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Abstract The minimization of risk functions is becoming very important due to its
interesting applications in Mathematical Finance and Actuarial Mathematics. This
paper addresses this issue in a general framework. Vector optimization problems
involving many types of risk functions are studied. The “balance space approach” of
multiobjective optimization and a general representation theorem of risk functions is
used in order to transform the initial minimization problem in an equivalent one that
is convex and usually linear. This new problem permits us to characterize optimality
by saddle point properties that easily apply in practice. Applications in finance and
insurance are presented.

1 Introduction

General risk functions are becoming very important in finance and insurance. Since
the seminal paper of Artzner et al. (1999) introduced the axioms and properties of
their “Coherent Measures of Risk”, many authors have extended the discussion. The
recent development of new markets (insurance or weather linked derivatives, com-
modity derivatives, energy/electricity markets, etc.) and products (inflation-linked
bonds, equity indexes annuities or unit-links, hedge funds, etc.), the necessity of
managing new types of risk (credit risk, operational risk, etc.) and the (often legal)
obligation of providing initial capital requirements have made it rather convenient
to overcome the variance as the most important risk measure and to introduce
more general risk functions allowing us to address far more complex problems.
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1 It has been proved that the variance is not compatible with the Second Order Stochastic Domi-
nance if asymmetries and/or heavy tails are involved. See Ogryczak and Ruszczynski (2002) for a
very interesting analysis on the compatibility of more complex risk functions.
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Hence, it is not surprising that the recent literature presents many interesting con-
tributions focusing on new methods for measuring risk levels. Among others,
Föllmer and Schied (2002) have defined the Convex Risk Measures, Goovaerts
et al. (2004) have introduced the Consistent Risk Measures, and Rockafellar et al.
(2006a) have defined the General Deviations and the Expectation Bounded Risk
Measures.

Many classical actuarial and financial problems lead to optimization problems
and have been revisited by using new risk functions. So, dealing with Portfolio
Choice Problems, Mansini et al. (2007) use the Conditional Value at Risk (CVaR)
and other complex risk measures in a discrete probability space, Alexander et al.
(2006) compare the minimization of the Value at Risk (VaR) and the CVaR for
a portfolio of derivatives, Calafiore (2007) studies “robust” efficient portfolios in
discrete probability spaces if risk levels are given by standard deviations or abso-
lute deviations, and Schied (2007) deals with Optimal Investment with Convex Risk
Measures.

Pricing and hedging issues in incomplete markets have also been studied (Föllmer
and Schied 2002; Nakano 2004; Staum 2004; etc.) as well as Optimal Reinsurance
Problems involving the CVaR and stop loss reinsurance contracts (Cai and Tan
2007), and other practical problems.

Risk functions are almost never differentiable, which makes it rather difficult
to provide general optimality conditions. This provokes that many authors must
look for concrete properties of the special problem they are dealing with in order to
find its solutions. Recent approaches by Rockafellar et al. (2006b) and Ruszczynski
and Shapiro (2006) use the convexity of many risk functions so as to give gen-
eral optimality conditions based on the sub-differential of the risk measure and the
Fenchel Duality Theory (Luenberger 1969). The present article follows the ideas
of the interesting papers above, in the sense that it strongly depends on Classical
Duality Theory, but we attempt to use more properties of many risk functions that
will enable us to yield new and alternative necessary and sufficient optimality con-
ditions. Furthermore, since there is not any consensus with respect to “the best risk
measure” to use in many practical applications, and the final result of many prob-
lems may critically depend on the risk measurement methodology we draw on, a
second important difference between our approach and the previous literature is
that we will deal with the simultaneous minimization of several risk functions, i.e.,
we will consider multiobjective problems. Bearing in mind the important topics of
Mathematical Finance and Actuarial Mathematics that involve the minimization of
risk measures, the discovery of new simple and practical rules seems to be a major
objective.

