used. We in contrast seek privacy even when the randomness is bad as long as
there is compensating entropy in the message. Also we deal with the public key
setting.

Many works consider achieving strong cryptography given only a “weak ran-
dom source” [28,16,14]. This is a source that does have high min-entropy but may
not produce truly random bits. They show that many cryptographic tasks in-
cluding symmetric encryption [28], commitment, secret-sharing, and zero knowl-
edge [16] are impossible in this setting. We are not in this setting. We do assume
a small amount of initial good randomness to produce keys. (This makes sense
because it is one-time and because otherwise we can’t hope to achieve anything
anyway.) On the other hand our assumption on the randomness available for en-
cryption is even weaker than in the works mentioned. (We do not even assume
it has high min-entropy.) Our key idea is to exploit the entropy in the mes-
sage, which is not done in [28,16,14]. This allows us to circumvent their negative
results.

Waters independently proposed hedge security as well as the PtD construction
as a way to achieve it [35].

2 Preliminaries

Notation. Vectors are written in boldface, e.g. x. If x is a vector then |x| denotes
its length and x[i] denotes its ith component for 1 ≤ i ≤ |x|. We say that x is
a vector over D if x[i] ∈ D for all 1 ≤ i ≤ |x|. Throughout, k ∈ N denotes the
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security parameter and 1k its unary encoding. Unless otherwise indicated, an
algorithm is randomized. The set of possible outputs of algorithm A on inputs
x1, x2, . . . is denoted [A(x1, x2, . . .)]. “PT” stands for polynomial-time.

Games. Our security definitions and proofs use code-based games [9], and so we
recall some background from [9]. A game (look at Figure 2 for examples) has an
Initialize procedure, procedures to respond to adversary oracle queries, and a
Finalize procedure. A game G is executed with an adversary A as follows. First,
Initialize executes, and its outputs are the inputs to A. Then A executes, its
oracle queries being answered by the corresponding procedures of G. When A
terminates, its output becomes the input to the Finalize procedure. The output
of the latter is called the output of the game, and we let GA ⇒ y denote the
event that this game output takes value y. Our convention is that the running
time of an adversary is the time to execute the adversary with the game that
defines security, so that the running time of all game procedures is included.

Public-key encryption. A public-key encryption (PKE) scheme is a tuple
of PT algorithms AE = (P ,K, E ,D) with associated message length parameter
n(·) and randomness length parameter ρ(·). The parameter generation algorithm
P takes as input 1k and outputs a parameter string par. The key generation
algorithm K takes input par and outputs a key pair (pk, sk). The encryption
algorithm E takes inputs pk, message m ∈ {0, 1}n(k) and coins r ∈ {0, 1}ρ(k)

and returns the ciphertext denoted E(pk,m ; r). The deterministic decryption
algorithm D takes input sk and ciphertext c and outputs either ⊥ or a message
in {0, 1}n(k). For vectors m, r with |m| = |r| = v we denote by E(pk,m ; r) the
vector (E(pk,m[1] ; r[1]), . . . , E(pk,m[v] ; r[v])). We say that AE is deterministic
if E is deterministic. (That is, ρ(·) = 0.)

We consider the standard IND-CPA notion of security, captured by the game
INDAE whereAE = (P ,K, E ,D) is an encryption scheme. In the game, Initialize
chooses a random bit b, generates parameters par ←$ P(1k) and generates a key
pair (pk, sk)←$K(par) before returning pk to the adversary. Procedure LR, on
input messages m0 and m1, returns c←$ E(pk,mb). Lastly, procedure Finalize
takes as input a guess bit b′ and outputs true if b = b′ and false otherwise. An
IND-CPA adversary makes a single query (m0,m1) to LR with |m0| = |m1|.
For IND-CPA adversary A we let Advind-cpa

AE,A (k) = 2·Pr
[
INDA

AE,k ⇒ true
]
−1 .

We say AE is IND-CPA secure if Advind
AE,A(·) is negligible for all PT IND-CPA

adversaries A.

Sources. We generalize the notion of a source to consider a joint distribution on
the messages and the randomness with which they will be encrypted. A t-source
(t ≥ 1) with message length n(·) and randomness length ρ(·) is a probabilistic
algorithm M that on input 1k returns a (t+1)-tuple (m0, . . . ,mt−1, r) of equal-
length vectors, where m0, . . . ,mt−1 are over {0, 1}n(k) and r is over {0, 1}ρ(k).
We say that M has min-entropy μ(·) if

Pr [ (mb[i], r[i]) = (m, r) ] ≤ 2−μ(k)
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for all k ∈ N, all b ∈ {0 . . . , t − 1}, all i and all (m, r) ∈ {0, 1}n(k) × {0, 1}ρ(k).
We say it has conditional min-entropy μ(·) if

Pr [ (mb[i], r[i]) = (m, r) | ∀j < i (mb[j], r[j]) = (m′[j], r′[j]) ] ≤ 2−μ(k)

for all k ∈ N, all b ∈ {0 . . . , t − 1}, all i, all (m, r), and all vectors m′, r′. A
t-source with message length n(·), randomness length ρ(·), and min-entropy μ(·)
is referred to as a (μ, n, ρ)-mr-source when t = 1 and ρ(·) > 0; a (μ, n)-m-source
when t = 1 and ρ(·) = 0; a (μ, n, ρ)-mmr-source when t = 2 and ρ(·) > 0;
and (μ, n)-mm-source when t = 2 and ρ(·) = 0. Each “m” indicates the source
outputting one message vector and an “r” indicates a randomness vector. When
the source has conditional min-entropy μ(·) we write block-source instead of
source for each of the above. A v(·)-vector source outputs vectors of size v(k) for
all k.

Universal hash functions. A family of functions is a tuple H = (P ,K, F )
with associated message length n(·). It is required that the domain of F (K, ·)
is {0, 1}n for every k, every par ∈ [P(1k)], and every K ∈ [K(par)]. We say
that H is universal if for every k, all par ∈ [P(1k)], and all distinct x1, x2 ∈
{0, 1}n(k), the probability that F (K,x1) = F (K,x2) is at most 1/|R(par)| where
R(par) = {F (K,x) : K ∈ [K(par)] and x ∈ {0, 1}n} and the probability is over
K←$K(par).

Lossy Trapdoor Functions (LTDFs). To a deterministic PKE scheme (re-
call that a family of injective trapdoor functions and a deterministic encryption
scheme are, syntactically, the same object) AE = (Pd,Kd, Ed,Dd) with message
length nd(·) we can associate an (nd, �)-lossy key generator Kl. This is a PT
algorithm that, on input par, outputs a value pk for which the map Ed(pk, ·)
has image size at most 2nd(k)−�(k). The parameter � is called the lossiness of the
lossy key generator. We associate to AE , lossy key generator Kl, and a LOS ad-
versary A the function Advlos

AE,Kl,A
(k) = 2· Pr

[
LOSA

AE ,Kl,k
⇒ true

]
− 1, where

game LOSAE,Kl
works as follows. Initialize chooses a random bit b and gener-

ates parameters par←$ Pd(1k), if b = 0 runs (pk, sk)←$Kd(par) and if b = 1
runs pk←$Kl(par). It then returns pk (to the adversary A). When A finishes,
outputting guess b′, Finalize returns true if b = b′. We say Kl is universal-
inducing if H = (Pd,Kl, Ed) is a family of universal hash functions with message
length nd.

A deterministic encryption scheme AE is a (nd, �)-lossy trapdoor function
(LTDF) if there exists a (nd, �)-lossy key generator such that Advlos

AE,Kl,A
(·) is

negligible for all PT A. We say it is a universal (nd, �)-lossy trapdoor function
(u-LTDF) if in addition Kl is universal-inducing.

Lossy trapdoor functions were introduced by Peikert and Waters [31], and can
be based on a variety of number-theoretic assumptions, including the hardness of
the decisional Diffie-Hellman problem, the worst-case hardness of lattice prob-
lems, and the hardness of Paillier’s composite residuosity problem [31,12,34].
Boldyreva et al. [12] observed that the DDH-based construction is universal.
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proc. Initialize(1k):
par ←$ P(1k)
(pk, sk) ←$ K(par)
b ←$ {0, 1}
Ret par

proc. LR(M):
If pkout = true then

Ret ⊥
(m0, m1, r) ←$ M(1k)
Ret E(pk,mb; r)

proc. RevealPK():
pkout ← true

Ret pk

proc. Finalize(b′):
Ret (b = b′)

Fig. 2. Game CDAAE,k

3 Security against Chosen Distribution Attack

Let AE = (P ,K, E ,D) be an encryption scheme. A CDA adversary is one whose
LR queries are all mmr-sources. Game CDAAE of Figure 2 provides the adver-
sary with two oracles. The advantage of CDA adversary A is

Advcda
AE,A(k) = 2 · Pr

[
CDAA

AE,k ⇒ true
]
− 1 .

In the random oracle model we allow all algorithms in Game CDA to access the
random oracle; importantly, this includes the mmr-sources.

Discussion. Adversary A can query LR with an mmr-source of its choice, an
output (m0,m1, r) of which represents choices of message vectors to encrypt and
randomness with which to encrypt them. (An alternative formulation might have
CDA adversaries query two mr-sources, and distinguish between the encryption
of samples taken from one of these. But this would mandate that schemes ensure
privacy of messages and randomness.) This allows A to dictate a joint distri-
bution on the messages and randomness. In this way it conservatively models
even adversarially-subverted random number generators. Multiple LR queries
are allowed. In the most general case these queries may be adaptive, meaning
depend on answers to previous queries.

Given that multiple LR queries are allowed, one may ask why an mmr-source
needs to produce message and randomness vectors rather than simply a single
pair of messages and a single choice of randomness. The reason is that the
coordinates in a vector all depend on the same coins underlying an execution of
M, but the coins underlying the execution of the sources in different queries are
independent.

Note that Initialize does not return the public key pk to A. A can get it
at any time by calling RevealPK but once it does this, LR will return ⊥.
The reason is that we inherit from deterministic encryption the unavoidable
limitation that encryption cannot hide public-key related information about the
plaintexts [6]. (When the randomness has low entropy, the ciphertext itself is
such information.)

As we saw in the previous section, no encryption scheme is secure when
both messages and randomness are predictable. Formally, this means chosen-
distribution attacks are trivial when adversaries can query mmr-sources of low
min-entropy. Our notions (below) will therefore require security only for sources
that have high min-entropy or high conditional min-entropy.
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Equality patterns. Suppose Amakes a query M which returns (m0,m1, r) =
((a, a), (a, a′), (r, r)) for some a 
= a′ and random r. Then it can win trivially be-
cause the (two) components of the returned vector c are equal if b = 0 and
unequal otherwise. This limitation, again inherited from deterministic encryp-
tion [6], is inherent. To capture it we associate to an mmr-source M an equality-
pattern probability

ζ(k) = Pr
[
eq
(
(m0, r), (m1, r)

)
= 0 : (m0,m1, r)←$ M(1k)

]
where eq

(
(x1,x2), (y1,y2)

)
is 1 if for all i, j

(x1[i],x2[i]) = (x1[j],x2[j]) iff (y1[i],y2[i]) = (y1[j],y2[j]) ,

and 0 otherwise. We point out that LR queries that are mmr-block-sources
(and not, just, mmr-sources) with high conditional min-entropy have negligible
equality-pattern probability.

Notions. We can assume (without loss of generality) that a CDA adversary
makes a single RevealPK query and then no further LR queries. We say A is
a (μ, n, ρ)-adversary if all of its LR queries are (μ, n, ρ)-mmr-sources. We say
that a PKE scheme AE with message length n(·) and randomness length ρ(·) is
IND-CDA secure for (μ, n, ρ)-mmr-sources if for all PT (μ, n, ρ) adversariesA the
function Advcda

AE,A(·) is negligible. Scheme AE is H-IND secure for (μ, n, ρ)-mmr-
sources if it is IND-CPA secure and IND-CDA secure for (μ, n, ρ)-mmr-sources.
We can extend these notions to mmr-block-sources by restricting to adversaries
that query mmr-block-sources.

On adaptivity. We can consider non-adaptive IND-CDA security by restrict-
ing attention in the notions above to adversaries that only make a single LR
query. Why do we not focus solely on this (simpler) security goal? The standard
IND-CPA setting (implicitly) provides security against multiple, adaptive LR
queries. This is true because in that setting a straightforward hybrid argument
shows that security against multiple adaptive LR queries is implied by security
against a single LR query [5,3]. We wish to maintain the same standard of adap-
tive security in the IND-CDA setting. Unfortunately, in the IND-CDA setting,
unlike the IND-CPA setting, adaptive security is not implied by non-adaptive
security. In short this is because a CDA adversary necessarily cannot learn the
public key before (or while) making LR queries. To see the separation, consider
a PKE scheme that appends to every ciphertext the public key used. This will
not affect the security of the scheme when an adversary can only make a single
query. However, an adaptive CDA adversary can query an mmr-source, learn
the public key, and craft a second source that uses the public key to ensure
ciphertexts which leak the challenge bit.

Given this, our primary goal is the stronger notion of adaptive security. That
said, non-adaptive hedge security is also relevant because in practice adap-
tive adversaries might be rare and (as we will see in Section 5) one can find
non-adaptively-secure schemes that are more efficient and/or have proofs under
weaker assumptions.
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Adaptive PRIV. A special case of our framework occurs when the PKE scheme
AE being considered has randomness length ρ(k) = 0 for all k (meaning also that
adversaries query mm-sources, instead of mmr-sources). In this case we are con-
sidering deterministic encryption, and the IND-CDA definition and notions give
a strengthening (by way of adaptivity) of the PRIV security notion from [6,8,12].
(For non-adaptive adversaries the definitions are equivalent.) For clarity we will
use PRIV to refer to this special case, and let Advpriv

AE,A(k) = Advcda
AE,A(k).

Resource usage. Recall that by our convention, the running time of a CDA
adversary is the time for the execution of the adversary with game CDAAE,k.
Thus, A being PT implies that the mmr-sources that comprise A’s LR queries
are also PT. This is a distinction from [12] which will be important in our results.
Note that in practice we do not expect to see sources that are not PT, so our
definition is not restrictive. Non-PT sources were needed in [12] for showing
that single-message security implied (non-adaptive) multi-message security for
deterministic encryption of block sources.

4 Constructions

Here we present several constructions for hedged encryption. The first scheme
uses a random oracle and an IND-CPA secure probabilistic encryption scheme.
The next two schemes derive from composing a randomized encryption scheme
with a deterministic one (there are two ways of ordering composition). Interest-
ingly, only one ordering will end up providing security. The final scheme con-
verts a deterministic encryption scheme to a hedged one by padding the message
with random bits. For the following, let AE r = (Pr,Kr, Er,Dr) be a (random-
ized) PKE scheme with message length nr(·) and randomness length ρ(·). Let
AEd = (Pd,Kd, Ed,Dd) be a (deterministic) PKE scheme with message length
nd(·) and randomness length always 0. Associate to AEc for c ∈ {d, r} the func-
tion maxclenc(k) mapping any k to the maximum length (over all possible public
keys, messages, and if applicable, randomness) of a ciphertext output by Ec.

Randomized-encrypt-with-hash. Let R : {0, 1}∗ → {0, 1}∗ be a random
oracle. Let REwH[AEr] = (P ,K, E ,D) be the scheme parameterized by random-
izer length κ that works as follows. Parameter generation, and decryption are
the same as in AE r. Key generation runs Kr(parr) to get (pkr, skr), chooses
K ←$ {0, 1}κ(k), and lets pk = (pkr ‖ K) and sk = skr. Algorithm ER, on
input (pk,m) where pk = (pkr ‖ K), chooses r←$ {0, 1}ρ(k) and computes
r′ ←R(pkr ‖K ‖r‖m) (where here we take R’s output to be of length ρ(k)) and
outputs Er(pkr,m ; r′). Intuitively, the random oracle provides perfect and (as
long as m and r are hard to predict) private randomness. When the key length
κ(k) = 0 for all k, we refer to the scheme as REwH1, while when κ(k) > 0 for all
k we refer to the scheme as REwH2. The scheme extends the Encrypt-with-Hash
deterministic encryption scheme from [6], which is a special case of REwH1 when
r has length 0, and is also reminiscent of constructions in the symmetric setting
that utilize a PRF to ensure good randomness [27,33], as well as schemes using
the Fujisaki-Okamoto transform [20].
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Deterministic-then-randomized. Our first standard model attempt is to
perform hedged encryption via first applying deterministic encryption and then
randomized. More formally let DtR[AE r,AEd] = (P ,K, E ,D) be the scheme that
works as follows. The parameter generation algorithm P runs parr←$ Pr(1k)
and pard ←$ Pd(1k) and outputs par = (parr, pard). Key generation K just runs
(pkr, skr)←$Kr(parr) and (pkd, skd)←$Kd(pard) and outputs pk = (pkr, pkd)
and sk = (skr, skd). We define encryption by

E((pkr, pkd),m ; r) = Er(pkr, c ‖ 10� ; r) ,

where c = Ed(pkd,m) and � = nr−|c|−1. Here we need that nr(k) > maxclend(k)
for all k. Decryption is defined in the natural way. The scheme will clearly inherit
IND-CPA security from the application of Er. If the deterministic encryption
scheme is PRIV secure for min-entropy μ, then the composition will also be
secure if the message has min-entropy at least μ. However, our strong notion of
IND-CDA security requires that schemes be secure if the joint distribution on the
message and randomness has high min-entropy. If the entropy is unfortuitously
split between both the randomness and the message, then there is no guarantee
that the composition will be secure. In fact, many choices for instantiating AE r
and AEd lead to a composition for which attacks can be exhibited (even when
the schemes are, separately, secure).

Randomized-then-deterministic. We can instead apply randomized encryp-
tion first, and then apply deterministic encryption. Define RtD[AE r,AEd] =
(P ,K, E ,D) to work as follows. The parameter and key generation algorithms
are as for scheme DtR. Encryption is defined by

E((pkr, pkd),m ; r) = Ed(pkd, c ‖ 10�) .

where c = Er(pkr,m ; r) and � = nd − |c| − 1. Here we need that nd(k) >
maxclenr(k) for all k. The decryption algorithm D works in the natural way. As
we will see, this construction avoids the security issues of the previous, as long
as the randomized encryption scheme preserves the min-entropy of its inputs.
(For example, if for all k, all parr ∈ [Pr(1k)], and all (pkr, skr) ∈ [Kr(parr)],
Er(pkr, ·) is injective in (m, r).) Many encryption schemes have this property; El
Gamal [21] is one example.

Pad-then-Deterministic. Our final construction dispenses entirely with the
need for a dedicated randomized encryption scheme, instead using simple padding
to directly construct a (randomized) encryption scheme from a deterministic one.
Let PtD[AEd] = (Pd,Kd, E ,D) work as follows. Parameter and key generation are
inherited form the underlying (deterministic) encryption scheme. Encryption is
defined by

E(pkd,m ; r) = Ed(pkd, r ‖m) .

Decryption proceeds by applying Dd, to retrieve r ‖m, and then returning m.
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5 Non-adaptive Hedge Security

In this section we investigate the non-adaptive hedge security of REwH, RtD and
PtD, leaving adaptive security to future sections.

Randomized-encrypt-with-hash. Intuitively, the security of REwH[AE r] fol-
lows from the IND-CPA security of AEr and the random oracle providing “per-
fect” randomness. Following [6], for any k let maxpkAE(k) be the maximum of
Pr [ pk = w : (pk, sk)←$K(par) ], where the maximum is taken over all w ∈
{0, 1}∗ and all par ∈ [P(1k)].

Theorem 1. [REwH is non-adaptive H-IND secure]. Let AEr = (Pr,Kr,
Er,Dr) be a PKE scheme with message length n(·) and randomness length ρ and
let AE = REwH[AEr] = (Pr,Kr, E ,Dr) be the PKE scheme constructed from it.
• (IND-CPA) Let A be an IND-CPA adversary. Then there exists an IND-

CPA adversary B such that for all k

Advind-cpa
AE,A (k) = Advind-cpa

AEr,B
(k)

where B runs in time that of A and makes the same number of queries.
• (IND-CDA) Let A be an adversary that makes a single LR query consisting

of a v(·)-vector (μ, n, ρ)-mmr-source with equality-pattern probability ζ(·)
and making at most h(·) random oracle queries. Then there exists an IND-
CPA adversary B such that for all k

Advcda
AE,A(k) ≤ v(k)

(
Advind-cpa

AEr,B
(k) +

2 ·h(k)
2μ(k) + 8 ·maxpkAEr

(k)
)

+ ζ(k)

Adversary B runs in time that of A and maxpkAEr
is the maximum public

key probability of AEr �

The first part of the theorem is straightforward to prove. The second follows
from an adaptation of the proof of security for the similar Encrypt-with-Hash
deterministic encryption scheme in [6]. Notice that the theorem holds for both
REwH1 and REwH2; the only difference is that with the latter the maxpkAE(k)
term improves depending on the length κ.

Randomized-then-deterministic. Intuitively, the non-adaptive hedged se-
curity of the RtD construction is inherited from the IND-CPA security of the
underlying randomized scheme AEr and the (non-adaptive) PRIV security of
the underlying deterministic scheme AEd. As alluded to before, we have one
technical requirement on AE r for the IND-CDA proof to work. We say AE r =
(Pr,Kr, Er,Dr) with message length nr(·) and randomness length ρ(·) is min-
entropy preserving if for any k, any parr ∈ [Pr(1k)], any (pkr, skr) ∈ [Kr(parr)],
and for all c ∈ {0, 1}∗ it is the case for any (μ, nr, ρ)-mr-source M outputting
vectors of size one that Pr

[
c = Er(pkr,m ; r) : (m, r)←$ M(1k)

]
≤ 2−μ. In

words, encryption preserves the min-entropy of the input message and random-
ness. We have the following theorem.
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Theorem 2. [RtD is non-adaptive H-IND secure]. Let AEr = (Pr,Kr, Er,
Dr) be a min-entropy preserving PKE scheme with message length nr(·) and
randomness length ρ(·). Let AEd = (Pd,Kd, Ed,Dd) be a (deterministic) en-
cryption scheme with message length nd(·) so that nd(·) ≥ maxclenr(·). Let
AE = RtD[AEr,AEd] = (P ,K, E ,D) be the PKE scheme defined in Section 4.
• (IND-CPA) Let A be an IND-CPA adversary. Then there exists an IND-

CPA adversary B such that for any k

Advind-cpa
AE,A (k) = Advind-cpa

AEr,B
(k)

where B runs in time that of A plus the time to run Ed once.
• (IND-CDA) Let A be a CDA adversary that makes one LR query consisting

of a v(·)-vector (μ, nr, ρ)-mmr-source (resp. block-source). Then there exists
a PRIV adversary B such that for any k

Advcda
AE,A(k) ≤ Advpriv

AEd,B(k)

where B runs in time that of A plus the time to run v(k) executions of Er
and makes one LR query consisting of a v(·)-vector (μ,maxclenr)-mm-source
(resp. block-source). �

Note that the second part of the theorem states the result for either sources or
just block-sources. We briefly sketch the proof. The first part of the theorem is im-
mediate from the IND-CPA security ofAE r. For the second part, any mmr-source
M queried by A is converted into an mm-source M′ to be queried by B. This is
done by having M′ run M to get (m0,m1, r) and then outputting the pair of vec-
tors (Er(pk,m0 ; r), Er(pk,m1 ; r)). (The ciphertexts are the “messages” for Ed.)
Because AE r is min-entropy preserving, M′ is a source of the appropriate type.

Pad-then-deterministic. The security of the PtD scheme is more difficult to
establish. The IND-CDA security is inherited immediately from the PRIV secu-
rity of the AEd scheme. Here the challenge is, in fact, proving IND-CPA security.
For this we will need a stronger assumption on the underlying deterministic en-
cryption scheme — that it is a u-LTDF.

Theorem 3. [PtD is non-adaptive H-IND secure]. Let AEd = (Pd,Kd, Ed,
Dd) be a deterministic encryption scheme with message length nd(·). Let AE =
PtD[AEd] = (P ,K, E ,D) be the PKE scheme defined in Section 4 with message
length n(·) and randomness length ρ(·) such that n(k) = nd(k)− ρ(k) for all k.
• (IND-CPA) Let Kl be a universal-inducing (nd, �)-lossy key generation algo-

rithm for AEd. Let A be an IND-CPA adversary. Then there exists a LOS
adversary B such that for all k

Advind-cpa
AE,A (k) ≤ Advlos

AEd,Kl,B
(k) +
√

23n(k)−�(k)+2 .

B runs in time that of A.
• (IND-CDA) Let A be a CDA adversary that makes one LR query consisting

of a v(·)-vector (μ, n, ρ)-mmr-source (resp. block-source). Then there exists
a PRIV adversary B such that for all k
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Advcda
AE,A(k) ≤ Advpriv

AEd,B(k)

where B runs in time that of A and makes one LR query consisting of a
v(·)-vector (μ, nd)-mm-source (resp. block-source). �

One might think that concluding IND-CPA can be based just on PtD being
IND-CDA secure, since the padded randomness provides high min-entropy. How-
ever, this approach does not work because an IND-CPA adversary expects knowl-
edge of the public-key before making any LR queries, while a CDA adversary
only learns the public-key after making its LR queries. This issue is discussed
in more detail in [8]. We use a different approach (which may be of independent
interest) to prove this part of Theorem 3; the details are given in the full ver-
sion [7]. Our proof strategy, intuitively, corresponds to using the standard LHL
2n(k) times, once for each possible message the IND-CPA adversary might query.

6 Anonymity for Chosen Distribution Attacks

In the previous section we proved non-adaptive security for the RtD and PtD con-
structions. But, as established in Section 3, we actually want to meet the stronger
goal of adaptive security. In the adaptive setting, adversaries can make multiple
LR queries, specifying sources that are generated as a function of previously-seen
ciphertexts. Recall that one reason adaptivity is difficult to achieve is because ci-
phertexts might leak information about the public key. In turn, knowledge of the
public key leads to trivial IND-CDA attacks. This suggests a natural relationship
with key privacy, also called anonymity [4]. Anonymity requires (informally) that
ciphertexts leak no information about the public key used to perform encryp-
tion. In this section we formalize a notion of anonymity for chosen-distribution
attacks. In the next section we’ll use this definition as a step towards adaptive
IND-CDA security.

Definitions. Let AE = (P ,K, E ,D) be an encryption scheme. Game ANONAE
shown in Figure 3 provides the adversarywith twooracles.An ANON adversaryA is
one whose queries are all mr-sources. The advantage of ANON adversary A is

Advanon
AE,A(k) = 2 · Pr

[
ANONA

AE,k ⇒ true
]
− 1 .

We say that a PKE scheme AE with message length n(·) and randomness length
ρ(·) is ANON secure for (μ, n, ρ)-mr-sources if for all PT adversaries A that
only query (μ, n, ρ)-mr-sources the function Advanon

AE,A(·) is negligible. We can
extend this notion to mr-block-sources in the obvious way. In the special case
that the randomness length of AE is always zero, the ANON definition formal-
izes anonymity for deterministic encryption or, equivalently, trapdoor functions,
generalizing a definition from [4].

Discussion. Anonymity for PKE in the sense of key privacy was first formal-
ized by Bellare et al. [4], but their notion (analogously to traditional semantic
security) only works in the context of good randomness. The ANON notion,
akin to IND-CDA, formalizes key privacy in the face of bad randomness. While
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proc. Initialize(k):

par ←$ P(1k)
(pk0, sk0) ←$ K(par)
(pk1, sk1) ←$ K(par)
a ←$ {0, 1}
Ret par

proc. Enc(M):

If pkout = true

Ret ⊥
(m, r) ←$ M(1k)
Ret E(pk0,m; r)

proc. LR(M):

(m, r) ←$ M(1k)
c ← E(pka,m; r)
pkout ← true

Ret (pk0, pk1, c)

proc. Finalize(a′):

Ret (a = a′)

Fig. 3. Game ANONAE,k

we will use it mainly as a technical tool to simplify showing that schemes meet
adaptive IND-CDA, it is also of independent interest as a new security target
for PKE schemes when key privacy is important. (That is, one might want to
hedge against bad randomness for anonymity as well as message privacy.)

7 Adaptive Hedge Security

The following theorem, whose proof appears in the full version [7], shows that
achieving ANON security and non-adaptive IND-CDA security are sufficient for
achieving adaptive IND-CDA security.

Theorem 4. Let AE = (P ,K, E ,D) be an encryption scheme with message
length n(·) and randomness length ρ(·). Let A be a IND-CDA adversary mak-
ing q(·) LR queries, each being a v(·)-vector (μ, n, ρ)-mmr-source (resp. block-
source). Then there exist IND-CDA adversary B and ANON adversary C such
that for all k

Advcda
AE,A(k) ≤ 2q(k) ·Advcda

AE,B(k) + 4q(k) ·Advanon
AE,C(k) .

Bmakes oneLR query consisting of a v(·)-vector (μ, n, ρ)-mmr-source (resp. block-
source). C makes at most q(k)− 1 Enc queries and one LR query, all these con-
sisting of v(·)-vector (μ, n, ρ)-mr-sources (resp. block-sources). Both B and C run
in the same time as A. �

Given a non-adaptively IND-CDA secure scheme, Theorem 4 reduces the task of
showing it adaptively secure to that of showing it meets the ANON definition.
Of course, ANON is still an adaptive notion. (Adversaries can formulate their
LR query to be a source that’s a function of previously seen ciphertexts.) Nev-
ertheless, it formalizes a sufficient condition for adaptive CDA security of any
PKE scheme and captures the relationship between adaptivity and anonymity.
We believe this is an interesting (and novel) application of anonymity.

We can show that our random oracle scheme REwH is ANON secure when the
underlying randomized scheme meets the traditional notions of anonymity for
PKE [4]. We also want to show that the RtD and PtD schemes are ANON secure.
We first show something more general: that any u-LTDF is anonymous. Then,
that RtD and PtD are anonymous follows when using deterministic schemes that
are also u-LTDFs.
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Universal LTDFs are anonymous. Intuitively u-LTDFs are anonymous be-
cause the lossy mode admits a universal hash, implying that no information
about the public key is leaked by outputs (generated from sources with high con-
ditional min-entropy). One might expect that formalizing this intuition would
follow from straightforward application of the Leftover Hash Lemma (LHL) [26].
However our anonymity definitions are adaptive, so one cannot apply the LHL
(or even the generalized LHL [17]) directly. Rather, we first show an adaptive
variant of the LHL is implied by the standard LHL via a hybrid argument. See
the full version for details. Here we use it to prove the following theorem; details
appear in the full version [7].

Theorem 5. Let AEd = (Pd,Kd, Ed,Dd) be a (deterministic) encryption scheme
with message length n(·) and an associated universal-inducing (n, �)-lossy key gen-
erator Kl. Let A be an ANON adversary making q(·) Enc queries and a single LR
query, all of these being v(·)-vector (μ, n)-m-block-sources. Then there exists LOS
adversary B such that for all k

Advanon
AEd,A(k) ≤ 2 ·Advlos

AEd,B(k) + 3 ·q(k) ·v(k) ·
√

2n(k)−�(k)−μ(k) .

B runs in time that of A. �

Consider RtD and PtD when instantiated with a deterministic encryption scheme
that is a u-LTDF. We can apply Theorem 5 to conclude ANON security for
both schemes. Combining this with Theorems 2 and 4 yields proof of adaptive
hedge security for RtD. Likewise, combining it with Theorems 3 and 4 yields
proof of adaptive hedge security for PtD. Also Theorems 4 and 5 combine with
[12, Th. 5.1] to give the first adaptively-secure deterministic encryption scheme
(based on u-LTDFs).

REwH2 is adaptively secure. As we show above, we can get adaptive security
from REwH when the underlying IND-CPA randomized scheme is anonymous
in the sense of [4]. We observe that scheme REwH2 is adaptively secure when
instantiated with any IND-CPA randomized scheme (not just anonymous ones).
To show this, we give a direct proof in the full version [7]. Since popular encryp-
tion schemes such as RSA are not anonymous, we believe scheme REwH2 could
be relevant in practice. That being said, we still think REwH1 is important since
non-adaptive security is still a strong notion, and the scheme does not require
any changes to the structure of the public key.

Extensions. In the full version [7] we discuss extensions and variants of RtD
and PtD, where we improve the (adaptive) concrete security and show how to
securely use LTDFs that are not necessarily universal.
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Abstract. Secure multi-party computation has been considered by the
cryptographic community for a number of years. Until recently it has
been a purely theoretical area, with few implementations with which to
test various ideas. This has led to a number of optimisations being pro-
posed which are quite restricted in their application. In this paper we
describe an implementation of the two-party case, using Yao’s garbled
circuits, and present various algorithmic protocol improvements. These
optimisations are analysed both theoretically and empirically, using ex-
periments of various adversarial situations. Our experimental data is
provided for reasonably large circuits, including one which performs an
AES encryption, a problem which we discuss in the context of various
possible applications.

1 Introduction

That secure multi-party computation can be executed at all is considered one
of the main results of the theory of cryptography. Starting with Yao’s seminal
work [30] many authors have looked at various optimisations and extensions to
the basic concept, for both the two-party and the multi-party settings, see for
example [7, 10, 11, 18, 20, 23, 29]. Until recently all work on secure multi-party
computation has been essentially of a theoretical nature, focusing on feasibility
results. However in the last few years a number of practical implementations
have appeared [3, 5, 6, 22, 24].

There are many different protocols for secure multi-party computation. Our
work focuses on implementation of secure computation and therefore we only
mention protocols which have been previously implemented. Secure multi-party
computation essentially comes in two flavours. The first approach is typically

M. Matsui (Ed.): ASIACRYPT 2009, LNCS 5912, pp. 250–267, 2009.
c© International Association for Cryptologic Research 2009
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based upon secret sharing and operates on an arithmetic circuit representation
of the computed function, such as in the BGW (Ben-Or, Goldwasser and Wigder-
son) or CCD (Chaum, Crepeau and Damg̊ard) protocols [4, 8]. This approach is
usually applied when there is an honest majority among the participants (which
can only exist if more than two parties participate in the protocol). An alter-
native approach represents the function as a binary circuit. This approach was
used in the original two-party garbled circuit construction of Yao [30], and in
the GMW (Goldreich, Micali and Wigderson) multi-party protocol [11].

The arithmetic circuit method is better at representing addition and multipli-
cation operations, where parties have additive shares of secret values, but cannot
be used to compute comparisons unless the shares are converted to shares of the
binary representation of the values. This approach has been used to great effect
in the SIMAP project [6], which has resulted in a “real-life” application of secure
multi-party computation to the Danish sugar beet industry [5].

The binary circuit approach handles arithmetic operations, especially mul-
tiplications, less efficiently, but can easily compute binary operations such as
comparisons. This second approach, which forms the basis of Yao’s construction
for the two party case, has been implemented by Malkhi et al. in the Fairplay
system [24]. That system also provides a method to compile a given functionality
from a representation in a high-level language into a circuit, which is then in-
terpreted by a run-time environment that performs the secure evaluation of this
functionality. FairplayMP, an extension of Fairplay to the case of more than two
parties using a modified version of the protocol of Beaver et al. [2] has recently
been released [3]. All these implementations provide security against semi-honest
adversaries only. A major advantage of the binary circuit based systems (Fair-
play and FairplayMP) is that they run in a constant number of communication
rounds, whereas the SIMAP system has the advantage of being able to process
arithmetic operations very efficiently.

Efficient extensions of Yao’s construction to more relevant adversarial models
have been a topic of research interest in the last few years. There are several
constructions which aim to secure the protocol against malicious adversaries
without using generic zero-knowledge protocols. We will focus on the construc-
tion of Lindell and Pinkas [20] which is efficient and provides fully simulatable
security according to the definition of Canetti [7]1. A definition of a weaker class
of corruption, “covert adversaries”, and a protocol secure against this type of
behavior, was provided by Aumann and Lindell [1]. In [22] an implementation
of the basic Lindell–Pinkas protocol was reported upon and experimental data
in various security models was provided.
1 This construction may be preferable over other two-party protocols with secu-

rity against malicious adversaries. The construction of Mohassel and Franklin [23]
only protects privacy and is not fully simulatable. The construction of Jarecki and
Shmatikov [18] requires the use of public-key operations, rather than symmetric key
operations, for any gate of the circuit. The construction of Nielsen and Orlandi [26],
too, uses public key operations, or rather public-key based commitments, for each
key of every wire of the circuit. A precise practical comparison between the different
approaches is beyond the scope of the current paper.
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In this paper we improve on the implementation of [22] in a number of ways.
The resulting set of quantitative improvements results in qualitative conclu-
sions: (1) We demonstrate that two-party computation, secure against malicious
adversaries, is truly practical, and we experimentally identify the performance
bottlenecks which remain after our optimisations. This result should direct fur-
ther research to the issues which have the largest effect on performance. (2) We
experiment with a secure computation of the AES standard, and show that it
is indeed feasible, even with security against malicious adversaries. There are a
number of applications of such an implementation, some of which we describe be-
low. (3) We provide the first implementation of a protocol with security against
covert adversaries and we compare the performance of all 3 types of protocols:
malicious, covert and semi-honest.

A more detailed summary of our main results is as follows:

– We improve the communication cost for transmitting the circuits between the
parties. In the case when we model the underlying key derivation functions
(KDFs) as correlation robust (see discussion below), using the technique of
[19] we are able to transmit no information for the XOR gates within the
circuit. In this situation we are also able to reduce the data which needs to
be sent by 25% for the other gates. When we are not willing to model the
KDFs as correlation robust, and we only assume they are psuedo-random
functions, we are unable to perform the free XOR optimisation. However
we are able to reduce the communication cost for all gates by 50%. Unlike
other methods used to improve communication, like [13], our improvement
makes a marginal impact on computational costs. We will return to this in
a later section.

– In addition to the theoretical analysis we provide experimental data for eval-
uating “real life” circuits, in both the honest-but-curious, covert and mali-
cious adversary cases; also for the two different methods in the literature that
construct the auxillary circuits in the covert and malicious cases (see [22] and
the full version). The implementation for the malicious setting is based on
the construction of Lindell and Pinkas [20] which provides security in the
sense of full simulatability. Therefore the resulting construction can be used
as a black-box primitive in more complex applications. The use of our opti-
misations results in a considerable performance boost compared to previous
experimental results published in [22].

Our optimisations change the performance bottleneck to a different part
of the computation; namely, the verification of garbled circuits generated
by the circuit constructor. This observation is important for focusing future
research on the issues that affect the overhead the most.

– We experiment with secure evaluation of a circuit which computes an AES
encryption of a single block. The secure computation of AES involves one
party which knows the key, and a different party which has an input block.
The second party learns the encryption of the block, while the first party
learns nothing. We demonstrate the feasibility of computing this function in
the semi-honest, covert and malicious settings.
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Secure evaluation of AES has an impact in a number of scenarios which we will
discuss in short here and elaborate on in the full version. The fact that a secure
computation of AES is feasible, and can run in a matter of seconds, is quite
surprising.

Application 1, OPRF: A secure computation of a pseudo-random function,
denoted OPRF for “oblivious prf”, has been defined in [9] for the purpose of
secure keyword based searches, and was subsequently used in different applica-
tions. The OPRF protocol in [9] is based on the Naor-Reingold prf, which is a
number theoretic construction. Our construction has different advantages over
the NR based construction, which we detail in the full version.

Application 2, Side Channel Protection: In [12] the authors introduce
“one-time programs”, which are programs that can only be executed once and
then “self-destruct”. An important advantage of this construction is that the
execution of the program reveals no side-channel information. Most of the com-
putation in that construction is essentially done using a garbled Yao circuit.

One of the main applications of smart cards is to compute symmetric encryp-
tions, and therefore the ability to compute AES encryptions by Yao circuits has
immediate application in the above scenario. It enables smart cards to perform
a one-time computation, secure against side-channel attacks, of AES. This is
particularly interesting since in that setting the circuit evaluation need only be
secure against semi-honest adversaries, while we show below that semi-honest
computation of AES can be run very efficiently, taking only a few seconds.

Application 3, Blind MACs and Blind Encryption: One can think of the
operation of obtaining the AES encryption of a message, under the other party’s
secret key, as a blind MAC or a blind symmetric encryption. These operations
have different applications in secure computation.

Application 4, Third Party Operations on Encrypted Data: We essen-
tially show that encryption and decryption can be implemented using circuits.
This enables secure computation of homomorphic operations on encrypted data.
This operation is done by a circuit which receives two ciphertexts from one party
and a key from the other party, decrypts the ciphertexts, applies some arbitrary
mathematical operation to the plaintexts, and then encrypts the result.

2 Yao’s Garbled Circuit Construction

Two-party secure function evaluation makes use of the famous garbled circuit
construction of Yao [30] which we briefly overview in this section. The basic
idea is to encode the function to be computed via a binary circuit and then to
securely evaluate the circuit on the players’ inputs.
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2.1 Garbled Circuits

We consider two parties, denoted as P1 and P2, who wish to compute a function
securely which is represented as a simple binary circuit. First assume the circuit
consists of only a single gate with two input wires and one output wire. We
denote the input wires by w1 and w2, and the output wire by w3. The input to
w1 is denoted by b1 and is known to P1, similarly P2 knows the input to w2 and
this is given by b2. Each gate has a unique identifier Gid; this enables a circuit
fan out of greater than one, i.e., it enables the output wire of one gate to be used
in more than one other gate. We require that P2 evaluates the gate on the two
inputs, without P1 learning anything, and without P2 determining the value b1,
bar what it can deduce from the output of the gate and its own input. We define
the output of the gate by the function G(b1, b2) ∈ {0, 1}.

The construction of Yao works as follows. P1 encodes, or garbles, each wire
wi by selecting two different cryptographic keys k0

i and k1
i of length t. Here t is

a computational security parameter which suffices for the length of a symmetric
encryption scheme. A random permutation πi of {0, 1} is associated to each wire.
The garbled value of wire wi is then represented by kbi

i ‖ci, where ci = πi(bi).
We call the value ci the “external value” of the wire, note that this value is
completely independent of the actual value of the wire bi.

An encryption function Es
k1,k2

(m) is selected which has as input two keys
of length t, a message m, and some additional information s. The additional
information s must be unique per invocation of the encryption function, i.e., it
is used only once for any choice of keys. The gate itself is then replaced by a
four entry table indexed by the values of c1 and c2, and given by

c1, c2 : EGid‖c1‖c2

k
b1
1 ,k

b2
2

(
k

G(b1,b2)
3 ‖c3

)
,

where c1 = π1(b1), c2 = π2(b2), and c3 = π3(G(b1, b2)). Each entry in the table
corresponds to a combination of the values of the input wires and contains the
encryption of the corresponding garbled output value. The resulting look up
table, or set of look up tables in general, is called the “garbled circuit”.

Player P1 then sends to P2 the garbled circuit, the key corresponding to its
input value kb1

1 , the value c1 = π1(b1), and the permutation π3. The parties
engage in an oblivious transfer (OT) protocol so that P2 learns the value of
kb2
2 ‖c2, where c2 = π2(b2). Player P2 can then decrypt the entry in the look up

table indexed by (c1, c2) using kb1
1 and kb2

2 ; revealing the value of kG(b1,b2)
3 ‖c3. P2

determines the value of G(b1, b2) by using the mapping π−1
3 from c3 to {0, 1}.

In the general case the circuit consists of multiple gates. Player P1 chooses
random garbled values for all wires and uses them for constructing tables for
all gates. It sends these tables, i.e., the garbled circuit, to P2 and in addition
provides P2 with the garbled values and the c values of P1’s inputs, and with the
permutations π used to encode the output wires of the circuit. Player P2 uses
invocations of oblivious transfer to learn the garbled values and c values of its
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own inputs to the circuit. Given these values, P2 can evaluate the gates in the
first level of the circuit, compute the garbled values and the c values of their
output wires. Player P2 can then continue with this process and compute the
garbled values of all wires in the circuit. Finally P2 uses the π permutations of
the output wires of the circuit to compute the real output values of the circuit.
If P1 additionally requires some output from the circuit then this can be dealt
with by standard mechanisms, as described in the full version.

One could use more general gates than 2-to-1 gates, such as n-to-m gates
with 2n entries. However the optimisations we shall present in this paper are
most effective when applied to 2-to-1 gates. While we found that more general
gates can improve the performance of a naive Yao circuit protocol, they actually
decrease the performance of the optimisations. Hence the rest of this paper is
restricted to 2-to-1 gates.

2.2 Required Implementation Details

Having described the basic theoretical description of Yao’s protocol and its ex-
tensions, we now present a number of implementation details which are needed
to understand some of our optimisations. The basic implementation choice of
the underlying encryption scheme to be used is the same as the implementation
described in [22].

Oblivious transfer: Unlike [22] we do not use the OT scheme of Hazay and
Lindell (HL) [15]. Instead we use the OT scheme of Peikert et al. (PVW)[27].
This scheme is UC-secure and hence requires the setup of a Common Reference
String (CRS) of a few hundred bits. For our experiments we assume that this is
given to the parties. (Alternatively, the parties can run a coin-tossing protocol
to generate the CRS, which is possible due to the nature of the CRS used in the
PVW scheme.) The batched method of PVW is more efficient per OT than the
batched method of HL, especially on the receiver’s side. In particular the CRS
can be used for any number of invocations of the OT, whereas the method in HL
requires the maximum number of OT’s being executed to be known before the
setup is performed. (The setup in HL also requires two ZK-proofs as opposed to a
CRS being created in PVW.) The OT stage is not our computational bottleneck,
and is unlikely to be, unless one is in the rare situation of having a circuit with
a large number of inputs for P2 and yet a relatively small number of gates.
Thus we do not consider optimisations of OT schemes which are secure against
only semi-honest or covert adversaries, since the fully secure OT is efficient
enough.

Encryption scheme: The only implementation detail we will need from [22]
is that the encryption scheme is implemented via

Es
k1,k2

(m) = m⊕KDF|m|(k1, k2, s)
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where KDF is a key deriviation function, whose |m| bits of output are indepen-
dent of the two input keys in isolation, and which depends on the value of s. We
will instantiate this function as follows2

KDF�(k1, k2, s) = H(k1‖s)1...� ⊕H(k2‖s)1...�.

Even if H is a Merkle–Damg̊ard type hash function this will be secure (with the
associated issues of length extension), since we are only applying the function to
fixed length inputs. Indeed, in our experiments we implement H using SHA-256.

Modeling the hash function, and correlation robustness: In this paper
we need to model the underlying hash function H in two ways. In the first we
make the usual assumption that it behaves as a pseudo-random function, namely
that H(k‖s) is an invocation of a pseudo-random function keyed by k, with the
input s. However one of our optimisations requires that we make a stronger
assumption on the hash function, namely that it is correlation robust. This later
property can be stated formaly as follows:

Definition 1 (Correlation robustness [16]). An efficiently computable func-
tion H : {0, 1}∗ → {0, 1}� is correlation robust if the following distribution is
pseudo-random: (t1, . . . , tm, H(t1 ⊕ r), . . . , H(tm ⊕ r)), where t1, . . . , tm and r
are chosen at random, and m is polynomial in the security parameter.

This can also be stated by saying that the function fr(x) = H(x ⊕ r) is a
weak pseudo-random function. The definition also implies that the distribution
of (H(t1), . . . , H(tm), H(t1 ⊕ r), . . . , H(tm ⊕ r)) is pseudo-random.

The correlation-robustness assumption is satisfied by a random oracle (or
rather by a very weak form of it: a non-programmable, non-extractable ran-
dom oracle). However, assuming correlation robustness seems as a much weaker
requirement than assuming the existance of random oracles. This assumption
has been introduced in [16] and was used there for providing security against
malicious adversaries for a method of extending oblivious transfer. The correla-
tion robustness assumption has been recently used in the context of oblivious
transfer [14, 17] and in the context of secure computation [19, 26].

For our construction, as we deal with circuits with arbitrary fan out, we re-
quire a slightly modified definition. Namely that for any set S = {s1, . . . , s|S|}
2 In [22] two instantiations were presented, depending on whether we are working in

the random oracle model (ROM) or standard model, via truncating, or extending,
the output of a suitable hash function H in the standard way as follows

KDF�(k1, k2, s) =
{

H(k1‖k2‖s)1...� H is modeled as an RO,
H(k1‖s)1...� ⊕ H(k2‖s)1...� H is modeled as a PRF.

The difference is that the security analysis in the ROM works even if we feed related
keys to different invocations of the function. Namely, it is possible to compute, say,
H(k1‖k2), H(k1‖k′2), H(k′1‖k2) and H(k′1‖k′2) and claim that knowledge of k1, k2 does
not disclose information about any of the values except H(k1‖k2). This is impossible
in the standard model. Therefore if H() is modeled as a prf it must be invoked
separately with each key.
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of size which is of the same order as the number gates, the distribution of
(t1, . . . , tm, 〈H((t1 ⊕ r)‖s1), . . . , H((tm ⊕ r)‖s1))〉, 〈H((t1 ⊕ r)‖s2), . . . , H((tm ⊕
r)‖s2))〉, . . . , 〈H((t1 ⊕ r)‖s|S|), . . . , H((tm ⊕ r)‖s|S|))〉 is pseudo-random, where
t1 . . . , tm and r are chosen at random. In other words, all the pads that are
used for encrypting table entries are pseudo-random. If one is willing to assume
this then our optimisations provide highly efficient protocols. We also provide
optimisations for when the user is unwilling to make such an assumption.

3 Structural Optimisations of the Circuit

Yao’s protocol operates on functions which are described as a boolean circuit, and
its overhead depends on the size of the circuit. A convenient way of generating
a representation of a function in this form is to use a compiler which translates
a description of a function in a high-level language to a description as a binary
circuit. The Fairplay system provides a compiler for this task which operates on
functions described in a high-level language called Secure Function Description
Language (SFDL) [3, 24]. We use that compiler as the basis of our experiments,
but use our own run-time environment to execute the protocol.

There are a number of general circuit simplifications which can be performed
to the output of the Fairplay compiler. We have implemented a number of these,
based on two basic ideas: (1) identifying component circuits which can be re-
placed by simpler combinations of gates, and (2) identifying complicated compo-
nents whose output must always be zero, or one; this allows for the component to
be removed and other subsequent components to be further simplified. A com-
bination of these techniques is surprisingly effective, and allows us to produce
circuits which are often 60 percent more efficient than the circuit produced by
the Fairplay compiler.

Many of the techniques used are ad-hoc, but the following technique is partic-
ularly effective. First, by a technique akin to common sub-expression elimination,
we identify sets of gates which can be replaced by a single 3-to-1 gate, and then
replace the 3-to-1 gate with a set of 2-to-1 gates which was chosen to minimize
the number of non-XOR gates. This is particularly effective when combined with
our later technique of Section 4, in the case of correlation robust KDFs, to re-
move the cost of any XOR gates; however the technique is also successful in
the more general case as well. We call a gate even if its truth table has an even
number of ‘1’ entries (for example, a XOR gate is even), otherwise it is called
odd (an OR gate, for example, is odd). We show in the full version that it is
possible to replace any 3-to-1 even gate with at most a single 2-to-1 non-XOR
gate and at most three XOR gates. The optimal transformation rules, which we
found by exhaustive search, are listed in the full version.

4 Optimisations with Free XORs, When the KDF Is
Correlation Robust

In [19] Kolesnikov and Schneider present an optimisation based on the correlation
robustness assumption, which allows XOR gates to be evaluated for free, thus
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doing away with the need to evaluate or transmit the garbled tables for such
gates. The optimisation requires that there is a global random value R of bit
length t, known only to P1, such that for all garbled wires wi it holds that
k1

i = k0
i ⊕R. In other words, the garbling of the 1 value of a wire, is determined

purely from XOR-ing the garbled 0 value with the value R. Note that a similar
property holds for the external values of the wire: πi(1) = πi(0)⊕ 1. With this
convention we have that a XOR gate can be implemented by simply XOR-ing
together the two garbled input values, and the two external values. Namely, for
a XOR gate mapping wires w1 and w2 to wire w3, it holds that k3 = k1⊕k2 and
c3 = c1 ⊕ c2. For a full proof of this optimisation see [19]. Note that [19] states
the proof in the random oracle model, but it can be easily seen, as noted in [19],
that the proof can be based on the correlation robustness assumption.

Garbled Row Reduction – GRR: The above solution is ideal for XOR gates,
but in addition we would like to reduce the size of the tables of the non-XOR
gates as well. The following simple optimisation (which was pointed out in [25])
provides a 25 percent reduction in the sizes of the tables needed to represent
two-input gates. We can do this in a way which still allows the use of the above
trick for free XOR gates. (In general, this method provides a 1/2n reduction
in the size of n-to-1 gates, but we will only describe it in detail for the two
input case.)

The observation is that instead of defining the two garbled values of the output
wires randomly, we can define one of them as a function of garbled values of the
two input wires which result in this output value. In other words, we choose an
input pair (b1, b2) ∈ {0, 1}2, and define the garbled output value of G(b1, b2) to
be a function of the garbled values of b1 and b2. The gate table therefore need
not store an entry for the input combination (b1, b2). In the evaluation phase,
if the evaluator has the garbled values of the pair (b1, b2) it can compute the
corresponding garbled output directly, without consulting the gate table.

Suppose the gate maps wire w1 and wire w2 to wire w3. As before we let
k0

i and k1
i denote the garbled wire values, G(b1, b2) denote the function being

implemented by the gate, and we set the external value of the wire to be ci =
πi(bi). We then define the garbled output value corresponding to the output
resulting from the external input values (c0, c1) = (0, 0) as

k
G(π−1

1 (0),π−1
2 (0))

3 ‖c3 = KDFt+1
(
k

π−1
1 (0)

1 , k
π−1
2 (0)

2 ,Gid‖0‖0
)
.

In other words, the garbled value is exactly equal to the pseudo-random mask
that was used to hide it in the basic protocol. Note that this operation also
defines the external value c3 of this output value. We therefore define π3 such
that c3 = π3(G(π−1

1 (0), π−1
2 (0))). The other garbled value of the output wire,

k
1−G(π−1

1 (0),π−1
2 (0))

3 is then chosen as in the free XOR method above, to enable the
evaluation of XOR gates for free. The table is then constructed in the standard
way except that we do not store, or transmit, its first entry.

On evaluating the garbled gate the evaluator proceeds as in the standard
algorithm except when it wishes to access the first entry of the table, i.e., when
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the external values of both input wires are 0, namely c1 = c2 = 0. In that
case it possesses the garbled values kb1

1 and kb2
2 , where b1 = π−1

1 (0) and b2 =
π−1

2 (0). It uses them to compute kG(b1,b2)
3 and c3 = π3(G(b1, b2)), by computing

KDFt+1
(
kb1
1 , k

b2
2 , 0‖0‖Gid

)
as defined in the equation above.

We will denote this optimisation as Garbled Row Reduction, GRR for short,
in our future discussions.

Security: We sketch why the above optimisation maintains security. Recall
that the proof of security for Yao’s protocol given in [21] shows security against
a corrupt P2 based on a hybrid argument, and on a claim that for each gate it is
infeasible to distinguish between a correct garbled table of this gate and a table
which encrypts the same value in all four entries. In order for this argument to
apply to the GRR optimisation, it is required to show that it is infeasible to find
out if the garbled value assigned to the first table entry, kG(π−1

1 (0),π−1
2 (0))

3 ‖c3 is
equal to the values encrypted in the other entries. However this value is equal to
the mask that is used to encrypt the first entry in Yao’s original protocol, and
we know that if a polynomial adversary is given only a single pair of garbled
input values then the masks that are used for encrypting the other entries of the
table are pseudo-random. Therefore the claim follows.

5 Optimisations without Free Xors, When the KDF Is
Not Correlation Robust

One may not want to assume the KDF is correlation robust, or perhaps the
proportion of XOR gates in the circuit is so low that making this assumption is
not as effective. In these situations, too, we would like to reduce the overhead
required by the Yao circuit. This section describes an optimisation which reduces
the size of every two-input gate by 50%, but which, unfortunately, cannot be
combined with the free XOR method of Section 4.

The underlying idea is that if we are not using the free XOR trick then the two
values of the output wire can be chosen independently.3 The 50% reduction in
the size of the gate tables is based on Shamir secret sharing [28]. It makes use of
a finite field F2t . Recall that t is the bit length of the keys used to represent the
garbled values of the wires. We can therefore interpret keys as elements of F2t

and vice versa. We also interpret small integers such as 1, 2, 3 etc. as elements
in F2t . For example if we think of F2t as F2[X ]/(f(X)), for some polynomial of
degree t, then the integer 3 can be interpreted as x+ 1.

As before we assume a garbled table indexed by the external values, c1 and c2,
and each entry corresponds to the value being output, on input of the values kb1

1
and kb2

2 where bi = π−1
i (ci). We set the rows of the gate table to be numbered

3 This allows for possible extensions of the GRR method, and in the full version we
detail another optimisation method, which we call Garbled Table Reduction (GTR),
which reduces the size for the garbled tables needed to represent odd 2-to-1 gates
by 1/3, and the size of tables of even 2-to-1 gates by 1/2.
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1, . . . , 4, and therefore set r = 2c1 + c2 + 1 to be the row number of table entry
(c1, c2). We define the value used to mask this entry as

Kr||Mr = KDFt+1(kb1
1 , k

b2
2 , s) (1)

where s = Gid‖c1‖c2, Kr is a bit string of length t bits and Mr is a single bit
used to mask the external value of the output. We use a different method for
optimising odd and even gates. The truth table of each gate, and therefore also
the information whether the gate is odd or even, is known to the circuit evaluator.
Therefore it can compute each gate according to the right method. (The only
information hidden from the evaluator is the values passing on intermediate wires
of the circuit.)

5.1 Odd 2-to-1 Gates

Suppose we are implementing an OR-gate, where the external values of c1 = 0
and c2 = 0 correspond to the real input values (0, 0), the other cases will follow
immediately from the following. This means that the values r = 2, 3 and 4
should evaluate to the same output value k1

3 , whilst r = 1 should evaluate to the
output value k0

3 . We first define over F2t a polynomial P (X) of degree two, by
interpolating the polynomial which intersects the three points (2,K2), (3,K3)
and (4,K4), where each Kr value was defined according to equation (1). (This
is the value which in the other constructions was used to mask entry r of the
table.) The garbled output value k1

3 is defined to be k1
3 = P (0). We also compute

K5 = P (5) and K6 = P (6). We then define a second polynomial Q(X), also of
degree two, by interpolating the polynomial which intersects the three points
(1,K1), (5,K5) and (6,K6), where K1 was defined according to equation (1).
The garbled output value k0

3 is now defined by k0
3 = Q(0). The garbled table is

replaced by the two values (K5,K6). In addition, for each of the four original
rows, the external value for the output wire in the rth row is encrypted using
the bit Mr, defined in equation (1). The total amount of data sent for the gate
is therefore 2t+ 4 bits.

Player P2 then, given two key values kb1
1 and kb2

2 plus two external values c1
and c2, computes, using equation (1) the value of Kr and Mr for r = 2c1+c2+1.
Recall that the evaluator knows r but not b1 or b2. It then uses the two supplied
values of K5 and K6 to interpolate the polynomial passing through the points
(r,Kr), (5,K5) and (6,K6). The result is either Q(X) or P (X), depending on
whether r = 1 or not. Player P2 then recovers the associated secret value kb3

3 , by
evaluating the polynomial at the point X = 0. Using Mr the evaluator can also
decrypt the encryption of the external value of the output wire and so obtains
c3. Hence the evaluator recovers the correct value of the output wire.

5.2 Even 2-to-1 Gates

The only non-trivial even 2-to-1 gates are the XOR and NXOR gate, since all
other gates can be replaced by wires. Again let us assume the external input
values c1 = 0 and c2 = 0 correspond to the real input values (0, 0), and assume
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we are dealing with a XOR gate. Then the entries 1 and 4 in the standard garbled
table will correspond to the same output key, namely kπ−1

3 (0)
3 . Any other case

will follow from the following description.
Player P1 first creates a linear polynomial P (X) over F2t which interpolates

the two points (1,K1) and (4,K4). The value of kπ−1
3 (0)

3 is defined to be equal
to P (0). If the external value of this output value is 0 then we store P (5) into
the first row of the new table of this gate, otherwise we store P (5) as the second
entry. Then P1 creates another linear polynomial Q(X) which interpolates the

two points (2,K2) and (3,K3). The value of kπ−1
3 (1)

3 is then defined to be Q(0),
and the value Q(5) is stored in the remaining row of our new table. The external
values of the output wires are now encrypted and stored, using the Mr values
as before as a seperate sub-table of 4 bits in length. Thus, the total amount of
data required to represent the gate is 2t+ 4 bits.

Player P2 given two key values kb1
1 and kb2

2 plus two external values c1 and
c2, computes the value of Kr and Mr. Using Mr it can determine the external
value of the output wire. If this external value is zero then using the first entry
of our garbled table and the value of Kr, the evaluator recovers P (X) and hence

P (0) = k
π−1
3 (0)

3 . If the external value is one then using the second entry of the

table and the value Kr, the evaluator recovers Q(X) and hence Q(0) = k
π−1
3 (1)

3 .

Security: We sketch why the above optimisations maintain security. Given a
pair of garbled values of the input wires, P2 can compute a garbled output
value, but cannot distinguish the other garbled output value from random. This
is because that other garbled value is defined using a linear combination with a
value which is unknown to P2. This fact can be used in a, somewhat modified,
security proof in the spirit of the proof of Yao’s protocol in [21].

6 Some Experimental Results

We now present some experimental results. In our results we separate out pre-
computation time, i.e., generating the required garbled circuits, from the rest
of the computation. This is because it depends on the application whether one
should consider this time as part of the computation time or not.

There are two major conclusions of our experiments. Firstly, assuming the
KDF is correlation robust then the GRR optimisation produces the most ef-
ficient implementation. Secondly we conclude that rather large circuits can be
practically evaluated using the methods described. Thus secure two-party com-
putation has become more of a reality than one might previously have thought.

Example 1 – Evaluation a Simple Circuit: First we present results for a
simple circuit, where we took the circuit for which each of P1 and P2’s input is
a 32-bit integer. The output for P2 should be the single bit resulting from the
application of the comparison operator on the inputs. The output for P1 will be
a six bit integer resulting from the scalar product of the bits of the two inputs,
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Table 1. Experimental Results For Example 1 (Times are in seconds)

Input No. % XOR Precomp Send OT Calc Total Total
Adv. Enc. Method Gates Gates Time Time Time Time Time KBytes
Semi- Base 251 11 0 0 2 0 2 46
Honest PRF-SS 537 55 0 0 1 0 1 34

CoR-GRR 537 55 0 0 1 0 1 22
ROM-GRR 537 55 0 0 1 0 1 22

Covert Indep. Base 419 38 7 1 4 6 18 1188
Inputs PRF-SS 705 61 8 0 2 7 17 969

CoR-GRR 705 61 6 1 3 5 15 682
ROM-GRR 705 61 1 1 2 0 4 629

Covert Random Base 1247 79 9 2 4 7 22 2275
Comb. PRF-SS 1535 82 9 1 3 7 20 1646

CoR-GRR 1555 82 7 1 3 5 16 682
ROM-GRR 1555 82 1 1 3 0 5 629

Malic. Indep. Base 1571 83 171 80 47 54 352 180599
Inputs PRF-SS 1857 85 175 79 39 67 360 173942

CoR-GRR 1857 85 147 78 37 39 301 164323
ROM-GRR 1857 85 141 71 37 38 287 161741

Malic. Random Base 3029 89 163 75 19 64 321 167276
Comb. PRF-SS 2799 90 161 74 16 69 320 158904

CoR-GRR 2781 90 117 75 16 39 247 140265
ROM-GRR 2802 90 117 69 16 37 239 137609

i.e. the number of ones in the string obtained from forming the bit-wise “and”
of the two strings.

Applying the Fairplay compiler to this functionality we obtain a circuit with
689 gates. We produce two circuits from this output; the first, denoted C2,3, is
to allow comparison with the existing state of the art, namely the methods of
[22]. This is a circuit which uses 2-to-1 and 3-to-1 gates and has 245 gates. The
second circuit we use, denoted Cxor, replaces, via the techniques of Section 3, all
complex gates with 2-to-1 gates, and tries to minimise the number of non-XOR
gates in the circuit. This circut has 531 gates, 240 of which are non-XOR gates.
An extra six gates are needed in each circuit so as to encode P1’s for tranmission
back to P1, without P2 learning the value.

The above circuit sizes are purely to implement the functionality, they do
not include the extra wires and gates required to transmit P1’s output back
to P1 (for details of how this is done see the full version), nor do they include
the extension of the circuit to cope with P2’s input in the case of Covert and
Malicious adversaries. (We refer to the two methods for encoding P2’s input as
the independent inputs and the random combinations methods. For the details of
these methods see [20] or the full version. These methods add a set of XOR gates
to the circuit, which transform P2’s inputs using a random linear encoding.) The
sizes of the extended circuits, and the resulting run-times are given in Table 1,
which measures the total elapsed wall times in seconds for the various cases.
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The calculations were performed on two machines with Intel Core 2 Duo’s
running at 3.0 GHz, with 4GB of RAM connected by a 1GB ethernet. The hash
function H() used in the protocol was implemented as SHA-256.

The column of “Total KBytes” contains the total number of kilobytes of data
which were transferred during the run of the protocol. The column “Method”
details the type of computation used, as follows:

– Base: Denotes the optimisations proposed in [22], extended to the case of
Covert and Honest adversaries, which we use for comparison purposes, as
our baseline implementation. This uses the C2,3 circuit mentioned above,
the KDF which is secure in the standard model, and the OT of Hazay-
Lindell [15] as opposed to that of Peikert et al. [27].

– PRF-SS: This denotes using the secret sharing based method of Section 5,
to reduce the size of the garbled tables. For this the KDF is assumed to be
a PRF, but not correlation robust.

– CoR-GRR: This denotes an implementation which is only secure assuming
the KDF is correlation robust. It uses the free XOR trick and the method of
Garbled Row Reduction, from Section 4, to reduce the size of the remaining
garbled tables.

– ROM-GRR: As above for CoR-GRR but all hash functions used are modelled
as random oracles. This means we can implement our KDF via a single hash
function call, based on the method described in Footnote 2.

The column denoted “No. of gates” describes the number of gates, and the
percentage of XOR gates, in the extended circuit (which transfers P1’s outputs
and applies the extension described in the full version, encoding P2’s input).

For the Covert and Malicious cases the “Input Enc.” column denotes whether
we use the Independent Inputs technique or the Random Combinations technique
for the extended circuit construction. See the full version for details. From the
table we can deduce the following conclusions:

– The running time in the semi-honest setting is about 10-20 times faster than
in the covert setting, which is in turn about 15-20 times faster than in the
malicious setting.

– A lot of the extra data needed to be transmitted in the Malicious case is
related to the large number of commitments and decommitments which need
to be transmitted. Thus our optimisation techniques are less effective in
the Malicious case. This points to a clear direction for future research in
optimising the Malicious case.

– If one is not willing to assume that the KDF is correlation robust we see
that using our technique based on secret sharing can reduce the amount of
data being transmitted, compared to the base scheme, without increasing
the computational cost.

– In all cases we see that the correlation robust variant using Garbled-Row-
Reduction is the most efficient variant. The extra efficiency comes from the
free XOR’s which reduce both the number of encryption/decryptions which
need to be performed and also the amount of data needing to be transmitted.
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– Note that if we assume the random oracle model, and so could implement our
KDF via a single hash function call then for Covert adversaries the protocols
run significantly faster. That this does not apply as much to the Malicious
case is due to the fact that most of the time in the Malicious case is spent
with creating, sending and verifying the various commitments.

We pause to compare our two optimisations with the optimisation in bandwidth
suggested in [13]. In our system P1, the circuit constructor, sends commitments
to all circuits that it constructs and to its own inputs, and a random subset
of these committed values are checked by P2. In [13] it is suggested that P1
commits to a random seed, and uses this to generate the circuit. Then only
the commitment to this seed, and eventually its decommitment, need to be
transmitted. This means that P2 needs to compute the circuit given the seed.
Whilst this optimisation clearly significantly reduces the consumed bandwidth, it
actually leads to a significant increase in the time needed to perform the protocol.
To see this consider our Covert experiments in Table 1. The optimisation in [13]
would reduce practically to zero, the entry for the “Send Time” column, but P2
would now need to recompute almost all of the calculations in the “Precomp
Time” column. Thus the technique of [13] is only to be compared to ours in the
situation where bandwidth is very expensive and CPU time is very cheap.

Before passing onto our larger example we note the following. If we let p
denote the proportion of XOR gates within a circuit, and we let N denote the
amount of data needed to be sent per circuit in the standard Yao construction,
then the average amount of data needed to be sent per circuit gate when using
the free XOR gates and GRR methods is 3/4 · (1 − p) · N . Whereas if we do
not use the free XOR gate method and instead use the method based on secret
sharing, this value becomes N/2. Hence, if we are willing to assume correlation
robust KDFs, then the method which uses secret sharing and does not use the
free XOR method, will be more efficient as long as the fraction of XOR gates, p,
is smaller than 1/3. However as can be seen from the column entitled “% XOR
Gates”, this proportion is generally much larger than 1/3, especially in the case
of Covert and Malicious adversaries where we have had to extend the circuit
by a large linear component. This expansion is performed to cope with possible
adversarial behaviour related to P2’s input, see the full version for details. One
should note that these theoretical estimates of bandwidth are never achieved
fully in practice due to overheads in the underlying data transmission mechanism
and the fact that they assume a bit-oriented communication mechanism, whereas
practical communication is performed in bytes. Hence the saving we achieve in
gate transmission is about 5-10% less than one would predict purely by theory.

Example 2 - Evaluating AES: As our second example we created a circuit
which computes an AES encryption of a single 128-bit block with respect to
a 128-bit key. Here P1’s input is the secret key, and P2’s input is the message
block. We require that P2 learns the encryption of its message under P1’s secret
key, and that P1 learns nothing. Compiling such a circuit using the Fairplay
compiler, and applying various optimisations, resulted in a circuit, which we
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Table 2. Experimental Results for Example 2 (Again times are in seconds)

Input No. % XOR Precomp Send OT Calc Total Total
Adv. Enc. Method Gates Gates Time Time Time Time Time KBytes
Semi- Base 28216 56 5 2 4 3 14 3162
Honest PRF-SS 33880 66 5 1 3 3 12 1752

CoR-GRR 33880 66 2 1 2 2 7 503
ROM-GRR 33880 66 1 1 3 2 7 503

Covert Indep. Base 28600 56 96 47 18 45 206 51899
Inputs PRF-SS 34264 67 92 36 13 50 191 29380

CoR-GRR 34264 67 40 21 11 23 95 9078
ROM-GRR 34264 67 22 21 11 6 60 8942

Malic. Random Base 40253 69 1250 448 39 887 2624 987442
Comb. PRF-SS 45944 75 1184 392 34 829 2439 711729

CoR-GRR 45960 75 483 270 34 361 1148 406010
ROM-GRR 45881 75 453 276 35 350 1114 417907

denote by C(1)
2 , with 33880 gates, where each gate is a 2-to-1 gate. This circuit

was derived in a way to try to minimize the number of non-XOR gates. Again,
we stress, the above circuit size purely implements the AES functionality, it
does not include the extension of the circuit to cope with P2’s input in the case
of Covert and Malicious adversaries. Note that the key schedule takes up only
about 15% of the circuit, hence encrypting a sequence of message blocks as in
CBC-Mode encryption will scale almost linearly with respect to our data.

We repeated our experiments from above, but in Table 2 we only present the
times for the most efficient choice for the input encoding.

We conclude that performing the Yao protocol is certainly feasible on compli-
cated functionalities such as AES encryption. For the case of honest and covert
adversaries we again see that the computation and bandwidth consumed, when
we use correlation robust KDFs and the GRR method, greatly reduces in com-
parison to the base case. If one is not willing to assume correlation robust KDFs
(or use the ROM) then our secret sharing based optimisation greatly reduces
the bandwidth without affecting the run times. For the malicious case the im-
provement in the secret sharing based version is less pronounced due to the large
number of commitments which need to be transmitted and opened. This clearly
points to the place where future optimisation research needs to be performed,
namely in reducing the number of commitments needed in the situation of ma-
licious adversaries. However even without such future optimisation we note that
performance can be significantly reduced by taking advantage of the inherent
parallelism in the algorithm in the Malicious case (in which P1 generates many
commitments and P2 verifies a subset of them). For web service or cloud com-
puting applications, where server farms are common place, an improvement in
computational time by a factor around s1 could be expected.

We end by noting that many application domains of a secure evaluation
of AES, for example the one-time program example from [12], require only
security against semi-honest adversaries. Hence, such applications are already
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within the reach of practical realisation. Furthermore, this application requires
no computation of the OT or data to be sent. Thus the party generating the
one-time-program will take the time needed in our Precomp Time column, and
the evaluator (after querying the one-time-memory) will take the time needed
in the Calc Time column.
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Abstract. Multi-party secure computations are general important procedures to
compute any function while keeping the security of private inputs. In this work
we ask whether preprocessing can allow low latency (that is, small round) secure
multi-party protocols that are universally-composable (UC). In particular, we al-
low any polynomial time preprocessing as long as it is independent of the exact
circuit and actual inputs of the specific instance problem to solve, with only a
bound k on the number of gates in the circuits known.

To address the question, we first define the model of “Multi-Party Computa-
tion on Encrypted Data” (MP-CED), implicitly described in [FH96, JJ00, CDN01,
DN03]. In this model, computing parties establish a threshold public key in a pre-
processing stage, and only then private data, encrypted under the shared public key,
is revealed. The computing parties then get the computational circuit they agree
upon and evaluate the circuit on the encrypted data. The MP-CED model is inter-
esting since it is well suited for modern computing environments, where many
repeated computations on overlapping data are performed.

We present two different round-efficient protocols in this model:

– The first protocol generates k garbled gates in the preprocessing stage and
requires only two (online) rounds.

– The second protocol generates a garbled universal circuit of size O(k log k)
in the preprocessing stage, and requires only one (online) round (i.e., an
obvious lower bound), and therefore it can run asynchronously.

Both protocols are secure against an active, static adversary controlling any num-
ber of parties. When the fraction of parties the adversary can corrupt is less than
half, the adversary cannot force the protocols to abort.

The MP-CED model is closely related to the general Multi-Party Computation
(MPC) model and, in fact, both can be reduced to each other. The first (resp. sec-
ond) protocol above naturally gives protocols for three-round (resp. two-round)
universally composable MPC secure against active, static adversary controlling
any number of parties (with preprocessing).
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1 Introduction

Secure Multi-party Computation (MPC). Protocols for MPC enable a set of parties
to correctly evaluate a function such that no information about the private inputs of the
parties is revealed, beyond what is leaked by the output of the function. This notion was
first presented by Yao [Y86] for the two-party case, and by Goldreich et al. [GMW87]
for the multi-party case. However, implementations for MPC are notoriously ineffi-
cient. Many protocols implementing them have delays associated with the depth of the
circuit and even constant round protocols produce very long delays. The question that
we want to settle in this work is whether one can use preprocessing computation in order
to “be ready” once the inputs and the actual circuit (problem) to compute on are given.
Note that the world of computing is transforming into “cloud services” where parties
can “rent” computational resources. Thus, it may make sense to perform a lengthy pre-
processing in the background, with no specific input and problem to solve in mind, just
as a preparation. To this end cloud resources can be employed on behalf of users, and
massive computations and communication can be performed. Then in the online stage
once the input is given and the circuit determined, it can be performed much faster given
the preprocessing. As long as at least one of the servers in the cloud is not corrupted,
the correctness and privacy of the online stage computation is guaranteed.

We consider the following variation on secure multi-party computation, called multi-
party computing with encrypted data (MP-CED): (1) The computing parties publish a
shared public key, and hold shares of the matching private key. (2) The parties also know
some bound on the circuit size that they will be required to compute securely. The par-
ties then perform a preprocessing stage. For this stage too, we may try to minimize the
parties’ work and computation rounds, but this is not the main goal, which is the effi-
ciency of the on-line stage. (3) The input distribution is a database of encrypted data that
can be published by many parties (not necessarily those taking part in the computation);
i.e., think about the parties as a service (like the census bureau) computing on behalf
of a larger population. (4) The concrete computation circuit (or circuits) is given, and
the input to use from the database (their indices in the database) are determined. Then
and only then (5) the parties are engaged in a short computation to achieve the task and
produce the output while protecting the private data. Note that the input database may
be reused for many computations.

We remark that our model is somewhat related to a multi-party extension of the
model by Rivest, Adleman and Dertouzos [RAD78]. They put forth a scenario for secure
computation over database of encrypted data, called Computing with Encrypted Data
(CED). This model is highly attractive since it represents the case where a database is
first collected and maintained and only later a computation on it is decided upon and
executed (e.g., data mining and statistical database computation done over the encrypted
database). We discuss the encrypted data model and the multi-party version here, and in
fact show that MP-CED and MPC can be reduced to each other (shown in Section 3.3).

1.1 Motivation

We consider protocols in the universal composability (UC) framework introduced by
Canetti [C01]. UC secure protocols remain secure even when executed concurrently
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with arbitrary other protocols running in some larger network, and can be used as sub-
routines of larger protocols in a modular fashion.

Round-Efficient Protocols with Preprocessing. Round complexity is an important
criterion for the efficiency of an MPC protocol. A long line of work, including
[BMR90, IK00, GIKR01, DI05, DI06, DIK+08], focused on reducing both the round
complexity and communication complexity.

Also, it is known that UC secure computation of general functions is not possible
in the plain model in the case of honest minority. In particular, UC secure two-party
computation of a wide class of functionalities was ruled out by [CF01, CKL03]. To
circumvent these impossibility results, it is common to assume some pre-computation
setup, and the most common assumption is that a common reference string (CRS) is
made available to the parties before the computation. Canetti et al. [CLOS02] showed
that (under suitable cryptographic assumptions) a CRS suffices for UC secure MPC of
any well-formed functionality.

In our work, we consider stronger relaxation on the setup, called general preprocess-
ing [DI05]1, in which the parties perform some work as long as it is independent of the
inputs and the circuit for which the actual computation is to be done later. The main
motivation for this model is to reduce the amount of work during the execution of the
protocol beyond a preprocessing phase.

Considering the two aspects above, we ask the following natural question:

Allowing any polynomial time preprocessing (in some input parameter) before
the circuit (whose size is bound by the same input parameter) and the inputs
are known, is there a very small constant round protocol?

1.2 Our Results

We address the aforementioned question affirmatively by constructing two different
round-efficient protocols for MP-CED, which we call P1 and P2. Both protocols can be
naturally transformed into round-efficient protocols for MPC (c.f. Section 3.3). Each
protocol has its own advantage depending on the following parameters:

1. round complexity in the online stage (our major concern),
2. round complexity in the preprocessing stage, and
3. the number of gates constructed throughout the protocol.

In terms of online round complexity, protocol P1 is “two rounds” whereas that of pro-
tocol P2 is “one round” (which is optimal, since even non-secure computation need to
collect the data and it takes one round). There are some cases, however, in which the
preprocessing round complexity of P1 is better, under some efficiency considerations.
We use general constant-round MPC protocols [IPS08] for the preprocessing stage in
P2, whereas in P1 we can use the protocol given in Appendix A, which requires exactly
2n rounds. When n is small enough, preprocessing in P1 can be more round-efficient

1 Preprocessing in [DI05] is independent only of the inputs (it depends on the circuit to be
evaluated), whereas we require preprocessing to be independent both of the circuit and of the
inputs.
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(when n is large, a general MPC protocol can be used in P1, too). Also, the number of
gates constructed in P2 is larger than that in P1. To evaluate a circuit with up to k gates,
P1 constructs k garbled gates in the preprocessing stage, as explained below. In con-
trast, P2 generates a universal circuit [V76] in the preprocessing stage, which is later
used (in the online stage) to evaluate a given circuit. The smallest known universal cir-
cuit that can evaluate a circuit with k gates has O(k log k) gates [KS08]. We overview
the two protocols in the following.

First Protocol (P1). In a big picture, we follow the framework of Yao’s garbled
circuit technique. However, the main difference is that, in our protocol, garbling is done
on the individual gate level so that this procedure can be executed in the preprocessing
level independently of the circuit to be given and computed later. In the online stage,
construction of wires between gates according to the given circuit is performed.

– In the preprocessing stage, the parties generate a ‘garbled’ truth table for each in-
dividual gate. Truth tables are for NAND gates, and they have four rows and three
columns – left-input, right-input, and output. Each row is randomly shuffled, and
each element is an encryption of Boolean value. We emphasize that no party knows
anything more than the fact that it’s a randomly shuffled encrypted table for NAND.

In addition, a fresh pair of public key and (encrypted) private key is generated
for each row. This key is used for constructing encrypted wiring information in the
online stage, when the circuit is given.

– In the online stage, given the encrypted data and a circuit, the computing parties
‘connect’ truth tables by adding wiring information. The wiring information tells,
given two tables Tpred, Tsucc according to the topology of the circuit, which row
of Tpred’s output column is equal to which row of Tsucc’s input column. We note
that this information should be carefully revealed; otherwise, the adversary may try
computing different rows of the truth tables using the wirings, and may learn more
than is allowed. In fact, during the computation (online stage), exactly one row’s
wirings for each table should be revealed.

To enable such wirings we introduce Multi-Party Conditional Oblivious Decryp-
tion Exposure (M-CODE) (in Section 2), which is a multi-party extension to the
CODE functionality, introduced in [CEJ+07] for the two party case. M-CODE as-
sumes a group of parties share a secret key x of a public key y. Three ciphertexts
cout, cin, ckey — all encrypted under y — and a new public key z are given as input.
For � ∈ {out, in, key}, let m� be the plaintext encrypted in c�. If mout equals min,
M-CODE outputsEz(mkey). Otherwise, M-CODE chooses a random value r and out-
puts Ez(r). The computing parties use M-CODE such that, for each row of a truth
table, the three ciphertexts of the M-CODE are (1) output value of the previous table
(2) the input value of this row and (3) the secret key for this row. We refer the reader
to Section 3.1 for more details.

With two round implementation of M-CODE for ElGamal encryption, we obtain
a two-round protocol for MP-CED and a three-round protocol for MPC.

Theorem 1. Assuming the DDH assumption holds, protocol P1 is a two-round UC
secure protocol for MP-CED in the Fzk hybrid — and, thereby three-round UC secure
protocol for MPC in the Fzk hybrid in the general preprocessing model — against an
active and static adversary as long as at most t < n computing parties are corrupted.
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The protocols manipulate linear number of gates in the circuit size. Furthermore, if
t < n/2 parties are corrupted, P1 is robust against abort.2

Second Protocol (P2). Protocol P2 follows Yao’s garbled technique more closely than
P1. However, the circuit that is to be garbled is a universal circuit [V76, KS08] to main-
tain independence of the circuit to be given. Optimal round complexity in the online
stage is achieved by putting a simple constraint on the input-layer labels in the garbled
circuit and by employing the multiplicative homomorphism of ElGamal encryption. As
in the first protocol, a group of parties share a secret key x of a public key y.

– In the preprocessing stage, the parties generate a garbled circuit [Y86] of a universal
circuit CU , with some special restrictions on keys of input wires. In the garbled
circuitCU , there are two keyswi

0 andwi
1 for each wire i, wherewi

b corresponds to the
wire carrying bit b (see Section 3.2 for more detail). The special restriction on input
wires is that wi

1/w
i
0 = h for a random global value h unknown to any party. The two

keys can be constructed by picking wi
0 uniformly at random and letting wi

1 = h ·wi
0.

In addition to the garbled circuit of CU , the following encryptions are generated:
(1) the encryption Ey(h) and (2) Ey(wi

0) for each input wire i. Construction of a
garbled circuit along with aforementioned encryptions — i.e., Ey(h) and Ey(wi

0)’s
— can be performed using a constant-round UC secure protocols for general MPC

[KOS03, IPS08]. Input contribution of a bit 0 is done by Ey(h0), and for a bit 1,
re-encrypted Ey(h1) is used via homomorphism.

– In the online stage, for each input wire i where a bit b is the contributed input for the
wire, computing parties obtainwi

b. The encryptionEy(wi
b) can be obtained via homo-

morphism given the encrypted input ci = Ey(hb), givingEy(wi
0)·ci = Ey(wi

0h
b) =

Ey(wi
b), sincewi

1 = h·wi
0.Now parties obtains the keywi

b for each input wire i using
threshold decryption and can locally evaluate the garbled circuit. Note that wi

b does
not leak any information on b since it’s randomly distributed (with wi

1−b hidden).

Theorem 2. Assuming the DDH assumption holds, protocol P2 is a one-round UC
secure protocol for MP-CED in the Fzk hybrid – and, thereby two-round UC secure
protocol for MPC in the Fzk hybrid in the general preprocessing model – against an
active and static adversary as long as at most t < n computing parties are corrupted.
The protocol processes k log k gates where k is the circuit size. Furthermore, if t < n/2
parties are corrupted, P2 is robust against abort.

1.3 Related Work

Round Complexity. Beaver et al. [BMR90] showed the first MPC protocol that required
constant (but large) number of rounds, and Damgård and Ishai [DI05] presented the first
adaptively UC secure protocol that achieves two rounds in the (linear) preprocessing
model when the number of malicious parties t < n/5 and some higher constant rounds
when t < n/2. Recently, Ishai et al. constructed UC secure protocol with malicious
majority in the OT hybrid model running in (large) constant rounds [IPS08] (see Fig 1).

2 Instantiation of protocol P1 (in particular, key setup in the preprocessing) is parameterized by
t. Therefore protocol P1 is not a ’best-of-both-worlds’ protocol [IKLP06]. This is true of P2,
too.
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MPC circuit rounds security �corr
[KOS03] B O(1) St t < n
[DI05] B 2 Ad t < n/5

[DI05, DI06] B O(1) Ad t < n/2
[DIK+08] B O(1) Ad t < n/2
[IPS08] B O(1) Ad t < n
P1 B 3 St t < n
P2 B 2 St t < n

MP-CED circuit rounds security �corr
[CDN01] Ar O(d) SA, St t < n/2

[JJ00] B O(n + d) SA, St t < n/2
[DN03] Ar O(d) UC, Ad t < n/2
P1 B 2 UC, St t < n
P2 B 1 UC, St t < n

�corr = number of corrupted parties, B = Boolean, Ar = Arithmetic, St = static, Ad = adaptive,
SA = stand-alone

Fig. 1. UC Secure Constant-Round MPC Protocols (Left) and MP-CED Protocols (Right).
We denote by d the depth of a given circuit, by n the number of parties, and by t the number
of corrupted parties. P1 and P2 denote the protocols proposed here. Here the column ’rounds’
means the number of rounds in the online stage.

For the two-party setting, which is a special case of MPC, Katz and Ostrovsky [KO04]
showed that it’s impossible to construct a secure protocol running in four rounds us-
ing enhanced trapdoor permutation (eTDP) or homomorphic encryption in a black-box
manner in the plain model, and they constructed a five-round protocol. To overcome this
lower bound, Horvitz and Katz [HK07] used CRS to construct a UC secure two-party
protocol in two rounds. Nielsen and Orlandi [NO09] gave a two party protocol using a
cut-and-choose approach. In a big picture, their idea is somewhat similar to ours: after
many garbled gates are generated, they are connected to each other according to the
circuit to be evaluated.

In the (non-UC) stand-alone setting, the work of [IK00, AIK05] gave a general
non-interactive reduction of any n-party functionality computed by a polynomial size
Boolean circuit into a (possibly randomized) functionality of degree-3 over GF (2).
Combining this reduction with any secure protocol with malicious majority (for exam-
ple, [GMW87]) leads to round-efficient protocols in the stand-alone setting.

MP-CED. Some nontrivial instantiations for CED were shown, originating with Sander
et al. [SYY99], who gave a protocol for circuits in NC1. Beaver [B00] extended this
result to accommodate any function in NLOGSPACE [BL96]. Recently, Gentry pre-
sented a construction for any polynomial size circuit by showing doubly-homomorphic
encryption scheme from ideal lattices [G09], however it is not yet clear if this can give
efficient protocols for MP-CED (see discussion in Section 3.3).

MP-CED was also considered by Franklin and Haber [FH96] and the subsequent
works [JJ00, CDN01, DN03]. In their works, after a threshold encryption key is es-
tablished, each party broadcasts the encryption of its input, and the parties evaluate
the circuit on the encrypted data. However, they do not explicitly treat the setting as
a unique model for MP-CED, with a specific setup state that is independent of the in-
puts and the circuits to be computed, and do not consider input separation – inputs can
be contributed by parties that do not take part in the computation. Note that all these
previous works in the model dealt with the two party case, which we extend herein to
the multi-party case.
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The protocol given by Cramer et al. [CDN01] computes an arithmetic circuit and
achieves security in the case of honest majority, but the number of rounds is linear in
the depth of the circuit. A UC adaptively secure protocol with the same round complex-
ity was given by [DN03]. Jackobson and Juels [JJ00] use mix-and-match approach to
compute on encrypted data, but their approach requires even more rounds (linear in the
sum of the depth of the circuit and the number of parties). Figure 1 lists these previous
works, in some relations to our protocols (while concentrating on on-line rounds, and
omitting some of the advantages our results has beyond the table).

2 Preliminaries

For any integer t, let [t] = {0, 1, . . . , t − 1}. Let k be a security parameter. We choose
a cyclic group Gq

g of order q ≈ 2k with a generator g where the DDH problem [DH76]
is hard. For example, Gq

g can be a subgroup of order q of a multiplicative group Z∗
p for

a safe prime p = 2q + 1, i.e., Gq
g = {g0, g1, . . . , gq−1} (mod p). We assume Gq

g is
known in advance.

ElGamal Encryption. ElGamal encryption [E85] is semantically secure under the
DDH assumption over Gq

g [TY98]. The key generation algorithm generates a public/
secret key pair (y, x) where x ∈R [q] and y = gx. Encryption of a message m ∈ Gq

g

under a public key y, denoted by Ey(m), is (gr,myr) where r ∈R [q]. Decryption of a
ciphertext c = (α, β) with the secret key x, denoted by Dx(c), is β/αx.

Homomorphism. Multiplication of two ciphertexts Ey(m1) = (gr1 ,m1y
r1) and

Ey(m2) = (gr2 ,m2y
r2) is defined as (gr1+r2 ,m1m2y

r1+r2), which shows the ho-
momorphism of ElGamal encryption (i.e., Ey(m1) · Ey(m2) = Ey(m1 ·m2)). In ad-
dition, encryption keys are also homomorphic in the sense that given key pairs {(yi =
gxi , xi)}i, the pair (

∏
i yi,
∑

i xi) is a valid key pair. When two ciphertexts encrypt the
same message, we denote c1 ≡ c2.

Zero-Knowledge Proofs of Knowledge (ZK-PoK). A proof of knowledge is a proof
for a relation R, in which the prover convinces the verifier that an instance is in the
language, and also that the prover knows a witness for this instance. We will use
standard notation to denote proofs of knowledge related to discrete log. For example,
PK{b : a = gb} denotes a proof of knowledge where the prover convinces the verifier
that she knows the value of b, such that a = gb, when a is known to both.

In the common reference string (CRS) model, we can use non-interactive zero-
knowledge proofs (NIZK) due to De Santis et al. [SCO+01] (see the discussion in
[CLOS02, Section 6]) which is UC-secure [C01]. In the random oracle model (ROM),
the above proof systems can be efficient NIZK using the standard Fiat-Shamir technique
[FS86] combined with OR proofs of Σ-protocols [CDS94].

Secret Sharing [S79, F87]. A secret sharing scheme allows a secret s ∈ [q] to be shared
among n parties, such that a threshold of t + 1 parties can recover the secret, whereas
any smaller set of parties can not learn anything about the secret. In Shamir’s secret
sharing scheme, the shares are values of a degree-t polynomial, and the secret is the
free coefficient of the polynomial.
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We show below how the parties can share and recover the secret s. Moreover, the
parties may choose to recover ds for some d ∈ Gq

g , or an ElGamal encryption of ds

(without learning anything about the secret s).

– Sharing: A dealer chooses at random a degree t polynomialQ(x) := s+a1x+ · · ·+
atx

t, where the free coefficient is the secret s. The share of party Pi is si = Q(i).
– Recovering s: Let T be a set of t+ 1 parties. They evaluateQ′(0) =

∑
i∈T siLi(0)

to recover s, where Li is a Lagrangian on the points in T .3

– Recovering an exponentiation ds: Similar to above, the parties can evaluate ds =
dQ′(0) = d

∑
i∈T siLi(0) =

∏
i∈T d

siLi(0), using only {dsi}i∈T .
– Recovering Ey(ds): Using multiplicative homomorphism of ElGamal, the parties

evaluate Ey(ds) = Ey(dQ′(0)) =
∏

i∈T Ey(dsiLi(0)) =
∏

i∈T Ey(dsi )Li(0), using
only {Ey(dsi)}i∈T .

Multi-party Conditional Oblivious Decryption Exposure (M-CODE). We introduce
Multi-Party Conditional Oblivious Decryption Exposure (M-CODE). M-CODE assumes
a group of parties share a secret key x of a public key y. Three ciphertexts cout, cin, ckey

— all encrypted under y — and a new public key z are given as input. For � ∈
{out, in, key}, let m� be the plaintext encrypted in c�. If mout equals min, M-CODE

outputsEz(mkey). Otherwise, M-CODE chooses a random value r and outputsEz(r). A
variant of this functionality for the two party case was initially introduced by [CEJ+07].
The intuitive idea is to generate a ciphertext that encrypts mkey multiplied by (mout/
min)r for a random r. Ifmin = mout, then the output would bemkey . We assume party
Pi has xi, all the parties know cout, cin, ckey, z, (y, y1 = gx1 , . . . , yn = gxn), and let
cout = Ey(mout) = (α, β),cin = Ey(min) = (γ, δ), ckey = Ey(mkey) = (λ, μ). The
protocol for M-CODE proceeds as follows:

1. Each party Pi chooses ei ∈R [q], and computes εi = (α/γ)ei , ζi = (β/δ)ei , πi =
PK{ei : εi = (α/γ)ei , and ζi = (β/δ)ei},, and broadcasts (εi, ζi, πi).

2. Let ε =
∏

i∈S1
εi and ζ =

∏
i∈S1

ζi where S1 is the set of parties which sent
valid messages. Each party Pi chooses ri randomly and computes di = (di1, di2) =
Ez ((ελ)xi) and ψi = PK

{
(ri, xi) : di1 = gri , di2 = zri(ελ)xi , yi = gxi

}
,

and broadcasts (di, ψi).
3. Let S2 be the set of parties that sent valid messages in steps 1 & 2. If |S2| ≤ t,

then the protocol aborts. Each party Pi, using the homomorphic multiplication, com-
putes d = (d1, d2) = Ez ((ελ)x) =

∏
j∈S2

d
Lj(0)
j where Lj(·) is a Lagrangian

on the indices in S2. Pi uses homomorphic operations to compute Ez ( ˜mkey) =
(1/d1, ζμ/d2), which is

Ez (ζμ/(ελ)x) = Ez

((β/αx

δ/γx

)e
· (μ/λx)

)
= Ez

((mout

min

)e
·mkey

)
,

where e =
∑

i∈S1
ei.

3 Lagrangian Li on the points in T is a degree t polynomial such that Li(x) = 1 if x = i
and Li(x) = 0 if x ∈ T and x �= i. The polynomial Q′(x) =

∑
i∈T siLi(x) is a degree t

polynomial that goes through the points (i, si)i∈T , and thus must be Q(x).
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3 Multi-party Computing with Encrypted Data

We assume the circuit C of interest is normalized: all intermediate gates are NAND
gates, and output gates are IDENTITY gates4. We can easily attain this circuit by adding
another layer of IDENTITY gates on top of a circuit that consists of NAND gates.

3.1 First Protocol (P1)

In the first protocol, called P1, each gate is garbled, and then the computing parties
‘connect’ gates by adding wiring information using M-CODE.

Preprocessing Stage. The first step is to establish a global public key y for ElGamal
encryption. The computing parties have shares of the corresponding secret key x. Once
the public key is established, the next step is to generate truth tables for individual gates.
The columns of input, output, and intermediate gates differ slightly, as can be seen in
Figure 2 which shows the structure of truth tables.

1. Input and Output. These are encrypted with the global public key y.
2. Placeholders for the wiring information. This connects a row of the truth table to

matching rows in successor gates.
3. The columns PK and SK contain a random ElGamal key pair, where the private key

is encrypted under the global public key y (and the wiring information is encrypted
using the secret keys in SK).

4. For output gates, ciphertexts in column Final encrypt the same plaintexts as cipher-
texts in column In.

During the preprocessing stage, the parties can generate polynomial number of gar-
bled gates, that can later be used for evaluating circuits. Therefore it suffices to know a
bound on the sizes of circuits to be evaluated later. Preprocessing can be done in con-
stant number of round using general MPC protocols [KOS03, IPS08]. If the number
of computing parties is small, it can be done explicitly in 2n rounds, where n is the
number of computing parties, using the protocol in Appendix A.

Input contribution is performed by publishing a ciphertext c = (c1, c2) = Ey(gb)
for an input b ∈ {0, 1}. This can be done securely by adding PK

{
r : (c1 = gr, c2 =

yr) or (c1 = gr, c2 = gyr)
}
.

Online Stage: Generation of Wires Between Garbled Gates. In Figure 2, Gi is the
left predecessor of Gk. The connection between the two gates should be established
through some “wiring” such that during the computation the output of Gi can be prop-
agated to the left input of Gk. So, rows of Ti with output value b ∈ {0, 1} should be
connected to rows of Tk with left input value b.

Requirements for Wiring. In our protocol, the following conditions are considered in
generating wires.

4 An IDENTITY gate has single input bit (wire) and output bit, and it copies the input bit value
to its output.
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T� In PK SK Final

1 E[1] pk�1 Ey(sk�1) Epk�1(g
1)

2 E[0] pk�2 Ey(sk�2) Epk�2(g
0)

Tk InL InR Out PKL SKL PKR SKR Wires[k→�]

1 E[1] E[1] E[0] pkk1L Ey(skk1L) pkk1R Ey(skk1R) Epkk1L·pkk1R(∗, sk�2)
2 E[1] E[0] E[1] pkk2L Ey(skk2L) pkk2R Ey(skk2R) Epkk2L·pkk2R(sk�1, ∗)
3 E[0] E[1] E[1] pkk3L Ey(skk3L) pkk3R Ey(skk3R) Epkk3L·pkk3R(sk�1, ∗)
4 E[0] E[0] E[1] pkk4L Ey(skk4L) pkk4R Ey(skk4R) Epkk4L·pkk4R(sk�1, ∗)

G�

Gk

Gi

Gj· · ·

�

���

�
�
�
��

���

Ti InL InR Out PKL SKL PKR SKR Wires[i→k]

1 · · · E[1] · · · Epki1(skk1L, skk2L, ∗, ∗)
2 · · · E[0] · · · Epki2(∗, ∗, skk3L, skk4L)
3 · · · E[1] · · · Epki3(skk1L, skk2L, ∗, ∗)
4 · · · E[1] · · · Epki4(skk1L, skk2L, ∗, ∗)

Tj Out Wires[j→k]

1 E[1] (skk1R, ∗, skk3R, ∗)

Fig. 2. Garbled Truth Tables for the Gates (Gi, Gj , Gk, G�). The topology of the gates is given
on the right. Gj is an input gate, G� is an output gate, and Gi, Gk are intermediate gates. Table Tx

is the truth table describing gate Gx. y is the global public key. Each row of an intermediate truth
table has two sets of (secret, public) keys, and contains the wiring information, “connecting” it to
the next gate, encrypted using these two keys. E[0] and E[1] are Ey(g0) and Ey(g1) respectively.
In table Ti, pki1 = pki1L ·pki1R, and pki2, . . . , pki4 are defined similarly. In the Wires columns,
E(a, b, c, d) denotes concatenation of E(a), . . . , E(d).

– (Encrypting the Wiring Information.) The wiring information, except wirings con-
necting an input gate to an intermediate gate, should be encrypted. Public wiring
may help the (even semi-honest) adversary to learn more information than the out-
put of C. Therefore, it is encrypted with the public key stored in columns PKL and
PKR.

– (Conditional Exposure of Wiring Information.) For the computation to proceed, the
protocol should reveal the wiring information for the rows along the computational
path. In the beginning, wirings from input gates is public. Along the computational
path, on each gate, exactly one row should allow decryption of the wiring information.

– (Oblivious Generation of Wiring Information.) The wiring information are added to
garbled gates after they are built. It is essential that, even if the truth table is encrypted
and shuffled, the parties should still be able to add the wiring information.

Computation of a Circuit Using Wires. Let Ti[a][b] denote the element located at col-
umn a and row b in Ti. The column Wires contains wiring information, and we de-
note the column Wires from Ti to Tk by Wires[i→k]

5. Looking at the column Wires
alone, Wires(v) denotes the vth row of this column in the plaintext form. For exam-
ple, Wires[i→k](2) = (∗, ∗, skk3L, skk4L) in Figure 2. We also use Wire(v, w) to de-
note the wth element of Wires(v). If Wire[i→k](v, w) 
= ∗, it means that Ti[Out][v] ≡
Tk[In][w]. In Figure 2, for example, we have Wire[i→k](2, 3) 
= ∗ because Ti[Out][2] ≡
Tk[InL][3] ≡ E[0].

This wiring information helps the circuit computation to proceed correctly. The com-
putation proceeds in order from input gates to output gates. In Figure 2, for example, if

5 If Gi has another outgoing wire, say to Gm, Ti will have another column Wires[i→m].
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Connecting the Gates: Fill in Wires Columns.

– For every Wire[i→k](v, w) of an intermediate gate Ti, run M-CODE for cout = Ti[Out][v],
cin = Tk[In][w] and ckey = Tk[SK][w], with the key z = Ti[PKL][v] · Ti[PKR][v].

– For every Wire[j→k](v, w) of an input gate Tj , run M-CODE for cout = Tj [Out][v], cin =
Tk[In][w] and ckey = Tk[SK][w], with the trivial key z = g0.

Depending on the circuit topology, the subscript of a column may differ (e.g., InL, InR, or In).

Local Computation. Each party computes the output of C using the M-CODE transcripts on
the input gates.

Fig. 3. Online Stage of P1

row 2 of Ti and row 1 of Tj are on the computation path, then row 3 of Tk is also on
the computation path because w = 3 is the only row where Wire[i→k](2, w) 
= ∗ and
Wire[j→k](1, w) 
= ∗.
Constructing Wires. We implement each Wire[i→k](v, w) using a M-CODE transcript
for cout = Ti[Out][v], cin = Tk[In][w], ckey = Tk[SK][w], and z = Ti[PK][v]6. This
directly satisfies the requirements of encrypted wiring and oblivious wiring generation.
Conditional exposure is achieved by executing M-CODE protocols in the input layer
with a trivial public key z = 1, so that the wiring information in the input layer is
known to every party.

The description of P1 can be found in Figure 3. Running the online stage takes
two rounds. The communication complexity of P1 is O(nk|C|) (plus the NIZK, if we
assume the CRS case) where |C| is the size of the circuit.

3.2 Second Protocol (P2)

The idea of P2 is that in a preprocessing stage, the parties generate a garbled circuit,
using Yao’s technique, of a universal circuit. The garbled circuit has a restriction on
the keys of input wires, that allows the online computation to take only one round in
our model, as opposed to the two-round OT based approach of Yao. The preprocessing
stage can be done in constant number of rounds, using general MPC protocols [KOS03,
IPS08].

Preprocessing Stage: Garbling Universal Circuit. The first step is to establish a
global public key y for ElGamal encryption. The computing parties have shares of the
corresponding secret key x. In contrast to protocolP1, however, here, ElGamal encryp-
tion is used only for input layer.

Next, a garbled circuit for universal circuit is generated, using Yao’s garbled circuit
technique [Y82]. In the generation procedure, for each wire i, two random keys, wi

0
and wi

1 are generated. The key wi
0 (resp., wi

1) represents 0 (resp., 1) for wire i. For each
gate Gj , a truth table Tj is generated. In each table, a private key encryption (denoted

6 Depending on the circuit topology, if this is a left input or right input to the gate, the pair
(cin, ckey) may also be (Tb[InL][w], Tb[SKL][w]) or (Tb[InR][w], Tb[SKR][w]).
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(Ĕ

w
j
0
(wk

1 ))

T�

1 Ĕwk
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Fig. 4. Garbled Truth Tables for the Gates (Gi, Gj , Gk, G�). The topology of the gates is given
on the right. Gj is an input gate, G� is an output gate, and Gi, Gk are intermediate gates. Table
Tx is the truth table describing gate Gx. y is the global public key. Encryption Ĕ is a private key
encryption based on pseudorandom function with efficient verifiable range [LP09].

Ğ, Ĕ, D̆) with efficiently verifiable range (based on pseudorandom function) is used
[LP09]7. Figure 4 shows the structure of the garbled circuit.

– Recall that we assume all output gates are identity gates, with only one incoming
wire and only two rows in the corresponding truth table. Each row encrypts the
Boolean value represented by the corresponding wire, and the rows are randomly
shuffled. An example is given in Figure 4: in the first row of tableG�, the input value
is 1 (the key wk

1 represents 1), and it encrypts 1, which is the output value of this
row.

– For all other gates, each gate has two incoming wires and four rows. Each row en-
crypts a key for the outgoing wire, which represents the appropriate Boolean value
of NAND of the incoming wires’ values, and the rows are randomly shuffled. For
example, in Gk of Figure 4, the first row encrypts wk

0 , representation of 0 for wire
k, since NAND of the values that the keys of the incoming wires represent (i.e., the
value 1 represented by wi

1 in wire i, and the value 1 represented by wj
1 in wire j)

is 0.

To construct a secure protocol for MP-CED, we depart from the traditional Yao garbed
circuit technique, by giving restriction on input wires.

– A random element h ∈ Gq
g is chosen, which no party knows, and H = Ey(h) is

published. We emphasize thatH is generated once and for all. In other words, every
instance of garbled universal circuit can use the same H .

– For input wire j, two keys wj
0, w

j
1 ∈ Gq

g are randomly generated, conditioned on

wj
1 = h · wj

0. Only the encryption of the first key,W j
0 := Ey(wj

0) is published.

Since we garble a universal circuit, it suffices to know a bound on the sizes of circuits
to be evaluated later. A universal circuit of size O(k log k) can accept circuits of size k
as inputs [KS08].

Input contribution is performed such that for input b ∈ {0, 1}, a ciphertext c =
(c1, c2) = Ey(hb) is published.

7 Roughly speaking, in such an encryption scheme, given a ciphertext and a key, it is efficiently
verifiable whether the given ciphertext was encrypted under the given key. This helps comput-
ing parties to correctly compute the garbled circuit.
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– When input is 0, publish Ey(1).
– When input is 1, publish a re-encryption of H (recall H = (H1, H2) = Ey(h)).

A proof of knowledge is added, PK
{
r : (c1 = gr, c2 = yr) or (c1 = H1g

r, c2 =
H2y

r)
}
.

Online Stage: Obtaining keys for input-wires. Computing parties need to obtain a
key, for each wire j, that represents the Boolean value b that the corresponding input
ciphertext encrypts – that is, wj

b . But the key should not leak any information about
the input ciphertext. Our protocol meets such requirement by using homomorphism of
ElGamal encryption8. Let cj be the ciphertext of contributed input b ∈ {0, 1} for input
wire j. Computing parties work as follows:

– For every input wire j, computeW j = W j
0 · cj locally using homomorphism of El-

Gamal encryption. Then, decryptW j via threshold decryption by computing parties
using their shares for x. This gives wj

b , which matches the input b.

– Each party computes the output of C using the key wj
b locally.

Running the online stage in P2 takes one round. The communication complexity of
P2 is O(nk|C| log |C|) (plus the NIZK, if we assume the CRS case) where |C| is the
size of the circuit.

3.3 Discussion

MP-CED vs. MPC with Preprocessing. General MPC and MP-CED can be reduced to
each other.

– Given a protocol π for MP-CED, we can construct a protocol π′ for MPC with prepro-
cessing, as follows. In the preprocessing stage of π′, the parties share an encryption
key. In the online stage of π′, each party publishes encryption of its input under the
shared key, and the parties follow protocol π. The resulting MPC protocol π′ requires
one more online rounds than the underlying protocol π. This approach is implicitly
used in [FH96, JJ00, CDN01, DN03].

– Given a protocol π′ for MPC, we can construct a protocol π for MP-CED, as follows.
In MP-CED, the parties share a secret key, and the inputs are encrypted. Protocol π
should compute C on these given input ciphertexts. This can be done by the par-
ties running protocol π′ using a circuit C′ derived from C. Circuit C′ consists of
two stages: the first stage of C′ gets shares of the secret key and the ciphertexts,
and decrypts the ciphertexts to give plaintexts. The second stage of C′ essentially
evaluates C on these plaintext inputs from the first stage. In running the protocol π,
each party’s input is its share for the secret key. Circuit C′ has more gates than C.
However, if the round complexity of π′ does not depend on the depth of the circuit,
then the round complexity of π is the same as the round complexity of π′.

On Basing MP-CED on Doubly-Homomorphic Encryption. Recently, Gentry con-
structed a doubly homomorphic encryption scheme using ideal lattices [G09], which

8 In fact, any homomorphic encryption can be used. We chose to use ElGamal encryption since
it is already used in P1.
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solves the CED problem. Since our goal is to give a round-efficient protocol, it is an
interesting question whether doubly-homomorphic encryption allows non-interactive
secure computation. However, this seems unlikely.

– (Threshold Decryption.) It’s not known whether Gentry’s scheme supports threshold
decryption. Thus, there has to be at least one party which can decrypt ciphertexts by
itself. If this party sees the inputs (which are encrypted and published in the MP-CED

model), it can decrypt private inputs of other parties and break the security. Thus,
there must be a separation between parties who can decrypt and parties who get
access to the input and intermediate ciphertexts.

– (Malicious Parties.) Parties without decryption capability would compute a circuit on
encrypted inputs using double homomorphism. In order for the protocol to compute
output in a plaintext form, they have to submit some ciphertexts to a party with
decryption capability. In the malicious setting, to make sure that they applied doubly
homomorphism correctly, some kind of zero-knowledge proof should be added to the
ciphertexts they submit. However, it is not clear how such a proof can be constructed
when the verifier has the decryption capability – as mentioned above, it must not see
the input ciphertexts.

The above issue also stands against achieving MPC protocols against an active adversary
with doubly homomorphic encryptions.
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A Explicit Preprocessing of P1

During the preprocessing stage, the parties can generate polynomial number of garbled
gates, which can later be used for evaluating circuits. Therefore it suffices to know a
bound on the sizes of circuits to be evaluated later. We show how to generate such truth
tables explicitly given y as a global public key.

Throughout, each bit b will be encrypted with plaintext gb. Denote by 〈m〉 a simple
ElGamal ciphertext (with randomness r = 0): (1,m). For an ElGamal ciphertext c for
a bit, its negation ¬c is defined as 〈g1〉/c. For two ElGamal ciphertext a = (a1, a2) and
b = (b1, b2), define ZKeu(a, b) — the proof that b is a re-encryption a with public key
u— as PK{r : b1 = gra1, b2 = ura2}. When public key is not specified, ZKe means
ZKey . The construction details can be found in Appendix A.3.

A.1 Preliminaries: Joint Generation of Garbled Gates

We associate a gate with the truth table for it. The entries of the truth tables are encrypted
Boolean values, and the rows of each truth table are permuted, such that only a threshold
of the parties can (1) recover any plaintext and (2) learn the permutation of the rows.
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Sampling a Random Encrypted Boolean Value. In this protocol, n parties perform
an oblivious analogue of XORing their respective random bits in n rounds. In our case,
semantic security of ElGamal and the soundness of the attached proof guarantee they
cannot.

1. Each party Pi selects ai ∈R {0, 1} and computes âi = Ey(gai), πi = ZKe(〈g0〉, âi) ∨
ZKe(〈g1〉, âi) and broadcasts (âi, πi). Let S = {j : πj is valid}. Set â ← âmin where
min = minj∈S j.

2. For j = 2, . . . , |S|:

Let i be the j-th smallest element in S. Pi computes an encryption d̂i such that d̂i =
(di1, di2) is a re-encryption of â if ai = 0 or a re-encryption of ¬â otherwise. Then Pi

broadcasts (d̂i, ψi) where

ψi =
(
ZKe(〈g0〉, âi) ∧ ZKe(â, d̂i)

)
∨
(
ZKe(〈g1〉, âi) ∧ ZKe(¬â, d̂i)

)
.

If ψi is valid, then each party sets â ← d̂i.

As in computing xor, it is enough that one of the bits is random (or, in our case, that one
party is honest) to guarantee a random output as long as corrupt parties can not have
their bit choices depend on the bits of other parties. The invariant of the protocol is that
at the end of each round the ciphertext â encrypts exclusive-or of ai’s so far.

Generating a Garbled IDENTITY Gate. First, run the procedure of sam-
pling a random encrypted Boolean value. Let the output of the procedure is
â. The first row of an IDENTITY gate is â, and the second row is computed
by negating the value of â.

In Out

â â

¬â ¬â

IDENTITY

Generating a Garbled NAND Gate.

1. Each party Pi selects ai, bi ∈R {0, 1} and computes âi = Ey(gai), b̂i = Ey(gbi), πi =
ZKe(〈g0〉, âi) ∨ ZKe(〈g1〉, âi), and φi = ZKe(〈g0〉, b̂i) ∨ ZKe(〈g1〉, b̂i), and broadcasts
(âi, b̂i, πi, φi).

2. Run the procedure of sampling random encrypted Boolean values with âi’s. Let â be the
output of the procedure. Let S = {j : πj and φj are valid}. Set b̂ ← 〈g0〉 and âb ← 〈g0〉.

3. For j = 1, . . . , |S|: Let i be the j-th smallest element in S. Pi computes encryptions d̂i and
êi such that

– If bi = 0, then d̂i is a re-encryption of b̂ and êi is a re-encryption of âb.

– If bi = 1, then d̂i is a re-encryption of ¬b̂ and êi is a re-encryption of â/âb. Then Pi

broadcasts
(
d̂i, êi, ψi) where ψi = ψ0

i ∨ ψ1
i for ψ0

i = ZKe(〈g0〉, b̂i) ∧ ZKe(̂b, d̂i) ∧
ZKe(âb, êi) and ψ0

i = ZKe(〈g1〉, b̂i)∧ ZKe(¬b̂, d̂i)∧ ZKe(â/âb, êi). If ψi is valid, then
each party sets b̂ ← d̂i and âb ← êi.

The invariant of the loop is that at the end of each round the cipher-
text âb encrypts exclusive-or of abi’s so far. After â, b̂, âb are gener-
ated, each party Pi can complete the truth table, by locally negating
the ciphertexts as described in the table.

InL InR Out

â b̂ ¬âb

â ¬b̂ âb · (¬â)
¬â b̂ âb · (¬b̂)
¬â ¬b̂ â · b̂/âb

NAND
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A.2 Preliminaries: Jointly Recoverable Encrypted ElGamal Key Pairs

Verifiable ElGamal Encryption of Discrete Logarithm. To generate a jointly recover-
able encrypted ElGamal key pair, we first introduce the following verifiable encryption
of discrete logarithm.

Let γ := gz . We want to encrypt z in a verifiable manner. Let zi be the i-th rightmost
bit of z for i ∈ [k]. The verifiable encryption is Êy(z) =

(
ẑ0, . . . , ẑk−1, π

)
, where

ẑi = Ey(gzi·2i

) for i ∈ [k]. The proof π is( k−1∧
i=0

(
ZKe
(〈g0〉, ẑi

) ∨ ZKe
(〈g2i〉, ẑi

))) ∧ ZKe
(
〈γ〉,

k−1∏
i=0

ẑi

)
.

When we get (gz0·20
, . . . , gzk−1·2k−1

) by decrypting Êy(z), z can be extracted via ex-
haustive search in polynomial time in k because each zi is a bit.

Note that the encryption scheme is homomorphic if we ignore the proof part. Multi-
plication of two verifiable encryptions Êy(z) = (ẑ1, . . . , ẑk−1) and Êy(w) = (ŵ1, . . . ,

ŵk−1) is defined as Êy(z) · Êy(w) = (ẑ1 · ŵ1, . . . , ẑk−1 · ŵk−1) .

Generation of Jointly Recoverable Encrypted ElGamal Key Pairs. For simplicity,
we omit the proof part of the verifiable encryption from the presentation below. Gener-
ation of a key pair can be done as follows:

1. Each party Pj runs ElGamal key generation and obtains (kj , g
kj ). It broadcasts (gkj , Êy(kj)).

2. Let S be the set of parties whose encryptions are verified. In the PK column,
∏

j∈S gkj is set.

In the SK column,
∏

j∈S Êy(kj) is set.

Extraction of the secret key. Let (Y0, . . . , Yk−1) :=
∏

j∈S Êy(kj). Let gzi be the de-
cryption of Yi. Then given (gz0 , . . . , gzk−1), we can extract the secret key

∑
j∈S kj =∑

i zi by finding each zi via exhaustive search, which can be done efficiently since

gzi ∈ {20·2i

, 21·2i

, . . . , 2n·2i}.

A.3 Preprocessing of P1

The preprocessing takes 2n rounds, since step 1.1 and step 1.2 can be executed concur-
rently. This protocol is UC-secure, but for lack of space, we defer the proof of security
to full version.

Step 1.1: Garbled Circuit Generation - Intermediate Gates. For each NAND gate,
run the procedure of joint generation of garbled NAND gate in Appendix A.1 to fill
in In and Out Columns. For each pair of columns PK and SK, run the procedure of
jointly recoverable encrypted ElGamal key pairs in Appendix A.2.9 The above tasks
are executed in parallel.

Step 1.2: Garbled Circuit Generation - Output Gates

1. Run the procedure of sampling random encrypted Boolean values in Appendix A.1 where
each party Pi selects ai ∈R {0, 1}. Let â be the output of the procedure and let S = {j :
Pj behaved honestly during the procedure}. Fill in In and Out Columns as an IDENTITY gate.

9 Now in the online stage, k instances of M-CODE are executed since Tb[SK][w] contains k
ElGamal ciphertexts. The communication complexity blows up by multiplicative factor of k.
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In addition, run the procedures of jointly recoverable encrypted ElGamal key pairs in
Appendix A.2 to fill the columns PK and SK. Let z1 and z2 be the two keys in the column
PK.

2. In order to fill Final column, each party Pi such that i ∈ S broadcasts (âi,z1 = Ez1(g
ai),

âi,z2 = Ez2(g
ai)). Set âz1 ← 〈g0〉, âz2 ← 〈g1〉. Parties jointly compute Ez1(g

⊕
i ai) and

Ez2(g
1−⊕ i ai). In particular, for i = 1, . . . , |S|:

(a) Let i be the j-th smallest element in S. Pi computes encryptions d̂i, êi such that d̂i (resp.
êi) is a re-encryption of âi,z1 (resp. âi,z2) if ai = 0 or a re-encryption of ¬âi,z1 (resp.
¬âi,z2 ) otherwise. Then Pi broadcasts

(
d̂i, êi, ψi

)
where ψi = ψ0

i ∨ ψ1
i for

ψbe = ZKe(〈g0〉, âi) ∧ ZKez1(〈g0〉, âi,z1) ∧ ZKez2(〈g0〉, âi,z2) ∧
ZKez1(âz1 , d̂i) ∧ ZKez2(âz2 , êi) and

ψ1
i = ZKe(〈g1〉, âi) ∧ ZKez1(〈g1〉, âi,z1) ∧ ZKez2(〈g1〉, âi,z2) ∧

ZKez1(¬âz1 , d̂i) ∧ ZKez2(¬âz2 , êi).

(b) If ψi is valid, then each party sets âz1 ← d̂i, and âz2 ← êi. Otherwise, in the case of hon-
est majority, parties collectively compute ai from threshold decryption using (y1, . . . , yn)
and compute âz1 , âz2 accordingly. In the case of honest minority, the protocol aborts. Fi-
nally, set âz2 ← ¬âz2 .
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Abstract. We present a new construction of non-committing encryption
schemes. Unlike the previous constructions of Canetti et al. (STOC ’96) and of
Damgård and Nielsen (Crypto ’00), our construction achieves all of the following
properties:

– Optimal round complexity. Our encryption scheme is a 2-round protocol,
matching the round complexity of Canetti et al. and improving upon that in
Damgård and Nielsen.

– Weaker assumptions. Our construction is based on trapdoor simulatable
cryptosystems, a new primitive that we introduce as a relaxation of those
used in previous works. We also show how to realize this primitive based on
hardness of factoring.

– Improved efficiency. The amortized complexity of encrypting a single bit is
O(1) public key operations on a constant-sized plaintext in the underlying
cryptosystem.

As a result, we obtain the first non-committing public-key encryption schemes
under hardness of factoring and worst-case lattice assumptions; previously, such
schemes were only known under the CDH and RSA assumptions. Combined
with existing work on secure multi-party computation, we obtain protocols for
multi-party computation secure against a malicious adversary that may adaptively
corrupt an arbitrary number of parties under weaker assumptions than were
previously known. Specifically, we obtain the first adaptively secure multi-party
protocols based on hardness of factoring in both the stand-alone setting and the
UC setting with a common reference string.

Keywords: public-key encryption, adaptive corruption, non-committing encryp-
tion, secure multi-party computation.

1 Introduction

Secure multi-party computation (MPC) allows several mutually distrustful parties to
perform a joint computation without compromising, to the greatest extent possible,
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the privacy of their inputs or the correctness of the outputs. An important criterion
in evaluating the security guarantee is how many parties an adversary is allowed to
corrupt and when the adversary determines which parties to corrupt. Ideally, we want
to achieve the strongest notion of security, namely, against an adversary that corrupts
an arbitrary number of parties, and adaptively determines who and when to corrupt
during the course of the computation (and without assuming erasures1). Even though
the latter is a very natural and realistic assumption about the adversary, most of the MPC
literature only addresses security against a static adversary, namely one that chooses
(and fixes) which parties to corrupt before the protocol starts executing. And if indeed
such protocols do exist, it is important to answer the following question:

What are the cryptographic assumptions under which we can realize
MPC protocols secure against a malicious, adaptive adversary that
may corrupt a majority of the parties?

Towards answering this question, we revisit the problem of constructing non-
committing encryption schemes, a cryptographic primitive first introduced by Canetti
et al. [CFGN96] as a tool for building adaptively secure MPC protocols in the presence
of an honest majority. Informally, non-committing encryption schemes are semantically
secure, possibly interactive encryption schemes, with the additional property that a
simulator can generate special ciphertexts that can be opened to both a 0 and a 1. In a
more recent work, Canetti et al. [CLOS02] (extending [B98]) showed how to construct
adaptively secure oblivious transfer protocols starting from non-committing public-key
encryption schemes (i.e. the key generation algorithm must be non-interactive), which
may in turn be used to construct MPC protocols secure against a malicious, adaptive
adversary that may corrupt an arbitrary number of parties.

Unfortunately, the only known constructions of non-committing public-key encryp-
tion schemes (PKEs) are based on the CDH and RSA assumptions [CFGN96] and
the construction exploits in a very essential way that these assumptions give rise to
families of trapdoor permutations with a common domain. If we allow for an interactive
key generation phase, Damgård and Nielsen [DN00], building on [B97, CFGN96],
constructed 3-round non-committing encryption schemes based on a more general
assumption, that of simulatable PKEs, which may in turn be realized from DDH, CDH,
RSA and more recently, worst-case lattice assumptions [GPV08] (see figure 1).

1.1 Our Results

First, we present a new construction of non-committing encryption schemes, which
simultaneously improves upon all of the previous constructions in [CFGN96, DN00]:

Optimal Round Complexity. We provide a construction of non-committing PKEs from
simulatable cryptosystems. Our construction is surprisingly simple - a twist to the
standard cut-and-choose techniques used in [DN00, KO04] - and also admits a fairly

1 Refer to [C00, Section 5.2] for a discussion on how trusted erasures may be a problematic
assumption.
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straight-forward simulation and analysis. In particular, our construction and the
analysis are conceptually and technically simpler than those in [CFGN96, DN00];
we avoid having to analyze the number of one’s in certain Binomial distributions
as in [CFGN96] and to consider a subtle failure mode as in [DN00].

Reducing the assumptions. Informally, a simulatable PKE is an encryption scheme
with special algorithms for obliviously sampling public keys and random cipher-
texts without learning the corresponding secret keys and plaintexts; in addition,
both of these oblivious sampling algorithms should be efficiently invertible.
We define a weaker assumption, which we refer to as trapdoor simulatable
cryptosystems, and prove that it is sufficient for our construction and analysis to
go through. Roughly speaking, we provide the inverting algorithms in a simulatable
cryptosystem with additional trapdoor information (hence the modifier “trapdoor”),
which makes it easier to design a simulatable cryptosystem.

Improved efficiency. While the main focus of this work is feasibility results (notably,
reducing the computational assumptions for both non-committing encryption
schemes and adaptively secure MPC), we show how to combine a variant of our
basic construction with the use of error-correcting codes to achieve better efficiency.
That is, the amortized complexity of encrypting a single bit is O(1) public-key
operations on a constant-sized plaintext in the underlying cryptosystem.

Thus, we obtain the following.

Theorem 1 (informal). There exists a black-box construction of a non-committing
public-key encryption scheme, starting from any trapdoor simulatable cryptosystem.

Factoring-Based constructions. Next, we derive trapdoor simulatable cryptosystems
from a variant of Rabin’s trapdoor permutations (c.f. [H99, S96, FF02]) based on the
hardness of factoring Blum integers.

Theorem 2 (informal). Suppose factoring Blum integers is hard on average. Then,
there exists a trapdoor simulatable cryptosystem.

We stress that we do not know how to construct a simulatable cryptosystem under
the same assumptions; specifically, inverting the sampling algorithm for ciphertexts in
our construction without the trapdoor (the factorization of the Blum integer modulus)
appears to be as hard as factoring Blum integers. This shows that trapdoor simulatable
cryptosystems is indeed a meaningful and useful relaxation. In the process, we also
obtain the first factoring-based dense cryptosystems.2 When combined with enhanced
trapdoor permutations, this yields the first factoring-based non-interactive proofs of
knowledge [DP92].

Oblivious Transfer and MPC. We consider the applications of our main result to the
constructions of adaptively secure oblivious transfer and general MPC protocols in both
the stand-alone setting and the UC setting (c.f. [CLOS02, IPS08, CDSMW09]).

2 These are PKE schemes where a random string has a inverse polynomial probability of being
a valid public key.
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Fig. 1. Summary of previous results (solid lines) along with our contributions (dashed lines)

Theorem 3 (informal). There exists a black-box construction of a 6-round 1-out-of-
� oblivious transfer protocol for strings in the FCOM-hybrid model3 in the UC setting
that is secure against a malicious, adaptive adversary, starting from any trapdoor
simulatable cryptosystem.

We add that if the oblivious key generation algorithm in the trapdoor simulatable
cryptosystem achieves statistical indistinguishability (which is the case for all of the
afore-mentioned constructions), then we obtain an OT protocol that is secure against a
computationally unbounded malicious sender. While our OT protocol is not as efficient
as that in the recent work of Garay, Wichs and Zhou [GWZ09] (we incur an additional
multiplicative overhead that is linear in the security parameter), our protocol along with
our general framework offers several advantages:

– In addition to relying on the FCOM functionality and a simulatable PKE (to
implement non-committing encryption) as in our work, the [GWZ09] framework
requires a so-called enhanced dual-mode cryptosystem. This is a relatively high-
level CRS-based primitive from [PVW08] augmented with two main additional
properties: the first has a flavor of oblivious sampling; the second requires that the
underlying CRS be a common random string (modulo some system parameters)
and not just a common reference string. This requirement is inherent to their
framework, since this CRS is generated using a coin-tossing protocol. This latter
requirement is very restrictive, and the only known construction of an enhanced
dual-mode cryptosystem is based on the quadratic residuocity assumption.

– Our protocol immediately handles 1-out-of-�OT, whereas [GWZ09] only addresses
1-out-of-2 OT, a limitation inherited from [PVW08].

Combined with [CLOS02, IPS08, CDSMW09], we obtain the following corollaries:

Corollary 1 (informal). Assuming the existence of trapdoor simulatable cryptosys-
tems, there exists adaptively secure multi-party protocols in the stand-alone setting and
in the FCOM-hybrid model in the UC setting against a malicious adversary that may
adaptively corrupt any number of parties.

Specifically, we obtain the first adaptively secure multi-party protocols based on
hardness of factoring in both the stand-alone setting and the UC setting with a common
reference string.

3 FCOM is an ideal functionality for commitment.
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1.2 Additional Related Work

The problem of constructing encryption schemes that are secure against adaptive
corruptions was first addressed in the work of Beaver and Haber [BH92]. They
considered a simpler scenario where the honest parties have the ability to securely
and completely erase previous states. For instance, an honest sender could erase
the randomness used for encryption after sending the ciphertext, so that upon being
corrupted, the adversary only gets to see the corresponding plaintext. An intermediate
model, wherein we assume secure erasures for either the sender or receiver but not both
(or, by limiting the adversary to corrupting at most one of the two parties), has been
considered in several other works [JL00, CHK05, KO04].

Organization. We present an overview of our constructions in Section 2, preliminaries
in Section 3, the formulation of a trapdoor simulatable PKE in Section 4, our factoring-
based trapdoor simulatable PKE in Section 6, and our non-committing encryption
scheme in Section 5. In Section 7, we show the construction of a 6-round oblivious
transfer protocol.

2 Overview of Our Constructions

At a high level, our non-committing PKE is similar to that from previous works
[CFGN96, DN00, KO04]. The receiver generates a collection of public keys in such
a way that it only knows an α fraction of the corresponding secret keys; this can
be achieved by generating an α fraction of the public keys using the key generation
algorithm and the remaining 1− α fraction obliviously. Similarly, the sender generates
a collection of ciphertexts in such a way that it only knows an α fraction of the
corresponding plaintexts. Previous constructions all work with the natural choice of
α = 1/2 so that the simulator generates a collection of ciphertexts half of which
are encryptions of 0 and the other half are encryptions of 1. As noted in [KO04],
this is sufficient for obtaining non-committing PKEs wherein at most one party is
corrupted. Roughly speaking, the difficulty in handling simultaneous corruptions of
both the sender and the receiver with α = 1/2 is that in the simulation, the sender’s
choice of the α fraction of keys completely determine the receiver’s choice of the
α fraction of ciphertexts whereas in an actual honest encryption, these choices are
completely independent (we elaborate on this later in this section). The key insight
in our construction is to work with a smaller value of α (turns out 1/4 is good enough).

A Toy Construction. Consider the following encryption scheme, which is a simplifi-
cation of that in [KO04, DN00]. The receiver generates a pair of public keys (PK0, PK1)
by generating one key (selected at random) using the key-generation algorithm, and the
other using the oblivious sampling algorithm. To encrypt a bit b, the sender generates a
pair of ciphertexts (C0, C1) as follows: pick a random bit r, set Cr to be EncPKr

(b) and
choose C1−r using the oblivious sampling algorithm. To decrypt, the receiver decrypts
exactly one of C0, C1 using the secret key that it knows. This construction corresponds
to α = 1/2 where α is the fraction of public keys for which the receiver knows the
secret key, and also the fraction of ciphertexts for which the sender knows the plaintext.
Observe that this encryption scheme has the following properties:
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– It has a constant decryption error of 1/4 if an obliviously sampled ciphertext is
equally likely to decrypt to 0 or 1. As shown in [KO04], this error can be reduced
by standard repetition techniques.

– It tolerates corruption of either the sender or the receiver, but not both. Consider a
simulator that generates both of (PK0, PK1) (along with SK0, SK1) using the key-
generation algorithm, and a ciphertext (C0, C1) as follows: pick a random bit β,
and set C0 to be EncPK0(β) and C1 to be EncPK1(1 − β). Suppose the simulator
later learns that this is an encryption of 0. If only the sender is corrupted, the
simulator claims r = β and that C1−β is obliviously sampled. If only the receiver
is corrupted, it claims that it knows SKβ and that PK1−β is oblivious sampled.

We highlight two subtleties in the above simulation strategy. First, it achieves 0
decryption error (as opposed to 1/4 in an honest encryption); this can be fixed with a
somewhat more involved simulation strategy. This in turn becomes pretty complicated
once we use standard repetition techniques to reduce the decryption error. Next, it is
always the case in the simulation that either both PK0 and C0 are obliviously sampled,
or both PK1 and C1 are obliviously sampled. As such, this simulation strategy fails if
both the sender and the receiver are corrupted, because in an actual encryption, which of
PK0, PK1 and which of C0, C1 are obliviously sampled are determined independently.

Our Encryption Scheme. As noted in the introduction, the key insight in our
construction is to work with a small value of α. In addition, following [DN00], we
use a random k-bit encoding of 0 and 1, where k is the security parameter:

– The receiver generates 4k public keys PK1, . . . , PK4k: k of them are generated
using the key-generation algorithm, and the remaining 3k are generated using the
oblivious sampling algorithm. The receiver then sends PK1, . . . , PK4k along with
two random k-bit messages M0,M1.

– To encrypt a bit b, the sender sends 4k ciphertexts (one for each of PK1, . . . , PK4k),
of which k are encryptions ofMb, and the remaining ones are obliviously sampled.

– To decrypt, the receiver decrypts the k ciphertexts for which it knows the
corresponding secret key. If any of the k plaintexts matches M0, it outputs 0 and
otherwise, it outputs 1.

Encoding 0 and 1 randomly as M0 and M1 is useful for two reasons:

– That an obliviously sampled ciphertext is equally likely to decrypt to 0 or 1 is
no longer needed to guarantee correctness (c.f. [DN00]). Indeed, reasoning about
decryptions of obliviously sampled ciphertext is non-trivial for the lattice-based
simulatable PKEs in [GPV08].

– Constructing a simulator becomes much easier as we avoid having to generate
distributions over k independent biased bits conditioned on the majority of the
bits being 0, say. Generating such distributions arises for instance in [CFGN96]
and is related to the first subtlety associated with the naive simulation strategy.
In our construction, the simulated ciphertext comprises k encryptions of M0, k
encryptions ofM1, and 2k obliviously generated ciphertexts. Having these extra 2k
obliviously generated ciphertexts (which is possible because α < 1/2) is crucial
for handling simultaneous corruptions of the sender and the receiver.
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Trapdoor Simulatable PKEs from Factoring. Our factoring-based trapdoor simulat-
able PKE construction consists of two main steps. First, we modify the Rabin trapdoor
permutations based on squaring modulo Blum integer so that it remains a permutation
over any arbitrary integer modulus. This relies on the following number-theoretical
structural lemma implicit in [H99, S96, FF02]4:

Let N be an arbitrary odd k-bit integer, and let QN = {a2k

(mod N) | a ∈
Z∗

N}. Then, the map ψ : x �→ x2 defines a permutation overQN .

We also provide an efficient algorithm for inverting ψ given the factorization of N .
Note that the standard algorithm for computing square roots does not guarantee that the
output lies in QN . Moreover, the probability that a random square root lies in QN may
be exponential small so we cannot repeatedly computing random square roots until we
find one in QN ; it’s also not clear a-priori how to test membership in QN even given
the factorization ofN .

The next step transforms the family of trapdoor permutations ψ acting on the
domain QN into a family of “enhanced” trapdoor permutations with the same domain
QN , using an idea from [G04, Section C.1]. The latter has the property that we can
obliviously sample a random element y inQN so that given y along with the coin tosses
used to sample y, it is infeasible to compute the preimage of y under the permutation
(note that the naive algorithm for sampling a random element of QN gives away
its preimage under ψ). We will need the oblivious sampling algorithm for a random
element inQN in our oblivious sampling algorithm for random ciphertexts. We will also
need to realize trapdoor invertibility for the latter, which requires an efficient algorithm
that given the factorization of N and an element y in QN , outputs a random 2k’th root
of y.5 Note that iteratively computing random square roots k times does not work: after
computing the first square root, we may not end up with a 2k−1’th power.

3 Preliminaries

If A is a probabilistic polynomial time (hereafter, ppt) algorithm that runs on input x,
A(x) denotes the random variable according to the distribution of the output of A on
input x. We denote by A(x; r) the output of A on input x and random coins r. To
simplify the notation, we will often omit quantifying over the distribution for r; it will
usually be clear from the context when r is not fixed, that it is drawn from the uniform
distribution over strings of the appropriate length.

We assume that the reader is familiar with the standard definitions of public-key
encryption schemes and semantic security (c.f. [GM84, G04]). We stress that we allow
decryption errors that are exponentially small in k:

4 It was shown in [H99] that ψ defines a permutation over the subgroup ON of Z∗N of odd order,
and that ON contains QN ; turns out ON = QN . While QN is trivially sampleable, it is not
clear a-priori how to sample from ON .

5 If we are given just N and not its factorization, this problem is at least as hard as factoring
random Blum integers. This is in essence why we only obtain a factoring-based trapdoor
simulatable PKE and not a simulatable PKE.
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Definition 1 (encryption scheme). A triple (Gen,Enc,Dec) is an encryption scheme,
if Gen and Enc are ppt algorithms and Dec is a deterministic polynomial-time algorithm
such that for every message m ∈ {0, 1}∗ of polynomial length, Pr[Gen(1k) →
(PK, SK),EncPK(m)→ c; DecSK(c) 
= m] < 2−Ω(k).

Non-committing Encryption. For simplicity, we present the definition of a non-
committing public-key encryption scheme for single-bit messages:

Definition 2 (non-committing encryption [CFGN96]). A non-committing (bit) en-
cryption scheme consists of a tuple (NCGen,NCEnc,NCDec,NCSim) where (NCGen,
NCEnc,NCDec) is an encryption scheme and NCSim is the simulation algorithm that
on input 1k, outputs (e, c, σ0

G, σ
0
E , σ

1
G, σ

1
E ) with the following property: for b = 0, 1 the

following distributions are computationally indistinguishable:

– the joint view of an honest sender and an honest receiver in a normal encryption
of b:

{(e, c, σG, σE) | (e, d) = NCGen(1k;σG), c = NCEnce(b;σE)}
– simulated view of an encryption of b:

{(e, c, σb
G, σ

b
E) | NCSim(1k)→ (e, c, σ0

G, σ
0
E , σ

1
G, σ

1
E )}

It follows from the definition that a non-committing encryption scheme is also
semantically secure.

Encrypting longer messages. Starting with a non-committing bit encryption scheme
(NCGen,NCEnc,NCDec,NCSim), we may encrypt a longer message of length n by
generating n independent public keys using NCGen, encrypting each bit of the message
using a different public key and then concatenating the n ciphertexts. Note that this is
different from the case of semantically secure encryption, where we may encrypt each
bit using the same public key.

4 Trapdoor Simulatable Public Key Encryption

A �-bit trapdoor simulatable encryption scheme consists of an encryption scheme
(Gen,Enc,Dec) augmented with (oGen, oRndEnc, rGen, rRndEnc). Here, oGen and
oRndEnc are the oblivious sampling algorithms for public keys and ciphertexts, and
rGen and rRndEnc are the respective inverting algorithms6. We require that, for all mes-
sages m ∈ {0, 1}�, the following distributions are computationally indistinguishable:

{rGen(rG), rRndEnc(rG , rE,m), PK, c | (PK, SK) = Gen(1k; rG), c = EncPK(m; rE)}
and {r̂G, r̂E, P̂K, ĉ | (P̂K,⊥) = oGen(1k; r̂G), ĉ = oRndEncP̂K(1k; r̂E)}

It follows from the definition that a trapdoor simulatable encryption scheme is also
semantically secure.

6 Existence of such inverting algorithms is called trapdoor invertibility. Compared to the
simulatable cryptosystem (without trapdoor) defined in [DN00], rGen (resp. rRndEnc) takes
rG (resp. (rG, rE, m)) as the additional trapdoor information.
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Encrypting longer messages. We note that if we started only with a trapdoor simulatable
PKE for single bits, we may encrypt a longer message of length n by generating a single
public key PK using Gen, and concatenating each of the message encrypted under PK.

5 Non-Committing Encryption from Weaker Assumptions

Theorem 4. Suppose there exists a trapdoor simulatable encryption scheme. Then,
there exists a non-committing encryption scheme as well as a universally composable
oblivious transfer protocol secure against semi-honest, adaptive adversaries.

