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Chapter 6

Global Mapping: Minimal Route
Graphs Under Spatial Constraints

The matching of AGVGs as described in the previous chapter works well as long as
the annotated metric information is reliable. This makes the approach well suited for
identifying correspondences in AGVGs perceived in short order. However, while the
robot moves around, the uncertainty, for instance in the position estimates of the nodes,
accumulates and can grow without bounds. As a result of this and due to the fact that
our matching algorithm currently does not bridge between different parts of the map
AGVG, correctly closing cycles in the graph which correspond to large loops in the
environment becomes difficult.

Therefore, a global mapping framework has to be built on top of the AGVG match-
ing, which is the topic of this chapter. Our approach is to deal with the global mapping
and loop closing problem by focusing on determining the correct discrete graph topol-
ogy, relying on coarse but dependable spatial information instead of relying on the
uncertainty-afflicted concrete metric annotations. The idea is to first determine the
correct high-level graph structure using a multi-hypothesis tracking approach to deal
with the uncertainty at the topological level. A concrete (H)AGVG can then be derived
from a specific hypothesis.

As a consequence of this idea, we here regard the global mapping problem as the
problem of determining the correct topology of a graph-like environment from a se-
quence of observations and interpret it as the task of finding a minimal route graph
model that is consistent with the observations. The minimal model finding formula-
tion of the mapping problem directly leads to a multi-hypothesis approach in which
multiple consistent route graph hypotheses are tracked simultaneously.

The problem of exploration and map learning in graph-like environments has been
investigated by several authors (Bender et al., 1998; Dudek et al., 1991, 1996, 1997;
Rekleitis et al., 1999). Kuipers et al. (Kuipers, 1985; Kuipers & Byun, 1991) describe
a rehearsal procedure to verify if two observed nodes can correspond only based on
node signature information. This procedure involves moving to known neighbored
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nodes and actively matching the neighborhoods up to a given distance. Dudek et al.
(1991) point out that without further information successful map learning cannot be
guaranteed. They also show that for undirected graphs a single movable marker is suf-
ficient and that exploration requires O(mn) edge traversals for a graph with m nodes
and n edges. In Dudek et al. (1996), a passive map-learning approach is described in
which a tree of all possible graph models is maintained.

Kuipers proposed formulating topological mapping as an abductive learning prob-
lem of finding the minimal model that explains a sequence of observations and actions
(Kuipers et al., 2004; Remolina & Kuipers, 2004). In Kuipers et al. (2004), a tree
of all models consistent with the axioms of the SSH is maintained in a way similar
to the approach of Dudek et al. (1996). The simplest model is given by a prioritized
circumscription policy. Places are derived from local metric maps and compared us-
ing descriptions of the local topology. The number of models in the tree can grow
exponentially with the number of performed actions.

Planarity of the mapped environment has been exploited in the context of marker-
based exploration in Rekleitis et al. (1999) and in the context of abductive map learning
in Savelli & Kuipers (2004). In both cases, the result is a significant increase in the
computational efficiency of the respective approaches.

In this work, we investigate the minimal model learning approach from the per-
spective of spatial consistency and as an application of spatial reasoning techniques
developed in the area of qualitative spatial reasoning. An overview on the relevant
concepts and techniques from this area of research is provided in Appendix B. Our fo-
cus is on direction information and we are especially interested in how different kinds
of direction information (in the form of different qualitative spatial calculi) affects the
size of the space of hypotheses which are consistent with the given information. In
addition, we consider planarity as a constraint and require that the route graph models
be embedded in the plane without crossing edges. We study the problem in a branch
and bound search framework based on the estimated solution size, which results in a
further reduction of the explored search space.

We proceed by first investigating the problem of finding the minimal route graph
model in the simplified theoretical setting of a general graph world. Later, we adapt
the developed approach to the Voronoi-based representations described in this book.

6.1 Theoretical Problem

Consider the following problem: A robot is roaming through a graph-like environment
like the one shown in Fig. 6.1. The environment consists of junctions and straight hall-
ways connecting the junctions. Whenever the robot arrives at a junction, it observes
and memorizes a set of leaving hallways with some additional (qualitative) direction
information. The direction information can either be absolute with regard to a given
reference direction (e.g., “corridor x branches off to the north”) or relative (e.g., “corri-
dors x and y meet at an obtuse angle”). We will call a description of such a perception
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of a junction a junction observation, and define it as follows.

Definition 6.1 (Junction observation). A junction observation is given by a triple J =
(L, succ, R) where

• L is a set {l1, l2, ..., lm} of pairwise different elements from a set H of hallway
identifiers, one for each perceived leaving hallway,

• succ : L → L is a total function specifying the immediate successor in the
counterclockwise cyclic order in which the leaving hallways are perceived, and

• R is a spatial description induced by the directions of the leaving hallways in L
with regard to a given set of direction relations.

Given a junction observation J , we will write L(J), s(J), and R(J) to refer to the
respective elements of the triple J . We will not further define the nature of the spatial
description R here because it depends on the particular formalism used to describe the
directions of the leaving hallways. An example could be a description using cardinal
direction relations n, nw,w, etc. which consists of unary relation tuples, e.g., n(l1),
sw(l2), and so on. The description could also involve binary relations holding between
pairs of leaving hallways. Using cardinal directions, the second junction observation
J2 from the example in Fig. 6.1 could be given by

J2 = ( {l1, l2, l3, l4}, succ(li) = l(i⊕1), {n(l1), w(l2), s(l3), e(l4)} )

Later in this chapter, we will need to specify the distance of two objects x and
y (either leaving hallways in a junction observation or edges incident to a particular
node) with regard to the cyclic order defined by a successor function succ. For this
purpose, we define the following distance function:

dsucc(x, y) = k ⇐⇒ y = succk(x) ∧ @l < k : y = succl(x) (6.1)

succk(x) here stands for the k-times composition of successor function succ with
itself and, hence, the kth successor of x in the cyclic order. For instance, for J2 we get
dsucc(l2, l4) = 2 and dsucc(l3, l2) = 3.

Junction observations are connected by hallway traversal actions consisting of
leaving the current junction via one of the observed leaving hallways and arriving
at the next junction via one of the leaving hallways belonging to the next junction
observation.

Definition 6.2 (Hallway traversal). A hallway traversal is described by a quadruple
T = (Js, ls, Je, le) where Js and Je are junction observations with Je 6= Js and ls
and le are leaving hallway identifiers with ls ∈ L(Js) and le ∈ L(Je). It describes the
action of taking leaving hallway ls after observing Js and arriving via le of the next
junction observation Je.
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T1 = (J1, l1,2, J2, l2,1), // 1st hallway traversal
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T2 = (J2, l2,3, J3, l3,1), // 2nd hallway traversal
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T3 = (J3, l3,2, J4, l4,1),

J4 = ({l4,1, l4,2, l4,3}, succ4(x), R4),

T5 = (J4, l4,2, J5, l5,1),

J5 = ({l5,1, l5,2, l5,3, l5,4}, succ5(x), R5) 〉

Figure 6.1: The robot walks through a simple environment passing five junctions
(dashed arrow). On the right is the history of junction observations and hallway traver-
sal actions made by the robot

We will call Js the start observation and Je the end observation of the hallway
traversal T and use functions startj(T ), starth(T ), and endj(T ), endh(T ) for referring
to the respective elements of hallway traversal T .

A list of alternating junction observations and hallway traversals corresponding to
a walk of the robot through the graph will be referred to as a history.

