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Abstract In the field of evolutionary multiobjective optimization, the hypervolume
indicator is the only single set quality measure that is known to be strictly monotonic
with regard to Pareto dominance. This property is of high interest and relevance for
multiobjective search involving a large number of objective functions. However, the
high computational effort required for calculating the indicator values has so far
prevented to fully exploit the potential of hypervolume-based multiobjective opti-
mization.

This paper addresses this issue and proposes a fast search algorithm that uses
Monte Carlo sampling to approximate the exact hypervolume values. In detail,
we present HypE(Hypervolume Estimation Algorithm for Multiobjective Optimiza-
tion), by which the accuracy of the estimates and the available computing resources
can be traded off; thereby, not only many-objective problems become feasible with
hypervolume-based search, but also the runtime can be flexibly adapted. The exper-
imental results indicate that HypE is highly effective for many-objective problems
in comparison to existing multiobjective evolutionary algorithms.

1 Motivation

By far most studies in the field of evolutionary multiobjective optimization (EMO)
are concerned with the following set problem: find a set of solutions that as a whole
represents a good approximation of the Pareto-optimal set. To this end, the original
multiobjective problem consisting of:

� The decision space X
� The objective space Z D R

n

� A vector function f D .f1; f2; : : : ; fn/ comprising n objective functions fi W
X ! R, which are without loss of generality to be minimized
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� A relation � on Z, which induces a preference relation � on X with a � b W,
f .a/ � f .b/ for a; b 2 X

is usually transformed into a single-objective set problem (Zitzler et al. 2008).
The search space ‰ of the resulting set problem includes all possible Pareto set

approximations,1 i.e., ‰ contains all multisets over X . The preference relation �
can be used to define a corresponding set preference relation � on ‰ where

A � B W, 8b 2 B 9a 2 A W a � b (1)

for all Pareto set approximations A;B 2 ‰. In the following, we will assume
that weak Pareto dominance is the underlying preference relation, i.e., a � b W,
f .a/ � f .b/ (cf. Zitzler et al. 2008).2

A key question when tackling such a set problem is how to define the opti-
mization criterion. Many multiobjective evolutionary algorithms (MOEAs) imple-
ment a combination of Pareto dominance on sets and a diversity measure based
on Euclidean distance in the objective space, e.g., NSGA-II (Deb et al. 2000)
and SPEA2 (Zitzler et al. 2002). While these methods have been successfully
employed in various biobjective optimization scenarios, they appear to have dif-
ficulties when the number of objectives increases (Wagner et al. 2007). As a
consequence, researchers have tried to develop alternative concepts, and a recent
trend is to use set quality measures, also denoted as quality indicators, for search –
so far, they have mainly been used for performance assessment. Of particular inter-
est in this context is the hypervolume indicator (Zitzler and Thiele 1998a, 1999)
as it is the only quality indicator known to be fully sensitive to Pareto dominance,
i.e., whenever a set of solutions dominates another set, it has a higher hypervolume
indicator value than the second set. This property is especially desirable when many
objective functions are involved.

Several hypervolume-based MOEAs have been proposed meanwhile (e.g.,
Emmerich et al. 2005; Igel et al. 2007; Brockhoff and Zitzler 2007), but their
main drawback is their extreme computational overhead. Although there have been
recent studies presenting improved algorithms for hypervolume calculation, cur-
rently high-dimensional problems with six or more objectives are infeasible for
these MOEAs. Therefore, the question is whether and how fast hypervolume-based
search algorithms can be designed that exploit the advantages of the hypervol-
ume indicator and at the same time are scalable with respect to the number of
objectives.

1 Here, a Pareto set approximation may also contain dominated solutions as well as duplicates, in
contrast to the notation in Zitzler et al. (2003).
2 For reasons of simplicity, we will use the term “u weakly dominates v” resp. “u dominates v”
independently of whether u and v are elements of X , Z, or ‰. For instance, A weakly dominates
b with A 2 ‰ and b 2 X means A � fbg and a dominates z with a 2 X and z 2 Z means
f .a/ � z ^ z 6� f .a/.
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2 Related Work

The hypervolume indicator was originally proposed and employed in Zitzler and
Thiele (1998, 1999) to compare quantitatively the outcomes of different MOEAs.
In these two first publications, the indicator was denoted as “size of the space cov-
ered”, and later also other terms such as “hyperarea metric” (Van Veldhuizen 1999),
“S-metric” (Zitzler 1999), “hypervolume indicator” (Zitzler et al. 2003), and “hyper-
volume measure” (Beume et al. 2007) were used. Besides the names, there are also
different definitions available, based on polytopes (Zitzler and Thiele 1999), the
attainment function (Zitzler et al. 2007), or the Lebesgue measure (Laumanns et al.
1999; Knowles 2002; Fleischer 2003).