The article’s outline is as follows. Section 2 will present the general properties
of the vector risk measure 
 D .
1; 
2; : : : ; 
r / and the optimization problem we
are going to deal with. Since 
 is not differentiable in general, the optimization
problem is not differentiable either, and Sect. 3 will be devoted to overcome this
caveat. We will use the Balance Space Approach of multiobjective optimization
(Balbás et al. 2005) and the Representation Theorem of Risk Measures so as to
transform the initial optimization problem in an equivalent one that is differentiable
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and often linear. This goal is achieved by following and extending an original
idea of Balbás et al. (2009).2 However, the new problem involves new infinite
dimensional Banach spaces of �-additive measures, which provokes high degree
of complexity when dealing with duality and optimality conditions. Therefore, the
Mean Value Theorem (Lemma 3) is one of the most important results in this sec-
tion and in the whole paper, since it will absolutely simplify the dual problem. As
a consequence, Theorem 4 characterizes the optimal solutions by saddle points of
a bilinear function of the feasible set and the sub-gradients of the risk measures
to be simultaneously optimized. This seems to be profound finding whose proof
is based on major results in Functional Analysis. Besides, the provided neces-
sary and sufficient optimality conditions are quite different if one compares with
those of previous literature. They are very general and easily apply in practical
situations.

Section 4 presents two classical examples of Actuarial and Financial Mathemat-
ics that may be studied by minimizing risks. They are the Optimal Reinsurance
Problem and the Portfolio Selection Problem. The novelty is given by the form of
the problems, the level of generality of the analysis and the high weakness of the
assumptions. The two examples are very important in practice, but this is not an
exhaustive list of the real-world issues related to the optimization of risk functions.
Another very interesting topics, like credit or operational risk, may be considered.

The last section of the paper points out the most important conclusions.

2 Dealing with Vector Risk Functions

Consider a probability space .�;F ; �/ composed of the set of states of the word
�, the �-algebra F indicating the information available at a future date T , and
the probability measure �. Consider also p 2 Œ1;1/ and q 2 .1;1� such that
1=pC 1=q D 1, and the corresponding Banach spaces Lp and Lq . It is known that
Lq is the dual space of Lp (Luenberger 1969). We will deal with a vector


 D .
1; 
2; : : : ; 
r /

of risk functions

j W Lp �! IR

such that the following condition holds:3

2 Balbás and Romera (2007) also dealt with an infinite-dimensional linear optimization problem
that allows us to hedge the interest rate risk, and Balbás et al. (2009) used Risk Measures Rep-
resentation Theorems so as to extend the discussion and involve more general and complex sorts
of risk.
3 Hereafter IE .x/ will denote the mathematical expectation of the random variable x.
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Assumption I. There exists ~j 2 IR, j D 1; 2; : : : ; r , such that

�
q

.�j ;~j /
D ˚

z 2 Lq I �IE .yz/ � ~j � 
j .y/ 8y 2 Lp
�

(1)

is � .Lq; Lp/-compact.4

Proposition 1. Fix j 2 f1; 2; : : : ; rg.
.a/ The sets �q

.�j ;~j /
,

�.�j ;~j / D ˚
.z; k/ 2 Lq � ��1; ~j

� I � IE .yz/� k � 
 .y/ 8y 2 Lp
�

(2)

and
�IR
.�j ;~j /

D
n
k 2 IRI .z; k/ 2 �.�j ;~j / for some z 2 Lq

o

are convex. Moreover,�q

.�j ;~j /
is the natural projection of�.�j ;~j / onLq , whereas

�IR
.�j ;~j /

is its natural projection on IR.

.b/ Under Assumption I the set �.�j ;~j / is compact when endowed with the

topology Q� , product topology of �� and the usual one of the real line. Furthermore,
�IR
.�j ;~j /

is also compact and�.�j ;~j / is included in the Q�-compact set �q

.�j ;~j /
�

�IR
.�j ;~j /

.