Definition 6.3 (History). A historyH is a list 〈J1, T1, J2, T2, ..., Tn−1, Jn〉 of pairwise
different junction observations Ji and pairwise different hallway traversals Tj with

• ∀i, j, 1 ≤ i ≤ n, 1 ≤ j ≤ n, i 6= j : L(Ji) ∩ L(Jj) = ∅

• ∀i, 1 ≤ i ≤ n− 1 : startj(Ti) = Ji ∧ endj(Ti) = Ji+1

While junction observations directly correspond to physical junctions in the en-
vironment, a leaving hallway identifier l ∈ L(J) does not correspond to a physical
hallway in our formalization but rather to a “directed hallway” leading away from the
junction corresponding to the observation J . Hence, we demand that the leaving hall-
way identifiers used in the individual junction observations be disjoint in the definition
above. Figure 6.1 shows on the right the complete history corresponding to the walk
given by the dashed arrow. Each succi function here is given by succi(li,j) = li,(j⊕1).
In the following, we will use the notation JOH for the set of junction observations
contained in histories H and HT H for the contained hallway traversals. In addition,
LHH stands for the union of all L(J) for all J ∈ JOH and, thus, contains all leaving
hallway identifiers used.

Histories can be displayed as acyclic graphs, which we will call history graphs in
the following and which will serve as the starting point for our actual minimal model
finding algorithm. A history graph can be seen as the maximal route graph model of
the environment that explains the history (maximal without adding completely unre-
lated nodes). This means that no junction observations or leaving hallways are unified
except when they definitely have to correspond to the same physical junction because
the robot just backtracked along previously traversed hallways. History graphs consist
of two kinds of nodes: nodes that stand for junctions which have been observed and
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Figure 6.2: Representation of a history as an acyclic graph: Black nodes depict visited
places, while white nodes stand for unvisited ones. (a) The graph corresponding to
the history given in Fig. 6.1. (b) The resulting graph if the robot would continue by
moving back from junction B to junction F and then turning right into the hallway
leading to E

nodes that stand for the not yet observed end points of leaving hallways that have not
been traversed.

Figure 6.2 shows on the left the history graph for the history from Fig. 6.1. Black
nodes stand for the observed junctions and white nodes for the unobserved ones. As
no backtracking took place, each black node stands for a single junction observation
and each edge connecting two black nodes corresponds to a hallway traversal.

The right picture in Fig. 6.2 shows the graph that would result from continuing
the walk by moving back to junction F (resulting in junction observation J5) and then
moving to E (junction observation J7). As moving back to F means that the robot
moves back along the last traversed hallway, J4 and J6 have to correspond to the
same junction and, hence, have to be unified in every valid route graph model derived
from the history. As a result, the history graph remains unchanged by the traversal
action. In contrast, continuing the walk by moving to E results in assigning J7 to the
corresponding white node, changing it into a black node, and adding new edges and
white nodes for the new leaving hallways (one in this case).

Following this construction scheme, complementing the history graph based on
a hallway traversal and junction observation pair takes constant time and, hence, the
complete construction takes O(n) time for a history of length n (n hallway traversals
and n+1 junction observations). The history graph representation is not strictly equiv-
alent to the definition of a history though, as the exact number and order of traversal
actions and observations cannot be retrieved without further information being stored.
However, when annotated with the direction information included in the junction ob-
servations and with the final position of the robot and the last traversed edge, it contains
all the information needed to transform it into smaller route graph models that are still
valid explanations of the history. When depicting history graphs or smaller route graph
models derived from the history graph, we will typically not provide the direction re-
lations explicitly, but in most cases place the nodes in compliance with the direction
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information.
Given a particular history, we are now interested in the problem of finding the

minimal route graph model that explains the sequence of observations and traversal
actions. As explanations we consider route graph models together with mappings from
the history to walks through the hypothetical graphs. Route graph model here refers to
an undirected graph together with a combinatorial embedding similar to the EGVGs
defined in Chap. 3 but without loops or parallel edges, as we restrict ourselves to
environments consisting of straight hallways. In order to avoid confusion with the
nodes in the search tree discussed later in this chapter, we will refer to the nodes and
edges of a route graph hypothesis explicitly as route graph nodes (RGNs) and route
graph edges (RGEs), respectively.

A hypothesis (route graph model and mapping) is a valid explanation of the history
if the following holds: We can draw the RGNs of the combinatorial embedded route
graph into the plane with all RGEs being non-crossing straight line segments so that
the hypothetical walk through this route graph model would then reproduce the history.
This condition can be split into three classes of constraints that have to be satisfied in
order to offer a valid explanation for a given history:

• Structural constraints: Under the term structural constraints we subsume all
constraints that are not linked to the actual assignment of coordinates to the
RGNs by the drawing: (1) The hypothetical walk through the given route graph
hypothesis needs to reproduce the sequence of leaving hallway numbers of the
original walk. (2) The cyclic order of leaving hallways needs to match the cyclic
order of leaving edges of the corresponding nodes. (3) The distance between the
arriving and leaving hallway in the cyclic order of leaving hallways needs to
match for each passing of a node.

• Planarity constraint: The combinatorial embedding given by the cyclic edge
orderings needs to be planar and the drawing must be a straight-line drawing of
this embedding.

• Direction constraints: For each passed RGN, the drawing of the graph into the
plane needs to induce the same direction relations for the leaving hallways as
described in the junction observations.

To provide a more formal definition of these constraints, we first introduce the
concept of a map hypothesis, which captures the structural constraints as these can be
directly applied when constructing a hypothetical route graph model from a given his-
tory. We then define a map hypothesis to be consistent when the planarity constraint
and direction constraints are satisfied. As already indicated previously, a map hypoth-
esis not only consists of a route graph model but also contains a description of how
the perceived junction hallways of the history map to the RGNs and RGEs of the route
graph model. This mapping defines the hypothetical walk through the route graph that
corresponds to the history.
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Definition 6.4 (Map hypothesis). Given a history H = 〈J1, T1, J2, T2, ..., Tn−1, Jn〉,
a map hypothesis MH for aH is a triple (G,mj,ml), where

• G = (V,E,O) is an undirected graph (V,E) with node set V = {v1, v2, ..., vn},
edge set E ⊆ V × V , and combinatorial embedding given by a set O =
{succv1 , succv2 , ..., succvn} of successor functions of which succvi specifies the
cyclic order of edges incident to vi,

• mj : JOH → V is a total function mapping the junction observations from H
to nodes of G, and

• ml : LHH → E is a total function mapping the leaving hallway identifiers from
H to edges of G,

that satisfies the following conditions:

• ∀J ∈ JOH : (∀l ∈ L(J) : mj(J) ∈ ml(l)) (incidence preservation)

• ∀T ∈ HT H : ml(startl(T )) = ml(endl(T )) = {startj(T ), endj(T )} ∈ E
(traversal-edge mapping)

• ∀J ∈ JOH : |L(J)| = deg(mj(J)) (degree match)

• ∀J ∈ JOH, s = s(J) :
(
∀l ∈ L(J) : succmj(J)(ml(l)) = ml(s(l))

)
(cyclic order preservation)

• ∀i, 1 < i < n, s = s(Ji) :
ds(endl(Ti−1), startl(Ti)) = dsuccmj(Ji)

(ml(endl(Ti−1)),ml(startl(Ti)))

(cyclic order distance preservation)

The first two conditions of the definition above simply ensure that junction ob-
servations and their leaving hallways are mapped to incident RGNs and RGEs and
that the leaving hallways of a hallway traversal are mapped to the same RGE. The
other three conditions are the structural constraints mentioned earlier: matching num-
bers of leaving hallways, preservation of the cyclic order information, and preserved
distance between the arriving hallway and the leaving one in the cyclic order. We in-
troduce the functionG(M) for accessing the route graph modelG in a map hypothesis
M = (G,mj,ml).