Knowles (2002) and Knowles and Corne (2003) were the first to propose the inte-
gration of the hypervolume indicator into the optimization process. In particular,
they described a strategy to maintain a separate, bounded archive of nondomi-
nated solutions based on the hypervolume indicator. Huband et al. (2003) presented
an MOEA which includes a modified SPEA2 environmental selection procedure
where a hypervolume-related measure replaces the original density estimation tech-
nique. In Zitzler and Künzli (2004), the binary hypervolume indicator was used
to compare individuals and to assign corresponding fitness values within a general
indicator-based evolutionary algorithm (IBEA). The first MOEA tailored specif-
ically to the hypervolume indicator was described in Emmerich et al. (2005); it
combines nondominated sorting with the hypervolume indicator and considers one
offspring per generation (steady state). Similar fitness assignment strategies were
later adopted in Zitzler et al. (2007) and Igel et al. (2007), and also other search algo-
rithms were proposed where the hypervolume indicator is partially used for search
guidance (Nicolini 2005; Mostaghim et al. 2007). Moreover, specific aspects like
hypervolume-based environmental selection (Bradstreet et al. 2006), cf. Sect. 3.3,
and explicit gradient determination for hypervolume landscapes (Emmerich et al.
2007) have been investigated recently.

The major drawback of the hypervolume indicator is its high computation effort;
all known algorithms have a worst-case runtime complexity that is exponential in
the number of objectives, more specifically O.N n�1/ where N is the number of
solutions considered (Knowles 2002; While et al. 2006). A different approach was
presented by Fleischer (2003) who mistakenly claimed a polynomial worst-case
runtime complexity – While (2005) showed that it is exponential in n as well.
Recently, advanced algorithms for hypervolume calculation have been proposed,
a dimension-sweep method (Fonseca et al. 2006) with a worst-case runtime com-
plexity of O.N n�2 logN/, and a specialized algorithm related to the Klee measure
problem (Beume and Rudolph, 2006) the runtime of which is in the worst case of
order O.N logN CN n=2/. Furthermore, Yang and Ding (2007) described an algo-
rithm for which they claim a worst-case runtime complexity of O..n=2/N /. The fact
that there is no exact polynomial algorithm available gave rise to the hypothesis that
this problem in general is hard to solve, although the tightest known lower bound is
of order�.N logN/ (Beume et al. 2007a). New results substantiate this hypothesis:
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Bringmann and Friedrich (2008) have proven that the problem of computing the
hypervolume is #P -complete, i.e., it is expected that no polynomial algorithm exists
since this would imply NP D P .

The issue of speeding up the hypervolume indicator has been addressed in dif-
ferent ways: by automatically reducing the number of objectives (Brockhoff and
Zitzler 2007) and by approximating the indicator values using Monte Carlo sim-
ulation (Everson et al. 2002; Bader et al. 2008; Bringmann and Friedrich 2008).
Everson et al. (2002) used a basic Monte Carlo technique for performance assess-
ment in order to estimate the values of the binary hypervolume indicator (Wagner
et al. 2007); with their approach the error ratio is not polynomially bounded. In con-
trast, the scheme presented in Bringmann and Friedrich (2008) is a fully polynomial
randomized approximation scheme where the error ratio is polynomial in the input
size. Another study (Bader et al. 2008) – a precursor study for the present paper –
employed Monte Carlo sampling for fast hypervolume-based search. The main idea
is to estimate – by means of Monte Carlo simulation – the ranking of the individuals
that is induced by the hypervolume indicator and not to determine the exact indi-
cator values. This paper proposes an advanced method called HypE (Hypervolume
Estimation Algorithm for Multiobjective Optimization) that is based on the same
idea, but uses a novel fitness assignment scheme for both mating and environmental
selection, that can be effectively approximated.