We show how to construct a non-committing bit encryption scheme (NCGen, NCEnc,
NCDec, NCSim) from a k-bit trapdoor simulatable PKE (Gen,Enc,Dec) (augmented
with (oGen, oRndEnc, rGen, rRndEnc)). This is sufficient to establish the theorem by
the connection between encrypting single bits and multiple bits as discussed in Sections
3 and 4. Our construction is presented in Figures 2 and 3.

Correctness. We begin by establishing correctness.

– Assume that the input [c1, . . . , c4k] to the decryption algorithm is a random
encryption of 0. Recall that J = {DecSKi(ci) | i ∈ T } and we will output 0
unless M0 /∈ J . It is easy to see that Pr[M0 /∈ J ] ≤

(3k
k

)
/
(4k

k

)
+ 2−Ω(k) where

the first summand comes from the probability that S ∩ T = ∅ and the second

Key Generation NCGen(1k):

1. Pick M0, M1 at random from {0, 1}k .
2. Choose a random subset T ⊆ [4k] of size k.
3. For i = 1, 2, . . . , 4k, generate a pair (PKi, SKi) as follows:

(PKi, SKi) =

{
Gen(1k) if i ∈ T

oGen(1k) otherwise

Set e = [M0, M1, PK1, . . . , PK4k] and d = [T, SK1, . . . , SK4k].

Encryption NCEncPK(b):
1. Choose a random subset S ⊆ [4k] of size k.
2. For i = 1, 2, . . . , 4k, generate a ciphertext ci as follows:

ci =

{
EncPKi(Mb) if i ∈ S

oRndEncPKi(1
k) otherwise

Set c = [c1, . . . , c4k].

Decryption NCDecPK(c):
1. Compute J = {DecPKi(ci)|i ∈ T}.
2. If M0 ∈ J , output 0; else, output 1.

Fig. 2. Non-Committing Encryption Scheme (NCGen, NCEnc, NCDec)
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Simulation NCSim:
1. Pick M0, M1 at random from {0, 1}k .
2. Picking the sets S0, S1, T0, T1:

– Pick two random subsets S0, T0 of [4k] each of size k.
– Pick two random subsets S1, T1 of [4k]\(S0∪T0) such that |S1∩T1| = |S0∩T0|.

3. Generating the keys: for i = 1, 2, . . . , 4k, set

(PKi, SKi) =

{
Gen(1k; ri

G) if i ∈ T0 ∪ S0 ∪ T1 ∪ S1

oGen(1k; r̂i
G) otherwise

4. Generating the ciphertext: for i = 1, 2, . . . , 4k, set

ci =

⎧⎪⎨⎪⎩
EncPKi(M0; ri

E) if i ∈ S0

EncPKi(M1; ri
E) if i ∈ S1

oRndEncPKi(r̂
i
E) otherwise

5. Simulating an opening to b: set σb
G = {Tb, u

b,1
G , . . . , ub,4k

G } and σb
E =

{Sb, u
b,1
E , . . . , ub,4k

E }, where

ub,i
G =

⎧⎪⎨⎪⎩
ri

G if i ∈ Tb

rGen(ri
G) if i ∈ T0 ∪ T1 ∪ S0 ∪ S1 \ Tb

r̂i
G otherwise

ub,i
E =

⎧⎪⎨⎪⎩
ri

E if i ∈ Sb

rRndEnc(ri
G, ri

E, M1−b) if i ∈ S1−b

r̂i
E otherwise

Set e = [M0, M1, PK1, . . . , PK4k], c = [c1, . . . , c4k]. Additionally output σ0
G , σ0

E , σ1
G , σ1

E .

Fig. 3. Non-Committing Encryption Scheme NCSim

bounds the probability of a decryption error in the underlying encryption scheme
(Gen,Enc,Dec).

– Assume that the input [c1, . . . , c4k] to the decryption algorithm is a random
encryption of 1. Recall that J = {DecSKi

(ci) | i ∈ T } and we will output 1
unless M0 ∈ J . To bound Pr[M0 ∈ J ], observe that the distribution of J depends
only on M1, PK1, . . . , PK4k, T, SK1, . . . , SK4k and the coin tosses used to generate
c1, . . . , c4k, and is therefore independent of the choice of a randomM0. This means
that for each i ∈ T , the probability that DecSKi(ci) equals M0 is 2−k. Taking a
union bound, we obtain Pr[M0 ∈ J ] ≤ k · 2−k.

Security. We need to show that for each b = 0, 1, a normal encryption of b and a
simulated encryption of b are computationally indistinguishable. Note that the view in a
normal encryption of b contains two sets T, S which we will label as Tb, Sb and we will
append to the view two sets T1−b, S1−b that are determined as follows: pick two random
subsets S1−b, T1−b of [4k]\(Sb∪Tb) such that |S1∩T1| = |S0∩T0|; call this distribution
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H0. We will also append to the view in a simulated encryption of b the sets T1−b, S1−b

as determined by the experiment NCSim; call this distribution H4k. We will show that
the augmented distributions H0 and H4k are computationally indistinguishable in two
steps:

Reasoning about the sets. First, we claim that the 4-tuple (S0, T0, S1, T1) in the
augmented distribution H0 and in H4k are identically distributed. If b = 0, this is
obvious since the distributions are defined in exactly the same way. The case for b = 1
follows from a symmetry argument, namely that if we switch (S0, T0) with (S1, T1) in
the experiment NCSim, we get exactly the same distribution. Henceforth, it suffices to
argue that H0 and H4k are computationally indistinguishable, conditioned on some
fixed (S0, T0, S1, T1) in both H0 and H4k. We may now WLOG focus on the case
b = 0. In fact, we may as well also fix M0,M1 in both H0 and H4k. In addition to
S0, T0, S1, T1,M0,M1, the distributions H0, H4k comprise:

– 4k public keys PK1, . . . , PK4k (generated using either Gen or oGen);
– 4k ciphertexts c1, . . . , c4k (generated using either Enc or oRndEnc);
– 4k sets of coin tosses u1

G, . . . , u
4k
G for generating the public/secret keys; and

– 4k sets of coin tosses u1
E , . . . , u

4k
E for generating the ciphertexts.

That is, we have 4k tuples of the form (PKi, ci, u
i
G, u

i
E), i = 1, . . . , 4k in each view.

Since S0, T0, S1, T1 are fixed, each of these 4k tuples are independently sampled from
some distribution that only depends on the index i. Denote byX1, . . . , X4k the random
variables for the 4k tuples inH0, and Y1, . . . , Y4k the random variables for the 4k tuples
in H4k.

The hybrid argument. Next, we argue thatXi and Yi are computationally indistinguish-
able for i = 1, . . . , 4k, from which the indistinguishability of H0 and H4k follows via
a hybrid argument. There are several cases we need to consider:

– i ∈ T0 or i ∈ [4k] \ (T0 ∪ S0 ∪ T1 ∪ S1). It is easy to verify that in either of these
cases, Xi and Yi are identically distributed.

– i ∈ S1 (“oGen, oRndEnc ∼= Gen,Enc”). Here, Xi is the distribution

{P̂K, ĉ, r̂G, r̂E | (P̂K,⊥) = oGen(r̂G), ĉ = oRndEncP̂K(r̂E)}

and Yi is the distribution

{PK, c, rGen(rG), rRndEnc(rG, rE,M1) | (PK, SK)=Gen(rG), c=EncPK(M1; rE)}.

Indistinguishability follows immediately from the security of the trapdoor simulat-
able PKE.

– i ∈ S0 \ T0 (“oGen,Enc ∼= Gen,Enc”). Here, Xi is the distribution

{P̂K, c, r̂G, rE | (P̂K,⊥) = oGen(r̂G), c = EncP̂K(M0; rE)}

and Yi is the distribution

{PK, c, rGen(rG), rE | (PK, SK) = Gen(rG), c = EncPK(M0; rE)}.
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Indistinguishability follows again from the security of the trapdoor simulatable
PKE.

– i ∈ T1 \ S1 (“oGen, oRndEnc ∼= Gen, oRndEnc”). Here,Xi is the distribution

{P̂K, ĉ, r̂G, r̂E | (P̂K,⊥) = oGen(r̂G), ĉ = oRndEncP̂K(r̂E)}

and Yi is the distribution

{PK, ĉ, rGen(rG), r̂E | (PK, SK) = Gen(rG), ĉ = oRndEncPK(r̂E)}.

Indistinguishability follows again from the security of the trapdoor simulatable
PKE.

Improving the Efficiency. Instead of using sets S, T ⊂ [4k] of size k, we choose
S, T ⊂ [40] of size 10. The previous analysis still goes through, except we now have a
constant decryption error. To address this problem, we first encode the message7 with
a linear-rate error-correcting code that corrects a constant fraction of errors, and then
encrypt the codeword with the encryption scheme with constant error.

6 Trapdoor Simulatable PKE from Hardness of Factoring

Theorem 5. Suppose factoring Blum integers is hard on average, and that Blum
integers are dense, then there exists a trapdoor simulatable PKE.

For simplicity, we only present a 1-bit trapdoor simulatable encryption scheme; we may
encrypt longer messages by encrypting bit by bit.

A number-theoretic lemma. Fix any k-bit integer modulusN and we will work with
the group Z∗

N . We will use factor(N) to denote the factorization of N , and we define
QN = {a2k | a ∈ Z∗

N}. Now, consider the map ψN : QN → QN given by ψN (x) =
x2 (mod N). As shown in [H99, Facts 3.5-3.7], ψN defines a permutation onQN . We
provide a more direct proof which also yields an efficient algorithm to invert ψN given
factor(N).

Claim. The map ψN defines a permutation on QN .

Proof. Let q denote the largest odd divisor of φ(N), where φ(·) is the Euler’s totient
function. It is easy to see that φ(N) divides 2kq, since N < 2k. Take any y ∈ QN ,
where y = a2k

. Then by Euler’s theorem, yq = 1 (mod N) and thus ψN (y(q+1)/2) =
y (mod N). Clearly, y(q+1)/2 ∈ QN , so the map ψN is surjective. Moreover, the range
and domain of ψN have equal sizes, so ψN must define a bijection. ��

The construction. We sketch the construction here; the formal construction is shown
in Figure 4.

7 The codeword length (or, equivalently the message length) should be Ω(k). Then, by Chernoff
bound, the number of decryption errors remains a constant fraction of the codeword length with
overwhelming probability.
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Key generation Gen(1k):
1. Run Bach’s algorithm using the randomness rG to sample random N1, . . . , Nk3 ∈

{0, 1}k along with their factorization factor(N1), . . . , factor(Nk3).
2. Set PK = [N1, . . . , Nk3 ] and SK = [factor(N1), . . . , factor(Nk3)].

Encryption Enc(b):
1. Parse the randomness rE as (a1, . . . , ak3) ∈ Z∗N1×· · ·×Z∗N

k3 , r1, . . . , rk3 ∈ {0, 1}k

and b1, . . . , bk3−1 ∈ {0, 1}.
2. Compute bk3 = b ⊕ b1 ⊕ · · · ⊕ bk3−1.

3. Compute xi = a2k

i ∈ QNi , i = 1, . . . , k3.
4. Output [πNi(xi), ri, (xi · ri) ⊕ bi, i = 1, . . . , k3].

Decryption Dec(c):
1. Parse c as [yi, ri, βi, i = 1, . . . , k3].
2. Compute bi = (π−1

Ni
(yi) · ri) ⊕ βi, i = 1, . . . , k3.

3. Output b1 ⊕ · · · ⊕ bk3 .
Oblivious key generation oGen(1k):

1. Parse the randomness r̂G ∈ {0, 1}k4
as N1, . . . , Nk3 ∈ {0, 1}k .

2. Output (N1, . . . , Nk3).
Trapdoor invertibility key generation rGen(rG):

1. Run Gen(rG) to obtain r̂G = (N1, . . . , Nk3).
2. Output r̂G.

Oblivious sampling of ciphertexts oRndEnc(1k):
1. Parse the randomness r̂E as (γ1, . . . , γk3) ∈ Z∗N1×· · ·×Z∗N

k3 , s1, . . . , sk3 ∈ {0, 1}k

and β1, . . . , βk3 ∈ {0, 1}.

2. Compute yi = γ2k

i ∈ QNi , i = 1, . . . , k3.
3. Output [yi, si, βi, i = 1, . . . , k3].

Trapdoor invertibility for ciphertexts rRndEnc(rG, rE, b):
1. Use rG to compute factor(N1), . . . , factor(Nk). and parse rE as in Enc.
2. Set si = ri and βi = (xi · ri) ⊕ bi, i = 1, . . . , k3.

3. Pick a random γi uniformly from the set {γi ∈ Z∗Ni
| γ2k

i = πNi(xi)}.
4. Output r̂E = (γ1, . . . , γk3 , s1, . . . , sk3 , β1, . . . , βk3).

Fig. 4. Trapdoor Simulatable PKE from hardness of factoring Blum integers

STEP 1: First, we construct a family of “weakly one-way” enhanced trapdoor
permutations. We start by modifying ψN to obtain a new family of permutations
πN ; the modification is analogous to that in [G04, Section C.1] to obtain enhanced
trapdoor permutations from Rabin’s trapdoor permutations. The permutations πN :
QN → QN are indexed by a k-bit integerN and is given by:

πN (x) def= ψk+1
N (x) = x2k+1

(mod N)

and the trapdoor is factor(N). We may sample from this family by running Bach’s
algorithm [B88, K02] to pick a random k-bit integer along with its factorization.

It is easy to verify πN is a family of trapdoor permutations. Clearly, πN is a
permutation because it is the (k + 1)-fold iterate of a permutation ψN . Given the
index N , πN is efficiently computable by repeated squaring. Given the trapdoor
factor(N), π−1

N is efficiently computable given factor(N), by simply mapping y
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to y((q+1)/2)k+1
, i.e., raising y to the (q + 1)/2’th power k + 1 times. Here, q

denotes the largest odd divisor of φ(N), which is easy to compute with the trapdoor.
Moreover, we can show that if N is a Blum integer (which occurs with probability
Ω(1/k2) [GM04, RS94]), then inverting πN givenN is at least as hard as factoring
N . This implies that πN is one-way with probabilityΩ(1/k2) over the choice ofN .

STEP 2: Construct a “weak” encryption scheme using the standard construction of
PKE from trapdoor permutations via the Goldreich-Levin hard-core predicate. The
public key is N , the secret key is factor(N), and to encrypt a bit b, we pick a
random x ∈ QN , r ∈ {0, 1}k and output (πN (x), r, (x · r) ⊕ b), where x · r is
the standard dot-product of k-bit strings. Again, this scheme will be semantically
secure with probabilityΩ(1/k2) over the choice of N .

STEP 3: To boost the security of the “weak” encryption scheme, we define a new
scheme where the public key is k3 random k-bit strings N1, . . . , Nk3 (with
overwhelming probability, one of these is a Blum integer), and to encrypt a bit
b, we pick random b1, . . . , bk3 such that b = b1 ⊕ · · · · bk3 and concatenate
the encryptions of b1, . . . , bk3 under the respective public keys N1, . . . , Nk3 . By
a standard argument (c.f. [Y82, DP92]), this encryption scheme is semantically
secure in the standard sense.

Analysis. Indeed, we claim something stronger – that the encryption scheme derived
in Step 3 is a trapdoor simulatable PKE.

– (Oblivious sampling & trapdoor invertibility for key generation) This is trivial,
since a random public key corresponds to a string in {0, 1}4k. We can clearly
sample such a public key without learning the secret key.

– (Oblivious sampling & trapdoor invertibility for random ciphertext) For simplicity,
we present the algorithms for sampling random ciphertext for the scheme obtained
in Step 2. Here, sampling is easy: on input the public key N , pick γ ∈ Z∗

N , s ∈
{0, 1}k, β ∈ {0, 1}) and output (γ2k

, s, β). To implement reverse sampling, we
need an efficient algorithm that given factor(N) and x ∈ QN , output a random
element of the set {γ ∈ Z∗

N | γ2k

= πN (x) = x2k+1}. This can be accomplished
as follows: pick a random η ∈ Z∗

N and output x2 · η/(η2k

)((q+1)/2)k

, where q is as

before the largest odd divisor of φ(N). This works because η/(η2k

)((q+1)/2)k

will
be a random 2k’th root of 1 (mod N).

For the actual proof of security, we will need to show that ifN is a random Blum integer,
then the following distributions are computationally indistinguishable for every b:

{(N, γ, πN (x), r, (x · r) ⊕ b)} and {(N, γ, γ2k

, r, β)}
The first distribution corresponds to an encryption of b using modulus N and random-
ness (x, r) along with γ the output of rRndEnc (a random solution to the equation
γ2k

= πN (x)). The second corresponds to an obliviously generated ciphertext along
with the randomness. If there exists an efficient distinguisher, then there exists an
efficient procedureA that on inputN, γ, outputs π−1

N (γ2k

) with noticeable probability.
Since squaring is a bijection on quadratic residues modulo Blum integers, the output
of A is also the 4th root of γ2. We may then use a reduction in [G04, Section C.1] to
derive from A an algorithm for factoringN with noticeable probability.
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7 Oblivious Transfer and MPC

We describe the construction underlying Theorem 3, which proceeds in two steps:

STEP 1: We begin with the [CLOS02] construction of a semi-honest OT protocol as
applied to our non-committing encryption scheme, and observe that the protocol is
secure against malicious senders. For that, we just need to show how to extract the
sender’s input when the receiver is honest. In this case, the simulator will generate
the public keys sent by the receiver in the first message along with the secret keys,
so that it can then extract the malicious sender’s input by decrypting.

STEP 2: Next, we apply the compiler in [CDSMW09] to “boost” the security guarantee
from tolerating semi-honest receivers to tolerating malicious receivers. (Note that
we will not need to apply OT reversal as in [CDSMW09].)

Acknowledgements. We thank Ran Canetti, Yuval Ishai, Jonathan Katz, and Chris
Peikert for helpful discussions and clarifications.
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Abstract. We give a construction of non-malleable statistically hiding
commitments based on the existence of one-way functions. Our construc-
tion employs statistically hiding commitment schemes recently proposed
by Haitner and Reingold [1], and special-sound WI proofs. Our proof of
security relies on the message scheduling technique introduced by Dolev,
Dwork and Naor [2], and requires only the use of black-box techniques.

1 Introduction

A commitment scheme is an interactive protocol between two parties, the com-
mitter, who holds a value, and the receiver. It usually consists of two phases: the
commit phase and the reveal phase. During the commit phase, the committer
puts a value in a “locked box” and sends it to the receiver. In the reveal phase,
the committer sends the “key” to the receiver, then the receiver opens the box
and retrieves the value. Two basic properties of a commitment scheme are the
hiding property (the receiver cannot learn the committed value before the reveal
phase) and the binding property (the committer is bounded to one value after
the commit phase). There are two fundamental types of commitment schemes,
statistical hiding and statistical binding. In this work, we focus mainly on sta-
tistically hiding commitment schemes, where the hiding property holds against
unbounded receivers while the binding property is required to hold only against
polynomially bounded senders.

The concept of non-malleability was first introduced by Dolev et al. [2].
The basic properties of commitment schemes cannot prevent malleable attacks
mounted by a man-in-the-middle adversary who has full control of the commu-
nication channel between the committer and the receiver. Loosely speaking, a
commitment scheme is non-malleable if one cannot transform the commitment
of a value into a commitment of a related value. This kind of non-malleability
is called non-malleability with respect to commitment [3]. The notion of non-
malleability used by Di Crescenzo et al. [4] is called non-malleability with respect
to opening, i.e., the adversary cannot construct a commitment from a given one,
such that after having seen the opening of the original commitment, the adver-
sary is able to correctly open his commitment with a related value. In the rest
of this paper, when we say non-malleability, we actually mean non-malleability
with respect to opening.

M. Matsui (Ed.): ASIACRYPT 2009, LNCS 5912, pp. 303–318, 2009.
c© International Association for Cryptologic Research 2009
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1.1 Related Work

Statistically hiding commitment schemes were first shown to exist based on
number-theoretic assumptions [5,6], or more generally, based on any collec-
tion of claw-free permutations [7] with an efficiently-recognizable index set [8].
Subsequent work on constructing statistically hiding commitment schemes are
based on collision-resistant hash functions [9], or based on any one-way permu-
tation [10], or based on regular one-way functions [11]. Nguyen et al. [12] and
Haitner and Reingold [1] made fundamental progress by constructing statisti-
cally hiding commitment schemes based on the minimal cryptographic assump-
tion that one-way functions exist.

Based on number-theoretic assumptions, non-malleable statistically hiding
commitment schemes were designed in [13,3] assuming the existence of a common
reference string that is shared by the two players before the protocol execution.
Thus, their schemes do not work in the plain model (i.e., without setup assump-
tions). More recently, Pass and Rosen [14] constructed a non-malleable commit-
ment scheme that was statistically hiding based on a family of collision-resistant
hash functions. Their scheme is round-efficient and needs only constant-round
communication. However, the security proof relies on non-black-box techniques
and is not efficient.

As one of the central goals of cryptography is to reduce complexity assumptions
for various cryptographic primitives and construct them under more standard as-
sumptions, there remain open questions as to whether or not non-malleable statis-
tically hiding commitment can be based solely on the existence of one-way functions,
and be shown secure relying only on black-box techniques.

1.2 Our Result

In this paper, we give affirmative answers to both of the questions posed above.
We show that the existence of one-way function is a sufficient condition for the
existence of non-malleable statistically hiding commitment.

Theorem 1. If one-way functions exist, then there exists a non-malleable sta-
tistically hiding commitment scheme.

Our commitment scheme uses the commitment scheme [1] to commit to the
desired value, but modify the opening process by adding a “trapdoor” that can
be extracted and used by the simulator to cheat in the reveal phase, and would
not be known to the committer in a real execution. Although the extraction
requires rewinding, we rely on the message scheduling technique of Lin et al. [15],
which is a slight modification of the message scheduling technique introduced
by Dolev et al. [2], to show this will suffice to prove the non-malleability. Our
proof requires only standard black-box techniques. As a tradeoff, however, our
protocol needs polynomial rounds of interaction.

The preliminaries and definitions are illustrated in section 2. Our non-malleable
statistically hiding commitment scheme is shown in section 3.
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2 Preliminaries and Definitions

For any NP languages L, note that there is a natural witness relation RL contain-
ing pairs (x,w) where w is the witness for the membership of x in L. A function
μ(·), where μ : N → [0, 1] is called negligible if for every positive polynomial
p(·), for all sufficiently large n ∈ N, μ(n) < 1

p(n) . A probability ensemble is a
sequence X = {Xi}i∈I of random variables, where I is a countable index set
and Xi is a random variable ranging over {0, 1}p(|i|) for some polynomial p(·).
Two probability ensembles X = {Xi}i∈I and Y = {Yi}i∈I are computationally
indistinguishable, if no probabilistic polynomial-time (PPT) algorithm distin-
guishes between them with more than negligible probability. For page limited,
we assume the readers are family with interactive proofs.

Special-sound proofs. A 3-round public-coin interactive proof for the language
L ∈ NP with witness relation RL is special-sound with respect to RL, if for any
two accepting transcripts (α, β, γ) and (α′, β′, γ′) for some statement x ∈ L, such
that α = α′ and β 
= β′, a witness w such that (x,w) ∈ RL can be computed by
a polynomial-time deterministic procedure.

2.1 Witness Indistinguishability

The concept of witness indistinguishability was proposed by Feige and Shamir
[16]. An interactive proof system is witness indistinguishable (WI) if the verifier
cannot tell which of the witnesses is being used by the prover to carry out the
proof, even if the verifier knows both witnesses. We focus on NP languages L
with a corresponding witness relation RL. The readers are referred to [16] for
formal definition.

Special-sound WI proofs for NP languages can be based on the existence
of non-interactive commitment schemes. Assuming only one-way functions, 4-
round special-sound WI proofs for NP languages exist.1 More precisely, there is
a 3-round special-sound WI proof for the language of Hamiltonian Graphs [17],
assuming one-way permutation families exist. If the commitment scheme used
by the protocol [17] is replaced by Naor’s commitment scheme [18], then it
becomes a 4-round special-sound WI proof while the assumption is reduced to
the existence of one-way functions. For simplicity, we use 3-round special-sound
WI proofs in our protocol though our proof works also with 4-round special-
sound WI proofs.

2.2 Commitment Schemes

In this work, we consider statistically hiding commitment schemes.

Definition 1 (Commitment Scheme). A pair of PPT interactive machines
〈C,R〉 is said to be a commitment scheme if the following two properties hold:

1 A 4-round protocol is special sound if there exits polynomial-time deterministic
procedure to extract the witness from any two accepting transcripts (τ, α, β, γ) and
(τ ′, α, β, γ) such that τ = τ ′, α = α′ and β �= β′.
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Statistical hiding: For every unbounded interactive Turing machine R∗, it holds
that the ensemble

{
staR∗

〈C,R〉(v1, z)
}

v1∈{0,1}n,n∈N,z∈{0,1}∗ and the ensemble{
staR∗

〈C,R〉(v2, z)
}

v2∈{0,1}n,n∈N,z∈{0,1}∗ have negligible statistical difference,2

where staR∗
〈C,R〉(v, z) denotes the random variable describing the output of R∗

after receiving a commitment to v using 〈C,R〉.
Computational binding: A malicious (expected) PPT committer S∗ can suc-

ceed in opening a given commitment in two different ways only with negligible
probability. The reader is referred to [19,1] for more details.

2.3 Non-malleable Commitments

As stated in [14], we formalize the notion of non-malleability by a comparision
between a man-in-the-middle execution and a simulated execution. Just as [2,15],
we consider a tag-based variant of non-malleability.

Let 〈C,R〉 be a commitment scheme. Let n ∈ N be a security parameter.
Let R ∈ {0, 1}n × {0, 1}n be a polynomial-time computable valid relation [13]
(i.e., for all v ∈ {0, 1}n, R(v,⊥) = 0.). In the man-in-the-middle execution,
the adversary A is simultaneously participating in a left and right interaction.
In the left interaction, the man-in-the-middle adversary A interacts with the
committer C to receive a commitment to a value v using tag tag. In the right
interaction, A interacts with the receiver R and tries to commit to a related value
using tag of its choice ˜tag. After commit phase execution in both interactions,
A receives decommitment keys from C and then generates the corresponding
decommitment key for ṽ. Prior to the interaction, the value v is given to C as local
input. A receives an auxiliary input z, which might contain a priori information
about v. If the right commitment or decommitment fails, or tag = ˜tag, ṽ is
set to =⊥. Let the boolean random variable mimA

open(R, v, z) denote whether A
succeeds. Note mimA

open(R, v, z) = 1 if and only if A decommits to a value ṽ such
that R(v, ṽ) = 1.

In the simulated execution, a simulator S directly interacts with honest re-
ceiver R. As in the man-in-the-middle execution, the value v is chosen prior
to the interaction, and S receives some a prior information about v as part of
its auxiliary input z. S also receives tag tag. S first executes the commitment
scheme with R. Once the commitment phase has been completed, S receives the
value v and attempts to decommit to a value ṽ with tag t̃ag. If tag = t̃ag, ṽ
is set to ⊥. Let the boolean random variable simS

open(R, v, z) denote whether S
succeeds. Note simS

open(R, v, z) = 1 if and only if S decommits to a value ṽ such
that R(v, ṽ) = 1.

Definition 2 (Non-malleable Commitment [14]). A commitment scheme
〈C,R〉 is said to be non-malleable with respect to opening if for every PPT
man-in-the-middle adversary A, there exists an expected PPT simulator S and a
negligible function μ : N→ [0, 1], such that for every polynomial-time computable
2 The statistical difference between two ensembles {Xi}i∈I and {Yi}i∈I is defined by

1
2
·∑α

∣∣Pr[Xi = α] − Pr[Yi = α]
∣∣.
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valid relation R ⊆ {0, 1}n × {0, 1}n, for all tags of polynomial length, for every
v ∈ {0, 1}n and every z ∈ {0, 1}∗, the following holds:

Pr[mimA
open(R, v, z) = 1] < Pr[simS

open(R, v, z) = 1] + μ(n)

A commitment scheme that is non-malleable according to Definition 2 is liberal
non-malleable rather than strict non-malleable [2,3]. Note we follow [14] in that
non-malleability is guaranteed only if the commit phase and the reveal phase do
not overlap.

3 Construction

We begin by presenting a high-level overview of our protocol. Our protocol is based
on the statistically hiding commitment scheme [1] while relying on the messages
scheduling technique [15] which is a slight modification of the message schedul-
ing technique of [2]. The commit phase of our protocol is the same as that of
the commitment protocol in [1]. The reveal phase, however, comes in two parts.
Roughly, the reveal phase employs the two-witness technique by Feige [20] and the
well known FLS-technique [21]. First, the receiver proves that it knows one of the
preimages of either element s0 or element s1 computed by itself in the domain of a
one-way function. Then, the committer sends the committed value v and proves it
knows how to open the commitment or one of the preimages of either element s0
or element s1. The proofs used by the prover and the verifier are all tag-based WI
proofs elaborately scheduled as [15]. For simplicity of exposition, our description
relies on the existence of one-way functions with efficiently recognizable range.3

We also assume the one-way function is length-preserving. Since any one-way func-
tion can be transformed into length-preserving one-way function [19].

3.1 Tag-Based Witness-Indistinguishable Proof

First, we propose a tag-based WI proof for every NP language L which is used as
a basic tool in the final commitment scheme. The length of the tag is polynomial
bounded to the length of the security parameter n. Denote the polynomial by
t(·). In Fig. 1, both design0 and design1 contain two executions of special-sound
WI proofs for L but with elaborately designed scheduling. The tag-based WI
proof 〈Ptag, Vtag〉 for L is shown in Fig. 2. The protocol is composed of 4t-round
special-sound WI proofs for language L. More precisely, there are t rounds, where
in round j, the schedule designtagj

is followed by design1−tagj
. The properties of

〈Ptag, Vtag〉 are easy to verify. The details are omitted.
One basic technique in proving the security of most zero-knowledge and com-

mitment protocols is standard rewinding. However, the rewinding technique is
problematic when extending to concurrent (here one-left one-right) execution en-
vironment as an adversary may adaptively schedule its messages that withstand
any targeted simulator (i.e., the simulator may run super-polynomial time or is
3 The protocol can be easily modified to work with arbitrary one-way function by pro-

viding a witness hiding proof that an element is in the range of the one-way function.
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α1

β1

γ1

α2

β2

γ2

(a) design0

α2

α1

β1

γ1

β2

γ2

(b) design1

Fig. 1. Two schedules

Protocol 〈Ptag, Vtag〉
Security Parameter: 1n

Common Input: An instance x ∈ {0, 1}n

Tag string: tag ∈ {0, 1}t(n)

For j = 1 to t(n)
P ⇔ V : Execute designtagj

Execute design1−tagj

Fig. 2. Tag-based WI proof 〈Ptag,
Vtag〉

exposed to malleability attack.). Considering the non-malleability property for
commitment schemes, the pivot is to design the stand-alone simulator that sat-
isfying Definition 2. Here we also come up with the problem of how to simulate
when the adversary adaptively schedules its messages.

The scheduling in Fig. 1 which is identical to [15] is vital in achieving the non-
malleability. The main advantage of this scheduling is that for the proof given
by a man-in-the-middle adversary, there exists a point at which the adversary
cannot answer the challenge from the verifier by simply modifying the proof on
the other side (provided the tag of the proof is different from that of the proof
on the other side.).

Related to the above scheduling is a notion called safe-point, from which it is
possible to perform extraction by standard rewinding until we obtain a second
proof transcript, without “affecting” the other side interaction. Below is the
formal definition of safe-point, which is mainly taken from [15] and abridged to
our setting.

Definition 3 (Safe-point [15]). A prefix ρ of a transcript τ is called a safe-point,
if there exists an accepting proof (αr, βr, γr) in the right interaction, such that

1. αr occurs in ρ, but not βr (and γr).
2. For any proof (αl, βl, γl) in the left interaction, if only αl occurs in ρ, then
βl occurs after γr.

When protocol 〈Ptag, Vtag〉 is run concurrently, it is guaranteed there is a safe-
point for right interaction that has a tag different from the left interaction fol-
lowing from the next lemma.

Lemma 1 (Safe-point Lemma [15]4). In any one-one man-in-the-middle ex-
ecution of 〈Ptag, Vtag〉, if the right interaction has a different tag from the tag of
the left interaction, there exists a safe-point for the right interaction.

4 The safe-point lemma in [15] applies to any one-many concurrent execution environ-
ment, where the adversary participates in one left interaction and polynomial many
right interactions. Here we use a simpler version of the safe-point lemma, where the
adversary participates in one left interaction and one right interaction.
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3.2 Non-malleable Statistically Hiding Commitment Scheme

Let 〈SHC, SHR〉 be the statistically hiding commitment scheme[1] from any one-
way function 5 and let 〈Ptag, Vtag〉 be a tag-based WI proof for NP. The commit-
ment protocol is shown in Fig. 3. The length of the tag ism(n). Our construction
in fact compiles any statistically hiding commitment scheme with non-interactive
reveal phase into a non-malleable statistically hiding one with interactive reveal
phase, assuming the existence of one-way functions.

Protocol 〈C,R〉
Security Parameter: 1n

Tag string: tag ∈ {0, 1}m(n)

String to be committed: v ∈ {0, 1}n

Commit Phase:
C ⇔ R : Run the commit phase of commitment scheme 〈SHC, SHR〉, where C
runs SHC and R runs SHR.
R : Abort if the above commit phase fails.
Let com be the transcripts of messages obtained. C records the decommitment
key in dec.

Reveal Phase:
Stage 1:

R → C : Pick uniformly r0, r1 ∈ {0, 1}n, compute s0 = f(r0) and s1 = f(r1)
and send s0, s1.
R ⇔ C : R and C engage in an execution of 〈Ptag, Vtag〉 with tag tag, where
R uses rb as witness (b ∈ {0, 1}) and runs Ptag to prove to C (running Vtag)
knowledge of a value r s.t. s0 = f(r) or s1 = f(r). The challenge length of the
verifier (i.e., C) is 2n.
C: Abort if either s0 or s1 is not in the range of f or the proof fails.

Stage 2: C → R : Send v.
Stage 3:

C ⇔ R : C and R engage in an execution of 〈Ptag, Vtag〉 with tag tag, where C
runs Ptag to prove to R (running Vtag) that there exists a value dec s.t. dec is
the valid decommitment key of com corresponding to v or there exists a value
r s.t. s0 = f(r) or s1 = f(r). The challenge length of the verifier (i.e, R) is 2n.

Fig. 3. Non-malleable statistically hiding commitment scheme 〈C, R〉

Theorem 2. Suppose that 〈SHC, SHR〉 is a statistically hiding commitment
scheme with non-interactive reveal phase and 〈Ptag, Vtag〉 is a tag-based WI proof.
Then 〈C,R〉 is a non-malleable statistically hiding commitment scheme.

Remark 1. The commitment scheme shown in Fig. 3 is tag-based non-malleable.
Compared with existing tag-based commitment schemes [2,15,22], it seems a bit

5 Note the commitment scheme [1] is only for a single bit. By running their scheme in
parallel, we obtain a commitment scheme of any polynomial length. Hence, we also
assume that the basic statistically hiding commitment scheme is for a string.
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strange that our construction uses tags only in the reveal phase. In fact, this
approach is inspired by the work of [14,15]. Even tag-based non-malleable com-
mitments can be transformed into content-based non-malleable commitments in
a standard way [2], we explicitly present one in Appendix A for reference.

Remark 2. The high level approach of our commitment scheme is to combine [14]
with [2,15]. That is, to commit to v, in the commit phase, a sender commits v
using the statistically hiding commitment scheme [1], and in the reveal phase,
a sender sends v and proves using a “simulation-extractable” argument [2,15]
that the commit phase transcript opens to v. The simulation strategy at a high
level is from [14]. For technical reasons, naively using the simulation-extractable
arguments from [2,15] does not work. We need to modify the opening process by
adding a “trapdoor” that can be extracted and used by the simulator to cheat
in the reveal phase. This is the reason why we add one more phase (i.e., Stage
1). Whereas in [2,15], the trapdoor is only used in the hybrid experiment for
analysis and may therefore hard-wired via a different analysis.

Proof (sketch). We need to prove the scheme satisfies the following three proper-
ties: statistical hiding, computational binding and non-malleability with respect
to opening. We start by proving the hiding and non-malleability properties and
then return to the proof of the binding property.

Statistical hiding. The hiding property follows directly from the hiding property
of the commitment scheme 〈SHC, SHR〉. Note that 〈SHC, SHR〉 is statistically
hiding, and so 〈C,R〉 is also statistically hiding.

Non-malleability. We show that for every PPT man-in-the-middle adversary
A, there exists a probabilistic expected polynomial-time simulator S and a
negligible function μ such that for every polynomial-time computable relation
R ⊆ {0, 1}n × {0, 1}n, for every tag tag of length m(n), for every v ∈ {0, 1}n

and every z ∈ {0, 1}∗, it holds that

Pr[mimA
open(R, v, z) = 1] < Pr[simS

open(R, v, z) = 1] + μ(n) (1)

Denote by Arev the state of A after the the commit phase, i.e., Arev contains A’s
description along with its configuration at that time just before the reveal phase
starts.

We proceed to describing the simulator S. S on input z and security parameter
1n interacts with an honest receiver R and runs the adversary A internally. Dur-
ing the commit phase, on a high level, S internally incorporates A and emulates
the commit phase of the left execution for adversary A by honestly commit-
ting to 0n, while externally relaying messages in the right execution between A
and R.

Once the commit phase is finished, S receives a value v and has to perform
the reveal phase internally with Arev. In Stage 1, S plays as an honest sender in
the left reveal phase and as an honest receiver in the right reveal phase. Once
the simulation of Stage 1 completes, S applies the safe-point lemma to find a
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safe-point and extract a witness w to the statement proved by Arev in the left
reveal phase by standard rewinding.6 In Stage 2, S just sends v to Arev in the
left reveal phase. Then the simulation for Stage 3 begins. S uses a fake witness
(i.e. the trapdoor w) to simulate the left interaction for Arev, while emulating
the right interaction as an honest receiver. When the simulation for Stage 3
completes, S again applies the safe-point lemma to find a safe-point and ex-
tract a witness w̃ (i.e., the decommitment keys of A) in the right interaction.
Finally, by using w̃, S can complete the reveal phase of the external execution
with R.

More formally, S proceeds as follows on auxiliary input z and tag tag:

1. S internally incorporates A(z).
2. During the commit phase S proceeds as follows:

(a) S internally emulates left interaction for A by honestly committing to
0n.

(b) Messages from right execution are forwarded externally to R.
3. Once the commit phase has finished, S receives the value v. Let com, c̃om

denote the left and right execution transcripts respectively.
4. During the reveal phase S internally incorporates Arev and proceeds as fol-

lows:
(a) Stage 1 Main Execution Phase: S emulates a one-one man-in-the-

middle execution by playing as honest sender with tag tag on the left
and as honest receiver on the right. After completing the execution,
denote by Δ the transcripts of messages obtained. Denote the right
tag by ˜tag. We emphasize here that S can emulate left interaction
independent of v in Stage 1.

Stage 1 Rewinding Phase: Next, S attempts to extract the witness
used by Arev on the left if tag 
= ˜tag.
i. In Δ, find the first point ρ that is a safe-point. Let the associated

proof be (αρ, βρ, γρ).
ii. Repeat until a second proof transcript (αρ, β

′
ρ, γ

′
ρ) is obtained:

Emulate the left interaction as in the Stage 1 Main Execution
phase. For the right interaction:
– If Arev expects to get a new proof from the right receiver, S

then emulates the proof by generating design0 himself. Forward
one of the two proofs internally.

– If Arev sends a challenge for a proof whose first message occurs
in ρ: cancel the execution, rewind to ρ and continue.

iii. If βρ 
= β′
ρ, extract and record the witness w from (αρ, βρ, γρ)

and (αρ, β
′
ρ, γ

′
ρ). Otherwise halt and output fail.

Finally, if the above (i.e. step 4a) runs for more than 2n steps, halt and
output fail.

6 In Stage 1, the committer acts as a prover and the receiver acts as a verifier. The
safe-point and safe-point lemma still work by interchanging right and left.
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(b) Stage 2: Send v to the adversary Arev.
(c) Stage 3 Main Execution Phase: By using w as witness, S can easily

simulate left interaction for Arev. The right interaction is emulated by
S adopting honest receiver strategy. After completing the execution,
denote by Δ′ the transcripts of messages obtained in the execution
of Stage 2 and Stage 3 .

Stage 3 Rewinding Phase: S attempts to extract the decommitment
key of Arev on the right:
i. In Δ′, find the first point ρ̃ that is a safe-point. Let the associated

proof be (α̃ρ̃, β̃ρ̃, γ̃ρ̃).
ii. Repeat until a second proof transcript (α̃ρ̃, β̃

′
ρ̃, γ̃

′
ρ̃) is obtained:

Emulate the right interaction as in the Stage 3 Main Execution
Phase. For the left interaction:
– If Arev expects to get a new proof from the committer, S is free

to answer the request by using the witness w, except when Arev

sends a challenge for a proof whose first message occurs in ρ̃,
S cancels the execution, rewinds to ρ̃ and continues.

iii. If β̃ρ̃ 
= β̃′
ρ̃, extract a witness w̃ from (α̃ρ̃, β̃ρ̃, γ̃ρ̃) and (α̃ρ̃, β̃

′
ρ̃, γ̃

′
ρ̃).

Otherwise halt and output fail.
iv. If w̃ is a valid decommitment key for 〈SHC, SHR〉, i.e., (c̃om, w̃,ṽ)

is a legal transcript for 〈SHC, SHR〉, set r̃ev = w̃. Otherwise halt
and output fail.

Finally, if the above (step 4b) runs for more than 2n steps, halt and
output fail.

(d) If the right interaction is accepting and tag 
= t̃ag, and r̃ev contains a
valid decommitment key, run the honest committer strategy on input
c̃om and decommitment key r̃ev, value ṽ with tag t̃ag.

Running time of S. We show that the running time of S is expected PPT.
Note the time spent by S in the commit phase is poly(n). After S extracts the
witness w̃, the time spent by S in step 4d is also poly(n). Next, we show that the
expected time spent by S in the reveal phase (except running time in step 4d) is
also poly(n). For simplicity, we assume that S does not check the fail condition
and may run for more than 2n steps (since this only increases the total running
time).

Recall that in the reveal phase, S rewinds A from two safe points. We need
to show the time spent in step 4a and step 4c are all expected PPT. We first
analyze the time spent in step 4a during the simulation. Then using the same
method, we show that the time spent in step 4c is also expected PPT.

Note the time spent by S in the Stage 1 Main Execution Phase is poly(n). We
then show the time spent in Stage 1 Rewinding Phase is expected PPT. The anal-
ysis hereafter is similar to that in [15] but is simpler. Let T (i) be the random vari-
able that describes the time spent in rewinding a proof after imessages have been
exchanged. We show that E[T (i)] ≤ poly(n) and then by linearity of expectation,
we conclude that the expected time spent by S in the Stage 1 Rewinding Phase
is
∑

i E[T (i)] ≤
∑

i poly(n) ≤ poly(n).
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Next we will bound the time E[T (i)]. Given a partial transcript of messages
ρ, let Pr[ρ] denote the probability that ρ occurs as a prefix of the execution
emulated in Stage 1 Main Execution Phase. Let pρ denote the probability that ρ
is a safe-point7 and is rewound. From the construction of S, we know that S
keeping rewinding until it finds another accepting transcript (αρ, β

′
ρ, γ

′
ρ) for ρ,

canceling each rewinding for which ρ is not a safe-point, i.e., Arev requests the
second message of a proof in the right-interaction whose first message occurs in ρ.
As the emulated committer and receiver act identically as real committer and real
receiver in this stage, conditioned on ρ, a view occurring in a rewinding from ρ is
same as occurring in the Stage 1 Main Execution Phase. Thus, the probability of
canceling a rewinding from ρ is at most 1−pρ. Furthermore, the expected number
of rewindings is at most 1

pρ
. Therefore, the expected number of rewindings from

ρ is at most pρ · 1
pρ

= 1 and each rewinding takes at most poly(n) steps, i.e.,
E[T (i)|ρ] ≤ poly(n). Thus,

E[T (i)] =
∑

ρ of length i

E[T (i)|ρ] · Pr[ρ] ≤ poly(n) ·
∑

ρ of length i

Pr[ρ] ≤ poly(n)

The expected running time of S in step 4c is also polynomial-time using similar
analysis as above. We omit the details.

Analysis of the simulator S. In order to show equation (1), we define a hy-
brid stand-alone simulator HYB1 that also receives v as auxiliary input. HYB1

proceeds exactly as S except that in the commit phase, instead of feeding A a
commitment to 0n, HYB1 feeds A a commitment to v.

Since both the experiment S and HYB1 are efficiently computable, the follow-
ing claim follows directly from the hiding property of 〈SHC, SHR〉.

Claim 1. There exits some negligible function μ′ such that∣∣∣Pr[simS
open(R, v, z) = 1]− Pr[simHYB1

open (R, v, z) = 1]
∣∣∣ < μ′(n)

Next we proceed to showing the following claim.

Claim 2. There exists some negligible function μ′′ such that∣∣∣Pr[mimA
open(R, v, z) = 1]− Pr[simHYB1

open (R, v, z) = 1|¬fail]
∣∣∣ < μ′′(n)

Proof (sketch). Note the view of A in the commit phase in a real interaction is
identical to the view of A in HYB1. Furthermore, HYB1 feeds A messages ac-
cording to the correct distribution in Stage 1, the view of Arev in the simulation

7 Note the roles of C and R interchange in Stage 1 where C acts as a verifier and R
acts as a prover. The safe-point lemma will be used by interchanging the right and
the left.
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of Stage 1 by experiment HYB1 is identical to the view of Arev in a real interac-
tion. The view of Arev in the simulation of Stage 3 by HYB1 is computationally
indistinguishable following from the witness-indistinguishability of 〈Ptag, Vtag〉.
As the safe-point lemma shows, when the right interaction has a different tag
from the left interaction, there is a safe-point. Hence, according to the actions
of HYB1, it will either output fail or succeed in the extraction from Arev. Con-
ditioned on HYB1 not outputting fail, by the computational-binding property of
〈SHC, SHR〉, except with negligible probability, the witness w̃ and the value ṽ
extracted by HYB1 are the valid decommitment key and committed value of A,
respectively.

We next show
∣∣∣Pr[simHYB1

open (R, v, z) = 1]− Pr[simHYB1
open (R, v, z) = 1|¬fail]

∣∣∣ is negli-
gible by proving that the probability that event fail happens is negligible. This
together with Claim 1 and Claim 2 conclude Eq. (1).

Claim 3. HYB1 outputs fail with negligible probability.

Proof. The proof of this claim is similar to that of [15]. More precisely, HYB1

outputs fail only in three cases: HYB1 runs for more than 2n steps; or the same
proof transcript is obtained from some safe-point; or the witness extracted is
not a valid decommitment. The arguments of the first two cases are almost
the same as those in [15]. The main difference lies in the analysis of the third
case.

HYB1 runs for more than 2n steps: We know that the expected running time
of HYB1 and S are same, i.e., poly(n). Using Markov inequality, we con-
clude that the probability that HYB1 runs more than 2n steps is at most
poly(n)

2n .
The same proof transcript is obtained from some safe-point: This case

occurs if HYB1 picks some challenge β (resp. β̃) in Stage 1 (resp. Stage 3)
Rewinding Phase that appeared as a challenge in the Stage 1 (resp. Stage
3 ) Main Execution Phase. As HYB1 runs for at most 2n steps, it picks
at most 2n challenges. Furthermore, the length of each challenge is 2n.
By applying the union bound, we obtain that the probability that a β
(resp. β̃) is picked twice is at most 2n

22n . Since there are at most polyno-
mial many challenges in Stage 1 (resp. Stage 3), using union bound again,
we conclude that the probability that it outputs fail in this case is negligi-
ble.

The witness extracted is not a valid decommitment: 8 Suppose, on the
contrary, the witness extracted is not the decommitment key for 〈SHC, SHR〉,
then by the special-sound property, it follows that it must be a value r′

8 The proof in this case heavily relies on the “simulation-extractability” property of
〈Ptag, Vtag〉 in Stage 1. An ordinary WI proof of knowledge is not suffice here, as
the problem in this case is reduced to the security of one-way functions or witness-
indistinguishability of underlying subprotocols, in the presence of an expected PPT
adversary who can rewind the same subprotocols.
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such that f(r′) = sb′ for some b′ ∈ {0, 1}. Denote by rb (b ∈ {0, 1}) the
witness used by HYB1 in Stage 1 of right interaction. If b′ = 1 − b, then
we can break the one-way function f . Given A, z and v, we construct an
algorithm B that inverts f . The input to B is an n-bit string y = f(x)
where x was chosen randomly from {0, 1}n. B wants to output a pre-image
of y under f . B proceeds as follows: B runs identically as HYB1 with in-
puts z, v with the exception that when simulating the right receiver for A
in Stage 1 of reveal phase, it picks a random bit b ∈ {0, 1} and a ran-
dom string rb ∈ {0, 1}n, and sets sb = f(rb), s1−b = y. By using rb as
witness, it can simulate the right interaction with Arev easily. Finally, if
B extracts a witness r′ where f(r′) = y, then we break the one-wayness
of f . The probability that B inverts f is identical to the probability that
HYB1 inverts f which is non-negligible. This contradicts the one-wayness
of f .

We therefore have only to deal with the case that B always outputs r′

such that f(r′) = sb, i.e., B always outputs same preimage it knows. Then
we can break the witness indistinguishability of the underlying special-sound
proofs as follows: Recall that the proof 〈Ptag, Vtag〉 in Stage 1 of right interac-
tion contains 4m number of special-sound WI proofs. The above assumption
is that B always extracts the same preimage used by itself in Stage 1 of right
interaction. We know that if the 4m number proofs use r0, B outputs r0,
and if the 4m number proofs use r1, B outputs r1. Applying standard hybrid
arguments, there exists i ∈ [4m], by using r0 for the first i− 1 proofs and r1
for the last 4m− i proofs, the witness used in the i-th special-sound proof is
the same as that of the witness extracted by B. We can use this session to
break the witness-indistinguishability of special-sound WI proof. The prob-
ability we break the witness-indistinguishability property of the underlying
special-sound proof is 1

4m times the probability that HYB1 inverts f which
is non-negligible. This contradicts the witness-indistinguishability property
of the underlying special-sound proof.

Computational binding. The binding property intuitively follows from the bind-
ing property of the underlying commitment scheme 〈SHC, SHR〉 and the special-
sound property (or more precisely proof of knowledge property) of the underlying
proof in 〈Ptag, Vtag〉. A formal proof proceeds along the lines of the proof of non-
malleability. More precisely, suppose, there exists an adversaryA that can violate
the binding property of 〈C,R〉, then we design an algorithm A′ that violates the
binding property of 〈SHC, SHR〉. A′ incorporates A and relays the commit phase
messages to an external honest receiver SHR. In the reveal phase, there is no
need of A′ to simulate the left interaction for A. Note in the non-malleability
proof, two extraction are executed. Here, we only execute one extraction by
standard rewinding, and obtain the decommitment key. Using this information,
A′ can easily complete the reveal phase with SHR. It follows from the witness-
indistinguishability property of 〈Ptag, Vtag〉 that the probability that A′ breaks
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the binding property of 〈SHC, SHR〉 is negligible close to the probability that A
breaks the binding property of 〈C,R〉.

Schedule of messages: In the non-malleability proof, the design of S is based on
an unspecified assumption, i.e., in the reveal phase, Stage 3 on both interactions
will not start unless the simulations for Stage 1 are completed. Without loss of
generality, this assumption is reasonable.

Consider the scenario where the simulation for Stage 1 of the left interaction
and Stage 3 of the right interaction overlap. The simulation goes well as the
adversary runs as a prover in Stage 3 of the right interaction, and the rewinding
of Stage 1 of the left interaction will not “rewind” the Stage 3 of the right inter-
action (i.e., the adversary can only answer the left challenge by itself, without
the help from the right interaction). By using the safe-point lemma, the simula-
tor can still find a safe-point and extract the witness to the statement proved
by the adversary by standard rewinding. Furthermore, the adversary also runs
as a prover in Stage 1 of the left interaction, and the rewinding of Stage 3 of
the right interaction will not “rewind” the Stage 1 of the left interaction. Due
to a more simpler but similar reason, when the simulation for Stage 3 of the
left interaction and Stage 1 of the right interaction overlap, the simulator has
no difficulty and the two extractions also performs well. We take a special note
of the fact that the safe-point lemma depicts the existence of safe-point in any
one-one concurrent execution environment, and considers an environment where
one-side of the interaction is empty as a special case.
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A A Content-Based Non-malleable Commitment Scheme

Let 〈SHC, SHR〉 be the statistically hiding commitment scheme [1] from any one-
way function and let 〈Ptag, Vtag〉 be a tag-based WI proof for all NP. Let SS =
(SG, Sig, SVer) be a secure signature scheme. The content-based non-malleable
statistically hiding commitment scheme is shown in Fig. 4. Due to page limit,
the formal proof is omitted here.
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Protocol 〈C, R〉
Security Parameter: 1n

String to be committed: v ∈ {0, 1}n

Commit Phase:
C ⇔ R : Run the commit phase of commitment scheme 〈SHC, SHR〉.
R : Abort if the above commit phase fails.
Denote the above transcript as com. C records the decommitment key in dec.

Reveal Phase:
Stage 1:

R → C : Set (pk0, sk0) ← SG(1n) and send pk0.
R → C : Pick uniformly r0, r1 ∈ {0, 1}n, compute s0 = f(r0) and s1 = f(r1)
and send s0, s1.
R ⇔ C : R and C engage in an execution of 〈Ppk0 , Vpk0〉 with tag pk0, where
R uses rb as witness (b ∈ {0, 1}) and runs Ppk0 to prove to C (running Vpk0)
that there exists a value r s.t. s0 = f(r) or s1 = f(r). The challenge length of
the verifier (i.e., C) is 2n. C aborts if either s0 or s1 is not in the range of f
or the proof fails.
R → C : Let tr0 be the transcript so far. Set σ0 ← Sig(tr0, sk0) and send σ0.
C : Abort if Sver(pk0, tr0, σ0) �= 1.

Stage 2: C → R : Send v.
Stage 3:

C → R : Set (pk1, sk1) ← SG(1n) and send pk1.
C ⇔ R : C and R engage in an execution of 〈Ppk1 , Vpk1〉 with tag pk1, where
C uses witness dec and runs Ppk1 to prove to R (running Vpk1) that there
exists a value dec s.t. dec is the decommitment key of com corresponding to v
or there exists a value r s.t. s0 = f(r) or s1 = f(r). The challenge length of
the verifier (i.e., R) is 2n.
C → R : Let tr1 be the transcript so far. Set σ1 ← Sig(tr1, sk1) and send σ1.
R : Abort if Sver(pk1, tr1, σ1) �= 1.

Fig. 4. Non-malleable statistically hiding commitment scheme 〈C, R〉
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Abstract. Proofs of storage (PoS) are interactive protocols allowing
a client to verify that a server faithfully stores a file. Previous work
has shown that proofs of storage can be constructed from any homo-
morphic linear authenticator (HLA). The latter, roughly speaking, are
signature/message authentication schemes where ‘tags’ on multiple mes-
sages can be homomorphically combined to yield a ‘tag’ on any linear
combination of these messages.

We provide a framework for building public-key HLAs from any iden-
tification protocol satisfying certain homomorphic properties. We then
show how to turn any public-key HLA into a publicly-verifiable PoS with
communication complexity independent of the file length and supporting
an unbounded number of verifications. We illustrate the use of our trans-
formations by applying them to a variant of an identification protocol by
Shoup, thus obtaining the first unbounded-use PoS based on factoring
(in the random oracle model).

1 Introduction

Advances in networking technology and the rapid accumulation of information
have fueled a trend toward outsourcing data management to external service
providers (“servers”). By doing so, organizations can concentrate on their core
tasks rather than incurring the substantial hardware, software and personnel
costs involved in maintaining data “in house”.

Outsourcing storage prompts a number of interesting challenges. One prob-
lem is to verify that the server continually and faithfully stores the entire file f
entrusted to it by the client. The server is untrusted in terms of both secu-
rity and reliability: it might maliciously or accidentally erase the data or place
it onto temporarily unavailable storage media. This could occur for numerous
reasons including cost-savings or external pressures (e.g., government censure).
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The server might also accidentally erase some data and choose not to notify the
client. Exacerbating the problem (and precluding näıve approaches) are factors
such as limited bandwidth between the client and server, as well as the client’s
limited resources. See [1,11] for a more thorough discussion.

If we allow communication complexity linear in f , there is a simple mechanism
allowing the client to verify that the server stores f at any given time: When
the client uploads f , the client locally stores a hash of f ; to verify, the server
simply sends all of f and the client checks that this hashes to the correct value.
For our purposes, we are interested in solutions with communication complexity
that is much smaller than (and, ideally, independent of) the file size.

Ateniese et al. [1] and Juels and Kaliski [11] independently introduced ap-
proaches to this problem having sub-linear communication complexity. (Earlier
work by Naor and Rothblum [13] is related, but considers a somewhat weaker
adversarial model.) Ateniese et al. also distinguish between the case of private
verifiability, where only the original client (or anyone with whom that client
shares a key) can verify the server’s storage, and public verifiability, where any-
one knowing the client’s public key can perform verification. Extensions and
improvements were given by Shacham and Waters [14], Dodis, Vadhan, and
Wichs [5], and Bowers, Juels, and Oprea [4]. We refer to [5] for a more detailed
comparison among the existing schemes.

Here, we are interested in publicly-verifiable schemes that can be used for an
unbounded number of verifications. A useful tool for this, implicit in [1] and
further studied in [14,5], is a homomorphic linear authenticator (HLA), which
can be defined in either the private- or public-key setting. Roughly speaking,
this primitive allows a client to ‘tag’ each block fi of a file f = f1| · · · |fn in such
a way that for any vector c the server can homomorphically construct a (short)
tag authenticating the value

∑
ci · fi.

Two recent works have considered the dynamic setting, where the remotely-
stored data can be updated [2,6]. We do not address this problem here.

1.1 Our Contributions

The main contribution of this paper is to show a general mechanism (in the ran-
dom oracle model) for constructing publicly-key HLAs from any identification
protocol that is suitably homomorphic. The RSA-based HLA used by Ateniese
et al. [1] (see also [14, Appendix E]) can be viewed as an instance of our mech-
anism applied to the Guillou-Quisquater [10] identification protocol; similarly,
the Shacham-Waters scheme [14] can be seen as being derived from an under-
lying identification protocol in bilinear groups. By applying our transformation
to a variant of Shoup’s identification scheme based on factoring [15], we ob-
tain the first publicly-verifiable HLA based on factoring (in the random oracle
model).

We also show a generic transformation from any HLA to a publicly-verifiable
proof of storage with communication complexity independent of the file size. This
transformation is in the standard model, and answers an open question from [14].
An analogous transformation with similar properties was shown (independently)
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by Dodis et al. [5] in the setting of simpler private verifiability; our technique is
different from theirs and is of independent interest.

Combining our results, we obtain a publicly-verifiable proof of storage based
on the factoring assumption in the random oracle model. In our PoS, the com-
munication complexity and the size of the client’s state are independent1 of the
file size, and the server’s storage is a constant multiple of the file size. In the PoS
we describe, the computation of both the client and the server is linear in the file
size, but notice that public-key HLAs can be layered on top of erasure codes (as
in [14,4]) or used in conjunction with a probabilistic approach for multiple audits
(as in [1]) to obtain better performance while retaining public verifiability.

2 Definitions

We write x← X to represent an element x being sampled uniformly at random
from a set X . The output y of a randomized algorithm A running on input x is
denoted by x ← A(x). We sometimes write y := A(x; r) to denote the (deter-
ministic) result of running A on input x and random coins r. We use boldface
to denote vectors. Given a vector v we let vi denote its ith component.

Throughout, k ∈ N denotes the security parameter. A function ν : N → R is
negligible if for every polynomial p(·) and large enough k, we have ν(k) < 1/p(k).

2.1 Homomorphic Linear Authenticators

Homomorphic linear authenticators (HLAs) were introduced by Ateniese et al. [1]
as a building block for constructing communication-efficient proofs of storage;
they were further studied in [14,5]. At a high level, HLAs are used as follows:
viewing the file f as an n-dimensional vector, the client begins by tagging each
element of f and then sending both f and the vector of tags t to the server. To
verify that the server is storing the entire file, the client sends a random challenge
vector c and the server returns μ =

∑
i ci ·fi along with a tag τ , computed using

f , t, and c, which is supposed to authenticate this value.
HLAs can be defined both in the private and public-key settings. We give a

definition for public-key HLAs and refer the reader to [5] for a formalization of
private-key HLAs.

Definition 1 (Homomorphic linear authenticator). A public-key homo-
morphic linear authenticator is a tuple of four ppt algorithms (Gen,Tag,Auth,
Vrfy) such that:

(pk, sk) ← Gen(1k) is a probabilistic algorithm used to set up the scheme. It
takes as input the security parameter and outputs a public and private key
pair (pk, sk). We assume pk defines a k-bit prime p and a positive integer B.

(t, st)← Tagsk(f) is a probabilistic algorithm that is run by the client in order
to tag a file. It takes as input a secret key sk and a file f ∈ [B]n, and outputs
a vector of tags t and state information st.

1 The communication complexity for a file of size n is O(log n + k), and as in [5] we
assume k � log n.
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τ := Authpk(f , t, c) is a deterministic algorithm that is run by the server to
generate a tag. It takes as input a public key pk, a file f ∈ [B]n, a tag
vector t, and a challenge vector c ∈ Zn

p ; it outputs a tag τ .
b := Vrfypk(st, μ, c, τ): is a deterministic algorithm that is used to verify a tag.

It takes as input a public key pk, state information st, an element μ ∈ N,
a challenge vector c ∈ Zn

p , and a tag τ . It outputs a bit, where ‘1’ indicates
acceptance and ‘0’ indicates rejection.

For correctness, we require that for all k ∈ N, all (pk, sk) output by Gen(1k), all
f ∈ [B]n, all (t, st) output by Tagsk(f ), and all c ∈ Zn

p , it holds that

Vrfypk

(
st,
∑

i

cifi, c, Authpk(f , t, c)

)
= 1.

We remark that in certain schemes correctness (and security) may hold even
when Vrfy is given only

∑
i cifi mod p (assuming B < p). In such cases the

communication from the server to the client can be further reduced.
Informally an HLA is secure if, for a given file f and challenge vector c, no

adversary can output a valid authenticator for an element μ′ 
=
∑

i cifi.

Definition 2 (Unforgeability for public-key HLAs). Let Λ = (Gen, Tag,
Auth, Vrfy) be a public-key HLA and A be an adversary, and consider the fol-
lowing experiment:

1. The challenger computes (pk, sk)← Gen(1k), where pk defines p and B.
2. Given pk and oracle access to Tagsk(·), adversary A outputs a file f ∈ [B]n.
3. The challenger tags the file by computing (t, st)← Tagsk(f ).
4. Given t and st, the adversary A outputs a challenge vector c ∈ Zn

p , an
element μ′ ∈ Z, and a tag τ ′.

5. The adversary succeeds if μ′ 
=
∑

i cifi and Vrfypk(st, μ′, c, τ ′) = 1.

Λ is unforgeable if the success probability of every ppt adversary A in the above
experiment is negligible.

The distinctions between the case of public verifiability (as defined above) and
private verifiability (as defined in [5]) are that, in the former setting (1) ver-
ification does not require the original secret key sk but only the state st and
the original public key; (2) unforgeability holds even against an adversary who
knows the public information pk and st. Our definition is also stronger than the
one given in [5] in that we initially give the adversary access to a tagging oracle.

2.2 Homomorphic Identification Protocols

An identification protocol allows a prover P in possession of a secret key sk to
prove its identity to a verifier V that possesses the corresponding public key pk.
We consider 3-move identification protocols where the prover generates the first
message α using the public key pk and randomness r; the verifier sends a random
challenge β; and the prover then computes a response γ using (pk, sk), the
randomness r, and the verifier’s challenge β. Given the transcript of the protocol,
the verifier decides whether to accept or not.
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Definition 3 (Identification protocol). An identification protocol is a three-
move protocol between a ppt prover P and a ppt verifier V. The protocol consists
of four polynomial-time algorithms (Setup,Comm,Resp,Vrfy) such that:

(pk, sk)← Setup(1k) is a probabilistic algorithm that takes as input the security
parameter and outputs a public and private key pair (pk, sk).

α ← Comm(pk; r) is a probabilistic algorithm run by the prover P to generate
the first message. It takes as input the public key and random coins r, and
outputs an initial message α. We stress that there is no need for sk.

γ ← Resp(pk, sk, r, β) is a probabilistic algorithm that is run by the prover P
to generate the third message. It takes as input the public key pk, the secret
key sk, a random string r, and a challenge β (from some associated challenge
space), and outputs a response γ.

b := Vrfy(pk, α, β, γ) is a deterministic algorithm run by the verifier V to decide
whether to accept the interaction. It takes as input the public key pk, an
initial message α, a challenge β, and a response γ. It outputs a bit b, where
‘1’ indicates acceptance and ‘0’ indicates rejection.

For correctness, we require that for all k ∈ N, all (pk, sk) output by Setup(1k),
all random coins r, and all β in the appropriate challenge space, it holds that

Vrfy
(
pk,Comm(pk; r), β,Resp(pk, sk, r, β)

)
= 1.

An identification protocol is homomorphic if the verification of several transcripts
of the protocol can be “batched”:

Definition 4 (Homomorphic identification protocol). An identification
protocol Σ = (Setup,Comm,Resp,Vrfy) is homomorphic if there exist efficient
functions Combine1,Combine3 such that:

Completeness: For all (pk, sk) output by Setup(1k) and all c ∈ Zn
2k , if tran-

scripts {(αi, βi, γi)}1≤i≤n are such that Vrfy(pk, αi, βi, γi) = 1 for all i, then:

Vrfy

(
pk, Combine1(c,α),

∑
i

ciβi, Combine3(c,γ)

)
= 1.

Unforgeability: Consider the following experiment involving an adversary A:

1. The challenger computes (pk, sk)← Setup(1k) and gives pk to A.
2. The following is repeated a polynomial number of times:

– A outputs β′ in the challenge space. The challenger chooses ran-
dom r, computes γ := Resp(pk, sk, r, β′), and gives (r, γ) to A.

3. The adversary outputs a n-vector of challenges β. Then for each i the
challenger chooses ri at random, sets αi := Comm(pk; ri) and γi :=
Resp(pk, sk, ri, βi), and gives (r,γ) to A.

4. A outputs a triple (c, μ′, γ′), where c ∈ Zn
2k . The adversary succeeds if

(1) μ′ 
=
∑

i ciβi and (2) Vrfy(pk,Combine1(c,α), μ′, γ′) = 1.
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2.3 Proofs of Storage

Definition 5 (Proof of storage). A (publicly-verifiable) proof of storage is a
tuple of five ppt algorithms (Gen,Encode,Prove,Vrfy) such that:

(pk, sk) ← Gen(1k) is a probabilistic algorithm that is run by the client to set
up the scheme. It takes as input a security parameter, and outputs a public
and private key pair (pk, sk). We assume pk defines a k-bit prime p and a
positive integer B.

(f ′, st) ← Encodesk(f ) is a probabilistic algorithm that is run by the client
in order to encode the file. It takes as input the secret key sk, and a file
f ∈ [B]n. It outputs an encoded file f ′ and state information st.

π := Prove(pk,f ′, c) is a deterministic algorithm that takes as input the public
key pk, an encoded file f ′, and a challenge c ∈ Zn

p . It outputs a proof π.
b := Vrfy(pk, st, c, π): is a deterministic algorithm that takes as input the public

key pk, the state st, a challenge c ∈ Zn
p , and a proof π. It outputs a bit,

where ‘1’ indicates acceptance and ‘0’ indicates rejection.

We require that for all k ∈ N, all (pk, sk) output by Gen(1k), all f ∈ [B]n, all
(f ′, st) output by Encodesk(f), and all c ∈ Zn

p , it holds that

Vrfy
(
pk, st, c,Prove(pk,f ′, c)

)
= 1.

Note that the above defines a publicly-verifiable PoS since the original secret key
sk is not needed in order to perform verification.

Security of a PoS, roughly speaking, guarantees that if the verifier accepts
then the prover indeed has (sufficient information to recover) the entire original
file f . As noted in [1,11,14,5], soundness can be formalized using the notion of a
knowledge extractor [7,3]. As in [5], we phrase our definition using the paradigm
of “witness-extended emulation” [12].

Definition 6 (Security for a publicly-verifiable PoS). Let Π = (Gen,
Encode, Prove, Vrfy) be a publicly-verifiable PoS. Π is secure if there is an
expected polynomial-time knowledge extractor K such that, for any ppt adver-
sary A we have:

1. The distributions{
(pk, sk)← Gen(1k); (f , stA)← AEncodesk(·)(pk);

(f ′, st)← Encodesk(f); c← Zn
p

: (c, A(stA,f ′, st, c))
}

and{
(pk, sk)← Gen(1k); (f , stA)← AEncodesk(·)(pk);

(f ′, st)← Encodesk(f )
: KA(stA,f ′,st,·)

1 (pk, st)
}

are identical. (Above, K1 denotes the first output of K.)
2. The following is negligible:

Pr

⎡⎢⎢⎣
(pk, sk)← Gen(1k);

(f , stA)← AEncodesk(·)(pk);
(f ′, st)← Encodesk(f );

((c, π),f∗)← KA(stA,f ′,st,·)(pk, st)

: Vrfy(pk, st, c, π) = 1
∧

f∗ 
= f

⎤⎥⎥⎦ .
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3 From Homomorphic Identification Protocols to HLAs

We now show how to transform any homomorphic identification protocol Σ =
(Setup,Comm,Resp,Vrfy) into a public-key HLA. The basic idea is to use the file
blocks f1, . . . , fn as the “challenges” in n parallel invocations of the identification
protocol. Thus, a very basic PoS would be as follows:

– The client computes (pk, sk)← Gen(1k).
– For each block fi of the file, the client computes αi, γi such that (αi, fi, γi)

is an accepting transcript in the underlying identification scheme.
– The client sends to the server the file f = f1| · · · |fn and the tags γ1, . . . , γn;

the client stores α1, . . . , αn as its own local state.

To verify that the server stores the ith block of the file, the client requests the
server to send (fi, γi); the client can authenticate this response by checking that
(αi, fi, γi) is an accepting transcript.

There are several drawbacks to the above approach. First, the client’s state is
linear in the file size.2 This is easy to remedy by having the client generate each
αi using a pseudorandom function (if private verifiability suffices) or a random
oracle (if public verifiability is desired, as here). A more serious problem is that
a server can easily “cheat” without being caught “too often” by throwing away
blocks of the file. If the server deletes, say, 1 block from the file then it is only
caught with probability 1/n. This can be addressed, to some extent, by having
the client request many blocks but then the communication complexity increases.

Instead, we rely on the homomorphic property of the identification scheme to
“batch” the authentication of multiple blocks. Specifically, the client will send
a random integer vector c and the server will respond with μ′ :=

∑
i cifi and

γ′ := Combine3(c,γ); This response can be verified by checking whether

Vrfy(pk,Combine1(c,α), μ′, γ′) ?= 1.

(See Figure 1.) Although the client-to-server communication is large, the server-
to-client communication is essentially independent of the file size (cf. footnote 1).
We reduce the client-to-server communication when we construct a PoS in the
next section.

Theorem 1. If Σ is an unforgeable homomorphic identification protocol, then
Λ as in Figure 1 is an unforgeable public-key HLA if H is modeled as a random
oracle.

Proof. Correctness is easy to verify, and so we consider security. Let A be a ppt

adversary attacking Λ. We construct an adversary A′ attacking Σ as follows:

1. A′ is given a public key pk, generates B and p in the obvious way, and runs
A(pk, p,B).

2 In some cases linear state may be acceptable, as long as the state is a constant
fraction shorter than the file itself. When using certain homomorphic identification
schemes, including the one discussed in Section 5, this indeed can be achieved.
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Let Σ = (Setup, Comm, Resp, Vrfy) be a homomorphic identification pro-
tocol and let H be a function. Construct a public-key HLA Λ =
(Gen, Tag, Auth, Vrfy) as follows:

– Gen(1k): Compute (pk, sk) ← Σ.Setup(1k). Let B be such that [B] is
in the challenge space of Σ, and choose a k-bit prime p. Output the
public key (pk, p, B) and secret key sk.

– Tagsk(f ), where f = f1| · · · |fn, and fi ∈ [B] for all i:
1. Choose st ← {0, 1}k.
2. For 1 ≤ i ≤ n:

a. Set ri := H(st; i) and αi := Σ.Comm(pk; ri).
b. Compute γi := Σ.Resp(pk, sk, ri, fi).

3. Output t := (γ1, . . . , γn) and st.
– Authpk(f , t, c): Compute and output τ ← Σ.Combine3(c, t).
– Vrfypk(st, μ, c, τ ):

1. for 1 ≤ i ≤ n, set ri := H(st; i) and αi := Σ.Comm(pk; ri).
2. Output Σ.Vrfy(pk, Combine1(c, α), μ, τ ).

Fig. 1. Transforming a homomorphic identification protocol into a HLA

2. When A requests Tagsk(f ) for f = f1| · · · |fn, then (for i = 1 to n) A′

queries fi to its own oracle and receives in return (ri, γi). Then A′ chooses
random st ∈ {0, 1}k, sets answers to the random oracle appropriately, and
gives (γ1, . . . , γn) and st to A.

3. Eventually, A outputs a file f . Following this, A′ outputs the vector of n
challenges f = f1| · · · |fn, and receives in return (r,γ). Then A′ chooses
random st ∈ {0, 1}k, sets3 answers to the random oracle appropriately, and
gives (γ, st) to A.

4. When A finally outputs c, μ′, τ ′, then A′ outputs these same values.

It is easy to see that A succeeds in attacking Λ exactly when A′ succeeds in
attacking Σ.

4 From HLAs to Efficient Proofs of Storage

In this section we show how to use any HLA to construct a PoS having com-
munication complexity independent of the file size. Our transformation is in the
standard model.

It is immediate how an HLA can be used to construct a PoS with communica-
tion complexity linear in the file size: When storing a file f , the client computes
tags on all the file blocks and gives to the server the vector of tags t (along with
f itself). To verify, the client chooses a random c ∈ Zn

p and sends it to the server;
the server responds with

∑
i cifi and Authpk(f , t, c) (which is authenticated by

3 We assume for simplicity that no st ∈ {0, 1}k is chosen twice throughout the exper-
iment, since this occurs with only negligible probability.
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the client in the obvious way). If authentication tags output by Auth have length
O(k), then the server-to-client communication for an n-block file is bounded by

O(k) + log

(∑
i

cifi

)
≤ O(k) + logn · p · B = O(k) + logn.

For typical values of k, n, this means that the server-to-client communication is
(essentially) independent of the file size.

To reduce the client-to-server communication, we use a pseudorandom func-
tion F : the client sends a key K ∈ {0, 1}k, and the server then derives the
challenge vector c by setting ci := FK(i) for all i. (See Figure 2.) This approach
is, perhaps, quite “natural”,4 but it turns out to be highly non-trivial to prove
that it is sound. (This difficulty was mentioned in [14,5].) The issue is that since
the key K is public, we cannot reduce to the security of the pseudorandom
function in the usual way. Instead we must use a more careful analysis.

Let Λ = (Gen, Tag, Auth, Vrfy) be a public-key HLA, and let F be a pseu-
dorandom function. Construct a publicly-verifiable PoS Π = (Gen, Encode,
Prove, Vrfy) as follows:

– Gen(1k): Compute and output (pk, sk) ← Λ.Gen(1k). Let p be the prime
implicit in pk.

– Encodesk(f ): Compute (t, st) ← Λ.Tagsk(f ), and output f ′ = (f , t)
and st.

– Prove(pk, f ′, K), where K ∈ {0, 1}k:
1. Parse f ′ as (f , t).
2. For 1 ≤ i ≤ n let ci := FK(i), where ci is viewed as an element

of Zp.
3. Compute τ ← Λ.Authpk(f , t, c) and μ :=

∑
i cifi.

4. Output π := (μ, τ ).
– Vrfy(pk, st, K, π):

1. Parse π as (μ, τ ).
2. For 1 ≤ i ≤ n, let ci := FK(i).
3. Output b := Λ.Vrfypk(st, μ, c, τ ).

Fig. 2. Transforming an HLA into a PoS

Theorem 2. Let Λ be an unforgeable public-key HLA, and let F be a pseudo-
random function secure against non-uniform polynomial-time adversaries. Then
Π as in Figure 2 is a secure publicly-verifiable PoS.

Proof. Correctness of the construction is easily verified, and so we turn to proving
security. We describe a knowledge extractor K that runs in expected polynomial-
time and satisfies Definition 6. Recall that K is given pk, st as input and has
4 A similar approach, based on pseudorandom generators, was proposed in [9] in the

context of verifiable shuffles.
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oracle access to A(stA,f ′, st, ·), which we abbreviate as A(·). Define c(K) =
(FK(1), . . . , FK(n)). The high-level structure of K is as follows:

1. K chooses random K ← {0, 1}k and runs A(K) to obtain a proof π. If
Vrfy(pk, st,K, π) = 0 then K outputs ((K,π),⊥) and stops. Otherwise, its
first output will still be (K,π) but it attempts to recover the original file as
described next.

2. K repeatedly rewinds A and sends it different challenges until A responds
correctly to a total of n challenges K1, . . . ,Kn such that c(K1), . . . , c(Kn)
are linearly independent (over Q). Given n successful responses to these n
challenges, K reconstructs a candidate file f , and outputs it.

The above neglects some technical details that we now formalize. IfA(K) outputs
a proof π = (μ, τ) for which Vrfypk(st, μ, c(K), τ) = 1, then we say that K is a
good challenge. K implements step 2, above, as follows:

1. Initialize sets GoodK := Goodc := ∅. Keep track of the total number of calls
to A, and halt execution with output fail if 2k calls are made.

2. Estimate the probability p̃∗ with which a random key K is good by running
A with a random challenge until some fixed polynomial number q = q(k)
successful verifications occur. By appropriate choice of q, it is possible to
ensure that the estimate p̃∗ is within a factor of 2 of the true probability
with all but negligible probability 2−k2

.
3. For j = 1 to n do:

– Repeatedly sample Kj uniformly, querying A on each one, until a good
Kj with c(Kj) 
∈ span(Goodc) is found. If found, then add Kj to GoodK

and add cj = c(Kj) to Goodc, and go to the next value of j. If no such
Kj is found in at most k2/p̃∗ tries, then output fail and halt.

4. Let GoodK = {K1, . . . ,Kn} and Goodc = {c1, . . . , cn}, where cj = c(Kj),
and let πj = (μj , τj) be the output of A(Kj). Set up the system of linear
equations {

∑
i cj,i · fi = μj}1≤j≤n in the unknowns f = (f1, . . . , fn). Solve

for f (over the integers) and output it.

We refer to the above as the extraction subroutine.
To complete the proof, we need to show three things. First, that K runs in

expected polynomial time for any A. Second, that if A successfully convinces a
verifier in the PoS protocol with sufficiently high probability, then the extraction
procedure will successfully complete (specifically, step 3 will be successful) with
overwhelming probability. Third, that with overwhelming probability the file f
output by the extraction procedure is indeed equal to the true file f . The first
and third of these items are essentially standard. The second step would be
relatively straightforward if the challenge in the PoS protocol were a random
vector c; what makes it more complicated is that the challenge is a PRF key K
that is expanded to a vector c = c(K).
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Fixing stA, f ′, and st, we let p∗ denote the probability that a random chal-
lenge K is good; i.e., this is the probability with which A(stA,f ′, st, ·) responds
correctly to the verifier’s challenge (we assume stA includes A’s coins).

Claim. K runs in expected polynomial time.

Proof. If p∗ = 0 then it is clear that K runs in expected polynomial time.
So assume p∗ > 0. We must then analyze the expected running time of the
extraction procedure, following [8,12]. Steps 1 and 4 take strict polynomial time.
The expected running time of step 2 is exactly (some polynomial times) q(k)/p∗.
As for step 3, there are two cases: If p̃∗ ≤ p∗/2, then the only thing we can claim
is that the running time is bounded by (some polynomial times) 2k, due to the
counter being maintained in step 1. But the probability that p̃∗ ≤ p∗/2 is at
most 2−k2

. On the other hand, if p̃∗ > p∗/2 then the expected running time of
step 4 is at most (some polynomial times) n · k2/p̃∗ < 2nk2/p∗.
K only runs the extraction procedure with probability p∗. Thus, the overall

expected running time of K is upper-bounded by

p∗ ·
(
poly(k) + poly(k) · q(k)/p∗ + poly(k) · 2k · 2−k2

+ poly(k) · 2nk2/p∗
)
,

which is polynomial.

Claim. There exists a negligible function ε(·) such that if p∗ > ε(k) then the
probability (conditioned on the extraction procedure being run) that the extrac-
tion procedure outputs fail is negligible.

Observe this implies that

Pr

⎡⎢⎢⎣
(pk, sk)← Gen(1k);

(f , stA)← AEncodesk(·)(pk);
(f ′, st)← Encodesk(f);

((c, π),f∗)← KA(stA,f ′,st,·)(pk, st)

: Vrfy(pk, st, c, π) = 1
∧

f∗ = fail

⎤⎥⎥⎦
is negligible.

Proof. We view the cj = c(Kj) as vectors over Zp, and use the fact that integer
vectors c1, . . . , c�, with entries in the range {0, . . . , p−1}, are linearly dependent
over Q only if they are linearly dependent over Zp; thus, an upper bound on the
probability of the latter implies an upper bound on the probability of the former.

Define
ε′(k) = maxL

{
Pr[K ← {0, 1}k : c(K) ∈ L]

}
,

where the maximum is taken over all (n− 1)-dimensional subspaces L ⊂ Zn
p . It

is not hard to see that if F is a non-uniformly secure PRF then ε′(k) − 1/p is
negligible. Since 1/p is negligible, we see that ε′ is negligible too. Take ε = 2ε′.
We show that if p∗ > ε then, conditioned on the extraction procedure being run,
the probability that it outputs fail is negligible.



330 G. Ateniese, S. Kamara, and J. Katz

First, observe that the probability that K times out by virtue of running
for 2k steps is negligible (this follows from the fact that the expected running
time of K is polynomial). Next, fix any j and consider step 3. The number of
challenges that are good is exactly p∗ · 2k, and the number of challenges Kj for
which c(Kj) lies in span(Goodc) (which has dimension at most n− 1) is at most
ε′ ·2k < p∗ ·2k/2. Thus, the probability that a random Kj is both good and does
not lie in span(Goodc) is at least p∗/2. If p̃∗ is within a factor of 2 of p∗, which
occurs with all but negligible probability, then K finds such a Kj within k2/p̃∗
steps with all but negligible probability; a union bound over all values of j ∈ [n]
then shows that it fails in some iteration with only negligible probability. This
completes the proof.

Finally, we show that the probability that the extraction procedure outputs an
incorrect file is negligible. In conjunction with the previous claims, this completes
the proof that K satisfies Definition 6.

Claim. For any ppt adversary A, the following is negligible:

Pr

⎡⎢⎢⎣
(pk, sk)← Gen(1k);

(f , stA)← AEncodesk(·)(pk);
(f ′, st)← Encodesk(f );

((c, π),f∗)← KA(stA,f ′,st,·)(pk, st)

:
Vrfy(pk, st, c, π) = 1∧

f∗ 
∈ {fail,f}

⎤⎥⎥⎦ .
Proof. The event in question can only occur if, at the end of the extraction
procedure, there exists c ∈ Goodc, with c = c(K), for which A(K) outputs (μ, τ)
such that Vrfy(pk, st,K, (μ, τ)) = 1 yet μ 
=

∑
i cifi. But this exactly means

that A has violated the assumed unforgeability of Λ. Since K runs in expected
polynomial-time, it follows by a standard argument that this occurs with only
negligible probability.

This concludes the proof of Theorem 2.

5 A Concrete Instantiation Based on Factoring

In this section we describe a homomorphic variant of the identification protocol
of Shoup [15], whose security is based on the hardness of factoring. Together with
the transformations described in the previous sections, this yields a factoring-
based PoS in the random oracle model.

Protocol ΣShoup, described in Figure 3, relies on a Blum modulus generator
GenBlum that takes as input a security parameter 1k and outputs a tuple (N, p, q)
such that N = p · q where p and q are k-bit primes with p = q = 3 mod 4. We
denote byQRN the set of quadratic residues moduloN , and by J+1

N the elements
of Z∗

N with Jacobi symbol +1. We use the following standard facts regarding
Blum integers: (1) given x ∈ Z∗

N it can be efficiently decided whether x ∈ J+1
N ;

(2) if x ∈ J +1
N , then exactly one of x or −x is in QRN ; (3) every x ∈ QRN has

four square roots, exactly one of which is itself in QRN .
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Define homomorphic identification protocol ΣShoup as follows:

– Setup(1k): Generate (N, p, q) ← GenBlum(1k). Choose y ← QRN , and
output pk := (N, y) and sk := (p, q).

– Comm(pk; r): View r as an element of J+1
N and output α := r.

– Resp(pk, sk, r, β): Let β ∈ Z2k (which defines the challenge space). Out-
put γ, a random 23kth root of ±r · yβ mod N (where the sign is chosen
to ensure that a square root exists).

– Vrfy(pk,α, β, γ): Output 1 iff γ23k ?= ±α · yβ mod N and β < 23k.

Combine1 and Combine3 are defined as follows:

– Let c ∈ Zn
2k and α ∈ Zn

N . Then Combine1(c, α) =
∏n

i=1 αci
i mod N .

– Let c ∈ Zn
2k and γ ∈ Zn

N . Then Combine3(c, γ) =
∏n

i=1 γci
i mod N .

Fig. 3. A homomorphic identification protocol based on factoring

Correctness of ΣShoup as a stand-alone identification protocol is immediate.
Let us verify that it is homomorphic. Fix public key (N, y), challenge vector
c ∈ Zn

2k , and {(αi, βi, γi)}1≤i≤n such that γ23k

i = ±αi ·yβi mod N for all i. Then

Combine3(c,γ)2
3k

=

(
n∏

i=1

γci

i

)23k

mod N

=
n∏

i=1

(
γ23k

i

)ci

mod N

=
n∏

i=1

(
±αi · yβi

)ci mod N

= ±
n∏

i=1

αci

i · yβici mod N

= ±Combine1(c,α) · y
∑

i ciβi mod N,

and furthermore
∑

i ciβi < n · 2k · 2k < 23k.

Theorem 3. ΣShoup is an unforgeable homomorphic identification protocol if the
factoring assumption holds with respect to GenBlum.

Proof. The high-level ideas are similar to those in [15], though the proof here
is a bit simpler. Given a ppt adversary A attacking ΣShoup, we construct a ppt

algorithm B computing square roots modulo N output by GenBlum. This implies
factorization of N in the standard way. Algorithm B works as follows:

– B is given a Blum modulus N and a random y ∈ QRN . It runs A on the
public key pk = (N, y).

– When A outputs β′ ∈ Z2k , then B chooses random γ ∈ ZN and b ∈ {0, 1},
and sets r := α := (−1)b · γ23k

/yβ mod N . It then gives (r, γ) to A.
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– When A outputs an n-vector of challenges β, then for each i algorithm B
computes (ri, γi) as in the previous step. It gives (r,γ) to A.

– If A outputs (c, μ′, γ′) with Vrfy(pk,Combine1(c,α), μ′, γ′) = 1 but μ′ 
=∑
i ciβi, then B computes a square root of y as described below.

Note that the simulation provided for A by B is perfect, and so A succeeds in
the above with the same probability with which it succeeds in attacking the
real-world protocol ΣShoup.

To complete the proof, we describe the final step in more detail. Define

α∗ = Combine1(c,α), γ∗ = Combine3(c,γ), μ =
∑

i

ciβi.

If Vrfy(pk, α∗, μ′, γ′) = 1 but μ′ 
= μ, then (γ′)2
3k

= ±α∗ · yμ′
mod N ; further-

more, B also knows that (γ∗)2
3k

= ±α∗ · yμ mod N . Assume without loss of
generality that μ > μ′. Since y ∈ QRN this implies

(γ′/γ∗)2
3k

= yμ−μ′
mod N (1)

with μ, μ′ < 23k (and so μ − μ′ < 23k). Write μ − μ′ = f · 2t for t < 3k and f
odd. Since squaring is a permutation of QRN , Equation (1) implies

(γ′/γ∗)2
3k−t

= yf mod N.

Using the extended Euclidean algorithm, B computes integers A,B such that
Af +B23k−t = 1. Then((

(γ′/γ∗)A
yB
)23k−t−1)2

=
(
(γ′/γ∗)A

yB
)23k−t

= yAfyB23k−t

= y,

and so B can compute a square root of y. Since B computes a square root
whenever A succeeds, the success probability of A must be negligible.
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Simple Adaptive Oblivious Transfer
without Random Oracle

Kaoru Kurosawa and Ryo Nojima
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Abstract. Adaptive oblivious transfer (OT) is a two-party protocol
which simulates an ideal world such that the sender sends M1, · · · , Mn

to the trusted third party (TTP), and the receiver receives Mσi from
TTP adaptively for i = 1, 2, · · · k. This paper shows the first pairing-free
fully simulatable adaptive OT. It is also the first fully simulatable scheme
which does not rely on dynamic assumptions. Indeed our scheme holds
under the DDH assumption.

Keywords: Adaptive OT, Fully Simulatable, DDH, Standard Model.

1 Introduction

In a non-adaptive (k, n) oblivious transfer (OT) scheme which is denoted by
OT n

k [6,1,14], a sender has n secret strings M1, · · · ,Mn, and a receiver has k
secret choice indices σ1, · · · , σk ∈ {1, · · · , n}. At the end of the protocol, the re-
ceiver learns Mσ1 , · · · ,Mσk

(only), and the sender learns nothing on σ1, · · · , σk.
Efficient OT schemes are important because OT 4

1 is a key building block for
secure multi-party computation [20,7,12].

In an adaptive (k, n) oblivious transfer protocol which is denoted by OT n
k×1,

the receiver chooses σi adaptively depending on Mσ1 , · · · ,Mσi−1 [15]. In other
words, OT n

k×1 is a two-party protocol (S,R) which simulates an ideal world
protocol (S′, R′) such that

1. the sender S′ sends M1, · · · ,Mn to the trusted third party (TTP), and
2. the receiver R′ receives Mσi from TTP adaptively for i = 1, 2, · · ·k, where

the receiver chooses σi based on Mσ1 , · · · ,Mσi−1 .

Adaptive OT has wide applications such as oblivious database searches, secure
multiparty computation and etc, too.

As a security notion of OT (for both non-adaptive and adaptive), half simu-
latability was considered until recently [15,16,11,18]. This definition requires

– (Sender’s privacy.) For any receiverR in the real world, there exists a receiver
R̂ in the ideal world such that the outputs of R and R̂ are indistinguishable.

– (Receiver’s privacy.) For any input to the receiver, the view of the sender
must be indistinguishable. (Note that the honest sender outputs nothing.)

M. Matsui (Ed.): ASIACRYPT 2009, LNCS 5912, pp. 334–346, 2009.
c© International Association for Cryptologic Research 2009
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However, Naor and Pinkas noticed that there can be a practical attack on a half
simulatable adaptive OT [15].

To solve this problem, Camenisch, Neven and shelat formalized a notion of
full simulatability [2]. In this definition, we consider a pair of outputs of the
sender and the receiver. Although the honest sender outputs nothing, a malicious
sender may output its view in the execution of the protocol. Full simulatability
now requires that

– (Sender’s privacy) For any receiver R̂ in the real world, there exists a re-
ceiver R̂′ in the ideal world such that (S′

out, R̂
′
out) is indistinguishable from

(Sout, R̂out), where Aout denotes the output of A.
– (Receiver’s privacy) For any sender Ŝ in the real world, there exists a sender
Ŝ′ in the ideal world such that (Ŝ′

out, R
′
out) is indistinguishable from (Ŝ′

out,
Rout).

They then showed a fully simulatable adaptive OT in the random oracle model,
and one in the standard model, respectively [2].

We focus on the standard model in this paper.1 Then all fully simulatable
adaptive OT known so far have been constructed based on pairing, and they
rely on dynamic assumptions such as q-strong DH assumption. For example,
Camenisch et al.’s OT n

k×1 relies on q-strong DH assumption and q-PDDH as-
sumption. Green and Hohenberger’s OT n

k×1 relies on q-hidden LRSW assump-
tion [9]. (This scheme achieves UC security.) Jarecki and Liu’s OT n

k×1 relies on
the decisional q-DHI assumption [10].

This paper shows the first pairing-free fully simulatable adaptive OT. It is
also the first fully simulatable scheme which does not rely on dynamic assump-
tions. Indeed our scheme holds under the DDH assumption. While the previous
schemes use a signature scheme as a building block,2 our scheme utilizes ElGamal
encryption scheme. (Hence we do not need a pairing.)

Our scheme is conceptually very simple and efficient. The initialization phase
and each transfer phase are constant round protocols. Thus the total round
complexity is proportional to k.

Finally we extend our scheme to a fully simulatable non-adaptive OT which
requires constant rounds. Green and Hohenberger showed a fully simulatable
non-adaptive OTn

k based on pairing under the decisional BDH assumption [8].
On the other hand, our OTn

k is pairing-free and relies on the DDH assumption.
Lindell showed a fully simulatable OT 2

1 under DDH, Paillier’s decisional Nth
residuosity, and quadratic residuosity assumptions as well as under the assump-
tion that homomorphic encryption exists [13]. (He claimed that they can be
extended to OT n

k .) Under the DDH assumption, our OT 2
1 is more efficient than

the Lindell’s scheme [13].
1 In the random oracle model, Ogata and Kurosawa showed an adaptive OT based on

Chaum’s blind signature scheme [18]. Camenisch, Neven and shelat [2] proved that
it is fully simulatable as well as they corrected a flaw of [18]. Green and Hohenberger
showed a scheme under the decisional BDH assumption [8].

2 Maybe because an adaptive OT shown by Ogata and Kurosawa [18] utilizes Chaum’s
blind signature scheme.
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Table 1. Fully simulatable Adaptive OT without RO

scheme pairing dynamic assumption assumption
Camenisch et al. [2] yes yes q-strong DH and q-PDDH

Green and Hohenberger [9] yes yes q-hidden LRSW (UC secure)
Jarecki and Liu [10] yes yes q-DHI

Proposed no no DDH

2 Preliminaries

2.1 Notations

In this paper, we denote a security parameter by τ ∈ N. All the algorithms take
τ as the first input and run in (expected) polynomial-time in τ . We denote prob-
abilistic polynomial-time by ppt for short. We often do not write the security
parameter explicitly.

2.2 Proof Systems

To design our scheme, we use several proof systems. We follow the definitions
described in [4,5,2].

Let R = {(α, β)} ⊆ {0, 1}∗ × {0, 1}∗ be a binary relation R such that |β| ≤
poly(α) for all (α, β) ∈ R, where poly is some polynomial. We only consider the
relation R such that (α, β) ∈ R can be decided in polynomial in |α| for all (α, β).
We define LR = {α | ∃β such that (α, β) ∈ R}.

Proof of Membership (PoM): A pair of interacting algorithms (P,V), called
a prover and a verifier, is a proof of membership (PoM) for a relation R if the
completeness and soundness are satisfied. Here, we say that (P,V) satisfies the
completeness if for all (α, β) ∈ R, the probability of V(α) accepting a conversa-
tion with P(α, β) is 1. Also we say that (P,V) satisfies the soundness if for all
α 
∈ LR and all P∗(α) (including cheating provers), the probability of V(α) ac-
cepting the conversation with P∗ is negligible in |α|. We say that this probability
as soundness error of the proof system.

Proof of Knowledge (PoK): We say a pair of interacting algorithms (P,V) is
PoK for a relation R with knowledge error κ ∈ [0, 1] if it satisfies completeness
described above and has an expected polynomial-time algorithm, called knowledge
extractor, E. Here, the algorithm E is a knowledge extractor for a relation R if
possibly cheating P̂ has probability ε of convincing V to accept α, then E, when
given black-box access to P̂, outputs a witness β for α with probability ε− κ.

Witness Indistinguishability (WI): A proof system (P,V) is perfect WI if
for every (α, β1), (α, β2) ∈ R, and any ppt cheating verifier, the output of V̂(α)
(including cheating verifier) after interacting with P(β1) and that of V̂(α) after
interacting with P(β2) are identically distributed.
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Zero Knowledge (ZK): We say that a proof system (P,V) is perfect ZK if there
exists an expected polynomial-time algorithm Sim, called a simulator, such that
for any ppt cheating verifier V̂ and any (α, β) ∈ R, the outputs of V̂(α) after
interacting with P(β) and that of SimV̂(α)(α) are identically distributed.

3 k-Out-of-n Oblivious Transfer

In this section, we present a UC-like definition of fully simulatable non-adaptive
OT. Similarly, we present a UC-like definition of fully simulatable adaptive OT.

We consider a weak model of UC framework as follows.

– At the beginning of the game, an adversary A can corrupt either a sender S
or a receiver R, but not both.

– A can send a message (which will be denoted by Aout) to an environment
Z after the end of the protocol. (A cannot communicate with Z during the
protocol execution.)

The ideal functionalities of OTn
k and OTn

k×1 will be shown below. For a protcol
π = (S,R), define Adv(Z) as

Adv(Z) = |Pr(Z = 1 in the real world)− Pr(Z = 1 in the ideal world)|

3.1 Non-adaptive k-Out-of-n Oblivious Transfer

In the ideal world of OTn
k , the ideal functionality Fnon, an ideal world adversary

A′ and an environment Z behave as follows.

(Initialization phase:)

1. An environment Z sends (M1, · · · ,Mn) to the dummy sender S′.
2. S′ sends (M∗

1 , · · · ,M∗
n) to Fnon, where (M∗

1 , · · · ,M∗
n) = (M1, · · · ,Mn) if S′

is not corrupted.

(Transfer phase:)

1. Z sends (σ1, · · · , σk) to the dummy receiver R′, where 1 ≤ σi ≤ n.
2. R′ sends (σ∗1 , · · · , σ∗k) to Fnon, where (σ∗1 , · · · , σ∗k) = (σ1, · · · , σk) if R′ is not

corrupted.
3. Fnon sends received to an ideal process adversary A′.
4. A′ sends b = 1 or 0 to Fnon, where b = 1 if S′ is not corrupted.
5. Fnon sends Y to R′, where

Y =
{

(M∗
σ1
, · · · ,M∗

σk
) if b = 1

⊥ if b = 0

6. R′ sends Y to Z.

After the end of the protocol, A′ sends a message A′
out to Z. Finally Z outputs

1 or 0.
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In the real world, a protocol (S,R) is executed without Fnon, where the
environment Z and a real world adversary A behave in the same way as above.

Definition 1. We say that (S,R) is secure against the sender (receiver) corrup-
tion if for any real world adversary A who corrupts the sender S (the receiver
R), there exists an ideal world adversary A′ who corrupts the dummy sender S′

(the dummy receiver R′) such that for any environment Z, Adv(Z) is negligible.

Definition 2. We say that (S,R) is a fully simulatable OTn
k if it is secure

against the sender corruption and the receiver corruption.

3.2 Adaptive k-Out-of-n Oblivious Transfer

In the ideal world of OTn
k×1, the ideal functionality Fadapt, an ideal world ad-

versary A′ and an environment Z behave as follows.

(Initialization phase:)

1. An environment Z sends (M1, · · · ,Mn) to the dummy sender S′.
2. S′ sends (M∗

1 , · · · ,M∗
n) to Fadapt, where (M∗

1 , · · · ,M∗
n) = (M1, · · · ,Mn) if

S′ is not corrupted.

(Transfer phase:) For i = 1, · · · , k,

1. Z sends σi to the dummy receiver R′, where 1 ≤ σi ≤ n.
2. R′ sends σ∗i to Fadapt, where σ∗i = σi if R′ is not corrupted.
3. Fadapt sends received to an ideal process adversary A′.
4. A′ sends b = 1 or 0 to Fadapt, where b = 1 if S′ is not corrupted.
5. Fadapt sends Yi to R′, where

Yi =
{
M∗

σi
if b = 1

⊥ if b = 0

6. R′ sends Yi to Z.

After the end of the protocol, A′ sends a message A′
out to Z. Finally Z outputs

1 or 0.
In the real world, a protocol (S,R) is executed without Fadapt, where the

environment Z and a real world adversary A behave in the same way as above.

Definition 3. We say that (S,R) is secure against the sender (receiver) corrup-
tion if for any real world adversary A who corrupts the sender S (the receiver
R), there exists an ideal world adversary A′ who corrupts the dummy sender S′

(the dummy receiver R′) such that for any environment Z, Adv(Z) is negligible.

Definition 4. We say that (S,R) is a fully simulatable OTn
k×1 if it is secure

against the sender corruption and the receiver corruption.
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3.3 Remarks

Our definition of fully simulatable adaptive OT is weaker than the UC security
because our adversaries A cannot communicate with Z during the protocol exe-
cution. On the other hand, it is stronger than that of [2] which is not UC-like. In
our definition, Z chooses σi. Hence σi can depend on all of (M1, · · · ,Mn). In the
definition of [2], receiver chooses σi. Hence σi can depend on (Mσ1 , · · · ,Mσi−1)
only.

4 Our Fully Simulatable Adaptive OT

In this section, we show an adaptive OTn
k×1 based on ElGamal encryption

scheme, and prove its full simulatability under the DDH assumption.
Let G be a multiplicative group of prime order q. Then the DDH assumption

states that, for every ppt distinguisher D,

εDDH(D) = |Pr(D(g, gα, gβ, gαβ) = 1)− Pr(D(g, gα, gβ, gγ) = 1)|

is negligible, where the probability is taken over the random bits of D, the random
choice of the generator g, and the random choice of α, β, γ ∈ Zq. We denote

εDDH = max{εDDH(D)},

where the maximum is taken over all ppt distinguishers D.
The initialization phase and each transfer phase are constant round protocols.

Hence the total round complexity is proportional to k.

Initialization Phase

1. The sender chooses G, g and (x1, · · · , xn, r) ∈ (Zq)n+1 randomly, and com-
putes h = gr.

2. For i = 1, · · · , n, the sender computes

Ci = (Ai, Bi) = (gxi ,Mi · hxi),

where M1, · · · ,Mn ∈ G.
3. The sender sends (G, h, C1, · · · , Cn).
4. The sender proves by ZK-PoK that he knows r.

The protocol stops if the receiver rejects.

The jth Transfer Phase

1. The receiver chooses a choice index 1 ≤ σj ≤ n based on Mσ1 , · · · ,Mσj−1 .
2. The receiver chooses u ∈ Zq randomly and computes U = (Aσj )

u.
He then sends U .

3. The receiver proves in WI-PoK that he knows u such that

U = Au
1 ∨ · · · ∨ U = Au

n.

The protocol stops if the sender rejects.
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4. The sender computes V = U r and sends V .
5. The sender proves that (g, h, U, V ) in ZK-PoM that it is a DDH-tuple.

The protocol stops if the receiver rejects.
6. The receiver obtains Mσj by computing Bσj/V

1/u.

Three ZK or WI proof systems in the scheme are constructed efficiently as
follows.

– An efficient 4-round ZK-PoK exists which can be used in the initialization
phase. It is obtained by applying the technique of [4] to Schnorr’s identifica-
tion scheme [19].

– An efficient 3-round WI-PoK exists which can be used in the transfer phase.
It is implemented by applying the or-composition technique [5] to [19].

– An efficient 4-round ZK-PoM exists which can be used in the transfer phase.
It comes from the confirmation protocol of Chaum’s undeniable signature
scheme (which is a ZK-PoM for the DDH-tuple [3]).

Theorem 1. The above protocol is a fully-simulatable adaptive OTn
k×1 under

the DDH assumption.

The proof is given in Section 6.

5 Extension to Fully Simulatable Non-adaptive OT

In this section, we extend our adaptive OT to a fully simulatable non-adaptive
OT which requires constant rounds.

5.1 How to Prove Many DDH-Tuples

We show a 4-round ZK-PoM which proves that (g, h, U1, V1), · · · , (g, h, Uk, Vk)
are all DDH-tuples.

1. The receiver sends random (a1, · · · , ak).
2. The sender proves that (g, h,

∏k
i=1 U

ai

i ,
∏k

i=1 V
ai

i ) is a DDH-tuple by using
the confirmation protocol of [3].

The confirmation protocol of [3] is a 4-round ZK-PoM on a DDH-tuple. Hence
the above protocol runs in 4-round. (Step 1 and the 1st round of the confirmation
protocol are merged.)

Lemma 1. Suppose that some (g, h, Ui, Vi) is not a DDH-tuples. Then
(g, h,
∏k

i=1 U
ai

i ,
∏k

i=1 V
ai

i ) is a DDH-tuples with negligible probability.

Proof. Assume that Ui = gxi and Vi = hyi for i = 1, · · · , k. Then

k∏
i=1

Uai

i = g
∑k

i=1 aixi

k∏
i=1

V ai

i = h
∑k

i=1 aiyi
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Suppose that (g, h, U1, V1) is not a DDH-tuples. That is, x1 
= y1. Then for any
values of a2, · · · , ak, there exists a unique a1 such that

k∑
i=1

ai(xi − yi) = 0 mod q. (1)

Hence the numbers of (a1, · · · , ak) which satisfies eq.(1) is equal to qk−1.
Therefore

Pr(eq.(1) holds) = qk−1/qk = 1/q.

This means that (g, h,
∏k

i=1 U
ai

i ,
∏k

i=1 V
ai

i ) is a DDH-tuples with negligible
probability. ��

Theorem 2. The above protocol is a ZK-PoM on many DDH-tuples.

Proof. The completeness is clear. The zero-knowledgeness follows from that of
the confirmation protocol of [3]. The soundness follows from Lemma 1 and that
of the confirmation protocol of [3]. ��

5.2 Constant Round OTn
k

In this section, we modify our OTn
k×1 to obtain a constant round OTn

k as follows.

– At step 4 of the initialization phase, the sender sends (G, h, A1, · · · , An).
– At the end of the transfer phase, the sender sends (B1, · · · , Bn).
– In the transfer phase, run step 3 in parallel (still it is a WI protocol).

At step 5, the sender proves that (g, h, U1, V1), · · · , (g, h, Uk, Vk) are all DDH-
tuples by using the ZK-PoM of Sec.5.1.

Theorem 3. The proposed OTn
k is a constant round fully-simulatable OTn

k un-
der the DDH assumption.

The proof is similar to that of Theorem 1.

6 Proof of Theorem 1

We first prove that the proposed scheme is secure against sender corruption. We
next prove that it is secure against receiver corruption.

6.1 Security against Sender Corruption

Lemma 2. The proposed scheme is secure against sender corruption.

Proof. For every real-world adversary A who corrupts the sender, we construct
an ideal-world adversary A′ such that Adv(Z) is negligible.

We will consider a sequence of games Game0, Game1, · · · , Game4, where Game0 is
the real world experiment of Sec.3, and and Game4 is the ideal world experiment,
respectively. Let

Pr(Gamei) = Pr(Z = 1 in Gamei).
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Game0: This is the real world experiment such that the sender is controlled by
an adversary A. Hence

Pr(Game0) = Pr(Z = 1 in the real world).

Game1: This is the same as the previous game except for the following. In the
initialization phase, if the receiver accepts the ZK-PoK, then he extracts r from
A by running the knowledge extractor E1 which is allowed to rewind A. This
game outputs ⊥ if the extractor E1 fails in extracting r. Unless this happens,
these two games are identical. Therefore,

|Pr(Game0)− Pr(Game1)| ≤ κ1,

where κ1 be the knowledge error of the extractor.

Game2: This is the same as the previous game except for the following. In each
transfer phase, if the receiver accepts the ZK-PoM which proves that (g, h, U, V )
is a DDH-tuple, then he obtains Mσi by computing Bσi/A

r
σi

. These two games
are identical unless the above Mσi is different from Bσj/V

1/u. This happens if
the receiver accepts the ZK-PoM even though (g, h, U, V ) is not a DDH-tuple.
Hence

|Pr(Game1)− Pr(Game2)| ≤ kκ3,

where κ3 is the soundness error probability of ZK-PoM.

Game3: This is the same as the previous game except for the following. In each
transfer phase, the receiver computes U as U = Au

1 . (The receiver can still obtain
Mσi as can be seen from Game2.) Since our WI-PoK is perfect,

Pr(Game2) = Pr(Game3).

Game4: This game is the ideal world experiment in which an ideal-world adversary
A′ plays the role of the receiver of Game3 and uses A as a blackbox. A′ can do
this because the receiver does not use σ1, · · · , σk in Game3.

Finally A′ outputs what A outputs. It is easy to see that Game3 and Game4 are
identical from a view point of Z. Hence

Pr(Game3) = Pr(Game4).

Further
Pr(Game4) = Pr(Z = 1 in the ideal world).

Now, we can summarize this lemma as follows:

Adv(Z) = |Pr(Game4)− Pr(Game0)|

≤
3∑

i=0

|Pr(Gamei+1)− Pr(Gamei)|

≤ κ1 + kκ3. ��
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6.2 Security against Receiver Corruption

Lemma 3. The proposed scheme is secure against receiver corruption under the
DDH assumption.

Proof. For every real-world adversary A who corrupts the receiver, we construct
an ideal-world adversary A′ such that Adv(Z) is negligible.

We will consider a sequence of games Game0, Game1, · · · , Game5, where Game0
is the real world experiment of Sec.3, and Game5 is the ideal world experiment.

Game0: This is the real world experiment such that the receiver is controlled by
an adversary A. Hence

Pr(Game0) = Pr(Z = 1 in the real world).

Game1: This is the same as the previous game except for the following. In each
transfer phase, instead of running the ZK-PoM which proves that (g, h, U, V )
is a DDH-tuple, the sender runs the zero-knowledge simulator of the ZK-PoM
which is allowed to rewind A. Since the ZK-PoM is perfect ZK, we have

Pr(Game1) = Pr(Game0).

Game2: This is the same as the previous game except for the following. In each
transfer phase, if the sender accepts the WI-PoK, then she extracts u from A
by running the knowledge extractor E2 which is allowed to rewind A. This game
outputs ⊥ if the extractor E2 fails in extracting u. Unless this happens, these
two games are identical. Therefore,

|Pr(Game2)− Pr(Game1)| ≤ kκ2,

where κ2 is the knowledge error of the extractor.

Game3: This is the same as the previous game except for that the sender computes
V as V = (Bσ/Mσ)u instead of V = U r. It is clear that there is no essential
difference between two games. Therefore,

Pr(Game3) = Pr(Game2).

Game4: This is the same as the previous game except for that the sender uses
a random M ′

i to compute each Ci in the initialization phase. The difference
|Pr(Game4) − Pr(Game3)| is still negligible by the semantic security of the
ElGamal cryptosystem which is implied by the DDH assumption.

Claim. If the DDH problem is hard then |Pr(Game4)− Pr(Game3)| is negligi-
ble. More concretely,

|Pr(Game4)− Pr(Game3)| ≤ εDDH. (2)

The proof of this claim is given later.
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Game5: This game is the ideal world experiment in which an ideal-world adversary
A′ plays the role of the sender of Game4, and uses A as a blackbox. A′ can do this
because the sender does not use M1, · · · ,Mn in Game4.

Finally A′ outputs what A outputs. It is easy to see that Game4 and Game5 are
identical from a view point of Z. Hence

Pr(Game4) = Pr(Game5).

Further
Pr(Game5) = Pr(Z = 1 in the ideal world).

Now, we can summarize this lemma as follows:

Adv(Z) = |Pr(Game5)− Pr(Game0)|

≤
4∑

i=0

|Pr(Gamei+1)− Pr(Gamei)|

≤ kκ2 + εDDH. ��

To complete the proof, we must provide the proof of the claim. To do so, we
need the following lemma3 which can be thought of as an “extended” version of
the DDH assumption.

Lemma 4 (Lemma 4.2 in [17]). If there exists a probabilistic algorithm D
with running time t such that∣∣∣∣Pr (D(g, gr, gx1, · · · , gxn , grx1, · · · , grxn) = 1)

− Pr(D(g, gr, gx1, · · · , gxn , gz1, · · · , gzn) = 1)
∣∣∣∣≥ ε

where the probability is taken over the random bits of D, the random choice of
the generator g in G, and the random choice of x1, · · · , xn, r, z1, · · · , zn ∈ Zq,
then there exists a probabilistic algorithm with running time n · poly(τ) + t that
breaks the DDH assumption with probability ≥ ε with some polynomial poly.

We now show a proof of the claim.

Proof (of the claim). Let Game′3 (Game′4) be the same as Game3 (Game4) except
for the following. In the initialization phase, instead of running the ZK-PoK in
which the sender proves that he knows r, the sender runs the zero-knowledge
simulator of the ZK-PoK which is allowed to rewind A. Since the ZK-PoK is
perfect ZK, it holds that

Pr(Game
′
3) = Pr(Game3),

Pr(Game
′
4) = Pr(Game4).

3 Naor and Reingold proved it by using the random reducibility of the DDH-tuple.
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We now construct a DDH distinguisher D in the sense of Lemma 4. The input to
D is (g, h, gx1, · · · , gxn , y1, · · · , yn), where yi = grxi or gzi , Our D simulates Z,
A and the sender of Game′3 or Game′4 faithfully except for that in the initialization
phase, D simulates the sender by using (g, h, gx1, · · · , gxn), and hi = yi for each
i. Finally D outputs 1 iff Z outputs 1.

It is easy to see that D simulates Game′3 if yi = grxi for each i, and Game′4
otherwise. Therefore ∣∣Pr(Game

′
4)− Pr(Game

′
3)
∣∣ ≤ εDDH. (3)

Hence eq.(2) holds. ��

7 Fully Simulatable OT 2
1

We have constructed a fully-simulatable adaptive OT under the DDH assump-
tion in the standard model. It is clear that we can obtain a fully-simulatable
(1, 2)-OT (OT 2

1 ) as a special case.
On the other hand, Lindell showed a fully simulatable OT 2

1 under DDH, Pail-
lier’s decisional Nth residuosity, and quadratic residuosity assumptions as well
as under the assumption that homomorphic encryption exists in the standard
model [13].

Let’s compare our scheme with Lindell’s OT 2
1 which is based on the DDH

assumption. His scheme builds on the OT 2
1 of [16] and uses a cut-and-choose

technique. The computational cost and the communication cost are O(�) times
larger than those of our first scheme to achieve

Adv(Z) ≤ 2−�+2.

Hence our scheme is more efficient.
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Abstract. An r-collision for a function is a set of r distinct inputs with
identical outputs. Actually finding r-collisions for a random map over a
finite set of cardinality N requires at least about N (r−1)/r units of time
on a sequential machine. For r=2, memoryless and well-parallelizable
algorithms are known. The current paper describes memory-efficient and
parallelizable algorithms for r ≥ 3. The main results are: (1) A sequential
algorithm for 3-collisions, roughly using memory Nα and time N1−α

for α ≤ 1/3. In particular, given N1/3 units of storage, one can find
3-collisions in time N2/3. (2) A parallelization of this algorithm using
N1/3 processors running in time N1/3, where each single processor only
needs a constant amount of memory. (3) A generalisation of this second
approach to r-collisions for r ≥ 3: given Ns parallel processors, with
s ≤ (r−2)/r, one can generate r-collisions roughly in time N ((r−1)/r)−s,
using memory N ((r−2)/r)−s on every processor.

Keywords: multicollision, random map, memory-efficient, parallel im-
plementation, cryptanalysis.

1 Introduction

The problem of finding collisions and multicollisions in random mappings is
of significant interest for cryptography, and mainly for cryptanalysis. It is well
known that finding an r-collision for a random map over a finite set of cardinality
N requires1 more than N (r−1)/r map evaluations.

Multicollisions for hash functions. If the map under consideration is a hash func-
tion, or has been derived from a hash function, many researchers consider faster
multicollisions as a certificational hash function weakness. Accordingly, it was
worrying for the research community to learn that multicollisions could be found
much faster for a widely used class of hash functions: iterated hash functions [9].
For n-bit hash functions from this class, one can generate 2k-collisions in time

1 An r-collision is a set of r different inputs x1, . . . , xr which all generate the same
output map(x1) = · · · = map(xr). For an r-collision, one needs to evaluate the map
(r!)1/r · N (r−1)/r times [22]. For small r, we can approximate this by O(N (r−1)/r).

M. Matsui (Ed.): ASIACRYPT 2009, LNCS 5912, pp. 347–363, 2009.
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k · 2n/2, rather than the expected time 2n(2k−1)/2k

. The basic observation is
straightforward: given a sequence of k consecutive 2-collisions, it is possible with
iterated hash functions to consider the 2k different messages obtained by taking
all possible choices of message block for each collision and obtain 2k times the
same output. These iterated multicollisions have been generalized later, to more
complex types of iterated hash functions, for example, see [6,13,7]. It was also re-
marked that these iterated multicollisions were a rediscovery and generalization
of an older attack of Coppersmith [2].

In particular, this type of multicollisions allowed a surprising attack on hash
cascades, i.e., hash functions H , which are the concatenation of two hash func-
tions G1 and G2, i.e., H(X) := (G1(X), G2(X)). If, say, G1 is an iterated
hash function and vulnerable to the multicollision attack, and G2 is any n-bit
hash function, the adversary just needs to generate a 2n/2-multicollision for G1.
Thanks to the birthday paradox, among the 2n/2 messages colliding for G1, one
expects to find a pair of messages colliding for G2 with constant probability. As
a consequence, a collision for the 2n-bit hash function H can be obtained with
much less than 2n hash evaluations.

Multicollisions for random maps. In contrast to [9], we consider generic at-
tacks, and, accordingly, we model our functions as random maps. In that case,
the number of N (r−1)/r is a lower bound on the sequential time required for
finding a r-collision, and time-optimal algorithms are well-known. Furthermore,
it is well-known how to find ordinary collisions (aka 2-collisions) with negli-
gible memory (using Floyd, Brent or Nivasch [15] cycle finding algorithms),
and also how to parallelize these algorithms using distinguished point meth-
ods [18,19,20,23,24,25,26,27].

In general, the issue of memory-efficient and parallelizable r-collision algo-
rithms appears to be an unsolved question. Authors usually assume N (r−1)/r

units of memory (i.e., the maximum any algorithm can use in the given amount
of time) and neglect parallelization entirely. For recent examples of the applica-
tion of multicollisions to cryptography, see, e.g., the cryptanalysis of the SHA-3
candidates Aurora-512 [3,21] and JH-512 [12,29]. We stress that [3,21,12,29] em-
ploy generic multicollisions as a part of their attacks, always assuming maximum
memory and ignoring the issue of parallel implementations.

So the question is, do authors need to be so pessimistic, or are there memory-
efficient and parallelizable algorithms for r-collisions? For small r, and mainly
for r = 3, the current paper provides a clearly positive answer. As an applica-
tion of our results, we will observe attacks on the SHA-3 candidate hash function
Aurora-512. These attacks make heavy use of multicollisions on internal struc-
tures. Some attacks on other SHA-3 candidates don’t benefit from our algorithms
for different reasons. See section B of the appendix.

Notation. To avoid writing cumbersome logarithmic factors, we often express
running times using the soft-Oh-notation. Namely, Õ(g(n)) is used as a short-
hand for O(g(n) · log(g(n))k) for some fixed k.
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2 Known Algorithm for 3-Collisions

While the number of values that needs to be computed before a 3-collision can
be formed is often considered and analyzed, e.g. in [17, Appendix B] or [22], the
known algorithmic method to find such a 3-collision is rarely considered in detail
and is mostly folklore. In order to compare the new algorithms which we describe
in sections 3 to 6 with existing algorithms, we thus give a precise description of
the folklore algorithm, together with a larger variety of time/memory tradeoffs.
Throughout this section, we fix two parameters α and β and consider 3-collisions
for a function F defined on a set of cardinality N . The parameter α controls the
amount of memory, limiting it to Õ(Nα). Similarly, β controls the running time,
at Õ(Nβ). Of course, these parameters need to satisfy the relation α ≤ β.

We consider Algorithm 1. This algorithm is straightforward. First, it com-
putes, stores and sorts Nα images of random points under F . For bookkeeping
purposes, it also keeps track of the corresponding preimages. Second, it computes
Nβ additional images of random points and seek each in the precomputed table.
Whenever a hit occurs, it is stored together with the initial preimage in the
sorted table. The algorithm succeeds if one of the Nα original images is found
twice more during the second phase and if the three corresponding preimages
are distinct. In the formal description given as Algorithm 1, we added an op-
tional step which packs colliding values generated during the first step into the
same array element. If this optional step is omitted, then the early collisions are
implicitly discarded. Indeed, in the second phase, we make sure that the search
algorithm always returns the first position where a given value occurs among
the known images F (x). During the complexity analysis, we ignore the optional
packing step since it runs in time Nα and can only improve the overall running
time by making the algorithm stop earlier.

We now perform a rough heuristic analysis of Algorithm 1, where constants
and logarithmic factors are ignored. On average, among the Nβ images of the
second phase, we expect that Nα+β−1 values hit the sorted table of Nα elements.
Due to the birthday paradox, after Nα/2 hits, we expect a double hit to occur. At
that point, the algorithm succeeds if the three known preimages corresponding
to the double hit are distinct, which occurs with constant probability. For the
algorithm to succeed, we need:

α+ β − 1 ≥ α/2,

as a consequence, to minimize the running time, we enforce the condition:

α+ 2β = 2. (1)

For α = β, we find α = β = 2/3 and obtain the classical folklore result with time
and memory Õ(N2/3). Other tradeoffs are also possible. With constant memory,
i.e. α = 0, we find a running time Õ(N). Another tradeoff with α = 1/2 and
β = 3/4 will be used as a point of comparison in section 3.
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Algorithm 1. Folklore 3-collision finding algorithm
Require: Oracle access to F operating on [0, N − 1]
Require: Parameters: α ≤ β satisfying condition 1

Let Nα ←− �Nα�
Let Nβ ←− ⌈Nβ

⌋
Create arrays Img, Pr1 and Pr2 of Nα elements.

First step:
for i from 1 to Nα do

Let a ←−R [0, N − 1]
Let Img[i] ←− F (a)
Let Pr1[i] ←− a
Let Pr2[i] ←− ⊥

end for
Sort Img, applying the same permutation on elements of Pr1 and Pr2

Optional step (packing of existing collisions):
Let i ←− 1
while i < Nα do

Let j ←− i + 1
while Img[i] == Img[j] do

if Pr1[i] �= Pr1[j] then
if Pr2[i] == ⊥ then

Let Pr2[i] ←− Pr1[j]
else

if Pr2[i] �= Pr1[j] then
Output ‘3-Collision (Pr1[i], Pr2[i], Pr1[j]) under F ’ and Exit

end if
end if

end if
Let j ←− j + 1

end while
Let i ←− j

end while

Second step:
for i from 1 to Nβ do

Let a ←−R [0, N − 1]
Let b ←− F (a)
if b is in Img (first occurrence in position j) then

if Pr1[j] �= a then
if Pr2[j] == ⊥ then

Let Pr2[j] ←− a
else

if Pr2[j] �= a then
Output ‘3-Collision (Pr1[j], Pr2[j], a) under F ’ and Exit

end if
end if

end if
end if

end for
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3 A New Algorithm for 3-Collisions

Now equipped with an analysis of Algorithm 1, we are ready to propose a new al-
gorithm which offers different time-memory tradeoffs, which are better balanced
for existing hardware. The basic idea is extremely simple: Instead of initializing
an array with Nα images, we propose to initialize it with Nα collisions under
F . To make this efficient in terms of memory use, each collision in the array
is generated using a cycle finding algorithm on a (pseudo-)randomly permuted
copy of F . Since each collision is found in time N1/2 the total running time of
this new first step is N1/2+α.

The second step is left unchanged, we simply create Nβ images of random
points until we hit one of the known collisions. Note that, thanks to the new
first phase, it now suffices to land once on a known point to succeed. As a
consequence, we can replace condition 1 by the weaker condition:

α+ β = 1. (2)

Since the running time of the first step is N1/2+α, it would not make sense
to have β < 1/2 + α. Thus, we also enforce the condition α ≤ 1/4. Under
this condition, the new algorithm runs in time Õ(N1−α) using Õ(Nα) bits of
memory. In particular, we can find 3-collisions in time Õ(N3/4) using Õ(N1/4)
bits of memory. This is a notable improvement over Algorithm 1 which requires
Õ(N1/2) bits of memory to achieve the same running time.

Note on the creation of the Nα initial collisions. One question that frequently
arises when this algorithm is presented is: “Why is it necessary to randomize F
with a pseudo-random permutation ?”

Behind this question is the idea that changing the starting point of the cycle
finding algorithm should suffice to obtain random collisions. However, this is not
true. Indeed, the analysis of random mapping (for example, see [4]) shows that
on average a constant fraction of points belong to a so-called “giant tree”. By
definition, each starting point in the giant tree enters the main cycle in the same
place. As a consequence, without randomization of F the corresponding collision
would be generated over and over again and the 3-collision algorithm would not
work.

4 Detailed Complexity Analysis of Algorithms 1 and 2

In this section, we analyze in more details the complexity and success probability
of algorithms 1 and 2, assuming that F is a random mapping. This detailed anal-
ysis particularly focuses on the following problematic issues which were initially
neglected:

1. Among the Nα candidates stored in Img and its companion arrays, which
fraction can non-trivially be completed into a 3-collision?

2. In the second step, when a valueF (a)hits the array Img, what is the probability
of obtaining a real 3-collision and not simply replaying a known value of a?
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Algorithm 2. Improved 3-collision finding algorithm
Require: Oracle access to F operating on [0, N − 1]
Require: Family of pseudo-random permutation ΠK , indexed by K in K
Require: Parameters: α ≤ β satisfying condition 2

Let Nα ←− �Nα�
Let Nβ ←− ⌈Nβ

⌋
Create arrays Img, Pr1 and Pr2 of Nα elements.

First step:
for i from 1 to Nα do

Let K ←−R K
Use cycle finding algorithm on F ◦ΠK to produce collision F ◦ΠK(a) = F ◦ΠK(b)

Let Img[i] ←− F ◦ ΠK(a)
Let Pr1[i] ←− ΠK(a)
Let Pr2[i] ←− ΠK(b)

end for
Sort Img, applying the same permutation on elements of Pr1 and Pr2

Optional step (packing of existing collisions):
Let i ←− 1
while i < Nα do

Let j ←− i + 1
while Img[i] == Img[j] do

if Pr1[i] �= Pr1[j] then
if Pr2[i] �= Pr1[j] then

Output ‘3-Collision (Pr1[i], Pr2[i], Pr1[j]) under F ’ and Exit
end if

end if
Let j ←− j + 1

end while
Let i ←− j

end while

Second step:
for i from 1 to Nβ do

Let a ←−R [0, N − 1]
Let b ←− F (a)
if b is in Img (first occurrence in position j) then

if Pr1[j] �= a then
if Pr2[j] == ⊥ then

Let Pr2[j] ←− a
else

if Pr2[j] �= a then
Output ‘3-Collision (Pr1[j], Pr2[j], a) under F ’ and Exit

end if
end if

end if
end if

end for
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3. Which logarithmic factors are hidden in the Õ expression ?
4. In the first step of Algorithm 2, how can we make sure that we never en-

counter a bad configuration where the cycle finding algorithm runs for longer
than Õ(N1/2)?

To answer the first question, remark that each candidate stored into Img is a
random point that has at least one preimage for Algorithm 1 or at least two
preimages for Algorithm 2. According to [4], we know that the expected fraction
of points with exactly k distinct preimages is e−1/k!. As a consequence, if we
denote by Pk the fraction of points with at least k preimages, we find:

P1 =
e− 1
e

, P2 =
e− 2
e

and P3 =
e− 5/2
e

.

The expected fraction of elements from Img which can be correctly completed
into a 3-collision is P3/P1 ≈ 0.127 for Algorithm 1 and P3/P2 ≈ 0.304 for
Algorithm 2. To compensate the loss, the easiest is to make the stored set larger
by a factor of 8 in the first case and 3 in the second.

We now turn to the second question. Of course, at this point, the candidates
that cannot be correctly completed need to be ignored. Among the original set
of Nα candidates, we now focus on the subset of candidates that can correctly be
computed and let N ′

α denote the size of this subset. Since in the second phase we
are sampling points uniformly at random, the a posteriori probability of having
chosen one of the two already known preimages is at most 2/k, where k is the
number of distinct preimages for this point. Since k ≥ 3, the a posteriori prob-
ability of choosing a new preimage is, at least, 1/3. Similarly, for Algorithm 1,
the a posteriori probability of choosing a preimage distinct from the single orig-
inally known one is at least 2/3. To offset this loss of probability, Nβ should be
multiplied by a constant factor of 3.

The logarithmic factors involved in the third question are easy to find, they
simply come from the sort and binary search steps. Note that when Nα · log(Nα)
< Nβ the sort operation costs less than the second step and can be ignored.
Moreover, as soon as α < β, this bound is asymptotically achieved when N
tends to infinity. However, the binary search appears within the second step and
a real penalty is paid.

If we are willing to spend some extra memory – blowing up the memory by
a constant factor –, this cost can be eliminated using hashing techniques. To
cover the case of Nα · log(Nα) = Nβ , we need a data structure with constant-
time insert and lookup operations. One such data structure is “cuckoo hashing”,
where lookup operations need worst-case constant time, and insert operations
need expected constant time – as long as less than half of the memory slots are
used [16].2 However, for typical applications, the cost of the binary search ought
to remain small, compared to the cost of evaluating the function F . Thus, in
practice, we expect only a tiny benefit from using hash tables.

2 Furthermore, delete operations only need worst-case constant time, and recent im-
provements even enable update operations in worst-case constant time [1].
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The simplest answer to the fourth question is to fix some upper bound on
the allowed running time of each individual call to the collision through cycle
finding algorithm. If the running time is exceeded, we abort and restart with a
fresh permutation ΠK . With a time limit of the form λ

√
N and a large enough

value of λ, we make sure that each individual call to the cycle finding algorithm
runs in time O(N1/2) and the probability of success is a constant close to 1, say
larger than 2/3.

5 A Second Algorithm with More Tradeoff Options

The algorithm presented in section 3 only works for memory up to N1/4. This
limitation is due to the way the collisions are generated during the first step
of Algorithm 2. In order to extend the range of possible tradeoffs beyond that
point, it suffices to find a replacement for this first step. Indeed, the second
step clearly works with a larger value of α, as long as we keep the relation
α+ β = 1. Of course, since no 3-collision is expected before we have performed
N2/3 evaluations of F , the best we can hope for is an algorithm with running time
N2/3. Such an algorithm may succeed if we can precompute a table containing
N1/3 ordinary collisions.

In this section, we consider the problem of generating N1/3 collisions in time
bounded by Õ(N2/3) using at most Õ(N1/3) bits of memory. Surprisingly, a
simple method inspired from Hellman’s time-memory tradeoff [5] is able to solve
this problem. More generally, for α ≤ 1/3, this method allows us to compute Nα

collisions in time less than Õ(N1−α) using at most Õ(Nα) bits of memory. The
idea is to first build Nα chains of length Nγ ; each chain starts from a random
point and is computed by repeatedly applying F up to the Nγ-th iteration.
The end-point of each chain is stored together with its corresponding start-
point. Once the chains have been build, we sort them by end-point values. Then,
restarting from Nα new random points, we once again compute chains of length
Nγ , the difference is that we now test after each evaluation of F whether the
current value is one of the known end-points. In that case, we know that the chain
we are currently computing has merged with one chain from the precomputation
step. Such a merge usually corresponds to a collision, the only exception occurs
when the start-point of the current chain already belongs to a precomputed
chain (a “Robin Hood” using the terminology of [27]). Then, backtracking to the
beginning of both chains, we can easily construct the corresponding collision. A
pseudo-code description of this alternative first step is given as Algorithm 3.

Note that, instead of building two sets of chains, it is also possible to build a
single set and look for previously known end-points. This alternative approach is
a bit trickier to implement but uses fewer evaluations of F . However, the overall
cost of the algorithm remains within the same order.

Clearly, since each of the two sets of chains we are constructing contain Nα+γ

points, the expected number of collisions is O(N2α+2γ−1). Remembering that
we wish to construct Nα collisions, we need to let γ = (1 − α)/2. The running
time necessary to compute these collisions is Nα+γ = N (1+α)/2. Note that, since
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Algorithm 3. Alternative method for constructing Nα collisions
Require: Oracle access to F operating on [0, N − 1]
Require: Parameter: α ≤ 1/3

Let γ ←− (1 − α)/2
Let Nα ←− �Nα�
Let Nγ ←− �Nγ�
Create arrays Start and End of Nα elements.
Create arrays Img, Pr1 and Pr2 of Nα elements.

Construction of first set:
for i from 1 to Nα do

Let a ←−R [0, N − 1]
Let Start[i] ←− a
for i from 1 to Nγ do

Let a ←− F (a)
end for
Let End[i] ←− a

end for
Sort End, applying the same permutation on elements of Start

Construction of second set and collisions:
Let t ←− 1
while t < Nα do

Let a ←−R [0, N − 1]
Let b ←− a
for j from 1 to Nγ do

Let b ←− F (b)
if b is in End (first occurrence in position k) then

Let a′ ←− Start[k]
for l from 1 to Nγ − j do

Let a′ ←− F (a′)
end for
if a �= a′ then

{Checks that a genuine merge between chains exists}
Let b ←− F (a)
Let b′ ←− F (a′)
while b �= b′ do

Let a ←− b
Let a′ ←− b′

Let b ←− F (a)
Let b′ ←− F (a′)

end while
Let Img[t] ←− b
Let Pr1[t] ←− a
Let Pr2[t] ←− a′

Let t ←− t + 1
end if
Exit Loop on j

end if
end for

end while
Return arrays Img, Pr1 and Pr2 containing Nα collisions.
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α ≤ 1/3, we have (1 + α)/2 ≤ 1− α. As a consequence, the running time of the
complete algorithm is dominated by the running time Nβ = N1−α of the second
step.

6 Parallelizable 3-Collision Search

Since the computation involved during a search for 3-collisions is massive, it
is essential to study the possibility of parallelizing such a search. For ordinary
collisions, parallelization is studied in details in [27] using ideas introduced in
[18,19,20,23,24,25,26].

We first remark that the algorithms we have studied up to this point are badly
suited to parallelization. Their main problem is that a large amount of memory
needs to be replicated on every processor which is very impractical, especially
when we want to use a large amount of low-end processors. We now propose an
algorithm specifically suited to parallelization. For simplicity of exposition, we
first assume that Np ≈ N1/3 processors are available and aim at a running time
Õ(N1/3). Moreover, we would like each processor to use only a constant amount
of memory. However, we assume that every processor can efficiently communicate
with every other processor, as long as the amount of transmitted data remains
small. It would be easy to adapt the approach to a network of small processors,
with each processor connected to a central computer possessing Õ(N1/3) bits of
memory.

As for ordinary collisions, the key idea is to use distinguished points. By def-
inition, a set of distinguished points is a set of points together with an efficient
procedure for deciding membership. For example, the set of elements in [0,M−1]
can be used as a set of distinguished points since membership can be tested us-
ing a single comparison. Moreover, with this choice, the fraction of distinguished
points among the whole set is simply M/N . Here, since we wish to have chains
of average length N1/3, we choose for M an integer near N2/3.

The distinguished point algorithm works in two steps. During the first step,
each processor starts from a random start-point s and iteratively applies F
until a distinguished point d is encountered. It then transmits a triple (s, d, L),
where L is the length of the path from s to d, to the processor whose number
is d (mod Np). We abort any processor if it doesn’t find a distinguished point
within a reasonable amount of time, for example, following what [27] does for
2-collisions, we may abort after 20N/M steps. Once all the paths have been
computed, we start the second step. Each processor looks at the triples it now
holds. If a given value of d appears three or more times, the processor recomputes
the corresponding chains, using the known length information to synchronize
the chains. If three of the chains merge at a common position, a 3-collision is
obtained.

Of course, even with less than N1/3 processors, it is possible to do a partial
parallelization. More precisely, given Nθ processors with θ ≤ 1/3, it is possible
to find 3-collisions in time Õ(N2/3−θ). In that case, each processor needs a local
memory of size O(N1/3−θ) to store all the triples it owns.
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Algorithm 4. Parallelizable 3-collisions using distinguished points
Require: Oracle access to F operating on [0, N − 1]
Require: Number of processors Np ≤ N1/3

Require: Identity of current processor: Id ∈ [0, Np − 1]
Let M ←−

⌈
N2/3
⌋
{M defines distinguished points}

Let Lmax = 20
⌈
N1/3
⌋

Construction of triples:
Let s ←−R [0, N − 1]; a ←− s; L ←− 0
while L < Lmax do

Let a ←− F (a); L ←− L + 1
if a < M then

Send triple T ←− (s, a, L) to processor a (mod Np) and Exit Loop
end if

end while

Acquisition of triples:
Store received triples (s, d, L) in local arrays A, D, L numbered from 1 to K
Sort D, applying the same permutation on elements of A and L

Processing of triples:
Let i ←− 1
while i ≤ K do

Let j ←− i + 1
while j ≤ K and D[j] = D[i] do

Let j ←− j + 1
end while
if j ≥ i + 3 then

Let L ←− max(L[i], · · · ,L[j − 1])
for � from L downto 0 do

for k from i to j − 1 do
if L[k] ≥ � then

Let D[k] ←− A[k]; A[k] ←− F (A[k]))
{D[k] overwritten to keep previous value of A[k]}

end if
end for
Check for 3 equal values in A[i · · · j − 1] with differing values of D
If found, Output the 3-collision and Exit

end for
end if
Let i ←− j

end while

7 Extension to r-Collisions, for r > 3

For r-collisions, recall that we need to evaluate F on approximately r!1/r N (r−1)/r

points before hoping for a collision. When considering that r is a fixed value,
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r!1/r is a constant and vanishes within the Õ notation. With this new context,
Algorithm 4 is quite easy to generalize. Here, the important parameter is to cre-
ate shorter chains and compute more of them. The reason for shorter chains is
that (as in Hellman’s Algorithm [5]), we need to make sure that there are not too
many collisions between one chain and all the others. Otherwise, the algorithm
spends too much time recomputing the same evaluations of the random map,
which is clearly a bad idea. To avoid this, we construct chains which are short
enough to make sure that the average number of (initial3) collisions between an
individual chain and all the other chains is a constant. Since the total number
of elements in all the other chains is essentially N (r−1)/r, the length of chains
should remain below N1/r.

To achieve maximal parallelization when searching for an r-collision, Np ≈
N (r−2)/r processors are required. The integerM that defines distinguished points
should be near N (r−1)/r. Each processor first builds a chain of average length
N1/r (as before we abort after 20N/M steps), described by a triple (s, d, L).
Each chain is sent to the processor whose number is d (mod Np). During the
second step, any processor that holds a value of d that appears in r or more triples
recomputes the corresponding chains. If r chains merge at the same position, a
r-collision is obtained.

Given Nθ processors with θ ≤ (r − 2)/r, it is possible to find r-collisions in
time Õ(N (r−1)/r−θ). In that case, each processor needs a local memory of size
O(N (r−2)/r−θ).

With a single processor, the required amount of memory is O(N (r−2)/r). Thus,
as r grows, the advantage of the single processor approach on the folklore algo-
rithm (which requires O(N (r−1)/r) memory) becomes smaller and smaller. As a
consequence, for larger values of r, it is essential to rely on parallelization.

8 Conclusion

In this paper, we revisited the problem of constructing multicollisions on random
mappings and showed that it can be done using less memory than required
by the folklore algorithm. For 3-collisions, the sequential running remains at
Õ(N2/3) but the amount of memory can be reduced from O(N2/3) to O(N1/3).
A remaining open problem is to determine whether this amount of memory can
further be reduced.