Figure 6.3 shows four map hypotheses for the history given in Fig. 6.1. Each hy-
pothesis is depicted by one drawing of the route graph into the plane. All examples
preserve the combinatorial embedding of the hypothesis but not all consist only of
straight lines and avoid crossing edges. The walk resulting from the mapping of the
history to the route graph is shown by the dashed arrows. Disregarding the direction
information, the walks resulting from the mappings would in all cases correctly repro-
duce the history of observations and hallway traversals.
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Figure 6.3: Four possible map hypotheses for the history of Fig. 6.1, given by the
depictions of their route graph models and the mappings mj and ml. Only the examples
in (a) and (d) are consistent. The model in (d) is also a minimal route graph model; it
corresponds to the original environment
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Figure 6.4: Relations from the cardinal direction calculus

Let us for now again assume that the spatial information is given in form of qual-
itative cardinal direction relations. The exact relations we are going to use are those
of the cardinal direction calculus (Ligozat, 1998), a calculus for qualitative spatial rea-
soning which we are going to introduce more formally in Sect. 6.3.2.1 (see Appendix
B for more details on qualitative spatial calculi). In the cardinal direction calculus, n,
w, s, and e correspond to specific angles, while nw, sw, se, and ne comprise angle
intervals as indicated in Fig. 6.4.

Storing the cardinal directions derived from compass readings for each leaving
hallway of a junction observation results in the following spatial descriptions Ri for
our exemplary history from Fig. 6.1:

R1 = {sw(l1,1), s(l1,2)}
R2 = {n(l2,1), w(l2,2), s(l2,3), e(l2,4)}
R3 = {n(l3,1), w(l3,2)}
R4 = {e(l4,1), n(l4,2), w(l4,3)}
R5 = {s(l5,1), e(l5,2), ne(l5,3), sw(l5,4)}

The drawing of the hypothesis of Fig. 6.3(a) shows that this hypothesis is consistent
with the spatial information as it would correctly reproduce the cardinal directions
for each junction observation. The drawing of the second hypothesis (Fig. 6.3(b)),
however, is not consistent with the spatial information contained in the history: A
spatial inconsistency arises because the hallway leaving from N5 to the west has been
connected with the one leaving N3 to the east. As we assume straight hallways, it
follows that N5 has to be to the east of N3. Locally, this information is consistent.
However, as it is also known thatN6 is south ofN3 andN5 is west ofN6, it follows that
N5 has to be in the southwest sector of N3. This contradicts our previous conclusion
that N5 lies to the east of N3. This reasoning shows not only that the depicted drawing
is inconsistent with respect to the direction information, but also that no such drawing
can exist for the given hypothesis. Hence, the entire hypothesis is inconsistent and
does not offer a valid explanation of the history.
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A second cause of inconsistency within a hypothesis is shown in the third example
(Fig. 6.3(c)). Here the drawing is spatially consistent with regard to the direction
information and it preserves the cyclic edge orders. However, it has crossing edges
(N5-N6 and N3-N9) and, more importantly, no drawing without crossing edges exists
because for this graph the combinatorial embedding is not planar.

These two inconsistent examples illustrate that the structurally valid map hypothe-
ses can still be inconsistent with the available information or the underlying assump-
tion that the environment is planar. This leads to the following definition of a consistent
map hypothesis.

Definition 6.5 (Consistent map hypothesis). A map hypothesis MH = (G,mj,ml) is
consistent if there exists a straight-line drawingD(G) ofG into the plane that satisfies
the following conditions:

• for every node in G, the natural cyclic order of leaving edges in the drawing
D(G) corresponds to the cyclic edge order specified in the combinatorial em-
bedding (cyclic order preservation),

• the line segments in D(G) corresponding to the RGEs of G do not cross each
other (planar drawing), and

• for every junction observation J ∈ JOH, the spatial description induced by
D(G) for node mj(J) matches the spatial description one gets by replacing all
l ∈ L(J) with ml(l) in description R(J) (matching direction information).

The general idea of the minimal route graph model approach to the global mapping
problem is to prefer among all consistent map hypotheses the one that is minimal in
terms of the number of RGNs in the route graph. We will call such a hypothesis a
minimal route graph model.

Definition 6.6 (Minimal route graph model). Given the set CMH of consistent map
hypotheses for H, M ∈ CMH is a minimal route graph model for H if and only if no
N ∈ CMH exists with |V (G(N))| < |V (G(M))|.

The last example in Fig. 6.3(d) shows a second consistent map hypothesis, the one
that corresponds to the original environment. The number of RGNs is smaller than in
the first example and no consistent hypothesis with even less RGNs exists for the given
history. Hence, it is a minimal route graph model for this particular history.

Following the minimal route graph model approach, the problem of mapping an
unknown environment becomes a combinatorial optimization problem of incremen-
tally computing one or all minimal consistent map hypotheses from the observations
gathered during exploration. One thing that makes this problem interesting and com-
plex is the fact that it combines combinatorial aspects with questions of spatial con-
sistency. While the space of structurally possible map hypotheses grows exponentially
with the length of the history, the direction constraints and planarity restriction reduce
the search space by allowing us to prune inconsistent branches.
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The fact that the definition of a consistent map hypothesis is based on the existence
of a drawing of the graph that satisfies certain conditions is a further indication of the
complexity of the problem: Clearly, it it infeasible to consider all drawings as there are
infinitely many straight-line drawings of a graph. General techniques like describing
the constraints in a system of (geometric) equations are typically much too expensive
computationally to be applicable.

On the positive side, there exist techniques that solve individual aspects of the
problem. For instance, checking whether a graph with combinatorial embedding is
planar—which means that a drawing without crossing edges exists that preserves the
combinatorial embedding—can be done in O(n) time. In addition, for every planar
drawing there exists one with straight edges. Consequently, we can filter out many
inconsistent hypotheses by discarding all hypotheses with non-planar embeddings.

With regard to additional spatial information, in our case the direction relations,
techniques for checking the consistency of a set of qualitative spatial relations have
been developed in the research field of qualitative spatial reasoning. These techniques
allow for determining whether a given network of spatial constraints is satisfiable.
Again, employing these techniques allows filtering out a substantial part of inconsistent
hypotheses. The minimal route graph model problem provides an interesting testbed
for these kinds of approaches as it benefits from expressive spatial formalisms for
which the consistency problem can be solved efficiently. One of our goals in this work
is to investigate the suitability of existing qualitative direction calculi for this kind of
problem and identify potential need for further research in this area.

In the following, we describe an approach to determine a minimal route graph
model based on individually enforcing the planarity constraint and the consistency
of the direction information. As a result of the individual constraint checking, the
approach is incomplete in the sense that it may not filter out all inconsistent map hy-
potheses. For instance, it could happen that there exists a drawing for a given map
hypothesis that is planar and one that is compliant with the direction constraints but
not one that is both. However, not finding all constraints is still preferable to not using
the available information at all. We start by first looking at the combinatorial optimiza-
tion problem and developing a best-first branch-and-bound-based search procedure to
solve it. In the next section, we integrate planarity and spatial consistency checks into
the framework. The results of the empirical evaluation of this approach for two spatial
calculi are provided in Sect. 7.3.

6.2 Branch and Bound Search for Minimal Model Finding

In this section, we describe a solution to the minimal route graph model problem that
consists of a branch and bound search through the search tree of possible associations
of RGNs and, hence, junction observations. The search starts with the history graph
and effectively folds the graph onto itself by unifying the RGNs with their correspond-
ing junction observations. A lower bound estimate of the model size as implied by
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the associations already made is used to efficiently guide the search towards a minimal
model in a best-first manner. As a result, the approach effectively performs an A*
search through the interpretation tree.