As we will show in the following, the proposed search algorithm can be eas-
ily tuned regarding the available computing resources and the number of objectives
involved. Thereby, it opens a new perspective on how to treat many-objective prob-
lems, and the presented concepts may also be helpful for other types of quality
indicators to be integrated in the optimization process.

3 HypE: Hypervolume Estimation Algorithm
for Multiobjective Optimization

When considering the hypervolume indicator as the objective function of the under-
lying set problem, the main question is how to make use of this measure within a
multiobjective optimizer to guide the search. In the context of a MOEA, this refers
to selection and one can distinguish two situations:

1. The selection of solutions to be varied (mating selection)
2. The selection of solutions to be kept in the population (environmental selection)

In the following, we outline a new algorithm based on the hypervolume indicator
called HypE. Thereafter, the two selection steps mentioned above as realized in
HypE are presented in detail.
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3.1 Algorithm

HypE belongs to the class of simple indicator-based evolutionary algorithm, as for
instance discussed in Zitzler et al. (2007). As outlined in Algorithm 1, HypE reflects

Algorithm 1 HypE Main Loop
Require: reference set R � Z, population size N 2 N, number of generations gmax, number of

sampling points M 2 N

1: initialize population P by selecting N solutions from X uniformly at random
2: g 0

3: while g � gmax do
4: P 0 matingSelection.P; R;N;M/

5: P 00  variation.P 0; N /

6: P  environmentalSelection.P [ P 00; R;N;M/

7: g gC 1

a standard evolutionary algorithm that consists of the successive application of mat-
ing selection, variation, and environmental selection. As to mating selection, binary
tournament selection is proposed here, although any other selection scheme could
be used as well, where the tournament selection is based on the fitness proposed
in Sect. 3.2. The procedure variation encapsulates the application of mutation and
recombination operators to generate N offspring. Finally, environmental selection
aims at selecting the most promising N solutions from the multiset-union of parent
population and offspring; more precisely, it creates a new population by carrying
out the following two steps:

1. First, the union of parents and offspring is divided into disjoint partitions using
the principle of nondominated sorting (Goldberg 1989; Deb et al. 2000), also
known as dominance depth. Starting with the lowest dominance depth level, the
partitions are moved one by one to the new population as long as the first par-
tition is reached that cannot be transferred completely. This corresponds to the
scheme used in most hypervolume-based multiobjective optimizers (Emmerich
et al. 2005; Igel et al. 2007; Brockhoff and Zitzler 2007).

2. The partition that only fits partially into the new population is then processed
using the novel fitness scheme presented in Sect. 3.3. In each step, the fitness val-
ues for the partition under consideration are computed and the individual with the
worst fitness is removed – if multiple individuals share the same minimal fitness,
then one of them is selected uniformly at random. This procedure is repeated
until the partition has been reduced to the desired size, i.e., until it fits into the
remaining slots left in the new population.

The scheme of first applying non-dominated sorting is similar to other algorithms
(e.g., Igel et al. 2007; Emmerich et al. 2005). The differences are: (1) the fitness
assignment scheme for mating, (2) the one for environmental selection, and (3) the
method how the fitness values are determined. The estimation of the fitness values
by means of Monte Carlo sampling is discussed in Sect. 3.4.
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3.2 Basic Scheme for Mating Selection

To begin with, we formally define the hypervolume indicator as a basis for the fol-
lowing discussions. Different definitions can be found in the literature, and we here
use the one from Zitzler et al. (2008) which draws upon the Lebesgue measure
as proposed in Laumanns et al. (1999) and considers a reference set of objective
vectors.

Definition 1. Let A 2 ‰ be a Pareto set approximation and R � Z be a reference
set of mutually nondominating objective vectors. Then the hypervolume indicator
IH can be defined as

IH .A;R/ WD 	.H.A;R//; (2)

where
H.A;R/ WD fz 2 Z I 9a 2 A 9r 2 R W f .a/ � z � rg (3)

and 	 is the Lebesgue measure with 	.H.A;R// D R
Rn 1H.A;R/.z/d z and 1H.A;R/

being the characteristic function of H.A;R/.