Furthermore, finding 3-collisions can be very efficiently parallelized. Given
N1/3 parallel processors, each equipped with constant memory, the problem
can be solved in time Õ(N1/3). More generally for r ≥ 3, we show how to
generate r-collisions on Nθ processors, each with local memory O(N (r−2)/r−θ),
in time Õ(N (r−1)/r−θ). It is interesting to note that the cost of the parallelizable
approach in the full-cost model [28] decreases as θ grows.

3 Of course, once a collision occurs, all the values that follow are colliding. However,
we do not count these follow-up collisions.
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A Practical Implementation

Since we only performed a heuristic analysis of our algorithms, in order to show
that they are really effective, we decided to illustrate our 3-collision techniques
with a practical example. For this purpose, we construct a random function by
Xoring two copies of the DES algorithm (with two different keys). More precisely,
we let:

F (x) = DESK1(x) ⊕DESK2(x),

where4 K1 = (3322110077665544)16 and K2 = (3b2a19087f6e5d4c)16. Since x
is on 64 bits, the time and memory requirements of the folklore algorithm are
around 243. Where current computers are concerned, performing 243 operations
is easily feasible. However, storing 243 values of x requires 246 bytes, i.e. 64 Ter-
abytes. As a consequence, finding 3-collisions on F with the basic parameters
of the folklore algorithm is probably beyond feasibility. Using a different time-
memory trade-off, restricting the storage to 232 values would raise the time
requirement to 248 operations. This is within the range of currently accessible
computations. However, since the algorithm is not parallelizable, it would require
a high-end computer.
4 This keys might seem weird, but they should not have any special proper-

ties. In truth, we intended to choose K1 = (0011223344556677)16 and K2 =
(08192a3b4c5d6e7f)16 , i.e., (8899aabbccddeeff)16 with high bits stripped. Unfor-
tunately, the first-named author made a classical endianness mistake while imple-
menting the algorithm.

http://ehash.iaik.tugraz.at/wiki/JH
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With the new algorithms presented in this paper, it becomes possible to com-
pute triple collisions much more efficiently on the function F . For our implemen-
tation, we choseM = 244 to define the distinguished points, which yielded chains
of expected length 220. The abort length was set at 8 times the expected length,
rather than the factor 20 given in Algorithm 4. For computing the chains, we
used a mix of 32 Intel Xeon processors at 2.8 GHz and 8 Nvidia CUDA cards
(Tesla type). We collected a total of 35 447 322 chains and obtained 3 078 699
groups of three or more chains yielding the same distinguished endpoints. The
largest group contained 36 chains, which shows that it would have been prefer-
able to use slightly shorter chains. On processors only, this first phase would
have taken about 94 CPU-days to run. On a single CUDA card, it would have
taken 11.5 days.

For simplicity of implementation, the second phase of the algorithm was only
performed on Intel processors and not on CUDA cards. It took less than 18
CPU-days to test all groups and it yielded the following triple-collisions:

F (d332b9ba5e5a7d4e) = F (51b8095db532afcc) = F (b084dc15dce042ab),
F (ca76ff906d6587cf) = F (e1f7f59a5757d01b) = F (0285f58147e863c2),
F (c3783ef30c8bcc3d) = F (65f14d412fd91173) = F (1042d827e5078000).

We would like to thank CEA/DAM5 for kindly providing the necessary com-
puting time on its Tesla servers.

B Applications

B.1 Collisions for the Hash Function AURORA-512

AURORA is a family of cryptographic hash functions submitted to the NIST
SHA-3 hash function competition [8]. Like the other members of the AURORA
family, AURORA-512 employs different internal compression functions, each
mapping a 256-bit chaining value and a 512-bit message block to generate a new
256-bit chaining value. AURORA-512 is the high-end member of that family,
maintaining an internal state of 512 bit. As required by the NIST, the authors
of AURORA-512 explicitly claim “collision resistance of approximately 512/2
bits” for AURORA-512. In other words, collision attacks must not significantly
improve over the generic birthday attack, which takes roughly the time of 2256

hash operations.
Internally, AURORA-512 works almost like the cascade of two iterated hash

functions, except for one important extra operation:

MF : {0, 1}n × {0, 1}n → {0, 1}n × {0, 1}n.

See Algorithm 5 for a simplified description of AURORA-512.
Every eighth iteration, MF is called to mix the two half-states. This seems

to defend against the cascade-attack from [9]: Between two MF-operations, one
5 Commissariat à l’énergie atomique, Direction des applications militaires.
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Algorithm 5. AURORA-512: Hashing 8 message blocks.
Require: Input Chaining Values (Left, Right) ∈ ({0, 1}256)2

for i from 0 to 7 do
Left ←− Compress(Left, Message Block(i))
Right ←− Compress(Right, Message Block(i))

end for
(Left, Right) ←− MF(Left, Right)

can generate local collisions in each iteration in one of either the left string, or
the right string. Thus, the adversary can get a local 28-collision. But to apply
the attack from [9], one would rather need a 2128-collision, so the attack fails.

Assume, for a moment, that the adversary has generated a 27-collision on Left
in the first 7 iterations of the loop. For the right string, we have 27 different values
Right1, Right2, . . . , Right128. If two of them collide, a collision for AURORA-512
has been found. For a fixed Message Block(7), the chance of a collision, i.e. of
j 
= k with

Compress(Rightj, Message Block(7))
=

Compress(Rightk, Message Block(7))

is about 27 · (27 − 1) · 2−1/2256. By trying out 2256−(6+7) different values for
Message Block(7), we expect to find a collision. Note that this means to make
27 calls to the function Compress. Hence, this attack takes the time of about
2256−(6+7)+7 = 2250 compression function calls, plus the time to generate the
27-collision at the beginning. This is essentially the memoryless variant of the
attack from [3], except that the authors of [3] actually generate a 28-collision
on Left, by exploiting the previous eight-tuple of message blocks. The attack is
memoryless, since the adversary only needs to generate 2-collisions on Left, and
the claimed time is 2249.

In [3], Ferguson and Lucks further propose an attack which uses local r-
collision, instead of local 2-collisions. A similar attack has been proposed inde-
pendently [21]. Using eight local r-collisions allows to speed-up the attack to
roughly 2256/r7 compression function calls (plus the time to generate the re-
quired r-collisions). [3] suggest r = 9 (beyond that, computing the r-collisions
becomes too costly) and claim time 2234.5, including the time to generate ten lo-
cal 9-collisions. The price for the speed-up is utilizing a huge amount of memory,
however.

Our memory-efficient 3-collision allows a different time-memory tradeoff. The
time is 2256/37 ≈ 2245. Recall N = 2256, and set α := 1/16, β := 15/16 in
Algorithm 2. In that case one local 3-collision requires time 2240, which we
neglect. The memory requirements are down to 216, i.e., almost negligible.

It is also possible to use more general r-collisions to further improve this
attack. For example, we can use 4-collisions obtained using the algorithm of
section 7. To simplify the comparison with previous attacks, we assume a single
processor, i.e. set θ = 0, however, with more processors, we would obtain an
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even better attack. With this choice, a 4-collision on 256-bits is obtained in time
2192 using a memory of size 2128. The corresponding speedup is 47. Similarly, 8-
collisions on 256 bits are obtained in time 2224 each, using 2192 units of memory.
The speed-up is 87. Other trade-offs are possible.

The results on collision attacks for AURORA-512 can be summarised as
follows:

r time memory reference
(arity) [compr. fn. calls]

9 2234.5 2229.6 [3]
8 2236 2236 [21]
2 2249 — [3]
3 2245 216 (this paper)
4 2242 2128 (this paper)
8 2235 2192 (this paper)

B.2 Attacks on Other Hash Functions

Several attacks on several other SHA-3 candidates make heavy use of multicol-
lisions, and it appears a natural idea to plug in our algorithms for reducing the
memory consumption of these attacks. We actually tried to do so, but only suc-
ceeded for Aurora-512. In the current section, we will explain why we failed for
other obvious candidates.

Several attacks, such as the attacks on Blender [14,10] and on Twister [11],
employ multicollisions, but it turns out that these can actually be generated by
Joux-style iterated 2-collisions, which is very memory-efficient – and also faster
than our general multicollision algorithms, anyway.

An obvious candidate to employ our algorithms to improve given cryptanalytic
attacks is a preimage attack on JH-512 [12]. Like Aurora, JH is a family of hash
functions submitted to the SHA-3 competition. The high-end 512-bit variant
is denoted as JH-512. Internally, JH-512 is a wide-pipe hash function with an
internal state of 1024 bit, and it employs an invertible compression function. [12]
propose a meet-in-the-middle attack which requires “2510.3 compression function
evaluations and a similar amount of memory” (our emphasis). The authors of
[12] stress: “We do not claim that our attack breaks JH-512 (due to the high
memory requirements).” The author of JH-512 provides a more detailed analysis
of this attack, claiming “2510.6 [units of] memory”. A main phase of the attack
is generating several 51-collisions on one half of the chaining values (i.e., on
512 bits). By applying our algorithms to this task, it is possible to reduce the
memory required for this phase to 2(512/51)·49 units of memory.

But another phase of the attack from [12] is to apply the inverse of the com-
pression function to generate 2509 internal target values. The attack successfully
generates a message which hashes to a given preimage, if the first part of the
message hashes to any of these 2509 target values. Finally, the overall amount
of storage for the attack is dominated by storing these 2509 values, regardless of
improving memory-efficiency of the multicollision phase.
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Abstract. The design of cryptographic hash functions is a very complex
and failure-prone process. For this reason, this paper puts forward a
completely modular and fault-tolerant approach to the construction of a
full-fledged hash function from an underlying simpler hash function H
and a further primitive F (such as a block cipher), with the property
that collision resistance of the construction only relies on H , whereas
indifferentiability from a random oracle follows from F being ideal. In
particular, the failure of one of the two components must not affect the
security property implied by the other component.

The Mix-Compress-Mix (MCM) approach by Ristenpart and Shrimp-
ton (ASIACRYPT 2007) envelops the hash function H between two in-
jective mixing steps, and can be interpreted as a first attempt at such a
design. However, the proposed instantiation of the mixing steps, based
on block ciphers, makes the resulting hash function impractical: First, it
cannot be evaluated online, and second, it produces larger hash values
than H , while only inheriting the collision-resistance guarantees for the
shorter output. Additionally, it relies on a trapdoor one-way permutation,
which seriously compromises the use of the resulting hash function for
random oracle instantiation in certain scenarios.

This paper presents the first efficient modular hash function with
online evaluation and short output length. The core of our approach
are novel block-cipher based designs for the mixing steps of the MCM
approach which rely on significantly weaker assumptions: The first mix-
ing step is realized without any computational assumptions (besides the
underlying cipher being ideal), whereas the second mixing step only re-
quires a one-way permutation without a trapdoor, which we prove to be
the minimal assumption for the construction of injective random oracles.

1 Introduction

Multi-Property Hash Functions. Cryptographic hash functions play a cen-
tral role in efficient schemes for several cryptographic tasks, such as message au-
thentication, public-key encryption, digital signatures, key derivation, and many
others. Yet the huge variety of contexts in which hash functions are deployed makes
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the security requirements on them very diverse: While some schemes only assume
relatively simple properties such as one-wayness or different forms of collision re-
sistance, other schemes, including practical ones such as OAEP [4,15] and PSS [5],
are only proven secure under the assumption that the underlying hash function is
a random oracle [3], i.e., a truly random function which can be evaluated by the
adversary. On the one hand, while a number of provably-secure collision-resistant
hash functions, such as VSH [9] or SWIFFT [18], have been designed, they are
not appropriate candidates for random oracle instantiation. On the other hand,
well-known theoretical limitations [8,19] only permit constructions of hash func-
tions for random oracle instantiation from idealized primitives [10], such as a fixed-
input-length random oracle or an ideal cipher,1 but (as first pointed out in [2]) these
constructions may lose any security guarantees as soon as the adversary gets to ex-
ploit non-ideal properties of the underlying primitive.2

While one could in principle always employ a suitable hash function tailored at
the individual security property needed by one particular cryptographic scheme
at hand, common practices such as code re-use and the development of standards
call for the design of a single hash function satisfying as many properties as
possible. This point of view has also been adopted by NIST’s on-going SHA-3
competition [17], and motivated a series of works [2,1] shifting the design problem
of multi-property hash functions to the task of constructing good multi-property
compression functions. A further line of research has been devoted to robust
multi-property combiners [13], which merge two hash functions such that the
resulting function satisfies each of the properties possessed by at least one of
the two starting functions. While these works simplify the design task, building
multi-property hash functions from single-property primitives remains far from
being simple, and is the main topic of this paper.

Statement of the Main Problem. This paper presents a modular design
for hash functions that are collision resistant in the standard model and can,
simultaneously, be used for random oracle instantiation in the ideal model. We
consider a setting where both a hash function H as well as some other (po-
tentially ideal) primitive F (such as a block cipher) are given (a similar setup
was previously considered by Ristenpart and Shrimpton [23]): We aim at de-
vising a construction CH,F which is collision resistant as long as H is collision
resistant,3 and which behaves as a random oracle (with respect to the notion of
indifferentiability [19,10]) whenever F is ideal. For this approach to be practi-
cally appealing, the construction must preserve the good properties of H : For
instance, it must allow for online processing of data (which is crucial for large

1 An ideal cipher E : {0, 1}κ × {0, 1}n → {0, 1}n associates an (invertible) random
permutation E(k, ·) with each key k.

2 Of course, a real block cipher cannot be ideal. (Likewise, a hash function cannot be a
random oracle either.) Yet modeling it as ideal captures the adversary’s inability of
exploiting any structure, and a security proof in this model implies in particular the
inexistence of any generic attacks treating the block cipher as a black box.

3 In particular, we require the existence of a standard-model reduction.
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inputs or in streaming applications) whenever H can be evaluated online.4 Also,
the construction should not increase the size of the hashes of H .

In particular, we advocate a safe and modular design paradigm where each of
both properties should ideally rely only on one of both component primitives,
whereas the other primitive may be arbitrarily insecure, except for (possibly)
satisfying some minimal structural requirement (that can be ensured by design),
such as F being a permutation or H being sufficiently regular. This differs from
the point of view taken in [23], where H is guaranteed to be collision resistant
and is extended by means of an ideal primitive F into a random oracle, while
preserving the collision-resistance guarantees of H : We believe that practical
considerations, especially efficiency, may in fact motivate the use of hash func-
tions with no provable security guarantees. Thus, it is desirable that even the
ability of finding collisions for H does not impact the indifferentiability of the
construction, as long as F is still ideal. Either way, both points of view are re-
lated: Any solution satisfying our stronger requirements (including the one we
propose in this paper) also fits within the framework of [23], while the solution
proposed in [23] also satisfies stronger requirements, as discussed below.

We also remark that using the multi-property combiner of [14] one can com-
bine a random oracle (built from F ) and H into a hash function that provably
observes both properties. However, as combiners inherently do not exploit the
knowledge of which one of both functions has a certain property, the resulting
construction is rather inefficient, e.g., it doubles the output length.

The MCM Approach. Given a hash function H as above, the so-called mix-
compress-mix (MCM) approach, introduced by Ristenpart and Shrimpton [23],
considers the construction

MCMM1,M1,H(x) := M2(H(M1(x))),

whereM1 andM2 are arbitrary-input-length injective maps (the so-called mixing
stages) with stretch τ1 and τ2, respectively, i.e., such that Mi outputs a string
of length |x| + τi on input x ∈ {0, 1}∗. The injectivity of the mixing stages
ensures that MCM preserves the collision resistance of H in the standard model.
Additionally, it was shown in [23] that MCM is indifferentiable from a random
oracle if M1 and M2 are random injective oracles (i.e., Mi returns a random
(|x| + τi)-bit string for each input x ∈ {0, 1}∗ that differs from all previously
returned values with the same length) and H is collision resistant and sufficiently
regular. Dodis et al. [12] subsequently interpreted this result as the combination
of two facts: (i) The mapping x �→ H(M1(x)) is preimage aware5 under the same

4 Most hash functions rely on some iterated (and thus inherently online) design, such
as Merkle-Damg̊ard [11,21], or sponges [6].

5 Informally, a construction CF based on an ideal primitive F is preimage aware if
there exists an algorithm – called the preimage extractor – which given the input-
output history of F and an output y, either aborts or returns x such that CF(x) = y,
and after such query no adversary can find an input x′ such that CE(x′) = y (and
x′ �= x in case the extraction query did not abort).
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assumptions, and (ii) Post-processing the output of a preimage-aware function
with a (possibly injective) random oracle yields a full-fledged random oracle. A
concrete instantiation of injective random oracles – called the TE-construction
– relying on an ideal cipher and a trapdoor one-way permutation has also been
proposed in [23]: To date, this was the only known such construction.

Interestingly, we observe that the MCM approach provides a modular design
approach for hash functions as advocated above, since the indifferentiability
result can be made independent of the collision resistance of H . (This was unno-
ticed in [23], and is briefly discussed in the full version of this paper.) However,
its deployment is subject to a number of practical and theoretical drawbacks,
whose solution was stated as an open problem in [23]: First, every construction
of injective random oracles (and in particular the TE-construction) cannot be
online, as, roughly speaking, each output bit needs to be influenced by all of
the input in order to exhibit random behavior. Additionally, the fact that the
TE-construction is length-increasing has a serious impact on the resulting hash
size: In particular, the stretch τi typically equals the bit length of a sufficiently
secure RSA modulus, i.e., τi ≥ 2048 bits for reasonable security. Finally, the use
of a trapdoor one-way permutation within the TE-construction is rather unde-
sirable: In contrast to (non trapdoor) one-way permutations, the assumption is
very strong, e.g., it implies public-key encryption in the random oracle model [4].
Also, as pointed out in [23], the compositional guarantees of protocols using the
MCM approach (with the TE-construction) to instantiate a random oracle are
affected, as properties such as deniability may be lost (cf. e.g. the works by
Pass [22] and by Canetti et al. [7]).

These observations give rise to a number of challenging open questions. Can we
instantiate the first mixing stage of MCM with a weaker primitive which allows
for online processing? Can we instantiate the second mixing stage (where online
processing is not an issue) as an injective RO with limited stretch (possibly even
with no stretch at all)? And finally, can we weaken the underlying assumption,
eliminating the need of the trapdoor, or possibly even entirely removing the
underlying assumption?

Contributions and Roadmap of this Paper. In this paper, we present
the first efficient modular construction of a hash function in the sense described
above. Our solution relies on the MCM approach, and in particular we address
and solve all of the aforementioned open questions, and hence make a substantial
step towards making the MCM approach practical.

First Mixing Stage. In Section 3, we present a novel mode of operation for a
block cipher E : {0, 1}2n × {0, 1}n → {0, 1}n implementing an arbitrary-input-
length injective map – called iterated mix (IM) – that permits online processing
of its inputs, making only one call to E per n-bit message block, and has only
stretch n/2. Our first main theorem shows that the construction IMCE,H(M) :=
H(IME(M)) applying H to the output of IM is preimage aware if E is an ideal
cipher and, additionally, the hash function H satisfies a rather weak regularity
requirement (which is somewhat incomparable to the one used in [23], albeit
equally natural): Namely, given a random n-bit string m and some arbitrary
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string S, the value H(S‖m) has (min-)entropy not much lower than n (if n is
smaller than H ’s hash size), or not much lower than the hash size otherwise. In
fact, even completely insecure hash functions can have this property, and it is
also natural to assume that it is satisfied by any reasonably built hash function.
We also present a variant of the IM-construction which requires a block cipher
with single-block key length n at the price of making two block-cipher calls per
message block.

We stress that (contrary to the TE-construction) our result does not rely
on any computational assumptions: In particular, the IM-construction relies on
invertible primitives, and is itself efficiently invertible. Thus, IM does not imple-
ment a random injective oracle.

Second Mixing Stage. With the goal of making the MCM approach preserve the
hash size of the underlying hash function in mind, the second part of this paper
(Section 4) addresses the question of building length-preserving injective random
oracles. (We call this a (non-invertible) random permutation oracle (RPO).)
We show that for any three permutations E,E′, π from n bits to n bits, the
permutation

NIRPE,E′,π(x) := E′(π(E(x)))

is indifferentiable from a RPO if both E and E′ are (fixed-key) ideal ciphers,
and π is a one-way permutation, without a trapdoor.

In practice, E,E′ are instantiated by a block cipher with two distinct fixed
keys. This limits us to n being a valid block size (e.g. n = 128 bits), which
can be smaller than the usual hash size (e.g. h = 256). This motivates the
question of extending the input/output size of random permutation oracles: In
Section 4.2, we present constructions (which are reminiscent of the Shrimpton-
Stam compression function [25]) for extending every n to n bits RPO into a γ ·n
bits to γ · n bits RPO for any fixed γ > 1.

In the full version we further show that in order to construct injective ROs the
assumption of a one-way permutation cannot be weakened to a one-way function
(at least under black-box security reductions).

Putting Pieces Together. Finally, instantiating MCM with IM and NIRP (or its
extension through our extender) as its first and second mixing stage, respectively,
leads to the first construction of a hash function with the following properties:

(i) Its collision resistance can be reduced in the standard model to the collision
resistance of the underlying hash function.

(ii) It is indifferentiable from a random oracle in the ideal cipher model (with
a one-way permutation), as long as the underlying hash function is suffi-
ciently regular.

(iii) It can be evaluated online as long as the underlying hash function can be
evaluated in an online fashion.

(iv) It has hash size equal to the one of the underlying hash function.
(v) It can be used to instantiate a random oracle in all computationally secure

schemes in the random oracle model, with no composability limitations.
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2 Preliminaries

Notational Preliminaries. Throughout this paper, {0, 1}n denotes the set
of strings s of length |s| = n, whereas ({0, 1}n)∗ and ({0, 1}n)+ are the sets of
strings consisting of n-bit blocks with and without the empty string, respectively.
The notation s‖s′ stands for the concatenation of the strings s and s′. Also, we
use INJ(m,n) to denote the set of injective functions f : {0, 1}m → {0, 1}n (in
particular, INJ(n, n) is the set of permutations from n bits to n bits). Further, it is
convenient to define BC(κ, n) as the set of block ciphers, i.e., of keyed functions E :
{0, 1}κ×{0, 1}n → {0, 1}n such that each key k ∈ {0, 1}κ defines a permutation
Ek(·) := E(k, ·) ∈ INJ(n, n) (and denote as E−1(k, ·) the corresponding inverse).

Algorithms are in general randomized, and throughout this paper we fix a
RAM model of computation for these algorithms. We use the notation AO(r)
to denote the (oracle) algorithm A(·) which runs on input r with access to the
oracle O. In particular, an algorithm A(·) is said to have running time t (also
denoted as time(A) = t) if the sum of its description length and the worst-case
number of steps it takes (counting oracle queries as single steps), taken over
all randomness values, all inputs and all compatible oracles, is at most t. If
the algorithm takes inputs of arbitrary length, then time(A, �) refines the above
notion to only take the maximum over inputs of length at most �.

Finally, the shorthand x $← S stands for the action of drawing a fresh random
element x uniformly from the set S, whereas x $← AO(r) denotes the process of
sampling x by letting A interact with O on input r (and probabilities are taken
over the random coins of A and O).

One-Way Functions and Permutations. We define the one-way advantage
of an adversary A against a function f : {0, 1}m → {0, 1}n as

Advowf
f (A) = P[x $← {0, 1}m, x′ $← A(f(x)) : f(x) = f(x′)].

For the special case of a permutation π : {0, 1}n → {0, 1}n, it is convenient to

use the shorthand Advowp
π (A) = P[x $← {0, 1}n, x′ $← A(π(x)) : x = x′] for the

one-way permutation advantage.

Idealized primitives. We consider a number of (more or less) standard ide-
alized primitives throughout this paper, which are always denoted by bold-face
letters. For a set X , a random oracle (RO) R : X → {0, 1}n is a system associ-
ating a random n-bit string R(x) with each input x. If X = {0, 1}m, then R is
called a fixed-input-length RO (FIL-RO), whereas it is a variable-input-length RO
(VIL-RO) if X = {0, 1}∗. An ideal cipher (IC) E : {0, 1}κ × {0, 1}n → {0, 1}n

is a block cipher E chosen uniformly from the set BC(κ, n), and allows both
forward queries E(k, x) as well as backward queries E−1(k, y). If κ = 0, then
we omit the first input and we call this a fixed-key ideal cipher. Note that for
an IC E and distinct fixed key values k0, k1, . . ., E(k0, ·),E(k1, ·), . . . are inde-
pendent fixed-key ICs. In contrast, a (fixed-input-length) random injective oracle
(FIL-RIO) I : {0, 1}m → {0, 1}n implements a uniformly chosen function from
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INJ(m,n). In the special case m = n we call this a random permutation oracle
(RPO) P : {0, 1}n → {0, 1}n.

We stress that the substantial difference between a fixed-key IC and a RPO
is that the former allows for inversion queries, whereas the latter does not (and
is in particular hard to invert).

Indifferentiability. The notion of indifferentiability was introduced by Mau-
rer et al. [19] to generalize indistinguishability to constructions CF : X → {0, 1}n

using a public (idealized) primitive F (e.g., an IC, a FIL-RO, or a combination
of these), i.e., that can be accessed by the adversary. Roughly speaking, CF is
indifferentiable from an ideal primitive F′ if there exists a simulator SF′

access-
ing F′ such that (CF,F) and (F′,SF′

) are indistinguishable. In particular, we
will be concerned with the cases where F′ is either a RO or a RIO/RPO, and
we define the RO-indifferentiability advantage of the distinguisher D against the
construction CF and simulator S as the quantity

Advind-ro
CF,S (D) =

∣∣∣P [DCF,F = 1
]
− P
[
DR,SR

= 1
]∣∣∣ ,

where R : X → {0, 1}n is a RO with the same input and output sets as C.
The IRO-indifferentiability advantage Advind-iro

CF,S is defined analogously by using
a RIO I instead of R. We stress that both quantities are related by a simple
birthday-like argument, i.e., Advind-iro

CF,S (D) ≤ Advind-ro
CF,S (D) + 1

2 · (q+ qS)2 · 2−n,
where q is the number of query D makes to its first oracle, whereas qS is the
overall number of queries S makes when answering D’s queries. Note that indif-
ferentiability ensures composability, i.e., if a cryptographic scheme is secure using
an ideal primitive F′ accessible by the adversary, then it remains secure when
replacing F′ with a construction CF which is indifferentiable from F′ and letting
the adversary access F. See [19,10] for a formal treatment in the information-
theoretic and computational models.

Collision-Resistance. Let H : K × {0, 1}∗ → {0, 1}h be a (keyed) hash func-
tion with key generator K. The collision-finding advantage of an adversaryA is

Advcr
H(A) := P[k $← K, (M,M ′) $← A(k) : M 
= M ′ ∧ Hk(M) = Hk(M ′)]

The notion naturally extends to keyless hash functions (which can be consid-
ered in the same spirit proposed in [24]) and to constructions from some ideal
primitive F (where A is additionally given access to F).

The MCM-Construction. For a hash function H : {0, 1}∗ → {0, 1}h, and
injective maps M1 : {0, 1}∗ → {0, 1}∗, M2 ∈ INJ(h′, n), where n ≥ h′ ≥ h, the
MCM-construction implements a map {0, 1}∗ → {0, 1}n as

MCMM1,H,M2(M) := M2(H(M1(M)) ‖ 0h′−h).

We also define MCMM1,H,M2
k := MCMM1,Hk,M2 for all k ∈ K if the hash function

H is keyed (with key space K) . Also, the definition does not allow M1,M2 to be



A Modular Design for Hash Functions 371

keyed (in contrast to [23]). This is because we will present keyless instantiations
of M1,M2. Note that we assume M2 to be fixed input length without loss of
generality. The following simple result was shown in [23], and holds both for
keyed as well as for keyless hash functions.

Lemma 1. For all collision-finding adversaries A outputting a pair of mes-
sages each of length at most �, there exists a collision-finding adversary B such
that Advcr

MCMM1,H,M2 (A) = Advcr
H(B), where time(B) = time(A) + O(2(� +

time(M1, �))).

Preimage Awareness. We briefly review the notion of preimage awareness [12]
for a hash function HF : {0, 1}∗ → {0, 1}h built from an idealized primitive F. A
preimage extractor E is a (deterministic) algorithm taking a history α of input-
output pairs of F and a value y ∈ {0, 1}h such that E(α, y) returns a value
x ∈ {0, 1}∗ ∪ {⊥}. We consider a random experiment (called the pra-game)
involving an adversary A which can query both F and E(α, ·) (where α is the
current history containing the interaction with F so far, i.e., the adversary cannot
change the first argument), and where a set Q contains all E-queries y of A and
an associative array V stores as V[y] ∈ {0, 1}∗∪{⊥} (for all y ∈ Q) the answer of
the query y to E . The pra-advantage of the adversary A with preimage extractor
E, and primitive F is the quantity

Advpra
H,F,E(A) := P[(M, y) $← AE(α,·),F : y ∈ Q ∧ HF(M) = y ∧ V[y] 
= M ].

It turns out that preimage aware functions are good domain extenders for FIL-
ROs: More concretely, with H as above, consider the construction CF,R′

: M �→
R′(HF(M)) for a FIL-RO R′ : {0, 1}h → {0, 1}n. Then, the following result was
proved in [12].

Lemma 2 (PRA + FIL-RO = VIL-RO [12]). There exists a simulator S
such that for all distinguishers D making q queries to CF,R′

of length at most �,
q1 queries to F and q2 queries to R′, there exists an adversary A with

Advind-ro
CF,R′ ,S(D) ≤ Advpra

H,F,E(A).

The simulator S runs in time O(q1 +q2 · time(E)) and makes q2 queries, whereas
A runs in time time(D) + O(q · time(H, �) + q0 + q1) and makes q · qH,� + q1
F-queries and q2 extraction queries, where qH,� is the maximal number of oracle
queries made by H to process an input of length at most �.

3 An On-Line Mixing Stage: The IMC-Construction

3.1 Description

The IM-Construction. The iterated mix construction (or IM-construction for
short), depicted in Figure 1, relies on a block cipher E : {0, 1}2n × {0, 1}n →
{0, 1}n and an injective mapping PAD : {0, 1}∗ → {0, 1}n/2 × ({0, 1}n)∗ which
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0n/2m1 m2 m�−1 m�

E E E E

y1 y2 y�−1 y�

0n
IV

Fig. 1. The IM-construction with block cipher E : {0, 1}2n × {0, 1}n → {0, 1}n

pads every string so that it consists of one n/2-bit block, followed by as many
n-bit blocks as necessary.6 On input M ∈ {0, 1}∗, it first obtains PAD(M) =
m1‖ . . . ‖m�, and computes the output y1‖ . . . ‖y� iteratively such that y1 :=
E(IV‖m2, 0n/2‖m1) (where IV is an n-bit fixed initialization value) and yi :=
E(yi−1‖mi+1,mi) for all i = 1, . . . , �, where m�+1 := 0n.

In contrast to the TE-construction of [23], the IM-construction is iterated and
allows for (essentially) online processing, with the minimal restriction that only
the first i−1 output blocks y1, . . . , yi−1 can be computed from the first i message
blocksm1, . . . ,mi. This one-block-lookahead evaluation strategy only marginally
impacts the efficiency of the construction, and is crucial in order to ensure the
desired security requirements.

Injectivity of the IM-Construction. It is not difficult to see that the con-
struction is injective: Given an output y1‖ . . . ‖y� (for some �) we can iteratively
efficiently reconstruct the padding m1‖ . . . ‖m� of the input M by computing
mi := E−1(yi−1‖mi+1,mi) for all i = �, �−1, . . . , 2, with m�+1 = 0n, and finally
0n/2‖m1 := E−1(IV‖m2, y1). Thus, IM cannot be a VIL-RIO, and not even one
way, even though it is surprisingly still strong enough to instantiate the first
mixing step of the MCM approach, as we show below.

The IMC-Construction. It is convenient to define the combination of the IM-
construction and a hash function H as the iterated mix-compress construction
(or IMC-construction, for short), which, on input a string M ∈ {0, 1}∗, outputs
IMCE,H(M) := H(IME(M)). If H is keyed, then we similarly define the keyed
function IMCE,H

k (M) := IMCE,Hk(M). Note that if H can be evaluated online,
then this is the case for the IMC-construction as well.

Shorter Key Size. The use of a block cipher with key length equal twice the
block length is acceptable in practice.7 Still, in oder to ensure compatibility with
a larger number of block ciphers, we propose an alternative construction (called
the DM-IM-construction) which relies on a block cipher E : {0, 1}n × {0, 1}n →
{0, 1}n, at the cost of making two calls per processed message block. The un-
derlying idea consists of producing an n-bit key value at each round by using
6 This can be done in the canonical way by appending the bit 1 followed by as many

0 bits as necessary in order to fulfill the length requirement.
7 For instance, AES supports key size 256 bits with block length n = 128 bits.
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the Davies-Meyer construction on yi−1 and mi+1: More precisely, we compute
y1 := E(E(m2, IV) ⊕ IV, 0n/2‖m1) and yi := E(E(mi+1, yi−1) ⊕ yi−1,mi) for
all i = 2, . . . , �. As above, for a hash function H , we define DM-IMCE,H(M) :=
H(DM-IME(M)). (And analogously for the keyed case.)

3.2 Preimage Awareness

The purpose of this section is to prove that, for an ideal cipher E : {0, 1}2n ×
{0, 1}n → {0, 1}n, the construction IMCE,H is preimage aware, provided H sat-
isfies very weak randomness-preserving properties that we discuss first.

Hash Function Balance. The IMC-construction does not exhibit any useful
properties if H can be arbitrary (consider e.g. the case where H is constant). It
is nevertheless reasonable to assume H to satisfy minimal structural properties
which could be (and generally are) ensured by design. In particular, we require
H to preserve some of the randomness of a uniformly chosen input m of a
given length n (where n is e.g. the block length of the cipher used in the IM-
construction), and this should hold even if m is appended to some other fixed
input string M .

Definition 1. An (unkeyed) hash function H : {0, 1}∗ → {0, 1}h is (ε, n)-prefix-
balanced if for all messages M ∈ ({0, 1}n)∗ and hash function outputs y ∈
{0, 1}h we have P[m $← {0, 1}n : H(M‖m) = y] ≤ ε.

The notion extends naturally to a keyed hash function H : {0, 1}κ × {0, 1}∗ →
{0, 1}h: We say that it is (ε, n)-prefix balanced if for all keys k the function Hk

is (ε(k), n)-prefix balanced, and
∑

k P(k) · ε(k) ≤ ε, where P(k) is the probability
that the key generator samples the key k. We remark that the best ε one can
hope for is ε = 2−n as long as n ≤ h holds, whereas ε ≥ 2−h for n ≥ h. Note that
our notion is somewhat incomparable to the one of [23], where on the one hand
balancedness under variable input lengths is considered (rather than for some
fixed length n, as in our case), but, on the other hand, the property is not required
under prepending of fixed prefixes: Still we find this extension to be natural in
a hashing scenario. It is important to realize that prefix balancedness does not
imply any useful security properties for H : The function H : ({0, 1}n)+ →
{0, 1}n such that H(M‖m) := m for all n-bit strings m and all M with length
multiple of n is (n, 2−n)-prefix-balanced, despite finding collisions or preimages
in this function being trivial.

Main Theorem. The following theorem is the main result of the first part of
this paper: It provides a concrete characterization of the security of the IMC-
construction in the ideal-cipher model. We stress that the result only relies on
E being an ideal cipher, and H being sufficiently balanced, but no computa-
tional assumption is made, i.e., the result holds with respect to computationally
unbounded adversaries.

Theorem 1 (Preimage Awareness of IMC). Let E : {0, 1}2n × {0, 1}n →
{0, 1}n be an ideal cipher and letH : {0, 1}∗ → {0, 1}h be an (ε, n)-prefix-balanced
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hash function. There exists a preimage extractor E (given in the proof) such that,
for all adversaries A issuing at most q queries to E and qE queries to E, we have

Advpra
IMCE,H ,E,E(A) ≤ 3 · q(q + 1) · 2−(n+1) + q · 2−n/2 + q(q + 2qE) · ε

2 .

Furthermore, E answers an extraction query in time O(|α| · log |α|).
The result extends naturally to a keyed hash function by just averaging the
bound over all choices of the key. The security of IMC is bounded by (roughly)
min{2n/2,

√
ε}, and is not worse than the one in the TE-construction (which

additionally relies on the security of the underlying trapdoor one-way permuta-
tion). Note that Theorem 1 is concerned with the entire IMC-construction: An
interesting (and seemingly challenging) open question consists of distilling the
(minimal) properties needed by IM to yield preimage awareness for IMC.

The remainder of this section is devoted to the proof outline of Theorem 1.
Technical details are postponed to the full version, as well as a discussion on
how to obtain similar bounds for DM-IMC.

Interaction Graphs. An interaction with the ideal cipher E can be described
in terms of the history α, consisting of triples (k, x, y), where k ∈ {0, 1}2n, and
x, y ∈ {0, 1}n. Both a forward query E(k, x) with output y and a backward query
E−1(k, y) with output x result in a triple (k, x, y) being added to α.8 However,
it is far more convenient to describe α in terms of a directed (edge labeled) graph
G = G(α) = (V,E) with vertex set V := {0, 1}n and edge setE ⊆ V ×V such that
(y, y′) ∈ E with labels label(y, y′) = m and next(y, y′) = m′ if (i) (y‖m′,m, y′) ∈ α
with y 
= IV or (ii) (y‖m′, 0n/2‖m, y′) ∈ α if y = IV. A (directed) path IV = y0 →
y1 → · · · → y� inG is called valid if for all i = 1, . . . , �−1 we have label(yi, yi+1) =
next(yi−1, yi). It is additionally called complete if next(y�−1, y�) = 0n. The value
of a complete valid path is defined asH(y1‖ . . . ‖y�), and its preimage is the string
M which is padded to label(y0, y1)‖ · · · ‖label(y�−1, y�).

The Preimage Extractor E. On input a history α and a (potential) output
z ∈ {0, 1}h of IMC, the preimage extractor E first computes the subgraph G′ of
G(α) induced by the vertices which are reachable through a valid path. If G′ is
not a directed tree, then E aborts and outputs ⊥. Otherwise, if G′ contains one
single valid complete path with value z and preimage M , it outputs M . In any
other case, it outputs ⊥.

It is not hard to see that E can be implemented with running time O(|α| ·
log |α|) (i.e., where |α| approximately equals the number of edges in the graph
G(α)) due to the fact that E aborts if G′ is not a tree: Otherwise, the number
of possible valid paths may be very high, even exponential.9

8 The actual history used in the definition of preimage awareness indeed contains more
information, such as whether the triple is added by a forward or by a backward query,
but this is irrelevant in the following.

9 One may argue that we are taking a rather conservative approach: Even if the graph
were not a tree, it would most likely have a limited number of valid paths. Still, this
considerably simplifies the security analysis with no noticeable loss in the obtained
bounds.
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Proof Intuition. Assume without loss of generality that the adversary A
never repeats a query twice10 and that whenever it terminates in the pra-game
outputting a pair (M, z), it has made all queries necessary to evaluate the IMC-
construction on input M (with output z). In other words, the interaction graph
G(α) of the final history α contains a valid complete path with preimage M and
value z. But because the query z was previously issued to E , if A wins the game,
one of the following has to occur: (i) The subgraph of the valid paths is not a
directed tree, (ii) No valid path with value z existed when the E-query z was
issued, but such a path was created afterwards, or (iii) There exist at least two
valid paths with value z. We show that these events are unlikely.

A key step is proving that, with very high probability, valid paths are con-
structed only by means of forward queries: A construction of a valid path by
backward queries may be successful either because we can “connect” the path
with an already existing one (built by forward queries), or because we construct
the entire path backwards. However, both cases turn out to be unlikely: In the
former case, a fresh backward query outputs a randomm (under the permutation
property), and this can only be the next-label for an already existing edge with
low probability. (This motivates the one-block-lookahead strategy in IM.) In the
latter case, it is very unlikely to have all of the first n/2 bits returned by the
last evaluation query being equal to 0. (This motivates the padding in the first
block.) However, if a path is generated only by forward queries, we can ensure
that the value of a valid path is always sufficiently random due to the prefix-
balancedness of H . We refer the reader to the full version for a formalization of
this argument.

This highlights a very intriguing property of the IM-construction: Although
it can be efficiently inverted on any valid output, it is very unlikely that we can
come up with such a valid output without first evaluating the construction. (In
particular, this prevents that even a known collision for H will lead to a valid
collision for the IMC-construction.)

4 A Length-Preserving Mixing Stage: Random
Permutation Oracles

Post-processing the output of the IMC-construction with a random injective
oracle yields a full-fledged random oracle (by Theorem 1 and Lemma 2), whose
collision resistance can be reduced to the one of the underlying function H in the
standard model by Lemma 1. The use of the TE-construction [23] for this task is
subject to two main drawbacks: It requires a trapdoor one-way permutation and
also enlarges the output of the compressing stage. (The lack of online evaluation
capabilities is not a restriction, as we have to process only inputs of fixed length
equal the output length of the underlying hash function.) In this section, we
solve both issues. We present a block-cipher based construction of a fixed input-
length length-preserving RIO, i.e., a (non-invertible) random permutation oracle
10 In particular, if A asks a forward query E(k, x) which is answered by y, the matching

backward query E−1(k, y) is never issued. (And vice versa.)
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(RPO), that only relies on a one-way permutation without a trapdoor. In the
full version, we show that this assumption is somewhat minimal, as RIOs/RPOs
cannot be built from an ideal primitive and a one-way function.

Additionally, in order to reduce the dependence between the underlying block-
and hash sizes, we present domain/range extenders for RPOs.

4.1 Making Block-Ciphers Non-invertible: The NIRP-Construction

Description. The NIRP-construction combines a permutation π : {0, 1}n →
{0, 1}n and two (fixed-key) ciphers E1, E2 : {0, 1}n → {0, 1}n in a “sandwich-
like” manner. More precisely, for any input m ∈ {0, 1}n the NIRP-constructions
is defined such that NIRPE1,E2,π(m) := E2(π(E1(m))). (Also cf. Figure 2.) Ob-
viously, NIRPE1,E2,π is a permutation.

Security of NIRP. We show that the NIRP-construction is indifferentiable
from a (non-invertible) random permutation oracle if instantiated with two ideal
single-key11 block ciphers E1,E2 and a one-way permutation π (without a trap-
door). The result is summarized by the following theorem.

Theorem 2. Let E1,E2 : {0, 1}n → {0, 1}n be two independent fixed-key ideal
ciphers and let π : {0, 1}n → {0, 1}n be a permutation. There exists a simulator
S (given in the proof) such that for all distinguisher D issuing at most q queries
to the NIRP-construction, and at most qa, qb, qc, qd queries to E1,E−1

1 ,E2,E−1
2 ,

respectively, there exists an owp-adversary A with

Advind-rio
NIRPE1,E2,π ,S(D) ≤ 2 · qc(2q + qa) · 2−n + qd ·Advowp

π (A).

The simulator S runs in time O(qa + qb + qc + qd + (2qa + qb + 2qd) · time(π))
and makes qa + 2qb + 2qc queries to its oracle, whereas the adversary A runs in
time time(A) ≤ time(D) + time(S).

Outline of the Proof. The first part of the indifferentiability proof de-
scribes the simulator SP that mimics the ideal ciphers E1,E2 (with their inverses
E−1

1 ,E−1
2 ) given access to a RPO P : {0, 1}n → {0, 1}n. Moreover we use the

notation SP = (SE1 ,SE2 ,SE−1
1
,SE−1

2
) to make the four sub-oracles of the sim-

ulator (answering the different query types) explicit. The second part (which is
postponed to the full version) upper bounds D’s advantage Advind-rio

NIRPE1,E2,π,S(D)
in distinguishing the ideal setting (with a simulator) and the real setting.

The Simulator. The global state of the simulator SP consists of a table T
(which is initially empty) of tuples of the form (a, b, c, d) consistent with evalu-
ations of the NIRP-construction as in Figure 2, that is, where a, b are simulated
input-output values of the first cipher E1, i.e., E1(a) = b (which can be generated
both by forward queries to E1 and by backward queries to E−1

1 ) and analogously

11 Recall that in the ideal cipher model, it is easy to derive two such ciphers from a
single ideal cipher E : {0, 1}κ×{0, 1}n → {0, 1}n as E1 := E(k1, ·) and E2 := E(k2, ·)
for two arbitrary distinct keys k1 �= k2.
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c, d play the same role for the second block cipher E2. Furthermore, the invariant
c = π(b) and P(a) = d holds. It is also convenient to define A ⊆ {0, 1}n as the
set of values a ∈ {0, 1}n such that (a, b, c, d) ∈ T for some b, c, d. Analogously,
we define the sets B,C, and D.

To achieve perfect simulation given oracle access to P, upon a new query to
one of its four sub-oracles the simulator defines a new tuple (a, b, c, d) in T , with
the input of the query placed at the appropriate position (as long as no such
tuple already exists, in which case the corresponding output value is returned),
and such that all remaining components are set to independent random values
conditioned on these individual values appearing in no other tuple, on d = P(a),
and on c = π(b). This is easily achievable with access to π−1 and P−1: For

example, on input a (to SE1), we choose a random b
$← {0, 1}n\B (i.e., different

from all b′ appearing in some other tuple), and set c := π(b) and d := P(a). (This
is done analogously on input b.) On the other hand, on input c, we compute

b := π−1(c), a random a
$← {0, 1}n \ A (i.e., different from all previous a′), and

then set d := P(a). Finally, on input d, we set a := P−1(d) and subsequently
generate a random b← {0, 1}n \B and set c := π(b).

However, in our setting we have to dispense with π−1 and P−1. In particular,
this means that in the latter two cases the simulator cannot set the values b
and a, respectively, but rather sets these components to a dummy value ⊥, and
completes these tuples with the actual values if they eventually appear as inputs
of E1 or E−1

1 queries. Also note that the simulator must not generate random
values a and b that collide with a dummy value in order to ensure the permutation
property. This can be efficiently avoided by simply testing that P(a) 
= d (and
π(b) 
= c) for all d’s in tuples of the form (⊥, b, c, d) (all c’s in tuples of the
form (a,⊥, c, d)), and whenever the test fails, we replace the dummy value by
the actual value, and draw a new a (or b). There are only two remaining cases
where the simulator fails to answer queries (and aborts):

(i) A query a is made and a tuple (a,⊥, c, d) exists: In this case the simulator
must return π−1(c), but this requires inverting π, which is generally not
feasible. (Call this event Abort1.)

(ii) A query b is made and a tuple (⊥, b, c, d) exists: In this case, the simulator
must return P−1(d), but cannot invert P. (Call this event Abort2.)

By the above discussion, perfect simulation is achieved until one of these events
occurs: A game-based argument yields Advind-rio

NIRPE1,E2,π,S(D) ≤ P[Abort1] +
P[Abort2]. In the full version we give a complete pseudo-code description of the
simulator and show that the probabilities of both events are very small.

NIRP = MCM with Invertible Mixing Steps? Our NIRP-construction
somehow reflects the MCM design with a permutation, instead of a hash
function, and this may suggest that the MCM approach works for invertible
mixing steps as well. Yet, we remark that the proof cannot be adapted to the
case where the first mixing stage processes inputs of variable input-length: The
problem is that in the simulation of queries to E2 and E−1

2 we need to choose
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E1 E2π
a b c d

P5

P4P3P2

P1m1

m2

y1

y2P6

m1

Fig. 2. Left: The NIRP-construction for underlying fixed-key block ciphers E1, E2, with
(a, b, c, d) corresponding to the notation used in the simulator of Theorem 2. Right: The
ESS-construction for underlying permutations P1, . . . , P6 : {0, 1}n → {0, 1}n.

a pair a,P(a) and b, π(b) respectively, and at a later time possibly learn the
missing dummy values b and c when they are queried. But in order for this to
succeed, we need the length of a and b to be compatible with the one of such
later query, which is of course impossible in the variable-input-length case.

4.2 Extension of Random Permutation Oracles

The use of the NIRP-construction to post-process the output of a hash functionH
requires a block cipher with block size at least as large as its hash size, i.e., typically
at least 160 bits. While block ciphers with large block size exist,12 ciphers such as
AES support only rather small block lengths, such as 128 bits. This motivates the
following natural question: Given a RPO P : {0, 1}n → {0, 1}n, can we devise a
construction CP : {0, 1}m → {0, 1}m for m > n which implements a permutation
and is indifferentiable from a RPO? Note that this calls for simultaneous domain
and range extension of P, while we additionally want to ensure injectivity of the
resulting construction. The problem is similar in spirit to the one considered in the
private-key setting by Halevi and Rogaway [16], even though the peculiarities of
the public setting make constructions far more challenging.13

The ESS-Construction. We present a construction – called ESS – for the case
m = 2n that relies on six permutations P1, . . . , P6 : {0, 1}n → {0, 1}n and is remi-
niscent of the compression function SSP1,P2,P3 : {0, 1}2n → {0, 1}n by Shrimpton
and Stam [25] such that SSP1,P2,P3(m1‖m2) := P3(P1(m1)⊕ P2(m2))⊕P1(m1):
It adds three extra calls (as depicted in Figure 2) to ensure both indifferentia-
bility of the 2n-bit output, as well as invertibility. It is indeed not hard to verify
that ESS implements a permutation: Given output y1‖y2, the first input-half
m1 is retrieved by computing z := P−1

6 (y2), m1 := z ⊕ P−1
5 (y1), and finally we

compute m2 := P−1
2 (P1(m1)⊕P−1

3 (P1(m1)⊕P−1
4 (z))). (Of course, the inverses

P−1
i are not efficiently computable in general, but they are well-defined.)

12 Interestingly, such block ciphers are exactly the ones used within hash functions, e.g.,
to instantiate the Davies-Mayer construction.

13 In particular, each such extender implies the construction of a compression function
{0, 1}m → {0, 1}� for all � < m from length-preserving random oracles which is indif-
ferentiable from a random oracle from m bits to � bits, a problem which has recently
received much interest (cf. e.g. [20,25]). On top of this, injectivity is an extra design
challenge.
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Indifferentiability of ESS. The following theorem shows that whenever
the underlying permutations are independent RPOs, the ESS-construction is
indifferentiable from a RPO up to the birthday barrier.

Theorem 3. Let P1, . . . ,P6 : {0, 1}n → {0, 1}n be independent RPOs. There
exists a simulator S such that for all distinguishers D making at most q queries
to the ESS-construction and to each of the underlying RPOs, we have

Advind-rio
ESSP1,...,P6 ,S(D) ≤

[
q2 · (4n2 + n+ 28) + q · (3n+ 13)

]
· 2−n.

The simulator S runs in time O(q2) and makes q queries.

Arbitrary Extension. A generalization of ESS– called MD-ESS – to construct
a RPO {0, 1}i·n → {0, 1}i·n for i > 2 using 4 + i independent RPOs from n
bits to n bits and making 4i + 1 RPO evaluations in total can be obtained as
follows: Let MD-SSP1,P2,P3 : {0, 1}n·i → {0, 1}n be the (plain) Merkle-Damg̊ard
iteration (with no strengthening) that on input M = m1‖ . . . ‖mi computes
vj := SSP1,P2,P3(vj−1‖mj) for j = 1, . . . , i (with v0 being the IV), and outputs
vi. Then, on input M = m1‖ . . . ‖mi ∈ {0, 1}n·i, MD-ESS first computes y :=
P4(MD-SSP1,P2,P3(M)), and finally outputs

(P4+1(y)⊕m1)‖ · · · ‖(P4+i−1(y)⊕mi−1)‖P4+i(y).

To verify that MD-ESS implements a permutation, we remark that its output
uniquely determines y andm1, . . . ,mi−1, whereasmi is determined by the chain-
ing value vi−1 and P−1

4 (y) as in the ESS-construction. Its security is shown in
the full version. There, we also show that P4+1, . . . , P4+i−1 (but not P4+i) can be
replaced by (invertible) single-key (ideal) ciphers. Also, it can easily be modified
to support inputs with lengths n′ ≥ n which are not multiples of n.

5 Conclusions

In this paper, we have shown the first modular and fault-tolerant hash function
construction which achieves both collision resistance in the standard model and
indifferentiability in the ideal model. In particular, this was achieved by building
appropriate mixing steps IM and NIRP that are compatible with the MCM-
construction and preserve the practical features of the inner compressing part,
i.e., the hash function H . By Lemma 1, the construction MCMIM,H,NIRP (where
possibly NIRP is replaced by its extension through one of the constructions
presented in Section 4.2) inherits the collision resistance of H , as IM and NIRP
are injective functions. In the ideal setting, we have shown that the combination
of IM and H is preimage aware as long as H is sufficiently balanced (Theorem 1),
and that NIRP is indifferentiable from a random permutation oracle (Theorem 2).
Thus, by applying Lemma 2, we conclude that MCMIM,H,NIRP is indifferentiable
from a variable-input-length random oracle.

While the IM-construction is very practical, the implementation of the NIRP-
construction, despite its efficiency, is conditioned on the existence of a one-way
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permutation with input length equal the one of existing block ciphers. Indeed,
sufficiently-secure candidate one-to-one functions exist for similar input param-
eters (e.g., the discrete logarithm problem in properly chosen elliptic curves of
prime order q ≈ 2n can in general not be solved better than with running time
roughly O(2n/2), i.e., the security of our constructions), but the fact that the
block cipher expects n-bit inputs makes their use difficult.14 However, we stress
that such data-type conversion problems are common in practical constructions.
For instance, when using an RSA-based trapdoor one-way permutation, the out-
put of the TE-construction [23] must be (injectively) transformed into a string,
and the result may be far from being random (attempting to extract random
bits would destroy the injectivity property). It is our strong belief that these re-
sults should foster further research in designing good candidates for such central
cryptographic primitives working at the bit level.
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Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp.
655–666. Springer, Heidelberg (2008)

15. Fujisaki, E., Okamoto, T., Pointcheval, D., Stern, J.: RSA-OAEP is secure under
the rsa assumption. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, p. 260.
Springer, Heidelberg (2001)

16. Halevi, S., Rogaway, P.: A tweakable enciphering mode. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 482–499. Springer, Heidelberg (2003)

17. NIST SHA-3 Competition, http://csrc.nist.gov/groups/ST/hash/sha-3/
18. Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.: SWIFFT: A modest

proposal for FFT hashing. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp.
54–72. Springer, Heidelberg (2008)

19. Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on
reductions, and applications to the random oracle methodology. In: Naor, M. (ed.)
TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)

20. Maurer, U., Tessaro, S.: Domain extension of public random functions: Beyond
the birthday barrier. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp.
187–204. Springer, Heidelberg (2007)

21. Merkle, R.: One way hash functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)

22. Pass, R.: On deniability in the common reference string and random oracle model. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 316–337. Springer, Heidelberg
(2003)

23. Ristenpart, T., Shrimpton, T.: How to build a hash function from any collision-
resistant function. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp.
147–163. Springer, Heidelberg (2007)

24. Rogaway, P.: Formalizing human ignorance. In: Nguyên, P.Q. (ed.) VIETCRYPT
2006. LNCS, vol. 4341, pp. 211–228. Springer, Heidelberg (2006)

25. Shrimpton, T., Stam, M.: Building a collision-resistant compression function
from non-compressing primitives. In: Aceto, L., Damg̊ard, I., Goldberg, L.A.,
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Abstract. At Crypto 2005, Coron et al. showed that Merkle-Damg̊ard
hash function (MDHF) with a fixed input length random oracle is not
indifferentiable from a random oracle RO due to the extension attack.
Namely MDHF does not behave like RO. This result implies that there
exists some cryptosystem secure in the RO model but insecure under
MDHF. However, this does not imply that no cryptosystem is secure
under MDHF. This fact motivates us to establish a criteria methodology
for confirming cryptosystems security under MDHF.

In this paper, we confirm cryptosystems security by using the following
approach:

1. Find a variant, R̃O, of RO which leaks the information needed to
realize the extension attack.

2. Prove that MDHF is indifferentiable from R̃O.
3. Prove cryptosystems security in the R̃O model.

From the indifferentiability framework, a cryptosystem secure in the R̃O
model is also secure under MDHF. Thus we concentrate on finding R̃O,
which is weaker than RO.

We propose the Traceable Random Oracle (TRO) which leaks enough
information to permit the extension attack. By using TRO, we can easily
confirm the security of OAEP and variants of OAEP. However, there are
several practical cryptosystems whose security cannot be confirmed by
TRO (e.g. RSA-KEM). This is because TRO leaks information that is
irrelevant to the extension attack. Therefore, we propose another R̃O,
the Extension Attack Simulatable Random Oracle, ERO, that leaks just
the information needed for the extension attack. Fortunately, ERO is
necessary and sufficient to confirm the security of cryptosystems under
MDHF. This means that the security of any cryptosystem under MDHF
is equivalent to that under the ERO model. We prove that RSA-KEM is
secure in the ERO model.

Keywords: Indifferentiability, Merkle-Damg̊ard hash function, Variants
of Random Oracle, Cryptosystems Security.

1 Introduction

Indifferentiability Framework. Maurer et al. [9] introduced the indifferen-
tiable framework as a notion stronger than indistinguishability. This framework

M. Matsui (Ed.): ASIACRYPT 2009, LNCS 5912, pp. 382–398, 2009.
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deals with the security of two systems C(V) and C(U): for cryptosystem C, C(V)
retains at least the same level of provable security of C(U) if primitive V is in-
differentiable from primitive U , denoted by V � U . This definition will allow us
to use construction V instead of U in any cryptosystem C and retain the same
level of provable security due to the indifferentiability framework of Maurer et
al. [9]. We denote “C(V) is at least as secure as C(U)” by C(V) ! C(U). More
strictly, V � U ⇔ C(V) ! C(U) holds. This result implies that if cryptosystem
C is secure in the U model and V � U holds, C is secure in the V model, and
if U 
� V holds, there is some cryptosystem that is secure in the U model but
insecure in the V model.

Indifferentiability and the MD Construction. While many cryptosystems
have been proven to be secure in the random oracle (RO) model [3] (e.g. FDH
[3], OAEP[4], RSA-KEM[11], Prefix-MAC[12] and so on), where RO is modeled
as a monolithic entity (i.e. a black box working in domain {0, 1}∗), in practice
most instantiations that use a hash function are usually constructed by iterating
a fixed input length primitive (e.g. a compression function). There are many
architectures based on iterated hash functions. The most well-known one is the
Merkle-Damg̊ard (MD) construction [6,10]. A hash function with MD construc-
tion iterates underlying compression function f : {0, 1}n × {0, 1}t → {0, 1}n as
follows.

MDf (m1, ...,ml) (|mi| = t, i = 1, ..., l):
let y0 = IV be some n bit fixed value.
for i = 1 to l do yi = f(yi−1,mi)
return yl

There is a significant gap between RO and hash functions, since hash func-
tions are constructed from a small primitive f while RO is a monolithic random
function.

Coron et al. [5] made important observations on the cryptosystems that use
the indifferentiable framework. They introduced the new iterated hash function
property of indifferentiability from RO. In this framework, the underlying primi-
tive, G, is a fixed input length random oracle (denoted here as FILRO or h) or an
ideal block cipher. We say that hash function HG is indifferentiable from RO if
there exists simulator S such that no distinguisher can distinguish HG from RO
(S mimics G). The distinguisher can access RO/HG and S/G; S can access RO.
A hash function that satisfies this property, HG, behaves like RO. Therefore,
replacing the RO of any cryptosystem by HG does not destroy its security.

Coron et al. analyzed the indifferentiability from RO for several specific con-
structions. For example, they have shown that MDh is not indifferentiable from
RO due to the extension attack which uses the following property: The output
value z′ = MDh(M ||m) can be calculated by c = h(z,m) where z = MDh(M),
so z′ = c. On the other hand, no S can return the output value z′ = RO(M ||m)
from query (z,m) where z = RO(M), since no S knows z′ from z andm, and z′ is
chosen at random. Therefore, no S can simulate the extension attack. This result
implies that MDh does not behave like RO and there exists some cryptosystem
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that is secure in the RO model but insecure under MDh due to the indifferen-
tiability framework. Their solution was to propose several constructions such as
Prefix-Free MD, chop MD, NMAC and HMAC. Hash functions with these con-
structions are, under h, indifferentiable from RO. It seems impossible to prove
that the important original MD cryptosystem is secure.

MD Construction Dead? The MD construction is among the most important
foundations of modern cryptosystems [2,5,8]. There are two main reasons:

1. MD construction is employed by many popular hash functions such as SHA-1
and SHA-256, and

2. MD construction is more efficient than other iterated hash functions such as
Prefix-Free MD, and chop MD.

Since MDh 
� RO holds, there is some cryptosystem C∗ that is secure in the RO
model but insecure under MDh. Thus the important question is “can we confirm
that a given cryptosystem is secure in the RO model and secure under MDh?”
There might be several cryptosystems that remain secure when RO is replaced
by MDh. If we can confirm this for many cryptosystems that are widely used,
the original MD construction remains alive in the indifferentiability framework!

Our Contribution. Since MDh 
� RO holds, we modify RO such that MDh is
indifferentiable from the modified RO. Then we analyze cryptosystems security
within the modified RO model. Concretely, we adopt the following approach.

1. Find a variant R̃O of RO that leaks enough information such that S can
simulate the extension attack.

2. Prove that MDh
� R̃O holds.

3. Prove the cryptosystem’s security in the R̃O model.

Secure cryptosystems in the R̃O model are also secure under MDh due to the
indifferentiability framework. Therefore, we concentrate on proposing R̃O that
can support many applications.

First we propose Traceable Random Oracle TRO as R̃O.

Traceable Random Oracle. Our proposal of TRO is motivated by the following
points:

– Applications of TRO hide the outputs of hash functions from adversaries.
One example is OAEP encryption: Adversaries cannot know the outputs of
the hash functions that are used for calculating a cipher text, since these
values are hidden by a random value or a trapdoor one-way permutation.

– TRO leaks useful information such that S can run the extension attack.

By considering the above points, it is convenient for S to obtain useful informa-
tion from value z which is the output of RO(M). Thus we define TRO that leaks
input M on query z such that RO(M) = z. Since S can obtain valueM such that
z = RO(M), S can know value z′ = RO(M ||m) by using TRO. Therefore, S can
run the extension attack. We will prove that MDh

� TRO holds (Corollary 2).
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Since the hash function outputs for OAEP and variants of OAEP (e.g. OAEP+)
are hidden, adversaries cannot use TRO effectively. So we can easily confirm that
these cryptosystems are secure in the TRO model.

Limitation of TRO. Though TRO can easily confirm the security of many cryp-
tosystems under MDh, there are several cryptosystems whose security we can-
not confirm by TRO. For example, RSA-KEM is insecure in the TRO model
(Theorem 7). It is possible that there are cryptosystems that are secure under
MDh because TRO leaks information beyond that needed to simulate the exten-
sion attack. The essential information to simulate the extension attack is just
z′ = RO(M ||m), but TRO leaks M , which is not essential.

Our response is to propose Extension Attack Simulatable Random Oracle ERO

as R̃O.

Extension Attack Simulatable Random Oracle. We define ERO that leaks just z′

(= RO(M ||m)). By using ERO, S can run the extension attack, since S can know
z′. We will prove that MDh

� ERO holds (Theorem 5). We will also prove that
RSA-KEM is secure in the ERO model (Theorem 8). Therefore, we can confirm
RSA-KEM security under MDh by using ERO. Fortunately, MDh is equivalent to
ERO, since ERO � MDh holds (Theorem 6). Namely, any cryptosystem that is
secure under MDh is equally secure in the ERO model and vice versa. Therefore,
ERO is necessary and sufficient to confirm the security of cryptosystems under
MDh. When we analyze a cryptosystem under MDh, all that is needed is to prove
cryptosystems security in the ERO model.

TRO v.s. ERO. Since TRO leaks more information than ERO, we will prove
ERO � TRO. Since ERO has wider applicability, we recommend that ERO be
used for cryptosystems whose security cannot be proven in the TRO model.

ERO v.s. RO. Since ERO leaks several bits of information in permitting the
simulation of the extension attack, RO � ERO and ERO 
� RO explicitly hold.
As evidence of the separation between RO and ERO, we pick up prefix MAC [12]
which is secure in the RO model, and prove that prefix MAC is insecure in the
ERO model (Theorem 4). Since ERO is equivalent to MDh, prefix MAC is also
insecure in the MDh model.

Leakey Random Oracle. Leaky random oracle LRO was proposed by Yoneyama
et al. [13] but with a different motivation. LRO has a function that leaks all
query-response pairs of RO. In this paper, we will prove that TRO � LRO and
LRO 
� TRO hold. Therefore, all cryptosystems secure in the LRO model are also
secure in the TRO model and there is some cryptosystem that is insecure in the
LRO model but secure in the TRO model. Since FDH is secure in LRO model
[13], FDH is secure under MDh. Since OAEP is insecure in the LRO model [13]
and secure in the TRO model, OAEP is evidence of the separation between LRO
and TRO.

Remarks. First we compare LRO, TRO and ERO from the viewpoint of security
proofs of cryptosystems. LRO, TRO, and ERO consist of RO and the additional
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oracle (denote LO, TO and EO respectively). Since LO leaks more information to
adversaries than TO, adversaries that are given LRO have more flexible strategies
than adversaries given TRO. That is, security proofs in the LRO model are more
complex than those in the TRO model. The same is true for TRO and ERO.

Finally, for the security proof of cryptosystem C(MDh) we compare the direct
proof in MDh with the proof via ERO. Since MDh has the MD structure, we
must consider this structure in the direct proof. On the other hand, since ERO
does not have this structure, we does not need to consider it. For example we
must consider the events of inner collisions for MDh in the direct proof. However
this is not necessary for the proof in the ERO model. Moreover, since we can
reuse existing proofs for the simulation of RO in the security proof in the ERO
model, we only consider the simulation of EO in the security proof. Therefore,
the security proof in the ERO model is easier than the direct proof in MDh.
Since ERO = MDh holds, we can confirm a cryptosystems security under MDh

by proving its security in ERO, an easier task than a direct proof.

Related Works. Recently, Dodis et al. independently proposed a methodology
to salvage the original and modified MD constructions in many applications [7].
They found two properties: one is preimage awareness (PrA), and the other is
public-use random oracle (pub-RO). pub-RO is the same as LRO. The approach
of pub-RO is almost same as our approach of LRO. Dodis et al. pointed out that
the security of cryptosystems that satisfy the following property can be easily
proven in the pub-RO model: all inputs of hash functions are public to the ad-
versaries. Therefore, PSS and the Fiat-Shamir signature scheme, and other, are
easily proven to be secure in the pub-RO model by using existing proofs in the
RO model. Since LRO(pub-RO) 
� TRO and TRO � LRO(pub-RO) hold, TRO
and ERO have more applications than LRO(pub-RO) (e.g. OAEP is secure in
the TRO model but insecure in the pub-RO model). The approach of PrA is
interesting in that this approach can treat the case where the compression func-
tion f requirement is relaxed from FILRO to property PrA. It seems, however,
that this approach is not effective in saving the original MD construction, since
this approach modifies MD construction by processing the output of the MD
construction by FILRO.

Cryptosystems Security under the Merkle-Damg̊ard Hash Function.
PSS, Fiat-Shamir, and so on are secure under MDh thanks to pub-RO [7], OAEP
and variants of OAEP are secure under MDh thanks to TRO, and RSA-KEM is
secure under MDh thanks to ERO. Since many cryptosystems are secure under
MDh, the original Merkle-Damg̊ard construction is still alive!

2 Preliminaries

2.1 Merkle-Damg̊ard Construction

We first give a short description of the Merkle-Damg̊ard (MD) construction.
Function MDf : {0, 1}∗ → {0, 1}n is built by iterating compression function
f : {0, 1}n × {0, 1}t → {0, 1}n as follows.
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– MDf (M):
1. calculate M ′ = pad(M) where pad is a padding function such that pad :
{0, 1}∗ → ({0, 1}t)∗.

2. calculate ci = f(ci−1,mi) for i = 1, ..., l where for i = 1, ..., l, |mi| = t,
M ′ = m1||...||ml and c0 is an initial value (s.t. |c0| = n).

3. return cn

In this paper we ignore the above padding function, this does not degrade gener-
ality, so hereafter we discuss MDf : ({0, 1}t)∗ → {0, 1}n. We use random oracle
compression function h as f where h : {0, 1}n × {0, 1}t → {0, 1}n. Thus we
discuss below hash function MDh with MD construction using h.

2.2 Random Oracle

RO : {0, 1}∗ → {0, 1}n can be realized as follows. RO has initially the empty
hash list LRO. On query M , if ∃(M, z) ∈ LRO, it returns z. Otherwise, it chooses
z ∈ {0, 1}n at random, adds (M, z) to the LRO, hereafter denoted by LRO ←
(M, z), and returns z.

2.3 Leaky Random Oracle

LRO was proposed by Yoneyama et al. [13]. LRO can be realized as follows. LRO
consists of RO and LO. On a leak query to LO, LO outputs the entire contents
of LRO. We can define S that can simulate the extension attack by using LRO,
since S can know M from z by using LO and can know z′ by posing M ||m to
RO.

2.4 Indifferentiability

The indifferentiability framework generalizes the fundamental concept of the
indistinguishability of two cryptosystems C(U) and C(V) where C(U) is the cryp-
tosystem C that invokes the underlying primitive U and C(V) is the cryptosystem
C that invokes the underlying primitive V . U and V have two interfaces: pub-
lic and private interfaces. Adversaries can only access the public interfaces and
honest parties (e.g. the cryptosystem C) can access only the private interface.

We denote the private interface of the system W by Wpriv and the public
interface of the system W by Wpub. The definition of indifferentiability is as
follows.

Definition 1. V is indifferentiable from U , denote V � U , if for any distin-
guisher D with binary output (0 or 1) there is a polynomial time simulator S

such that |Pr[DVpriv,Vpub ⇒ 1]−Pr[DUpriv,S(Upub) ⇒ 1]| < ε. Simulator S has oracle
access to Upub and runs in time at most tS. Distinguisher D runs in time at most
tD and makes at most q queries. ε is negligible in security parameter k.

This definition will allow us to use construction V instead of U in any cryptosys-
tem C and retain the same level of provable security due to the indifferentiability
theory of Maurer et al. [9]. We denote “C(V) is at least as secure as C(U)” by
C(V) ! C(U). Namely, C(V) ! C(U) denotes the case that if C(U) is secure, then
C(V) is secure. More strictly, V � U ⇔ C(V) ! C(U) holds.
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2.5 Extension Attack

Coron et al. showed that MDh is not indifferentiable from RO due to the extension
attack. The extension attack targets MDh where we can calculate a new hash
value from some hash value. Namely z′ = MDh(M ||m) can be calculated from
only z andm by z′ = h(z,m) where z = MDh(M). Note that z′ can be calculated
without using M . The differentiable attack with extension attack is as follows.
Let Oa be MDh or RO and let Ob be h or S. First, a distinguisher poses M to Oa

and gets z from Oa. Second, he poses (z,m) to Ob and gets c from Ob. Finally,
he poses M ||m to Oa and gets z′ from Oa.

If Oa = MDh and Ob = h, then z′ = c, while, if Oa = RO and Ob =
S, then z′ 
= c. This is because no simulator can obtain the output value of
RO(M ||m) from just (z,m) and the output value of RO(M ||m) is independently
and randomly defined from c. Therefore, MDh 
� RO holds.

3 Variants of Random Oracles

In this section, we will introduce several variants of random oracles in order for S
to simulate the extension attack described above, and then show the relationships
among these oracles within the indifferentiability framework.

3.1 Definition of Variants of Random Oracles

Traceable Random Oracle: TRO consists of RO and TO. On trace query z,

1. If there exist pairs such that (Mi, z) ∈ LRO (i = 1, ..., n), it returns (M1, ...,
Mn).

2. Otherwise, it returns ⊥.

We can define S that can simulate the extension attack by using TRO, since S
can know M from z by using TO and can know z′ by posing M ||m to RO.

Extension Attack Simulatable Random Oracle: TRO leaks too much in-
formation to simulate the extension attack. So we define ERO such that S is given
just the important information. The important information is value z′ such that
z′ = RO(M ||m). Therefore, we define ERO as follows. ERO consists of RO and
EO. EO has initially the empty list LEO and can look into LRO. On simulation
query (m, z) to EO where |m| = t,

1. If (m, z, z′) ∈ LEO, it returns z′.
2. Else if z = IV , EO poses query m to RO, receives z′, LEO ← (m, z, z′), and

returns z′.
3. Else if there exists only one pair (M, z) ∈ LRO, EO poses query M ||m to RO,

receives z′, LEO ← (m, z, z′), and returns z′.
4. Else EO chooses z′ ∈ {0, 1}n at random, LEO ← (m, z, z′) and returns z′.

We can construct S that can simulate the extension attack by using ERO, since
S can obtain z′ from (m, z) where z′ = RO(M ||m) by using EO.
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3.2 Relationships among LRO, TRO, ERO, and RO Models within
the Indifferentiability Framework

LRO leaks more information of LRO than TRO, and TRO leaks more information
of LRO than ERO. Therefore, it seems reasonable to suppose that anything secure
in the LRO model is also secure in the TRO model, anything secure in the TRO
model is also secure in the ERO model, and any cryptosystem secure in the ERO
model is also secure in the RO model. We prove the validity of these suppositions
by using the indifferentiability framework.

First we clarify the relationship between TRO and LRO.

Theorem 1. TRO � LRO and LRO 
� TRO.

Proof. We construct S which simulates TO by using LRO as follows. Given query
z, S poses a leak query to LO and receives the entire information of LRO. If
there exists pairs such that (Mi, z) ∈ LRO (i = 1, ..., n), it returns (M1, ...,Mn).
Otherwise it returns ⊥.

It is easy to see that |Pr[DRO,TO ⇒ 1] − Pr[DRO,S(LRO) ⇒ 1]| = 0, since the
output from each step of S is equal to that from each step of TO.

LRO 
� TRO is trivial, since no S cannot acquire all values in LRO by using
TRO. ��

Since TRO � LRO, any cryptosystem secure in the LRO model is also secure in
the TRO model by the indifferentiability framework. Since LRO 
� TRO, there
exists some cryptosystem that is secure in the TRO model but insecure in the
LRO model. For example, Yoneyama et al. proved that OAEP is insecure in the
LRO model [13]. Since OAEP is secure in the TRO model, OAEP is evidence of
the separation between LRO and TRO.

Next we will clarify the relationship between ERO and TRO.

Theorem 2. ERO � TRO and TRO 
� ERO.

Proof. We construct S which simulates EO by using TRO as follows. S initially
has the empty list LS . On query (m, z), if ∃(m, z, z′) ∈ LS , it returns z′. Other-
wise S poses query z to TO, and receives string X . If X consists of one value, it
poses query X ||m to RO, receives z′, LS ← (m, z, z′) and returns z′. Otherwise,
it chooses z′ ∈ {0, 1}n at random, LS ← (m, z, z′) and returns z′.

It is easy to see that |Pr[DRO,EO ⇒ 1] − Pr[DRO,S(TRO) ⇒ 1]| = 0, since the
output from each step of S is equal to that from each step of EO.

TRO 
� ERO is trivial, since no S cannot decide whether there exists (M, z)
in LRO or not by using ERO. ��

Since ERO � TRO, any cryptosystem secure in the TRO model is also secure in
the ERO model in the indifferentiability framework. Since TRO 
� ERO, there
exists some cryptosystem that is secure in the ERO model but insecure in the
TRO model. We will prove that RSA-KEM is secure in the ERO model but
insecure in the TRO model in Section 5. Therefore, RSA-KEM is evidence of the
separation between TRO and ERO.

Finally we will clarify the relationship between RO and ERO.
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Theorem 3. RO � ERO and ERO 
� RO.

This proof of theorem 3 is trivial because ERO consists of RO and the addi-
tional oracle EO which leaks some information of LRO. Since RO � ERO, any
cryptosystem secure in the ERO model is also secure in the RO model by the
indifferentiability framework. Since ERO 
� RO, there exists some cryptosystem
which is secure in the RO model but insecure in the ERO model. We can show
simple evidence of the separation between ERO and RO as follows: We consider
the following Prefix-MAC protocol which is unforgeable in the RO model. Note
that the concept of unforgeability with regard to MAC schemes is defined in [1].

Prefix MAC [12]: Alice and Bob share one secret key,K, as an authentication
key. Before sending messageM to Bob, Alice sends K||M to RO H to obtain
a MAC value denoted as y. Finally, Alice sends (M, y) to Bob. When Bob
obtains (M, y), he sends K||M to H to obtain another MAC value y′. If y′ is
equal to y, then Bob is convinced that message M is from Alice. Otherwise,
Bob will reject message M .

We will show that Prefix MAC fails to satisfy unforgeability for MAC schemes
in the ERO model.

Theorem 4 (Insecurity of Prefix MAC in the ERO model). Prefix MAC
does not satisfy unforgeability for MAC schemes where H is modeled as ERO.

Proof. A forgery procedure is as follows: forger F obtains a valid pair of (M,h)
from MAC, where h = H(K||M). F sends (h,m) to EO, and obtains h′ =
H(K||M ||m). Since M ||m is not queried to MAC, F succeeds in Existential
forgery of known message attack (EF-KMA) attack using ERO H . ��

Therefore, Prefix-MAC is secure in the RO model but insecure in the ERO model.
Consequently, Prefix-MAC is evidence of the separation between ERO and RO.

From the above discussions, the following corollary is obtained.

Corollary 1. RO � ERO � TRO � LRO, and LRO 
� TRO 
� ERO 
� RO.

4 Relationship between MDh and ERO in the
Indifferentiability Framework

In this section we prove that MDh
� ERO and ERO � MDh hold as follows. In

theorem 5, we use statements σH and qh instead of the total number of queries
q. σH is the total number of message blocks for RO/MDh and qh is the total
number of queries to S/h

Theorem 5. MDh
� ERO, for any tD, with tS = O(q2h) and ε ≤

4(σH+qh)2+2(σH+qh)
2n .

This proof is given in subsection 4.1.
In theorem 6, we use statements σH and qEO instead of the total number of

queries q. σH is the total number of message blocks for RO/MDh and qEO is the
total number of queries to EO/S
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Theorem 6. ERO � MDh, for any tD, with tS = O(qEO) and ε ≤
2(σH+qEO)2+(σH+qEO)

2n .

This proof is given in subsection 4.2.
From Theorem 5 and Theorem 6, ERO is equivalent to MDh in the indifferen-

tiability framework. From Corollary 1, Theorem 5 and Theorem 6, the following
corollary is obtained.

Corollary 2. RO � MDh = ERO � TRO � LRO, and LRO 
� TRO 
� ERO =
MDh 
� RO

4.1 Proof of Theorem 5

First we define simulator S as follows. S has a list T which is initially empty. We
define chain triples as follows.

Definition 2 (Chain Triples). Triples (x1,m1, y1), ..., (xi,mi, yi) are chain
triples if x1 = IV and yj = xj+1 (j = 1, ..., j − 1) holds.

Simulator S: On a query (x,m),

1. If ∃(x,m, y) ∈ T , it outputs y.
2. Else if chain triples ∃(x1,m1, y1), ..., (xi,mi, yi) ∈ T such that x = yi, y ←

RO(m1||...||mi||m).
3. Else, y ← EO(m,x).
4. T ← (x,m, y).
5. S returns y.

Since S needs to search pairs in T , this requires at most O(q2h) time.
We need to prove that S cannot tell apart two scenarios, ERO and MDh. In one

scenarioD has oracle access to RO and S while in the other D has access to MDh

and h. The proof involves a hybrid argument starting in the ERO scenario, and
ending in the MDh scenario through a sequence of mutually indistinguishable
hybrid games.

We give six events that allow D to distinguish MDh from ERO. These events
arise from the fact that MDh has the MD construction but ERO does not. We
explain these events as follows. Details of these events are given in Game 3.

First we discuss distinguishing events that occur due to differences among RO
and MDh. RO and MDh return a random value unless collision occurs. There-
fore, distinguishing events occur when collision occurs. When a collision of MDh

occurs, one of following events occurs due to the MD construction: an output of
h is equal to IV (event E1) or a collision of h occurs (event E2). On the other
hand, since RO is a monolithic function, these events don’t occur. Therefore,
these events are distinguishing events between MDh and ERO.

Second, we discuss distinguishing events that occur due to differences among
S and h. Since for h there is the relation that h(x,m) = RO(M ||m) where
MDh(M) = x, S must simulate the relation such that S(x,m) = RO(M ||m)
where RO(M) = x. On query (x,m) to S, if only one pair exists (M,x) ∈ LRO



392 Y. Naito et al.

such that x 
= IV holds, S can know MDh(M ||m) by using EO. Therefore, S
can simulate the relation. If such a pair does not exist ((M,x) 
∈ LRO), since S
cannot know M , S cannot know the value of RO(M ||m). Therefore, S cannot
simulate the relation (event E3 and event E5). If two or more such pairs exist
((M,x), (M ′, x), · · · ∈ LRO), S must simulate the relation such that RO(M ||m) =
RO(M ′||m) =, · · ·. However, since S cannot control the outputs of RO, it cannot
simulate the relation (event E4).

On the other hand, if ∃(M,x) ∈ LRO such that x = IV , S must simulate the
relation such that RO(m) = RO(M ||m). However, since S cannot control the
outputs of RO, it cannot simulate the relation (event E6).

In following game transforms, since the MD construction is considered in
Game 3 for the first time, we discuss these events in the transform from Game 2
to Game 3. In this discussion, we show that if distinguishing events don’t occur,
Game 3 is identical to Game 2, and the probability that one of the events will
occur is negligible.

Game 1: This is the random oracle model, where D has oracle access to RO
and S. Let G1 denote the event that D outputs 1 after interacting with RO and
S. Thus Pr[G1] = Pr[DRO,S(ERO) = 1].

Game 2: In this game, we give the distinguisher oracle access to a dummy relay
algorithm R0 instead of direct oracle access to RO. R0 is given oracle access to
RO. On query M to R0, it queries M to RO and returns RO(M). Let G2 denote
the event that D outputs 1 in Game 2. Since the view of D remains unchanged
in this game, Pr[G2] = Pr[G1].

Game 3: In this game, we modify the relay algorithm R0 into R1 as follows.
For hash oracle query M , R1 applies the MD construction to M by querying S.
R1 is essentially the same as MDh except that R1 is based on S instead of the
fixed input length random oracle h.

We show that Game 3 is identical with Game 2 unless the following bad events
occur. In response to query (x,m), S chooses response y ∈ {0, 1}n:

– E1: It is the case that y = IV .
– E2: There is a triple (x′,m′, y′) ∈ T , with (x′,m′) 
= (x,m), such that y′ = y.
– E3: There is a triple (x′,m′, y′) ∈ T , with (x′,m′) 
= (x,m), such that x′ = y

and (x′,m′, y′) is defined exept for step 3 of EO.

and in a response to a query M to RO, RO returns z:

– E4: There is a pair (M ′, z′) ∈ LRO, with M 
= M ′ such that z = z′.
– E5: There is a triple (x′,m′, y′) ∈ T such that z = x′.
– E6: z = IV .

We demonstrate that Game 3 is identical with Game 2 unless bad events occur
and the probability that bad events occur is negligible. Before we demonstrate
these facts, we give an useful property as follows.
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Lemma 1. For any chain triples (x1,m1, y1), ..., (xi,mi, yi) in T , yi =
RO(m1||...||mi) holds unless bad events occur.

Proof. To contrary, assume that yi 
= RO(m1||...||mi). Since yi is defined in step
2 of S (case A), step 2 of EO (case B), step 3 of EO (case C), or step 4 of EO
(case D), we show that when yi is defined in each step, bad events occur.

First, we discuss the case A. In this case, we divided two case: When (xi,mi, yi)
is stored, another chain triples (x′1,m′

1, y
′
1), ..., (x′t,m′

t, y
′
t) are already stored in

T such that yt = yi−1 (case A-1) and chain triples are not stored in T (case
A-2). The case A-1 is equal to collision of MDS. Therefore a collision of S occurs
or an output of S is equal to IV in this case. Therefore event E1 or E2 occurs.
In the case A-2, since yi = RO(m1||...||mi) holds from the definition of S, this is
contrary to the assumption.

We discuss the case B. In this case, we divided two cases: i = 1 (case B-1) and
i 
= 1 (case B-2). In the case B-1, y1 = RO(m1) holds due to the definition of S.
This is contrary to the assumption. In the case B-2, since xi = IV , yi−1 = IV
holds. Therefore event E1 or E6 occurs.

We discuss the case C. In this case, (M,xi) is already in LRO, when yi

is defined. We consider two cases: M = m1||...||mi−1 (case C-1) and M 
=
m1||...||mi−1 (case C-2). In the case C-1, yi = RO(m1||...||mi) holds and this
is contrary to the assumption. In the case C-2, we consider two case: yi−1 is
chosen at random by EO (case C-2-1) and yi−1 is defined by RO (case C-2-2).
For the case C-2-1, from the definition of S, when (xi−1,m−1i, yi−1) is stored in
T , some triple (xj ,mj, yj) is not in T . Assume that j is the maximum number.
Therefore yj+1, ..., yi−1 are defined at random by EO and independent from RO.
(xj+1,mj+1, yj+1) is stored in T before (xj ,mj, yj) is stored in T . If yj is defined
at random by EO and independent from RO, event E3 occurs. If yj is defined by
RO (yi = RO(m1||...||mj)), event E5 occurs. The case C-2-2 is equal to event E4.

Finally we discuss the case D. From the same discussion of the case C-2-1,
bad event E3 or E5 occurs. ��

For the view of D for R0 and R1, from Lemma 1, for any M , R1(M) = RO(M)
holds unless bad events occur. Therefore the view of D for R0 is equal to that
for R1. For consistency in Game 2, from the definition of S and Lemma 1,
for any chain triples (x1,m1, y1), ..., (xi,mi, yi) ∈ T , yi = RO(m1||...||mi) =
R0(m1||...||mi) holds unless bad events occur. Therefore, the answers given by
S are consistent with those given by R0. For consistency in Game 3, from
the definition of S, the definition of R1 and Lemma 1, for any chain triples
(x1,m1, y1), ..., (xi,mi, yi) ∈ T , yi = R1(m1||...||mi) = RO(m1||...||mi) holds
unless bad events occur. Therefore, the answers given by S are consistent with
those given by R1. Therefore, Game 3 is identical with Game 2 unless bad events
occur.

Next we examine the probability that bad events occur as follows.

Lemma 2. Pr[E1∨E2∨E3∨E4∨E5∨E6] ≤ 2q2
1+q2

2+q1q2+q1+q2
2n where q1 is the

maximum number of invoking the simulator and q2 is the maximum number of
invoking RO.
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Proof. We will examine each of the three events and bound their probability.
Since outputs of S are chosen at random, Pr[E1] ≤ q1

2n . Since E2 is the event

where a collision occurs, Pr[E2] ≤ 1− 2n−1
2n · · · 2n−q1+1

2n ≤ q2
1

2n . Since y is chosen

at random, the probability that event E3 ≤ q2
1

2n . Since E4 is the event that a

RO collision occurs, Pr[E4] ≤ q2
2

2n . Since E5 is the event that a random value is
equal to some fixed value, Pr[E5] ≤ q1q2

2n . Since E6 is the event that a random
value is equal to IV , Pr[E6] ≤ q2

2n . Therefore Pr[E1 ∨ E2∨ E3 ∨ E4 ∨ E5∨ E6] ≤
Pr[E1] + Pr[E2] + Pr[E3] + Pr[E4] + Pr[E5] + Pr[E6] ≤ 2q2

1+q2
2+q1q2+q1+q2

2n . ��
Let G3 denote the event that the distinguisher D outputs 1 in Game 3, B2 be the
event wherein E1∨E2∨E3∨E4∨E5∨E6 occurs in Game 2 and B3 be the event
wherein E1∨E2∨E3∨E4∨E5∨E6 occurs in Game 3. From Lemma 2, the prob-
ability that bad events occur in Game 2 is less than σ2

H+3q2
h+3qjσH+2qh+σH

2n and

the probability that bad events occur in Game 3 is less than 4(σH+qh)2+2(σH+qh)
2n .

Therefore |Pr[G3]−Pr[G2]| = |Pr[G3∧B3]+Pr[G3∧¬B3]−Pr[G2∧B2]−Pr[G2∧
¬B2]| ≤ |Pr[G3|B3] × Pr[B3] − Pr[G2|B2] × Pr[B2]| ≤ max{Pr[B2], P r[B3]} =
4(σH+qh)2+2(σH+qh)

2n .

Game 4: In this Game, we modify simulator S to S1. RO is removed from
simulator S1 as follows.

Simulator S1: On query (x,m),

1. If ∃(x,m, y) ∈ T , it responds with y.
2. Else S1 chooses y ← {0, 1}n at random.
3. T ← (x,m, y).
4. S1 responds with y.

The output of S is chosen at random or chosen by RO. Therefore, for any fresh
query to S, the response is chosen at random. Since RO is invoked only by S, no
D can access RO. Namely, no D distinguish S1 from S, though RO is removed in
S1, so Game 4 is identical to Game 3. Let G4 denote the event that distinguisher
D outputs 1 in Game 4. Pr[G4] = Pr[G3] holds.

Game 5. This is the final game of our argument. Here we finally replace
S1 with the fixed input length random oracle h. Let G5 denote the event that
distinguisher D outputs 1 in Game 5. Since for a new query S1 responds with a
random value and for a repeated query S1 responds a repeated value, Game 5 is
identical to Game 4. Therefore, we can deduce that Pr[G5] = Pr[G4].

Now we can complete the proof of Theorem by combining Games 1 to 5, and
observing that Game 1 is the same as ERO scenario while Game 5 is same as
MDh scenario. Hence we can deduce that ε ≤ 4(σH+qh)2+2(σH+qh)

2n . ��

4.2 Proof of Theorem 6

We define simulator S that simulates EO. S has initially empty list LS . On query
(m, z), S is defined as follows: z′ ← h(z,m), and it returns z′. The simulator’s
running time requires at most O(qEO) time.
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We need to prove that S cannot tell apart two scenarios, MDh and ERO
scenarios, one where D has oracle access to MDh and S and the other where D
has access to RO and EO. The proof involves a hybrid argument starting in the
MDh scenario, and ending in the ERO scenario through a sequence of mutually
indistinguishable hybrid games.

Game 1: This is the MDh scenario, where D has oracle access to MDh and
S(h). Let G1 denote the event that D outputs 1 after interacting with MDh and
S(h). Thus Pr[G1] = Pr[DMDh,S(h) = 1].

Game 2: In this game, we change the underlying primitive of MD from h
to S. Thus D interacts with MDS and S(h). For any query to S, S poses it
to h and returns the value received from h. Let G2 denote the event that D
outputs 1 in Game 2. Since the view of D remains unchanged in this game, so
Pr[G2] = Pr[G1].

Game 3: In this game, we remove S and h and insert EO and RO. In this
game, D interacts with MDEO and EO and does not access to RO. Since for a
fresh query EO returns a fresh random value and for a repeated query EO returns
the corresponding value, Game 3 is identical with Game 2. Let G3 denote the
event that D outputs 1 in Game 3. Since the view of D remains unchanged in
this game, so Pr[G3] = Pr[G2].

Game 4. This is the final game of our argument. In this game, we remove
MDEO and D interacts with RO and EO. We show that Game 4 is identical with
Game 3 unless following bad events occur and probability that bad events occur
is negligible.

Bad events are as follows. On query (m,x), EO returns y:

– Bad1: y = IV .

On query M , RO returns z:

– Bad2: There is a pair (M ′, z′) in LEO, with M 
= M ′, such that z = z′.
– Bad3: There is a triple (m,x, y) in LEO such that z = x.

We demonstrate that Game 4 is identical with Game 3 unless bad events occur
and the probability that bad events occur is negligible. Before we demonstrate
these facts, we give an useful property as follows.

Lemma 3. For any chain triples (x1,m1, y1), ..., (xi,mi, yi) in LEO, yi =
RO(m1||...||mi) holds unless bad events occur.

Due to lack of space, we omit this proof. We will show this in the full version.
For the view of D for MDEO and RO, from Lemma 3, the view of D for

MDEO is equal to that for RO. For consistency in Game 3, from the definition of
MD and Lemma 3, for any chain triples (m1, x1, y1), ..., (mi, xi, yi) ∈ LEO, yi =
RO(m1||...||mi) = MDEO(m1||...||mi) holds unless bad events occur. Therefore,
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the answers given by S are consistent with those given by MDEO. For consistency
in Game 4, from Lemma 3, for any chain triples (x1,m1, y1), ..., (xi,mi, yi) ∈
LEO, yi = RO(m1||...||mi) holds unless bad events occur. Therefore, the answers
given by S are consistent with those given by RO. Therefore, Game 4 is identical
with Game 3 unless bad events occur.

Next we examine the probability that bad events occur as follows.

Lemma 4. Pr[Bad1 ∨ Bad2 ∨ Bad3] ≤ q1+q2
2+q1q2
2n where q1 is the maximum

number of invoking EO and q2 is the maximum number of invoking RO.

Due to lack of space we omit this proof.
Let G4 denote the event that the distinguisher D outputs 1 in Game 4, B3

be the event that Bad1 ∨ Bad2 ∨ Bad3 occurs in Game 3 and B4 be the event
that Bad1 ∨ Bad2 ∨ Bad3 occurs in Game 4. Therefore |Pr[G4] − Pr[G3]| ≤
max{Pr[B3], P r[B4]} = 2(σH+qEO)2+(σH+qEO)

2n . ��

4.3 MGF1 Transform

In the above discussions, we ignored range extension algorithms such as MGF1
which is an instantiated hash function of OAEP. When we consider these algo-
rithms, we need to modify TRO and ERO. Due to the lack of space, we only
modify TRO for MGF1 as follows and will discuss ERO in the full paper.

Let H : {0, 1}∗ → {0, 1}n be some hash function and MGF1 : {0, 1}∗ →
{0, 1}jn be H(M ||[1])||H(M ||[2])||...||H(M ||[j]) where M is the input of the
hash function and [s] is the encoding value of s. We confirm the security of
cryptosystems that use MGF1 transform with MDh by the following approach.
Let MGF1 : {0, 1}∗ → {0, 1}jn.

– Propose the modification of TRO (denote TRO′ that consists of random
oracle RO′ : {0, 1}∗ → {0, 1}jn and TO of RO′) such that MGF1(TRO) �

TRO′.
– Prove cryptosystems security in TRO′ model.

If we can find above TRO′, since MDh
� TRO, cryptosystems that are secure in

TRO′ model are secure under MDh.
TRO′ is as follows. TRO′ consists of random oracle RO′ : {0, 1}∗ → {0, 1}jn

and TO′, a variant of TO. Let z[s] be the s-th block of z. On trace query (j, w)
to TO′,

– If there exist pairs such that (M, z) ∈ LRO such that z[j] = w, TO′ returns
all such pairs.

– Otherwise, TO′ returns ⊥.

When H is a random oracle, we can see H(∗||[1]), ..., H(∗||[j]) as independent
random oracles RO1, ...,ROj . In order to prove MGF1(TRO) � TRO′, we need
to find a simulator that simulates each TO of RO1, ...,ROj . The simulator of TO
of ROs can be easily shown by using queries (s, ∗) to TO′. Therefore, we can
prove MGF1(TRO) � TRO′.
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Cryptosystems that are secure in the TRO model are also secure in the TRO′

model by discussions similar to those for the cases of TRO. Note that security
bound of these cryptosystems is dependent on n, not jn.

The same discussion can be applied to KDF3 which is an instantiated hash
function of RSA-KEM[11].

5 Security Analysis of RSA-KEM in TRO and ERO
Models

The RSA-based key encapsulation mechanism (RSA-KEM) scheme [11] is a se-
cure KEM scheme in the RO model. In this section, we consider the security of
RSA-KEM in the TRO and ERO models.

The notation of the scheme follows that in [11]. The security of RSA-KEM in
the RO model is proved as follows;

Lemma 5 (Security of RSA-KEM in the RO model [11]). If the RSA
problem is hard, then RSA-KEM satisfies IND-CCA for KEM where KDF is
modeled as RO.

5.1 Insecurity of RSA-KEM in TRO Model

Though RSA-KEM is secure in the RO model, it is insecure in the TRO model.
More specifically, we can show that RSA-KEM does not even satisfy IND-CPA
for KEM in the TRO model. Note that IND-CPA means IND-CCA without DO.

Theorem 7 (Insecurity of RSA-KEM in the TRO model). Even if the
RSA problem is hard, RSA-KEM does not satisfy IND-CPA for KEM where
KDF is modeled as TRO.

Proof. We construct an adversary, A, which successfully plays the IND-CPA by
using TRO KDF . The construction of A is as follows;

Input : (n, e) as the public key
Output : b′ as the guessed bit
Step 1 : Return state and receive (K∗

b , C
∗
0 ) as the challenge. Pose the trace

query K∗
b to KDF , and obtain {r}.

Step 2 : For all r in {r}, check whether re ?≡ C∗
0 (mod n). If there is r∗ that

satisfies the relation, output b′ = 0. Otherwise, output b′ = 1.

We estimate the success probability of A. When challenge ciphertext C∗
0 is gen-

erated, r∗ such that K∗
0 = KDF (r∗) is certainly posed to KDF because C∗

0 is
generated following the protocol description. Thus, LKDF contains (r∗, C∗

0 ,K
∗
0 ).

If (r∗, C∗
0 ,K

∗
b ) is not in LKDF , then b = 1. Therefore, A can successfully play

the IND-CPA game. ��

5.2 Security of RSA-KEM in ERO Model

We can also prove the security of RSA-KEM in the ERO model as well as in the
RO model.
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Theorem 8 (Security of RSA-KEM in the ERO model). If the RSA prob-
lem is (t′, ε′)-hard, then RSA-KEM satisfies (t, ε)-IND-CCA for KEM as follows:
t′ = t+ (qRKDF + qEKDF ) · expo, ε′ ≥ ε− qD

n , where KDF is modeled as ERO,
qRKDF is the number of hash queries posed to the RO of KDF , qEKDF is the
number of extension attack queries posed to the EO of KDF , qD is the number
of queries posed to the decryption oracle DO and expo is the running time of
exponentiation modulo n.

The proof will be described in the full paper.

Acknowledgements. We would like to thank the anonymous referees for their
many useful comments.

References

1. An, J.H., Bellare, M.: Constructing vil-macsfrom fil-macs: Message authentica-
tion under weakened assumptions. In: Wiener, M. (ed.) CRYPTO 1999. LNCS,
vol. 1666, pp. 252–269. Springer, Heidelberg (1999)

2. Bellare, M., Ristenpart, T.: Multi-property-preserving hash domain extension and
the EMD transform. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 299–314. Springer, Heidelberg (2006)

3. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for design-
ing efficient protocols. In: ACM Conference on Computer and Communications
Security, pp. 62–73 (1993)

4. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995)

5. Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-damg̊ard revisited: How
to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430–448. Springer, Heidelberg (2005)

6. Damg̊ard, I.: A design principle for hash functions. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

7. Dodis, Y., Ristenpart, T., Shrimpton, T.: Salvaging merkle-damg̊ard for practical
applications. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 371–388.
Springer, Heidelberg (2009)

8. Hirose, S., Park, J.H., Yun, A.: A Simple Variant of the Merkle-Damg̊ard Scheme
with a Permutation. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833,
pp. 113–129. Springer, Heidelberg (2007)

9. Maurer, U.M., Renner, R., Holenstein, C.: Indifferentiability, impossibility results
on reductions, and applications to the random oracle methodology. In: Naor, M.
(ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)

10. Merkle, R.C.: One way hash functions and des. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)

11. Shoup, V.: A proposal for an iso standard for public key encryption, version 2.1
(2001)

12. Tsudik, G.: Message authentication with one-way hash functions. In: INFOCOM,
pp. 2055–2059 (1992)

13. Yoneyama, K., Miyagawa, S., Ohta, K.: Leaky random oracle (extended abstract).
In: Baek, J., Bao, F., Chen, K., Lai, X. (eds.) ProvSec 2008. LNCS, vol. 5324, pp.
226–240. Springer, Heidelberg (2008)



On the Analysis of Cryptographic Assumptions
in the Generic Ring Model�

Tibor Jager and Jörg Schwenk
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Abstract. At Eurocrypt 2009 Aggarwal and Maurer proved that break-
ing RSA is equivalent to factoring in the generic ring model. This model
captures algorithms that may exploit the full algebraic structure of the
ring of integers modulo n, but no properties of the given representation of
ring elements. This interesting result raises the question how to interpret
proofs in the generic ring model. For instance, one may be tempted to
deduce that a proof in the generic model gives some evidence that solving
the considered problem is also hard in a general model of computation.
But is this reasonable?

We prove that computing the Jacobi symbol is equivalent to factoring
in the generic ring model. Since there are simple and efficient non-generic
algorithms computing the Jacobi symbol, we show that the generic model
cannot give any evidence towards the hardness of a computational prob-
lem. Despite this negative result, we also argue why proofs in the generic
ring model are still interesting, and show that solving the quadratic
residuosity and subgroup decision problems is generically equivalent to
factoring.

1 Introduction

The security of asymmetric cryptographic systems relies on assumptions that
certain computational problems, mostly from number theory and algebra, are
intractable. Since proving useful lower complexity bounds in a general model of
computation seems to be impossible with currently available techniques, these
assumptions have been analyzed in restricted models, see [22,17,8,1], for instance.
A natural and very general class of algorithms is considered in the generic ring
model. This model captures all algorithms solving problems defined over an alge-
braic ring without exploiting specific properties of a given representation of ring
elements. Such algorithms work in a similar way for arbitrary representations of
ring elements, thus are generic.

Considering fundamental cryptographic problems in the generic model is mo-
tivated by the following ideas. First, showing that a cryptographic assumption

� This is an extended abstract, the full version is available on eprint [13]. Supported
by the European Community (FP7/2007-2013), grant ICT-2007-216646 - European
Network of Excellence in Cryptology II (ECRYPT II).

M. Matsui (Ed.): ASIACRYPT 2009, LNCS 5912, pp. 399–416, 2009.
c© International Association for Cryptologic Research 2009
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holds with respect to a restricted but meaningful class of algorithms might indi-
cate that the idea of basing the security of cryptosystems on this assumption is
not totally flawed, and may therefore be seen as evidence that the assumption
is also valid in a general model of computation. Second, showing that a large
class of algorithms is not able to solve a computational problem efficiently is an
important insight for the search for cryptanalytic algorithms, and can be used
to deduce the optimality of certain classes of algorithms. Moreover, the generic
model is a valuable tool to study the relationship among computational prob-
lems, such as the equivalence of the discrete logarithm and the Diffie-Hellman
problem, as done in [6,18,19,16,2], for instance.

In this paper we prove a general theorem which states that solving certain
subset membership problems in the ring Zn is equivalent to factoring n. This
main theorem allows us to provide an example for a computational problem with
high cryptographic relevance which is easy to solve in general, but equivalent to
factoring in the generic model. Concretely, we show that computing the Jacobi
symbol is equivalent to factoring in the generic ring model.

For many common idealized models in cryptography it has been shown that
a cryptographic reduction in the ideal model need not guarantee security in
the “real world”. Well-known examples are, for instance, the random oracle
model [9], the ideal cipher model [3], and the generic group model [12,11]. All
these results have in common that they used somewhat contrived constructions
that deviate from standard cryptographic practice.1 In contrast, our result on the
generic equivalence of computing the Jacobi symbol and factoring is an example
for a truly practical computational problem that is provably hard in the generic
model, but easy to solve in general. This is an important aspect for interpreting
results in the generic ring model, like [7,8,15,2,1]. Thus a proof in the generic
model is unfortunately not even an indicator that the considered problem is
indeed useful for cryptographic applications.

This negative result does not affect the other mentioned motivations for the
analysis of computational problems in the generic ring model. A lower bound
in this model allows to deduce the optimality of certain classes of algorithms,
and gives insight into the relationship between cryptographic problems, which is
also of interest. Motivated by this fact, we also show that solving the quadratic
residuosity and subgroup decision problems is generically equivalent to factoring.
For the latter problem we show that the equivalence holds even in presence of a
Diffie-Hellman oracle. Thus, a Diffie-Hellman oracle does not help in solving the
subgroup decision problem.

By taking a closer look at the construction of the simulator used in the proof
of our main theorem, we furthermore deduce that for a certain class of compu-
tational problems there exists an efficient generic ring algorithm if and only if
there is an efficient straight line program solving the problem.

1 An exception is the result of [20], showing a (non-generic) attack on a scheme with
provable security in the generic model. However, [14] note that this stems not from
a weakness in the generic model, but from an incorrect security proof.
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1.1 Related Work

Previous work considering fundamental cryptographic assumptions in the generic
model considered primarily discrete logarithm-based problems and the RSA
problem. Starting with Shoup’s seminal paper [22], it was proven that solv-
ing the discrete logarithm problem, the Diffie-Hellman problem, and related
problems [18,17,21] is hard with respect to generic group algorithms. Damg̊ard
and Koprowski showed the generic intractability of root extraction in groups of
hidden order [10].

Brown [8] reduced the problem of factoring integers to solving the low-exponent
RSA problem with straight line programs, which are a subclass of generic ring
algorithms. Leander and Rupp [15] augmented this result to generic ring algo-
rithms, where the considered algorithms may only perform the operations addi-
tion, subtraction and multiplication modulo n, but not multiplicative inversion
operations. Recently, Aggarwal and Maurer [1] extended this result from low-
exponent RSA to full RSA and to generic ring algorithms that may also com-
pute multiplicative inverses. Boneh and Venkatesan [7] have shown that there is
no straight line program reducing integer factorization to the low-exponent RSA
problem, unless factoring integers is easy.

The notion of generic ring algorithms has also been applied to study the
relationship between the discrete logarithm and the Diffie-Hellman problem and
the existence of ring-homomorphic encryption schemes [6,16,2].

2 Preliminaries

2.1 Notation

For a set A and a probability distribution D on A, we denote with a D← A the
action of sampling an element a from A according to distribution D. We denote
with U the uniform distribution. When sampling k elements a1, . . . , ak

D← A, we
assume that all elements are chosen independently.

Throughout the paper we let n be the product of at least two different primes,
and denote with n =

∏k
i=1 p

ei

i the prime factor decomposition of n such that
gcd(pei

i , p
ej

j ) = 1 for i 
= j.
Let P = (S1, . . . , Sm) be a finite sequence. Then |P | denotes the length of P ,

i.e. |P | = m. For k ≤ m we denote with Pk the subsequence (S1, . . . , Sk) of P .
For a sequences P with we write Pk # P to denote that Pk is a subsequence of
P such that Pk consists of the first |Pk| elements of P .

2.2 Uniform Closure

By the Chinese Remainder Theorem, for n =
∏k

i=1 p
ei

i the ring Zn is isomorphic
to the direct product of rings Zp

e1
1
× · · · × Zp

ek
k

. Let φ be the isomorphism
Zp

e1
1
× · · · × Zp

ek
k
→ Zn, and for C ⊆ Zn let Ci := {y mod pei

i | y ∈ C} for
1 ≤ i ≤ k.
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Definition 1 (Uniform Closure). We say that U [C] ⊆ Zn is the uniform
closure of C ⊆ Zn, if

U [C] = {y ∈ Zn | y = φ(y1 . . . , yk), yi ∈ Ci for 1 ≤ i ≤ k}.

In particular note that C ⊆ U [C], but not necessarily U [C] ⊆ C. The following
lemma follows directly from the above definition.

Lemma 1. Sampling y U← U [C] uniformly random from U [C] is equivalent to
sampling yi uniformly and independently from Ci for 1 ≤ i ≤ k and setting
y = φ(y1, . . . , yk).

2.3 Straight Line Programs

A straight line program over a ring R is a generic ring algorithm performing a
fixed sequence of ring operations, without branching, that outputs an element
of R. Thus straight line programs are a subclass of generic ring algorithms.
The following definition is a simple extension of [8, Definition 1] to straight line
programs that may also compute multiplicative inverses.

Definition 2 (Straight Line Programs). A straight line program P of length
m over Zn is a sequence of tuples

P = ((i1, j1, ◦1), · · · , (im, jm, ◦m))

where −1 ≤ ik, jk < k and ◦i ∈ {+,−, ·, /} for i ∈ {1, . . . ,m}. The output P (x)
of straight line program P on input x ∈ Zn is computed as follows.

1. Initialize L−1 := 1 ∈ Zn and L0 := x.
2. For k from 1 to m do:

– if ◦k = / and Ljk

∈ Z∗

n then return ⊥,
– else set Lk := Lik

◦ Ljk
.

3. Return P (x) = Lm.

We say that each triple (i, j, ◦) ∈ P is a SLP-step.

For notational convenience, for a given straight line program P we will denote
with Pk the straight line program given by the sequence of the first k elements of
P , with the additional convention that P−1(x) = 1 and P0(x) = x for all x ∈ Zn.

2.4 Generic Ring Algorithms

Similar to straight line programs, generic ring algorithms perform a sequence
of ring operations on the input values 1, x ∈ Zn. However, while straight line
programs perform the same fixed sequence on ring operations to any input value,
generic ring algorithms can decide adaptively which ring operation is performed
next. The decision is made either based on equality checks, or on coin tosses.
Moreover, the output of generic ring algorithms is not restricted to ring elements.
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We formalize the notion of generic ring algorithms in terms of a game between
an algorithm A and a black-box O, the generic ring oracle. The generic ring
oracle receives as input a secret value x ∈ Zn. It maintains a sequence P , which
is set to the empty sequence at the beginning of the game, and implements two
internal subroutines test() and equal().

– The test()-procedure takes a tuple (j, ◦) ∈ {−1, . . . , |P |} × {+,−, ·, /} as in-
put. The procedure returns false if ◦ = / and Pj(x) 
∈ Z∗

n, and true otherwise.
– The equal()-procedure takes a tuple (i, j) ∈ {−1, . . . , |P |} × {−1, . . . , |P |}

as input. The procedure returns true if Pi(x) ≡ Pj(x) mod n and false
otherwise.

In order to perform computations, the algorithm submits SLP-steps to O.
Whenever the algorithm submits (i, j, ◦) with ◦ ∈ {+,−, ·, /}, the oracle runs
test(j, ◦). If test(j, ◦) = false, the oracle returns the error symbol ⊥. Otherwise
(i, j, ◦) is appended to P . Moreover, the algorithm can query the oracle to check
for equality of computed ring elements by submitting a query (i, j, ◦) such that
◦ ∈ {=}. In this case the oracle returns equal(i, j). We measure the complexity
of A by the number of oracle queries.

2.5 Some Lemmas on Straight Line Programs over Zn

In the following we will state a few lemmas on straight line programs over Zn

that will be useful for the proof of our main theorem.

Lemma 2. Suppose there exists a straight line program P such that for x, x′ ∈
Zn holds that P (x′) 
=⊥ and P (x) =⊥. Then there exists Pj # P such that
Pj(x′) ∈ Z∗

n and Pj(x) 
∈ Z∗
n.

Proof. P (x) =⊥ means that there exists an SLP-step (i, j, ◦) ∈ P such that
◦ = / and Lj = Pj(x) 
∈ Z∗

n. However, P (x′) does not evaluate to ⊥, thus it
must hold that Pj(x′) ∈ Z∗

n.

The following lemma provides a lower bound on the probability of factoring n
by evaluating a certain straight line program P with y U← U [C] and computing
gcd(n, P (y)), relative to the probability that P (x′) 
∈ Z∗

n and P (x) ∈ Z∗
n for

randomly chosen x, x′ U← C.
Lemma 3. For any straight line program P and C ⊆ Zn holds that

Pr
[
P (x′) 
∈ Z∗

n and P (x) ∈ Z∗
n | x, x′

U← C
]

≤
(
|U [C] |
|C|

)2

Pr
[
gcd(n, P (y)) 
∈ {1, n} | y U← U [C]

]
.

Similar to the above, the following lemma provides a lower bound on the prob-
ability of factoring n by computing gcd(n, P (y)−Q(y)) with y U← U [C] for two
given straight line programs P and Q, relative to the probability Pr[(P (x) ≡n

Q(x) and P (x′) 
≡n Q(x′)) | x, x′ U← C].
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Lemma 4. For any pair (P,Q) of straight line programs and C ⊆ Zn holds that

Pr
[
P (x) ≡n Q(x) and P (x′) 
≡n Q(x′) | x, x′ U← C

]
≤
(
|U [C] |
|C|

)2

Pr
[
gcd(n, P (y)−Q(y)) 
∈ {1, n} | y U← U [C]

]
.

The proofs of Lemma 3 and 4 are based on the Chinese Remainder Theorem.
Full proofs are given in Appendix C and D of the full version [13]. We also discuss
the intuition behind these lemmas in Appendix E of [13].

3 Subset Membership Problems in Generic Rings

Definition 3 (Subset Membership Problem). Let C ⊆ Zn and V ⊆ Zn be
subsets of Zn such that V ⊆ C ⊆ Zn. The subset membership problem defined
by (C,V) is: given x U← C, decide whether x ∈ V.

Whenever considering a subset membership problem in the following we assume
that |V| > 1.

Let (C,V) be subsets of Zn defining a subset membership problem. We formal-
ize the notion of subset membership problems in the generic ring model in terms
of a game between an algorithm A and a generic ring oracle Osmp. Oracle Osmp
is defined exactly like the generic ring oracle described in Section 2.4, except
that Osmp receives a uniformly random element x U← C as input. We say that A
wins the game, if x ∈ V and AOsmp(n) = 1, or x 
∈ V and AOsmp(n) = 0.

Note that any algorithm for a given subset membership problem (C,V) has
at least the trivial success probability Π(C,V) := max{|V|/|C|, 1 − |V|/|C|} by
guessing, due to the fact that x is sampled uniformly from C. For an algorithm
solving the subset membership problem given by (C,V) with success probability
Pr[S], we denote with

Adv(C,V)(AOsmp(n)) := |Pr[S]−Π(C,V)|

the advantage of A.

Theorem 1. For any generic ring algorithm A solving a given subset member-
ship problem (C,V) over Zn with advantage Adv(C,V)(AOsmp(n)) by performing
m queries to Osmp, there exists an algorithm B that outputs a factor of n with
success probability at least

Adv(C,V)(AOsmp(n))
2m(m2 + 5m+ 3)

·
(
|C|
|U [C] |

)2

by running A once and performing O(m3) additional operations in Zn, m gcd-
computations on %log2 n&-bit numbers, and sampling m random elements from
U [C].
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Proof Outline. We replace Osmp with a simulator Osim. Let Ssim denote the
event that A is successful when interacting with the simulator, and let F denote
the event that Osim answers a query of A different from how Osmp would have
answered. Then Osmp and Osim are indistinguishable unless F occurs. There-
fore the success probability Pr[S] of A in the simulation game is upper bound
by Pr[Ssim] + Pr[F ]. We derive a bound on Pr[Ssim] and describe a factoring
algorithm whose success probability is lower bound by Pr[F ].

3.1 Introducing a Simulation Oracle

We replace oracle Osmp with a simulator Osim. Osim receives x U← C as input, but
never uses this value throughout the game. Instead, all computations are per-
formed independent of the challenge value x. Note that the original oracle Osmp
uses x only inside the test() and equal() procedures. Let us therefore consider
an oracle Osim which is defined exactly like Osmp, but replaces the procedures
test() and equal() with procedures testsim() and equalsim().

– The testsim()-procedure samples xr
U← C and returns false if ◦ = / and

Pj(xr) 
∈ Z∗
n, and true otherwise (even if Pj(xr) =⊥).

– The equalsim()-procedure samples xr
U← C and returns true if Pi(xr) ≡

Pj(xr) mod n and false otherwise (even if Pi(xr) =⊥ or Pj(xr) =⊥).

Note that the simulator samples m random values xr , r ∈ {1, . . . ,m}. Also note
that all computations of A are independent of the challenge value x when inter-
acting with Osim. Hence, any algorithm A has at most trivial success probability
in the simulation game, and therefore

Pr[Ssim] ≤ Π(C,V).

3.2 Bounding the Probability of Simulation Failure

We say that a simulation failure, denoted F , occurs if Osim does not simulate
Osmp perfectly. Observe that an interaction of A with Osim is perfectly indis-
tinguishable from an interaction with Osmp, unless at least one of the following
events occurs.

1. The testsim()-procedure fails to simulate test() perfectly. This means that
testsim() returns false on a procedure call where test() would have returned
true, or testsim() returns true where test() would have returned false. Let
Ftest denote the event that this happens on at least one call of testsim().

2. The equalsim()-procedure fails to simulate equal() perfectly. This means that
equalsim() has returned true where equal() would have returned false, or
equalsim() has returned false where equal() would have returned true. Let
Fequal denote the event that this happens at at least one call of equalsim().

Since F implies that at least one of the events Ftest and Fequal has occurred, it
holds that

Pr[F ] ≤ Pr[Ftest] + Pr[Fequal].

In the following we will bound Pr[Ftest] and Pr[Fequal] separately.
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Bounding the Probability of Ftest. The testsim()-procedure fails to simulate
test() only if either testsim() has returned false where test() would have returned
true, or testsim() has returned true where test() would have returned false. A
necessary condition2 for this is that there exists Pj # P and xr ∈ {x1, . . . , xm}
such that

(Pj(x) ∈ Z∗
n and Pj(xr) 
∈ Z∗

n) or (Pj(x) =⊥ and Pj(xr) 
∈ Z∗
n),

or
(Pj(xr) ∈ Z∗

n and Pj(x) 
∈ Z∗
n) or (Pj(xr) =⊥ and Pj(x) 
∈ Z∗

n).

We can simplify this condition a little by applying Lemma 2. The existence of
Pj # P and xr such that (Pj(xr) =⊥ and Pj(x) 
∈ Z∗

n) implies the existence
of Pk # P such that k < j and (Pk(xr) 
∈ Z∗

n and Pk(x) ∈ Z∗
n). An analogous

argument holds for the case (Pj(x) =⊥ and Pj(xr) 
∈ Z∗
n). Hence, testsim()-

procedure fails to simulate test() only if there exists Pj # P such that

(Pj(x) ∈ Z∗
n and Pj(xr) 
∈ Z∗

n) or (Pj(xr) ∈ Z∗
n and Pj(x) 
∈ Z∗

n).

Proposition 1

Pr[Ftest] ≤ 2m(m+ 2) max
0≤j≤m

{
Pr
[
Pj(x) 
∈ Z∗

n and Pj(x′) ∈ Z∗
n | x, x′

U← C
]}

We sketch the proof of Proposition 1 in Appendix B. A full proof is given in
Appendix F of the full version.

Bounding the Probability of Fequal. The equalsim()-procedure fails to sim-
ulate equal() only if either equalsim() has returned false where equal() would
have returned true, or equalsim() has returned true where equal() would have
returned false. A necessary3 condition for this is that there exist Pi, Pj # P and
xr ∈ {x1, . . . , xm} such that

(Pi(x) ≡n Pj(x) and Pi(xr) 
≡n Pj(xr))
or (Pi(x) ≡n Pj(x) and (Pi(xr) =⊥ or Pj(xr) =⊥))
or (Pi(xr) ≡n Pj(xr) and Pi(x) 
≡n Pj(x))
or (Pi(xr) ≡n Pj(xr) and (Pi(x) =⊥ or Pj(x) =⊥)).

Again we can apply Lemma 2 to simplify this a little: the existence of Pj ∈ P
and xr such that (Pj(xr) =⊥ and Pj(x) 
=⊥) implies the existence of Pk ∈ P
such that (Pk(xr) 
∈ Z∗

n and Pk(x) ∈ Z∗
n). Analogous arguments hold for the

2 The condition is not sufficient, because algorithm A need not have queried a division
by Pj in its r-th query.

3 The condition is not sufficient, because algorithm A need not have queried (i, j, =)
in its r-th query.
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other cases where one straight line program evaluates to ⊥. Hence, equalsim()-
procedure fails to simulate equal() only if there exist Pi, Pj # P or Pk # P such
that

(Pi(x) ≡n Pj(x) and Pi(xr) 
≡n Pj(xr))
or (Pi(xr) ≡n Pj(xr) and Pi(x) 
≡n Pj(x))
or (Pk(xr) 
∈ Z∗

n and Pk(x) ∈ Z∗
n)

or (Pk(x) 
∈ Z∗
n and Pk(xr) ∈ Z∗

n).

Proposition 2

Pr[Fequal] ≤ 2m(m2 + 3m+ 1)Φ+ 2m(m+ 1)Ψ,

where

Φ = max
−1≤i<j≤m

{
Pr
[
Pi(x) ≡n Pj(x) and Pi(x′) 
≡n Pj(x′) | x, x′ U← C

]}
Ψ = max

0≤k≤m

{
Pr
[
Pk(x) 
∈ Z∗

n and Pk(x′) ∈ Z∗
n | x, x′

U← C
]}
.

The proof of Proposition 2, which is based on the same ideas as the proof of
Proposition 1, is given in Appendix G of the full version.

Bounding the Probability of F . Summing up, we obtain that the total
probability of F is at most

Pr[F ] ≤ Pr[Ftest] + Pr[Fequal]

≤ 2m(m2 + 3m+ 1)Φ+ 4m(m+ 1)Ψ.

where Φ and Ψ are defined as above.

3.3 Bounding the Success Probability

Since all computations of A are independent of the challenge value x in the
simulation game, any algorithm has only the trivial success probability when
interacting with the simulator. Thus the success probability of any algorithm
when interacting with the original oracle is bound by

Π(C,V) + Adv(C,V)(AOsmp) = Pr[S] ≤ Pr[Ssim] + Pr[F ] ≤ Π(C,V) + Pr[F ],

which implies
Adv(C,V)(AOsmp) ≤ Pr[F ].

3.4 The Factoring Algorithm

Consider a factoring algorithm B running A, recording the sequence of queries
A issues, and proceeding as follows.
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– Whenever the algorithm submits (i, j, ◦) with ◦ ∈ {+,−, ·, /} in its r-th
query, the algorithm samples y U← U [C] and computes gcd(Pk(y), n) for
0 ≤ k ≤ r.

– Whenever the algorithm submits (i, j, ◦) with ◦ ∈ {=} in its r-th query,
the algorithm samples y U← U [C] and computes gcd(Pi(y) − Pj(y), n) for
−1 ≤ i < j ≤ r.

Running time. By assumption,A submitsm queries. Thus, the algorithm eval-
uates O(m2) straight line programs. Each query can be evaluated by performing
at most m steps, which yields O(m3) operations in Zn. Moreover, the algorithm
samples m random values y from U [C] and performs m gcd-computations on
%log2 n&-bit numbers.

Success probability. B evaluates any straight line program Pk with a uni-
formly random element y of U [C]. In particular, B computes gcd(Pk(y), n) for
y

U← U [C] and the straight line program Pk # P satisfying

Pr
[
Pk(x) 
∈ Z∗

n and Pk(x′) ∈ Z∗
n | x, x′

U← C
]

= max
0≤k≤m

{
Pr
[
Pk(x) 
∈ Z∗

n and Pk(x′) ∈ Z∗
n | x, x′

U← C
]}
.

Let γ1 := max0≤k≤m{Pr[Pk(x) 
∈ Z∗
n and Pk(x′) ∈ Z∗

n | x, x′ U← C]}, then
by Lemma 3 algorithm B finds a factor in this step with probability at least

γ1

(
|C|

|U [C]|
)2

.
Moreover, B evaluates any pair Pi, Pj of straight line programs in P with a

uniformly random element y U← U [C]. So in particular B evaluates gcd(Pi(y) −
Pj(y), n) with y

U← U [C] for the pair of straight line programs Pi, Pj # P
satisfying

Pr
[
Pi(x) ≡n Pj(x) and Pi(x′) 
≡n Pj(x′) | x, x′ U← C

]
= max

−1≤i<j≤m

{
Pr
[
Pi(x) ≡n Pj(x) and Pi(x′) 
≡n Pj(x′) | x, x′ U← C

]}
.

Let γ2 := max−1≤i<j≤m{Pr[Pi(x) ≡n Pj(x) and Pi(x′) 
≡n Pj(x′) | x, x′ U← C]},
then by Lemma 4 algorithm B succeeds in this step with probability at least

γ2

(
|C|

|U [C]|
)2

. So, for γ := max{γ1, γ2}, the total success probability of algorithm
B is at least

γ

(
|C|
|U [C] |

)2

.

Relating the success probability of B to the advantage of A. Using the
above definitions of γ1, γ2, and γ, the fact that Adv(C,V)(AOsmp(n)) ≤ Pr[F ],
and the derived bound on Pr[F ], we can obtain a lower bound on γ by
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Adv(C,V)(AOsmp(n)) ≤ Pr[F ] ≤ 4m(m+ 1)γ1 + 2m(m2 + 3m+ 1)γ2

≤ 2m(m2 + 5m+ 3)γ,

which implies the inequality

γ ≥
Adv(C,V)(AOsmp(n))
2m(m2 + 5m+ 3)

.

Therefore the success probability of B is at least

Adv(C,V)(AOsmp(n))
2m(m2 + 5m+ 3)

·
(
|C|
|U [C] |

)2

.

4 Computing the Jacobi Symbol with Generic Ring
Algorithms

Let us denote with QRn ⊆ Zn the set of quadratic residues modulo n, i.e.

QRn := {x ∈ Z∗
n | x ≡ y2 mod n, y ∈ Z∗

n}.

Let (x | n) denote the Jacobi symbol [23, p.287] and let Jn := {x ∈ Zn | (x | n) =
1} be the set of elements of Zn having Jacobi symbol 1. Recall that QRn ⊆ Jn,
and therefore given x ∈ Zn\Jn it is easy to decide that x is not a quadratic
residue by computing the Jacobi symbol.

There exist simple efficient algorithms computing the Jacobi symbol in Zn

without factoring n. These algorithms are not generic, cf. [23, p.288].

Theorem 2. Suppose there exist a generic ring algorithm A solving the subset
membership problem given by (C,V) with C = Z∗

n and V = Jn with advantage
Adv(C,V)(AOsmp(n)) by performing m ring operations. Then there exists an algo-
rithm B finding a factor of n with probability at least

Adv(C,V)(AOsmp(n))
2m(m2 + 5m+ 3)

by running A once and performing O(m3) additional operations in Zn, m gcd-
computations on %log2 n&-bit numbers, and sampling m random elements from
Z∗

n.

Proof. The theorem follows by applying Theorem 1 and the fact that U [Z∗
n] =

Z∗
n, since (

|C|
|U [C] |

)2

=
(
|Z∗

n|
|Z∗

n|

)2

= 1
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5 The Generic Quadratic Residuosity Problem and
Factoring

Definition 4 (Quadratic Residuosity Problem). The quadratic residuosity
problem is the subset membership problem given by C = Jn and V = QRn.

Given the factorization ofn, solving the quadratic residuosityproblem inZn is easy,
also for generic ring algorithms. Thus, in order to show the equivalence of generic
quadratic residuosity and factoring, we have to prove the following theorem.

Theorem 3. Suppose there exist a generic ring algorithm A that solves the
quadratic residuosity problem in Zn with advantage Adv(C,V)(AOsmp(n)) by per-
forming m ring operations. Then there exists an algorithm B finding a factor of
n with probability at least

Adv(C,V)(AOsmp(n))
8m(m2 + 5m+ 3)

by running A once and performing O(m3) additional operations in Zn, m gcd-
computations on %log2 n&-bit numbers, and samplingm random elements from Z∗

n.

Proof. The cardinality |Jn| of the set of elements having Jacobi symbol 1 depends
on whether n is a square in N.

|Jn| =
{
φ(n)/2, if n is not a square in N,
φ(n), if n is a square in N,

where φ(·) is the Euler totient function [23, p.24]. Note also that U [Jn] = U [C] =
Z∗

n. Therefore it holds that |Jn| = |C| ≥ φ(n)/2 and |U [C] | = |Z∗
n| = φ(n). Thus

we can apply Theorem 1, using that(
|C|
|U [C] |

)2

=
(
|Jn|
|Z∗

n|

)2

≥
(
φ(n)/2
φ(n)

)2

=
1
4
.

6 The Generic Subgroup Decision Problem and Factoring

Let n = pq and let G be a cyclic group of order n. Then there exists a subgroup
Gp ⊆ G of order p.

Definition 5 (Subgroup Decision Problem). The subgroup decision prob-
lem is the subset membership problem (C,V) with C = G and V = Gp.

Recall that any cyclic group of order n is isomorphic to the additive group of
integers (Zn,+). Now, since we are going to consider generic algorithms, we may
assume that the algorithm operates on the group G = (Zn,+), of course without
exploiting any property of this representation.4 Assuming an oracle DH solving
4 One may equivalently assume that the generic group oracle uses the group (Zn, +)

for the internal representation of group elements.
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the Diffie-Hellman problem in G, we observe that this operation corresponds
to the multiplication in Zn. Hence, the group G together with oracleDH exhibits
the same algebraic structure as the ring Zn.

By the Chinese Remainder Theorem, the ring Zn is isomorphic to the direct
product Zp ×Zq. Let φ : Zp ×Zq → Zn denote this isomorphism. The subgroup
Gp of G with order p consists of the elements Gp = {φ(xp, 0) | xp ∈ Zp}. So for
generic ring algorithms the subgroup decision problem can be stated as: given
x ∈ Zn, decide whether x ≡ 0 mod q.

In order to model the generic subgroup decision problem, consider an oracle
Osdp which is defined exactly like the generic ring oracle described in Section 2.4,
except that it does not provide the operation /. Osdp receives an element x ∈ Zn

as input, where x is constructed as follows: sample (xp, xq)
U← Zp × Zq and bit

b
U← {0, 1} uniformly random, and let x := φ(xp, bxq). An algorithm can query

the oracle for the (inverse) group operation by submitting a query (i, j, ◦) with
◦ ∈ {+,−}. The Diffie-Hellman oracle is queried by submitting (i, j, ◦) with
◦ ∈ {·}.

We say that the algorithm wins the game, if x ∈ Gp and AOsdp(n) = 1, or
x 
∈ Gp and AOsdp(n) = 0. We define the advantage of an algorithm A solving
the subgroup decision problem with probability Pr[S] as

Adv(AOsdp(n)) :=
∣∣∣∣Pr[S]−

(
1
2

+
1
q

)∣∣∣∣ .
Remark 1. If we would also allow to query the oracle for divisions (which cor-
respond to an “inverse Diffie-Hellman oracle” in the above setting), then there
would be a simple algorithm determining whether x ∈ Gp by returning true iff
division by x fails. Interestingly, we will show that there is no generic algorithm
making similar use of a standard Diffie-Hellman oracle, unless factoring n is easy.
Therefore a further consequence of the theorem presented in the following section
is that a standard Diffie-Hellman oracle does not imply a inverse Diffie-Hellman
oracle in general, unless factoring is easy.

Remark 2. The subgroup decision problem was introduced in [5] for groups with
bilinear pairing. Essentially such a pairing can be added to the generic model by
allowing the algorithm to perform a single multiplication operation when eval-
uating the bilinear pairing map,5 as done in [4]. By providing a Diffie-Hellman
oracle, we do not restrict the algorithm to a fixed number of multiplications.
Hence, our proof includes the problem stated in [5] as a special case.

6.1 Generic Equivalence to Factoring

In the sequel we show that solving the subgroup decision problem in groups of
order n is as hard as factoring n, even if the algorithm has access to an oracle
solving the Diffie-Hellman problem.

5 Plus some minor technical details to distinguish between different groups.
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Theorem 4. Suppose there exist a generic ring algorithm A solving the sub-
group membership problem in G with advantage Adv(AOsdp(n)) by making m
queries to an oracle performing the (inverse) group operation and solving the
Diffie-Hellman problem. Then there exists an algorithm B finding a factor of n
with probability at least Adv(AOsdp(n)) by running A once and performing O(m3)
additional operations in Zn and m gcd-computations on %log2 n&-bit numbers.

Proof. Let us consider an interaction of A with an oracle Op which is defined as
follows. Op works similar to Osdp, but performs all computations in Zp. That is,
the equal()-procedure returns true on input (i, j) iff Pi(x) ≡ Pj(x) mod p. Note
that now all computations are performed in the Zp-component of the decompo-
sition Zp × Zq of Zn, hence the algorithm receives no information on whether
x ≡ 0 mod q. Thus in the simulation game any algorithm has only trivial success
probability Pr[Ssim] = 1/2 + 1/q.

Now consider an interaction of A with oracle Osdp. Either this interaction
is indistinguishable from an oracle Op, in which case the algorithm has only
trivial success probability, or there exist Pi, Pj # P with such that Pi(x) ≡
Pj(x) mod p, but Pi(x) 
≡ Pj(x) mod n. In this case a factor of n is found by
computing gcd(Pi(x) − Pj(x), n). Note that

1
2

+ Adv(C,V)(AOsdp(n)) ≤ Pr[Ssim] + Pr[F ]

⇐⇒ Adv(C,V)(AOsdp(n)) ≤ Pr[F ]

Thus, n is factored this way by running A, recording P and computing

gcd(Pi(x) − Pj(x), n)

for all −1 ≤ i < j ≤ m with probability at least Adv(C,V)(AOsdp(n)).

The above proof generalizes from n = pq to n =
∏k

i=1 p
ei

i for all subgroups with
prime-power order pei

i in a straightforward manner.

7 Analyzing Search Problems in the Generic Ring Model

In Section 3 we have constructed a simulator for a generic ring oracle for the ring
Zn. When interacting with the simulator, all computations are independent of
the secret challenge value x. Therefore we have been able to conclude that any
generic algorithm has only the trivial probability of success in solving certain
decisional problems (namely the considered subset membership problems) when
interacting with the simulator. Moreover, we have shown that any algorithm
that can distinguish between simulator and original oracle can be turned into a
factoring algorithm with (asymptotically) the same running time.

In contrast to decisional problems, where the algorithm outputs a bit, our
construction of the simulator can also be applied to prove the generic hardness
of search problems where the algorithm outputs a ring element or integer. Let
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us sketch two possibilities. The first one is to formulate a suitable subset mem-
bership problem which reduces to the considered search problem and then apply
Theorem 1. Another possibility is to use our construction of the simulator to
bound the probability of a simulation failure relative to factoring. In order to
bound the success probability in the simulation game, it remains to show that
there exists no straight line program solving the considered problem efficiently
under the factoring assumption.
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A Proof Sketch for Lemma 3

For notational convenience, let us define Γ (P ) := Pr[P (x′) 
∈ Z∗
n and P (x) ∈

Z∗
n | x, x′

U← C] and Λ(P ) := Pr[gcd(n, P (y)) 
∈ {1, n} | y U← U [C]]. Thus, in
order to prove Lemma 3 we have to show that the inequality(

|U [C] |
|C|

)2

Λ(P ) ≥ Γ (P ) (1)

holds. To this end, we will define an auxiliary function νi(P ). Then we express
Γ (P ) and Λ(P ) in terms of νi(P ). More precisely, we will upper bound Γ (P ) by
an expression in νi(P ) and lower bound Λ(P ) by an expression in νi(P ). The
resulting inequality is proven easily by complete induction.

http://eprint.iacr.org/
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Defining an auxiliary function. Recall that we denote with n =
∏k

i=1 p
ei

i

the prime factor decomposition of n. Let

νi(P ) := Pr
[
P (x) ≡ 0 mod pi | x U← U [C]

]
be the probability that P (x) ≡ 0 mod pi for some prime pi dividing n and x U←
U [C]. Recall that φ : Zp

e1
1
×· · ·×Zp

ek
k
→ Zn is a ringisomorphism, and P performs

only ring operations in Zn. Therefore P implicitly performs all operations on each
component Zp

ei
i

separately (and independently). Moreover, sampling x U← U [C]
is equivalent to sample φ(x1, . . . , xk) with xi chosen independently and uniform
from Ci for 1 ≤ i ≤ k (cf. Lemma 1). Thus we can express the probability that
P (x) ∈ Z∗

n for x U← U [C] as

Pr
[
P (x) ∈ Z∗

n | x
U← U [C]

]
=

k∏
i=1

(1− νi(P )).

Bounding Γ (P ) in terms of νi(P ). For independently sampled x, x′, we
have

Γ (P ) = Pr
[
P (x′) 
∈ Z∗

n and P (x) ∈ Z∗
n | x, x′

U← C
]

= Pr
[
P (x) 
∈ Z∗

n | x
U← C
]
· Pr
[
P (x) ∈ Z∗

n | x
U← C
]

Note that, since C ⊆ U [C], it holds that

Pr
[
P (x) ∈ Z∗

n | x
U← C
]
≤ Pr
[
P (y) ∈ Z∗

n | y
U← U [C]

] |U [C] |
|C|

and similarly

Pr
[
P (x) 
∈ Z∗

n | x
U← C
]
≤
(
1− Pr
[
P (y) ∈ Z∗

n | y
U← U [C]

]) |U [C] |
|C| .

Therefore we can conclude that

Γ (P ) ≤ Pr
[
P (y) ∈ Z∗n | y

U← U [C]
] (

1 − Pr
[
P (y) ∈ Z∗n | y

U← U [C]
])( |U [C] |

|C|
)2

=
k∏

i=1

(1 − νi(P ))

(
1 −

k∏
i=1

(1 − νi(P ))

)( |U [C] |
|C|
)2

. (2)

Bounding Λ(P ) in terms of νi(P ). We can find a factor of n by computing
gcd(n, P (y)), if P (y) ≡ 0 mod pi for at least one prime pi dividing n, and P (y) 
≡
0 mod n. Using similar arguments as above, we can therefore express Λ(P ) in
terms of νi(P ) as
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Λ(P ) = Pr
[
gcd(n, P (y)) 
∈ {1, n} | y U← C

]
= 1−

k∏
i=1

νi(P )−
k∏

i=1

(1 − νi(P )). (3)

Putting things together. Combining (2) and (3), we see that (1) holds if(
1−

k∏
i=1

(1− νi(P ))

)2

≥
k∏

i=1

νi(P )

holds, which is shown easily by complete induction on k ≥ 2.

B Proof Sketch for Proposition 1

If there exists Pj such that (Pj(x) =⊥ and Pj(xr) 
=⊥), then this implies that
there exists Pk # P with k < j such that (Pj(xr) 
∈ Z∗

n and Pj(x) ∈ Z∗
n)

by Lemma 2. Hence, in order to bound the probability of Ftest, it suffices to
consider the probability that there exists a straight line program Pj # P such
that

(Pj(xr) 
∈ Z∗
n and Pj(x) ∈ Z∗

n) or (Pj(x) 
∈ Z∗
n and Pj(xr) ∈ Z∗

n) (4)

for x, x1, . . . , xm
U← C.

By (essentially) applying the union bound we can see that for fixed Pj this
probability is bounded by

2mPr
[
Pj(x) 
∈ Z∗

n and Pj(x′) ∈ Z∗
n | x, x′

U← C
]
.

Using this, we obtain the following bound on the probability that there exists
any Pj # P satisfying (4).

Pr[Ftest] ≤ 2m
m∑

j=0

Pr
[
Pj(x) 
∈ Z∗

n and Pj(x′) ∈ Z∗
n | x, x′

U← C
]

≤ 2m(m+ 1) max
0≤j≤m

{
Pr
[
Pj(x) 
∈ Z∗

n and Pj(x′) ∈ Z∗
n | x, x′

U← C
]}
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Abstract. We revisit previous formulations of zero knowledge in the random
oracle model due to Bellare and Rogaway (CCS ’93) and Pass (Crypto ’03), and
present a hierarchy for zero knowledge that includes both of these formulations.
The hierarchy relates to the programmability of the random oracle, previously
studied by Nielsen (Crypto ’02).

– We establish a subtle separation between the Bellare-Rogaway formulation
and a weaker formulation, which yields a finer distinction than the separation
in Nielsen’s work.

– We show that zero-knowledge according to each of these formulations is not
preserved under sequential composition. We introduce stronger definitions
wherein the adversary may receive auxiliary input that depends on the
random oracle (as in Unruh (Crypto ’07)) and establish closure under
sequential composition for these definitions. We also present round-optimal
protocols for NP satisfying the stronger requirements.