6.2.1 Search Through the Interpretation Tree

Deriving route graph hypotheses from a history of junction observations and hallway
traversals is mainly a problem of correctly identifying junction observations that cor-
respond to the same physical junction in the environment. Hence, similarly to ap-
proaches on data association we encountered in the previous chapter, a solution to the
problem can be formulated as a search through the tree of possible associations, the
interpretation tree. In the case of the data association problem we had two disjoint sets
of objects, the data set and the model set. Here, however, we only have one set of ob-
jects, the RGNs. In principle, each RGN can be associated with multiple other RGNs,
resulting in a partition of the set of junction observations into equivalence classes. We
still end up with a tree-formed search space in which each level corresponds to match-
ing one particular RGN and each edge corresponds to one particular matching if we
make matching assignments in the following way (see also Fig. 6.6):

• At each level in the interpretation tree, the corresponding RGN can only be
matched to objects already matched at a higher level. Hence, the fact that junc-
tion observations mapped to RGNA and RGNB should correspond to the same
physical junction could be expressed by first assigning A to 0 (new junction)
and then at a lower level matching B to A.

• When more than two RGNs should be unified (more than two junction observa-
tions correspond to the same physical junction), each RGN has to be matched
with the one previously associated in the tree: Assuming A, B, and C should be
unified to form a single junction and are associated in this order in the tree, first
A is assigned to 0, then B is assigned to A, and finally C is assigned to B.

For the following discussion we extend the graph representation for histories and
derived route graph hypotheses so that it allows us to describe the partial matchings
corresponding to inner nodes of the interpretation tree. This is done by distinguishing
RGNs in the graph depending on whether they have already been matched or not.
Already matched RGNs are depicted by circles as before, black for visited ones and
white for unvisited ones. Not yet assigned RGNs are depicted by black and white
crosses instead (see Fig. 6.5).

An additional deviation from the standard interpretation tree is that an assignment
can lead to multiple child nodes as there may exist multiple route graph hypotheses re-
sulting from joining two RGNs. One could argue that this would not be required if one
would match hallways instead of junctions, but as our hypotheses also comprises junc-
tions that have not been observed and for which consequently the number of leaving
hallways objects is unknown, we think the chosen approach is more adequate.
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Figure 6.5: Assigning H to G results in two possibilities because the hallway d can
correspond to either a or b. Therefore, this matching results in two successor nodes in
the interpretation tree

Multiple successor nodes can arise when there exist multiple ways to map the
leaving hallways of the matched junctions onto each other while preserving the cyclic
order information. Figure 6.5 shows an example of such a situation: The picture shows
at the top the partially constructed route graph hypothesis corresponding to a node in
the search tree. We now assume that we want to identify RGN H with RGN G. Since
G is an unvisited junction and H is a visited one, the RGE d of G must correspond
to one of the leaving RGEs of H , either to a or to b. It cannot correspond to c as
RGNs E and F have already been assigned and, thus, cannot be unified anymore in
this hypothesis. As a result two successor hypotheses are possible, shown below, and
there would be two child nodes for this particular matching in the interpretation tree.

A complete search tree for a small example walk consisting of three junction ob-
servations is shown in Fig. 6.6. While in principle each RGN could be matched with
any of the RGNs associated at a higher level, two junctions can only be connected by
a single hallway, and matchings can directly imply other matchings. As a result, not
all matchings occur in the interpretation tree depicted in the figure. Still, the number
of map hypotheses grows exponentially with the length of the history.

As also illustrated in Fig. 6.6, we store the following information for each node in
the search tree: a (partial) route graph hypothesis reflecting the partial matching and
and an RGN list which contains all RGNs from the original history graph. For already
matched RGNs the list states the assigned other RGN. For the still unassigned RGNs,
the RGN list contains a list of matching candidates called its match list. Additional
stored information not shown in the figure includes the mapping from the history to
the junctions and hallways in the route graph model, given in the form of annotations
to the RGNs and RGEs and the robot’s current location within the route graph.

Several examples of node hypotheses are included in Fig. 6.6. H1 is the original
history graph, with all nodes depicted by crosses because no assignments have been
made yet. As RGN A is the first RGN considered, it has to be new, which results in
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node hypothesis H2. B, C, and D are the end points of the leaving hallways of A
and, hence, have to be new junctions as well (their match lists only contain 0), which
leads to hypothesis H5. At the next level, E can only be matched to B or C (or to
0) and not to A because a connecting RGE between A and D already exists. H5, H7,
H14, and H33 are intermediate node hypotheses along the marked path through the
tree leading to H83. As all nodes in H83 are assigned, it is a complete map hypothesis.
It is also the hypothesis that reflects the actual environment. The remaining examples
are alternative complete map hypotheses of which H47 assumes less junctions than
H83, while H112 requires more. In H83, it has been hypothesized that C, E, and G
correspond to a single physical junction and, as mentioned, this has to be realized by
associating E with C before associating F with E.

Overall, expanding a node in the interpretation tree during the search for the min-
imal model involves the following three steps: (1) The first still unassigned RGN in
the RGN list is chosen; (2) the successor nodes for every matching of this RGN with
a candidate in its match list are generated; (3) the successor nodes are added to a list
containing the current fringe of the search tree. More details on the generation of
successor nodes will be given in Sect. 6.2.3.2.

6.2.2 Best-First Branch and Bound Search Based on Solution Size

As it is our goal to find a minimal consistent map hypothesis in terms of the number
of RGNs, upper and lower bounds on the model size over all hypotheses that can be
generated from a particular node in the search tree can be used to decide whether
an optimal solution can be contained in this part of the search space. Nodes with a
lower bound higher than the currently found minimal upper bound can be completely
excluded from the search. Hence, by employing a branch and bound search approach,
we achieve a reduction of the search space.

In addition, a lower bound estimate can be used to efficiently guide the search
towards a minimal model in a best-first manner by always expanding the node with the
currently smallest lower bound. Once the chosen node with the minimal lower bound
contains a hypothesis in which all nodes have been assigned, we have found a minimal
map hypothesis.

Every inner node in the search tree contains a route graph model with still unas-
signed RGNs. Hence, it stands for a set of map hypotheses which can be generated by
performing the remaining assignments. A lower bound on the number of RGNs con-
tained in a map hypothesis in this set can be computed efficiently in the following way
based on the node’s RGN list: Every RGN that is assigned to 0 counts as one because
it will occur as an RGN in any of the derived map hypotheses. The same holds for
every still unassigned RGN for which the match list only contains 0 since this RGN
cannot be matched with an already established RGN any longer. All other RGNs from
the list have either been matched with an already counted RGN or their match lists still
allow for such a matching. Hence, they do not count.

The resulting estimate is only a lower bound on the minimal number of RGNs
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Figure 6.6: The complete interpretation tree resulting from a three-step walk through
a simple environment. The environment and the sequence of observations are given
at the top of the figure. The node data (graphs and RGN lists) is depicted for several
nodes in the search tree
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because later assignments may actually lead to cases in which the match list of an
RGN is reduced to 0. This would result in an additional junction. However, to get a
better lower bound would require us to perform a costly analysis of the dependencies
in the match lists, while in our case we simply have to update some counters during
the search.

In summary, the lower bound on the model size for a node in the search tree is
defined as follows.

Definition 6.7 (Model size lower bound). Given a node n in the interpretation tree,
the model size lower bound mslb(n) of n is defined as

mslb(n) = N +O (6.2)

whereN is the number of RGNs assigned to 0 in the RGN list of n andO is the number
of RGNs with 0 as the only element in their respective match lists.

In the implementation of the search algorithm described here, the current fringe
of the search tree is stored in a priority queue sorted by the nodes’ lower bounds. In
case two nodes have the same lower bounds, a secondary criterion and, if needed, a
tertiary one are used to sort the nodes. The secondary criterion is the number of still
unassigned RGNs in the RGN lists. As a consequence, nodes deeper in the tree and,
hence, closer to a complete map hypothesis will be preferred. The tertiary criterion
is the upper bound msub(n) on the possible minimal model size for node n. It is
computed by summing up the number of RGNs assigned to 0 and the RGNs that still
need to be assigned and have 0 in their match list.