The set H.A;R/ denotes the set of objective vectors that are enclosed by the front
f .A/ given by A and the reference set R. It can be further split into partitions
H.S;A;R/, each associated with a specific subset S � A:

H.S;A;R/ WD
h\

s2S

H.fsg; R/
i

n
h [

a2AnS
H.fag; R/

i
: (4)

The set H.S;A;R/ � Z represents the portion of the objective space that is jointly
weakly dominated by the solutions in S and not weakly dominated by any other
solution in A. The partitions H.S;A;R/ are disjoint and the union of all partitions
is H.A;R/ which is illustrated in Fig. 1.

f (b)

H ({a, b, c,d},A,R}

H ({d},A,R}

H ({b, c},A,R}

H (A,R}

R = {r}

f (a)

f (c)

f (d)

Fig. 1 Illustration of the notions of H.A;R/ and H.S;A;R/ in the objective space for a Pareto
set approximation A D fa; b; c; dg and reference set R D frg
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r

f (b)

f (a)

f (c)

f (d)

H4(c,A,R) = H ({a, b, c, d},A,R)

+ H ({b, c, d},A,R)
H3(c,A,R) = H ({a, b, c},A,R)

+ H ({c, d},A,R)
H2(c,A,R) = H ({b, c},A,R)

H1(c,A,R) = H ({c},A,R)

Fig. 2 Illustration of the notions of H.A;R/ and Hi.a; A;R/ in the objective space for a Pareto
set approximation A D fa; b; c; dg and reference set R D frg

In practice, it is infeasible to determine all distinctH.S;A;R/ due to combinato-
rial explosion. Instead, we will consider a more compact splitting of the dominated
objective space that refers to single solutions:

Hi .a; A;R/ WD
[

S�A
a2SjS jDi

H.S;A;R/: (5)

According to this definition, Hi .a; A;R/ stands for the portion of the objective
space that is jointly and solely weakly dominated by a and any i�1 further solutions
from A, see Fig. 2. Note that the sets H1.a; A;R/;H2.a; A;R/; : : : ;HjAj.a; A;R/
are disjoint for a given a 2 A while the sets Hi .a; A;R/ and Hi .b; A;R/ may
be overlapping for fixed i and different solutions a; b 2 A. This slightly differ-
ent notion has reduced the number of subspaces to be considered from 2jAj for
H.S;A;R/ to jAj2 for Hi .a; A;R/.

Now, given an arbitrary population P 2 ‰ one obtains for each solution a con-
tained in P a vector .	.H1.a; P;R//; 	.H2.a; P;R//; : : : ; 	.HjP j.a; P;R/// of
hypervolume contributions. These vectors can be used to assign fitness values to
solutions; while most hypervolume-based search algorithms only take the first com-
ponents, i.e., 	.H1.a; P;R//, into account, we here propose the following scheme
to aggregate the hypervolume contributions into a single scalar value.

Definition 2. Let A 2 ‰ and R � Z. Then the function Ih with

Ih.a; A;R/ WD
jAjX

iD1

1

i
	.Hi .a; A;R// (6)

gives for each solution a 2 A the hypervolume that can be attributed to a with
regard to the overall hypervolume IH .A;R/.
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r

f (b)

f (a)

f (c)

f (d)

Ih(a,P,R)

Ih(c,P,R)

1

1/2
1

1/2

1/3

1/3
1/4

1/3

1/2

Fig. 3 Illustration of the basic fitness assignment scheme. The fitness of two individuals a and c
of a Pareto set approximation A D fa; b; c; dg is set to Fa D Ih.a; A;R/ and Fb D Ih.b; A;R/

respectively (diagonally hatched areas)

The motivation behind this definition is simple: the hypervolume contribution of
each partitionH.S;A;R/ is shared equally among the dominating solutions s 2 S .
That means the portion of Z solely weakly dominated by a specific solution a is
fully attributed to a, the portion ofZ that a weakly dominates together with another
solution b is attributed half to a and so forth – the principle is illustrated in Fig. 3.
Thereby, the overall hypervolume is distributed among the distinct solutions accord-
ing to their hypervolume contributions as the following theorem shows (the proof
can be found in the appendix). Note that this scheme does not require that the solu-
tions of the considered Pareto set approximationA are mutually non-dominating; it
applies to nondominated and dominated solutions alike.