– Motivated by our study of zero knowledge, we introduce a new definition of
proof of knowledge in the random oracle model that accounts for oracle-
dependent auxiliary input. We show that two rounds of interaction are
necessary and sufficient to achieve zero-knowledge proofs of knowledge
according to this new definition, whereas one round of interaction is
sufficient in previous definitions.

– Extending our work on zero knowledge, we present a hierarchy for circuit
obfuscation in the random oracle model, the weakest being that achieved in
the work of Lynn, Prabhakaran and Sahai (Eurocrypt ’04). We show that the
stronger notions capture precisely the class of circuits that is efficiently and
exactly learnable under membership queries.

Keywords: zero-knowledge, random oracle model, sequential composition,
obfuscation.

1 Introduction

The random oracle (RO) model, introduced by Fiat and Shamir [10] and refined by
Bellare and Rogaway [3], was proposed as a framework for designing and analyzing
cryptographic schemes that offers a trade-off between provable security and practical
efficiency. In this model, every party has oracle access to a truly random function.
With this additional functionality, many cryptographic problems admit more efficient
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solutions than in the standard model, along with considerably simpler proofs of
security [3,4,24,11]. In practice, the idealized random function is instantiated using a
“good” cryptographic hash function, like SHA-1 or a variation thereof. There are also
cryptographic problems for which we have partial solutions in the random oracle model
but not in the standard model, most notably that of circuit obfuscation [1,19,20]. In
both cases, proofs in the random oracle model do not guarantee security or feasibility in
the standard model (and in fact, there has been substantial evidence to the contrary
[6,15,2]); nonetheless, the model provides a useful idealized test-bed for analyzing
cryptographic schemes.

As a first step towards establishing security, it is necessary to define security in
the random oracle model. A naive extension of a definition in the standard model
may affect the semantics of the underlying notion of security. Consider the case of
zero-knowledge proofs, namely proofs that yield no knowledge beyond the validity of
the assertion proved [17]. Formally, an interactive protocol is zero-knowledge if there
exists a simulator that can simulate the behavior of every, possibly cheating, verifier
without access to the prover, such that its output is indistinguishable from the output
of the verifier after having interacted with the honest prover. In the standard model,
a zero-knowledge proof is necessarily deniable, in that the protocol’s transcript does
not constitute any evidence of the interaction, since any party could have generated the
transcript by himself. However, the Bellare-Rogaway formulation of zero-knowledge
in the random oracle model does not imply deniability, since the simulator can choose
the random oracle [22,21]. In particular, the formulation allows for (non-trivial) one-
round zero-knowledge proof systems, and the transcript of such a protocol constitutes
evidence of participating in the protocol, contradicting deniability.

In this work, we revisit two aspects of formulating zero-knowledge in the random
oracle model. The first relates to defining security in the random oracle model and
in particular, what it means to choose the random oracle, an issue first addressed by
Nielsen [21]. The second relates to a different aspect of zero-knowledge proofs, namely,
we want the zero-knowledge guarantee to hold even if the verifier may have some
additional a priori information about the input. The need to account for such auxiliary
input, which arises in typical applications such as sequential repetitions of a protocol,
was articulated in the work of Goldreich and Oren [14] and again in that of Unruh
[25]. While the Bellare-Rogaway formulation of zero-knowledge does take into account
auxiliary input, it does not allow for dependencies between the auxiliary input and the
random oracle, which arise for instance, when the auxiliary input is a transcript of a
previous interaction using the oracle.

1.1 Programmability in the Random Oracle Model

There are two reasons why, in the simulation-based paradigm, it is easier to achieve
security in the random oracle model:

– the simulator can see the queries parties make to the random oracle;
– the simulator can choose the answers to these queries.

The second is what we refer to as programming the random oracle, and may be qualified
in several different ways. Suppose our goal is to simulate a transcript RO(s), namely



Zero Knowledge in the Random Oracle Model, Revisited 419

the evaluation of the random oracle RO at some value s. Our intuition about the
random oracle as a truly random function indicates that picking a truly random string τ
should suffice (essentially choosing the evaluation of RO at s to be τ ), and indeed, no
distinguisher - even computationally unbounded ones - can distinguish a truly random
string from RO(s), provided the distinguisher does not get access to RO. On the other
hand, if we give the distinguisher access to RO, then the only “good” simulation of
the transcript is RO(s), and the simulation must query RO at s. This is because the
distinguisher may have s hardwired into it, then queries RO at s and checks whether
the answer matches the transcript. In this setting, the simulator does not get to choose
the answers to oracle queries. To distinguish between these two notions of security,
we will refer to the former as the fully programmable random oracle (FPRO) model,
and the latter as the non-programmable random oracle (NPRO) model (as coined by
Nielsen [21]).

In the case where we allow the simulator to choose the answers to oracle queries,
we may still impose an additional requirement, namely that the simulator must output
its choices of these query/answer pairs. In the above example, whether the simulator
chooses the output of RO at s to be some random string τ , its output will include the
transcript τ , along with the list (s, τ), corresponding to the query s and answer τ . This
is in fact the notion of programmability raised by Bellare and Rogaway [3] for zero-
knowledge, and we will refer to this as the explicitly programmable random oracle
(EPRO) model. We defer a precise definition to the body of the paper, but note at this
point that security in the non-programmable random oracle model (strongest security
guarantee) implies security in the explicitly programmable random oracle model, which
in turn implies security in the fully programmable random oracle model (weakest
security guarantee).

1.2 Our Contributions and Techniques

Hierarchy for zero knowledge. We begin with a simple and unified framework for
defining zero knowledge in the three variants of the random oracle model, and then
present a (perhaps surprising) separation for zero knowledge in the fully programmable
and explicitly programmable random oracle models. This yields a finer separation than
that in Nielsen’s work [21], and complements Pass’s separation for zero knowledge in
the explicitly programmable and non-programmable random oracle models.

Auxiliary input and sequential composition. Following the work of Goldreich et al.
[14,13] for zero-knowledge in the standard model, we use closure under sequential
composition as a yardstick for evaluating formulations of zero-knowledge. We show
that zero-knowledge in all three variants of the random oracle model are not closed
under sequential composition1. This motivates a new formulation of zero-knowledge
in the random oracle which allows for auxiliary inputs that depend on the oracle, as

1 That this may be the case has been previously noted (e.g. [22]), but to our knowledge, there
has been no formal (published) proof.
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was done in [25] for one-way functions, encryption and other primitives.2 We show that
for efficient-prover protocols, zero-knowledge with oracle-dependent auxiliary input in
the explicit-programmable and non-programmable random oracle models are preserved
under a polynomial number of sequential repetitions. We also present round-optimal
protocols for NP satisfying the new formulations of zero-knowledge.

Proofs of knowledge. Our constructions demonstrating that previous formulations of
zero knowledge are not closed under sequential composition implicitly rely on a non-
interactive zero-knowledge “proofs of knowledge” in the random oracle model. Specif-
ically, non-interactive protocols are necessarily malleable (without unique identifiers),
and the cheating verifier can generate a convincing proof of knowledge by copying
one sent by the prover in a previous iteration of the protocol. This motivates a new
formulation of proof of knowledge in the random oracle model that takes into account
oracle-dependent auxiliary input. We show that two rounds of interaction are necessary
and sufficient to achieve zero-knowledge proofs of knowledge according to this new
definition.

Circuit obfuscation. We extend our framework for programmability to circuit obfusca-
tion3 in the random oracle model [19,1], and note that the obfuscator constructions of
Lynn et al. [19] achieve security in the fully programmable random oracle model. Next,
we show circuit obfuscation in the explicit-programmable random oracle model can
only be realized for classes of circuits that are efficiently and exactly learnable under
membership queries, and for these classes, obfuscation may be (trivially) realized in
the plain model, so the characterization is exact. We find it surprising that we can have
non-trivial constructions in the explicitly programmable model for zero knowledge but
not for circuit obfuscation.

1.3 Discussion

Formulating zero-knowledge. A general framework for defining security in the random
oracle model was presented by Nielsen [21], based on augmenting the universally
composable (UC) framework [5] with a random oracle functionality. This guarantees
composability. As pointed out by Pass [22], deniability is not guaranteed in this
framework. Nielsen also defined security with a non-programmable random oracle,

2 For the primitives considered in [25], the random oracle is typically only used in the proof
of security. Specifically, Unruh [25] does not explicitly address primitives with a simulation-
based notion of security, which is the focus of this work and where the random oracle is also
exploited in constructing a simulator. On the other hand, Unruh considers a stronger notion
of oracle-dependent auxiliary input, where a polynomial bound is imposed only on the output
length of the machine generating the auxiliary input and not its query complexity.

3 We use the term obfuscation to refer to the stronger notion of obfuscation against general
adversaries, instead of obfuscation against predicate adversaries [1,26]. In the standard model,
only classes of circuits that are efficiently and exactly learnable under membership queries
are obfuscatable against general adversaries [26]. The result also extends to the fully-
programmable RO model.
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where the environment in the UC framework is also given access to the random oracle.
This offers deniability, but may no longer guarantee universal composability.

Instead of adopting Nielsen’s formulation, we consider a minimal framework (based
on [3,14]) for which we can provide the weaker guarantee of sequential composition.
The simplicity allows us to focus on how the random oracle is incorporated differently
in each of [21,3,22]. In addition, it offers several conceptual advantages: it offers
modularity (which allows us to decouple the zero-knowledge property from the proof-
of-knowledge property and other properties implied by UC zero-knowledge, and for
impossibility results, these distinctions are particularly important) and reinforces the
theme of this work, that of understanding how semantics can change between the
standard model and the random oracle model. Furthermore, our framework is simple
enough to be applied to circuit obfuscation, for which we have very few non-trivial
positive results, let alone constructions that compose arbitrarily (which probably only
exist for trivially obfuscatable families of circuits).

Sequential composition not the end-goal. We recall the arguments used in [14] to
motivate the study of auxiliary-input zero-knowledge: first, it fully captures the intuitive
meaning of the concept of zero-knowledge; and second, this stronger requirement is
necessary when a zero-knowledge protocol is used as a sub-protocol within larger
cryptographic protocols4. It is for these same reasons that we pursue a formulation
of zero-knowledge in the random oracle model that incorporates auxiliary input (refer
to [25] for additional arguments). Indeed, we regard our sequential composition lemma
as evidence that we have properly accounted for auxiliary input in our formulation
and not a goal in and of itself. Similarly, constructing protocols for NP that remain
zero-knowledge under sequential composition should not be an objective in itself.5

Neither should a generic method for transforming protocols that are zero-knowledge
into another that remain zero-knowledge under sequential composition.

On “explicit programmability”. From previous work [3,22,19,26], we know that
allowing the simulator to program the random oracle is necessary and sufficient for
one-round zero-knowledge protocols for NP and obfuscating point functions in the
random oracle model. However, while explicit programmability is sufficient for zero-
knowledge, we show that full programmability is necessary for the latter. This means
that the reason we are able to realize non-trivial circuit obfuscation in the random oracle
model comes not only from programming the random oracle, but also from not having
to specify explicitly how we program the random oracle.

The issue of explicit programmability also arises in the study of sequential composi-
tion. To obtain zero-knowledge that is closed under a polynomial number of sequential

4 One may ask, why not aim for universal composability then? This is addressed in the previous
paragraph, and as with previous work in the standard setting, we feel that zero-knowledge w.r.t.
auxiliary input is indeed the right compromise.

5 All “natural” zero-knowledge protocols for NP in the RO model (in the [3] sense) remain zero-
knowledge under sequential, even concurrent, composition, but this does not obliterate the
need for the “right” definition. After all, when auxiliary-input zero-knowledge was introduced,
all known zero-knowledge protocols were black-box and therefore remained zero-knowledge
under sequential composition.
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compositions, it appears that explicit programmability is necessary, in addition to
properly accounting for auxiliary input.

Self-composition for circuit obfuscation. Lynn et al. introduce self-composition for
circuit obfuscation [19], a notion of composition analogous to sequential composition.
In addition, they give an obfuscator for point functions in the random oracle model
that is not 2-self-composing. This is because the construction is not a valid obfuscator
w.r.t. dependent auxiliary input. To obtain polynomial self-composition for obfuscation
using techniques in this work, we will need a definition that incorporates both oracle-
dependent auxiliary input and explicit programmability.

2 Preliminaries

A negligible function is a function of the form n−ω(1), and is denoted neg(n). We use
PPT as an abbreviation for a probabilistic (strict) polynomial-time Turing machine. We
also consider the nonuniform and oracle analogues, which we denote by nonuniform
PPT and oracle PPT respectively. In probability expressions that involve a probabilistic
computation, the probability is also taken over the internal coin tosses of the underlying
computation. We refer the reader to [12] for definitions of interactive proof systems,
zero-knowledge, proofs of knowledge and witness-indistinguishability (WI) in the
standard model. For a relation R ⊆ {0, 1}∗ × {0, 1}∗, the language associated with
R is LR = {x : ∃y (x, y) ∈ R}.

3 Zero Knowledge in the Random Oracle Model

In this section, we present our hierarchy of formulations for zero knowledge in the RO
model, along with those that account for oracle-dependent auxiliary input. We begin
with several formalisms we will use in defining zero knowledge:

– We use RO to denote the random oracle and ε to denote an oracle that returns the
empty string on all inputs.

– Given a function f : {0, 1}∗ → {0, 1}∗ and a list � ⊆ {0, 1}∗ × {0, 1}∗, we use
f [�] to denote a function that agrees with f everywhere except on inputs specified
by the set �. Specifically,

f [�](x) =

{
y if ∃!y such that (x, y) ∈ �
f(x) otherwise

Informally, we refer to f [�] as the function obtained by programming f on the
inputs in �. In the definition of zero-knowledge, the simulator generates a pair (τ, �):
the simulator programs the random oracle on the inputs in �, and τ corresponds to
the view of the cheating verifier while interacting with the prover using the oracle
RO[�].
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– We allow the auxiliary input to be generated by a nonuniform oracle PPT Z
(the nonuniformity allows for auxiliary information that may depend on the input
instance) which we refer as the auxiliary input machine. We will give Z oracle
access to either ε or RO, depending on whether we allow the auxiliary input to
depend on the random oracle.

Definition 1 (zero-knowledge [3,22]). Let (P, V ) be an interactive protocol for a
language L = LR. Let V ∗, S, Z,D be oracle PPTs. Given (x,w) ∈ R, we define
diffO1,O2,O3

V ∗,S,Z,D(x,w) to be the quantity

Pr
RO

[
z ← ZO1(1|x|); τ ← (P RO(w), V ∗RO(z))(x); DO2(x, τ, z) = 1

]
−Pr

RO

[
z ← ZO1(1|x|); (τ, �)← SRO(x, z); DO3(x, τ, z) = 1

]
We say that (P, V ) is zero-knowledge in the fully programmable random oracle

model (FPRO) if for every oracle PPT V ∗, there exists an oracle PPT S such that for
all (x,w) ∈ R and for all nonuniform oracle PPTs Z and D, diffε,ε,ε

V ∗,S,Z,D(x,w) is
negligible (as a function of |x|). In addition, we obtain zero-knowledge in the:

explicitly programmable RO (EPRO) model if O1 = ε,O2 = RO,O3 = RO[�]
non-programmable RO (NPRO) model if O1 = ε,O2 = RO,O3 = RO

FPRO model w.r.t dependent auxiliary input if O1 = RO,O2 = ε,O3 = ε

EPRO model w.r.t dependent auxiliary input if O1 = RO,O2 = RO,O3 = RO[�]
NPRO model w.r.t. dependent auxiliary input if O1 = RO,O2 = RO,O3 = RO

For simplicity, we will also refer to the respective notions of zero-knowledge as FPRO

zero-knowledge, EPRO zero-knowledge, NPRO zero-knowledge, auxiliary-input FPRO

zero-knowledge, auxiliary-input EPRO zero-knowledge, and auxiliary-input NPRO zero-
knowledge.

Zero-knowledge in the FPRO model. This definition captures the weakest requirement,
in that the simulator may choose the random oracle in the simulated transcript, as
long as it “looks” random. We point out that we require simulating the output of the
cheating verifier, but not the random oracle used in the simulated transcript. This
is equivalent to a definition wherein the simulator S is given access to RO. Since
the distinguisher does not have access to RO, the simulator can simply generate
a random oracle by itself, so giving the simulator access to RO does not give the
simulator any extra power. Note that this definition also constitutes a relaxation
of the UC framework augmented with a random oracle functionality (namely,
that obtained by replacing the interactive environment with a non-interactive
distinguisher) [21,5].

Zero-knowledge in the EPRO model. The main qualitative difference between FPRO

zero-knowledge and EPRO zero-knowledge6 is that the simulator is required to
completely specify a simulated random oracle (namely RO[�]) in the latter, which

6 Indeed, making this distinction in the UC framework would require clumsy modifications.
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the distinguisher is given access to.7 We require that S specifies � explicitly, which
implies a polynomial bound on the size of �. On the other hand, the oracle RO[�] is
specified implicitly. EPRO zero-knowledge is equivalent to the Bellare-Rogaway
formulation, except the latter does not give the simulator oracle access to RO.
As with zero-knowledge in the FPRO model, this does not make any qualitative
difference as the simulator can simply generate random answers to the RO queries
and add these query-answer pairs to the list �.

Zero-knowledge in the NPRO model. Here, the simulator is not allowed to choose the
random oracle in the simulated transcript. This implies deniability, and is equivalent
to Pass’s formulation [22]. It is a special case of EPRO zero-knowledge with � = ∅.
For efficient-prover protocols, the NPRO zero-knowledge requirement is equivalent
to requiring that the following quantity be negligible [22,8]:

ERO

[∣∣Pr[z ← ZO1(1|x|); DRO(x, (P RO(w), V ∗RO(z))(x), z) = 1]

−Pr[z ← ZO1(1|x|); DRO(x, SRO(x, z), z) = 1]
∣∣]

This is also true w.r.t. dependent auxiliary input.

Incorporating dependent auxiliary input. Incorporating dependent auxiliary input
provides some guarantee of “independence” between the queries made to the
random oracle in the protocol and prior queries, even though we do not know
what the prior queries are. To achieve this definition, we construct simulators that
program the random oracle on inputs that have not been previously queried by Z
(here, we exploit the polynomial bound on the query complexity of Z). Unlike the
case without auxiliary input, it is essential that we provide the simulator for zero-
knowledge and EPRO zero-knowledge with oracle access to RO so that the simulator
may generate transcripts that are consistent with the output from Z .

Verifier’s view. A common convention in defining zero-knowledge in the standard
model is to use (P RO(w), V ∗RO(z))(x) to denote the view of the verifier V ∗, which
consists of the protocol’s transcript and the verifier’s random tape, instead of the
output of the verifier. This is because we may incorporate the computation of the
output from the view into the distinguisher. This argument does not necessarily
apply to definitions in the RO model. In this case, the distinguisher does not have
access to RO and may not be able to compute the output from the view.8 Therefore,
we reserve (P RO(w), V ∗RO(z))(x) to denote the output of the verifier.

A note on black-box simulation. As with previous works on zero knowledge in the RO
model, we will establish the zero-knowledge property via black-box simulation,

7 For some secret value s and a random RO, we may easily simulate a view of RO(s) with a
random string. However, in order to simulate a view of RO(s) along with an oracle that is
consistent with this view, we will need to either query RO at s or program RO at s; either
operation requires “knowing” s.

8 Simply requiring that the verifier’s query/answer pairs be included in its view may not be
sufficient as we may also need the prover’s query/answer pairs.
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except we will allow the simulator to see the oracle queries made by the cheating
verifier. This is consistent with the definition of zero knowledge because the
simulator can execute the code of the cheating verifier and observe the oracle
queries made during the executions. This is a crucial advantage over mere black-
box simulation of the cheating verifier in the standard model. On the other hand,
we do not allow the simulator to see the oracle queries made by Z . Consider a
typical application, namely that of sequential repetitions of the protocol. Here, the
auxiliary input is a transcript from previous executions of the protocol and may
therefore depend on the oracle RO. The cheating verifier receives the transcript,
but does not gain access to the private coin tosses used to generate the transcript.
The distinction arises from the fact that we allow the simulator to depend on the
cheating verifier but not on Z .

4 Zero-Knowledge Protocols and Separations

Several constructions of zero-knowledge protocols for NP in the RO model were
given in [3,22,11]. It is straight-forward to verify that the zero-knowledge protocol in
[3] is also auxiliary-input EPRO zero-knowledge. In an unpublished work [23], Pass
determined the round-complexity of auxiliary-input NPRO zero-knowledge protocols
for NP. We summarize these results below:

Theorem 1 (protocols [3,22,23]). Assuming the existence of one-way functions, there
exist:

– a one-round proof of knowledge protocol for NP that is auxiliary-input EPRO zero-
knowledge (moreover, we may assume that the knowledge extractor is straight-line
and runs in strict polynomial time [22,11]);

– a two-round protocol for NP that is NPRO zero-knowledge; and
– a 3-round protocol for NP that is auxiliary-input NPRO zero-knowledge.

Furthermore, each of these protocols has perfect completeness, negligible soundness,
and an efficient prover.

Theorem 2 (triviality [22,23]). Only languages in BPP have a one-round NPRO zero-
knowledge protocol or a 2-round auxiliary-input NPRO zero-knowledge protocol.

We outline the proofs in [23]. The 3-round auxiliary-input NPRO zero-knowledge
protocol for NP is based on the 2-round NPRO zero-knowledge protocol in [22] except
we have the prover pick a random prefix α in the first round, and prepend α to all
prover’s and verifier’s queries to the random oracle. The proof of Theorem 2 follows
essentially from the fact that the proofs of the analogous statments in the standard model
[14] relativizes.

Next, we state our first result, separating FPRO and EPRO zero-knowledge.

Theorem 3. Assuming the existence of one-way permutations, there exists a protocol
that is auxiliary-input FPRO zero-knowledge but not EPRO zero-knowledge.
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Fig. 1. Relations between different variants of zero knowledge in the RO model, assuming the
existence of one-way permutations. An arrow is an implication, and a crossed arrow indicate
separation. We stress that the relations refer to protocols satisfying the respective notion of zero-
knowledge.

Proof. Let π be a one-way permutation, and consider the following protocol for the
relation R = {(x,w) | x = π(w)}, where LR = {0, 1}∗ (note that soundness holds
vacuously):

Common input: An instance x ∈ {0, 1}n.
Prover’s private input: A witness w ∈ {0, 1}n.

P → V : Sends α
R←− {0, 1}n.

V → P : Sends τ
R←− {0, 1}n.

P → V : If τ = RO(α ◦ w), send w; else, send RO(α ◦ w).
verification: V always accepts.

To see that this protocol is auxiliary-input FPRO zero-knowledge9, fix a cheating
verifier V ∗ (along with its random tape and an auxiliary input z from Z), pick a random
α, and simulate the execution of V ∗, forwarding the oracle queries made by V ∗ to
RO, until we obtain its first message τ . During the simulation, we also check if any
of V ∗’s queries matches α ◦ w (which we can check efficiently given x). If so, we
would have recovered w, and may successfully compute the output of V ∗. If we do
not manage to recover w, we simulate the prover’s response with a random string τ ′ ∈
{0, 1}n and continue to simulate the execution of V ∗, forwarding all oracle queries
to RO, unless the query matches α ◦ w, in which case we respond with τ ′. This is ok
because with probability 1 − neg(n) over α, none of the queries made by Z has prefix
α. This completes the description of the zero-knowledge simulator.

Suppose on the contrary that the protocol is EPRO zero-knowledge, and consider the
simulator S that outputs the view of the honest verifier. Fix x ∈ L, and consider a
distinguisher with w = π−1(x) hardwired into it. Then, S must output a transcript that
contains RO[�](α ◦ w) with probability 1 − neg(n). For the latter, S must with high
probability, either query RO at α ◦ w or output a list � that contains the string α ◦ w. In
both cases, we may derive a PPT that on input x, outputs π−1(x) with high probability,
which contradicts π being one-way. ��

9 Informally, the prover uses (α, RO(α ◦ w)) to check whether the verifier already “knows” w.
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5 Sequential Composition Fails without Dependent Auxiliary
Input

In this section, we present zero-knowledge protocols which are no longer zero-
knowledge when executed twice sequentially. The protocols are similar in spirit to
that in [9], a zero-knowledge protocol in the standard model that is no longer zero-
knowledge when executed twice in parallel. The protocols exploit zero-knowledge
proofs of knowledge (which may be realized non-interactively in the random oracle
model), using these proofs as the auxiliary input which a cheating verifier could use
to “gain knowledge”. Specifically, the prover will send the verifier a zero-knowledge
proof of knowledge of the witness, and the cheating verifier will copy this proof to
“claim” knowledge of the witness. The apparent contradiction arises from a problem
in the definition of proofs of knowledge in the random oracle model, an issue we will
address in Section 7.

Theorem 4. Assuming the existence of one-way functions, FPRO zero knowledge,
EPRO zero knowledge, and NPRO zero knowledge are not closed under sequential
composition.

Proof (sketch). We begin by constructing an EPRO zero-knowledge protocol that is
no longer zero-knowledge when composed twice. The protocol is for the language
L corresponding to the relation R = {(x,w) | x = f(w)}, where f is a one-way
function, and we use as an underlying protocol a one-round EPRO zero-knowledge proof
of knowledge protocol (from Theorem 1).

Common input: An instance x ∈ {0, 1}n.
Prover’s private input: A witness w ∈ {0, 1}n.

V → P : Send a random string τ .
P → V : If τ is an EPRO zero-knowledge proof of knowledge that x ∈ L,

send w; else, send an EPRO zero-knowledge proof of knowledge
that x ∈ L.

verification: V accepts if it receives either w such that f(w) = x or an
accepting proof of knowledge that x ∈ L.

To prove EPRO zero-knowledge, the simulator runs the cheating verifier to obtain the
first message τ . If τ is an accepting proof of knowledge for x ∈ L, the simulator runs
the knowledge extractor to obtain a valid witness w. Otherwise, the simulator runs the
zero-knowledge simulator for the underlying zero-knowledge protocol to generate the
second-round message. We would actually require that the underlying zero-knowledge
protocol be auxiliary-input EPRO zero-knowledge, which is ok.

To see that this protocol is not zero-knowledge when composed twice, consider the
cheating verifier V ∗ that sends a random string in the first execution, and sends the
prover’s response as its first message in the second execution. For all x ∈ L, the
transcript between the honest prover and V ∗ (for two sequential repetitions) will contain
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f−1(x) with probability 1. That f is one-way implies that there is no PPT simulator for
two sequential repetitions of this protocol.

A similar modification to Pass’s 2-round NPRO zero-knowledge protocol for NP
yields a 2-round NPRO zero-knowledge protocol that is no longer NPRO zero-knowledge
when composed twice. ��

Remark 1. Our counter-example are efficient-prover protocols (looking ahead, our
sequential composition theorem only holds for efficient-prover protocols). This mean
that a cheating verifier (which is allowed to be nonuniform) can in fact simulate an
interaction between the honest prover and the honest verifier. This is different from
the counter-example in [13] wherein the cheating verifier cannot simulate such an
interaction. There, the honest prover is allowed nonuniformity, whereas the cheating
verifier is not, and the counter-example exploits the fact that the honest prover is “more
powerful” than the class of cheating verifiers in an essential manner. This distinction
was previously made in [9].

6 Sequential Composition with Dependent Auxiliary Input

Next, we prove a sequential composition lemma for auxiliary-input EPRO zero-
knowledge and auxiliary-input NPRO zero-knowledge, which confirms that these are
in some sense indeed the “right” definitions.

Theorem 5 (sequential composition). Let (P, V ) be an efficient-prover protocol in the
RO model. Let Q(·) be a polynomial, and let (PQ, VQ) be an interactive protocol that
on common input x ∈ {0, 1}n, proceeds in Q(n) phases, each of them consisting of
executing the interactive protocol (P, V ) on common input x (with independent coin
tosses for P ). If (P, V ) is auxiliary-input EPRO (resp. NPRO) zero-knowledge, then
(PQ, VQ) is also auxiliary-input EPRO (resp. NPRO) zero-knowledge.

Proof (sketch). We begin with the proof for EPRO zero-knowledge. The high-level
structure is similar to that in [14] for establishing a sequential composition lemma for
zero-knowledge proofs in the standard model. We start by partitioning the cheating
verifier V ∗

Q for (PQ, VQ) into Q(n) phases, each of which is the execution of a verifier
V ∗ for a stand-alone protocol (P, V ). V ∗ takes as input the common input x and an
auxiliary string encoding the state10 for V ∗

Q at the end of some phase i (the string also
encodes i) of an interaction with PQ, and upon interacting with P produces as output
another string encoding the state for V ∗ at the end of phase i+ 1. The zero-knowledge
property of (P, V ) then guarantees a simulator S for V ∗.

We generalize the earlier notation for programming a function by recursively
defining RO[�1, . . . , �i+1] as (RO[�1, . . . , �i])[�i+1]. We may now specify the simulator
for V ∗

Q as follows: on input (x, z),

10 For simplicity, we may think of the string as encoding the transcript for the first i phases of
interaction with PQ along with the random tape and auxiliary input for V ∗Q.
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– Set τ0 = z

– Run the simulator S for Q phases using the simulated oracle generated in
the previous phase; that is, for i = 1, 2, . . . , Q,

SRO[�1,...,�i−1](x, τi−1)→ (τi, �i)

– Output (�1 ∪ . . . ∪ �Q, τQ).11

We define Q(n) + 1 hybrids, H0, . . . , HQ. The j’th hybrid is defined as the output of
the following experiment:

– Run ZRO(1n)→ z, τ0 = z.
– Let the honest prover interact with the cheating verifier for j phases; that

is, for i = 1, 2, . . . , j,

(P RO , V ∗RO(τi−1))(x) → τi

– For the remaining Q − j phases, run the simulator S using the simulated
oracle generated in the previous phase; that is, for i = j + 1, . . . , Q,

SRO[�j ,...,�i−1](x, τi−1)→ (τi, �i)

– Hj is (RO[�j+1, . . . , �Q], τQ, z).

Note that H0 and HQ correspond to simulated transcript and the actual transcript
respectively. We need to show that H0 and HQ are computationally indistinguishable.
Suppose on the contrary that this is not the case. Therefore, we have a nonuniform
oracle PPTD that distinguishes two consecutive hybrid distributionsHj andHj+1. We
define an auxiliary input machine Zj that computes the interaction between P and V ∗

for the first j phases:

– Run ZRO(1n)→ z, τ0 = z.
– For i = 1, 2, . . . , j, (P RO , V ∗RO(τi−1))(x)→ τi
– Output (z, τj).

This allows us to rewriteHj and Hj+1 as follows:

– Run ZRO
j (1n)→ (z, τj).

– SRO(x, τj)→ (τj+1, �j+1)
– for i = j + 2, . . . , Q,

(SRO[�j+1,...,�i−1](τi−1))(x)→ (τi, �i)
– Output (RO[�j+1, . . . , �Q], τQ, z).

– Run ZRO
j (1n)→ (z, τj).

– (P RO , V ∗RO(τj))(x) → τj+1

– for i = j + 2, . . . , Q,
(SRO[�j+2,...,�i−1](τi−1))(x) → (τi, �i)

– Output (RO[�j+2, . . . , �Q], τQ, z).

11 We abuse ∪ slightly here; we want �1∪. . .∪�Q to denote the set satisfying RO[�1∪. . .∪�Q] =
RO[�1, . . . , �Q].
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This is sufficient to contradict zero-knowledge of (P, V ) for the j + 1’th phase.12 The
result for NPRO zero-knowledge follows as a special case corresponding to �1 = . . . =
�Q = ∅. ��

Remark 2. One might expect a priori that the zero knowledge is preserved under a
polynomial number of repetitions once we take into account oracle-dependent auxiliary
information. However, we are only able to establish such a statement in the EPRO and
NPRO models. Technically, the proof breaks down for FPRO zero-knowledge because
the simulator is not required to specify the simulated random oracle. In particular, this
shows that sequential composition is more subtle than merely accounting for auxiliary
input. A natural question that arises is whether prepending a random prefix to all oracle
queries allows us to transform any protocol that is FPRO zero-knowledge into one
that remains zero-knowledge under a polynomial number of sequential compositions.
We note that using a random prefix only guarantees “independence” of the prover’s
messages across different iterations; a cheating verifier is not limited to queries with the
given prefix.13

7 Proofs of Knowledge with Dependent Auxiliary Input

Several constructions of zero-knowledge protocols begin with the verifier sending a
proof of knowledge, for instance, that used in our counter-example, and the NPRO zero-
knowledge protocol in [22]. If we allow the cheating verifier to receive an auxiliary
input that depends on the random oracle, we would need to also extend the definition of
proof of knowledge to incorporate auxiliary inputs that depend on the random oracle.

Definition 2. Let (P, V ) be an interactive protocol for a language L = LR. We say
that (P, V ) is a proof of knowledge w.r.t. dependent auxiliary input in the RO model
(or auxiliary-input proof of knowledge) if for every oracle PPT P ∗, there exists an
oracle PPT E such that for all nonuniform oracle PPT Z and for all x:

Pr
RO

[
ZRO(1|x|)→ z; ERO(x, z)→ w; (x,w) ∈ R

]
> Pr

RO

[
ZRO(1|x|)→ z; (P ∗RO(z), V RO)(x) accepts

]
− neg(|x|)

12 Unlike in the standard model, we cannot use an averaging argument to fix the output (z, τj)
from Zj . This is because the output depends on RO. We may eliminate the efficient-prover
constraint in the lemma by allowing the auxiliary input machine Z in the definition of zero-
knowledge to be unbounded, but we do not know how to achieve zero-knowledge without a
bound on the query complexity of Z.

13 Specifically, consider the trivial protocol for the language {0, 1}∗ wherein the prover sends
nothing and the (honest) verifier always accepts. Note that using a random prefix does not
affect this protocol in any way. Now, consider a cheating verifier that after each iteration
outputs RO(0n). The zero-knowledge simulator for a single iteration (without dependent
auxiliary input) may simply output a random string, but simply concatenating the output of
this simulator for a polynomial number of times does not yield a correct simulation of the view
of the cheating verifier for a polynomial number of iterations. This highlights the difference
between simulating the transcript vs the output of the verifier, and the difficulty in ensuring
“independence” of the random oracles amongst different iterations.
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The next result implies a separation between zero-knowledge proofs of knowledge and
zero-knowledge auxiliary-input proofs of knowledge. Specifically, we rule out non-
interactive protocols that are simultaneously zero-knowledge and a proof of knowledge
(in the above sense); otherwise, we can simply apply the knowledge extractor to the
simulated proof to obtain a candidate witness. Some care is needed in arguing that the
knowledge extractor works on the simulated proof, which uses a simulated random
oracle and not the actual one. The reason why this approach only works for the new
definition of proofs of knowledge is that we allow a cheating prover to receive oracle-
dependent auxiliary input. In particular, the cheating prover may receive a convincing
proof as auxiliary input, and the knowledge extractor can neither rewind the auxiliary
input machine nor observe the oracle queries it makes. The proof is deferred to the full
version.

Theorem 6. Assuming the existence of one-way functions, there is a 2-round public-
coin argument system for NP that is auxiliary-input EPRO zero-knowledge, and also an
auxiliary-input proof of knowledge. On the other hand, only languages in BPP have a
non-interactive argument system that is EPRO zero-knowledge and an auxiliary-input
proof of knowledge.

8 Circuit Obfuscation in the Random Oracle Model

LetO be a probabilistic polynomial-time algorithm and let C be a family of circuits. Let
A,S, Z,D be oracle PPTs. Given C ∈ C, we define diffO1,O2,O3

A,S,Z,D (C) to be the quantity

Pr
RO

[
z ← ZO1(1|C|); τ ← ARO(ORO(C)); DO2(τ, z)) = 1

]
−Pr

RO

[
z ← ZO1(1|C|); (τ, �)← SRO,C(z); DO3(τ, z) = 1

]
Definition 3 (circuit obfuscation [19,1,16]). A probabilistic polynomial-time algo-
rithm O is an obfuscator for the family of circuits C = ∪n Cn in the FPRO model
(where Cn is the subset of circuits in C that take inputs of length n) if the following three
conditions hold:

– (approximate functionality) There exists a negligible function α such that for all
n, for all C ∈ Cn, with probability 1 − α(n) over the internal coin tosses of the
obfuscator and over RO, ORO(C) describes a circuit with RO-gates that computes
the same function as C.

– (polynomial slowdown) There is a polynomial p such that for every circuit C ∈ C,
|O(C)| ≤ p(|C|).

– (virtual black-box property) For every oracle PPT A, there exists an oracle PPT
S such that for all C ∈ C and for all nonuniform oracle PPTs Z and D,
diffε,ε,ε

A,S,Z,D(C) is negligible (as a function of |C|).
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Fig. 2. Relations between different variants of obfuscation in the RO model. An arrow is an
implication, a double-tailed arrow is an equivalence, and a crossed arrow indicate separation.
We stress that the relations refer to families of circuits that are obfuscatable according to the
respective notions.

We say that C is FPRO obfuscatable if there exists an obfuscator for C. In addition, we
obtain:

EPRO obfuscatable if O1 = ε,O2 = RO,O3 = RO[�]
NPRO obfuscatable if O1 = ε,O2 = RO,O3 = RO

auxiliary-input FPRO obfuscatable if O1 = RO,O2 = ε,O3 = ε

auxiliary-input EPRO obfuscatable if O1 = RO,O2 = RO,O3 = RO[�]
auxiliary-input NPRO obfuscatable if O1 = RO,O2 = RO,O3 = RO

A point function Iw is a boolean function that evaluates to 1 on input w and 0
everywhere else. As observed in [19], to obfuscate Iw in the RO model, we may simply
pick a random α ∈ {0, 1}|w| and store α, RO(α ◦w) in the obfuscated circuit, which on
input x, outputs 1 iff RO(α ◦ x) = RO(α ◦ w).

Theorem 7 (obfuscating point functions [19]). There exists an auxiliary-input FPRO

obfuscator for the class of point functions.

One may expect some modification of the previous construction to yield an EPRO

obfuscator for point functions, but this turns out to be impossible. The next result
follows from a similar characterization in [26] for NPRO obfuscation:

Theorem 8 (triviality). A family of circuits C = ∪n Cn is EPRO obfuscatable iff C is
efficiently and exactly learnable using membership queries.

Proof (sketch). Suppose C is efficiently and exactly learnable using membership
queries. Consider an obfuscator that simply takes the input circuit C and outputs the
circuit produced by the learning algorithm given oracle access to C; the simulator does
essentially the same thing.

The learning algorithm for an EPRO obfuscatable family of circuits C is very simple.
To evaluate C ∈ C on input x (given oracle access to C and input x), run the simulator
S for the trivial adversary A that merely outputs the obfuscated circuit to obtain (τ, �),
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answering queries to RO with random coin tosses, and then evaluate τ on the input
x using the simulated oracle RO[�]. This may be modified via standard techniques
(specifically, we will need to amplify the soundness error via repetition and then take
a union bound over all inputs) to yield a learning algorithm that on oracle access to C
output w.h.p. a (standard) circuit that agrees with C on all inputs. ��
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Abstract. A universally composable (UC) blind signature functional-
ity demands users to commit to the message to be blindly signed. It
is thereby impossible to realize in the plain model. We show that even
non-committing variants of UC blind signature functionality remain not
realizable in the plain model. We then characterize adaptively secure UC
non-committing blind signatures in the common reference string model
by presenting equivalent stand-alone security notions. We also present a
generic construction based on conceptually simple Fischlin’s blind signa-
ture scheme.

1 Introduction

Background. Since the introduction of blind signatures [9] vast number of
papers are devoted to efficient constructions, security analysis, and extensions.
Major applications include untraceable payment systems [9] and anonymous vot-
ing [10,13]. The standard notions of security for blind signature schemes in the
stand-alone setting are blindness and unforgeability [9,22,18]. Universal compos-
ability (UC) framework [3] offers security in more general setting where other
arbitrary protocols are running concurrently. It asserts that the properties pro-
vided by an idealized functionality retain even under general composition. A
blind signature functionality is first suggested by Canetti in [4] and formally
defined by Fischlin in [11] with a round-optimal realization in the common ref-
erence string (CRS) model. Kiayias and Zhou study adaptive security in [19].

In known blind signature functionalities, e.g., [11,19], a user commits to a
message to request a signature. Then a signature is issued by the functionality
remotely from the view of the signer. In [11], Fischlin pointed out that a UC blind
signature protocol that realizes such a functionality implies a UC commitment
protocol in the static corruption model and thus impossible to realize in the plain
model [7]. A more formal argument is given by Lindell in [20,21]. A common idea
for these arguments is that the existence of a simulator implies extraction of the
input message and hence contradicts to the blindness.

Is there a hope to circumvent the above impossibility if the functionality is
relaxed by giving up the commitment property? In some applications such as a
simple e-cash or a coupon system, every message can be a random string that

M. Matsui (Ed.): ASIACRYPT 2009, LNCS 5912, pp. 435–450, 2009.
c© International Association for Cryptologic Research 2009
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the users do not need to know or fix in advance. Such applications only concern
blindness and unforgeability. In [2], Buan, Gjøsteen, and Kr̊akmo presented a
non-committing blind signature functionality where corrupt users no longer de-
posit messages. Thus there is no need to extract the messages for simulation. It
was shown that such a non-committing blind signature functionality is realizable
in the plain model and the presented security is equivalent to the unforgeability
and weak blindness defined by Juels, Luby and Ostrovsky in [18].

Our contribution. Somewhat contradictory, we show that universally com-
posable non-committing blind signatures are still impossible in the plain model.
Our proof shows that if the functionality provides blindness the presence of a
simulator contradicts to the unforgeability in the plain model. Importantly, the
positive result in [2] stands only in a restricted corruption model where the signer
can be corrupted only after the key generation process. As stated in the paper,
such a restriction is too strong that it is equivalent to incorporating a trusted
party in the protocol. Our result holds for the most general corruption model.
It is also pretty robust in the sense that it applies to wide variety of blind signa-
ture functionalities that formulate blindness in a reasonable way like all existing
functionalities do.

Despite the negative result, non-committing blind signatures remain an in-
teresting cryptographic object to study. The less demanding functionality would
allow simple protocol designs in advanced models. This paper presents a thor-
ough characterization of a non-committing blind signature functionality that is
secure against adaptive adversaries without secure erasures. We prove that the
properties captured by the functionality is equivalent to a pair of stand-alone
security notions in the common reference string model, which are the standard
unforgeability and a new strong notion of blindness which we call equivocal simu-
lation blindness. We then decompose the equivocal simulation blindness to more
handy notions called session equivocality and signature equivocality in a specific
setting. We also show a generic construction. The simplicity of our framework
can be highlighted when compared to the result on the adaptive security for the
committing blind signatures [19].

Due to lack of space, most proofs are moved to the full version [1], which also
includes results in the static corruption model.

2 Notations

All algorithms in this paper run in polynomial-time in the security parameter λ.
By y ← A(x; r) we mean that algorithm A is invoked with input x and uniformly
chosen randomness r, and outputs something labeled as y. Randomness r may be
omitted. By (a, b)← 〈A(x), B(y)〉 we denote an execution of interactive Turing
machines A and B on input x and y and with output a and b, respectively. When
only one side of the output is of concern, we write a ← 〈A(x), B(y)〉L for the
left side and b ← 〈A(x), B(y)〉R for the right side. We write a[ω] ← A when A
has some extra output ω. The meaning of ω depends on the context and will be
noted whenever this notation is used. For notations and notions related to the
UC framework we refer to [6].
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3 Blind Signature Schemes

3.1 Syntax and Standard Security Notions

A blind signature scheme BS in the common reference string model consists of
five algorithms BS = BS.{Crs,Key,User, Signer,Vrf}. BS.Crs is a common refer-
ence string generator. BS.Key is a key generator. BS.User is an interactive signa-
ture request algorithm and BS.Signer is a signing algorithm. Interaction between
BS.User and BS.Signer forms a signature generation protocol. BS.Vrf is a signa-
ture verification algorithm. A blind signature scheme must provide completeness
and consistency. Roughly, completeness is that for any (m,σ) made faithfully
through BS.Crs, BS.Key, BS.User, and BS.Signer, verification algorithm BS.Vrf
outputs 1. Consistency is that BS.Vrf outputs the same value for the same input
(even for keys generated by an adversary). We refer to [14] for details and dis-
cussions on these properties. Two standard security notions are unforgeability
and blindness as shown below.

Definition 1 (Unforgeability: UF ). A blind signature scheme BS is unforge-
able if Succuf

F∗(λ) = Pr[ForgeBS
F∗(λ) = 1] is negligible in λ for any algorithm

F ∗ where ForgeBS
F∗ is the experiment shown below. F ∗ can access to the oracle

arbitrary number of times concurrently.

Experiment ForgeBS
F∗(λ) :

Σ ← BS.Crs(1λ)
(vk, sk)← BS.Key(Σ)

((m1, σ1), . . . , (mk+1, σk+1))← F ∗〈·,BS.Signer(Σ,sk)〉(Σ, vk)

Return 1 iff
completed← 〈·,BS.Signer(Σ, sk)〉R happens at most k times, and
mi 
= mj for all 1 ≤ i < j ≤ k + 1, and
BS.Vrf(Σ, vk,mi, σi) = 1 for all 1 ≤ i ≤ k + 1.

Strong unforgeability (sUF) is defined in the same way but requiring (mi, σi) 
=
(mj , σj) instead of mi 
= mj, This paper focuses on the above relatively weaker
notion as it suffices for major applications.

Definition 2 (Blindness: BL ). A blind signature scheme BS is blind if
Advbl

B∗(λ) = |Pr[BlindBS
B∗(λ, 0) = 1]− Pr[BlindBS

B∗(λ, 1) = 1]| is negligible in λ
for any algorithm B∗ where BlindBS

B∗ is the experiment shown below.

BlindBS
B∗(λ, b) :

Σ ← BS.Crs(1λ)
(vk,m0,m1)← B∗(Σ)
σb ← 〈BS.User(Σ, vk,mb), B∗〉L
σ1−b ← 〈BS.User(Σ, vk,m1−b), B∗〉L
If σ0 = ⊥ or σ1 = ⊥ then set σ0 = σ1 = ⊥.
Return b̃← B∗(σ1, σ0)
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For ease of notation, we represent algorithm B∗ as stateful so that it implicitly
takes over its internal state from the previous invocation every time it is invoked
by the experiment. Only new inputs are explicitly presented in the description.
This convention is applied to all algorithms denoted with asterisk (∗) throughout
the paper.

As observed in [17], the above definition captures the case where the adversary
attempts to get useful information by aborting the sessions. [12] extends the
notion in such a way that, when adversary B∗ is given (⊥,⊥) at the end, it is
given an extra piece of information that tells which session (the first or second
or both) actually yields ⊥ in the user side. The results in this paper also holds
with respect to the stronger notion of blindness.

4 UC Non-committing Blind Signatures

4.1 Functionality Fncb

Figure 1 illustrates our non-committing blind signature functionality Fncb. In the
figure, v is a deterministic signature verification algorithm.Π is a description of a
stateless signing algorithm. See [6] for remarks on running arbitrary algorithms in
a functionality. As well as the ordinary signature functionality in [5] we formulate
Fncb not to provide any security properties if an unregistered verification key
is given as input to the signature generation and verification phases. See the
discussion about the key management below.

The idea of using counters to enforce the unforgeability is the same as that in
[2]. Due to the difference of the timing that the counters are increased, our for-
mulation can live with the general communication model thoroughly controlled
by the adversary while the one in [2] needs authenticated communication in its
realization. Note that the bare signature functionality in [5] can be realized with-
out authenticated channel because there is no link between the public-key and
the identity of the signer and it is not a matter who issues a signature as long
as the signature is valid.

Non-committing Property. Observe that input message m from a corrupt
user is sent nowhere nor stored in the functionality. Thus S working on behalf
of a corrupt user can complete the signature generation process whatever m is.
This formulation results in avoiding the need of extracting the message from the
corrupt users.

Unforgeability. This property holds only while signer Ps is honest. Counter
Ccmpl counts the number of completed signature generations in the signer’s side
while counter Cvalid counts the number of valid signatures on distinct messages
received by honest users with legitimate verification. The verification process ac-
cepts signatures on new messages only if Ccmpl > Cvalid. From the specification,
it is clear that Ccmpl ≥ Cvalid always holds as long as the signer is honest. Thus
unforgeability is guaranteed in the absolute sense. To capture weak unforgeabil-
ity, Cvalid is incremented only for unique messages in the signature generation
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Key Generation : Given (KeyGen, sid) from a party Ps, verify that sid =
(Ps, sid

′) for some sid′. If not, then ignore. Else, forward (KeyGen, sid)
to simulator S . Then, on receiving (Generated, sid, v , Π) from S , send
(Generated, sid, v) to Ps and record (Ps, v , Π). Let Ccmpl = Cvalid = 0, and
Γ be empty. This phase must be completed only once and before other phases.

Signature Generation : On receiving (Request, sid, ssid, v ′, m) for some m from
Pu, send (Request, sid, ssid, v ′) to S and do the following.

i. On receiving (Signed, sid, ssid) from S , forward it to Ps. Set Ccmpl ←
Ccmpl + 1.

ii. On receiving (Received, sid, ssid) from S , do as follows:
– If Pu is honest and v ′ = v , then do as follows. If (m, ∗, 1) �∈ Γ , set

Cvalid ← Cvalid + 1. Compute σ ← Π(m) and record (m, σ, 1) to Γ .
If (m, σ, 0) ∈ Γ , send an error message to signer Ps and halt. Send
(Received, sid, ssid, σ) to Pu.

– Else if Pu is corrupt or v ′ �= v , ask S and forward Pu whatever received
from S .

Signature Verification : On receiving (Verify, sid, ssid, v ′, m, σ) from some
party Pv, set ϕ = v ′(m, σ) and do as follows.
1. If v ′ �= v , set f = ϕ.
2. Else if (m, σ, f ′) ∈ Γ for any f ′, then set f = f ′.
3. Else if Ps is corrupt or (m, ∗, 1) ∈ Γ , then set f = ϕ and record (m, σ, f)

to Γ .
4. Otherwise:

(a) If Ccmpl > Cvalid, then set f = ϕ and Cvalid ← Cvalid + f .
(b) Otherwise, set f = 0.
Then record (m,σ, f) to Γ .

Output (Verified, sid, ssid, f) to Pv .
Player Corruption : On receiving corruption to Pu, send all inputs and out-

puts exchanged with Pu to simulator S . Also send all randomness used in the
evaluations of Π with respect to Pu.

Fig. 1. Non-committing blind signature functionality Fncb

process (see step (ii)). Strong unforgeability can be captured by removing con-
ditions “if (m, ∗, 1) 
∈ Γ” and “or (m, ∗, 1) ∈ Γ” from the signature generation
and verification phases respectively.

Completeness and Consistency. If the signer and a user are not corrupted
and the registered key is given as input to the signature generation phase,
(m,σ, 1) is recorded. The verification phase for such faithfully generated (m,σ)
and registered v finds that record and always outputs f = 1. Thus complete-
ness is captured. Consistency holds for free since algorithm v is deterministic.
Limiting v to be deterministic loses generality but makes the exposition con-
siderably simpler. For issues with respect to probabilistic verification algorithms
see [5,6,14].

Blindness. Important observations are; 1. Π is fixed before any sub-session
for signature generation starts, 2. Π takes nothing but message m as input,
and 3. Message m and Π(m) are never sent to S or Ps during the signature
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generation phase. This formulation thereby assures that remotely computed σ is
independent of the signature generation viewed by the signer. Such a mechanism,
which we call remote signing, is suggested in [4] and employed by all known blind
signature functionalities.

On Key Management. The “bare” signature functionality in [4,6] is formu-
lated in such a way that it stores a single public-key in every session and the
security properties are guaranteed only for the registered public-key. The func-
tionality enjoys concise presentation and high modularity. We take over his
approach to define Fncb. Namely, if unregistered v ′ is given as input to the
signature generation or verification phase, Fncb behaves just as S intended. So
even though a user is honest, no security is guaranteed in such a case. (Re-
call that the environment can pass arbitrary v ′ to an honest user.) Accordingly,
upper-level protocols that uses Fncb must be responsible to provide registered v
to the honest users.

An alternative formulation would be to let Fncb to explicitly reject unregis-
tered v ′. It however results in incorporating a mechanism for distributing the
correct public-key within the blind signature protocol. For instance, the proto-
col realizing Fncb may be constructed in Fca-hybrid model where Fca is the
certificate-authority functionality [5] that serves only for the blind signature
protocol. Though this kind of issue can be handled by the theorem of universal
composition with joint state [8], we prefer Fncb to be basic for the sake of higher
modularity.

In the literates, [11,2] implicitly follow the same approach as ours. They however
define their functionality only for the case of receiving the registered public-key
as input to the signature generation phase. It results in simpler presentation but
eventually the details need to be provided with care. [19] shows more extended
functionality such that it handles several public-keys under the same session-id
and guarantees blindness for every set of signatures issued with the same public-
key. This approach however suffers high complexity in its presentation.

Variations. Fncb in Fig. 1 notifies only the end of the signature generation
process to the environment. It can be extended so that the environment can
give the signer explicit approval or denial for starting the process by adding
another round of interaction among S, Fncb, and Ps. It is also possible to let
the environment know about the abnormal termination of the protocol in the
same way. These modifications do not affect to the results in this paper since
they can be incorporated only by modifying the protocol wrapper in Section 5.2
accordingly.

4.2 Impossibility in the Plain Model

This section shows that Fncb cannot be realized without accessing to extra ideal
functionalities or assuming some help from incorruptible parties. To make the
statement meaningful, we consider non-trivial protocols where honest parties
running the protocol with right inputs terminate and output something with
noticeable probability.
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Theorem 1. There exists no non-trivial protocol that securely realizes Fncb in
the plain model.

Proof. We use S to extract the remote signing function Π and use it to break
the unforgeability in the real protocol. Recall that a forgery could never happen
in the ideal model. Thus Z can distinguish the ideal process and a real protocol
execution by observing a successful forgery.

Suppose that there exists a non-trivial protocol π that realizes Fncb in the
plain model. Recall that Fncb is invoked when it receives (KeyGen, sid) from a
signer. It then outputs (Generated, sid, v) to the signer. Protocol π works in the
same way since it realizes Fncb. Let πKG denote such a part of π that receives
(KeyGen, sid) as input and outputs (Generated, sid, v).

Consider a particular A∗ and Z∗ that behave in execπ,A∗,Z∗ as follows. Z∗

first asks A∗ to corrupt the signer. Z∗ then runs πKG with input (KeyGen, sid)
and obtains (Generated, sid, v). (Here, without loss of generality, we assume
that πKG can be run solely by the signer up to the moment (Generated, sid, v)
is output. See the discussion after the proof for generalization.) Z∗ then sends
(KeyGen, sid) and v to A∗ and receives (Generated, sid, v) from A∗ working on
behalf of the corrupt signer. Z∗ then asks a signature on a messagem by sending
(Request, sid, ssid, v ,m) to an honest user. If A∗ is to join π on behalf of the
signer to generate a signature, Z∗ takes over the role and completes the protocol
by faithfully following π. The user eventually outputs (Received, sid, ssid, σ). Fi-
nally Z∗ sends (Verify, sid, ssid, v ,m, σ) to a user and receives (Verified, sid,
ssid, f) as a result of verification. Observe that, even though the signer is cor-
rupted, Z∗ simulates an honest signer by following π. Furthermore, due to the
completeness and terminating property of π, Z∗ can complete signature gener-
ation with noticeable probability. If Z∗ completes, f = 1 appears at the end.
Since π realizes Fncb, there exists a simulator S∗ for such A∗ and Z∗. To suc-
cessfully simulate A∗, simulator S∗ has to send Π to Fncb before Z∗ sends
(Request, sid, ssid, v ,m) to an honest user. Furthermore, with noticeable prob-
ability, Π(m) must yield a valid signature accepted by protocol π.

Now we construct Z that distinguishes execπ,A,Z and idealFncb,S,Z by
using above S∗ as a subroutine. Z first sends (KeyGen, sid) to the honest signer
and receives (Generated, sid, v). Then Z starts simulating Z∗. It asks S∗ to
corrupt the simulated signer. Then it sends (KeyGen, sid) and v to S∗ and receives
(Generated, sid, v , Π) from S∗ on behalf of Fncb. Now Z computes σ ← Π(m)
for some m. It then sends (Verify, sid, ssid, v ,m, σ) to a verifier and receives
(Verified, sid, ssid, f). The output of Z is f .

Let us evaluate Z. Suppose that Z is in execπ,A,Z . Z simulates Z∗ per-
fectly for S∗. In particular v in this case is generated honestly by π just as
Z∗ does. So S∗ outputs (Generated, sid, v , Π) as expected. Then with notice-
able probability such Π yields σ that passes the verification protocol of π. Thus
f = 1 happens with noticeable probability in this case. Next suppose that Z is
in idealFncb,S,Z . In this case, v is generated by S. If it is distinguishable from
the one observed in execπ,A,Z , Z distinguishes execπ,A,Z and idealFncb,S,Z
on that basis. If it is indistinguishable, S∗ outputs (Generated, sid, v , Π) as well
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as in the previous case. Since no signature generation process is completed in
idealFncb,S,Z and Fncb provides absolute unforgeability, Fncb rejects σ gener-
ated by Π . Thus f = 0 for this case. Accordingly Z distinguishes execπ,A,Z
and idealFncb,S,Z with noticeable probability.

An essential point is that Fncb demands S to extract Π even from a corrupt
signer for the sake of blindness. But the successful extraction of Π contradicts
to the unforgeability. The situation is very similar to the case of UC commit-
ments [7] where the message from a corrupt committer must be extracted for the
sake of binding property, and the successful extraction contradicts to the hiding
property.

The proof does not go through if protocol π involves incorruptible trusted
parties or any extra ideal functionalities. The point is that Z∗ should be able to
run πKG by itself so that the distribution of v is solely under the control. This
allows Z to simulate Z∗ simply by sending v generated outside of Z. If πKG

involves parties other than the signer, Z∗ corrupts them before they send off
any message and simulate them honestly by following πKG. When Z simulates
Z∗, these corrupted parties are simulated by following the behavior of the real
uncorrupted players Z is working with.

5 Characterization

5.1 Blindness Based on Simulatability

The following new notion called simulation blindness assures that the signature
generation protocol can be executed without knowing the message. Similarly,
the resulting signature can be generated without involving any information from
the protocol run. To capture adaptive security, we require state reconstruction
property. We use the term equivocal when a notion involves state reconstruction
property.

Definition 3 (Equivocal Simulation Blindness: EqSimBLND ). A blind
signature scheme BS is equivocal simulation blind if there exists a set of al-
gorithms SIM = SIM.{Crs,User, Sig, State} such that SIM.User and SIM.State

can be stateful and SIM.Sig must be stateless, and advantage Adveqsib
D∗ (λ) =

|Pr[EqSimBLBS
D∗(λ, 0) = 1] − Pr[EqSimBLBS

D∗(λ, 1) = 1]| is negligible in λ
for any D∗, where EqSimBLBS

D∗(λ, b) is the following experiment. Oracles are
accessible in arbitrary manner.

EqSimBLBS
D∗(λ, 1) :

Σ ← BS.Crs(1λ)
vk ← D∗(Σ)
b̃← D∗O1(Σ,vk,·)

Return b̃

O1(Σ, vk,m)
σ ← 〈BS.User(Σ, vk,m; r), D∗〉L
Output (σ, r)
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EqSimBLBS
D∗(λ, 0) :

(Σ, t)← SIM.Crs(1λ)
vk ← D∗(Σ)
b̃← D∗O0(Σ,vk,·,t)

Return b̃

O0(Σ, vk,m, t)
δ[ωu]← 〈SIM.User(Σ, vk, t), D∗〉L
σ[ωs]← SIM.Sig(Σ, vk,m, t)
r ← SIM.State(ωu, ωs)
If δ = 0, then set σ = ⊥.
Output (σ, r)

Denoted by ωu and ωs are the state information of SIM.User and SIM.Sig,
respectively.

Note that SIM.State is supposed to simulate the randomness even for the case
where the interaction between SIM.User and D∗ is terminated abnormally.
SIM.State can see how the interaction is terminated by seeing the state informa-
tion ωu.

It would be more useful if we could present separate notions of simulatability
for simulating the view of sessions by SIM.User and the signatures by SIM.Sig.
We call the notions session equivocality and signature equivocality. It is however
not a proper way in general. Since SIM.User and SIM.Sig uses the same trapdoor
as input and they may give negative influence each other when they are used at
the same time. We thus consider a special case where trapdoors are separated
like (t1, t2), and SIM.User (and SIM.Sig) can be run only with t1 (and t2, respec-
tively). With respect to the separate trapdoor generator we define two notions
of simulatability.

Definition 4 (Separable Trapdoor Generator). SIM.Crs is a separable trap-
door generator if it outputs (Σ, (t1, t2)) such that Σ is indistinguishable from
those generated by BS.Crs with negligible advantage, say Advcrs

C∗ , for any
algorithm C∗.

Definition 5 (Signature Equivocality: SigEq). A blind signature scheme BS
is signature equivocal if there exists algorithms SIM.Sig and SIM.SigState such
that advantage function Advsigeq

A∗ (λ) = |Pr[SigEQBS
A∗(λ, 0) = 1] − Pr[SigEQBS

A∗

(λ, 1) = 1]| is negligible in security parameter λ for any A∗, where SigEQBS
A∗(λ, b)

is the following experiment.

SigEQBS
A∗(λ, b) :

(Σ, (t1, t2))← SIM.Crs(1λ)
vk ← A∗(Σ)
b̃← A∗Ob(Σ,vk,·,t1)

Return b̃

O1(Σ, vk,m, t1)
σ ← 〈BS.User(Σ, vk,m; r1||r2), A∗〉L
Output (σ, r1||r2)

O0(Σ, vk,m, t1)
σ[θ]← 〈BS.User(Σ, vk,m; r1||r2), A∗〉L
σ′[ωs]← SIM.Sig(Σ, vk,m, t1)
r′1 ← SIM.SigState(θ, ωs)
If σ = ⊥, then σ′ = ⊥, r′1 = r1.
Output (σ′, r′1||r2)

Symbol θ is the transcript observed by BS.User, and ωs is a state information of
SIM.Sig.
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Definition 6 (Session Equivocality: SesEq ). A blind signature scheme BS
is session equivocal if there exists algorithms SIM.User and SIM.SesState such
that advantage function Advseseq

E∗ (λ) = |Pr[SesEQBS
E∗(λ, 0) = 1]− Pr[SesEQBS

E∗

(λ, 1) = 1]| is negligible in λ for any algorithm E∗, where experiment SesEQBS
E∗

is the following.

SesEQBS
E∗(λ, b) :

(Σ, (t1, t2))← SIM.Crs(1λ)
vk ← E∗(Σ, t1)

b̃← E∗Ob(Σ,vk,·,t2)

Return b̃

O1(Σ, vk,m, t2):
〈BS.User(Σ, vk,m; r1||r2), E∗〉
Return r2

O0(Σ, vk,m, t2):
δ[ωu]← 〈SIM.User(Σ, vk, t2), E∗〉L
r2 ← SIM.SesState(ωu,m)
Return r2

Oracle Ob receives a message m from E∗ and interacts with E∗. Symbol ωu is
the state information of SIM.User.

In Definition 5 it is assumed that randomness r used in BS.User can be separated
into two parts r1 and r2. An intuition is that r2 is used while interacting with the
signer and r1 is used after receiving the final message from the signer for computing
the output signature. This treatment does not lose generality as one can set either
part as empty. RegardingDefinition 6 we stress that the messages and the resulting
signatures are not given to E∗. Also note that trapdoor t1 is given to E∗.

We now show relations between the standard blindness and simulation blind-
ness. Since simulation blindness captures blindness in a very strong way, it seems
natural that the following lemma holds. Proofs for the following lemmas are in [1].

Lemma 1 (EqSimBLND ⇒ BL ). If BS is equivocal simulation blind then it is
blind.

Proof is done in a standard way. We construct D∗ that successfully breaks equiv-
ocal simulation blindness by using B∗ that breaks blindness.

Regarding the reverse direction, we do not know if blindness solely implies
simulation blindness or not. We however can show that there exists a scheme
that is blind and unforgeable but not simulation blind. Namely, for the schemes
that provide both blindness and unforgeability the simulation blindness is a
strictly stronger notion than blindness. This implication is limited but sufficiently
meaningful since we are interested in schemes that provide both blindness and
unforgeability. Proof can be done in the similar way as that of Theorem 1.

Lemma 2 (BL ∧ UF � EqSimBLND ). There exists BS that is blind and
unforgeable but not equivocal simulation blind.

The following lemma states that it suffices to consider simulatability about ses-
sions and signatures individually when trapdoors are separable for each purpose.

Lemma 3 (SesEq ∧ SigEq ⇒ EqSimBLND ). If BS has a separable trapdoor
generator and is signature equivocal and session equivocal with respect to the
generator then BS is equivocal simulation blind.
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Proof is done through three steps of game transformations starting from
EqSimBLBS

D∗(λ, 1) to EqSimBLBS
D∗(λ, 0).

5.2 Protocol Wrapper Wrap()

In Fig. 2, we show how to transform a blind signature scheme BS into a blind sig-
nature protocol by applying a simple wrapper algorithm, Wrap(). The resulting
protocol Wrap(BS) is in the Fcrs-hybrid model where Fcrs is the CRS generation
and distribution functionality whose output distribution is defined by BS.

Blind Signature Protocol Wrap(BS) in Fcrs-model

Key Generation: Upon receiving (KeyGen, sid) from the environment Z, a
party Ps verifies that sid = (Ps, sid

′) for some sid′. If not, do nothing. Else,
Ps derives CRS Σ from Fcrs, computes (vk, sk) ← BS.Key(Σ) and outputs
(Generated, sid, v) where v(m, σ) = BS.Vrf(Σ, vk, σ, m).

Blind Signature Generation: Party Pu and Ps do the following.
Pu-side: On receiving (Request, sid, ssid, v ′, m) from Z, derive Σ from Fcrs,

send (Request, sid, ssid, v ′) to Ps, invoke BS.User(Σ, vk′, m), and inter-
act with Ps. Take vk′ out from v ′. If BS.User outputs σ such that
BS.Vrf(Σ, vk′, σ, m) = 1, then output (Received, sid, ssid, σ).

Ps-side: On receiving (Request, sid, ssid, v ′) from a user Pu, get Σ from
Fcrs, invoke BS.Signer(Σ, sk) and interacts with Pu. If BS.Signer outputs
completed, then output (Signed, sid, ssid).

Signature Verification: On receiving (Verify, sid, ssid, v ′, m, σ) from Z, a party
Pv derives Σ from Fcrs, takes vk′ from v ′, computes f ← BS.Vrf(Σ, vk′, σ, m),
and outputs (Verified, sid, ssid, f).

Common Reference Functionality Fcrs

CRS Generation: On receiving (CrsGen, sid), Fcrs computes Σ ← BS.Crs(1λ) for
the first time and returns Σ. Simply return the same Σ for further requests.

Fig. 2. UC blind signature protocol transformed from stand-alone scheme BS

Note that the resulting protocol does not implement any mechanism to verify
the given verification algorithm v ′. It works as intended if v ′ = v but no security
is guaranteed for the user if v ′ 
= v . Also note that the signer ignores v ′ given
from the user and uses the genuine secret key sk.

5.3 Equivalence

Theorem 2 (UF ∧ EqSimBLND ⇔ Fncb ). Protocol Wrap(BS) securely realizes
Fncb with respect to adaptive adversaries if and only if BS is unforgeable and
equivocal simulation blind.

“If” direction is proven by constructing a simulator, S, that uses A as a black-
box. To run A properly, S simulates entities and their communication in
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exec
Fcrs
π,A,Z . We then apply the game transformation technique starting from

idealFncb,S,Z(λ, a) as Game 0. Game 1 removes the use of simulation algo-
rithms SIM.Crs, SIM.User, SIM.Sig, and SIM.State from Fncb and S. The differ-
ence is negligible due to the simulation blindness. Game 2 then modifies the
verification process of Fncb so that it no longer care for the counters. This modi-
fication is justified by the unforgeability. Game 3 further modifies the verification
process so that it completely follows the verification function. Justification is due
to the completeness and consistency. Game 4 then modifies Fncb so that it does
not record the signed messages any more. It is justified by the completeness and
consistency again. Finally, Game 5 removes unused actions in Fncb and S. This
is just cosmetic to make sure that Fncb and S do nothing but executing the real
protocol. Thus Game 5 is equivalent to exec

Fcrs
π,A,Z(λ, a).

“Only if” direction is more intricate. First, assuming that BS is not simulation
blind, we show that, for any S, there exists successful Z. Second, assuming
that BS is simulation blind but forgeable, we construct successful Z that is not
fooled by any S. For the first part, we construct simulation algorithms SIM.Crs,
SIM.User, SIM.Sig and SIM.State by using S as a subroutine. For such simulation
algorithms there exists adversary D∗ that breaks simulation blindness since we
assumed that BS is not simulation blind. Then we use such D∗ to construct
Z. A tricky issue in constructing these simulation algorithms is that they do
not share the internal state. Since individual copy of S is run independently in
these functions, it would output different CRS-es and public-keys. Our idea is
to use the trapdoor as a container of the randomness given to S so that every
simulation algorithm can give the same randomness to S. In this way, every copy
of S works on the same CRS and public-key so that all simulation algorithms
work consistently. A formal proof is given in [1].

6 A Generic Construction

6.1 Overview

Our starting point is the “basic” blind signature scheme by Fischlin [11]. In
his scheme, a user commits to message m by sending a commitment c and the
signer returns a bare signature s on c. Then the user computes a final signature
σ which actually is a non-interactive zero-knowledge proof of knowledge about
the message m and the valid signature s. Unforgeability is based on the binding
property of the commitment and the unforgeability of the bare signature scheme
and the knowledge soundness of NIZK. Blindness is from the hiding property
of the commitment scheme and the zero-knowledge property of NIZK. By BSG

we denote this generic scheme. When transformed by our wrapper, Wrap(BSG)
securely realizes non-committing blind signature functionality Fncb with respect
to static adversaries. (See [1] for details.) It is a surprise that such a conceptually
simple scheme can provide universal composability even though the adversary is
limited to be static.

An essential issue to handle adaptive security is the state reconstruction.
Looking at the structure of BSG, the session equivocality can be easily achieved
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by replacing the commitment scheme with a trapdoor commitment scheme. (In
fact, with such a small modification to BSG, the resulting Wrap(BSG) provides
adaptive UC security in the erasure model.) On the other hand, the signature
equivocability is not generally possible there. Recall that a signature is simulated
by the zero-knowledge simulator. It therefore can be the case that there exists
no randomness that is consistent to a real witness. To overcome this problem, we
consider eliminating the use of zero-knowledge simulator by providing a correct
witness to the proof system through the simulation of the bare signature in the
signer-side. Namely, we make the signer’s signing algorithm to be simulatable
by using a signature scheme in the CRS model so that valid signatures can
be created with the trapdoor of the CRS. In this way, we can always provide
a witness to the proof system used in the user-side algorithm. Now, witness
indistinguishability of the proof system assures that the same proof could have
been created from any other witnesses. Accordingly, a consistent randomness
always exists. This particular structure is suggested in [17] for the purpose of
removing the CRS in the stand-alone model. We will take advantage of the
structure for achieving adaptive security.

6.2 Building Blocks

−NIWI (Non-interactive Witness Indistinguishable Proof System). It is a non-
interactive witness indistinguishable proof system of knowledge when the CRS
is generated in the regular way. By NIWI.Crs, NIWI.Prf and NIWI.Vrf, we denote
the CRS generation function, the proof generation function and the verification
function, respectively. Additionally it must allow state reconstruction when the
CRS is simulated. Namely, one can reconstruct a consistent randomness for a
given witness and a valid transcript. The Groth-Sahai proof system [16], the
GS proof system for short, meets these requirements under SXDH or DLIN
assumption. It unfortunately does not work for any NP statement but works
efficiently for relations represented by bilinear products. We thus need to choose
other building blocks so that they fit to the GS proof system for instantiation.

−TC (Trapdoor Commitment Scheme). It is a standard trapdoor commitment
scheme. By TC.Key, TC.Com and TC.Vrf, we denote the key generation function,
the commitment function, and the verification function. There are two more
functions such that one generates a random commitment and the other opens the
commitment to an arbitrary value by using the trapdoor generated by TC.Key.
See [1] an instantiation that works well with GS proof system under the SXDH
assumption.

−SSIG (Simulatable Signature Scheme). It is a signature scheme in the CRS
model with a special property such that valid signatures can be computed from
the public-key and the trapdoor bind the CRS. By SSIG.Crs and SSIG.Key, we
denote the CRS generation function and the key generation function. SSIG.Key
takes the CRS and outputs a signing key and a verification key. Besides the
signature generation function SSIG.Sign, there is a signature simulation func-
tion SSIG.Sim that generates valid signatures by using the public-key and the
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trapdoor generated by SSIG.Crs. It is stressed that the simulated signatures must
pass the verification by the verification function SSIG.Vrf but it is not demanded
that they are indistinguishable from the real ones. Similarly, unforgeability is
the standard unforgeability against chosen message attacks. In particular, the
adversary is not given simulated signatures.

Any standard signature scheme can be turned into a simulatable one in an
unconditional way as follows. Generate two key pairs by running the key gener-
ation algorithm twice independently. The first key pair is used as the CRS and
the trapdoor while the second pair is used as the verification and signing key.
Normal signing is done by using the second key. Simulation is done by the first
key. A signature is accepted if it passes the original verification predicate with
respect to either of the keys.

To fit to the other building blocks, SSIG must be able to sign group elements
and the verification predicate must be represented as a product of pairings. For
such a signature scheme a feasibility result based on DLIN assumption can be
seen in [15].

6.3 The Scheme

The CRS generation function BS.Crs computes (Σwi, twi) ← NIWI.Crs(1λ),
(Σtc, ttc) ← TC.Key(1λ), and (Σssig, tssig) ← SSIG.Crs(1λ), and outputs Σ =
(Σwi, Σbc, Σssig). Key generation function BS.Key is the same as SIG.Key, which
outputs vk and sk. The signature generation protocol is illustrated in Fig. 3. The
proof system NIWI proves the following relation between witness w = (s, c, z)
and instance x = (vk,Σtc, Σssig,m):

TC.Vrf(Σtc, c,m, z) = 1 ∧ SSIG.Vrf(Σssig, vk, c, s) = 1

Verification function BS.Vrf takes ((Σwi, Σtc, Σssig), vk, σ,m) as input and out-
puts ϕ ∈ {0, 1} such that ϕ← NIWI.Vrf(Σwi, (vk,Σtc, Σssig,m), σ).

Signer Ps Σ = User Pu

BS.Signer(Σ, sk) (Σwi, Σtc, Σssig) BS.User(Σ, vk, m)

� c (c, z) ← TC.Com(Σtc, m)
s ← SSIG.Sign(Σssig, sk, c)

�s

Output completed. If SSIG.Vrf(Σssig, vk, s, c) �= 1 output ⊥.
σ ← NIWI.Prf(Σwi, x, w) where

x = (vk, Σtc, Σssig, m) and
w = (s, c, z).

Output σ.

Fig. 3. Generic blind signature scheme BSS. The signature generation protocol.
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Theorem 3. Protocol Wrap(BSS) securely realizes Fncb in the Fcrs-hybrid model
with respect to adaptive adversaries without erasures.

We claim that the scheme is session equivocal and signature equivocal. Observe
that setting t1 = (twi, tssig) and t2 = (ttc) forms separated trapdoors. Session
equivocality is proven by constructing SIM.User and SIM.SesState by using the
trapdoor property of TC. Signature equivocality can be shown by constructing
SIM.Sig and SIM.SigState by using the simulation property of SSIG and state
reconstractability of NIWI. Thus from Lemma 3, we can say that the scheme
is equivocal simulation blind. We then argue that the scheme is unforgeable
due to the binding property of TC, the unforgeability of SSIG and the proof of
knowledge property of NIWI. Finally Theorem 3 is applied to complete the proof
of Theorem 2.
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Abstract. Following the cryptanalyses of the encryption scheme HFE
and of the signature scheme SFLASH, no serious alternative multivariate
cryptosystems remained, except maybe the signature schemes UOV and
HFE−−. Recently, two proposals have been made to build highly efficient
multivariate cryptosystems around a quadratic internal transformation:
the first one is a signature scheme called square-vinegar and the second
one is an encryption scheme called square introduced at CT-RSA 2009.

In this paper, we present a total break of both the square-vinegar
signature scheme and the square encryption scheme. For the practical
parameters proposed by the authors of these cryptosystems, the com-
plexity of our attacks is about 235 operations. All the steps of the attack
have been implemented in the Magma computer algebra system and al-
lowed to experimentally assess the results presented in this paper.

1 Introduction

There are mainly two motivations behind the construction of multivariate cryp-
tosystems. The original one is to provide alternatives to the asymmetric schemes
RSA and those based on Discrete Logarithm problems which are connected to
number theoretic problems. Multivariate cryptosystems are instead connected
to the hardness of solving randomly chosen systems of multivariate equations
over a finite field, a problem which is NP-complete even in the case of quadratic
polynomials defined over GF(2) when there are at least two such polynomials
in the system. Moreover, this problem seems to be hard not only for very spe-
cial instances but also on the average. Another incentive to develop multivariate
cryptosystems is the expected efficiency that they might offer, a property that
would be highly appreciated for constrained environments such as RFIDs and
other embedded devices. Finally, some people argue about the fact that, contrary
to the problem of factorisation and that of solving discrete logarithms [23], no
quantum algorithm is known for the problem of solving sets of randomly chosen
multivariate equations.

After the introduction of the C∗ cryptosystem by Matsumoto and Imai in
[13,16], there have been several other proposals. Among the most famous ones
are certainly HFE (Hidden Field Equations) and SFLASH which can be thought
of as two ways of generalising the C∗ scheme. Some heuristic design principles
have followed. A major one, which has been originally suggested by Shamir
in [21], is to remove some equations from the public mapping in the case of sig-
nature schemes; this principle has proven to be successful in thwarting Patarin’s

M. Matsui (Ed.): ASIACRYPT 2009, LNCS 5912, pp. 451–468, 2009.
c© International Association for Cryptologic Research 2009
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attack [17] against C∗ (an attack that can be viewed as a preliminary to Gröbner
basis attacks). Another one consists in adding a new set of variables to perturb
the analysis as in the UOV (Unbalanced Oil and Vinegar) signature scheme [14].

Two of the most promising proposals, SFLASH and HFE have been cryptanal-
ysed during the last years. Some HFE instances have been shown to succumb to
Gröbner basis attacks in [7] and the complexity of such attack has been argued
to be quasi-polynomial in [12]. SFLASH has been entirely broken: the missing
equations (due to the minus transformation) can be recovered in most cases as
explained in [6] and the secret key of the resulting C∗ scheme can be recovered
following the cryptanalysis described in [10]. In this context, two new proposals
were based on internal transformations that are not only quadratic on the base
field, but also on the extension field: a signature scheme called square-vinegar
was proposed in [2] and an encryption scheme called square appears in [4].

Our Results. In this paper, we expose a total break of both the square-vinegar
signature and the square encryption proposals from a theoretical point of view
as well as from a practical point of view. We indeed describe how to recover an
equivalent secret key for both cryptosystems given the public key alone. For the
parameters recommended by the authors, our attacks complete in a few minutes
on a standard PC. These cryptanalyses also represent a theoretical break of the
schemes as, under some reasonable assumptions, their complexity is shown to
be polynomial with respect to the security parameter: the attacks have a time
complexity of O

(
log2(q)n6

)
since they rely on standard linear algebra on n2

unknowns over a finite field of size q and n is typically small because the time
complexity of the public computation (signature or encryption) is O(n3). The
attacks are sequences of steps including the discovery of new algebraic invariants
leaking from the public key, a careful analysis of these invariants to sort out vine-
gar unknowns from the standard ones. We additionally implemented Magma [3]
programs that were used to verify each of the steps of the cryptanalyses and to
perform the attacks against the different sets of parameters recommended by the
designers of the square encryption and square-vinegar signature schemes. Their
source code is given in the appendix.

2 The Square Cryptosystems

The square cryptosystems are based on design ideas taken from both the HFE
cryptosystem and the UOV cryptosystem. However, an important property of
the square cryptosystems is that they are defined over fields of odd characteristic:
as their internal transformations are quadratic, the systems would be linear over
fields of characteristic 2. We begin by a brief reminder on HFE and UOV before
proceeding to the description of the square cryptosystems themselves.

2.1 The HFE Cryptosystem

The HFE cryptosystem has been proposed by Patarin in [18] as a possible gen-
eralisation (and strengthening) of the C∗ scheme proposed by Matsumoto and
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Imai in [16]. Indeed C∗ was broken by Patarin [17], whereas the best attack
against HFE are Gröbner basis attacks which complexity was argued to be
quasi-polynomial [7,12]. HFE is called hidden field equation because its internal
transformation is kept secret. This internal transformation F is defined over an
extension E of degree n over some base field Fq and is chosen to be Fq-quadratic:

F : X �→
∑

0≤i<j<n

qi+qj≤D

αi,jX
qi+qj

+
∑

0≤k<n

qk≤D

βkX
qk

+ γ , (1)

where the coefficients αi,j , βk, and γ lie in E and D is an upper bound to the
overall degree to make it practical to invert F through factorization. Since F is a
Fq-quadratic mapping, it can also be expressed over Fq as an n-tuple (f1, . . . , fn)
of quadratic polynomial mappings in n unknowns and so can the composition
T ◦F ◦S for any pair of one-to-one affine mappings S : Fn

q → E and T : E → Fn
q .

In the case of HFE, the mappings S and T are kept secret and together with F ,
constitute the secret key, whereas the public key is the mapping G = T ◦ F ◦ S.
In order to decrypt, the legitimate user applies the inverse of T , finds roots of
the univariate polynomials on the extension field E and applies the inverse of S
to each of these roots. The plaintext is one of the roots which can be singled
out by using some redundancy. In this decryption process, the knowledge of the
secrets S and T is crucial.

Additionally, Shamir’s proposal to remove some (say r) of the n polynomials
that constitutes the public key can be applied in the case of a signature scheme:
indeed, to sign a message (y1, . . . , yn−r), the signer first completes the message
with random values yn−r+1, . . . , yn and “decrypts” it normally. This operation
is called the minus transformation and is used in the square-vinegar scheme.

With these notations, C∗ is similar to HFE (with an unbounded total degree)
where all coefficients of the internal transformation are set to zero but α0,θ for
a well chosen θ. SFLASH in turn [1], is the original C∗ scheme with the minus
transformation applied.

2.2 The UOV Signature Scheme

Another ingredient in the design of the square-vinegar signature scheme is the
use of additional unknowns meant to harden the analysis of the scheme by trying
to break the structure used during the decryption process. Such an idea was first
proposed in the oil and vinegar signature scheme. This scheme uses two sets of
unknowns (x1, . . . , xn) and (z1, . . . , zv) respectively called the oil and the vinegar
variables. The internal transformation then consists of an n-tuple of polynomials
F = (f1, . . . , fn) of the special form:

fi(x, z) =
∑

1≤i≤n
1≤j≤v

αi,jxizj +
∑

1≤i≤n

βixi +
∑

1≤i≤v

γizi +
∑

1≤i≤j≤v

δi,jzizj + ε , (2)

where αi,j , βi, γi, δi,j , and ε are randomly chosen from the base field Fq. The xi

are called oil variables because they do not mix, i.e. there is no cross-term xixj .
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Vinegar variables zi in contrast, mix with other vinegar variables as well as
with oil variables. The fact that the coefficients of the polynomials are chosen
randomly is satisfactory since the resulting polynomials look closer to randomly
chosen ones. However, the two types of variables makes it possible to create a
signature scheme: in order to find some pre-image y = (y1, . . . , yn) through F
the signer first draws some random values for z1, . . . , zv and substitutes them in
the description of F . The resulting set of polynomials becomes linear in the oil
unknowns xi and the associated n×n linear system (with y as right member) is
easily solved: about 1

e of the time, the system has a solution (a1, . . . , an) which
makes (a, z) a pre-image of y through F and otherwise another choice for z is
made until there is a solution. Obviously, this structure has to be hidden from
the view of an attacker and the public key is the composition G = F ◦ S where
S : Fn+v

q → Fn+v
q is a one-to-one affine application.

The message size over signature size for the UOV signature scheme is not
optimal since the number of vinegar unknowns must be at least twice big as the
number of oil unknowns for it to be secure [22,19,14].

2.3 The Square-Vinegar Signature Scheme

The square-vinegar signature scheme strives to provide an efficient alternative
to UOV or HFE with the minus transformation applied. Let Fq be a finite field
and E be an extension of degree n over Fq. The internal transformation of the
square-vinegar scheme is defined as:

F : E× Fv
q −→ E , (X,Xv) �−→ αX2 + β(Xv)X + γ(Xv) , (3)

where α is a constant randomly chosen from E, β : Fv
q → E is a randomly chosen

affine application, and γ : Fv
q → E is a randomly chosen Fq-quadratic application.

This internal transformation is hidden by two full rank affine applications S :
Kn+v → E and T : E→ Fn

q . Therefore S mixes the vinegar unknowns Xv with
the “normal” unknowns X . In addition to T , a projection Π is applied where r
of the n components have been removed as in SFLASH or HFE−−. The affine
transforms S and T together with the applications γ, β, and the constant α
constitute the secret key. The public key P results from the composition of the
three applications: P = Π ◦ T ◦ F ◦ S.

The use of an odd characteristic base field is advertised by the authors as
a means to thwart Gröbner bases attacks since introducing the corresponding
field equations in the computation renders it unpractical. Mixing the vinegar
unknowns with the normal ones breaks the algebraic relations between the input
and the output that appeared in C∗ (bilinear relations [17]) or HFE (algebraic
relations of higher degree, as explained in [7,12]). Eventually, just as for HFE−−,
removing part of the output information further mitigates Gröbner bases attacks
and prevents Kipnis and Shamir’s attack developed against UOV.

Signature. The signing process is highly efficient. It only requires the holder
of the secret key to randomly pick r elements from Fq to complete the mes-
sage (m1, . . . ,mn−r) to be signed into m̃ = (m1, . . . ,mn−r, m̃n−r+1, . . . , m̃n)
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and to invert the public application in three steps: S−1 ◦ F−1 ◦ T−1(m̃). Ap-
plying T−1 and S−1 is a matter of multiplying with precomputed matrices and
inverting F requires to find the roots of a quadratic univariate polynomial over E.
In case there is no solution, the signer restarts the process by choosing another
way of completing the message m into m̃.

2.4 The Square Encryption Scheme

A companion scheme to this square-vinegar signature scheme has been proposed
in [4]. The square encryption scheme strives to provide an efficient and secure
alternative to HFE and, as the square-vinegar scheme, has a square internal
transformation: F : E → E, X �→ X2. The parameters are chosen so that the
size of the base field verifies q ≡ 3 mod 4 and the degree n of E over Fq is
odd. The transformation F is again hidden by two full rank affine mappings
S : Fn−r

q → E and T : E → Fn
q , which yields a public key P = T ◦ F ◦ S.

(Following [5], the authors proposed to fix r of the input unknowns to a pre-
defined value (say, zero) to prevent the attacker from controlling the differential
of the public key as in Dubois, Fouque, Shamir, and Stern’s cryptanalysis [6].)
This scheme is somewhat reminiscent of the C∗ scheme, where F (X) = Xqθ+1

for a well chosen θ. But for the square encryption where θ = 0, the bilinear
relations XY qθ

= Xq2θ

Y between X and Y = F (X) boils down to the tautology
XY = Y X . The embedding S aims to finish hiding the algebraic structure of
the internal transformation.

Decryption. The secrets’ holder is able to decrypt very efficiently: in addition
to finding pre-images through T and S which amounts to solve simple linear sys-
tems, the decryption process requires to compute a square root in the extension
field E. Computing the square root is done by the square and multiply algorithm
X = Y

qn+1
4 since qn ≡ 3 mod 4. As there are two possible square roots, the

right one is singled out as the one lying in the image of S.

3 Cryptanalysis of the Square-Vinegar Signature Scheme

We now describe a generic and very efficient attack against the square-vinegar
signature scheme. Our attack proceeds in three steps: We first exhibit an in-
variant of the internal transformation and recover it through the analysis of the
differential of the public key; Then, we use this information to recover an equiva-
lent representation of the vinegar space; In a third step, we transform the public
key into a special shape that allows us to invert it efficiently. Put together, these
three steps allow us to forge a signature for any given message.

3.1 Alternative Decompositions

Recall that the internal transformation of the square-vinegar signature scheme
has the following structure:

F : E× Fv
q −→ E , (X,Xv) �−→ αX2 + β(Xv)X + γ(Xv) ,
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where α is a constant, β : Fv
q → E is an affine Fq-linear mapping, and γ : Fv

q → E
is a Fq-quadratic mapping, where E is an extension of degree n over Fq. The
public key is the mapping P = Π ◦ T ◦ F ◦ S, where Π is a projection that
removes r polynomials, S : Fn+v

q → E × Fv
q and T : E → Fn−r

q are two affine
linear mappings of full rank. The decomposition (T, F, S) of the public key is
kept secret.

A major component of the internal transformation F is the mixing of vinegar
unknowns with X . It makes it harder for an attacker to use the specific structure
of a univariate quadratic polynomial of F viewed as a function of X . A crucial
remark is that there exist linear mappings that, when composed with the internal
transformation, not only conserve its special form, but also discard the part of F
mixing the vinegar Xv with X . Indeed, consider the mappings σ : (X,Xv) �→(
X− α

2 β(Xv), Xv

)
and τ : Y �→ 1

αY . (Remember that the scheme is defined over
a field Fq of odd characteristic.) It can be checked that these mappings provide
an alternative decomposition (T ◦ τ, F̃ , σ ◦ S) of the public key such that

F̃ : (X,Xv) �→ X2 + γ̃(Xv) , (4)

where γ̃ is a Fq-quadratic mapping. We stress here that an attacker does not need
to know the mappings σ and τ but rather assumes without loss of generality that
the public key follows the specific decomposition (4). (Also note that in a similar
fashion, keeping secret the defining polynomial of the extension has no effect:
as two fields of the same size are isomorphic and the isomorphism is a linear
bijective application, any arbitrary choice made by the attacker is “absorbed”
in S and T .) This last decomposition can be further tweaked as in [11] to remove
the affine parts of the mappings S and T but at the expense of reintroducing a
linear term in X , leading to an internal transformation of the following shape:

F ′ : (X,Xv) �→ X2 + β′X + γ′(Xv) , (5)

where β′ is a constant from E and γ′ is some Fq-quadratic mapping. In the
following sections, the attacker can therefore just assume wlog that the public
key is decomposed as (T ′, F ′, S′) where S′ and T ′ are linear mappings, and F ′

is as given in (5): then (T ′, F ′, S′) contains enough information to forge valid
signatures and thus constitutes an equivalent secret key. We call such a decom-
position a “split decomposition” (the unknowns X and Xv are now separated
in the internal transformation). A split decomposition is not unique: iterates of
the Frobenius mapping ϕ : z �→ zq and multiplications Λu : z �→ uz, u ∈ E,
do not alter the prescribed shape of the internal transformation (though coef-
ficients might change); In particular, if (T0, F0, S0) is a split decomposition, so
are (T0 ◦ Λu−2 , Λu2 ◦ F0 ◦ Λu−1 , Λu ◦ S0) and (T0 ◦ ϕ−i, ϕi ◦ F0 ◦ ϕ−i, ϕi ◦ S0).

3.2 Using the Multiplicative Property of the Differential

In the previous section we showed how to discard the cross-contribution of Xv

and X . However, the contribution γ(Xv) still disturbs the algebraic properties
of the univariate quadratic in X . In order to circumvent this difficulty, we make
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use of a tool first introduced by Fouque et al. in [9] that proved very useful
in attacking multivariate cryptosystems: the differential of the public mapping.
The differential of P in a is defined as: DPa(x) = P (x+a)−P (x)−P (a)+P (0).

In the case of an Fq-quadratic mapping, DPa is such that (x, a) �→ DPa(x)
is a symmetric bilinear mapping. From now on, we denote by DP this bilinear
mapping and call it differential of P . The differential map corresponding to the
internal transformation X �→ X2 + βX + γ(Xv) of a square-vinegar instance is:

DF
(
(X,Xv), (Y, Yv)

)
= 2XY + Dγ(Xv, Yv) . (6)

The success of the attack lies in the fact that normal (X) and vinegar (Xv)
unknowns are separated in the expression of the differential DF . More precisely,
the only linear mappings L such that for all (X,Xv) and all (Y, Yv):

DF
(
(L(X), Xv), (Y, Yv)

)
−DF
(
(X,Xv), (L(Y ), Yv)

)
= 0 ⇔ L(X)Y = Y L(X)

are Z �→ λZ for λ ∈ E. Indeed, any solution L : Z �→
∑

1≤i<n liZ
qi

verifies∑
1≤i<n liXY

qi

=
∑

1≤i<n liX
qi

Y for all X and Y , and since (X,Y ) �→ Xqi

Y qj

forms a basis of the space of bilinear forms we must have li = 0 for all i > 0.
In addition, we conjecture that with very high probability (with respect to

the uniform choice of the coefficients of γ) the only linear mappings L verifying

∀Xv ∀Yv Dγ
(
L(Xv), Yv

)
−Dγ
(
Xv, L(Yv)

)
= 0

are Zv �→ cZv for some c ∈ Fq. This might be heuristically justified by the fact
that the random choice of γ does not allow such an algebraic property to appear,
and is verified experimentally. Assuming this conjecture is true, we have:

Proposition 1. For a random instance of the square-vinegar scheme, it happens
with very high probability that the only linear mappings L verifying:

∀(X,Xv)∀(Y, Yv) DF
(
L(X,Xv), (Y, Yv)

)
−DF
(
(X,Xv), L(Y, Yv)

)
= 0 (7)

are (Z,Zv) �→ (λZ, cZv), where λ ∈ E and c ∈ Fq.

Proof. Write L : (Z,Zv) �→ (AZ + CZv, C̃Z + BZv) for some solution of (7).
Since the equation holds for all inputs of DF , consider it specialised at Xv = 0
and Yv = 0, with DF replaced by its expression (6):

∀X ∀Y
[
2A(X)Y + Dγ(C̃(X), 0)

]
−
[
2XA(Y )−Dγ(0, C̃(Y ))

]
= 0 .

As Dγ(∗, 0) = 0 and Dγ(0, ∗) = 0 for any ‘∗’, this gives A(X)Y = XA(Y )
which, as we saw above, implies A : Z �→ λZ for λ ∈ E. Similarly, at X = 0 and
Y = 0, (7) becomes: ∀Xv∀Yx Dγ

(
B(Xv), Yv

)
− Dγ
(
Xv, B(Yv)

)
= 0, implying

B : Z �→ cZ for c ∈ Fq by conjecture. Finally, at X = 0 and Yv = 0, (7) becomes:
∀Xv∀Y Dγ

(
Xv, C̃(Y )

)
= 2C(Xv)Y . Assume for a contradiction that C is not

identically null. Then setting Xv = x1 such that C(x1) 
= 0, the right hand side
spans a vector space of dimension n while the left hand side spans a vector space
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of dimension at most v. Hence, when v < n as in a square-vinegar instance,
C must be identically null. Then, for all (Xv, Y ), we have Dγ(Xv, C̃(Y )) = 0
or equivalently γ(Xv + C̃(Y )) = γ(Xv) + γ(C̃(Y )). In particular, this holds for
Xv = C̃(X) for any X and any Y so that Z �→ γ(C̃(Z)) is affine, that is, γ is
affine over Im(C̃). For a random γ it is improbable that γ is affine over some
(non-zero) sub-space. Hence, with high probability, C̃ is identically null. ��

This property of F naturally transports to the public key, provided the removal
of polynomials do not completely destroy its algebraic structure:

Claim 1. If the number of coordinates removed by the projection Π is less than
half and the coefficients of γ are randomly chosen, the set of linear mappings L
satisfying

∀X ∀Y DP
(
L(X), Y

)
−DP
(
X,L(Y )

)
= 0

is {S−1 ◦Λu,c ◦S}u∈E,c∈Fq, i.e. the conjugates by the secret mapping S of all the
multiplications Λu,c : (X,Xv) �→ (uX, cXv), where u ∈ E and c ∈ Fq.

3.3 Extracting the Vinegar Vector Space

The solution set Σ of Claim 1 can be easily determined as it amounts to solve
a linear system of (n− r)(n+ v)2 equations in the (n+ v)2 unknowns of L over
a finite field of size q. Let us call “vinegar vector space” the image through S of
all the values v such that the n first coordinates of S(v) are zero. Similarly, let
us call “normal vector space” the image through S of all the values v such that
the v last coordinates equal zero. Before explaining how to use the knowledge
of Σ to recover these two vector spaces, let us state three useful lemmas.

Lemma 1. Let u be in E, πu be the minimal polynomial of u over Fq, and χΛu,c

be the characteristic polynomial of Λu,c : (X,Xv) �→ (uX, cXv). Then:

χΛu,c(x) = (x− c)v · πu(x)
n

deg πu .

Lemma 2. Let u be in E and πu the minimal polynomial of u over Fq. Then:

πu(x) = (x− u)(x− uq) · · ·
(
x− uqdeg(πu)−1)

.

Lemma 3 (Thm. 3.25 [15]). The number of irreducible monic polynomials of
degree n in Fq[X ] is 1

n

∑
d|n μ(d)q

n
d where μ is the Möbius function.1 It follows

that the number of elements in E with a minimal polynomial of degree n is at
least qn − q n

2 − q n
2 −1 − · · · − q2 − q.

LetM be any element picked at random from the solution set Σ of Claim 1. Since
M = S−1 ◦Λu,c ◦S for some (u, c) ∈ E×Fq, M and Λu,c are conjugate and thus
have the same characteristic polynomial χM (x) = (x−c)v ·πu(x)

n
deg πu according

to Lemma 1. In addition, Lemma 3 shows that for u chosen uniformly at random

1 μ(1) = 1, μ(x) = (−1)k for x a product of k distinct primes, and μ(x) = 0 otherwise.
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in E, deg(πu) has more than 1− q/q n
2 chances to be n. We can therefore assume

in the following that c and πu are known from the factorization of χ.
The factorization of πu over E in turn discloses uqi

for some unknown i.
However, as stated at the end of Section 3.1, the split decomposition is not
affected by iterates of the Frobenius mapping and thus it is enough to solve
for S̃ in the following linear system:

S̃ ◦M = Λuqi ,c ◦ S̃ .

Any particular solution S0 of this system is sufficient, since the whole space of
solutions is a coset of the commutant of Λuqi ,c. The commutant of X �→ uqi

X is
the space of multiplications, since u does not belong to any subfield of E. On the
contrary, the commutant of Xv �→ cXv is the whole space of Fq-linear mappings,
since precisely c lies in Fq. At this point, the attacker is almost in the same
position as the legitimate signer to produce a signature since he has access to
the vinegar space through S0 and can now work on

P ◦ S−1
0 (X,Xv) = Π ◦ T ◦

(
X2 + βX + γ(Xv)

)
instead of the original public key P . Let us define P̃ = P ◦ S−1

0 .
The next step of the attack is to recover a mapping equivalent to T . To this

end, we seek to cancel the part of P̃ that is linear in X which can be achieved by
using an adequate change of variables X �→ (X−b), where b is to be determined.
The expression of P̃ (X− b) with respect to X in turn contains a quadratic part,
a linear part, and a constant part. Looking at the linear part alone, the attacker
writes down that the set a coefficients of X are equal to zero; these coefficients
are a set of (n − r) affine functions with respect to b and solving for b allows
the attacker to recover β. The final step is to recover an equivalent version of T .
This is done by considering the part of P̃ that is quadratic with respect to X :
Q(X) = Π ◦ T (X2). By composing with multiplications over E, it is possible to
complete the (n − r) coordinates of Q into a full set Q̃(X) of n coordinates by
taking a basis of {Q(λX)}λ∈E. Then, solving for T̃ in Q̃(X) = T̃ (X2) gives an
equivalent representation T0 of T .

At this point, the attacker gained the knowledge of S0, T0, and β0 such that:

P ◦ S−1
0 (X,Xv) = Π ◦ T0 ◦ (X2 + β0X) + P ◦ S−1

0 (0, Xv) .

We claim that this is equivalent to the knowledge of the secret key since the
attacker is then able to sign any message m as efficiently as the legitimate signer
as follows. Draw some random value Xv from the vinegar space and randomly
complete the (n − r) coordinates of m − P ◦ S−1

0 (0, Xv) into an n coordinates
value m̃. Compute Y = T−1

0 (m̃) and solve for X0 in (X + 1
2β0)2 = Y + 1

4β
2
0 . A

signature of m is then given by S−1
0 (X0, Xv).

3.4 Complexity Analysis and Practical Parameters

Our attack requires O
(
log2(q)(n+ v)6

)
operations to find the solution set Σ of

Claim 1 and O
(
log2(q)(n + v)3

)
operations to factor the characteristic polyno-

mial χ. The particular solution S0 is found with O
(
log2(q)(n+ v)6

)
operations.
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The complexity of the other steps can be neglected and thus the attack has an
overall complexity of O

(
log2(q)(n+ v)6

)
.

The authors of the square-vinegar signature scheme claimed a 80-bits security
for the following parameter sets:

parameter set 1 parameter set 2
field size q 31 13

normal unknowns n 31 36
vinegar unknowns v 4 4

removed polynomials r 3 3

The complexity of our attack is about 235 and our Magma program in appendix
completes within minutes for both parameter sets on a common desktop PC.

4 Cryptanalysis of the Square Encryption Scheme

The square encryption scheme poses new challenges to the attacker. Its design
strategy of embedding the plaintext into a bigger space before applying the
internal transformation makes it impossible to use the differential mapping as
was done previously. This is due to the restricted view the attacker has on the
input space which does not allow to manipulate the inner of the differential
easily. In our attack against the square encryption scheme, we therefore use a
different technique. Instead of peeling off the cryptosystem from the input, we
peel it off from the output.

4.1 Equivalent Representation of the Secret Key

Due to the specific form of the internal transformation and without loss of gen-
erality, we may give the following alternative decomposition of the public key:

P (X) = T
(
S(X)2
)

+ T
(
s · S(X)

)
+ t , (8)

where S and T are the linear part of the original secret linear mappings and
s = 1

2σ and t = τ + T (σ2) with σ and τ the original secret constants from E.
Since the mappings S and T are linear, it can be easily seen that with respect to
the input X , the first term of (8) is Fq-quadratic, the second term is linear, and
the third term is constant. Furthermore, these three homogeneous terms can be
read directly on the public key itself, so that the attacker knows the following:

P2(X) = T
(
S(X)2
)
, P1(X) = T

(
s · S(X)

)
, P0(X) = t .

4.2 Looking for Invariant Subspaces

As with the signature scheme, the differential of the public key provides useful
information to the attacker. In the case of the square encryption scheme, it can
be expressed as:

DP (X,Y ) = T
(
2 · S(X) · S(Y )

)
.
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Let consider the partial mappings DPy : X �→ DP (X, y). Since S : Fn−r
q → E

has full rank, its image is of dimension (n − r). Hence, choosing any linearly
independent vectors y1, . . . , yn−r makes DPy1 , . . . , DPyn−r span the whole
vector space of mappings {DPz}z∈E. This shows that the attacker is able to
derive a set of mappings Δ = {P1} ∪ {DPyi}i=1,...,n−r each of which has the
special form T ◦ Λα ◦ S, where Λα stands for the multiplication by α in E. This
set of mappings can then be rewritten as Δ = {T ◦ Λλi ◦ S}i=1,...,n−r+1 where
the n− r + 1 values λ1, . . . , λn−r+1 are unknown, but linearly independent.

The attacker does not need to know the actual value of the λi since he can
exploit this set of mappings in as follows. The general idea is to look for linear
mappings L that can link the public equations, say two elements D1 = T ◦Λλ1 ◦S
and D2 = T ◦ Λλ2 ◦ S from Δ. One natural idea is then to look for L such that:

L ◦D1 = D2 , (9)

since it can be easily checked that L0 = T ◦Λλ2λ−1
1
◦T−1 is a particular solution

of (9). However, the solution space of (9) is not restricted to multiplications.
This is due to the ‘embedding’ mechanism, i.e. the fact that the mapping S is
not a one-to-one mapping, which release some of the constraints and allows less
structured linear mapping to be solutions.

A possible direction to solve this issue is to put more constraints on the
mapping L while being careful to keep mappings of the form T ◦Λ∗ ◦T−1 in the
solution space. This is why we not only look for a linear mapping that solves (9),
but several equations similar to (9) simultaneously. This can be reformulated in
terms of Δ as follows. We look for linear mappings L such that:

∀i ∈ {1, . . . ,m}, L◦(T ◦Λλi◦S) ∈
〈
T ◦Λλm+1◦S, . . . , T ◦Λλn−r+1◦S

〉
, (10)

that is, the image through L of m elements of Δ must lie in the vector space
spanned by the remaining elements of Δ. It is easy to see that if λ is such that:

∀i ∈ {1, . . . ,m}, λ · λi ∈
〈
λm+1, . . . , λn−r+1

〉
, (11)

then T ◦ Λλ ◦ T−1 must be solution of (10).
The parameter m controls the number of solutions of (10) and (11). It can

be used to simultaneously render system (11) under-determined and system (10)
over-determined. This ensures that no other solutions except than the conjugates
of multiplications. We can determine suitable values of m as follows. For i ≤ m,
the fact that λ·λi lies in 〈λm+1, . . . , λn−r+1〉 puts n−((n−r+1)−m) constraints
on the n coordinates of λ in Fq. As λ1, . . . , λn−r+1 are linearly independent,
the above constraints are independent. Hence (11) admits solutions as soon as
n > m(n− (n− r+1−m)). Similarly, the whole space of linear mappings L has
dimension n2 and each equation of (10) puts n(n−r)−(n−r+1−m) constraints
as mappings from Δ map Fn−r

q to Fn
q . Therefore, system (10) is over-determined

as soon as n2 ≤ m
(
n(n − r) − (n − r + 1 − m)

)
. These two conditions define

a range of values of m such that the solution space of (10) becomes isomorphic
to the solution space of (11). This behavior is entirely confirmed by our Magma
implementation of the attack.
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4.3 Recovery of the Secret Elements

Once a linear mapping L = T ◦ Λλ ◦ T−1 has been recovered, every element of
the secret key can be computed. By proceeding just as for the signature scheme,
the underlying multiplication λ is revealed from the characteristic polynomial
of L. An equivalent representation T0 of T is then recovered by solving for T̃
in T̃ ◦ L = Λλ ◦ T̃ . Let a be a randomly chosen element. The other component
of the secret key can then be found via:

S(a) =
√
T−1

0

(
P2(a)
)
, s0 =

1
S(a)

· T−1
0

(
P1(a)
)
, S0 =

1
s0
· T−1

0 ◦ P1 .

(In the case where T−1
0

(
P2(a)
)

is not a square in E, just replace T0 by −T0.)

4.4 Practical Parameters

The most time consuming step of our attack is to compute the solution space
of (10) which requires O

(
log2(q)n6

)
operations. The authors of the square en-

cryption scheme claimed a 80-bit security for the following parameter sets:

parameter set 1 parameter set 2
field size q 31 31

unknowns n − r 34 51
polynomials n 37 54

but the complexity of our attack actually is about 236 operations for the first
parameter set and about 239 for the second. Again, the key recovery written in
Magma only requires a couple of seconds to complete on a standard workstation.
During the attack, m = 2 was enough in practice to ensure that only conjugates
of multiplications were solutions.
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A Simple Auxiliary Functions for Our Magma Scripts

Simple functions. The following function returns a root of ax2 + bx+ c.

1 SOLVE_2ND_DEGREE:=function(a, b, c)
2 is_, sqrt_delta:=ISSQUARE(b 2−4∗a∗c) ;
3 return is_, (is_ select (−b+sqrt_delta)/(2∗a) else 0) ;
4 end function ;

Juggling between matrices and vectors:

5 MAT2VEC:=func< MAT | VECTOR(ELTSEQ(MAT)) > ;
6 VEC2MAT:=func< vect , ncol | MATRIX(ncol , ELTSEQ(vect )) > ;

SPACE returns the vector space spanned by a set of matrices MS viewed as vectors:

7 SPACE:=func< MS, KK, dim |
8 sub<VECTORSPACE(KK, dim)|[MAT2VEC(MS[i ]) : i in [1..#MS]]> > ;

The following returns the matrix of x �→ λx:

9 MULBY:=func< λ, ETOV, VTOE, B |
10 MATRIX([ETOV(VTOE(B [i ])∗λ) : i in [1..#B ]]) > ;

Sequences of coefficients. It can be convenient to represent a quadratic poly-
nomial as sequences of coefficients of its homogeneous degree 0, 1, and 2 com-
ponents. C012 takes a function P viewed as a sequence of n_pol polynomials on
n_var variables and outputs the corresponding sequences CS0, CS1, and CS2:

11 C012:=function(KK, V_INPUT, P, n_pol , n_var )
12 CS0:=[KK ! 0:ii in [1. . n_pol ]] ;
13 CS1:=[[KK ! 0:i in [1. . n_var ]]:ii in [1. . n_pol ]] ;
14 CS2:=[[[KK ! 0:j in [1. . i ]]:i in [1. . n_var ]]:ii in [1. . n_pol ]] ;
15 x :=V_INPUT ! 0; y :=P(x ) ;
16 for ii :=1 to n_pol do CS0[ii ]:=y [ii ] ; end for ; // constant
17 for i :=1 to n_var do
18 x :=V_INPUT ! 0; x [i ]:=KK ! 1; y1:=P(x ) ; x [i ]:=KK ! −1; y2:=P(x ) ;
19 for ii :=1 to n_pol do
20 CS1[ii ][i ]:=(y1[ii ]−y2[ii ])∗(KK ! 2)−1 ; // coefficient of xi,
21 CS2[ii ][i ][i ]:=(y1[ii ]+y2[ii ])∗(KK ! 2)−1−CS0[ii ] ; // and x2

i ,
22 end for ;
23 end for ;
24 for i :=2 to n_var do for j :=1 to i−1 do
25 x :=V_INPUT ! 0; x [i ]:=KK ! 1; x [j ]:=KK ! 1; y :=P(x ) ;
26 for ii :=1 to n_pol do
27 CS2[ii ][i ][j ] := y [ii ]−CS2[ii ][i ][i ]−CS2[ii ][j ][j ]−
28 CS1[ii ][i ]−CS1[ii ][j ]−CS0[ii ] ; // and xixj , i 
= j
29 end for ;
30 end for ; end for ;
31 return CS0, CS1, CS2;
32 end function ;
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Given three sequences of coefficients C0, C1, and C2 defined with respect to
a quadratic polynomial P as above, compute the value taken by P on input x :

33 EVAL:=func< C2, C1, C0, x , n_var |
34 &+[ &+[C2[i ][j ]∗x [i ]∗x [j ] : j in [1. . i ]] : i in [1. . n_var ]]
35 + &+[C1[i ]∗x [i ]:i in [1. . n_var ]] + C0 > ;

The next function computes the coefficients of the differential associated to
the homogeneous form of degree 2 specified by the sequence of its coefficients:

36 DIFF:=function(CS2, KK, n_pol , n_var )
37 DP:=[ZEROMATRIX(KK, n_var , n_var ): ii in [1. . n_pol ]] ;
38 for ii :=1 to n_pol do
39 for i :=1 to n_var do
40 DP[ii ][i , i ]:=2∗CS2[ii ][i ][i ] ;
41 for j :=1 to i−1 do
42 DP[ii ][i , j ]:=CS2[ii ][i ][j ] ; DP[ii ][j , i ]:=CS2[ii ][i ][j ] ;
43 end for ; end for ; end for ;
44 return DP; end function ;

B Magma Script to Attack the Signature Scheme

An extension E of degree n over the base field K , also viewed as vector space V :

45 q :=31; n:=31; v :=4; r :=3; K :=GF(q) ; E :=ext<K |n> ;
46 V , E2V :=VECTORSPACE(E , K ) ; V2E :=E2V −1 ;

47 V_INPUT:=VECTORSPACE(K , n+v ) ; V_VINEGAR:=VECTORSPACE(K , v ) ;
48 V_MESSAGE:=VECTORSPACE(K , n−r ) ; V_RANDOM:=VECTORSPACE(K , r ) ;

We then randomly draw a secret key: the coefficient α, the linear mapping β,
and the quadratic mapping γ to form the internal transformation

F : (X,Xv) �→ αX2 + β(Xv)X + γ(Xv) ,

49 α:=V2E (A[1]) where A is RANDOM(GL(n, K )) ; // ensures α 
= 0

50 β0:=RANDOM(E ) ; β1:=[RANDOM(E ):i in [1. . v ]] ;
51 β:=func< XV | &+[β1[i ]∗XV[i ]:i in [1. . v ]] + β0 > ;

52 γ0:=RANDOM(E ) ; γ1:=[RANDOM(E ):i in [1. . v ]] ;
53 γ2:=[[RANDOM(E ):j in [1. . i ]]:i in [1. . v ]] ;
54 γ:=func< XV |
55 &+[ &+[γ2[i ][j ]∗XV[i ]∗XV[j ] : j in [1. . i ]] : i in [1. . v ]] +
56 &+[γ1[i ]∗XV[i ]:i in [1. . v ]] + γ0 > ;

57 F :=func< X , XV | α∗X 2+β(XV)∗X +γ(XV) > ;

and randomly draw input and ouput linear layers S and T :
58 S1:=RANDOM(GL(n+v , K )) ; S0:=RANDOM(V_INPUT) ;
59 T 1:=RANDOM(GL(n, K )) ; T 0:=RANDOM(V ) ;
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The corresponding public key is obtained via P = T ◦ F ◦ S:
60 P :=function(input )
61 XX:=input∗S1+S0 ;
62 X :=V2E (VECTOR([XX[i ]:i in [1. . n]])) ; // normal variables
63 XV:=VECTOR([XX[i ]:i in [n+1. . n+v ]]) ; // vinegar variables
64 return E2V ( F (X , XV) )∗T 1+T 0 ;
65 end function ;

The coefficients of homogeneous parts for the set of forms corresponding to P is
obtained via:
66 PUBC0, PUBC1, PUBC2:=C012(K , V_INPUT, P, n−r , n+v ) ;

We are now able to verify if a signature is valid:
67 VERIFY:=function(msg, sig)
68 m:=[ EVAL(PUBC2[i ], PUBC1[i ], PUBC0[i ], sig, n+v ) : i in [1. . n−r ]] ;
69 return &and[ m[i ] eq msg [i ]: i in [1. . n−r ]] ;
70 end function ;

We now compute an equivalent secret key. First, we look for the linear mappings
MX verifying: Mx×DP −DP ×Mx = 0.

71 B :=BASIS(V ) ; PR:=POLYNOMIALRING(K , (n+v )2) ;
72 MX:=MATRIX(n+v , [PR.i :i in [1. . (n+v )2]]) ;
73 DP:=DIFF(PUBC2, K , n−r , n+v ) ;

74 EQS:=[ELTSEQ(MX∗DP[ii ]−DP[ii ]∗TRANSPOSE(MX)):ii in [1. . n−r ]] ;

75 GB:=[] ;
76 for ii :=1 to n−r do
77 GB:=GROEBNERBASIS(GB cat EQS[ii ]) ;
78 if #GB + n + 1 eq (n+v )2 then break ; end if ;
79 end for ;

We choose a particular solution M_ by removing the n + 1 degrees of freedom
by fixing the remaining unknowns to random values, and extract the two roots
c ∈ K and a ∈ E of the characteristic polynomial of M_.
80 repeat W :=GROEBNERBASIS([PR.((n+v )2−i ) + RANDOM(K ):i in [0. . n]]

at GB);

81 until not(W eq [PR ! 1]) ; // complete consitently
82 M_:=MATRIX(n+v , [K ! EVALUATE(W [i ], PR.i , 0):i in [1. . (n+v )2]]) ;
83 CPOL:=FACTOREDCHARACTERISTICPOLYNOMIAL(M_) ;
84 if not(#CPOL eq 2) then “Bad Char. Pol.” ; exit ; end if ;
85 c :=ROOTS(CPOL[1][1])[1][1] ; // factor of degree 1
86 a:=ROOTS(POLYNOMIALRING(E ) ! CPOL[2][1])[1][1] ; // of degree n

M_ must be similar to the matrix of (X,Xv) �→ (aX, cXv), which will disclose a
particular solution S_ as useful to sign as S:
87 A:=MULBY(a, E2V , V2E , B) ;
88 is_similar , S_:=ISSIMILAR(M_, DIAGONALJOIN(A, SCALARMATRIX(v , c)) ) ;
89 if not(is_similar ) then “Recovering S_ failed.” ; exit ; end if ;
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Applying the change of base S_, we get (Z,Zv) �→ T
(
Z2 + β̃ · Z + γ̃(Zv)

)
:

90 Z :=VECTOR([PR.i :i in [1. . n+v ]])∗MATRIXALGEBRA(PR, n+v ) ! (S_) ;
91 PUBZ:=[EVAL(PUBC2[i ], PUBC1[i ], PUBC0[i ], Z , n+v ):i in [1. . n−r ]] ;

To get rid of the term β̃ · Z, we look for Y such that the coefficient of Z in
T
(
(X + Y )2 + β̃ · (Z + Y ) + γ̃(Zv) becomes zero:

92 V0:=RANDOM(V_VINEGAR) ;
93 ZPY:=[PR ! 0:i in [1. . (n+v )2]] ; // Z + Y
94 for i :=1 to n do ZPY[i ]:=PR.i+PR.(i+n+v ) ; end for ;
95 for i :=1 to v do ZPY[i+n]:=V0[i ] ; end for ;

96 PUBZV:=[EVALUATE(PUBZ[i ], ZPY):i in [1. . n−r ]] ;

97 OY:=[PR ! 0:i in [1. . (n+v )2]] ; // (Z, Y ) = (0, Y )
98 for i :=1 to n do OY[i+n+v ]:=PR.(i+n+v ) ; end for ;
99 EQLIN:=&cat[[EVALUATE(COEFFICIENT(PUBZV[i ], PR.j , 1), OY)

100 :j in [1. . n]]:i in [1. . n−r ]] ; // equations 2Y = β̃
101 Y 0:=GROEBNERBASIS(EQLIN) ;
102 beta_:=VECTOR([K ! EVALUATE(Y 0[i ], PR.(i+n+v ), 0):i in [1. . n]]) ;

We are now able to get the polynomials corresponding to T
(
Z2 + γ̄(Zv)

)
:

103 for i :=1 to n do ZPY[i ]:=PR.i−beta_[i ] ; end for ;
104 PUBZ0:=[EVALUATE(PUBZ[i ], ZPY):i in [1. . n−r ]] ;
We recover g0= γ̄(0) (remember vinegar part of ZPY was set to zero above):

105 g0:=[K ! EVALUATE(PUBZ0[i ], [PR ! 0:i in [1. . (n+v )2]]):i in [1. . n−r ]] ;

and thus Z �→ T
(
Z2
)

together with its differential (X,Y ) �→ 2XY

106 PUBZ2:=[PUBZ0[i ]−g0[i ]:i in [1. . n−r ]] ;
107 DPUBZ2:=[SUBMATRIX(S_∗DP[i ]∗TRANSPOSE(S_), 1, 1, n, n):i in [1. . n−r ]] ;
but also (X,Y ) �→ 2a2XY :

108 DPUBZA:=[A∗DPUBZ2[i ]∗TRANSPOSE(A):i in [1. . n−r ]] ;

This allows us to complete T into a full rank mapping T_ via T_(X) = 1
2DP (X, 1):

109 SPA:=SPACE(DPUBZ2 cat DPUBZA, K , n∗n) ; SP2:=SPACE(DPUBZ2, K , n∗n) ;
110 W :=BASIS(COMPLEMENT(SPA, SP2)) ;
111 DPPLUS:=DPUBZ2 cat [VEC2MAT(W [i ], n) : i in [1..#W ]] ;
112 T_:=(K ! 2)−1∗MATRIX([VECTOR([(B [i ]∗DPPLUS[j ], B [1])
113 :j in [1. . n]]) : i in [1. . n]]) ;

and to forge a signature for any message:

114 msg :=RANDOM(V_MESSAGE) ;
115 repeat
116 Y :=VECTOR(ELTSEQ(msg−VECTOR(g0)) cat ELTSEQ(RANDOM(V_RANDOM))) ;
117 is_square, sqrX :=ISSQUARE( V2E (Y ∗T_−1) ) ; until is_square ;
118 forged :=VECTOR(ELTSEQ( E2V (sqrX )−beta_ ) cat ELTSEQ(V0))∗S_;
119 if VERIFY(msg, forged ) then “Forged signature.” ; end if ;
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C Magma Script to Attack the Encryption Scheme

120 q :=31; n:=37; r :=3; K :=GF(q) ; E :=ext<K |n> ;
121 VI:=VECTORSPACE(K , n−r ) ; VO, K2V :=VECTORSPACE(E , K ) ; V2K :=K2V −1 ;

Build the secret key, the encryption function P , and coefficients:

122 L1:=SUBMATRIX(RANDOM(GL(n, K )), 1, 1, n−r , n) ; L2:=RANDOM(GL(n, K )) ;
123 l1:=RANDOM(GL(n, K ))[1] ; l2:=RANDOM(VO) ;
124 PENCRYPT:=func< plain | K2V (V2K (plain∗L1+l1)2)∗L2+l2 > ;
125 PUBC0, PUBC1, PUBC2 := C012(K , VI, PENCRYPT, n, n−r ) ;

The mappings Δ = {DPyi}i∈[1,n−r] for linearly independant y1, . . . , yn−r:

126 DP:=DIFF(PUBC2, K , n, n−r ) ; Y :=RANDOM(GL(n−r , K )) ;
127 Δ:=[TRANSPOSE(MATRIX([Y [k ]∗DP[i ] : i in [1. . n]])) : k in [1. . n−r ]] ;
The set Λ of linear mappings verifying (9) for some parameter m:

128 m:=2; δ:=[Δ[i ]: i in [m+1. . n−r ]] ; SP:=SPACE(δ, K , (n−r )∗n) ;
129 DUAL:=TRANSPOSE(NULLSPACEMATRIX(TRANSPOSE(BASISMATRIX(SP)))) ;
130 P1:=TRANSPOSE(MATRIX(PUBC1)) ; B :=BASIS(VECTORSPACE(K , n 2)) ;
131 MMUL:=func<A | MATRIX([MAT2VEC(A∗VEC2MAT(B [i ], n)): i in [1..#B ]])> ;
132 Λ:=&meet[NULLSPACE(MMUL(Δ[i ])∗DUAL): i in [1. .m]]
133 meet NULLSPACE(MMUL(P1)∗DUAL) ;

Compute the characteristic polynomial CP of a random linear mapping in Λ:

134 M :=VEC2MAT(RANDOM(Λ), n) ; CP:=FACTOREDCHARACTERISTICPOLYNOMIAL(M ) ;
135 a:=ROOTS(POLYNOMIALRING(E ) ! CP[1][1])[1][1] ;
136 A:=MULBY(a, K2V , V2K , BASIS(VO)) ;

Recover the secret elements:
137 res, L2_:= ISSIMILAR(M, A) ; R :=RANDOM(VI) ;
138 v :=V2K (VECTOR([(R∗DP[j ], R): j in [1. . n]])∗L2_−1)/2;
139 res, s:=ISSQUARE(v ) ;
140 if not res then L2_:=−L2_ ; res, s:=ISSQUARE(−v ) ; end if ;

141 l1_:=K2V (V2K (R∗P1∗L2_−1)/(2∗s)) ;
142 L1_:=P1∗L2_−1∗MULBY(1/V2K (2∗l1_), K2V , V2K , BASIS(VO)) ;
143 l2_:=PENCRYPT(VI ! 0)−K2V (V2K (l1_)2)∗L2_ ;

144 IML1_:=sub<VO|[L1_[i ]:i in [1. . n−r ]]> ;

145 DISCLOSE:=function(cipher ) // unlegitimate decryption!
146 is_square, root :=ISSQUARE(V2K ((cipher−l2_)∗L2_−1)) ;
147 if is_square then Z :=K2V (root ) ;
148 if (Z−l1_) in IML1_ then return true, SOLUTION(L1_, Z−l1_) ;
149 else if (−Z−l1_) in IML1_ then return true, SOLUTION(L1_, −Z−l1_) ;
150 else return false, _ ; end if ; end if ; else return false, _ ; end if ;
151 end function ;

152 plain:=RANDOM(VI) ; b, p:=DISCLOSE(PENCRYPT(plain)) ;
153 if b and (p eq plain) then “Decryption successful.” ; end if ;
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Abstract. We present a new algorithm based on binary quadratic forms
to factor integers of the form N = pq2. Its heuristic running time is expo-
nential in the general case, but becomes polynomial when special (arith-
metic) hints are available, which is exactly the case for the so-called NICE
family of public-key cryptosystems based on quadratic fields introduced
in the late 90s. Such cryptosystems come in two flavours, depending
on whether the quadratic field is imaginary or real. Our factoring al-
gorithm yields a general key-recovery polynomial-time attack on NICE,
which works for both versions: Castagnos and Laguillaumie recently ob-
tained a total break of imaginary-NICE, but their attack could not apply
to real-NICE. Our algorithm is rather different from classical factoring
algorithms: it combines Lagrange’s reduction of quadratic forms with a
provable variant of Coppersmith’s lattice-based root finding algorithm for
homogeneous polynomials. It is very efficient given either of the following
arithmetic hints: the public key of imaginary-NICE, which provides an
alternative to the CL attack; or the knowledge that the regulator of the
quadratic field Q(

√
p) is unusually small, just like in real-NICE.
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1 Introduction

Many public-key cryptosystems require the hardness of factoring large integers
of the special form N = pq2, such as Okamoto’s Esign [Oka90], Okamoto and
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was initiated by Buchmann and Williams’ key exchange [BW88], and which
includes NICE1 cryptosystems [HPT99,PT99,PT00,JSW08] (whose main feature
is a quadratic decryption). These moduli are popular because they can lead
to special functionalities (like homomorphic encryption) or improved efficiency
(compared to RSA). And no significant weakness has been found compared to
standard RSA moduli of the form N = pq: to the best of our knowledge, the only
results on pq2 factorisation are [PO96, Per01, BDH99]. More precisely, [PO96,
Per01] obtained a linear speed-up of Lenstra’s ECM, and [BDH99, Sect. 6] can
factor in time Õ(N1/9) when p and q are balanced. Furthermore, computing
the “squarefree part” of an integer (that is, given N ∈ N as input, compute
(r, s) ∈ N2 such that N = r2s with s squarefree) is a classical problem in
algorithmic number theory (cf. [AM94]), because it is polynomial-time equivalent
to determining the ring of integers of a number field [Chi89].

However, some of these cryptosystems actually provide additional informa-
tion (other than N) in the public key, which may render factorisation easy.
For instance, Howgrave-Graham [How01] showed that the public key of [Oka86]
disclosed the secret factorisation in polynomial time, using the gcd extension
of Coppersmith’s root finding method [Cop97]. Very recently, Castagnos and
Laguillaumie [CL09] showed that the public key in the imaginary version [HPT99,
PT99,PT00] of NICE allowed to retrieve the secret factorisation in polynomial
time. And this additional information in the public key was crucial to make
the complexity of decryption quadratic in imaginary-NICE, which was the main
claimed benefit of NICE. But surprisingly, the attack of [CL09] does not work
against REAL-NICE [JSW08], which is the version of NICE with real (rather than
imaginary) quadratic fields, and which also offers quadratic decryption. In par-
ticular, the public key of REAL-NICE only consists of N = pq2, but the prime p
has special arithmetic properties.
Our Results. We present a new algorithm to factor integers of the form
N = pq2, based on binary quadratic forms (or equivalently, ideals of orders of
quadratic number fields). In the worst case, its heuristic running time is exponen-
tial, namely Õ(p1/2). But in the presence of special hints, it becomes heuristically
polynomial. These hints are different from the usual ones of lattice-based factor-
ing methods [Cop97,BDH99,How01] where they are a fraction of the bits of the
secret prime factors. Instead, our hints are arithmetic, and correspond exactly
to the situation of NICE, including both the imaginary [HPT99, PT99, PT00]
and real versions [JSW08]. This gives rise to the first general key-recovery
polynomial-time attack on NICE, using only the public key.

More precisely, our arithmetic hints can be either of the following two:

i. The hint is an ideal equivalent to a secret ideal of norm q2 in an imaginary
quadratic field of discriminant−pq2: in NICE, such an ideal is disclosed by the
public key. This gives an alternative attack of NICE, different from [CL09].

ii. The hint is the knowledge that the regulator of the quadratic field Q(
√
p) is

unusually small, just like in REAL-NICE. Roughly speaking, the regulator is a
real number which determines how “dense” the units of the ring of integers

1 For New Ideal Coset Encryption.
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of the number field Q(
√
p) are. This number is known to lie in the large

interval
[
log
( 1

2 (
√
p− 4 +

√
p)
)
,
√

1
2p
( 1

2 log p+ 1
)]

. But for infinitely many

p (including square-free numbers of the form p = k2 + r, where p > 5, r|4k
and −k < r ≤ k, see [Deg58]), the regulator is at most polynomial in log p.
For these unusually small regulators, our algorithm heuristically runs in time
polynomial in the bit-length of N = pq2, which gives the first total break of
REAL-NICE [JSW08]. We stress that although such p’s are easy to construct,
their density is believed to be arbitrary small.

Interestingly, our algorithm is rather different from classical factoring algo-
rithms. It is a combination of Lagrange’s reduction of quadratic forms with a
provable variant of Coppersmith’s lattice-based root finding algorithm [Cop97]
for homogeneous polynomials. In a nutshell, our factoring method first looks for
a reduced binary quadratic form f(x, y) = ax2 + bxy + cy2 representing prop-
erly q2 with small coefficients, i.e. there exist small coprime integers x0 and y0
such that q2 = f(x0, y0). In case i., such a quadratic form is already given. In
case ii., such a quadratic form is found by a walk along the principal cycle of
the class group of discriminant pq2, using Lagrange’s reduction of (indefinite)
quadratic forms. Finally, the algorithm finds such small coprime integers x0 and
y0 such that q2 = f(x0, y0), by using the fact that gcd(f(x0, y0), pq2) is large.
This discloses q2 and therefore the factorisation of N . In both cases, the search
for x0 and y0 is done with a new rigorous homogeneous bivariate variant of Cop-
persmith’s method, which might be of independent interest: by the way, it was
pointed out to us that Bernstein [Ber08] independently used a similar method
in the different context of Goppa codes decoding.

Our algorithm requires “natural” bounds on the roots of reduced quadratic
forms of a special shape. We are unable to prove rigorously all these bounds,
which makes our algorithm heuristic (like many factoring algorithms). But we
have performed many experiments supporting such bounds, and the algorithm
works very well in practice.

Factorisation and Quadratic Forms. Our algorithm is based on quadratic
forms, which share a long history with factoring (see [CP01]). Fermat’s factoring
method represents N in two intrinsically different ways by the quadratic form
x2 + y2. It has been improved by Shanks with SQUFOF, whose complexity is
Õ(N1/4) (see [GW08] for a detailed analysis). Like ours, this method works
with the infrastructure of a class group of positive discriminant, but is different
in spirit since it searches for an ambiguous form (after having found a square
form), and does not focus on discriminants of a special shape. Schoof’s factoring
algorithms [Sch82] are also essentially looking for ambiguous forms. One is based
on computation in class groups of complex quadratic orders and the other is
close to SQUFOF since it works with real quadratic orders by computing a
good approximation of the regulator to find an ambiguous form. Like SQUFOF,
this algorithm does not takes advantage of working in a non-maximal order
and is rather different from our algorithm. Both algorithms of [Sch82] runs in
Õ(N1/5) under the generalised Riemann hypothesis. McKee’s method [McK99]
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is a speedup of Fermat’s algorithm (and was presented as an alternative to
SQUFOF) with a heuristic complexity of Õ(N1/4) instead of Õ(N1/2).

SQUFOF and other exponential methods are often used to factor small num-
bers (say 50 to 100 bits), for instance in the post-sieving phase of the Number
Field Sieve algorithm. Some interesting experimental comparisons can be found
in [Mil07]. Note that the currently fastest rigorous deterministic algorithm actu-
ally has exponential complexity: it is based on a polynomial evaluation method
(for a polynomial of the form x(x− 1) · · · (x−B+ 1) for some bound B) and its
best variant is described in [BGS07]. Finally, all sieve factoring algorithms are
somewhat related to quadratic forms, since their goal is to find random pairs
(x, y) of integers such that x2 ≡ y2 mod N . However, these algorithms factor
generic numbers and have a subexponential complexity.

Road Map. The rest of the paper is organised as follows. The first section
recalls facts on quadratic fields and quadratic forms, and present our heuristic
supported by experiments. The next section describes the homogeneous Copper-
smith method and the following exhibits our main result: the factoring algorithm.
The last section consists of the two cryptanalyses of cryptosystems based on real
quadratic fields (REAL-NICE) and on imaginary quadratic fields (NICE).

2 Background on Quadratic Fields and Quadratic Forms

2.1 Quadratic Fields

Let D 
= 0, 1 be a squarefree integer and consider the quadratic number field
K = Q(

√
D). If D < 0 (resp. D > 0), K is called an imaginary (resp. a real)

quadratic field. The fundamental discriminant ΔK of K is defined as ΔK = D
if D ≡ 1 (mod 4) and ΔK = 4D otherwise. An order O in K is a subset of K
such that O is a subring of K containing 1 and O is a free Z-module of rank
2. The ring OΔK of algebraic integers in K is the maximal order of K. It can
be written as Z + ωKZ, where ωK = 1

2 (ΔK +
√
ΔK). If we set f = [OΔK : O]

the finite index of any order O in OΔK , then O = Z + fωKZ. The integer f
is called the conductor of O. The discriminant of O is then Δf = f2ΔK . Now,
let OΔ be an order of discriminant Δ and � be a nonzero ideal of OΔ, its norm
is N(�) = |OΔ/�|. A fractional ideal is a subset � ⊂ K such that d� is an ideal
of OΔ for d ∈ N. A fractional ideal � is said to be invertible if there exists
an another fractional ideal � such that �� = OΔ. The ideal class group of OΔ is
C(OΔ) = I(OΔ)/P (OΔ), where I(OΔ) is the group of invertible fractional ideals
of OΔ and P (OΔ) the subgroup consisting of principal ideals. Its cardinality is
the class number of OΔ denoted by h(OΔ). A nonzero ideal � of OΔ, � is said
to be prime to f if � + fOΔ = OΔ. We denote by I(OΔ, f) the subgroup of
I(OΔ) of ideals prime to f . The group O�

Δ of units in OΔ is equal to {±1} for
all Δ < 0, except when Δ is equal to −3 and −4 (O�

−3 and O�
−4 are respectively

the group of sixth and fourth roots of unity). When Δ > 0, then O�
Δ = 〈−1, εΔ〉

where εΔ > 0 is called the fundamental unit. The real number RΔ = log(εΔ) is
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the regulator of OΔ. The following important bounds on the regulator of a real
quadratic field can be found in [JLW95]:

log
(

1
2
(
√
Δ− 4 +

√
Δ)
)
≤ RΔ <

√
1
2
Δ

(
1
2

logΔ+ 1
)
. (1)

The lower bound is reached infinitely often, for instance with Δ = x2 + 4 with
2 � x. Finally, this last proposition is the heart of both NICE and REAL-NICE.

Proposition 1 ([Cox99, Proposition 7.20] [Wei04, Theorem 2.16]). Let
OΔf

be an order of conductor f in a quadratic field K.

i. If � is an OΔK -ideal prime to f , then � ∩ OΔf
is an OΔf

-ideal prime to f
of the same norm.

ii. If � is an OΔf
-ideal prime to f , then �OΔK is an OΔK -ideal prime to f of

the same norm.
iii. The map ϕf : I(OΔf

, f)→ I(OΔK , f), � �→ �OΔK is an isomorphism.

The map ϕf from Proposition 1 induces a surjection ϕ̄f : C(OΔf
) � C(OΔK )

which can be efficiently computed (see [PT00]). In our settings, we will use a
prime conductor f = q and consider Δq = q2ΔK , for a fundamental discriminant
ΔK . In that case, the order of the kernel of ϕ̄q is given by the classical analytic
class number formula (see for instance [BV07])

h(OΔq )
h(OΔK )

=
{
q − (ΔK/q) if Δk < −4,
(q − (ΔK/q))RΔK/RΔq if Δk > 0. (2)

Note that in the case of real quadratic fields, εΔq = εtΔK
for a positive integer

t, hence RΔq/RΔK = t and t | (q − (ΔK/q)).

2.2 Representation of the Classes

Working with ideals modulo the equivalence relation of the class group is essen-
tially equivalent to work with binary quadratic forms modulo SL2(Z) (cf. Section
5.2 of [Coh00]). Moreover, quadratic forms are more suited to an algorithmic
point of view. Every ideal � of OΔ can be written as � = m

(
aZ + −b+

√
Δ

2 Z
)

with m ∈ Z, a ∈ N and b ∈ Z such that b2 ≡ Δ (mod 4a). In the remainder,
we will only consider primitive integral ideals, which are those with m = 1.
This notation also represents the binary quadratic form ax2 + bxy + cy2 with
b2 − 4ac = Δ. This representation of the ideal is unique if the form is normal
(see below). We recall here some facts about binary quadratic forms.

Definition 1. A binary quadratic form f is a degree 2 homogeneous polynomial
f(x, y) = ax2+bxy+cy2 where a, b and c are integers, and is denoted by [a, b, c].
The discriminant of the form is Δ = b2 − 4ac. If a > 0 and Δ < 0, the form is
called definite positive and indefinite if Δ > 0.

Let M ∈ SL2(Z) with M =
(
α β
γ δ

)
, and f = [a, b, c], a binary quadratic form,

then f.M is the equivalent binary quadratic form f(αx+ βy, γx+ δy).



474 G. Castagnos et al.

Definite Positive Forms. Let us first define the crucial notion of reduction.

Definition 2. The form f = [a, b, c] is called normal if −a < b ≤ a. It is called
reduced if it is normal, a ≤ c, and if b ≥ 0 for a = c.

The procedure which transforms a form f = [a, b, c] into a normal one consists
in setting s such that b + 2sa belongs to the right interval (see [BV07, (5.4)])
and producing the form [a, b + 2sa, as2 + bs + c]. Once a form f = [a, b, c] is
normalised, a reduction step consists in normalising the form [c,−b, a]. We de-
note this form by ρ(f) and by Rho a corresponding algorithm. The reduction
then consists in normalising f , and then iteratively replacing f by ρ(f) until f
is reduced. The time complexity of this (Lagrange-Gauß) algorithm is quadratic
(see [BV07]). It returns a reduced form g which is equivalent to f modulo SL2(Z).
We will call matrix of the reduction, the matrix M such that g = f.M . The re-
duction procedure yields a uniquely determined reduced form in the class modulo
SL2(Z).

Indefinite Forms. Our main result will deal with forms of positive discrimi-
nant. Here is the definition of a reduced indefinite form.

Definition 3. The form f = [a, b, c] of positive discriminant Δ is reduced if∣∣∣√Δ− 2|a|
∣∣∣ < b <

√
Δ and normal if −|a| < b ≤ |a| for |a| ≥

√
Δ, and

√
Δ− 2|a| < b <

√
Δ for |a| <

√
Δ.

The reduction process is similar to the definite positive case. The time complexity
of the algorithm is still quadratic (see [BV07, Theorem 6.6.4]). It returns a
reduced form g which is equivalent to f modulo SL2(Z). The main difference
with forms of negative discriminant is that there will in general not exist a
unique reduced form per class, but several organised in a cycle structure i. e.,
when f has been reduced then subsequent applications of ρ give other reduced
forms.

Definition 4. Let f be an indefinite binary quadratic form, the cycle of f is
the sequence (ρi(g))i∈Z where g is a reduced form which is equivalent to f .