Proof. .a/ is trivial, so let us prove .b/. Since the inclusion�.�j ;~j / � �
q

.�j ;~j /
�

�IR
.�j ;~j /

is obvious it is sufficient to show that �IR
.�j ;~j /

is compact and �.�j ;~j /

is closed.
To see that�IR

.�j ;~j /
is compact let us prove that it is closed and bounded. To see

that it is closed let as assume that .kn/n2IN is a sequence in �IR
.�j ;~j /

that converges

to k 2 IR. Take a sequence .zn; kn/n2IN � �.�j ;~j /. Since �q

.�j ;~j /
is compact

take an agglomeration point z of .zn/n2IN. Then it is easy to see that .z; k/ is an
agglomeration point of .zn; kn/n2IN. Thus,

�IE .yzn/� kn � 
j .y/

for every n 2 IN and every y 2 Lp leads to

�IE .yz/ � k � 
j .y/

for every y 2 Lp , and .z; k/ 2 �.�j ;~j /, i.e., k 2 �IR
.�j ;~j /

.

4 In order to simplify the notation, henceforth the � .Lq; Lp/ topology will be denoted by ��.
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To see that �IR
.�j ;~j /

is bounded it is sufficient to prove that it is bounded from

below, since ~j is an obvious upper bound. Expression (2) leads to

�IE .0/� k � 
j .0/ ;

for every k 2 �IR
.�j ;~j /

, and IE .0/ D 0 implies that k � �
j .0/ for every k 2
�IR
.�j ;~j /

.

To see that �.�j ;~j / is closed consider the net .zi ; ki /i2I � �.�j ;~j / and its
limit .z; k/. Then,

�IE .yzi /� ki � 
j .y/

for every i 2I and every y 2 Lp leads to

�IE .yz/ � k � 
j .y/

for every y 2 Lp , so .z; k/ 2 �.�j ;~j /. �

Remark 1. As a consequence of the latter result and its proof Assumption I implies
that �IR

.�j ;~j /
is a bounded closed interval

�IR
.�;~/ D �

~0;j ; ~j

� � ��
j .0/ ; ~j

�
: (3)

Furthermore, as shown in the proof above, ~0;j � �
j .0/.

We will also impose the following assumption:

Assumption II. The equality


j .y/ D Max
n
�IE .yz/ � kI .z; k/ 2 �.�j ;~j /

o
(4)

holds for every y 2 Lp and every j D 1; 2; : : : ; r .5

Next let us provide a proposition with a trivial (and therefore omitted) proof.

Proposition 2. Under Assumptions I and II 
j is a convex function for j D
1; 2; : : : ; r .

5 Assumptions I and II frequently hold. For instance, they are always fulfilled if 
j is expectation
bounded or a general deviation, in the sense of Rockafellar et al. (2006a) (in which case ~0;j D
�j D 0), and often fulfilled if 
j is coherent (Artzner et al. 1999) or consistent Goovaerts et al.
(2004). Furthermore, many convex risk measures (Föllmer and Schied 2002) also satisfy these
assumptions.

Particular examples are the Absolute Deviation, the Standard Deviation, Down Side Semi-
Demiations, the CVaR, the Wang Measure and the Dual Power Transform (Wang 2000, see also
Cherny 2006).
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Consider now a convex subset X included in an arbitrary vector space and a
function

f W X �! Lp

such that

 ı f W X �! IRr

is convex. Possible examples arise when f is concave and 
 is decreasing (for
instance, if every 
j is a coherent measure of risk) or if f is an affine function,
i.e.,

f .tx1 C .1 � t/ x2/ D tf .x1/C .1� t/ f .x2/

holds for every t 2 Œ0; 1� and every x1; x2 2 X . We will deal with the multiobjective
optimization problem 	

Min 
 ı f .x/
x 2 X : (5)

3 Saddle Point Optimality Conditions

Since (5) is convex, for every Pareto solution x0 2 X there exists ˛ D .˛1; ˛2; : : : ;

˛r / � .0; 0; : : : ; 0/ such that
Pr

jD1 ˛j D 1 and x0 2 X solves

(
Min

Pr
jD1 ˛j 
j ı f .x/

x 2 X : (6)

The very well-known scalarization method consists in choosing an “adequate ˛”
and then solving the problem (6) above. “Adequate ˛” means that ˛ must be selected
according to the decision maker preferences.