Next, we will extend and generalize the fitness assignment scheme with regard
to the environmental selection phase.

3.3 Extended Scheme for Environmental Selection

In EMO, environmental selection is mostly carried out by first merging parents and
offspring and then truncating the resulting union by choosing the subset that repre-
sents the best Pareto set approximation. The number k of solutions to be achieved
usually equals the population size, and therefore the exact computation of the best
subset is computationally infeasible. Instead, the optimal subset is approximated in
terms of a greedy heuristic (Zitzler and Künzli 2004; Brockhoff and Zitzler 2007):
all solutions are evaluated with respect to their usefulness and the least important
solution is removed; this process is repeated until k solutions have been removed.
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r

1
3

2

a = 1

a =

1
3

a =

f (b)

f (a)

f (c)

f (d)
Ih(c,P,R)

a = 0

Fig. 4 The figure shows for A D fa; b; c; dg and R D frg (1) which portion of the objective
space remains dominated if any two solutions are removed from A (shaded area), and (2) the
probabilities ˛ that a particular area that can be attributed to a 2 A is lost if a is removed from A

together with any other solution in A

The key issue with respect to the above greedy strategy is how to evaluate the use-
fulness of a solution. The scheme presented in Definition 2 has the drawback that
portions of the objective space are taken into account that for sure will not change.
Suppose, for instance, a population with four solutions as shown in Fig. 4; when
two solutions need to be removed (k D 2), then the subspaces H.fa; b; cg; P;R/,
H.fb; c; d g; P;R/, and H.fa; b; c; d g; P;R/ remain weakly dominated indepen-
dently of which solutions are deleted. This observation led to the idea of considering
the expected loss in hypervolume that can be attributed to a particular solution when
exactly k solutions are removed. In detail, we consider for each a 2 P the average
hypervolume loss over all subsets S � P that contain a and k � 1 further solu-
tions; this value can be easily computed by slightly extending the scheme from
Definition 2 as follows.

Definition 3. Let A 2 ‰, R � Z, and k 2 f0; 1; : : : ; jAjg. Then the function I k
h

with

I k
h .a; A;R/ WD

kX

iD1

˛i

i
	.Hi .a; A;R//; (7)

where

˛i WD
i�1Y

jD1

k � j
jAj � j (8)

gives for each solution a 2 A the expected hypervolume loss that can be attributed
to a when a and k � 1 uniformly randomly chosen solutions from A are removed
from A.
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{a, b, c}
{a, b, c}{a,d, e}

{b, c,d}

{b, c, e}

{b,d, e}

{c,d, e}

{a, b,d}

{a, b, e}
{a, b, e}

{a, c,d}
{a, c,d}

{a, c, e}
{a, c, e}

{a, b, c}

{a, c,d}

{a, c, e}

{a, c, e}

{a,d, e}

3( , , )h

considering
I a A R

3 of 6 sets
contain a and c6 of 10 sets

contain a

1 of 3 sets
contains a,c and e

1
2

a2 = 1 1
2 3

1
6

·a3 ==1a1 =

H({a, c, e},A,R) is
lost with probabilty:

H({a, c},A,R) is
lost with probabilty:

H({a},A,R) is
lost in any case

{a, b,d}

Fig. 5 Illustrates the calculation of ˛i when removing a and two other individuals from the set
A D fa; b; c; d; eg. Each subset of three individuals that contains a is considered equally likely;
therefore, the chance of losing a and c is 3=6 and the probability of losing a, c, and e is .1=2/.1=3/

The correctness of (7) can be proved by mathematical induction (Bader and Zitzler
2008). In the following example we illustrates the calculation of ˛i to put the idea
of expected loss across:

Example 1. Out of five individuals A D fa; b; c; d; eg, three have to be removed
and we want to know I 3

h
.a; A;R/ (see Fig. 5). To this end, the expected shares of

Hi .a; A;R/ that are lost when removing a – represented by ˛i – have to be deter-
mined. The first coefficient is ˛1 D 1, because H1.a; A;R/ is lost for sure, since
the space is only dominated by a. Calculating the probability of losing the partitions
dominated by a and a second individual H2.a; A;R/ is a little bit more involved.
Without loss of generality we consider the space dominated only by a and c. In
addition to a, there are two individuals to be removed out of the remaining four
individuals. Since we assume, by approximation every removal is equally proba-
ble, the chance of removing c and thereby losing the partition H.fa; cg; A;R/ is
˛2 D 1=2. Finally, for ˛3 three points including a have to be taken off. The proba-
bility of removing a and any other individual was just derived to be 1=2. Out of three
remaining individuals, the chance to remove one particular, say e, is 1=3. This gives
the coefficient ˛3 D .1=2/.1=3/. For reasons of symmetry, these calculations hold
for any other partition dominated by a and i �1 points. Therefore, the expected loss
of Hi .a; A;R/ is ˛i	.Hi .a; A;R//. Since i points share the partitionHi .a; A;R/,
the expected loss is additionally multiplied by 1=i .

Notice that I 1
h
.a; A;R/ D 	.H1.a; A;R// and I jAj

h
.a; A;R/ D Ih.a; A;R/, i.e.,

this modified scheme can be regarded as a generalization of the scheme presented in
Definition 2 and the commonly used fitness assignment strategy for hypervolume-
based search (Knowles and Corne 2003; Emmerich et al. 2005; Igel et al. 2007;
Bader et al. 2008).
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The fitness values I k
h
.a; A;R/ can be calculated on the fly for all individuals

a 2 A by a slightly extended version of the “hypervolume by slicing objectives”
(Zitzler 2001; Knowles 2002; While et al. 2006) algorithm, which traverse recur-
sively one objective after another. It differs from existing methods in that it allows
(1) to consider a set R of reference points and (5) to compute all fitness values, e.g.,
the I 1

h
.a; P;R/ values for k D 1, in parallel for any number of objectives instead

of subsequently as in Beume et al. (2007). Basically, the modification concerns also
considering solutions, which are dominated according to a particular scanline. A
detailed description of the extended algorithm can be found in Bader and Zitzler
(2008).

Unfortunately, the worst case complexity of the algorithm is O.jAjn/ which
renders the exact calculation inapplicable for problems with more than about five
objectives. However, in the context of randomized search heuristics one may argue
that the exact fitness values are not crucial and approximated values may be suffi-
cient. These considerations lead to the idea of estimating the fitness values by Monte
Carlo sampling, whose basic principle is described in the following section.

3.4 Estimating the Fitness Values Using Monte Carlo Sampling

To approximate the fitness values according to Definitions 2 and 3, we need to
estimate the Lebesgue measures of the domains Hi .a; P;R/ where P 2 ‰ is the
population. Since these domains are all integrable, their Lebesgue measure can be
approximated by means of Monte Carlo simulation.

For this purpose, a sampling space S � Z has to be defined with the following
properties: (1) the hypervolume of S can easily be computed, (2) samples from the
space S can be generated fast, and (3) S is a superset of the domainsHi .a; P;R/ the
hypervolumes of which one would like to approximate. The latter condition is met
by setting S D H.P;R/, but since it is hard both to calculate the Lebesgue measure
of this sampling space and to draw samples from it, we propose using the axis-
aligned minimum bounding box containing theHi .a; P;R/ subspaces instead, i.e.:

S WD f.z1; : : : ; zn/ 2 Z j 81 � i � n W li � zi � uig; (9)

where
li WD mina2P fi .a/

ui WD max.r1;:::;rn/2R ri
(10)

for 1 � i � n. Hence, the volume V of the sampling space S is given by V DQn
iD1 maxf0; ui � li g.
Now givenS , sampling is carried out by selectingM objective vectors s1; : : : ; sM

from S uniformly at random. For each sj it is checked whether it lies in any partition
Hi .a; P;R/ for 1 � i � k and a 2 P . This can be determined in two steps: first,
it is verified that sj is “below” the reference set R, i.e., it exists r 2 R that is dom-
inated by sj ; second, it is verified that the multiset A of those population members
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dominating sj is not empty. If both conditions are fulfilled, then we know that –
givenA – the sampling point sj lies in all partitionsHi .a; P;R/ where i D jAj and
a 2 A. This situation will be denoted as a hit regarding the i th partition of a. If any
of the above two conditions is not fulfilled, then we call sj a miss. Let X .i;a/

j denote
the corresponding random variable that is equal to 1 in case of a hit of sj regarding
the i th partition of a and 0 otherwise.