Definition 6.8 (Model size upper bound). Given a node n in the interpretation tree,
the model size upper bound msub(n) of n is defined as

msub(n) = N + P (6.3)

whereN is the number of RGNs assigned to 0 in the RGN list of n and P is the number
of RGNs with 0 contained in their match list.

To provide an example of the results of applying the best-first branch and bound
search as described in this section, Fig. 6.7 shows at the top the original interpretation
tree from Fig. 6.6 and in the middle the parts searched for a minimal model using the
best-first branch and bound algorithm. The order in which the nodes are expanded
is given by the numbers within the circles representing the nodes. The bottom figure
shows the result of applying the same approach but searching until all minimal models
have been found.

6.2.3 Expand and Update Operations

The main operation of the search procedure is the expansion of a node in which the
child nodes based on all possible matchings are generated. However, in order to in-
corporate newly available history information without performing a new search from
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Figure 6.7: Effects of different versions of the minimal model algorithm (part 1): At
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Figure 6.8: Effects of different versions of the minimal model algorithm (part 2): At
the top the tree pruned by planarity and direction constraints and at the bottom the
result of applying constraint-based pruning and branch and bound search
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Algorithm 7 Main loop of the minimal model finding algorithm
procedure minimalModel(HistoryH, PriorityQueue Q)

1: minimalModelFound← false
2: while |Q| > 0 and not minimalModelFound do
3: n← pop(Q)
4: if not uptodate(n) then
5: L← update(n,H)
6: insert all elements from L into Q
7: else if node has unassigned RGNs then
8: L← expand(n)
9: insert all elements from L into Q

10: else
11: minimalModelFound← true
12: insert n into Q
13: end if
14: end while

scratch, a second operation is required in which the node information is updated based
on the new action and observation. We will refer to these two operations as the expand
and update operations.

A pseudocode version of the main loop of the actual search procedure is shown
in Algorithm 7. This procedure is called whenever new history information becomes
available and terminates when a minimal model has been found. The current fringe
of the search tree is provided in the form of the priority queue Q sorted by criteria
described in the previous section. In the main loop, the first element is taken from
Q. It is then tested whether this node n is up-to-date (meaning all history information
has been incorporated) or not. If this is not the case, the update operation will be per-
formed, which incorporates the next hallway traversal and junction observation. Like
the expand operation, the update operation may result in multiple successor hypothe-
ses. Therefore, it returns a list of new nodes which are inserted into Q.

If the node n does not need to be updated, it is checked whether it still has unas-
signed RGNs. If this is the case, n is expanded and successor nodes which are returned
as a list are inserted into Q. Otherwise, n has to be a minimal model and the search
terminates. Before that, n is put back into the queue so that we can continue with the
search when new history information becomes available.

In the following, we consider the update and expand operations in more detail.

6.2.3.1 Update Operation

The update operation updates a node n based on one new hallway traversal T and
a new junction observation J . The result is a set of updated successor nodes. The
following steps have to be performed:
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1. A list L is initialized as empty; in the end this list will contain the successor
nodes.

2. The robot’s location within the route graph hypothesis of n is updated based on
T .

3. Case 1: If the new location loc is an already visited RGN, we check whether
J fits the current location. If this is the case, a copy s of n is added to L.
Then mj(J) is set to loc and each ml(li) for a leaving hallway in J is set to the
corresponding RGE in s. If J and the visited RGN do not match, no successor
nodes for n will be created, effectively closing this branch of the interpretation
tree.

4. Case 2: If the new location is an unvisited RGN, there may be multiple ways to
map the already existing RGEs to the observed leaving hallways. Every existing
RGE needs to be mapped to a different leaving hallway while the cyclic order
needs to be preserved. For each valid mapping the following is done: A new
node si is constructed in which the graph has been updated accordingly. A new
edge ending at a new unvisited RGN is attached at the right position in the cyclic
order for each leaving hallway that does not correspond to an existing RGE. mj
and ml are updated as in case 1 and the nodes si are added to L.

5. For each node from L, new RGNs are added to the RGN list for each end point
of the leaving hallways in J (even though no actual RGN may have been added
to the route graph model), and their match lists are set accordingly.

6. L is returned as the result of the update operation.

To illustrate this procedure, two examples of update operations are depicted in
Fig. 6.9. On the left, we see the current node hypothesis before the first update op-
eration. All RGNs except E are already matched. The new hallway traversal to be
incorporated now leads the robot from C to B/D as indicated by the dashed arrow. A
depiction of the new junction observation can be found between the arrows. It contains
two more leaving hallways in addition to the arriving one. The end points of these will
require the instantiation of two more RGNs, F and G. B/D is an unvisited RGN in
the given hypothesis (case 2), which means that every existing RGE needs to corre-
spond to an observed leaving hallway but not vice versa, and we already know that the
RGE connecting C and B/D corresponds to the leaving hallway via which the robot
arrived. Therefore, two mappings are possible, leading to the two new hypotheses at
the end of the arrows. In the first one, F is identified with A, and as a result its match
list is set to {A}. For G a new unvisited RGN is generated and connected to B/D
with a new edge. In the second hypothesis, G and A are identified, resulting in similar
changes to the graph and RGN list.

Let us now assume, another hallway traversal is performed and both hypotheses
are updated. Again, the traversed hallway is marked by the dashed arrows and the
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Figure 6.9: Example of two consecutive update operations resulting in one valid suc-
cessor hypothesis

new observation is shown between the arrows. For the first hypothesis, the traversal
would mean that the robot moves to A/F , which is a visited junction (case 1) with
two RGEs overall. In this case, there must be a one-to-one mapping between existing
RGEs and leaving hallways, which in this example is not possible as there are three
observed leaving hallways. Therefore, the hypothesis is discarded. In contrast, updat-
ing the second hypothesis results in another instance of case 2, but here with only one
possible mapping between RGEs and observed hallways. Hence, only a single updated
hypothesis will be generated.

6.2.3.2 Expand Operation

Expanding a node based on matching the next unmatched variable RGN X with an
RGN W higher in the RGN list involves the generation of child nodes with modified
graph structures and RGN lists for every valid way of folding the graph onto itself so
thatX andW are merged. The list of new child nodes is returned in the same way as it
is by the update operation. In more detail, the expand operation performs the following
steps:

1. A listL is initialized as empty, which in the end will contain the successor nodes.

2. AsX andW can both be visited or unvisited RGNs, four general cases of merg-
ing have to be distinguished. Typically, there are multiple possibilities of merg-
ing X with W ; and for some cases multiple ways of mapping the RGEs of X to
the RGEs of W exist that preserve the cyclic order information. For every pos-
sible way of merging and edge mapping a new node ci is created and processed
by the following steps:

• The graph hypothesis is transformed according to the merging variant and
edge mapping. For RGEs of X that correspond to existing RGEs of W



134 Global Mapping: Minimal Route Graphs Under Spatial Constraints

the entire subtree attached to this edge needs to be matched recursively
in accordance with the match lists of the involved RGNs. This can lead
to additional possibilities, in which case the node ci is further split into
multiple new ones, or to contradictions, in which case the hypothesis is
discarded.

• X is marked as matched to W in the RGN list.

• For all unmatched RGNs that get merged in the recursive process, their
match list is set to the RGN they are merged with because their matching
is now determined as well.

• W is removed from the match lists of the remaining unmatched variables.

• ci is added to L.

3. L is returned as the result of the expand operation.

As mentioned, there are four general cases of merging, which we will not discuss
in detail here. Instead, we will restrict ourselves to providing one rather complex
example of matching a visited RGN to an unvisited one. We use the notation A 
 B
to refer to the RGE connecting the RGNs A and B.