However, in this paper we will follow an alternative approach based on the notion
of “Balance Point” (Galperin and Wiecek 1999 or Balbás et al. 2005, among others),
since it will allow us to provide saddle point necessary and sufficient optimality
conditions for (5).

So, consider that d D .d1; d2; : : : ; dr / is composed of strictly positive numbers
and plays the role of “direction of preferential deviations” (Galperin and Wiecek
1999). Let us suppose the existence of a Pareto solution of (5) in the direction of d .
According to Galperin and Wiecek (1999) d can be chosen by the decision maker
depending on her/his preferences, and it indicates the marginal worsening of a given
objective with respect to the improvement of an alternative one. If we assume the
existence of “an ideal point” ‡ 2 IRr whose coordinates are the optimal values of
(5) when 
j substitutes 
,6 Balbás et al. (2005) have shown that if .x�; �/ is a

6 This assumption may be significantly relaxed (see Balbás et al. 2005), but it simplifies the
exposition.
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solution of the scalar problem

8
<

:

Min 
d C ‡ � 
 ı f .x/
 2 IR; x 2 X

(7)

then x� is a Pareto solution of (5) that satisfies


 ı f �x�� D ‡ C d�:

Conversely, for every Pareto solution x� of (5) such that


j ı f �x�� > ‡j ;

j D 1; 2; : : : ; r , there exist d1; d2; : : : ; dr > 0 and � > 0 such that .x�; �/ solves
(7).7

Equation (4) clearly implies the equivalence between (7) and

8
<̂

:̂

Min 
dj  C IE

�
f .x/ zj

�C kj C ‡j � 0; 8 �zj ; kj

� 2 �.�j ;~j /; j D 1; 2; : : : ; r:

 2 IR; x 2 X
(8)

The solutions of (8) will be characterized by a saddle point condition. In order
to reach this result we need some additional notations and a crucial instrumental
lemma. Hereafter C

�
�.�j ;~j /

�
, j D 1; 2; : : : ; r , will represent the Banach space

composed of the real-valued ��-continuous functions on the ��-compact space

�.�j ;~j /. Similarly, M
�
�.�j ;~j /

�
will denote the Banach space of �-additive

inner regular measures on the Borel �-algebra of �.�j ;~j / (Horvàth 1966 or Luen-

berger 1969), and P
�
�.�j ;~j /

�
� M

�
�.�j ;~j /

�
will be the set of inner regular

probabilities. Recall that M
�
�.�j ;~j /

�
is the dual space of C

�
�.�j ;~j /

�
.

Lemma 1 (Mean Value Theorem). Fix j 2 f1; 2; : : : ; rg. If � 2 P
�
�.�j ;~j /

�

then there exist z� 2 �q

.�j ;~j /
and k� 2 �~0;j ; ~j

�
such that .z� ; k�/ 2 �.�j ;~j /,

Z

�
q

.�j ;~j /

IE .yz/ d�q .z/ D E .yz�/ (9)

holds for every y 2 Lp and

7 Moreover, this converse implication would also hold even if (5) were not a convex problem.
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Z ~j

~0;j

kd�IR .k/ D k� : (10)

Proof. Consider the natural projections �q 2 P


�

q

.�j ;~j /

�
and �IR 2 P �~0;j ; ~j

�

of �, and the function

Lp 3 y �!  .y/ D
Z

�
q

.�j ;~j /

IE .yz/ d�q .z/ 2 IR:

It is obvious that  is linear so let us prove that it is also continuous. If �q

.�j ;~j /
were bounded then there would exist M 2 IR such that kzkq � M for every z 2
�

q

.�j ;~j /
. Then the Hölder inequality (Luenberger 1969) would lead to

jIE .yz/j � kykp kzkq � kykp M

for every y 2 Lp and every z 2 �q

.�j ;~j /
, and

j .y/j �
Z
M kykp d�q .z/ D M kykp

for every y 2 Lp. Whence  would be continuous (Horvàth 1966 or Luenberger
1969). Let us see now that �q

.�j ;~j /
is bounded. Since it is ��-compact the set

	
IE .yz/ I z 2 �q

.�j ;~j /

�
� IR is bounded for every y 2 Lp because

Lq 3 z �! IE .yz/ 2 IR

is ��-continuous. Then the Banach–Steinhaus Theorem (Horvàth 1966) shows that
�

q

.�j ;~j /
is bounded.

Since  is continuous the Riesz Representation Theorem (Horvàth 1966) shows
the existence of z� 2 Lq such that (9) holds.

Besides, the inequalities

~0;j �
Z ~j

~0;j

kd�IR .k/ � ~j

are obvious, so the existence of k� 2 �~0;j ; ~j

�
satisfying (10) is obvious too.

It only remains to show that .z� ; k�/ 2 �.�j ;~j /. Indeed, (9) and (10) imply
that
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�IE .yz�/� k� D �
Z

�
q

.�j ;~j /

IE .yz/ d�q .z/�
Z ~j

~0;j

kd�IR .k/

D
Z

�.�j ;~j /

.�IE .yz/ � k/ d� .z; k/

�
Z

�.�j ;~j /


 .y/ d� .z; k/

D 
j .y/

for every y 2 Lp. �
Theorem 1 (Saddle Point Theorem). Take x� 2 X and � 2 IR. .x�; �/ solves

(8) if and only if there exist
�

z�j ; k�j
�

2 �.�j ;~j /, j D 1; 2; : : : ; r and

	� 2
8
<

:	 D .	1; 	2; : : : ; 	r/ I
rX

jD1

dj	j D 1; 	j � 0; j D 1; 2; : : : ; r

9
=

;

such that
	�j
�
dj 

� C ‡j C IE
�
f
�
x�
�

z�j
�C k�j

� D 0;

j D 1; 2; : : : ; r , and

rX

jD1

	�j
�
IE
�
f
�
x�
�

z�j
�C k�j

� �
rX

jD1

	�j
�
IE
�
f .x/ z�j

�C k�j
�

(11)

for every x 2 X . If so,


j ı f �x�� D � �k�j C IE
�
f
�
x�
�

z�j
��

holds for every j D 1; 2; : : : ; r , and

	�j
�
k�j C IE

�
f
�
x�
�

z�j
�� � 	�j

�
kj C IE

�
f
�
x�
�

zj

��
(12)

holds for every j D 1; 2; : : : ; r and every
�
zj ; kj

� 2 �.�j ;~j /,
8

8 Notice that (11) and (12) show that
�
x�;

�
z�

j ; k
�

j

��

is a Saddle Point of the function

X �…r
jD1�.
j ;~j / 3

�
x;
�
zj ; kj

�� �!
rX

jD1

	�

j

�
IE
�
f .x/ zj

�C kj
� 2 IR:
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Proof. The constraints of (8) are valued on the Banach space C
�
�.�j ;~j /

�
, j D

1; 2; : : : ; r . Accordingly, the Lagrangian function

L W X � IR�
rY

jD1

M
�
�.�j ;~j /

�
�! IR

of (8) becomes (Luenberger 1969)

L
�
x; ;

�
�j

�r
jD1

�
D 

0

@1 �
rX

jD1

dj

Z

�.�j ;~j /

d�j

�
zj ; kj

�
1

A

�
rX

jD1

Z

�.�j ;~j /

IE
�
f .x/ zj

�
d�j

�
zj ; kj

�

�
rX

jD1

Z

�.�j ;~j /

kjd�j

�
zj ; kj

�

�
rX

jD1

‡j

Z

�.�j ;~j /

d�j

�
zj ; kj

�
;

that may simplify to

L
�
x; ;