From Theorem 6.10.3 from [BV07], the cycle of f consists of all reduced forms
in the equivalence class of f . Actually, the complete cycle is obtained by a finite
number of application of ρ as the process is periodic. It has been shown in
[BTW95] that the period length � of the sequence of reduced forms in each class
of a class group of discriminant Δ satisfies RΔ

log Δ ≤ � ≤
2RΔ

log 2 + 1.
Our factoring algorithm will actually take place in the principal equivalence

class. The following definition exhibits the principal form of discriminant Δ.

Definition 5. The reduced form [1, (
√
Δ), ((

√
Δ)2 − Δ)/4] of discriminant Δ

is called the principal form of discriminant Δ, and will be denoted 1Δ.
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2.3 Reduction of the Forms [q2, kq, (k2 ± p)/4] and Heuristics

In this subsection, p and q are two distinct primes of the same bit-size λ and
p ≡ 1 mod 4 (resp. p ≡ 3 mod 4) when we deal with positive (resp. negative)
discriminant. Our goal is to factor the numbers pq2 with the special normalised
quadratic forms [q2, kq, (k2 + p)/4] or [q2, kq, (k2− p)/4], depending whether we
work with a negative discriminant Δq = −pq2 or with a positive one Δq = pq2.
If p and q have the same size, these forms are clearly not reduced neither in the
imaginary setting nor in real one. But as we shall see, we can find the reduced
forms which correspond to the output of the reduction algorithm applied on
these forms.

Suppose that we know a form f̂k, either definite positive or indefinite, which
is the reduction of a form fk = [q2, kq, (k2 ± p)/4] where k is an integer. Then

f̂k represents the number q2. More precisely, if Mk =
(
α β
γ δ

)
∈ SL2(Z) is the

matrix such that f̂k = fk.Mk, then f̂k.M
−1
k = fk and q2 = fk(1, 0) = f̂k(δ,−γ).

In Section 3, we will see that provided they are relatively small compared to
Δq, the values δ and −γ can be found in polynomial time with a new variant
of Coppersmith method. Our factoring algorithm can be sketched as follows:
find such a form f̂k and if the coefficients of Mk are sufficiently small, retrieve
δ and −γ and the non-trivial factor q2 of Δq. In this paragraph, we give some
heuristics on the size of such a matrix Mk and discuss their relevance. If M is a
matrix we denote by |M | the max norm, i. e., the maximal coefficient of M in
absolute value.

In the imaginary case, it is showed in the proof of [CL09, Theorem 2] that
the forms fk belong to different classes of the kernel of the map ϕ̄q, depending
on k, so the reduced equivalent forms f̂k are the unique reduced elements of the
classes of the kernel. To prove the correctness of our attack on NICE, we need
the following heuristic (indeed, the root finding algorithm of Section 3 recovers
roots up to |Δq|1/9):

Heuristic 1 (Imaginary case). Given a reduced element f̂k of a nontrivial
class of ker ϕ̄q, the matrix of reduction Mk is such that |Mk| < |Δq|1/9 with
probability asymptotically close to 1.

In the full version, we prove a probabilistic version of Heuristic 1. From
Lemma 5.6.1 of [BV07], |Mk| < 2 max{q2, (k2 + p)/4}/

√
pq2. As fk is nor-

malised, |k| ≤ q and |Mk| < 2q/
√
p ≈ |Δq|1/6. Note that we cannot reach such a

bound with our root finding algorithm. Experimentally, for random k, |Mk| can
be much smaller. For example, if the bit-size λ of p and q equals 100, the mean
value of |Mk| is around |Δq|1/11.7. Our heuristic can be explained as follows.
A well-known heuristic in the reduction of positive definite quadratic forms (or
equivalently, two-dimensional lattices) is that if [a, b, c] is a reduced quadratic
form of discriminantΔ, then a and c should be close to

√
Δ. This cannot hold for

all reduced forms, but it can be proved to hold for an overwhelming majority of
reduced forms. Applied to f̂k = [a, b, c], this means that we expect a and c to be
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close to |Δq|1/2. Now, recall that q2 = f̂k(δ,−γ) = aδ2 − bδγ + cγ2, which leads
to δ and γ close to

√
q2/a = q/

√
a ≈ q/|Δq|1/4 ≈ |Δq|1/12. Thus, we expect that

|Mk| ≤ |Δq|1/12. And this explains why we obtained experimentally the bound
|Δq|1/11.7. Figure 1(a) shows a curve obtained by experimentation, which gives
the probability that |Mk| < |Δq|1/9 for random k, in function of λ. This curve
also supports our heuristic.

In the real case, we prove in the following theorem that RΔq/RΔK forms fk

are principal and we exhibit the generators of the corresponding primitive ideals.

Theorem 1. Let ΔK be a fundamental positive discriminant, Δq = ΔKq
2 where

q is an odd prime conductor. Let εΔK (resp. εΔq) be the fundamental unit of
OΔK (resp. OΔq ) and t such that εt

ΔK
= εΔq . Then the principal ideals of OΔq

generated by qεi
ΔK

correspond to quadratic forms fk(i) = [q2, k(i)q, (k(i)2−p)/4]
with i ∈ {1, . . . , t− 1} and k(i) is an integer defined modulo 2q computable from
εi

ΔK
mod q.

Proof. Let αi = qεi
ΔK

with i ∈ {1, . . . , t − 1}. Following the proof of [BTW95,
Proposition 2.9], we detail here the computation of �i = αiOΔq . Let xi and yi

be two integers such that εi
ΔK

= xi + yiωK . Then αi = qxi + yiqΔK(1− q)/2 +
yi

1
2 (Δq +

√
Δq), and αi is an element of OΔq . Let mi, ai and bi be three integers

such that �i = mi

(
aiZ +

−bi+
√

Δq

2

)
. As mentioned in the proof of [BTW95,

Proposition 2.9], mi is the smallest positive coefficient of
√
Δq/2 in �i. As OΔq

is equal to Z+(Δq +
√
Δq)/2Z, αiOΔq is generated by αi and αi(Δq +

√
Δq)/2

as a Z-module. So a simple calculation gives that mi = gcd(yi, q(xi + yiΔK/2)).
As εi

ΔK
is not an element of OΔq , we have gcd(yi, q) = 1 so mi = gcd(yi, xi +

yiΔK/2). The same calculation to find m′
i for the ideal εi

ΔK
OΔK reveals that

mi = m′
i. As εi

ΔK
OΔK = OΔK we must have m′

i = 1. Now, N(�i) = |N(αi)| = q2

and N(�i) = m2
i ai = ai and therefore ai = q2. Let us now find bi. Note that

bi is defined modulo 2ai. Since αi ∈ αiOΔq , there exist μi and νi such that
αi = aiμi + (−bi +

√
Δq)/2νi. By identification in the basis (1,

√
Δq), νk = 1

and by a multiplication by 2, we obtain 2qxi + qyiΔK ≡ −biyi (mod 2ai). As
bi ≡ Δq (mod 2), we only have to determine bi modulo q2. As yi is prime to
q, we have bi ≡ k(i)q (mod q2) with k(i) ≡ −2xi/yi −ΔK (mod q). Finally, as
we must have −ai < b ≤ ai if ai >

√
Δq and else

√
Δq − 2ai < b <

√
Δq,

k(i) is the unique integer with k(i) ≡ Δq (mod 2) and k(i) ≡ −2xi/yi − ΔK

(mod q), such that b = k(i)q satisfies that inequalities. Eventually, the principal
ideal of OΔq generated by qεi

ΔK
corresponds to the form [q2, k(i)q, ci] with ci =

(b2i −Δq)/(4ai) = (k(i)2 −ΔK)/4. ��

From this theorem, we see that if we go across the cycle of principal forms,
then we will find reduced forms f̂k. To analyse the complexity of our factor-
ing algorithm, we have to know the distribution of these forms on the cycle.
An appropriate tool is the Shanks distance d (see [BV07, Definition 10.1.4])
which is close to the number of iterations of Rho between two forms. One has
d(1Δq , fk(i)) = iRΔK . From Lemma 10.1.8 of [BV07], |d(f̂k(i), fk(i))| < log q, for
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(a) Imaginary case (b) Real case

Fig. 1. Probability that |Mk| < |Δq |1/9 in function of the bit-size λ of p and q

all i = 1, 2, . . . , t − 1. Let j be the smallest integer such that 0 < jRΔK −
2 log q, then as jRΔK = d(fk(i), fk(i+j)) = d(fk(i), f̂k(i)) + d(f̂k(i), f̂k(i+j)) +
d(f̂k(i+j), fk(i+j)), from the triangle inequality, one has jRΔK < 2 log(q) +
|d(f̂k(i), f̂k(i+j))|. So, |d(f̂k(i), f̂k(i+j))| > jRΔK − 2 log q > 0. This inequality
proves that fk(i) and fk(i+j) do not reduce to the same form. Experiments actu-
ally show that asymptotically, |d(f̂k(i), fk(i))| is very small on average (smaller
than 1). As a consequence, as pictured in figure 2, d(1Δq , f̂k(i)) ≈ iRΔK .

RΔK

fk(1)

f̂k(1)

fk(2)f̂k(2)

fk(3)
f̂k(3)

1Δq

Fig. 2. Repartition of the forms f̂k(i) along the principal cycle

Moreover, as in the imaginary case, experiments show that asymptotically the
probability that the norm of the matrices of reduction, |Mk| is smaller than Δ1/9

q

is close to 1 (see figure 1(b)). This leads to the following heuristic.

Heuristic 2 (Real case). From the principal form 1Δq , a reduced form f̂k

such that the matrix of the reduction, Mk, satisfy |Mk| < Δ
1/9
q , can be found in

O(RΔK ) successive applications of Rho.

We did also some experiments to investigate the case where the bit-sizes of p
and q are unbalanced. In particular when the size of q grows, the norm of the
matrix of reduction becomes larger. For example, for a 100-bit p and a 200-bit q
(resp. a 300-bit q), more than 95% (resp. 90%) of the f̂k have a matrix Mk with
|Mk| < Δ

1/6.25
q (resp. |Mk| < Δ

1/5.44
q ).
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3 A Rigorous Homogeneous Variant of Coppersmith’s
Root Finding Method

Our factoring algorithm searches many times for small modular roots of de-
gree two homogeneous polynomials and the most popular technique to find
them is based on Coppersmith’s method (see [Cop97] or May’s survey [May07]).
Our problem is the following: Given f(x, y) = x2 + bxy + cy2 a (monic) bi-
nary quadratic form and N = pq2 an integer of unknown factorisation, find
(x0, y0) ∈ Z2 such that f(x0, y0) ≡ 0 (mod q2), while |x0|, |y0| ≤ M , where
M ∈ N. The usual technique for this kind of problems is only heuristic, since it
is the gcd extension of bivariate congruences. Moreover, precise bounds cannot
be found in the litterature. Fortunately, because our polynomial is homogeneous,
we will actually be able to prove the method. This homogenous variant is quite
similar to the one-variable standard Coppersmith method, but is indeed even
simpler to describe and more efficient since there is no need to balance coeffi-
cients. We denote as ‖ · ‖ the usual Euclidean norm for polynomials. The main
tool to solve this problem is given by the following variant of the widespread
elementary Howgrave-Graham’s lemma [How97].

Lemma 1. Let B ∈ N and g(x, y) ∈ Z[x, y] be a homogeneous polynomial of
total degree δ. Let M > 0 be a real number and suppose that ||g(x, y)|| < B√

δ+1Mδ

then for all x0, y0 ∈ Z such that g(x0, y0) ≡ 0 (mod B) and |x0|, |y0| ≤ M ,
g(x0, y0) = 0.

Proof. Let g(x, y) =
∑δ

i=0 gix
iyδ−i where some gis might be zero. We have

|g(x0, y0)| ≤
∑δ

i=0 |gi||xi
0y

δ−i
0 | ≤M δ

∑δ
i=0 |gi|

≤M δ
√
δ + 1‖g(x, y)‖ < B

and therefore g(x0, y0) = 0. ��

The trick is then to find only one small enough bivariate homogeneous
polynomial satisfying the conditions of this lemma and to extract the ratio-
nal root of the corresponding univariate polynomial with standard techniques.
On the contrary, the original Howgrave-Graham’s lemma suggests to look for
two polynomials of small norm having (x0, y0) as integral root, and to recover
it via elimination theory. The usual way to obtain these polynomials is to form
a lattice spanned by a special family of polynomials, and to use the LLL algo-
rithm (cf. [LLL82]) to obtain the two “small” polynomials. Unfortunately, this
reduction does not guarantee that these polynomials will be algebraically inde-
pendent, and the elimination can then lead to a trivial relation. Consequently,
this bivariate approach is heuristic. Fortunately, for homogeneous polynomials,
we can take another approach by using Lemma 1 and then considering a uni-
variate polynomial with a rational root. This makes the method rigorous and
slightly simpler since we need a bound on ‖g(x, y)‖ and not on ‖g(xX, yY )‖ if
X and Y are bounds on the roots and therefore the resulting lattice has smaller
determinant than in the classical bivariate approach.
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To evaluate the maximum of the bound we can obtain, we need the size of
the first vector provided by LLL which is given by:

Lemma 2 (LLL). Let L be a full-rank lattice in Zd spanned by an integer ba-
sis B = {b1, . . . , bd}. The LLL algorithm, given B as input, will output in time
O(d6 log3(max ‖bi‖)) a non-zero vector u ∈ L satisfying ‖u‖ ≤ 2(d−1)/4 det(L)1/d.

We will now prove the following general result regarding the modular roots of
bivariate homogeneous polynomials which can be of independent interest.

Theorem 2. Let f(x, y) ∈ Z[x, y] be a homogeneous polynomial of degree δ with
f(x, 0) = xδ, N be a non-zero integer and α be a rational number in [0, 1], then
one can retrieve in polynomial time in logN , δ and the bit-size of α, all the
rationals x0/y0, where x0 and y0 are integers such that gcd(f(x0, y0), N) ≥ Nα

and |x0|, |y0| ≤ Nα2/(2δ).

Proof. Let b be a divisor of N for which their exists (x0, y0) ∈ Z2 such that
b = gcd(f(x0, y0), N) ≥ Nα. We define some integral parameters (to be specified
later) m, t and t′ with t = m+ t′ and construct a family of δt+ 1 homogeneous
polynomials g and h of degree δt such that (x0, y0) is a common root modulo
bm. More precisely, we consider the following polynomials{

gi,j(x, y) = xjyδ(t−i)−jf iNm−i for i = 0, . . . ,m− 1, j = 0, . . . , δ − 1
hi(x, y) = xiyδt′−ifm for i = 0, . . . , δt′.

We build the triangular matrix L of dimension δt + 1, containing the coeffi-
cients of the polynomials gi,j and hi. We will apply LLL to the lattice spanned
by the rows of L. The columns correspond to the coefficients of the monomials
yδt, xyδt−1, . . . , xδt−1y, xδt. Let β ∈ [0, 1] such that M = Nβ . The product of the
diagonal elements gives det(L) = N δm(m+1)/2. If we omit the quantities that do
not depend on N , to satisfy the inequality of Lemma 1 with the root bound M ,
the LLL bound from Lemma 2 implies that we must have

δm(m+ 1)/2 ≤ (δt+ 1)(αm− δtβ) (3)

and if we set λ such that t = λm, this gives asymptotically β ≤ α
δλ −

1
2δλ2 , which

is maximal when λ = 1
α , and in this case, βmax = α2/(2δ). The vector output

by LLL gives a homogeneous polynomial f̃(x, y) such that f̃(x0, y0) = 0 thanks
to Lemma 1. Let r = x/y, any rational root of the form x0/y0 can be found by
extracting the rational roots of f̃ ′(r) = 1/yδtf̃(x, y) with classical methods. ��

For the case we are most interested in, δ = 2, N = pq2 with p and q of the
same size, i. e., α = 2/3 then λ = 3/2 and we can asymptotically get roots up
to Nβ with β = 1

9 . If we take m = 4 and t = 6, i. e., we work with a lattice of
dimension 13, we get from (3) that β ≈ 1

10.63 and with a 31-dimensional lattice
(m = 10 and t = 15), β ≈ 1

9.62 . If the size of q grows compared to p, i. e., α
increases towards 1, then β increases towards 1/4. For example, if q is two times
larger than p, i. e., α = 4/5 then β = 1/6.25. For α = 6/7, we get β ≈ 1/5.44.
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We will call HomogeneousCoppersmith the algorithm which implements this
method. It takes as input an integerN = pq2 and a binary quadratic form [a, b, c],
from which we deduce the unitary polynomial x2+b′xy+c′y2, by dividing both b
and c by a modulo N , and the parametersm and t. In fact, this method will only
disclose proper representations of q2, those for which x and y are coprime, but
we note that fk properly represents q2, and therefore so does our form [a, b, c].

The case α = 1 of Theorem 2 can already be found in Joux’s book [Jou09] and
we mention that a similar technique has already been independently investigated
by Bernstein in [Ber08].

4 A Õ(p1/2)-Deterministic Factoring Algorithm for pq2

We detail our new quadratic form-based factoring algorithm for numbers of the
form pq2. In this section, p and q will be of same bit-size, and p ≡ 1 (mod 4).

4.1 The Algorithm

Roughly speaking, if Δq = N = pq2, our factoring algorithm, depicted in Fig. 3,
exploits the fact that the non-reduced forms fk = [q2, kq,−] reduce to forms
f̂k for which there exists a small pair (x0, y0) such that q2 | f̂k(x0, y0) while
q2 | N . From Theorem 1, we know that these reduced forms appear on the
principal cycle of the class group of discriminant Δq. To detect them, we start a
walk in the principal cycle from the principal form 1N , and apply Rho until the
Coppersmith-like method finds these small solutions.

Input: N = pq2, m, t
Output: p, q

1. h ← 1N

2. while (x0, y0) not found do
2.1. h ← Rho(h)
2.2. x0/y0 ← HomogeneousCoppersmith(h, N, m, t)

3. q ← Sqrt(Gcd(h(x0, y0), N))
4. return (N/q2, q)

Fig. 3. Factoring N = pq2

4.2 Heuristic Correctness and Analysis of Our Algorithm

Assuming Heuristic 2, starting from 1N , after O(Rp) iterations, the algorithm
will stop on a reduced form whose roots will be found with our Coppersmith-
like method (for suitable values of m and t) since they will satisfy the ex-
pected N1/9 bound. The computation of gcd(h(x0, y0), N) will therefore expose
q2 and factor N . The time complexity of our algorithm is then heuristically
O(RpPoly(logN)), whereas the space complexity is O(logN). The worst-case
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complexity is O(p1/2 log pPoly(logN)). For small regulators, such as in REAL-
NICE cryptosystem (see. Subsection 5.1), the time complexity is polynomial.

This algorithm can be generalised with a few modifications to primes p such
that p ≡ 3 (mod 4), by considering Δq = 4pq2. Moreover if the bit-sizes of p and
q are unbalanced, our experiments suggest that the size of the roots will be small
enough (see end of Subsection 2.3 and Section 3), so the factoring algorithm will
also work in this case, with the same complexity.

Comparison with other Deterministic Factorisation Methods. Boneh,
Durfee and Howgrave-Graham presented in [BDH99] an algorithm for factoring
integers N = prq. Their main result is the following:

Lemma 3 ([BDH99]). Let N = prq be given, and assume q < pc for some c.
Furthermore, assume that P is an integer satisfying |P − p| < p1−

c
r+c−2 r

d . Then
the factor p may be computed from N , r, c and P by an algorithm whose running
time is dominated by the time it takes to run LLL on a lattice of dimension d.

For r = 2 and c = 1, this leads to a deterministic factoring algorithm which
consists in exhaustively search for an approximation P of p and to solve the
polynomial equation (P +X)2 ≡ 0 (mod p2) with a method à la Coppersmith.
The approximation will be found after O(p1/3) = O(N1/9) iterations.

The fastest deterministic generic integer factorisation algorithm is actually a
version of Strassen’s algorithm [Str76] from Bostan, Gaudry and Schost [BGS07],
who ameliorates a work of Chudnovsky and Chudnovsky [CC87] and proves a
complexity of O(Mint(

4
√
N logN)) where Mint is a function such that integers of

bit-size d can me multiplied in Mint(d) bit operations. More precisely, for numbers
of our interest, Lemma 13 from [BGS07] gives the precise complexity:

Lemma 4 ([BGS07]). Let b,N be two integers with 2 ≤ b < N . One can
compute a prime divisor of N bounded by b, or prove that no such divisor ex-
ists in O

(
Mint(

√
b logN) + log bMint(logN) log logN

)
bit operations and space

O(
√
b logN) bits.

In particular, for b = N1/3, the complexity is Õ(N1/6), with a very large space
complexity compared to our algorithm. Moreover, none of these two last of al-
gorithms can actually factor an integer of cryptographic size. The fact that a
prime divisor has a small regulator does not help in these algorithms, whereas
it makes the factorisation polynomial in our method.

5 Cryptanalysis of the NICE Cryptosystems

Hartmann, Paulus and Takagi proposed the elegant NICE encryption scheme
(see [HPT99,PT99,PT00]), based on imaginary quadratic fields and whose main
feature was a quadratic decryption time. Later on, several other schemes, includ-
ing (special) signature schemes relying on this framework have been proposed.
The public key of these NICE cryptosystems contains a discriminant Δq = −pq2
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together with a reduced ideal � whose class belongs to the kernel of ϕ̄q. The
idea underlying the NICE cryptosystem is to hide the message behind a random
element [�]r of the kernel. Applying ϕ̄q will make this random element disappear,
and the message will then be recovered.

In [JSW08], Jacobson, Scheidler and Weimer embedded the original NICE
cryptosystem in real quadratic fields. Whereas the idea remains essentially the
same as the original, the implementation is very different. The discriminant is
nowΔq = pq2, but because of the differences between imaginary and real setting,
these discriminant will have to be chosen carefully. Among these differences, the
class numbers are expected to be small with very high probability (see the Cohen-
Lenstra heuristics [CL84]). Moreover, an equivalence class does not contain a
unique reduced element anymore, but a multitude of them, whose number is
governed by the size of the fundamental unit. The rough ideas to understand
these systems and our new attacks are given in the following. The full description
of the systems is omitted for lack of space but can be found in [HPT99,JSW08].

5.1 Polynomial-Time Key Recovery in the Real Setting

The core of the design of the REAL-NICE encryption scheme is the very particular
choice of the secret prime numbers p and q such that ΔK = p and Δq = pq2.
They are chosen such that the ratio RΔq/RΔK is of order of magnitude of q
and that RΔK is bounded by a polynomial in log(ΔK). To ensure the first
property, it is sufficient to choose q such that q −

(
ΔK

q

)
is a small multiple of

a large prime. If the second property is very unlikely to naturally happen since
the regulator of p is generally of the order of magnitude of

√
p, it is indeed

quite easy to construct fundamental primes with small regulator. The authors
of [JSW08] suggest to produce a prime p as a so-called Schinzel sleeper, which
is a positive squarefree integer of the form p = a2x2 + 2bx + c with a, b, c, x
in Z, a 
= 0 and b2 − 4ac dividing 4 gcd(a2, b)2. Schinzel sleepers are known to
have a regulator of the order log(p) (see [CW05]). Some care must be taken
when setting the (secret) a, b, c, x values, otherwise the resulting Δq = pq2 is
subject to factorisation attacks described in [Wei04]. We do not provide here
more details on these choices since the crucial property for our attack is the fact
that the regulator is actually of the order log(p). The public key consists of the
sole discriminant Δq. The message is carefully embedded (and padded) into a
primitive OΔq -ideal so that it will be recognised during decryption. Instead of
moving the message ideal � to a different equivalence class (like in the imaginary
case), the encryption actually hides the message in the cycle of reduced ideal
of its own equivalent class by multiplication of a random principal OΔq -ideal �
(computed during encryption). The decryption process consists then in applying
the (secret) map ϕ̄q and perform an exhaustive search for the padded message in
the small cycle of ϕ̄q([��]). This exhaustive search is actually possible thanks to
the choice of p which has a very small regulator. Like in the imaginary case, the
decryption procedure has a quadratic complexity and significantly outperforms
an RSA decryption for any given security level (see Table 3 from [JSW08]).
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Unfortunately, due to the particular but necessary choice of the secret prime p,
the following result states the total insecurity of the REAL-NICE system.

Result 1. Algorithm 3 recovers the secret key of REAL-NICE in polynomial time
in the security parameter under Heuristic 2 since the secret fundamental discrim-
inant p is chosen to have a regulator bounded by a polynomial in log p.

We apply the cryptanalysis on the following example. The Schinzel polynomial
S(X) = 27252X2 + 2 · 3815X + 2 produces a suitable 256-bit prime p for the
value X0 = 103042745825387139695432123167592199. This prime has a regula-
tor RΔK * 90.83. The second 256-bit prime q is chosen following the recommen-
dations from [Wei04]. This leads to a the discriminant

Δq = 28736938823310044873380716142282073396186843906757463274792638734144060602830510
80738669163489273592599054529442271053869832485363682341892124500678400322719842
63278692833860326257638544601057379571931906787755152745236263303465093

Our algorithm recovers the prime

q = 60372105471499634417192859173853663456123015267207769653235558092781188395563

from Δq after 45 iterations in 42.42 seconds on a standard laptop. The rational
root is x0

y0
equal to − 2155511611710996445623

3544874277134778658948 , where x0 and y0 satisfy log(Δq)
log(|x0|) * 10.8

and log(Δq)
log(|y0|) * 10.7.

5.2 Polynomial-Time Key Recovery of the Original NICE

As mentioned above, the public key of the original NICE cryptosystem contains
the representation of a reduced ideal � whose class belongs to the kernel of the
surjection ϕ̄q. The total-break of the NICE cryptosystem is equivalent to solving
the following kernel problem.

Definition 6 (Kernel Problem [BPT04]). Let λ be an integer, p and q be
two λ-bit primes with p ≡ 3 (mod 4). Fix a non-fundamental discriminant Δq =
−pq2. Given an element [�] of ker ϕ̄q, factor the discriminant Δq.

Castagnos and Laguillaumie proposed in [CL09] a polynomial-time algorithm to
solve this problem. We propose here a completely different solution within the
spirit of our factorisation method and whose complexity is also polynomial-time.
As discuss in Subsection 2.3, the idea is to benefit from the fact that the public
ideal � corresponds to a reduced quadratic form, f̂k, which represents q2. We thus
find these x0 and y0 such that gcd(f̂k(x0, y0), Δq) = q2 with the Coppersmith
method of Section 3.

Result 2. The Homogeneous Coppersmith method from Section 3 solves the
Kernel Problem in polynomial time in the security parameter under Heuristic 1.
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We apply our key recovery on the example of NICE proposed in [JJ00,CL09]:

Δq = −1001133619402846750073919037082619174565372425946674915149340539464219927955168
18216760083640752198709726199732701843864411853249644535365728802022498185665592
98370854645328210791277591425676291349013221520022224671621236001656120923

a = 5702268770894258318168588438117558871300783180769995195092715895755173700399
141486895731384747

b = 3361236040582754784958586298017949110648731745605930164666819569606755029773
074415823039847007

The public key consists in Δq and � = (a, b). Our Coppersmith method finds
in less that half a second the root u0 = −103023911

349555951 = x0
y0

and

h(x0, y0) = 5363123171977038839829609999282338450991746328236957351089
4245774887056120365979002534633233830227721465513935614971
593907712680952249981870640736401120729 = q2.

All our experiments have been run on a standard laptop under Linux with
software Sage. The lattice reduction have been performed with Stehlé’s fplll [Ste].
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[BGS07] Bostan, A., Gaudry, P., Schost, É.: Linear Recurrences with Polynomial Co-
efficients and Application to Integer Factorization and Cartier-Manin Oper-
ator. SIAM J. Comput. 36(6), 1777–1806 (2007)

[BPT04] Biehl, I., Paulus, S., Takagi, T.: Efficient Undeniable Signature Schemes
based on Ideal Arithmetic in Quadratic Orders. Des. Codes Cryptogra-
phy 31(2), 99–123 (2004)

[BTV04] Buchmann, J., Takagi, T., Vollmer, U.: Number Field Cryptography. In: van
der Poorten, Stein (eds.) High Primes & Misdemeanours: Lectures in Honour
of the 60th Birthday of Hugh Cowie Williams. Fields Institute Communica-
tions, vol. 41, pp. 111–125. AMS (2004)

[BTW95] Buchmann, J., Thiel, C., Williams, H.C.: Short Representation of Quadratic
Integers. In: Proc. of CANT 1992, Math. Appl., vol. 325, pp. 159–185. Kluwer
Academic Press, Dordrecht (1995)

[BV07] Buchmann, J., Vollmer, U.: Binary Quadratic Forms. An Algorithmic Ap-
proach. Springer, Heidelberg (2007)

http://cr.yp.to/papers.html#goppalist


Factoring pq2 with Quadratic Forms: Nice Cryptanalyses 485

[BW88] Buchmann, J., Williams, H.C.: A Key-Exchange System based on Imaginary
Quadratic Fields. J. Cryptology 1, 107–118 (1988)

[CC87] Chudnovsky, D.V., Chudnovsky, G.V.: Approximations and Complex Multi-
plication According to Ramanujan. In: Ramanujan Revisited: Proceedings,
pp. 375–472. Academic Press, Boston (1987)

[Chi89] Chistov, A.L.: The complexity of constructing the ring of integers of a global
field. Dolk. Akad. Nauk. SSSR, 306, 1063–1067 (1989); English translation:
Soviet. Math. Dolk. 39, 597–600 (1989)

[CL84] Cohen, H., Lenstra Jr., H.W.: Heuristics on class groups. Springer LNM,
vol. 1052, pp. 26–36 (1984)

[CL09] Castagnos, G., Laguillaumie, F.: On the Security of Cryptosystems with
Quadratic Decryption: The Nicest Cryptanalysis. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 260–277. Springer, Heidelberg (2009)

[Coh00] Cohen, H.: A Course in Computational Algebraic Number Theory. Springer,
Heidelberg (2000)

[Cop97] Coppersmith, D.: Small Solutions to Polynomial Equations, and Low Expo-
nent RSA Vulnerabilities. J. Cryptology 10(4), 233–260 (1997)

[Cox99] Cox, D.A.: Primes of the form x2 + ny2. John Wiley & Sons, Chichester
(1999)

[CP01] Crandall, R., Pomerance, C.: Prime Numbers: A Computational Perspective.
Springer, Heidelberg (2001)

[CW05] Cheng, K.H.F., Williams, H.C.: Some Results Concerning Certain Periodic
Continued Fractions. Acta Arith. 117, 247–264 (2005)

[Deg58] Degert, G.: Uber die Bestimmung der Grundeinheit gewisser reell- quadratis-
cher Zhalkörper. Abh. Math. Sem. Univ. Hanburg 22, 92–97 (1958)

[GW08] Gower, J.E., Wagstaff Jr., S.S.: Square form factorization. Math. Com-
put. 77(261), 551–588 (2008)

[How97] Howgrave-Graham, N.: Finding small roots of univariate modular equations
revisited. In: Darnell, M.J. (ed.) Cryptography and Coding 1997. LNCS,
vol. 1355, pp. 131–142. Springer, Heidelberg (1997)

[How01] Howgrave-Graham, N.: Approximate Integer Common Divisors. In: Silver-
man, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 51–66. Springer, Heidelberg
(2001)

[HPT99] Hartmann, M., Paulus, S., Takagi, T.: NICE - New Ideal Coset Encryption.
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Abstract. We look at iterated power generators si = se
i−1 mod N for a

random seed s0 ∈ ZN that in each iteration output a certain amount of
bits. We show that heuristically an output of (1 − 1

e
) log N most signifi-

cant bits per iteration allows for efficient recovery of the whole sequence.
This means in particular that the Blum-Blum-Shub generator should be
used with an output of less than half of the bits per iteration and the
RSA generator with e = 3 with less than a 1

3
-fraction of the bits.

Our method is lattice-based and introduces a new technique, which
combines the benefits of two techniques, namely the method of lineariza-
tion and the method of Coppersmith for finding small roots of polynomial
equations. We call this new technique unravelled linearization.

Keywords: power generator, lattices, small roots, systems of equations.

1 Introduction

Pseudorandom number generators (PRGs) play a crucial role in cryptography.
An especially simple construction is provided by iterating the RSA function
si = se

i−1 mod N for an RSA modulus N = pq of bit-size n and a seed s0 ∈ ZN .
This so-called power generator outputs in each iteration a certain amount of
bits of si, usually the least significant bits. In order to minimize the amount of
computation per iteration, one typically uses small e such as e = 3. With slight
modifications one can choose e = 2 as well when replacing the iteration function
by the so-called absolute Rabin function [3,4], where s2 mod N is defined to be
min{s2 mod N,N − s2 mod N}, N is a Blum integer and s0 is chosen from
{0, . . . , N−1

2 } with Jacobi symbol +1.
It is well-known that under the RSA assumption one can safely output up

to Θ(log n) = Θ(log logN) bits per iteration [1,8]. At Asiacrypt 2006, Stein-
feld, Pieprzyk and Wang [14] showed that under a stronger assumption regard-
ing the optimality of some well-studied lattice attacks, one can securely output
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(1
2 −

1
e − ε− o(1))n bits. The assumption is based on a specific RSA one-wayness

problem, where one is given an RSA ciphertext c = me mod N together with
a certain fraction of the plaintext bits of m, and one has to recover the whole
plaintext m. We call this generator the SPW generator. The SPW generator has
the desirable property that one can output a constant fraction Ω(logN) of all
bits per iteration. Using an even stronger assumption, Steinfeld, Pieprzyk and
Wang could improve the output size to (1

2 −
1
2e − ε− o(1))n bits.

A natural question is whether the amount of output bits of the SPW gener-
ator is maximal. Steinfeld et al.’s security proof uses in a black-box fashion the
security proof of Fischlin and Schnorr for RSA bits [8]. This proof unfortunately
introduces a factor of 1

2 for the output rate of the generator. So, Steinfeld et
al. conjecture that one might improve the rate to (1− 1

e − ε)n using a different
proof technique. Here, ε is a security parameter and has to be chosen such that
performing 2εn operations is infeasible. We show that this bound is essentially
the best that one can hope for by giving an attack up to the bound (1 − 1

e )n.
In previous cryptanalytic approaches, upper bounds for the number of output

bits have been studied by Blackburn, Gomez-Perez, Gutierrez and Shparlin-
ski [2]. For e = 2 and a class of PRGs similar to power generators (but with
prime moduli), they showed that provably 2

3n bits are sufficient to recover the
secret seed s0. As mentioned in Steinfeld et al., this bound can be generalized
to (1− 1

e+1 )n using the heuristic extension of Coppersmith’s method [7] to mul-
tivariate equations.

Our contribution: We improve the cryptanalytic bound to (1− 1
e )n bits using a

new heuristic lattice-based technique. Notice that the two most interesting cases
are e = 2, 3, the Blum-Blum-Shub generator and the RSA generator. For these
cases, we improve on the best known attack bounds from 2

3n to 1
2n and from 3

4n
to 2

3n, respectively. Unfortunately — similar to the result of Blackburn et al. [2]
— our results are restricted to power generators that output most significant
bits in each iteration. It remains an open problem to show that the bounds hold
for least significant bits as well.

Our improvement comes from a new technique called unravelled linearization,
which is a hybrid of lattice-based linearization (see [13] for an overview) and
the lattice-based technique due to Coppersmith [7]. Let us illustrate this new
technique with a simple example. Assume we want to solve a polynomial equation
x2 + ax + b = y mod N for some given a, b ∈ ZN and some unknowns x, y.
This problem can be considered as finding the modular roots of a univariate
polynomial f(x) = x2 + ax+ b with some error y.

It is a well-known heuristic that a linear modular equation can be easily solved
by computing a shortest lattice vector, provided that the absolute value of the
product of the unknowns is smaller than the modulus [13]. In order to linearize
our equation, we substitute u := x2 and end up with a linear equation in u, x, y.
This can be solved whenever |uxy| < N . If we assume for simplicity that the
unknowns x, y are of the same size, this yields the condition |x| < N

1
4 .

However, in the above case it is easy to see that this linearization is not
optimal. A better linearization would define u := x2− y, leaving us with a linear
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equation in u, x only. This yields the superior condition |x| < N
1
3 . So one benefits

from the fact that one can easily glue variables together, in our case x2 and y,
whenever this does not change the size of the larger variable. In our example
this would also work when y had a known coefficient c of size |c| ≈ |y|.

The main benefit from the attack of Blackburn et al. [2] comes from a clever
linearization of the variables that occur in the case of power generators. While
on the one hand such a linearization of a polynomial equation offers some ad-
vantages, on the other hand we lose the algebraic structure. Performing e.g. the
substitution u := x2, one obtains a linear equation in u, x, y but the property
that u and x are algebraically dependent — one being the square of the other
— is completely lost. Naturally, this drawback becomes more dramatic when
looking at higher degree polynomials.

As a consequence, Coppersmith [6,5,7] designed in 1996 a lattice-based method
that is well-suited for exploiting polynomial structures. The underlying idea is to
additionally use algebraic relations before linearization. Let us illustrate this idea
with our example polynomial f(x, y) = x2 +ax+ b−y. We know that whenever f
has a small rootmoduloN , then also xf = x3+ax2+bx−xy shares this root. Using
xf as well, we obtain two modular equations in five unknowns x3, x2, x, y, xy. No-
tice that the unknowns x2 and x are re-used in the second equation which reflects
the algebraic structure. So even after linearizing both equations, Coppersmith’s
method preserves some polynomial structure. In addition to multiplication of f
by powers of x and y — which is often called shifting in the literature — one also
allows for powers f i with the additional benefit of obtaining equations modulo
larger moduli N i.

When we compute the enabling condition with Coppersmith’s method for
our example f(x, y) using an optimal shifting and powering, we obtain a bound
of |x| < N

1
3 . So the method yields a better bound than naive linearization,

but cannot beat the bound of the more clever linearization with u := x2 − y.
Even worse, Coppersmith’s method results in the use of lattices of much larger
dimension.

To summarize, linearization makes use of the similarity of coefficients in a
polynomial equation, whereas Coppersmith’s method basically makes use of the
structure of the polynomial’s monomial set.

Motivation for unravelled linearization: Our new technique of unravelled
linearization aims to bring together the best of both worlds. Namely, we al-
low for clever linearization but still exploit the polynomial structure. Unravelled
linearization proceeds in three steps: linearization, basis construction, and un-
ravellation. Let us illustrate these steps with our example f(x, y), where we use
the linearization u := x2 − y in the first step. In this case, we end up with a
linear polynomial g(u, x). Similar to Coppersmith’s approach, in the second step
we use shifts and powers of this polynomial. E.g., g2 defines an equation in the
unknowns u2, ux, x2, u, x modulo N2. But since we start with a linear polyno-
mial g, this alone will not bring us any benefits, because the algebraic structure
got lost in the linearization process from f to g.
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Therefore, in the third step we partially unravel the linearization for g2 using
the relation x2 = y+u. The unravelled form of g2 defines a modular equation in
the unknowns u2, ux, y, u, x, where we basically substitute the unknown x2 by
the unknown y. Notice here, that we can reuse the variable u which occurs in g2

anyway. This substitution leads to a significant gain, since y is much smaller in
size than x2.

In the present paper, we elaborate on this simple observation that unravelling
of linearization brings benefits to lattice reduction algorithms. We use the equa-
tions that result from the power generator as a case study for demonstrating the
power of unravelled linearization, but we are confident that our new technique
will also find new applications in various other contexts.

The paper is organized as follows. In Section 2 we will fix some very basic
notions for lattices. In Section 3 we define our polynomials from the power
generator with e = 2 and give a toy example with only two PRG iterations
that illustrates how unravelled linearization works. This already leads to an
improved bound of 7

11n. In Section 4 we generalize to arbitrary lattice dimension
(bound 3

5n) and in Section 5 we generalize to an arbitrary number of PRG
iterations (bound 1

2n). In Section 6 we finally generalize to an arbitrary exponent
e. Since our attacks rely on Coppersmith-type heuristics, we verify the heuristics
experimentally in Section 7.

2 Basics on Lattices

Let b1, . . . ,bd ∈ Qd be linearly independent. Then the set

L :=

{
x ∈ Qd | x =

d∑
i=1

aibi, ai ∈ Z

}

is called a lattice L with basis matrix B ∈ Qd×d, having the vectors b1, . . . ,bd as
row vectors. The parameter d is called the lattice dimension, denoted by dim(L).
The determinant of the lattice is defined as det(L) := | det(B)|.

The famous LLL algorithm [10] computes a basis consisting of short and pair-
wise almost orthogonal vectors. Let v1, . . . ,vd be an LLL-reduced lattice basis
with Gram-Schmidt orthogonalized vectors v∗

1, . . . ,v
∗
d. Intuitively, the property

of pairwise almost orthogonal vectors v1, . . . ,vd implies that the norm of the
Gram-Schmidt vectors v∗

1, . . . ,v
∗
d cannot be too small. This is quantified in the

following theorem of Jutla [9] that follows from the LLL paper [10].

Theorem 1 (LLL). Let L be a lattice spanned by B ∈ Qd×d. On input B, the
L3-algorithm outputs an LLL-reduced lattice basis {v1, . . . ,vd} with

||v∗
i || ≥ 2

1−i
4

(
det(L)
bd−i
max

) 1
i

for i = 1, . . . , d

in time polynomial in d and in the bit-size of the largest entry bmax of the basis
matrix B.
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3 Power Generators with e = 2 and Two Iterations

Let us consider power generators defined by the recurrence sequence

si = se
i−1 mod N,

where N is an RSA modulus and s0 ∈ ZN is the secret seed.
Suppose that the power generator outputs in each iteration the most signifi-

cant bits ki of si, i.e. si = ki + xi, where the ki are known for i ≥ 1 and the xi

are unknown.
Our goal is to recover all xi for a number of output bits ki that is as small

as possible. In other word, if we define xi < N δ then we have to find an attack
that maximizes δ.

Let us start with the most simple case of two iterations and e = 2. The best
known bound is δ = 1

3 due to Blackburn et al. [2]. We will later generalize to an
arbitrary number of iterations and also to an arbitrary e.

For the case of two iterations, we obtain

s1 = k1 + x1 and s2 = k2 + x2,

for some unknown si, xi. The recurrence relation of the generator s2 = s21 mod N
yields k2 + x2 = (k1 + x1)2 mod N , which results in the polynomial equation

x2
1 − x2 + 2k1︸︷︷︸

a

x1 + k2
1 − k2︸ ︷︷ ︸

b

= 0 mod N.

Thus, we search for small modular roots of f(x1, x2) = x2
1−x2 +ax1 + b modulo

N .
Let us first illustrate our new technique called unravelled linearization with a

small-dimensional lattice attack before we apply it in full generality in Section 4.

Step 1: Linearize f(x1, x2) into g.
We make the substitution u := x2

1 − x2. This leaves us with a linear polynomial
g(u, x1) = u+ ax1 + b.

Step 2: Basis construction.
Defining standard shifts and powers for g is especially simple, since g is a linear
polynomial. If we fix a total degree bound of m = 2, then we choose g, xg and g2.

Let X := N δ be an upper bound for x1, x2. Then U := N2δ is an upper bound
for u. The choice of the shift polynomials results in a lattice L spanned by the
rows of the lattice basis B depicted in Figure 1.

Let (u0, x0) be a root of g. Then the vector v = (1, x0, x
2
0, u0, u0x0, u

2
0,

k1, k2, k3)B has its right-hand three last coordinates equal to 0 for suitably cho-
sen ki ∈ Z. Hence we can write v as v = (1, x0

X , . . . ,
u2
0

U2 , 0, 0, 0). Since |u0| ≤ U

and |x0| ≤ X , we obtain ||v|| ≤
√

6.
To summarize, we are looking for a short vector v in the 6-dimensional sublat-

tice L′ = L ∩ (Q6×03) with ||v|| ≤
√

dim(L′). Let b1, . . . ,b6 be an LLL-reduced
basis of L′ with orthogonalized basis b∗

1, . . . ,b
∗
6. Coppersmith [7] showed that
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g x1g g2

1 b b2

1
X

a b ab
1

X2 a a2

1
U

1 b
1

UX
1 a

1
U2 1

N
N

N2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Fig. 1. After linearization and standard shifts and powers for m = 2

any vector v ∈ L′ that is smaller than b∗
6 must lie in the sub-space spanned

by b1, . . . ,b5, i.e. v is orthogonal to b∗
6. This immediately yields a coefficient

vector of a polynomial h(u, x1), which has the same roots as g(u, x1), but over
the integers instead of modulo N . Assume that we can find two such polynomials
h1, h2, then we can compute all small roots by resultant computation provided
that h1, h2 do not share a common divisor. The only heuristic of our method is
that the polynomials h1, h2 are indeed coprime.

By the LLL-Theorem (Theorem 1), an orthogonalized LLL-basis contains a
vector b∗

d in L′ with ||b∗
d|| ≥ c(d)det(L′)

1
d , where c(d) = 2

1−d
4 . Thus, if the

condition
c(d)det(L′)

1
d ≥

√
d

holds, then v̄ = (1, x0
X , . . . ,

u2
0

U2 ) will be orthogonal to the vector b∗
d.

Since det(L′) is a function of N , we can neglect d = dim(L′) for large enough
N . This in turn simplifies our condition to

det(L′) ≥ 1.

Moreover, one can show by a unimodular transformation of B that det(L′) =
det(L).

For our example, the enabling condition det(L) ≥ 1 translates to U4X4 ≤ N4.
Plugging in the values of X := N δ and U := N2δ, this leads to the condition
δ ≤ 1

3 . Notice that this is exactly the condition from Blackburn et al. [2]. Namely,
if the PRG outputs 2

3n bits per iteration, then the remaining 1
3n bits can be found

in polynomial time.
We will now improve on this result by unravelling the linearization of g.

Step 3: Unravel g’s linearization.
We unravel the linearization by back-substitution of x2

1 = u + x2. This slightly
changes our lattice basis (see Fig. 2).

The main difference is that the determinant of the new lattice Lu increases
by a factor of X . Thus our enabling condition det(Lu) ≥ 1 yields U4X3 ≤ N4

or equivalently δ ≤ 4
11 . This means that if the PRG outputs 7

11n of the bits in
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g x1g g2

1 b b2

1
X

a b ab
1
X

a a2

1
U

1 a a2 + b
1

UX
1 a

1
U2 1

N
N

N2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Fig. 2. After unravelling the linearization

each of two iterations, then we can reconstruct the remaining 4
11n bits of both

iterations in polynomial time. This beats the previous bound of 1
3n.

We would like to stress again that our approach is heuristic. We construct
two polynomials h1, h2.1 The polynomials h1, h2 contain a priori three variables
x1, x2, u, but substituting u by x2

1 − x2 results in two bivariate polynomials
h′1, h

′
2. Then, we hope that h′1 and h′2 are coprime and thus allow for efficient

root finding. We verified this heuristic with experiments in Section 7.

4 Generalization to Lattices of Arbitrary Dimension

The linearization step from f(x1, x2) to g(u, x1) is done as in the previous section
using u := x2

1−x2. For the basis construction step, we fix an integerm and define
the following collection of polynomials

gi,j(u, x1) := xj
1g

i(u, x1) for i = 1, . . . ,m and j = 0, . . . ,m− i. (1)

In the unravelling step, we substitute each occurrence of x2
1 by u + x2 and

change the lattice basis accordingly. It remains to compute the determinant of
the resulting lattice. This appears to be a non-trivial task due to the various
back-substitutions. Therefore, we did not compute the lattice determinant as a
function of m by hand. Instead, we developed an automated process that might
be useful in other contexts as well.

We observe that the determinant can be calculated by knowing first the prod-
uct of all monomials that appear in the collection of the gi,j after unravelling,
and second the product of all N . Let us start with the product of the N , since
it is easy to compute from Equation (1):

m∏
i=1

m−i∏
j=0

N i =
m∏

i=1

N (m+1)i−i2 = N
1
6 m3+o(m3).

1 The polynomial h2 can be constructed from b∗d−1 with a slightly more restrictive
condition on det(L) coming from Theorem 1. However, in practical experiments
the simpler condition det(L) ≥ 1 seems to suffice for h2 as well. In the subsequent
chapters, this minor detail is captured by the asymptotic analysis.
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Now let us bound the product of all monomials. Each variable x1, x2, u appears
in the unravelled form of gi,j with power at most 2m. Therefore, the product of
all monomials that appear in all 1

2m
2 + o(m2) polynomials has in each variable

degree at most m3. Thus, we can express the exponent of each variable as a
polynomial function in m of degree 3 with rational coefficients — similar to the
exponent of N .

But since we know that the exponents are polynomials in m of degree at
most 3, we can uniquely determine them by a polynomial interpolation at 4
points. Namely, we explicitly compute the unravelled basis for m = 1, . . . , 4 and
count the number of variables that occur in the unravelled forms of the gi,j .
From these values, we interpolate the polynomial function for arbitrary m.

This technique is much less error-prone than computing the determinant func-
tions by hand and it allows for analyzing very complicated lattice basis struc-
tures. Applying this interpolation process to our unravelled lattice basis, we
obtain det(L) = X−p1(m)U−p2(m)Np3(m) with

p1(m) =
1
12
m3 + o(m3), p2(m) =

1
6
m3 + o(m3), p3(m) =

1
6
m3 + o(m3).

Our condition det(L) ≥ 1 thus translates into 5
12δ ≤

1
6 resp. δ ≤ 2

5 . Interestingly,
this is exactly the bound that Blackburn et al. [2] conjectured to be the best
possible bound one can obtain by looking at two iterations of the PRG.

In the next section, we will also generalize our result to an arbitrary fixed
number of iterations of the PRG. This should intuitively help to further improve
the bounds and this intuition turns out to be true. To the best of our knowledge,
our attack is the first one that is capable of exploiting more than two equations
in the contexts of PRGs.

5 Using an Arbitrary Fixed Number of PRG Iterations

We illustrate the basic idea of generalizing to more iterations by using three
iterations of the generator before analyzing the general case.

Let si = ki + xi for i = 1, 2, 3, where the ki are the output bits and the xi are
unknown. For these values, we are able to use two iterations of the recurrence
relation, namely

s2 = s21 mod N s3 = s22 mod N

from which we derive two polynomials

f1 : x2
1 − x2︸ ︷︷ ︸

u1

+ 2k1︸︷︷︸
a1

x1 + k2
1 − k2︸ ︷︷ ︸

b1

= 0 mod N

f2 : x2
2 − x3︸ ︷︷ ︸

u2

+ 2k1︸︷︷︸
a2

x2 + k2
2 − k3︸ ︷︷ ︸

b2

= 0 mod N.

We perform the linearization step f1 → g1 and f2 → g2 by using the substitutions
u1 := x2

1 − x2 and u2 := x2
2 − x3.
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g1 x1g1 g2
1 g2 x2g2 g2

2 x2g1 x1g2 g1g2

1 b1 b2
1 b2 b2

2 b1b2

x1 a1 b1 a1b1 b2 a1b2

x2 a1 a2
1 a2 b2 a2b2 b1 a2b1

x3 a2 a2
2

u1 1 a1 a2
1 + b1 b2

u1x1 1 a1

u2
1 1

u2 1 a2 a2
2 + b2 b1

u2x2 1 a2

u2
2 1

x1x2 a1 a2 a1a2

u1x2 1 a2

u2x1 1 a1

u1u2 1
N

N
N2

N
N

N2

N
N

N2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Fig. 3. Generic lattice basis for 2 polynomials

In the basis construction step, we have to define a collection for the polyno-
mials g1(u1, x1) and g2(u2, x2) using suitable shifts and powers. We will start by
doing this in some generic but non-optimal way, which is depicted in Figure 3
for the case of fixed total degree m = 2 in g1, g2. In this basis matrix for better
readability we leave out the left-hand diagonal consisting of the inverses of the
upper bounds of the corresponding monomials.

The reader may verify that the bound obtained from this collection of polyno-
mials is δ ≤ 4

11 ≈ 0.364, which is exactly the same bound as in our starting exam-
ple in Section 3. A bit surprisingly, our generic lattice basis construction does not
immediately improve on the bound that we derived from a single polynomial.

It turns out, however, that we improve when taking just a small subset of the
collection in Fig. 3. If we only use the shifts g1, x1g1, g

2
1 and additionally g2, then

we obtain a superior bound of δ ≤ 5
13 ≈ 0.385. The reason for the improvement

comes from the fact that the monomial x2 of g2 can be reused as it already
appeared in the shifts x1g1 and g2

1 .
For the asymptotic analysis, we define the following collection of polynomials

gi,j,k := xk
1g

i
1g

j
2 for

⎧⎪⎨⎪⎩
i = 0, . . . ,m
j = 0, . . . ,

⌊
m−i

2

⌋
k = 0, . . . ,m− i− 2j

with i+ j ≥ 1.
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The intuition behind the definition of this collection of polynomials follows the
same reasoning as in the example for m = 2. We wish to keep small the number
of new monomials introduced by the shifts with g2. Notice that the monomials xi

2
for i = 0, . . .

⌊
m
2

⌋
already appeared in the g1 shifts — since we back-substituted

x2
1 → u1 + x2. Therefore, it is advantageous to use the g2 shifts only up to

⌊
m
2

⌋
.

With the interpolation technique introduced in Section 4, we derive a bound
of δ ≤ 6

13 for the case of 2 polynomials, i.e. three output values of the generator.

5.1 Arbitrary Number of PRG Iterations

Given n + 1 iterations of the PRG, we select a collection of shift polynomials
following the intuition given in the previous section:

gi1,...,in,k := xk
1g

i1
1 . . . g

in
n

for

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

i1 = 0, . . . ,m
i2 = 0, . . . ,

⌊
m−i1

2

⌋
...

in = 0, . . . ,
⌊

m−∑n−1
j=1 2j−1ij

2n−1

⌋
k = 0, . . . ,m−

∑n
j=1 2j−1ij

with i1 + . . .+ in ≥ 1.

To perform the asymptotic analysis we need to determine the value of the de-
terminant of the corresponding lattice basis. This means, we have to count the
exponents of all occurring monomials in the set of shift polynomials. We would
like to point out that because of the range of the index k, the shifts with xk

1
do not introduce additional monomials over the set defined by the product of
the gi alone. For this product the monomials can be enumerated as follows (see
Appendix A for a proof):

xa1
1 . . . xan

n ui1−a1
1 . . . u

in−1−an−1
n−1 uin−2bn−an

n xbn
n+1

with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

i1 = 0, . . . ,m a1 = 0, 1
i2 = 0, . . . ,

⌊
m−i1

2

⌋
a2 = 0, 1

...
...

in = 0, . . . ,
⌊

m−∑n−1
j=1 2j−1ij

2n−1

⌋
an = 0, 1

bn = 0, . . . ,
⌊

in−an

2

⌋
.

We are only interested in the asymptotic behavior, i.e. we just consider the
highest power of m. We omit the floor function as it only influences a lower
order term. Analogously, we simplify the exponents of uj by omitting the value
aj , since it is a constant polynomial in m. Furthermore, for the same reason the
contribution to the determinant of all xi with i ≤ n can be neglected.
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To derive the final condition, we have to compute the polynomials pj(m) of
the following expression for the determinant (resp. the coefficients of the highest
power of m):

det(L) = X
−px(m)
n+1 U

−p1(m)
1 . . . U−pn(m)

n NpN (m).

It seems to be a complicated task to compute these polynomials explicitly. There-
fore, we follow a different approach and compute the sizes of their leading coeffi-
cients in relation to each other. This turns out to be enough to derive a bound on
the sizes of the unknowns. In Appendix B we explain how to derive the following
expressions for the polynomials:

pj(m) =
1

2j−1 p1(m) for j ≤ n, px(m) =
1
2n
p1(m), pN(m) =

2n − 1
2n−1 p1(m),

where we again omit low order terms. We use these expressions in the enabling
condition det(L) ≥ 1 and plug in upper bounds Xn+1 ≤ N δ and Ui ≤ N2δ. It is
sufficient to consider the condition for the exponents:

δ
1
2n
p1(m) + 2δ

n∑
j=1

1
2j−1 p1(m) ≤ 2n − 1

2n−1 p1(m).

Simplifying this condition and solving for δ, we obtain

δ ≤ 2n+1 − 2
2n+2 − 3

,

which converges for n→∞ to δ ≤ 1
2 .

6 Extending to Higher Powers

In the previous sections, we have considered PRGs with exponent e = 2 only,
i.e. a squaring operation in the recurrence relation. A generalization to arbitrary
exponents is straight forward.

Suppose the PRG has the recurrence relation s2 = se
1 mod N . Let, as in

Section 3, the output of the generator be k1, k2, i.e. we have s1 = k1 + x1 and
s2 = k2 + x2, for some unknown si, xi.

Using the recurrence relation, this yields the polynomial equation

xe
1 − x2︸ ︷︷ ︸

u

+ek1x
e−1
1 + . . .+ eke−1

1 x1 + ke
1 − k2︸ ︷︷ ︸

b

= 0 mod N.

The linearization step is analog to the case where e = 2, however, the unravelling
of the linearization only applies for higher powers of x1, in this case xe

1.
The collection of shift polynomials using n PRG iterations is

gi1,...,in,k := xk
1g

i1
1 . . . g

in
n



498 M. Herrmann and A. May

for

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

i1 = 0, . . . ,m
i2 = 0, . . . ,

⌊
m−i1

e

⌋
...

in = 0, . . . ,
⌊

m−∑n−1
j=1 ej−1ij

en−1

⌋
k = 0, . . . ,m−

∑n
j=1 e

j−1ij

with i1 + . . .+ in ≥ 1.

Taking a closer look at the analysis in Appendix A and B shows that the general-
ization for arbitrary e is straightforward. Working through the analysis we obtain
for arbitrary e an asymptotic bound for an arbitrary number of polynomials of
δ ≤ 1

e .

7 Experiments

Since our technique uses a heuristic concerning the algebraic independence of the
obtained polynomials, we have to experimentally verify our results. Therefore,
we implemented the unravelled linearization using SAGE 3.4.1. including the L2

reduction algorithm from Nguyen and Stehlé [12]. In Table 1 some experimental
results are given for a PRG with e = 2 and 256 bit modulus N .

Table 1. Experimental Results for e = 2

polys m δ exp. δ dim(L) time(s)
1 4 0.377 0.364 15 1
1 6 0.383 0.377 28 5
1 8 0.387 0.379 45 45
2 4 0.405 0.390 22 10
2 6 0.418 0.408 50 1250
3 4 0.407 0.400 23 5

In the first column we denote the number of polynomials. The second column
shows the chosen parameter m, which has a direct influence on how close we
approach the asymptotic bound. On the other hand, the parameter m increases
the lattice dimension and therefore the time required to compute a solution. The
theoretically expected δ is given in the third column, whereas the actually verified
δ is given in the fourth column. The last column denotes the time required to
find the solution on a Core2 Duo 2.2 GHz running Linux 2.6.24.

It is worth mentioning that most of the time to find the solution is not spend
on doing the lattice reduction, but for extracting the common root from the
set of polynomials using resultant computations. The resultant computations
yielded the desired solutions of the power generators.

Acknowledgement. We would like to thank Dan Bernstein for bringing this
research topic to our attention during an Ecrypt meeting.
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A Describing the Set of Monomials

Theorem 1 Suppose we have n polynomials of the form

fi(xi, xi+1) = x2
i + aixi + bi − xi+1

and define the collection of polynomials

f i1
1 . . . f in

n for

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

i1 = 0, . . . ,m
i2 = 0, . . . ,

⌊
m−i1

2

⌋
...

in = 0, . . . ,
⌊

m−∑n−1
j=1 2j−1ij

2n−1

⌋
.
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After performing the substitutions x2
i �→ ui +xi+1, the set of all occurring mono-

mials can be described as

xa1
1 . . . xan

n ui1−a1
1 . . . u

in−1−an−1
n−1 uin−2bn−an

n xbn
n+1

with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

i1 = 0, . . . ,m a1 = 0, 1
i2 = 0, . . . ,

⌊
m−i1

2

⌋
a2 = 0, 1

...
...

in = 0, . . . ,
⌊

m−∑n−1
j=1 2j−1ij

2n−1

⌋
an = 0, 1

bn = 0, . . . ,
⌊

in−an

2

⌋
.

Proof. By induction: Basic step: n = 1
For one polynomial f1(x1, x2) = x2

1 +a1x1 + b1−x2 we perform the substitution
x2

1 �→ u1 + x2 to obtain g1(u1, x1) = u1 + a1x1 + b1. The set of all monomials
that are introduced by the powers of g1(u1, x1) can be described as

xj1
1 u

i1−j1
1 for

{
i1 = 0, . . . ,m
j1 = 0, . . . , i1.

It remains to perform the substitution on this set. Therefore, we express the
counter j1 by two counters a1 and b1 and let j1 = 2b1 + a1, i.e. we write the set
as

(x2
1)

b1xa1
1 u

i1−2b1−a1
1 for

⎧⎪⎨⎪⎩
i1 = 0, . . . ,m
a1 = 0, 1
b1 = 0, . . . ,

⌊
i1−a1

2

⌋
.

Imagine that we enumerate the monomials for fixed i1, a1 and increasing b1,
and simultaneously perform the substitution x2

1 �→ u1 + x2. The key point to
notice is that all monomials that occur after the substitution, i.e. all of (u1 +
x2)b1xa1

1 u
i1−2b1−a1
1 , have been enumerated by a previous value of b1, except for

the single monomial xb1
2 x

a1
1 u

i1−2b1−a1
1 .

Thus, the set of monomials after the substitution can be expressed as

xb1
2 x

a1
1 u

i1−2b1−a1
1 for

⎧⎪⎨⎪⎩
i1 = 0, . . . ,m
a1 = 0, 1
b1 = 0, . . . ,

⌊
i1−a1

2

⌋
.

This concludes the basic step.

Inductive Step: n− 1→ n
Suppose the assumption is correct for n− 1 polynomials. By the construction of
the shift polynomials and the induction hypothesis, we have the set of monomials

xa1
1 . . . x

an−1
n−1 u

i1−a1
1 . . . u

in−2−an−2
n−2 u

in−1−2bn−1−an−1
n−1 xbn−1

n︸ ︷︷ ︸
Hypothesis

xjn
n u

in−jn
n︸ ︷︷ ︸

fn
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for

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i1 = 0, . . . ,m a1 = 0, 1
i2 = 0, . . . ,

⌊
m−i1

2

⌋
a2 = 0, 1

...
...

in−1 = 0, . . . ,
⌊

m−∑n−2
j=1 2j−1ij

2n−2

⌋
an−1 = 0, 1

bn−1 = 0, . . . ,
⌊

in−1−an−1
2

⌋
in = 0, . . . ,

⌊
m−∑n−1

j=1 2j−1ij

2n−1

⌋
jn = 0, . . . , in.

By adding the n-th polynomial, we also get the new relation x2
n = un + xn+1.

Before performing the substitutions, however, we have to take a closer look at
the powers of xn. The problem seems to be that we have a contribution from
the n-th polynomial as well as from some previous substitutions. It turns out
that this can be handled quite elegantly. Namely, we will show that all occurring
monomials are enumerated by just taking bn−1 = 0.

Consider the set of monomials for bn−1 = c for some constant c ≥ 1:

xa1
1 . . . u

in−1−2c−an−1
n−1 xjn+c

n for jn ∈ {0, . . . , in}.

Exactly the same set of monomials is obtained by considering the index i′n−1 =
in−1 − 2 and bn−1 = c− 1. Notice that in this case the counter i′n, which serves
as an upper bound of j′n, runs from 0 through⌊

m−
∑n−2

j=1 2j−1ij − 2n−2i′n−1

2n−1

⌋
=

⌊
m−
∑n−2

j=1 2j−1ij − 2n−2in−1 + 2n−1

2n−1

⌋
= in + 1.

Thus, we have the same set of monomials as with bn−1 = c− 1:

xa1
1 . . . u

i′n−1−2(c−1)−an−1

n−1 x
j′n+(c−1)
n for j′n ∈ {0, . . . , i′n}.

Iterating this argument, we conclude that all monomials are enumerated by
bn−1 = 0.

Having combined the occurring powers of xn, we continue by performing an
analog step as in the basic step: introduce an and bn representing jn. This leads
to

xa1
1 . . . u

in−1−an−1
n−1 (x2

n)bnxan
n uin−2bn−an

n

for

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i1 = 0, . . . ,m a1 = 0, 1
i2 = 0, . . . ,

⌊
m−i1

2

⌋
a2 = 0, 1

...
...

in−1 = 0, . . . ,
⌊

m−∑n−2
j=1 2j−1ij

2n−2

⌋
an−1 = 0, 1

in = 0, . . . ,
⌊

m−∑n−1
j=1 2j−1ij

2n−1

⌋
an = 0, 1

bn = 0, . . . ,
⌊

in−an

2

⌋
.
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Finally we substitute x2
n = un + xn+1. Using the same argument as in the basic

step, we note that new monomials only appear for powers of xn+1.

B Relations among Exponent Polynomials

For the determinant computation we need to sum up the exponents of the oc-
curring monomials. Take for example u� with � < n: using the description of the
set from Appendix A, we need to compute

m∑
i1=0

1∑
a1=0

(m−i1
2 )∑

i2=0

1∑
a2=0

. . .

⌊
m−∑n−1

j=1 2j−1ij

2n−1

⌋
∑
in=0

1∑
an=0

( in−an
2 )∑

bn=0

(i� − a�) .

We will step by step simplify this expression using the fact that in the asymptotic
consideration only the highest power of the parameter m is important.

In the first step we notice that we may remove the −a� from the summation,
because a� does not depend on m, while i� does. Therefore, the a� just affects
lower order terms. With the same argument we can omit the an in the upper
bound of the sum over bn. Further, the floor function in the limit of the sums
does only affect lower order terms and therefore may be omitted. Next, we can
move all the sums of the ai to the front, since they are no longer referenced
anywhere, and replace each of these sums by a factor of 2, making altogether a
global factor of 2n.

For further simplification of the expression, we wish to eliminate the fractions
that appear in the bounds of the sums. To give an idea how to achieve this,
consider the expression

m∑
i1=0

m−i1
2∑

i2=0

i2.

Our intuition is to imagine an index i′2 of the second sum that performs steps
with a width of 2 and is upper bounded by m − i1. To keep it equivalent, we
have to compute the sum of over all integers of the form

⌊
i′2
2

⌋
. However, when

changing the index to i′2, the sum surely does not perform steps with width 2.
I.e. we count every value exactly twice. Thus, to obtain a correct reformulation,
we have to divide the result by 2. Note that asymptotically we may omit the
floor function and simply sum over i′2

2 .
In the same way we are able to reformulate all sums from i1 to in. For better

readability we replaced i′j with ij again.

2n · 1
2
· 1
4
· . . . · 1

2n−1

m∑
i1=0

m−i1∑
i2=0

. . .

m−∑n−1
j=1 ij∑

in=0

in
2n∑

bn=0

1
2�−1 i�. (2)

It seems to be a complicated task to explicitly evaluate a sum of this form. There-
fore, we follow a different approach, namely we relate the sums over different i�
to each other. We start with the discussion of a slightly simpler observation:
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Sums of the form
∑m

i1=0
∑m−i1

i2=0 . . .
∑m−∑n−1

j=1 ij

in=0 i� are equal for all � ≤ n.

An explanation can be given as follows. Imagine the geometric object that is
represented by taking the ij as coordinates in an n-dimensional space. This set
describes an n-dimensional simplex, e.g. a triangle for n = 2, a tetrahedron for
n = 3, etc. Considering its regular structure, i.e. the symmetry in the different
coordinates, it should be clear that the summation over each of the i� results in
the same value.

In the sum of Equation (2) there is an additional inner summation with index
bn and limit in/2n. For the indices � < n this innermost sum is constant for all
values of � and thus with the previous argumentation the whole sums are equal
for all � < n. We only have to take care of the leading factors, i.e. the powers of
2 that came from replacing the summation variables.

This gives us already a large amount of the exponent polynomials in the
determinant expression. Namely, we are able to formulate the polynomials p�

(which is the sum over the i�) in terms of p1 for all � < n. The difference is
exactly the factor 1

2�−1 that has been introduced when changing the index from
i� to i′�.

For the exponent polynomial of the variable un, however, we have to be careful
because we do not compute the summation of in−an, but of in/2n−1−2bn−an

instead (in/2n−1 since we changed the summation index in). The value −an can
be omitted with the same argument as before. To derive a relation of pn to p1,
we start by evaluating the inner sums:

p1 : . . .
m−∑n−1

j=1 ij∑
in=0

in
2n∑

bn=0

i1 = . . .

m−∑n−1
j=1 ij∑

in=0

in
2n
i1

pn : . . .
m−∑n−1

j=1 ij∑
in=0

in
2n∑

bn=0

(
in

2n−1 − 2bn

)
= . . .

m−∑n−1
j=1 ij∑

in=0

(
i2n

22n−1 − 2
1
2
i2n
22n

)

= . . .

m−∑n−1
j=1 ij∑

in=0

i2n
22n−1 .

Notice that once again, for the asymptotic analysis we have only considered the
highest powers.

Because of the previously mentioned symmetry between i1 and in, we finally
derive pn = 1

2n−1 p1. The same argument can be used to derive the bound on the
variable xn+1 for which we have to compute the sum

px : . . .
m−∑n−1

j=1 ij∑
in=0

in
2n∑

bn=0

bn = . . .

m−∑n−1
j=1 ij∑

in=0

i2n
22n

.

The multiplicative relation between p1 and px is therefore px = 1
2n p1.

Finally, to compute the exponent of N in the determinant, we have to sum
up all exponents that occur in the enumeration of the shift polynomials given in
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Section 5.1. The simplifications are equivalent to the ones used before and we
obtain:

pN =
n∑

�=1

⎛⎝1
2
· 1
4
· . . . · 1

2n−1

m∑
i1=0

. . .

m−∑n−1
j=0 ij∑

in=0

m−∑n
j=0 ij∑

k=0

1
2�−1 i�

⎞⎠ .
We first note that for � < n we may write

. . .
1

2�−1 i�

c∑
in=0

c−in∑
k=0

1 with c = m−
n−1∑
j=0

ij.

This is asymptotically equivalent to

. . .
1

2�−1 i�

c∑
in=0

in∑
k=0

1 = 2n · . . . 1
2�−1 i�

c∑
in=0

in
2n∑

k=0

1 =
1

2�−1 p1.

For � = n we argue again that the summations for different i� behave the same

way. Thus it follows 1
2 ·

1
4 · . . . ·

1
2n−1

∑m
i1=0 . . .

∑m−∑n−1
j=0 ij

in=0
∑m−∑n

j=0 ij

k=0
in

2n−1 =
1

2n−1 p1. Summing up, we obtain

pN = (1 +
1
2

+
1
4

+ . . .+
1

2n−1 )p1 =
2n − 1
2n−1 p1.
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Abstract. By a computational puzzle we mean a mildly difficult com-
putational problem that requires resources (processor cycles, memory,
or both) to solve. Puzzles have found a variety of uses in security. In
this paper we are concerned with client puzzles: a type of puzzle used
as a defense against Denial of Service (DoS) attacks. The main contri-
bution of this paper is a formal model for the security of client puzzles.
We clarify the interface that client puzzles should offer and give two se-
curity notions for puzzles. Both functionality and security are inspired
by, and tailored to, the use of puzzles as a defense against DoS attacks.
Our definitions fill an important gap: breaking either of the two proper-
ties immediately leads to successful DoS attacks. We illustrate this point
with an attack against a previously proposed puzzle construction. We
also provide a generic construction of a client puzzle which meets our
security definitions.

1 Introduction

A Denial of Service (DoS) attack on a server aims to render it unable to provide
some service by depleting its internal resources. For example, the famous TCP-
SYN flooding attack [9] prevents further connections to a server by starting a
large number of TCP sessions which are then left uncompleted. The effort of the
attacker is rather small, whereas the server quickly runs out of resources (which
are allocated to the unfinished sessions).

One countermeasure against connection depletion DoS attacks uses client puz-
zles [14]. When contacted by some unauthenticated, potentially malicious, client
to execute some protocol and before allocating any resources for the execution,
the server issues a client puzzle – a moderately hard computational problem.
The server only engages in the execution of the protocol (and thus allocates
resources) when the client returns a valid solution to the puzzle. The idea is
that the server spends its resources only after the client has spent a significant
amount of resources itself. To avoid the burden of running the above mechanism
when no attackers are present, the defense only kicks in whenever the server
resources drop below a certain threshold.

M. Matsui (Ed.): ASIACRYPT 2009, LNCS 5912, pp. 505–523, 2009.
© International Association for Cryptologic Research 2009
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Client puzzles have received a lot of attention in the cryptographic commu-
nity [2,5,10,11,14,24,27,28] but most of the prior work consists of proposing puz-
zle constructions and arguing that those constructions do indeed work. Although
sometimes technical, such security arguments are with respect to intuitive se-
curity notions for puzzles since rigorous formal models for the security of such
puzzles are missing. The absence of such models has (at least) two undesirable
consequences. On the one hand the investigation of puzzle constructions usually
concentrates on some security aspects and omits others which are of equal im-
portance when puzzles are used as part of other protocols. More importantly,
the absence of formal models prevents a rigorous, reduction-based analysis of the
effectiveness of puzzles against DoS in the style of modern cryptography (where
the existence of a successful DoS attacker implies the existence of an attacker
against client puzzles).

In this paper we aim to solve the first problem outlined above as a first key step
towards solving the second one. The main contribution of this paper is a formal
framework for the design and analysis of client puzzles. In addition to fixing their
formal syntax, we design security notions inspired by, and therefore tailored for,
the use of client puzzles as a defense against DoS attacks. Specifically, we require
that an adversary cannot produce valid puzzles on his own (puzzle-unforgeability)
and that puzzles are non-trivial – the client needs indeed to spend at least a
specified amount of resources to solve them – (puzzle difficulty). The use of
client puzzles that do not fulfill at least one of our notions immediately leads
to a successful DoS attack. Our definitions use well-established intuition and
techniques for defining one-wayness and authentication properties. Apart from
some design decisions regarding the measure for resources and the precise oracles
an adversary should have access to, there are no deep surprises here. However,
we highlight that the lack of rigorous definitions such as those we put forward in
this paper is dangerous. Constructions that are secure at an intuitive level, may
be in fact insecure when used. Indeed, we explicitly demonstrate that a popular
construction, that does not meet our notion of unforgeability, does not protect
and in fact facilitates DOS attacks in systems that use it.

Furthermore, we give a generic construction of a client puzzle that is secure in
the sense we define. Many existing client puzzle constructions can be obtained
as an instantiation of our generic construction, with only minor modifications if
any. Our construction uses a pseudorandom function family to provide puzzle-
unforgeability and puzzle-difficulty is obtained from a one-way function given a
large part of the preimage. We prove our construction secure via an asymptotic
reduction for unforgeability and a concrete reduction for difficulty. Next, we
discuss our results in more details.

Our Contribution

Formal Syntax of a Client Puzzle. Our first contribution is a formal syn-
tax for client puzzles. We define a client puzzle as a tuple of algorithms for sys-
tem setup, puzzle generation, solution finding, puzzle authenticity checking, and
solution checking. The definition is designed to capture the main functionality
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required from client puzzles from the perspective of their use against DoS
attacks.

Security Notions for Client Puzzles. The use of puzzles against DoS
attacks also inspired the two (orthogonal) security notions for client puzzles
that we design.

To avoid storing puzzles handed out to clients (a resource consuming task),
the server gives puzzles away and expects the client to hand back both the puzzle
and its solution. Obviously, the server needs to be sure the client cannot produce
puzzles on its own, as this would lead to trivial attacks. We remark that this
aspect is often overlooked in existing constructions since it is only apparent when
puzzles are considered in the precise context for which they are intended. We
capture this requirement via the notion of puzzle-unforgeability. Formally, we
define a security game where the adversary is given certain querying capabilities
(he can for example request to see puzzles and their solutions, can verify the
authenticity of puzzles, etc) and aims to output a new puzzle which the server
deems as valid.

The second notion, puzzle-difficulty, reflects the idea that the client needs to
spend a certain amount of resources to solve a puzzle. In our definition we took
adversary resources to mean “clock cycles”, as this design decision allows us to
abstract away undesirable details like the distributed nature of many DoS adver-
saries. We define a security game where the adversary is given various querying
capabilities sufficient for mimicking a DoS attack-like environment: he can see puz-
zles and their solutions, obtain solutions for puzzles he chooses, etc. The challenge
for the adversary is to solve a given challenge puzzle spending less than a certain
number of clock cycles, with probability better than a certain threshold.

An Attack on the Juels and Brainard Puzzles. Most of the previous
work on puzzles concentrates exclusively on the difficulty aspect and overlooks,
or only partially considers, the unforgeability property. One such work is the
puzzle construction proposed by Juels and Brainard [14]. We demonstrate the
usefulness of our definitions by showing the Juels and Brainard construction
is forgeable. We then explain how a system using this kind of puzzle can be
attacked by exploiting the weakness we have identified.

Generic Constructions. We provide a generic construction of a client puz-
zle inspired by the Juels and Brainard sub-puzzle construction [14]. First, we
evaluate a pseudorandom function (PRF), keyed by some secret value, on inputs
including a random nonce, hardness parameter and a system specific string. This
stage ensures uniqueness of the puzzle and the desired unforgeability; only the
server that possesses the hidden key is able to perform this operation and hence
generate valid puzzles. The remaining information to complete the puzzle is then
computed by evaluating a one way function (OWF), for which finding preimages
has a given difficulty, on the output of the PRF; the goal in solving the puzzle is
to find such a preimage given the inputs to the PRF and the target. The idea is
that the client would need to do an exhaustive search on the possible preimage
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space to find such a preimage. We certify the intuition by rigorous proofs that
the generic construction meets the security definitions that we put forth, for ap-
propriately chosen parameters. Importantly, many secure variants of previously
proposed constructions can be obtained as instances of our generic construction.
For example, the puzzle constructions proposed by Juels and Brainard [14] puz-
zle and the two-party variant of the Waters et al. puzzles [28] can be seen as
variants of our generic construction. Finally, we provide concrete security bounds
for the first of these puzzles. We do so in the random oracle model which we use
to obtain secure and efficient instantiations of the two primitives used by our
generic construction.

Related Work
Merkle Puzzles. The use of puzzles in cryptography was pioneered by Merkle
[18] who used puzzles to establish a secret key between parties over an inse-
cure channel. Since then the optimality of Merkle puzzles has been analyzed by
Impagliazzo and Rudich [12] and Barak and Mahmoody–Ghidary [3]. The pos-
sibility of basing weak public key cryptography on one-way functions, or some
variant of them was recently explored by Biham, Goren and Ishai [4]. Specifi-
cally, a variant of Merkle’s protocol is suggested whose security is based on the
one-wayness of the underlying primitive.

Client Puzzles. Client puzzles were first introduced as a defense mechanism
against DoS attacks by Juels and Brainard [14]. The construction they proposed
uses hash function inversion as the source of puzzle-difficulty. They also attempt
to obtain puzzle-unforgeability but partially fail in two respects. By neglecting
the details of how puzzles are to be used against a DoS attack, the construction
suffers from a flaw (which we explain how to exploit later in this paper) that
can be used to mount a DoS attack. Secondly, despite intuitive claims that secu-
rity is based on the one-wayness of the hash function used in the construction,
security requires much stronger assumptions, namely one-wayness with partial
information about the preimage. The authors also present a method to combine
a key agreement or authentication protocol with a client puzzle, and present a
set of informal desirable properties of puzzles. Building on this work, Aura et
al. [2] use the same client puzzle protocol construction but present a new client
puzzle mechanism, also based on hash function inversion, and extend the set of
desirable properties.

An alternative method for constructing client puzzles and client puzzle proto-
cols was proposed by Waters et al. [28]. This technique assumes the client puzzle
protocol is a three party protocol and constructs a client puzzle based on the dis-
crete logarithm problem for which authenticity and correctness can be verified us-
ing a Diffie–Hellman based technique. One of the main advantages of this approach
is that puzzle generation can be outsourced from the server to another external
bastion, yet verification of solutions can be performed by the server itself.

More recently Tritilanunt et al. [27] proposed a client puzzle based on the
subset sum problem. Schaller et al. [24] have also used what they refer to as
cryptographic puzzles for broadcast authentication in networks.
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An interesting line of work analyzes ways to construct stronger puzzles out of
weaker ones. The concept of chaining together client puzzles to produce a new
and more difficult client puzzle was introduced by Groza and Petrica [11]. Their
construction enforces a sequential solving strategy, and thus yields a harder puz-
zle. A related work is that of Canetti, Halevi, and Steiner [5] who are concerned
with relating the difficulty of solving one single puzzle to that of solving several
independent puzzles. They consider the case of “weakly”verifiable puzzles (puz-
zles for which the solution can only be checked by the party that produced the
puzzles). That paper does not consider the use of puzzles in the context of DoS
attacks, and thus is not concerned with authenticity.

Client Puzzle Protocols. In an interesting paper that analyzes resistance of
client puzzle protocols to man-in-the-middle attacks [21], Price concludes that in
any secure protocol the server needs to resort to digital signatures. We note that
such concerns are related but orthogonal to the goals that we pursue in this pa-
per. Indeed, in prior literature there is no clear distinction between client puzzles
(the problems that the server hands out for clients to solve) and client puzzles
protocols (the ensemble that includes, in addition to the particular puzzles that
are constructed, the way state is maintained by the server, the mechanism for
deeming a puzzle as expired etc.) We emphasize that in this paper we are mainly
concerned with the former so the results of [21] do not apply.

DoS Attacks. A classification of remote DoS attacks, countermeasures and a
brief consideration of Distributed Denial of Service (DDoS) attacks were given
by Karig and Lee [15]. Following this Specht and Lee [26] give a classification
of DDoS attacks, tools and countermeasures. In [26] the adversarial model of
[15] is extended to include Internet Relay Chat (IRC) based models. The au-
thors of [26] also classify the types of software used for such attacks and the
most common known countermeasures. Other classifications of DDoS attacks
and countermeasures were later given by [7,19].

A number of protocols have been designed to resist DDoS attacks. The most
important examples are the JFK protocol [1] and the HIP protocol [20]. The
JFK protocol of Aiello et al. [1] trades the forward secrecy property, known as
adaptive forward secrecy, for denial of service resistance. The original protocol
does not use client puzzles. In [25] the cost based technique of Meadows [16,17]
is used to analyze the JFK protocol. Two denial of service attacks are found and
both can be prevented by introducing a client puzzle into the JFK protocol.

Spam and Time-Lock Crypto. Other proposals for the use of puzzles include
the work of Dwork and Naor who propose to use a pricing function (a particular
type of puzzles) to combat junk email [8]. The basic principle is the pricing func-
tion costs a given amount of computation to compute and this computation can
be verified cheaply without any additional information. A service provider could
then issue a “stamp duty” on bulk mailings. Finally, Rivest et al. introduced the
notion of timed-release crypto in [22] and instantiate this notion with a time-lock
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puzzle. The overall goal of timed-release crypto is to encrypt a message such that
nobody, even the sender, can decrypt it before a given length of time has passed.

Paper Overview. We start with a sample client puzzle from Section 2. Our
formal definition of a client puzzle and a client puzzle protocol is in Section 3.
In Section 4 we give security notions for client puzzles in terms of unforgeability
and difficulty. We demonstrate that the Juels and Brainard client puzzles is
insecure in Section 5. Finally, our generic construction of a client puzzle is given
in Section 6. We also include a sample instantiation based on hash functions
which we analyze in the random oracle model.

2 Juels and Brainard Puzzles

To illustrate some of the basic ideas behind the construction of puzzles, we
first give a brief description of the puzzle generation process for the Juels and
Brainard construction [14]. In our description we refer to the (authorized) puzzle
generation entity (or user) as the generator and the (authorized) puzzle solving
entity (or user) as the solver. We use the term “puzzle” from here onwards
for individual puzzle instances. We write {0, 1}t for the set of binary strings of
length t and {0, 1}∗ for the set of binary strings of arbitrary finite length. If
x = x0, x1, . . . , xi, . . . , xj , . . . , xn is a bit string then we let x〈i, j〉 denote the
sub string xi, . . . , xj .

For this construction the generator (generally some server) holds a long term
secret value s chosen uniformly from a space large enough to prevent exhaustive
key search attacks. The server also chooses a hardness parameter: a pair Q =
(α, β) ∈ N2 which ensure puzzles have a certain amount of difficulty to solve.
We let H : {0, 1}∗ �→ {0, 1}m be some hash function. To generate a new puzzle
the generator performs the following steps to compute the required sub-puzzle
instances Pj for j ∈ {1, 2, . . . , β}:
• A bit string σj is computed as σj = H(s, str, j). The value str has the struc-

ture str = t‖M for t some server time value1 and M some unique value2. We
denote xj = σj〈1, α〉 and zj = σj〈α+ 1, m〉.

• A value yj is computed as yj = H(σj) and the sub-puzzle instance is Pj =
(zj , yj).

The full puzzle instance is then the required parameters plus the tuple of sub-
puzzle instances puz = (Q, str, P = (P1, P2, . . . , Pβ)). The sub-puzzle instance
generation process is summarized in Figure 1.

A solution to a given sub-puzzle Pj is any string x′j such that H(x′j || zj) = yj .
The solution to the full puzzle instance is a tuple of solutions to the sub-puzzles.
To verify a potential solution soln = (Q, str, soln1, · · · , solnβ) the generator verifies

1 The details of the type of value this is are not described in [14] but here we will
assume this is as a bit string.

2 In [14] this is specified as the first message flow of a protocol or some other unique
data. Again, we will assume this is encoded as a bit string since this is not specified.
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Generation Parameters: s, str, j
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Fig. 1. The Juels and Brainard Sub-Puzzle Instance Generation

each Pj and solnj by checking that H(solnj || zj) = yj for each j. The authentic-
ity of a given puzzle is checked by regenerating each Pj using s and comparing
this to the puzzle submitted.

To incorporate this client puzzle into a client puzzle protocol the server, on
receiving a valid solution, allocates buffer slots, by using a hash table on the
values of M , for each puzzle and correct solution submitted. This ensures that
only one puzzle instance and solution are accepted for a given value of M .

3 Client Puzzles

The role of a client puzzle in a protocol is to give one party some assurance that
the other party has spent at least a given amount of effort computing a solution
to a given puzzle instance. In this section we give a formal definition of a client
puzzle in the most general sense.

Formal Syntax of A Client Puzzle. A client puzzle is a tuple of algorithms:
a setup algorithm for generating long term public and private parameters, an
algorithm for generating puzzle instances of a given difficulty, a solution finding
algorithm, an algorithm for verifying authenticity of a puzzle instance and an
algorithm for verifying correctness of puzzle and solution pairs. We formally
define a client puzzle as follows.

Definition 1 (Client Puzzle). A client puzzle CPuz = (Setup, GenPuz,
FindSoln, VerAuth, VerSoln) is given by the following algorithms:
• Setup is a p.p.t. setup algorithm. On input of 1k, for security parameter k,

it performs the following operations:
• Selects the long term secret key space sSpace, hardness space QSpace,

string space strSpace, puzzle instance space puzSpace and solution space
solnSpace.

• Selects the long term puzzle generation key s $← sSpace.
• Sets Π additional public information, such as some description of algo-

rithms required for the client puzzle.
• Sets params←(sSpace, puzSpace, solnSpace,QSpace,Π) and outputs

(params, s).
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The tuple params is the public system parameters and as such is not explicitly
given as an input to other algorithms. The value s is kept private by the puzzle
generator.

• GenPuz is a p.p.t. puzzle generation algorithm. On input of s ∈ sSpace,
Q ∈ QSpace and str ∈ strSpace it outputs a puzzle instance puz ∈ puzSpace.

• FindSoln is a probabilistic solution finding algorithm. On input of puz ∈
puzSpace and a run time τ ∈ N it outputs a potential solution soln ∈
solnSpace after at most τ clock cycles of execution.

• VerAuth is a d.p.t. puzzle authenticity verification algorithm. On input of
s ∈ sSpace and puz ∈ puzSpace this outputs true or false.

• VerSoln is a deterministic solution verification algorithm. On input of puz ∈
puzSpace and a potential solution soln ∈ solnSpace this outputs true or false.

For correctness we require that if (params, s)←Setup(1k) and puz←GenPuz(s,Q,
str), for Q ∈ QSpace and str ∈ strSpace, then

• VerAuth(s, puz) = true and

• ∃ τ ∈ N such that soln←FindSoln(puz, τ) and VerSoln(puz, soln) = true.

Remark 1. Typically client puzzles use a set of system parameters, most notably
system time, as input to the puzzle generation algorithm. This is so the server
has a mechanism for expiring puzzles handed out to clients. In our model we use
str to capture this input and do not enforce any particular structure on it.

Remark 2. To prevent DoS attacks that exhaust the server memory it is desir-
able that the server stores as little state as possible for uncompleted protocol runs
(i.e. before a puzzle has been solved). We refer to this concern of client puzzles
as “state storage costs” [2]. We build this into our definition of a client puzzle by
insisting that only a single value, s, is stored by a server; all the data necessary
to solve a given puzzle and to re-generate, and hence verify authenticity of a
puzzle and solution pair, is included in the puzzle description puz.

Remark 3. Generally, for a puzzle to be “secure” when used within a client
puzzle protocol, we want puzzles generated to be unique and for puzzle and
solution pairs to only be validly used once by a client. In actual usage, a server can
filter out resubmitted correctly solved puzzle and solution pairs by, for example,
using a hash table mechanism. Uniqueness of puzzles can be ensured by having
GenPuz select a random nonce nS and use this in the puzzle generation.

Remark 4. Our definition assumes private verifiability for VerAuth. Generally
the only party concerned with checking who generated a given puzzle is the
puzzle generator (client puzzles are used before any other transactions take place
and to protect the generator and no other party). Although in some cases it may
be useful to have publicly verifiable puzzles it would complicate the definition
and we choose to keep our definition practical yet as simple as possible.
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4 Security Notions for Client Puzzles

We define two notions for client puzzles. The first measures the ability of an
adversary to produce a correctly authenticating puzzle with an unknown private
key. We refer to this as the ability of an adversary to forge a client puzzle. The
second notion gives a measure of the likelihood of an adversary finding a solution
to a given puzzle within a given number of clock cycles of execution. We refer
to this as the difficulty of a client puzzle. Intuitively, these are both what one
would expect to require from a client puzzle given its role in defenses against
DoS attacks; being able to either forge puzzles or solve them faster than expected
allows an adversary to mount a DoS attack.

We first review the definition of a function family since we will use function
families to express security of a given client puzzle in terms of difficulty. A
function family is a map F : I × D �→ R. The set I is the set of all possible
indices, D the domain and R the range. Unless otherwise specified we assume
I = N. The set R is finite and all sets are nonempty. We write Fi : D �→ R for
Fi(d) = F (i, d) where i ∈ I and refer to Fi as an instance of F .

Unforgeability of Puzzles. We first define our notion of unforgeability of
client puzzles. Intuitively, we require an adversary that sees puzzles generated
by the server (possibly together with their associated solutions), and that can
verify the authenticity of any puzzle it chooses, cannot produce a valid looking
puzzle on his own.

To formalize unforgeability of a client puzzle we use the following game
ExecUF

A,CPuz(k) between a challenger C and an adversary A.

(1) The challenger C first runs Setup on input 1k to obtain (params, s). The
tuple params is given to A and s is kept secret by C.

(2) The adversaryA gets to make as many CreatePuz(Q, str) and CheckPuz(puz)
queries as it likes which C answers as follows.
• CreatePuz(Q, str) queries. A new puzzle is generated puz←GenPuz(s,Q,

str) and output to A.
• CheckPuz(puz) queries. If VerAuth(s, puz) = true and puz was not out-

put by C in response to a CreatePuz query then C terminates the game
setting the output to 1. Otherwise false is returned to A.

(3) If C does not terminate the game in response to a Check query then even-
tually A terminates and the output of the game is set to 0.

We say the adversary A wins if ExecUF
A,CPuz(k) = 1 and loses otherwise. We define

the advantage of such an adversary as

AdvUF
A,CPuz(k) = Pr

[
ExecUF

A,CPuz(k) = 1
]
.

Puzzle-unforgeability then means that no efficient adversary can win the above
game with non-negligible probability.
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Definition 2 (Puzzle-unforgeability). A client puzzle CPuz is UF secure if
for any p.p.t. adversary A its advantage AdvUF

A,CPuz(k) is a negligible function
of k.

Remark 1. In the game ExecUF
A,CPuz(k) we allowA access to all algorithms defined

in CPuz. In particular, we allow unlimited access to the GenPuz algorithm for any
given chosen inputs. This allowsA to generate as many puzzles as it wishes (since
A is p.p.t. it will anyway generate at most polynomially many) with any given
chosen key and difficulty values. Notice that the adversary can find solutions to
any puzzle by running the FindSoln algorithm which is public. These abilities
are sufficient to mimic the environment in which a DoS attacker would sit.

Difficulty of Solving Puzzles. We formalize the idea that a puzzle CPuz can-
not be solved trivially via the game ExecQ,DIFF

A,CPuz(k) between a challenger C and an
adversaryA. The game is defined for each hardness parameter Q ∈ N as follows:

(1) The challenger C runs Setup on input 1k to obtain (params, s) and passes
params to A.

(2) The adversary A is allowed to make any number of CreatePuzSoln(str)
queries throughout the game. In response to each such query C generates
a new puzzle as puz←GenPuz(s,Q, str) and finds a solution soln such that
VerSoln(puz, soln) = true. The pair (puz, soln) is then output to A.

(3) At any point during the execution A is allowed to make a single Test(str†)
query. The challenger then generates a challenge puzzle as puz†←GenPuz(s,
Q, str†) which it returns to A.

Adversary A terminates its execution by outputting a potential solution soln†.
We define the running time τ of A as being the running time of all of the
experiment ExecQ,DIFF

A,CPuz(k).
We say the adversary wins ExecQ,DIFF

A,CPuz(k) if VerSoln(puz†, soln†) = true. In
this case we set the output of ExecQ,DIFF

A,CPuz(k) to be 1 and otherwise to 0. We then
define the success of an adversary A against CPuz as

SuccQ,DIFF
A,CPuz(k) = Pr

[
ExecQ,DIFF

A,CPuz(k) = 1
]
.

We define the difficulty of puzzle solving by requiring that for any puzzle hardness
the success of any adversary that runs in a bounded number of steps falls below
a certain threshold (that is related to the hardness of the puzzle).

Definition 3 (Puzzle-difficulty). Let ε : N2 �→
(
N �→ [0, 1]

)
be a family of

monotonically increasing functions. We use the notation εk,Q(·) for the function
within this family corresponding to security parameter k and hardness parameter
Q. We say a client puzzle CPuz is ε(·)–DIFF if for all τ ∈ N, for all adversaries
A in ExecDIFF,Q

A,CPuz(k), for all security parameters k ∈ N, and for all Q ∈ N it holds
that

SuccQ,DIFF
Aτ ,CPuz(k) ≤ εk,Q(τ)

where Aτ is the adversary A restricted to at most τ clock cycles of execution.
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Remark 1. The security game above allows A to obtain many puzzle and so-
lution pairs by making queries to model actual usage in DoS settings; when
a client puzzle is used as part of a client puzzle protocol an adversary may see
many such puzzles and solutions exchanged between a given generator and solver
on a network. The adversary could then learn something from these.

Remark 2. In the definition of the Test query, we do allow the string str† to
be one previously submitted as a CreatePuzSoln query and allow CreatePuzSoln
queries on any string including str† after the Test query. It then immediately
follows that a difficult puzzle needs to be such that each puzzle generated is
unique. Otherwise, a previously obtained solution through the CreatePuzSoln
query may serve as a solution to the challenge query. Furthermore, it also follows
that solutions to some puzzles should not be related to the solutions of other
puzzles, as otherwise a generalization of the above attack would work.

Remark 3. The queries CreatePuz (used in the game for puzzle-unforgeability)
and CreatePuzSoln used in the above game are related, but different. The query
CreatePuzSoln outputs a puzzle together with its solution. The second is more
subtle: in a CreatePuz query we allow A to specify the value of Q used but in
CreatePuzSoln we do not (the value of Q is fixed throughout the difficulty game).

Remark 4. Clearly any puzzle that is ε(·)–DIFF is also (ε(·) + μ)-DIFF where
μ ∈ R>0 is such that ε(τ)+μ ≤ 1 (since SuccQ,DIFF

Aτ ,CPuz(k) ≤ εk,Q(τ) ≤ εk,Q(τ)+μ).
The most accurate measure of difficulty for a given puzzle CPuz is then the
function ε(τ) = infAτ SuccQ,DIFF

Aτ ,CPuz(k).

Remark 5. Since we measure the running time of the adversary in clock cycles,
the model abstracts away the possibility that the adversary may be distributed
and thus facilitates further analysis (for example of the effectiveness of client
puzzle defense against DoS attacks).

5 An Attack on the Juels and Brainard Puzzles

In this section we describe an attack on the Juels and Brainard [14] client puz-
zle mechanism as described in Section 2. The attack works because puzzles are
forgeable, which is due to a crucial weakness in puzzle generation; each set of
generation parameters defines a family of puzzles each with a different hardness
value. Finally we construct a DDoS attack on servers using certain client puzzle
protocols based on this construction. This attack clearly demonstrates the ap-
plicability of our definitions and how they can be used to find problems with a
given client puzzle construction.

Proving Forgeability. The reason the construction is forgeable is the authen-
tication is not unique to a given instance but covers a number of instances of vary-
ing difficulty. This occurs because the puzzle instance difficulty is not included in
the first preimage of the sub-puzzle construction. We exploit this weakness and
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construct an adversary A with AdvUF
A,CPuz(k) = 1. We have the following lemma

regarding the forgeability of the Juels and Brainard construction.

Lemma 1. The client puzzle construction of Juels and Brainard [14] is not UF
secure.

Proof. To prove this we construct an adversary A against the UF security of the
construction that can win the security game ExecUF

A,CPuz(k) with probability 1.
We now describe the details of A.

At the start of the security game A is given a set of public parameters. The
adversary then makes a query CreatePuz(Q, str) for some random choices of Q
and str where Q = (α, β) and receives a puzzle instance puz = (Q, str, P =
(P1, P2, . . . , Pβ)) in response. Next A removes the first bit of each Pi to obtain
P †

i and constructs Q† = (α + 1, β) and puz† = (Q†, str, P † = (P †
1 , P

†
2 , . . . , P

†
β)).

The adversary then makes a query CheckPuz(puz†).
Clearly A wins with probability 1 since puz and puz† are both generated from

the same s and str hence puz† will correctly verify yet was not output from a
CreatePuz query. �

Remark 1. One could also prove Lemma 1 by having the adversary construct
the forgery as Q† = (α, β − 1) and then puz† = (Q†, str, (P †

1 , . . . , P
†
β−1)). One

could also vary the number of bits moved between α and each Pi or change the
number of sub-puzzles deleted. The reason we choose to give the proof in the
manner given is because this specific method allows for the construction of a
DDoS attack with the given assumptions we make about the protocol using this
particular client puzzle. We describe this attack next.

Constructing a DDoS Attack. We now use the forgeability of the con-
struction to mount a DDoS attack on client puzzle protocols based on this client
puzzles. The attack works when the difficulty parameter is increased in a certain
way and when the hash table, mentioned in [14] and used to prevent multiple
puzzle instance and solution submissions, is based on some unique data for each
instance that is not in the preimage of any sub-puzzle. A hash table mechanism
that depends on some unique data contained in each sub-puzzle preimage, as
is mentioned in [14], would thwart the following DDoS attack on client puzzle
protocols based on this client puzzle.

We first assume the client puzzle is used in the client puzzle protocol of [14]
and the generator increases Q by increasing α many times for each increase in
β. We also assume any hash tables used are computed using either the puzzle
instance alone or the correct solutions alone.

To mount the DDoS attack the adversary commands each of its zombies (plat-
forms the adversary controls) to start a run of the protocol with the server under
attack. The server will begin to issue puzzle instances and then, when enough
requests are received, will increase Q by incrementing α. Each zombie computes
a solution to the first puzzle it receives and to submits this to the server. Then,
while this puzzle has not expired, each time α is incremented, a new puzzle and
solution pair is trivially computed by removing the first bit from each xi and
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concatenating this to the end of each solni previously computed. The new puz-
zle and solution pair are submitted to the server and will correctly verify and
will then be allocated buffer space (due to our assumptions on the hash table
mechanism). When a zombies’ puzzle expires it obtains a new one. As the value
Q is increased then so will the puzzle expiry period and hence more forged puz-
zles can be used per valid puzzle obtained eventually exhausting the memory
resources of the server.

Also, even if we assume that the buffer allocation based on the hash table
mechanism is as in [14] the attack will still consume a huge amount of server
computational resources. This is because the adversary can trivially spoof new
puzzle instances and solutions from previous ones. These will not be allocated
buffer space due to the hash table mechanism, but will consume computation
via server verification computations. In the next section we give a an example
instantiation of a generic construction that is a repaired version of the sub-puzzle
mechanism; an unforgeable version of the sub-puzzle construction.

6 A Generic Client Puzzle Construction

In this section we provide a generic construction for a client puzzle which also
repairs the flaw identified in the previous section with respect to the Juels and
Brainard puzzle. Our construction is based on a pseudorandom function (PRF)
and a one way function (OWF). We prove our generic construction is secure
according to the definitions we put forth in this paper, and show one possible
instantiation. Intuitively, the unforgeability of puzzles is ensured by the use
of the PRF and the difficulty of solving puzzles is ensured by the hardness of
inverting the one-way function. We first review some notational conventions and
definitions regarding function families, pseudorandom functions, and concrete
notions for pseudorandom function families and one way function families.

If F is a function family then we use the notation f $← F for i $← I; f←Fi.
We denote the set of all possible functions mapping elements of D to R by
Func(D,R). A random function fromD to R is then a function selected uniformly
at random from Func(D,R).

Pseudorandomness. We define the PRF game ExecPRF,b
B,F (k) for an adversary B

against the function family F : K ×D �→ R, where |K| = 2k, as follows.
(1) For b = 1 the adversary B has black box access to a truly random function

R from the set Func(D,R) and for b = 0 the adversary B has black box
access to a function Fs chosen at random from F .

(2) The adversary B is allowed to ask as many queries as it wants to whichever
function it has black box access to. Eventually B terminates outputting a
bit b∗.

We set the output of ExecPRF,b
B,F (k) to 1 if b∗ = b and set the output to 0 otherwise.

We then define the advantage of an adversary against F in terms of PRF as

AdvPRF
B,F (k) =

∣∣∣Pr
[
ExecPRF,0

B,F (k) = 1
]
− Pr
[
ExecPRF,1

B,F (k) = 1
]∣∣∣.
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Concrete Pseudorandom and One Way Function Families. Here we
briefly review concrete notions of security for pseudorandom function and one
way function families. We depart from the typical “(ε, t)- hardness” style of
definitions, as they are not sufficient for our purposes. Instead we view ε, the
probability of a break, as a function of the running time τ of the adversary. So,
a primitive is ε(·)- secure if for all adversaries running in time τ the probability
of breaking the primitive is at most ε(τ).

Definition 4 (νk(·)–PRFF). Let F : K × D �→ R be a function family and
ν : N �→

(
N �→ [0, 1]

)
be a family of monotonically increasing functions. We

say F is a νk(·)–PRFF if for all k ∈ K and for all adversaries A it holds that
AdvPRF

Aτ ,F (k) ≤ νk(τ).

Note that, in the definition of an νk(·)–PRFF, the security parameter k specifies
the size of the keyspace for the game ExecPRF,b

Aτ ,F (k) and the actual key, and hence
function from the family used, is chosen at random from this keyspace.

Definition 5 (εi(·)–OWF). For an adversary A we define its advantage against
a function ψ : X �→ Y, where X is fixed and finite, in terms of OWF as

AdvOWF
A,ψ = Pr[x $← X ; y←ψ(x); (x̃←A(y) ∧ ψ(x̃) = y)].

Let εi : N �→ [0, 1] be a monotonically increasing function. Then, the function ψ
is an εi(·)–OWF if for all adversaries A it holds that AdvOWF

Aτ ,ψ ≤ εi(τ).

We then extend this definition to a family of functions as follows:

Definition 6 (ε(·)–OWFF). Let ϕ : N �→
(
X �→ Y

)
and ε : N �→

(
N �→ [0, 1]

)
be function families. We say ϕ is an ε(·)–OWFF if for all i ∈ N the function
ϕi : X �→ Y is an εi(·)–OWF.

The Generic Construction. Our generic construction is based on the method
of Juels and Brainard [14]. Most client puzzle constructions based on one way
functions, such as the discrete log based scheme of [28], and the RSA based
scheme of [10], can be described in this manner with some minor modifications.
So, our generic construction pins down sufficient assumptions on the build-
ing blocks that imply security of the resulting puzzle. We let k ∈ N then let
F : K×D �→ X where |X | ≥ |K| = 2k be a function family indexed by elements
of K. The domain D of Fs is 3-tuples of the form N×{0, 1}∗×{0, 1}k ∈ {0, 1}∗.
We write Fs((·, ·, ·)) when we want to specify the exact encoding of an element
of D explicitly as an input to Fs. We further let ϕ : N �→

(
X �→ Y

)
be a family

of functions indexed by Q. We assume there is a polynomial time algorithm to
compute ϕQ for each value of Q and input. The various algorithms in the scheme
are then as follows:

Setup(1k). The various spaces are chosen; sSpace←K, QSpace←N, strSpace←
{0, 1}∗, solnSpace←X and puzSpace ←QSpace× strSpace× {0, 1}k ×Y. The
parameter Π is assigned to be the polynomial time algorithm to compute ϕQ

for all Q ∈ QSpace and x ∈ X . Finally, the value s is chosen as s $← sSpace
and the tuple params constructed then output.
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Q, str, nS soln puz

GenPuz, VerAuth

GenPuz, VerSoln, VerAuth

FindSoln

x = Fs(Q,str,nS) ��

y = ϕQ(x)
��

x′ = ϕ−1
Q

(y)

�
�
��

����

Fig. 2. Solid arrows are actions performed by a generator and dashed ones by a solver.
The lists of algorithms above/below arrows imply the actions are performed as part
of these algorithms. The details of how each action is used in the given algorithm are
given in the full description.

GenPuz(s,Q, str). A nonce is selected nS
$← {0, 1}k. Next x is computed as

x←Fs(Q, str, nS). The value y ∈ Y is computed as y←ϕQ(x) and the puzzle
assigned to be puz = (Q, str, nS , y) and output.

FindSoln(puz, τ). While this algorithm is within the allowed number of clock
cycles of execution it randomly samples elements from the set of possible
solutions without replacement and for each potential preimage x′ ∈ X com-
putes y′←ϕQ(x′). If y′ = y this outputs x′ then halts and otherwise continues
with random sampling. If this algorithm reaches the last clock cycle of execu-
tion then it outputs a random element of the remaining unsampled preimage
space. The set of possible solutions is generally a subset of X that is defined
by the value y of size dependent upon Q in some manner; the details of how
the size varies depends upon the function family ϕ.

VerAuth(s, puz′). For a puzzle puz′ = (Q′, str′, n′S , y
′) this computes x′ as x′←

Fs(Q′, str′, n′S) then y←ϕQ(x′). If y′ = y this outputs true and otherwise
outputs false.

VerSoln(puz′, soln′). Given a potential solution soln′ = x′ this checks if ϕQ(x′) =
y and if so outputs true and otherwise outputs false.

We use the notation CPuz = PROWF(F ;ϕ) for the generic construction in
this manner. The construction is summarized in Figure 2.

Remark 1. In the definition of an ε(·)–OWF we specify the domain X is fixed
and finite but do not specify the exact size or shape of this; in our generic
construction this is set to be the output space of some PRF.

Remark 2. The exact specification of the FindSoln algorithm is not important
for our theorems and proofs, nor is it unique. Indeed, other techniques such as
exhaustive search may even be faster than the algorithm given. The important
point is such an algorithm exists and can be described.

Remark 3. The domain D of F is given as 3 tuples of the form N × {0, 1}∗ ×
{0, 1}k which is the same as {0, 1}∗. However, we will always construct elements
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of D from a given tuple rather than taking a bit string and encoding it as an
element of D. Hence we do not refer to this as a uniquely recoverable encoding
on D.

Remark 4. In reality the variable nS need not be sampled at random; it just has
to be a nonce and could be instantiated with, for example, a counter. We specify
uniform sampling from the domain of nS since it makes our proofs simpler and
easier to follow.

Remark 5. Our generic construction is similar to the Juels and Brainard scheme
[14] but avoids the forgeability problems by including the hardness parameter Q
in the input to F .

Remark 6. Finally, we remark that the generic construction where the PRF
function is replaced by a MAC is not necessarily secure. Indeed, one-wayness of
the generic construction is guaranteed as long as the one-way function is applied
to randomly chosen bit-string. While this property is ensured through the use of
a pseudo-random function, it is does not always hold for a MAC. For example,
the combination of an artificial MAC function for which the first half of the
output bits are constant with the OWF that discards the first half of its input
is clearly an insecure puzzle construction.

The following theorems capture the unforgeability and the level of hardness
enjoyed by our generic construction. Their proofs can be found in the full version
of the paper.

Theorem 1. Let F be a PRF family and ϕ a family of functions as described
above such that for each value of Q and for all y ∈ Y we have |ϕ−1

Q (y)|/|X | ≤
1/2k, where k is the security parameter. Then the client puzzle defined by CPuz =
PROWF(F ;ϕ) is UF secure.

To understand the rôle of the condition that |ϕ−1
Q (y)|/|X | ≤ 1/2k consider the

(extreme) case when F has a small constant number of images, that each cor-
responds to roughly the same number of possible inputs to F . Notice that this
condition does not contradict the pseudorandomness of F , but such a function
is not sufficient to ensure unforgeability. Indeed, an attacker can select a ran-
dom y ∈ Y, obtain some x such that ϕ(x) = y and select some random triple
(Q, str, nS) as the solution to the puzzle. With probability about half, the image
of (Q, str, nS) is x. The adversary can therefore produce solved puzzles that are
valid without interacting with the server.

Theorem 2. Let F be a ν(·)–PRFF family for the function family ν(·), ϕ an
ε(·)–OWFF for the function family ε(·) and CPuz = PROWF(F ;ϕ). Then the
client puzzle PROWF(F ;ϕ) is γ(·)–DIFF where

γk,Q(τ) = 2 · νk(τ + τ0) +
(
1 + τ/(2k − τ)

)
· εQ(τ + τ1)

and τo, τ1 ∈ N are some constants.

An adversary may try to solve puzzles by either computing the value Fs(Q, str,
nS) for an unknown value of s or by computing a preimage of ϕQ for the value
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y provided. The function νk in Theorem 2 captures that computing Fs for an
unknown value of s should not be easy; the function F needs to be a good PRF.
Intuitively, k should be chosen to be large enough that it is easier to compute a
preimage of y under ϕQ than computing the corresponding value Fs(Q, str, nS).

Impact on Practical Implementations of Puzzles

Some of the most popular proposals of puzzles are based on hash functions.
In this section we instantiate our generic construction from the previous section
using hash functions to construct the needed PRF and one-way function families.
We obtain essentially a modified Juels and Brainard scheme that incorporates
the defence against the attack that we present in Section 5. The security analysis
is in the random oracle model.

Given a hash functionH : {0, 1}∗ �→ {0, 1}m a standard construction for a PRF

family F is as follows. Key generation selects a random string s $← {0, 1}k where
k is the security parameter. Function application is defined by Fs(x) = H(s||x)
for any x ∈ {0, 1}∗ Furthermore, given a hash function G : {0, 1}∗ → {0, 1}n we
define the function family ϕ of functions ϕQ : {0, 1}m → {0, 1}m−Q×{0, 1}n by
ϕQ(x) = (x〈Q + 1, m〉, G(x)). In the full version of the paper we prove that in
the random oracle model, F is a νk(·)–PRFF function, for some function family
ν with νk(τ) ≤ m

2k and that ϕ is ε(·)–OWFF for some function family ε with
ε(τ) ≤ τ/2m + τ/(2m−Q). Concrete bounds for the security of our construction
follow by instantiating the bounds in Theorems 1 and 2.
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Abstract. Non-malleability is an interesting and useful property which
ensures that a cryptographic protocol preserves the independence of the
underlying values: given for example an encryption E(m) of some un-
known message m, it should be hard to transform this ciphertext into
some encryption E(m∗) of a related message m∗. This notion has been
studied extensively for primitives like encryption, commitments and zero-
knowledge. Non-malleability of one-way functions and hash functions has
surfaced as a crucial property in several recent results, but it has not un-
dergone a comprehensive treatment so far. In this paper we initiate the
study of such non-malleable functions. We start with the design of an
appropriate security definition. We then show that non-malleability for
hash and one-way functions can be achieved, via a theoretical construc-
tion that uses perfectly one-way hash functions and simulation-sound
non-interactive zero-knowledge proofs of knowledge (NIZKPoK). We also
discuss the complexity of non-malleable hash and one-way functions.
Specifically, we show that such functions imply perfect one-wayness and
we give a black-box based separation of non-malleable functions from
one-way permutations (which our construction bypasses due to the “non-
black-box” NIZKPoK based on trapdoor permutations). We exemplify
the usefulness of our definition in cryptographic applications by show-
ing that (some variant of) non-malleability is necessary and sufficient
to securely replace one of the two random oracles in the IND-CCA en-
cryption scheme by Bellare and Rogaway, and to improve the security of
client-server puzzles.

1 Introduction

Motivation. Informally, non-malleability of some function f is a cryptographic
property that asks that learning f(x) for some x does not facilitate the task of
generating some f(x∗) so that x∗ is related to x in some non-trivial way. This
notion is especially useful when f is used to build higher-level multi-user pro-
tocols where non-malleability of the protocol itself is crucial (e.g., for voting or
auctioning). Non-malleability has been rather extensively studied for some cryp-
tographic primitives. For example, both definitions as well as constructions from
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standard cryptographic assumptions are known for encryption, commitments
and zero-knowledge [17,5,29,16,20,14,1,15,27,28,2]. Non-malleability in the case
of other primitives, notably for one-way functions and for hash functions,1 has
only recently surfaced as a crucial property in several works [7,8,11,19], which
we discuss below.

For instance, plenty of cryptographic schemes are only proved secure in the
random oracle (RO) model [4], where one assumes that a hash function behaves
as a truly random function to which every party has access to. It is well-known
that such proofs do not strictly guarantee security for instantiations with hash
functions whose only design principles are based on one-wayness and/or collision-
resistance, because random functions posses multiple properties the proofs may
rely on. Hiding all partial information about pre-images, i.e. perfect one-wayness,
is one of these properties, and has been studied in [9,12]. Non-malleability is
another example of such a property.

An illustrative example is the encryption scheme of Bellare and Rogaway [4],
where a ciphertext of message M has the form (f(r), G(r) ⊕M,H(r,M)) for
a trapdoor permutation f , hash functions G,H and random r. The scheme is
known to be IND-CCA secure in the random oracle model. However, an instan-
tiation of H with a malleable function for which given H(r,M) it is possible to
compute H(r,M ⊕M ′), for some fixed M ′ known to the attacker, renders the
scheme insecure: the attacker can recover M by submitting to the decryption
oracle the valid ciphertext (f(r), G(r) ⊕M ⊕M ′, H(r,M ⊕M ′)).

It was shown in [7] that a similar attack can be carried out against the popular
OAEP encryption scheme whenever the instantiation of the underlying hash
function is malleable. A subsequent work [8] showed that some form of non-
malleability permits positive results about security of an alleviated version of
the OAEP scheme in the standard model. However, it remains unclear if the
approach to non-malleability in [8] expands beyond the OAEP example, and the
work left open the construction of non-malleable primitives.

Another motivating example is the abstraction used to model hash functions
in symbolic (Dolev-Yao) security analysis. In this setting it is axiomatized that
an adversary can compute some hash only when it knows the underlying value.
Clearly, malleable hash functions do not satisfy this axiom. Therefore, non-
malleability for hash functions is necessary in order to ensure that symbolic
analysis is (in general) sound with respect to the standard cryptographic model.
Otherwise, real attacks that use malleability can not be captured/discovered in
the more abstract symbolic model.

In a different vein, and from a more conceptual perspective, higher-level pro-
tocols could potentially benefit from non-malleable hash functions as a building
block. A recent concrete example is the recommended use of such non-malleable
hash functions in a human-computer interaction protocol for protecting local stor-
age [11]. There, access should be linked to the ability to answer human-solvable

1 In the sequel we aggregate both one-way functions and hash functions under the
term hash functions for simplicity.
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puzzles (similar to CAPTCHAs), but it should be infeasible for a machine to maul
puzzles and redirect them under a different domain to other human beings.

We will also discuss a construction of a cryptographic puzzle from [25] de-
signed to prevent DoS attacks, and show that malleability of the underlying
hash function leads to insecure constructions.

Hence, non-malleability is a useful design principle that designers of new hash
functions should keep in mind. At this point, however, it is not even clear what
the exact requirements from a theoretical viewpoint are. Therefore, a first neces-
sary step is to find a suitable definition which is (a) achievable, and (b) applica-
ble. The next step would be to design practical hash functions and compression
functions which are non-malleable, or which at least satisfy some weaker variant
of non-malleability.

Contributions. In this paper we initiate the study of non-malleable hash
functions. We start with the design of an appropriate security definition. Our
definition uses the standard simulation paradigm, also employed in defining non-
malleability for encryption and commitment schemes. It turns out however that
a careless adjustment of definitions for other primitives yield definitions for non-
malleable hash functions that cannot be realized. We therefore motivate and
provide a meaningful variation of the definition which ensure that the notion is
achievable and may be useful in applications.

Testifying to the difference to other cryptographic primitives, we note that
for non-malleable encryption the original simulation-based definition of [17] was
later shown to be equivalent to an indistinguishability-based definition [5]. For
our case here, finding an equivalent indistinguishability-based definition for non-
malleable hash functions appears to be far from trivial, and we leave the question
as an interesting open problem.

We then show that our definition can be met. Our construction of a non-
malleable hash function employs a perfectly one-way hash function (POWHF)
[9,12], i.e., a probabilistic hash function which hides all information about its pre-
image. Notice that this form of secrecy in itself does not ensure non-malleability,
so we make the function non-malleable by appending a simulation-sound non-
interactive zero-knowledge proof of knowledge (NIZKPoK) [29,14] of the hashed
value.2 Both primitives exist, for example, if trapdoor permutations exist.3

The construction we provide is probabilistic and does not achieve the desired
level of efficiency for practical applications. We emphasize that our construction
should be regarded as a feasibility result that shows that, in principle, non-
malleable hash functions can be built from standard assumptions. We leave open

2 Analogously to Canetti’s terminology of perfectly one-way hash functions [9] we refer
to our construction as a hash function since we require collision resistance, although
it does not compress.

3 We remark that the intuitively appealing approach of using non-malleable encryption
or commitment schemes to directly construct non-malleable hashes does not work.
One of the reasons is that the former primitives rely on secret randomness, whereas
hash values need to be publicly verifiable given the pre-image.
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the problem of finding a practical, deterministic solution. We note that our
definition is general enough to allow such constructions.

Next, we investigate necessary cryptographic assumptions for building non-
malleable functions. We provide two results. First we show that a non-malleable
hash function needs to hide any information about the pre-image. This result
justifies the use of POWHFs in our construction. Then we show (in the style of
Impagliazzo-Rudich [24]) that black-box constructions of non-malleable one-way
functions from one-way permutations are in fact impossible even if the collision-
resistance requirement is dropped. To be more precise, we follow the approach of
Hsiao and Reyzin [23] and show that no black-box security reduction is possible.
Notice that our construction circumvents the impossibility result due to the use
of a “non-black-box” NIZKPoK.

Finally, we study the applicability of our definition. We show that
non-malleability is in fact sufficient for secure partial instantiation of the afore-
mentioned encryption scheme of Bellare and Rogaway [4], i.e., that the scheme
remains IND-CCA secure when H is replaced with a non-malleable hash func-
tion. Although G is still a random oracle, this partial instantiation helps to
better understand the necessary properties of the primitives and also provides a
better security heuristic.

We also sketch an application to the framework of cryptographic puzzles [25]
as a defense against DoS attacks, where non-malleability surfaces as an important
property. The usefulness of the definition has also been shown in [19], using a
special case of a preliminary version of our definition to prove that HMAC [3] is
a secure message authentication code, assuming that the compression function
of the hash function is non-malleable. We expect further applications of non-
malleable hash functions in other areas, and some of the techniques used in our
proof here may be helpful for these scenarios.

Related Work. Independently of our work, Canetti and Dakdouk [10] and
Pandey et al. [26] recently also suggested one-way functions with special prop-
erties related to, yet different from non-malleability, and Canetti and Varia [13]
investigated non-malleable obfuscation. The work of Canetti and Dakdouk [10]
introduces the notion of extractable perfect one-way functions where generating
an image also guarantees that one knows a preimage. This should even hold if
an adversary sees related images, a setting which somewhat resembles the one
that we give for non-malleability. Yet, extractability in [10] is defined by requir-
ing the existence of a knowledge extractor which generates a preimage from the
adversary’s view, including the other images. In contrast, the common approach
to non-malleability (which we also adopt) is to deny the simulator access to the
other images, in order to capture the idea that these images should not help.
Hence the security definition from [10] is incomparable to ours. Moreover using
the notion of [10] to show insecurity of candidate practical hashes seems diffi-
cult: arguing about the success of an attacker under their definition involves, in
particular, showing that it is impossible to extract a pre-image when someone
produces an image. In contrast, security as defined by our notion is easier to
refute. For example, the hash functions from [7] for which flipping a bit in the
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pre-image results in flipping a bit in the image are clearly insecure under our
definition.

The work by Pandey et al. [26] defines adaptive one-way function families
where inversion for an image under some key is still infeasible, even if one is
allowed to obtain preimages under different keys. This notion is also related to
non-malleability and turns out to be useful to design non-malleable protocols
like commitments and zero-knowledge proofs. Unfortunately, this strong notion
is not known to be realizable.

It is noteworthy that, analogously to our work here, both papers choose the
Bellare-Rogaway encryption function as an important test case, and succeed
in instantiating the second random oracle of the scheme. Together with the
notion that we develop in this paper, these give three different alternatives for
the requirements needed for this instantiation. Those works also show that the
first random oracle could be instantiated in the standard model with a function
which in addition to the notions they define is also pseudorandom. Unfortunately,
no construction from standard assumptions that meets either one of the two
resulting notions is known. In contrast, our single-oracle instantiation through a
non-malleable hash function is possible under standard assumptions.

The work by Canetti and Varia [13] independently considers the notion of
verifiable non-malleable obfuscation where an adversary, given an obfuscated
circuit, tries to produce an (obfuscated) circuit which is functionally related.
The adversary’s success is measured against the success of a simulator given
only an oracle implementing the original circuit functionality. Their notion of
verifiable non-malleable obfuscators comes closest to our notion of non-malleable
hash functions, and their construction for achieving a weaker notion of verifiable
non-malleable obfuscation resembles our feasibility construction closely.

The two notions are, nonetheless, different in spirit. For obfuscators the adver-
sary’s task is to find something functionally related, whereas for non-malleable
hash functions the adversary’s task is to find a hash of a related pre-image, thus
capturing relations about specific values like relations among the bits. There are
further technical differences like the fact that the (achievable) notion of weakly
verifiable non-malleable obfuscators does not support auxiliary information —as
required for our encryption case, for example— making the two notions incom-
parable. More details are given in Section 3.

2 Preliminaries

Definition 1 (Hash Functions). A hash function H = (HK,H,HVf) consists
of PPTAs for key generation, evaluation and verification, where

– PPTA HK for security parameter 1k outputs a key K (which contains 1k and
implicitly defines a domain DK),

– PPTA H for inputs K and x ∈ DK returns a value y ∈ {0, 1}∗,
– PTA HVf on inputs K,x, y returns a decision bit.

It is required that for any K $← HK(1k), any x ∈ DK, any y $← H(K,x), algo-
rithm HVf(K,x, y) outputs 1.
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Note that we consider a very general syntax, comprising the “classical” notions
of one-way functions (with a public key) and of collision-resistant hash functions
which compress the input to a shorter digest (see [22] for definitions). In our
case the evaluation algorithm H may be probabilistic, as long the correctness
of hash values is verifiable given the pre-image only (via HVf). Also, we do not
demand the length of the output of the hash function to be smaller than that of
the input. However, while we capture a large class of primitives, the generalized
syntax may not preserve all properties of the special cases, e.g., if the evaluation
algorithm is probabilistic, two independent parties hashing the same input will
not necessarily get the same value.

We now recall the definitions of one-wayness and collision resistance. For one-
wayness the definition that we give is more general than the standard one in that
it considers specific input distributions X for the function, and also accounts for
the possibility that the adversary may have some partial information about the
pre-image (modeled through a probabilistic function hint):

Definition 2 (One-wayness and Collision-resistance). A hash function
H = (HK,H, HVf) is called

– one-way (wrt X and hint) if for any PPTA A the probability that for K $←
HK(1k), x $← X (1k), hx

$← hint(K,x), y $← H(K,x) and x∗ $← A(K, y, hx)
we have HVf(K,x∗, y) = 1, is negligible.

– collision-resistant if for any PPTA A the probability for K
$← HK(1k),

(x, x′, y) $← A(K) that x 
= x′ but HVf(K,x, y) = 1 and HVf(K,x′, y) = 1,
is negligible.

3 Non-malleability of Hash and One-Way Functions

Our definition for hash functions follows the classical (simulation-based) ap-
proach for defining non-malleability [17]. Informally, our definition requires that
for any adversary which, on input a hash value y, finds another value y∗ such
that the pre-images are related, there exists a simulator which does just as well
without ever seeing y.

In the adversary’s attack we consider a three-stage process. The adversary
first selects a distribution X from which a secret input x is then sampled (and
passes on some state information). In the second stage the algorithm sees a
hash value y of this input x, and the adversary’s goal is to create another hash
value y∗ (usually different from y). In the third stage the adversary is given x
and now has to output a pre-image x∗ to y∗ which is “related” to x (we make
the definition stronger by giving the challenge pre-image to the adversary). The
simulator may also pick a distribution X according to which x is sampled, but
then it needs to specify x∗ directly from the key of the hash function only.

In the second stage the adversary (and consequently the simulator) also gets
as input a “hint” hx about the original pre-image x, to represent some a-priori
information potentially gathered from other executions of other protocols in
which x is used. In fact, such side information is often crucial for the deployment
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in applications, e.g., for the encryption example in Section 6. As in the case of
non-malleable commitments and encryption, related pre-images are defined via
a relation R(x, x∗). This relation may also depend on the distribution X to catch
significantly diverging choices of the adversary and the simulator and to possibly
restrict the choices for X , say, to require a certain min-entropy. However, unlike
for other primitives, we do not measure the success of the adversary and the
simulator for arbitrary relations R between x and x∗, but instead restrict the
relations to a classR of admissible relations. We discuss this and other subtleties
after the definition:

Definition 3 (NM-Hash). A hash function H = (HK,H,HVf) is called non-
malleable (with respect to probabilistic function hint and relation class R)4 if for
any PPTA A = (Ad,Ay,Ax) there exists a PPTA S = (Sd,Sx) such that for
every relation R ∈ R the difference

Pr
[
Expnmh-1

H,A (k) = 1
]
− Pr
[
Expnmh-0

H,S (k) = 1
]

is negligible, where:

Experiment Expnmh-1
H,A (k)

K
$← HK(1k)

(X , std) $← Ad(K) // for state std

x
$← X (1k), hx

$← hint(K,x)
y

$← H(K,x)
(y∗, sty)

$← Ay(y, hx, std)
x∗ $← Ax(x, sty)
Return 1 iff

R(X , x, x∗)
∧ (x, y) 
= (x∗, y∗)
∧HVf(K,x∗, y∗) = 1

Experiment Expnmh-0
H,S (k)

K
$← HK(1k)

(X , std) $← Sd(K)
x

$← X (1k), hx
$← hint(K,x)

x∗ $← Sx(hx, std)
Return 1 iff

R(X , x, x∗)

Remark 1. Our definition is parameterized by a class of relations R. This is
because for some relations the definition is simply not achievable, as in the case
when the relation involves the hash of x instead of x itself. More specifically,
consider the relation R(x, x∗) which parses x∗ as K, y and outputs HVf(K,x, y).
Then, an adversary on input y, hx, std may output y∗ $← H(K, (K, y)) and then,
given x, returns x∗ = (K, y). This adversary succeeds in experiment Expnmh-1

H,A (k)
with probability 1. In contrast, any simulator is likely to fail, as long as the
hash function does not have “weak” keys, i.e., keys for which the distribution of
generated images is ttrivial (such that the simulator can guess y with sufficiently
high probability).

We resolve this problem by requiring the definition to hold for a subset R of
all relations. It is of course desirable to seek secure constructions with respect

4 Throughout the paper all hint functions and relations are assumed to be efficient. We
furthermore assume that the security parameter is given in unary to all algorithms
as additional input (if not mentioned explicitly).
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to very broad classes of relations (cf. our construction in Section 4) which are
more handy for general deployment. At the same time, certain scenarios may
only require non-malleability with respect to a small set of relations (cf. the
application example discussed in Section 6). Our definition is general and permits
easy tuning for the needs of a particular application or a class of applications.

Remark 2. For virtually all “interesting” functions H and relation classesR the
definition is achievable only for adversaries and simulators that output descrip-
tions of well-spread distributions X (i.e., with super-logarithmic min-entropy).
For the construction in next section we also require hint to be a so-called unin-
vertible function [9] (for which finding the exact pre-image is infeasible). Note
that uninvertibility is a weaker requirement than one-wayness, as it holds for
example for constant functions. We prefer to keep the definition as general as
possible, so we do not explicitly impose such restrictions on the adversary, sim-
ulator, and hint.

Remark 3. In our definition we demand that the simulator outputs x∗ given
K and hx only. A weaker condition would be to have a simulator Sy(hx, std)
first output y∗, like the adversary Ay, and then x∗ ← Sx(x, sty), before checking
that R(X , x, x∗) and that HVf(K,x∗, y∗) = 1. Since in this case the simulator
in the second stage is also given x we call this a weak simulator and hash func-
tions achieving this notion weakly non-malleable. This distinction resembles the
notions of non-malleable commitments with respect to commitment and with re-
spect to opening [16,20]. Depending on the application scenario of non-malleable
hash functions the stronger or weaker version might be required. As an exam-
ple, the result about the Bellare-Rogaway encryption scheme uses the stronger
definition above, and our construction in the next section achieves this stronger
notion, which obviously implies the weaker one.

Remark 4. Similarly to the previous variation one can let the adversary only
output a hash value y∗, and omit the step where it later also has to give x∗.
The simulator’s task, too, is then to only output a hash value. Then one defines
meaningful relations through existential quantifications (“. . . if there exists a pre-
image x∗ such that R(x, x∗) holds”). This is essentially the approach taken by
Canetti and Varia [13] for (weakly) verifiable non-malleable obfuscators.

On the one hand the “hash-only” approach above facilitates the adversary’s
task if it does not need to know a specific pre-image. On the other hand, it also
simplifies the simulator’s task. As an example the adversary in our definition may
decide upon a specific x∗ satisfying the relation, after seeing x. Security against
such an attack cannot be captured by the above notion of relaxed simulators,
whereas the simulator in our defintion also needs to find an appropriate x∗.
This particular example demonstrates that our approach and the definition for
(weakly) verifiable non-malleable obfuscators in [13] are incomparable. Further
differences between the notions are the lack of auxiliary information and the
dependency of the simulator on the relation in the definition of Canetti and
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Varia [13]. In addition, the feasilibility results presented later in our paper and
the solutions in [13] are for incomparable classes of relations.

Remark 5. Note that we only demand that (x, y) 
= (x∗, y∗) for the adversary’s
choice (instead of demanding x 
= x∗ or y 
= y∗ instead), yielding a stronger
definition, especially when the randomized hash function has multiple images
for some input. Again, the particular need depends on the application and our
solution meets this stronger requirement.

Remark 6. In the case of non-malleable encryption the original simulation-based
definition of [17] was later shown to be equivalent to an indistinguishability-based
definition [5]. The superficial similarity between our definition of non-malleable
hash functions and the one of non-malleable encryption suggests that this may
be possible here as well. Surprisingly, straightforward attempts to define non-
malleability of hash functions through indistinguishability do not seem to yield
an equivalent definition. We discuss this issue in the full version [6] in more detail
(because of lack of space), and leave it as an interesting open problem to find a
suitable indistinguishability-based definition for non-malleable hash functions.

Remark 7. The usual security notions for hash functions include one-wayness
and collision-resistance. However, neither property is known to follow from Def-
inition 3. Consider a constant function H which is clearly not one-way nor
collision-resistant. But the function is weakly non-malleable as a simulator can
simulate A in a black-box way by handing the adversary the constant value. We
keep these rather orthogonal security properties separate, as some applications
may require one but not the others.

Remark 8. Some applications (like the HMAC example in [19]) require a multi-
valued version of the definition in which the adversary can adaptively generate
several distributions and receive the images (with side information) before de-
ciding upon y∗. One can easily extend our definition accordingly, letting Ad loop
several times, in each round i generating a distribution Xi and receiving yi and
hxi at the beginning of the next round and before outputting an image y∗. In
general, it is possible to extend our construction to this case using stronger,
adaptive versions of POWHFs and NIZKPoKs. See Remark 1 after Theorem 1.

4 Constructing Non-malleable Hash Functions

In this section we give feasibility results via constructions for non-malleable hash
functions. The main ingredient of our constructions is a perfectly one-way hash
function (POWHF) [9,12], which hides all information about the pre-image but
which may still be malleable [7]. To ensure non-malleability we tag the hash value
with a simulation-sound non-interactive zero-knowledge proof of knowledge of
the pre-image. We first recall the definitions of these two primitives.

For POWHFs we slightly adapt the definition from [9,12] to our setting. Orig-
inally, POWHFs have been defined to have a specific input distribution X (like
the uniform distribution in [12,18]). Here we let the adversary choose the input
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distribution adaptively, and merely demand that this distribution X satisfies
a certain efficient predicate Ppow(X ); this is analogous to the non-malleability
experiment in which the adversary chooses X and the relation R takes X as
additional input. We call the side information here aux (as opposed to hint for
non-malleability) in order to distinguish between the two primitives. In fact, in
our construction aux uses hint as a subroutine but generates additional output.

Definition 4 (POWHF). A hash function P = (POWK,POW,POWVf) is
called a perfectly one-way hash function (with respect to predicate Ppow and proba-
bilistic function aux) if it is collision resistant, and if for any PPTA B = (Bd,Bb),
where Bb has binary output, the following random variables are computationally
indistinguishable:

K
$← POWK(1k) ; x $← X (1k)

ax
$← aux(K,x) ; y $← POW(K,x)

b
$← Bb(y, ax, std)

return (K,x, b) if Ppow(X ) = 1
else ⊥

K
$← POWK(1k)

(X , std) $← Bd(K)
x

$← X (1k), x′ $← X (1k)
ax

$← aux(K,x) ; y′ $← POW(K,x′)
b

$← Bb(y′, ax, std)
return (K,x, b) if Ppow(X ) = 1
else ⊥

Remark 1. As pointed out in [9,12] the definition only makes sense if aux is an
uninvertible function of the input (such that finding the pre-image x from ax is
infeasible) and Bx only outputs descriptions of well-spread distributions (with
super-logarithmic min-entropy). Otherwise the notion is impossible to achieve.
For generality, we do not restrict X and aux explicitly here.

Remark 2. Perfectly one-way hash functions (in the sense above) can be con-
structed from any one-way permutation [12,18] (for the uniform input distribu-
tion), any regular collision-resistant hash function [12] (for any distribution with
fixed, super-logarithmic min-entropy), or under the decisional Diffie-Hellman
assumption [9] (for the uniform distribution). Usually these general construc-
tions are not known to be secure assuming arbirtrary functions aux, yet for the
particular function aux required by the application they can often be adapted
accordingly. A concrete example is given in Section 6, in our discussion of the
Bellare-Rogaway encryption scheme.

On the choice of the relation class. Recall that the definition of non-
malleability is parametrized by a class of relations. As explained earlier in the
paper, no non-malleable hash function for an arbitrary class exists (see Remark 1
after Definition 3). In the sequel, we exhibit a class of relations for which we show
how to construct non-malleable hash functions, and then present our provably
secure construction.

Specifically, we consider the class of relations Rrinfo
pred, parameterized by an

optional function rinfo and which consists of all relations of the form R(x, x∗) =
P (x, P ∗(rinfo(x), x∗)), for all efficient predicates P, P ∗.5 The function rinfo(x)
5 Where we neglect the distribution X as part of the relation’s input for the moment.
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may be empty or consist of a small fraction of bits of x (e.g., up to logarithmically
many), and should be interpreted as the information about x that may be used
in evaluating the relation R. It is important that rinfo is an univertible function,
as otherwise, if one could recover x from rinfo(x), then Rrinfo

pred would comprise
all efficient relations, R(x, x∗) = P ∗(x, x∗), and non-malleability with respect to
this class, again, would not be achievable.

As an example consider the empty function rinfo such that Rpred consists of
all relations R(x, x∗) = P (x, P ∗(x∗)). This class of relations allows to check for
instance that individual bits of x and x∗ are complement of each other, i.e., if πj

denotes the projection onto the j-th bit then one sets P ∗(x∗) = πj(x∗) and lets
P (x, P ∗(x∗)) output 1 if πj(x) 
= πj(x∗). This example has also been used by
Boldyreva and Fischlin [7] to show the necessity of non-malleability for OAEP,
and to give an example of a perfectly one-way hash function that is malleable in
the sense that flipping the first bit of an image produces a hash of the pre-image
whose first bit is also flipped.

In the examples above rinfo has been the empty function. Of course, using
non-trivial functions rinfo allows for additional relations and enriches the class
Rrinfo

pred. Consider for example a hash function H that is malleable in the sense that
an adversary, given H(K, r‖m) for random r ∈ {0, 1}k, can compute H(K, r‖m′)
for some m′ 
= m. One way to capture that the two pre-images coincide on the
first k bits is to set rinfo(r||m) = r and to set P ∗(r, x∗) = 1 if and only if r
is the prefix of x∗. Since rinfo should be univertible, the function should rather
return only a fraction of r, though. Similarly, one can see that the class Rrinfo

pred
“captures” relations like R(x, x∗) = 1 iff x ⊕ x∗ = δ for some constant δ, and
many other useful relations.

Finally, we note that each relation from the class also checks that the chosen
input distribution X “complies” with the eligible distributions from the under-
lying POWHF. That is, each relation also checks that the predicate Ppow(X )
of the POWHF is satisfied. The full relation R(X , x, x∗) then evaluates to 1 iff
P (x, P ∗(rinfo(x), x∗)) = 1 and Ppow(X ) = 1. More formally, for any predicate
Ppow and uninvertible function rinfo we define the class of relations:

Rrinfo,Ppow

pred =
{
R : there exist efficient (probabilistic) predicates P, P ∗

such that R(X , x, x∗) = P (x, P ∗(rinfo(x), x∗)) ∧ Ppow(X )

}
.

Our construction also uses a simulation-sound zero-knowledge proof of knowledge
Π = (CRS,P,V) for the NP-relation Rpow defined by:

Rpow = {(Kpow||ypow, x||r) : POW(Kpow, x; r) = ypow} .

which essentially says that one “knows” a pre-image of a hash value. Simulation-
sound NIZK proofs of knowledge for such relations can be derived from trapdoor
permutations [29,14]. We recall the definition of the former in the full version.

The construction and its security. The following theorem captures the
security of our construction.
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Theorem 1. Let P = (POWK,POW,POWVf) be a perfectly one-way hash func-
tion with respect to Ppow and aux, where aux = (hint, rinfo) for probabilistic func-
tions hint and rinfo. Let Π = (CRS,P,V) be a simulation-sound non-interactive
zero-knowledge proof of knowledge for relation Rpow. Then the following hash
function H = (HK,H,HVf) is non-malleable with respect to hint and Rrinfo,Ppow

pred :

– PPTA HK on input 1k samples Kpow
$← POWK(1k) and crs $← CRS(1k) and

outputs K = (Kpow, crs). The associated domain DK is given by DKpow.
– PPTA H on input K and x ∈ DK computes ypow ← POW(Kpow, x; r) for

random r
$← RNDKpow as well as π $← P(crs,Kpow||ypow, x||r). It outputs

y = (ypow, π).
– PTA HVf for inputs K = (Kpow, crs), x and y = (ypow, π) outputs 1 if and

only if
POWVf(Kpow, x, ypow) = 1 and V(crs,Kpow||ypow, π) = 1.