The starting hypothesis of our example can be seen at the top of Fig. 6.10. RGNs
A− F are already assigned; the others are unassigned. The variable to be matched in
this expansion step isG and we consider the matching with RGNB. AsB is unvisited,
there are two possible merging variants, one in which RGE A 
 B corresponds to
RGE G
 I and one in which it corresponds to G
 H .

In the first case, G is merged with B and the RGE G
 I is removed. The unvis-
ited end node I is merged with A and its match list is changed accordingly. Finally, B
is removed from the remaining match lists and the new node is added to the successor
list L.

In the second case, H corresponds to B, but H is a visited RGN with two more
RGEs. As we are comparing two visited RGNs now, there has to be a one-to-one
mapping between the RGEs so that RGE H 
 K has to correspond to A 
 D and
H 
 J to A 
 C/F . Both RGE pairs are merged in the following. As I is only an
unvisited end point, the recursion ends on this side. However, J is a visited RGN which
has to correspond to unvisited RGN C/F and there are two possible edge mappings.
This means that the current hypothesis has to be split into two new ones, one for each
mapping. In the first one, J 
 M is merged with C/F 
 E, in the second one,
J 
 L with C/F 
 E. In both cases, the recursion ends. Overall, we end up with
three successor nodes for the original node depicted in the bottom row of the figure.

6.2.4 Two Variants of the Minimal Model Finding Problem

Up to now, we have described a version of the minimal model finding problem in
which each model is a complete closed environment which might contain unvisited
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Figure 6.10: Example of matching G to B in an expand operation, resulting in three
different child nodes

junctions that form the end points of perceived but never traversed hallways. A less
complex version of the problem can be obtained by restricting the models to visited
places and allowing hallways with open endings. This problem is less complex because
the number of possible matchings is reduced significantly and because the lack of
information about the unvisited junctions allows for more variations in general.

In the experimental analysis of this work, we will compare both variants of the
algorithm. The version dealing with complete environments will be referred to as the
CompEnv variant, while the version only determining the layout of the visited parts of
the environment will be called the VisOnly variant.

The implementation of the VisOnly variant is simply a modified version of the
CompEnv algorithm in which variables are only instantiated for junction observations
and not for the end points of the leaving hallways. As a result, the search tree from
Fig. 6.6 would be reduced to a simple linear chain of three edges as none of the visited
RGNs can be joined. While this illustrates the reduced complexity of the VisOnly
variant, it is an extreme case as the history only consists of three junction observations
and no junction is visited twice.
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Besides the complexity issues, the question of which variant is better suited in
practice needs to be answered in the context of a concrete application scenario. The
advantage of the CompEnv variant is that it includes a certain predictive power which
can, for instance, be useful to predict shortcuts when applied to route networks like
street networks or the hallway networks used as an example here. However, for more
low-level graph abstractions like Voronoi graphs, CompEnv often leads to a higher
number of wrong predictions until the entire environment has been explored.

After providing a solution to the purely combinatorial problem, we now turn to
the question of how additional constraints, based either on planarity or on direction
information, can be incorporated into the search algorithm.

6.3 Pruning Based on Spatial Constraints

As mentioned previously, our approach is to check planarity constraints and consis-
tency of the direction information separately. We start with a discussion of the pla-
narity constraint.

6.3.1 Checking Planarity

In this work, we are exclusively dealing with graph environments that are plane graphs.
This means that they are embedded into the plane without crossing edges. This fact
allows us to reduce the set of possible hypotheses. Each graph hypothesis for which
the cyclic order information does not describe a planar embedding can be immediately
discarded because such a graph cannot be drawn into the plane without crossing edges
in a way that preserves the cyclic edge orders. The criterion for deciding whether a
general graph with a combinatorial embedding describes a planar embedded graph is
that its genus is 0. The genus of an undirected graph G = (V,E) is given by Euler’s
formula:

genus(G) = (|E|+ 2c− |V | − i− f)/2 (6.4)

where c is the number of connected components in the graph, i is the number of nodes
of degree 0 (isolated nodes), and f is the number of faces formed by traversing edges
in accordance with the cyclic ordering information (a more precise definition will be
given below). We only consider connected graphs without isolated nodes here and thus
the formula becomes

genus(G) = (|E| − |V | − f)/2 + 1 (6.5)

Our approach to planarity checking is similar to the one described in Savelli &
Kuipers (2004). First of all, it is advantageous to internally transform the undirected
route graphs into bidirected graphs in which each RGE from the original graph is
represented by a pair of edges with opposite directions. The information that e and
f correspond to the same RGE and thus are reversals of each other (rev(e) = f and
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Figure 6.11: Two bidirected graphs of which the first has three faces and thus according
to Eq. 6.5 depicts a planar embedding, while the second with an additional (undirected)
edge has two faces, which means the embedding is not planar

rev(f) = e) is stored in the form of edge attributes1. In addition, the cyclic order
information is transformed so that now each RGN v is annotated with the cyclic order
of directed edges which have v as source. In the following, we assume that pred(e)
and succ(e) yield the predecessor and successor edge of e in the cyclic order of leaving
directed edges at the source node of e. One can then define sequences of edges by a
function next(e) as follows:

next(e) = succ(rev(e)) (6.6)

Based on this function, each directed edge now is part of exactly one cycle of
directed edges e1, e2, ..., en with e1 = en and ei+1 = next(ei). These cycles are called
the faces of the graph. Figure 6.11 shows two combinatorial embedded graphs. Their
faces are depicted by the dashed arrows. The left graph has three faces, while the right
one with an additional (undirected) edge has only two. As a consequence, Eq. 6.5
yields that genus = 0 for the first graph and genus = 1 for the second graph. Hence,
only the first depicts a planar combinatorial embedding.

Planarity checking can be performed in linear time (Hopcroft & Tarjan, 1974;
Lempel et al., 1967). We integrate planarity checking into our search algorithm by rep-
resenting the route graph hypotheses as bidirected graphs and updating the face infor-
mation and pointers for pred, succ, and next whenever we modify the graph structure.
As soon as Eq. 6.5 is violated, the hypothesis at hand can be discarded as the planarity
constraint is violated. In our approach, the faces are numbered and each edge of the
bidirected graph stores the number of the face it belongs to (given by facenumber(e)).
The relevant operation which has the potential of changing planarity in our approach
is inserting a new edge into the graph. After inserting an edge which results in the two
new directed edges e and rev(e) and updating the successor information, three cases
have to be distinguished, illustrated in Fig. 6.12:

1The resulting structure is often referred to as a “map” (Mehlhorn et al., 1999) but we will not use this
term here in order to avoid ambiguities.
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Figure 6.12: Three cases of modifying a graph, starting with the planar graph at the
top left. Only in the last case (bottom right) does the genus change, and, hence, the
resulting embedding is not planar

1. next(e) = rev(e): This is the case when we insert a new node and connect it to
an old one. The number of faces stays the same while the number of nodes and
edges increase by one, leaving the genus unchanged. The face numbers of both,
e and rev(e) are set to the number of next(rev(e)).

2. facenumber(next(e)) = facenumber(next(rev(e))): The new edge connects two
already contained nodes and splits an existing face into two new ones. The total
number of faces increases by 1. The face number of e is set to the number of the
old cycle, while rev(e) gets a new number, and numbers of all edges belonging to
the same face as rev(e) are updated accordingly. Since the number of edges also
increased by one and the node remained unchanged, the genus again remains
unchanged.

3. facenumber(next(e)) 6= facenumber(next(rev(e))): In this case, the old face
would be replaced by a new one that combines both faces, and hence the face
number would decrease by 1. The edge number would increase by one, while
the number of nodes remains the same. As a result, the genus would increase to
1. Since this means that the embedding is not planar anymore, the hypothesis
can be immediately discarded.