�
�j

�r
jD1

�
D 

0

@1 �
rX

jD1

dj	j

1

A

�
rX

jD1

Z

�.�j ;~j /

IE
�
f .x/ zj

�
d�j

�
zj ; kj

�

�
rX

jD1

Z

�.�j ;~j /

kjd�j

�
zj ; kj

�

�
rX

jD1

‡j	j ;

if 	j D R
�.�;~/

d�j

�
zj ; kj

� � 0 for j D 1; 2; : : : ; r . It is clear that the infi-
mum

Inf
n
L
�
x; ;

�
�j

�r
jD1

�
W  2 IR; x 2 X

o
(13)

can only be finite if
Pr

jD1 dj	j D 1. Thus, the dual problem of (8), given by (13),
becomes (Luenberger 1969)
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8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
:

Max �Pr
jD1‡j	j

C


Infx2X

	
�Pr

jD1

R
�.�j ;~j /

�
IE
�
f .x/ zj

�C kj

�
d�j

�
zj ; kj

���

	j D R
�.�j ;~j /

d�j

�
zj ; kj

�
; j D 1; 2; : : : ; r

Pr
jD1 dj	j D 1

�j � 0; j D 1; 2; : : : ; r

:

(14)
dj > 0, j D 1; 2; : : : ; r implies that (8) satisfies the Slater Qualification,9 so, if
(8) (or (7)) is bounded, then the dual problem above is solvable and there is no
duality gap (the optimal values of (8) and (14) coincide) (Luenberger 1969). If (7)
were unbounded then taking a feasible solution .x; / with  < 0 we would have
‡ � 
 ı f .x/ � d > 
 ı f .x/, against the election of ‡ .

Take �� D
�
��j
�r

jD1
solving (14) and 	�j D ��j

�
�.�j ;~j /

�
, j D 1; 2; : : : ; r .

Take
�

z�j ; k�j
�

2 �.�j ;~j /, j D 1; 2; : : : ; r satisfying the conditions of the Mean

Value Theorem (previous lemma) for

Q��j D ��j
	�j

if 	�j > 0, and
�

z�j ; k�j
�

2 �.�j ;~j /,if 	
�
j D 0. According to Luenberger (1969), a

(8)-feasible element .x�; �/ solves (8) if and only if

�Pr
jD1 	

�
j

�
IE
�
f .x�/ z�j

�
C k�j

�
� �Pr

jD1 	
�
j

�
IE
�
f .x/ z�j

�
C k�j

�

for j D 1; 2; : : : ; r and every x 2 X , and

	�j
�
dj 

� C IE
�
f .x�/ z�j

�
C k�j C ‡j

�
D 0; j D 1; 2; : : : ; r:

Then, if 	�j ¤ 0, bearing in mind the constraint of (7) we have


j ı f �x�� � �dj C ‡j D �IE
�
f
�
x�
�

z�j
� � k�j ;

so
� �k�j C IE

�
f
�
x�
�

z�j
�� � 
j ı f �x�� � � �kj C IE

�
f
�
x�
�

zj

��

for every
�
zj ; kj

� 2 �.�j ;~j /, holds from the definition of�.�j ;~j /,. �

9 That is, there is a least one feasible solution of (8) satisfying all the constraints in terms of strict
inequalities. Indeed, dj > 0, j D 1; 2; : : : ; r implies that one only have to take a value of  large
enough.
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4 Applications

This section is devoted to present two practical applications. The first one may be
considered as “classical” in Financial Mathematics, while the second one is “classi-
cal” in Actuarial Mathematics. Both lead to optimization problems that perfectly fit
on (5), so the theory above absolutely applies. The two examples are very important
in practice, but this is far of being an exhaustive list of the real-world issues related
to the optimization of risk functions. Another very interesting topics, like pricing
and hedging issues, credit risk or operational risk, etc., may be considered.