In addition, H is collision-resistant.

Due to space limitations we provide the detailed proof in the full version of the
paper [6].

Remark 1. The malleability adversary has access to essentially two different
sources of partial information about x: hint(x) which it receives explicitly as
input, and rinfo(x) which it can use indirectly through the relation R. This
motivates the requirement that P be perfectly one-way with respect to partial
information aux = (hint, rinfo).

Remark 2. As mentioned after the definition of non-malleable hash functions,
some applications (like the one about HMAC [19]) may require a stronger no-
tion in which the adversary can adaptively generate distributions and receives
the images, before deciding upon y∗. Our construction above can be extended
to this case, assuming that the POWHF obeys a corresponding “adaptiveness”
property and that the zero-knowledge proof of knowledge is multiple simulation-
sound and multiple zero-knowledge. Such adaptively-secure POWHFs (for uni-
form distributions) can be built from one-way permutations [18] and suitable
zero-knowledge proofs exist, assuming trapdoor permutations [29,14].

5 On the Complexity of Non-malleable Functions

In this section we discuss the existential complexity of non-malleable functions.
We first indicate, via an oracle separation result, that deriving non-malleable
hash and one-way functions via one-way permutations is infeasible. In the full
version [6] we also discuss the relation between non-malleability and one-wayness.

5.1 On the Impossibility of Black-Box Reductions

We first show that, under reasonable conditions, there is no black-box reduction
from non-malleable hash functions (which might not even be collision-resistant
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but rather one-way only) to one-way permutations. For space reasons most of
the proofs have been moved to the full version of the paper [6].

Black-Box Reductions. In their seminal paper Impagliazzo and Rudich [24]
have shown that some cryptographic primitives cannot be derived from other
primitives, at least if the starting primitive is treated as a black box. Instead of
separating primitives as in [24] here we follow the more accessible approach of
Hsiao and Reyzin [23], giving a relaxed separation result with respect to black-
box security reductions. We give a formalization of the oracle-based black-box
separation approach that we use in the full version.

For our result we assume that the algorithms of the hash function H are
granted oracle access to a random permutation oracle P (which is one-way, of
course). A black-box reduction to P is now an algorithm which, with oracle ac-
cess to P and a putative successful attacker A on the non-malleability property,
inverts P with noticeable probability. Such an attacker A may take advantage of
another oracle O (related to P) which allows it to break the non-malleability but
does not help to invert the one-way permutation P . Since neither the construc-
tion nor the reduction are given access to O, the reduction must be genuinely
black-box.

Defining Oracles P and O. For now we let P be a random permutation
oracle which in particular is a one-way function. Below we show through de-
randomization techniques that some fixed P must also work. For our separa-
tion we let the side information of the non-malleable hash function include
an image of the uniformly distributed input x under P . More precisely, con-
sider the function hintPsep which on input (1k,K, x) for random x computes
hx = P(0k||x|| 〈HVf〉 ||K) for the description 〈HVf〉 of the verification algorithm
and finally outputs hx.6

We next construct the oracle O that helps to break non-malleability. The
idea is that using O it is possible to extract from the image y and “hint” hx

(described above) the pre-image x of y. Since the adversary gets y as input, but
the simulator does not, the oracle is only helpful to the adversary. Note that
breaking non-malleability means that no simulator of comparable complexity is
able to approximate the success probability of AP,O closely. To ensure that the
simulator has the equal power as AP,O we grant the simulator SP,O therefore
access to both oracles P ,O.

Construction 1. Let oracle O take as input a parameter 1k, an image y and
a “hint” hx. The oracle first finds the pre-image z||x|| 〈HVf〉 ||K of hx under P
and verifies that z = 0k; if not it immediately returns ⊥. Else it checks that
HVfP(K,x, y) = 1 and returns x if so (and outputs ⊥ otherwise).

6 We note that the side information hx does not reveal any essential information about
x in the sense that one can show that, for any non-malleable hash function for the
uniform input distribution and no side information at all, the hash function remains
non-malleable with respect to hx relative to the random permutation P (but not
relative to O, of course). Also observe that the common strategy of using black-box
simulators usually works for any side information, and in particular for the one here.
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We show that O does not help to invert P , thus showing that relative to the
oracles there still exists one-way permutations:

Proposition 1. For any efficient algorithm B?,?, the probability that BP,O breaks
the one-wayness of P is negligible.

In light of this lemma we conclude that there exists a particular P that is hard
to invert for all PPT adversaries with oracles P ,O. The argument is the same as
in [23]. For a fixed PPT adversary B, we define the sequence of events (indexed
by k) where B inverts strings of length k with some good probability; for a
suitable choice of parameters, the sum of the probabilities (over P) of these
events converges and by the first Borel-Cantelli lemma only finitely many of
these events may occur, almost surely. Then taking the countable intersection
over all PPT B, we get that there is at least one P with the desired property.

Separation. We require some mild, technical conditions for our non-malleable
hash function and the relation. Namely, we assume that

– the hash function is non-trivial meaning that it is infeasible to predict an
image for uniformly distributed input over {0, 1}k (thus ruling out trivial
examples like constant hash functions), and

– the relation class R contains the relation Rsep which on input (X , x, x∗)
checks that X is the uniform distribution on {0, 1}k, and that parity(x) =⊕
xi = parity(x∗) =

⊕
x∗i . Note that Rsep ∈ Rpred for our predicate-based

relations, even for the empty function rinfo, and can thus be achieved in
principle.

Theorem 2. Let HP = (HKP ,HP ,HVfP) be a non-trivial non-malleable hash
function with respect to hintPsep and R , Rsep. Then there exists an adversary
AP,O that breaks non-malleability of HP (for any simulator SP,O).

Corollary 1. There exists no black-box reduction from non-trivial non-malleable
functions (with respect to hintPsep and R , Rsep) to one-way permutations.

At first glance it seems as if our result would transfer (after some minor mod-
ifications) to other non-malleable primitives like commitments. This is not the
case. The oracle O in our construction relies on the ability to check whether a
pre-image x matches an image y (public verifiability of hash functions), while
other primitives such as encryption E(m; r) and commitments Com(m; r) use
hidden randomness (which is not part of the input of function hint).

Relating Non-Malleability and Perfect One-Wayness. In the full ver-
sion we show that non-malleability implies a variant of perfect-one-wayness.

6 Applications

In this section we study the usefulness of our notion for cryptographic applica-
tions. As an example we show that when one of the two random oracles in the
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aforementioned encryption scheme proposed by Bellare and Rogaway in [4] is
instantiated with a non-malleable hash function, the scheme remains IND-CCA
secure. In addition, we argue that non-malleability is useful in preventing off-line
computation attacks against a certain class of cryptographic puzzles.

Instantiating random oracles. We start with recalling the scheme. Let F
be a familiy of trapdoor permutations and G,H be random oracles. The message
space of the scheme BRG,H [F ] = (K, E ,D) is the range of G. The key generation
algorithm K outputs a random F -instance f and its inverse f−1 as the public
and secret key, respectively. The encryption algorithm E on inputs f and m
picks random r in the domain of f (we assume that r ∈ {0, 1}k) and outputs
(f(r), G(r) ⊕m,H(r||m)). The decryption algorithm on inputs f−1 and (y, g, h)
first computes r ← f−1(y), then m← g ⊕G(r), and outputs m iff H(r‖m) = h.
The scheme BRG,H [F ] is proven to be IND-CCA secure in the random oracle
model assuming that F is one-way [4].

Here we study the possibility of realizing the random oracle H with an actual
hash function family H = (HK,H,HVf), a so-called partial H-instantiation of
the scheme. More precisely, we modify the scheme so that the public key and
secret key also contain a key K $← HK(1k) specifying a function. Then E com-
putes H(K, r‖m) instead of H(r‖m), and D computes HVf(K, r‖m,h) instead of
checking that H(r‖m) = h. We refer to this scheme as BRG,H[F ]. The following
shows that functions that meet our notion of non-malleability are sufficient for
a secure partial H-instantiation.

Before stating the sufficient conditions for security to hold, we fix some nota-
tion. Below we let the function rinfoBR(x) = msbk/2(x) output the k/2 most
significant bits of its input. The class of relations we require here for non-
malleability is only a subset of the achievable class discussed in Section 4.
Namely, we only require a relation of the formRBR(X , x, x∗) = P ∗(rinfoBR(x), x∗)
∧Ppow(X ), where Ppow is the predicate that checks that X is the canonical rep-
resentation of the uniform distribution on the first k bits, and P ∗ is the pred-
icate that simply verifies that msbk/2(x∗) = rinfoBR(x). We choose this specific
predicate RBR so that it can check if x = x∗, while erring with only negligible
probability, but still admit the construction of non-malleable hash functions.

Below we will require that the trapdoor permutation family is msbk/2-partial
one-way, meaning that it is hard to compute the k/2 most significant bits of
the random input r given a random instance f and f(r) (cf. [21] for the formal
definition). This is a rather mild assumption to impose on F . For example,
RSA was shown to be partial one-way under the RSA assumption in [21]. A
general approach to construct such a partial one-way family F is to define f(r) =
g(msbk/2(r))‖g(lsbk/2(r)) for a trapdoor permutation g.7

7 In fact, this construction also has the useful property that f(r) is still hard to invert,
even if given msbk/2(r). Thus this trapdoor permutation is suitable for constructing
POWHFs secure with respect to side information (msbk/2(r), f(r)) and therefore, via
our construction, non-malleable hash functions for side information hintBR(r) = f(r)
and the relation RBR. In other words, non-malleable hash functions for hintBR and
RBR exist under common cryptographic assumptions.
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We need one more technical detail before stating the theorem. We start with
some hash function family H = (HK,H,HVf) and trapdoor permutation family
F . We write H = (HKF ,H,HVf) for the modified hash function for which key
generation outputs a random instance of F along with the original hash key.
Below we write hintBR for the function that takes as input a key (K, f) and
string x, and outputs f(r), where r are the first k bits of the input x. We note
the IND-CPA version of the scheme by Bellare and Rogaway was shown secure
in the standard model by Canetti [9], assuming the hash function is a POWHF
with respect to a similar hint function.

Theorem 3. Let F be an msbk/2-partial one-way trapdoor permutation family
and let H = (HKF ,H,HVf) be a collision-resistant hash function which is non-
malleable with respect to the function hintBR and to the relation RBR. Assume
further that H is a perfectly one-way hash function with respect to Ppow and
hintBR. Then BRG,H[F ] is IND-CCA secure (in the RO model).

Remark. Although the non-malleability property of the hash implies that no
partial information about pre-images is leaked (cf. the full version for a formal
statement of this implication), the theorem above requires the hash to be per-
fectly one-way in the sense of Definition 4, which is a stronger requirement in
general. The proof of the theorem is in the full version [6].

Application to cryptographic puzzles. Cryptographic puzzles are a de-
fense mechanism against denial of service attacks (DoS). The idea is that, before
spending any resources for the execution of a session between a client and a
server, the server requires the client to solve a puzzle. Since solving puzzles re-
quires spending cycles, the use of puzzles prevents a malicious client to engage
in a large number of sessions without spending itself a significant amount of
resources. One desirable condition is that the server does not store any client-
related state.

A simple construction for such puzzles proposed by Juels and Brainard [25]
is based on any arbitrary one-way function h : {0, 1}l → {0, 1}l. First, select at
random x

$← {0, 1}l and compute y = h(x). Then, a puzzle is given by the tuple
(x[1..l − k], y) consisting of the first l − k bits of x together with y. To prove
it solved the puzzle, the client has to return (x, y). It can be easily seen that
the construction above is not entirely satisfactory. In particular, it either fails
against replay attacks —where the clients present the same puzzle-solution pair
to the server— or the server needs to store all of the x’s used to compute the
puzzles.

The solution proposed to mitigate the above problem is to compute x as
H(S, t), where S is some large bitstring known only to the server, and t is some
bitstring that somehow “expires” after a certain amount of time (this can be for
example the current system time). The puzzle is then given by (t, x[1..l− k], y),
where y = h(x). A solution (or solved puzzle) is (t, x, y) which needs to satisfy
the obvious equations, and moreover, t is not an expired bitstring.

In the setting above, non-malleability of H surfaces as an important property.
If out of the first two elements (t,H(S, t)) of a puzzle solution the adversary can
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efficiently construct (t′, H(S, t′)) for t′ 
= t, a string which has not yet expired,
then the defense sketched above is rendered useless: the adversary can easily
construct new puzzles (together with their solutions). Requiring that the func-
tion H is non-malleable with respect to the relation R(s1, s2) = 1 iff s1 = (S, t)
and s2 = (S, t′) for t 
= t′ is sufficient to prevent the above attack.
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Abstract. The hash function Skein is the submission of Ferguson et
al. to the NIST Hash Competition, and is arguably a serious candi-
date for selection as SHA-3. This paper presents the first third-party
analysis of Skein, with an extensive study of its main component: the
block cipher Threefish. We notably investigate near collisions, distin-
guishers, impossible differentials, key recovery using related-key differ-
ential and boomerang attacks. In particular, we present near collisions
on up to 17 rounds, an impossible differential on 21 rounds, a related-key
boomerang distinguisher on 34 rounds, a known-related-key boomerang
distinguisher on 35 rounds, and key recovery attacks on up to 32 rounds,
out of 72 in total for Threefish-512. None of our attacks directly extends
to the full Skein hash. However, the pseudorandomness of Threefish is re-
quired to validate the security proofs on Skein, and our results conclude
that at least 36 rounds of Threefish seem required for optimal security
guarantees.

1 Introduction

The hash function research scene has seen a surge of works since devastating
attacks [1, 2, 3, 4] on the two most deployed hash functions, MD5 and SHA-1.
This led to a lack of confidence in the current U.S. (and de facto worldwide)
hash standard, SHA-2 [5], because of its similarity with MD5 and SHA-1.

As a response to the potential risks of using SHA-2, the U.S. National Institute
of Standards and Technology (NIST) launched a public competition—the NIST
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Hash Competition—to select a new hash standard [6]. The new hash function,
SHA-3, is expected to have at least the security of SHA-2, and to achieve this
with significantly improved efficiency. By the deadline of October 2008, NIST
received 64 submissions, 51 were accepted as first round candidates, and in July
2009 14 were selected as second round candidates, including Skein. Due to the
critical role of hash functions in security protocols, this competition catches the
attention not only from academia, but also from industry—with candidates from
IBM, Hitachi, Intel, Sony—and from governmental organizations.

Skein [7] is the submission of Ferguson et al. to the NIST Hash Competition.
According to its designers, it combines “speed, security, simplicity and a great
deal of flexibility in a modular package that is easy to analyze” [7, p.i]. Skein
supports three different internal state sizes (256-, 512-, and 1024-bit), and is one
of the fastest contestants on 64-bit machines.

Skein is based on the “UBI (The Unique Block Iteration) chaining mode” that
itself uses a compression function made out of the Threefish-512 block cipher.
Below we give a brief top-down description of these components:

• Skein makes three invocations to the UBI mode with different tags: the
first hashes the configuration block with a tag “Cfg”, the second hashes
the message with a tag “Msg”, and the third hashes a null value with a
tag “Out”.

• UBI mode hashes an arbitrary-length string by iterating invocations to
a compression function, which takes as input a chaining value, a message
block, and a tweak. The tweak encodes the number of bytes processed
so far, and special flags for the first and the last block.

• The compression function inside the UBI mode is the Threefish-512
block cipher in MMO (Matyas-Meyer-Oseas) mode, i.e., from a chaining
value h, a message block m, and a tweak t it returns Eh(t,m) ⊕m as
new chaining value.

• Threefish is a family of tweakable block ciphers based on a simple per-
mutation of two 64-bit words: MIX(x, y) = (x+ y, (x+ y)⊕ (y ≪ R)).
Threefish-512 is the version of Threefish with 512-bit key and 512-bit
blocks, and is used in the default version of Skein.

So far, no third-party cryptanalysis of Skein has been published, and the only
cryptanalytic results are in its documentation [7, §9]. It describes a near collision
on eight rounds for the compression function, a distinguisher for 17 rounds of
Threefish, and it conjectures the existence of key recovery attacks on 24 to 27
rounds (depending on the internal state size). Furthermore, [7, §9] discusses the
possibility of a trivial related-key boomerang attack on a modified Threefish, and
concludes that it cannot work on the original version. A separate document [8]
presents proofs of security for Skein when assuming that some of its components
behave ideally (e.g., that Threefish is an ideal cipher).

This paper presents the first external analysis of Skein, with a focus on the
main component of its default version: the block cipher Threefish-512. Table 1
summarizes our results.
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Table 1. Summary of the known results on Threefish-512 (near collisions are for
Threefish-512 in MMO mode, related-key boomerang attacks make use of four related-
keys ,“

√
” designates the present paper)

Rounds Time Memory Type Authors

8 1 – 511-bit near-collision [7]
16 26 – 459-bit near-collision

√
17 224 – 434-bit near-collision

√
17 28.6 – related-key distinguisher� [7]
21 23.4 – related-key distinguisher

√
21 – – related-key impossible differential

√
25 ? – related-key key recovery (conjectured) [7]
25 2416.6 – related-key key recovery

√
26 2507.8 – related-key key recovery

√
32 2312 271 related-key boomerang key recovery

√
34 2398 – related-key boomerang distinguisher

√
35 2478 – known-related-key boomerang distinguisher

√

�: complexity deduced from the biases in [7, Tab.22].

The rest of the paper is organized as follows: §2 describes Threefish-512; §3
studies near-collisions for Skein’s compression function with a reduced Threefish-
512; §4 describes impossible differentials; §5 discusses and improves the key-
recovery attacks sketched in [7, §§9.3]. Finally, §6 uses the boomerang technique
to describe our best distinguishers and key-recovery attacks on Threefish. §7
concludes.

2 Brief Description of Threefish-512

Threefish-512 works on 64-bit words, and we write their hexadecimal value in
sans-serif font (e.g., 0123456789ABCDEF). The letter Δ stands for a difference in
the most significant bit (MSB), i.e., Δ = 8000000000000000. Notations are the
same as in the specification of Threefish [7, §§2.2]: a 512-bit plaintext block is
parsed as eight words v0,0, . . . , v0,7, and is encrypted through Nr = 72 rounds,
where round number d ∈ {0, . . . , Nr − 1} operates as follows:

1. If d ≡ 0 mod 4, add a subkey by setting ed,i ← vd,i + kd,i, i = 0, . . . , 7,
otherwise, just copy the state ed,i ← vd,i, i = 0, . . . , 7.

2. Set (fd,2i, fd,2i+1)← MIXd,i(ed,2i, ed,2i+1), i = 0, . . . , 3, where

MIXd,i(x, y) = (x+ y, (x+ y)⊕ (y ≪ Rd,i)) ,

with Rd,i a rotation constant dependent on d and i.
3. Permute the state words:

vd+1,0 ← fd,2 vd+1,1 ← fd,1 vd+1,2 ← fd,4 vd+1,3 ← fd,7

vd+1,4 ← fd,6 vd+1,5 ← fd,5 vd+1,6 ← fd,0 vd+1,7 ← fd,3 .
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After Nr ≡ 0 mod 4 rounds, the ciphertext is set to

(vNr,0 + kNr,0), . . . , (vNr,7 + kNr,7) .

The s-th keying (counting from zero, thus which occurs at round d = 4s) uses
subkeys ks,0, . . . , ks,7. These are derived from the key k0, . . . , k7 and from the
tweak t0, t1 as

ks,0 ← k(s+0) mod 5 ks,4 ← k(s+4) mod 5
ks,1 ← k(s+1) mod 5 ks,5 ← k(s+5) mod 5 + ts mod 3
ks,2 ← k(s+2) mod 5 ks,6 ← k(s+6) mod 5 + t(s+1) mod 3
ks,3 ← k(s+3) mod 5 ks,7 ← k(s+7) mod 5 + s

where k8 = 5555555555555555⊕
⊕7

i=0 ki and t2 = t0 ⊕ t1.

3 Near Collisions for the UBI Compression Function

We extend the analysis presented in [7, §9] to find near-collisions for the compres-
sion function of Skein’s UBI mode; [7, §9] exploits local collisions, i.e., collisions
in the intermediate values of the state, which occur when particular differences
are set in the key, the plaintext, and the tweak.

The compression function outputs Ek(t,m) ⊕ m, where E is Threefish-512.
Our strategy is simple: like in [7, §9], we prepend a four-round differential trail
to the first local collision at round four so as to avoid differences until the 13-th
round. Then, we follow the trail induced by the introduced difference.

The next two sections work out the details as follows:

• §§3.1 shows how to adapt the differential trail found in [7, §9] when a
4-round trail is prepended.

• §§3.2 describes the differential trails used and evaluates the probability
that a random input conforms.

• §§3.3 explains how to reduce the complexity of the attack by precomput-
ing a single conforming pair for the first 4-round trail, and using some
conditions to speed up the search.

3.1 Adapting Differences in the Key and the Tweak

In [7, §§§9.3.4], Skein’s designers suggest to prepend a 4-round trail that leads to
the difference (0, 0, . . . , 0, Δ), previously used for the 8-round collision. However,
the technique as it is presented does not work. This is because the order of
keyings is then shifted, and so the original difference in the key and in the tweak
does not cancel the (0, 0, . . . , 0, Δ) difference at the second keying.

Therefore, for differences to vanish at the third keying, one needs a difference
Δ in k7 and t0, which gives a difference (0, . . . , 0, Δ) at the second keying, and
(0, 0, 0, 0, Δ, 0, 0) after the fourth. The difference in the state after (4+8) rounds
is thus the same as originally after eight rounds. Note that, as observed in [7,
§§9.4], at least seven keyings separate two vanishing keyings. See Table 2 for
details.
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Table 2. Details of the subkeys and of their differences, given a difference Δ in k7 and
t0 (leading to Δ differences in k8 and t2)

s d
ks,0 ks,1 ks,2 ks,3 ks,4 ks,5 ks,6 ks,7

Differences

0 0
k0 k1 k2 k3 k4 k5 + t0 k6 + t1 k7

0 0 0 0 0 Δ 0 Δ

1 4 k1 k2 k3 k4 k5 k6 + t1 k7 + t2 k8 + 1
0 0 0 0 0 0 0 Δ

2 8
k2 k3 k4 k5 k6 k7 + t2 k8 + t0 k0 + 2
0 0 0 0 0 0 0 0

3 12
k3 k4 k5 k6 k7 k8 + t0 k0 + t1 k1 + 3
0 0 0 0 Δ 0 0 0

4 16 k4 k5 k6 k7 k8 k0 + t1 k1 + t2 k2 + 4
0 0 0 Δ Δ 0 Δ 0

5 20
k5 k6 k7 k8 k0 k1 + t2 k2 + t0 k3 + 5
0 0 Δ Δ 0 Δ Δ 0

6 24
k6 k7 k8 k0 k1 k2 + t0 k3 + t1 k4 + 6
0 Δ Δ 0 0 Δ 0 0

3.2 Differential Trails

We now trace the difference when prepending four rounds, i.e., when the differ-
ence is in k7 and in t0 only (and in the plaintext).

4-Round Trail. To prepend four rounds and reach the difference (0, . . . , 0, Δ),
one uses the trail provided in the full version [9] of this paper. The plaintext
difference is modified by the first keying (the MSB differences in the sixth and
eighth word vanish). The probability that a random input successfully crosses
the 4-round differential trail is 2−33 (either forward or backward).

12-Round Trail. The second keying adds Δ to the last state word, making its
difference vanish. The state remains free of any difference up to the fourth keying,
after the twelfth round, which sets a difference Δ in the fifth word state. Table 3
presents the corresponding trail for up to the 17-th round. After 17 rounds, the
weight becomes too large to obtain near collisions. On 16 rounds, adding the
final keying and the feedforward, one obtains a collision on 512− 53 = 459 bits.
Likewise, for 17 rounds, a collision can be found on 512− 78 = 434 bits.

3.3 Optimizing the Search

A direct application of the differential trails in the previous section gives a cost
233 to cross the first four rounds; then, after the twelfth round,
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Table 3. Differential trail (linearization) used for near collisions, of probability 2−24

Rd Difference Pr

13 0000000000000000 0000000000000000 8000000000000000 0000000000000000 1
0000000000000000 8000000000000000 0000000000000000 0000000000000000

14
8000000000000000 0000000000000000 8000000000000000 0000000000000000

1
0000000000000000 8000010000000000 0000000000000000 8000000000000000

15
8000000000000000 8000000000000000 8000010000000000 8000000000000100

2−1

8000000000000000 8008010000000400 8000000000000000 8000000000000000

16 0000010000000100 0000000100000000 0008010000000400 0000000400000000 2−5

0000000000000000 000A014004008400 0000000000000000 0804010000000100

17
8008010400000400 0000010100000140 800A014004008400 A805018020000100

2−18

8804010000000100 900A016801009402 0000010100000100 8008010420000401

• With 16 rounds: complexity is 21+5 = 26, so 239 in total, for finding a
collision over 459 bits.

• With 17 rounds: complexity is 21+5+18 = 224, so 256 in total, for finding
a collision over 434 bits.

A simple trick allows us to avoid the cost of crossing the first 4-round trail: note
that the first keying adds (k5 + t0) to the sixth state word, and (k6 + t1) to
the seventh; hence, given one conforming pair, one can modify k5, k6, t0, t1 while
preserving the values of (k5 + t0) and (k6 + t1), and the new input will also follow
the differential trail. It is thus sufficient to precompute a single conforming pair
to avoid the cost due to the prepended rounds.

To carry out this precomputation efficiently, a considerable speedup of the
233 complexity can be obtained by finding sufficient conditions to cross the first
round with probability one (instead of 2−21):

• A first set of conditions is on the words (v2i, v2i+1): whenever there is a
nonzero difference at a same offset, the bit should have a different value
in the first and in the second word (otherwise carries induce additional
differences).

• A second set of conditions concerns the differences that do not “collide”:
one should ensure that no carry propagates from the leftmost bits.

In total, there are 13 + 8 = 21 such conditions, which lets enough degrees of
freedom to satisfy the subsequent differential tails. Using techniques like neutral
bits [10], the probability may be reduced further, but the complexity 212 is low
enough for efficiently finding a conforming pair. By choosing inputs according to
the above conditions, while being careful to avoid contradictions, we can find a
pair that conforms within a few thousand trials (see Appendix A for an example).

We can now use this pair to search for near collisions. It suffices to pick random
values for k5 and k6, then set t0 = −k5 and t1 = −k6 to get a set of 2128 distinct
inputs. Experiments were consistent with our analysis, and examples of near
collisions are given in Appendix B.
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3.4 Improved Distinguisher

Based on our trick to cross the first twelve rounds “for free”, we can improve the
distinguisher suggested in [7]. This distinguisher exploited the observation of a
bias 0.01 < ε ≤ 0.05 after 17 rounds (thus leading to a distinguisher requiring at
least 1/0.052 ≈ 400 samples). [7] suggested to combine it with the prepending of
four rounds, though no further details were given. Our observations show that
with the adapted difference in the key and the tweak, a bias about 0.3 exists
at the 385-th bit, after 21 rounds. We detected this bias using a frequency test
similar to that in [11, §§2.1]. This directly gives a distinguisher on 21 rounds,
and requiring only about 1/0.32 ≈ 11 samples.

4 Impossible Differentials

The miss-in-the-middle technique (a term coined by Biham et al. in [12]), was
first applied by Knudsen [13] to construct a 5-round impossible differential for
the block cipher DEAL. The idea was generalized by Biham et al. [12] to find
impossible differentials for ciphers of any structure. The idea is as follows: Con-
sider a cascade cipher E = Eβ ◦ Eα such that for Eα there exists a differential
(Δα

in → Δα
out) and for (Eβ)−1 there exists a differential (Δβ

in → Δβ
out), both

with probability one, where the equality is impossible (Δα
out 
= Δβ

out). It follows
that the differential (Δα

in → Δβ
in) cannot occur, for it requires Δα

out = Δβ
out. This

technique can be extended to the related-key setting. For example, related-key
impossible differentials were found for 8-round AES-192 [14, 15].

Below we first present probability-1 truncated differentials on the first 13
rounds (forward) and on the last seven rounds (backward) of 20-round Threefish-
512. A “miss-in-the-middle” observation then allows us to deduce the existence
of impossible differentials on 20 and 21 rounds.

4.1 Forward Differential

The first keying (s = 0) adds to the state v0,i, . . . , v0,7 the values k0, k1, . . . , k4,
k5 + t0, k6 + t1, k7. Then, the second keying (s = 1) adds k1, . . . , k5, k6 + t1, k7 +
t2, k8+1. By setting a differenceΔ in k6, k7, t1 and in the plaintext v0,7, we ensure
that differences vanish in the first two keyings, and thus nonzero differences only
appear after the eighth round, for third keying.

The third keying (s = 2) adds k2, . . . , k6, k7 + t2, k8 + t0, k0 + t2. Hence the
difference Δ is introduced in e8,4 only. It gives a difference Δ in f8,4, f8,5, thus in
v9,2, v9,5. After the tenth round, the state v10,· has the following difference with
probability one.

8000000000000000 0000000000000000 8000000000000000 0000000000000000

0000000000000000 8000040000000000 0000000000000000 8000000000000000 .

After the twelfth round (before the fourth keying), the state v12,· has again some
differences that occur with probability one (the X differences are uncertain, that
is, have probability strictly below one):



Improved Cryptanalysis of Skein 549

XXXXXXXXX4000000 0000000002000000 XXXXXXXXXXXX4000 0000000000000040

0000000000000000 XXXXXXXXXXXXX100 0000000000000000 XXXXXXXXX4000800 .

Given this class of differences, after the 13-th round (which starts by making
the fourth keying) we have the class of differences

XXXXXXXXXXXXXX40 XXXXXXXXX2000000 XXXXXXXXXXXXX100 XXXXXXXXXXXXXX10

XXXXXXXXXXXXX800 XXXXXXXXXXXXXXXX XXXXXXXXX2000000 XXXXXXXXXXXXXX40 .

There are in total 92 bits with probability-1 differences between the 13-th and
the 14-th round. These differences were empirically verified.

4.2 Backward Differential

The sixth keying (s = 5), which occurs after the 20-th round, returns the
ciphertext

c0 = v20,0 + k5 c4 = v20,4 + k0
c1 = v20,1 + k6 c5 = v20,5 + k1 + t2
c2 = v20,2 + k7 c6 = v20,6 + k2 + t0
c3 = v20,3 + k8 c7 = v20,7 + k3 + 5

By setting a difference Δ in k6, k7, t1 (like for the forward differential), and in the
ciphertext words c1, c2, c5, we ensure that differences vanish in the sixth keying,
and thus nonzero differences only appear after the 17-th round, when making
the fifth keying (by computing backwards from the 20-th round).

The fifth keying (s = 4), after the 16-th round, subtracts from the state the
values k4, . . . , k8, k0 + t1, k1 + t2, k2 + 4. Hence, the difference Δ is introduced
(backwards) in v16,2, v16,3, v16,5, v16,6. After inverting the 16-th round, we obtain
with probability one the difference

XXXXXXXX40000000 0000000040000000 0000000000000000 0000000000000000

8000000000000000 0000000000000000 XXXXXXXX10000000 0000000010000000 .

Finally, after inverting the 14-th round, we have the following difference with
probability one:

XXXXXXXXXXXX8000 XXXXXXXXXXXX8000 XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX XXXXXXXXXX400000 XXXXXXXXXX800000 XX50000000800000 .

In total there are 134 bits of difference with probability one between the 14-th
and the 13-th round.

4.3 Miss-in-the-Middle

We showed that if there’s a difference Δ in the key in k6 and k7, and in the
tweak in t1, then a difference Δ in the plaintext word v0,7 propagates to give
probability-1 differences after up to 13 rounds. Then we showed that for the
same difference in the key and in the tweak, a difference Δ in the ciphertext
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words c1, c2, c5 guarantees (probability one) that between the 13-th and the 14-
th rounds we also have probability-1 differences.

Looking for example at the first word of the state: the forward differential
leads to a difference in the seventh bit, whereas the backward differential requires
this bit to be unchanged. Therefore, it is impossible that a difference Δ in the
plaintext v0,7 leads to a difference Δ in c1, c2, c5 with 20-round Threefish-512.

We can extend this impossible differential one more round: after the 20-th
round and the sixth keying the state has only differences Δ in e20,1, e20,2, e20,3.
These differences always give the same difference after the 21-st round, because
they are only in MSB’s. This directly gives an impossible differential on 21
rounds of Threefish-512 (e.g., 21 out of 72). However contrary to the 20-round
impossible differential, it is irrelevant to Threefish-512 with exactly Nr = 21
rounds, because of the final keying that occurs after the 21-st round (which
makes some differences uncertain, because before the keying we have differences
in non-MSB’s).

5 Improved Key-Recovery Attacks

The documentation of Skein sketches key-recovery attacks on all Threefish ver-
sions, though the complexity is not studied. We analyzed these observations, and
could find better attacks than conjectured by the Skein designers.

To optimize the attack strategy in [7, §§9.3], the attacker has to determine
which key bits should be guessed. This is to minimize the noise over the bias
after a partial inversion of the last rounds, and thus to minimize the complexity
of the attack. The less key bits guessed, the better for the attacker (up to the
bound of half the key bits). One can easily determine which key bits do not
affect the bias when inverting one or two rounds. For example, two rounds after
round 21 (where the bias occurs), the 385-th bit does not affect the second,
third, fourth, and sixth state words. Hence, it is not affected by a wrong guess
of the key words k0, k2, k6. The bias is slightly affected by erroneous guesses of
k3 (which modifies the last state word in the keying), but it is still large (about
0.12 ≈ 2−3). It is thus sufficient to guess half the key (k1, k4, k5, k7) to be able
to observe the bias.

Note that the cost of the prepended rounds depends on which key words
are guessed: indeed, when guessing a word, one can adapt the corresponding
plaintext word in order to satisfy the conditions of the differential. Here the non-
guessed words imply a cost 212+18 = 230 to cross the first differential. The total
cost of recovering the 512-bit key on 23 rounds is thus about 230×26×2256 = 2292.

To attack more rounds, a more advanced search for the optimal set of bits to
be guessed is likely to reduce the complexity of our attacks. For this, we used the
same strategy as in the analysis of the Salsa20 and ChaCha stream ciphers [16].
Namely, we computed the neutrality of each key bit (i.e., the probability that
flipping the bit preserves the difference), and we chose to guess the bits that affect
the bias the most, using some threshold on their neutrality. More precisely, we
sort key bits according to their neutrality, then filter them with respect to some
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threshold value. According to [16]’s terminology, this corresponds to partitioning
the key bits into “significant” and “non-significant” ones.

Recall that in §§3.4 we observed a bias at the 385-th bit after 4 + 17 rounds
of Threefish-512. A key recovery attack on 21 + n rounds consists in guessing
some key bits, inverting n rounds based on this guess, letting the other key bits
be random, and observing a bias in that bit. Complexity is determined by the
number of guessed bits and the value of the observed bias.

Inverting four rounds with all key bits whose neutrality is greater than 0.29
(we found 125 of those), we observe a bias 0.0365. Since some key bits are not
guessed, and thus assumed random, some of the conditions to conform to the
first round’s differential cannot be controlled. There are eight such additional
conditions, which means that the 4-round initial differential will be followed
with probability 2−12−8. Since our bias approximately equals to 2−4.8, and since
we need to guess 512 − 125 key bits, the overall complexity of the attack on
25-round Threefish-512 is about 212+8 × 22×4.8 × 2387 = 2416.6. Below we give
the mask corresponding to the 125 non-guessed bits, for each key word:

0000070060FFF836 0040030021FFFC0E 803C02F03FFFF83F 001001001603C006

00780E30007F000E 0000000000000000 0000000000000000 007001800E03F801 .

We can apply the same method on 26 rounds: with a neutrality threshold 0.17
we obtain 30 “significant” key bits, and we observe a bias about 0.017 when
all of them are random. The non-guessed bits give two additional conditions for
the first 4-round differential. In total, the complexity of the attack is thus about
212+2 × 22×5.9 × 2482 = 2507.8. Memory requirements are negligible.

6 Boomerang Attacks

Boomerang attacks were introduced by Wagner and first applied to block ci-
phers [17]. Roughly speaking, in boomerang attacks one uses two short differ-
ential trails rather than a long one to exploit the efficiency of the former trails.
Let E denote the encryption function of Threefish. View E as a cascade of four
subciphers

E = Eω ◦ Eγ ◦ Eβ ◦ Eα , (1)

so that E is composed of a core E′ = Eγ ◦ Eβ sandwiched by rounds Eα and
Eω. The boomerang distinguisher is generally described for E′ only, but for key
recovery attacks on Threefish we need to generalize the attack to the construction
in Eq. (1).

Recall that in related-key attacks, one assumes that the attacker can query
the cipher with other keys that have some specified relation with the original
key. This relation is often an XOR-difference. A related-key differential is thus
a triplet (Δin, Δout, Δk), associated with the probability

Pr
k,m

[Ek(m)⊕ Ek⊕Δk
(m⊕Δin) = Δout] = p .

Here,Δin andΔout are the input and output differences,Δk is the key difference,
and p the probability of the differential.
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For (related-key) boomerang attacks based on four related-keys, one exploits
two short related-key differentials: (Δβ

in, Δ
β
out, Δ

β
k ) for Eβ , of probability p and

(Δγ
in, Δ

γ
out, Δ

γ
k) for Eγ , of probability q.

A distinguisher then works as follows:

1. Pick a random plaintext m1 and form m2 = m1 ⊕Δβ
in.

2. Obtain c1 = E′
k(m1) and c2 = E′

k⊕Δβ
k

(m2).

3. Set c3 = c1 ⊕Δγ
out and c4 = c2 ⊕Δγ

out.
4. Obtain m3 = E′−1

k⊕Δγ
k
(c3) and m4 = E′−1

k⊕Δβ
k⊕Δγ

k

(c4).

5. Check m3 ⊕m4 = Δβ
in.

For an ideal cipher, the final equality is expected to hold with probability 2−n

where n is the block length. The probability of the related-key boomerang distin-
guisher, on the other hand, is approximately p2q2 (see [17,18,19,20] for details).

Note that the boomerang attack can be generalized to exploit multiple differ-
entials. The success probability then becomes p̂2q̂2, where p̂ and q̂ are the square
roots of the sums of the squares of the differentials exploited1.

6.1 Exploiting Nonlinear Differentials

Differentials are often found via linearization, i.e., assuming that integer addi-
tions behave as XOR’s. One then evaluates the probability of the differential
with respect to the probability that each active addition behaves as XOR. This
probability equals 2−w, where w is the Hamming weight of the logical OR of the
two difference masks, excluding the MSB.

Yet one is not limited to such “linear” differentials, and the best differential—
in terms of probability—is not necessarily a linearization, as illustrated by the
work of Lipmaa and Moriai [21]: for integer addition, they presented efficient
algorithms for computing the probability of any differential, and for finding the
optimal differential. The problem was later studied using formal rational series
with linear representation [22].

We used the algorithms in [21] to find the differentials of our boomerang
attacks. Note that it is not guaranteed that our trails are optimal, for the com-
bination of local optimal differential trails (with respect to their probability)
may contribute to a faster increase of the weight than (non-necessarily optimal)
linear differentials. Yet our best differentials are not completely linear.

6.2 Related-Key Distinguishers

Like in our previous attacks, we exploit differences in the key and in the plain-
text that vanish until the twelfth round (both for the forward and backward
differentials). Then, we follow a nonlinear differential trail until the middle of

1 Throughout the paper, our differentials do not make use of this multiple differential
approach. One can further improve upon the differentials provided in this work by
using this technique.



Improved Cryptanalysis of Skein 553

the cipher, i.e., between the 16-th and 17-th rounds. Our differential trail for Eβ

has probability p = 2−86, and the one for Eγ has probability 2−113, leading to a
boomerang distinguisher on 34 rounds requiring about (pq)−2 = 2398 trials (see
full version [9]). Note that for the second part, MSB differences are set in the
key words k2 and k3, and in the tweak words t0 and t1 (thus giving no difference
in the seventh subkey).

6.3 Known-Related-Key Distinguishers

Although the standard notion of distinguisher requires a secret (key), the notion
of known-key distinguisher [23] is also relevant to set apart a block cipher from
a randomly chosen permutation. Moreover, when a block cipher is used within a
compression function, as Threefish is, known-key distinguishers may lead to dis-
tinguishers for the hash function because all inputs are known to the adversary.
If differences in the keys are used, we shall thus talk of known-related-key distin-
guisher. An example of such distinguisher is the exhibition of input/output pairs
that have some specific relation, as presented in [23] for seven rounds of AES-
128. Here, we shall consider tuples (m1,m2,m3,m4, c1, c2, c3, c4) that satisfy the
boomerang property.

To build a known-related-key boomerang distinguisher on Threefish, we con-
sider the decryption function, i.e., we start from the end of the cipher: when the
key is known, the attacker can easily find a ciphertext that conforms to the first
differential (e.g., to the weight-83 differential at round 35), which we could ver-
ify experimentally. In other words, the final differential (including the differences
caused by the final key) is “free” when launching the boomerang. When it returns,
however, the 283 factor cannot be avoided if we want to exactly follow the differ-
ential (which is not strictly necessary to run a distinguisher). We thus obtain a
distinguisher on 35-round Threefish-512 with complexity 283 times that of the the
related-key distinguisher on 34 rounds, that is, approximately 2478 encryptions.

Several tricks may be used to obtain a similar distinguisher at a reduced cost.
For example, observing that the first and fourth (resp. second and third) MIX
functions of round 34 depend only on the first and second (resp. third and fourth)
MIX’s of round 35, one can speed-up the search for inputs conforming to the
first two rounds of the boomerang.

6.4 Extension to Key-Recovery

We now show how to build a key-recovery attack on top of a boomerang distin-
guisher for 32-round Threefish-512. We present some preliminary observations
before describing and analyzing our attack.

Using notations of Eq. (1): Eβ starts from the beginning and ends after the
key addition in round 16, and Eγ starts from round 17 and ends just before the
key addition after round 32. Our goal is to recover the last subkey. Restricted to
32 rounds, the boomerang distinguisher has probabilities p = 2−86 for Eβ and
q = 2−37 for Eγ , yielding an overall boomerang probability of p2q2 = 2−246. We
now introduce some notions required to facilitate the analysis of our attack.
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Definition 1 (CS-sequence). Let δ be a 64-bit word of Hamming weight 0 ≤
w ≤ 64. The CS-sequence of δ is

Sδ = (|s0|, |s1|, · · · , |sw−1|) ,

where |si| is the bit length of the i-th block of consecutive zeros in δ finishing
with a one.

For example, for δ = 1000010402000000 we have

δ = 0001︸ ︷︷ ︸
s0

0000 0000 0000 0000 0001︸ ︷︷ ︸
s1

0000 01︸ ︷︷ ︸
s2

00 0000 001︸ ︷︷ ︸
s3

0 0000 · · · 0000 ,

and so the CS-sequence of δ is Sδ = (|s0|, |s1|, |s2|, |s3|) = (4, 20, 6, 9).
The following result is extensively used in the key recovery attack using

boomerang distinguisher, whose proof is provided in the full version of this
paper [9].

Theorem 1. The number of possible differences Nδ after addition of difference
δ with zero or Δ = 8000000000000000 difference modulo 264 can be directly
computed from the CS-sequence of δ as

Nδ = |s0|
∑

(k1,k2,...,kw−1)∈{0,1}w−1

w−1∏
i=1

|si|ki .

For instance, if δ = 1000010402000000 then

Nδ = 4
∑

(k1,k2,k3)∈{0,1}3

(20k1 × 6k2 × 9k3)

= 4× (1 + 9 + 6 + (6× 9) + 20 + (20× 6) + (20× 9) + (20× 9× 6))
= 4× 1470 = 5880 .

Applying Theorem 1, we have the number of possible output differences caused
by Δγ

out just after the key addition followed by the related-key boomerang dis-
tinguisher for Threefish-512 is approximately 262. We obtain this number by
multiplying the number of possibilities for each word of the state (see Table 4).

Table 4. Number of possible output differences after the key addition in Threefish-
512, for each word. Multiplying these numbers, we obtain in total approximately 262

possible differences.

v32,i SΔ
γ
out

NΔ
γ
out

v32,0 (24, 15) 384
v32,1 (32) 32
v32,2 (0) 1
v32,3 (4, 20, 6, 9) 5880
v32,4 (1) 1
v32,5 (13, 2, 9, 2, 12, 11, 5) 957840
v32,6 (13, 11, 30) 4836
v32,7 (14) 14



Improved Cryptanalysis of Skein 555

The Attack. Our attack works in three steps: in the first step, we obtain
quartets satisfying the related-key boomerang relation; in the second, we recover
the partial key by using the possible right quartets obtained from the first step;
the last step is the brute force search of the rest of the key. The attack works as
follows.

1. Find right quartets
for i = 1, . . . , 2248

• Generate a random unique pair of chosen plaintexts (mi
1,m

i
2) with an

Δβ
in difference and encrypt each plaintext with key k1 and k2 (having

Δβ
k difference) respectively to obtain the corresponding ciphertexts

(ci1, c
i
2).

• for j = 1, . . . , 262

◦ Set ci,j3 = ci1⊕Δ
′,j
out where Δ′,j

out is set to the j-th possible differ-
ence caused by Δγ

out.
◦ Decrypt ci,j3 with k3 and obtain the plaintext mi,j

3 .
◦ Store the values ci,j3 and mi,j

3 .

• for k = 1, . . . , 262

◦ Set ci,k4 = ci2⊕Δ
′,k
out where Δ′,k

out is set to the k-th possible differ-
ence caused by Δγ

out.
◦ Decrypt ci,k4 with k4 and obtain the plaintext mi,k

4 .
◦ Calculate M = mi,k

4 ⊕Δβ
in and check whether M exists among

the stored values of mi,j
3 . If this is the case, store the possible

right quartet.

• Free the memory allocated for the stored values of (possibly wrong)
ci,j3 and mi,j

3 . Increment i.
2. Recover the partial key

For each ciphertext word having a nonzero difference of a (possibly) right
quartet (c1, c2, c3, c4) guess the corresponding output whitening key word
kω,l for l = 0, 3, 5, 6, and check

(c1,l − kω,l)⊕ (c3,l − k2
ω,l) = (c2,l − k3

ω,l)⊕ (c4,l − k4
ω,l) = Δγ

out,l ,

where k2
ω,l = kω,l ⊕Δγ

k,l and k3
ω,l = k4

ω,l ⊕Δ
γ
k,l. If this is the case, store

this kω,l.
3. Recover the full key

Run an exhaustive search of the remaining bits of the subkey.

Complexity Analysis. The goal of step 1 is to find enough quartets satisfying
the related-key boomerang trail. For each distinct 2248 plaintext-ciphertext pairs



556 J.-P. Aumasson et al.

(m1,m2) and (c1, c2), we correspondingly generate 262 new plaintext-ciphertext
pairs (m3, c3) and (m4, c4) by using the possible number of output differences
given in Table 4. We know that a right quartet has to satisfy one of the possi-
ble number of output differences Δ′

out; hence it is guaranteed to find the right
quartet once it exists as we consider all possible combinations. Note that, in-
creasing the number of quartets in that manner does not increase the number of
right quartets, the reason simply being the newly generated plaintext-ciphertext
pairs (m3, c3) and (m4, c4) can only have one root right plaintext-ciphertext
pair (m1,m2) and (c1, c2). Therefore, the expected number of right quartets is
2248 · 2−246 = 22. On the other hand, we expect 2372 · 2−512 = 2−140 additional
false quartets.

The first loop at step 1 requires 262 reduced round Threefish decryptions
and approximately 270.5 bytes of memory. The second loop can be implemented
independently and requires 262 reduced round Threefish decryptions and 262

memory accesses. On the other hand, we need additional memory complexity
of 269.5 bytes for storing Δ′

out values. Therefore, the overall complexity of the
first step is bounded by 2312 reduced round Threefish decryptions and about 271

bytes of memory. Note that the memory requirement for the surviving quartets
is negligible.

Step 2 tries to recover the last subkey by using the quartets that passed the
previous step. For each surviving quartet, we guess 64 bits of the final key at
each word, decrypt one round and check the output difference Δγ

out,l . As the
computation at each word can be processed independently, the overall complexity
of this step is dominated by the previous step.

The probability that a false combination of quartets and key bits is counted in
step 2 is upper bounded by 2−2wl where wl is the minimum hamming weight of
the corresponding output difference Δ′,l

out. Therefore, the right key is suggested
4 + 2−140 · 2−2wl ≈ 4 times by the right and additional false quartets. On the
other hand, a wrong key is expected to be hit 4·2−2wl +2−140 ·2−2wl ≈ 2−2 times.
Note that this only holds for the words having an XOR difference of hamming
weight two, for the rest the number of hits is strictly less than 2−2. We can use
Poisson distribution to calculate the success rate of our attack. For an expected
number of 2−2, the probability that a wrong key is suggested at most once is
0.97. However, the probability that the right key is suggested more than once is
more than 0.90. Therefore, we can find the right key or at least eliminate most
of the keys with high probability. The complexity of the rest of the attack is
dominated by the first step.

7 Conclusion

We applied a wide range of attack strategies to the core algorithm of Skein
(the block cipher Threefish-512), culminating with a distinguisher on 35-round
Threefish-512, and a key-recovery attack on 32 rounds. Other versions of Three-
fish are vulnerable to similar attack strategies (for example, our related-key
boomerang distinguisher works on up to 33 rounds of Threefish-256). To the
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best of our knowledge, this is the first application of a key-recovery boomerang
attack to an “ARX” algorithm, and also the first application of the boomerang
technique to known-key distinguishers.

Despite its relative simplicity, the full Threefish seems to resist state-of-the-
art cryptanalytic techniques. Its balanced “ARX” structure combined with large
words provides a good balance between diffusion and non-linearity, and avoids
any particular structure exploitable by attackers. Using attacks on Threefish
to attack the hash function Skein (or its compression function) seems difficult,
because of the rather complex mode of operation of Skein. Although none of our
attacks directly extends to the hash mode, the pseudorandomness of Threefish
is required to validate the security proofs on Skein. Hence, 36 or more rounds of
Threefish seem to be required to provide optimal security.

Future works might apply the recent rebound attack [24] to Threefish, al-
though it looks difficult to combine it with the trick discussed in §§3.1; this
forces the attacker to use specific differences. Another research direction relates
to optimization of boomerang known- or chosen-key distinguishers.
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A Conforming Pair for the 4-Round Differential

When the key and the tweak are zero, the following two message blocks conform
to the differential described in §§3.2:

E979D16280002004 32B29AE900000000 D921590E00000000 5771CC9000000400

A62FF22800000000 484B245000040080 D3BEA4E800008010 7A72784300000000

A971917200100020 72B2DAE980002004 DD61588E01000400 5331CC1000000000

A62FF22800040090 C84B245000000000 D1BEA4E800000000 FA72784300008010
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B Examples of Near Collisions

We provide an example of near collision on 459 bits for the reduced compression
function of Skein’s UBI mode. Both inputs always have k0 = · · · = k4 = k7 = 0,
and

k5 = C0DEC0DEC0DEC0DE.

On the 16-round compression function, the first input has message block

E979D16280002004 32B29AE900000000 D921590E00000000 5771CC9000000400

A62FF22800000000 484B245000040080 D3BEA4E800008010 7A72784300000000

and

k6 = 6B9B2C1000000000 t0 = 3F213F213F213F22 t1 = 9464D3F000000000

The second input has message block

A971917200100020 72B2DAE980002004 DD61588E01000400 5331CC1000000000

A62FF22800040090 C84B245000000000 D1BEA4E800000000 FA72784300008010

and

k6 = 6B9B2C1000000000 t0 = BF213F213F213F22 t1 = 9464D3F000000000

The corresponding digests are respectively

2A6DE91E3E8CDE3B BADAF451F59D3145 7C298A43FB73463F D8309C9E9E2594D5

35431D226A2022E3 0EA42EB45F9EEEB9 DF038EECD6504300 588A798B1266D67A

and

6A65A80EBE9CFF1F FADAB450759D1141 78618AC3FA73463F 5C709C1A9E2590D5

B5431D226A242273 8EAE2FF45B9A6A39 5D038EECD650C310 D08E788B1266576A
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Abstract. In this paper, an improved differential cryptanalysis framework for
finding collisions in hash functions is provided. Its principle is based on lineariza-
tion of compression functions in order to find low weight differential characteris-
tics as initiated by Chabaud and Joux. This is formalized and refined however in
several ways: for the problem of finding a conforming message pair whose differ-
ential trail follows a linear trail, a condition function is introduced so that finding
a collision is equivalent to finding a preimage of the zero vector under the con-
dition function. Then, the dependency table concept shows how much influence
every input bit of the condition function has on each output bit. Careful analysis
of the dependency table reveals degrees of freedom that can be exploited in ac-
celerated preimage reconstruction under the condition function. These concepts
are applied to an in-depth collision analysis of reduced-round versions of the two
SHA-3 candidates CubeHash and MD6, and are demonstrated to give by far the
best currently known collision attacks on these SHA-3 candidates.

Keywords: Hash functions, collisions, differential attack, SHA-3, CubeHash and
MD6.

1 Introduction

Hash functions are important cryptographic primitives that find applications in many
areas including digital signatures and commitment schemes. A hash function is a trans-
formation which maps a variable-length input to a fixed-size output, called message
digest. One expects a hash function to possess several security properties, one of which
is collision resistance. Being collision resistant, informally means that it is hard to find
two distinct inputs which map to the same output value. In practice, the hash functions
are mostly built from a fixed input size compression function, e.g. the renowned Merkle-
Damgård construction. To any hash function, no matter how it has been designed, we
can always attribute fixed input size compression functions, such that a collision for
a derived compression function results in a direct collision for the hash function itself.
This way, firstly we are working with fixed input size compression functions rather than
varying input size ones, secondly we can attribute compression functions to those hash
functions which are not explicitly based on a fixed input size compression function, and

� An extended version is available at http://eprint.iacr.org/2009/382
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thirdly we can derive different compression functions from a hash function. For exam-
ple multi-block collision attack [27] benefits from the third point. Our task is to find two
messages for an attributed compression function such that their digests are preferably
equal (a collision) or differ in only a few bits (a near-collision).

The goal of this work is to revisit collision-finding methods using linearization of
the compression function in order to find differential characteristics for the compres-
sion function. This method was initiated by Chabaud and Joux on SHA–0 [11] and was
later extended and applied to SHA–1 by Rijmen and Oswald [26]. The recent attack on
EnRUPT by Indesteege and Preneel [15] is another application of the method. In par-
ticular, in [26] it was observed that the codewords of a linear code, which are defined
through a linearized version of the compression function, can be used to identify differ-
ential paths leading to a collision for the compression function itself. This method was
later extended by Pramstaller et al. [25] with the general conclusion that finding high
probability differential paths is related to low weight codewords of the attributed linear
code. In this paper we further investigate this issue.

The first contribution of our work is to present a more concrete and tangible relation
between the linearization and differential paths. In the case that modular addition is the
only involved nonlinear operation, our results can be stated as follows. Given the parity
check matrixH of a linear code, and two matricesA and B, find a codewordΔ such that
AΔ ∨ BΔ is of low weight. This is clearly different from the problem of finding a low
weight codeword Δ. We then consider the problem of finding a conforming message
pair for a given differential trail for a certain linear approximation of the compression
function. We show that the problem of finding conforming pairs can be reformulated as
finding preimages of zero under a function which we call the condition function. We
then define the concept of dependency table which shows how much influence every
input bit of the condition function has on each output bit. By carefully analyzing the
dependency table, we are able to profit not only from neutral bits [7] but also from
probabilistic neutral bits [2] in a backtracking search algorithm, similar to [6, 24, 14].
This contributes to a better understanding of freedom degrees uses.

We consider compression functions working with n-bit words. In particular, we fo-
cus on those using modular addition of n-bit words as the only nonlinear operation. The
incorporated linear operations are XOR, shift and rotation of n-bit words in practice.
We present our framework in detail for these constructions by approximating modular
addition with XOR. We demonstrate its validity by applying it on reduced-round vari-
ants of CubeHash [4] (one of the NIST SHA-3 [22] competitors) which uses addition,
XOR and rotation. CubeHash instances are parametrized by two parameters r and b
and are denoted by CubeHash-r/b which process b message bytes per iteration; each
iteration is composed of r rounds. Although we can not break the original submission
CubeHash-8/1, we provide real collisions for the much weaker variants CubeHash-
3/64 and CubeHash-4/48. Interestingly, we show that neither the more secure variants
CubeHash-6/16 and CubeHash-7/64 do provide the desired collision security for
512-bit digests by providing theoretical attacks with complexities 2222.6 and 2203.0 re-
spectively; nor that CubeHash-6/4 with 512-bit digests is second-preimage resistant,
as with probability 2−478 a second preimage can be produced by only one hash evalua-
tion. Our theory can be easily generalized to arbitrary nonlinear operations. We discuss
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this issue and as an application we provide collision attacks on 16 rounds of MD6 [23].
MD6 is another SHA-3 candidate whose original number of rounds varies from 80 to
168 when the digest size ranges from 160 to 512 bits.

2 Linear Differential Cryptanalysis

Let’s consider a compression function H = Compress(M,V ) which works with n-bit
words and maps anm-bit messageM and a v-bit initial value V into an h-bit outputH .
Our aim is to find a collision for such compression functions with a randomly given ini-
tial value V . In this section we consider modular-addition-based Compress functions,
that is, they use only modular additions in addition to linear transformations. This in-
cludes the family of AXR (Addition-XOR-Rotation) hash functions which are based
on these three operations. In Section 5 we generalize our framework to other family of
compression functions. For these Compress functions, we are looking for two messages
with a difference Δ that result in a collision. In particular we are interested in a Δ for
which two randomly chosen messages with this difference lead to a collision with a high
probability for a randomly chosen initial value. For modular-addition-based Compress
functions, we consider a linearized version for which all additions are replaced by XOR.
This is a common linear approximation of addition. Other possible linear approxima-
tions of modular addition, which are less addressed in literature, can be considered ac-
cording to our generalization of Section 5. As addition was the only nonlinear operation,
we now have a linear function which we call Compresslin. Since Compresslin(M,V )⊕
Compresslin(M ⊕ Δ,V ) = Compresslin(Δ, 0) is independent of the value of V , we
adopt the notation Compresslin(M) = Compresslin(M, 0) instead. Let Δ be an el-
ement of the kernel of the linearized compression function, i.e. Compresslin(Δ) = 0.
We are interested in the probability Pr{Compress(M,V )⊕Compress(M⊕Δ,V ) = 0}
for a random M and V . In the following we present an algorithm which computes this
probability, called the raw (or bulk) probability.

2.1 Computing the Raw Probability

We consider a general n-bit vector x = (x0, . . . , xn−1) as an n-bit integer denoted by
the same variable, i.e. x =

∑n−1
i=0 xi2i. The Hamming weight of a binary vector or an

integer x, wt(x), is the number of its nonzero elements, i.e. wt(x) =
∑n−1

i=0 xi. We
use + for modular addition of words and ⊕,∨ and ∧ for bit-wise XOR, OR and AND
logical operations between words as well as vectors. We use the following lemma which
is a special case of the problem of computing Pr{

(
(A⊕α)+(B⊕β)

)
⊕(A+B) = γ}

where α, β and γ are constants and A and B are independent and uniform random
variables, all of them being n-bit words. Lipmaa and Moriai have presented an efficient
algorithm for computing this probability [19]. We are interested in the case γ = α⊕ β
for which the desired probability has a simple closed form.

Lemma 1. Pr{
(
(A⊕α) + (B⊕ β)

)
⊕ (A+B) = α⊕β} = 2−wt

(
(α∨β)∧(2n−1−1)

)
.

Lemma 1 gives us the probability that modular addition behaves like the XOR op-
eration. As Compresslin approximates Compress by replacing modular addition with
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XOR, we can then devise a simple algorithm to compute (estimate) the raw probability
Pr{Compress(M,V )⊕Compress(M⊕Δ,V ) = Compresslin(Δ)}. Let’s first introduce
some notation.

Notation. Let nadd denote the number of additions which Compress uses in total. In
the course of evaluation of Compress(M,V ), let the two addends of the i-th addition
(1 ≤ i ≤ nadd) be denoted by Ai(M,V ) and Bi(M,V ), for which the ordering is not
important. The value Ci(M,V ) =

(
Ai(M,V )+Bi(M,V )

)
⊕Ai(M,V )⊕Bi(M,V )

is then called the carry word of the i-th addition. Similarly, in the course of evaluation
of Compresslin(Δ), denote the two inputs of the i-th linearized addition by αi(Δ) and
βi(Δ) in which the ordering is the same as that for Ai and Bi. We define five more
functions A(M,V ), B(M,V ), C(M,V ), α(Δ) and β(Δ) with (n − 1)nadd-bit out-
puts. These functions are defined as the concatenation of all the nadd relevant words
excluding their MSBs. For example A(M,V ) and α(Δ) are respectively the concate-
nation of the nadd words

(
A1(M,V ), . . . , Anadd(M,V )

)
and
(
α1(Δ), . . . , αnadd(Δ)

)
excluding the MSBs.

Using this notation, the raw probability can be simply estimated as follows.

Lemma 2. Let Compress be a modular-addition-based compression function. Then for

any message differenceΔ and for random valuesM and V , pΔ = 2−wt
(
α(Δ)∨β(Δ)

)
is

a lower bound for Pr{Compress(M,V )⊕Compress(M ⊕Δ,V ) = Compresslin(Δ)}.

Proof. We start with the following definition.

Definition 1. We say that a message M (for a given V ) conforms to (or follows) the
trail of Δ iff 1(

(Ai ⊕ αi) + (Bi ⊕ βi)
)
⊕ (Ai +Bi) = αi ⊕ βi, for 1 ≤ i ≤ nadd, (1)

where Ai, Bi, αi and βi are shortened forms for Ai(M,V ), Bi(M,V ), αi(Δ) and
βi(Δ), respectively.

It is not difficult to prove that under some reasonable independence assumptions pΔ,
which we call conforming probability, is the probability that a random message M
follows the trail ofΔ. This is a direct corollary of Lemma 1 and Definition 1 . The exact
proof can be done by induction on nadd, the number of additions in the compression
function. Due to other possible non-conforming pairs that start from message difference
Δ and lead to output difference Compresslin(Δ), pΔ is a lower bound for the desired
probability in the lemma. ��

If Compresslin(Δ) is of low Hamming weight, we get a near collision in the output. The
interestingΔ’s for collision search are those which belong to the kernel of Compresslin,
i.e. those that satisfy Compresslin(Δ) = 0. From now on, we assume that Δ 
= 0
is in the kernel of Compresslin, hence looking for collisions. According to Lemma 2,
one needs to try around 1/pΔ random message pairs in order to find a collision which
conforms to the trail ofΔ. However in a random search it is better not to restrict oneself

1 If and only if.
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to the conforming messages as a collision at the end is all we want. Since pΔ is a lower
bound for the probability of getting a collision for a message pair with difference Δ,
we might get a collision sooner. In Section 3 we explain a method which might find a
conforming message by avoiding random search.

2.2 Link with Coding Theory

We would like to conclude this section with a note on the relation between the fol-
lowing two problems: (I) finding low-weight codewords of a linear code, (II) finding a
high probability linear differential path. Since the functions Compresslin(Δ), α(Δ)
and β(Δ) are linear, we consider Δ as a column vector and attribute three matri-
ces H, A and B to these three transformations, respectively. In other words we have
Compresslin(Δ) = HΔ, α(Δ) = AΔ and β(Δ) = BΔ. We then call H the parity
check matrix of the compression function.

Based on an initial work by Chabaud and Joux [11], the link between these two
problems has been discussed by Rijmen and Oswald in [26] and by Pramstaller et al.
in [25] with the general conclusion that finding highly probable differential paths is re-
lated to low weight codewords of the attributed linear code. In fact the relation between
these two problems is more delicate. For problem (I), we are provided with the parity
check matrixH of a linear code for which a codewordΔ satisfies the relationHΔ = 0.
Then, we are supposed to find a low-weight nonzero codeword Δ. This problem is be-
lieved to be hard and there are some heuristic approaches for it, see [10] for example.
For problem (II), however, we are given three matrices H, A and B and need to find a
nonzero Δ such that HΔ = 0 and AΔ ∨ BΔ is of low-weight, see Lemma 2. Never-
theless, low-weight codewords Δ’s matrix H might be good candidates for providing
low-weightAΔ∨BΔ, i.e. differential paths with high probability pΔ. In particular, this
approach is promising if these three matrices are sparse.

3 Finding a Conforming Message Pair Efficiently

The methods that are used to accelerate the finding of a message which satisfies some
requirements are referred to as freedom degrees use in the literature. This includes
message modifications [27], neutral bits [7], boomerang attacks [16, 20], tunnels [18]
and submarine modifications [21]. In this section we show that the problem of finding
conforming message pairs can be reformulated as finding preimages of zero under a
function which we call the condition function. One can carefully analyze the condition
function to see how freedom degrees might be used in efficient preimage reconstruc-
tion. Our method is based on measuring the amount of influence which every input bit
has on each output bit of the condition function. We introduce the dependency tables to
distinguish the influential bits, from those which have no influence or are less influen-
tial. In other words, in case the condition function does not mix its input bits well, we
profit not only from neutral bits [7] but also from probabilistic neutral bits [2]. This is
achieved by devising a backtracking search algorithm, similar to [6, 24, 14], based on
the dependency table.
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3.1 Condition Function

Let’s assume that we have a differential path for the message differenceΔ which holds
with probability pΔ = 2−y. According to Lemma 2 we have y = wt

(
α(Δ) ∨ β(Δ)

)
.

In this section we show that, given an initial value V , the problem of finding a con-
forming message pair such that Compress(M,V ) ⊕ Compress(M ⊕ Δ,V ) = 0 can
be translated into finding a message M such that ConditionΔ(M,V ) = 0. Here Y =
ConditionΔ(M,V ) is a function which maps m-bit message M and v-bit initial value
V into y-bit output Y . In other words, the problem is reduced to finding a preimage of
zero under the ConditionΔ function. As we will see it is quite probable that not every
output bit of the Condition function depends on all the message input bits. By taking a
good strategy, this property enables us to find the preimages under this function more
efficiently than random search. But of course, we are only interested in preimages of
zero. In order to explain how we derive the function Condition from Compress we first
present a quite easy-to-prove lemma. We recall that the carry word of two wordsA and
B is defined as C = (A+B)⊕A⊕B.

Lemma 3. Let A and B be two n-bit words and C represent their carry word. Let
δ = 2i for 0 ≤ i ≤ n− 2. Then,(

(A⊕ δ) + (B ⊕ δ)
)

= (A+B)⇔ Ai ⊕Bi ⊕ 1 = 0 , (2)

(
A+ (B ⊕ δ)) = (A+B)⊕ δ ⇔ Ai ⊕ Ci = 0 , (3)

and similarly (
(A⊕ δ) +B) = (A+B)⊕ δ ⇔ Bi ⊕ Ci = 0 . (4)

For a given differenceΔ, a messageM and an initial value V , let Ak, Bk, Ck, αk and
βk, 0 ≤ k < (n− 1)nadd, respectively denote the k-th bit of the output vectors of the
functions A(M,V ), B(M,V ), C(M,V ), α(Δ) and β(Δ), as defined in Section 2.1.
Let {i0, . . . , iy−1}, 0 ≤ i0 < i1 < · · · < iy−1 < (n− 1)nadd be the positions of 1’s in
the vector α ∨ β. We define the function Y = ConditionΔ(M,V ) as:

Yj =

⎧⎨⎩
Aij ⊕Bij ⊕ 1 if (αij ,βij

) = (1, 1),
Aij ⊕Cij if (αij ,βij

) = (0, 1),
Bij ⊕Cij if (αij ,βij

) = (1, 0),
(5)

for j = 0, 1, . . . , y − 1. This equation can be equivalently written as equation (7).

Proposition 1. For a given V and Δ, a message M conforms to the trail of Δ iff
ConditionΔ(M,V ) = 0.

3.2 Dependency Table for Freedom Degrees Use

For simplicity and generality, let’s adopt the notation F (M,V ) = ConditionΔ(M,V )
in this section. Assume that we are given a general function Y = F (M,V ) which maps
m message bits and v initial value bits into y output bits. Our goal is to reconstruct
preimages of a particular output, for example the zero vector, efficiently. More precisely,
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we want to find V and M such that F (M,V ) = 0. If F mixes its input bits very well,
one needs to try about 2y random inputs in order to find one mapping to zero. However,
in some special cases, not every input bit of F affects every output bit. Consider an ideal
situation where message bits and output bits can be divided into � and � + 1 disjoint
subsets respectively as

⋃�
i=1Mi and

⋃�
i=0 Yi such that the output bits Yj (0 ≤ j ≤ �)

only depend on the input bits
⋃j

i=1Mi and the initial value V . In other words, once
we know the initial value V , we can determine the output part Y0. If we know the
initial value V and the input portion M1, the output part Y1 is then known and so
on. Refer to Section 6 to see the partitioning of a condition function related to MD6.
This property of F suggests Algorithm 1 for finding a preimage of zero. Algorithm 1
is a backtracking search algorithm in essence, similar to [6, 24, 14], and in practice
is implemented recursively with a tree-based search to avoid memory requirements.
The values q0, q1, . . . , q� are the parameters of the algorithm to be determined later. To
discuss the complexity of the algorithm, let |Mi| and |Yi| denote the cardinality ofMi

and Yi respectively, where |Y0| ≥ 0 and |Yi| ≥ 1 for 1 ≤ i ≤ �. We consider an ideal
behavior of F for which each output part depends in a complex way on all the variables
that it depends on. Thus, the output segment changes independently and uniformly at
random if we change any part of the relevant input bits.

Algorithm 1. Preimage finding
Require: q0, q1, . . . , q�

Ensure: some preimage of zero under F

0: Choose 2q0 initial values at random and keep those 2q′1 candidates which make Y0 part null.
1: For each candidate, choose 2q1−q′1 values for M1 and keep those 2q′2 ones making Y1 null.
2: For each candidate, choose 2q2−q′2 values for M2 and keep those 2q′3 ones making Y2 null.
...
i: For each candidate, choose 2qi−q′i values for Mi and keep those 2q′i+1 ones making Yi null.
...
�: For each candidate, choose 2q�−q′� values for M� and keep those 2q′�+1 final candidates
making Y� null.

To analyze the algorithm, we need to compute the optimal values for q0, . . . , q�. The
time complexity of the algorithm is

∑�
i=0 2qi as at each step 2qi values are examined.

The algorithm is successful if we have at least one candidate left at the end, i.e. q′�+1 ≥
0. We have q′i+1 ≈ qi − |Yi|, coming from the fact that at the i-th step 2qi values are
examined each of which makes the portionYi of the output null with probability 2−|Yi|.
Note that we have the restrictions qi − q′i ≤ |Mi| and 0 ≤ q′i since we have |Mi| bits
of freedom degree at the i-th step and we require at least one surviving candidate after
each step. Hence, the optimal values for qi’s can be recursively computed as qi−1 =
|Yi−1|+ max(0, qi − |Mi|) for i = �, �− 1, . . . , 1 with q� = |Y�|.

How can we determine the partitions Mi and Yi for a given function F ? We pro-
pose the following heuristic method for determining the message and output partitions
in practice. We first construct a y ×m binary valued table T called dependency table.
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The entry Ti,j , 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ y − 1, is set to one iff the j-th output bit
is highly affected by the i-th message bit. To this end we empirically measure the prob-
ability that changing the i-th message bit changes the j-th output bit. The probability
is computed over random initial values and messages. We then set Ti,j to one iff this
probability is greater than a threshold 0 ≤ th < 0.5, for example th = 0.3. We then
call Algorithm 2.

Algorithm 2. Message and output partitioning
Require: Dependency table T
Ensure: �, message partitions M1, . . . ,M� and output partitions Y0, . . . ,Y�.
1: Put all the output bits j in Y0 for which the row j of T is all-zero.
2: Delete all the all-zero rows from T .
3: � := 0;
4: while T is not empty do
5: � := � + 1;
6: repeat
7: Determine the column i in T which has the highest number of 1’s and delete it from T .
8: Put the message bit which corresponds to the deleted column i into the set M�.
9: until There is at least one all-zero row in T OR T becomes empty

10: If T is empty set Y� to those output bits which are not in
⋃�−1

i=0 Yi and stop.
11: Put all the output bits j in Y� for which the corresponding row of T is all-zero.
12: Delete all the all-zero rows from T .
13: end while

In practice, once we make a partitioning for a given function using the above method,
there are two issues which may cause the ideal behavior assumption to be violated:

1. The message segmentsM1, . . . ,Mi do not have full influence on Yi,
2. The message segmentsMi+1, . . . ,M� have influence on Y0, . . . ,Yi.

With regard to the first issue, we ideally would like that all the message segments
M1,M2, . . . ,Mi as well as the initial value V have full influence on the output part
Yi. In practice the effect of the last few message segments Mi−di , . . . ,Mi (for some
small integer di) is more important, though. Theoretical analysis of deviation from this
requirement may not be easy. However, with some tweaks on the tree-based (back-
tracking) search algorithm, we may overcome this effect in practice. For example if the
message segmentMi−1 does not have a great influence on the output segment Yi, we
may decide to backtrack two steps at depth i, instead of one (the default value). The
reason is as follows. Imagine that you are at depth i of the tree and you are trying to
adjust the i-th message segmentMi, to make the output segment Yi null. If after trying
about 2min(|Mi|,|Yi|) choices for the i-th message block, you do not find an appropriate
one, you will go one step backward and choose another choice for the (i−1)-st message
segmentMi−1; you will then go one step forward once you have successfully adjusted
the (i− 1)-st message segment. IfMi−1 has no effect on Yi, this would be useless and
increase our search cost at this node. Hence it would be appropriate if we backtrack
two steps at this depth. In general, we may tweak our tree-based search by setting the
number of steps which we want to backtrack at each depth.
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In contrast, the theoretical analysis of the second issue is easy. Ideally, we would
like that the message segments Mi, . . . ,M� have no influence on the output seg-
ments Y0, . . . ,Yi−1. The smaller the threshold value th is chosen, the less the in-
fluence would be. Let 2−pi , 1 ≤ i ≤ �, denote the probability that changing the
message segmentMi does not change any bit from the output segments Y0, . . . ,Yi−1.
The probability is computed over random initial values and messages, and a random
non-zero difference in the message segment Mi. Algorithm 1 must be reanalyzed in
order to recompute the optimal values for q0, . . . , q�. Algorithm 1 also needs to be
slightly changed by reassuring that at step i, all the output segments Y0, . . . ,Yi−1 re-
main null. The time complexity of the algorithm is still

∑�
i=0 2qi and it is successful

if at least one surviving candidate is left at the end, i.e. q�+1 ≥ 0. However, here we
set q′i+1 ≈ qi − |Yi| − pi. This comes from the fact that at the i-th step 2qi values are
examined each of which makes the portion Yi of the output null with probability 2−|Yi|

and keeping the previously set output segmentsY0, . . . ,Yi−1 null with probability 2−pi

(we assume these two events are independent). Here, our restrictions are again 0 ≤ q′i
and qi − q′i ≤ |Mi|. Hence, the optimal values for qi’s can be recursively computed as
qi−1 = pi−1 + |Yi−1|+ max(0, qi − |Mi|) for i = �, �− 1, . . . , 1 with q� = |Y�|.

Remark 1. When working with functions with a huge number of input bits, it might be
appropriate to consider the m-bit message M as a string of u-bit units instead of bits.
For example one can take u = 8 and work with bytes. We then use the notation M =
(M [0], . . . ,M [m/u−1]) (assuming u dividesm) whereM [i] = (Miu, . . . ,Miu+u−1).
In this case the dependency table must be constructed according to the probability that
changing every message unit changes each output bit.

4 Application to CubeHash

CubeHash [4] is Bernstein’s proposal for the NIST SHA-3 competition [22]. CubeHash
variants, denoted by CubeHash-r/b, are parametrized by r and b which at each iter-
ation process b bytes in r rounds. Although CubeHash-8/1 was the original official
submission, later the designer proposed the tweak CubeHash-16/32 which is almost
16 times faster than the initial proposal [5]. Nevertheless, the author has encouraged
cryptanalysis of CubeHash-r/b variants for smaller r’s and bigger b’s.

4.1 CubeHash Description

CubeHash works with 32-bit words (n = 32) and uses three simple operations: XOR,
rotation and modular addition. It has an internal state S = (S0, S1, . . . , S31) of 32
words and its variants, denoted by CubeHash-r/b, are identified by two parameters
r ∈ {1, 2, . . .} and b ∈ {1, 2, . . . , 128}. The internal state S is set to a specified value
which depends on the digest length (limited to 512 bits) and parameters r and b. The
message to be hashed is appropriately padded and divided into b-byte message blocks.
At each iteration one message block is processed as follows. The 32-word internal state
S is considered as a 128-byte value and the message block is XORed into the first b
bytes of the internal state. Then, the following fixed permutation is applied r times to
the internal state to prepare it for the next iteration.
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1. Add Si into Si⊕16, for 0 ≤ i ≤ 15.
2. Rotate Si to the left by seven bits, for 0 ≤ i ≤ 15.
3. Swap Si and Si⊕8, for 0 ≤ i ≤ 7.
4. XOR Si⊕16 into Si, for 0 ≤ i ≤ 15.
5. Swap Si and Si⊕2, for i ∈ {16, 17, 20, 21, 24, 25, 28, 29}.
6. Add Si into Si⊕16, for 0 ≤ i ≤ 15.
7. Rotate Si to the left by eleven bits, for 0 ≤ i ≤ 15.
8. Swap Si and Si⊕4, for i ∈ {0, 1, 2, 3, 8, 9, 10, 11}.
9. XOR Si⊕16 into Si, for 0 ≤ i ≤ 15.

10. Swap Si and Si⊕1, for i ∈ {16, 18, 20, 22, 24, 26, 28, 30}.

Having processed all message blocks, a fixed transformation is applied to the final in-
ternal state to extract the hash value as follows. First, the last state word S31 is ORed
with integer 1 and then the above permutation is applied 10 × r times to the resulting
internal state. Finally, the internal state is truncated to produce the message digest of
desired hash length. Refer to [4] for the full specification.

4.2 Definition of the Compression Function Compress

To be in the line of our general method, we need to deal with fixed-size input com-
pression functions. To this end, we consider t (t ≥ 1) consecutive iterations of Cube-
Hash. We define the function H = Compress(M,V ) with an 8bt-bit message M =
M0|| . . . ||M t−1, a 1024-bit initial value V and a (1024− 8b)-bit outputH . The initial
value V is used to initialize the 32-word internal state of CubeHash. EachM i is a b-byte
message block. We start from the initialized internal state and update it in t iterations.
That is, in t iterations the t message blocks M0, . . . ,M t−1 are sequentially processed
in order to transform the internal state into a final value. The output H is then the last
128 − b bytes of the final internal state value which is ready to absorb the (t + 1)-st
message block (the 32-word internal state is interpreted as a 128-byte vector).

Our goal is to find collisions for this Compress function. In the next section we
explain how collisions can be constructed for CubeHash itself.

4.3 Collision Construction

We are planning to construct collision pairs (M ′,M ′′) for CubeHash-r/b which are of
the formM ′ = Mpre||M ||M t||M suf andM ′′ = Mpre||M⊕Δ||M t⊕Δt||M suf . Here,
Mpre is the common prefix of the colliding pairs whose length in bytes is a multiple of
b, M t is one message block of b bytes and M suf is the common suffix of the colliding
pairs whose length is arbitrary. The message prefixMpre is chosen for randomizing the
initial value V . More precisely, V is the content of the internal state after processing
the message prefix Mpre. For this value of V , (M,M ⊕ Δ) is a collision pair for the
compression function, i.e. Compress(M,V ) = Compress(M ⊕Δ,V ). Remember that
a collision for the Compress indicates collision over the last 128−b bytes of the internal
state. The message blocks M t and M t ⊕Δt are used to get rid of the difference in the
first b bytes of the internal state. The differenceΔt is called the erasing block difference
and is computed as follows. When we evaluate the Compress with inputs (M,V ) and
(M ⊕Δ,V ), Δt is the difference in the first b bytes of the final internal state values.
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Once we find message prefixMpre, messageM and differenceΔ, any message pairs
(M ′,M ′′) of the above-mentioned form is a collision for CubeHash for any message
blockM t and any message suffixM suf . We find the differenceΔ using the linearization
method of Section 2 to applied to CubeHash in the next section. Then, Mpre and M
are found by finding a preimage of zero under the Condition function as explained in
Section 3. Algorithm 4 in the extended version of this article [9] shows how CubeHash
Condition function can be implemented in practice for a given differential path.

4.4 Linear Differentials for CubeHash-r/b

As we explained in Section 2, the linear transformation Compresslin can be identified by
a matrixHh×m. We are interested inΔ’s such thatHΔ = 0 and such that the differential
trails have high probability. For CubeHash-r/b with t iterations, Δ = Δ0|| . . . ||Δt−1

andH has size (1024− 8b)× 8bt, see Section 4.2. This matrix suffers from having low
rank. This enables us to find low weight vectors of the kernel. We then hope that they
are also good candidates for providing highly probable trails, see Section 2.2. Assume
that this matrix has rank (8bt − τ), τ ≥ 0, signifying existence of 2τ − 1 nonzero
solutions to HΔ = 0. To find a low weight nonzero Δ, we use the following method.

The rank of H being (8bt − τ) shows that the solutions can be expressed by iden-
tifying τ variables as free and expressing the rest in terms of them. Any choice for the
free variables uniquely determines the remaining 8bt− τ variables, hence providing a
unique member of the kernel. We choose a set of τ free variables at random. Then, we
set one, two, or three of the τ free variables to bit value 1, and the other τ−1, or τ−2 or
τ − 3 variables to bit value 0 with the hope to get a Δ providing a high probability dif-
ferential path. We have made exhaustive search over all τ +

(
τ
2

)
+
(
τ
3

)
possible choices

for all b ∈ {1, 2, 3, 4, 8, 16, 32, 48, 64} and r ∈ {1, 2, 3, 4, 5, 6, 7, 8} in order to find
the best characteristics. Table 1 includes the ordered pair (t, y), i.e. the corresponding
number of iterations and the − log2 probability (number of bit conditions) of the best
raw probability path we found. For most of the cases, the best characteristic belongs to
the minimum value of t for which τ > 0. There are a few exceptions to consider which
are starred in Table 1. For example in the CubeHash-3/4 case, while for t = 2 we have
τ = 4 and y = 675, by increasing the number of iterations to t = 4, we get τ = 40
and a better characteristic with y = 478. This may hold for other cases as well since we
only increased t until our program terminated in a reasonable time. We would like to
emphasize that since we are using linear differentials, the erasing block difference Δt

only depends on the differenceΔ, see Section 4.3.

Table 1. The values of (t, y) for the differential path with the best found raw probability

r \ b 1 2 3 4 8 12 16 32 48 64

1 (14, 1225) (8, 221)� (4, 46) (4, 32) (4, 32) – – – – –
2 (7, 1225) (4, 221)� (2, 46) (2, 32) (2, 32) – – – – –
3 (16, 4238)� (6, 1881) (4, 798) (4, 478)� (4, 478)� (4, 400)� (4, 400)� (4, 400)� (3, 364)� (2, 65)
4 (8, 2614) (3, 964) (2, 195) (2, 189) (2, 189) (2, 156) (2, 156) (2, 156) (2, 130) (2, 130)
5 (18, 10221)� (8, 4579) (4, 2433) (4, 1517) (4, 1517) (4, 1244) (4, 1244) (4, 1244) (4, 1244)� (2, 205)
6 (10, 4238) (3, 1881) (2, 798) (2, 478) (2, 478) (2, 400) (2, 400) (2, 400) (2, 351) (2, 351)
7 (14, 13365) (8, 5820) (4, 3028) (4, 2124) (4, 2124) (4, 1748) (4, 1748) (4, 1748) (4, 1748)� (2, 447)
8 (4, 2614) (4, 2614) (2, 1022) (2, 1009) (2, 1009) (2, 830) (2, 830) (2, 830) (2, 637) (2, 637)
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Second preimage attacks on CubeHash. Any differential path with raw probabil-
ity greater than 2−512 can be considered as a (theoretical) second preimage attack on
CubeHash with 512-bit digest size. In Table 1 the entries which do not correspond to a
successful second preimage attack, i.e. y > 512, are shown in gray, whereas the others
have been highlighted. For example, our differential path for CubeHash-6/4 with raw
probability 2−478 indicates that by only one hash evaluation we can produce a second
preimage with probability 2−478. Alternatively, it can be stated that for a fraction of
2−478 messages we can easily provide a second preimage. The list of differential trails
for highlighted entries can be found in the extended version [9].

4.5 Collision Attacks on CubeHash Variants

Although Table 1 includes our best found differential paths with respect to raw proba-
bility or equivalently second preimage attack, when it comes to freedom degrees use for
collision attack, these trails might not be the optimal ones. In other words, for a specific
r and b, there might be another differential path which is worse in terms of raw prob-
ability but is better regarding the collision attack complexity if we use some freedom
degrees speedup. As an example, for CubeHash-3/48 with the path which has raw
probability 2−364, using our method of Section 3 the time complexity can be reduced
to about 258.9 (partial) evaluation of its condition function. However, there is another
path with raw probability 2−368 which has time complexity of about 253.3 (partial) eval-
uation of its condition function. Table 2 shows the best paths we found regarding the
reduced complexity of the collision attack using our method of Section 3. While most
of the paths are still the optimal ones with respect to the raw probability, the starred en-
tries indicate the ones which invalidate this property. Some of the interesting differential
paths for starred entries in Table 2 are given in the extended version [9].

Table 3 shows the reduced time complexities of collision attack using our method of
Section 3 for the differential paths of Table 2. To construct the dependency table, we
have analyzed the Condition function at byte level, see Remark 1. The time complexities
are in logarithm 2 basis and might be improved if the dependency table is analyzed at a
bit level instead. The complexity unit is (partial) evaluation of their respective Condition
function. We remind that the full evaluation of a Condition function corresponding to a
t-iteration differential path is almost the same as application of t iterations (rt rounds)
of CubeHash. We emphasize that the complexities are independent of digest size. All
the complexities which are less than 2c/2 can be considered as a successful collision
attack if the hash size is bigger than c bits. The complexities bigger than 2256 have been
shown in gray as they are worse than birthday attack, considering 512-bit digest size.
The successfully attacked instances have been highlighted.

The astute reader should realize that the complexities of Table 3 correspond to the
optimal threshold value, see Section 3.2. Refer to the extended version [9] to see the
effect of the threshold value on the complexity.

Practice versus theory. We provided a framework which is handy in order to analyze
many hash functions in a generic way. In practice, the optimal threshold value may
be a little different from the theoretical one. Moreover, by slightly playing with the
neighboring bits in the suggested partitioning corresponding to a given threshold value
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Table 2. The values of (t, y) for the differential path with the best found total complexity (Table 3
includes the reduced complexities using our method of Section 3)

r \ b 1 2 3 4 8 12 16 32 48 64

1 (14, 1225) (8, 221) (4, 46) (4, 32) (4, 32) – – – – –
2 (7, 1225) (4, 221) (2, 46) (2, 32) (2, 32) – – – – –
3 (16, 4238) (6, 1881) (4, 798) (4, 478) (4, 478) (4, 400) (4, 400) (4, 400) (3, 368)� (2, 65)
4 (8, 2614) (3, 964) (2, 195) (2, 189) (2, 189) (2, 156) (2, 156) (2, 156) (2, 134)� (2, 134)�

5 (18, 10221) (8, 4579) (4, 2433) (4, 1517) (4, 1517) (4, 1250)� (4, 1250)� (4, 1250)� (4, 1250)� (2, 205)
6 (10, 4238) (3, 1881) (2, 798) (2, 478) (2, 478) (2, 400) (2, 400) (2, 400) (2, 351) (2, 351)
7 (14, 13365) (8, 5820) (4, 3028) (4, 2124) (4, 2124) (4, 1748) (4, 1748) (4, 1748) (4, 1748) (2, 455)�

8 (4, 2614) (4, 2614) (2, 1022) (2, 1009) (2, 1009) (2, 830) (2, 830) (2, 830) (2, 655)� (2, 655)�

(Algorithm 2), we may achieve a partitioning which is more suitable for applying the
attacks. In particular, Table 3 contains the theoretical complexities for different Cube-
Hash instances under the assumption that the Condition function behaves ideally with
respect to the first issue discussed in Section 3.2. In practice, deviation from this as-
sumption increases the effective complexity. For particular instances, more simulations
need to be done to analyze the potential non-randomness effects in order to give a more
exact estimation of the practical complexity.

According to Section 4.3, for a given linear difference Δ, we need to find message
prefix Mpre and conforming message M for collision construction. Our backtracking
(tree-based) search implementation of Algorithm 1 forCubeHash-3/64 findsMpre and
M in 221 (median complexity) instead of the 29.4 of Table 3. The median decreases to 217

by backtracking three steps at each depth instead of one, see Section 3.2. ForCubeHash-
4/48 we achieve the median complexity 230.4 which is very close to the theoretical value
230.7 of Table 3. Collision examples for CubeHash-3/64 and CubeHash-4/48 can be
found in the extended paper [9]. Our detailed analysis of CubeHash variants shows that
the practical complexities for all of them except 3-round CubeHash are very close to
the theoretical values of Table 3. We expect the practical complexities for CubeHash
instances with three rounds to be slightly bigger than the given theoretical numbers. For
detailed comments we refer to the extended paper [9].

Comparison with the previous results. The first analysis of CubeHash was proposed
by Aumasson et al. [3] in which the authors showed some non-random properties for
several versions of CubeHash. A series of collision attacks on CubeHash-1/b and
CubeHash-2/b for large values of b were announced by Aumasson [1] and Dai [12].

Table 3. Theoretical log2 complexities of improved collision attacks with freedom degrees use at
byte level for the differential paths of Table 2

r \ b 1 2 3 4 8 12 16 32 48 64

1 1121.0 135.1 24.0 15.0 7.6 – – – – –
2 1177.0 179.1 27.0 17.0 7.9 – – – – –
3 4214.0 1793.0 720.0 380.1 292.6 153.5 102.0 55.6 53.3 9.4
4 2598.0 924.0 163.0 138.4 105.3 67.5 60.7 54.7 30.7 28.8
5 10085.0 4460.0 2345.0 1397.0 1286.0 946.0 868.0 588.2 425.0 71.7
6 4230.0 1841.0 760.6 422.1 374.4 260.4 222.6 182.1 147.7 144.0
7 13261.0 5709.0 2940.0 2004.0 1892.0 1423.0 1323.0 978.0 706.0 203.0
8 2606.0 2590.0 982.0 953.0 889.0 699.0 662.0 524.3 313.0 304.4
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Collision attacks were later investigated deeply by Brier and Peyrin [8]. Our results
improve on all existing ones as well as attacking some untouched variants.

5 Generalization

In sections 2 and 3 we considered modular-addition-based compression functions which
use only modular additions and linear transformations. Moreover, we concentrated on
XOR approximation of modular additions in order to linearize the compression func-
tion. This method is however quite general and can be applied to a broad class of hash
constructions, covering many of the existing hash functions. Additionally, it lets us
consider other linear approximations as well. We view a compression function H =
Compress(M,V ) : {0, 1}m×{0, 1}v → {0, 1}h as a binary finite state machine (FSM).
The FSM has an internal state which is consecutively updated using message M and
initial value V . We assume that FSM operates as follows, and we refer to such Compress
functions as binary-FSM-based. The concept can also cover non-binary fields.

The internal state is initially set to zero. Afterwards, the internal state is sequentially
updated in a limited number of steps. The output value H is then derived by truncating
the final value of the internal state to the specified output size. At each step, the internal
state is updated according to one of these two possibilities: either the whole internal state
is updated as an affine transformation of the current internal state,M and V , or only one
bit of the internal state is updated as a nonlinear Boolean function of the current internal
state, M and V . Without loss of generality, we assume that all of the nonlinear updat-
ing Boolean functions (NUBF) have zero constant term (i.e. the output of zero vector is
zero) and none of the involved variables appear as a pure linear term (i.e. changing any
input variable does not change the output bit with certainty). This assumption, coming
from the simple observation that we can integrate constants and linear terms in an affine
updating transformation (AUT), is essential for our analysis. Linear approximations of
the FSM can be achieved by replacing AUTs with linear transformations by ignor-
ing the constant terms and NUBFs with linear functions of their arguments. Similar to
Section 2 this gives us a linearized version of the compression function which we de-
note by Compresslin(M,V ). As we are dealing with differential cryptanalysis, we take
the notation Compresslin(M) = Compresslin(M, 0). The argument given in Section 2
is still valid: elements of the kernel of the linearized compression function (i.e. Δ’s s.t.
Compresslin(Δ) = 0) can be used to construct differential trails.

Let nnl denote the total number of NUBFs in the FSM. We count the NUBFs by
starting from zero. We introduce four functionsΛ(M,V ), Φ(Δ), ΛΔ(M,V ) and Γ (Δ)
all of output size nnl bits. To define these functions, consider the two procedures which
implement the FSMs of Compress(M,V ) and Compresslin(Δ). Let the Boolean func-
tion gk, 0 ≤ k < nnl, stand for the k-th NUBF and denote its linear approximation as
in Compresslin by gk

lin. Moreover, denote the input arguments of the Boolean functions
gk and gk

lin in the FSMs which compute Compress(M,V ) and Compresslin(Δ) by the
vectors xk and δk, respectively. Note that δk is a function of Δ whereas xk depends
on M and V . The k-th bit of Γ (Δ), Γk(Δ), is set to one iff the argument of the k-th
linearized NUBF is not the all-zero vector, i.e. Γk(Δ) = 1 iff δk 
= 0. We then define
Λk(M,V ) = gk(xk), Φk(Δ) = gk

lin(δk) and ΛΔ
k (M,V ) = gk(xk ⊕ δk). We can then

present the following proposition. The proof is given in the full version paper [9].
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Proposition 2. Let Compress be a binary-FSM-based compression function. For any
message difference Δ, let {i0, . . . , iy−1}, 0 ≤ i0 < i1 < · · · < iy−1 < nnl be the
positions of 1’s in the vector Γ (Δ) where y = wt

(
Γ (Δ)
)
. We define the condition

function Y = ConditionΔ(M,V ) where the j-th bit of Y is computed as

Yj = Λij (M,V )⊕ ΛΔ
ij

(M,V )⊕ Φij (Δ). (6)

Then, ifΔ is in the kernel of Compresslin, ConditionΔ(M,V ) = 0 implies that the pair
(M,M ⊕Δ) is a collision for Compress with the initial value V .

Remark 2. The modular-addition-based compression functions can be implemented as
binary-FSM-based compression by considering one bit memory for the carry bit. All the
NUBFs for this FSM are of the form g(x, y, z) = xy⊕xz⊕yz. The XOR approximation
of modular addition in Section 2 corresponds to approximating all the NUBFs g by the
zero function, i.e. glin(x, y, z) = 0. It is straightforward to show that Λk(M,V ) =
g(Ak,Bk,Ck) and Φk(Δ) = glin(αk,βk, 0). We then deduce that Γk(Δ) = αk ∨
βk ∨ 0 and ΛΔ

k (M,V ) = g(Ak ⊕αk,Bk ⊕ βk,Ck ⊕ 0). As a result we get

Yj = Λij (M,V )⊕ ΛΔ
ij

(M,V )⊕ Φij (Δ)
= (αij ⊕ βij

)Cij ⊕αijBij ⊕ βij
Aij ⊕αij βij

(7)

whenever αij ∨βij
= 1; this agrees with equation (5). Refer to the extended version [9]

for more details and to see how other linear approximations could be used.

6 Application to MD6

MD6 [23], designed by Rivest et al., is a SHA-3 candidate that provides security proofs
regarding some differential attacks. The core part of MD6 is the function f which
works with 64-bit words and maps 89 input words (A0, . . . , A88) into 16 output words
(A16r+73, . . . , A16r+88) for some integer r representing the number of rounds. Each
round is composed of 16 steps. The function f is computed based on the following
recursion

Ai+89 = Lri,li

(
Si ⊕Ai ⊕ (Ai+71 ∧Ai+68)⊕ (Ai+58 ∧Ai+22)⊕Ai+72

)
, (8)

whereSi’s are some publicly known constants andLri,li’s are some known simple linear
transformations. The 89-word input of f is of the form Q||U ||W ||K||B where Q is a
known 15-word constant value,U is a one-word node ID,W is a one-word control word,
K is an 8-word key andB is a 64-word data block. For more details about function f and
the mode of operation of MD6, we refer to the submission document [23]2. We consider
the compression function H = Compress(M,V ) = f(Q||U ||W ||K||B) where V =
U ||W ||K ,M = B andH is the 16-word compressed value. Our goal is to find a collision
Compress(M,V ) = Compress(M ′, V ) for arbitrary value of V . We later explain how
such collisions can be translated into collisions for the MD6 hash function.

According to our model (Section 5), MD6 can be implemented as an FSM which
has 64 × 16r NUBFs of the form g(x, y, z, w) = x · y ⊕ z · w. Remember that

2 In the MD6 document [23], C and Lri,li are respectively denoted by V and gri,li .
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the NUBFs must not include any linear part or constant term. We focus on the case
where we approximate all NUBFs with the zero function. This corresponds to ignor-
ing the AND operations in equation (8). This essentially says that in order to compute
Compresslin(Δ) = Compresslin(Δ, 0) for a 64-word Δ = (Δ0, . . . , Δ63), we map
(A′

0, . . . , A
′
24, A

′
25, . . . , A

′
88) = 0||Δ = (0, . . . , 0, Δ0, . . . , Δ63) into the 16 output

words (A′
16r+73, . . . , A

′
16r+88) according to the linear recursion

A′
i+89 = Lri,li

(
A′

i ⊕A′
i+72
)
. (9)

For a given Δ, the function Γ is the concatenation of 16r words A′
i+71 ∨ A′

i+68 ∨
A′

i+58 ∨A′
i+22, 0 ≤ i ≤ 16r − 1. Therefore, the number of bit conditions equals

y =
16r−1∑
i=0

wt(A′
i+71 ∨A′

i+68 ∨A′
i+58 ∨A′

i+22). (10)

Note that this equation compactly integrates cases 1 and 2 given in section 6.9.3.2
of [23] for counting the number of active AND gates. Algorithm 3 in the extended ver-
sion of this article [9] shows how the Condition function is implemented using equa-
tions (6), (8) and( 9).

Using a similar linear algebraic method to the one used in Section 4.4 for CubeHash,
we have found the collision difference of equation (11) for r = 16 rounds with a raw
probability pΔ = 2−90. In other words, Δ is in the kernel of Compresslin and the
condition function has y = 90 output bits. Note that this does not contradict the proven
bound in [23]: one gets at least 26 active AND gates.

Δi =

⎧⎨⎩
F6D164597089C40E i = 2
2000000000000000 i = 36

0 0 ≤ i ≤ 63, i 
= 2, 36
(11)

In order to efficiently find a conforming message pair for this differential path we need
to analyze the dependency table of its condition function. Referring to our notations
in Section 3.2, our analysis of the dependency table of function ConditionΔ(M, 0) at
word level (units of u = 64 bits) shows that the partitioning of the condition function
is as in Table 4 for threshold value th = 0. For this threshold value clearly pi = 0.
The optimal values for qi’s (computed according to the complexity analysis of the same
section) are also given in Table 4, showing a total attack complexity of 230.6 (partial)
condition function evaluation3. By analyzing the dependency table with smaller units
the complexity may be subject to reduction.

A collision example for r = 16 rounds of f can be found in the full version [9].
Our 16-round colliding pair provides near collisions for r = 17, 18 and 19 rounds,
respectively, with 63, 144 and 270 bit differences over the 1024-bit long output of f .
Refer to [9] to see how collisions for reduced-round f can be turned into collisions for
reduced-round MD6 hash function. The original MD6 submission [23] mentions inver-
sion of the function f up to a dozen rounds using SAT solvers. Some slight nonrandom
behavior of the function f up to 33 rounds has also been reported [17].

3 By masking M38 and M55 respectively with 092E9BA68F763BF1 and
DFFBFF7FEFFDFFBF after random setting, the 35 condition bits of the first three
steps are satisfied for free, reducing the complexity to 230.0 instead.
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Table 4. Input and output partitionings of the Condition function of MD6 with r = 16 rounds

i Mi Yi qi q′
i

0 – ∅ 0 0
1 {M38} {Y1, . . . , Y29} 29 0
2 {M55} {Y43, . . . , Y48} 6 0
3 {M0, M5, M46, M52, M54} {Y0} 1 0
4 {Mj |j = 3, 4, 6, 9, 21, 36, 39, 40, 42, 45, 49, 50, 53, 56, 57} {Y31, . . . , Y36} 6 0
5 {M41, M51, M58, M59, M60} {Y30, Y51} 2 0
6 {Mj |j = 1, 2, 7, 8, 10, 11, 12, 17, 18, 20, 22, 24, 25, 26, 29, {Y52, . . . , Y57} 6 0

33, 34, 37, 43, 44, 47, 48, 61, 62, 63}
7 {M27} {Y37, . . . , Y42} 6 0
8 {M13, M16, M23} {Y50} 1 0
9 {M35} {Y49} 1 0
10 {M14, M15, M19, M28} {Y58, Y61} 2 0
11 {M30, M31, M32} {Y59, Y60, Y62 . . . , Y89} 30 0

7 Conclusion

We presented a framework for an in-depth study of linear differential attacks on hash
functions. We applied our method to reduced round variants of CubeHash and MD6,
giving by far the best known collision attacks on these SHA-3 candidates. Our results
may be improved by considering start-in-the middle attacks if the attacker is allowed to
choose the initial value of the internal state.
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Abstract. In this paper, we present preimage attacks on up to 43-
step SHA-256 (around 67% of the total 64 steps) and 46-step SHA-512
(around 57.5% of the total 80 steps), which significantly increases the
number of attacked steps compared to the best previously published
preimage attack working for 24 steps. The time complexities are 2251.9,
2509 for finding pseudo-preimages and 2254.9, 2511.5 compression func-
tion operations for full preimages. The memory requirements are mod-
est, around 26 words for 43-step SHA-256 and 46-step SHA-512. The
pseudo-preimage attack also applies to 43-step SHA-224 and SHA-384.
Our attack is a meet-in-the-middle attack that uses a range of novel
techniques to split the function into two independent parts that can be
computed separately and then matched in a birthday-style phase.

Keywords: SHA-256, SHA-512, hash, preimage attack,
meet-in-the-middle.

1 Introduction

Cryptographic hash functions are important building blocks of many secure sys-
tems. SHA-1 and SHA-2 (SHA-224, SHA-256, SHA-384, and SHA-512) [1] are
hash functions standardized by the National Institute of Standards and Tech-
nology (NIST) and widely used all over the world. However, a collision attack
on SHA-1 has been discovered recently by Wang et al. [2]. Since the structure of
SHA-2 is similar to SHA-1 and they are both heuristic designs with no known
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security guarantees or reductions, an attack on SHA-2 might be discovered in
the future too. To avoid a situation when all FIPS standardized functions would
be broken, NIST is currently conducting a competition to determine a new hash
function standard called SHA-3 [3]. From the engineering viewpoint, migration
from SHA-1 to SHA-3 will take a long time. SHA-2 will take an important role
during that transitional period. Hence, rigorous security evaluation of SHA-2
using the latest analytic techniques is important.

NIST requires SHA-3 candidates of n-bit hash length to satisfy a several
security properties [3], first and foremost

– Preimage resistance of n bits,
– Second-preimage resistance of n − k bits for any message shorter than 2k

blocks,
– Collision resistance of n/2 bits.

NIST claims that the security of each candidate is evaluated in the environment
where they are tuned so that they run as fast as SHA-2 [4]. It seems that NIST
tries to evaluate each candidate by comparing it with SHA-2. However, the
security of SHA-2 is not well understood yet. Hence, the evaluation of the security
of SHA-2 with respect to the security requirements for SHA-3 candidates is also
important as it may influence our perspective on the SHA-3 speed requirements.

SHA-256 and SHA-512 consist of 64 steps and 80 steps, respectively. The first
analysis of SHA-2 with respect to collision resistance was described by Mendel
et al. [5], which presented the collision attack on SHA-2 reduced to 19 steps.
After that, several researches have improved the result. In particular, the work
by Nikolić and Biryukov improved the collision techniques [6]. The best collision
attacks so far are the ones proposed by Indesteege et al. [7] and Sanadhya and
Sarkar [8], both describing collision attacks for 24 steps. The only analysis of
preimage resistance we are aware of is a recent attack on 24 steps of SHA-2 due
to Isobe and Shibutani [9].

One may note the work announced at the rump session by Yu and Wang [10],
which claimed to have found a non-randomness property of SHA-256 reduced
to 39 steps. Since the non-randomness property is not included in the security
requirements for SHA-3, we do not discuss it in this paper. In summary, the
current best attacks on SHA-2 with respect to the security requirements for
SHA-3 work for only 24 steps.

After Saarinen [11] and Leurent [12] showed examples of meet-in-the-middle
preimage attacks, the techniques for such preimage attacks have been developed
very rapidly. Attacks based on the concept of meet-in-the-middle have been re-
ported for various hash functions, for example MD5 [13], SHA-1, HAVAL [14],
and so on [15,16,17,18]. The meet-in-the-middle preimage attack is also applied
to recently designed hash function ARIRANG [19], which is one of SHA-3 can-
didates, by Hong et al. [20]. However, due to the complex message schedule in
SHA-2, these recently developed techniques have not been applied to SHA-2 yet.

Our contribution. We propose preimage attacks on 43-step SHA-256 and 46-
step SHA-512 which drastically increase the number of attacked steps compared
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to the previous preimage attack on 24 steps. We first explain various attack
techniques for attacking SHA-2. We then explain how to combine these tech-
niques to maximize the number of attacked steps. It is interesting that more
steps of SHA-512 can be attacked than of SHA-256 with so-called partial-fixing
technique proposed by Aoki and Sasaki [15]. This is due to the difference of the
word size as functions σ and Σ mix 32-bit variables in SHA-256 more rapidly
than in the case of double-size variables in SHA-512.

Our attacks are meet-in-the-middle. We first consider the application of the
previous meet-in-the-middle techniques to SHA-2. We then analyse the message
expansion of SHA-2 by considering all previous techniques and construct the
attack by finding new independent message-word partition, which is the funda-
mental part of this attack.

Our attacks and a comparison with other results are summarized in Table 1.

Table 1. Comparison of preimage attacks on reduced SHA-2

Reference Target Steps Complexity Memory
Pseudo-preimage Preimage (approx.)

Ours Section 7 SHA-224 43 2219.9 - 26 words
[9] SHA-256 24 2240 2240 216 · 64 bits

Ours Section 5 SHA-256 42 2245.3 2251.7 212 words
Ours Section 5 SHA-256 43 2251.9 2254.9 26 words
Ours Section 7 SHA-384 43 2366 - 219 words
[9] SHA-512 24 2480 2480 not given

Ours Section 6 SHA-512 42 2488 2501 227 words
Ours Section 6 SHA-512 46 2509 2511.5 26 words

Outline. In Section 2, we briefly describe SHA-2. Section 3 gives an overview of
the meet-in-the-middle preimage attack. In Section 4, we describe all techniques
of our preimage attack. Then Sections 5 and 6 explain how these techniques can
be applied together to mount an attack on SHA-256 and SHA-512, respectively.
In Section 7, we put some remark on our attack. Section 8 concludes this paper.

2 SHA-2 Specification

Description of SHA-256. In this section we describe SHA-256, consult [1] for
full details. SHA-256 adopts the Merkle-Damg̊ard structure [21, Algorithm 9.25].
The message string is first padded with a single “1” bit, appropriate number of
zero bits and then 64-bit length of the original message so that the length of the
padded message is a multiple of 512 bits and then divided into 512-bit blocks,
(M0,M1, . . . ,MN−1) where Mi ∈ {0, 1}512.

The hash value hN is computed by iteratively using the compression function
CF, which takes a 512-bit message block and a 256-bit chaining variable as the
input and yields an updated 256-bit chaining variable as the output,
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{
h0 ← IV,

hi+1 ← CF(hi,Mi) (i = 0, 1, . . . , N − 1), (1)

where IV is a constant value defined in the specification.
The compression function is based on the Davies-Meyer mode [21, Algorithm

9.42]. It consists of a message expansion and a data processing. Let �x and ≫x

denote the x-bit right shift and rotation, respectively. First, the message block
is expanded by the message expansion function,

Wi ←
{
mi for 0 ≤ i < 16 ,
σ1(Wi−2) +Wi−7 + σ0(Wi−15) +Wi−16 for 16 ≤ i < 64 .

(2)

where (m0,m1, . . . ,m15)←Mi (mj ∈ {0, 1}32) and “+” denotes addition mod-
ulo 2word size. In SHA-256 the word size is 32 bits. Functions σ0(X) and σ1(X)
are defined as

σ0(X)← (X≫7)⊕ (X≫18)⊕ (X�3),
σ1(X)← (X≫17)⊕ (X≫19)⊕ (X�10). (3)

where “⊕” stands for bitwise XOR operation.
Let us use pj to denote a 256-bit value consisting of the concatenation of eight

words Aj , Bj , Cj , Dj , Ej , Fj , Gj and Hj . The data processing computes hi+1 as
follows. ⎧⎨⎩

p0 ← hi,
pj+1 ← Rj(pj ,Wj), (j = 0, 1, . . . , 63)
hi+1 ← hi + p64,

(4)

Step function Rj is defined as follows⎧⎪⎪⎪⎨⎪⎪⎪⎩
T

(j)
1 ← Hj +Σ1(Ej) + Ch(Ej , Fj , Gj) +Kj +Wj ,

T
(j)
2 ← Σ0(Aj) + Maj(Aj , Bj , Cj),

Aj+1 ← T
(j)
1 + T

(j)
2 , Bj+1 ← Aj , Cj+1 ← Bj , Dj+1 ← Cj ,

Ej+1 ← Dj + T
(j)
1 , Fj+1 ← Ej , Gj+1 ← Fj , Hj+1 ← Gj .

(5)

Above, Kj is a constant, different for each step, and the following functions are
used

Ch(X,Y, Z)← (X ∨ Y )⊕ ((¬X) ∨ Z),
Maj(X,Y, Z)← (X ∨ Y )⊕ (X ∨ Z)⊕ (Y ∨ Z),

Σ0(X)← (X≫2)⊕ (X≫13)⊕ (X≫22),
Σ1(X)← (X≫6)⊕ (X≫11)⊕ (X≫25).

(6)

where ¬ means bitwise negation of the word.

Description of SHA-512. The structure of SHA-512 is basically the same as
SHA-256. In SHA-512, the word size is 64 bits, double of SHA-256, hence, the
message-block size is 1024 bits and the size of chaining variable pj is 512 bits.
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The compression function has 80 steps. Rotation numbers in σ0, σ1, Σ0, and Σ1
are different from those used in SHA-256, which are shown below.

σ0(X)← (X≫1)⊕ (X≫8)⊕ (X�7),
σ1(X)← (X≫19)⊕ (X≫61)⊕ (X�6),
Σ0(X)← (X≫28)⊕ (X≫34)⊕ (X≫39),
Σ1(X)← (X≫14)⊕ (X≫18)⊕ (X≫41).

(7)

3 Overview of the Meet-in-the-Middle Preimage Attack

A preimage attack on a narrow-pipe Merkle-Damg̊ard hash function is usually
based on a pseudo-preimage attack on its underlying compression function, where
a pseudo-preimage is a preimage of the compression function with an appro-
priate padding. Many compression functions adopt Davies-Meyer mode, which
computes Eu(v) ⊕ v, where u is the message, v is the intermediate hash value
and E is a block cipher.

First we recall the attack strategy on a compression function, which has been
illustrated in Fig. 1. Denote by h the given target hash value. The high-level
description of the attack for the simplest case is as follows.

1. Divide the key u of the block cipher E into two independent parts: u1 and
u2. Hereafter, independent parts are called “chunks” and independent inputs
u1 and u2 are called “neutral words”.

2. Randomly determine the other input value v of the block cipher E.
3. Carry out the forward calculation utilizing v and all possible values of u1,

and store all the obtained intermediate values in a table TF .
4. Carry out the backward calculation utilizing h⊕ v and all possible values of
u2, and store all the intermediate values in a table TB.

5. Check whether there exists a collision between TF and TB. If a collision
exists, a pseudo-preimage of h has been generated. Otherwise, go to Step 2.

The main novelty of the meet-in-the-middle preimage attacks is, by utilizing
independence of u1 and u2 of the key input, transforming the problem of find-
ing a preimage of h to the problem of finding a collision on the intermediate
values, which has a much lower complexity than the former one. Suppose there

v h

u1 u2

backwardforward

E

Fig. 1. Meet-in-the-middle attack strategy on a Davies-Meyer compression function
Eu(v) ⊕ v
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are 2t possible values for each of u1 and u2. Using 2t compression function com-
putations, the attacker obtains 2t elements in each of TF and TB. The collision
probability is roughly 22t−n, where n is the bit length of h, much better than the
probability 2t−n of finding a preimage by a brute force search with complexity 2t.

4 The List of Attack Techniques

This section describes the list of techniques used in the attack. Some of them
were used before in previous meet-in-the-middle attacks [15,18,16]. We explain
them here first and then in Sections 5 and 6, we show how to combine them in
an attack on SHA-2.

4.1 Splice-and-Cut

The meet-in-the-middle attack starts with dividing the key input into two in-
dependent parts. The idea of splice-and-cut is based on the observation made
in [15] that the last and first steps of the block cipher E in Davies-Meyer mode
can be regarded as consecutive by considering the feed-forward operation.

This allows the attacker to choose any step as the starting step of the meet-
in-the-middle, which helps with finding more suitable independent chunks.

This technique can find only pseudo-preimages of the given hash value instead
of preimages. However, pseudo-preimages can be converted to preimages with a
conversion algorithm explained below.

4.2 Converting Pseudo-preimages to Preimages

In x-bit iterated hash functions, a pseudo-preimage attack with complexity
2y, y < x− 2 can be converted to a preimage attack with complexity of 2

x+y
2 +1

[21, Fact9.99]. The idea is applying the unbalanced meet-in-the-middle attack
with generating 2(x−y)/2 pseudo-preimages and generating 2(x+y)/2 1-block
chaining variables starting from IV.

4.3 Partial-Matching

The example in Fig. 1 is the simplest and optimistic case. In fact, in the previous
attacks, the key input cannot be divided into just two independent chunks.
Usually besides the two independent chunks u1 and u2, there is another part,
which depends on both u1 and u2. Hence, the stored intermediate values in TF

and TB are ones at different steps. This raises a problem: how the values in TF

and TB can be compared. However, many hash functions, including SHA-2, have
Unbalanced Feistel Network structure, where the intermediate values will only be
updated partially at one step. This means that a part of the intermediate values
does not change during several steps and the attacker can check the match of
two values partially.
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Consider SHA-2, assume one chunk produces the value of pj and the other
chunk produces the value of pj+s. The attacker wants to efficiently check whether
or not pj and pj+s match without the knowledge of Wj ,Wj+1, . . . ,Wj+s−1. In
SHA-2, the maximum number of s is 7.

Assume the value of pj+7 = Aj+7‖Bj+7‖ · · · ‖Hj+7 is known and Wj+6 is un-
known. By backward computation, we can obtain the values of Aj+6, Bj+6, . . . ,
Gj+6. This is because Aj+6, Bj+6, Cj+6, Ej+6, Fj+6, and Gj+6 are just copies of
corresponding values in pj+7 and Dj+6 is computed as follows.

Dj+6 ← Ej+7 − (Aj+7 − (Σ0(Bj+7) + Maj(Bj+7, Cj+7, Dj+7))). (8)

By repeating the similar computation, in the end, Aj is computed from pj+7
without the knowledge of Wj ,Wj+1, . . . ,Wj+6. Note that this technique was
already used (but not explicitly named) in [9].

4.4 Partial-Fixing

This is an extension of the partial-matching technique that considers parts of
registers of the internal state. It increases the number of steps that can exist
between two independent chunks. Assume that the attacker is carrying out the
computation using u1 and he is facing a step whose key input depends on both
u1 and u2. Because the computation cannot go ahead without the knowledge
of u2, the chunk for u1 must stop at this step. The partial-fixing technique is
partially fixing the values of u1 and u2 so that we can obtain partial knowledge
even if the full computation depends on both u1 and u2.

The partial-fixing technique for SHA-2 has not been considered previously.
Assume we can fix the lower x bits of the message word in each step. Under this
assumption, 1 step can be partially computed easily. Let us consider the step
function of SHA-2 in the forward direction. Equations using Wj is as follows.{

T
(j)
1 ← Hj +Σ1(Ej) + Ch(Ej , Fj , Gj) +Kj +Wj ,

Aj+1 ← T
(j)
1 + T

(j)
2 , Ej+1 ← Dj + T

(j)
1 .

(9)

If the lower x bits of Wj are fixed, the lower x bits of Aj+1 (and Ej+1) can be
computed independently of the upper 32− x bits of Wj . Let us consider to skip
another step in forward direction. The equation for Aj+2 is as follows:

Aj+2 ← T
(j+1)
1 +Σ0(Aj+1) + Maj(Aj+1, Bj+1, Cj+1). (10)

We know only the lower x bits on Aj+1. Hence, we can compute Maj function for
only the lower x bits. How about the Σ0 function? We analysed the relationship
of the number of consecutive fixed bits from LSB in the input and output of
σ0, σ1, Σ0, and Σ1. The results are summarized in Table 2.

From Table 2, if x is large enough, we can compute the lower x − 22 bits of
Aj+2 in SHA-256 and the lower x − 39 bits in SHA-512, though the number
of known bits is greatly reduced after the Σ0 function. This fact also implies
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Table 2. Relationship of number of consecutive fixed bits from LSB in input and
output of σ and Σ

SHA-256 SHA-512
Σ0 Σ1 σ0 σ1 Σ0 Σ1 σ0 σ1

Input x x x x x x x x
output x − 22 x − 25 x − 18 x − 19 x − 39 x − 41 x − 8 x − 61

When x agrees with the word size, the output is x. When the number described in the
output is negative, the output is 0.

that we cannot obtain the value of Aj+3 since the number of fixed bits will be
always 0. In the end, the partial-fixing technique can be applied for up to 2
steps in forward direction. Similarly, we considered the partial-fixing technique
in backward, and found that it can be applied up to 6 steps.

However we have another problem in the first assumption; the lower x bits
of each message word can be fixed. This is difficult to achieve because the fixed
bits in message words are mixed by the σ function in the message expansion.
In fact, we could apply the partial-fixing technique for computing only 1 step in
forward, and only 2 steps in backward for SHA-256. However, in SHA-512, the
bit-mixing speed of σ is relatively slow due to the double word size. In fact, we
could compute 2 steps in forward, and 6 steps in backward. Finally, 10 steps in
total can be skipped by the partial-matching and partial-fixing techniques for
SHA-256, and 15 steps for SHA-512. (These numbers of steps are explained in
Sections 5 and 6.)

4.5 Indirect-Partial-Matching

This is another extension of partial-matching. Consider the intermediate values
in TF and TB. We can express them as functions of u1 and u2, respectively. If the
next message word used in forward direction can be expressed as ψ1(u1)+ψ2(u2)
and computation of chaining register at the matching point does not destroy this
relation (because the message word is also added), the matching point can still be
expressed as a sum of two independent functions of u1, u2, e.g. ψF (u1)+ ξF (u2).
Similarly, we can express the matching point from backward as ψB(u1)+ξB(u2),
and we are to find match. Now, instead of finding a match directly, we can
compute ψF (u1)−ψB(u1) in forward direction and ξB(u2)−ξF (u2) in backward
direction independently and find a match.

In case of SHA-2, it is possible to extend the 7-step partial-matching to 9-step
indirect-partial-matching by inserting one step just before and after the partial
matching.

Note this technique can be combined with partial-fixing technique by apply-
ing them in order: partial-fixing, partial-matching and indirect-partial-matching.
However, there are some constraints that need to be satisfied, such as the inde-
pendence of message word used in indirect-partial-matching, while we need to
be able to compute enough bits at the matching point in order to carry out the
partial-matching efficiently.
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4.6 Initial Structure

In some cases, the two independent chunks u1 and u2 will overlap with each other.
The typical example is that the order of the input key of E is u1u2u1u2. This
creates a problem: how should the attacker carry out the forward and backward
computations independently. The Initial Structure technique was proposed by
[16] to solve such a problem. Previous attacks usually set a certain step as the
starting step, then randomly determine the intermediate value at that step, and
carry out the independent computations. However, the initial structure technique
sets all the steps of u2u1 in the middle of u1u2u1u2 together as the starting
point. Denote the intermediate values at the beginning and last step of u2u1
as I1 and I2 respectively. For each possible value of u1, the attacker can derive
a corresponding value I1. Similarly, for each possible value of u2, the attacker
can derive a corresponding value I2. Moreover, any pair (I1, u1) and (I2, u2) can
be matched at the steps of u2u1 of u1u2u1u2. Thus, the attacker can carry out
independent computations utilizing (I1, u1) and (I2, u2).

Initial structure for SHA-2 makes use of the absorption property of the func-
tion Ch(x, y, z) = xy⊕ (¬x)z. If x is 1 (all bits are 1), then Ch(1, y, z) = y which
means z does not affect the result of Ch function in this case; similarly when x
is 0 (all bits are 0), y does not affect the result. When we want to control partial
output (few bits), we need to fix the corresponding bits of x instead of all bits
of x.

We consider 4 consecutive step functions, i.e. from step i to step i + 3. We
show that, under certain conditions, we can move the last message word Wi+3
to step i and move Wi to step i+1 while keeping the final output after step i+3
unchanged.

Assume we want to transfer upwards a message word Wi+3. Due to the ab-
sorption property of Ch, we can move Wi+3 to step i + 2 (adding it to register
Gi+2) if all the bits of Ei+2 are fixed to 1. This is illustrated in Fig. 2 (left).
Similarly, we can further move Wi+3 to step i+ 1 (adding it to register Fi+1) if
all the bits of Ei+1 are 0. Then, we still can move it upwards by transferring it
to register Ei after step transformation in step i.

The same principle applies if we want to transfer only part of the register
Wi+3. If l most significant bits (MSB) of Wi+3 are arbitrary and the rest is set
to zero (to avoid interference with addition on least significant bits), we need to
fix l MSB of Ei+2 to one and l MSB of Ei+1 to zero.

As l MSB of Ei+1 need to be 0, we need to use l MSB of Wi to satisfy this
requirement. This reduces the space of Wi to 232−l. Similarly, we need to choose
those Wi that fix l MSB of Ei+2 to one. This is possible because changing the
value of Wi influences the state of register Ei+2 through Σ1 at step i + 1. We
experimentally checked that changing Wi generates changes in Ei+2 that are
sufficiently close to uniformly distributed. Satisfying additional constraints on l
bits further reduces the space of Wi to 232−2l.

The important thing to note here is that if we fix the values of Fi+1, Gi+1
and of the sum Di+1 +Hi+1 we can precompute the set of good values for Wi

and store them in a table. Then, we can later recall them at negligible cost.
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Fig. 2. Initial structure for SHA-2 allows to move the addition of Wi+3 upwards pro-
vided that the Ch functions absorb the appropriate inputs (left); move Wi one step
downwards (right)

On the other hand, message word Wi can be moved to step i + 1 with no
constraint, as shown in Fig. 2 (right).

This procedure essentially swaps the order of words Wi and Wi+3.

4.7 Two-Way Expansion

Message expansion usually works in such a way that some consecutive several
messages can determine the rest. For SHA-2, any consecutive 16 message words
can determine the rest since the message expansion is a bijective mapping. This
enables us to control any intermediate 16 message words and then expand the
rest in both ways. This technique gives us more freedom of choices of neutral
words, and extends the number of steps for the two chunks a lot. Note that the
maximum number of consecutive steps for the two chunks is 30 for SHA-2. Since
the message expansion is a bijective mapping, no matter which neutral word
is chosen, it must be used to compute at least one of the any consecutive 16
message words. So each chunk of consecutive steps is of length at most 15.

4.8 Message Compensation

For some choice of neutral words, two chunks are not able to achieve the optimal
length. By forcing some of the other message words to cancel the change intro-
duced by neutral words, the optimal or near-optimal length could be achieved.
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Combining the initial structure, two-way expansion and message compensa-
tion techniques, we are able to find two chunks of length 33. We choose to control
on {Wz, . . . ,Wz+15}, for some z which we will determine later. We choose Wz+5
and Wz+8 as neutral words. We show the first chunk {Wz−10, . . . ,Wz+4,Wz+8}
to be independent from Wz+5 and second chunk {Wz+5,Wz+6,Wz+7,Wz+9, . . . ,
Wz+22} to be independent fromWz+8. Note that Wz+8 is “moved” to first chunk
by method explained in initial structure. For forward direction, we need to show
{Wz−10, . . . ,Wz−1} are independent from Wz+5 when they are expanded from
{Wz, . . . ,Wz+15}.

Wz−1 = Wz+15 − σ1(Wz+13)−Wz+8 − σ0(Wz) , (11)
Wz−2 = Wz+14 − σ1(Wz+12)−Wz+7 − σ0(Wz−1) , (12)
Wz−3 = Wz+13 − σ1(Wz+11)−Wz+6 − σ0(Wz−2) , (13)
Wz−4 = Wz+12 − σ1(Wz+10)−Wz+5 − σ0(Wz−3) , (14)
Wz−5 = Wz+11 − σ1(Wz+9)−Wz+4 − σ0(Wz−4) , (15)
Wz−6 = Wz+10 − σ1(Wz+8)−Wz+3 − σ0(Wz−5) , (16)
Wz−7 = Wz+9 − σ1(Wz+7)−Wz+2 − σ0(Wz−6) , (17)
Wz−8 = Wz+8 − σ1(Wz+6)−Wz+1 − σ0(Wz−7) , (18)
Wz−9 = Wz+7 − σ1(Wz+5)−Wz − σ0(Wz−8) , (19)
Wz−10 = Wz+6 − σ1(Wz+4)−Wz−1 − σ0(Wz−9) . (20)

We note that Wz+5 is used in (19) and (14), we compensate them by using Wz+7
andWz+12. By “compensating” we mean making the equation value independent
from Wz+5 by forcing Wz+7 − σ1(Wz+5) = C (C is some constant, we use 0 for
simplicity) and Wz+12 −Wz+5 = C. Wz+7 is also used in (17), however we can
use Wz+9 to compensate for it, i.e. set Wz+9 = σ1(Wz+7) = σ2

1(Wz+5). Then
Wz+9 and Wz+12 are used in steps above, so we continue this recursively and
finally have the following constraints that ensure the proper compensation of
values of Wz+5.

Wz+7 = σ1(Wz+5) ,
Wz+9 = σ2

1(Wz+5) ,
Wz+11 = σ3

1(Wz+5) ,
Wz+13 = σ4

1(Wz+5) ,
Wz+15 = σ5

1(Wz+5) ,
Wz+12 = Wz+5 ,
Wz+14 = 2 σ1(Wz+5) .

(21)

The second chunk is independent from Wz+8 automatically without any com-
pensation. The 33-step two-chunk is valid regardless of the choice of z as long
as z > 10. To simplify the notation, we use Wj , . . . ,Wj+32 to denote the two
chunks, then Wj+15 and Wj+18 are the two neutral words. We reserve the final
choice of j for later to pick the one that allows to attack the most steps, as
described later.
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5 Preimage Attack against 43 Steps SHA-256

5.1 Number of Attacked Steps

The attack on SHA-256 uses 33-step two-chunk Wj , . . . ,Wj+32 explained in
Section 4. Hence, in forward direction, pj+33 can be computed independently of
the other chunk and in backward direction, pj can be computed independently
of the other chunk. We extend the number of attacked steps as much as possible
with partial-fixing (PF) and indirect-partial-matching (IPM) techniques.

Forward computation of Aj+34: The equation for Aj+34 is as follows.⎧⎨⎩ Aj+34 = Σ0(Aj+33) + Maj(Aj+33, Bj+33, Cj+33) +Hj+33
+Σ1(Ej+33) + Ch(Ej+33, Fj+33, Gj+33) +Kj+33 +Wj+33,

Wj+33 = σ1(Wj+31) +Wj+26 + σ0(Wj+18) +Wj+17

We can use either PF or IPM to compute Aj+34. If we use PF, we fix the
lower l bits of Wj+18, which is a neutral word for the other chunk. According
to Table 2, this fixes the lower l − 18 bits of σ0(Wj+18). Finally, the lower
l−18 bits of Aj+34 can be computed. If we use IPM, we describe Aj+34 as a
sum of functions of each neutral words i.e. Aj+34 = ψF (Wj+15)+ξF (Wj+18).
From the above equations, they can be easily done. Note that IPM is more
efficient than PF with respect to only computing Aj+34 because IPM does
not need to fix a part of neutral word.

Forward computation of Aj+35: The equation for Aj+35 is as follows.{
Aj+35 = Σ0(Aj+34) + Maj(Aj+34, Bj+34, Cj+34) + · · ·+Wj+34,
Wj+34 = σ1(Wj+32) +Wj+27 + σ0(Wj+19) +Wj+18

Neither PF nor IPM can compute Aj+35. If we used PF for Aj+34, only the
lower l − 18 bits are known. This makes all bits of Aj+35 unknown after
the computation of Σ0(Aj+34). If we used IPM, Aj+34 is described as a
sum of two independent functions. However, because Σ0 consists of XOR of
three self-rotations, it seems difficult to describe Σ0(Aj+34) as a sum of two
independent functions.

In summary, we can skip only 1 step in forward. In this case, using IPM is more
efficient than using PF.

Backward computation of Hj−1: The equation for Hj−1 is as follows.⎧⎨⎩ Hj−1 = Aj − (Σ0(Bj) + Maj(Bj , Cj , Dj))
−Σ1(Fj)− Ch(Fj , Gj , Hj)−Kj−1 −Wj−1,

Wj−1 = Wj+15 − σ1(Wj+13)−Wj+8 + σ0(Wj)

We can use either PF or IPM to compute Hj−1. If we use PF, we fix the
lower l bits of Wj+15, and then, the lower l bits of Hj−1 can be computed.
If we use IPM, we describe Hj−1 as a sum of functions of each neutral word.
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Fig. 3. Separation of chunks and dependencies of state words for SHA-256

Backward computation of Hj−2: The equation for Hj−2 is as follows.⎧⎨⎩
Hj−2 = Aj−1 − (Σ0(Bj−1) + Maj(Bj−1, Cj−1, Dj−1))

−Σ1(Fj−1)− Ch(Fj−1, Gj−1, Hj−1)−Kj−2 −Wj−2,
Wj−2 = Wj+14 − σ1(Wj+12)−Wj+7 + σ0(Wj−1)

We can use PF to compute Hj−2 but cannot use IPM. To describe Ch(Fj−1,
Gj−1, Hj−1) and σ0(Wj−1) as a sum of two independent functions seems diffi-
cult. If we used PF forHj−1, we can obtain the lower l bits of Ch(Fj−1, Gj−1,
Hj−1) and lower l− 18 bits of σ0(Wj−1). Finally, we can compute the lower
l − 18 bits of Hj−2.

By the similar analysis, we confirmed that we cannot computeHj−3. In summary,
we can skip 2 steps in backward with PF which fixes the lower l, l > 18 bits of
Wj+15.

The attack uses 33-step two-chunk Wj , . . . ,Wj+32 including 4-step initial
structure. Apply PF for Wj−1 and Wj−2, and apply IPM for Wj+34. Finally,
43 steps are attacked by skipping additional 7 steps using partial-matching
technique.

36 steps (Wj−2 to Wj+34) must be located sequentially. We have several op-
tions for j. We choose j = 3 for the following two purposes; (1) W13,W14, and
W15 can be freely chosen to satisfy message padding rules, (2) pseudo-preimage
attack on SHA-224 is possible (explained in Section 7).

We need to fix the lower l+18 bits of W18 to fix the lower l bits of W2 by PF.
Besides, we lose half of remaining freedom to construct 4-step initial structure.
Hence, we choose l to balance l− 18 and 32−l

2 , i.e. we choose l = 23.
The overview of the separation of chunks is shown in Fig. 3. denotes

variables depending only on W21; denotes variables depending only on W18;
and denote registers that can be expressed as a sum modulo 232 of two

independent functions of neutral variables W18 and W21; denotes registers
with few bits depending only on W21; denotes registers depending on both
W18 and W21 in a complicated way.
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5.2 Attack Procedure

1. Randomly choose the values for internal chaining variable p19 (after the
movement of message words by initial structure) and message word W19.
Randomly fix the lower 23 bits of W18. By using the remaining 9 free bits
of W18, find 25 values on average that correctly construct the 4-step initial
structure, and store them in the table TW . Let us call this an initial table-
preparation.

2. Randomly choose message words not related to initial structure and neutral
words, i.e. W13,W14,W15,W16,W17,W23. Let us call this an initial
configuration.

3. For all 25 possible W18 in TW , compute the corresponding W20,W22,W24,
W25,W26,W27,W28 as shown in equations (21). Compute forward and find
ψF (W18). Store the pairs (W18, ψF (W18)) in a list LF .

4. For all 24 possible values (the lower 4 bits) of W21, compute backward and
find ξF (W21), which is σ0(W21) in this attack, and the lower 4 bits of A37.

5. Compare the lower 4 bits of A37− σ0(W21) and the lower 4 bits of ψF (W18)
stored in LF .

6. If a match is found, compute A37, B37, . . . , H37 with the corresponding W18
and W21 and check whether results from both directions match each other.
If they do, output p0 and W0, . . . ,W15 as a pseudo-preimage.

7. Repeat steps 2 – 6 for all possible choices of W13,W16,W17,W21. Note, the
MSB of W13 is fixed to 1 to satisfy message padding. Hence, we have 2127

freedom for this step.
8. If no freedom remains in step 7, repeat steps 1 – 7.
9. Repeat steps 1 – 8 24 times to obtain 24 pseudo-preimages. Then, convert

them to a preimage according to [21, Fact9.99].

5.3 Complexity Estimation

We assume the complexity for 1 step function and 1-step message expansion
is 1

43 compression function operation of 43-step SHA-256. We also assume that
the speed of memory access is negligible compared to computation time for step
function and message expansion. Complexity for step 1 is 29 and use a memory
of 25 words. Complexity for step 2 is negligible. In step 3, we compute pj+1 ←
Rj(pj ,Wj) for j = 18, 19, . . . , 36 and corresponding message expansion. Hence,
the complexity is 25 19

43 . We use a memory of 25×2 words. Similarly, in step 4, we
compute pj ← R−1

j+1(pj+1,Wj) for j = 20, 19, . . . , 2 and 6 more steps for partial-
fixing and partial-matching. Hence, the complexity is 24 25

43 . In step 5, we compare
the match of lower 4 bits of 29(= 24 · 25) items. Hence, 25 results will remain.
Complexity for step 6 is 25 8

43 and the probability that all other bits match is
2−252. Hence, the number of remaining pair becomes 2−247(= 25 · 2−252). So far,
the complexity from step 2 to 6 is 25 19

43 +24 25
43 +25 8

43 = 25 39.5
43 ≈ 24.878. In step 7,

this is repeated 2127 times and its complexity is 2131.878. Step 8 is computed 2120

times. This takes 2120 · (29 + 2131.878) ≈ 2251.9. This is the complexity of the
pseudo-preimage attack on SHA-256 43-steps. Finally, at Step 9, preimages are
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found with a complexity of 21+(251.878+256)/2 = 2254.939 ≈ 2254.9. The required
memory for finding a pseudo-preimage is 25 words and 25 × 2 words in Steps 1
and 3, which is 25 × 3 words. For finding a preimage, we need to store 21.9

pseudo-preimages for unbalanced meet-in-the-middle. This requires a memory
of 21.9 × 24 words.

5.4 Attack on 42 Steps SHA-256

When we attack 42 steps, We use 1-step IPM instead of 2-step PF in backward.
This allows the attacker to use more message freedom. We choose l = 10 so
that l and 32−l

2 are balanced. Because each chunk has at least 10 free bits, the
complexity for finding pseudo-preimages is approximately 2246(= 2256 · 2−10).
The precise evaluation is listed in Table 1.

6 Preimage Attack against 46 Steps SHA-512

6.1 Basic Strategy for SHA-512

For SHA-512, we can attack more steps than SHA-256 by using PF. This occurs
by the following two properties;

– Message-word size of SHA-512 is bigger than that of SHA-256. Hence, the
bit-mixing speed of σ and Σ functions are slower than SHA-256.

– The choice of three rotation numbers for the σ0 function is very biased.

To consider the above, we determine to use the message freedom available to the
attacker for applying PF as much as possible.

Construction of the 4-step initial structure explained in Section 4 consumes
a lot of message freedom. Therefore, we do not use the 4-step initial structure
for SHA-512. Construction of the 3-step initial structure also needs a lot of
message freedom. On the other hand, 2-step initial structure does not consume
any message freedom because we do not have to control Ch functions. Finally, in
our attack, we use a 31-step two-chunk including 2-step initial structure. Because
construction of 2-step initial structure is much simpler than that of 4-step initial
structure, we omit the detailed explanation of the construction.

6.2 Chunk Separation

The 31 message words we use are Wj to Wj+30. We apply the 2-step initial
structure for Wj+15 and Wj+16, hence the neutral words for the first chunk is
Wj+16 and for the second chunk is Wj+15. Whenever we change the value of
Wj+16, we change the values of Wj+7,Wj+6, . . . ,Wj by message compensation
technique so that the change does not impact to the second chunk. Similarly,
whenever we change Wj+15, we change Wj+17,Wj+19,Wj+21,Wj+22, . . . ,Wj+30.
Finally, Wj to Wj+30 can form the 31-step two-chunks.
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6.3 Partial-Fixing Technique

We skip 6 steps in backward and 2 steps in forward by PF. Namely, we need to
partially compute Wj−1,Wj−2, . . . ,Wj−6 independently of Wj+15, and partially
compute Wj+31 and Wj+32 independently of Wj+16, The equations for these
message words are as follows.

Wj−1
l

= Wj+15
l
− σ1(Wj+13)−Wj+8 + σ0(Wj),

Wj−2
l−8

= Wj+14 − σ1(Wj+12)−Wj+7 + σ0(Wj−1
l
),

Wj−3
l−16

= Wj+13 − σ1(Wj+11)−Wj+6 + σ0(Wj−2
l−8

),
Wj−4

l−24
= Wj+12 − σ1(Wj+10)−Wj+5 + σ0(Wj−3

l−16
),

Wj−5
l−32

= Wj+11 − σ1(Wj+9)−Wj+4 + σ0(Wj−4
l−24

),
Wj−6

l−40
= Wj+10 − σ1(Wj+8)−Wj+3 + σ0(Wj−5

l−32
),

Wj+31
l−8

= σ1(Wj+29) +Wj+24 + σ0(Wj+16
l
) +Wj+15,

Wj+32
l

= σ1(Wj+30) +Wj+25 + σ0(Wj+17) +Wj+16
l
.

Remember Table 2. If the lower l bits of input of σ0 is fixed, we can compute
the lower l−8 bits of its output. In backward, if we fix the lower l bits of Wj+15,
the lower l bits of Wj−1, the lower l − 8 bits of Wj−2, the lower l − 16 bits of
Wj−3, the lower l−24 bits of Wj−4, the lower l−32 bits of Wj−5, and the lower
l−40 bits of Wj−6 can become independent of the second chunk. This results in
computing the lower l bits of Hj−1, the lower l− 8 bits of Hj−2, the lower l− 16
bits of Hj−3, the lower l − 41 bits of Hj−4, the lower l − 49 bits of Hj−5, and
the lower l− 57 bits of Hj−6. Note that we also need to consider Σ1 to compute
Hj−4, Hj−5, and Hj−6. If we fix the lower l bits of Wj+16, the lower l− 8 bits of
Wj+31, and the lower l bits of Wj+32 can become independent of the first chunk.
This results in computing the lower l− 8 bits of Aj+32, and the lower l− 47 bits
of Aj+33.