While the first and third case require constant time, the second case takes linear
time in the number of edges because of the need to update the face numbers for one
face. We provide more details on the incorporation of the planarity check into the
overall search algorithm in Sect. 6.3.3.
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6.3.2 Checking Spatial Consistency

One of the main goals of the work described in this chapter is to investigate how the
presence of spatial information provided in the form of qualitative direction relations
that only represent coarse information but can be perceived reliably reduces the num-
ber of hypotheses that have to be considered. Checking the consistency of a route
graph hypothesis with regard to spatial constraints stemming from the perceived di-
rections of the leaving hallways requires us to determine whether an assignment of
points in the plane to the RGNs of the hypothesis exists which induces the same set of
relations.

Hence, we are faced with a constraint satisfaction problem in which the domain
(points in R2) is infinite. However, research on qualitative spatial reasoning has pro-
duced constraint-based techniques to deal with this kind of problem. The solution typ-
ically consists of a qualitative constraint calculus defining a set of spatial relations and
algebraic operations like converse and composition on the set of relations. Depend-
ing on the particular calculus, consistency checking can be performed by employing
the so-called algebraic closure algorithm or a more involved backtracking search over
the set of all possible scenarios which are then tested again by the algebraic closure
algorithm. The algebraic closure algorithm requires O(n3) time, where n is the num-
ber of related objects. We provide an overview on these concepts and techniques in
Appendix B.

Based on these result, our approach is to formulate the perceived direction infor-
mation in the form of qualitative direction relations from particular qualitative spatial
calculi, derive a network of constraints from the given route graph hypothesis, and
apply the standard consistency check methods to the constraint network. For perform-
ing the consistency check we use the spatial reasoning toolbox SparQ, which provides
implementations of a large set of spatial calculi and the standard reasoning techniques
(Wallgrün et al., 2006, 2007).

As we are particularly interested in comparing the effects of absolute and relative
direction information on the search space and on the number of solutions, we have cho-
sen the absolute cardinal direction calculus (Ligozat, 1998) and the relative OPRA2

calculus (Moratz, 2006; Moratz et al., 2005) for our analysis.
Both calculi cannot be considered as ideal, but no better candidates or other reason-

ing formalisms exist to our knowledge. Hence, the problem investigated here can also
be seen as a challenge for qualitative spatial reasoning research. As an ideal calculus
we would consider one with the following properties:

1. good computational properties with regard to the consistency check,

2. expressive enough to rule out many hypotheses,

3. dealing with relations that are easily and reliably accessible,

4. able to express the cyclic edge order information.
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The cardinal direction calculus, on the one hand, is rather efficient as a large
tractable subset exists for which the algebraic closure algorithm decides consistency
(cf. Appendix B.4). This subset contains all relations required in our context. The
downside is that the calculus does not allow for expressing the cyclic ordering infor-
mation about the leaving RGEs in the route graph. As a result, it can happen that a
constraint network deemed consistent by the consistency check only has solutions for
which the cyclic order information is not preserved.

TheOPRA2 calculus, on the other hand, can express the cyclic ordering informa-
tion. However, employing the algebraic closure algorithm to OPRA2 constraint net-
works generated from our route graph hypotheses only results in an incomplete method
to rule out inconsistent cases. This is also true if the much more inefficient backtrack-
ing search would be employed because algebraic closure does not decide consistency
even if the constraints are all base relations. We still have chosen OPRA2 as to our
knowledge no relative direction calculus exists with significantly better computational
properties. In addition, the calculus offers a similar level of granularity as that of the
cardinal direction calculus. This is beneficial for the comparison. How problematic
the application of an incomplete consistency checking method is has to be evaluated
experimentally.

In the next two sections, we describe how we model the direction information for
both calculi.

6.3.2.1 Modeling Spatial Configurations in the Cardinal Direction Calculus

The cardinal direction calculus is an absolute binary qualitative direction calculus de-
scribing the cardinal direction of one point object from another point object using the
nine base relations we saw in Fig. 6.4. Here, we use the base relations from the calculus
to describe the directions of leaving hallways as seen from the corresponding junction,
but then transfer this information into a constraint over the possible positions of the
connected junctions in the plane. As a result, each RGE in a route graph hypothesis
yields a direction constraint between the connected RGNs.

Absolute direction information like the cardinal direction information can actually
be exploited in multiple ways in the minimal model finding algorithm. It can be used
to enforce three different requirements:

1. Valid direction orderings: When adding a new RGE to an RGN, it can only be
inserted into the cyclic edge order at a position where the edges also preserve
the cyclic order of cardinal directions. For instance, a resulting cyclic order of
edges with directions n, s, w is not valid as w would have to appear between n
and s.

2. Valid junction matching: When matching two RGNs, mappings of RGEs are
only valid if corresponding RGEs have the same directions.
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3. Global consistency: There needs to be a way of assigning coordinates to the
RGN such that the direction constraints are satisfied.

As we explained, the global consistency check requires the full constraint reason-
ing approach based on the algebraic closure algorithm. Therefore, we first generate
a constraint network from the given route graph hypothesis. This constraint network
consists of one variable for each RGN and one constraint represented by a directed
edge for each RGE. In Fig. 6.13, we see part of a route graph hypothesis and the cor-
responding set of derived constraints that make up the constraint network. For all other
pairs of junctions, the constraint holding between them is the disjunction of all base
relations except eq. The constraint network is then fed into SparQ, which performs the
consistency check. If the algebraic closure algorithm discovers an inconsistency, the
hypothesis at hand can be discarded.

A

B C

D E

A ne B

A n C

B w C

B ne D

C n E

Figure 6.13: A route graph hypothesis and the cardinal direction constraints derived
from it

6.3.2.2 Modeling Spatial Configurations in the OPRA2 Calculus

The second calculus employed and investigated in this book is the OPRA2 calculus.
In contrast to the cardinal direction calculus, it is a relative calculus describing the
relative orientation of two objects to each other. Hence, a robot would only need to
be able to estimate the angles between the leaving hallways and would not require a
compass to determine OPRA2 relations.
OPRA2 is actually one particular instance of a calculus from the Oriented Point

Relation Algebra (OPRAm) family. m here is the granularity parameter used to deter-
mine the number of base relations that are distinguished (Moratz, 2006; Moratz et al.,
2005). The domain of (OPRAm) is the set of oriented points (points in the plane with
an additional direction parameter).

For a given granularity parameter m ∈ N the concrete set of OPRAm relations
is derived as follows: For each of the two related oriented points, m lines are used to
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Figure 6.14: OPRA2 relations between two oriented points: (a) the relationA 2∠1
7 B,

(b) A 2∠1 B

partition the plane into 2m planar and 2m linear regions. Figure 6.14(a) shows the par-
tition forOPRA2. The orientation of the two points is depicted by the arrows starting
atA andB, respectively. The regions are numbered from 0 to 4m−1. Region 0 always
coincides with the orientation of the point. An OPRAm base relation relOPRAm is
then given by a pair (i, j) where i is the number of the region of A which contains B,
while j is the number of the region of B which contains A. These relations are usually
written as A m∠ji B, Thus, the example in Fig. 6.14(a) depicts the relation A 2∠1

7 B.
Additional base relations called same relations describe situations in which the posi-
tions of both oriented points coincide. In these cases, the relation is determined by the
number s of the region of A which contains the orientation arrow of B (as illustrated
in Fig. 6.14(b)). These relations are written as A 2∠s B (A 2∠1 B in the example).
The complete setR of OPRAm relations again is the power set of the base relations.