4.1 Portfolio Choice

The optimal portfolio selection is probably the most famous multiobjective opti-
mization problem in finance. Let us assume that

y1; y2; : : : ; yn 2 Lp

represent the random returns of n available assets,10 and denote by x D .x1; x2; : : : ;

xn/ 2 IRn the portfolio composed of the percentages invested in these assets. If 
 is
the (IRr-valued) vector risk function used by the investor then he/she will select that
strategy solving 8

<

:

Min 

�Pn

iD1 xiyi

�
Pn

iD1 xi D 1Pn
iD1 xi IE .yi / � r0

(15)

r0 2 IR denoting the minimum required expected return. If some short-sale restric-
tions must be imposed then constraints such as xi � 0 for some (or all) subscripts
must be added. Similarly, additional equality or inequality constraints reflecting sev-
eral market-linked or agent-linked restrictions may arise. It is obvious that (15) is a
particular case of (5).

4.2 Optimal Reinsurance

The “Optimal Reinsurance Problem” is classical in Actuarial Mathematics. Many
authors have dealt with it by using different “Premium Principles”, and a quite gen-
eral approach may be found in Kaluszka (2005), where the author uses even some

10 That is, yi will be the final pay-off received at a future date t D T if one invests one dollar in
the i th-security at the initial date t D 0.
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coherent measures of risk to price the insurance. However, the minimized risk func-
tions are usually classical deviations (standard deviation or absolute deviation) or
classical down side semi-deviations. More recently Cai and Tan (2007) minimize
the Value at Risk and the Conditional Tail Expectation (Artzner et al. 1999) for
a very particular case, since they only deal with the Expected Value Principle and,
more importantly, stop–loss reinsurance contracts. We will show below that the gen-
eral approach of this paper may apply to minimize general risk functions in the
optimal reinsurance problem and we do not need to be constrained by any kind of
reinsurance contract.

Consider that an insurance company receives the fixed amount S0 (premium) and
will have to pay the random variable y0 2 Lp within a given period Œ0; T � (claims).
Suppose also that a reinsurance contract is signed in such a way that the company
will only pay x 2 Lp whereas the reinsurer will pay y0 � x. If the reinsurer
premium is given by the convex function,11

� W Lp �! IR

and �1 is the highest amount that the insurer would like to pay for the contract, then
the insurance company will chose x (optimal retention) so as to solve

8
<

:

Min 
 .S0 � x � � .y0 � x//

� .y0 � x/ � �1

0 � x � y0

(16)


 being a vector risk function. Notice that

x �! S � x � � .y0 � x/

is a concave function, so (16) is included in (5) and the developed theory obviously
applies.

5 Conclusions

The minimization of risk functions is becoming very important in Mathematical
Programming, Mathematical Finance and Actuarial Mathematics, which provokes
a growing interest in this topic that is becoming the focus of many researchers.

Since risk functions are not differentiable there are significant difficulties when
they are involved in minimization problems. Convex programming and duality

11 Insurance premiums are usually given by convex functions. See for instance Deprez and Gerber
(1985).
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methods have been proposed. This paper has also followed this line of research,
though there are two major differences. On the one hand, we deal with multiobjec-
tive problems, which is far more realistic due to the lack of consensus with respect to
the risk function to be used in many applications. Secondly, the provided necessary
and sufficient optimality conditions are quite different if one compares with previous
literature. Indeed, they are related to saddle point properties of a bilinear function of
the feasible set and the sub-gradient of the risk measures to be optimized. This seems
to be profound finding whose proof is based on the weak�-compactness of the sub-
gradient of the risk measure, the duality theory in general Banach spaces and a given
Mean Value Theorem for risk measures. The yielded optimality conditions easily
apply in practice. Interesting applications in finance and insurance have been given.
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