Based on the M sampling points, we obtain an estimate for 	.Hi .a; P;R// by
simply counting the number of hits and multiplying the hit ratio with the volume of
the sampling box:

O	�Hi .a; P;R/
� D

PM
jD1X

.i;a//
j

M
V: (11)

This value approaches the exact value 	.Hi .a; P;R//with increasingM by the law
of large numbers. Due to the linearity of the expectation operator, the fitness scheme
according to (7) can be approximated by replacing the Lebesgue measure with the
respective estimates given by (11):

OI k
h .a; P;R/ D

kX

iD1

˛i

i

 PM
jD1X

.i;a//
j

M
V

!
: (12)

Note that the partitionsHi .a; P;R/ with i > k do not need to be considered for the
fitness calculation as they do not contribute to the I k

h
values that we would like to

estimate, cf. Definition 3.

4 Experiments

4.1 Experimental Setup

HypE is implemented within the PISA framework (Bleuler et al. 2003) and tested
in two versions: the first, denoted by HypE, uses fitness-based mating selection as
described in Sect. 3.2, while the second, HypE*, employs a uniform mating selec-
tion scheme where all individuals have the same probability of being chosen for
reproduction. Unless stated otherwise, for sampling the number of sampling points
is fixed to M D 10;000 and kept constant during a run.

On the one hand, HypE and HypE* are compared to three popular MOEAs,
namely NSGA-II (Deb et al. 2000), SPEA2 (Zitzler et al. 2002), and IBEA (in
combination with the "-indicator) (Zitzler and Künzli 2004). Since these algorithms
are not designed to optimize the hypervolume, it cannot be expected that they per-
form particularly well when measuring the quality of the approximation in terms
of the hypervolume indicator. Nevertheless, they serve as an important reference as
they are considerably faster than hypervolume-based search algorithms and there-
fore can execute a substantially larger number of generations when keeping the
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available computation time fixed. On the other hand, we include the sampling-based
optimizer proposed in Bader et al. (2008), here denoted as SHV (sampling-based
hypervolume-oriented algorithm); finally, to study the influence of the nondomi-
nated sorting we also include a simple HypE variant named RS (random selection)
where all individuals of the same dominance depth level are assigned the same
constant fitness value. Thereby, the selection pressure is only maintained by the
nondominated sorting carried out during the environmental selection phase.

In this paper, we focus on many-objective problems for which exact hypervolume-
based methods (e.g., Emmerich et al. 2005; Igel et al. 2007) are not applicable.
Therefore, we did not include these algorithms in the experiments. However, the
interested reader is referred to Bader and Zitzler (2008) where HypE is compared to
an exact hypervolume algorithm.

As basis for the comparisons, the DTLZ (Deb et al. 2005), and the WFG (Huband
et al. 2006) test problem suites are considered since they allow the number of objec-
tives to be scaled arbitrarily – here, ranging from 2 to 50 objectives. For the DTLZ
problem, the number of decision variables is set to 300, while for the WFG problems
individual values are used.3

The individuals are represented by real vectors, where a polynomial distribution
is used for mutation and the SBX-20 operator is used for recombination (Deb 2001).
The recombination and mutation probabilities are set according to Deb et al. (2005).

For each benchmark function, 30 runs are carried out per algorithm using a pop-
ulation size of N D 50. Either the maximum number of generations was set to
gmax D 200 (results shown in Table 1) or the runtime was fixed to 30 min for each
run (results shown in Fig. 6). For each run, the hypervolume of the last popula-
tion is determined, where for less than six objectives these are calculated exactly
and otherwise approximated by Monte Carlo sampling. For each algorithm Ai , the
hypervolume values are then subsumed under the performance score P.Ai /, which
represents the number of other algorithms that achieved significantly higher hyper-
volume values on the particular test case. The test for significance is done using
Kruskal–Wallis and the Conover Inman post hoc tests (Conover 1999). For a full
description of the performance score, please see Zamora and Burguete (2008).