When we employ the OPRA2 calculus to describe the relative directions of leav-
ing hallways in the junction observations, the leaving hallways are seen as oriented
points positioned on the RGN and pointing in the corresponding direction. The in-
duced spatial descriptionR(J) for a junction observation J then consists of anOPRA2

relation for each pair of leaving hallways from L(J).
For a relative direction calculus like OPRA2, only two ways of exploiting the

direction information exist, in contrast to the three ways we encountered in the case
of absolute direction information. The reason is that enforcement of valid direction
ordering is not applicable because no such order exists for relative information. En-
forcing valid junction matchings, however, is still possible but now constrains the valid
mappings by way of the relations holding between pairs of RGEs.

For the global consistency check, anOPRA2 constraint network is generated from
the route graph hypothesis. Analogously to the generation of the description of a
junction observation, one oriented point variable is introduced for each pair of RGN
and incident RGE. Hence, we end up with 2 × n variables in the constraint network,
where n is the number of RGEs in the hypothesis, while we only had one per junction
in the case of absolute cardinal directions. The process of generating the constraint
network is illustrated in Fig. 6.15.

The names of the oriented points here are formed from the name of the corres-
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0 EC

Figure 6.15: Set of OPRA2 constraints describing the given route graph hypothesis.
A junction of n hallways is represented by n oriented points

ponding RGN and the name of the other RGN incident to the RGE (e.g., AB for the
oriented point at RGN A and the RGE leading to B). For each RGN, we generate the
constraints holding between each pair of leaving RGEs which are all same relations.
In addition, we need to state that XY and Y X are facing each other (relation 2∠0

0),
forming a single hallway. The complete set of constraints is shown on the right side of
the figure.

Finally, consistency again is checked by using the algebraic closure algorithm of
SparQ. However, as we already mentioned, this is only an incomplete method that may
not discover all inconsistent constraint networks.

6.3.3 Incorporation into the Search Algorithm

Planarity checking and spatial direction constraints are incorporated into the search
algorithm to discard inconsistent hypotheses as soon as possible and thus prune large
subtrees of the search tree.

Spatial direction constraints are utilized in both the update and the expand opera-
tions. In the update operation, only valid junction matchings need to be enforced in
order to verify that the hypothesis is consistent with the new information. In the ex-
pand operation, enforcement of valid direction orderings plays a role when adding a
new RGE to an unvisited RGN, but only when an absolute direction calculus is used.
Valid junction mappings are enforced when two RGNs are merged. A global consis-
tency check is performed for every successor hypothesis that results from performing
a matching.

Planarity checks only need to be performed when a node in the search tree is ex-
panded. The update operation at most appends new RGEs together with a new unvis-
ited RGN and never connects two existing RGNs. However, it still requires that the
planarity-related information be updated correctly. In addition, when the match lists of
the new RGNs are set, only RGNs that share a face with the new RGN are considered.
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In the expand operation, planarity is checked whenever a new edge connecting two
existing RGNs is inserted while transforming the graph structure.

The effects of both the planarity constraint and the direction constraints can be
seen in the top picture of Fig. 6.8. A significant number of branches have been cut off
because inconsistency of the hypothesis has been discovered (marked by the cross).
The reasons for discarding a particular node are indicated by the letters below the cross
(‘p’ for planarity, ‘d’ for direction information). For some nodes, both planarity and
spatial consistency are violated. Leaf nodes containing a consistent map hypothesis
are tagged by a check mark.

The bottom search tree shows the result of applying pruning based on planarity
constraint and direction information together with the branch and bound search. From
112 nodes in the original search tree, only 36 are considered. Ten nodes are rejected
because of planarity violation and ten because of inconsistent direction information.
While generation of successor nodes and the update operation can be performed in
polynomial time (with the global consistency check being the most costly operation),
the size of the search tree grows exponentially with the length of history. Therefore, the
important question is whether combining constraint-based pruning and best-first search
can achieve a sufficient reduction of the search space to make the overall approach
feasible. An experimental analysis of this issue based on randomly created graph
environments and exploration runs will be conducted in Sect. 7.3.

6.4 Combining Minimal Route Graph Mapping and AGVG
Representations

In the last section of this chapter, we discuss how the minimal model finding approach
developed above can be applied to construct AGVG representations from a sequence of
observed Voronoi nodes and traversals of Voronoi curves. Obviously, this global map-
ping approach should be based on the most relevant of the Voronoi nodes and only add
the other nodes when the general topology of the environment has been established.

The AGVG setting deviates in several aspects from the theoretical scenario we
studied in the previous sections:

• node signatures provide additional information about RGNs,

• start and end nodes of RGEs (Voronoi curves) can often be perceived together,

• multiple connections between two RGNs are possible,

• reliable perception of direction relations is not given for linear relations or near
the sector boundaries,

• connections are typically not straight lines.
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The information contained in the signatures of Voronoi nodes can be used as an ad-
ditional criterion to decide whether two nodes are compatible as described in Chap. 5.
The second point in the list refers to the fact that in a Voronoi-based mapping approach
the robot typically not only perceives a single Voronoi node but a local Voronoi graph
as defined in Sect. 3.5. This kind of information allows us to extend the route graph
model without explicitly traversing each edge and, in addition, helps reduce the prob-
lems caused by the other deviations from the theoretical framework as we will see
below. The simplest way to incorporate this additional information into the framework
is by adding virtual traversal actions and junction observations to the history whenever
a complete connection is perceived without actually traversing it. These virtual actions
and observations simulate traversing the connecting Voronoi curve and then returning
to the starting Voronoi node.

Including the possibility of multiple connections between two Voronoi nodes in
the framework is straightforward. It only requires a change in the way the match lists
are constructed in the update operation. This change, in principle, increases the size of
the search space. However, the fact that the adjacent nodes are often part of the local
observation means that the difference is negligible in practice.

More serious problems are raised by the last two points in the list. First of all, we
cannot expect that the direction relations of leaving Voronoi curves can be completely
reliably observed in practice. This is especially true for the linear sectors included in
the two direction calculi, which is a general point of criticism with regard to typical
qualitative spatial calculi. As a consequence, instead of always employing base rela-
tions from the respective calculus, we utilize disjunctions of base relations whenever
the perceived direction is a linear relation or lies close to the boundary of a relation
sector. For instance, the perceived cardinal direction relation n and a direction be-
longing to ne but very close to n would both be stored as the disjunction {ne, n, nw}.
When employing disjunctions instead of only base relations, the requirement that di-
rections of matched hallways be identical has to be replaced with the demand that the
intersection of the direction relations not be empty.

A further problem for the utilization of direction information is the fact that Voronoi
curves are typically not straight connections between two Voronoi nodes but, as the
name suggests, curved. Therefore, we cannot expect that a connection leaving node
A to the southwest arrives at node B from the northeast and that consequently B has
to lie southwest of A. If the connecting Voronoi curve is completely contained in the
local observation, this is not a problem as the correct cardinal direction can be read
off directly. In situations in which this is not the case, we simply mark the traversal
action and refrain from employing the direction information for this edge in the global
consistency check. However, we still can use the local direction of the leaving Voronoi
curve for matching junction observations.

The last two points and the adaptations made to deal with them mainly concern the
pruning of the search space based on global consistency. The extended use of coarse
information in the form of disjunctions leads to a diminished inferential power. As a
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result the efficiency of this kind of pruning can be significantly reduced. Enforcement
of valid direction orderings and valid junction matchings are affected to a lesser degree.

Overall, while these adaptations may sound rather drastic, the effects in practice
are less severe because of the already mentioned extended observation range. A quan-
titative analysis will be performed as part of the evaluation described in the next chap-
ter (Sect. 7.3.5). This analysis will be based on simulated exploration runs through
AGVGs of real environments. In addition, we will apply the minimal model approach
within an overall Voronoi-based mapping system that combines all the techniques de-
veloped in this work in Sect. 7.4.
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