Therefore, if we choose l = 60, we can match the lower 3 bits of Hj−6 and 13
bits of Aj+33 after we skip 7 steps by the partial-matching technique.

6.4 Attack Overview

The attack uses 31-step two-chunk Wj , . . . ,Wj+30 including 2-step initial struc-
ture. Apply PF for Wj−1,Wj−2, . . . ,Wj−6, and Wj+31,Wj+32. Finally, 46 steps
are attacked by skipping additional 7 steps using partial-matching technique.

39 steps (Wj−6 to Wj+32) must be located sequentially. Because Wj+8,Wj+9,
Wj+10,Wj+11,Wj+12,Wj+13,Wj+14,Wj+18,Wj+20 are the message words we fix
in advance, we choose j = 6 so thatW14 andW15 can be chosen to satisfy message
padding rules. The MSB of W13 can also be satisfied. In this chunk separation,
Wj+7 can be described as Wj+7 = Const−Wj+16, where Const is a chosen fixed
value and the lower l bits of Wj+16 are fixed. If we fix Const and the MSB of
Wj+16 to 0 and some value, respectively, and choose the lower l bits of Wj+16
so that the MSB of −Wj+16 does not change for all active bits of Wj+16, we can
always fix the MSB of Wj+7.
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The number of free bits in Wj+16 is 3. (l = 60 but we fix the MSB for
satisfying padding for W13.) The number of free bits in Wj+15 is 4. Results
from both chunks are compared with 3 bits. Therefore, the final complexity of
pseudo-preimage attack is approximately 2509. This is converted to a preimage
attack whose complexity is approximately 2511.5. For finding pseudo-preimages,
this attack needs to store 23 items. Hence, the required memory is 23× 9 words.
For finding preimages, we need to store 21.5 pseudo-preimages for unbalanced
meet-in-the-middle. This requires a memory of 21.5 × 24 words.

6.5 Attack on 42 Steps SHA-512

When we attack 42 steps, we stop using 1-step PF in forward and 3-step PF in
backward. We choose l = 40. Because each chunk has at least 24 free bits, the
complexity for finding pseudo-preimages is approximately 2488(= 2512 · 2−24).
The precise evaluation is listed in Table 1.

7 Remarks

7.1 Length of Preimages

The preimages are of at least two blocks, last block is used to find pseudo-
preimages and the second last block links to the input chaining of last block.
Two block preimages is only possible if we can preset the message words used
for encoding the length (m14 and m15 for SHA-2) of last block according to the
padding and length encoding rules. In our case, this can be done in the first step
of the algorithm. On the other hand, we can leave m14 and m15 as random, later
we can still resolve the length using expandable messages [22].

7.2 SHA-224 and SHA-384

Our attack on 43 steps SHA-256 can also produce pseudo-preimages for SHA-
224 by using the approach by Sasaki [23]. In our attack, we match 4-bits of A37
which is essentially equivalent to G43. Then, we repeat the attack until other
registers randomly match i.e. we wait until A43, B43, . . . , F43, and H43 randomly
match. In SHA-224, the value ofH43 is discarded in the output. Hence, we do not
have to care the match of H43, which results in decreasing the complexity by 232

bits. Hence, pseudo-preimages of SHA-224 can be computed with a complexity
of 2219.9(= 2251.9 ·2−32). Note, this cannot be converted to a preimage attack on
SHA-224 because the size of intermediate chaining variable is 256 bits.

If we apply our attack on SHA-512 to SHA-384, W13,W14, and W15 will
depend on neutral words. Hence, we cannot confirm 46 steps SHA-384 can be
attacked or not because of padding problem. However, 43 steps SHA-384 can be
attacked by using the same chunk as SHA-256. By considering the difference of
word size and application of PF, we can optimize the complexity by choosing
l = 27 so that l − 8 and 64−l

2 are balanced.
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7.3 Multi-preimages and Second-Preimages

We note that the method converting pseudo-preimage to preimages can be fur-
ther extended to find multi-preimages. We find first k block multi-collisions [24],
then follow the expandable message [22] to link to the final block. This gives 2k

multi-preimages with additional k2n/2 computations, which is negligible when
k is much smaller than 2(n−t)/2 (t denotes number of bits for each chunk, refer
to Section 3). We need additional 128k bytes of memory to store the k block
multi-collisions. Furthermore, most of the message words are randomly chosen,
this attack naturally gives second preimages with high probability. Above multi-
preimages are most probably multi-second preimages.

8 Conclusions

In this paper, we presented preimage attacks on 43 steps SHA-256 and 46 steps
SHA-512. The time complexity of the attack for 43-step SHA-256 is 2254.9 and
it requires 25 · 3 words of memory. The time complexity of the attack for 46-
step SHA-512 is 2511.5 and it requires 23 · 9 words of memory. The number of
attacked steps is greatly improved from the best previous attack, in other words,
the security margin of SHA-256 and SHA-512 is greatly reduced. Because SHA-
256 and SHA-512 have 64 and 80 steps, respectively, they are currently secure.

An open question worth investigating would be to see if the current attacks
may still be improved. Perhaps finding 15+4+15 pattern of chunks with 4-step
initial structure in the middle or using better partial-fixing technique that would
utilize middle bits of the message word would extend the attacks.

The preimage attack we presented creates a very interesting situation for SHA-
2 when a preimage attack, covering 43 or 46 steps, is much better than the best
known collision attack, with only 24 steps. Our attack does not convert to collision
attack because of the complexity above the birthday bound. However, we believe
that the existence of such a preimage attack suggests that a collision attack of
similar length could be also possible. In that light, the problem of finding collisions
for reduced variants of SHA-256 definitely deserves more attention.
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Abstract. We demonstrate how the framework that is used for creating
efficient number-theoretic ID and signature schemes can be transferred
into the setting of lattices. This results in constructions of the most ef-
ficient to-date identification and signature schemes with security based
on the worst-case hardness of problems in ideal lattices. In particular,
our ID scheme has communication complexity of around 65, 000 bits and
the length of the signatures produced by our signature scheme is about
50, 000 bits. All prior lattice-based identification schemes required on the
order of millions of bits to be transferred, while all previous lattice-based
signature schemes were either stateful, too inefficient, or produced sig-
natures whose lengths were also on the order of millions of bits. The
security of our identification scheme is based on the hardness of finding
the approximate shortest vector to within a factor of Õ(n2) in the stan-
dard model, while the security of the signature scheme is based on the
same assumption in the random oracle model. Our protocols are very
efficient, with all operations requiring Õ(n) time.

We also show that the technique for constructing our lattice-based
schemes can be used to improve certain number-theoretic schemes. In
particular, we are able to shorten the length of the signatures that are
produced by Girault’s factoring-based digital signature scheme ([10,11,31]).

1 Introduction

The appeal of building cryptographic primitives based on the hardness of lattice
problems began with the seminal work of Ajtai who showed that one-way func-
tions could be built with security based on the worst-case hardness of certain
lattice problems [2]. Unfortunately, cryptographic primitives that were built with
this very strong security property were extremely inefficient for practical appli-
cations. For example, evaluating one-way and collision-resistant hash functions
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required Õ(n2) time and space [2,24], and in public-key cryptosystems, the keys
were on the order of megabytes [3,33,34,28] (also see [25] for concrete parameter
proposals for the scheme in [34]). Therefore some new ideas were required in
order to make provably-secure lattice-based primitives a realistic alternative to
ones based on number-theory.

A promising approach for improving efficiency is to use lattices that possess
extra algebraic structure, and it is precisely this extra structure that makes the
NTRU cryptosystem [14] (which unfortunately does not have a proof of secu-
rity) very efficient in practice. A step in the direction of building provably-secure
lattice-based primitives was taken by Micciancio [23], who showed that one could
build efficient (Õ(n) evaluation time) one-way functions with security based on
the worst-case instances of problems pertaining to cyclic lattices (cyclic lattices
are lattices that correspond to ideals in the ring Z[x]/〈xn − 1〉). This result was
later extended to give constructions of collision-resistant hash functions by ei-
ther restricting the domain [29] or changing the ring [18] in Micciancio’s scheme.
These works then led to constructions and implementations of collision-resistant
hash functions [20] with security based on worst-case problems in lattices corre-
sponding to ideals in Z[x]/〈xn + 1〉 whose performance was comparable to the
performance of ad-hoc hash functions that are currently in use today. And be-
cause there is a very close connection between collision-resistant hash functions
and more sophisticated primitives such as ID schemes and digital signatures, it
was very natural to ask whether these primitives also had efficient lattice-based
constructions. There has been some recent work in this direction, which we will
now describe.

Lyubashevsky and Micciancio constructed a one-time signature in which sign-
ing and verification can be performed in time Õ(n) [19]. Using standard tech-
niques, the one-time signature can be transformed into a full-fledged signature
scheme using a signature-tree [21,22] with only an additional work factor of
O(log n). While this combination results in a very theoretically-appealing scheme
where all the operations take time Õ(n), it does require the use of a tree, which
is a somewhat unwanted feature in practice. Another signature scheme was pro-
posed by Gentry et al. in [9]. Their signature scheme follows the hash-and-sign
paradigm, and when instantiated with algebraic lattices [37], verification takes
time Õ(n), but Õ(n4) time is needed to do the signing (it is plausible that the
signing time could be reduced to Õ(n2) with a more careful analysis).

A different way of constructing digital signature schemes is to first construct
an identification scheme of a certain form and then convert it to a signature
scheme using the Fiat-Shamir transform [7,32,1]. The identification schemes of
Micciancio and Vadhan [26], Lyubashevsky [17], and Kawachi et al. [15] can
all be instantiated such that the secret and public keys are of size Õ(n), and
the entire interaction takes Õ(n) time as well. While these constructions seem
essentially optimal, they contain a common inefficiency. The ID schemes all
have the form of standard commit-challenge-response protocols (see Figure 1,
for an example of one where Y is the commitment, c is the challenge, and z is
the response), and the inefficiency lies in the fact that for each challenge bit,
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the response consists of Õ(n) bits. Since the security of the protocol is directly
connected to the number of challenge bits sent by the verifier, it means that for
every bit of security, Õ(n) bits need to be transmitted. Theoretically, this does
not cause a problem because one only needs ω(logn) bits of security in order for
the protocol to be considered secure against polynomial-time adversaries, and
then the total running time of the above protocols is still Õ(n). But in practice,
this is a rather unsatisfactory solution because one wants some concrete security
guarantee, say 80 bits, and then the communication complexity of the ID scheme
will be about 80 times larger (the size of the signature in the derived signature
scheme would be 160 times larger) than possibly necessary. This is in sharp
contrast to number-theoretic ID schemes where the response of the prover is
longer than the challenge by only a small factor.

What allows number-theoretic ID schemes like Schnorr [35], GQ [13], Girault
[10], Okamoto [27], etc. to be so “compact” is that the challenge string in these
protocols is not treated as a sequence of independent 0’s and 1’s, but instead
the entire string is interpreted as an integer from a certain domain. This can be
done because there is a lot of underlying algebraic structure upon which these
schemes are built. On the other hand, lattices do not seem to have as much
algebraic underpinning, and so the schemes based on them are very combinatorial
in nature which is why the challenge strings are treated simply as a sequence of
independent challenges much like in generic zero-knowledge proofs for NP. The
main accomplishment of the current work is to show how to exploit the limited
algebraic structure of ideal lattices in order to use the challenge bits collectively
rather than individually, which ends up greatly improving the practical efficiency
of lattice-based identification and signature schemes.

1.1 Contributions and Comparisons

Lattice-based constructions. We construct a lattice-based ID scheme in
which the challenge string is treated as a polynomial in a certain ring, and one
correct response to it from the prover is enough for authentication. The caveat is
that some constant fraction of the time, the prover cannot respond to the chal-
lenge from the verifier and must abort the protocol. The result of this is that the
“commit” and “challenge” steps of the ID scheme now must be repeated several
times to ensure that a valid prover is accepted with some decent probability.
But using standard techniques, one can significantly shorten the length of the
“commit” part of the protocol, and because of the structure of our scheme, the
challenge can always be the same. Therefore the number of transmitted bits is
dominated by the length of the single “response”.

Even more optimizations are possible when converting the ID scheme into
a signature scheme using the Fiat-Shamir transform. In the resulting signature
scheme, there is of course no longer any interaction until the signer outputs the
signature. And therefore there is no need for the signer to output the attempts
in which he failed to sign (which correspond to the times he couldn’t answer the
challenge in the ID scheme). So while the failures do cost time, the length of
the final signature is as short as it would have been if the signer only attempted
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to sign once and succeeded. And because the probability of failure is a small
constant (≈ 2/3), we only expect to repeat the signature protocol 3 times before
succeeding.

All operations in our scheme take time Õ(n) and we prove that the ID and
signature schemes are secure based on the worst-case hardness of approximating
the shortest vector to within a factor of Õ(n2) in lattices corresponding to ideals
in the ring Z[x]/〈xn + 1〉 (the security of the signature scheme is in the random
oracle model). Compared to previous works, our asymptotic hardness assumption
is the same as that in [19,17] (although the scheme of [19] is secure in the standard
model), but is worse than that in [26,9,37] (where the factor is Õ(n1.5)) and in
[15] (where the factor is Õ(n)).

Based on the work of Gama and Nguyen [8] who worked out the effectiveness
of current state-of-the-art lattice reduction algorithms, we present some con-
crete parameters with which our schemes can be instantiated. On the low end,
the outputted signatures are about 50000 bits in length (the ID scheme requires
about 65000 bits to be transmitted). While the scheme of [15] has better asymp-
totic security, the response to each challenge bit seems to require at least 10000
bits. So if we would like the challenge to be 160 bits for security purposes, the
response (and therefore the signature size) will be over a million bits. The signa-
ture schemes of [26] and [17] look like they would have their signatures be about
160 times longer than ours (the ID schemes would require communications that
are about 80 times longer), again because the responses are done separately to
every challenge bit. So even though our ID and signature schemes have worse
asymptotic security, their structure makes them much more practically efficient.

At this point it is not possible to give an accurate comparison of our signa-
ture scheme to the hash-and-sign signature schemes [9,37] because no concrete
parameters were given for those schemes. But independent of the signature sizes,
our scheme will still have the advantage in that signing can be done in time Õ(n)
rather than Õ(n4).

The signature length of the one-time signature in [19] may actually be a
little shorter than in our scheme, but this advantage is lost when the one-time
signature gets converted to a general stateless signature scheme. If a signature
tree is used in the conversion, then the signature length may go up by a factor
of the tree depth, which would make it much less efficient. On the other hand,
one could build a hash tree using any collision-resistant hash function, and then
the signatures would only increase by the product of the tree depth and the
hash function output. If the scheme is to be completely stateless and support
about 260 signatures, and we use SHA-256 as the hash function, then the length
of the one-time signature in [19] would increase by about 15, 000 bits, which
would make it somewhat longer than our signature. The similarity between the
signature sizes of our scheme and the scheme in [19] is no coincidence, and we
further discuss the relationship between the two schemes in Section 1.2.

Factoring-based signatures. We show that the ideas used to construct our
lattice-based digital signature can also be used for shortening the length of some
number-theoretic schemes. The signature scheme originally proposed by Girault
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[10], and analyzed in [11,31] is a scheme whose security, in the random oracle
model, is based on the hardness of factorization. What is particularly attrac-
tive about it is that if the signer can do some pre-computing before receiving
the message, then signing can be done with just one random oracle query, one
multiplication, and one addition over the integers (no modular reduction is re-
quired). We show how to reduce the length of the signature in an instantiation
of the scheme due to Pointcheval [31] from 488 bits to 425.

1.2 Techniques

There is a pattern that emerges when looking at constructions of certain ID
and signature schemes based on the hardness of factoring and discrete log. The
informal chain of reductions from the hard problem to the signature scheme
looks as follows:

Hard Problem ≤ CRHF ≤ One-time signature ≤ ID scheme ≤ Signature

For example, finding collisions in the hash function h(x) = gx mod N implies
being able to factor N . This can be converted into a one-time signature with the
secret key being some pair of integers (x, y), public keys being h(x), h(y), and
the signature of a message c being xc + y. The one-time signature can then be
converted into an ID scheme by simply picking a new y every time (Figure 1)
and c now being a challenge chosen by the verifier. The ID scheme can then
be converted to a signature scheme by using the Fiat-Shamir transform which
replaces the verifier with a random oracle (Figure 5) [10,11,31]. The same idea
can be used with the hash function h(x1, x2) = (gx1

1 g
x2
2 mod p), in which finding

collisions implies solving the discrete log problem. The ID and signature schemes
resulting from that hash function are due to Okamoto [27].

It turns out that a somewhat similar approach can be used to build lattice-
based primitives as well. The works of [29,18], showed a reduction from the worst-
case problem of finding short vectors in algebraic lattices to finding collisions in
hash functions. The work of [19] can be viewed as a transformation of the hash
function to a one-time signature, and this current work can then be seen as the
continuation of this chain of reductions where the one-time signature of [19] is
converted into an ID scheme and then into a signature scheme.

But what prevents the techniques used in number-theoretic schemes to be
directly extended to lattice-based ones, is that lattices allow for much less alge-
braic structure. For example, the domains in number-theoretic hash functions are
rings, while in lattice-based ones, the domain is just a subset of a ring (in partic-
ular, those elements in the ring that have small Euclidean norm) that is neither
closed under addition nor multiplication. This is very related to the fact that
the factoring and discrete log problems can be reduced to finding an element in
the kernel of some homomorphic function, while finding short vectors in lattices
reduces to the problem of finding small elements in the kernel of a homomor-
phism. This difference is what seems to give lattice problems resistance against
polynomial-time quantum algorithms that solve factoring and discrete log [36],
but at the same time it also hinders constructions of lattice-based primitives.
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Secret key: s
$← Ds

Public key: N , g, and S ← gs mod N

Prover Verifier
y

$← Dy, Y ← gy mod N Y �
c� c

$← Dc

z ← sc + y
[if z /∈ G then z ←⊥ ] z �

Accept iff gz ≡ Y Sc(modN)

Fig. 1. Factoring-Based Identification Schemes. The parameters for this scheme
are in Figure 6. The line in [ ] is only performed in the aborting version of the scheme.

In overcoming this limitation, the one-time signature of [19] had to leak parts
of its secret key. While it wasn’t a problem in that setting because the secret key
is only used once, in ID schemes the same secret key is used over and over, and
so leaking a part of the secret key every time would result in complete insecurity.
In this paper, we solve this difficulty by using an aborting technique that was
introduced in [17]. The idea behind aborting is that the prover can elect to abort
the protocol in order to protect some information about his secret key (mainly,
the protocol needs to remain witness-indistinguishable). In this work, we are
able to relax the conditions that were needed for witness-indistinguishability in
[17], and this allows us to construct much more efficient lattice-based protocols
as well as extend the technique to other contexts, such as the factoring-based
scheme described in Section 1.1. We essentially show that all that is needed for
the aborting technique to be applicable is a collision-resistant homomorphic hash
function that has small elements in its kernel. We believe that this technique can
find further applications.

1.3 Intuition for Aborting

Understanding where aborting might be useful is best accomplished with an
example. Consider the protocol in Figure 1 (for this discussion, it is not necessary
to understand why the protocol works), which has the form of a typical 3-round
commit-challenge-response ID scheme. The secret key is some s and the public
key is h(s) where h is a function that happens to be h(s) = gs mod N in our
example. In the first step of the protocol, the prover picks a parameter y, and
sends h(y), to the verifier. The verifier picks a random “challenge” c, and sends
it to the prover. The third step of the protocol consists of a response of the
prover to the challenge. This response must somehow use the secret key, and in
our example, the secret key s is multiplied by c and then added to y. Notice that
sending sc without adding it to y would completely reveal s, and so the job of
y is to somehow mask the exact value of sc. If the operation sc takes place in
some finite group, then a natural idea for masking would be to pick y uniformly
at random from that group. The intuition is that if nothing about y is known,
then the value y + sc is also completely random (of course, something is known
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about y when the prover sends h(y) to the verifier, but we gloss over that here).
And this is exactly what is done in well-known ID schemes such as Schnorr [35],
GQ [13], Okamoto [27], etc..

But sometimes it is infeasible to pick y uniformly at random from the group.
In Girault’s ID-scheme [10,11,31] (Figure 1), the multiplication sc is performed
over the integers, which is an infinite group. A way to do masking in this scheme
is to pick a y in a range that is much larger than the range of sc. So for example,
if 0 ≤ sc ≤ R, then one could pick a random y from the range [0, ..., 264R]. Then,
with very high probability, the value of sc + y will be in [R, ..., 264R], in which
case it will be impossible to determine anything about sc if nothing is known
about y.

In constructing our lattice-based ID scheme, the same difficulty is encoun-
tered as in Girault’s scheme, except we do not have the luxury of picking y
(or something analogous to y in the lattice-based scheme) from such a large
range because doing so would require us to make a much stronger complexity
assumption which would significantly decrease the efficiency of the protocol (we
would have to assume that it is hard to find a super-polynomial approximation
of the shortest vector instead of just an Õ(n2) approximation). Our solution is
to instead pick y from a much smaller set, something analogous to [0, . . . , 2R],
but only reveal sc+ y if it falls into the range [R, . . . , 2R]. If the range is picked
carefully and the function h is a homomorphism that has “small” elements in
its kernel, then one can show that if the prover only reveals values in this range
and aborts otherwise, the protocol will be perfectly witness-indistinguishable.
The witness-indistinguishability is then used to prove security of the protocol by
showing that a forger can be used for extracting collisions in h.

The same technique can also be applied to Girault’s scheme. Notice that
if we pick y uniformly at random from the range [0, ..., 2R] instead of from
[0, ..., 264R], the length of sc + y will be 63 bits shorter. We point out that our
aborting factoring-based ID scheme in Figure 1 which uses this idea is actually
worse than the corresponding non-aborting one because the savings gained by
shortening sc + y are lost in case the prover has to abort and the ID protocol
has to be repeated. But the advantage of aborting does show itself when the ID
protocol is converted into a signature scheme using the Fiat-Shamir paradigm
(Figure 5). In a signature scheme, there is no interaction, and therefore there
is no need for the signer to ever include the aborted signing attempts into the
final signature. So if the signer needs to abort, he simply reruns the protocol
until he gets a signature in the correct range. The end result is that the eventual
signature is shorter than it would have been in schemes such as [10,11,31] where
the signer does not have the option to abort.

2 Preliminaries

2.1 Notation

We will denote vectors by bold letters. For convenience, vectors of vectors will
be denoted by a bold letter with a hat. For example, if a1, a2 are elements of
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Zn, then we can write â = (a1, a2). The �∞ norm of a is written as ‖a‖∞, and
‖â‖∞ for â = (a1, . . . ,am) is defined as maxi(‖ai‖∞). If S is a set, then a $← S
means that a is chosen uniformly at random from S. All logarithms are assumed
to be base 2.

2.2 Lattices and Algebra

An integer lattice Λ is a subgroup of Zn. The approximate Shortest Vector
Problem (SVPγ(Λ)) asks to find a vector v in Λ such that ‖v‖∞ is no more than
γ times larger than the vector in Λ with the smallest �∞ norm. In this work, we
will be interested in lattices that exhibit an additional algebraic property – in
particular, they correspond to ideals in the ring Z[x]/〈xn + 1〉. We will say that
a lattice Λ is an (xn + 1)-cyclic lattice if for every vector (v0, . . . , vn−2, vn−1) ∈
Λ, the vector (−vn−1, v0, . . . , vn−2) is also in Λ. If we look at the vectors as
polynomials (i.e. (v0, . . . , vn−2, vn−1) as v0 + . . .+ vn−2xn−2 + vn−1xn−1), then
an (xn + 1)-cyclic lattice is an ideal in Z[x]/〈xn + 1〉 because in this ring,

(v0 + . . .+ vn−2xn−2 + vn−1xn−1) · x = −vn−1 + v0x + . . .+ vn−2xn−1.

The ring that will be most important to us throughout the paper is the ring
Zp[x]/〈xn+1〉 where p is some odd positive integer. The elements in Zp[x]/〈xn+
1〉 will be represented by polynomials of degree n − 1 having coefficients in
the range

[
− p−1

2 , p−1
2

]
. Throughout the paper, we will treat polynomials in

Zp[x]/〈xn + 1〉 and vectors in Zn as the same data type. So when, for example,
we talk of multiplying two vectors, we actually mean converting the vectors to
polynomials and then multiplying the polynomials in Zp[x]/〈xn + 1〉. Similarly,
the norm1 of a polynomial is just the norm of the corresponding vector. It’s not
hard to see that for polynomials v,w ∈ Zp[x]/〈xn + 1〉, the following relation
holds:

‖vw‖∞ ≤ ‖v‖∞‖w‖1 ≤ n‖v‖∞‖w‖∞
(xn + 1)-cyclic lattices are a particular class of lattices that received attention
because one can construct efficient and provably secure cryptographic primitives
based on the hardness of finding approximate short vectors in these lattices
[18,29,19,20]. The main reason for this efficiency is that the multiplication of
two polynomials in Zp[x]/〈xn + 1〉 can be done in time Õ(n) using the Fast
Fourier Transform. While the results in this paper can be applied to lattices
that correspond to ideals in other rings, it would only unnecessarily complicate
matters because the ring Z[x]/〈xn +1〉 seems to be the most useful theoretically
and in practice.

While a lot is known about the complexity of SVP in general lattices, very
little is known about this problem when restricted to ideal lattices. Nevertheless,
the problem is related to some problems in algebraic number theory (see [18,30])

1 This is a slight abuse of the word norm. Because of the reduction modulo p, it’s not
true that for any integer α we have ‖αa‖∞ = |α|‖a‖∞, but it still holds true that
‖a + b‖∞ ≤ ‖a‖∞ + ‖b‖∞ and ‖αa‖∞ ≤ |α|‖a‖∞.
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that do not have any efficient solution. And it seems that the currently best
lattice algorithms are unable to take advantage of the extra structure provided
by ideal lattices. Therefore, it still seems that solving SVPγ takes time 2O(n)

when γ = nO(1) [16,4].

2.3 Lattice-Based Collision-Resistant Hash Function

LetR be the ring Zp[x]/〈xn+1〉. We define the following family of hash functions:

Definition 1. For any integer m and D ⊆ R, the function family
H(R,D,m) mapping Dm to R is defined as

H(R,D,m) = {hâ : â ∈ Rm},where for any ẑ ∈ Dm, hâ(ẑ) = â · ẑ

That is, if â = (a1, . . . ,am) and ẑ = (z1, . . . , zm), then hâ(ẑ) = a1z1+. . .+amzm

where all the operations are performed in the ring Zp[x]/〈xn + 1〉. It’s not hard
to see that the hash functions in H(R,D,m) satisfy the following two properties
for any ŷ, ẑ ∈ Rm and c ∈ R:

h(ŷ + ẑ) = h(ŷ) + h(ẑ) (1)

h(ŷc) = h(ŷ)c (2)

The collision problem Col(h,D) is defined as follows:

Definition 2. Given an element h ∈ H(R,D,m), the collision problem
Col(h,D), where D ⊆ R, asks to find two distinct elements ẑ, ẑ′ ∈ D such
that h(ẑ) = h(ẑ′).

In [18], it was shown that when D is some restricted domain, solving the
Col(h,D) problem for random h ∈ H(R,D,m) is as hard as solving SVPγ

for any (xn + 1)-cyclic lattice.

Theorem 1. Let R = Zp[x]/〈xn + 1〉 be a ring where n is any power of 2, and
define D = {y ∈ R : ‖y‖∞ ≤ d} for some integer d. Let H(R,D,m) be a hash
function family as in Definition 1 such that m > log p

log 2d and p ≥ 4dmn1.5 logn.
If there is a polynomial-time algorithm that solves the Col(h,D) problem for
a random h ∈ H(R,D,m) with some non-negligible probability, then there is
a polynomial-time algorithm that can solve SVPγ(Λ) for every (xn + 1)-cyclic
lattice Λ, where γ = 16dmn log2 n.

2.4 Cryptographic Definitions

Digital Signatures. We recall the definitions of signature schemes and what
it means for a signature scheme to be secure.
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Definition 3. A signature scheme consists of a triplet of polynomial-time (pos-
sibly probabilistic) algorithms (G,S, V ) such that for every pair of outputs (s, v)
of G(1n) and any n-bit message m,

Pr[V (v,m, S(s,m)) = 1] = 1

where the probability is taken over the randomness of algorithms S and V .

In the above definition, G is called the key-generation algorithm, S is the signing
algorithm, V is the verification algorithm, and s and v are, respectively, the
signing and verification keys.

A signature scheme is said to be secure if there is only a negligible probability
that any forger, after seeing signatures of messages of his choosing, can sign a
message whose signature he has not already seen [12].

Definition 4. A signature scheme (G,S, V ) is said to be secure if for every
polynomial-time (possibly randomized) forger F , the probability that after seeing
the public key and {(μ1, S(s, μ1)), . . . , (μq, S(s, μq))} for any q messages μi of
its choosing (where q is polynomial in n), F can produce (μ 
= μi, σ) such that
V (v, μ, σ) = 1, is negligibly small. The probability is taken over the randomness
of G, S, V , and F .

In the standard security definition of a signature scheme, the forger should not be
able to produce a signature of a new message. A stronger notion of security, called
strong unforgeability requires that in addition to the above, a forger shouldn’t
even be able to come up with a different signature for a message whose signature
he has already seen. The schemes presented in this paper satisfy this stronger
notion of unforgeability.

Identification Schemes. An identification scheme consists of a key-generation
algorithm and a description of an interactive protocol between a prover, pos-
sessing the secret key, and verifier possessing the corresponding public key. In
general, it is required that the verifier accepts the interaction with a prover who
behaves honestly with probability one, but this definition can be relaxed so that
sometimes an honest prover is not accepted with some small probability.

The standard active attack model against identification schemes proceeds in
two phases [5]. In the first phase, the adversary interacts with the prover in an
effort to obtain some information. In the second stage, the adversary plays the
role of the prover and tries to make a verifier accept the interaction. We remark
that in the second stage, the adversary no longer has access to the honest prover.
The adversary succeeds if he is able to make an honest verifier accept with some
non-negligible probability.

Witness-Indistinguishability. We will only define the concept of witness-
indistinguishability in a way that pertains to our application and we refer the
reader to [6] for the more general definition. For convenience, we will use the
notation from the identification protocol in Figure 1. An identification scheme
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is said to be perfectly witness-indistinguishable if for any public key S, and any
two valid secret keys s, s′ (i.e. s, s′ ∈ Ds and gs mod N = gs′

mod N = S), the
view of any (possibly malicious) verifier in the interaction where the prover uses
s has the exact same distribution as the view where the prover uses s′. In other
words, it is impossible for the verifier to figure out which of the valid secret keys
the prover is using to authenticate himself.

3 Lattice-Based Constructions

In this section, we present our lattice-based identification (Figure 3) and sig-
nature (Figure 4) schemes. In Figure 2 we define all the parameters that will
appear in this section as well as give some concrete instantiations. The parame-
ter κ controls the size of the domain from which the challenges/signatures come
from. In order to have soundness error of at most 2−80, this parameter must be
set such that the size of this domain is 2160. The parameter p is chosen such that
every public key has a very high probability of having multiple corresponding
secret keys associated with it. The free parameters n,m, and σ need to be set
in a way so that it is computationally infeasible find collisions in the underlying
hash function family H(R,D,m).

The last two lines of the above table deal with the practical cryptanalysis
of our signature scheme. The last line of the table specifies the length of the
shortest vector in a certain lattice defined by our signature scheme that can be
found in practice, while the line above that specifies the length of the vector that
needs to be found in order to forge a signature. See Section 3.3 for more details.

Parameter Definition Sample Instantiations
n integer that is a power of 2 512 512 512 1024
m any integer 4 5 8 8
σ any integer 127 2047 2047 2047
κ integer s.t. 2κ

(
n
κ

) ≥ 2160 24 24 24 21
p integer ≈ (2σ + 1)m · 2− 128

n 231.7 259.8 295.8 295.9

R ring Zp[x]/〈xn + 1〉
D {g ∈ R : ‖g‖∞ ≤ mnσκ}
Ds {g ∈ R : ‖g‖∞ ≤ σ}
Dc {g ∈ R : ‖g‖1 ≤ κ}
Dy {g ∈ R : ‖g‖∞ ≤ mnσκ}
G {g ∈ R : ‖g‖∞ ≤ mnσκ − σκ}

Signature Size ≈ mn log (2mnσκ) bits 49000 72000 119000 246000
Public Key Size ≈ n log p bits 16000 31000 49000 98000
Secret Key Size ≈ mn log (2σ + 1) bits 16000 31000 49000 98000

Hash Function Size ≈ mn log p bits 65000 153000 392000 786000
Length of vector needed to break signature 223.5 227.9 228.6 229.4

Length of shortest vector that can be found 225.5 236.7 247.6 269.4

Fig. 2. Lattice-Based Schemes’ Parameter Definitions and Sample Instantiations
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3.1 Identification Scheme

The secret key of the prover, denoted ŝ, consists of a set of m polynomials
from the set Ds which are picked uniformly at random. The public key of the
prover consists of a hash function h which is picked randomly from the family
H(R,D,m), and the polynomial S = h(ŝ). We point out that it is not necessary
for every prover to have a distinct h. If trusted randomness is available, then
everyone can share the same random h which considerably lowers the public
key size because the hash function h can be hard-coded into the signing and
verification algorithms.

In the first step of the protocol, the prover picks a random ŷ ∈ Dm
y , and

“commits” to it by sending Y = h(ŷ) to the verifier. The verifier then picks
a random challenge c from Dc and sends it to the prover. The prover then
computes ẑ = ŝc + ŷ. If this result falls into the range Gm, the prover sends it
to the verifier. Otherwise, he aborts the protocol. Upon receiving ẑ, the verifier
accepts the interaction if ẑ ∈ Gm and h(ẑ) = Sc + Y. Using the homomorphic
properties of h (see (1) and (2)), we see that h(ŝc + ŷ) = Sc + Y, and so an
honest prover who does not abort will always be accepted.

Proving the soundness and completeness of the protocol is done using the
following series of steps:

1. Show that an honest prover is accepted with probability 1/e.
2. Show that the ID scheme is perfectly witness-indistinguishable.
3. Show that with probability 1− 2−128, for a randomly-picked ŝ ∈ Dm

s , there
is another ŝ′ ∈ Dm

s such that h(ŝ) = h(ŝ′).
4. Show how to extract a collision in h from an adversary who succeeds in

breaking the protocol

Step 1 shows that the completeness of the protocol is 1/e. We will explain
how to increase this number later. Step 2 is essentially the main part of the
proof, which shows that for every pair of possible secret keys ŝ, ŝ′ such that
S = h(ŝ) = h(ŝ′), no adversarial verifier can determine which secret key is being
used by the prover. The reason for this is that we have set up the parameters
so that for every secret key ŝ ∈ Dm

s , every challenge c ∈ Dc, and every response
ẑ ∈ Gm, the value of ẑ − ŝc is in Dy. This implies that having seen the history
(Y, c, ẑ), it is impossible to tell whether the secret key was ŝ and we picked
a masking parameter ŷ, or the secret key was ŝ′ and we picked the masking
parameter ŷ′ = ẑ− ŝ′c = ŷ + ŝc− ŝ′c = ŷ + (ŝ− ŝ′)c because h(ŝ) = h(ŝ′) = S
and h(ŷ) = h(ŷ′) = Y.

To make the claim in step 2 non-vacuous, we need to show that for a randomly
picked secret key, there is indeed a high probability that another secret key exists
which produces the same public key. This is done in step 3.

In step 4, we show how to use a successful adversary to solve the Col(h,D)
problem for a random h ∈ H(R,D,m). Given a random h ∈ H(R,D,m), we pick
a random secret key ŝ and publish the public keys h and S = h(ŝ). In the first
stage of the attack, the adversary plays the role of the verifier, and we are able
to perfectly play the part of the prover because we know the secret key. In the
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Private key: ŝ
$← Dm

s

Public key: h
$← H(R, D, m),S ← h(ŝ)

Prover Verifier
ŷ

$← Dm
y , Y ← h(ŷ) Y �

c� c
$← Dc

ẑ ← ŝc + ŷ

if ẑ /∈ Gm then ẑ ←⊥ ẑ �
Accept iff ẑ ∈ Gm and h(ẑ) = Sc + Y

Fig. 3. Lattice-Based Identification Scheme

second stage when the adversary attempts to impersonate the prover, we receive
his commitment, and send a random challenge c ∈ Dc. After he responds with ẑ,
we rewind and pick another random challenge c′ ∈ Dc, to which the adversary
will respond with ẑ′. The responses of the adversary and our knowledge of the
secret key allow us to obtain the equation h(ẑ− ŝc) = h(ẑ′− ŝc′). By our choice
of parameters, both ẑ − ŝc and ẑ′ − ŝc′ are in D, and because of the witness-
indistinguishability of the protocol, the adversary cannot know our exact secret
key. Therefore with probability at least 1/2, ẑ− ŝc and ẑ′ − ŝc′ will be distinct
and we have a collision for h. Thus an adversary who can break the ID scheme
can be used to solve Col(h,D) for random h ∈ H(R,D,m), and by Theorem 1,
this implies finding the approximate short vector in all (xn + 1)-cyclic lattices.

Theorem 2. If the identification scheme in Figure 3 is insecure against active
attacks for the parameters in Table 2, then there is polynomial-time algorithm
that can solve SVPγ(Λ) for γ = Õ(n2) for every lattice Λ corresponding to an
ideal in the ring Z[x]/〈xn + 1〉.

Notice that the ID scheme is not quite satisfactory because a valid prover is
only accepted with probability 1/e. This means that the scheme may have to
be repeated several times until the prover succeeds. Because we showed that the
scheme is witness-indistinguishable, the repetitions can be performed in parallel,
and the witness-indistinguishability property will still be preserved [6]. So the
straight-forward way to modify the ID scheme would be, for example, to pick 30
different ŷi’s and send the Yi = h(ŷi) to the verifier. Then the verifier will send
30 challenges, and the prover replies to the first one of these challenges that he
can. This would result in a protocol where the honest prover is accepted with
probability about 1− 2−20.

But there are some significant improvements that can be made. First of all,
the verifier needs to send only one challenge, rather than one challenge for every
commitment (this is because we show that for every challenge c, the probability
of aborting is equal over the random choice of ŷ). And secondly, we can use a
standard trick to shorten the length of every Yi, which will result in large savings
in our protocol because the length of each Y is approximately n log p bits, which
could be as large as 100,000 bits! Instead of sending Y, we can send H(Y) where
H is any collision resistant hash function. Unlike with h, we will not need H to
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Signing Key: ŝ
$← Dm

s

Verification Key: h
$← H(R, D, m),S ← h(ŝ)

Random Oracle: H : {0, 1}∗ → Dc

Sign(μ, h, ŝ)
1: ŷ

$← Dm
y

2: e ← H(h(ŷ), μ)
3: ẑ ← ŝe + ŷ
4: if ẑ /∈ Gm, then goto step 1
5: output (ẑ, e)

Verify(μ, ẑ, e, h,S)
1: Accept iff

ẑ ∈ Gm and e = H(h(ẑ) − Se, μ)

Fig. 4. Lattice-Based Signature Scheme

have any algebraic properties like (1) and (2), so H could be a cryptographic
hash function such as SHA or an efficient lattice-based hash function from [20]
whose output is about 512 bits. So sending 30 H(Y)’s will only require about
15, 000 bits in total. In this modified protocol, the verifier’s challenge and the
prover’s reply remain the same as in the old protocol. But to authenticate the
prover, the verifier checks whether ẑ ∈ Gm and that H(h(ẑ) − Sc) is equal
to some H(Y) sent by the prover in the first step 2. It can be shown that an
adversary who breaks this protocol can be used to find a collision either in H or
in h. We will give more details in the full version of the paper.

3.2 Signature Scheme

Our signature scheme is presented in Figure 4. The public and secret keys are just
like in the ID scheme. To sign a message μ, we pick a random ŷ and compute
e = H(h(ŷ), μ) and send (ẑ, e) as the signature only if ẑ is in the set Gm.
Otherwise we repeat the procedure until ẑ ends up in Gm. The probability that
we succeed in getting ẑ to be in Gm on any particular try is the same as the
probability that the ID scheme in Figure 3 doesn’t send ⊥, which is 1/e. So we
expect to repeat the signing procedure less than 3 times to get a signature.

The witness-indistinguishability of the signature scheme follows directly from
the witness indistinguishability of the ID scheme because the challenge is now
simply generated by a random oracle rather than by the verifier. The proof
of security of the signature scheme uses the forking lemma [32] to obtain two
signatures from a forger that use the same random oracle query. Then using the
same ideas as in the security proof of the ID scheme, it can be shown how to
use these signatures to obtain a solution to the Col(h,D) problem for a random
h ∈ H(R,D,m).

Theorem 3. If the signature scheme in Figure 4 for the parameters in Table 2
is not strongly unforgeable, then there is a polynomial-time algorithm that can
solve SVPγ(Λ) for γ = Õ(n2) for every lattice Λ corresponding to an ideal in
the ring Z[x]/〈xn + 1〉.
2 One could lower the communication complexity even further by combining the 30

hashes into a hash tree.
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3.3 Concrete Parameters

The security of our ID (and signature) scheme depends on its soundness and
the hardness of finding collisions in hash functions from a certain family. As
mentioned earlier, we set the parameters κ and p such that the soundness error
is at most 2−80. We now discuss how to set the remaining parameters so that
finding collisions in the resulting hash function is infeasible with the techniques
known today. For this, we will use the work of [8], who showed that, given
a reasonable amount of time, algorithms for finding short vectors in random
lattices produce a vector that is no smaller than 1.01n times the shortest vector
of the lattice.

We showed that an adversary who succeeds in forging a signature can be
used to find a collision in a hash function chosen randomly from H(R,D,m).
This is equivalent to finding “short” vectors a certain lattice which we will now
define. For a polynomial a ∈ Zp[x]/〈xn + 1〉, let Rot(a) be the n × n matrix
whose ith column is the polynomial axi, and let A be the n× nm matrix A =
[Rot(a1)||Rot(a2)|| . . . ||Rot(am)] where ai are the polynomials which define the
hash function h. If we define the lattice Λ⊥

p (A) = {u ∈ Zmn : Au = 0(mod p)},
then finding a vector u ∈ Λ⊥

p (A) whose �∞ norm is at most 2mnσκ is equivalent
to finding a collision in h ∈ H(R,D,m).

The random lattices on which the experiments of [8] were run differ from
Λ⊥

p (A), but in [25], experiments were run on lattices that are very similar 3

to Λ⊥
p (A) which obtained the same results as [8]. Furthermore, it was shown

in [25] that it is inefficient to try to find a short vector in Λ⊥
p (A) by using

all its mn dimensions. Rather, one should only use the first
√
n log p/ log 1.01

dimensions and zero out the others. This results in a vector whose �2 length is
min{p, 22

√
n log p log 1.01}, and whose �∞ norm is at least

min{p, 22
√

n log p log 1.01 · (n log p/ log 1.01)−1/4} (3)

Since solving the Col(h,D) problem is equivalent to finding an element ŷ such
that h(ŷ) = 0 and ‖ŷ‖∞ ≤ 2mnσκ, we want to make sure that when we set
our parameters, the value of 2mnσκ is smaller than the value in (3). In the
instantiation of the scheme that produces a signature of length approximately
49000 bits, the value of 2mnσκ is around 223.5, while the value of the shortest
vector (in the �∞ norm) that can be found according to (3) is around 225.5 (see
the last two lines of the table in Figure 2).

We hope that our work provides further motivation for studying lattice-
reduction algorithms for lattices of the form Λ⊥

p (A), which also happen to be
central to the cryptanalysis of other lattice-based schemes such as [20,19,15].

3 The lattices in [25] were just like Λ⊥p (A), except each entry of A was chosen uniformly
at random modulo p. Since the currently best lattice-reduction algorithms don’t
“see” the algebraic structure of the lattice, it is very reasonable to assume that their
performance will be the same on our lattices and the lattices in [25]. Of course it’s
possible that a different algorithm that has yet to be discovered will be able to use
the algebraic structure of A to achieve better results.
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4 Factoring-Based Constructions

We now present a modification of a signature scheme presented in [31] whose
security is based on the hardness of factoring . We will need the following two
definitions from [31].

Definition 5. A prime p is said to be α-strong if p = 2r + 1 where r is an
integer whose prime factors are all greater than α.

Definition 6. Let N = pq, where p and q are primes. Then an element g ∈ Z∗
N

is said to be an asymmetric basis if the parity of ord(g) in Z∗
p differs from the

parity of ord(g) in Z∗
q .

Both schemes are presented in Figure 5 (our scheme only differs from that in
[31] by the addition of line 4), and the parameters in [31] as well as our modified
parameters are presented in Figure 6. We point out that the scheme of [31] is a
variant of Girault’s scheme [10], and our technique of shortening the signature
length would apply equally well to all its variants [10,31,11] as well as to the
blind signature constructed in [31].

The signature of a message μ consists of the pair (z, e). The length of z in
the non-aborting version of the protocol has length k + k′ + log σ = 360, while
in our protocol the length is k+ 1 + log σ = 297. The savings are essentially due
to the fact that we can pick y in a much smaller range, and the fact that we are
allowed to abort keeps the scheme secure.

If in step 4, z is not in G, then the signing procedure has to be repeated.
It can be shown that this happens with probability 1/2. So we expect to run
the signing protocol twice for every signature. But if we assume that off-line
computations (i.e. computations before receiving the message) are free, then we
can change the protocol so that we expect to compute just one extra random
oracle query over the non-aborting signature scheme. The way to do this is to
always keep several yi and gyi mod N stored along with the ranges that e would
have to fall into so that se+yi ∈ G (the range is just (G−yi)/s). Then when we
are asked to sign a message μ, we compute e = H(gy1 mod N,μ) and then check

Secret Key: s
$← Ds

Public Key: N , g, and S ← gs mod N
Random Oracle: H : {0, 1}∗ → Dc

Sign(μ, N, g, s)
1: y

$← Dy

2: e ← H(gy mod N, μ)
3: z ← se + y
4: [if z /∈ G, then goto step 1]
5: output (z,e)

Verify(μ, z, e, N, g, S)
1: Accept iff e = H(gzS−e mod N, μ)

Fig. 5. Factoring-Based Signature Schemes. Line 4 is only executed in the abort-
ing scheme.
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Without Aborting With Aborting
k 128
N 1024-bit product of two 2k-strong primes
g asymmetric basis in Z∗N such that ord(g) has 160 bits
σ 2168

Dc {0, . . . , 2k}
Ds {0, . . . , σ}
k′ 64 -
Dy {0, . . . , 2k+k′ · σ} {0, . . . , 2k+1 · σ}
G - {2k · σ, . . . , 2k+1 · σ}

Signature Size (bits) 488 425

Fig. 6. Factoring-Based Scheme’s Variable Definitions

whether it’s in the valid range of y1. If it is, then we compute sc+y1 and output
it. If it’s not, then we recompute e using y2, and so on. The important thing to
note is that we only compute sc + yi once, and we still expect to succeed after
two tries. As an added bonus, we only use up one yi per message, since the yi

that “didn’t work” can be safely tried for the next message.

Theorem 4. An adversary who breaks the aborting signature scheme in T steps
can be used to factor N in poly(T ) steps.
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Abstract. We describe public key encryption schemes with security
provably based on the worst case hardness of the approximate Shortest
Vector Problem in some structured lattices, called ideal lattices. Under
the assumption that the latter is exponentially hard to solve even with a
quantum computer, we achieve CPA-security against subexponential at-
tacks, with (quasi-)optimal asymptotic performance: if n is the security
parameter, both keys are of bit-length Õ(n) and the amortized costs of
both encryption and decryption are Õ(1) per message bit. Our construc-
tion adapts the trapdoor one-way function of Gentry et al. (STOC’08),
based on the Learning With Errors problem, to structured lattices. Our
main technical tools are an adaptation of Ajtai’s trapdoor key genera-
tion algorithm (ICALP’99) and a re-interpretation of Regev’s quantum
reduction between the Bounded Distance Decoding problem and sam-
pling short lattice vectors.

1 Introduction

Lattice-based cryptography has been rapidly developing in the last few years, in-
spired by the breakthrough result of Ajtai in 1996 [1], who constructed a one-way
function with average-case security provably related to the worst-case complexity
of hard lattice problems. The attractiveness of lattice-based cryptography stems
from its provable security guarantees, well studied theoretical underpinnings,
simplicity and potential efficiency (Ajtai’s one-way function is a matrix-vector
multiplication over a small finite field), and also the apparent security against
quantum attacks. The main complexity assumption is the hardness of approxi-
mate versions of the Shortest Vector Problem (SVP). The GapSVPγ(n) problem
consists in, given a lattice of dimension n and a scalar d, replying YES if there
exists a non-zero lattice vector of norm ≤ d and NO if all non-zero lattice vectors
have norm ≥ γ(n)d. The complexity of GapSVPγ(n) increases with n, but de-
creases with γ(n). Although the latter is believed to be exponential in n for any
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polynomial γ(n), minimizing the degree of γ(n) is very important in practice, to
allow the use of a practical dimension n for a given security level.
Lattice-based public key encryption. The first provably secure lattice-
based cryptosystem was proposed by Ajtai and Dwork [3], and relied on a variant
of GapSVP in arbitrary lattices (it is now known to also rely on GapSVP [19]).
Subsequent works proposed more efficient alternatives [33,30,9,28]. The current
state of the art [9,28] is a scheme with public/private key length Õ(n2) and
encryption/decryption throughput of Õ(n) bit operations per message bit. Its
security relies on the quantum worst-case hardness of GapSVPÕ(n1.5) in arbi-
trary lattices. The security can be de-quantumized at the expense of both in-
creasing γ(n) and decreasing the efficiency, or relying on a new and less studied
problem [28]. In parallel to the provably secure schemes, there have also been
heuristic proposals [11,12]. In particular, unlike the above schemes which use
unstructured random lattices, the NTRU encryption scheme [12] exploits the
properties of structured lattices to achieve high efficiency with respect to key
length (Õ(n) bits) and encryption/decryption cost (Õ(1) bit operation per mes-
sage bit). Unfortunately, its security remains heuristic and it was an important
open challenge to provide a provably secure scheme with comparable efficiency.

Provably Secure Schemes from Ideal Lattices. Micciancio [20] intro-
duced the class of structured cyclic lattices, which correspond to ideals in poly-
nomial rings Z[x]/(xn − 1), and presented the first provably secure one-way
function based on the worst-case hardness of the restriction of Poly(n)-SVP to
cyclic lattices. (The problem γ-SVP consists in computing a non-zero vector of
a given lattice, whose norm is no more than γ times larger than the norm of
a shortest non-zero lattice vector.) At the same time, thanks to its algebraic
structure, this one-way function enjoys high efficiency comparable to the NTRU
scheme (Õ(n) evaluation time and storage cost). Subsequently, Lyubashevsky
and Micciancio [17] and independently Peikert and Rosen [29] showed how to
modify Micciancio’s function to construct an efficient and provably secure colli-
sion resistant hash function. For this, they introduced the more general class of
ideal lattices, which correspond to ideals in polynomial rings Z[x]/f(x). The col-
lision resistance relies on the hardness of the restriction of Poly(n)-SVP to ideal
lattices (called Poly(n)-Ideal-SVP). The average-case collision-finding problem
is a natural computational problem called Ideal-SIS, which has been shown to
be as hard as the worst-case instances of Ideal-SVP. Provably secure efficient
signature schemes from ideal lattices have also been proposed [18,15,16,14], but
constructing efficient provably secure public key encryption from ideal lattices
was an interesting open problem.

Our results. We describe the first provably CPA-secure public key encryp-
tion scheme whose security relies on the hardness of the worst-case instances of
Õ(n2)-Ideal-SVP against subexponential quantum attacks. It achieves asymp-
totically optimal efficiency: the public/private key length is Õ(n) bits and the
amortized encryption/decryption cost is Õ(1) bit operations per message bit
(encrypting Ω̃(n) bits at once, at a Õ(n) cost). Our security assumption is
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that Õ(n2)-Ideal-SVP cannot be solved by any subexponential time quantum
algorithm, which is reasonable given the state-of-the art lattice algorithms [36].
Note that this is stronger than standard public key cryptography security as-
sumptions. On the other hand, contrary to most of public key cryptography,
lattice-based cryptography allows security against subexponential quantum at-
tacks. Our main technical tool is a re-interpretation of Regev’s quantum reduc-
tion [33] between the Bounded Distance Decoding problem (BDD) and sampling
short lattice vectors. Also, by adapting Ajtai’s trapdoor generation algorithm [2]
(or more precisely its recent improvement by Alwen and Peikert [5]) to structured
ideal lattices, we are able to construct efficient provably secure trapdoor sig-
natures, ID-based identification schemes, CCA-secure encryption and ID-based
encryption. We think these techniques are very likely to find further applications.

Most of the cryptosystems based on general lattices [33,30,31,9,28] rely on
the average-case hardness of the Learning With Errors (LWE) problem intro-
duced in [33]. Our scheme is based on a structured variant of LWE, that we
call Ideal-LWE. We introduce novel techniques to circumvent two main difficul-
ties that arise from the restriction to ideal lattices. Firstly, the previous cryp-
tosystems based on unstructured lattices all make use of Regev’s worst-case to
average-case classical reduction [33] from BDD to LWE (this is the classical step
in the quantum reduction of [33] from SVP to LWE). This reduction exploits
the unstructured-ness of the considered lattices, and does not seem to carry over
to the structured lattices involved in Ideal-LWE. In particular, the probabilistic
independence of the rows of the LWE matrices allows to consider a single row
in [33, Cor. 3.10]. Secondly, the other ingredient used in previous cryptosystems,
namely Regev’s reduction [33] from the computational variant of LWE to its
decisional variant, also seems to fail for Ideal-LWE: it relies on the probabilistic
independence of the columns of the LWE matrices.

Our solution to the above difficulties avoids the classical step of the reduc-
tion from [33] altogether. Instead, we use the quantum step to construct a new
quantum average-case reduction from SIS (the unstructured variant of Ideal-SIS)
to LWE. It also works from Ideal-SIS to Ideal-LWE. Combined with the known
reduction from worst-case Ideal-SVP to average-case Ideal-SIS [17], we obtain a
quantum reduction from Ideal-SVP to Ideal-LWE. This shows the hardness of
the computational variant of Ideal-LWE. Because we do not obtain the hardness
of the decisional variant, we use a generic hardcore function to derive pseudoran-
dom bits for encryption. This is why we need to assume the exponential hardness
of SVP. The encryption scheme follows as an adaptation of [9, Sec. 7.1].

The main idea of our new quantum reduction from Ideal-SIS to Ideal-LWE is
a re-interpretation of Regev’s quantum step in [33]. The latter was presented as
a worst-case quantum reduction from sampling short lattice vectors in a lattice L
to solving BDD in the dual lattice L̂. We observe that this reduction is actually
stronger: it is an average-case reduction which works given an oracle for BDD in L̂
with a normally distributed error vector. Also, as pointed out in [9], LWE can be
seen as a BDD with a normally distributed error in a certain lattice whose dual
is essentially the SIS lattice. This leads to our SIS to LWE reduction. Finally
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we show how to apply it to reduce Ideal-SIS to Ideal-LWE – this involves a
probabilistic lower bound for the minimum of the Ideal-LWE lattice. We believe
our new SIS to LWE reduction is of independent interest. Along with [22], it
provides an alternative to Regev’s quantum reduction from GapSVP to LWE.
Ours is weaker because the derived GapSVP factor increases with the number
of LWE samples, but it has the advantage of carrying over to the ideal case. Also,
when choosing practical parameters for lattice-based encryption (see, e.g., [23]),
it is impractical to rely on the worst-case hardness of SVP. Instead, the practical
average-case hardness of LWE is evaluated based on the best known attack which
consists in solving SIS. Our reduction justifies this heuristic by showing that it
is indeed necessary to (quantumly) break SIS in order to solve LWE.

Road-map. We provide some background in Section 2. Section 3 shows how to
hide a trapdoor in the adaptation of SIS to ideal lattices. Section 4 contains the
new reduction between SIS and LWE. Finally, in Section 5, we present our CPA-
secure encryption scheme and briefly describe other cryptographic constructions.

Notation. Vectors will be denoted in bold. We denote by 〈·, ·〉 and ‖ · ‖ the
inner product and the Euclidean norm. We denote by ρs(x) (resp. νs) the stan-
dard n-dimensional Gaussian function (resp. distribution) with center 0 and
variance s, i.e., ρs(x) = exp(−π‖x‖2/s2) (resp. νs(x) = ρs(x)/sn). We use
the notations Õ(·) and Ω̃(·) to hide poly-logarithmic factors. If D1 and D2 are
two probability distributions over a discrete domain E, their statistical distance
is Δ(D1, D2) = 1

2

∑
x∈E |D1(x)−D2(x)|. If a function f over a countable do-

main E takes non-negative real values, its sum over an arbitrary F ⊆ E will be
denoted by f(F ). If q is a prime number, we denote by Zq the field of integers
modulo q. We denote by Ψs the reduction modulo q of νs.

2 Reminders and Background Results on Lattices

We refer to [21] for a detailed introduction to the computational aspects of lat-
tices. In the present section, we remind the reader very quickly some fundamental
properties of lattices that we will need. We then introduce the so-called ideal
lattices, and finally formally define some computational problems.

Euclidean lattices. An n-dimensional lattice L is the set of all integer lin-
ear combinations of some linearly independent vectors b1, . . . , bn ∈ Rn, i.e.,
L =
∑

Zbi. The bi’s are called a basis of L. The ith minimum λi(L) is the
smallest r such that L contains i linearly independent vectors of norms ≤ r.
We let λ∞1 (L) denote the first minimum of L with respect to the infinity norm.
If B = (b1, . . . , bn) is a basis, we define its norm by ‖B‖ = max ‖bi‖ and its
fundamental parallelepiped by P (B) = {

∑
i cibi | c ∈ [0, 1)n}. Given a basis B

for lattice L and a vector c ∈ Rn, we define c mod L as the unique vector
in P (B) such that c − (c mod L) ∈ L (the basis being implicit). For any lat-
tice L and any s > 0, the sum ρs(L) is finite. We define the lattice Gaussian
distribution by DL,s(b) = ρs(b)

ρs(L) , for any b ∈ L. If L is a lattice, its dual L̂ is the

lattice {b̂ ∈ Rn | ∀b ∈ L, 〈b̂, b〉 ∈ Z}. We will use the following results.
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Lemma 1 ([29, Lemma 2.11] and [27, Lemma 3.5]). For any x in an n-
dimensional lattice L and s ≥ 2

√
ln(10n)/π/λ∞1 (L̂), we have DL,s(x) ≤ 2−n+1.

Lemma 2 ([22, Lemma 2.10]). Given an n-dimensional lattice L, we have
Prx∼DL,s [‖x‖ > s

√
n] ≤ 2−n+1.

Ideal lattices. Ideal lattices are a subset of lattices with the computationally
interesting property of being related to polynomials via structured matrices. The
n-dimensional vector-matrix product costs Õ(n) arithmetic operations instead
of O(n2). Let f ∈ Z[x] a monic degree n polynomial. For any g ∈ Q[x], there is a
unique pair (q, r) with deg(r) < n and g = qf + r. We denote r by g mod f and
identify r with the vector r ∈ Qn of its coefficients. We define rotf (r) ∈ Qn×n as
the matrix whose rows are the xir(x) mod f(x)’s, for 0 ≤ i < n. We extend that
notation to the matrices A over Q[x]/f , by applying rotf component-wise. Note
that rotf (g1)rotf (g2) = rotf (g1g2) for any g1, g2 ∈ Q[x]/f . The strengths of our
cryptographic constructions depend on the choice of f . Its quality is quantified
by its expansion factor (we adapt the definition of [17] to the Euclidean norm):

EF(f, k) = max
{
‖g mod f‖
‖g‖ | g ∈ Z[x] \ {0} and deg(g) ≤ k (deg(f)− 1)

}
,

where we identified the polynomial g mod f (resp. g) with the coefficients vector.
Note that if deg(g) < n, then ‖rotf (g)‖ ≤ EF(f, 2) · ‖g‖. We will concentrate
on the polynomials x2k

+ 1, although most of our results are more general. We
recall some basic properties of x2k

+ 1 (see [7] for the last one).

Lemma 3. Let k ≥ 0 and n = 2k. Then f(x) = xn + 1 is irreducible in Q[x].
Its expansion factor is ≤

√
2. Also, for any g =

∑
i<n gix

i ∈ Q[x]/f , we
have rotf (g)T = rotf (ḡ) where ḡ = g0 −

∑
1≤i<n gn−ix

i. Furthermore, if q is
a prime such that 2n|(q − 1), then f has n linear factors in Zq[x]. Finally,
if k ≥ 2 and q is a prime with q ≡ 3 mod 8, then f = f1f2 mod q where each fi

is irreducible in Zq[x] and can be written fi = xn/2 + tix
n/4 − 1 with ti ∈ Zq.

Let I be an ideal of Z[x]/f , i.e., a subset of Z[x]/f closed under addition and
multiplication by any element of Z[x]/f . It corresponds to a sublattice of Zn.
An f -ideal lattice is a sublattice of Zn that corresponds to an ideal I ⊆ Z[x]/f .

Hard lattice problems. The most famous lattice problem is SVP. Given a basis
of a lattice L, it aims at finding a shortest vector in L\{0}. It can be relaxed by
asking for a non-zero vector that is no longer than γ(n) times a solution to SVP,
for a prescribed function γ(·). The best polynomial time algorithm [4,35] solves γ-
SVP only for a slightly subexponential γ. When γ is polynomial in n, then the
most efficient algorithm [4] has an exponential worst-case complexity both in
time and space. If we restrict the set of input lattices to ideal lattices, we obtain
the problem Ideal-SVP (resp. γ-Ideal-SVP), which is implicitly parameterized
by a sequence of polynomials f of growing degrees. No algorithm is known to
perform non-negligibly better for Ideal-SVP than for SVP. It is believed that
no subexponential quantum algorithm solves the computational variants of SVP



622 D. Stehlé et al.

or Ideal-SVP in the worst case. These worst-case problems can be reduced to
the following average-case problems, introduced in [1] and [9].

Definition 1. The Small Integer Solution problem with parameters q(·), m(·),
β(·) (SISq,m,β) is as follows: Given n and a matrix G sampled uniformly in
Zm(n)×n

q(n) , find e ∈ Zm(n) \ {0} such that eTG = 0 mod q(n) (the modulus be-
ing taken component-wise) and ‖e‖ ≤ β(n). The Ideal Small Integer Solution
problem with parameters q,m, β and f (Ideal-SISf

q,m,β) is as follows: Given n
and m polynomials g1, . . . , gm chosen uniformly and independently in Zq[x]/f ,
find e1, . . . , em ∈ Z[x] not all zero such that

∑
i≤m eigi = 0 in Zq[x]/f and ‖e‖ ≤

β, where e is the vector obtained by concatenating the coefficients of the ei’s.

The above problems can be interpreted as lattice problems. If G ∈ Zm×n
q , then

the set G⊥ = {b ∈ Zm | bTG = 0 mod q} is anm-dimensional lattice and solving
SIS corresponds to finding a short non-zero vector in it. Similarly, Ideal-SIS
consists in finding a small non-zero element in the Z[x]/f -module M⊥(g) =
{b ∈ (Z[x]/f)m | 〈b, g〉 = 0 mod q}, where g = (g1, . . . , gm). It can be seen as
a lattice problem by applying the rotf operator. Note that the m of SIS is n
times larger than the m of Ideal-SIS. Lyubashevsky and Micciancio [17] reduced
Ideal-SVP to Ideal-SIS. The approximation factors in [17] are given in terms
of the infinity norm. For our purposes, it is more natural to use the Euclidean
norm. To avoid losing a

√
n factor by simply applying the norm equivalence

formula, we modify the proof of [17]. We also adapt it to handle the case where
the Ideal-SIS solver has a subexponentially small success probability, at the cost
of an additional factor of Õ(

√
n) in the SVP approximation factor.

Theorem 1. Suppose that f is irreducible over Q. Let m = Poly(n) and q =
Ω̃(EF(f, 3)βm2n) be integers. A polynomial-time (resp. subexponential-time) al-
gorithm solving Ideal-SISf

q,m,β with probability 1/Poly(n) (resp. 2−o(n)) can be
used to solve γ-Ideal-SVP in polynomial-time (resp. subexponential-time) with
γ = Õ(EF2(f, 2)βmn1/2) (resp. γ = Õ(EF2(f, 2)βmn)).

The problem LWE is dual to SIS in the sense that if G ∈ Zm×n
q is the SIS-

matrix, then LWE involves the dual of the lattice G⊥. We have Ĝ⊥ = 1
qL(G)

where L(G) = {b ∈ Zm | ∃s ∈ Zn
q , Gs = b mod q}.

Definition 2. The Learning With Errors problem with parameters q,m and a
distribution χ on R/[0, q) (LWEq,m;χ) is as follows: Given n, a matrix G ∈ Zm×n

q

sampled uniformly at random and Gs + e ∈ (R/[0, q))n, where s ∈ Zn
q is chosen

uniformly at random and the coordinates of e ∈ (R/[0, q))m are independently
sampled from χ, find s. The Ideal Learning With Errors problem with parame-
ters q,m, a distribution χ on R/[0, q) and f (Ideal-LWEf

m,q;χ) is the same as
above, except that G = rotf (g) with g chosen uniformly in (Zq[x]/f)m.

We will use the following results on the LWE and Ideal-LWE lattices.
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Lemma 4. Let n,m and q be integers with q prime, m ≥ 5n log q and n ≥ 10.
Then for all but a fraction ≤ q−n of the G’s in Zm×n

q , we have λ∞1 (L(G)) ≥ q/4
and λ1(L(G)) ≥ 0.07

√
mq.

Lemma 5. Let n,m and q be integers with q = 3 mod 4 prime and m ≥ 41 log q
and n = 2k ≥ 32. Then for all but a fraction ≤ q−n of the g’s in (Zq[x]/f)m,
we have λ∞1 (L(rotf (g))) ≥ q/4 and λ1(L(rotf (g))) ≥ 0.017

√
mnq.

3 Hiding a Trapdoor in Ideal-SIS

In this section we show how to hide a trapdoor in the problem Ideal-SIS. Aj-
tai [2] showed how to simultaneously generate a (SIS) matrix A ∈ Zm×n

q and
a (trapdoor) basis S = (s1, . . . , sm) ∈ Zm×m of the lattice A⊥ = {b ∈ Zm :
bTA = 0 mod q}, with the following properties:

1. The distribution of A is close to the uniform distribution over Zm×n
q .

2. The basis vectors s1, . . . , sm are short.

Recently, Alwen and Peikert [5] improved Ajtai’s construction in the sense that
the created basis has shorter vectors: ‖S‖ = Õ(n log q) with m = Ω(n log q)
and overwhelming probability and ‖S‖ = O(

√
n log q) with m = Ω(n log2 q).

We modify both constructions to obtain a trapdoor generation algorithm for the
problem Ideal-SIS, with a resulting basis whose norm is as small as the one of [5].

Before describing the construction, we notice that the construction of [5] relies
on the Hermite Normal Form (HNF), but that here there is no Hermite Normal
Form for the rings under scope. We circumvent this issue by showing that except
in negligibly rare cases we may use a matrix which is HNF-like.

Theorem 2. There exists a probabilistic polynomial time algorithm with the fol-
lowing properties. It takes as inputs n, σ, r, an odd prime q, and integers m1,m2.
It also takes as input a degree n polynomial f ∈ Z[x] and random polynomials
a1 ∈ (Zq[x]/f)m1 . We let f =

∏
i≤t fi be the factorization of f over Zq. We

let κ = %1 + log q&, Δ =
(∏

i≤t

(
1 +
(

q
3r

)deg fi
)
− 1
)1/2

and m = m1 +m2. The
algorithm succeeds with probability ≥ 1 − p over a1, where p = (1 −

∏
i≤t(1 −

q− deg fi))σ. When it does, it returns a =
(a1

a2

)
∈ (Zq[x]/f)m and a basis S of

the lattice rotf (a)⊥, such that:

1. The distance to uniformity of a is at most p+m2Δ.
2. The quality of S is as follows:

– If m1 ≥ max{σ, κ, r} and m2 ≥ κ, then ‖S‖ ≤ EF(f, 2) ·
√

2κr1/2n3/2.
Additionally, ‖S‖ ≤ EF(f, 2)

√
3aκr·n with probability 1−2−a+O(lognm1r)

for a super-logarithmic function a = a(n) = ω(logn).
– If m1 ≥ max{σ, κ, r} and m2 ≥ κm1, then ‖S‖ ≤ EF(f, 2)(4

√
nr + 3).

3. In particular, for f = x2k

+ 1 with k ≥ 2 and a prime q with q ≡ 3 mod 8,
the following holds:
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– We can set σ = 1 and r = %1 + log3 q&. Then, the error probability is
p = q−Ω(n) and the parameter Δ is 2−Ω(n).

– If m1,m2 ≥ κ, then ‖S‖ ≤
√

6aκr · n = O(
√
an log q) with probability

1−2−a+O(log nm1r) for a super-logarithmic function a = a(n) = ω(logn).
– If m1 ≥ κ and m2 ≥ κm1, then ‖S‖ ≤

√
2(4
√
nr + 3) = O(

√
n log q).

In the rest of this section, we only describe the analog of the second construction
of Alwen and Peikert, i.e., the case m2 ≥ κm1, due to lack of space.

3.1 A Trapdoor for Ideal-SIS

We now construct the trapdoor for Ideal-SIS. More precisely, we want to simul-
taneously construct a uniform a ∈ Rm with R = Zq[x]/f , and a small basis S
of the lattice A⊥ where A = rotf (a). For this, it suffices to find a basis of the
module M⊥(a) = {y ∈ Rm

0 | 〈y,a〉 ≡ 0 mod q}, with R0 = Z[x]/f .

The principle of the design. In the following, for two matrices X and Y ,
[X |Y ] denotes the concatenation of the columns of X followed by Y and [X ;Y ]
denotes the concatenation of the rows of X and the rows of Y .

We mainly follow the Alwen-Peikert construction. Let m1 ≥ σ, r. Let us as-
sume that we generate random polynomials A1 = [a1, . . . , am1 ]T ∈ Rm1×1.
We will construct a random matrix A2 ∈ Rm2×1 with a structured matrix
S ∈ Rm×m

0 such that SA = 0 and S is a basis of the module M⊥(a), where
A = [A1;A2]. We first construct an HNF-like basis F of the module M⊥(a) with
A. Next, we construct a unimodular matrix Q such that S = QF is a short basis
of the module. More precisely, S has the following form:

S =
[
V P
D B

]
=
[
−Im1 P

0 B

]
︸ ︷︷ ︸

Q

·
[
H 0
U Im2

]
︸ ︷︷ ︸

F

.

Note that, by setting B lower triangular with diagonal coefficients equal to 1,
the matrix Q is unimodular.

In this design principle, we want FA = 0. Hence, we should set

HA1 = 0 and A2 = −UA1.

Notice that, in order to prove that F is a basis of A⊥, it suffices to show that
H is a basis of A⊥

1 . The first equation is satisfied by setting H be an HNF-
like matrix (see below). By setting U = G + R, with G to be defined later on
and R a random matrix, we have that A2 is almost uniformly random in R by
Micciancio’s regularity lemma (Lemma 6). More precisely, the i-th row of R is
chosen from ({−1, 0, 1}n)r × ({0}n)m1−r.

Lemma 6 (Adapted from [20, Th. 4.2]). Let F be a finite field and f ∈ F[x]
be monic and of degree n > 0. Let R be the ring F[x]/f . Let D ⊆ F and r > 0.
For a1, . . . , ar ∈ R, we denote by H(a1, . . . , ar) the random variable

∑
i≤r biai ∈
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R where the bi’s are degree < n polynomials with coefficients chosen inde-
pendently and uniformly in D. If U1, . . . , Ur are independent uniform random
variables in R, then the statistical distance to uniformity of (U1, . . . , Ur,
H(U1, . . . , Ur)) is below:

1
2

√√√√∏
i≤t

(
1 +
(
|F|
|D|r

)deg fi
)
− 1,

where f =
∏

i≤t fi is the factorization of f over F.

We show below how to choose P and G such that PG = H − Im1 . With this
relation, the design principle form of S therefore implies that V = −H +P (G+
R) = PR − Im1 , and D = B(G +R). Our constructions for P,G,B also ensure
that P , B and BG have ‘small’ entries so that S has ‘small’ entries.

A construction of H without HNF. We start with how to construct H for
A1 = [a1, . . . , am1 ]T ∈ Rm1×1. Since m1 ≥ max{σ, κ, r}, we have ai∗ ∈ R∗

for some index i∗ with probability at least 1 − p, where R∗ denotes the set of
invertible elements of R. For now, we set i∗ = 1 for simplicity. Using this ai∗ ,
we can construct an HNF-like matrix H : the first row is qe1 and the i-th row is
hie1 + ei for i = 2, . . . ,m1, where ei is a row vector in Rm1

0 such that the i-the
element is 1 and others are 0, and hi = −ai · a−1

1 mod q such that hi ∈ [0, q)n.
Let hi denote the i-th row of H . By the definition of H , H ·A1 ≡ 0 mod q. Thus,
each row vector hi is in M⊥(a1), where a1 = A1. It is obvious that h1, . . . ,hm1

are linearly independent over R0. Hence, we need to only show that H is indeed
the basis of M⊥(a1), but this is a routine work.

Next, we consider the case where i∗ 
= 1. In this case, we swap rows 1 and i∗
of A1 so that a1 ∈ R∗, and call it A′

1. Applying the method above, we get a
basis H ′ of Λ⊥(A′

1). By swapping columns 1 and i∗ and rows 1 and i∗ of H ′,
we get a basis H of Λ⊥(A1). In the following, we denote by i∗ the index i such
that ai ∈ R∗ and hi,i = q. Note that our strategy fails if there is no index i such
that ai ∈ R∗: this is not an issue, as this occurs only with small probability.

Preliminaries of the construction. Hereafter, we set W = BG. We often use
the matrix Tκ = (ti,j) ∈ Rκ×κ

0 , where ti,i = 1, ti+1,i = −2, and all other ti,j ’s
are 0. Notice that the i-th row of T−1

κ is (2i−1, 2i−2, . . . , 1, 0, . . . , 0) ∈ Rκ
0 .

3.2 An Analogue to the Second Alwen-Peikert Construction

The idea of the second construction in [5] is to haveG contain the rows ofH−Im1 .
This helps decrease the norms of the rows of P and V . To do so, we define
B = diag(Tκ, . . . , Tκ, Im2−m1κ). Note that B−1 = diag(T−1

κ , . . . , T−1
κ , Im2−m1κ).

Let h′
j denote the j-th row of H − Im1 . Let W = [W1;W2; . . . ;Wm1 ; 0], where

Wj = [wj,κ; . . . ; wj,1] ∈ Rκ×m1
0 . We compute the wj,k’s such that h′

j =
∑

k 2k−1·
wj,k and the components of all wj,k’s are polynomials with coefficients in {0, 1}.
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By this construction, T−1
κ ·Wj contains h′

j in the last row. Then, G = B−1 ·W
contains rows h′

j for j = 1, . . . ,m1. The matrix P = [p1; . . . ; pm1 ] picks all rows
h′

1, . . . ,h
′
m1

in G by setting pj = eκj ∈ Rm2
0 .

The norm of S is max{‖S1‖, ‖S2‖}, where S1 = [V |P ] and S2 = [D|B]. For
simplicity, we only consider the case where f = xn + 1. In the general case, the
bound on ‖S‖ involves an extra EF(f, 2) factor.

We have that ‖BG‖2 = ‖W‖2 ≤ n, since the entries of h′
j are all 0 except one

which is either hi∗,j or q − 1. Hence, we obtain that

‖S2‖2 ≤ ‖D‖2 + ‖B‖2 ≤ (3
√
nr +

√
n)2 + 5 ≤ (4

√
nr + 3)2.

It is obvious that ‖P‖ ≤ 1. Additionally, we have that ‖PR‖2 ≤ nr. Therefore:

‖S1‖2 ≤ ‖V ‖2 + ‖P‖2 ≤ (
√
nr + 1)2 + 1 ≤ (

√
nr + 2)2,

which completes the proof of Theorem 2. ��

4 From LWE to SIS

We show that any efficient algorithm solving LWE with some non-negligible
probability may be used by a quantum machine to efficiently solve SIS with
non-negligible probability. A crucial property of the reduction is that the matrix
underlying the SIS and LWE instances is preserved. This allows the reduction
to remain valid while working on Ideal-SIS and Ideal-LWE.

Theorem 3. Let q,m, n be integers, and α ∈ (0, 1) with n ≥ 32, Poly(n) ≥
m ≥ 5n log q and α < min

(
1

10
√

ln(10m)
, 0.006
)
. Suppose that there exists an algo-

rithm that solves LWEm,q;Ψαq in time T and with probability ε ≥ 4m exp
(
− π

4α2

)
.

Then there exists a quantum algorithm that solves SIS
m,q;

√
m

2α

in time Poly(T, n)

and with probability ε3

64 − O(ε5) − 2−Ω(n). The result still holds when replac-
ing LWE by Ideal-LWEf and SIS by Ideal-SISf , for f = xn+1 with n = 2k ≥ 32,
m ≥ 41 log q and q ≡ 3 mod 8.

When α = O(1/
√
n), the reduction applies even to a subexponential algorithm

for LWE (with success probability ε = 2−o(n)), transforming it into a subexpo-
nential quantum algorithm for SIS (with success probability ε = 2−o(n)). The
reduction works also for larger α = O(1/

√
logn), but in this case only applies to

polynomial algorithms for LWE (with success probability ε = Ω(1/Poly(n))).
The reduction is made of two components. First, we argue that an algorithm

solving LWE provides an algorithm that solves a certain bounded distance de-
coding problem, where the error vector is normally distributed. In a second step,
we show that Regev’s quantum algorithm [32, Lemma 3.14] can use such an al-
gorithm to construct small solutions to SIS.
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4.1 From LWE to BDD

An algorithm solving LWE allows us to solve, for certain lattices, a variation of
the Bounded Distance Decoding problem. In that variation of BDD, the error
vector is sampled according to a specified distribution.

Definition 3. The problem BDDχ with parameter distribution χ(·) is as follows:
Given an n-dimensional lattice L and a vector t = b + e where b ∈ L and e is
distributed according to χ(n), the goal is to find b. We say that a randomized
algorithm A solves BDDχ for a lattice L with success probability ≥ ε if, for
every b ∈ L, on input t = b+e, algorithm A returns b with probability ≥ ε over
the choice of e and the randomness of A.

For technical reasons, our reduction will require a randomized BDDχ algorithm
whose behaviour is independent of the solution vector b, even when the error
vector is fixed. This is made precise below.

Definition 4. A randomized algorithm A solving BDDχ for lattice L is said
to be strongly solution-independent (SSI) if, for every fixed error vector e, the
probability (over the randomness of A) that, given input t = b + e with b ∈ L,
algorithm A returns b is independent of b.

We show that if we have an algorithm that solves LWEm,q;Ψαq , then we can
construct an algorithm solving BDDναq for some lattices. Moreover, the con-
structed BDD algorithm is SSI.

Lemma 7. Let q,m, n be integers and α ∈ (0, 1), with m, log q = Poly(n).
Suppose that there exists an algorithm A that solves LWEm,q;Ψαq in time T and
with probability ε ≥ 4m exp

(
− π

4α2

)
. Then there exists S ⊆ Zm×n

q of proportion ≥
ε/2 and an SSI algorithm A′ such that if G ∈ S, algorithm A′ solves BDDναq

for L(G) in time T + Poly(n) and with probability ≥ ε/4.

Proof. If G ∈ Zm×n
q and s ∈ Zn

q are sampled uniformly and if the coordinates
of e are sampled according to Ψαq, then A finds s with probability ≥ ε over the
choices of G, s and e and a string w of internal random bits. This implies that
there exists a subset S of the G’s of proportion ≥ ε/2 such that for any G ∈ S,
algorithm A succeeds with probability ≥ ε/2 over the choices of s, e and w. For
any G ∈ S, we have Prs,e,w[A(Gs + e, w) = s] ≥ ε/2.

On input t = b+e, algorithmA′ works as follows: it samples s uniformly in Zn
q ;

it computes t′ = t+As, which is of the form t′ = Gs′+qk+e, where k ∈ Zm; it
calls A on t′ mod q and finds s′ (with probability ≥ ε/2); it then computes e′ =
t′−Gs′ mod q and returns t−e′. Suppose that A succeeds, i.e., we have s = s′.
Then e′ = e mod q. Using the standard tail bound on the continuous Gaussian
and the lower bound on ε we obtain that e has a component of magnitude ≥ q/2
with probability ≤ m exp(−π/(2α)2) ≤ ε/4. The algorithm thus succeeds with
probability ≥ ε/2− ε/4 = ε/4. ��

We now show that an algorithm solving BDDναq can be used to solve a quantized
version of it. This quantization is required for the quantum part of our reduction.
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The intuition behind the proof is that the discretization grid is so fine (the
parameter R can be chosen extremely large) that at the level of the grid the
distribution νs looks constant.

Lemma 8. Let s > 0 and L be an n-dimensional. Suppose that there exists an
SSI algorithm A that solves BDDνs for L in time T and with probability ε. Then
there exists an R, whose bit-length is polynomial in T, n, | log s| and the bit-size
of the given basis of L, and an SSI algorithm A′ that solves BDDDL/R,s

within
a time polynomial in logR and with probability ≥ ε− 2−Ω(n).

At this point, we have an R of bit-length polynomial in T, n, | logα| and an SSI
algorithm B with run-time polynomial in logR that solves BDDDL(G)/R,αq

, for
anyG in a subset S ⊆ Zm×n

q of proportion≥ ε/2, with probability≥ ε/4−2−Ω(n)

over the random choices of e and the internal randomness w. In the following we
assume that on input t = b + e, algorithm B outputs e when it succeeds, rather
than b. We implement B quantumly as follows: the quantum algorithm BQ maps
the state |e〉 |b + e〉 |w〉 to the state |e− B(b + e, w)〉 |b + e〉 |w〉.

4.2 A New Interpretation of Regev’s Quantum Reduction

We first recall Regev’s quantum reduction [32, Lemma 3.14]. It uses a random-
ized BDD oracle Bwc that finds the closest vector in a given lattice L to a given
target vector, as long as the target is within a prescribed distance d < λ1(L)

2 of L
(as above, we assume that Bwc returns the error vector). It returns a sample from
the distribution D

L̂,
√

n√
2d

. We implement oracle Bwc as a quantum oracle Bwc
Q as

above. We assume Bwc
Q accepts random inputs of length �.

1. Set R to be a large constant and build a quantum state which
is within �2 distance 2−Ω(n) of the normalized state corresponding
to
∑

w∈{0,1}�

∑
x∈ L

R ,‖x‖<d ρ d√
n
(x) |x〉 |x mod L〉 |w〉.

2. Apply the BDD oracle Bwc
Q to the above state to remove the entanglement

and obtain a state which is within �2 distance 2−Ω(n) of the normalized state
corresponding to

∑
x∈ L

R ,‖x‖<d ρ d√
n
(x) |0〉 |x mod L〉 |w〉.

3. Apply the quantum Fourier transform over Zn
R to the second register to

obtain a state that is within �2 distance 2−Ω(n) of the normalized state
corresponding to

∑
x∈L̂,‖x‖< n

d
ρ√

n
d

(x)
∣∣∣x mod (R · L̂)

〉
.

4. Measure the latter to obtain a vector b̂ mod R·L̂. Using Babai’s algorithm [6],
recover b̂ and output it. Its distribution is within statistical distance 2−Ω(n)

of D
L̂,

√
n√
2d

.

We now replace the perfect oracle Bwc
Q by an imperfect one.

Lemma 9. Suppose we are given an n-dimensional lattice L, parameters R >

22nλn(L) and s < λ1(L)
2
√

2n
, and an SSI algorithm B that solves BDDD L

R
,s for L with

run-time T and success probability ε. Then there exists a quantum algorithm R
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which outputs a vector b̂ ∈ L̂ whose distribution is within distance 1 − ε2/2 +
O(ε4) + 2−Ω(n) of DL̂, 1

2s
. It finishes in time polynomial in T + logR.

Proof. The quantum algorithm R is Regev’s algorithm above with parame-
ter d =

√
2ns < λ1(L)

2 , where Bwc
Q is replaced by the quantum implementa-

tion BQ of B. We just saw that if the BDDDL/R,s oracle was succeeding with
probability 1−2−Ω(n), then the output vector b̂ would follow a distribution whose
statistical distance to DL̂, 1

2s
would be 2−Ω(n). To work around the requirement

that the oracle succeeds with overwhelming probability, we use the notion of
trace distance between two quantum states, which is an adaptation of the statis-
tical distance (see [25, Ch. 9]). The trace distance between two (pure) quantum
states |t1〉 and |t2〉 is δ(|t1〉 , |t2〉) =

√
1− | 〈t1|t2〉 |2. Its most important property

is that for any generalized measurement (POVM), if D1 (resp. D2) is the result-
ing probability distribution when starting from |t1〉 (resp. |t2〉) then Δ(D1, D2) ≤
δ(|t1〉 , |t2〉). Let |t1〉 denote the state at the end of Step 2 of Regev’s algorithm
when we use Bwc, and let |t2〉 denote the state that we obtain at the end of
Step 2 when we use B. We upper bound δ(|t1〉 , |t2〉) as follows.

Since Bwc(x mod L,w) = x for ‖x‖ < d, we have that |t1〉 is within �2 distance
(and hence trace distance) 2−Ω(n) of the normalized state

|t′1〉 = 2−�/2
∑

w∈{0,1}�

∑
x∈ L

R

√
Dd

L/R,s(x) |0〉 |x mod L〉 |w〉 ,

whereDd
L/R,s denotes the normalized distribution obtained by truncatingDL/R,s

to vectors of norm < d. On the other hand, for the imperfect oracle B, we have
that |t2〉 is within trace distance 2−Ω(n) of the normalized state

|t′2〉 = 2−�/2
∑

w∈{0,1}�

∑
x∈ L

R

√
Dd

L/R,s(x) |x− B(x mod L,w)〉 |x mod L〉 |w〉 .

Let SB = {(x, w) ∈ L
R × {0, 1}� | ‖x‖ < d and B(x mod L,w) = x}.

Notice that, if (x, w) 
∈ SB, the states |x− B(x mod L,w)〉 |x mod L〉 |w〉
and |0〉 |x′ mod L〉 |w′〉 are orthogonal for all (x′, w′). Furthermore, if (x, w) ∈
SB, the states |0〉 |x mod L〉 |w〉 and |0〉 |x′ mod L〉 |w′〉 are orthogonal for
all (x′, w′) 
= (x, w) with ‖x′‖ < d, because the mapping x �→ x mod
L is 1-1 over x of norm < d < λ1(L)/2. It follows that | 〈t′1|t′2〉 | =∑

(x,w)∈SB 2−�Dd
L/R,s(x). Hence, | 〈t′1|t′2〉 | is equal to the probability p

that B(x mod L,w) = x, over the choices of x from the distribution Dd
L/R,s

and w uniformly random in {0, 1}�. By Lemma 2, using the fact that d >
√
ns,

we have p ≥ p̂−2−Ω(n), where p̂ is the corresponding probability when x is sam-
pled from DL/R,s. Finally, we have p̂ =

∑
xDL/R,s(x) Prw[B(x mod L,w) = x].

By the strong solution-independence of B, we have Prw[B(x mod L,w) = x] =
Prw[B(b + x, w) = x] for any fixed b ∈ L. Therefore, p̂ is the success probabil-
ity of B in solving BDDDL/R,s

, so p̂ ≥ ε by assumption. Overall, we conclude
that δ(|t1〉 , |t2〉) ≤

√
1− ε2 + 2−Ω(n), and hence the output of R is within sta-

tistical distance 1− ε2/2 +O(ε4) + 2−Ω(n) of DL̂, 1
2s

, as claimed. ��
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To prove Theorem 3, we apply Lemma 9 to the lattices L(G) for G ∈ S, with
algorithm B. For that, we need to ensure that the hypothesis αq < λ1(L(G))

2
√

2m
is

satisfied. From Lemma 4 (resp. Lemma 5 in the case of Ideal-LWE), we know that
with probability 1−2−Ω(n) over the choice of G in Zm×n

q , we have λ∞1 (L(G)) ≥ q
4

and λ1(L(G)) ≥ 0.07
√
mq. For such ‘good’ G’s, the hypothesis αq < λ1(L(G))

2
√

2m
is

satisfied, since α < 0.006. The set S′ of the G’s in S for which that condition is
satisfied represents a proportion ≥ ε/2−2−Ω(n) of Zm×n

q . Suppose now that G ∈
S′. Lemma 9 shows that we can find a vector s ∈ G⊥ = qL̂(G) that follows a
distribution whose distance to DG⊥, 1

2α
is Δ = 1− ε2

32 +O(ε4) + 2−Ω(n). Thanks
to Lemmas 1 and 2 (since G ∈ S and α ≤ 1/(10

√
ln(10m)), the hypothesis

of Lemma 1 is satisfied), we have that with probability ≥ 1 − 2−Ω(n) − Δ =
ε2

32 − O(ε4) − 2−Ω(n), the returned s is a non-zero vector of G⊥ whose norm
is ≤

√
m

2α . Multiplying by the probability ≥ ε/2 − 2−Ω(n) that G ∈ S′ gives the
claimed success probability and completes the proof of Theorem 4. ��

5 Cryptographic Applications

We now use the results of Sections 3 and 4 to construct efficient cryptographic
primitives based on ideal lattices. This includes the first provably secure lattice-
based public-key encryption scheme with asymptotically optimal encryption and
decryption computation costs of Õ(1) bit operations per message bit.

5.1 Efficient Public-Key Encryption Scheme

Our scheme is constructed in two steps. Firstly, we use the LWE mapping
(s, e) �→ G · s + e mod q as an injective trapdoor one-way function, with the
trapdoor being the full-dimensional set of vectors in G⊥ from Section 3, and the
one-wayness being as hard as Ideal-SIS (and hence Ideal-SVP) by Theorem 3.
This is an efficient ideal lattice analogue of some trapdoor functions presented
in [9,28] for arbitrary lattices. Secondly, we apply the Goldreich-Levin hardcore
function based on Toeplitz matrices [10, Sec. 2.5] to our trapdoor function, and
XOR the message with the hardcore bits to obtain a semantically secure encryp-
tion. To obtain the Õ(1) amortized bit complexity per message bit, we use Ω̃(n)
hardcore bits, which induces a subexponential loss in the security reduction.

Our trapdoor function family Id-Trap is defined in Figure 1. For security
parameter n = 2k, we fix f(x) = xn + 1 and q = Poly(n) a prime satisfy-
ing q ≡ 3 mod 8. From Lemma 3, it follows that f splits modulo q into two
irreducible factors of degree n/2. We set σ = 1, r = 1 + log3 q = Õ(1) and
m = (%log q&+1)σ+ r = Õ(1). We define R = Zq[x]/f . The following lemma en-
sures the correctness of the scheme (this is essentially identical to [28, Sec. 4.1])
and asserts that the evaluation and inversion functions can be implemented
efficiently.
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– Generating a function with trapdoor. Run the algorithm from Theorem 2, us-
ing f = xn + 1, n, q, r, σ, m as inputs. Suppose it succeeds. It returns g ∈ (Zq[x]/f)m

(function index) and a trapdoor full-rank set S of linearly independent vectors
in rotf (g)⊥ ⊆ Zmn×mn

q with ‖S‖ ≤ √
2(4

√
nr + 3) =: L (we have L = Õ(

√
n)).

– Function evaluation. Given function index g, we define the trapdoor function
hg : Zn

q × Zmn
q → Zmn

q as follows. On input s uniformly random in Zn
q and e ∈ Zmn

q

sampled from Ψαq (defined as the rounding of Ψαq to the closest integer vector), we
compute and return: c = hg (s, e) := rotf (g) · s + e mod q.

– Function inversion. Given c = hg (s, e) and trapdoor S, compute d = ST ·c mod q
and e′ = S−T ·d (in Q). Compute u = c−e′ mod q and s′ = (rotf (g1))−1 ·u1 mod q,
where u1 consists of the first n coordinates of u. Return (s′, e′).

Fig. 1. The trapdoor function family Id-Trap

Lemma 10. Let q > 2
√
mnL and α = o(1/(L

√
logn)). Then for any s ∈ R

and for e sampled from Ψαq, the inversion algorithm recovers (s, e) with proba-
bility 1−n−ω(1) over the choice of e. Furthermore, the evaluation and inversion
algorithms for hg can be implemented with run-time Õ(n).

The one-wayness of Id-Trap is equivalent to the hardness of LWEm,q;Ψαq
. Fur-

thermore, an instance of LWEm,q;Ψαq can be efficiently converted by rounding to
an instance of LWEm,q;Ψαq

. This proves Lemma 11.

Lemma 11. Any attacker against the one-wayness of Id-Trap (with parame-
ters m,α, q) with run-time T and success probability ε provides an algorithm
for LWEm,q;Ψαq with run-time T and success probability ε.

By combining our trapdoor function with the GL hardcore function [10, Sec. 2.5]
we get the encryption scheme of Figure 2.

– Key generation. For security parameter n, run the generation algorithm of Id-Trap
to get an hg and a trapdoor S. We can view the first component of the domain of hg

as a subset of Z�I
2 for �I = O(n log q) = Õ(n). Generate r ∈ Z�I+�M

2 uniformly and
define the Toeplitz matrix MGL ∈ Z�M×�i

2 (allowing fast multiplication [26]) whose
ith row is [ri, . . . , r�I+i−1]. The public key is (g, r) and the secret key is S.

– Encryption. Given �M -bit message M with �M = n/ log n = Ω̃(n) and public
key (g, r), sample (s, e) with s ∈ Zn

q uniform and e sampled from Ψαq, and evaluate
C1 = hg(s, e). Compute C2 = M ⊕(MGL ·s), where the product MGL ·s is computed
over Z2, and s is viewed as a string over Z�I

2 . Return the ciphertext (C1, C2).
– Decryption. Given ciphertext (C1, C2) and secret key (S, r), invert C1 to compute

(s, e) such that hg (s, e) = C1, and return M = C2 ⊕ (MGL · s).

Fig. 2. The semantically secure encryption scheme Id-Enc

Theorem 4. Any IND-CPA attacker against Id-Enc with run-time T and suc-
cess probability 1/2 + ε provides an algorithm for Ideal-LWEf

m,q;Ψαq
with run-

time O(23�Mn3ε−3 · T ) and success probability Ω(2−�Mn−1 · ε).
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Proof. The attacker can be converted to a GL hardcore function distinguisher
that, given C1 = hg(s, e), MGL, and �M bit string z, for s sampled uniformly
in Zn

q , e sampled from Ψαq, and MGL constructed as in the key generation
procedure, distinguishes whether z is uniformly random (independent of s and e)
or z = MGL ·s. It has run-time T and advantage ε. The result follows by applying
Lemma 2.5.8, Proposition 2.5.7 and Proposition 2.5.3 in [10]. Note that we do
not need to give the vector e additionally to s as input to the GL function, as e
is uniquely determined once s is given (with overwhelming probability). ��

By using Lemma 10 and Theorems 1, 3 and 4, we get our main result.

Corollary 1. Any IND-CPA attacker against encryption scheme Id-Enc with
run-time 2o(n) and success probability 1/2+2−o(n) provides a quantum algorithm
for Õ(n2)-Ideal-SVP with f(x) = xn + 1 and n = 2k, with run-time 2o(n) and
overwhelming success probability. Furthermore, the scheme Id-Enc encrypts and
decrypts Ω̃(n) bits within Õ(n) bit operations, and its keys have Õ(n) bits.

5.2 Further Applications

Our results have several other applications, adapting various known construc-
tions for unstructured lattices to ideal lattices, as summarised below.

CCA2-secure encryption. Peikert [28] derived a CCA2-secure encryption
scheme from the non-structured variant of the trapdoor function family Id-Trap
from Figure 1, using the framework of [31,34] for building a CCA2-secure scheme
from a collection of injective trapdoor functions that is secure under correlated
product (i.e., one-wayness is preserved if several functions are evaluated on the
same input). The approach of [28] can be applied to Id-Trap, using the equality
between Ideal-LWEkm and the product of k instances of Ideal-LWEm, multiple
hardcore bits as in Id-Enc, and instantiating the required strongly unforgeable
signature with the Ideal-SVP-based scheme of [18]. By choosing k = Õ(n) (the
bit-length of the verification key in [18]) and α = Õ(n−3/2), we obtain a CCA2-
secure scheme that encrypts Ω̃(n) bits within Õ(n2) bit operations and whose
security relies on the exponential quantum hardness of Õ(n4)-Ideal-SVP.

Trapdoor signatures. Gentry et al. [9] give a construction of a trapdoor
signature (in the random oracle model) from any family of collision-resistant
preimage sampleable functions (PSFs). They show how to sample preimages
of fG(x) = xTG, where G ∈ Zm×n

q , using a full-dimensional set of short vec-
tors in G⊥. By applying this to G = rotf (g) and using the trapdoor genera-
tion algorithm from Section 3, we obtain a PSF whose collision resistance relies
on Ideal-SIS, and hence Ideal-SVP, and thus a structured variant of the trapdoor
signature scheme of [9], with Õ(n) verification time and signature length.

ID-based identification. From lattice-based signatures, we derive ID-based
identification (IBI) and ID-based signature (IBS). Applying the standard strat-
egy, we construct lattice-based IBI schemes as follows: The master generates a
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key pair of a lattice-based signature scheme, say (G,S); Each user obtains from
the master a short vector e such that eTG = H(id), where H is a random oracle;
The prover proves to the verifier that he/she has a short vector e through the
Micciancio-Vadhan protocol [24]. This combination yields concurrently secure
IBI schemes based on Õ(n2)-SVP and Õ(n2)-Ideal-SVP in the random oracle
model. As the MV protocol is witness indistinguishable, we can use the Fiat-
Shamir heuristic [8] and derive lattice-based IBS schemes.

ID-based encryption (IBE). It is shown in [9] that the unstructured variant
of the above trapdoor signature can be used as the identity key extraction for
an IBE scheme. This requires a ‘dual’ version of Id-Enc, in which the public key
is of the form (g, u), where u = H(id) is the hashed identity, and the secret
key is the signature of id, i.e., a short preimage of u under fg(x) = xT rotf (g).
We construct the ‘dual’ encryption as (C1, C2) where C1 = hg(s, e) and C2 =
T�(rotf (u)·s)+M , whereM ∈ Z�

q contains the message and T�(rotf (u)·s) denotes
the first � coordinates of rotf (u) · s mod q. By adapting the results of [13], we
show that T�(rotf (u) ·s) is an exponentially-secure generic hardcore function for
uniform u ∈ Zn

q , when � = o(n). This allows us to prove the IND-CPA security
of the resulting IBE scheme based on the hardness of Ideal-SVP.
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Abstract. We describe a public-key encryption scheme based on lat-
tices — specifically, based on the hardness of the learning with error
(LWE) problem — that is secure against chosen-ciphertext attacks while
admitting (a variant of) smooth projective hashing. This encryption
scheme suffices to construct a protocol for password-based authenticated
key exchange (PAKE) that can be proven secure based on the LWE as-
sumption in the standard model. We thus obtain the first PAKE protocol
whose security relies on a lattice-based assumption.

1 Password-Based Authenticated Key Exchange

Protocols for password-based authenticated key exchange (PAKE) enable two
users to generate a common, cryptographically-strong key based on an initial,
low-entropy, shared secret (i.e., a password). The difficulty in this setting is to
prevent off-line dictionary attacks where an adversary exhaustively enumerates
potential passwords on its own, attempting to match the correct password to
observed protocol executions. Roughly, a PAKE protocol is “secure” if off-line
attacks are of no use and the best attack is an on-line dictionary attack where an
adversary must actively try to impersonate an honest party using each possible
password. On-line attacks of this sort are inherent in the model of password-
based authentication; more importantly, they can be detected by the server as
failed login attempts and (at least partially) defended against.

Due to the widespread use of passwords, a significant amount of research has
focused on designing PAKE protocols. Early work [13] (see also [14]) considered
a “hybrid” model where users share public keys in addition to a password. In
the more challenging “password-only” setting clients and servers are required to
share only a password. Bellovin and Merritt [4] initiated research in this direc-
tion, and presented a PAKE protocol with heuristic arguments for its security.
It was not until several years later that formal models for PAKE were devel-
oped [3,5,11], and provably secure PAKE protocols were shown in the random
oracle/ideal cipher models [3,5,18].
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Goldreich and Lindell [11] constructed the first PAKE protocol without ran-
dom oracles, and their approach remains the only one for the plain model where
there is no additional setup. Unfortunately, their protocol is inefficient in terms of
communication, computation, and round complexity. (Nguyen and Vadhan [19]
show efficiency improvements, but achieve a weaker notion of security. In any
case, their protocol is similarly impractical.) The Goldreich-Lindell protocol also
does not tolerate concurrent executions by the same party.

Katz, Ostrovsky, and Yung [17] demonstrated the first efficient PAKE proto-
col with a proof of security in the standard model; extensions and improvements
of this protocol were given in [9,6,16,8]. In contrast to the work of Goldreich
and Lindell, these protocols are secure even under concurrent executions by the
same party. On the other hand, these protocols all require a common reference
string (CRS). While this may be less appealing than the “plain model,” reliance
on a CRS does not appear to be a serious drawback in the context of PAKE
since the CRS can be hard-coded into the protocol implementation. A different
PAKE protocol in the CRS model is given by Jiang and Gong [15].

PAKE based on lattices? Cryptographic primitives based on lattices are ap-
pealing because of known worst-case/average-case connections between lattice
problems, as well as because several lattice problems are currently immune to
quantum attacks. Also, the best-known algorithms for several lattice problems
require exponential time (in contrast to sub-exponential algorithms for, e.g., fac-
toring). None of the existing PAKE constructions (in either the random oracle
or standard models), however, can be instantiated with lattice-based assump-
tions.1 The barrier to constructing a lattice-based PAKE protocol using the
KOY/GL approach [17,9] is that this approach requires a CCA-secure encryp-
tion scheme (more generally, a non-malleable commitment scheme) with an as-
sociated smooth projective hash system [7,9]. (See Section 2.) Until recently, the
existence of CCA-secure encryption schemes based on lattices (even ignoring the
additional requirement of smooth projective hashing) was open. Peikert and Wa-
ters [22] gave the first constructions of CCA-secure encryption based on lattices,
but the schemes they propose are not readily amenable to the smooth projective
hashing requirement. Subsequent constructions [24,20,12] do not immediately
support smooth projective hashing either.

1.1 Our Results

Building on ideas of [24,20,12], we show a new construction of a CCA-secure
public-key encryption scheme based on the hardness of the learning with er-
ror (LWE) problem [23]. We then demonstrate (a variant of) a smooth projective
hash system for our scheme. This is the most technically difficult aspect of our
work, and is of independent interest as the first construction of a smooth projec-
tive hash system (for a conjectured hard-on-average language) based on lattice
1 To the best of our knowledge this includes the protocol of Goldreich and Lindell [11],

which requires a one-to-one one-way function on an infinite domain (in addition to
oblivious transfer, which can be based on lattice assumptions [21]).
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assumptions. (Instantiating the smooth projective hash framework using lattice
assumptions is stated as an open question in [21].) Finally, we show that our
encryption scheme can be plugged into a modification of the Katz-Ostrovsky-
Yung/Gennaro-Lindell framework [17,9] to give a PAKE protocol based on the
LWE assumption.

Organization of the paper. In Section 2 we define a variant of smooth pro-
jective hashing (SPH) that we call approximate SPH. We then show in Section 3
that a CCA-secure encryption scheme having an approximate SPH system suf-
fices for our desired application to PAKE.

The main technical novelty of our paper is in the sections that follow. In
Section 4 we review the LWE problem and some preliminaries. As a prelude to
our main construction, we show in Section 5 a CPA-secure encryption scheme
based on the LWE problem, with an associated approximate SPH system. In
Section 6 we describe how to extend this initial scheme to obtain CCA-security.

Throughout the paper, we denote the security parameter by n.

2 Approximate Smooth Projective Hash Functions

Smooth projective hash functions were introduced by Cramer and Shoup [7];
we follow (and adapt) the treatment of Gennaro and Lindell [9], who extend
the original definition. Rather than aiming for utmost generality, we tailor the
definitions to our eventual application.

Roughly speaking, the differences between our definition and that of Gennaro-
Lindell are as follows. (This discussion assumes familiarity with [9]; for the reader
not already familiar with that work, a self-contained description is given below.)
In [9] there are sets X and L ⊂ X ; correctness is guaranteed for x ∈ L, while
smoothness is guaranteed for x ∈ X \ L. Here, we require only approximate
correctness, and moreover only for elements in a subset L̄ ⊆ L. Details follow.

Fix a CCA-secure (labeled) public-key encryption scheme (Gen,Enc,Dec) and
an efficiently recognizable message space D (which will correspond to the dic-
tionary of passwords in our application to PAKE). We assume the encryption
scheme defines a notion of ciphertext validity such that (1) validity of a cipher-
text (with respect to pk) can be determined efficiently using pk alone, and (2) all
honestly generated ciphertexts are valid. We also assume no decryption error.

For the rest of the discussion, fix a key pair (pk, sk) as output by Gen(1n)
and let C denote the set of valid ciphertexts with respect to pk. Define sets
X, {L̄m}m∈D, and L̄ as follows. First, set

X = {(label, C,m) | label ∈ {0, 1}n; C ∈ C; m ∈ D} .

Next, for m ∈ D let L̄m = {(label,Encpk(label,m),m) | label ∈ {0, 1}n} ⊂ X ;
i.e., L̄m is the set of honestly generated encryptions of m (using any label). Let
L̄ = ∪m∈DL̄m. Finally, define

Lm = {(label, C,m) | label ∈ {0, 1}n; Decsk(label, C) = m} ,
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and set L = ∪m∈DLm. (Recall we assume no decryption error, and so Lm de-
pends only on pk.) Note that L̄m ⊆ Lm for allm. Furthermore, for any ciphertext
C and label ∈ {0, 1}n there is at most one m ∈ D for which (label, C,m) ∈ L.

Approximate smooth projective hash functions. An approximate smooth
projective hash function is a collection of keyed functions {Hk : X → {0, 1}n}k∈K ,
along with a projection function α : K × ({0, 1}∗ × C)→ S, satisfying notions of
(approximate) correctness and smoothness:

Approximate correctness: If x = (label, C,m) ∈ L̄ then the value of Hk(x)
is approximately determined by α(k, label, C) and x (in a sense we will make
precise below).

Smoothness: If x ∈ X \ L then the value of Hk(x) is statistically close to
uniform given α(k, label, C) and x (assuming k was chosen uniformly in K).

We stress that, in contrast to [9], we require nothing for x ∈ L \ L̄; furthermore,
even for x ∈ L̄ we require only approximate correctness. We highlight also that,
as in [9], the projection function α should be a function of label, C only.

Formally, an ε(n)-approximate smooth projective hash function is defined
by a sampling algorithm that, given pk, outputs (K,G,H = {Hk : X →
{0, 1}n}k∈K , S, α : K × ({0, 1}∗ × C)→ S) such that:

1. There are efficient algorithms for (1) sampling a uniform k ∈ K, (2) com-
puting Hk(x) for all k ∈ K and x ∈ X , and (3) computing α(k, label, C) for
all k ∈ K and (label, C) ∈ {0, 1}∗ × C.

2. For x = (label, C,m) ∈ L̄ the value of Hk(x) is approximately determined
by α(k, label, C), relative to the Hamming metric. Specifically, let Ham(a, b)
denote the Hamming distance of two strings a, b ∈ {0, 1}n. Then there is
an efficient algorithm H ′ that takes as input s = α(k, label, C) and x̄ =
(label, C,m, r) for which C = Encpk(label,m; r) and satisfies:

Pr[Ham(Hk(x), H ′(s, x̄)) ≥ ε · n] = negl(n),

where the probability is taken over choice of k.
3. For any x = (label, C,m) ∈ X \ L, the following two distributions have

statistical distance negligible in n:{
k ← K; s = α(k, label, C) :

(
s,Hk(x)

)}
and

{k← K; s = α(k, label, C); v ← {0, 1}n : (s, v)} .

3 A PAKE Protocol from Approximate SPH

We use the standard definition of security for PAKE [3,17,9].
Here, we show that a modification of the Gennaro-Lindell framework [9] can

be used to construct a PAKE protocol from any CCA-secure encryption scheme
that has associated with it an approximate smooth projective hash function as
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Common reference string: pk

Client(w) Server(w)

(VK, SK) ← K(1k)

r ← {0, 1}∗
label := VK |Client |Server

C := Encpk(label, w; r) Client |VK |C �
r′ ← {0, 1}∗

label′ := ε

C′ := Encpk(label′, w; r′)

label := VK |Client |Server

k′ ← K; s′ := α(k′, label, C)Server |C′ | s′�
label′ := ε

k ← K; s := α(k, label′, C′)

tk := Hk(label′, C′, w)

⊕Hk′(label, C, w)

sk ← {0, 1}�; c := ECC(sk)

Δ := tk ⊕ c

σ ← SignSK(C|C′|s′|s|Δ) s |Δ | σ �
if VrfyVK(C|C′|s′|s|Δ, σ) = 1 :

tk′ := Hk(label′, C′, w)

⊕Hk′(label, C, w)

sk := ECC−1(tk′ ⊕ Δ)

Fig. 1. A 3-round PAKE protocol. The common session key is sk.

defined in Section 2. A high-level overview of the protocol is given in Figure 1;
a more detailed discussion follows.

Setup. We assume a common reference string is established before any exe-
cutions of the protocol take place. The common reference string consists of a
public key pk for a CCA-secure encryption scheme (Gen,Enc,Dec) that has an
associated ε-approximate smooth projective hash system (K,G,H = {Hk : X →
{0, 1}n}k∈K , S, α : K × ({0, 1}∗×C)→ S). We stress that no parties in the sys-
tem need to hold the secret key corresponding to pk.

Protocol execution. We now describe an execution of the protocol between an
honest client Client and server Server, holding common password w. To begin,
the client runs a key-generation algorithm K for a one-time signature scheme
to generate verification key VK and corresponding secret (signing) key SK. The
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client sets label := VK|Client|Server and then encrypts the password w using this
label to obtain ciphertext C. It then sends the message Client|VK|C to the server.

Upon receiving the initial message Client|VK|C from the client, the server
computes its own encryption of the password using label label′ = ε, resulting in
a ciphertext C′. The server also chooses a random hash key k′ ← K and then
computes the projection s′ := α(k′, label, C). It sends C′ and s′ to the client.

After receiving the second protocol message from the server, the client chooses
a random hash key k ← K and computes the projection s := α(k, label′, C′).
At this point it computes a temporary session key tk = Hk(label′, C′, w) ⊕
Hk′(label, C, w), whereHk(label′, C′, w) is computed using the known hash key k,
and Hk′(label, C, w) is computed using the randomness r that was used to gen-
erate C. (Recall that C is an honestly generated encryption of w.) Up to this
point, the protocol follows the Gennaro-Lindell framework exactly. As will be-
come clear, however, the server will not be able to recover tk but will instead
only recover some value tk′ that is close to tk; the rest of the client’s computation
is aimed at repairing this defect.

The client chooses a random session key sk ∈ {0, 1}� for some � to be specified.
Let ECC : {0, 1}� → {0, 1}n be an error-correcting code correcting a 2ε-fraction
of errors. The client computes c := ECC(sk) and sets Δ := tk⊕c. Finally, it signs
C|C′|s′|s|Δ and sends s,Δ, and the resulting signature σ to the server.

The server verifies σ in the obvious way and rejects if the signature is invalid.
Otherwise, the server computes a temporary session key tk′ analogously to the
way the client did: that is, the server sets tk′ = Hk(label′, C′, w)⊕Hk′ (label, C, w),
where Hk′(label, C, w) is computed using the hash key k′ known to the server,
and Hk(label′, C′, w) is computed using the randomness r′ that was used to
generate C′. (Recall that C′ is an honestly generated encryption of w.) Finally,
the server computes sk := ECC−1(tk′ ⊕Δ).

Correctness. We now argue that, in an honest execution of the protocol, the
client and server compute matching session keys with all but negligible probabil-
ity. Approximate correctness of the smooth projective hash function implies that
Hk(label, C, w) as computed by the client is within Hamming distance εn from
Hk(label, C, w) as computed by the server, except with negligible probability.
The same holds for Hk′ (label′, C′, w). Thus, with all but negligible probability
we have Ham(tk, tk′) ≤ 2ε·n. Assuming this is the case we have

Ham(tk′ ⊕Δ, c) = Ham(tk′ ⊕Δ, tk⊕Δ) ≤ 2ε · n,

and so ECC−1(tk′ ⊕Δ) = ECC−1(c) = sk.

Security. The proof of security of the protocol follows [17,9] closely; we sketch
the main ideas. First, as in [17,9], we note that for a passive adversary (i.e.,
one that simply observes interactions between the server and the client), the
shared session-key is pseudorandom. This is simply because the transcript of
each interaction consists of semantically-secure encryptions of the password w
and the projected keys of the approximate SPH system.

It remains to deal with active (man-in-the-middle) adversaries that modify
the messages sent from the client to the server and back. The crux of our proof,
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as in [17,9], is a combination of the following two observations (for concreteness,
consider an adversary that interacts with a client instance holding password w).

– By the CCA-security of the encryption scheme, the probability that the ad-
versary can construct a new ciphertext that decrypts to the client’s password
w is at most q/|D| + negl(n), where q is the number of on-line attacks and
D is the password dictionary.

– If the adversary sends the client a ciphertext that does not decrypt to the
client’s password, then the session-key computed by the client is statistically
close to uniform conditioned on the adversary’s view.

We defer a complete proof to the full version.
Recalling the definitions from Section 2, note that correctness of the protocol

relies on (approximate) correctness for honestly generated encryptions of the
correct password (i.e., for x ∈ L̄), whereas security requires smoothness for
ciphertexts that do not decrypt to the correct password (i.e., for x 
∈ L).

4 The Learning with Errors Problem

The “learning with errors” (LWE) problem was introduced by Regev [23] as a
generalization of the “learning parity with noise” problem. For positive integers
n and q ≥ 2, a vector s ∈ Zn

q , and a probability distribution χ on Zq, let As,χ

be the distribution obtained by choosing a vector a ∈ Zn
q uniformly at random

and a noise term x← χ, and outputting (a, 〈a, s〉+ x) ∈ Zn
q × Zq.

For an integer q = q(n) and an error distribution χ = χ(n) over Zq, the learn-
ing with errors problem LWEq,χ is defined as follows: Given access to an oracle
that outputs (polynomially many) samples from As,χ for a uniformly random
s ∈ Zn

q , output s with noticeable probability. The decisional variant of the LWE
problem, denoted distLWEq,χ, is to distinguish samples chosen according to As,χ

for a uniformly random s ∈ Zn
q from samples chosen according to the uniform

distribution over Zn
q ×Zq. Regev [23] shows that for q = poly(n) prime, the LWE

and distLWE problems are polynomially equivalent.

Gaussian error distributions. For any r > 0, the density function of a one-
dimensional Gaussian distribution over R is given byDr(x) = 1/r·exp(−π(x/r)2).
In this work we always use a truncated Gaussian distribution, i.e., the Gaussian
distribution Dr whose support is restricted to x such that |x| < r

√
n. The trun-

cated and non-truncated distributions are statistically close, and we drop the word
“truncated” from now on. For β > 0, define Ψβ to be the distribution on Zq ob-
tained by drawing y ← Dβ and outputting (q · y& (mod q). We write LWEq,β as
an abbreviation for LWEq,Ψβ

.
We also define the discrete Gaussian distributionDZm,r over the integer lattice

Zm, which assigns probability proportional to
∏

i∈[m]Dr(ei) to each e ∈ Zm. It
is possible to efficiently sample from DZm,r for any r > 0 [10].

Evidence for the hardness of LWEq,β follows from results of Regev [23], who
gave a quantum reduction from approximating certain problems on n-dimensional
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lattices in the worst case to within Õ(n/β) factors to solving LWEq,β for dimension
n, subject to the condition that β · q ≥ 2

√
n. Recently, Peikert [20] also gave a

related classical reduction for similar parameters. For our purposes, we note that
the LWEq,β problem is believed to be hard (given the state-of-the-art in lattice
algorithms) for any polynomial q and inverse-polynomial β (subject to the above
condition).

Matrix notation for LWE. In this paper, we view all our vectors as column
vectors. At times, we find it convenient to describe the LWE problem LWEq,β

using a compact matrix notation: find s given (A,As + x), where A ← Zm×n
q

is chosen uniformly and x ← Ψ
m

β . We also use similar notation for the decision
version distLWE.

Connection to lattices. The LWE problem can be thought of as a “bounded-
distance decoding problem” on a particular kind ofm-dimensional lattice defined
by the matrix A. Specifically, define the lattice

Λ(A) = {y ∈ Zm : ∃s ∈ Zn s.t. y ≡ AT s (mod q)}.

The LWE problem can then be restated as: given y which is the sum of a lattice
point As and a short “noise vector” x, find the “closest” lattice vector s. One
can show that as long as x is short (say, ||x|| < q/16), there is a unique closest
vector to y (see, e.g., [10]).

4.1 Some Supporting Lemmas

We present two technical lemmas regarding the LWE problem that will be used
to prove smoothness of our (approximate) SPH systems in Sections 5.2 and 6.2.

If m ≥ n log q, the lattice Λ(A) is quite sparse. In fact, we expect most vectors
z ∈ Zm

q to be far from Λ(A). The first lemma (originally shown in [23]) formalizes
this intuition.

Let dist(z, Λ(A)) denote the distance of the vector z from the lattice Λ(A).
The lemma shows that for most matrices A ∈ Zm×n

q , the fraction of vectors
z ∈ Zm

q that are “very close” to Λ(B) is “very small”. The proof is by proba-
bilistic method, and appears in the full version.

Lemma 1. Let n, q,m be integers such that m ≥ n log q. For all but a negligible
fraction of matrices A,

Pr
z←Zm

q

[dist(z, Λ(A)) ≤ √q/4] ≤ q−(m+n)/2.

Fix a number r > 0, and let e ← DZm,r be drawn from the discrete Gaussian
distribution over the integer lattice Zm. If the vector z is (close to) a linear
combination of the columns of A, then given eT A one can (approximately)
predict eT z. The second lemma shows a converse of this statement when r is
large enough. Namely, it says that if z and all its non-zero multiples are far
from the lattice Λ(A), then eT A does not give any information about eT z.
In other words, given eT A (where e ← DZm,r for a large enough r) eT z is
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statistically close to random. This lemma was first shown in [10], and was used
in the construction of an oblivious transfer protocol in [21].

More formally, for a matrix A ∈ Zm×n
q and a vector z ∈ Zm

q , let Δr(A, z)
denote the statistical distance between the uniform distribution on Zn+1

q and
the distribution of (eT A, eT z), where e← DZm,r. Then,

Lemma 2. [10, Lemma 6.3] Let r ≥ √q · ω(
√

logn). Then for most matrices
A ∈ Zm×n

q , the following is true: if z ∈ Zm
q is such that for all non-zero a ∈ Zq,

dist(az, Λ(A)) ≥ √q/4, then Δr(A, z) ≤ negl(n).

5 Approximate Smooth Projective Hashing from Lattices

As a warmup to our main result we first construct a CPA-secure encryption
scheme with an approximate SPH system. The main ideas in our final construc-
tion are already present here.

5.1 A CPA-Secure Encryption Scheme

The encryption scheme we use is a variant of the scheme presented in [10,20],
and is based on the hardness of the LWE problem. We stress that the novelty of
this work is in constructing an approximate SPH system for this scheme.

We begin by describing a basic encryption scheme having decryption time ex-
ponential in the message length.2 We then modify the scheme so that decryption
can be done in polynomial time.

The message space is Z�
q for some integers q, �. In the basic encryption scheme,

the public key consists of a matrix B ∈ Zm×n
q , along with �+ 1 vectors u0, . . . ,

u� ∈ Zm
q . To encrypt a message w = (w1, . . . , w�) ∈ Z�

q the sender chooses a
uniformly random vector s← Zn

q and an error vector x← Ψ
m

β . The ciphertext is

y = Bs +
(
u0 +

�∑
i=1

wi · ui

)
+ x ∈ Zm

q

The scheme is CPA-secure, since the distLWEq,β assumption implies that the
ciphertext is pseudorandom.

The ciphertext produced by the encryption algorithm is a vector y such that
y −
(
u0 +
∑�

i=1 wi · ui

)
is “close” to the lattice Λ(B) (the exact definition of

“close” depends on the error parameter β). Decrypting a ciphertext is done by
finding (via exhaustive search over the message space) a message w for which
y−
(
u0 +
∑�

i=1 wi ·ui

)
is “close” to Λ(B), using the following trapdoor structure

first discovered by Ajtai [1], and later improved by Alwen and Peikert [2].

2 Interestingly, for our eventual application to PAKE a CCA-secure version of this
scheme would suffice since the scheme has the property that it is possible to efficiently
tell whether a given ciphertext is an encryption of a given message (and this is all
that is needed to prove security for the protocol in Section 3).
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Lemma 3 ([1,2]). Fix integers q ≥ 2 and m ≥ 4n log2 q. There is a ppt algo-
rithm TrapSamp(1n, q,m) that outputs matrices B ∈ Zm×n

q and T ∈ Zm×m such
that the distribution of B is statistically close to the uniform distribution over
Zm×n

q , and there is an algorithm BDDSolve(T, ·) that takes as input a vector
z ∈ Zm and does the following:

– if there is a vector s ∈ Zm such that dist(z,Bs (mod q)) ≤ √q/4, then the
output is s.

– if for every vector s ∈ Zm, dist(z,Bs) >
√
q/4, then the output is ⊥.

Proof. T is a full-rank matrix such that (a) each row of ti has bounded �2 norm,
i.e., ||ti|| ≤ 4

√
m, and (b) TB = 0 (mod q). [1,2] showed how to sample a

pair (B,T) such that B is statistically close to uniform and T has the above
properties.

Given such a matrix T and a vector z ∈ Zm, BDDSolve(T, z) works as follows:

– first, compute z′ = q ·T−1 · ((T · z) /q& (mod q).
– Compute (using Gaussian elimination) a vector s ∈ Zn

q such that z′ = Bs
(if such exists; else, output ⊥).

– If dist(z,Bs) ≤ √q/4, then output s else output ⊥.

First, if z = Bs + x for some s ∈ Zn
q and x ∈ Zm

q such that ||x|| ≤ √q/4, then
the procedure above computes

z′ = q ·T−1 · ((T · (Bs + x)) /q& (mod q) = Bs (mod q)

This is because each co-ordinate of Tx has magnitude at most ||T|| · ||x|| ≤
4
√
m · √q/4- q, and consequently,

((T · (Bs + x)) /q& = ((T ·Bs) /q& = T · (Bs)/q

where the final equality is because TB = 0 (mod q).
Finally, if dist(z, Λ(B)) >

√
q/4, then the last line of the procedure above

causes the output to be ⊥ always. ��

We now modify the decryption algorithm in two ways. The first of these modifi-
cations ensures that the decryption algorithm runs in polynomial time, and the
second is needed for our approximate SPH system.

First, to avoid the exponential dependence of the decryption time on the mes-
sage length, we modify the encryption scheme by letting the public key contain
the matrix A = [B|U], where the columns of U ∈ Zm×(�+1)

q are the vectors
u0, . . . ,u�. The secret-key is a trapdoor for the entire matrix A (as opposed to
just B as in the previous description). The ciphertext from the previous descrip-
tion can then be written as

y = AT

⎛⎝ s
1
w

⎞⎠+ x ∈ Zm
q



646 J. Katz and V. Vaikuntanathan

and decryption uses the BDDSolve procedure from Lemma 3 to recover the vec-
tor (s, 1,m). The crucial point is that, during key generation, the receiver can
generate the matrix A along with an appropriate trapdoor for decryption.

Secondly, we relax the decryption algorithm so that it finds an a ∈ Zq and a
message w for which a

(
y−(u0 +

∑�
i=1 wi ·ui)

)
is “close” to Λ(B). This modified

decryption algorithm correctly decrypts the ciphertexts generated by Enc (which
corresponds to the case a = 1), but it also decrypts ciphertexts that would never
be output by Enc. This modification to the decryption algorithm enables us to
prove smoothness for the approximate SPH system.

Parameters. Let n be the security parameter, and � = n be the message length.
The parameters of the system are a prime q = q(n, �), a positive integer m =
m(n, �), and a Gaussian error parameter β = β(n, �) ∈ (0, 1] that defines a
distribution Ψβ . For concrete instantiations of these parameters, see Theorem 1.

We now describe the scheme:

Key generation. Choose a matrix A ∈ Zm×(n+�+1)
q together with the trap-

door T by running (A,T) ← TrapSamp(1m, 1n+�+1, q), where TrapSamp is as
described in Lemma 3. Let the public key be A and the secret-key is T.

Encryption. To encrypt the message w ∈ Z�
q with respect to a public key as

above, the sender chooses s ← Zn
q uniformly at random, and an error vector

x← Ψ
mn

β . The ciphertext is

y = A ·

⎛⎝ s
1
w

⎞⎠+ x (mod q)

Decryption. The decryption algorithm works as below.

for a = 1 to q − 1 do

Compute

⎛⎝ s
a′

w

⎞⎠← BDDSolve(T, ay)

if a′ = a then
output w/a and stop

else try the next value of a
end
If the above fails for all a, output ⊥

Theorem 1. Let n, �,m, q, β be chosen such that m ≥ 4(n + �) log q and β <
1/(2 · m2n · ω(

√
log n)). Then the scheme above is a CCA-secure encryption

scheme assuming the hardness of distLWEn,m,q,β.

5.2 An Approximate SPH System

Fix a public key A ∈ Zm×(n+�+1)
q for the system (where we write A = [B|U], as

usual), and a dictionary D def= Z�
q. Sets X , Lm and Lm are defined in Section 2.
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(For our purposes, all vectors y ∈ Zm
q are valid ciphertexts). Let r be such that

√
q · ω(
√

logn) ≤ r ≤ ε/(8 ·mn2 · β).

(Looking ahead, we remark that the upper bound on r will be used for correct-
ness, and the lower bound will be used for smoothness.)

A key for the SPH system is a k-tuple of vectors (e1, . . . , ek) where each
ei ← DZm,r is drawn independently from the discrete Gaussian distribution. The
reader may want to keep in mind the inverse relationship between the parameters
r and β: the larger the error parameter β in the encryption scheme, the smaller
the discrete-Gaussian radius r (and vice versa).

1. The projection set S def= (Zn
q )k. For a key (e1, . . . , ek) ∈ (Zm

q )k, the projection
is α(e1, . . . , ek) = (u1, . . . ,uk), where ui = BT ei.

2. We now define the smooth projective hash function H = {Hk}k∈K . On input
a key (e1, . . . , ek) ∈ K and a ciphertext c = (label,y,m), the hash function
is computed as follows. First compute

zi = eT
i

[
y −U ·

(
1
m

)]
∈ Zq.

Treat zi as a number in [−(q−1)/2 . . . (q−1)/2] and output b1 . . . bk ∈ {0, 1}k

where

bi =
{

0 if zi < 0
1 if zi > 0 .

3. On input a projected key (u1, . . . ,uk) ∈ S, a ciphertext c = (label,y,m)
and a witness s ∈ Zn

q for the ciphertext, the hash function is computed as
H ′

u(c, s) = b1 . . . bk where

bi =
{

0 if uT
i s < 0

1 if uT
i s > 0 .

Theorem 2. Let the parameters n, �,m, q, β be as in Theorem 1, and r be as
above. Then, H = {Hk}k∈K is an ε-approximate smooth projective hash system.

Proof. Clearly, the following procedures can all be done in polynomial time:
(1) sampling a uniform key for the hash function (e1, . . . , ek) ← (DZm,r)k,
(2) computing the hash function H on input the key (e1, . . . , ek) and a cipher-
text c, (3) computing the projection-key α(e1, . . . , ek), and (4) computing the
hash function given the projected key (u1, . . . ,uk), a ciphertext c, and a witness
s for the ciphertext c.

Approximate correctness. We now show ε-approximate correctness. Consider
any (label,y,m) ∈ L, i.e., where y is a ciphertext produced by the encryption
algorithm on input the message m. This means that y can be written as

y = B · s + U ·
(

1
m

)
+ x (mod q) (1)

where ||x|| ≤ βq ·
√
mn (recall we work with truncated Gaussians).
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We first show that for each i ∈ [k], the values zi (computed using the key) and
sT ui (computed using the projected key) are “close”. More precisely, we show
that |zi − uT

i s| ≤ ε/2 · (q/4). This follows because

|zi − uT
i s| = |(eT

i (Bs + x) − uT
i s| = |eT

i x|, (2)

where the first equality uses the fact that y can be written as in Equation (1),
and the second uses the fact that ui = eT

i B. Now, |eT
i x| ≤ ||ei|| · ||x|| ≤ (r

√
mn)·

(βq
√
mn) < ε/2 · q/4.

Each ui is statistically close to uniform, by an application of the leftover hash
lemma; in particular, this means that sT ui ∈ Zq is uniformly random.3 Let bi
be the ith bit of H(e1,...,ek)(c) and b′i be the ith bit of H ′

(u1,...,uk)(c, s). Using
Equation (2), we see that the probability that bi 
= b′i (over the randomness
of ei) is at most ε/2. Thus, by a Chernoff bound, the Hamming distance between
H(e1,...,ek)(c) and H ′

(u1,...,uk)(c, s) is at most εk with overwhelming probability.
This shows approximate correctness.

Smoothness. Consider any (label,y,m) ∈ X \L. By definition of L, this means
that the decryption algorithm, on input (label,y,m) and any possible secret key
sk, does not output m. In other words, the decryption algorithm outputs either
⊥, or a message m′ 
= m. Define

z := y −U ·
(

1
m

)
and z′ := y −U ·

(
1
m′

)
.

We will show that for every non-zero a ∈ Zq, az is far from the Λ(B). More
precisely, we will show that for every non-zero a ∈ Zq,

dist(az, Λ(B)) ≥ √q/4.

An application of Lemma 2 then shows that for every i ∈ [k], the pair (eT
i B, eT

i z)
is statistically close to the uniform distribution over Zn+1

q .
Let us analyze the two cases:

– The output of the decryption algorithm is ⊥. In particular, this means that
for every a ∈ [1 . . . q − 1], the vector az is far from Λ(B).

– The output of the decryption algorithm is a message m′ 
= m. This could
happen only if there is an a′ ∈ Zq such that a′z′ is close to the lattice Λ(B).
Suppose, for contradiction, that az is close to Λ(B) as well. The claim below
shows that this cannot happen with high probability over the random choice
of U. Thus, with high probability, az is far from Λ(B).

Claim. The following event happens with negligible probability over the uni-
formly random choice of U ∈ Zm×�

q : there exist numbers a, a′ ∈ Zq, vectors
m 
= m′ ∈ Z�

q and a vector y ∈ Zm
q s.t.

dist(az, Λ(B)) ≤ √q/4 and dist(a′z′, Λ(B)) ≤ √q/4.
3 This holds only for s �= 0. We omit consideration of this technical issue for the

purposes of this paper.
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Proof. Fix some a, a′ ∈ Zq, m 
= m′ ∈ Z�
q and y ∈ Zm

q . We first observe

that since the vectors
(

1
m

)
and
(

1
m′

)
are linearly independent and U

is uniformly random, the vectors az and a′z′ are uniformly random and
(statistically) independent. Applying Lemma 1, we get that

PrU∈Z
m×�
q

[dist(az, Λ(B))
√
q/4 and dist(a′z′, Λ(B)) ≤ √q/4]

≤ (q−m/2 · negl(n))2 = q−m · negl(n).

Now, an application of union bound shows that the required probability is
at most q2 · q2� · qm · (q−m · negl(n)), which is negligible in n. ��

This completes the proof of Theorem 2. ��

6 A CCA-Secure Encryption Scheme Based on Lattices

In this section we describe a CCA-secure encryption scheme, along with an
approximate SPH system, based on the hardness of the LWE problem. The CCA-
secure encryption scheme builds on the CPA-secure encryption scheme described
in Section 5.1, and the SPH system is the same as the one from Section 5.2 with
a few modifications.

6.1 A CCA-Secure Encryption Scheme

The encryption scheme is similar to the schemes in [20,12] (which, themselves,
are instantiations of the general construction of Rosen and Segev [24]). The main
difference between [20,12] and our scheme is the relaxed notion of decryption,
which we already use in the CPA-secure construction in Section 5.1. A formal
description of the scheme follows.

Parameters. Let n be the security parameter, and � = poly(n) be the message
length. The parameters of the system are a prime q = q(n, �), an integer m =
m(n, �) ∈ Z+, and a Gaussian error parameter β = β(n, �) ∈ (0, 1] that defines a
distribution Ψβ . For concrete instantiations of these parameters, see Theorem 3.

Key generation. For i ∈ [n] and b ∈ {0, 1}, choose 2n matrices Ai,b ←
Zm×(n+�+1)

q together with short bases Si,b ∈ Zm×m for Λ⊥(Ai,b). More pre-
cisely, let

(Ai,b,Si,b)← TrapSamp(1m, 1n+�+1, q),

where TrapSamp is as described in Lemma 3. Output the public and secret keys

pk = {Ai,0,Ai,1}i∈[n] and sk = {S1,0,S1,1}.

(Note that the receiver does not use the trapdoors for i > 1 and so the {Ai,b}i>1
could, in fact, simply be chosen at random.)
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Encryption. To encrypt the message w ∈ Z�
q with respect to a public key as

above, the sender first generates a key pair (VK, SK)← SigKeyGen(1n) for a one-
time signature scheme; let VK = VK1, . . . ,VKn denote the bits of the verification
key. Define the matrix AVK as

AVK =

⎡⎢⎣A1,VK1

...
An,VKn

⎤⎥⎦ .
Choose s← Zn

q uniformly at random, and choose an error vector x← Ψ
mn

β . The
ciphertext is (V K,y, σ) where

y = AVK ·

⎛⎝ s
1
w

⎞⎠+ x (mod q)

and σ = SignSK(y).

Decryption. To decrypt a ciphertext (VK,y, σ), first verify that σ is a correct
signature on y and output ⊥ if not. Otherwise, parse y into n consecutive blocks
y1, . . . ,yn, where yi ∈ Zm

q . Then,

for a = 1 to q − 1 do

Compute t :=

⎛⎝ s
a′

w

⎞⎠← BDDSolve(T1,VK1 , ay)

if a′ = a then
if ||Ai,VKi · t− ayi|| ≤

√
q/4 for all i ∈ [n] then

output w/a and stop
else try the next value of a

end
If the above fails for all a, output ⊥

Theorem 3. Let n, �,m, q, β be such that m ≥ 4(n + �) log2 q and β < 1/(2 ·
m2n · ω(

√
logn)). Then, the scheme above is a CCA-secure encryption scheme

assuming the hardness of distLWEn,m,q,β.

The proof of correctness is similar to that of the CPA-secure encryption scheme.
CCA-security follows from the ideas of [20,12]. As we observed, the main change
between our encryption scheme and the one in [20,12] is that the decryption
algorithm tries to decrypt “all multiples of the ciphertext”. We defer the details
of the proof to the full version.

6.2 An Approximate SPH System

Fix a public key {Ai,0,Ai,1}i∈[n], and a password dictionary D def= Z�
q. The main

difference from the presentation in Section 5.2 is in the definition of cipher-
text validity: now, a labeled ciphertext (label,VK,y, σ) is defined to be valid
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if VerifyVK(label||y, σ) = accept. Clearly, all honestly generated ciphertexts are
valid and this condition can be checked in polynomial time. We define the sets
X , Lm, and Lm for m ∈ D exactly as in Section 2.

As in Section 5.2, a hash key is a k-tuple of vectors (e1, . . . , ek) where each
ei ← DZm,r is drawn independently from the discrete Gaussian distribution.
The projection function and the hash computation are the same, except that
here they use the matrices BVK and UVK respectively (instead of B and U in
Section 5.2). In particular, this means that the projection function depends on
the ciphertext (as allowed by the definition of an approximate SPH). The proof
of the theorem below follows analogously to that of Theorem 2; we defer the
proof to the full version of this paper.

Theorem 4. Let m ≥ 4(n+ �) log q, β < 1/(2 ·m2n · ω(
√

logn)) and r be such
that √

q · ω(
√

logn) ≤ r ≤ ε/(8 ·mn2 · β).

Then H = {Hk}k∈K is an ε-approximate smooth projective hash system.
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PSS Is Secure against Random Fault Attacks
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Abstract. A fault attack consists in inducing hardware malfunctions in
order to recover secrets from electronic devices. One of the most famous
fault attack is Bellcore’s attack against RSA with CRT; it consists in
inducing a fault modulo p but not modulo q at signature generation
step; then by taking a gcd the attacker can recover the factorization of
N = pq. The Bellcore attack applies to any encoding function that is
deterministic, for example FDH. Recently, the attack was extended to
randomized encodings based on the iso/iec 9796-2 signature standard.
Extending the attack to other randomized encodings remains an open
problem.

In this paper, we show that the Bellcore attack cannot be applied to
the PSS encoding; namely we show that PSS is provably secure against
random fault attacks in the random oracle model, assuming that invert-
ing RSA is hard.

Keywords: Probabilistic Signature Scheme, Provable Security, Fault
Attacks, Bellcore Attack.

1 Introduction

rsa [14] is still the most widely used signature scheme in practical applications.
To sign a message m with rsa, the signer first applies an encoding function μ to
m, and then computes the signature σ = μ(m)d mod N . The signature is verified
by checking that σe = μ(m) mod N . For efficiency reasons RSA signatures are
often computed using the Chinese Remainder Theorem (crt); in this case the
signature is first computed modulo p and q separately:

σp = md mod p , σq = md mod q

and then σp and σq are combined by CRT to form the signature σ.
Boneh, DeMillo and Lipton showed that rsa signatures computed with CRT

can be vulnerable to fault attacks [3]. If the attacker can induce a fault when σq

is computed while keeping the computation of σp correct, one obtains:

σp = md mod p , σq 
= md mod q

and the resulting faulty signature σ satisfies

σe = m mod p , σe 
= m mod q .

M. Matsui (Ed.): ASIACRYPT 2009, LNCS 5912, pp. 653–666, 2009.
c© International Association for Cryptologic Research 2009
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Therefore, given one faulty signature σ, the attacker can recover the factorization
of N by computing gcd(σe − m mod N,N) = p. This attack actually applies
to any deterministic rsa encoding, e.g. Full Domain Hash (fdh) [2] with σ =
H(m)d mod N .

More generally, the attack applies to any probabilistic scheme where the ran-
dom used to generate the signature is sent along with the signature, e.g. as in the
Probabilistic Full Domain Hash (pfdh) encoding [6] where the signature is σ‖r
with σ = H(m ‖ r)d mod N . In that case, given the faulty value of σ and knowing
r, the attacker can still factorN by computing gcd(σe−H(m ‖ r) mod N,N) = p.

However, if the random r is not given to the attacker along with the signature
σ then the Bellcore attack is thwarted. This is the case for signatures of the
form σ = μ(m, r)d mod N where the random r is only recovered when verifying
the signature, as in pss [2]. To recover r one needs a correct signature; from
a faulty signature, the attacker cannot retrieve r nor infer μ(m, r) in order to
compute gcd(σe−μ(m, r) mod N,N) = p, unless r is short enough to be guessed
by exhaustive search. Note that obtaining another correct signature for m would
not help the attacker since with high probability a different random r′ would be
used to generate this signature.