4.2 Results

Table 1 shows the performance score and mean hypervolume of the different algo-
rithms on six test problems. In 18 instances, HypE is better than HypE*, while vice
versa HypE* is better than HypE only in four cases. HypE reaches the best per-
formance score overall. Summing up all performance scores, HypE yields the best

3 The number of decision variables (first value in parenthesis) and their decomposition into position
(second value) and distance variables (third value) as used by the WFG test function for different
number of objectives are: 2d (24, 4, 20); 3d (24, 4, 20); 5d (50, 8, 42); 7d (70, 12, 58); 10d (59,9,50);
25d (100, 24, 76); 50d (199,49,150).
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Fig. 6 Hypervolume process over 30 min of HypE and SHV for 100; 1,000; 10,000 and 100,000
samples each, denoted by the suffices 100, 1k, 10k and 100k respectively. The test problem is
WFG9 for three objectives and NSGA-II, SPEA2, and IBEA are shown as reference. The numbers
at the right border of the figures indicate the total number of generations reached after 30 min. The
results are split in two figures with identical axis for the sake of clarity
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total (33), followed by HypE* (55), IBEA (55) and SHV, the method proposed in
Bader et al. (2008) (97). SPEA2 and NSGA-II reach almost the same score (136
and 140 respectively), clearly outperforming random selection (217). For five out
of six testproblems HypE obtains better hypervolume values than SHV. On DTLZ7
however, SHV as well as IBEA outperform HypE. This might be due to the discon-
tinuous shape of the DTLZ7 testfunction, for which the advanced fitness scheme
does not give an advantage.

The better Pareto set approximations of HypE come at the expense of longer
execution time, e.g., in comparison to SPEA2 or NSGA-II. We therefore investigate,
whether the fast NSGA-II and SPEA2 will not overtake HypE given a constant
amount of time. Figure 6 shows the hypervolume of the Pareto set approximations
over time for HypE using the exact fitness values as well as the estimated values for
different samples sizes M .

Even though SPEA2, NSGA-II and even IBEA are able to process twice as many
generations as the exact HypE, they do not reach its hypervolume. In the three
dimensional example used, HypE can be run sufficiently fast without approximat-
ing the fitness values. Nevertheless, the sampled version is used as well to show the
dependency of the execution time and quality on the number of samplesM . ViaM ,
the execution time of HypE can be traded off against the quality of the Pareto set
approximation. The fewer samples are used, the more the behavior of HypE resem-
bles random selection. On the other hand by increasing M , the quality of exact
calculation can be achieved, increasing the execution time, though. For example,
with M D 1;000, HypE is able to carry out nearly the same number of generations
as SPEA2 or NSGA-II, but the Pareto set is just as good as when 100;000 samples
are used, needing only a fifteenth the number of generations. In the example given,
M D 10;000 represents the best compromise, but the number of samples should be
increased in two cases: (1) when the fitness evaluation take more time, and (2) when
more generations are used. The former will affect the faster algorithm much more
and increasing the number of samples will influence the execution time much less.
(ii) More generations are used. In the latter case, HypE using more samples might
overtake the faster versions with fewer samples, since those are more vulnerable to
stagnation.

In this three objective scenario, SHV can compete with HypE. This is mainly
because the sampling boxes that SHV relies on are tight for small number of objec-
tives; as this number increases, however, experiments not shown here indicate that
the quality of SHV decreases in relation to HypE.

5 Conclusion

This paper proposes HypE, a novel hypervolume-based evolutionary algorithm.
Both its environmental and mating selection step rely on a new fitness assign-
ment scheme based on the Lebesgue measure, where the values can be both exactly
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calculated and estimated by means of sampling. In contrast to other hypervolume
based algorithms, HypE is thus applicable to higher dimensional problems.

The performance of HypE was compared to other algorithms against the hyper-
volume indicator of the Pareto set approximation. In particular, the algorithms were
tested on test problems of the WFG and DTLZ test suite. Simulations results show
that HypE is a competitive search algorithm; this especially applies to higher dimen-
sional problems, which indicates using the Lebesgue measure on many objectives is
a convincing approach.

A promising direction of future research is the development of advanced adaptive
sampling strategies that exploit the available computing resources most effectively.

HypE is available for download at http://www.tik.ee.ethz.ch/sop/! download/
supplementary/hype/.
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