Recently, it was shown how to extend Bellcore’s attack to a large class of
randomized rsa encoding schemes [7]. The extended attack was illustrated with
the iso/iec 9796-2 standard [11]. iso/iec 9796-2 is originally a deterministic
encoding scheme but often used in combination with message randomization, as
in the emv standard [8]. The iso/iec 9796-2 encoded message has the form

μ(m) = 6A16 ‖m[1] ‖H(m) ‖ BC16

where m = m[1] ‖m[2] is split into two parts. The authors of [7] showed that if
the randomness introduced into m[1] is not too large (e.g. less than 160 bits for
a 2048-bit rsa modulus), then a single faulty signature allows to factor N as
in the original Bellcore attack. The attack is based on Coppersmith’s technique
for finding small roots of polynomial equations [5], which is based on the LLL
algorithm [12].

However, extending the attack to other randomized RSA signatures remains
an open problem. In particular, it is natural to ask whether the Bellcore attack
could apply to PSS [2], the most popular RSA-based signature scheme. In this
paper, we show that the Bellcore attack cannot be extended to PSS; namely we
show that PSS is provably secure against random fault attacks in the random
oracle model, assuming that inverting RSA is hard.

More precisely, we consider an extended model of security in which the at-
tacker, in addition to the regular signing oracle, has access to a faulty signature
oracle; that is, the attacker can request faulty signatures either modulo p or
modulo q. For a faulty signature modulo q, the signer first generates the correct
value modulo p:

σp = μ(m, r)d mod p

but generates a random σq modulo q. With CRT the signer then computes σ′

such that σ′ = σp mod p and σ′ = σq mod q, and returns the faulty signature
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σ′ to the adversary. Our result is that PSS is still secure under this extended
notion of security, in the random oracle model, assuming that inverting RSA is
hard.

2 Security Model

We recall the definition of a signature scheme.

Definition 1 (signature scheme). A signature scheme (Gen, Sign, Verify) is
defined as follows:

- The key generation algorithm Gen is a probabilistic algorithm which given
1k, outputs a pair of matching public and private keys, (pk, sk).

- The signing algorithm Sign takes the message M to be signed, the public key
pk and the private key sk, and returns a signature x = Signsk(M). The signing
algorithm may be probabilistic.

- The verification algorithm Verify takes a message M , a candidate sig-
nature x′ and pk. It returns a bit Verifypk(M,x′), equal to one if the signa-
ture is accepted, and zero otherwise. We require that if x ← Signsk(M), then
Verifypk(M,x) = 1.

In the existential unforgeability under an adaptive chosen message attack sce-
nario, the forger can dynamically obtain signatures of messages of his choice and
attempts to output a valid forgery. A valid forgery is a message/signature pair
(M,x) such that Verifypk(M,x) = 1 whereas the signature of M was never
requested by the forger.

In the following, we consider an extended model of security in which the
attacker, in addition to the regular signing oracle, has access to a faulty signature
oracle; that is, the attacker can request faulty signatures either modulo p or
modulo q. For a faulty signature modulo q, the signer first generates the correct
value modulo p:

σp = μ(m, r)d mod p

and generates a random σq modulo q. With CRT the signer then computes σ′

such that σ′ = σp mod p and σ′ = σq mod q, and returns the faulty signature
σ′ to the adversary. This is actually equivalent to first computing a correct
signature σ:

σ = μ(m, r)d mod N

and then generating a random u modulo q and computing the faulty signature:

σ′ = σ + u · p mod N

Formally, we consider the following scenario between a challenger and an at-
tacker. Our scenario applies to any RSA based signature scheme in which a
signature σ is computed as σ = μ(m, r)d mod N for some (randomized) encod-
ing function μ(m, r).
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Setup: the challenger generates an RSA modulus N = p · q, a public exponent
e such that gcd(e, φ(N)) = 1 and a private exponent d such that e · d = 1
mod φ(N). The challenger sends (N, e) to the adversary.
Queries: the adversary can make regular signature queries to the challenger. In
this case, given a message m, the challenger generates a random r and output
the (correct) signature:

σ = μ(m, r)d mod N

Additionally, the attacker can make faulty signature queries. For every such
query, the attacker specifies whether the fault should be modulo p or modulo q.
For a faulty signature modulo q, the challenger first generates a random r and
computes the correct signature:

σ = μ(m, r)d mod N

Then the challenger generates a random u modulo q, and computes:

σ′ = σ + u · p mod N

and sends σ′ to the attacker. The challenger proceeds similarly if a faulty signa-
ture modulo p is requested.
Forgery: eventually the attacker must output a forgery, that is a message signa-
ture pair (m,x) such that Verifypk(m,x) = 1 whereas the signature of m was
never requested by the forger, neither as a regular signature query nor in a faulty
signature query.

This completes the description of the attack scenario. As usual, we say that a
signature scheme is (t, ε)-secure if no adversary running in time t can output a
forgery with probability better than ε.

The PSS scheme was proven secure in the random oracle model [1], and our
security proof with faulty signatures is also in the random oracle model. It is
well known that a security proof in the random oracle model does not necessarily
imply that a scheme is secure in the real world (see [4]). Although it is always
better to have a security proof in the standard model, we think that it is still
better to have a proof in the random oracle model than no proof at all.

2.1 Why Random Faults?

In our security model we have assumed that when a faulty signature σ′ is ob-
tained, it has the uniform distribution modulo p (or modulo q). This could be
seen as a very strong assumption; namely in practice the faults might have a
completely non-random distribution. Consider for example a fault attack induc-
ing the values of the registers to be set to zero. This gives σp = 0 and recovering
p is then straightforward: simply compute gcd(σ′, N) = p. To prevent from this
attack we could assume that when a fault occurs the value σp still has enough
min-entropy.

In the following we argue that 1) the random fault assumption is almost
unavoidable if we want to obtain a security proof and 2) such assumption might
actually be reasonable in practice.
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Assume that a fault gives a random σp mod p but with the k most significant
bits set to 0, for some small integer k. That is, the attacker can obtain a list of
faulty signatures σ′i such that the corresponding σ′i,p = σ′i mod p satisfy:

0 ≤ σ′i,p <
p

2k
(1)

for all 1 ≤ i ≤ n, where n is the number of faulty signatures. We show how to
recover p, using an attack similar to [13]. With LLL [12], the attacker computes
a short vector (u1, . . . , un) such that:

n∑
i=1

ui · σ′i = 0 mod N

This implies:
n∑

i=1

ui · σ′i,p = 0 mod p

Since from (1) the σ′i,p are small modulo p, if the ui’s are small enough, then the
equality will hold not only modulo p but also over Z:

n∑
i=1

ui · σ′i,p = 0

This gives a vector (u1, . . . , un) that is orthogonal in Z to the unknown vector
(σ′1,p, . . . σ

′
n,p). It is shown in [13] that by generating sufficiently many such

vectors, one can recover the unknown vector (σ′1,p, . . . σ
′
n,p) and eventually p.

Note that this attack applies to any RSA-based signature scheme with CRT,
not only to PSS. This attack shows it is not enough for σp to have min-entropy,
as only a few bits of entropy loss compared to the uniform distribution enable
to recover p. Therefore, if we want to obtain a security proof, it seems necessary
to assume that σp is uniformly distributed modulo p.

Actually the random fault assumption might be reasonable in practice. Name-
ly to prevent probing attacks, the data being transmitted in the memory bus
inside the micro-processor is usually encrypted. Therefore, the content of a regis-
ter after a fault attack could still be some encrypted value, so it can be reasonable
to model this register value as uniformly random.

3 PSS Is Secure against Random Fault Attacks

3.1 The PSS Scheme

We recall the definition of the PSS scheme [2]. The scheme uses three hash
functions h : {0, 1}∗ → {0, 1}k1, g1 : {0, 1}k1 → {0, 1}k0 and g2 : {0, 1}k1 →
{0, 1}k−k0−k1−1, where k, k0 and k1 are parameters.

Key Generation: generate a k-bit RSA modulus N = pq, and a random ex-
ponent e ∈ Z∗

φ(N). Generate d such that e · d = 1 mod φ(N). The public-key is
(N, e); the private key is (N, d).
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0 r∗ g2(ω)

g1(ω)
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Fig. 1. PSS: the components of the image y = 0‖ω‖r∗‖g2(ω) are darkened. The signa-
ture of m is yd mod N .

Signature generation: given a message m, do the following:
1. r ← {0, 1}k0

2. ω ← h(m‖r)
3. r∗ ← g1(ω)⊕ r
4. y ← 0‖ω‖r∗‖g2(ω)
5. Return σ = yd mod N

Signature Verification: given a messagem and a signature σ, do the following:
1. Let y = σe mod N
2. Parse y as 0‖ω‖r∗‖γ. If the parsing fails return 0.
3. r ← r∗ ⊕ g1(ω)
4. If h(m‖r) = ω and g2(ω) = γ return 1.
5. else return 0.

3.2 Security Proof

We first give an intuition of the proof. We denote by μ(m, r) the PSS encoding
scheme, that is μ(m, r) = 0‖ω‖r∗‖g2(ω) where ω = h(m‖r) and r∗ = g1(ω)⊕ r.

We receive as input a challenge (N, e, η) and we must output ηd mod N . In
the original PSS security proof [2], when receiving a signature query, the simulator
generates a random αmoduloN such that αe mod N can be written as 0‖ω‖s‖t.
The simulator generates a random r of k0 bits. Then it lets h(m, r) = ω, g1(ω) =
s⊕r and g2(ω) = t. Thereforewe have thatμ(m, r) = (αe mod N). The simulator
can then return α as a signature for m. When receiving a hash query for h(m, r),
the simulator generates a random α modulo N such that η · αe can be written as
0‖ω‖s‖t; it then proceeds as previously. In this case we have μ(m, r) = (η · αe

mod N). Therefore a forgery for μ(m, r) enables to compute ηd mod N .
One can see that if there is no collision on the randoms r used for signature

generation, and no collision on the values ω, then the simulation is perfect. Then
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given a forgery σ′ for some message m′, with high probability we have that
μ(m′, r′) = (η · αe mod N) for some known α. Therefore from σ′ = μ(m′, r′)d

mod N one can compute ηd mod N as required and solve the RSA challenge.
In our extended model of security, we must additionally simulate a faulty

signature oracle. To do this, one could first generate as previously a random
α modulo N such that αe mod N can be written as 0‖ω‖s‖t. The simulator
generates a random r of k0 bits. Then it lets h(M, r) = ω, g1(ω) = s ⊕ r and
g2(ω) = t, so that again μ(m, r) = (αe mod N). Then instead of returning the
correct signature α, the simulator could generate a random u modulo q, and
output the faulty signature:

α′ = α+ u · p mod N (2)

Obviously our simulator cannot do this, because it does not know the prime
factors p and q. Instead we show that the distribution of α′ is statistically close
to uniform in ZN ; therefore, the simulator can simply return a random α′ ∈ ZN .

Since RSA is a permutation, instead of considering the distribution of α′, one
can consider the distribution of y′ = α′e mod N . From (2) we have:

y′ = y + v · p mod N

where v is uniformly distributed modulo q and y is uniformly distributed in
[0, 2k−1[. The following lemma shows that the distribution of y′ is statistically
close to uniform in ZN .

Lemma 1. Let N = pq be a k-bit modulus where p and q are k/2-bit, and let y
be a random integer such that 0 ≤ y < 2k−1. Let v be a random integer modulo q.
Then the distribution of y′ = y+ v · p mod N is ε-statistically close to uniform
modulo N , with ε = 4

2k/2

Proof. We consider a fixed a ∈ ZN and we provide an estimate of Pr[y′ = a].
For this we consider the solutions of the equation:

a ≡ y + v · p mod N (3)

We have that for every v ∈ [0, q), there exists a unique y ∈ [0, N [ which satis-
fies the above relation. However we are only interested in the y’s in the range
[0, 2k−1[. We have that for each i ∈ [1, q], the pair:

(v = q − i, y = a+ ip mod N)

is a solution of (3) iff
a+ ip mod N < 2k−1 (4)

Depending on the choice of a, there are actually either ( 2k−1

p ) or ( 2k−1

p ) + 1

many i values which satisfy relation (4). Hence there are ( 2k−1

p ) or ( 2k−1

p ) + 1
many solutions to congruence (3) such that y < 2k−1. Since y and v are random
integers in the range [0, 2k−1) and [0, q) respectively, this gives:⌊

2k−1

p

⌋
· 1
2k−1 ·

1
q
≤ Pr[y′ = a] ≤

(⌊
2k−1

p

⌋
+ 1
)
· 1
2k−1 ·

1
q
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We write ( 2k−1

p ) = c, which gives p · c < 2k−1 < p · c+ p. We obtain:

Pr[y′ = a] ≥ c

2k−1q
=

1
N
· pc

2k−1 =
1
N
·
(

1− 2k−1 − pc
2k−1

)
>

1
N
·
(
1− p

2k−1

)
(as 2k−1 < pc+ p)

>
1
N
·
(

1− 2p
N

)
(as 2k−1 >

N

2
)

=
(

1− 2
q

)
· 1
N

Similarly, we have:

Pr[y′ = a] ≤
(

1 +
2
q

)
· 1
N

This gives: (
1− 2

q

)
· 1
N
≤ Pr[y′ = a] ≤

(
1 +

2
q

)
· 1
N

for all a ∈ [0, N). This implies that the distribution of y′ is 4
2k/2 -statistically

close to uniform modulo N as q > 2k/2−1. ��

Lemma 1 shows that it is sufficient for our simulator to return a random α′

modulo N as the faulty signature. In other words, instead of first generating a
random y ∈ [0, 2k−1), then a random v modulo q, then y′ = y + v · p and finally
α′ = y′d mod N , the simulator can simply output a random α′ modulo N , and
such output will be statistically indistinguishable from a faulty signature.

However to this faulty signature α′ corresponds a correct signature α such
that:

α = α′ − u · p mod N

where u is randomly distributed modulo q. Equivalently letting y′ = α′e mod N
there exists a corresponding value y with:

y = y′ − v · p mod N (5)

where v is randomly distributed modulo q such that y can be written as:

y = 0‖ω‖s‖t = μ(m, r)

This implicitly defines h(m, r) = ω, g1(ω) = s⊕r and g2(ω) = t for the simulation
of random oracles h, g1 and g2.

Since our simulator does not know p, it cannot compute y in equation (5)
and therefore our simulator does not known the corresponding values of ω, s
and t; therefore our simulator cannot answer the corresponding h queries, g1
queries and g2 queries if such queries are made by the attacker. Intuitively for
h-queries it is sufficient that the set of r values is exponentially large; for this
the parameter k0 must be large enough. For g1 and g2 queries we must show
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that the adversary has a negligible probability of querying ω. This is shown in
the following lemma: we show that given a faulty signature α′ (or equivalently
y′ = α′e mod N) the distribution of ω has enough variability, if the parameter
k1 is sufficiently large. This implies that ω does not need to be computed, and
therefore the factorization of N is not needed for our simulation.

Lemma 2. Let N = pq be a k-bit modulus where p and q are k/2-bit, and let y
be a random integer such that 0 ≤ y < 2k−1. Let v be a random integer modulo
q, and let y′ = y + v · p mod N . Write y = 0‖ω‖x where ω is k1-bit and x is
k − k1 − 1 bits. Given y′, for any ω′ of k1-bit we have:

Pr[ω = ω′|y′] ≤ 8
2min(k1,k/2)

Proof. We have that:

Pr[ω = ω′|y′] =
#(y, v) pairs, s.t. y′ = y + v · p mod N and y = 0‖ω′‖x

#(y, v) pairs, s.t. y′ = y + v · p mod N and 0 ≤ y < 2k−1

For a fixed v, the value y mod N gets fixed by the relation y′ = y+v ·p mod N .
Moreover at least ( q

2) of the possible v values give y mod N in the desired range
between 0 and 2k−1. Hence the denominator of the above fraction can be lower
bounded by ( q

2).
We have that for a fixed y′, the value of y is fixed modulo p; hence for a fixed

ω′ with y = 0‖ω′‖x, the value of x is also fixed modulo p. As x is k − k1 − 1-
bit, over Z there can be at most % 2k−k1−1

p & many possible x values. Hence the

numerator of the above fraction can be upper bounded by % 2k−k1−1

p &.
Hence we have,

Pr[ω = ω′|y′] ≤
% 2k−k1−1

p &
( q

2)
<

2k−k1−1

2k/2−1 + 1
2k/2−2 =

2k−k1−1 + 2k/2−1

2k−3 <
8

2min(k1,k/2)

��

Formally, we obtain the following theorem:

Theorem 1. Assume that no algorithm can invert RSA in time t′ with proba-
bility better than ε′. Then the signature scheme PSS[k0, k1] is (t, qh, qg, qs, qfs, ε)
secure, where

t(k) = t′(k)− [qs(k) + qg(k) + qh(k) + 1] · k0 ·Θ(k3)

ε(k) = ε′(k) + (qs + qfs + 1) · (qs + qfs + qh) · 2−k0 + 8 · qg · qfs · 2−min(k1,k/2)

+ (qh + qs + qfs) · (qh + qg + qs + qfs + 1) · 2−k1

+ qh · qfs · 2−k0 + 4 · qfs · 2−k/2

Here the attacker can make at most qh, qg, qs, qfs number of h queries, g queries,
signature queries and fault signature queries respectively.
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Proof. We use a simulator which behaves in exactly same way as in original PSS
security proof [2], in addition it answers fault queries with a uniformly random
integer modulo N . Now if the attacker is successful against our simulator then
we break the RSA challenge (N, e, η) as in the original paper.

We must show that any attacker which is successful against the original attack
scenario will be successful against our simulator. For that, we use a sequence of
games. We start with Game0, which is exactly the attack scenario, which requires
to know the factorization of N . Then we progressively modify the game, so that
eventually knowledge of the factorization of N is not needed anymore. We denote
by Si the event that the attacker succeeds in Gamei.

Game0: this is the attack scenario. We answer signature queries as specified in
the signature generation algorithm, using the private exponent d. We simulate
the faulty signature queries by first generating a correct signature σ and then
computing σ′ = σ+ u · p mod N for a random u modulo q. In the following for
simplicity we only consider faulty signatures modulo q; faulty signatures modulo
p are simulated in exactly the same way.

Game1: we abort if there is a collision for ω at Step 2 of the signature generation
algorithm, or if the random r used during signature generation has already ap-
peared before. We call this event A1. More precisely event A1 happens if one of
the following is true:

– The random r used in a signature oracle or faulty signature oracle query
collides with either 1) the r used in a previous signature oracle or faulty
signature oracle query or 2) the r used in a previous h oracle query.

– The h function output in a signature oracle or faulty signature oracle query
collides with either 1) the h function outputs in previous signature oracle or
faulty signature oracle queries or 2) with a previous h oracle query output
or 3) a previous g oracle query input.

– The h oracle query output collides with either 1) a h function output in
previous signature oracle or faulty signature oracle query or 2) a previous h
oracle query output or 3) a previous g oracle query input.

We obtain:

Pr[A1] ≤ (qs +qfs) ·(qs +qfs+qh) ·2−k0 +(qh +qs+qfs) ·(qh +qg +qs+qfs) ·2−k1

and:
|Pr[S1]− Pr[S0]| ≤ Pr[A1]

Game2: we construct a similar simulator as in the original PSS security proof [2];

however to deal with faulty signature queries we continue to use the factorization
of N .

The simulator receives as input a challenge η and must output ηd mod N .
When receiving a signature query, the simulator generates a random α modulo
N such that αe mod N can be written as 0‖ω‖s‖t. The simulator generates a
random r of k0 bits. Then it lets h(m, r) = ω, g1(ω) = s⊕ r and g2(ω) = t.
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When receiving a hash query for h(m, r), the challenger generates a random
α modulo N such that η ·αe mod N can be written as 0‖ω‖s‖t; it then defines
h(m, r) = ω, g1(ω) = s ⊕ r and g2(ω) = t as previously. The queries to g1 and
g2 are simulated by returning a random value for every new input.

To simulate the faulty signature oracle, one first generates as above a random
α modulo N such that αe mod N can be written as 0‖ω‖s‖t. The simulator
generates a random r of k0 bits. Then it lets h(m, r) = ω, g1(ω) = s ⊕ r and
g2(ω) = t. Then instead of returning α, the simulator generates a random u
modulo q, and outputs:

α′ = α+ u · p mod N (6)

In Game2 we abort as in Game1, and additionally in the following case: while gen-
erating a random α modulo N such that αe mod N can be written as 0‖ω‖s‖t
during signature or faulty signature queries (and similarly for h(m, r) queries),
we stop after trying k0 + 1 times. This adds (qh + qs + qfs) · 2−k0 in the error
term:

|Pr[S2]− Pr[S1]| ≤ (qh + qs + qfs) · 2−k0

Game3: we abort if the attacker makes a query for g(ω) where ω was used in a
faulty signature for message m and random r, while the attacker has not made
a query to h(m, r) before. We define this event as A3. As all the query answers
are simulated independently, from Lemma 2 this gives:

|Pr[S3]− Pr[S2]| ≤ Pr[A3] ≤ qg · qfs ·
8

2min(k1,k/2)

Game4: we abort if the attacker makes a query for h(m, r) where r was used to
generate a faulty signature with ω, while the attacker has not made a query
before to g(ω). In this case the attacker’s view is independent from r, which
gives:

|Pr[S4]− Pr[S3]| ≤ qh · qfs · 2−k0

Game5: we abort if the attacker makes a query for h(m, r) where r was used to
generate a faulty signature, or if the attacker makes a query for g(ω) where ω was
used in a faulty signature. Game5 is the same as Game4 since for a faulty signature
m with random r and ω, either the attacker starts with a h(m, r) query or it
starts with a g(ω) query.

Pr[S5] = Pr[S4]

Game6: we change the way the faulty signature oracle is simulated. Instead of
first generating α and then α′ as in equation (6), we first generate a uniformly
random α′ and then a random u modulo q such that αe mod N can be written
as 0‖ω‖s‖t. From Lemma 1 we have:

|Pr[S6]− Pr[S5]| ≤ qfs ·
4

2k/2

Game7: since we do not answer the queries for h(m, r) where r was used to
generate a faulty signature, and the queries for g(ω) where ω was used in a
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faulty signature, we do not need to compute ω. Therefore, we do not need to
compute a random u modulo q such that αe mod N can be written as 0‖ω‖s‖t.
Therefore we do not need to know the factorization of N anymore, and we have:

Pr[S7] = Pr[S6]

Finally, if the adversary outputs a forgery with probability at least ε in Game0,
then the adversary must output a forgery with probability at least ε− |Pr[S7]−
Pr[S0]| in Game7. As in the original PSS security proof, from this forgery we can
solve the RSA challenge with probability at least:

ε′ = ε− |Pr[S7]− Pr[S0]| − 2−k1

Combining the previous inequalities, we get (6). ��

4 PSS-R Is Secure against Fault Attacks

In PSS-R or PSS with message recovery the goal is to save bandwidth such that
the message is recoverable from the signature; hence it is not necessary to send
the message separately.

4.1 The PSS-R Scheme

We recall the definition of the PSS-R scheme [2]. The scheme uses three hash
functions h : {0, 1}∗ → {0, 1}k1, g1 : {0, 1}k1 → {0, 1}k0 and g2 : {0, 1}k1 →
{0, 1}k−k0−k1−1, where k, k0 and k1 are the parameters.

Key Generation: generate a k-bit RSA modulus N = pq, and a random ex-
ponent e ∈ Z∗

φ(N). Generate d such that e · d = 1 mod φ(N). The public-key is
(N, e); the private key is (N, d).
Signature generation: given a message m, do the following:

1. r ← {0, 1}k0

2. ω ← h(M‖r)
3. r∗ ← g1(ω)⊕ r
4. m∗ ← g2(ω)⊕m
5. y ← 0‖ω‖r∗‖m∗

6. Return σ = yd mod N

Message Recovery: given a signature σ, do the following:

1. Let y = σe mod N
2. Parse y as 0‖ω‖r∗‖m∗. If the parsing fails return Reject.
3. r ← r∗ ⊕ g1(ω)
4. m← m∗ ⊕ g2(ω)
5. If h(m‖r) = ω return m.
6. else return Reject.
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Fig. 2. PSS-R: Components of image y = 0‖ω‖r∗‖M∗ are darkened. The signature of
M is yd mod N .

4.2 Security Proof

Theorem 2. Assume that no algorithm can invert RSA in time t′ with probabil-
ity better than ε′. Then the signature scheme PSS-R[k0, k1] is (t, qh, qg, qs, qfs, ε)
secure, where:

t(k) = t′(k)− [qs(k) + qg(k) + qh(k) + 1] · k0 ·Θ(k3)

ε(k) = ε′(k) + (qs + qfs + 1) · (qs + qfs + qh) · 2−k0 + 8 · qg · qfs · 2−min(k1,k/2)

+ (qh + qs + qfs) · (qh + qg + qs + qfs + 1) · 2−k1

+ qh · qfs · 2−k0 + 4 · qfs · 2−k/2

Here the attacker can make at most qh, qg, qs, qfs number of h queries, g queries,
signature queries and fault signature queries respectively.

Proof. The proof of this theorem is very similar to that of Theorem 1 and hence
is omitted.

5 Conclusion

We obtain from the previous theorems that unless the attacker is making more
fault oracle queries than hash oracle queries, one gets the same security bound
as in the original PSS proof without fault oracle. We note that in practice fault
queries are usually more expensive than hash queries, since those hash queries
can be made offline when a concrete hash function is used.

In [6] a better security bound was given for PSS (without fault oracle). It was
shown that the random size k0 could be taken as small as log2 qs, where qs is
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the maximum number of signature queries; with qs = 230 this gives k0 = 30 bits.
However with a fault oracle one cannot take such a small k0, since in this case
the random r could be recovered by exhaustive search and the Bellcore attack
would still apply.

In summary. any parameters chosen according to the bounds in the original
PSS paper [2] give the same level of security against fault attacks. One can take
k = 1024, k0 = k1 = 128 as in [2].
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Abstract. Cache-timing attacks are a serious threat to security-critical
software. We show that the combination of vector quantization and hid-
den Markov model cryptanalysis is a powerful tool for automated analysis
of cache-timing data; it can be used to recover critical algorithm state
such as key material. We demonstrate its effectiveness by running an
attack on the elliptic curve portion of OpenSSL (0.9.8k and under). This
involves automated lattice attacks leading to key recovery within hours.
We carry out the attack on live cache-timing data without simulating
the side channel, showing these attacks are practical and realistic.

Keywords: cache-timing attacks, side channel attacks, elliptic curve
cryptography.

1 Introduction

Traditional cryptanalysis views cryptographic systems as mathematical abstrac-
tions, which can be attacked using only the input and output data of the system.
As opposed to attacks on the formal description of the system, side channel at-
tacks [1,2] are based on information that is gained from the physical implemen-
tation of the system. Side channel leakages might reveal information about the
internal state of the system and can be used in conjunction with other crypt-
analytic techniques to break the system. Side channel attacks can be based on
information obtained from, for example, power consumption, timings, electro-
magnetic radiation or even sound. Active attacks in which the attacker manip-
ulates the operation of the system by physical means are also considered side
channel attacks.

Our focus is on cache-timing attacks in which side channel information is
gained by measuring cache access times; these are trace-driven attacks [3]. We
place importance on automated analysis for processing large volumes of cache-
timing data over many executions of a given algorithm. Hidden Markov models
(HMMs) provide a framework, where the relationship between side channel ob-
servations and the internal states of the system can be naturally modeled. HMMs
for side channel analysis was previously studied by Oswald [4], and models for
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key inference given by Karlof and Wagner [5] and Green et al. [6]. While their
proposed models make use of an abstract side channel, we are concerned with
concrete cache-timing data here.

The analysis additionally makes use of Vector Quantization (VQ) for classi-
fication. Cache-timing data is viewed as vectors that are matched to predefined
templates, obtained by inducing the algorithm to perform in an unnatural man-
ner. This can often easily be accomplished in software.

Abstractly, it is reasonable to consider the analysis shown here as a form of
template attack [7] used in power analysis of symmetric cryptographic primitive
implementations, and more recently for asymmetric primitives [8]. Chari et al. [7]
formalize exactly what a template is: A precise model for the noise and expected
signal for all possible values for part of the key. Their attack is then carried out
iteratively to recover successive parts of the key.

It is difficult and not particularly prudent to model cache-timing attacks ac-
cordingly. In lieu of such explicit formalization, we borrow from them in name
and in spirit: The attacker has some device or code in their possession that they
can give input to, program, or modify in some way that forces it to perform in
a certain manner, while at the same time obtaining measurements from the side
channel.

Using the described analysis method, we carry out an attack on the elliptic
curve portion of OpenSSL (0.9.8k). Within hours, we are able to recover the
long-term private key in ECDSA by observing cache-timing data, signatures, and
messages. Our attack exploits a weakness that stems from the use of a low-weight
signed representation for scalars during point multiplication. The algorithm uses
a precomputation table of points that are accessed during point addition steps.
The lookups are reflected in the cache-timings, leaking critical algorithm state.
A significant fraction of ECDSA nonce portions can be determined this way.
Given enough such information, we are able to recover the private key using a
lattice attack.

The paper is structured as follows. In Sect. 2, we give background on cache
architectures and various published cache attacks. In Sect. 3, we review elliptic
curve cryptography and the implementation in OpenSSL. Section 4 covers VQ
and how to apply it effectively to cache-timing data analysis. In Sect. 5, we
discuss HMMs and describe how they are used in our attack, but also how they
can be used to facilitate side channel attacks in general. We present our results
in Sect. 6, and countermeasures briefly in Sect. 7. We conclude in Sect. 8.

2 Cache Attacks

We begin with a brief review of modern CPU cache architectures. This is followed
by a selective literature review of cache attacks on cryptosystem implementations.

2.1 Data Caches

A CPU has a limited number of working registers to store data. Modern proces-
sors are equipped with a data cache to offset the high latency of loading data
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from main memory into these registers. When the CPU needs to access data,
it first looks in the data cache, which is faster but with smaller capacity than
main memory. If it finds the data in the cache, it is loaded with minimal latency
and this is known as a cache hit; otherwise, a cache miss occurs and the latency
is higher as the data is fetched from successive layers of caches or even main
memory. Thus access to frequently used data has lower latency. Cache layers L1,
L2, and L3 are commonplace, increasing with capacity and latency. We focus on
data caches here, but processors often have an instruction cache as well.

The cache replacement policy determines where data from main memory is
stored in the cache. At opposite ends of the spectrum are a fully-associative cache
and a direct mapped cache. Respectively, these allow data from a given memory
location to be stored in any location or one location in the cache. The trade-off
is between complexity and latency. A compromise is an N -way associative cache,
where each location in memory can be stored in one of N different locations in
the cache. The cache locations, or lines, then form a number of associative sets
or congruency classes.

We give the L1 data cache details for the two example processors under con-
sideration here.

Intel Atom. The L1 data cache consists of 384 lines of 64B each for a total of
24KB. It is 6-way associative, thus the lines are divided into 64 associative
sets.

Intel Pentium 4. The L1 data cache consists of 128 lines of 64B each for a total
of 8KB. It is 4-way associative, thus the lines are divided into 32 associative
sets.

We focus on these because they implement Intel’s HyperThreading, a form of
Simultaneous Multithreading (SMT) that allows active execution of multiple
threads concurrently. In a cache-timing attack scenario, this relaxes the need to
force context switches since the threads naturally compete for shared resources
during execution, such as the data caches. The newly-released (Nov. 2008) Intel
i7 also features HyperThreading; it has the same number of associative sets as
the Intel Atom.

2.2 Published Attacks

Percival [9] demonstrated a cache-timing attack on OpenSSL 0.9.7c (30 Sep.
2003) where a classical sliding window was used twice for exponentiation for two
512-bit exponents in combination with the CRT to carry out a 1024-bit RSA
encryption operation. Sliding window exponentiation computes βe by sliding
a width-w window across e with placement such that the value falling in the
window is odd. It then uses a precomputation table βi for all odd 1 ≤ i < 2w,
accessed during multiplication steps; this lookup is reflected in the cache-timings,
demonstrated on a Pentium 4 with HyperThreading. The sequence of squarings
and multiplications yields significant key data: recovery of 200 bits out of each
512-bit exponent, and [9] claimed an additional 110 bits from each exponent due
to fixed memory access patterns revealing information about the index to the
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precomputation table and thus key data. Assuming the absence of errors, [9]
reasoned how this allows the RSA modulus to be factored in reasonable time.
OpenSSL responded to the vulnerability in 0.9.7h (11 Oct. 2005) by modifying
the exponentiation routine.

Hlavác and Rosa [10] used a similar approach to demonstrate a lattice attack
on DSA signatures with known nonce portions. They estimated that after ob-
serving 6 authentications to an OpenSSH server, which uses OpenSSL (< 0.9.7h)
for DSA signatures, an attacker will have a high success probability when run-
ning a lattice attack to recover the private key. They state that the side channel
was emulated for the experiments.

The numerous published attacks against secret key implementations are note-
worthy. Among others, these include attacks on AES by Bernstein [11] and Osvik
et al. [12]. Both papers present key recovery attacks on various implementations.

3 Elliptic Curve Cryptography

To demonstrate the effectiveness of the analysis method, we will look at one
particular implementation of ECC. We stress that the scope of the analysis is
much larger; this is merely one example of how it can be used.

Given a point P on an elliptic curve and scalar k, scalar multiplication com-
putes kP . This operation is the performance benchmark for an elliptic curve
cryptosystem. It is normally carried out using a double-and-add approach, of
which there are many varieties. We outline a common one later in this section.

Our attack is demonstrated on an implementation of scalar multiplication used
by ECDSA signature generation. A signature (r, s) on a message m is produced
using

r = x(kG) mod n (1)

s = k−1(h(m) + rd) mod n (2)

with point G of order n, nonce k chosen uniformly from [1, n), x(P ) the projection
of P to its x-coordinate, h a collision-resistant hash function, and d the long-term
private key corresponding to the public key D = dG.

3.1 ECC in OpenSSL

OpenSSL treats two cases of elliptic curves over binary and prime fields sepa-
rately and implements scalar multiplication in two ways accordingly. We con-
sider only the latter case, where a general multi-exponentiation algorithm is
used [13,14]. The algorithm works left-to-right and uses interleaving, where one
accumulator is used for the result and point doublings are shared; low-weight
signed representations are used for individual scalars.

When only one scalar is passed, as in (1) or when creating a signature using
the OpenSSL command line tool, it reduces to a rather textbook version of scalar
multiplication, in this case using the modified Non-Adjacent Form mNAFw (see,
for example, [15]). This is reflected in the pseudocode below. OpenSSL has the
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ability to store the precomputed points in memory, so with a fixed P such as a
generator they need not necessarily be recomputed for each invocation.

The representation mNAFw is very similar to the regular windowed NAFw .
Each non-zero coefficient is followed by at least w − 1 zero coefficients, except
for the most significant digit which is allowed to violate this condition in some
cases to reduce the length of the representation by one while still retaining the
same weight. Considering the MSBs of NAFw, one applies 10w−1δ �→ 010w−2ε
where δ < 0 and ε = 2w−1 + δ when possible to obtain mNAFw .

Algorithm: Scalar Multiplication

Input: k ∈ Z, P ∈ E(Fp), width w
Output: kP
(k�−1 . . . k0) ←mNAFw(k)
Precompute iP for all odd 0 < i < 2w−1

Q ← k�−1P
for i ← � − 2 to 0 do

Q ← 2Q
if ki �= 0 then Q ← Q + kiP

end
return Q

Algorithm: Modified NAFw

Input: window width w, k ∈ Z
Output: mNAFw(k)
i ← 0
while k ≥ 1 do

if k is odd then ki ← k mods 2w ,
k ← k − ki

else ki ← 0
k ← k/2, i ← i + 1

end
if ki−1 = 1 and ki−1−w < 0 then

ki−1−w ← ki−1−w + 2w−1

ki−1 ← 0, ki−2 ← 1, i ← i − 1
end
return (ki−1, . . . , k0)

3.2 Cache Attack Vulnerability

Following the description of the mNAFw representation, knowledge of the curve
operation sequence corresponds directly to the algorithm state, yielding quite a
lot of key data. Point additions take place when a coefficient ki �= 0 and these
are necessarily followed by w point doublings due to the scalar representation.
From the side channel perspective, consecutive doublings allow inference of zero
coefficients, and more than w point doublings reveals non-trivial zero coefficients.

Without any countermeasures, the above scalar multiplication routine is vul-
nerable to cache-timing attacks. The points in the precomputation phase are
stored in memory; when a point addition takes place, the point to be added is
loaded into the cache. An attacker can detect this by concurrently running a spy
process [9] that does nothing more than continually load its own data into the
cache and measure the time require to read from all cache lines in a cache set,
iterating the process for all cache sets. Fast cache access times indicate cache hits
and the scalar multiplication routine has not aggressively accessed those cache
locations since the last iteration, which would evict the spy process data from
those cache locations, cause a cache miss, and thus slower cache access times for
the spy process.

In Fig. 1, we illustrate typical cache timing data obtained from a spy pro-
cess running on a Pentium 4 (Top) and Atom (Bottom) with OpenSSL 0.9.8k
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performing an ECDSA signature operation concurrently. The top eight rows of
each graph are metadata; the lower half represents the VQ label and the upper
half the algorithm state. We show how we obtained the metadata in Sect. 4 and
Sect. 5, respectively. The remaining cells are the actual cache-timing data. Each
cell in these figures indicates a cache set access time. Technically, time moves
within each individual cell, then from bottom to top through all cache sets, then
from left to right repeating the measurements. To visualize the data, it is ben-
eficial to consider the data as vectors with length equal to the number of cache
sets, and time simply moves left to right.

To manually analyze such traces and determine what operations are being per-
formed we look for (dis)similarities between neighboring vectors. These graphs
show seven (Top) and eight (Bottom) point additions, with repeated point dou-
blings occurring between each addition. As an attacker, we hope to find correla-
tion between these point additions and the cache access times—which we easily
find here. Additions in the top graph are visible at rows 13 and 24, among others;
the bottom graph, rows 6, 7, 55, 56. The reader is encouraged to use the vector
quantization label to help locate the point additions (black label).
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Fig. 1. Cache-timing data from a spy process running concurrently with an OpenSSL
0.9.8k ECDSA signature operation; 160-bit curve, mNAF4. Top: Pentium 4 timing data,
seven point additions. Bottom: Atom timing data, eight point additions. Repeated point
doublings occur between the additions. The top eight rows are metadata; the bottom
half the VQ label (Sect. 4) and top half the HMM state (Sect. 5). All other cells are
the raw timing data, viewed as column vectors from left to right with time.
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4 Vector Quantization

Automated analysis of cache-timing data like that shown in Fig. 1 is not a trivial
task. When given just one trace, for simplistic algorithms it is sometimes possible
to interpret the data manually. For many traces or complex algorithms this is
not feasible. We aim to automate the process; the analysis begins with VQ.

A vector quantizer is a map V : Rn → C with C ⊂ Rn where the set C =
{c1, . . . , cα} is called the codebook. A typical definition is V : v �→ arg minc∈C
D(v, c) where D measures the n-dimensional Euclidean distance between v and
c. One also associates a labelling L : C → L with the codebook vectors; this can
be as trivial as L = {1, . . . , α} depending on the application.

Here, we are particularly interested in VQ classification; input vectors are
mapped to the closest vector in the codebook, then applied the correspond-
ing label for that codebook entry. In this manner, input vectors with the same
labelling share some user-defined quality and are grouped accordingly. The clas-
sification quality depends on how well the codebook vectors approximate input
data for their label. We elaborate on building the codebook C below.

4.1 Learning Vector Quantization

To learn the codebook vectors, we employ LVQ [16]. This process begins with a
set T = {(t1, l1), . . . , (tj , lj)} of training vectors and predetermined correspond-
ing labels, as well as an approximation to C. This is commonly derived by taking
the k centroids resulting from k-means clustering [17] on all ti sharing the same
label. LVQ in its simplest form then proceeds as follows. For each ti, li ∈ T if
L(V (ti)) = li the classification is correct and the matching codebook vector is
pulled closer to ti; otherwise, incorrect and it is pushed away. This process is
iterated until an acceptable error rate is achieved.

4.2 Cache-Timing Data Templates

We apply the above techniques to analyze cache-timing data. Taking the working
example in Fig. 1, for the Pentium 4 we have n = 32 and Atom n = 64 the
dimension of the cache-timing data vectors; this is the number of cache sets.
For simplicity we define L = {D, A, E} to label vectors belonging to respective
operations double, addition, or beginning/end.

Next, we build the training data T . This is somewhat simplified for an attacker
as they can create their own private key and generate signatures to produce
training data. Nevertheless, extracting individual vectors by hand proves quite
tedious and error-prone. Also, if the spy process executes multiple times, there
is no guarantee where the memory buffer for the timing data will be allocated.
From execution to execution, the vectors will likely look quite different.

Inspired by template attacks [7], we instead modify the software in such a way
that it performs only a single task we would like to distinguish. For the scalar
multiplication routine shown in Sect. 3, we force the algorithm to perform only
point doubling (addition) and collect templates to be used as training vectors
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by running the modified algorithm concurrently with the cache spy process,
obtaining the needed cache-timing data. This provides large amounts of training
vectors and corresponding labels to define T with minimal effort.

One might be tempted to use these vectors in their entirety for C. There are
a few disadvantages in doing so:

– This would cause VQ to run slower because #C would be sizable and contain
many vectors such that L(ci) = L(cj) where D(ci, cj) is needlessly small;
codebook redundancy in a sense. In practice we may need to analyze copious
volumes of trace data.

– We cannot assume the obtained cache-timing data templates are completely
error-free; we strive to curtail the effect of such erroneous vectors.

To circumvent these issues, we partition T =
⋃

l∈L{(ti, li) : li = l} as subsets
of all training vectors corresponding to a single label and subsequently perform
k-means clustering on the vectors in each subset. The resulting centroids are
then added to C. Finally, with C and T realized we employ LVQ to refine C.
This allows experimentation with different values for k in k-means to arrive at
a suitably compact C with small vector classification error rate.

While we expect quality results from VQ classification, errors will nevertheless
occur. Furthermore, we are still left with the task of inferring algorithm state.
To solve this problem, we turn to hidden Markov models.

5 Hidden Markov Models

HMMs (see, e.g., [18]) are a common method for modeling discrete-time stochas-
tic processes. An HMM is a statistical model in which the system being modeled
is assumed to behave like a probabilistic finite state machine with directly unob-
servable state. The only way of gaining information about the process is through
the observations that are emitted from each state.

HMMs have been successfully used in many real life applications; for example,
many modern speech recognition methods are based on HMMs [18]. Their usabil-
ity is based on the ability to model physical systems and gain information about
the hidden causes of emitted observations. Thus, it is not very surprising that
HMMs can be employed in side channel cryptanalysis as well: the target system
can be viewed as the hidden part of the HMM and the emitted observations as
information leaked through the side channel. In the following sections, we give
a formal definition of an HMM, discuss the three basic problems for HMMs and
describe how HMMs are used in our attack. The methodology should give an
idea of how to use HMMs in side channel attacks in general.

5.1 Elements of an HMM

An HMM models a discrete-time stochastic process with a finite number of pos-
sible states. The state of the process is assumed to be directly unobservable, but
information about it can be gained from symbols that are emitted from each
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state. The process changes its state based on a set of transition probabilities
that indicate the probability of moving from one state to another. An observ-
able symbol is emitted from each process state according to a set of emission
probabilities. An example of an HMM is illustrated in Fig. 2. This HMM models
a system with three internal states, which are denoted by circles in the figure.
Denoted by squares are the two symbols, which can be emitted from the inter-
nal states. The state transition probabilities and the emission probabilities are
denoted by labeled arrows. For example, the probability of moving from state
s2 to s3 is a23; the probability of emitting symbol v2 from state s3 is b3(2). In
this HMM, the process always starts from s1. Generally, however, there may be
several possible first states. The initial state distribution defines the probability
distribution for the first state over the states of the HMM.

s1 s2 s3

v1 v2

a11

a12

a22

a23

a21

a33

a32

b1(1)

b2(1)
b3(1)b1(2)

b2(2)

b3(2)

Fig. 2. An example of an HMM

Formally, an HMM is defined by the set of internal states, the set of observa-
tion symbols, the transition probabilities between internal states, the emission
probabilities for each observable, and the initial state distribution. We denote
the set of internal states by S = {s1, s2, . . . , sN} and the state at time t by wt.
Correspondingly, the set of observables is denoted by V = {v1, v2, . . . , vM} and
the observation emitted at time t by ot. The set of transition probabilities is
denoted by A = {aij}, where

aij = Pr(wt+1 = sj |wt = si), 1 ≤ i, j ≤ N,

such that
∑N

j=1 aij = 1 for all 1 ≤ i ≤ N . Whenever aij > 0, there is a direct
transition from state si to state sj ; otherwise, it is not possible to reach sj from si

in a single step. An arrow in Fig. 3 denotes a positive transition probability. Thus,
s3 cannot be reached from s1 in a single step. The set of emission probabilities
is denoted by B = {bj(k)}, where

bj(k) = Pr(ot = vk|wt = sj), 1 ≤ j ≤ N, 1 ≤ k ≤M.
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The initial state distribution indicates the probability distribution for the first
state w1. It is denoted by π = {πi}, where

πi = Pr(w1 = si), 1 ≤ i ≤ N.

The first state of the HMM in Fig. 2 is always s1, so the initial state distribution
for this HMM is defined as π1 = 1 and πi = 0 for all i �= 1. The three probability
measures A, B and π are called the model parameters. For convenience, we will
simply write λ = (A, B, π) to indicate the complete parameter set of an HMM.

5.2 The Three Basic Problems for HMMs

The usefulness of HMMs is based on the ability to model relationships between
internal states and observations. Related to this are the following three problems,
which are commonly called the three basic problems for HMMs in literature (e.g.,
[18]):

Problem 1. Given an observation sequence O = o1o2 · · · oT and a model λ =
(A, B, π), how do we efficiently compute Pr(O|λ), the probability of the
observation sequence given the model?

Problem 2. Given an observation sequence O = o1o2 · · · oT and a model λ,
what is the most likely state sequence W = w1w2 · · ·wT that produced the
observations?

Problem 3. Given an observation sequence O = o1o2 · · · oT and a model λ, how
do we adjust the model parameters λ = (A, B, π) to maximize Pr(O|λ)?

We briefly review the methods used to solve these problems; the reader can refer
to [18] for a detailed overview. Problem 1 is sometimes called the evaluation
problem since it is concerned with finding the probability of a given sequence O.
This problem is solved by the forward-backward algorithm (see, e.g., [18]), which
is able to efficiently compute the probability Pr(O|λ). Problem 2 poses a problem
that is very relevant to our work. It is the problem of finding the most likely
explanation for the given observation sequence. The aim is to infer the most likely
state sequence W that has produced the given observation sequence O. There
are other possible optimality criteria [18], but we are interested in finding W that
maximizes Pr(W |O, λ). The problem is known as the decoding problem and it is
efficiently solved by the Viterbi algorithm [19]. Another relevant question is posed
by Problem 3, which asks how to adjust the model parameters λ = (A, B, π)
to maximize the probability of the observation sequence O. Altough there is
no known analytical method to adjust λ such that Pr(O|λ) is maximized, the
Baum-Welch algorithm [20] provides one method to locally maximize Pr(O|λ).
The process is often called training the HMM and it typically involves collecting
a set of observation sequences from a real physical phenomenon, which are used
in training. This problem is known as the learning problem.

5.3 Use of HMMs in Side-Channel Attacks

HMMs are also useful tools for side channel analysis [4]. Karlof and Wagner [5]
and Green et al. [6] use HMMs for modeling side channel attacks. Their research
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is concerned with slightly different problems than ours. We outline the differences
below.

– They only consider Problem 1 and simulate the side channel. As a result,
Problem 3 is not relevant to their work since the artificial side channel ac-
tually defines the model that produces the observations. Thus their model
parameters are known a priori. This is not the case for our work; Problem 3
is essential.

– They assume one state transition per key digit, in which case the key can
be inferred directly from the operation of the algorithm. In our case, the
operation sequence does not reveal the entire key, but a significant fraction
of the key nevertheless. We use an HMM in which the states correspond only
to possible algorithm states.

– They are additionally interested in derivation of the (secret) scalar k in
scalar multiplication when the same scalar is used during several runs using
a process called belief propagation. This is not helpful in our case, since
(EC)DSA uses nonces.

A practical drawback of the HMM presented by Karlof and Wagner was that a
single observable needs to correspond to a single key digit (and internal state).
Green et al. presented a model, where this is not required: multiple observables
can be emitted from each state. This is a more realistic model as one system
state may emit variable length data through the side channel. Our model allows
this also, but it is based on a different approach.

In the following sections, we describe the HMM used for modeling the
OpenSSL scalar multiplication algorithm. We use this model in conjunction with
VQ to describe the relationship between the states of the algorithm and the side
channel observations. We also describe how to perform side channel data anal-
ysis using VQ and the HMM. The aim is to find the most likely state sequence
for each trace that is obtained from the side channel. The analysis process can
be divided into two steps:

1. The VQ codebook is created and the HMM parameters are adjusted accord-
ing to obtained training sequences.

2. The actual data analysis is performed. When a sequence of observations
is obtained from the side channel, we infer the most likely (hidden) state
sequence that has emitted these observations using VQ and the HMM.

Since these states correspond to the internal states of the system, we are able to
determine a good estimate of what operations have been done. This information
allows us to recover the key.

The following sections give a framework for performing side channel attacks
on any system. The main requirements are that we know the specification of
the system and have access to do experiments with it or are able to accurately
model it.

The HMM for Scalar Multiplication. We construct an HMM where the
hidden part models the operation of the algorithm—in this case, scalar multipli-
cation using the modified NAFw representation, which leaks information about
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the algorithm state through the side channel. An illustration of this part (with-
out the transition probabilities) is presented in Fig. 3. The state set is defined
as S = {s1, . . . , s8}. Each label denotes the operation that is performed in the
corresponding state. In addition, there are separate states to denote the system
state preceding and following the execution of the algorithm. These states are
denoted by s1 and s8, respectively. OpenSSL uses mNAF4 for scalars in the case
of the 160-bit curve order we are experimenting with, so each point addition is
followed by at least 4 point doublings, except in the beginning or end of the pro-
cess. The states s3, . . . , s6 represent these doublings. The most significant digit
is handled by the first addition state s2.

s1 s2

Q←k�−1P

s3

Q←2Q

s4

Q←2Q

s5

Q←2Q

s6

Q←2Q

s7

Q←Q+kiP

s8

ki=0

ki �=0

Fig. 3. An HMM transition model for modified NAF4 scalar multiplication

As can be seen from Fig. 1, the execution of one point doubling or point addi-
tion spans several column vectors in the trace. Hence, we should let the internal
states emit multiple observations instead of just one. Green et al. [6] solved this
problem by introducing an additional variable that counts the cumulative num-
ber of emitted observables. This has the drawback of considerably expanding
the state space. To avoid this, we solve the problem by introducing substates in
each HMM state. One main state consists of a sequence of substates, which are
just ordinary HMM states that always emit one observation. Thus, all previously
introduced techniques can be used for our HMM.

The set of observables for this HMM is V = {D, A, E}, which is the same
set used for labeling cache-timing data vectors in Sect. 4. We assume that the
additions emit mainly As and the doublings mainly Ds. The s1 and s8 states
are assumed to emit mainly Es. These symbols are connected with side chan-
nel observations using VQ as described in Sect. 4. Each vector observation is
labeled according to which state—A, D or E—they correspond to. When a
new side channel observation is obtained, it can be classified as A, D or E by
taking the label of the closest codebook vector. An example of this is shown
in Fig. 1, where the rows directly above the observations represent the quan-
tized values. Symbols A and D are indicated using darker and lighter shades,
respectively.
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Training of the HMM. Training starts by setting the initial model param-
eters. These parameters can be rough estimates, since they will be improved
during training. To train the model, we obtain a set of sequences in the HMM
observation domain. These sequences can be created from the side channel obser-
vations as we know how the algorithm operates. The obtained sequences are used
for model parameter re-estimation, which is performed using the Baum-Welch
algorithm [20]. Next, we create the codebook for VQ as shown in Sect. 4.

Inference of the State Sequence. Given a set of side channel observation
sequences from the real target system, we can infer the most likely hidden state
sequence for each of them. The first step is to perform VQ, this is, to tag the
observations with the label of the closest codebook vector. Thus, we get a set
of sequences in the HMM observation domain. By applying the Viterbi algo-
rithm [19], we finally obtain the most likely state sequence for each observation
sequence. These state sequences are actually sequences of substates; the actual
operation sequence can be recovered based on the transitions that are taken in
each state sequence. An example of this is shown in Fig. 1, where the upper rows
represent the main states of the algorithm. Additions are indicated using black;
doublings are indicated using lighter shades. For example, the first addition on
the top trace in Fig. 1 is followed by five doublings.

The state sequences obtained in this step can be used in conjunction with
some other method to mount a key recovery attack. In the simplest case, the
state sequence reveals the secret key directly and no other methods are needed.
However, with mNAF4 this is not the case; we discuss a few practical applications
in the next section, as well as give our empirical results.

6 Results

Depending on the attack scenario and the number of traces available, there are
at least two interesting ways to apply the analysis to the case of mNAF4 and
OpenSSL. The first assumes access to only a single or similarly small number of
traces, while the second assumes access to a signature oracle and corresponding
side channel information.

Solving Discrete Logs. We consider special versions of the baby-step giant-
step algorithm for searching restricted exponent spaces; see [21, Sect. 3.6] for a
good overview.

The length-� mNAFw representation has maximum weight �/w and average
weight �/(w+1); we denote this weight as t. We assume that the analysis provides
us with the position of non-zero coefficients, but not their explicit value or sign;
thus each coefficient gives w − 1 bits of uncertainty. One can then construct a
baby-step giant-step algorithm to solve the ECDLP in this restricted keyspace.
The time and space complexity is O(2(w−1)t/2); note that this does not directly
depend on � (or further, the group order n). For the curve under consideration,
this gives a worst case of O(260) and on average O(248), whereas the complexity
without any such side channel information is O(280).
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Lattice Attacks. Despite this reduced complexity, an attacker cannot trivially
carry out the attack outlined above on a normal desktop PC. Known results on
attacking signature schemes with partial knowledge of nonces include [22,23]; the
approach is a lattice attack. Formally, the attacker obtains tuples (ri, si, mi, k̂i)
consistingof a signature (2),message,andpartialknowledgeof thenoncek obtained
through the timing data analysis. For our experiments, not all such tuples are useful
in the lattice attack. Using the formalization of [22], we assume k̂i tells us

ki = z′i + 2αizi + 2βiz′′i
with zi the only unknown on the right. Our empirical timing data analysis results
show that the majority of errors occur when too many or few doubles are placed
between an addition; a synchronization error in a sense. So the farther we move
towards the MSB, the more likely it is that we have erroneous indexing αi, βi

and the lattice attack will likely fail.
To mitigate this issue, we instead focus only on the LSBs. We disregard the

upper term by setting z′′i = 0 and consider only tuples where k̂i indicates that
z′i = 0 and αi ≥ 6; that is, the LSBs of ki are 000000. For k chosen uniformly,
this should happen with the reasonable probability of 2−6. Our empirical results
are in line with those of [22]: For a 160-bit group order, 41 such tuples is usually
enough for the lattice attack to succeed in this case.

Lattice attacks have no recourse to compensate for errors. If our analysis
determines z′i = 0 but indeed z′i �= 0 for some i, that instance of the lattice
attack will fail. We thus adopt the näıve strategy of taking random samples of
size 41 from the set of tuples until the attack succeeds; an attacker can always
check the correctness of a guess by calculating the corresponding public key and
comparing it to the actual public key. This strategy is only feasible if the ratio
of error-free tuples to erroneous tuples is high.

Finally, we present the automated lattice attack results; 8K signatures with
messages and traces were obtained in both cases.
Pentium 4 results. The analysis yielded 122 tuples indicating z′i = 0. The

long-term private key d (2) was recovered after 1007 lattice attack iterations
(107 correct, 15 incorrect). The analysis ran in less than an hour on a Core
2 Duo.

Atom results. The analysis yielded 147 tuples indicating z′i = 0. We recovered
d after a total of 37196 lattice attack iterations (115 correct, 32 incorrect).
Our analysis is less accurate in this case, but still accurate enough to recover
the key in only a few hours on a Core 2 Duo.

Summary. We omit strategies for finding correlation between the traces and
specific key digits. This can be tremendously helpful in further reducing the
search space when trying to solve the ECDLP. As such, given only one or a few
traces, this analysis method should be used as a tool in conjunction with other
heuristics to trim the search space. The lattice attack given here is proof-of-
concept. The results suggest that significantly fewer signatures are needed. In
practice one can perform a much more intelligent lattice attack, perhaps even
considering lattice attacks that account for key digit reuse [24].



Cache-Timing Template Attacks 681

7 Countermeasures

An implementation should not rely on any one countermeasure for side channel
security, but rather a combination. We briefly discuss countermeasures, with an
emphasis on preventing the specific weakness we exploited in OpenSSL.

Scalar Blinding. One often-proposed strategy [1,25,26,27] is to blind the scalar
k from the point multiplication routine using randomization. One form is (k+
mn+ m̃)P − m̃P with m, m̃ small (e.g. 32-bit) and random. The calculation
is then carried out using multi-exponentiation with interleaving. With such
a strategy, it suffices that m̃ is low weight—not necessarily short.

Randomized Algorithms. Use random addition-subtraction chains instead of
highly regular double-and-add routines. Oswald [28] gave an example and
a subsequent attack [4]. Published algorithms tend to be geared towards
hardware or resource restricted devices; see [29] for a good review. In a
software package like OpenSSL that normally runs on systems with abundant
memory, one does not have to rely on simple randomized recoding and can
build more flexible addition-subtraction chains.

Shared Context. In OpenSSL’s ECC implementation, the results and illustra-
tion in Fig. 1 suggest what is most visible in the traces is not the lookup from
the precomputation table, but the dynamic memory for variables in the point
addition and doubling functions. OpenSSL is equipped with a shared con-
text [30, pp. 106–107] responsible for allocating memory for curve and finite
field arithmetic. Memory from this context should be served up randomly to
prevent a clear fixed memory access pattern.

Operation Balancing. In addition to the above shared context, coordinate
systems and point addition formulae that are balanced in the number and
order of operations are also useful; [31] gives an example.

The above countermeasures restrict to the software engineering view. Clearly op-
erating system-level and hardware-level countermeasures are additionally possi-
ble. We leave general countermeasures to this type of attack as an open question.

8 Conclusion

We summarize our contributions as follows:

– We introduced a method for automated cache-timing data analysis, facilitat-
ing discovery of critical algorithm state. This is the first work we are aware of
that provides this at a framework level, e.g. not specific to one cryptosystem.
Consequentially, it bridges the gap between cache attack vulnerabilities [9]
and attacks requiring partial key material [22,23].

– We showed how to apply HMM cryptanalysis to cache-timing data; to the
best of our knowledge, its first published application to real traces. This
builds on existing work in the area of abstract side channel analysis using
HMMs [4,5,6], yet departs by tackling practical issues inherent to concrete
side channels.
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– We demonstrated the method is indeed practical by carrying out an attack
on the elliptic curve portion of OpenSSL using live cache-timing data. The
attack resulted in complete key recovery, with the analysis running in a
matter of hours on a normal desktop PC.

The method works by:

1. Creating cache-timing data vector templates that reflect the algorithm’s
cache access behavior.

2. Using VQ to match incoming cache-timing data to these existing templates.
3. Using the output as observation input to an HMM that accurately models

the control flow of the algorithm.

The setup phase, including acquiring the templates used to build the VQ code-
book vectors and learning the HMM parameters, is the only part by definition
requiring any manual work, and the majority of that can in fact be automated
by simple modifications to the software under attack. This attack scenario is de-
scribed for hardware power analysis in [7], but is perhaps even a greater practical
threat in this case due to the inherent malleability of software. After the setup
phase, cache-timing data analysis is fully automated and requires negligible time.

The analysis given here is not strictly meant for attacking implementations,
but for defending them as well. We encourage software developers to analyze
their implementations using these methods to discover memory access patterns
and apply appropriate countermeasures.

Future Work

One might think to forego the VQ step and use the cache-timing data directly as
the sole input to the HMM. In our experience, this only complicates the model
and hampers quality results.

The example we gave was tailored to data caches, in particular the L1 data
cache. Other data caches could prove equally fruitful. We also plan to apply the
analysis method to instruction caches.

While the attack results we gave were for one particular cryptosystem im-
plementation, the analysis method has a much wider range of applications. We
in fact found a similar vulnerability in the NSS library’s implementation of el-
liptic curves. Departing from elliptic curves and public key cryptography, we
plan to apply the analysis to an assortment of implementations, asymmetric and
symmetric primitives alike.

One of the more interesting planned applications is to algorithms with good
side channel resistance properties, such as “Montgomery’s ladder”. While this
might be an overwhelming challenge for traditional power analysis, the work
here emphasizes the fact that cache-timing attacks are about memory access
patterns; a fixed sequence of binary operations cannot be assumed sufficient to
thwart cache-timing attacks.
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provable SPA-resistance. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001.
LNCS, vol. 2162, pp. 300–308. Springer, Heidelberg (2001)
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sure against power attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES
2001. LNCS, vol. 2162, pp. 39–50. Springer, Heidelberg (2001)

29. Walter, C.D.: Randomized exponentiation algorithms. In: Koç, Ç.K. (ed.) Crypto-
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Abstract. Physical attacks on cryptographic implementations and de-
vices have become crucial. In this context a recent line of research on a
new class of side-channel attacks, called memory attacks, has received in-
creasingly more attention. These attacks allow an adversary to measure a
significant fraction of secret key bits directly from memory, independent
of any computational side-channels.

Physically Unclonable Functions (PUFs) represent a promising new
technology that allows to store secrets in a tamper-evident and unclon-
able manner. PUFs enjoy their security from physical structures at sub-
micron level and are very useful primitives to protect against memory
attacks.

In this paper we aim at making the first step towards combining and
binding algorithmic properties of cryptographic schemes with physical
structure of the underlying hardware by means of PUFs. We introduce a
new cryptographic primitive based on PUFs, which we call PUF-PRFs.
These primitives can be used as a source of randomness like pseudoran-
dom functions (PRFs). We construct a block cipher based on PUF-PRFs
that allows simultaneous protection against algorithmic and physical at-
tackers, in particular against memory attacks. While PUF-PRFs in gen-
eral differ in some aspects from traditional PRFs, we show a concrete
instantiation based on established SRAM technology that closes these
gaps.

1 Introduction

Modern cryptography provides a variety of tools and methodologies to analyze
and to prove the security of cryptographic schemes such as in [7,8,6,9]. These
proofs always start from a particular setting with a well-defined adversary model
and security notion. The vast majority of these proofs assume a black box model:
the attacker knows all details of the used algorithms and protocols but has no
knowledge of or access to the secrets of the participants, nor can he observe
any internal computations. The idealized model allows one to derive security
guarantees and gain valuable insights.
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However, as soon as this basic assumption fails most security guarantees are
off and a new open field of study arises. In cryptographic implementations long-
term secret keys are typically stored by configuring a non-volatile memory such
as ROM, EEPROM, flash, anti-fuses, poly or e-fuses into a particular state.
Computations on these secrets are performed by driving electrical signals from
one register to the next and transforming them using combinatorial circuits
consisting of digital gates. Side-channel attacks pick up physically leaked key-
dependent information from internal computations, e.g. by observing consumed
power [27] or emitted radiation [1], making many straightforward algorithms and
implementations insecure. It is clear that from an electronic hardware point of
view, security is viewed differently, see e.g. [30,49,48,44].

Even when no computation is performed, stored secret bits may leak. For
instance, in [43] it was shown that data can be recovered from flash memory
even after a number of erasures. By decapsulating the chip and using scanning
electron microscopes or transmission electron microscopes the states of anti-fuses
and flash can be made visible. Similarly, a typical computer memory is not erased
when its power is turned off giving rise to so-called cold-boot attacks [22]. More
radical approaches such as opening up an integrated circuit and probing metal
wires or scanning non-volatile memories with advanced microscopes or lasers
generally lead to a security breach of an algorithm, often immediately revealing
an internally stored secret [43].

Given this observation, it becomes natural to investigate security models with
the basic assumption: memory leaks information on the secret key. Consequently,
a recently started line of work has investigated the use of new cryptographic
primitives that are less vulnerable to leakage of key bits [2,36]. These works
establish security by adapting public-key algorithms to remain secure even after
leaking a limited number of key bits. However, no security guarantees can be
given when the leakage exceeds a certain threshold, e.g. when the whole non-
volatile memory is compromised. Furthermore, they do not provide a solution
for the traditional settings, e.g. for securing symmetric encryption schemes.

Here we explore an alternative approach: Instead of making another attempt
to solve the problem in an algorithmic manner, we base our solution on a new
physical primitive. So-called Physically Unclonable Functions (PUFs) provide a
new cryptographic primitive able to store secrets in a non-volatile but highly
secure manner. When embedded into an integrated circuit, PUFs are able to use
the deep submicron physical uniqueness of the device as a source of randomness
[15,14,20,47]. Since this randomness stems from the uncontrollable subtleties of
the manufacturing process, rather than from hard-wired bits, it is practically
infeasible to externally measure these values during a physical attack. Moreover,
any attempt to open up the PUF in order to observe its internals will with
overwhelming probability alter these variables and change or even destroy the
PUF [47].

In this paper, we take advantage of the useful properties of PUFs to build
an encryption scheme resilient against memory leakage adversaries as defined in
[2]. We construct a block cipher that explicitly makes use of the algorithmic and



Memory Leakage-Resilient Encryption Based on PUFs 687

physical properties of PUFs to protect against physical and algorithmic attacks
at the same time. Other protection mechanisms against physical attacks require
either additional algorithmic effort, e.g. [24,34,45,39], on the schemes or separate
(possibly expensive) hardware measures.

Our encryption scheme can particularly be used for applications such as se-
cure storage of data on untrusted storage (e.g., harddisk) where (i) no storage
of secrets for encryption/decryption is needed and keys are only re-generated
when needed, (ii) copying the token is infeasible (unclonability), (iii) temporary
unauthorized access to the token will reveal data to the adversary but not the
key, or (iv) no non-volatile memory is available.

Contribution. Our contributions are as follows:

A new cryptographic primitive: PUF-PRF. We place the PUFs at the core of a
pseudorandom function (PRF) construction that meets well-defined properties.
We provide a formal model for this new primitive that we refer to as PUF-
PRFs. PRFs [19] are fundamental primitives in cryptography and have many
applications, e.g. see [18,32,33].

A PUF-PRF-based provably secure block cipher. One problem with our PUF-
PRF construction is that it requires some additional helper data that inevitably
leaks some internal information. Hence, PUF-PRFs cannot serve as a direct
replacement for PRFs. However, we present a provably secure block cipher based
on PUF-PRFs that remains secure despite the information leakage. Furthermore,
no secret key needs to be stored, protecting the scheme against memory leakage
attacks. The tight integration of PUF-PRFs into the cryptographic construction
improves the tamper-resilience of the overall design. Any attempt at accessing
the internals of the device will result in a change of the PUF-PRF. Hence, no
costly error detection networks or alternative anti-tampering technologies are
needed. The unclonability and tamper-resilience properties of the underlying
PUFs allow for elegant and cost-effective solutions to specific applications such
as software protection or device encryption.

An improved and practical PUF-PRF construction. Although the information
leakage through helper data is unavoidable in the general case, the concrete case
might allow for more efficient and secure constructions. We introduce SRAM-
PRFs, based on so-called SRAM PUFs, which are similar to the general PUF-
PRFs but where it can be shown that no information is leaked through the
helper data if run in an appropriate mode of operation. Hence, SRAM-PRFs are
in all practical views a physical realization of expanding PRFs.

Organization. This paper is organized as follows. First, we give an overview
of related work in Section 2. In Section 3, we define and justify the considered
attacker model. In Section 4, we introduce a formal model for PUFs. Based on
this, we define in Section 5 a new cryptographic primitive, termed PUF-PRFs.
Furthermore, we present a provably secure block cipher based on PUF-PRFs
that is secure despite the information leakage through helper data. In Section 6,
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we explain for the concrete case of SRAM PUFs an improved construction that
shares the same benefits like general PUF-PRFs but where it can be argued that
the helper data does not leak any information. Finally, in Section 7 we present
the conclusions.

2 Related Work

In recent years numerous results in the field of physical attacks emerged showing
that the classical black box model is overly optimistic, see e.g. [42,43,3,28,27].
Due to a number of physical leakage channels, the adversary often learns (part of)
a stored secret or is able to observe some intermediate results of the private com-
putations. These observations give him a powerful advantage that often breaks
the security of the entire scheme. To cope with this reality, a number of new
theoretic adversary models were proposed, incorporating possible physical leak-
age of this kind. Ishai et al. [24] model an adversary which is able to probe, i.e.
eavesdrop, a number of lines carrying intermediate results in a private circuit,
and show how to create a secure primitive within this computational leakage
model. Later, generalizations such as Physically Observable Cryptography pro-
posed by Micali et al. [34] investigate the situation where only computation leaks
information while assuming leak-proof secret storages. Recently, Pietrzak [13,39]
and Standaert et al. [45] put forward some new models and constructions taking
physical side-channel leakage into account.

Complementary to the computation leakage attacks, another line of work
explored memory leakage attacks: an adversary learns a fraction of a stored secret
[2,36]. In [2] Akavia et al introduced a more realistic model that considers the
security against a wide class of side-channel attacks when a function of the secret
key bits is leaked. Akavia et al further showed that Regev’s lattice-based scheme
[41] is resilient to key leakage. More recently Naor et al [36] proposed a generic
construction for a public-key encryption scheme that is resilient to key leakage.
Although all these papers present strong results from a theoretical security point
of view, they are often much too expensive to implement on an integrated circuit
(IC), e.g. the size of private circuits in [24] blows up with O(n2) where n denotes
the number of probings by the adversary. Moreover, almost all of these proposals
make use of public-key crypto primitives, which introduce a significant overhead
in systems where symmetric encryption is desired for improved efficiency.

Besides the information leakage attacks mentioned above, another important
field of studies are tampering attacks. Numerous countermeasures have been
discussed, e.g., use of a protective coating layer [40] or the application of error
detection codes (EDCs) [25,16]. Observe that limitations and benefits of tamper-
proof hardware have likewise been theoretically investigated in a series of works
[17,26,35,10].

3 Memory Attacks

In this work we consider an extension of memory attacks as introduced by Akavia
et. al. [2] where the attacker can extract a bounded number of bits of a stored
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secret. The model allows for covering a large variety of different memory attacks,
e.g., cold boot attacks described in [22]. However, this general model might not
adequately capture certain concrete scenarios. For example, feature sizes on ICs
have shrunk to nanometer levels and probing such fine metal wires is even for
high-end IC manufacturers a difficult task. During a cryptographic computation
a secret state is (temporarily) stored in volatile memory (e.g. in registers and
flip-flops). In a typical IC, these structures are relatively small compared to the
rest of the circuit, making them very hard to locate and scan properly. Thus,
applying these attacks is usually significantly physically more involved for the
case of embedded ICs than for the non-embedded PC setting where additional
measures to access the memory exist, e.g., through software and networks.

On the other hand, storing long-term secrets, such as private keys, requires
non-volatile memory, i.e. memory that sustains its state while the embedding
device is powered off. Implementation details of such memories like ROM, EEP-
ROM, flash, anti-fuses, poly or e-fuses and recent results on physical attacks
such as [43] indicate that physically attacking non-volatile memory is much eas-
ier than attacking register files or probing internal busses on recent ICs, making
non-volatile memory effectively the weak link in many security implementations.

Motivated by these observations, we consider the following attacker model in
this work:

Definition 1 (Non-volatile Memory Attacker). Let α : �→ � be a func-
tion with α(n) ≤ n for all n ∈ �, and let S be a secret stored in non-volatile
memory. A α-non-volatile memory attacker can access an oracle O that takes
as input adaptively chosen a polynomial-size circuits hi and outputs hi(S) under
the condition that the total number of bits that A gets as a result of oracle queries
is at most α(|S|).

The attacker is called a full non-volatile memory attacker if α = id, that is
the attacker can extract the whole content of the non-volatile memory.

Obviously, protection against full non-volatile memory attackers is only possi-
ble if no long-term secrets are stored within non-volatile memory. One obvious
approach is to require a user password before each invocation. However, this
reduces usability and is probably subject to password attacks. In this paper,
we use another approach and make use of a physical primitive called Physi-
cally Unclonable Function (PUF). PUFs allow to intrinsicly store permanent
secrets which are, according to current state of knowledge, not accessible to a
non-volatile attacker.

4 Physically Unclonable Functions

In this section, we introduce a formal model for Physically Unclonable Functions
(PUFs). We start with some basic definitions. For a probability distribution D,
the expression x← D denotes the event that x has been sampled according to D.
For a set S, x

∗← S means that x has been sampled uniformly random from S. For
m ≥ 1, we denote by Um the uniform distribution on {0, 1}m. The min-entropy
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H∞(D) of a distribution D is defined by H∞(D) def= − log2(maxx Pr[x ← D]).
Min-entropy can be viewed as the “worst-case” entropy in a random variable
sampled according to D [11] and specifies how many nearly uniform random bits
can be extracted from it.

A distinguisher D is a (possibly probabilistic) algorithm that aims for distin-
guishing between two different distributions D and D′. More precisely, D receives
some values (which may depend on adaptively chosen inputs by D) and outputs
a value from {0, 1}. The advantage of D is defined by Adv(D) def= |Pr[1 ←
D|D] − Pr[1 ← D|D′]|. Furthermore, we define the advantage of distinguishing
between D and D′ as maxD Adv(D).

In a nutshell, PUFs are physical mechanisms that accept challenges and re-
turn responses, that is behaving like functions. The main properties of PUFs
that are important in the context of cryptographic applications are noise (same
challenge can lead to different (but close) responses), non-uniform distribution
(the distribution of the responses is usually non-uniform), independence (two dif-
ferent PUFs show completely independent behavior), unclonability (no efficient
process is known that allows for physically cloning PUFs), and tamper evidence
(physically tampering with a PUF will most likely destroy its physical structure,
making it unusable, or turn it into a new PUF). We want to emphasize that the
properties above are of a physical nature and hence are very hard to prove in the
rigorous mathematical sense. However, they are based on experiments conducted
worldwide and reflect the current assumptions and observations regarding PUFs,
e.g., see [47]. We first provide a formal definition for noisy functions before we
give a definition for PUFs.

Definition 2 (Noisy functions). For three positive integers �, m, δ ∈ � with
0 ≤ δ ≤ m, a (�, m, δ)-noisy function f∗ is a probabilistic algorithm which accepts
inputs (challenges) x ∈ {0, 1}� and generates outputs (responses) y ∈ {0, 1}m
such that the Hamming distance between two outputs to the same input is at
most δ. In a similar manner, we define a (�, m, δ)-noisy family of functions to
be a set of (�, m, δ)-noisy functions.

Definition 3 (Physically Unclonable Functions). A (�, m, δ; qpuf , εpuf )-
family of PUFs P is a set of physical realizations of a family of probabilistic
algorithms that fulfills the following algorithmic and physical properties.

Algorithmic properties

– Noise: P is a (�, m, δ)-noisy family of functions with δ < m
2

– Non-uniform output and independence: There exists a distribution D
on {0, 1}m such that for any input x ∈ {0, 1}�, the following two distributions
on ({0, 1}m)qpuf can be distinguished with advantage at most εpuf .
1. (Π1(x), . . . , Πqpuf

(x)) for adaptively chosen Πi ∈ P.
2. (y1, . . . , yqpuf

) with yi ← D.
In order to have a practically useful PUF, it should be that qpuf ≈ |P|, εpuf

is negligible and H∞(D) > 0.
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Physical properties

– Unclonability: No efficient technique is known to physically clone any
member Π ∈ P.

– Tamper evidence: For any PUF Π ∈ P, any attempt to externally obtain
its responses or parameters, e.g. by means of a physical attack, will signifi-
cantly alter its functionality or destroy it.

A number of constructions for PUFs have been implemented and most of them
have been experimentally verified to meet the properties of this theoretical def-
inition. For more details we refer to the literature, e.g. [47,20,29,31,46]. One im-
portant observation we make is that a number of PUF implementations can be
efficiently implemented on an integrated circuit, e.g. SRAM PUFs [20]. Their
challenge-response behavior can hence be easily integrated with a chip’s digital
functionality.

Remark 1. Due to their physical properties, PUFs became an interesting build-
ing block for protecting against full non-volatile memory attackers. The basic
idea is to use a PUF for implicitly storing a secret: instead of putting a secret
directly into non-volatile memory, it is derived from the PUF responses during
run time [20,21].

5 Encrypting with PUFs: A Theoretical Construction

In the previous section, we explained how to use PUFs for protecting any cryp-
tographic scheme against full non-volatile memory attackers (see Remark 1). In
the remainder of the paper, we go one step further and explore how to use PUFs
for protecting against algorithmic attackers in addition. For this purpose, we
discuss how to use PUFs as a source of reproducible pseudorandomness. This
approach is motivated by the observation that certain PUFs behave to some
extent like unpredictable functions. This will allow for constructing (somewhat
weaker) physical instantiations of (weak) pseudorandom functions.

5.1 PUF-(w)PRFs

Pseudorandom functions (PRFs) [19] are important cryptographic primitives
with various applications (see, e.g., [18,32,33]). We recall their defininition.

Definition 4 ((Weak) Pseudorandom Functions). Consider a family of
functions F with input domain {0, 1}� and output domain {0, 1}m. We say that
F is (qprf , εprf )-pseudorandom in respect to a distribution D̃ on {0, 1}m, if the
advantage to distinguish between the following two distributions for adaptively
chosen pairwise distinct inputs x1, . . . , xqprf

is at most εprf :

– yi = f(xi) where f
∗← F

– yi ← D̃
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F is called weakly pseudorandom if the inputs are not chosen by the distin-
guisher, but uniformly random sampled from {0, 1}� (still under the condition of
being pairwise distinct).
F is called (qprf , εprf )-(weakly)-pseudorandom if it is (qprf , εprf )-(weakly)-

pseudorandom with respect to the uniform distribution D̃ = Um.

Remark 2. This definition differs in several aspects slightly from the original
definition of pseudorandom functions, e.g., [5,4]. First, specifying the output
distribution D̃ allows for covering families of functions which have a non-uniform
output distribution, e.g., PUFs. The original case, as stated in the definition, is
D̃ = Um.

Second, the requirement of pairwise distinct inputs xi has been introduced to
deal with noisy functions where the same input can lead to different outputs. By
disallowing multiple queries on the same input, we do not need to model the noise
distribution, which is sometimes hard to characterize in practice. Furthermore,
in the case of non-noisy (weak) pseudorandom functions, an attacker gains no
advantage by querying the same input more than once. Hence, the requirement
does not limit the attacker in the non-noisy case.

Observe that the “non-uniform output and independence” assumption on PUFs
(as defined in Definition 3) does not automatically imply (weak) pseudoran-
domness. The first considers the unpredictability of the response to a specific
challenge after making queries to several different PUFs while the latter consid-
ers the unpredictability of the response to a challenge after making queries to
the same PUF.

Obviously, the main obstacle is to convert noisy non-uniform inputs into re-
liably reproducible, uniformly distributed random strings. For this purpose, we
make use of an established tool in cryptography, i.e. fuzzy extractors (FE) [12]:

Definition 5 (Fuzzy Extractor). A (m, n, δ; μFE , εFE)-fuzzy extractor E is
a pair of randomized procedures, “generate” Gen : {0, 1}m → {0, 1}n × {0, 1}∗
and “reproduce” Rep : {0, 1}m × {0, 1}∗ → {0, 1}n.

The correctness property guarantees that for (z, ω)← Gen(y) and y′ ∈ {0, 1}m
with dist(y, y′) ≤ δ, then Rep(y′, ω) = z. If dist(y, y′) > δ, then no guarantee is
provided about the output of Rep.

The security property guarantees that for any distribution D on {0, 1}m of
min-entropy μFE, the string z is nearly uniform even for those who observe ω:
if (z, ω)← Gen(D), then it holds that SD((z, ω), (Un, ω)) ≤ εFE.

PUFs are most commonly used in combination with fuzzy extractor construc-
tions based on error-correcting codes and universal hash functions. In this case,
the helper data consists of a code-offset, which is of the same length as the PUF
output, and the seed for the hash function, which is in the order of 100 bits and
can often be reused for all outputs.

Theorem 1 (Pseudorandomness of PUF-FE-composition). Let P be a
(�, m, δ; qpuf , εpuf )-family of PUFs which are (qprf , εprf )-pseudorandom with re-
spect to some distribution D. Let E = (Gen, Rep) be an (m, n, δ; H∞(D), εFE)
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fuzzy extractor. The advantage of any distinguisher that adaptively chooses pair-
wise distinct inputs x1, . . . , xqprf

and receives outputs (z1, ω1), . . . , (zqprf
, ωqprf

)
to distinguish the following two distributions is at most εprf + qprf · εFE:

– (zi, ωi) = Gen(Π(xi)) where Π
∗← P

– (zi, ωi) where zi ← Un, (z′i, ωi) = Gen(Π(xi)) and Π
∗← P

The analogous result holds if P is (qprf , εprf)-weak-pseudorandom and if the chal-
lenges xi are sampled uniformly random (instead of being adaptively selected),
still under the condition of being pairwise distinct.

Proof. We introduce an intermediate case, named case 1’, where (zi, ωi) =
Gen(yi) with yi ← D and Π

∗← P . Any distinguisher between case 1 and case
1’ can be turned into a distinguisher that distinguishes between PUF outputs
and random samples according to D. Hence, the advantage is at most εprf by
assumption. Furthermore, by the usual hybrid argument and the security prop-
erty of fuzzy extractors, case 1’ and case 2 can be distinguished with advantage
of at most qprf · εFE . ��

Definition 6 (PUF-(w)PRFs). Consider a family of (weakly)-pseudorandom
PUFs P and a fuzzy extractor E = (Gen, Rep) (where the parameters are as de-
scribed in Theorem 1). A family of PUF-(w)PRFs is a set of pairs of randomized
procedures, called generation and reproduction. The generation function Gen ◦Π

for some PUF Π ∈ P takes as input x ∈ {0, 1}� outputs (z, ωx) def= Gen(Π(x)) ∈
{0, 1}n×{0, 1}∗, while the reproduction function Rep◦Π takes (x, ωx) ∈ {0, 1}�× ∈
{0, 1}∗ as input and reproduces the value z = Rep(Π(x), ωx).

Theorem 1 actually shows that PUF-(w)PRFs and “traditional” (w)PRFs have
in common that (part of) the output cannot be distinguished from uniformly
random values. One might be tempted to plug in PUF-(w)PRFs wherever PRFs
are required. Unfortunately, things are not that simple since the information
saved in the helper data is also needed for correct execution. It is a known fact
that the helper data of a fuzzy extractor always leaks some information about
the input, e.g., see [23]. Hence, extra attention must be paid when deploying
PUF-PRFs in cryptographic schemes. In the following section, we describe an
encryption scheme that achieves real-or-random security although the helper
data is made public.

5.2 A Luby-Rackoff Cipher Based on PUF-wPRFs

A straightforward approach for using PUF-wPRFs against full non-volatile mem-
ory attackers would be to use them for key derivation where the key is after-
wards used in some encryption scheme. However, in this construction PUF-
wPRFs would ensure security against non-volatile memory attackers only while
the security of the encryption scheme would need to be shown separately. In the
following, we present a construction that simultaneously protects against algo-
rithmic and physical attacks while the security in both cases can be deduced to
PUF-wPRF properties.
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Fig. 1. A randomized 3-round Luby-Rackoff-cipher based on PUF-PRFs

One of the most important results with respect to PRFs was developed by
Luby and Rackoff in [33]. They showed how to construct pseudorandom permu-
tations from PRFs. Briefly summarized, a pseudorandom permutation (PRP) is
a PRF that is a permutation as well. PRPs can be seen as an idealization of
block ciphers. Consequently, the Luby-Rackoff construction is often termed as
Luby-Rackoff cipher.

Unfortunately, the Luby-Rackoff result does not automatically apply to the
case of PUF-PRFs. As explained in the previous section, PUF-(w)PRFs differ
from (w)PRFs as they additionally need some helper data for correct execution.
First, it is unclear if and how the existence and necessity of helper data would
fit into the established concept of PRPs. Second, an attacker might adaptively
choose plaintexts to force internal collisions and use the information leakage of
the helper data for checking for these events.

Nonetheless, we can show that a Luby-Rackoff cipher based on PUF-wPRFs
also yields a secure block cipher. For this purpose, we consider the set of concrete
security notions for symmetric encryption schemes that has been presented and
discussed in [4]. More precisely, we prove that a randomized version of a 3-round
Luby-Rackoff cipher based on PUF-PRFs fulfills real-or-random indistinguisha-
bility against a chosen-plaintext attacker.

In a nutshell, a real-or-random attacker adaptively chooses plaintexts and
hands them to an encryption oracle. This oracle either encrypts the received
plaintexts (real case) or some random plaintexts (random case). The encryptions
are given back to the attacker. Her task is to distinguish between both cases. The
scheme is real-or-random indistinguishable if the advantage of winning the game
is negligible (in some security parameter). Next, we first define the considered
block cipher and prove its security afterwards.

Definition 7 (3-round PUF-wPRF-based Luby-Rackoff cipher). Let F
denote a family of PUF-wPRFs with input and output length n. The 3-round
PUF-PRF-based Luby-Rackoff cipher EF uses three different PUF-wPRFs fi ∈
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F , i = 1, 2, 3, as round functions. The working principle is very similar to the
original Luby-Rackoff cipher and is displayed in figure 1. The main differences
are twofold. First, at the beginning some uniformly random value ρ ∈ {0, 1}� is
chosen to randomize the right part R of the plaintext. Second, the round functions
are PUF-wPRFs that generate two outputs: zi and ωi.

The ciphertext is (X, Y, ω1, ω2, ω3, ρ). Decryption works similar to the case of
the ”traditional” Luby-Rackoff cipher where the helper data ωi is used together
with the Rep procedure for reconstructing the output zi of the PUF-PRF fi and
the value ρ to ”derandomize” the input to the first round function f1.

Since there is no digital secret stored in non-volatile memory, even a full non-
volatile memory attacker has no advantage in breaking this scheme. Although
this makes encrypting digital communication between two different parties im-
possible, various applications are imaginable, e.g., for encrypting data stored in
untrusted or public storage.

Theorem 2. Let EF be the encryption scheme defined in Definition 7 using a
family F of PUF-wPRFs (with parameters as specified in Theorem 1). Then,
the advantage of a real-or-random attacker making up to qprf queries is at most
4εprf + 2qprf · εFE + 2 · qprf

2

2n .

Proof. Let {(L(i), R(i)}i=1,...,qprf
denote the sequence of the adaptively chosen

plaintexts and x
(i)
j , z

(i)
j be the respective inputs and outputs to round function fj ,

and ρ(i) the randomly chosen values. We show the claim by defining a sequence
of games and estimating the advantages of distinguishing between them. Let the
real game be the scenario that the distinguisher receives the encryptions of the
plaintext she did choose.

In game 1, the outputs z
(i)
1 of the first round function f1 are replaced by some

uniformly random values z̃
(i)
1

∗← {0, 1}n. Under the assumption that the values
x

(i)
1 are pairwise distinct, the advantage to distinguish between both cases is at

most εprf + qprf · εFE according to Theorem 1. Furthermore, as the values ρ(i)

are uniformly random, the probability of a collision in the values x
(i)
1 is at most

qprf
2

2n . As a consequence, the advantage to distinguish between the real game and

game 1 is upper bounded by εprf + qprf · εFE + qprf
2

2n .
Game 2 is defined like game 1 where now the inputs x

(i)
1 to the first round

function f1 are randomized to x̃
(i)
1

∗← {0, 1}n. Observe that the values x
(i)
1 are

used in two different contexts: i) for computing the right part of the ciphertext
(by XORing with the output of the second round function) and ii) as input to
the first round function. Regarding i), observe that the outputs of the second
round function are independent of the values x

(i)
1 as the values z̃

(i)
1 (and hence

the inputs to f2) are uniformly random by definition and that the values x
(i)
1 are

independent of the plaintext (because of ρ(i)). Hence, i) and ii) represent two
independent features, possibly allowing for distinguishing between game 1 and
game 2, and hence can be examined separately.
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The advantage of distinguishing between games 1 and 2 based on i) is equiv-
alent to deciding whether the values R(i) ⊕ ρ(i) ⊕ Y (i) are uniformly random or
belong to the outputs of the second round function. With the same arguments
as above, the advantage is upper bounded by εprf + qprf · εFE + qprf

2

2n .
The advantage of distinguishing between game 1 and game 2 based on ii) is at

most the advantage of distinguishing (Π1(x
(1)
1 ), . . . , Π1(x

(1)
qprf )) from (Π1(x̃

(1)
1 ),

. . ., Π1(x̃
(1)
qprf )) where Π1 denotes the PUF used in f1. By the definition of wPRFs

(Definition 4), the advantage of distinguishing (Π1(x
(1)
1 ), . . . , Π1(x

(1)
qprf )) from

(y1, . . . , yqprf
) where yi ← D̃ and D̃ being an appropriate distribution is at most

εprf . Actually, the same holds for (Π1(x̃
(1)
1 ), . . . , Π1(x̃

(1)
qprf )) (the fact that the

values x̃
(1)
i are unknown cannot increase the advantage). Hence, by the triangular

inequality, it follows that the advantage regarding ii) is at most 2εprf . In total,
the advantage to distinguish between game 1 and game 2 is less than or equal
to 3εprf + qprf · εFE + qprf

2

2n .
Finally, observe that it is indistinguishable whether x

(i)
1 or R(i) is randomized

and likewise whether z
(i)
1 or L(i). Hence, game 2 is indistinguishable from the

random game where the plaintexts are randomized. Summing up, the advantage
of a real-or-random attacker is at most 4εprf + 2qprf · εFE + 2 · qprf

2

2n . ��

6 SRAM PRFs

In the previous section, we showed that secure cryptographic schemes are pos-
sible even if helper data is used that leaks information. In this section, we
show that in the concrete case, information leakage through helper data can
be avoided completely. We illustrate this approach on SRAM PUFs that were
originally introduced and experimentally verified in [20]. In respect to our mod-
eling, an SRAM PUF is a realization of a (�, m, δ; qpuf , εpuf )-PUF that is (2�, 0)-
pseudorandom.

We introduce a new mode of operation that, similarly to the fuzzy extractor
approach in the previous section, allows for extracting uniform values from SRAM
PUFs in a reproducible way. This approach likewise stores some additional helper
data but, as opposed to the case of fuzzy extractors, the helper data does not leak
any information on the input. Hence, this construction might be of independent
interest for SRAM PUF based applications. The proposed construction is based
on two techniques: Temporal Majority Voting and Excluding Dark Bits.

We denote the individual bits of a PUF response as y = (y0, . . . , ym−1), with
yi ∈ {0, 1}. When performing a response measurement on a PUF Π , every bit
yi of the response is determined by a Bernoulli trial. Every yi has a most likely
value y

(ML)
i ∈ {0, 1}, and a certain probability pi < 1/2 of differing from this

value which we define as its bit error probability. We denote y
(k)
i as the k-th

measurement or sample of bit yi in a number of repeated measurements.

Definition 8 (Temporal Majority Voting (TMV)). Consider a Bernoulli
distributed random bit yi over {0, 1}. We define temporal majority voting of yi
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over N votes, with N an odd positive integer, as a function TMVN : {0, 1}N →
{0, 1}, that takes as input N different samples of yi and outputs the most often
occurring value in these samples.

We can calculate the error probability pN,i of bit yi after TMV with N votes as:

pN,i
def= Pr
[
TMVN

(
y
(0)
i , . . . , y

(N−1)
i

)
�= y

(ML)
i

]
= 1− BinN,pi

(
N − 1

2

)
≤ pi,

(1)
with BinN,pi the cumulative distribution function of the binomial distribution.
From Eq. (1) it follows that applying TMV to a bit of a PUF response effectively
reduces the error probability from pi to pN,i, with pN,i becoming smaller as N
increases. We can determine the number of votes N we need to reach a certain
threshold pT such that pN,i ≤ pT , given an initial error probability pi. It turns
out that N rises exponentially as pi gets close to 1/2. In practice, we also have to
put a limit NT on the number of votes we can perform, since each vote involves
a PUF response measurement. We call the pair (NT , pT ) a TMV-threshold.

Definition 9 (Dark Bit (DB)). Let (NT , pT ) be a TMV-threshold. We define
a bit yi to be dark with respect to this threshold if pNT ,i > pT .

TMV alone cannot decrease the bit error probability to acceptable levels (e.g.
≤ 10−9) because of the non-negligible occurrence of dark bits. We use a bit mask
γ to identify these dark bits in the generation phase, and exclude them during
reproduction. Similar to fuzzy extractors, (NT , pT )-TMV and DB can be used
for generating and reproducing uniform values from SRAM PUFs.

The Gen-procedure takes sufficient measurements of every response bit yi

to make an accurate estimate of its most likely value y
(ML)
i and of its error

probability pi. If yi is dark with respect to (NT , pT ), then the corresponding bit
γi in the bit mask γ ∈ {0, 1}m is set to 0 and yi is discarded, otherwise γi is
set to 1 and yi is appended to the bit string s. The procedure Gen outputs a
helper string ω = (γ, σ) and an extracted string z = Extractσ(s), with Extractσ
a classical strong extractor1 with seed σ.

The Rep-procedure takes NT measurements of a response y′ and the corre-
sponding helper string ω = (γ, σ), with γ ∈ {0, 1}m as input. If γi contains a 1,
then the result of TMVNT

(
y′(0)

i , . . . , y′(NT−1)
i

)
is appended to a bit string s′,

otherwise, y′
i is discarded. Rep outputs an extracted string z′ = Extractσ(s′).

A strong extractor [37] is a function that is able to generate nearly-uniform
outputs from inputs coming from a distribution with limited min-entropy. It
ensures that the statistical distance of the extracted output to the uniform dis-
tribution is negligible. The required compression rate of Extractσ depends on
the remaining min-entropy μ of the PUF response y after the helper data is
observed. We call the above construction a TMV-DB-SRAM-PUF.
1 See e.g. [37,12] for a definition of a strong extractor. Typical seed lengths of strong

extractors are in the order of 100 bits, and in most cases the same seed can be reused
for all outputs.
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Using analogous arguments as in Theorem 1, one can show that the output of a
TMV-DB-SRAM-PUF is indistinguishable from random except with negligible
advantage. Additionally, in an SRAM PUF, the most likely value of a bit is
independent of whether or not the bit is a dark bit, hence no min-entropy on
the PUF output is leaked by the bit mask2. However, by searching for matching
helper strings, an adversary might still be able to find colliding TMV-DB-SRAM-
PUF inputs (especially as the input size is small), which can impose a possible
security leak. In order to overcome this issue, we present the following way of
using a TMV-DB-SRAM-PUF:

Definition 10 (All-at-once mode). Consider a TMV-DB-SRAM-PUF as de-
scribed above. We define the all-at-once mode of operation to be the pair of pro-
cedures (Enroll, Eval).

The enrollment procedure Enroll outputs a helper table Ω ∈ {0, 1}2�×∗ when
executed. The helper table is constructed by running ∀x ∈ {0, 1}� the generation
function (Gen◦Π)(x), and storing the obtained helper data ωx as the x-th element
in Ω, i.e. Ω[x] := ωx.

The evaluation function Eval : {0, 1}�×{0, 1}2�×∗ → {0, 1}n takes an element
x ∈ {0, 1}� and a helper table Ω ∈ {0, 1}2�×∗ as inputs and (after internal com-
putation) outputs a value Eval(x, Ω) = z ∈ {0, 1}n, with z = (Rep ◦Π)(x, Ω[x]).

The Enroll-procedure has to be executed before the Eval-procedure, but it has
to be run only once for every PUF. Every invocation of Eval can take the same
(public) helper table Ω as one of its inputs. However, in order to conceal exactly
which helper string is used, it is important that the Eval-procedure takes Ω as a
whole as input, and does not just do a look-up of Ω[x] in a public table Ω. The
all-at-once mode prevents an adversary from learning which particular helper
string is used during the internal computation.

Definition 11 (SRAM-PRF). An SRAM-PRF is a TMV-DB-SRAM-PUF
that runs in the all-at-once mode.

Using the arguments given above we argue that SRAM-PRFs are in all prac-
tical views a physical realization of PRFs. Observe that one major drawback
of SRAM-PRFs is that the hardware size grows exponentially with the input
length. Thus, SRAM-PRFs cannot be used as a concrete instantiation of PUF-
PRFs for our construction from Section 5.2. This section rather shows up an
alternative approach for constructing cryptographic mechanisms based on PUFs
despite of the noise problem. As a possible application of SRAM-PRFs, we dis-
cuss an expanding Luby-Rackoff cipher where the round functions are replaced
by SRAM-PRFs that take 8-bit challenges as input and produce 120-bit ex-
tracted outputs. According to [38], at least 48 rounds are necessary for security
reasons.

As an instantiation for the PUF, we take an SRAM PUF with an assumed
average bit error probability of 15% and an estimated min-entropy content of
0.95 bit/cell. We use TMV-threshold of (NT = 99, pT = 10−9). Simulations and
2 By consequence, also no min-entropy on the PUF input is leaked.
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experiments on the SRAM PUF show that about 30% of the SRAM cells produce
a dark bit with respect to this TMV-threshold. The strong extractor only has to
compress by a factor of 1

0.95 , accounting for the limited min-entropy in the PUF
response. Hence, 1

0.95 ·
28·120
70% bits = 5.6 kbyte of SRAM cells is needed to build

one SRAM-PRF. Thus, the entire block cipher uses 48 · 5.6 kbyte ≈ 271 kbyte of
SRAM cells. The helper tables also require 5.6 kbyte each.

Implementing 48 SRAM PUFs using a total of 271 kbyte of SRAM cells is fea-
sible on recent ICs, and 48 rounds can be evaluated relatively fast. Storing and
loading 48 helper tables of 5.6 kbyte each is also achievable in practice. Observe
that the size depends linearly on the number of rounds. The according parameters
for more rounds can be easily derived. Reducing the input size of the SRAM-PRF
will yield an even smaller amount of needed SRAM cells and smaller helper tables,
but the number of rounds will increase. A time-area trade-off is hence possible.

7 Conclusions

In this paper we propose a leakage-resilient encryption scheme that makes use
of Physically Unclonable Functions (PUFs). The core component is a new PUF-
based cryptographic primitive, termed PUF-PRF, that is similar to a pseudo-
random function (PRF). We showed that PUF-PRFs possess cryptographically
useful algorithmic and physical properties that come from the random character
of their physical structures.

Of course, any physical model can only approximately describe real life. Al-
though experiments support our model for the considered PUF implementations,
more analysis is necessary. In this context it would be interesting to consider
other types of PUFs which fit into our model or might be used for other crypto-
graphic applications. Furthermore, a natural continuation of this works would be
to explore other cryptographic schemes based of PUF-PRFs, e.g., hash functions
or public key encryption.
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Abstract. A leakage-resilient cryptosystem remains secure even if arbi-
trary, but bounded, information about the secret key (and possibly other
internal state information) is leaked to an adversary. Denote the length
of the secret key by n. We show:

– A full-fledged signature scheme tolerating leakage of n − nε bits of
information about the secret key (for any constant ε > 0), based on
general assumptions.

– A one-time signature scheme, based on the minimal assumption of
one-way functions, tolerating leakage of ( 1

4
−ε) ·n bits of information

about the signer’s entire state.
– A more efficient one-time signature scheme, that can be based on

several specific assumptions, tolerating leakage of ( 1
2
− ε) · n bits of

information about the signer’s entire state.

The latter two constructions extend to give leakage-resilient t-time sig-
nature schemes. All the above constructions are in the standard model.

1 Introduction

Proofs of security for cryptographic primitives traditionally treat the primitive
as a “black box” that an adversary is able to access in a relatively limited fash-
ion. For example, in the usual model for proving security of signature schemes,
an adversary is given the public key and allowed to request signatures on any
messages of its choice, but is unable to get any other information about the se-
cret key or any internal randomness or state information used during signature
generation.

In real-world implementations of cryptographic primitives, on the other hand,
an adversary may be able to recover a significant amount of additional informa-
tion not captured by standard security models. Examples include information
leaked by side-channel cryptanalysis [20,21], fault attacks [5,3], or timing at-
tacks [4], or even bits of the secret key itself in case this key is improperly stored
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or erased [17]. Potentially, schemes can also be attacked when they are imple-
mented using poor random number generation [28] (which can be viewed as
giving the adversary additional information on the internal state, beyond what
would be available if the output were truly random), or when the same key is
used in multiple contexts (e.g., for decryption and signing).

In the past few years, cryptographers have made tremendous progress to-
ward modeling security in the face of such information leakage [25,35], and in
constructing leakage-resilient cryptosystems secure even in case such leakage oc-
curs. (There has also been corresponding work on reducing unwanted leakage
by, e.g., building tamper-proof hardware; this is not the focus of our work.)
Most relevant to the current work is a recent series of results [11,1,31,9,10,26,2]
showing cryptosystems that guarantee security even when arbitrary informa-
tion about the secret key is leaked (under suitable restrictions); we discuss this
work, along with other related results, in further detail below. This prior work
gives constructions of stream ciphers [11,31] (and hence stateful symmetric-key
encryption and MACs), symmetric-key encryption schemes [9], public-key en-
cryption schemes [1,10,26], and signature schemes [2] achieving various notions
of leakage resilience.

Most prior work has focused on primitives for ensuring secrecy. The only work
of which we are aware that deals with authenticity is that of Alwen et al. [2] which
shows, among other results, leakage-resilient signature schemes based on number-
theoretic assumptions in the random oracle model.1 Here we give constructions of
leakage-resilient signature schemes based on general assumptions in the standard
model ; our main construction also tolerates more leakage than the schemes of [2].
(In the full version we also show some technical improvements to the results
of [2].) We postpone a more thorough discussion of our results until after we
define leakage resilience in more detail.

1.1 Modeling Leakage Resilience

At a high level, definitions of leakage resilience take the following form: Begin
with a “standard” security notion (e.g., existential unforgeability under adaptive
chosen message attacks [15]) and modify this definition by allowing the adver-
sary to (adaptively) specify a series of leakage functions f1, . . .. The adversary,
in addition to getting whatever other information is specified by the original
security definition, is given the result of applying fi to the secret key and pos-
sibly other internal state of the honest party (e.g., the signer). We then require
that the adversary’s success probability — for signature schemes, the probability
with which it can output a forged signature — remain negligible. It should be
clear that this is a general methodology that can be applied to many different
primitives. The exact model is then determined by the restrictions placed on the
leakage function(s) fi:

Limited vs. arbitrary information. A first consideration regards whether
the {fi} can be arbitrary (polynomial-time computable) functions, or whether
1 The results of [2] were obtained independently of our own work.
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they are restricted to be in some more limited class. Early work considered
the latter case, for example where the adversary is restricted to learning spe-
cific bits of the secret key [6], or the values on specific wires of the circuit
implementing the primitive [19]. More recent work [11,1,31,9,10,26,2] allows
arbitrary {fi}.

Bounded vs. unbounded information leakage. Let n denote the length of
the secret key. If the secret key does not change over time, and the {fi} are
allowed to be arbitrary, then security in the traditional sense cannot be achieved
once the total length of the leakage — that is, the outputs of all the {fi} — is
n bits or more. For the case of signatures, the length of the leakage must also
be less than the signature length. This inherent restriction is used in [1,10,26].
(Alwen et al. [2] do not impose this restriction, but as a consequence can only
achieve a weaker notion of security.)

One can avoid this restriction, and potentially tolerate an unbounded amount
of leakage overall, if the secret key is updated over time; even in this case, one
must somehow limit the amount of leakage between successive key updates. This
approach to leakage resilience was considered in [11,31] in the context of stateful
symmetric-key primitives, and [12] in the context of stateful signature schemes.

One can also avoid imposing a bound on the leakage by restricting the {fi},
as discussed next.

Computational min-entropy of the secret key. If the leakage is much
shorter than the secret key (as discussed above), then the secret key will have
high min-entropy conditioned on the leakage. This setting is considered in
[1,26,10,2], and is also enforced on a per-period basis in the work of [11,31]
(i.e., the leakage per time period is required to be shorter than the secret key).
More recent work [9,10] shows schemes that remain secure for leakage of arbi-
trary length, as long as the secret key remains exponentially hard to compute
given the leakage (but even if the secret key is fully determined by the leakage
in an information-theoretic sense). A drawback of this guarantee is that given
some collection of functions {fi} (say, as determined experimentally for some
particular set of side-channel attacks) there is no way to tell, in general, whether
they satisfy the stated requirement or not. Furthermore, existing results in this
direction currently require super-polynomial hardness assumptions.

Inputs to the leakage functions. A final issue is the allowed inputs to the
leakage functions. Work of [11,31] assumes, following [25], that only computa-
tion leaks information; this is modeled by letting each fi take as input only
those portions of the secret key that are accessed during the ith phase of the
scheme. Halderman et al. [17], however, show that memory contents can be
leaked even when they are not being accessed. Motivated (in part) by this re-
sult, the schemes of [1,9,10,26,2] allow the {fi} to take the entire secret key as
input at all times.

For the specific primitives considered in [11,1,31,9,10,26], the secret key sk
is the only internal state maintained by the party holding the secret key, and
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so allowing the {fi} to depend on sk is (almost) the most general choice.2 For
signature schemes, however, any randomness used during signing might also be
leaked to an adversary. The strongest definition of leakage resilience is thus
obtained by allowing the {fi} to depend on all the state information used by
the honest signer during the course of the experiment.

All these variants may be meaningful depending on the particular attacks one
is trying to model. Memory attacks [17,1], which probe long-term secret infor-
mation during a time when computation is not taking place, can be faithfully
modeled by allowing the leakage functions to take only sk as input. On the
other hand, side-channel attacks that collect information while computation is
occurring might be more accurately captured by allowing the leakage functions
to take as input only those portions of the internal state that are being accessed.

1.2 Our Results

With the preceding discussion in mind, we can now describe our results in further
detail. In all cases, we allow the leakage function(s) to be arbitrary as long as
the total leakage is bounded as some function of the secret key length n; recall
that such a restriction on the leakage is essential if the secret key is unchanging,
as it is in all our schemes. Our results can be summarized as follows:

1. We show a construction of a leakage-resilient signature scheme that is exis-
tentially unforgeable against chosen-message attacks in the standard model,
based on general (as opposed to number-theoretic) assumptions. This scheme
tolerates leakage of n − nε bits of information about the secret key for any
ε > 0 based on polynomial hardness assumptions, and can tolerate (optimal)
n−ω(log n) bits of leakage based on sub-exponential hardness assumptions.

2. We also construct two leakage-resilient one-time (resp., t-time) signature
schemes in the standard model. These schemes are more efficient than the
scheme above; they also tolerate leakage that may depend on the entire state
of the signer (rather than just the secret key).
– Our first scheme is based on the minimal assumption that one-way func-

tions exist, and tolerates leakage of (1
4 − ε) · n bits for any ε > 0. The

construction extends to give a t-time signature scheme tolerating leakage
of Θ(n/t) bits.

– Our second scheme, which can be based on various concrete assumptions,
is more efficient and tolerates leakage of up to (1

2 − ε) · n bits for any
ε > 0. This construction also extends to give a t-time signature scheme
tolerating leakage of Θ(n/t) bits.

In the full version of this work, we also discuss efficient constructions of full-
fledged signature schemes based on number-theoretic assumptions (in the ran-
dom oracle model) that are secure as long as the leakage is bounded by (1

2−ε) ·n
2 More generally, one could also allow the {fi} to depend on the randomness used to

generate the (public and) secret key(s); this possibility is mentioned in [26, Sec-
tion 8.2]. (For the specific schemes considered in [11,1,31,9,10,26], however, this
makes no substantive difference.)
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bits for any ε > 0. Similar schemes were discovered independently by Alwen et
al. [2], but our analysis offers some advantages as compared to theirs. Specifi-
cally, we make explicit the fact that the leakage can depend on the entire state
of the signer, and we allow leakage queries to depend on the random oracle.

Independent of our work, Faust et al. [12] describe a transformation from any
3-time signature scheme tolerating α(n) bits of leakage to a full-fledged (but
stateful) signature scheme where the secret key is updated over time; the result-
ing scheme tolerates α(n) bits of leakage between key updates, and unbounded
leakage overall. (In the transformed signature scheme, security is ensured as long
as the leakage depends only on the active portion of the secret-key.) Applying
this transformation to our constructions, we get full-fledged signature schemes
that tolerate unbounded leakage (subject to the restrictions mentioned above).

1.3 Overview of Our Techniques

Our constructions all rely on the same basic idea. Roughly, we consider signature
schemes with the following properties:

– A given public key pk corresponds to a set Spk of exponentially many secret
keys. Furthermore, given (sk, pk) with sk ∈ Spk it remains hard to compute
any other sk′ ∈ Spk.

– The secret key sk used by the signer has high min-entropy (at least in a
computational sense) even for an adversary who observes signatures on mes-
sages of its choice. (For our one-time scheme, this is only required to hold
for an adversary who observes a single signature.)

– A signature forgery can be used to compute a secret key in Spk.

To prove that any such signature scheme is leakage resilient, we show how to
use an adversary A attacking the scheme to find distinct sk, sk′ ∈ Spk given
(sk, pk) (in violation of the assumed hardness of doing so). Given (sk, pk), we
simply run A on input pk and respond to its signing queries using the given
key sk. Leakage queries can also be answered using sk. If the adversary forges
a signature, we extract some sk′ ∈ Spk; it remains only to show that sk′ �= sk
with high probability. Let n = log |Spk| be the (computational) min-entropy of sk
conditioned on pk and the signatures seen by the adversary. (We assume that all
secret keys in Spk are equally likely, which will be the case in our constructions.)
A standard argument (cf. Lemma 1) shows that if the leakage is bounded by �
bits, then the conditional min-entropy of the secret key is still at least n− �− t
bits except with probability 2−t. So as long as the leakage is bounded away
from n, with high probability the min-entropy of sk conditioned on A’s entire
view is still at least 1. But then sk′ �= sk with probability at least 1/2. This
concludes the outline of the proof. We remark, however, that various subtleties
arise in the formal proofs of security.

Some existing signature schemes in the random oracle model already satisfy
the requirements stated above. In particular, these include schemes constructed
using the Fiat-Shamir transform [13] applied to a witness-indistinguishable Σ-
protocol where there are an exponential number of witnesses for to a given
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statement. Concrete examples include the signature schemes of Okamoto [29]
(extending the Schnorr [34] and Guillou-Quisquater [16] schemes) based on the
discrete logarithm or RSA assumptions, as well as the signature scheme of
Fischlin and Fischlin [14] (extending the Ong-Schnorr [30] scheme) based on
the hardness of factoring. This class of schemes was also considered by Alwen et
al. [2]. See the full version of our paper for further discussion.

We are not aware of any existing signature scheme in the standard model
that meets our requirements. We construct one as follows. Let H be a universal
one-way hash function (UOWHF) [27] mapping n-bit inputs to nε-bit outputs.
The secret key of the signature scheme is x ∈ {0, 1}n, and the public key is
(y = H(x), pk, r) where pk is a public key for a CPA-secure public-key encryption
scheme, and r is a common reference string for an unbounded simulation-sound
NIZK proof system [33,8]. A signature on a message m consists of an encryption
C ← Encpk(m‖x) of both m and x, along with a proof π that C is an encryption
of m‖x′ with H(x′) = y. Observe that, with high probability over choice of x,
there are exponentially many pre-images of y = H(x) and hence exponentially
many valid secret keys; furthermore, finding another such secret key sk′ �= sk
requires finding a collision in H . Details are given in Section 3.

Our leakage-resilient one-time signature schemes are constructed using a simi-
lar idea. The first construction is inspired by the Lamport signature scheme [23].
The secret key is {(xi,0, xi,1)}ki=1 and the public key is {(yi,0, yi,1)}ki=1 where
yi,b = H(xi,b) for H a UOWHF. Once again, there are exponentially many se-
cret keys associated with any public key and finding any two such keys yields
a collision in H . Adapting the Lamport scheme, so that the signature on a
message m = m1 · · ·mk is {xi,mi}ki=1, yields a signature scheme secure against
leakage of n1−ε bits. By first encoding the message using an error-correcting code
with high minimum distance, it is possible to “boost” the leakage resilience to
(1
4 − ε) · n bits. Using cover-free families this approach extends also to give a

leakage-resilient t-time signature scheme. These constructions are all described
in Section 4.

Our second construction builds on ideas that can be traced back to [7,24].
Roughly, let (G,⊕) and (G′,⊗) be groups with log |G′| ≤ ε · log |G|, and let
H = {Hs : G→ G′} be a family of collision-resistant hash functions that are also
homomorphic (i.e., for which Hs(a)⊗Hs(b) = Hs(a⊕b)); such hash functions can
be constructed based on a variety of concrete assumptions (see Section 4.3). The
secret key is a pair of elements a, b ∈ G, and the public-key is (s, Hs(a), Hs(b))
for a random key s. Note, there are exponentially many secret keys associated
with any public key and finding any two such secret keys yields a collision in Hs.
The signature on a message m ∈ {1, . . . , ord(G)} is simply σ = a⊕mb, which can
be verified by checking that Hs(σ) ?= Hs(a)⊗mHs(b). The important property
for our purposes is that given a single signature a ⊕ mb, the secret key (a, b)
still has high min-entropy. So if the adversary forges another signature σ′ for a
message m′ �= m, with high probability it holds that σ′ �= a⊕m′b and we obtain
a collision in Hs.
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2 Definitions and Preliminaries

We provide a formal definition of leakage resilience for signature schemes, and
state a technical lemma that will be used in our analysis. We denote the security
parameter by k, and let ppt stand for “probabilistic polynomial time”.

Definition 1. A signature scheme is a tuple of ppt algorithms (Gen, Sign, Vrfy)
such that:

– Gen is a randomized algorithm that takes as input 1k and outputs (pk, sk),
where pk is the public key and sk is the secret key.

– Sign is a (possibly) randomized algorithm that takes as input the secret key
sk, the public key pk, and a message m, and outputs a signature σ. We
denote this by σ ← Signsk(m), leaving the public key implicit.3

– Vrfy is a deterministic algorithm that takes as input a public key pk, a mes-
sage m, and a purported signature σ. It outputs a bit b indicating acceptance
or rejection, and we write this as b := Vrfypk(m, σ).

It is required that for all k, all (pk, sk) output by Gen(1k), and all messages m
in the message space, we have Vrfypk(m, Signsk(m)) = 1.

Our definition of leakage resilience is the standard notion of existential unforge-
ability under adaptive chosen-message attacks [15], except that we addition-
ally allow the adversary to specify arbitrary leakage functions {fi} and obtain
the value of these functions applied to the secret key (and possibly other state
information).

Definition 2. Let Π = (Gen, Sign, Vrfy) be a signature scheme, and let λ be a
function. Given an adversary A, define the following experiment parameterized
by k:

1. Choose r ← {0, 1}∗ and compute (pk, sk) := Gen(1k; r). Set state := {r}.
2. Run A(1k, pk). The adversary may then adaptively access a signing oracle

Signsk(·) and a leakage oracle Leak(·) that have the following functionality:
– In response to the ith query Signsk(mi), this oracle chooses random ri ←
{0, 1}∗, computes σi := Signsk(mi; ri), and returns σi to A. It also sets
state := state ∪ {ri}.

– In response to the ith query Leak(fi) (where fi is specified as a circuit),
this oracle gives fi(state) to A. (To make the definition meaningful in
the random oracle model, the {fi} are allowed to be oracle circuits that
depend on the random oracle H.)
The {fi} can be arbitrary, subject to the restriction that the total output
length of all the fi is at most λ(|sk|).

3. At some point, A outputs (m, σ).

3 Usually one assumes without loss of generality that the public key is included as part
of the secret key. Since we measure leakage as a function of the secret-key length,
however, we seek to minimize the size of the secret key.
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A succeeds if (1) Vrfypk(m, σ) = 1 and (2) m was not previously queried to the
Signsk(·) oracle. We denote the probability of this event by Pr[Succλ-leakage∗

A,Π (k)].

We say Π is fully λ-leakage resilient if Pr[Succλ-leakage∗
A,Π (k)] is negligible for every

ppt adversary A.
If state is not updated after each signing query (and therefore, always con-

tains only the randomness r used to generate the secret key), we denote the
probability of success by Pr[Succλ-leakage

A,Π (k)] and say Π is λ-leakage resilient if
Pr[Succλ-leakage

A,Π (k)] is negligible for every ppt adversary A.

Leakage resilience in the definition above corresponds to the memory attacks of
[1] (except that we allow the leakage to depend also on the random coins used
to generate the secret key). Other variations of the definition are, of course,
also possible: state could include only sk (and not the random coins r used to
generate it), or could include only the most recently used random coins ri.

2.1 A Technical Lemma

Let X be a random variable taking values in {0, 1}n. The min-entropy of X is

H∞(X) def= min
x∈{0,1}n

{− log2 Pr[X = x]}.

The conditional min-entropy of X given an event E is defined as:

H∞(X | E) def= min
x∈{0,1}n

{− log2 Pr[X = x | E]}.

Lemma 1. Let X be a random variable with H
def= H∞(X), and fix δ ∈ [0, H ].

Let f be a function whose range has size 2λ, and set

Y
def=
{
y ∈ {0, 1}λ | H∞(X | y = f(X)) ≤ H −Δ

}
.

Then
Pr[f(X) ∈ Y ] ≤ 2λ−Δ.

In words: the probability that knowledge of f(X) decreases the min-entropy of
X by Δ or more is at most 2λ−Δ. Put differently, the min-entropy of X after
observing f(X) is greater than H ′ except with probability at most 2λ−H+H′

.

Proof. Fix y in the range of f and x ∈ {0, 1}n with f(x) = y. Since

Pr[X = x | y = f(X)] =
Pr[X = x]

Pr[y = f(X)]
,

we have that y ∈ Y only if Pr[y = f(X)] ≤ 2−Δ. The assumption regarding the
range of f implies |Y | ≤ 2λ, and so Pr[f(X) ∈ Y ] ≤ 2λ−Δ as claimed.
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3 A Leakage-Resilient Signature Scheme

We construct a leakage-resilient signature scheme in the standard model, fol-
lowing the intuition described in Section 1.2. Let (GenH , H) be a public-coin4

UOWHF [27] mapping n-bit inputs to 1
2 · nε-bit outputs for n = poly(k) and

ε ∈ (0, 1). Let (GenE , Enc, Dec) be a CPA-secure, dense5 public-key encryption
scheme, and let (�,P ,V ,S1,S2) be an unbounded simulation-sound NIZK proof
system [8] for the following language L:

L = {(s, y, pk, m, C) : ∃x, ω s.t. C = Encpk(x; ω) and Hs(x) = y} .

The signature scheme is defined as follows:

Key generation: Choose random x ← {0, 1}n and compute s ← GenH(1k).
Obliviously sample a public key pk for the encryption scheme, and choose
a random string r ← {0, 1}�(k). The public key is (s, y := Hs(x), pk, r) and
the secret key is x.

Signing: To sign message m using secret key x and public key (s, y, pk, r),
first choose random ω and compute C := Encpk(x; ω). Then compute π ←
Pr((s, y, pk, m, C), (x, ω)); i.e., π is a proof that (s, y, pk, m, C) ∈ L using
witness (x, ω). The signature is (C, π).

Verification: Given a signature (C, π) on the message m with respect to the
public key (s, y, pk, r), output 1 iff Vr((s, y, pk, m, C), π) = 1.

Theorem 1. Under the stated assumptions, the scheme above is (n−nε)-leakage
resilient.

Proof (Sketch). Let Π denote the scheme given above, and let A be a ppt

adversary with δ = δ(k) def= Pr[Succλ-leakage
A,Π (k)]. We consider a sequence of ex-

periments, and let Pri[·] denote the probability of an event in experiment i. We
abbreviate Succλ-leakage

A,Π (k) by Succ.

Experiment 0: This is the experiment of Definition 2. Given the public key
(s, y, pk, r) defined by the experiment, Succ denotes the event that A outputs
(m, (C, π)) where Vr((s, y, pk, m, C), π) = 1 and m was never queried to the sign-
ing oracle. By assumption, we have Pr0[Succ] = δ.

Experiment 1: We introduce the following differences with respect to the pre-
ceding experiment: when setting up the public key, we now generate the common
random string r of the simulation-sound NIZK by computing (r, τ) ← S1(1k).
Furthermore, signing queries are now answered as follows: to sign m, generate
C ← Encpk(x) as before but compute π as π ← S2((s, y, pk, m, C), τ).

4 For a public-coin UOWHF (cf. [18]), it is hard to find a second pre-image even given
the randomness used to generate the hash key. Standard constructions of UOWHFs
have this property.

5 This means it is possible to sample a public key “obliviously,” without knowing the
corresponding secret key.
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It follows from the (adaptive) zero-knowledge property of (�,P ,V ,S1,S2), that
the difference |Pr1[Succ]− Pr0[Succ]| must be negligible.

Experiment 2: We modify the preceding experiment in the following way: to
answer a signing query for a message m, compute C ← Encpk(0n) (and then
compute π as in Experiment 1). CPA-security of the encryption scheme implies
that |Pr2[Succ]− Pr1[Succ]| is negligible.

Experiment 3: We now change the way the public key is generated. Namely,
instead of obliviously sampling the encryption public key pk we compute it as
(pk, sk)← GenE(1k). Note that this is only a syntactic change and so Pr3[Succ] =
Pr2[Succ]. (This assumes perfect oblivious sampling; if an obliviously generated
public key and a legitimately generated public key are only computationally
indistinguishable, then the probability of Succ is affected by a negligible amount.)

Given the public key (s, y, pk, r) defined by the experiment, let Ext be the event
that A outputs (m, (C, π)) such that the event Succ occurs and furthermore,
Hs(Decsk(C)) = y. Unbounded simulation soundness of the NIZK proof system
implies that |Pr3[Ext]− Pr3[Succ]| is negligible. (Note that by definition of L the
message m is included as part of the statement being proved, and so if A did
not request a signature on m then it was never given a simulated proof of the
statement (s, y, pk, m, C).)

To complete the proof, we show that Pr3[Ext] is negligible. Consider the fol-
lowing adversary B finding a second preimage in the UOWHF: B chooses random
x← {0, 1}n and is given key s (along with the randomness used to generate s).
B then runs Experiment 3 with A. In this experiment all signatures given to A
are simulated (as described in Experiment 3 above); furthermore B can easily
answer any leakage queries made by A since B knows a legitimate secret key.
(Recall that here we allow the leakage functions to be applied only to [the ran-
domness used to generate] the secret key, but not to any auxiliary state used
during signing.) If event Ext occurs when A terminates, then B recovers a value
x′ def= Decsk(C) for which Hs(x′) = y = Hs(x); i.e., B recovers such an x′ with
probability exactly Pr3[Ext]. We now argue that x′ �= x with high probability.

The only information about x revealed to A in Experiment 3 comes from the
value y included in the public key and the leakage queries asked by A; these total
at most 1

2 ·nε+(n−nε) = n− 1
2 ·nε bits. Using Lemma 1 with Δ = H∞(x) = n, the

probability that H∞(x | A’s view) = 0 (i.e., the probability that x is uniquely
determined by the view of A) is at most 2−nε/2, which is negligible. When the
conditional min-entropy of x is greater than 0 there are at least two (equally
probable) possibilities for x and so x′ �= x with probability at least 1

2 . Taken
together, the probability that B recovers x′ �= x with Hs(x′) = Hs(x) is at least

1
2
·
(
Pr3[Ext]− 2−nε/2

)
.

We thus see that if Pr3[Ext] is not negligible then B violates the security of the
UOWHF with non-negligible probability, a contradiction. ��
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If we are willing to rely on sub-exponential hardness assumptions, we can
construct a UOWHF with ω(log n)-bit outputs. In that case, the same signature
scheme tolerates (optimal) leakage of n− ω(log n) bits.

4 Fully Leakage-Resilient Bounded-Use Signature
Schemes

In this section we describe constructions of fully leakage-resilient one-time and
t-time signature schemes. These results are incomparable to the result of the
previous section: on the positive side, here we achieve full leakage resilience
(that is, where the leakage depends not only on the secret-key, but also on the
randomness used by the signer) as well as better efficiency (and, in one case, rely
on weaker assumptions); on the downside, the schemes given here are only secure
when the adversary obtains a bounded number of signatures, and the leakage
that can be tolerated is lower.

4.1 A Construction Based on One-Way Functions

We describe a basic one-time signature scheme, and then present an extension
that tolerates leakage of up to a constant fraction of the secret key length. Let
(GenH , H) be a UOWHF mapping kc-bit inputs to k-bit outputs for some c > 1.
(As before, we assume that H is a public-coin UOWHF, i.e., it is secure even
given the randomness used to generate the hash key.) Our basic scheme is a
variant on Lamport’s signature scheme [23], using H as the one-way function:

Key generation: Choose random xi,0, xi,1 ← {0, 1}kc

for i = 1, . . . , k, and
generate s ← GenH(1k). Compute yi,b := Hs(xi,b) for i ∈ {1, . . . , k} and
b ∈ {0, 1}. The public key is (s, {yi,b}) and the secret key is {xi,b}.

Signing: The signature on a k-bit message m = m1 · · ·mk consists of the k
values x1,m1 , . . . , xk,mk

.
Verification: Given a signature x1, . . . , xk on the k-bit message m = m1 · · ·mk

with respect to the public key (s, {yi,b}), output 1 iff yi,mi

?= Hs(xi) for all i.

It can be shown that the above scheme is fully n(c−1)/(c+1)-leakage resilient (as
a one-time signature scheme), where n = 2kc+1 denotes the length of the secret
key. Setting c appropriately, the above approach thus tolerates leakage n1−ε

for any desired ε > 0. (We omit the proof, since we will prove security for an
improved scheme below.) The bound on the leakage is essentially tight, since
an adversary who obtains the signature on the message 0k and then leaks the
value x1,1 (which is only kc = (n/2)c/(c+1) bits) can forge a signature on the
message 10k−1.

Tolerating leakage linear in the secret key length. An extension of the
above scheme allows us to tolerate greater leakage. Specifically, we apply Lam-
port’s scheme to a high-distance encoding of the message. Details follow.

If A is a k × � matrix over {0, 1} (viewed as the field F2), then A defines a
(linear) error-correcting code C ⊂ {0, 1}� where the message m ∈ {0, 1}k (viewed
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as a row vector) is mapped to the codeword m ·A. It is well known that for every
ε > 0 there exists a constant R such that choosing A ∈ {0, 1}k×Rk uniformly
at random defines a code with relative minimum distance 1

2 − ε, except with
probability negligible in k. (We will not need efficient decodability.)

Fix a constant ε ∈ (0, 1) and let R be as above; set � = Rk. Let (GenH , H)
be a UOWHF mapping �in-bit inputs to k-bit outputs where �in = 2k/ε. The
signature scheme is defined as:

Key generation: Choose random A ∈ {0, 1}k×� and xi,0, xi,1 ← {0, 1}�in for
i = 1, . . . , �. Generate s ← GenH(1k). Compute yi,b := Hs(xi,b) for i ∈
{1, . . . , �} and b ∈ {0, 1}. The public key is (A, s, {yi,b}) and the secret key
is {xi,b}.

Signing: To sign a message m ∈ {0, 1}k, first compute m̄ = m · A ∈ {0, 1}�.
The signature then consists of the � values x1,m̄1 , . . . , x�,m̄�

.
Verification: Given a signature x1, . . . , x� on the message m with respect to

the public key (A, s, {yi,b}), first compute m̄ = m · A and then output 1 iff

yi,m̄i

?= Hs(xi) for all i.

Theorem 2. If H is a UOWHF then the scheme above is a one-time signature
scheme that is fully (1

4 − ε) · n-leakage resilient, where n = 2� · �in denotes the
length of the secret key.

Proof. Let Π denote the scheme given above, and let A be a ppt adversary
with δ = δ(k) def= Pr[Succλ-leakage∗

A,Π (k)]. We construct an adversary B breaking
the security of H with probability at least (δ−negl(k))/4�, implying that δ must
be negligible.
B chooses random A ∈ {0, 1}k×� and xi,0, xi,1 ← {0, 1}�in for i = 1, . . . , �; we

let X = {xi,b} denote the set of secret key values B chooses and observe that
H∞(X ) = 2� · �in. Next, B selects a random b∗ ∈ {0, 1} and a random index
i∗ ∈ {1, . . . , �}, and outputs xi∗,b∗ ; it is given in return a hash key s. Then B
computes yi,b := Hs(xi,b) for all i, b and gives the public key (A, s, {yi,b}) to A.
B answers the signing and leakage queries of A using the secret key {xi,b}

that it knows. Since this secret key is distributed identically to the secret key of
an honest signer, the simulation for A is perfect and A outputs a forgery with
probability δ.

Let m̄ denote the encoding of the message m whose signature was requested
byA. The informationA has about the secret-key X consists of: (1) the signature
(x1,m̄1 , . . . , x�,m̄�

) it obtained; (2) the values {yi,1−m̄i}�i=1 from the public key
and (3) the answers to the leakage queries asked by A. Together, these total
� ·�in +�k+(1

4−ε) ·2� ·�in bits. By Lemma 1, it follows that H∞(X | A’s view) >
(1
2 + ε) · � · �in except with probability at most

2(�·�in+�k+( 1
2−2ε)�·�in)−2�·�in+( 1

2 +ε)·�·�in = 2�k−ε�·�in ,

which is negligible.
Assuming H∞(X | A’s view) > (1

2 + ε) · � · �in, there is no set I ⊆ [�] with
|I| ≥ (1

2 − ε) · � for which the values {xi,1−m̄i}i∈I are all fixed given A’s view.
To see this, assume the contrary. Then
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H∞(X | A’s view) ≤
∑
i�∈I

H∞(xi,1−m̄i | A’s view) ≤
(

1
2

+ ε

)
� · �in,

in contradiction to the assumed bound on the conditional min-entropy of X .
Let (m∗, (x∗

1, . . . , x
∗
� )) denote the forgery output by A, and let m̄∗ = m∗ · A

denote the encoding of m∗. Let I be the set of indices where m̄ and m̄∗ differ;
with all but negligible probability over choice of the matrix A it holds that
|I| ≥ (1

2 − ε) · � and so we assume this to be the case. By the argument of the
previous paragraph, it cannot be the case that the {xi,1−m̄i}i∈I are all fixed
given A’s view. But then with probability at least half we have x∗

i �= xi,m̄∗
i

for
at least one index i ∈ I. Assuming this to be the case, with probability at least
1/2� this difference occurs at the index (i∗, b∗) guessed at the outset by B; when
this happens B has found a collision in H for the given hash key s. Putting
everything together, we see that B finds a collision in H with probability at
least (δ − negl(k)) · 1

2 ·
1
2� , as claimed.

A t-time signature scheme. The idea above can be further extended to give
a fully leakage resilient t-time signature scheme using cover-free families. We
follow the definition of [22].
Definition 3. A family of non-empty sets S = {S1, . . . , SN}, where Si ⊂ U , is
(t, 1

2 )-cover-free if for all distinct S, S1, . . . , St ∈ S we have
∣∣∣S \⋃t

i=1 Si

∣∣∣ ≥ |S|/2.

Porat and Rothschild [32] show an explicit construction that, for any t and k,
yields a (t, 1

2 )-cover free family S = {S1, . . . , SN} where the number of sets
is N = Ω(2k), the size of each set is |Si| = O(kt), and the universe size is
|U | = O(kt2). If we let f : {0, 1}k → S denote an injective map, we obtain the
following scheme:
Key generation: Set � = O(kt2) and �in = 8tk. Choose xi ← {0, 1}�in for i =

1, . . . , �. Generate s← GenH(1k), and compute yi :=Hs(xi) for i∈{1, . . . , �}.
The public key is (s, {yi}�i=1) and the secret key is {xi}�i=1.

Signing: To sign a message m ∈ {0, 1}k, first compute f(m) = Sm ∈ S. The
signature then consists of {xi}i∈Sm .

Verification: Given a signature {xi} on the message m with respect to the
public key (s, {yi}), first compute Sm = f(m) and then output 1 iff yi

?=
Hs(xi) for all i ∈ Sm.

A proof of the following proceeds along exactly the same lines as the proof of
Theorem 2:

Theorem 3. If H is a UOWHF then the scheme above is a t-time signature
scheme that is fully Θ(n/t)-leakage resilient, where n = � · �in denotes the length
of the secret key.

4.2 A Construction from Homomorphic Collision-Resistant Hashing

Our second construction of fully leakage-resilient bounded-use signature schemes
relies on homomorphic collision-resistant hash functions, defined below. In Sec-
tion 4.3, we describe efficient instantiations of the hash functions we need based
on several concrete assumptions.
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We concentrate on the case of one-time signatures, and defer a treatment of
t-time signatures to the full version.

Definition 4. Fix ε ∈ (0, 1). A pair of ppt algorithms (GenH , H) is an ε-
homomorphic collision-resistant hash function family (ε-hCRHF) if:

1. GenH(1k) outputs a key s that specifies groups (G,⊕), (G′,⊗) (written addi-
tively), and two sets S, T ⊆ G such that
– log |S| = ω(log k) and log |G′| ≤ ε · log |S| and log |T | ≤ (1 + ε) log |S|.
– S is efficiently sampleable, and elements of S can be represented using

log |S|+O(1) bits.
– T is efficiently recognizable, and {x + my | x, y ∈ S, 0 ≤ m < 2k} ⊆ T .

2. The key s defines a function Hs : G→ G′ with Hs(x⊕ y) = Hs(x) ⊗Hs(y)
for all x, y ∈ G.

3. There exists a constant c (independent of k) for which the following holds.
For any s, any m, m′ with 0 ≤ m < m′ < 2k, and any σ, σ′:∣∣∣ {x, y ∈ S | Hs(x + my) = σ ∧Hs(x + m′y) = σ′}

∣∣∣ ≤ 2c.

4. No ppt algorithm A can find two elements x, y ∈ T such that Hs(x) = Hs(y).
Namely, the following is negligible for all ppt A:

Pr[s← GenH(1k); (x, y)← A(s) : x, y ∈ Tk ∧ x �= y ∧Hs(x) = Hs(y)].

If the above holds even when A is given the randomness used to generate s,
then (GenH , H) is a strong ε-hCRHF.

Define a signature scheme as follows.

Key generation: Compute s← GenH(1k); this specifies groups (G,⊕), (G′,⊗)
and sets S, T . Choose x, y uniformly at random from S. Output sk := (x, y)
and pk := (s, Hs(x), Hs(y)).

Signing: The scheme is defined for messages m satisfying 0 ≤ m < 2k. Given
m, output the signature σ := x⊕my.

Verification: Given a signature σ on the message m with respect to the public
key pk = (s, a, b), output 1 iff σ ∈ T and Hs(σ) ?= a⊗mb.

Theorem 4. If (GenH , H) is a (strong) ε-hCRHF, then the above is a one-time
signature scheme that is (fully)

( 1
2 − 2ε
)
· n-leakage resilient.

Proof. Correctness is easily verified. Let Π denote the scheme given above, and
let A be a ppt adversary with δ = δ(k) def= Pr[Succλ-leakage∗

A,Π (k)]. We construct
an adversary B breaking the security of (GenH , H) with probability at least
δ/2− negl(k), implying that δ must be negligible.
B is given as input a key s (along with the randomness used to generate

it). B chooses x, y ∈ S, sets sk := (x, y), and gives the public key pk :=
(s, Hs(x), Hs(y)) to A. Algorithm B then answers the signing and leakage queries
of A using the secret key (x, y) that it knows. Since this secret key is distributed
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identically to the secret key of an honest signer, the simulation for A is perfect
and A outputs a valid forgery (m′, σ′) with probability δ. If this occurs, then B
outputs (σ′, x⊕m′y) as a candidate collision for Hs.

Note that x⊕m′y ∈ T . If σ′ is a valid signature on m′, we have σ′ ∈ T and

Hs(σ′) = Hs(x)⊗m′Hs(y) = Hs(x ⊕m′y).

It remains to show that σ′ �= x⊕m′y with significant probability.
Let c be the constant guaranteed to exist by condition 3 of Definition 4. The

length of the secret key is n
def= 2 log |S| bits.6 The information A has about

sk = (x, y) consists of: (1) the signature x ⊕ my it obtained; (2) the values
Hs(x), Hs(y) from the public key; and (3) the answers to the leakage queries
asked by A. These total at most

log |T |+ 2 log |G′|+
(

1
2
− 2ε

)
2 log |S| ≤ (1 + ε) log |S|+ 2ε log |S|

+ log |S| − 4ε log |S|
= 2 log |S| − ε log |S|

bits of information about sk. The min-entropy of sk is 2 log |S| bits, so by
Lemma 1 it follows that H∞(sk | A’s view) ≥ c + 1 except with probability
at most 2−ε log |S|+c+1, which is negligible.

Assuming H∞(sk | A’s view) ≥ c + 1, we claim that for any m′ �= m (with
0 ≤ m′ < 2k) the value x ⊕m′y has min-entropy at least 1; this follows from
the fact that, for any fixed σ̂′, the two equations σ = x⊕my and σ̂′ = x⊕m′y
constrain (x, y) to a set of size at most 2c (by condition 3 of Definition 4). Thus,
σ′ = x⊕m′y with probability at most 1/2. Putting everything together, we see
that B finds a collision in Hs with probability at least (δ−negl(k)) · 12 as claimed.

4.3 Constructing (Strong) Homomorphic CRHFs

Homomorphic CRHFs can be constructed from a variety of standard assump-
tions. Here, we describe constructions based on the discrete logarithm and the
RSA assumptions; in the full version, we show a construction based on lattices.
All except the RSA-based construction are strong ε-hCRHFs.

An instantiation based on the discrete logarithm assumption. Let G′

be a group of prime order p > 2k where the discrete logarithm problem is hard.
Let � = � 1ε �, and set S = T = G = Z�

p.
The key-generation algorithm GenH outputs random g1, . . . , g� ∈ G as the

key. Given s = (g1, . . . , g�), define Hs(x1, . . . , x�) =
∏�

i=1 gxi

i . This function is
clearly homomorphic, and collision resistance follows by standard arguments.

An instantiation based on the RSA assumption. Fix � = � 2ε �. On security
parameter k, algorithm GenH(1k) chooses safe primes p = 2p′+1 and q = 2q′+1
6 We assume for simplicity that elements of S can be described using exactly log |S|

bits; the proof can be modified suitably if this is not the case.
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with p′, q′ > 2k, and sets N = pq. (The primes p and q are not used after
key generation, but because they are in memory during key generation this
construction is not strong.) GenH then chooses a random element u ∈ Z∗

N , as
well as a prime e > 2(�+1)·k. The key is s = (N, e, u).

Let G = Z∗
N × Z and G′ = Z∗

N . Define

Hs(r, x) = re · ux mod N.

Take S = QRN × {0, . . . , 2�k} ⊂ G (where QRN denotes the set of quadratic
residues modulo N) and T = Z∗

N × {0, . . . , 2(�+1)·k}.
The homomorphic property of Hs is easy to see. One can also verify that:

1. log |S| = ω(log k) and log |G′| ≤ ε · log |S| and log |T | ≤ (1 + ε) log |S|.
2. T is efficiently recognizable, and {x + my | x, y ∈ S, 0 ≤ m < 2k} ⊆ T .
3. For any s, any m, m′ with 0 ≤ m < m′ < 2k, and any σ, σ′:∣∣∣ {x, y ∈ S | Hs(x + my) = σ ∧Hs(x + m′y) = σ′}

∣∣∣ ≤ 1.

(This uses the fact that QRN � Zp′× Zq′ has no elements other than the
identity whose order is less than 2k.)

Collision resistance follows via standard arguments (e.g., [29]).
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